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P R E F A C E

R egrettably, Professor Jayavel Sounderpandian passed away before the revision
of the text commenced. He had been a consistent champion of the book, first
as a loyal user and later as a productive co-author. His many contributions and

contagious enthusiasm will be sorely missed. In the seventh edition of Complete Business
Statistics, we focus on many improvements in the text, driven largely by recom-
mendations from dedicated users and others who teach business statistics. In their
reviews, these professors suggested ways to improve the book by maintaining the
Excel feature while incorporating MINITAB, as well as by adding new content
and pedagogy, and by updating the source material. Additionally, there is increased
emphasis on good applications of statistics, and a wealth of excellent real-world prob-
lems has been incorporated in this edition. The book continues to attempt to instill a
deep understanding of statistical methods and concepts with its readers.

The seventh edition, like its predecessors, retains its global emphasis, maintaining
its position of being at the vanguard of international issues in business. The economies
of countries around the world are becoming increasingly intertwined. Events in Asia
and the Middle East have direct impact on Wall Street, and the Russian economy’s
move toward capitalism has immediate effects on Europe as well as on the United
States. The publishing industry, in which large international conglomerates have ac-
quired entire companies; the financial industry, in which stocks are now traded around
the clock at markets all over the world; and the retail industry, which now offers con-
sumer products that have been manufactured at a multitude of different locations
throughout the world—all testify to the ubiquitous globalization of the world economy.
A large proportion of the problems and examples in this new edition are concerned
with international issues. We hope that instructors welcome this approach as it increas-
ingly reflects that context of almost all business issues.

A number of people have contributed greatly to the development of this seventh
edition and we are grateful to all of them. Major reviewers of the text are:

C. Lanier Benkard, Stanford University
Robert Fountain, Portland State University
Lewis A. Litteral, University of Richmond
Tom Page, Michigan State University
Richard Paulson, St. Cloud State University
Simchas Pollack, St. John’s University
Patrick A. Thompson, University of Florida
Cindy van Es, Cornell University

We would like to thank them, as well as the authors of the supplements that
have been developed to accompany the text. Lou Patille, Keller Graduate School of
Management, updated the Instructor’s Manual and the Student Problem Solving
Guide. Alan Cannon, University of Texas–Arlington, updated the Test Bank, and
Lloyd Jaisingh, Morehead State University, created data files and updated the Power-
Point Presentation Software. P. Sundararaghavan, University of Toledo, provided an
accuracy check of the page proofs. Also, a special thanks to David Doane, Ronald
Tracy, and Kieran Mathieson, all of Oakland University, who permitted us to in-
clude their statistical package, Visual Statistics, on the CD-ROM that accompanies
this text.
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viii Preface

We are indebted to the dedicated personnel at McGraw-Hill/Irwin. We are thank-
ful to Scott Isenberg, executive editor, for his strategic guidance in updating this text
to its seventh edition. We appreciate the many contributions of Wanda Zeman, senior
developmental editor, who managed the project well, kept the schedule on time and
the cost within budget. We are thankful to the production team at McGraw-Hill /Irwin
for the high-quality editing, typesetting, and printing. Special thanks are due to Saeideh
Fallah Fini for her excellent work on computer applications.

Amir D. Aczel 
Boston University
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1
After studying this chapter, you should be able to:

• Distinguish between qualitative and quantitative data.
• Describe nominal, ordinal, interval, and ratio scales of

measurement.
• Describe the difference between a population and a sample.
• Calculate and interpret percentiles and quartiles.
• Explain measures of central tendency and how to compute

them.
• Create different types of charts that describe data sets.
• Use Excel templates to compute various measures and 

create charts.

INTRODUCTION AND DESCRIPTIVE STATISTICS

LEARNING OBJECTIVES
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1–1 Using Statistics
It is better to be roughly right than precisely wrong.

—John Maynard Keynes

You all have probably heard the story about Malcolm Forbes, who once got lost
floating for miles in one of his famous balloons and finally landed in the middle of a
cornfield. He spotted a man coming toward him and asked, “Sir, can you tell me
where I am?” The man said, “Certainly, you are in a basket in a field of corn.”
Forbes said, “You must be a statistician.” The man said, “That’s amazing, how did you
know that?” “Easy,” said Forbes, “your information is concise, precise, and absolutely
useless!”1

The purpose of this book is to convince you that information resulting from a good
statistical analysis is always concise, often precise, and never useless! The spirit of
statistics is, in fact, very well captured by the quotation above from Keynes. This
book should teach you how to be at least roughly right a high percentage of the time.
Statistics is a science that helps us make better decisions in business and economics
as well as in other fields. Statistics teach us how to summarize data, analyze them,
and draw meaningful inferences that then lead to improved decisions. These better
decisions we make help us improve the running of a department, a company, or the
entire economy.

The word statistics is derived from the Italian word stato, which means “state,” and
statista refers to a person involved with the affairs of state. Therefore, statistics origi-
nally meant the collection of facts useful to the statista. Statistics in this sense was used
in 16th-century Italy and then spread to France, Holland, and Germany. We note,
however, that surveys of people and property actually began in ancient times.2

Today, statistics is not restricted to information about the state but extends to almost
every realm of human endeavor. Neither do we restrict ourselves to merely collecting
numerical information, called data. Our data are summarized, displayed in meaning-
ful ways, and analyzed. Statistical analysis often involves an attempt to generalize
from the data. Statistics is a science—the science of information. Information may be
qualitative or quantitative. To illustrate the difference between these two types of infor-
mation, let’s consider an example.

Realtors who help sell condominiums in the Boston area provide prospective buyers
with the information given in Table 1–1. Which of the variables in the table are quan-
titative and which are qualitative?

The asking price is a quantitative variable: it conveys a quantity—the asking price in
dollars. The number of rooms is also a quantitative variable. The direction the apart-
ment faces is a qualitative variable since it conveys a quality (east, west, north, south).
Whether a condominium has a washer and dryer in the unit (yes or no) and whether
there is a doorman are also qualitative variables.

E X A M P L E  1 – 1

S o l u t i o n

1From an address by R. Gnanadesikan to the American Statistical Association, reprinted in American Statistician 44,
no. 2 (May 1990), p. 122.

2See Anders Hald, A History of Probability and Statistics and Their Applications before 1750 (New York: Wiley, 1990),
pp. 81–82.
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A quantitative variable can be described by a number for which arithmetic
operations such as averaging make sense. A qualitative (or categorical)
variable simply records a quality. If a number is used for distinguishing
members of different categories of a qualitative variable, the number
assignment is arbitrary.

The field of statistics deals with measurements—some quantitative and others
qualitative. The measurements are the actual numerical values of a variable. (Quali-
tative variables could be described by numbers, although such a description might be
arbitrary; for example, N � 1, E � 2, S � 3, W � 4, Y � 1, N � 0.)

The four generally used scales of measurement are listed here from weakest to
strongest.
Nominal Scale. In the nominal scale of measurement, numbers are used simply
as labels for groups or classes. If our data set consists of blue, green, and red items, we
may designate blue as 1, green as 2, and red as 3. In this case, the numbers 1, 2, and
3 stand only for the category to which a data point belongs. “Nominal” stands for
“name” of category. The nominal scale of measurement is used for qualitative rather
than quantitative data: blue, green, red; male, female; professional classification; geo-
graphic classification; and so on.
Ordinal Scale. In the ordinal scale of measurement, data elements may be
ordered according to their relative size or quality. Four products ranked by a con-
sumer may be ranked as 1, 2, 3, and 4, where 4 is the best and 1 is the worst. In this
scale of measurement we do not know how much better one product is than others,
only that it is better.
Interval Scale. In the interval scale of measurement the value of zero is assigned
arbitrarily and therefore we cannot take ratios of two measurements. But we can take
ratios of intervals. A good example is how we measure time of day, which is in an interval
scale. We cannot say 10:00 A.M. is twice as long as 5:00 A.M. But we can say that the
interval between 0:00 A.M. (midnight) and 10:00 A.M., which is a duration of 10 hours,
is twice as long as the interval between 0:00 A.M. and 5:00 A.M., which is a duration of
5 hours. This is because 0:00 A.M. does not mean absence of any time. Another exam-
ple is temperature. When we say 0°F, we do not mean zero heat. A temperature of
100°F is not twice as hot as 50°F.
Ratio Scale. If two measurements are in ratio scale, then we can take ratios of
those measurements. The zero in this scale is an absolute zero. Money, for example,
is measured in a ratio scale. A sum of $100 is twice as large as $50. A sum of $0 means
absence of any money and is thus an absolute zero. We have already seen that mea-
surement of duration (but not time of day) is in a ratio scale. In general, the interval
between two interval scale measurements will be in ratio scale. Other examples of
the ratio scale are measurements of weight, volume, area, or length.

TABLE 1–1 Boston Condominium Data

Number of Number of
Asking Price Bedrooms Bathrooms Direction Facing Washer/Dryer? Doorman?

$709,000 2 1 E Y Y

812,500 2 2 N N Y

980,000 3 3 N Y Y

830,000 1 2 W N N

850,900 2 2 W Y N 

Source: Boston.condocompany.com, March 2007.
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Samples and Populations
In statistics we make a distinction between two concepts: a population and a sample.

The population consists of the set of all measurements in which the inves-
tigator is interested. The population is also called the universe.

A sample is a subset of measurements selected from the population.
Sampling from the population is often done randomly, such that every
possible sample of n elements will have an equal chance of being
selected. A sample selected in this way is called a simple random sample,
or just a random sample. A random sample allows chance to determine
its elements.

For example, Farmer Jane owns 1,264 sheep. These sheep constitute her entire pop-
ulation of sheep. If 15 sheep are selected to be sheared, then these 15 represent a sample
from Jane’s population of sheep. Further, if the 15 sheep were selected at random from
Jane’s population of 1,264 sheep, then they would constitute a random sample of sheep.

The definitions of sample and population are relative to what we want to consider. If
Jane’s sheep are all we care about, then they constitute a population. If, however, we
are interested in all the sheep in the county, then all Jane’s 1,264 sheep are a sample
of that larger population (although this sample would not be random).

The distinction between a sample and a population is very important in statistics.

Data and Data Collection
A set of measurements obtained on some variable is called a data set. For example,
heart rate measurements for 10 patients may constitute a data set. The variable we’re
interested in is heart rate, and the scale of measurement here is a ratio scale. (A heart
that beats 80 times per minute is twice as fast as a heart that beats 40 times per
minute.) Our actual observations of the patients’ heart rates, the data set, might be 60,
70, 64, 55, 70, 80, 70, 74, 51, 80.

Data are collected by various methods. Sometimes our data set consists of the
entire population we’re interested in. If we have the actual point spread for five foot-
ball games, and if we are interested only in these five games, then our data set of five
measurements is the entire population of interest. (In this case, our data are on a ratio
scale. Why? Suppose the data set for the five games told only whether the home or
visiting team won. What would be our measurement scale in this case?)

In other situations data may constitute a sample from some population. If the
data are to be used to draw some conclusions about the larger population they were
drawn from, then we must collect the data with great care. A conclusion drawn about
a population based on the information in a sample from the population is called a
statistical inference. Statistical inference is an important topic of this book. To
ensure the accuracy of statistical inference, data must be drawn randomly from the
population of interest, and we must make sure that every segment of the population
is adequately and proportionally represented in the sample.

Statistical inference may be based on data collected in surveys or experiments,
which must be carefully constructed. For example, when we want to obtain infor-
mation from people, we may use a mailed questionnaire or a telephone interview
as a convenient instrument. In such surveys, however, we want to minimize any
nonresponse bias. This is the biasing of the results that occurs when we disregard
the fact that some people will simply not respond to the survey. The bias distorts the
findings, because the people who do not respond may belong more to one segment
of the population than to another. In social research some questions may be sensitive—
for example, “Have you ever been arrested?” This may easily result in a nonresponse
bias, because people who have indeed been arrested may be less likely to answer the
question (unless they can be perfectly certain of remaining anonymous). Surveys
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conducted by popular magazines often suffer from nonresponse bias, especially
when their questions are provocative. What makes good magazine reading often
makes bad statistics. An article in the New York Times reported on a survey about
Jewish life in America. The survey was conducted by calling people at home on a
Saturday—thus strongly biasing the results since Orthodox Jews do not answer the
phone on Saturday.3

Suppose we want to measure the speed performance or gas mileage of an auto-
mobile. Here the data will come from experimentation. In this case we want to make
sure that a variety of road conditions, weather conditions, and other factors are repre-
sented. Pharmaceutical testing is also an example where data may come from experi-
mentation. Drugs are usually tested against a placebo as well as against no treatment
at all. When an experiment is designed to test the effectiveness of a sleeping pill, the
variable of interest may be the time, in minutes, that elapses between taking the pill
and falling asleep.

In experiments, as in surveys, it is important to randomize if inferences are
indeed to be drawn. People should be randomly chosen as subjects for the experi-
ment if an inference is to be drawn to the entire population. Randomization should
also be used in assigning people to the three groups: pill, no pill, or placebo. Such a
design will minimize potential biasing of the results.

In other situations data may come from published sources, such as statistical
abstracts of various kinds or government publications. The published unemployment
rate over a number of months is one example. Here, data are “given” to us without our
having any control over how they are obtained. Again, caution must be exercised.
The unemployment rate over a given period is not a random sample of any future
unemployment rates, and making statistical inferences in such cases may be complex
and difficult. If, however, we are interested only in the period we have data for, then
our data do constitute an entire population, which may be described. In any case,
however, we must also be careful to note any missing data or incomplete observations.

In this chapter, we will concentrate on the processing, summarization, and display
of data—the first step in statistical analysis. In the next chapter, we will explore the the-
ory of probability, the connection between the random sample and the population.
Later chapters build on the concepts of probability and develop a system that allows us
to draw a logical, consistent inference from our sample to the underlying population.

Why worry about inference and about a population? Why not just look at our
data and interpret them? Mere inspection of the data will suffice when interest cen-
ters on the particular observations you have. If, however, you want to draw mean-
ingful conclusions with implications extending beyond your limited data, statistical
inference is the way to do it.

In marketing research, we are often interested in the relationship between adver-
tising and sales. A data set of randomly chosen sales and advertising figures for a
given firm may be of some interest in itself, but the information in it is much more
useful if it leads to implications about the underlying process—the relationship
between the firm’s level of advertising and the resulting level of sales. An under-
standing of the true relationship between advertising and sales—the relationship in
the population of advertising and sales possibilities for the firm—would allow us to
predict sales for any level of advertising and thus to set advertising at a level that
maximizes profits.

A pharmaceutical manufacturer interested in marketing a new drug may be
required by the Food and Drug Administration to prove that the drug does not cause
serious side effects. The results of tests of the drug on a random sample of people may
then be used in a statistical inference about the entire population of people who may
use the drug if it is introduced.

3Laurie Goodstein, “Survey Finds Slight Rise in Jews Intermarrying,” The New York Times, September 11, 2003, p. A13.
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1–1. A survey by an electric company contains questions on the following:
1. Age of household head.
2. Sex of household head.
3. Number of people in household.
4. Use of electric heating (yes or no).
5. Number of large appliances used daily.
6. Thermostat setting in winter.
7. Average number of hours heating is on.
8. Average number of heating days.
9. Household income.

10. Average monthly electric bill.
11. Ranking of this electric company as compared with two previous electricity

suppliers.
Describe the variables implicit in these 11 items as quantitative or qualitative, and
describe the scales of measurement.
1–2. Discuss the various data collection methods described in this section.
1–3. Discuss and compare the various scales of measurement.
1–4. Describe each of the following variables as qualitative or quantitative.

P R O B L E M S

Introduction and Descriptive Statistics 7

A bank may be interested in assessing the popularity of a particular model of
automatic teller machines. The machines may be tried on a randomly chosen group
of bank customers. The conclusions of the study could then be generalized by statis-
tical inference to the entire population of the bank’s customers.

A quality control engineer at a plant making disk drives for computers needs to
make sure that no more than 3% of the drives produced are defective. The engineer
may routinely collect random samples of drives and check their quality. Based on the
random samples, the engineer may then draw a conclusion about the proportion of
defective items in the entire population of drives.

These are just a few examples illustrating the use of statistical inference in busi-
ness situations. In the rest of this chapter, we will introduce the descriptive statistics
needed to carry out basic statistical analyses. The following chapters will develop the
elements of inference from samples to populations.

The Richest People on Earth 2007

Name Wealth ($ billion) Age Industry Country of Citizenship

William Gates III 56 51 Technology U.S.A.

Warren Buffett 52 76 Investment U.S.A.

Carlos Slim Helú 49 67 Telecom Mexico

Ingvar Kamprad 33 80 Retail Sweden

Bernard Arnault 26 58 Luxury goods France

Source: Forbes, March 26, 2007 (the “billionaires” issue), pp. 104–156.

1–5. Five ice cream flavors are rank-ordered by preference. What is the scale of
measurement?
1–6. What is the difference between a qualitative and a quantitative variable?
1–7. A town has 15 neighborhoods. If you interviewed everyone living in one particu-
lar neighborhood, would you be interviewing a population or a sample from the town?
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Would this be a random sample? If you had a list of everyone living in the town, called
a frame, and you randomly selected 100 people from all the neighborhoods, would
this be a random sample?
1–8. What is the difference between a sample and a population?
1–9. What is a random sample?
1–10. For each tourist entering the United States, the U.S. Immigration and Natu-
ralization Service computer is fed the tourist’s nationality and length of intended stay.
Characterize each variable as quantitative or qualitative.
1–11. What is the scale of measurement for the color of a karate belt?
1–12. An individual federal tax return form asks, among other things, for the fol-
lowing information: income (in dollars and cents), number of dependents, whether
filing singly or jointly with a spouse, whether or not deductions are itemized, amount
paid in local taxes. Describe the scale of measurement of each variable, and state
whether the variable is qualitative or quantitative.

1–2 Percentiles and Quartiles
Given a set of numerical observations, we may order them according to magnitude.
Once we have done this, it is possible to define the boundaries of the set. Any student
who has taken a nationally administered test, such as the Scholastic Aptitude Test
(SAT), is familiar with percentiles. Your score on such a test is compared with the scores
of all people who took the test at the same time, and your position within this group is
defined in terms of a percentile. If you are in the 90th percentile, 90% of the people
who took the test received a score lower than yours. We define a percentile as follows.

The Pth percentile of a group of numbers is that value below which lie P%
(P percent) of the numbers in the group. The position of the Pth percentile
is given by (n � 1)P/100, where n is the number of data points.

Let’s look at an example.

8 Chapter 1

The magazine Forbes publishes annually a list of the world’s wealthiest individuals.
For 2007, the net worth of the 20 richest individuals, in billions of dollars, in no par-
ticular order, is as follows:4

33, 26, 24, 21, 19, 20, 18, 18, 52, 56, 27, 22, 18, 49, 22, 20, 23, 32, 20, 18

Find the 50th and 80th percentiles of this set of the world’s top 20 net worths.

E X A M P L E  1 – 2

First, let’s order the data from smallest to largest:

18, 18, 18, 18, 19, 20, 20, 20, 21, 22, 22, 23, 24, 26, 27, 32, 33, 49, 52, 56

To find the 50th percentile, we need to determine the data point in position
(n � 1)P�100 � (20 � 1)(50�100) � (21)(0.5) � 10.5. Thus, we need the data point in
position 10.5. Counting the observations from smallest to largest, we find that the
10th observation is 22, and the 11th is 22. Therefore, the observation that would lie in
position 10.5 (halfway between the 10th and 11th observations) is 22. Thus, the 50th
percentile is 22.

Similarly, we find the 80th percentile of the data set as the observation lying in
position (n � 1)P�100 � (21)(80�100) � 16.8. The 16th observation is 32, and the
17th is 33; therefore, the 80th percentile is a point lying 0.8 of the way from 32 to 33,
that is, 32.8.

S o l u t i o n

4Forbes, March 26, 2007 (the “billionaires” issue), pp. 104–186. 
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1–13. The following data are numbers of passengers on flights of Delta Air Lines
between San Francisco and Seattle over 33 days in April and early May.

128, 121, 134, 136, 136, 118, 123, 109, 120, 116, 125, 128, 121, 129, 130, 131, 127, 119, 114,
134, 110, 136, 134, 125, 128, 123, 128, 133, 132, 136, 134, 129, 132

Find the lower, middle, and upper quartiles of this data set. Also find the 10th, 15th,
and 65th percentiles. What is the interquartile range?
1–14. The following data are annualized returns on a group of 15 stocks.

12.5, 13, 14.8, 11, 16.7, 9, 8.3, �1.2, 3.9, 15.5, 16.2, 18, 11.6, 10, 9.5

Find the median, the first and third quartiles, and the 55th and 85th percentiles for
these data.

P R O B L E M S

Certain percentiles have greater importance than others because they break down
the distribution of the data (the way the data points are distributed along the number
line) into four groups. These are the quartiles. Quartiles are the percentage points
that break down the data set into quarters—first quarter, second quarter, third quarter,
and fourth quarter.

The first quartile is the 25th percentile. It is that point below which lie
one-fourth of the data.

Similarly, the second quartile is the 50th percentile, as we computed in Example 1–2.
This is a most important point and has a special name—the median.

The median is the point below which lie half the data. It is the 50th
percentile.

We define the third quartile correspondingly:

The third quartile is the 75th percentile point. It is that point below which
lie 75 percent of the data.

The 25th percentile is often called the lower quartile; the 50th percentile point, the
median, is called the middle quartile; and the 75th percentile is called the upper
quartile.

Introduction and Descriptive Statistics 9

Find the lower, middle, and upper quartiles of the billionaires data set in Example 1–2.

Based on the procedure we used in computing the 80th percentile, we find that
the lower quartile is the observation in position (21)(0.25) � 5.25, which is 19.25. The
middle quartile was already computed (it is the 50th percentile, the median, which
is 22). The upper quartile is the observation in position (21)(75�100) � 15.75, which
is 30.75.

E X A M P L E  1 – 3

S o l u t i o n

We define the interquartile range as the difference between the first and
third quartiles.

The interquartile range is a measure of the spread of the data. In Example 1–2, the
interquartile range is equal to Third quartile � First quartile � 30.75 � 19.25 � 11.5.
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1–15. The following data are the total 1-year return, in percent, for 10 midcap
mutual funds:5

0.7, 0.8, 0.1, �0.7, �0.7, 1.6, 0.2, �0.5, �0.4, �1.3

Find the median and the 20th, 30th, 60th, and 90th percentiles.
1–16. Following are the numbers of daily bids received by the government of a
developing country from firms interested in winning a contract for the construction
of a new port facility.

2, 3, 2, 4, 3, 5, 1, 1, 6, 4, 7, 2, 5, 1, 6

Find the quartiles and the interquartile range. Also find the 60th percentile.
1–17. Find the median, the interquartile range, and the 45th percentile of the fol-
lowing data.

23, 26, 29, 30, 32, 34, 37, 45, 57, 80, 102, 147, 210, 355, 782, 1,209

1–3 Measures of Central Tendency
Percentiles, and in particular quartiles, are measures of the relative positions of points
within a data set or a population (when our data set constitutes the entire population).
The median is a special point, since it lies in the center of the data in the sense that
half the data lie below it and half above it. The median is thus a measure of the location
or centrality of the observations.

In addition to the median, two other measures of central tendency are commonly
used. One is the mode (or modes—there may be several of them), and the other is the
arithmetic mean, or just the mean. We define the mode as follows.

The mode of the data set is the value that occurs most frequently.

Let us look at the frequencies of occurrence of the data values in Example 1–2,
shown in Table 1–2. We see that the value 18 occurs most frequently. Four data points
have this value—more points than for any other value in the data set. Therefore, the
mode is equal to 18.

The most commonly used measure of central tendency of a set of observations is
the mean of the observations.

The mean of a set of observations is their average. It is equal to the sum
of all observations divided by the number of observations in the set.

Let us denote the observations by , , . . . . That is, the first observation is
denoted by x1, the second by , and so on to the n th observation, . (In Example
1–2, , , . . . , and .) The sample mean is denoted by xxn � x20 � 18x2 � 26x1 � 33

xnx2

xnx2x1

10 Chapter 1
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Mean of a sample:

(1–1)x �
a
n

i�1
xi

n �
x1 � x2 � Á � xn

n

where � is summation notation. The summation extends over all data points.

TABLE 1–2 Frequencies of
Occurrence of Data Values
in Example 1–2

Value Frequency

18 4

19 1

20 3

21 1

22 2

23 1

24 1

26 1

27 1

32 1

33 1

49 1

52 1

56 1 
5“The Money 70,” Money, March 2007, p. 63.

CHAPTER 1
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FIGURE 1–1 Mean, Median, and Mode for Example 1–2

Mode Median (26.9)
Mean

18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56
x

When our observation set constitutes an entire population, instead of denoting the
mean by we use the symbol � (the Greek letter mu). For a population, we use N as
the number of elements instead of n. The population mean is defined as follows.

x

Introduction and Descriptive Statistics 11

Mean of a population:

(1–2)
� =

a
N

i=1
xi

N

The mean of the observations in Example 1–2 is found as

= 538>20 = 26.9
+ 20 + 23 + 32 + 20 + 18)>20
+ 20 + 18 + 18 + 52 + 56 + 27 + 22 + 18 + 49 + 22

x = (x1 + x2 + # # # + x20)>20 = (33 + 26 + 24 + 21 + 19

The mean of the observations of Example 1–2, their average, is 26.9.
Figure 1–1 shows the data of Example 1–2 drawn on the number line along with

the mean, median, and mode of the observations. If you think of the data points as
little balls of equal weight located at the appropriate places on the number line, the
mean is that point where all the weights balance. It is the fulcrum of the point-weights,
as shown in Figure 1–1.

What characterizes the three measures of centrality, and what are the relative
merits of each? The mean summarizes all the information in the data. It is the aver-
age of all the observations. The mean is a single point that can be viewed as the point
where all the mass—the weight—of the observations is concentrated. It is the center of
mass of the data. If all the observations in our data set were the same size, then
(assuming the total is the same) each would be equal to the mean.

The median, on the other hand, is an observation (or a point between two obser-
vations) in the center of the data set. One-half of the data lie above this observation,
and one-half of the data lie below it. When we compute the median, we do not consider
the exact location of each data point on the number line; we only consider whether it
falls in the half lying above the median or in the half lying below the median.

What does this mean? If you look at the picture of the data set of Example 1–2,
Figure 1–1, you will note that the observation x10 � 56 lies to the far right. If we shift
this particular observation (or any other observation to the right of 22) to the right,
say, move it from 56 to 100, what will happen to the median? The answer is:
absolutely nothing (prove this to yourself by calculating the new median). The exact
location of any data point is not considered in the computation of the median, only
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its relative standing with respect to the central observation. The median is resistant to
extreme observations.

The mean, on the other hand, is sensitive to extreme observations. Let us see
what happens to the mean if we change x10 from 56 to 100. The new mean is

12 Chapter 1

= 29.1
 + 22 + 18 + 49 + 22 + 20 + 23 + 32 + 20 + 18)>20

x = (33 + 26 + 24 + 21 + 19 + 20 + 18 + 18 + 52 + 100 + 27

We see that the mean has shifted 2.2 units to the right to accommodate the change in
the single data point x10.

The mean, however, does have strong advantages as a measure of central ten-
dency. The mean is based on information contained in all the observations in the data set, rather
than being an observation lying “in the middle” of the set. The mean also has some
desirable mathematical properties that make it useful in many contexts of statistical
inference. In cases where we want to guard against the influence of a few outlying
observations (called outliers), however, we may prefer to use the median.

To continue with the condominium prices from Example 1–1, a larger sample of ask-
ing prices for two-bedroom units in Boston (numbers in thousand dollars, rounded to
the nearest thousand) is

789, 813, 980, 880, 650, 700, 2,990, 850, 690

What are the mean and the median? Interpret their meaning in this case.

E X A M P L E  1 – 4

Arranging the data from smallest to largest, we get

650, 690, 700, 789, 813, 850, 880, 980, 2,990

There are nine observations, so the median is the value in the middle, that is, in the
fifth position. That value is 813 thousand dollars.

To compute the mean, we add all data values and divide by 9, giving 1,038 thou-
sand dollars—that is, $1,038,000. Now notice some interesting facts. The value 2,990
is clearly an outlier. It lies far to the right, away from the rest of the data bunched
together in the 650–980 range.

In this case, the median is a very descriptive measure of this data set: it tells us
where our data (with the exception of the outlier) are located. The mean, on the other
hand, pays so much attention to the large observation 2,990 that it locates itself at
1,038, a value larger than our largest observation, except for the outlier. If our outlier
had been more like the rest of the data, say, 820 instead of 2,990, the mean would
have been 796.9. Notice that the median does not change and is still 813. This is so
because 820 is on the same side of the median as 2,990.

Sometimes an outlier is due to an error in recording the data. In such a case it
should be removed. Other times it is “out in left field” (actually, right field in this case)
for good reason.

As it turned out, the condominium with asking price of $2,990,000 was quite dif-
ferent from the rest of the two-bedroom units of roughly equal square footage and
location. This unit was located in a prestigious part of town (away from the other
units, geographically as well). It had a large whirlpool bath adjoining the master bed-
room; its floors were marble from the Greek island of Paros; all light fixtures and
faucets were gold-plated; the chandelier was Murano crystal. “This is not your aver-
age condominium,” the realtor said, inadvertently reflecting a purely statistical fact in
addition to the intended meaning of the expression.

S o l u t i o n
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FIGURE 1–2 A Symmetrically Distributed Data Set

Mean = Median = Mode
x

1–18. Discuss the differences among the three measures of centrality.

1–19. Find the mean, median, and mode(s) of the observations in problem 1–13.

1–20. Do the same as problem 1–19, using the data of problem 1–14.

1–21. Do the same as problem 1–19, using the data of problem 1–15.

1–22. Do the same as problem 1–19, using the data of problem 1–16.

1–23. Do the same as problem 1–19, using the observation set in problem 1–17.

1–24. Do the same as problem 1–19 for the data in Example 1–1.

1–25. Find the mean, mode, and median for the data set 7, 8, 8, 12, 12, 12, 14, 15,
20, 47, 52, 54.

1–26. For the following stock price one-year percentage changes, plot the data and
identify any outliers. Find the mean and median.6

Intel �6.9%

AT&T 46.5

General Electric 12.1

ExxonMobil 20.7

Microsoft 16.9

Pfizer 17.2

Citigroup 16.5

P R O B L E M S

The mode tells us our data set’s most frequently occurring value. There may
be several modes. In Example 1–2, our data set actually possesses three modes:
18, 20, and 22. Of the three measures of central tendency, we are most interested
in the mean.

If a data set or population is symmetric (i.e., if one side of the distribution of the
observations is a mirror image of the other) and if the distribution of the observations
has only one mode, then the mode, the median, and the mean are all equal. Such a
situation is demonstrated in Figure 1–2. Generally, when the data distribution is
not symmetric, then the mean, median, and mode will not all be equal. The relative
positions of the three measures of centrality in such situations will be discussed in
section 1–6.

In the next section, we discuss measures of variability of a data set or population.

Introduction and Descriptive Statistics 13

6“Stocks,” Money, March 2007, p. 128.
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FIGURE 1–3 Comparison of Data Sets I and II

x

Data are clustered together

4 5
6

7 8

Set II:

1
x

Data are spread out

2 3 4 5
6

7 8 9 10 11

Set I: Mean = Median = Mode = 6

Mean = Median = Mode = 6

1–27. The following data are the median returns on investment, in percent, for 10
industries.7

Consumer staples 24.3%

Energy 23.3

Health care 22.1

Financials 21.0

Industrials 19.2

Consumer discretionary 19.0

Materials 18.1

Information technology 15.1

Telecommunication services 11.0

Utilities 10.4

Find the median of these medians and their mean.

1–4 Measures of Variability
Consider the following two data sets.

Set I: 1, 2, 3, 4, 5, 6, 6, 7, 8, 9, 10, 11
Set II: 4, 5, 5, 5, 6, 6, 6, 6, 7, 7, 7, 8

Compute the mean, median, and mode of each of the two data sets. As you see from your
results, the two data sets have the same mean, the same median, and the same mode,
all equal to 6. The two data sets also happen to have the same number of observations,
n � 12. But the two data sets are different. What is the main difference between them?

Figure 1–3 shows data sets I and II. The two data sets have the same central ten-
dency (as measured by any of the three measures of centrality), but they have a dif-
ferent variability. In particular, we see that data set I is more variable than data set II.
The values in set I are more spread out: they lie farther away from their mean than
do those of set II.

There are several measures of variability, or dispersion. We have already dis-
cussed one such measure—the interquartile range. (Recall that the interquartile range

14 Chapter 1

7“Sector Snapshot,” BusinessWeek, March 26, 2007, p. 62.
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is defined as the difference between the upper quartile and the lower quartile.) The
interquartile range for data set I is 5.5, and the interquartile range of data set II is 2
(show this). The interquartile range is one measure of the dispersion or variability of
a set of observations. Another such measure is the range.

The range of a set of observations is the difference between the largest
observation and the smallest observation.

The range of the observations in Example 1–2 is Largest number � Smallest
number � 56 � 18 � 38. The range of the data in set I is 11 � 1 � 10, and the range
of the data in set II is 8 � 4 � 4. We see that, conforming with what we expect from
looking at the two data sets, the range of set I is greater than the range of set II. Set I is
more variable.

The range and the interquartile range are measures of the dispersion of a set of
observations, the interquartile range being more resistant to extreme observations.
There are also two other, more commonly used measures of dispersion. These are
the variance and the square root of the variance—the standard deviation.

The variance and the standard deviation are more useful than the range and the
interquartile range because, like the mean, they use the information contained in all
the observations in the data set or population. (The range contains information only on
the distance between the largest and smallest observations, and the interquartile range
contains information only about the difference between upper and lower quartiles.) We
define the variance as follows.

The variance of a set of observations is the average squared deviation of
the data points from their mean.

When our data constitute a sample, the variance is denoted by s 2, and the aver-
aging is done by dividing the sum of the squared deviations from the mean by n � 1.
(The reason for this will become clear in Chapter 5.) When our observations consti-
tute an entire population, the variance is denoted by �2, and the averaging is done by
dividing by N. (And � is the Greek letter sigma; we call the variance sigma squared.
The capital sigma is known to you as the symbol we use for summation, �.)

Introduction and Descriptive Statistics 15

Sample variance:

(1–3)
s2 =

a
n

i=1
(xi - x)2

n - 1

Population variance:

(1–4)

where � is the population mean.

σ2 �
a
N

i�1
(xi � �)2

N

Recall that x̄̄ is the sample mean, the average of all the observations in the sample.
Thus, the numerator in equation 1–3 is equal to the sum of the squared differences of
the data points xi (where i � 1, 2, . . . , n ) from their mean x̄̄ . When we divide the
numerator by the denominator n � 1, we get a kind of average of the items summed
in the numerator. This average is based on the assumption that there are only n � 1
data points. (Note, however, that the summation in the numerator extends over all n
data points, not just n � 1 of them.) This will be explained in section 5–5.

When we have an entire population at hand, we denote the total number of
observations in the population by N. We define the population variance as follows.
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Unless noted otherwise, we will assume that all our data sets are samples and do
not constitute entire populations; thus, we will use equation 1–3 for the variance, and
not equation 1–4. We now define the standard deviation.

The standard deviation of a set of observations is the (positive) square
root of the variance of the set.

The standard deviation of a sample is the square root of the sample variance, and the
standard deviation of a population is the square root of the variance of the population.8

16 Chapter 1

Sample standard deviation:

(1–5)s = 2s2 = Ha
n

i =1
(xi - x)2

n - 1

Population standard deviation:

(1–6)� = 2�2 = Ha
n

i =1
(xi - �)2

n - 1

Why would we use the standard deviation when we already have its square, the
variance? The standard deviation is a more meaningful measure. The variance is
the average squared deviation from the mean. It is squared because if we just compute
the deviations from the mean and then averaged them, we get zero (prove this with any
of the data sets). Therefore, when seeking a measure of the variation in a set of obser-
vations, we square the deviations from the mean; this removes the negative signs, and
thus the measure is not equal to zero. The measure we obtain—the variance—is still a
squared quantity; it is an average of squared numbers. By taking its square root, we
“unsquare” the units and get a quantity denoted in the original units of the problem
(e.g., dollars instead of dollars squared, which would have little meaning in most
applications). The variance tends to be large because it is in squared units. Statisti-
cians like to work with the variance because its mathematical properties simplify
computations. People applying statistics prefer to work with the standard deviation
because it is more easily interpreted.

Let us find the variance and the standard deviation of the data in Example 1–2.
We carry out hand computations of the variance by use of a table for convenience.
After doing the computation using equation 1–3, we will show a shortcut that will
help in the calculation. Table 1–3 shows how the mean is subtracted from each of
the values and the results are squared and added. At the bottom of the last column we
find the sum of all squared deviations from the mean. Finally, the sum is divided by
n � 1, giving s 2, the sample variance. Taking the square root gives us s, the sample
standard deviation.

x

8A note about calculators: If your calculator is designed to compute means and standard deviations, find the
key for the standard deviation. Typically, there will be two such keys. Consult your owner’s handbook to be sure you
are using the key that will produce the correct computation for a sample (division by n � 1) versus a population
(division by N ).
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By equation 1–3, the variance of the sample is equal to the sum of the third column
in the table, 2,657.8, divided by n � 1: s 2 � 2,657.8�19 � 139.88421. The standard
deviation is the square root of the variance: s � � 11.827266, or, using
two-decimal accuracy,9 s � 11.83.

If you have a calculator with statistical capabilities, you may avoid having to use
a table such as Table 1–3. If you need to compute by hand, there is a shortcut formula
for computing the variance and the standard deviation.

1139.88421
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Shortcut formula for the sample variance:

(1–7)s2 =
a
n

i=1
x2

i - aa
n

i=1
xib

2nn

n - 1

TABLE 1–3 Calculations Leading to the Sample Variance in Example 1–2

x x � (x � )2

18 18 � 26.9 � �8.9 79.21

18 18 � 26.9 � �8.9 79.21

18 18 � 26.9 � �8.9 79.21

18 18 � 26.9 � �8.9 79.21

19 19 � 26.9 � �7.9 62.41

20 20 � 26.9 � �6.9 47.61

20 20 � 26.9 � �6.9 47.61

20 20 � 26.9 � �6.9 47.61

21 21 � 26.9 � �5.9 34.81

22 22 � 26.9 � �4.9 24.01

22 22 � 26.9 � �4.9 24.01

23 23 � 26.9 � �3.9 15.21

24 24 � 26.9 � �2.9 8.41

26 26 � 26.9 � �0.9 0.81

27 27 � 26.9 � 0.1 0.01

32 32 � 26.9 � 5.1 26.01

33 33 � 26.9 � 6.1 37.21

49 49 � 26.9 � 22.1 488.41

52 52 � 26.9 � 25.1 630.01

56 56 � 26.9 � 29.1 846.81____ ________

0 2,657.8

xx

Again, the standard deviation is just the square root of the quantity in equation 1–7.
We will now demonstrate the use of this computationally simpler formula with the
data of Example 1–2. We will then use this simpler formula and compute the variance
and the standard deviation of the two data sets we are comparing: set I and set II.

As before, a table will be useful in carrying out the computations. The table for
finding the variance using equation 1–7 will have a column for the data points x and

9In quantitative fields such as statistics, decimal accuracy is always a problem. How many digits after the decimal point
should we carry? This question has no easy answer; everything depends on the required level of accuracy. As a rule, we will
use only two decimals, since this suffices in most applications in this book. In some procedures, such as regression analysis,
more digits need to be used in computations (these computations, however, are usually done by computer).
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a column for the squared data points x 2. Table 1–4 shows the computations for the
variance of the data in Example 1–2.

Using equation 1–7, we find

18 Chapter 1

= 139.88421

s2 =
a
n

i=1
x2

i - aa
n

i=1
xib

2nn

n - 1
=

17,130 - (538)2>20
19

=
17,130 - 289,444>20

19

The standard deviation is obtained as before: s � � 11.83. Using the
same procedure demonstrated with Table 1–4, we find the following quantities lead-
ing to the variance and the standard deviation of set I and of set II. Both are assumed
to be samples, not populations.

Set I: �x � 72, �x2 � 542, s2 � 10, and s � � 3.16
Set II: �x � 72, �x2 � 446, s2 � 1.27, and s � � 1.13

As expected, we see that the variance and the standard deviation of set II are smaller
than those of set I. While each has a mean of 6, set I is more variable. That is, the val-
ues in set I vary more about their mean than do those of set II, which are clustered
more closely together.

The sample standard deviation and the sample mean are very important statistics
used in inference about populations.

21.27
210

2139.88421

TABLE 1–4 Shortcut
Computations for the
Variance in Example 1–2

x x2

18 324
18 324
18 324
18 324
19 361
20 400
20 400
20 400
21 441
22 484
22 484
23 529
24 576
26 676
27 729
32 1,024
33 1,089
49 2,401
52 2,704
56 3,136

538 17,130

In financial analysis, the standard deviation is often used as a measure of volatility and
of the risk associated with financial variables. The data below are exchange rate values
of the British pound, given as the value of one U.S. dollar’s worth in pounds. The first
column of 10 numbers is for a period in the beginning of 1995, and the second column
of 10 numbers is for a similar period in the beginning of 2007.10 During which period,
of these two precise sets of 10 days each, was the value of the pound more volatile?

1995 2007

0.6332 0.5087

0.6254 0.5077

0.6286 0.5100

0.6359 0.5143

0.6336 0.5149

0.6427 0.5177

0.6209 0.5164

0.6214 0.5180

0.6204 0.5096

0.6325 0.5182

S o l u t i o n

E X A M P L E  1 – 5

We are looking at two populations of 10 specific days at the start of each year (rather
than a random sample of days), so we will use the formula for the population standard
deviation. For the 1995 period we get � � 0.007033. For the 2007 period we get � �
0.003938. We conclude that during the 1995 ten-day period the British pound was

10From data reported in “Business Day,” The New York Times, in March 2007, and from Web information.
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The data for second quarter earnings per share (EPS) for major banks in the
Northeast are tabulated below. Compute the mean, the variance, and the standard
deviation of the data.

Name EPS

Bank of New York $2.53
Bank of America 4.38
Banker’s Trust/New York 7.53
Chase Manhattan 7.53
Citicorp 7.96
Brookline 4.35
MBNA 1.50
Mellon 2.75
Morgan JP 7.25
PNC Bank 3.11
Republic 7.44
State Street 2.04
Summit 3.25

E X A M P L E  1 – 6

S o l u t i o n

s2 = 5.94;  s = $2.44.

a x = $61.62;  x = $4.74;  a x2 = 363.40;

FIGURE 1–4 Using Excel for Example 1–2

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23

A B C D E F G H

Wealth ($billion)
33
26
24
21

20
19

18
18
52
56
27
22
18
49
22
20
23
32
20
18

Descriptive
Statistics

Mean
Median

Standard Deviation
Mode

Standard Error
Kurtosis
Skewness
Range
Minimum
Maximum
Sum
Count

Result

26.9
22

11.8272656
18

2.64465698
1.60368514
1.65371559

38
18
56

538
20

Excel Command

=AVERAGE(A3:A22)
=MEDIAN(A3:A22)

=STDEV(A3:A22)
=MODE(A3:A22)

=F11/SQRT(20)
=KURT(A3:A22)
=SKEW(A3:A22)
=MAX(A3:A22)-MIN(A3:A22)
=MIN(A3:A22)
=MAX(A3:A22)
=SUM(A3:A22)
=COUNT(A3:A22)

Figure 1–4 shows how Excel commands can be used for obtaining a group of the
most useful and common descriptive statistics using the data of Example 1–2. In sec-
tion 1–10, we will see how a complete set of descriptive statistics can be obtained
from a spreadsheet template.

more volatile than in the same period in 2007. Notice that if these had been random
samples of days, we would have used the sample standard deviation. In such cases we
might have been interested in statistical inference to some population.
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P R O B L E M S

1–28. Explain why we need measures of variability and what information these
measures convey.
1–29. What is the most important measure of variability and why?
1–30. What is the computational difference between the variance of a sample and
the variance of a population?
1–31. Find the range, the variance, and the standard deviation of the data set in
problem 1–13 (assumed to be a sample).
1–32. Do the same as problem 1–31, using the data in problem 1–14.
1–33. Do the same as problem 1–31, using the data in problem 1–15.
1–34. Do the same as problem 1–31, using the data in problem 1–16.
1–35. Do the same as problem 1–31, using the data in problem 1–17.

1–5 Grouped Data and the Histogram
Data are often grouped. This happened naturally in Example 1–2, where we had a
group of four points with a value of 18, a group of three points with a value of 20,
and a group of two points with a value of 22. In other cases, especially when we
have a large data set, the collector of the data may break the data into groups even
if the points in each group are not equal in value. The data collector may set some
(often arbitrary) group boundaries for ease of recording the data. When the salaries
of 5,000 executives are considered, for example, the data may be reported in the
form: 1,548 executives in the salary range $60,000 to $65,000; 2,365 executives in
the salary range $65,001 to $70,000; and so on. In this case, the data collector or
analyst has processed all the salaries and put them into groups with defined bound-
aries. In such cases, there is a loss of information. We are unable to find the mean,
variance, and other measures because we do not know the actual values. (Certain
formulas, however, allow us to find the approximate mean, variance, and standard
deviation. The formulas assume that all data points in a group are placed in the
midpoint of the interval.) In this example, we assume that all 1,548 executives in
the $60,000–$65,000 class make exactly ($60,000 � $65,000)�2 � $62,500; we estimate
similarly for executives in the other groups.

We define a group of data values within specified group boundaries as a
class.

When data are grouped into classes, we may also plot a frequency distribution of
the data. Such a frequency plot is called a histogram.

A histogram is a chart made of bars of different heights. The height of
each bar represents the frequency of values in the class represented by the
bar. Adjacent bars share sides.

We demonstrate the use of histograms in the following example. Note that a his-
togram is used only for measured, or ordinal, data.

20 Chapter 1

Management of an appliance store recorded the amounts spent at the store by the 184
customers who came in during the last day of the big sale. The data, amounts spent,
were grouped into categories as follows: $0 to less than $100, $100 to less than $200,
and so on up to $600, a bound higher than the amount spent by any single buyer. The
classes and the frequency of each class are shown in Table 1–5. The frequencies,
denoted by f (x), are shown in a histogram in Figure 1–5.

E X A M P L E  1 – 7
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FIGURE 1–5 A Histogram of the Data in Example 1–7
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TABLE 1–5 Classes and Frequencies for Example 1–7

x f(x)
Spending Class ($) Frequency (Number of Customers)

0 to less than 100 30

100 to less than 200 38

200 to less than 300 50

300 to less than 400 31

400 to less than 500 22

500 to less than 600 13

184

TABLE 1–6 Relative Frequencies for Example 1–7

x f(x)
Class ($) Relative Frequency

0 to less than 100 0.163

100 to less than 200 0.207

200 to less than 300 0.272

300 to less than 400 0.168

400 to less than 500 0.120

500 to less than 600 0.070

1.000

As you can see from Figure 1–5, a histogram is just a convenient way of plotting
the frequencies of grouped data. Here the frequencies are absolute frequencies or counts
of data points. It is also possible to plot relative frequencies.

The relative frequency of a class is the count of data points in the class
divided by the total number of data points.

Introduction and Descriptive Statistics 21

The relative frequency in the first class, $0 to less than $100, is equal to count/total �
30�184 � 0.163. We can similarly compute the relative frequencies for the other classes.
The advantage of relative frequencies is that they are standardized: They add to 1.00.
The relative frequency in each class represents the proportion of the total sample in the
class. Table 1–6 gives the relative frequencies of the classes.

Figure 1–6 is a histogram of the relative frequencies of the data in this example.
Note that the shape of the histogram of the relative frequencies is the same as that of

S o l u t i o n
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FIGURE 1–6 A Histogram of the Relative Frequencies in Example 1–7
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the absolute frequencies, the counts. The shape of the histogram does not change;
only the labeling of the f (x) axis is different.

Relative frequencies—proportions that add to 1.00—may be viewed as probabili-
ties, as we will see in the next chapter. Hence, such frequencies are very useful in sta-
tistics, and so are their histograms.

1–6 Skewness and Kurtosis
In addition to measures of location, such as the mean or median, and measures of vari-
ation, such as the variance or standard deviation, two more attributes of a frequency
distribution of a data set may be of interest to us. These are skewness and kurtosis.

Skewness is a measure of the degree of asymmetry of a frequency
distribution.

When the distribution stretches to the right more than it does to the left, we say that the
distribution is right skewed. Similarly, a left-skewed distribution is one that stretches asym-
metrically to the left. Four graphs are shown in Figure 1–7: a symmetric distribution, a
right-skewed distribution, a left-skewed distribution, and a symmetrical distribution
with two modes.

Recall that a symmetric distribution with a single mode has mode � mean �
median. Generally, for a right-skewed distribution, the mean is to the right of the
median, which in turn lies to the right of the mode (assuming a single mode). The
opposite is true for left-skewed distributions.

Skewness is calculated11 and reported as a number that may be positive, negative,
or zero. Zero skewness implies a symmetric distribution. A positive skewness implies a
right-skewed distribution, and a negative skewness implies a left-skewed distribution.

Two distributions that have the same mean, variance, and skewness could still be
significantly different in their shape. We may then look at their kurtosis.

Kurtosis is a measure of the peakedness of a distribution.

The larger the kurtosis, the more peaked will be the distribution. The kurtosis is cal-
culated12 and reported either as an absolute or a relative value. Absolute kurtosis is

22 Chapter 1

11The formula used for calculating the skewness of a population is .

12The formula used for calculating the absolute kurtosis of a population is .a
N

i =1
c xi - �

�
d4nN

a
N

i =1
c xi - �

�
d3nN
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FIGURE 1–7 Skewness of Distributions

f(x)

Symmetric
distribution Right-skewed

distribution

MeanMode

Median

Mean = Median = Mode

f(x)

Left-skewed
distribution

Symmetric distribution
with two modes

x

x

ModeMode

Median Mean = Median

ModeMean

FIGURE 1–8 Kurtosis of Distributions
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always a positive number. The absolute kurtosis of a normal distribution, a famous dis-
tribution about which we will learn in Chapter 4, is 3. This value of 3 is taken as the
datum to calculate the relative kurtosis. The two are related by the equation
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Relative kurtosis � Absolute kurtosis � 3

The relative kurtosis can be negative. We will always work with relative kurtosis. As
a result, in this book, “kurtosis” means “relative kurtosis.”

A negative kurtosis implies a flatter distribution than the normal distribution, and
it is called platykurtic. A positive kurtosis implies a more peaked distribution than the
normal distribution, and it is called leptokurtic. Figure 1–8 shows these examples.
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P R O B L E M S

1–36. Check the applicability of Chebyshev’s theorem and the empirical rule for
the data set in problem 1–13.
1–37. Check the applicability of Chebyshev’s theorem and the empirical rule for
the data set in problem 1–14.
1–38. Check the applicability of Chebyshev’s theorem and the empirical rule for
the data set in problem 1–15.

1–7 Relations between the Mean 
and the Standard Deviation

The mean is a measure of the centrality of a set of observations, and the standard
deviation is a measure of their spread. There are two general rules that establish a
relation between these measures and the set of observations. The first is called
Chebyshev’s theorem, and the second is the empirical rule.

Chebyshev’s Theorem
A mathematical theorem called Chebyshev’s theorem establishes the following
rules:

1. At least three-quarters of the observations in a set will lie within 2 standard
deviations of the mean.

2. At least eight-ninths of the observations in a set will lie within 3 standard
deviations of the mean.

In general, the rule states that at least 1 � 1�k2 of the observations will lie within
k standard deviations of the mean. (We note that k does not have to be an integer.)
In Example 1–2 we found that the mean was 26.9 and the standard deviation was
11.83. According to rule 1 above, at least three-quarters of the observations should
fall in the interval Mean � 2s � 26.9 � 2(11.83), which is defined by the points 3.24
and 50.56. From the data set itself, we see that all but the three largest data points
lie within this range of values. Since there are 20 observations in the set, seventeen-
twentieths are within the specified range, so the rule that at least three-quarters will
be within the range is satisfied.

The Empirical Rule
If the distribution of the data is mound-shaped—that is, if the histogram of the data is
more or less symmetric with a single mode or high point—then tighter rules will
apply. This is the empirical rule:

1. Approximately 68% of the observations will be within 1 standard deviation of
the mean.

2. Approximately 95% of the observations will be within 2 standard deviations of
the mean.

3. A vast majority of the observations (all, or almost all) will be within 3 standard
deviations of the mean.

Note that Chebyshev’s theorem states at least what percentage will lie within
k standard deviations in any distribution, whereas the empirical rule states approx-
imately what percentage will lie within k standard deviations in a mound-shaped
distribution.

For the data set in Example 1–2, the distribution of the data set is not symmetric,
and the empirical rule holds only approximately.

24 Chapter 1
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FIGURE 1–9 Investments Portfolio Composition
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Source: Carolyn Bigda, “The Fast Track to Kicking Back,” Money, March 2007, p. 60.

1–39. Check the applicability of Chebyshev’s theorem and the empirical rule for
the data set in problem 1–16.
1–40. Check the applicability of Chebyshev’s theorem and the empirical rule for
the data set in problem 1–17.

1–8 Methods of Displaying Data
In section 1–5, we saw how a histogram is used to display frequencies of occurrence of
values in a data set. In this section, we will see a few other ways of displaying data,
some of which are descriptive only. We will introduce frequency polygons, cumulative
frequency plots (called ogives), pie charts, and bar charts. We will also see examples of
how descriptive graphs can sometimes be misleading. We will start with pie charts.

Pie Charts
A pie chart is a simple descriptive display of data that sum to a given total. A pie chart
is probably the most illustrative way of displaying quantities as percentages of a given
total. The total area of the pie represents 100% of the quantity of interest (the sum of the
variable values in all categories), and the size of each slice is the percentage of the total
represented by the category the slice denotes. Pie charts are used to present frequencies
for categorical data. The scale of measurement may be nominal or ordinal. Figure 1–9 is
a pie chart of the percentages of all kinds of investments in a typical family’s portfolio.

Bar Charts
Bar charts (which use horizontal or vertical rectangles) are often used to display cat-
egorical data where there is no emphasis on the percentage of a total represented by
each category. The scale of measurement is nominal or ordinal.

Charts using horizontal bars and those using vertical bars are essentially the same.
In some cases, one may be more convenient than the other for the purpose at hand.
For example, if we want to write the name of each category inside the rectangle that
represents that category, then a horizontal bar chart may be more convenient. If we
want to stress the height of the different columns as measures of the quantity of inter-
est, we use a vertical bar chart. Figure 1–10 is an example of how a bar chart can be
used effectively to display and interpret information.

Frequency Polygons and Ogives
A frequency polygon is similar to a histogram except that there are no rectangles,
only a point in the midpoint of each interval at a height proportional to the frequency

Introduction and Descriptive Statistics 25
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or relative frequency (in a relative-frequency polygon) of the category of the interval.
The rightmost and leftmost points are zero. Table 1–7 gives the relative frequency of
sales volume, in thousands of dollars per week, for pizza at a local establishment.

A relative-frequency polygon for these data is shown in Figure 1–11. Note that the
frequency is located in the middle of the interval as a point with height equal to the
relative frequency of the interval. Note also that the point zero is added at the left
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FIGURE 1–10 The Web Takes Off
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Source: S. Hammand and M. Tucker, “How Secure Is Your Domain,” BusinessWeek, March 26, 2007, p. 118.

TABLE 1–7 Pizza Sales

Sales ($000) Relative Frequency

6–14 0.20
15–22 0.30
23–30 0.25
31–38 0.15
39–46 0.07
47–54 0.03

FIGURE 1–11 Relative-Frequency Polygon for Pizza Sales
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FIGURE 1–12 Excel-Produced Graph of the Data in Example 1–2
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FIGURE 1–13 Ogive of Pizza Sales
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boundary and the right boundary of the data set: The polygon starts at zero and ends
at zero relative frequency.

Figure 1–12 shows the worth of the 20 richest individuals from Example 1–2
displayed as a column chart. This is done using Excel’s Chart Wizard.

An ogive is a cumulative-frequency (or cumulative relative-frequency) graph.
An ogive starts at 0 and goes to 1.00 (for a relative-frequency ogive) or to the maxi-
mum cumulative frequency. The point with height corresponding to the cumulative
frequency is located at the right endpoint of each interval. An ogive for the data in
Table 1–7 is shown in Figure 1–13. While the ogive shown is for the cumulative relative
frequency, an ogive can also be used for the cumulative absolute frequency.

A Caution about Graphs
A picture is indeed worth a thousand words, but pictures can sometimes be deceiv-
ing. Often, this is where “lying with statistics” comes in: presenting data graphically
on a stretched or compressed scale of numbers with the aim of making the data
show whatever you want them to show. This is one important argument against a
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FIGURE 1–15 The S&P 500, One Year, to March 2007
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FIGURE 1–14 German Wage Increases (%)
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merely descriptive approach to data analysis and an argument for statistical inference.
Statistical tests tend to be more objective than our eyes and are less prone to deception
as long as our assumptions (random sampling and other assumptions) hold. As we
will see, statistical inference gives us tools that allow us to objectively evaluate what
we see in the data.

Pictures are sometimes deceptive even though there is no intention to deceive.
When someone shows you a graph of a set of numbers, there may really be no
particular scale of numbers that is “right” for the data.

The graph on the left in Figure 1–14 is reprinted from The Economist. Notice that
there is no scale that is the “right” one for this graph. Compare this graph with the one
on the right side, which has a different scale.

Time Plots
Often we want to graph changes in a variable over time. An example is given in
Figure 1–15.
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1–41. The following data are estimated worldwide appliance sales (in millions of
dollars). Use the data to construct a pie chart for the worldwide appliance sales of the
listed manufacturers.

Electrolux $5,100

General Electric 4,350

Matsushita Electric 4,180

Whirlpool 3,950

Bosch-Siemens 2,200

Philips 2,000

Maytag 1,580

1–42. Draw a bar graph for the data on the first five stocks in problem 1–14. Is
any one of the three kinds of plot more appropriate than the others for these data?
If so, why?
1–43. Draw a bar graph for the endowments (stated in billions of dollars) of each of
the universities specified in the following list.

Harvard $3.4

Texas 2.5

Princeton 1.9

Yale 1.7

Stanford 1.4

Columbia 1.3

Texas A&M 1.1

1–44. The following are the top 10 private equity deals of all time, in billions of
dollars.13

38.9, 32.7, 31.1, 27.4, 25.7, 21.6, 17.6, 17.4, 15.0, 13.9

Find the mean, median, and standard deviation. Draw a bar graph.
1–45. The following data are credit default swap values:14 6, 10, 12, 13, 18, 21 (in
trillions of dollars). Draw a pie chart of these amounts. Find the mean and median.
1–46. The following are the amounts from the sales slips of a department store
(in dollars): 3.45, 4.52, 5.41, 6.00, 5.97, 7.18, 1.12, 5.39, 7.03, 10.25, 11.45, 13.21,
12.00, 14.05, 2.99, 3.28, 17.10, 19.28, 21.09, 12.11, 5.88, 4.65, 3.99, 10.10, 23.00,
15.16, 20.16. Draw a frequency polygon for these data (start by defining intervals
of the data and counting the data points in each interval). Also draw an ogive and a
column graph.

1–9 Exploratory Data Analysis
Exploratory data analysis (EDA) is the name given to a large body of statistical and
graphical techniques. These techniques provide ways of looking at data to determine
relationships and trends, identify outliers and influential observations, and quickly
describe or summarize data sets. Pioneering methods in this field, as well as the name
exploratory data analysis, derive from the work of John W. Tukey [ John W. Tukey,
Exploratory Data Analysis (Reading, Massachusetts: Addison-Wesley, 1977)].

P R O B L E M S
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13R. Kirkland, “Private Money,” Fortune, March 5, 2007, p. 58.
14John Ferry, “Gimme Shelter,” Worth, April 2007, p. 89.
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FIGURE 1–16 Stem-and-
Leaf Display of the Task
Performance Times of
Example 1–8
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Stem-and-Leaf Displays
A stem-and-leaf display is a quick way of looking at a data set. It contains some
of the features of a histogram but avoids the loss of information in a histogram that
results from aggregating the data into intervals. The stem-and-leaf display is based
on the tallying principle: | || ||| |||| ||||; but it also uses the decimal base of our number
system. In a stem-and-leaf display, the stem is the number without its rightmost digit
(the leaf ). The stem is written to the left of a vertical line separating the stem from the
leaf. For example, suppose we have the numbers 105, 106, 107, 107, 109. We display
them as

30 Chapter 1
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With a more complete data set with different stem values, the last digit of each num-
ber is displayed at the appropriate place to the right of its stem digit(s). Stem-and-
leaf displays help us identify, at a glance, numbers in our data set that have high
frequency. Let’s look at an example.

Virtual reality is the name given to a system of simulating real situations on a computer
in a way that gives people the feeling that what they see on the computer screen is
a real situation. Flight simulators were the forerunners of virtual reality programs. A
particular virtual reality program has been designed to give production engineers expe-
rience in real processes. Engineers are supposed to complete certain tasks as responses
to what they see on the screen. The following data are the time, in seconds, it took a
group of 42 engineers to perform a given task:

11, 12, 12, 13, 15, 15, 15, 16, 17, 20, 21, 21, 21, 22, 22, 22, 23, 24, 26, 27, 27, 27, 28, 29, 29,
30, 31, 32, 34, 35, 37, 41, 41, 42, 45, 47, 50, 52, 53, 56, 60, 62

Use a stem-and-leaf display to analyze these data.

The data are already arranged in increasing order. We see that the data are in the 10s,
20s, 30s, 40s, 50s, and 60s. We will use the first digit as the stem and the second digit of
each number as the leaf. The stem-and-leaf display of our data is shown in Figure 1–16.

As you can see, the stem-and-leaf display is a very quick way of arranging the
data in a kind of a histogram (turned sideways) that allows us to see what the data
look like. Here, we note that the data do not seem to be symmetrically distributed;
rather, they are skewed to the right.

We may feel that this display does not convey very much information because
there are too many values with first digit 2. To solve this problem, we may split the
groups into two subgroups. We will denote the stem part as 1* for the possible num-
bers 10, 11, 12, 13, 14 and as 1. for the possible numbers 15, 16, 17, 18, 19. Similarly, the
stem 2* will be used for the possible numbers 20, 21, 22, 23, and 24; stem 2. will be
used for the numbers 25, 26, 27, 28, and 29; and so on for the other numbers. Our
stem-and-leaf diagram for the data of Example 1–8 using this convention is shown in
Figure 1–17. As you can see from the figure, we now have a more spread-out histogram
of the data. The data still seem skewed to the right.

If desired, a further refinement of the display is possible by using the symbol * for
a stem followed by the leaf values 0 and 1; the symbol t for leaf values 2 and 3; the
symbol f for leaf values 4 and 5; s for 6 and 7; and . for 8 and 9. Also, the class con-
taining the median observation is often denoted with its stem value in parentheses.

E X A M P L E  1 – 8
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FIGURE 1–18 Further Refined Stem-and-Leaf Display of Data of Example 1–8
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We demonstrate this version of the display for the data of Example 1–8 in Figure 1–18.
Note that the median is 27 (why?).

Note that for the data set of this example, the refinement offered in Figure 1–18
may be too much: We may have lost the general picture of the data. In cases where
there are many observations with the same value (for example, 22, 22, 22, 22, 22, 22,
22, . . .), the use of a more stretched-out display may be needed in order to get a good
picture of the way our data are clustered.

Box Plots
A box plot (also called a box-and-whisker plot ) is another way of looking at a data set in an
effort to determine its central tendency, spread, skewness, and the existence of outliers.

A box plot is a set of five summary measures of the distribution of the data:

1. The median of the data
2. The lower quartile
3. The upper quartile
4. The smallest observation
5. The largest observation

These statements require two qualifications. First, we will assume that the hinges of the
box plot are essentially the quartiles of the data set. (We will define hinges shortly.) The
median is a line inside the box.
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FIGURE 1–17 Refined
Stem-and-Leaf Display for
Data of Example 1–8
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FIGURE 1–19 The Box Plot
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FIGURE 1–20 The Elements of a Box Plot
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Second, the whiskers of the box plot are made by extending a line from the upper
quartile to the largest observation and from the lower quartile to the smallest observa-
tion, only if the largest and smallest observations are within a distance of 1.5 times the
interquartile range from the appropriate hinge (quartile). If one or more observations
are farther away than that distance, they are marked as suspected outliers. If these
observations are at a distance of over 3 times the interquartile range from the appro-
priate hinge, they are marked as outliers. The whisker then extends to the largest or
smallest observation that is at a distance less than or equal to 1.5 times the interquar-
tile range from the hinge.

Let us make these definitions clearer by using a picture. Figure 1–19 shows the parts
of a box plot and how they are defined. The median is marked as a vertical line across
the box. The hinges of the box are the upper and lower quartiles (the rightmost and
leftmost sides of the box). The interquartile range (IQR) is the distance from the
upper quartile to the lower quartile (the length of the box from hinge to hinge): IQR �
Q U � Q L. We define the inner fence as a point at a distance of 1.5(IQR) above the
upper quartile; similarly, the lower inner fence is Q L � 1.5(IQR). The outer fences
are defined similarly but are at a distance of 3(IQR) above or below the appropriate
hinge. Figure 1–20 shows the fences (these are not shown on the actual box plot; they
are only guidelines for defining the whiskers, suspected outliers, and outliers) and
demonstrates how we mark outliers.
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FIGURE 1–21 Box Plots and Their Uses
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B

C

D
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Box plots are very useful for the following purposes.

1. To identify the location of a data set based on the median.
2. To identify the spread of the data based on the length of the box, hinge to

hinge (the interquartile range), and the length of the whiskers (the range of the
data without extreme observations: outliers or suspected outliers).

3. To identify possible skewness of the distribution of the data set. If the portion
of the box to the right of the median is longer than the portion to the left of the
median, and/or the right whisker is longer than the left whisker, the data are
right-skewed. Similarly, a longer left side of the box and/or left whisker implies
a left-skewed data set. If the box and whiskers are symmetric, the data are
symmetrically distributed with no skewness.

4. To identify suspected outliers (observations beyond the inner fences but within
the outer fences) and outliers (points beyond the outer fences).

5. To compare two or more data sets. By drawing a box plot for each data set and
displaying the box plots on the same scale, we can compare several data sets.

A special form of a box plot may even be used for conducting a test of the equality
of two population medians. The various uses of a box plot are demonstrated in
Figure 1–21.

Let us now construct a box plot for the data of Example 1–8. For this data set, the
median is 27, and we find that the lower quartile is 20.75 and the upper quartile is 41.
The interquartile range is IQR � 41 � 20.75 � 20.25. One and one-half times this dis-
tance is 30.38; hence, the inner fences are �9.63 and 71.38. Since no observation lies
beyond either point, there are no suspected outliers and no outliers, so the whiskers
extend to the extreme values in the data: 11 on the left side and 62 on the right side. 

As you can see from the figure, there are no outliers or suspected outliers in this
data set. The data set is skewed to the right. This confirms our observation of the
skewness from consideration of the stem-and-leaf diagrams of the same data set, in
Figures 1–16 to 1–18.
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P R O B L E M S

1–47. The following data are monthly steel production figures, in millions of tons.

7.0, 6.9, 8.2, 7.8, 7.7, 7.3, 6.8, 6.7, 8.2, 8.4, 7.0, 6.7, 7.5, 7.2, 7.9, 7.6, 6.7, 6.6, 6.3, 5.6, 7.8, 5.5,
6.2, 5.8, 5.8, 6.1, 6.0, 7.3, 7.3, 7.5, 7.2, 7.2, 7.4, 7.6

Draw a stem-and-leaf display of these data.
1–48. Draw a box plot for the data in problem 1–47. Are there any outliers? Is the
distribution of the data symmetric or skewed? If it is skewed, to what side?
1–49. What are the uses of a stem-and-leaf display? What are the uses of a box plot?
1–50. Worker participation in management is a new concept that involves employees
in corporate decision making. The following data are the percentages of employees
involved in worker participation programs in a sample of firms. Draw a stem-and-leaf
display of the data.

5, 32, 33, 35, 42, 43, 42, 45, 46, 44, 47, 48, 48, 48, 49, 49, 50, 37, 38, 34, 51, 52, 52, 47, 53,
55, 56, 57, 58, 63, 78

1–51. Draw a box plot of the data in problem 1–50, and draw conclusions about the
data set based on the box plot.
1–52. Consider the two box plots in Figure 1–24 (on page 38), and draw conclu-
sions about the data sets.
1–53. Refer to the following data on distances between seats in business class for
various airlines. Find �, �, �2, draw a box plot, and find the mode and any outliers.

Characteristics of Business-Class Carriers

Distance between 
Rows (in cm)

Europe

Air France 122

Alitalia 140

British Airways 127

Iberia 107

KLM/Northwest 120

Lufthansa 101

Sabena 122

SAS 132

SwissAir 120

Asia

All Nippon Airw 127

Cathay Pacific 127

JAL 127

Korean Air 127

Malaysia Air 116

Singapore Airl 120

Thai Airways 128

Vietnam Airl 140

North America

Air Canada 140

American Airl 127

Continental 140

Delta Airlines 130

TWA 157

United 124

34 Chapter 1



Aczel−Sounderpandian: 
Complete Business 
Statistics, Seventh Edition

1. Introduction and 
Descriptive Statistics

Text 37© The McGraw−Hill 
Companies, 2009

1–54. The following data are the daily price quotations for a certain stock over a
period of 45 days. Construct a stem-and-leaf display for these data. What can you
conclude about the distribution of daily stock prices over the period under study?

10, 11, 10, 11, 11, 12, 12, 13, 14, 16, 15, 11, 18, 19, 20, 15, 14, 14, 22, 25, 27, 23, 22, 26, 27,
29, 28, 31, 32, 30, 32, 34, 33, 38, 41, 40, 42, 53, 52, 47, 37, 23, 11, 32, 23

1–55. Discuss ways of dealing with outliers—their detection and what to do about
them once they are detected. Can you always discard an outlier? Why or why not?
1–56. Define the inner fences and the outer fences of a box plot; also define the
whiskers and the hinges. What portion of the data is represented by the box? By the
whiskers?
1–57. The following data are the number of ounces of silver per ton of ore for two
mines.

Mine A: 34, 32, 35, 37, 41, 42, 43, 45, 46, 45, 48, 49, 51, 52, 53, 60, 73, 76, 85
Mine B: 23, 24, 28, 29, 32, 34, 35, 37, 38, 40, 43, 44, 47, 48, 49, 50, 51, 52, 59

Construct a stem-and-leaf display for each data set and a box plot for each data set.
Compare the two displays and the two box plots. Draw conclusions about the data.
1–58. Can you compare two populations by looking at box plots or stem-and-leaf
displays of random samples from the two populations? Explain.
1–59. The following data are daily percentage changes in stock prices for 20 stocks
called “The Favorites.”15

�0.1, 0.5, 0.6, 0.7, 1.4, 0.7, 1.3, 0.3, 1.6, 0.6, �3.5, 0.6, 1.1, 1.3, �0.1, 2.5, �0.3, 0.3, 0.2, 0.4

Draw a box plot of these data.
1–60. Consult the following data on a sports car 0 to 60 times, in seconds.16

4.9, 4.6, 4.2, 5.1, 5.2, 5.1, 4.8, 4.7, 4.9, 5.3

Find the mean and the median. Compare the two. Also construct a box plot. Inter-
pret your findings.

1–10 Using the Computer

Using Excel for Descriptive Statistics and Plots
If you need to develop any statistical or engineering analyses, you can use the Excel
Analysis Toolpack. One of the applicable features available in the Analysis Toolpack
is Descriptive Statistics. To access this tool, click Data Analysis in the Analysis Group
on the Data tab. Then choose Descriptive Statistics. You can define the range of input
and output in this window. Don’t forget to select the Summary Statistics check box.
Then press OK. A table containing the descriptive statistics of your data set will be
created in the place that you have specified for output range.

If the Data Analysis command is not available in the Data tab, you need to load
the Analysis Toolpack add-in program. For this purpose follow the next steps:

• Click the Microsoft Office button, and then click Excel Options.
• Click Add-ins, and then in the Manage box, select Excel Add-ins.
• Click Go.
• In the Add-ins Available box, select the Analysis Toolpack check box, and then

click OK.
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FIGURE 1–22 Template for Calculating Basic Statistics
[Basic Statistics.xls]

1

2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31

A B C D E F G H I J K

Basic Statistics from Raw Data Sales Data
Data Entry

Measures of Central tendency 1
2

Mean 26.9 Median 22 Mode 18 3 24
26
33

4 21
Measures of Dispersion 5 19

6 20
Sample Population 7 18

18Variance 139.884211 132.89 Range 38 8
52St. Dev. 11.8272656 11.5277925 IQR 8.5 9
5610
27Skewness and Kurtosis 11
2212
18Sample Population 13
49Skewness 1.65371559 1.52700876 14
22(Relative) Kurtosis 1.60368514 0.94417958 15
2016
23Percentile and Percentile Rank Calculations 17
3218
20x y 19
1850 22 22.0 47 20

80 32.2 32.2 80
90 49.3 49.3 90

Quartiles
1st Quartile 19.75

Median 22 IQR 8.5
3rd Quartile 28.25

Percentile
rank of y 

x-th
Percentile

If the data is of a

If the data is of a 

Other Statistics

Size 22
Maximum 56
Minimum 18

Sum 53832
33
34
35

In addition to the useful features of the Excel Analysis Toolpak and the direct use of
Excel commands as shown in Figure 1–4, we also will discuss the use of Excel tem-
plates that we have developed for computations and charts covered in the chapter.
General instructions about using templates appear on the Student CD.

Figure 1–22 shows the template that can be used for calculating basic statistics of
a data set. As soon as the data are entered in the shaded area in column K, all the sta-
tistics are automatically calculated and displayed. All the statistics have been
explained in this chapter, but some aspects of this template will be discussed next.

PERCENTILE AND PERCENTILE RANK COMPUTATION

The percentile and percentile rank computations are done slightly differently in Excel.
Do not be alarmed if your manual calculation differs (slightly) from the result you see
in the template. These discrepancies in percentile and percentile rank computations
occur because of approximation and rounding off. In Figure 1–22, notice that the
50th percentile is 22, but the percentile rank of 22 is 47. Such discrepancies will get
smaller as the size of the data set increases. For large data sets, the discrepancy will be
negligible or absent.

HISTOGRAMS

A histogram can be drawn either from raw data or from grouped data, so the work-
book contains one sheet for each case. Figure 1–23 shows the template that used
raw data. After entering the data in the shaded area in column Q, select appro-
priate values for the start, interval width, and end values for the histogram in
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FIGURE 1–23 Template for Histograms and Related Charts
[Histogram.xls; Sheet: from Raw Data]

1

2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

A C D G H I J K L M N Q RPO

Histogram from Raw Data

Construct the histogram on this sheet using suitable Start, Interval width and End values.
See all the charts on the next sheet.

Virtual Reality

Interval Freq. Data

70

<=10 0 1 11
(10, 20] 10 2 12
(20, 30] 16 3 12
(30, 40] 5 4 13
(40, 50] 6 5 15
(50, 60] 4 6 15
(60, 70] 1 7 15

>70 0 8 16
9 17

10 20
11 21
12 21
13 21
14 22
15 22
16 22
17 23
18 24
19 26
20 27

Total 42 21 27
22
23

27
Start 10 Interval Width 10 End 28

24 29
25 29
26 30
27 31

Frequency

0

2

4

6

8

10

12

14

16

18

<=10 (10,20] (20,30] (30,40] (40,50] (50,60] (60,70] >70

cells H26, K26, and N26 respectively. When selecting the start and end values,
make sure that the first bar and the last bar of the chart have zero frequencies.
This will ensure that no value in the data has been omitted. The interval width
should be selected to make the histogram a good representation of the distribution
of the data.

After constructing the histogram on this sheet, go to the next sheet, named
“Charts,” to see all the related charts: Relative Frequency, Frequency Polygon, Rela-
tive Frequency Polygon, and Ogive.

At times, you may have grouped data rather than raw data to start with. In this
case, go to the grouped data sheet and enter the data in the shaded area on the right.
This sheet contains a total of five charts. If any of these is not needed, unprotect the
sheet and delete it before printing. Another useful template provided in the CD is
Frequency Polygon.xls, which is used to compare two distributions.

An advantage of frequency polygons is that unlike histograms, we can superpose
two or more polygons to compare the distributions. 

PIE CHARTS

Pie chart.xls is one of the templates in the CD for creating pie charts. Note that the
data entered in this template for creating a pie chart need not be percentages, and
even if they are percentages, they need not add up to 100%, since the spreadsheet
recalculates the proportions.

If you wish to modify the format of the chart, for example, by changing the colors
of the slices or the location of legends, unprotect the sheet and use the Chart Wizard. 

To use the Chart Wizard, click on the icon that looks like this:  . Protect the sheet 
after you are done.
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FIGURE 1–24 Box Plot Template to Compare Two Data Sets
[Box Plot 2.xls]

1

2
3
4
5

6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23

A B C D E F G H I J K L M N O

Comparing two data sets using Box Plots 
Data 1 Data 2 

Lower
Whisker

Lower
Hinge

Upper
Hinge

Upper
Whisker

Name 1 6.5 8.75 13

Name 2 1063
52

12 17

Name 1

Name 2

-15 -10 -5 0 5 10 15 20 25 30 35

1
2

3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20

8
13

8
12

4
7

10
5
6
2
5
4
6
9

5
8

6
9

17
24
10

5
6

13
5
3
6

12
11
10

9
10
14
15

Median

Name 1 Name 2

Title

BAR CHARTS

Bar chart.xls is the template that can be used to draw bar charts. Many refinements
are possible on the bar charts, such as making it a 3-D chart. You can unprotect the
sheet and use the Chart Wizard to make the refinements.

BOX PLOTS

Box plot.xls is the template that can be used to create box plots. Box plot2.xls is the
template that draws two box plots of two different data sets. Thus it can be used to
compare two data sets. Figure 1–24 shows the comparison between two data sets
using this template. Cells N3 and O3 are used to enter the name for each data set.
The comparison shows that the second data set is more varied and contains relatively
larger numbers than the first set.

TIME PLOTS

Time plot.xls is the template that can be used to create time plots. 
To compare two data sets, use the template timeplot2.xls. Comparing sales in

years 2006 and 2007, Figure 1–25 shows that Year 2007 sales were consistently below
those of Year 2006, except in April. Moreover, the Year 2007 sales show less variance
than those of Year 2006. Reasons for both facts may be worth investigating.

SCATTER PLOTS

Scatter plots are used to identify and report any underlying relationships among
pairs of data sets. For example, if we have the data on annual sales of a product and on
the annual advertising budgets for that product during the same period, then we can
plot them on the same graph to see if a pattern emerges that brings out a relationship
between the data sets. We might expect that whenever the advertising budget was
high, the sales would also be high. This can be verified on a scatter plot.

The plot consists of a scatter of points, each point representing an observation.
For instance, if the advertising budget in one year was x and the sales in the same
year was y , then a point is marked on the plot at coordinates (x, y). Scatter plot.xls is
the template that can be used to create a scatter plot.
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Comparison using Time Plot Sales comparison

2006 2007
Jan 115 109
Feb 116 107
Mar 116 106
Apr 101 108
May 112 108
Jun 119 108
Jul 110 106

Aug 115 107
Sep 118 109
Oct 114 109
Nov 115 109
Dec 110 109

90

95

100

105

110

115

120

125

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

2006

2007

FIGURE 1–25 Time Plot Comparison
[Time Plot 2.xls] 

Sometimes we have several data sets, and we may want to know if a relation
exists between any two of them. Plotting every pair of them can be tedious, so it
would be faster and easier if a bunch of scatter plots are produced together. The tem-
plate Scatter plot.xls has another sheet named “5 Variables” which accommodates
data on five variables and produces a scatter plot for every pair of variables. A glance
at the scatter plots can quickly reveal an apparent correlation between any pair. 

Using MINITAB for Descriptive Statistics and Plots
MINITAB can use data from different sources: previously saved MINITAB work-
sheet files, text files, and Microsoft Excel files. To place data in MINITAB, we can:

• Type directly into MINITAB.
• Copy and paste from other applications.
• Open from a variety of file types, including Excel or text files.

In this section we demonstrate the use of MINITAB in producing descriptive statistics
and corresponding plots with the data of Example 1–2. If you are using a keyboard to
type the data into the worksheet, begin in the row above the horizontal line containing
the numbered row. This row is used to provide a label for each variable. In the first col-
umn (labeled C1) enter the label of your variable (wealth) and press Enter. By moving the
cursor to the cell in the next row, you can start entering data in the first column.

To open data from a file, choose File � Open Worksheet. This will provide you
with the open worksheet dialog box. Many different files, including Minitab worksheet
files (.MTW), Microsoft Excel (.XLS), data (.DAT), and text (.TXT), can be opened
from this dialog box. Make sure that the proper file type appears in the List of Files of
Type Box. You can also use the Session window and type the command to set the data
into the columns.

For obtaining descriptive statistics, you can type the appropriate command in the
Session window or use the menu. Figure 1–26 shows the command, data, and output
for Example 1–2.
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FIGURE 1–26 Using MINITAB to Describe Data 

FIGURE 1–27 MINITAB Output

To obtain descriptive statistics using the menu, choose Stat � Basic Statistics �

Display Descriptive Statistics. In the Descriptive Statistics dialog box choose C1 in the
Variable List box and then press zero. The result will be shown in the Session window.
Some users find menu commands quicker to use than session commands.

As was mentioned earlier in the chapter, we can use graphs to explore data and
assess relationships among the variables. You can access MINITAB’s graph from the
Graph and Stat menus. Using the Graph menu enables you to obtain a large variety of
graphs. Figure 1–27 shows the histogram and box plot obtained using the Graph menu.

Finally, note that MINITAB does not display the command prompt by default. To
enter commands directly into the Session window, you must enable this prompt by
choosing Editor � Enable Commands. A check appears next to the menu item.

When you execute a command from a menu and session commands are enabled,
the corresponding session command appears in the Session window along with the
text output. This technique provides a convenient way to learn session commands.
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1–11 Summary and Review of Terms

In this chapter we introduced many terms and concepts. We defined a population
as the set of all measurements in which we are interested. We defined a sample as a
smaller group of measurements chosen from the larger population (the concept of ran-
dom sampling will be discussed in detail in Chapter 4). We defined the process of using
the sample for drawing conclusions about the population as statistical inference.

We discussed descriptive statistics as quantities computed from our data. We
also defined the following statistics: percentile, a point below which lie a specified
percentage of the data, and quartile, a percentile point in multiples of 25. The first
quartile, the 25th percentile point, is also called the lower quartile. The 50th per-
centile point is the second quartile, also called the middle quartile, or the median.
The 75th percentile is the third quartile, or the upper quartile. We defined the
interquartile range as the difference between the upper and lower quartiles. We
said that the median is a measure of central tendency, and we defined two other
measures of central tendency: the mode, which is a most frequent value, and the
mean. We called the mean the most important measure of central tendency, or loca-
tion, of the data set. We said that the mean is the average of all the data points and is
the point where the entire distribution of data points balances.

We defined measures of variability: the range, the variance, and the standard
deviation. We defined the range as the difference between the largest and smallest
data points. The variance was defined as the average squared deviation of the data
points from their mean. For a sample (rather than a population), we saw that this aver-
aging is done by dividing the sum of the squared deviations from the mean by n � 1
instead of by n. We defined the standard deviation as the square root of the variance.

We discussed grouped data and frequencies of occurrence of data points
in classes defined by intervals of numbers. We defined relative frequencies as the
absolute frequencies, or counts, divided by the total number of data points. We saw
how to construct a histogram of a data set: a graph of the frequencies of the data.
We mentioned skewness, a measure of the asymmetry of the histogram of the data
set. We also mentioned kurtosis, a measure of the flatness of the distribution. We
introduced Chebyshev’s theorem and the empirical rule as ways of determining
the proportions of data lying within several standard deviations of the mean.

We defined four scales of measurement of data: nominal—name only; ordinal—
data that can be ordered as greater than or less than; interval—with meaningful dis-
tances as intervals of numbers; and ratio—a scale where ratios of distances are also
meaningful.

The next topic we discussed was graphical techniques. These extended the
idea of a histogram. We saw how a frequency polygon may be used instead of a
histogram. We also saw how to construct an ogive: a cumulative frequency graph
of a data set. We also talked about bar charts and pie charts, which are types of
charts for displaying data, both categorical and numerical.

Then we discussed exploratory data analysis, a statistical area devoted to analyz-
ing data using graphical techniques and other techniques that do not make restrictive
assumptions about the structure of the data. Here we encountered two useful tech-
niques for plotting data in a way that sheds light on their structure: stem-and-leaf
displays and box plots. We saw that a stem-and-leaf display, which can be drawn
quickly, is a type of histogram that makes use of the decimal structure of our number
system. We saw how a box plot is made out of five quantities: the median, the two
hinges, and the two whiskers. And we saw how the whiskers, as well as outliers
and suspected outliers, are determined by the inner fences and outer fences; the
first lies at a distance of 1.5 times the interquartile range from the hinges, and the
second is found at 3 times the interquartile range from the hinges.

Finally, was saw the use of templates to compute population parameters and
sample statistics, create histograms and frequency polygons, create bar charts and pie
charts, draw box plots, and produce scatter plots.
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A D D I T I O N A L  P R O B L E M S

1–61. Open the workbook named Problem 1–61.xls. Study the statistics that have
been calculated in the worksheet. Of special interest to this exercise are the two cells
marked Mult and Add. If you enter 2 under Mult, all the data points will be multi-
plied by 2, as seen in the modified data column. Entering 1 under Mult leaves the
data unchanged, since multiplying a number by 1 does not affect it. Similarly, enter-
ing 5 under Add will add 5 to all the data points. Entering 0 under Add will leave the
data unchanged.

1. Set Mult � 1 and Add � 5, which corresponds to adding 5 to all data
points. Observe how the statistics have changed in the modified statistics
column. Keeping Mult � 1 and changing Add to different values, observe
how the statistics change. Then make a formal statement such as “If we
add x to all the data points, then the average would increase by x,” for
each of the statistics, starting with average.

2. Add an explanation for each statement made in part 1 above. For the
average, this will be “If we add x to all the data points, then the sum of
all the numbers will increase by x *n where n is the number of data
points. The sum is divided by n to get the average. So the average will
increase by x.”

3. Repeat part 1 for multiplying all the data points by some number. This
would require setting Mult equal to desired values and Add � 0.

4. Repeat part 1 for multiplying and adding at once. This would require set-
ting both Mult and Add to desired values.

1–62. Fortune published a list of the 10 largest “green companies”—those that follow
environmental policies. Their annual revenues, in $ billions, are given below.17

Company Revenue $ Billion

Honda $84.2

Continental Airlines 13.1

Suncor 13.6

Tesco 71.0

Alcan 23.6

PG&E 12.5

S.C. Johnson 7.0

Goldman Sachs 69.4

Swiss RE 24.0

Hewlett-Packard 91.7

Find the mean, variance, and standard deviation of the annual revenues.
1–63. The following data are the number of tons shipped weekly across the Pacific
by a shipping company.

398, 412, 560, 476, 544, 690, 587, 600, 613, 457, 504, 477, 530, 641, 359, 566, 452, 633,
474, 499, 580, 606, 344, 455, 505, 396, 347, 441, 390, 632, 400, 582

Assume these data represent an entire population. Find the population mean and the
population standard deviation.
1–64. Group the data in problem 1–63 into classes, and draw a histogram of the
frequency distribution.
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1–65. Find the 90th percentile, the quartiles, and the range of the data in problem
1–63.
1–66. The following data are numbers of color television sets manufactured per
day at a given plant: 15, 16, 18, 19, 14, 12, 22, 23, 25, 20, 32, 17, 34, 25, 40, 41. Draw
a frequency polygon and an ogive for these data.
1–67. Construct a stem-and-leaf display for the data in problem 1–66.
1–68. Construct a box plot for the data in problem 1–66. What can you say about
the data?
1–69. The following data are the number of cars passing a point on a highway per
minute: 10, 12, 11, 19, 22, 21, 23, 22, 24, 25, 23, 21, 28, 26, 27, 27, 29, 26, 22, 28, 30,
32, 25, 37, 34, 35, 62. Construct a stem-and-leaf display of these data. What does the
display tell you about the data?
1–70. For the data problem 1–69, construct a box plot. What does the box plot tell
you about these data?

1–71. An article by Julia Moskin in the New York Times reports on the use of cheap
wine in cooking.18 Assume that the following results are taste-test ratings, from 1 to
10, for food cooked in cheap wine.

7, 7, 5, 6, 9, 10, 10, 10, 10, 7, 3, 8, 10, 10, 9

Find the mean, median, and modes of these data. Based on these data alone, do you
think cheap wine works?
1–72. The following are a sample of Motorola’s stock prices in March 2007.19

20, 20.5, 19.8, 19.9, 20.1, 20.2, 20.7, 20.6, 20.8, 20.2, 20.6, 20.2

Find the mean and the variance, plot the data, determine outliers, and construct a
box plot.
1–73. Consult the corporate data shown below. Plot data; find �, �, �2; and identify
outliers.

Morgan Stanley 91.36%

Merrill Lynch 40.26

Travelers 39.42

Warner-Lambert 35.00

Microsoft 32.95

J.P. Morgan & Co. 29.62

Lehman Brothers 28.25

US Airways 26.71

Sun Microsystems 25.99

Marriott 25.81

Bankers Trust 25.53

General Mills 25.41

MCI 24.39

AlliedSignal 24.23

ITT Industries 24.14

1–74. The following are quoted interest rates (%) on Italian bonds.

2.95, 4.25, 3.55, 1.90, 2.05, 1.78, 2.90, 1.85, 3.45, 1.75, 3.50, 1.69, 2.85, 4.10, 3.80, 3.85,
2.85, 8.70, 1.80, 2.87, 3.95, 3.50, 2.90, 3.45, 3.40, 3.55, 4.25, 1.85, 2.95

Plot the data; find �, �, and �2; and identify outliers (one is private, the rest are banks
and government).
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18Julia Moskin, “It Boils Down to This: Cheap Wine Works Fine,” The New York Times, March 21, 2007, p. D1.
19Adapted from a chart in R. Farzad, “Activist Investors Not Welcome,” BusinessWeek, April 9, 2007, p. 36.
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1–75. Refer to the box plot below to answer the questions.

1. What is the interquartile range for this data set?
2. What can you say about the skewness of this data set?
3. For this data set, the value of 9.5 is more likely to be (choose one)

a. The first quartile rather than the median.
b. The median rather than the first quartile.
c. The mean rather than the mode.
d. The mode rather than the mean.

4. If a data point that was originally 13 is changed to 14, how would the box
plot be affected?

1–76. The following table shows changes in bad loans and in provisions for bad
loans, from 2005 to 2006, for 19 lending institutions.20 Verify the reported averages,
and find the medians. Which measure is more meaningful, in your opinion? Also find
the standard deviation and identify outliers for change in bad loans and change in
provision for bad loans.

Menacing Loans

Change in Change in
Bad Loans* Provisions for

Bank/Assets $ Billions 12/06 vs. 12/05 Bad Loans

Bank of America ($1,459.0) 16.8% 12.1%

Wachovia (707.1) 91.7 23.3

Wells Fargo (481.9) 24.5 �2.8

Suntrust Banks (182.2) 123.5 4.4

Bank of New York (103.4) 42.3 �12.0

Fifth Third Bancorp (100.7) 19.7 3.6

Northern Trust (60.7) 15.2 12.0

Comerica (58.0) 55.1 �4.5

M&T Bank (57.0) 44.9 1.9

Marshall & Isley (56.2) 96.5 15.6

Commerce Bancorp ($45.3) 45.5 13.8

TD Banknorth (40.2) 116.9 25.4

First Horizon National (37.9) 79.2 14.0

Huntington Bancshares (35.3) 22.9 1.4

Compass Bancshares (34.2) 17.3 8.9

Synovus Financial (31.9) 17.6 8.6

Associated Banc-Corp (21.0) 43.4 0.0

Mercantile Bankshares (17.72) 37.2 �8.7

W Holding (17.2) 159.1 37.3

Average** (149.30) 11.00 4.1

*Nonperforming loans.
**At 56 banks with more than $10 billion in assets.
Data: SNL financial.
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20Mara der Hovanesian, “Lender Woes Go beyond Subprime,” BusinessWeek, March 12, 2007, p. 38. Reprinted by
permission.
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1–77. Repeat problem 1–76 for the bank assets data, shown in parentheses in the
table at the bottom of the previous page.
1–78. A country’s percentage approval of its citizens in European Union member-
ship is given below.21

Ireland 78% Luxembourg 75% Netherlands 70%

Belgium 68 Spain 62 Denmark 60

Germany 58 Greece 57 Italy 52

France 52 Portugal 48 Sweden 48

Finland 40 Austria 39 Britain 37

Find the mean, median, and standard deviation for the percentage approval. Compare
the mean and median to the entire EU approval percentage, 53%.
1–79. The following display is adapted from an article in Fortune.22

Interpret the chart, and find the mean and standard deviation of the data, viewed as
a population.
1–80. The future Euroyen is the price of the Japanese yen as traded in the European
futures market. The following are 30-day Euroyen prices on an index from 0 to 100%:
99.24, 99.37, 98.33, 98.91, 98.51, 99.38, 99.71, 99.21, 98.63, 99.10. Find �, �, �2, and
the median.
1–81. The daily expenditure on food by a traveler, in dollars in summer 2006, was
as follows: 17.5, 17.6, 18.3, 17.9, 17.4, 16.9, 17.1, 17.1, 18.0, 17.2, 18.3, 17.8, 17.1, 18.3, 17.5,
17.4. Find the mean, standard deviation, and variance.
1–82. For the following data on financial institutions’ net income, find the mean and
the standard deviation.23

Goldman Sachs $ 9.5 billion

Lehman Brothers 4.0 billion

Moody’s $753 million

T. Rowe Price $530 million

PNC Financial $ 2.6 billion

Insanely Lucrative

Number of Apple Stores: 174 and counting
Flagships: Fifth Avenue (below) and SoHo, New York City; San Francisco;
    North Michigan Ave., Chicago; Regent Street, London;
    the Grove, Los Angeles; Ginza, Tokyo; Shinsaibashi, Osaka
Under construction: Boston

Annual sales per square foot, in fiscal 2006

Apple Stores

Tiffany & Co.

Best Buy

Neiman Marcus

Saks

$4,032*

$2,666

$930*

$611

$362

*Data are for the past 12 months Source: Sanford C. Bernstein
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21“Four D’s for Europe: Dealing with the Dreaded Democratic Deficit,” The Economist, March 17, 2007, p. 16.
22Jerry Useem, “Simply Irresistible: Why Apple Is the Best Retailer in America,” Fortune, March 19, 2007, p. 108.
23“The Rankings,” BusinessWeek, March 26, 2007, pp. 74–90.
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1–83. The following are the percentage profitability data (%) for the top 12 Ameri-
can corporations.24

39, 33, 63, 41, 46, 32, 27, 13, 55, 35, 32, 30

Find the mean, median, and standard deviation of the percentages.
1–84. Find the daily stock price of Wal-Mart for the last three months. (A good
source for the data is http://moneycentral.msn.com. You can ask for the three-month
chart and export the data to a spreadsheet.)

1. Calculate the mean and the standard deviation of the stock prices.
2. Get the corresponding data for Kmart and calculate the mean and the

standard deviation.
3. The coefficient of variation (CV) is defined as the ratio of the standard

deviation over the mean. Calculate the CV of Wal-Mart and Kmart stock
prices.

4. If the CV of the daily stock prices is taken as an indicator of risk of the
stock, how do Wal-Mart and Kmart stocks compare in terms of risk?
(There are better measures of risk, but we will use CV in this exercise.)

5. Get the corresponding data of the Dow Jones Industrial Average (DJIA)
and compute its CV. How do Wal-Mart and Kmart stocks compare with
the DJIA in terms of risk?

6. Suppose you bought 100 shares of Wal-Mart stock three months ago and
held it. What are the mean and the standard deviation of the daily market
price of your holding for the three months?

1–85. To calculate variance and standard deviation, we take the deviations from
the mean. At times, we need to consider the deviations from a target value rather
than the mean. Consider the case of a machine that bottles cola into 2-liter (2,000-
cm3) bottles. The target is thus 2,000 cm3. The machine, however, may be bottling
2,004 cm3 on average into every bottle. Call this 2,004 cm3 the process mean. The
damage from process errors is determined by the deviations from the target rather
than from the process mean. The variance, though, is calculated with deviations
from the process mean, and therefore is not a measure of the damage. Suppose we
want to calculate a new variance using deviations from the target value. Let
“SSD(Target)” denote the sum of the squared deviations from the target. [For exam-
ple, SSD(2,000) denotes the sum of squared deviations when the deviations are
taken from 2,000.] Dividing the SSD by the number of data points gives the Average
SSD(Target).

The following spreadsheet is set up to calculate the deviations from the target,
SSD(Target), and the Average SSD(Target). Column B contains the data, showing a
process mean of 2,004. (Strictly speaking, this would be sample data. But to simplify
matters, let us assume that this is population data.) Note that the population variance
(VARP) is 3.5 and the Average SSD(2,000) is 19.5.

In the range G5:H13, a table has been created to see the effect of changing the
target on Average SSD(Target). The offset refers to the difference between the target
and the process mean.

1. Study the table and find an equation that relates the Average SSD to
VARP and the Offset. [Hint: Note that while calculating SSD, the devia-
tions are squared, so think in squares.]

2. Using the equation you found in part 1, prove that the Average SSD(Target)
is minimized when the target equals the process mean.
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Working with Deviations from a Target
[Problem 1–85.xls]

1

2
3
4

5
6
7
8
9

1 0
1 1
1 2
1 3
1 4
1 5
1 6

A B C D E F G H I

Deviations from a Target

Target 2000

Data
Deviation

from Target
Squared

Deviation Offset Target
Average

SSd

2003 3 9
2002 2 4 -4 2000 19.5
2005 5 2 5 -3 2001 12.5
2004 4 1 6 -2 2002 7.5
2006 6 3 6 -1 2003 4.5
2001 1 1 0 2004 3.5 <- VARP
2004 4 1 6 1 2005 4.5
2007 7 4 9 2 2006 7.5

3 2007 12.5
Mean 2004 SSd 156 4 2008 19.5
VARP 3.5 Avg. SSd 19.5

1–86. The Consumer Price Index (CPI) is an important indicator of the general
level of prices of essential commodities. It is widely used in making cost of living
adjustments to salaries, for example.

1. Log on to the Consumer Price Index (CPI) home page of the Bureau of
Labor Statistics Web site (stats.bls.gov/cpihome.htm). Get a table of the last
48 months’ CPI for U.S. urban consumers with 1982–1984 as the base.
Make a time plot of the data. Discuss any seasonal pattern you see in the
data.

2. Go to the Average Price Data area and get a table of the last 48 months’
average price of unleaded regular gasoline. Make a comparison time plot
of the CPI data in part 1 and the gasoline price data. Comment on the
gasoline prices.

1–87. Log on to the Center for Disease Control Web site and go to the HIV statistics
page (www.cdc.gov/hiv/stats.htm).

1. Download the data on the cumulative number of AIDS cases reported in
the United States and its age-range breakdown. Draw a pie chart of the
data.

2. Download the race/ethnicity breakdown of the data. Draw a pie chart of
the data.

1–88. Search the Web for major league baseball (MLB) players’ salaries. ESPN and
USA Today are good sources.

1. Get the Chicago Cubs players’ salaries for the current year. Draw a box
plot of the data. (Enter the data in thousands of dollars to make the num-
bers smaller.) Are there any outliers?

2. Get the Chicago White Sox players’ salaries for the current year. Make a
comparison box plot of the two data. Describe your comparison based on
the plot.

1-89. The following data are bank yields (in percent) for 6-month CDs.25

3.56, 5.44, 5.37, 5.28, 5.19, 5.35, 5.48, 5.27, 5.39

Find the mean and standard deviation.
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The NASDAQ Combined Composite Index is a
measure of the aggregate value of technological
stocks. During the year 2007, the index moved

up and down considerably, indicating the rapid changes
in e-business that took place in that year and the high
uncertainty in the profitability of technology-oriented
companies. Historical data of the index are available at
many Web sites, including Finance.Yahoo.com.

1. Download the monthly data of the index for the
calendar year 2007 and make a time plot of the
data. Comment on the volatility of the index,
looking at the plot. Report the standard deviation
of the data.

2. Download the monthly data of the index for the
calendar year 2006 and compare the data for
2006 and 2007 on a single plot. Which year has
been more volatile? Calculate the standard

deviations of the two sets of data. Do they
confirm your answer about the relative volatility
of the two years?

3. Download the monthly data of the S&P 500
index for the year 2007. Compare this index with
the NASDAQ index for the same year on a
single plot. Which index has been more volatile?
Calculate and report the standard deviations of
the two sets of data.

4. Download the monthly data of the Dow Jones
Industrial Average for the year 2007. Compare
this index with the NASDAQ index for the same
year on a single plot. Which index has been more
volatile? Calculate and report the standard
deviations of the two sets of data.

5. Repeat part 1 with the monthly data for the latest
12 full months.

CASE1 NASDAQ Volatility

48 Chapter 1
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2
After studying this chapter, you should be able to:

• Define probability, sample space, and event.
• Distinguish between subjective and objective probability.
• Describe the complement of an event and the intersection 

and union of two events.
• Compute probabilities of various types of events.
• Explain the concept of conditional probability and how to

compute it.
• Describe permutation and combination and their use in certain

probability computations.
• Explain Bayes’ theorem and its application.

PROBABILITY

LEARNING OBJECTIVES
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A Missed Pickup Is a Missed Opportunity
A bizarre sequence of events took place on the University of California campus
at Berkeley on October 20, 2003. An employee of the university took a package
containing 30 applications by graduate students at the university for the presti-
gious Fulbright Fellowship, administered by the U.S. Department of Education,
and dropped them at the Federal Express pickup box on campus. October 20 was
the deadline the Department of Education had set for posting by each university
of all its applications for awards on behalf of its students.

But just that day, something that had never happened before took place.
Because of a “computer glitch,” as Federal Express later described it, there was no
pickup by the company from its box on Sproul Plaza on the U.C. campus. When
the problem became apparent to the university, an employee sent an e-mail mes-
sage late that night to the Department of Education in Washington, apologizing
for the mishap, which was not the University’s fault, and requesting an extension
of time for its students. The Department of Education refused.

There ensued a long sequence of telephone calls, and the Chancellor of
the University, Robert M. Berdahl, flew to Washington to beg the authorities
to allow his students to be considered. The Department of Education refused.
At one point, one of the attorneys for the Department told the University that
had the e-mail message not been sent, everything would have been fine since
FedEx would have shown the date of posting as October 20. But since the 
e-mail message had been sent, the fate of the applications was sealed. Usually,
15 out of 30 applications from U.C. Berkeley result in awards. But because of
this unfortunate sequence of events, no Berkeley graduate students were to
receive a Fulbright Fellowship in 2004.

2–1 Using Statistics

1I. J. Good, “Kinds of Probability,” Science, no. 129 (February 20, 1959), pp. 443–47.

Dean E. Murphy, “Missed Pickup Means a Missed Opportunity for 30 Seeking a Fellowship,” The New York
Times, February 5, 2004, p. A14.

This story demonstrates how probabilities affect everything in our lives. A priori,
there was an extremely small chance that a pickup would be missed: According to
FedEx this simply doesn’t happen. The university had relied on the virtually sure
probability of a pickup, and thus posted the applications on the last possible day.
Moreover, the chance that an employee of the university would find out that the pick-
up was missed on that same day and e-mail the Department of Education was very
small. Yet the sequence of rare events took place, with disastrous results for the grad-
uate students who had worked hard to apply for these important awards.

A probability is a quantitative measure of uncertainty—a number that conveys
the strength of our belief in the occurrence of an uncertain event. Since life is full of
uncertainty, people have always been interested in evaluating probabilities. The stat-
istician I. J. Good suggests that “the theory of probability is much older than the
human species,” since the assessment of uncertainty incorporates the idea of learning
from experience, which most creatures do.1
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The theory of probability as we know it today was largely developed by European
mathematicians such as Galileo Galilei (1564–1642), Blaise Pascal (1623–1662), Pierre
de Fermat (1601–1665), Abraham de Moivre (1667–1754), and others.

As in India, the development of probability theory in Europe is often associated
with gamblers, who pursued their interests in the famous European casinos, such as
the one at Monte Carlo. Many books on probability and statistics tell the story of the
Chevalier de Mère, a French gambler who enlisted the help of Pascal in an effort to
obtain the probabilities of winning at certain games of chance, leading to much of the
European development of probability.

Today, the theory of probability is an indispensable tool in the analysis of
situations involving uncertainty. It forms the basis for inferential statistics as well as
for other fields that require quantitative assessments of chance occurrences, such as
quality control, management decision analysis, and areas in physics, biology, engi-
neering, and economics.

While most analyses using the theory of probability have nothing to do with
games of chance, gambling models provide the clearest examples of probability and
its assessment. The reason is that games of chance usually involve dice, cards, or
roulette wheels—mechanical devices. If we assume there is no cheating, these
mechanical devices tend to produce sets of outcomes that are equally likely, and this
allows us to compute probabilities of winning at these games.

Suppose that a single die is rolled and that you win a dollar if the number 1 or 2
appears. What are your chances of winning a dollar? Since there are six equally likely
numbers (assuming the die is fair) and you win as a result of either of two numbers
appearing, the probability that you win is 2�6, or 1�3.

As another example, consider the following situation. An analyst follows the
price movements of IBM stock for a time and wants to assess the probability that
the stock will go up in price in the next week. This is a different type of situation.
The analyst does not have the luxury of a known set of equally likely outcomes,
where “IBM stock goes up next week” is one of a given number of these equally
likely possibilities. Therefore, the analyst’s assessment of the probability of the event
will be a subjective one. The analyst will base her or his assessment of this probability
on knowledge of the situation, guesses, or intuition. Different people may assign dif-
ferent probabilities to this event depending on their experience and knowledge,
hence the name subjective probability.

Objective probability is probability based on symmetry of games of chance or
similar situations. It is also called classical probability. This probability is based on the
idea that certain occurrences are equally likely (the term equally likely is intuitively
clear and will be used as a starting point for our definitions): The numbers 1, 2, 3, 4, 5,
and 6 on a fair die are each equally likely to occur. Another type of objective prob-
ability is long-term relative-frequency probability. If, in the long run, 20 out of 1,000 con-
sumers given a taste test for a new soup like the taste, then we say that the probability
that a given consumer will like the soup is 20�1,000 � 0.02. If the probability that a
head will appear on any one toss of a coin is 1�2, then if the coin is tossed a large num-
ber of times, the proportion of heads will approach 1�2. Like the probability in games
of chance and other symmetric situations, relative-frequency probability is objective
in the sense that no personal judgment is involved.

Subjective probability, on the other hand, involves personal judgment, infor-
mation, intuition, and other subjective evaluation criteria. The area of subjective
probability—which is relatively new, having been first developed in the 1930s—is
somewhat controversial.2 A physician assessing the probability of a patient’s recovery
and an expert assessing the probability of success of a merger offer are both making a
personal judgment based on what they know and feel about the situation. Subjective

2The earliest published works on subjective probability are Frank Ramsey’s The Foundation of Mathematics and Other
Logical Essays (London: Kegan Paul, 1931) and the Italian statistician Bruno de Finetti’s “La Prévision: Ses Lois Logiques,
Ses Sources Subjectives,” Annales de L’Institut Henri Poincaré 7, no. 1 (1937).
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probability is also called personal probability. One person’s subjective probability may
very well be different from another person’s subjective probability of the same event.

Whatever the kind of probability involved, the same set of mathematical rules
holds for manipulating and analyzing probability. We now give the general rules for
probability as well as formal definitions. Some of our definitions will involve counting
the number of ways in which some event may occur. The counting idea is imple-
mentable only in the case of objective probability, although conceptually this idea
may apply to subjective probability as well, if we can imagine a kind of lottery with a
known probability of occurrence for the event of interest.

2–2 Basic Definitions: Events, Sample Space, 
and Probabilities

To understand probability, some familiarity with sets and with operations involving
sets is useful.

A set is a collection of elements.

The elements of a set may be people, horses, desks, cars, files in a cabinet, or even
numbers. We may define our set as the collection of all horses in a given pasture, all
people in a room, all cars in a given parking lot at a given time, all the numbers
between 0 and 1, or all integers. The number of elements in a set may be infinite, as
in the last two examples.

A set may also have no elements.

The empty set is the set containing no elements. It is denoted by �.

We now define the universal set.

The universal set is the set containing everything in a given context. We
denote the universal set by S.

Given a set A, we may define its complement.

The complement of set A is the set containing all the elements in the uni-
versal set S that are not members of set A. We denote the complement of
A by . The set is often called “not A.”

A Venn diagram is a schematic drawing of sets that demonstrates the relationships
between different sets. In a Venn diagram, sets are shown as circles, or other closed
figures, within a rectangle corresponding to the universal set, S. Figure 2–1 is a Venn
diagram demonstrating the relationship between a set A and its complement .

As an example of a set and its complement, consider the following. Let the uni-
versal set S be the set of all students at a given university. Define A as the set of all
students who own a car (at least one car). The complement of A, or , is thus the set
of all students at the university who do not own a car.

Sets may be related in a number of ways. Consider two sets A and B within the
context of the same universal set S. (We say that A and B are subsets of the universal
set S.) If A and B have some elements in common, we say they intersect.

The intersection of A and B, denoted A � B, is the set containing all ele-
ments that are members of both A and B.

When we want to consider all the elements of two sets A and B, we look at their
union.

The union of A and B, denoted A � B, is the set containing all elements
that are members of either A or B or both.

A

A

AA

Probability 53
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FIGURE 2–2 Sets A and B and Their Intersection

U

A BA B

FIGURE 2–3 The Union of A and B

A U B

FIGURE 2–4 Two Disjoint Sets

A B

FIGURE 2–1 A Set A and Its Complement A

A

A

As you can see from these definitions, the union of two sets contains the intersec-
tion of the two sets. Figure 2–2 is a Venn diagram showing two sets A and B and
their intersection A � B. Figure 2–3 is a Venn diagram showing the union of the
same sets.

As an example of the union and intersection of sets, consider again the set of all
students at a university who own a car. This is set A. Now define set B as the set of
all students at the university who own a bicycle. The universal set S is, as before, the
set of all students at the university. And A � B is the intersection of A and B—it is the
set of all students at the university who own both a car and a bicycle. And A � B is
the union of A and B—it is the set of all students at the university who own either a
car or a bicycle or both.

Two sets may have no intersection: They may be disjoint. In such a case, we say
that the intersection of the two sets is the empty set �. In symbols, when A and B are
disjoint, A � B � �. As an example of two disjoint sets, consider the set of all
students enrolled in a business program at a particular university and all the students
at the university who are enrolled in an art program. (Assume no student is enrolled
in both programs.) A Venn diagram of two disjoint sets is shown in Figure 2–4.

In probability theory we make use of the idea of a set and of operations involving
sets. We will now provide some basic definitions of terms relevant to the computation
of probability. These are an experiment, a sample space, and an event.

An experiment is a process that leads to one of several possible outcomes.
An outcome of an experiment is some observation or measurement.

Drawing a card out of a deck of 52 cards is an experiment. One outcome of the
experiment may be that the queen of diamonds is drawn.

A single outcome of an experiment is called a basic outcome or an elementary event.
Any particular card drawn from a deck is a basic outcome.

The sample space is the universal set S pertinent to a given experiment.
The sample space is the set of all possible outcomes of an experiment.

54 Chapter 2
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FIGURE 2–5 Sample Space for Drawing a Card
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The sample space for the experiment of drawing a card out of a deck is the set of all
cards in the deck. The sample space for an experiment of reading the temperature is
the set of all numbers in the range of temperatures.

An event is a subset of a sample space. It is a set of basic outcomes. We say
that the event occurs if the experiment gives rise to a basic outcome
belonging to the event.

For example, the event “an ace is drawn out of a deck of cards” is the set of the four
aces within the sample space consisting of all 52 cards. This event occurs whenever
one of the four aces (the basic outcomes) is drawn.

The sample space for the experiment of drawing a card out of a deck of 52 cards is
shown in Figure 2–5. The figure also shows event A, the event that an ace is drawn.

In this context, for a given experiment we have a sample space with equally likely
basic outcomes. When a card is drawn out of a well-shuffled deck, every one of the cards
(the basic outcomes) is as likely to occur as any other. In such situations, it seems rea-
sonable to define the probability of an event as the relative size of the event with respect
to the size of the sample space. Since a deck has 4 aces and 52 cards, the size of A is 4
and the size of the sample space is 52. Therefore, the probability of A is equal to 4�52.

The rule we use in computing probabilities, assuming equal likelihood of all basic
outcomes, is as follows:

Probability 55

Probability of event A:

(2–1)

where

n(A) � the number of elements in the set of the event A
n(S) � the number of elements in the sample space S

P(A) =
n(A)
n(S)
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P R O B L E M S

2–1. What are the two main types of probability?
2–2. What is an event? What is the union of two events? What is the intersection of
two events?
2–3. Define a sample space.
2–4. Define the probability of an event.

FIGURE 2–6 The Events A and ♥ and Their Union and Intersection
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The probability of drawing an ace is P (A) � n (A)�n (S) � 4�52.
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Roulette is a popular casino game. As the game is played in Las Vegas or Atlantic
City, the roulette wheel has 36 numbers, 1 through 36, and the number 0 as well as
the number 00 (double zero). What is the probability of winning on a single number
that you bet?

E X A M P L E  2 – 1

The sample space S in this example consists of 38 numbers (0, 00, 1, 2, 3,…, 36),
each of which is equally likely to come up. Using our counting rule P (any one given
number) � 1�38.

S o l u t i o n

Let’s now demonstrate the meaning of union and intersection with the example
of drawing a card from a deck. Let A be the event that an ace is drawn and ♥ the
event that a heart is drawn. The sample space is shown in Figure 2–6. Note that
the event A � ♥ is the event that the card drawn is both an ace and a heart (i.e., the
ace of hearts). The event A � ♥ is the event that the card drawn is either an ace or a
heart or both.
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2–5. Let G be the event that a girl is born. Let F be the event that a baby over
5 pounds is born. Characterize the union and the intersection of the two events.
2–6. Consider the event that a player scores a point in a game against team A and
the event that the same player scores a point in a game against team B. What is the
union of the two events? What is the intersection of the two events?
2–7. A die is tossed twice and the two outcomes are noted. Draw the Venn diagram
of the sample space and indicate the event “the second toss is greater than the first.”
Calculate the probability of the event.
2–8. Ford Motor Company advertises its cars on radio and on television. The com-
pany is interested in assessing the probability that a randomly chosen person is
exposed to at least one of these two modes of advertising. If we define event R as the
event that a randomly chosen person was exposed to a radio advertisement and
event T as the event that the person was exposed to a television commercial, define
R � T and R � T in this context.
2–9. A brokerage firm deals in stocks and bonds. An analyst for the firm is inter-
ested in assessing the probability that a person who inquires about the firm will even-
tually purchase stock (event S) or bonds (event B). Define the union and the
intersection of these two events.
2–10. The European version of roulette is different from the U.S. version in that the
European roulette wheel doesn’t have 00. How does this change the probability of win-
ning when you bet on a single number? European casinos charge a small admission
fee, which is not the case in U.S. casinos. Does this make sense to you, based on your
answer to the earlier question?

2–3 Basic Rules for Probability
We have explored probability on a somewhat intuitive level and have seen rules that
help us evaluate probabilities in special cases when we have a known sample space
with equally likely basic outcomes. We will now look at some general probability
rules that hold regardless of the particular situation or kind of probability (objective
or subjective). First, let us give a general definition of probability.

Probability is a measure of uncertainty. The probability of event A is a
numerical measure of the likelihood of the event’s occurring.

The Range of Values
Probability obeys certain rules. The first rule sets the range of values that the proba-
bility measure may take.

Probability 57

For any event A, the probability P(A) satisfies

0 	 P(A) 	 1 (2–2)

When an event cannot occur, its probability is zero. The probability of the empty set
is zero: P (�) � 0. In a deck where half the cards are red and half are black, the prob-
ability of drawing a green card is zero because the set corresponding to that event is
the empty set: There are no green cards.

Events that are certain to occur have probability 1.00. The probability of the
entire sample space S is equal to 1.00: P (S) � 1.00. If we draw a card out of a deck,
1 of the 52 cards in the deck will certainly be drawn, and so the probability of the
sample space, the set of all 52 cards, is equal to 1.00.
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FIGURE 2–7 Interpretation of a Probability
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Within the range of values 0 to 1, the greater the probability, the more confidence
we have in the occurrence of the event in question. A probability of 0.95 implies a
very high confidence in the occurrence of the event. A probability of 0.80 implies
a high confidence. When the probability is 0.5, the event is as likely to occur as it is
not to occur. When the probability is 0.2, the event is not very likely to occur. When
we assign a probability of 0.05, we believe the event is unlikely to occur, and so on.
Figure 2–7 is an informal aid in interpreting probability.

Note that probability is a measure that goes from 0 to 1. In everyday conversation
we often describe probability in less formal terms. For example, people sometimes
talk about odds. If the odds are 1 to 1, the probability is 1�2; if the odds are 1 to 2,
the probability is 1�3; and so on. Also, people sometimes say, “The probability is 80
percent.” Mathematically, this probability is 0.80.

The Rule of Complements
Our second rule for probability defines the probability of the complement of an
event in terms of the probability of the original event. Recall that the complement of
set A is denoted by .A

58 Chapter 2

Probability of the complement:

(2–3)P(A) � 1 � P(A)

The rule of unions:

P(A � B) � P(A) � P(B) � P(A � B) (2–4)

As a simple example, if the probability of rain tomorrow is 0.3, then the probability of
no rain tomorrow must be 1 � 0.3 � 0.7. If the probability of drawing an ace is 4�52,
then the probability of the drawn card’s not being an ace is 1 � 4�52 � 48�52.

The Rule of Unions. We now state a very important rule, the rule of unions. The
rule of unions allows us to write the probability of the union of two events in terms of
the probabilities of the two events and the probability of their intersection:3

3The rule can be extended to more than two events. In the case of three events, we have P(A � B � C) � P(A) � P(B) �
P (C) � P (A � B) � P (A � C) � P (B � C) � P (A � B � C). With more events, this becomes even more complicated.
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2–11. According to an article in Fortune, institutional investors recently changed the
proportions of their portfolios toward public sector funds.4 The article implies that 8%
of investors studied invest in public sector funds and 6% in corporate funds. Assume
that 2% invest in both kinds. If an investor is chosen at random, what is the probability
that this investor has either public or corporate funds?

P R O B L E M S

[The probability of the intersection of two events P(A � B) is called their joint
probability.] The meaning of this rule is very simple and intuitive: When we add the
probabilities of A and B, we are measuring, or counting, the probability of their inter-
section twice—once when measuring the relative size of A within the sample space and
once when doing this with B. Since the relative size, or probability, of the intersection of
the two sets is counted twice, we subtract it once so that we are left with the true proba-
bility of the union of the two events (refer to Figure 2–6). Note that instead of finding the
probability of A � B by direct counting, we can use the rule of unions: We know that the
probability of an ace is 4�52, the probability of a heart is 13�52, and the probability of
their intersection—the drawn card being the ace of hearts—is 1�52. Thus, P(A � ♥) �
4�52 � 13�52 � 1�52 � 16�52, which is exactly what we find from direct counting.

The rule of unions is especially useful when we do not have the sample space for
the union of events but do have the separate probabilities. For example, suppose
your chance of being offered a certain job is 0.4, your probability of getting another
job is 0.5, and your probability of being offered both jobs (i.e., the intersection) is 0.3.
By the rule of unions, your probability of being offered at least one of the two jobs
(their union) is 0.4 � 0.5 � 0.3 � 0.6.

Mutually Exclusive Events
When the sets corresponding to two events are disjoint (i.e., have no intersection), the
two events are called mutually exclusive (see Figure 2–4). For mutually exclusive
events, the probability of the intersection of the events is zero. This is so because
the intersection of the events is the empty set, and we know that the probability of
the empty set � is zero.

Probability 59

For mutually exclusive events A and B:

P(A � B) � 0 (2–5)

For mutually exclusive events A and B:

P(A � B) � P(A) � P(B) (2–6)

This fact gives us a special rule for unions of mutually exclusive events. Since the
probability of the intersection of the two events is zero, there is no need to subtract
P (A � B) when the probability of the union of the two events is computed. Therefore,

This is not really a new rule since we can always use the rule of unions for the union
of two events: If the events happen to be mutually exclusive, we subtract zero as the
probability of the intersection.

To continue our cards example, what is the probability of drawing either a heart or
a club? We have P (♥ � ♣) � P (♥) � P (♣) � 13�52 � 13�52 � 26�52 � 1�2. We need
not subtract the probability of an intersection, since no card is both a club and a heart.

4“Fueling the Fire,” Fortune, March 5, 2007, p. 60.
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2–12. According to The New York Times, 5 million BlackBerry users found their
devices nonfunctional on April 18, 2007.5 If there were 18 million users of handheld
data devices of this kind on that day, what is the probability that a randomly chosen
user could not use a device?
2–13. In problem 2–12, assume that 3 million out of 18 million users could not use
their devices as cellphones, and that 1 million could not use their devices as a cell-
phone and for data device. What is the probability that a randomly chosen device
could not be used either for data or for voice communication?
2–14. According to a report on CNN Business News in April 1995, the probability
of being murdered (in the United States) in 1 year is 9 in 100,000. How might such a
probability have been obtained?
2–15. Assign a reasonable numerical probability to the statement “Rain is very likely
tonight.”
2–16. How likely is an event that has a 0.65 probability? Describe the probability
in words.
2–17. If a team has an 80% chance of winning a game, describe its chances in words.
2–18. ShopperTrak is a hidden electric eye designed to count the number of shoppers
entering a store. When two shoppers enter a store together, one walking in front of the
other, the following probabilities apply: There is a 0.98 probability that the first shop-
per will be detected, a 0.94 probability that the second shopper will be detected, and a
0.93 probability that both of them will be detected by the device. What is the probabil-
ity that the device will detect at least one of two shoppers entering together?
2–19. A machine produces components for use in cellular phones. At any given
time, the machine may be in one, and only one, of three states: operational, out of
control, or down. From experience with this machine, a quality control engineer
knows that the probability that the machine is out of control at any moment is 0.02,
and the probability that it is down is 0.015.

a. What is the relationship between the two events “machine is out of control”
and “machine is down”?

b. When the machine is either out of control or down, a repair person must be
called. What is the probability that a repair person must be called right now?

c. Unless the machine is down, it can be used to produce a single item. What is
the probability that the machine can be used to produce a single component
right now? What is the relationship between this event and the event
“machine is down”?

2–20. Following are age and sex data for 20 midlevel managers at a service com-
pany: 34 F, 49 M, 27 M, 63 F, 33 F, 29 F, 45 M, 46 M, 30 F, 39 M, 42 M, 30 F, 48 M,
35 F, 32 F, 37 F, 48 F, 50 M, 48 F, 61 F. A manager must be chosen at random to
serve on a companywide committee that deals with personnel problems. What is the
probability that the chosen manager will be either a woman or over 50 years old or
both? Solve both directly from the data and by using the law of unions. What is the
probability that the chosen manager will be under 30?
2–21. Suppose that 25% of the population in a given area is exposed to a television
commercial for Ford automobiles, and 34% is exposed to Ford’s radio advertisements.
Also, it is known that 10% of the population is exposed to both means of advertising.
If a person is randomly chosen out of the entire population in this area, what is the
probability that he or she was exposed to at least one of the two modes of advertising?
2–22. Suppose it is known that 85% of the people who inquire about investment
opportunities at a brokerage house end up purchasing stock, and 33% end up
purchasing bonds. It is also known that 28% of the inquirers end up getting a portfolio

60 Chapter 2

5Brad Stone, “Bereft of BlackBerrys, the Untethered Make Do,” The New York Times, April 19, 2007, p. C1.
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The 100 Projects

AT&T IBM

Telecommunications: T

Computers: C

with both stocks and bonds. If a person is just making an inquiry, what is the probabil-
ity that she or he will get stock or bonds or both (i.e., open any portfolio)?
2–23. A firm has 550 employees; 380 of them have had at least some college edu-
cation, and 412 of the employees underwent a vocational training program. Further-
more, 357 employees both are college-educated and have had the vocational
training. If an employee is chosen at random, what is the probability that he or she is
college-educated or has had the training or both?
2–24. In problem 2–12, what is the probability that a randomly chosen user could
use his or her device?
2–25. As part of a student project for the 1994 Science Fair in Orange, Massachusetts,
28 horses were made to listen to Mozart and heavy-metal music. The results were as
follows: 11 of the 28 horses exhibited some head movements when Mozart was played;
8 exhibited some head movements when the heavy metal was played; and 5 moved
their heads when both were played. If a horse is chosen at random, what is the proba-
bility the horse exhibited head movements to Mozart or to heavy metal or to both?

2–4 Conditional Probability
As a measure of uncertainty, probability depends on information. Thus, the
probability you would give the event “Xerox stock price will go up tomorrow”
depends on what you know about the company and its performance; the probability
is conditional upon your information set. If you know much about the company, you
may assign a different probability to the event than if you know little about the com-
pany. We may define the probability of event A conditional upon the occurrence of
event B. In this example, event A may be the event that the stock will go up tomor-
row, and event B may be a favorable quarterly report.

Probability 61

The conditional probability of event A given the occurrence of event B is

(2–7)

assuming P(B) 
 0.

P(A ƒ B) �
P(A ¨ B)

P(B)

The vertical line in P (A | B) is read given, or conditional upon. The probability of event
A given the occurrence of event B is defined as the probability of the intersection of
A and B, divided by the probability of event B.

As part of a drive to modernize the economy, the government of an eastern Euro-
pean country is pushing for starting 100 new projects in computer development
and telecommunications. Two U.S. giants, IBM and AT&T, have signed contracts

E X A M P L E  2 – 2
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for these projects: 40 projects for IBM and 60 for AT&T. Of the IBM projects,
30 are in the computer area and 10 are in telecommunications; of the AT&T proj-
ects, 40 are in telecommunications and 20 are in computer areas. Given that a ran-
domly chosen project is in telecommunications, what is the probability that it is
undertaken by IBM?

62 Chapter 2

But we see this directly from the fact that there are 50 telecommunications projects
and 10 of them are by IBM. This confirms the definition of conditional probability in
an intuitive sense.

P (IBM|T) =
P (IBM ¨ T)

P (T)
=

10>100
50>100

= 0.2

S o l u t i o n

When two events and their complements are of interest, it may be convenient to
arrange the information in a contingency table. In Example 2–2 the table would be
set up as follows:

AT&T IBM Total

Telecommunications 40 10 50

Computers 20 30 50

Total 60 40 100

Contingency tables help us visualize information and solve problems. The definition
of conditional probability (equation 2–7) takes two other useful forms.

Variation of the conditional probability formula:

P(A � B) � P(A | B)P(B)
and

P(A � B) � P(B | A)P(A) (2–8)

We are given P (A) � 0.45. We also know that P (B | A) � 0.90, and we are looking for
P (A � B), which is the probability that both A and B will occur. From the equation
we have P (A � B) � P (B | A)P (A) � 0.90 � 0.45 � 0.405.

A consulting firm is bidding for two jobs, one with each of two large multinational
corporations. The company executives estimate that the probability of obtaining
the consulting job with firm A, event A, is 0.45. The executives also feel that if the
company should get the job with firm A, then there is a 0.90 probability that firm B
will also give the company the consulting job. What are the company’s chances of
getting both jobs?

S o l u t i o n

E X A M P L E  2 – 3

Twenty-one percent of the executives in a large advertising firm are at the top salary
level. It is further known that 40% of all the executives at the firm are women. Also,
6.4% of all executives are women and are at the top salary level. Recently, a question
arose among executives at the firm as to whether there is any evidence of salary
inequity. Assuming that some statistical considerations (explained in later chapters)
are met, do the percentages reported above provide any evidence of salary inequity?

E X A M P L E  2 – 4

These are illustrated in Example 2–3.
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2–26. SBC Warburg, Deutsche Morgan Grenfell, and UBS are foreign. Given that
a security is foreign-underwritten, find the probability that it is by SBC Warburg (see
the accompanying table).6

P R O B L E M S

Probability 63

P (T ƒ W) �
P (T ¨ W)

P (W)
�

0.064
0.40 � 0.16

S o l u t i o nTo solve this problem, we pose it in terms of probabilities and ask whether the
probability that a randomly chosen executive will be at the top salary level is approx-
imately equal to the probability that the executive will be at the top salary level given
the executive is a woman. To answer, we need to compute the probability that the
executive will be at the top level given the executive is a woman. Defining T as the
event of a top salary and W as the event that an executive is a woman, we get

Since 0.16 is smaller than 0.21, we may conclude (subject to statistical considerations)
that salary inequity does exist at the firm, because an executive is less likely to make
a top salary if she is a woman.

Example 2–4 may incline us to think about the relations among different events.
Are different events related, or are they independent of each other? In this example,
we concluded that the two events, being a woman and being at the top salary level,
are related in the sense that the event W made event T less likely. Section 2–5 quan-
tifies the relations among events and defines the concept of independence.

6From “Out of Their League?” The Economist, June 21, 1997, pp. 71–72. © 1997 The Economist Newspaper Group,
Inc. Reprinted with permission. Further reproduction prohibited. www.economist.com.
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2–27. If a large competitor will buy a small firm, the firm’s stock will rise with prob-
ability 0.85. The purchase of the company has a 0.40 probability. What is the prob-
ability that the purchase will take place and the firm’s stock will rise?

2–28. A financial analyst believes that if interest rates decrease in a given period,
then the probability that the stock market will go up is 0.80. The analyst further
believes that interest rates have a 0.40 chance of decreasing during the period in
question. Given the above information, what is the probability that the market will go
up and interest rates will go down during the period in question?

2–29. A bank loan officer knows that 12% of the bank’s mortgage holders lose their
jobs and default on the loan in the course of 5 years. She also knows that 20% of the
bank’s mortgage holders lose their jobs during this period. Given that one of her
mortgage holders just lost his job, what is the probability that he will now default on
the loan?

2–30. An express delivery service promises overnight delivery of all packages
checked in before 5 P.M. The delivery service is not perfect, however, and sometimes
delays do occur. Management knows that if delays occur in the evening flight to a
major city from which distribution is made, then a package will not arrive on time
with probability 0.25. It is also known that 10% of the evening flights to the major city
are delayed. What percentage of the packages arrive late? (Assume that all packages
are sent out on the evening flight to the major city and that all packages arrive on
time if the evening flight is not delayed.)

2–31. The following table gives numbers of claims at a large insurance company by
kind and by geographic region.

East South Midwest West

Hospitalization 75 128 29 52

Physician’s visit 233 514 104 251

Outpatient treatment 100 326 65 99

Compute column totals and row totals. What do they mean?

a. If a bill is chosen at random, what is the probability that it is from the Midwest?
b. What is the probability that a randomly chosen bill is from the East?
c. What is the probability that a randomly chosen bill is either from the Midwest

or from the South? What is the relation between these two events?
d. What is the probability that a randomly chosen bill is for hospitalization?
e. Given that a bill is for hospitalization, what is the probability that it is from

the South?
f. Given that a bill is from the East, what is the probability that it is for a

physician’s visit?
g. Given that a bill is for outpatient treatment, what is the probability that it is

from the West?
h. What is the probability that a randomly chosen bill is either from the East or

for outpatient treatment (or both)?
i. What is the probability that a randomly selected bill is either for hospitaliza-

tion or from the South (or both)?

2–32. One of the greatest problems in marketing research and other survey fields is
the problem of nonresponse to surveys. In home interviews the problem arises when
the respondent is not home at the time of the visit or, sometimes, simply refuses to
answer questions. A market researcher believes that a respondent will answer all ques-
tions with probability 0.94 if found at home. He further believes that the probability

64 Chapter 2
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that a given person will be found at home is 0.65. Given this information, what
percentage of the interviews will be successfully completed?

2–33. An investment analyst collects data on stocks and notes whether or not
dividends were paid and whether or not the stocks increased in price over a given period.
Data are presented in the following table.

Price No Price 
Increase Increase Total

Dividends paid 34 78 112

No dividends paid 85 49 134

Total 119 127 246

a. If a stock is selected at random out of the analyst’s list of 246 stocks, what is
the probability that it increased in price?

b. If a stock is selected at random, what is the probability that it paid dividends?

c. If a stock is randomly selected, what is the probability that it both increased
in price and paid dividends?

d. What is the probability that a randomly selected stock neither paid divi-
dends nor increased in price?

e. Given that a stock increased in price, what is the probability that it also paid
dividends?

f. If a stock is known not to have paid dividends, what is the probability that it
increased in price?

g. What is the probability that a randomly selected stock was worth holding
during the period in question; that is, what is the probability that it increased
in price or paid dividends or did both?

2–34. The following table lists the number of firms where the top executive officer
made over $1 million per year. The table also lists firms according to whether share-
holder return was positive during the period in question.

Top Executive Top Executive 
Made More Made Less 

than $1 Million than $1 Million Total

Shareholders made money 1 6 7

Shareholders lost money 2 1 3

Total 3 7 10

a. If a firm is randomly chosen from the list of 10 firms studied, what is the
probability that its top executive made over $1 million per year?

b. If a firm is randomly chosen from the list, what is the probability that its
shareholders lost money during the period studied?

c. Given that one of the firms in this group had negative shareholder return,
what is the probability that its top executive made over $1 million?

d. Given that a firm’s top executive made over $1 million, what is the prob-
ability that the firm’s shareholder return was positive?

2–35. According to Fortune, 90% of endangered species depend on forests for the
habitat they provide.7 If 30% of endangered species are in critical danger and depend
on forests for their habitat, what is the probability that an endangered species that
depends on forests is in critical danger?

Probability 65

7“Environmental Steward,” Fortune, March 5, 2007, p. 54.
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2–5 Independence of Events
In Example 2–4 we concluded that the probability that an executive made a top
salary was lower when the executive was a woman, and we concluded that the two
events T and W were not independent. We now give a formal definition of statistical
independence of events.

Two events A and B are said to be independent of each other if and only if the
following three conditions hold:

66 Chapter 2

Conditions for the independence of two events A and B:

P(A | B) � P(A)

P(B | A) � P(B) (2–9)
and, most useful:

P(A � B) � P(A)P(B) (2–10)

The first two equations have a clear, intuitive appeal. The top equation says that
when A and B are independent of each other, then the probability of A stays the
same even when we know that B has occurred—it is a simple way of saying that
knowledge of B tells us nothing about A when the two events are independent.
Similarly, when A and B are independent, then knowledge that A has occurred
gives us absolutely no information about B and its likelihood of occurring.

The third equation, however, is the most useful in applications. It tells us that
when A and B are independent (and only when they are independent), we can
obtain the probability of the joint occurrence of A and B (i.e., the probability of their
intersection) simply by multiplying the two separate probabilities. This rule is thus
called the product rule for independent events. (The rule is easily derived from the
first rule, using the definition of conditional probability.)

As an example of independent events, consider the following: Suppose I roll a
single die. What is the probability that the number 6 will turn up? The answer is 1�6.
Now suppose that I told you that I just tossed a coin and it turned up heads. What is
now the probability that the die will show the number 6? The answer is unchanged,
1�6, because events of the die and the coin are independent of each other. We see
that P (6 | H) � P (6), which is the first rule above.

In Example 2–2, we found that the probability that a project belongs to IBM
given that it is in telecommunications is 0.2. We also knew that the probability that a
project belongs to IBM was 0.4. Since these two numbers are not equal, the two
events IBM and telecommunications are not independent.

When two events are not independent, neither are their complements. Therefore,
AT&T and computers are not independent events (and neither are the other two
possibilities).

The probability that a consumer will be exposed to an advertisement for a certain
product by seeing a commercial on television is 0.04. The probability that the con-
sumer will be exposed to the product by seeing an advertisement on a billboard is
0.06. The two events, being exposed to the commercial and being exposed to the
billboard ad, are assumed to be independent. (a ) What is the probability that the
consumer will be exposed to both advertisements? (b) What is the probability that
he or she will be exposed to at least one of the ads?

E X A M P L E  2 – 5
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Product Rules for Independent Events
The rules for the union and the intersection of two independent events extend nicely
to sequences of more than two events. These rules are very useful in random
sampling.

Much of statistics involves random sampling from some population. When we
sample randomly from a large population, or when we sample randomly with
replacement from a population of any size, the elements are independent of one
another. For example, suppose that we have an urn containing 10 balls, 3 of them red
and the rest blue. We randomly sample one ball, note that it is red, and return it to
the urn (this is sampling with replacement). What is the probability that a second ball
we choose at random will be red? The answer is still 3�10 because the second draw-
ing does not “remember” that the first ball was red. Sampling with replacement in
this way ensures independence of the elements. The same holds for random sam-
pling without replacement (i.e., without returning each element to the population
before the next draw) if the population is relatively large in comparison with the size
of the sample. Unless otherwise specified, we will assume random sampling from a
large population.

Random sampling from a large population implies independence.

Intersection Rule
The probability of the intersection of several independent events is just the
product of the separate probabilities.

The rate of defects in corks of wine bottles is very high, 75%. Assuming
independence, if four bottles are opened, what is the probability that all
four corks are defective? Using this rule: P (all 4 are defective) � P (first cork
is defective) � P (second cork is defective) � P (third cork is defective) �
P (fourth cork is defective) � 0.75 � 0.75 � 0.75 � 0.75 � 0.316.

If these four bottles were randomly selected, then we would not have
to specify independence—a random sample always implies independence.

Probability 67

Union Rule

The probability of the union of several independent events—A1, A2,…, An—
is given by the following equation:

(2–11)P(A1 ª A2 ª  . . . ª An) � 1 � P(A1) P(A2) . . . P (An)

(a ) Since the two events are independent, the probability of the intersection of the two
(i.e., being exposed to both ads) is P (A � B) � P (A)P (B) � 0.04 � 0.06 � 0.0024.
(b ) We note that being exposed to at least one of the advertisements is, by definition, the
union of the two events, and so the rule for union applies. The probability of the inter-
section was computed above, and we have P (A � B) � P (A) � P (B) � P (A � B) �
0.04 � 0.06 � 0.0024 � 0.0976. The computation of such probabilities is important in
advertising research. Probabilities are meaningful also as proportions of the population
exposed to different modes of advertising, and are thus important in the evaluation of
advertising efforts.

S o l u t i o n

The union of several events is the event that at least one of the events happens. In the
example of the wine corks, suppose we want to find the probability that at least one of
the four corks is defective. We compute this probability as follows: P (at least one is
defective) � 1 � P (none are defective) � 1 � 0.25 � 0.25 � 0.25 � 0.25 � 0.99609.
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Poor Nations’ Mothers at Serious 
Health Risk
In the industrialized world, a woman’s
odds of dying from problems related to
pregnancy are 1 in 1,687. But in the de-
veloping world the figure is 1 in 51. The
World Bank also says that each year

7 million newborns die within a week
of birth because of maternal health
problems. The bank and the United
Nations are in the midst of an initiative
to cut maternal illnesses and deaths.

Edward Epstein, “Poor Nations’ Mothers at Serious Health Risk,” World Insider, San Francisco Chronicle,
August 10, 1993, p. A9. © 1993 San Francisco Chronicle. Reprinted by permission.
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P (at least 1 will die) � 1 � P (all 3 will survive) � 1 � (50�51)3 � 0.0577

Read the accompanying article. Three women (assumed a random sample) in a
developing country are pregnant. What is the probability that at least one will die?

S o l u t i o n

E X A M P L E  2 – 6

First, we note that if a sample is drawn at random, then the event that any one of the
items in the sample fits the qualifications is independent of the other items in the sam-
ple. This is an important property in statistics. Let Q i , where i � 1, 2, . . . , 10, be the
event that person i qualifies. Then the probability that at least 1 of the 10 people will
qualify is the probability of the union of the 10 events Q i (i � 1, . . . , 10). We are thus
looking for P (Q1 � Q2 � � � � � Q10).

Now, since 10% of the people qualify, the probability that person i does not
qualify, or , is equal to 0.90 for each i � 1, . . . , 10. Therefore, the required
probability is equal to 1 � (0.9)(0.9) � � � (0.9) (10 times), or 1 � (0.9)10. This is equal
to 0.6513.

P (Q i )

A marketing research firm is interested in interviewing a consumer who fits certain
qualifications, for example, use of a certain product. The firm knows that 10% of
the public in a certain area use the product and would thus qualify to be inter-
viewed. The company selects a random sample of 10 people from the population as
a whole. What is the probability that at least 1 of these 10 people qualifies to be
interviewed?

S o l u t i o n

E X A M P L E  2 – 7

Be sure that you understand the difference between independent events and
mutually exclusive events. Although these two concepts are very different, they often
cause some confusion when introduced. When two events are mutually exclusive,
they are not independent. In fact, they are dependent events in the sense that if one
happens, the other one cannot happen. The probability of the intersection of two
mutually exclusive events is equal to zero. The probability of the intersection of
two independent events is not zero; it is equal to the product of the probabilities of
the separate events.
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2–36. According to USA Today, 65% of Americans are overweight or obese.8 If five
Americans are chosen at random, what is the probability that at least one of them is
overweight or obese?
2–37. The chancellor of a state university is applying for a new position. At a certain
point in his application process, he is being considered by seven universities. At three
of the seven he is a finalist, which means that (at each of the three universities) he is in
the final group of three applicants, one of which will be chosen for the position. At two
of the seven universities he is a semifinalist, that is, one of six candidates (in each of the
two universities). In two universities he is at an early stage of his application and
believes there is a pool of about 20 candidates for each of the two positions. Assuming
that there is no exchange of information, or influence, across universities as to their
hiring decisions, and that the chancellor is as likely to be chosen as any other appli-
cant, what is the chancellor’s probability of getting at least one job offer?
2–38. A package of documents needs to be sent to a given destination, and deliv-
ery within one day is important. To maximize the chances of on-time delivery, three
copies of the documents are sent via three different delivery services. Service A is
known to have a 90% on-time delivery record, service B has an 88% on-time delivery
record, and service C has a 91% on-time delivery record. What is the probability that
at least one copy of the documents will arrive at its destination on time?
2–39. The projected probability of increase in online holiday sales from 2004 to
2005 is 95% in the United States, 90% in Australia, and 85% in Japan. Assume these
probabilities are independent. What is the probability that holiday sales will increase
in all three countries from 2004 to 2005?
2–40. An electronic device is made up of two components A and B such that the
device would work satisfactorily as long as at least one of the components works. The
probability of failure of component A is 0.02 and that of B is 0.1 in some fixed period
of time. If the components work independently, find the probability that the device
will work satisfactorily during the period.
2–41. A recent survey conducted by Towers Perrin and published in the Financial
Times showed that among 460 organizations in 13 European countries, 93% have
bonus plans, 55% have cafeteria-style benefits, and 70% employ home-based work-
ers. If the types of benefits are independent, what is the probability that an organiza-
tion selected at random will have at least one of the three types of benefits?
2–42. Credit derivatives are a new kind of investment instrument: they protect
investors from risk.9 If such an investment offered by ABN Amro has a 90% chance
of making money, another by AXA has a 75% chance of success, and one by the ING
Group has a 60% chance of being profitable, and the three are independent of each
other, what is the chance that at least one investment will make money?
2–43. In problem 2–42, suppose that American investment institutions enter this
new market, and that their probabilities for successful instruments are:

Goldman Sachs 70%
Salomon Brothers 82%
Fidelity 80%
Smith Barney 90%

What is the probability that at least one of these four instruments is successful?
Assume independence.

P R O B L E M S

Probability 69

8Nancy Hellmich, “A Nation of Obesity,” USA Today, October 14, 2003, p. 7D.
9 John Ferry, “Gimme Shelter,” Worth, April 2007, pp. 88–90.
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2–44. In problem 2–31, are the events “hospitalization” and “the claim being from
the Midwest” independent of each other?
2–45. In problem 2–33, are “dividends paid” and “price increase” independent events?
2–46. In problem 2–34, are the events “top executive made more than $1 million”
and “shareholders lost money” independent of each other? If this is true for all firms,
how would you interpret your finding?
2–47. The accompanying table shows the incidence of malaria and two other similar
illnesses. If a person lives in an area affected by all three diseases, what is the proba-
bility that he or she will develop at least one of the three illnesses? (Assume that con-
tracting one disease is an event independent from contracting any other disease.)

Cases Number at Risk (Millions)

Malaria 110 million per year 2,100

Schistosomiasis 200 million 600

Sleeping sickness 25,000 per year 50

2–48. A device has three components and works as long as at least one of the com-
ponents is functional. The reliabilities of the components are 0.96, 0.91, and 0.80.
What is the probability that the device will work when needed?
2–49. In 2003, there were 5,732 deaths from car accidents in France.10 The popula-
tion of France is 59,625,919. If I am going to live in France for five years, what is my
probability of dying in a car crash?
2–50. The probabilities that three drivers will be able to drive home safely after
drinking are 0.5, 0.25, and 0.2, respectively. If they set out to drive home after drink-
ing at a party, what is the probability that at least one driver drives home safely?
2–51. When one is randomly sampling four items from a population, what is the
probability that all four elements will come from the top quartile of the population
distribution? What is the probability that at least one of the four elements will come
from the bottom quartile of the distribution?

2–6 Combinatorial Concepts
In this section we briefly discuss a few combinatorial concepts and give some formulas
useful in the analysis. The interested reader may find more on combinatorial rules and
their applications in the classic book by W. Feller or in other books on probability.11

If there are n events and event i can occur in Ni possible ways, then the num-
ber of ways in which the sequence of n events may occur is N1 N2 � � � Nn.

Suppose that a bank has two branches, each branch has two departments, and each
department has three employees. Then there are (2)(2)(3) choices of employees, and
the probability that a particular one will be randomly selected is 1�(2)(2)(3) � 1�12.

We may view the choice as done sequentially: First a branch is randomly chosen,
then a department within the branch, and then the employee within the department.
This is demonstrated in the tree diagram in Figure 2–8.

For any positive integer n, we define n factorial as

n(n � 1)(n � 2) � � � 1

We denote n factorial by n!. The number n! is the number of ways in which
n objects can be ordered. By definition, 0! � 1.

70 Chapter 2

10Elaine Sciolino, “Garçon! The Check, Please, and Wrap Up the Bordelais!,” The New York Times, January 26, 2004, p. A4.
11William Feller, An Introduction to Probability Theory and Its Applications, vol. I, 3d ed. (New York: John Wiley & Sons, 1968).
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FIGURE 2–8 Tree Diagram for Computing the Total Number of Employees by Multiplication

Branch:

Department:
Employee:

Total:

1

2

1

2

1
2
3

1
2
3

1
2
3

1
2
3

1

2

12

For example, 6! is the number of possible arrangements of six objects. We have 6! �
(6)(5)(4)(3)(2)(1) � 720. Suppose that six applications arrive at a center on the same
day, all written at different times. What is the probability that they will be read in the
order in which they were written? Since there are 720 ways to order six applications,
the probability of a particular order (the order in which the applications were written)
is 1�720.

Probability 71

Permutations are the possible ordered selections of r objects out of a total
of n objects. The number of permutations of n objects taken r at a time is
denoted nPr.

(2–12)nPr �
n!

(n � r)!

Combinations are the possible selections of r items from a group of n items
regardless of the order of selection. The number of combinations is denoted
by (n

r ) and  is read n choose r. An alternative notation is nCr. We define the
number of combinations of r out of n elements as

(2–13)¢nr ≤ �
n!

r !(n � r)!

Suppose that 4 people are to be randomly chosen out of 10 people who agreed to be
interviewed in a market survey. The four people are to be assigned to four inter-
viewers. How many possibilities are there? The first interviewer has 10 choices, the
second 9 choices, the third 8, and the fourth 7. Thus, there are (10)(9)(8)(7) � 5,040
selections. You can see that this is equal to n(n � 1)(n � 2) � � � (n � r � 1), which is
equal to n!�(n � r)!. If choices are made randomly, the probability of any predeter-
mined assignment of 4 people out of a group of 10 is 1�5,040.

This is the most important of the combinatorial rules given in this chapter and
is the only one we will use extensively. This rule is basic to the formula of the
binomial distribution presented in the next chapter and will find use also in
other chapters.
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P R O B L E M S

2–52. A company has four departments: manufacturing, distribution, marketing,
and management. The number of people in each department is 55, 30, 21, and 13,
respectively. Each department is expected to send one representative to a meeting
with the company president. How many possible sets of representatives are there?
2–53. Nine sealed bids for oil drilling leases arrive at a regulatory agency in the
morning mail. In how many different orders can the nine bids be opened?
2–54. Fifteen locations in a given area are believed likely to have oil. An oil
company can only afford to drill at eight sites, sequentially chosen. How many
possibilities are there, in order of selection?
2–55. A committee is evaluating six equally qualified candidates for a job. Only
three of the six will be invited for an interview; among the chosen three, the order of
invitation is of importance because the first candidate will have the best chance of
being accepted, the second will be made an offer only if the committee rejects the
first, and the third will be made an offer only if the committee should reject both the
first and the second. How many possible ordered choices of three out of six candidates
are there?
2–56. In the analysis of variance (discussed in Chapter 9) we compare several pop-
ulation means to see which is largest. After the primary analysis, pairwise compar-
isons are made. If we want to compare seven populations, each with all the others,
how many pairs are there? (We are looking for the number of choices of seven items
taken two at a time, regardless of order.)
2–57. In a shipment of 14 computer parts, 3 are faulty and the remaining 11 are in
working order. Three elements are randomly chosen out of the shipment. What is the
probability that all three faulty elements will be the ones chosen?
2–58. Megabucks is a lottery game played in Massachusetts with the following
rules. A random drawing of 6 numbers out of all 36 numbers from 1 to 36 is made
every Wednesday and every Saturday. The game costs $1 to play, and to win a
person must have the correct six numbers drawn, regardless of their order. (The
numbers are sequentially drawn from a bin and are arranged from smallest to
largest. When a player buys a ticket prior to the drawing, the player must also

Suppose that 3 out of the 10 members of the board of directors of a large corpo-
ration are to be randomly selected to serve on a particular task committee. How
many possible selections are there? Using equation 2–13, we find that the number of
combinations is (10

3 ) � 10!�(3!7!) � 120. If the committee is chosen in a truly random
fashion, what is the probability that the three committee members chosen will be the
three senior board members? This is 1 combination out of a total of 120, so the
answer is 1�120 � 0.00833.

72 Chapter 2

By definition, there are (8
2) ways of selecting two people out of a total of eight people,

disregarding the order of selection. Only one of these ways corresponds to the pair’s
being the two faculty members. Hence, the probability is 1�(8

2) � 1�[8!�(2!6!)] � 1�28 �
0.0357. This assumes randomness.

A certain university held a meeting of administrators and faculty members to discuss
some important issues of concern to both groups. Out of eight members, two were
faculty, and both were missing from the meeting. If two members are absent, what is
the probability that they should be the two faculty members?

S o l u t i o n

E X A M P L E  2 – 8
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FIGURE 2–9
Partition of Set A into Its
Intersections with the
Two Sets B and , and the
Implied Law of Total
Probability

B

P(A) = P(A�B) + P(A�B)

A�B

A�B

B

B

AX

arrange his or her chosen numbers in ascending order.) The jackpot depends on
the number of players and is usually worth several million dollars. What is the
probability of winning the jackpot?
2–59. In Megabucks, a player who correctly chooses five out of the six winning
numbers gets $400. What is the probability of winning $400?

2–7 The Law of Total Probability 
and Bayes’ Theorem

In this section we present two useful results of probability theory. The first one, the
law of total probability, allows us at times to evaluate probabilities of events that are
difficult to obtain alone, but become easy to calculate once we condition on the occur-
rence of a related event. First we assume that the related event occurs, and then we
assume it does not occur. The resulting conditional probabilities help us compute the
total probability of occurrence of the event of interest.

The second rule, the famous Bayes’ theorem, is easily derived from the law of
total probability and the definition of conditional probability. The rule, discovered
in 1761 by the English clergyman Thomas Bayes, has had a profound impact on the
development of statistics and is responsible for the emergence of a new philosophy
of science. Bayes himself is said to have been unsure of his extraordinary result,
which was presented to the Royal Society by a friend in 1763—after Bayes’ death.

The Law of Total Probability
Consider two events A and B. Whatever may be the relation between the two
events, we can always say that the probability of A is equal to the probability of the
intersection of A and B, plus the probability of the intersection of A and the comple-
ment of B (event ).B

Probability 73

The law of total probability:

(2–14)P(A) � P(A ¨ B) � P(A ¨ B)

(2–15)P (A) � a
n

i�1
P (A ¨ Bi)

The sets B and form a partition of the sample space. A partition of a space is the
division of the space into a set of events that are mutually exclusive (disjoint sets) and
cover the whole space. Whatever event B may be, either B or must occur, but not
both. Figure 2–9 demonstrates this situation and the law of total probability.

The law of total probability may be extended to more complex situations, where the
sample space X is partitioned into more than two events. Say we partition the space into
a collection of n sets B1, B2, . . . , Bn. The law of total probability in this situation is

B

B

Figure 2–10 shows the partition of a sample space into the four events B1, B2, B3, and
B4 and shows their intersections with set A.

We demonstrate the rule with a more specific example. Define A as the event that
a picture card is drawn out of a deck of 52 cards (the picture cards are the aces, kings,
queens, and jacks). Letting H, C, D, and S denote the events that the card drawn is a
heart, club, diamond, or spade, respectively, we find that the probability of a picture
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FIGURE 2–11 The Total Probability of Drawing a Picture Card as the Sum of the Probabilities
of Drawing a Card in the Intersections of Picture and Suit 
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FIGURE 2–10 The Partition of Set A into Its Intersection with Four Partition Sets

A�B1 A�B2 A�B3

B1 B2 B3

A�B4

B4

A

X

card is P (A) � P (A � H) � P (A � C) � P (A � D) � P (A � S) � 4�52 � 4�52 �
4�52 � 4�52 � 16�52, which is what we know the probability of a picture card to be
just by counting 16 picture cards out of a total of 52 cards in the deck. This demon-
strates equation 2–15. The situation is shown in Figure 2–11. As can be seen from the
figure, the event A is the set addition of the intersections of A with each of the four
sets H, D, C, and S. Note that in these examples we denote the sample space X.

The law of total probability can be extended by using the definition of condition-
al probability. Recall that P (A � B) � P (A | B)P (B) (equation 2–8) and, similarly,

. Substituting these relationships into equation 2–14 gives
us another form of the law of total probability. This law and its extension to a parti-
tion consisting of more than two sets are given in equations 2–16 and 2–17. In equa-
tion 2–17, we have a set of conditioning events Bi that span the entire sample space,
instead of just two events spanning it, B and .B

P (A ¨ B) � P (A ƒ B)P (B)

74 Chapter 2

The law of total probability using conditional probabilities:

Two-set case:

(2–16)P(A) � P(A ƒ B)P(B) � P(A ƒ B)P(B)
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Bayes’ Theorem
We now develop the well-known Bayes’ theorem. The theorem allows us to reverse
the conditionality of events: we can obtain the probability of B given A from the
probability of A given B (and other information).

By the definition of conditional probability, equation 2–7,

Probability 75

More than two sets in the partition:

(2–17)

where there are n sets in the partition: Bi, i � 1, . . . , n.

P(A) � a
n

i �1
P(A ƒ Bi)P(Bi)

An analyst believes the stock market has a 0.75 probability of going up in the next
year if the economy should do well, and a 0.30 probability of going up if the economy
should not do well during the year. The analyst further believes there is a 0.80 prob-
ability that the economy will do well in the coming year. What is the probability that
the stock market will go up next year (using the analyst’s assessments)?

We define U as the event that the market will go up and W as the event the economy
will do well. Using equation 2–16, we find P (U) � P (U | W)P (W) � P (U | )P ( ) �
(0.75)(0.80) � (0.30)(0.20) � 0.66.

WW

E X A M P L E  2 – 9

S o l u t i o n

P (A � B) � P (A | B)P (B) (2–19)

P (A) � P (A ƒ B)P (B) � P (A ƒ B)P (B)

(2–20)P (B ƒ A) �
P (A ƒ B)P (B)

P (A)

(2–18)P (B ƒ A) �
P (A ¨ B)

P (A)

Substituting equation 2–19 into equation 2–18 gives

By another form of the same definition, equation 2–8,

From the law of total probability using conditional probabilities, equation 2–16, we have

Substituting this expression for P (A) in the denominator of equation 2–20 gives us
Bayes’ theorem.
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As we see from the theorem, the probability of B given A is obtained from the prob-
abilities of B and and from the conditional probabilities of A given B and A given .

The probabilities P (B) and P ( ) are called prior probabilities of the events B
and ; the probability P (B | A) is called the posterior probability of B. Bayes’
theorem may be written in terms of and A, thus giving the posterior probability of

, P ( | A). Bayes’ theorem may be viewed as a means of transforming our prior
probability of an event B into a posterior probability of the event B—posterior to the
known occurrence of event A.

The use of prior probabilities in conjunction with other information—often
obtained from experimentation—has been questioned. The controversy arises in
more involved statistical situations where Bayes’ theorem is used in mixing the objec-
tive information obtained from sampling with prior information that could be subjec-
tive. We will explore this topic in greater detail in Chapter 15. We now give some
examples of the use of the .

BB
B

B
B

BB

76 Chapter 2

Bayes’ Theorem

(2–21)P(B ƒ A) �
P(A ƒ B)P(B)

P(A ƒ B)P(B) � P(A ƒ B)P(B)

Let Z denote the event that the test result is positive and I the event that the person
tested is ill. The preceding information gives us the following probabilities of events:

Consider a test for an illness. The test has a known reliability:

1. When administered to an ill person, the test will indicate so with probability 0.92.
2. When administered to a person who is not ill, the test will erroneously give a

positive result with probability 0.04.

Suppose the illness is rare and is known to affect only 0.1% of the entire population.
If a person is randomly selected from the entire population and is given the test and
the result is positive, what is the posterior probability (posterior to the test result) that
the person is ill?

S o l u t i o n

E X A M P L E  2 – 1 0

P (I) � 0.001    P (I) � 0.999    P (Z ƒ I) � 0.92    P (Z ƒ I) � 0.04

� 0.0225

P (I ƒ Z) �
P (Z ƒ I)P (I)

P (Z ƒ I)P (I) � P (Z ƒ I)P (I)
�

(0.92)(0.001)
(0.92)(0.001) � (0.04)(0.999)

We are looking for the probability that the person is ill given a positive test result; that
is, we need P (I | Z). Since we have the probability with the reversed conditionality,
P (Z | I), we know that Bayes’ theorem is the rule to be used here. Applying the rule,
equation 2–21, to the events Z, I, and , we getI

This result may surprise you. A test with a relatively high reliability (92% correct
diagnosis when a person is ill and 96% correct identification of people who are not ill)
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is administered to a person, the result is positive, and yet the probability that the per-
son is actually ill is only 0.0225!

The reason for the low probability is that we have used two sources of information
here: the reliability of the test and the very small probability (0.001) that a randomly
selected person is ill. The two pieces of information were mixed by Bayes’ theorem,
and the posterior probability reflects the mixing of the high reliability of the test with
the fact that the illness is rare. The result is perfectly correct as long as the informa-
tion we have used is accurate. Indeed, subject to the accuracy of our information,
if the test were administered to a large number of people selected randomly from the
entire population, it would be found that about 2.25% of the people in the sample
who test positive are indeed ill.

Problems with Bayes’ theorem arise when we are not careful with the use of prior
information. In this example, suppose the test is administered to people in a hospital.
Since people in a hospital are more likely to be ill than people in the population as a
whole, the overall population probability that a person is ill, 0.001, no longer applies.
If we applied this low probability in the hospital, our results would not be correct.
This caution extends to all situations where prior probabilities are used: We must
always examine the appropriateness of the prior probabilities.

Probability 77

Extended Bayes’ Theorem

(2–22)P(B1 ƒ A) �
P(A ƒ B1)P(B1)

a
n

i �1
P(A ƒ Bi)P(Bi)

Bayes’ theorem may be extended to a partition of more than two sets. This is
done using equation 2–17, the law of total probability involving a partition of sets B1,
B2, . . . , Bn. The resulting extended form of Bayes’ theorem is given in equation 2–22.
The theorem gives the probability of one of the sets in partition B1 given the occur-
rence of event A. A similar expression holds for any of the events Bi.

We demonstrate the use of equation 2–22 with the following example. In the solution,
we use a table format to facilitate computations. We also demonstrate the computations
using a tree diagram.

An economist believes that during periods of high economic growth, the U.S. dollar
appreciates with probability 0.70; in periods of moderate economic growth, the dollar
appreciates with probability 0.40; and during periods of low economic growth, the
dollar appreciates with probability 0.20. During any period of time, the probability of
high economic growth is 0.30, the probability of moderate growth is 0.50, and the
probability of low economic growth is 0.20. Suppose the dollar has been appreciating
during the present period. What is the probability we are experiencing a period of
high economic growth?

Figure 2–12 shows solution by template. Below is the manual solution.
Our partition consists of three events: high economic growth (event H), moderate

economic growth (event M), and low economic growth (event L). The prior probabil-
ities of the three states are P (H) � 0.30, P (M) � 0.50, and P (L) � 0.20. Let A denote

E X A M P L E  2 – 1 1

S o l u t i o n
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FIGURE 2–12 Bayesian Revision of Probabilities 
[Bayes Revision.xls; Sheet: Empirical]

1

2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

A B C D E F G H I J K L M

Bayesian Revision based on Empirical Conditional Probabilities Example 2-11

s1 s2 s3 s4 s5 s7s6 s8

1 1 1 0 0 00 0

$ Appreciates P(l1 | .)
P(l2 | .)
P(l3 | .)
P(l4 | .)
P(l5 | .)

P(. | l1)
P(. | l2)
P(. | l3)
P(. | l4)
P(. | l5)

Total

Prior Probability

Conditional Probabilities

$ Depreciates
0.7
0.3

0.4
0.6

0.2
0.8

s1 s2 s3 s4 s5 s7s6 s8
l1
l2
l3
l4
l5

Joint Probabilities

0.2100
0.0900

0.2000
0.3000

0.0400
0.1600

s1 s2 s3 s4 s5 s7s6 s8
Posterior Probabilities

0.4667
0.1636

0.4444
0.5455

0.0889
0.2909

s1 s2 s3 s4 s5 s7s6 s8 Total
0.3 0.5 0.2 1

Marginal
0.4500
0.5500

High Moderate Low

We can obtain this answer, along with the posterior probabilities of the other two
states, M and L, by using a table. In the first column of the table we write the prior
probabilities of the three states H, M, and L. In the second column we write the three
conditional probabilities P (A | H), P (A | M), and P (A | L). In the third column we write
the joint probabilities P (A � H), P (A � M), and P (A � L). The joint probabilities
are obtained by multiplying across in each of the three rows (these operations make
use of equation 2–8). The sum of the entries in the third column is the total proba-
bility of event A (by equation 2–15). Finally, the posterior probabilities P (H | A),
P (M | A), and P (L | A) are obtained by dividing the appropriate joint probability by
the total probability of A at the bottom of the third column. For example, P (H | A) is
obtained by dividing P (H � A) by the probability P (A). The operations and the
results are given in Table 2–1 and demonstrated in Figure 2–13.

Note that both the prior probabilities and the posterior probabilities of the
three states add to 1.00, as required for probabilities of all the possibilities in a

78 Chapter 2

�
(0.70)(0.30)

(0.70)(0.30) � (0.40)(0.50) � (0.20)(0.20)
� 0.467

P (H ƒ A) �
P (A ƒ H)P (H)

P (A ƒ H)P (H) � P (A ƒ M)P (M) � P (A ƒ L)P (L)

the event that the dollar appreciates. We have the following conditional probabilities:
P (A | H) � 0.70, P (A | M) � 0.40, and P (A | L) � 0.20. Applying equation 2–22 while
using three sets (n � 3), we get
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FIGURE 2–13 Tree Diagram for Example 2–11

P(M) = 0.50

P(H) = 0.30

P(A I H) = 0.70

P(L) = 0.20

Prior
Probabilities:

Conditional
probabilities:

Joint probabilities:
(by multiplication)

Sum = 1.00

P(A I H) = 0.30

P(A I M) = 0.40

P(A I M) = 0.60

P(A I L) = 0.80

P(A I L) = 0.20

P(H � A) = (0.30) (0.70) = 0.21

P(H � A) = (0.30) (0.30) = 0.09

P(M � A) = (0.50) (0.40) = 0.20

P(M � A) = (0.50) (0.60) = 0.30

P(L � A) = (0.20) (0.20) = 0.04

P(L � A) = (0.20) (0.80) = 0.16

given situation. We conclude that, given that the dollar has been appreciating, the
probability that our period is one of high economic growth is 0.467, the probability
that it is one of moderate growth is 0.444, and the probability that our period is one
of low economic growth is 0.089. The advantage of using a table is that we can
obtain all posterior probabilities at once. If we use the formula directly, we need to
apply it once for the posterior probability of each state.

2–8 The Joint Probability Table
A joint probability table is similar to a contingency table, except that it has proba-
bilities in place of frequencies. For example, the case in Example 2–11 can be sum-
marized with the joint probabilities shown in Table 2–2. The body of the table can
be visualized as the sample space partitioned into row-events and column-events.

Probability 79

TABLE 2–1 Bayesian Revision of Probabilities for Example 2–11

Prior Conditional Joint Posterior
Event Probability Probability Probability Probability

H P(H) � 0.30 P(A | H) � 0.70 P(A � H) � 0.21 P(H | A) � � 0.467

M P(M) � 0.50 P(A | M) � 0.40 P(A � M) � 0.20 P(M | A) � � 0.444

L P(L) � 0.20 P(A | L) � 0.20 P(A � L) � 0.04 P(L | A) � � 0.089

Sum � 1.00 P(A) � 0.45 Sum � 1.000

0.04
0.45

0.20
0.45

0.21
0.45

TABLE 2–2 Joint Probability Table

High Medium Low Total
$ Appreciates 0.21 0.2 0.04 0.45

$ Depreciates 0.09 0.3 0.16 0.55

Total 0.3 0.5 0.2 1
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Every cell is a joint event of that row and column. Thus the joint probability of High
and $ Appreciates is 0.21.

The row totals and column totals are known as marginal probabilities. For exam-
ple, the marginal probability of the event “High” is 0.3. In Example 2–11, this was the
prior probability of High. The marginal probability of the event “$ Appreciates” is 0.45.
The computations shown in Table 2–1 yield the top row of values in the joint probabili-
ty table. Knowing the column totals (which are the prior or marginal probabilities of
High, Medium, and Low), we can quickly infer the second row of values.

The joint probability table is also a clear means to compute conditional proba-
bilities. For example, the conditional probability that $ Appreciates when economic
growth is High can be computed using the Bayes’ formula:

80 Chapter 2

P ($ Appreciates |High) =
P ($ Appreciates and High)

P (High)

P ($ Appreciates | High) =
0.21
0.45

= 0.467

Note that the numerator in the formula is a joint probability and the denominator is
a marginal probability.

which is the posterior probability sought in Example 2–11.
If you use the template Bayesian Revision.xls to solve a problem, you will note

that the template produces the joint probability table in the range C18:J22. It also
computes all marginal and all conditional probabilities.

2–9 Using the Computer
Excel Templates and Formulas
Figure 2–14 shows the template which is used for calculating joint, marginal, and con-
ditional probabilities starting from a contingency table. If the starting point is a joint
probability table, rather than a contingency table, this template can still be used.
Enter the joint probability table in place of the contingency table.

The user needs to know how to read off the conditional probabilities from this
template. The conditional probability of 0.6667 in cell C23 is P (Telecom|AT&T),
which is the row label in cell B23 and the column label in cell C22 put together.
Similarly, the conditional probability of 0.8000 in cell K14 is P (AT&T| Telecom).

Figure 2–12 shows the template that can be used to solve conditional probability
problems using Bayes’ revision of probabilities. It was used to solve Example 2–11.

In addition to the template mentioned above, you can also directly use Excel func-
tions for some of the calculations in this chapter. For example, functions COMBIN
(number of items, number to choose) and PERMUT (number of items, number to
choose) are used to provide us with the number of combinations and permutations
of the number of items chosen some at a time. The function FACT (number) also
returns the factorial of a number. The numeric arguments of all these functions should
be nonnegative, and they will be truncated if they are not integers. Note that the
entries in the range C10:E10 of probabilities of the dollar depreciating have been
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FIGURE 2–14 Template for Calculating Probabilities from a Contingency Table 
[Contingency Table.xls]

1

2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28

A B C D E F G H I J K L M

Contingency Table and Conditional Probabilities Title

60 40

50
50

100Total

Contingency Table

40 10
20Comp 30

AT&T
Telecom

IBM Total

0.6000 0.4000

0.5000
0.5000

1.0000Marginal

Joint Probabilities

0.4000 0.1000
0.2000Comp 0.3000

AT&T
Telecom

IBM Marginal
Row-Conditional Probabilities

0.8000 0.2000
0.4000|Comp) 0.6000

P(AT&T
|Telecom)

P(IBM

Column-Conditional Probabilities

0.6667 0.2500
0.3333P(comp 0.7500

|AT&T)
P(Telecom

|IBM)

entered for completeness. The questions in the example can be answered even with-
out those entries.

Using MINITAB
We can use MINITAB to find a large number of arithmetic operations such as factorial,
combination, and permutation. The command Let C1 = FACTORIAL(n) calcu-
lates n factorial (n !), the product of all the consecutive integers from 1 to n inclusive,
and puts the result in the first cell of column C1. The value of n (number of items)
must be greater than or equal to 0. You can enter a column or constant and missing
values are not allowed. You can also use the menu by choosing Calc � Calculator. In
the list of functions choose FACTORIAL and then specify the number of items. You
need also define the name of the variable that will store the result, for example, C1,
then press OK.

The command Let C1 = COMBINATIONS(n,k) calculates the number of com-
binations of n items chosen k at a time. You can specify the number of items (n ) and
the number to choose (k ) as columns or constants. The number of items must be
greater than or equal to 1, and the number to choose must be greater than or equal
to 0. Missing values are not allowed. The same as before, you can use menu Calc �

Calculator and choose COMBINATIONS in the list of functions. Then specify the number
of items, the number to choose, and the name of the variable that will store the results.
Then press OK.

The next command is Let C1 = PERMUTATIONS(n,k), which calculates the
number of permutations of n things taken k at a time. Specify the number of items
(n ) and the number to choose (k ). The number of items must be greater than or
equal to 1, and the number to choose must be greater than or equal to 0. Missing
values are not allowed.

Figure 2–15 shows how we can use session commands and the menu to obtain
permutations and combinations.

Probability 81
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FIGURE 2–15 Using MINITAB for Permutation and Combination Problems 

P R O B L E M S

2–60. In a takeover bid for a certain company, management of the raiding firm
believes that the takeover has a 0.65 probability of success if a member of the
board of the raided firm resigns, and a 0.30 chance of success if she does not
resign. Management of the raiding firm further believes that the chances for a
resignation of the member in question are 0.70. What is the probability of a suc-
cessful takeover?
2–61. A drug manufacturer believes there is a 0.95 chance that the Food and Drug
Administration (FDA) will approve a new drug the company plans to distribute if
the results of current testing show that the drug causes no side effects. The manu-
facturer further believes there is a 0.50 probability that the FDA will approve the
drug if the test shows that the drug does cause side effects. A physician working for
the drug manufacturer believes there is a 0.20 probability that tests will show that
the drug causes side effects. What is the probability that the drug will be approved
by the FDA?
2–62. An import–export firm has a 0.45 chance of concluding a deal to export agri-
cultural equipment to a developing nation if a major competitor does not bid for the
contract, and a 0.25 probability of concluding the deal if the competitor does bid for
it. It is estimated that the competitor will submit a bid for the contract with probabil-
ity 0.40. What is the probability of getting the deal?
2–63. A realtor is trying to sell a large piece of property. She believes there is a 0.90
probability that the property will be sold in the next 6 months if the local economy
continues to improve throughout the period, and a 0.50 probability the property will
be sold if the local economy does not continue its improvement during the period. A
state economist consulted by the realtor believes there is a 0.70 chance the economy

82 Chapter 2
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will continue its improvement during the next 6 months. What is the probability that
the piece of property will be sold during the period?

2–64. Holland America Cruise Lines has three luxury cruise ships that sail to Alaska
during the summer months. Since the business is very competitive, the ships must run
full during the summer if the company is to turn a profit on this line. A tourism expert
hired by Holland America believes there is a 0.92 chance the ships will sail full during
the coming summer if the dollar does not appreciate against European currencies, and
a 0.75 chance they will sail full if the dollar does appreciate in Europe (appreciation of
the dollar in Europe draws U.S. tourists there, away from U.S. destinations). Econo-
mists believe the dollar has a 0.23 chance of appreciating against European currencies
soon. What is the probability the ships will sail full?

2–65. Saflok is an electronic door lock system made in Troy, Michigan, and used
in modern hotels and other establishments. To open a door, you must insert the elec-
tronic card into the lock slip. Then a green light indicates that you can turn the
handle and enter; a yellow light indicates that the door is locked from inside, and
you cannot enter. Suppose that 90% of the time when the card is inserted, the door
should open because it is not locked from inside. When the door should open, a
green light will appear with probability 0.98. When the door should not open,
a green light may still appear (an electronic error) 5% of the time. Suppose that you
just inserted the card and the light is green. What is the probability that the door will
actually open?

2–66. A chemical plant has an emergency alarm system. When an emergency sit-
uation exists, the alarm sounds with probability 0.95. When an emergency situation
does not exist, the alarm system sounds with probability 0.02. A real emergency sit-
uation is a rare event, with probability 0.004. Given that the alarm has just sounded,
what is the probability that a real emergency situation exists?

2–67. When the economic situation is “high,” a certain economic indicator rises
with probability 0.6. When the economic situation is “medium,” the economic indi-
cator rises with probability 0.3. When the economic situation is “low,” the indicator
rises with probability 0.1. The economy is high 15% of the time, it is medium 70% of
the time, and it is low 15% of the time. Given that the indicator has just gone up, what
is the probability that the economic situation is high?

2–68. An oil explorer orders seismic tests to determine whether oil is likely to be
found in a certain drilling area. The seismic tests have a known reliability: When oil
does exist in the testing area, the test will indicate so 85% of the time; when oil does
not exist in the test area, 10% of the time the test will erroneously indicate that it does
exist. The explorer believes that the probability of existence of an oil deposit in the
test area is 0.4. If a test is conducted and indicates the presence of oil, what is the
probability that an oil deposit really exists?

2–69. Before marketing new products nationally, companies often test them on
samples of potential customers. Such tests have a known reliability. For a particu-
lar product type, a test will indicate success of the product 75% of the time if
the product is indeed successful and 15% of the time when the product is not suc-
cessful. From past experience with similar products, a company knows that a
new product has a 0.60 chance of success on the national market. If the test indi-
cates that the product will be successful, what is the probability that it really will
be successful?

2–70. A market research field worker needs to interview married couples about
use of a certain product. The researcher arrives at a residential building with three
apartments. From the names on the mailboxes downstairs, the interviewer infers
that a married couple lives in one apartment, two men live in another, and two
women live in the third apartment. The researcher goes upstairs and finds that there
are no names or numbers on the three doors, so that it is impossible to tell in which
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P R O B L E M S

2–71. AT&T was running commercials in 1990 aimed at luring back customers who
had switched to one of the other long-distance phone service providers. One such
commercial shows a businessman trying to reach Phoenix and mistakenly getting
Fiji, where a half-naked native on a beach responds incomprehensibly in Polynesian.
When asked about this advertisement, AT&T admitted that the portrayed incident
did not actually take place but added that this was an enactment of something that
“could happen.”12 Suppose that one in 200 long-distance telephone calls is misdirect-
ed. What is the probability that at least one in five attempted telephone calls reaches
the wrong number? (Assume independence of attempts.)
2–72. Refer to the information in the previous problem. Given that your long-
distance telephone call is misdirected, there is a 2% chance that you will reach a for-
eign country (such as Fiji). Suppose that I am now going to dial a single long-distance
number. What is the probability that I will erroneously reach a foreign country?
2–73. The probability that a builder of airport terminals will win a contract for con-
struction of terminals in country A is 0.40, and the probability that it will win a con-
tract in country B is 0.30. The company has a 0.10 chance of winning the contracts in
both countries. What is the probability that the company will win at least one of these
two prospective contracts?
2–74. According to BusinessWeek, 50% of top managers leave their jobs within
5 years.13 If 25 top managers are followed over 5 years after they assume their posi-
tions, what is the probability that none will have left their jobs? All of them will have

of the three apartments the married couple lives. The researcher chooses a door at
random and knocks. A woman answers the door. Having seen a woman at the
door, what now is the probability of having reached the married couple? Make
the (possibly unrealistic) assumptions that if the two men’s apartment was reached,
a woman cannot answer the door; if the two women’s apartment was reached,
then only a woman can answer; and that if the married couple was reached, then
the probability of a woman at the door is 1�2. Also assume a 1�3 prior probability
of reaching the married couple. Are you surprised by the numerical answer you
obtained?

2–10 Summary and Review of Terms
In this chapter, we discussed the basic ideas of probability. We defined probability as
a relative measure of our belief in the occurrence of an event. We defined a sample
space as the set of all possible outcomes in a given situation and saw that an event is a
set within the sample space. We set some rules for handling probabilities: the rule of
unions, the definition of conditional probability, the law of total probability, and
Bayes’ theorem. We also defined mutually exclusive events and independence of
events. We saw how certain computations are possible in the case of independent
events, and we saw how we may test whether events are independent.

In the next chapter, we will extend the ideas of probability and discuss random
variables and probability distributions. These will bring us closer to statistical infer-
ence, the main subject of this book.

84 Chapter 2

12While this may seem virtually impossible due to the different dialing procedure for foreign countries, AT&T argues
that erroneously dialing the prefix 679 instead of 617, for example, would get you Fiji instead of Massachusetts.

13Roger O. Crockett, “At the Head of the Headhunting Pack,” BusinessWeek, April 9, 2007, p. 80.
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left their jobs? At least one will have left the position? What implicit assumption are
you making and how do you justify it?

2–75. The probability that a consumer entering a retail outlet for microcomputers
and software packages will buy a computer of a certain type is 0.15. The probability
that the consumer will buy a particular software package is 0.10. There is a 0.05 prob-
ability that the consumer will buy both the computer and the software package. What
is the probability that the consumer will buy the computer or the software package
or both?

2–76. The probability that a graduating senior will pass the certified public accountant
(CPA) examination is 0.60. The probability that the graduating senior will both pass
the CPA examination and get a job offer is 0.40. Suppose that the student just found
out that she passed the CPA examination. What is the probability that she will be
offered a job?

2–77. Two stocks A and B are known to be related in that both are in the same indus-
try. The probability that stock A will go up in price tomorrow is 0.20, and the proba-
bility that both stocks A and B will go up tomorrow is 0.12. Suppose that tomorrow
you find that stock A did go up in price. What is the probability that stock B went up
as well?

2–78. The probability that production will increase if interest rates decline more
than 0.5 percentage point for a given period is 0.72. The probability that interest rates
will decline by more than 0.5 percentage point in the period in question is 0.25. What
is the probability that, for the period in question, both the interest rate will decline
and production will increase?

2–79. A large foreign automaker is interested in identifying its target market in
the United States. The automaker conducts a survey of potential buyers of its high-
performance sports car and finds that 35% of the potential buyers consider engi-
neering quality among the car’s most desirable features and that 50% of the people
surveyed consider sporty design to be among the car’s most desirable features.
Out of the people surveyed, 25% consider both engineering quality and sporty
design to be among the car’s most desirable features. Based on this information, do
you believe that potential buyers’ perceptions of the two features are independent?
Explain.

2–80. Consider the situation in problem 2–79. Three consumers are chosen ran-
domly from among a group of potential buyers of the high-performance automobile.
What is the probability that all three of them consider engineering quality to be
among the most important features of the car? What is the probability that at least
one of them considers this quality to be among the most important ones? How do
you justify your computations?

2–81. A financial service company advertises its services in magazines, runs billboard
ads on major highways, and advertises its services on the radio. The company esti-
mates that there is a 0.10 probability that a given individual will see the billboard
ad during the week, a 0.15 chance that he or she will see the ad in a magazine, and a
0.20 chance that she or he will hear the advertisement on the radio during the week.
What is the probability that a randomly chosen member of the population in the area
will be exposed to at least one method of advertising during a given week? (Assume
independence.)

2–82. An accounting firm carries an advertisement in The Wall Street Journal.
The firm estimates that 60% of the people in the potential market read The Wall
Street Journal; research further shows that 85% of the people who read the Journal
remember seeing the advertisement when questioned about it afterward. What
percentage of the people in the firm’s potential market see and remember the
advertisement?
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2–83. A quality control engineer knows that 10% of the microprocessor chips pro-
duced by a machine are defective. Out of a large shipment, five chips are chosen at
random. What is the probability that none of them is defective? What is the proba-
bility that at least one is defective? Explain.

2–84. A fashion designer has been working with the colors green, black, and red in
preparing for the coming season’s fashions. The designer estimates that there is a 0.3
chance that the color green will be “in” during the coming season, a 0.2 chance that
black will be among the season’s colors, and a 0.15 chance that red will be popular.
Assuming that colors are chosen independently of each other for inclusion in new
fashions, what is the probability that the designer will be successful with at least one
of her colors?

2–85. A company president always invites one of her three vice presidents to
attend business meetings and claims that her choice of the accompanying vice pres-
ident is random. One of the three has not been invited even once in five meetings.
What is the probability of such an occurrence if the choice is indeed random? What
conclusion would you reach based on your answer?

2–86. A multinational corporation is considering starting a subsidiary in an Asian
country. Management realizes that the success of the new subsidiary depends, in part,
on the ensuing political climate in the target country. Management estimates that the
probability of success (in terms of resulting revenues of the subsidiary during its first
year of operation) is 0.55 if the prevailing political situation is favorable, 0.30 if the
political situation is neutral, and 0.10 if the political situation during the year is unfa-
vorable. Management further believes that the probabilities of favorable, neutral, and
unfavorable political situations are 0.6, 0.2, and 0.2, respectively. What is the success
probability of the new subsidiary?

2–87. The probability that a shipping company will obtain authorization to include
a certain port of call in its shipping route is dependent on whether certain legislation
is passed. The company believes there is a 0.5 chance that both the relevant legisla-
tion will pass and it will get the required authorization to visit the port. The company
further estimates that the probability that the legislation will pass is 0.75. If the com-
pany should find that the relevant legislation just passed, what is the probability that
authorization to visit the port will be granted?

2–88. The probability that a bank customer will default on a loan is 0.04 if the econ-
omy is high and 0.13 if the economy is not high. Suppose the probability that the
economy will be high is 0.65. What is the probability that the person will default on
the loan?

2–89. Researchers at Kurume University in Japan surveyed 225 workers aged
41 to 60 years and found that 30% of them were skilled workers and 70% were
unskilled. At the time of survey, 15% of skilled workers and 30% of unskilled work-
ers were on an assembly line. A worker is selected at random from the age group
41 to 60.

a. What is the probability that the worker is on an assembly line?
b. Given that the worker is on an assembly line, what is the probability that

the worker is unskilled?

2–90. SwissAir maintains a mailing list of people who have taken trips to Europe in
the last three years. The airline knows that 8% of the people on the mailing list will
make arrangements to fly SwissAir during the period following their being mailed
a brochure. In an experimental mailing, 20 people are mailed a brochure. What is
the probability that at least one of them will book a flight with SwissAir during the
coming season?

2–91. A company’s internal accounting standards are set to ensure that no more than
5% of the accounts are in error. From time to time, the company collects a random

86 Chapter 2
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sample of accounts and checks to see how many are in error. If the error rate is
indeed 5% and 10 accounts are chosen at random, what is the probability that none
will be in error?
2–92. At a certain university, 30% of the students who take basic statistics are first-
year students, 35% are sophomores, 20% are juniors, and 15% are seniors. From
records of the statistics department it is found that out of the first-year students who
take the basic statistics course 20% get As; out of the sophomores who take the course
30% get As; out of the juniors 35% get As; and out of the seniors who take the course
40% get As. Given that a student got an A in basic statistics, what is the probability
that she or he is a senior?
2–93. The probability that a new product will be successful if a competitor does not
come up with a similar product is 0.67. The probability that the new product will be
successful in the presence of a competitor’s new product is 0.42. The probability that
the competing firm will come out with a new product during the period in question is
0.35. What is the probability that the product will be a success?
2–94. In 2007, Starbucks inaugurated its Dulce de Leche Latte.14 If 8% of all
customers who walk in order the new drink, what is the probability that out of
13 people, at least 1 will order a Dulce de Leche Latte? What assumption are you
making?
2–95. Blackjack is a popular casino game in which the objective is to reach a card
count greater than the dealer’s without exceeding 21. One version of the game is
referred to as the “hole card” version. Here, the dealer starts by drawing a card for
himself or herself and putting it aside, face down, without the player’s seeing what it
is. This is the dealer’s hole card (and the origin of the expression “an ace in the hole”).
At the end of the game, the dealer has the option of turning this additional card face
up if it may help him or her win the game. The no-hole-card version of the game is
exactly the same, except that at the end of the game the dealer has the option of
drawing the additional card from the deck for the same purpose (assume that the
deck is shuffled prior to this draw). Conceptually, what is the difference between the
two versions of the game? Is there any practical difference between the two versions
as far as a player is concerned?
2–96. For the United States, automobile fatality statistics for the most recent
year of available data are 40,676 deaths from car crashes, out of a total population
of 280 million people. Compare the car fatality probability for one year in the
United States and in France. What is the probability of dying from a car crash in
the United States in the next 20 years? 
2–97. Recall from Chapter 1 that the median is that number such that one-half the
observations lie above it and one-half the observations lie below it. If a random
sample of two items is to be drawn from some population, what is the probability that
the population median will lie between these two data points?
2–98. Extend your result from the previous problem to a general case as follows. A
random sample of n elements is to be drawn from some population and arranged
according to their value, from smallest to largest. What is the probability that the
population median will lie somewhere between the smallest and the largest values of
the drawn data?
2–99. A research journal states: “Rejection rate for submitted manuscripts: 86%.”
A prospective author believes that the editor’s statement reflects the probability of
acceptance of any author’s first submission to the journal. The author further believes
that for any subsequent submission, an author’s acceptance probability is 10% lower
than the probability he or she had for acceptance of the preceding submission. Thus,
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the author believes that the probability of acceptance of a first submission to the jour-
nal is 1 � 0.86 � 0.14, the probability of acceptance of the second submission is 10%
lower, that is, (0.14)(0.90) � 0.126, and so on for the third submission, fourth submi-
ssion, etc. Suppose the author plans to continue submitting papers to the journal
indefinitely until one is accepted. What is the probability that at least one paper will
eventually be accepted by the journal?15

2–100. (The Von Neumann device ) Suppose that one of two people is to be randomly
chosen, with equal probability, to attend an important meeting. One of them claims
that using a coin to make the choice is not fair because the probability that it will land
on a head or a tail is not exactly 0.50. How can the coin still be used for making the
choice? (Hint: Toss the coin twice, basing your decision on two possible outcomes.)
Explain your answer.

2–101. At the same time as new hires were taking place, many retailers were cutting
back. Out of 1,000 Kwik Save stores in Britain, 107 were to be closed. Out of 424
Somerfield stores, 424 were to be closed. Given that a store is closing, what is the
probability that it is a Kwik Save? What is the probability that a randomly chosen
store is either closing or Kwik Save? Find the probability that a randomly selected
store is not closing given that it is a Somerfield.

2–102. Major hirings in retail in Britain are as follows: 9,000 at Safeway; 5,000 at
Boots; 3,400 at Debenhams; and 1,700 at Marks and Spencer. What is the probabil-
ity that a randomly selected new hire from these was hired by Marks and Spencer?

2–103. The House Ways and Means Committee is considering lowering airline
taxes. The committee has 38 members and needs a simple majority to pass the new
legislation. If the probability that each member votes yes is 0.25, find the probability
that the legislation will pass. (Assume independence.)

Given that taxes are reduced, the probability that Northwest Airlines will com-
pete successfully is 0.7. If the resolution does not pass, Northwest cannot compete
successfully. Find the probability that Northwest can compete successfully.

2–104. Hong Kong’s Mai Po marsh is an important migratory stopover for more
than 100,000 birds per year from Siberia to Australia. Many of the bird species that
stop in the marsh are endangered, and there are no other suitable wetlands to replace
Mai Po. Currently the Chinese government is considering building a large housing
project at the marsh’s boundary, which could adversely affect the birds. Environmen-
talists estimate that if the project goes through, there will be a 60% chance that the
black-faced spoonbill (current world population � 450) will not survive. It is estimat-
ed that there is a 70% chance the Chinese government will go ahead with the build-
ing project. What is the probability of the species’ survival (assuming no danger if the
project doesn’t go through)?

2–105. Three machines A, B, and C are used to produce the same part, and their
outputs are collected in a single bin. Machine A produced 26% of the parts in the bin,
machine B 38%, and machine C the rest. Of the parts produced by machine A, 8%
are defective. Similarly, 5% of the parts from B and 4% from C are defective. A part
is picked at random from the bin.

a. If the part is defective, what is the probability it was produced by machine A?
b. If the part is good, what is the probability it was produced by machine B?
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Abusiness graduate wants to get a job in any one
of the top 10 accounting firms. Applying to
any of these companies requires a lot of effort

and paperwork and is therefore costly. She estimates
the cost of applying to each of the 10 companies and
the probability of getting a job offer there. These data
are tabulated below. The tabulation is in the decreas-
ing order of cost.

1. If the graduate applies to all 10 companies, what
is the probability that she will get at least one 
offer?

2. If she can apply to only one company, based
on cost and success probability criteria alone,

should she apply to company 5? Why or why
not?

3. If she applies to companies 2, 5, 8, and 9, what 
is the total cost? What is the probability that she
will get at least one offer?

4. If she wants to be at least 75% confident of
getting at least one offer, to which companies
should she apply to minimize the total cost?
(This is a trial-and-error problem.)

5. If she is willing to spend $1,500, to which
companies should she apply to maximize her
chances of getting at least one job? (This is a 
trial-and-error problem.)

CASE2 Job Applications

Company 1 2 3 4 5 6 7 8 9 10

Cost $870 $600 $540 $500 $400 $320 $300 $230 $200 $170

Probability 0.38 0.35 0.28 0.20 0.18 0.18 0.17 0.14 0.14 0.08
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3

After studying this chapter, you should be able to:

• Distinguish between discrete and continuous random variables.
• Explain how a random variable is characterized by its

probability distribution.
• Compute statistics about a random variable.
• Compute statistics about a function of a random variable.
• Compute statistics about the sum of a linear composite of

random variables.
• Identify which type of distribution a given random variable is

most likely to follow.
• Solve problems involving standard distributions manually using

formulas.
• Solve business problems involving standard distributions using

spreadsheet templates.

RANDOM VARIABLES

LEARNING OBJECTIVES
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3–1 Using Statistics
Recent work in genetics makes assumptions
about the distribution of babies of the two
sexes. One such analysis concentrated on the
probabilities of the number of babies of each

sex in a given number of births. Consider the sample space made up of the 16 equally
likely points:

BBBB BBBG BGGB GBGG
GBBB GGBB BGBG GGBG
BGBB GBGB BBGG GGGB
BBGB GBBG BGGG GGGG

All these 16 points are equally likely because when four children are born, the sex
of each child is assumed to be independent of those of the other three. Hence the
probability of each quadruple (e.g., GBBG) is equal to the product of the proba-
bilities of the four separate, single outcomes—G, B, B, and G—and is thus equal to
(1�2)(1�2) (1�2)(1�2) � 1�16.

Now, let’s look at the variable “the number of girls out of four births.” This num-
ber varies among points in the sample space, and it is random—given to chance. That’s
why we call such a number a random variable.

A random variable is an uncertain quantity whose value depends on
chance.

A random variable has a probability law—a rule that assigns probabilities to the
different values of the random variable. The probability law, the probability assign-
ment, is called the probability distribution of the random variable. We usually denote
the random variable by a capital letter, often X. The probability distribution will then
be denoted by P (X ).

Look again at the sample space for the sexes of four babies, and remember that
our variable is the number of girls out of four births. The first point in the sample
space is BBBB; because the number of girls is zero here, X � 0. The next four points
in the sample space all have one girl (and three boys). Hence, each one leads to the
value X � 1. Similarly, the next six points in the sample space all lead to X � 2; the
next four points to X � 3; and, finally, the last point in our sample space gives X � 4.
The correspondence of points in the sample space with values of the random variable
is as follows:

Sample Space Random Variable

BBBB } X � 0

X � 1

X � 2

X � 3

BGGG
GBGG
GGBG
GGGB

t

GGBB
GBGB
GBBG
BGGB
BGBG
BBGG

v

GBBB
BGBB
BBGB
BBBG

t

FVS
CHAPTER 2

GGGG} X � 4
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This correspondence, when a sample space clearly exists, allows us to define a random
variable as follows:

A random variable is a function of the sample space.

What is this function? The correspondence between points in the sample space and
values of the random variable allows us to determine the probability distribution of X
as follows: Notice that 1 of the 16 equally likely points of the sample space leads to
X � 0. Hence, the probability that X � 0 is 1�16. Because 4 of the 16 equally likely
points lead to a value X � 1, the probability that X � 1 is 4�16, and so forth. Thus,
looking at the sample space and counting the number of points leading to each value
of X, we find the following probabilities:

P (X � 0) � 1�16 � 0.0625
P (X � 1) � 4�16 � 0.2500
P (X � 2) � 6�16 � 0.3750
P (X � 3) � 4�16 � 0.2500
P (X � 4) � 1�16 � 0.0625

The probability statements above constitute the probability distribution of the ran-
dom variable X � the number of girls in four births. Notice how this probability law
was obtained simply by associating values of X with sets in the sample space. (For
example, the set GBBB, BGBB, BBGB, BBBG leads to X � 1.) Writing the probabil-
ity distribution of X in a table format is useful, but first let’s make a small, simplifying
notational distinction so that we do not have to write complete probability statements
such as P (X � 1).

As stated earlier, we use a capital letter, such as X, to denote the random variable.
But we use a lowercase letter to denote a particular value that the random variable
can take. For example, x � 3 means that some particular set of four births resulted in
three girls. Think of X as random and x as known. Before a coin is tossed, the num-
ber of heads (in one toss) is an unknown, X. Once the coin lands, we have x � 0 or
x � 1.

Now let’s return to the number of girls in four births. We can write the probability
distribution of this random variable in a table format, as shown in Table 3–1.

Note an important fact: The sum of the probabilities of all the values of the ran-
dom variable X must be 1.00. A picture of the probability distribution of the random
variable X is given in Figure 3–1. Such a picture is a probability bar chart for the
random variable.

Marilyn is interested in the number of girls (or boys) in any fixed number of
births, not necessarily four. Thus her discussion extends beyond this case. In fact, the

TABLE 3–1 Probability Distribution of the Number of Girls in Four Births

Number of Girls x Probability P(x)

0 1�16

1 4�16

2 6�16

3 4�16

4 1�16

16�16 � 1.00
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FIGURE 3–2 Sample Space for Two Dice

FIGURE 3–1 Probability Bar Chart
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random variable she describes, which in general counts the number of “successes”
(here, a girl is a success) in a fixed number n of trials, is called a binomial random variable.
We will study this particular important random variable in section 3–3.

Random Variables 93

Figure 3–2 shows the sample space for the experiment of rolling two dice. As can be
seen from the sample space, the probability of every pair of outcomes is 1�36. This
can be seen from the fact that, by the independence of the two dice, for example, P (6
on red die � 5 on green die) � P (6 on red die) � P (5 on green die) � (1�6)(1�6) �
1�36, and that this holds for all 36 pairs of outcomes. Let X � the sum of the dots on
the two dice. What is the distribution of x?

E X A M P L E  3 – 1

Figure 3–3 shows the correspondence between sets in our sample space and the
values of X. The probability distribution of X is given in Table 3–2. The probability
distribution allows us to answer various questions about the random variable of interest.
Draw a picture of this probability distribution. Such a graph need not be a histogram,
used earlier, but can also be a bar graph or column chart of the probabilities of the
different values of the random variable. Note from the graph you produced that the
distribution of the random variable “the sum of two dice” is symmetric. The central
value is x � 7, which has the highest probability, P (7) � 6�36 � 1�6. This is the mode,

S o l u t i o n
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FIGURE 3–3 Correspondence between Sets and Values of X

X = 2
1/36

X = 3
2/36

X = 4
3/36

X = 5
4/36

X = 6
5/36

X = 7
6/36

X = 8
5/36

X = 9
4/36

X = 10
3/36

X = 11
2/36

X = 12
1/36

the most likely value. Thus, if you were to bet on one sum of two dice, the best bet is
that the sum will be 7.

We can answer other probability questions, such as: What is the probability that
the sum will be at most 5? This is P (X 	 5). Notice that to answer this question, we
require the sum of all the probabilities of the values that are less than or equal to 5:

94 Chapter 3

TABLE 3–2 Probability Distribution of the Sum of Two Dice

x P(x)

2 1�36

3 2�36

4 3�36

5 4�36

6 5�36

7 6�36

8 5�36

9 4�36

10 3�36

11 2�36

12 1�36______
36�36 � 1.00

P (2) � P (3) � P (4) � P (5) � 1�36 � 2�36 � 3�36 � 4�36 � 10�36

P (X 
 9) � P (10) � P (11) � P (12) � 3�36 � 2�36 � 1�36 � 6�36 � 1�6

Similarly, we may want to know the probability that the sum is greater than 9. This is
calculated as follows:

Most often, unless we are dealing with games of chance, there is no evident sample
space. In such situations the probability distribution is often obtained from lists or
other data that give us the relative frequency in the recorded past of the various values
of the random variable. This is demonstrated in Example 3–2.
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FIGURE 3–4
The Probability Distribution
of the Number of Switches
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Discrete and Continuous Random Variables
Refer to Example 3–2. Notice that when switches occur, the number X jumps by 1.
It is impossible to have one-half a switch or 0.13278 of one. The same is true for the
number of dots on two dice (you cannot see 2.3 dots or 5.87 dots) and, of course, the
number of girls in four births.

A discrete random variable can assume at most a countable number of
values.

The values of a discrete random variable do not have to be positive whole num-
bers; they just have to “jump” from one possible value to the next without being able
to have any value in between. For example, the amount of money you make on an
investment may be $500, or it may be a loss: �$200. At any rate, it can be measured
at best to the nearest cent, so this variable is discrete.

What are continuous random variables, then?

A continuous random variable may take on any value in an interval of
numbers (i.e., its possible values are uncountably infinite).

Random Variables 95

P (X 
 2) � P (3) � P (4) � P (5) � 0.2 � 0.1 � 0.1 � 0.4

800, 900, and Now: the 500 Telephone Numbers
The new code 500 is for busy, affluent people who travel a lot: It can work with a
cellular phone, your home phone, office phone, second-home phone, up to five addi-
tional phones besides your regular one. The computer technology behind this service
is astounding—the new phone service can find you wherever you may be on the planet
at a given moment (assuming one of the phones you specify is cellular and you keep
it with you when you are not near one of your stationary telephones). What the com-
puter does is to first ring you up at the telephone number you specify as your primary
one (your office phone, for example). If there is no answer, the computer switches to
search for you at your second-specified phone number (say, home); if you do not answer
there, it will switch to your third phone (maybe the phone at a close companion’s
home, or your car phone, or a portable cellular phone); and so on up to five allowable
switches. The switches are the expensive part of this service (besides arrangements
to have your cellular phone reachable overseas), and the service provider wants to
get information on these switches. From data available on an experimental run of
the 500 program, the following probability distribution is constructed for the number
of dialing switches that are necessary before a person is reached. When X � 0, the
person was reached on her or his primary phone (no switching was necessary); when
X � 1, a dialing switch was necessary, and the person was found at the secondary
phone; and so on up to five switches. Table 3–3 gives the probability distribution for
this random variable.

A plot of the probability distribution of this random variable is given in Fig-
ure 3–4. When more than two switches occur on a given call, extra costs are incurred.
What is the probability that for a given call there would be extra costs?

E X A M P L E  3 – 2

What is the probability that at least one switch will occur on a given call?
1 � P (0) � 0.9, a high probability.

S o l u t i o n

TABLE 3–3
The Probability Distribution
of the Number of Switches

x P(x)

0 0.1

1 0.2

2 0.3

3 0.2

4 0.1

5 0.1

1.00
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Discrete Continuous

FIGURE 3–5 Discrete and Continuous Random Variables

The values of continuous random variables can be measured (at least in theory) to
any degree of accuracy. They move continuously from one possible value to another,
without having to jump. For example, temperature is a continuous random variable,
since it can be measured as 72.00340981136 . . . °. Weight, height, and time are other
examples of continuous random variables.

The difference between discrete and continuous random variables is illustrated in
Figure 3–5. Is wind speed a discrete or a continuous random variable?

96 Chapter 3

The probability distribution of a discrete random variable X must satisfy the
following two conditions.

1. P(x) � 0 for all values x (3–1)

2. (3–2)a
all x

P(x) = 1

These conditions must hold because the P (x) values are probabilities. Equation 3–1
states that all probabilities must be greater than or equal to zero, as we know from
Chapter 2. For the second rule, equation 3–2, note the following. For each value x,
P (x) � P (X � x) is the probability of the event that the random variable equals x.
Since by definition all x means all the values the random variable X may take, and
since X may take on only one value at a time, the occurrences of these values are
mutually exclusive events, and one of them must take place. Therefore, the sum of all
the probabilities P (x) must be 1.00.

Cumulative Distribution Function
The probability distribution of a discrete random variable lists the probabilities of
occurrence of different values of the random variable. We may be interested in
cumulative probabilities of the random variable. That is, we may be interested in
the probability that the value of the random variable is at most some value x. This
is the sum of all the probabilities of the values i of X that are less than or equal to x.
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P(3) = 0.2

F(x)

0
0

0.7
0.6
0.5
0.4
0.3
0.2
0.1

0.8
0.9

1.00

1 2 3 4 5
x

FIGURE 3–6 Cumulative Distribution Function of Number of Switches

Table 3–4 gives the cumulative distribution function of the random variable of
Example 3–2. Note that each entry of F (x) is equal to the sum of the corresponding
values of P (i ) for all values i less than or equal to x. For example, F (3) � P (X 	 3) �
P (0) � P (1) � P (2) � P (3) � 0.1 � 0.2 � 0.3 � 0.2 � 0.8. Of course, F (5) � 1.00
because F (5) is the sum of the probabilities of all values that are less than or equal to
5, and 5 is the largest value of the random variable.

Figure 3–6 shows F (x) for the number of switches on a given call. All cumulative
distribution functions are nondecreasing and equal 1.00 at the largest possible value
of the random variable.

Let us consider a few probabilities. The probability that the number of switches
will be less than or equal to 3 is given by F (3) � 0.8. This is illustrated, using the
probability distribution, in Figure 3–7.

Random Variables 97

The cumulative distribution function, F(x), of a discrete random variable X is

(3–3)F(x) = P(X … x) = a
all i…x

P(i )

TABLE 3–4 Cumulative Distribution Function of the Number of Switches (Example 3–2)

x P(x) F(x)

0 0.1 0.1

1 0.2 0.3

2 0.3 0.6

3 0.2 0.8

4 0.1 0.9

5 0.1 1.00

1.00

We define the cumulative distribution function (also called cumulative probability function)
as follows.
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FIGURE 3–9 Probability That Anywhere from One to Three Switches Will Occur

P(x)

x

0.3

0.1

0.2

10 2 3 4 5

P(1 	 X 	3) = F(3) – F(0)

F(0)

F(3)

FIGURE 3–7 The Probability That at
Most Three Switches
Will Occur

P(x)

x

0.3

0.1

0.2

10 2 3 4 5

P(X 	 3) = F(3)

FIGURE 3–8 Probability That More than One
Switch Will Occur

P(x)

F(1)

x

0.3

0.1

0.2

10 2 3 4 5

P(X 
1) =
1 – F(1)

Total
probability = 1.00

The probability that more than one switch will occur, P(X 
 1), is equal to 1 � F(1) �
1 � 0.3 � 0.7. This is so because F (1) � P (X 	 1), and P (X 	 1) � P (X 
 1) � 1 (the two
events are complements of each other). This is demonstrated in Figure 3–8.

The probability that anywhere from one to three switches will occur is P (1 	
X 	 3). From Figure 3–9 we see that this is equal to F (3) � F (0) � 0.8 � 0.1 � 0.7.
(This is the probability that the number of switches that occur will be less than or
equal to 3 and greater than 0.) This, and other probability questions, could cer-
tainly be answered directly, without use of F (x). We could just add the probabili-
ties: P (1) � P (2) � P (3) � 0.2 � 0.3 � 0.2 � 0.7. The advantage of F (x) is that
probabilities may be computed by few operations [usually subtraction of two val-
ues of F (x), as in this example], whereas use of P (x) often requires lengthier
computations.

If the probability distribution is available, use it directly. If, on the other hand,
you have a cumulative distribution function for the random variable in question, you
may use it as we have demonstrated. In either case, drawing a picture of the proba-
bility distribution is always helpful. You can look at the signs in the probability state-
ment, such as P (X 	 x) versus P (X � x ), to see which values to include and which
ones to leave out of the probability computation.

98 Chapter 3
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3–1. The number of telephone calls arriving at an exchange during any given minute
between noon and 1:00 P.M. on a weekday is a random variable with the following
probability distribution.

x P(x)

0 0.3

1 0.2

2 0.2

3 0.1

4 0.1

5 0.1

a. Verify that P (x) is a probability distribution.
b. Find the cumulative distribution function of the random variable.
c. Use the cumulative distribution function to find the probability that between

12:34 and 12:35 P.M. more than two calls will arrive at the exchange.
3–2. According to an article in Travel and Leisure, every person in a small study of
sleep during vacation was found to sleep longer than average during the first vacation
night.1 Suppose that the number of additional hours slept in the first night of a vaca-
tion, over the person’s average number slept per night, is given by the following
probability distribution:

x P(x)

0 0.01

1 0.09

2 0.30

3 0.20

4 0.20

5 0.10

6 0.10

a. Verify that P (x) is a probability distribution.
b. Find the cumulative distribution function.
c. Find the probability that at most four additional hours are slept.
d. Find the probability that at least two additional hours are slept per night.

3–3. The percentage of people (to the nearest 10) responding to an advertisement is
a random variable with the following probability distribution:

x(%) P(x)

0 0.10

10 0.20

20 0.35

30 0.20

40 0.10

50 0.05

a. Show that P (x) is a probability distribution.
b. Find the cumulative distribution function.
c. Find the probability that more than 20% will respond to the ad.

P R O B L E M S

Random Variables 99

1Amy Farley, “Health and Fitness on the Road,” Travel and Leisure, April 2007, p. 182.
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3–4. An automobile dealership records the number of cars sold each day. The data
are used in calculating the following probability distribution of daily sales:

x P(x)

0 0.1

1 0.1

2 0.2

3 0.2

4 0.3

5 0.1

a. Find the probability that the number of cars sold tomorrow will be
between two and four (both inclusive).

b. Find the cumulative distribution function of the number of cars sold
per day.

c. Show that P (x) is a probability distribution.
3–5. Consider the roll of a pair of dice, and let X denote the sum of the two num-
bers appearing on the dice. Find the probability distribution of X, and find the cumu-
lative distribution function. What is the most likely sum?
3–6. The number of intercity shipment orders arriving daily at a transportation
company is a random variable X with the following probability distribution:

x P(x)

0 0.1

1 0.2

2 0.4

3 0.1

4 0.1

5 0.1

a. Verify that P (x) is a probability distribution.
b. Find the cumulative probability function of X.
c. Use the cumulative probability function computed in (b ) to find the prob-

ability that anywhere from one to four shipment orders will arrive on a
given day.

d. When more than three orders arrive on a given day, the company
incurs additional costs due to the need to hire extra drivers and
loaders. What is the probability that extra costs will be incurred on
a given day?

e. Assuming that the numbers of orders arriving on different days are inde-
pendent of each other, what is the probability that no orders will be
received over a period of five working days?

f. Again assuming independence of orders on different days, what is the
probability that extra costs will be incurred two days in a row?

3–7. An article in The New York Times reports that several hedge fund managers now
make more than a billion dollars a year.2 Suppose that the annual income of a hedge
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2Jenny Anderson and Julie Creswell, “Make Less Than $240 Million? You’re Off Top Hedge Fund List,” The New York
Times, April 24, 2007, p. A1.
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fund manager in the top tier, in millions of dollars a year, is given by the following
probability distribution:

x ($ millions) P(x)

$1,700 0.2

1,500 0.2

1,200 0.3

1,000 0.1

800 0.1

600 0.05

400 0.05

a. Find the probability that the annual income of a hedge fund manager will
be between $400 million and $1 billion (both inclusive).

b. Find the cumulative distribution function of X.

c. Use F (x) computed in (b ) to evaluate the probability that the annual
income of a hedge fund manager will be less than or equal to $1 billion.

d. Find the probability that the annual income of a hedge fund manager will
be greater than $600 million and less than or equal to $1.5 billion.

3–8. The number of defects in a machine-made product is a random variableX with
the following probability distribution:

x P(x)

0 0.1

1 0.2

2 0.3

3 0.3

4 0.1

a. Show that P (x) is a probability distribution.

b. Find the probability P (1 � X 	 3).

c. Find the probability P (1 � X 	 4).

d. Find F (x).

3–9. Returns on investments overseas, especially in Europe and the Pacific Rim,
are expected to be higher than those of U.S. markets in the near term, and analysts
are now recommending investments in international portfolios. An investment con-
sultant believes that the probability distribution of returns (in percent per year) on
one such portfolio is as follows:

x(%) P(x)

9 0.05

10 0.15

11 0.30

12 0.20

13 0.15

14 0.10

15 0.05

a. Verify that P (x) is a probability distribution.

b. What is the probability that returns will be at least 12%?

c. Find the cumulative distribution of returns.

Random Variables 101
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3–10. The daily exchange rate of one dollar in euros during the first three months
of 2007 can be inferred to have the following distribution.3

x P(x)

0.73 0.05

0.74 0.10

0.75 0.25

0.76 0.40

0.77 0.15

0.78 0.05

a. Show that P (x ) is a probability distribution.
b. What is the probability that the exchange rate on a given day during this

period will be at least 0.75?
c. What is the probability that the exchange rate on a given day during this

period will be less than 0.77?
d. If daily exchange rates are independent of one another, what is the prob-

ability that for two days in a row the exchange rate will be above 0.75?

3–2 Expected Values of Discrete Random Variables
In Chapter 1, we discussed summary measures of data sets. The most important sum-
mary measures discussed were the mean and the variance (also the square root of the
variance, the standard deviation). We saw that the mean is a measure of centrality, or
location, of the data or population, and that the variance and the standard deviation
measure the variability, or spread, of our observations.

The mean of a probability distribution of a random variable is a measure of the
centrality of the probability distribution. It is a measure that considers both the values
of the random variable and their probabilities. The mean is a weighted average of the
possible values of the random variable—the weights being the probabilities.

The mean of the probability distribution of a random variable is called the
expected value of the random variable (sometimes called the expectation of the random
variable). The reason for this name is that the mean is the (probability-weighted)
average value of the random variable, and therefore it is the value we “expect” to
occur. We denote the mean by two notations: � for mean (as in Chapter 1 for a popu-
lation) and E (X ) for expected value of X. In situations where no ambiguity is possible,
we will often use �. In cases where we want to stress the fact that we are talking about
the expected value of a particular random variable (here, X ), we will use the notation
E (X ). The expected value of a discrete random variable is defined as follows.

102 Chapter 3

3Inferred from a chart of dollars in euros published in “Business Day,” The New York Times, April 20, 2007, p. C10.

The expected value of a discrete random variable X is equal to the sum of
all values of the random variable, each value multiplied by its probability.

(3–4)� = E(X) = a
all x

xP(x)

Suppose a coin is tossed. If it lands heads, you win a dollar; but if it lands tails, you
lose a dollar. What is the expected value of this game? Intuitively, you know you have
an even chance of winning or losing the same amount, and so the average or expected
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FIGURE 3–10
The Mean of a Discrete
Random Variable as a
Center of Mass for 
Example 3–2

value is zero. Your payoff from this game is a random variable, and we find its
expected value from equation 3–4: E (X ) � (1)(1�2) � (�1)(1�2) � 0. The definition
of an expected value, or mean, of a random variable thus conforms with our intuition.
Incidentally, games of chance with an expected value of zero are called fair games.

Let us now return to Example 3–2 and find the expected value of the random vari-
able involved—the expected number of switches on a given call. For convenience, we
compute the mean of a discrete random variable by using a table. In the first column
of the table we write the values of the random variable. In the second column we write
the probabilities of the different values, and in the third column we write the products
xP (x) for each value x. We then add the entries in the third column, giving us E (X ) �
�xP (x), as required by equation 3–4. This is shown for Example 3–2 in Table 3–5.

As indicated in the table, � � E (X ) � 2.3. We can say that, on the average, 2.3
switches occur per call. As this example shows, the mean does not have to be one of
the values of the random variable. No calls have 2.3 switches, but 2.3 is the average
number of switches. It is the expected number of switches per call, although here the
exact expectation will not be realized on any call.

As the weighted average of the values of the random variable, with probabilities
as weights, the mean is the center of mass of the probability distribution. This is
demonstrated for Example 3–2 in Figure 3–10.

The Expected Value of a Function of a Random Variable
The expected value of a function of a random variable can be computed as follows.
Let h(X ) be a function of the discrete random variable X.

Random Variables 103

TABLE 3–5 Computing the Expected Number of Switches for Example 3–2

x P(x) xP(x)

0 0.1 0

1 0.2 0.2

2 0.3 0.6

3 0.2 0.6

4 0.1 0.4

5 0.1 0.5
—— ——
1.00 2.3 ← Mean, E(X)

The expected value of h(X), a function of the discrete random variable X, is

(3–5)E [h(X)] = ah
all x

(x)P(x)

The function h(X ) could be X 2, 3X 4, log X, or any function. As we will see shortly, equa-
tion 3–5 is most useful for computing the expected value of the special function h(X ) �
X 2. But let us first look at a simpler example, where h(X ) is a linear function of X. A lin-
ear function of X is a straight-line relation: h(X ) � a � bX, where a and b are numbers.

Monthly sales of a certain product, recorded to the nearest thousand, are believed to
follow the probability distribution given in Table 3–6. Suppose that the company has
a fixed monthly production cost of $8,000 and that each item brings $2. Find the
expected monthly profit from product sales.

E X A M P L E  3 – 3
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In the case of a linear function of a random variable, as in Example 3–3, there is
a possible simplification of our calculation of the mean of h(X ). The simplified for-
mula of the expected value of a linear function of a random variable is as follows:

104 Chapter 3

TABLE 3–6 Probability Distribution of Monthly Product Sales for Example 3–3

Number of Items x P(x)

5,000 0.2

6,000 0.3

7,000 0.2

8,000 0.2

9,000 0.1

1.00

The company’s profit function from sales of the product is h(X ) � 2X � 8,000. Equa-
tion 3–5 tells us that the expected value of h(X ) is the sum of the values of h(X ), each
value multiplied by the probability of the particular value of X. We thus add two
columns to Table 3–6: a column of values of h(x) for all x and a column of the prod-
ucts h(x)P (x). At the bottom of this column we find the required sum E[h(X )] �
�all x h(x)P (x). This is done in Table 3–7. As shown in the table, expected monthly
profit from sales of the product is $5,400.

S o l u t i o n

TABLE 3–7 Computing Expected Profit for Example 3–3

x h(x) P(x) h(x)P(x)

5,000 2,000 0.2 400

6,000 4,000 0.3 1,200

7,000 6,000 0.2 1,200

8,000 8,000 0.2 1,600

9,000 10,000 0.1 1,000_____

E [h(X)] � 5,400

The expected value of a linear function of a random variable is

E(aX � b) � aE(X) � b (3–6)

where a and b are fixed numbers.

Equation 3–6 holds for any random variable, discrete or continuous. Once you
know the expected value of X, the expected value of aX � b is just aE (X ) � b.
In Example 3–3 we could have obtained the expected profit by finding the mean of
X first, and then multiplying the mean of X by 2 and subtracting from this the fixed
cost of $8,000. The mean of X is 6,700 (prove this), and the expected profit is there-
fore E [h(X )] � E (2X � 8,000) � 2E (X ) � 8,000 � 2(6,700) � 8,000 � $5,400, as we
obtained using Table 3–7.

As mentioned earlier, the most important expected value of a function of X is the
expected value of h(X ) � X 2. This is because this expected value helps us compute the
variance of the random variable X and, through the variance, the standard deviation.

Variance and Standard Deviation of a Random Variable
The variance of a random variable is the expected squared deviation of the random
variable from its mean. The idea is similar to that of the variance of a data set or a
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population, defined in Chapter 1. Probabilities of the values of the random variable
are used as weights in the computation of the expected squared deviation from the
mean of a discrete random variable. The definition of the variance follows. As with a
population, we denote the variance of a random variable by �2. Another notation for
the variance of X is V (X ).
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The variance of a discrete random variable X is given by

(3–7)�2 = V(X) = E [(X - �)2 ] = a
all x

(x - �)2P(x)

Using equation 3–7, we can compute the variance of a discrete random variable by
subtracting the mean � from each value x of the random variable, squaring the result,
multiplying it by the probability P (x), and finally adding the results for all x. Let us
apply equation 3–7 and find the variance of the number of dialing switches in
Example 3–2:

Computational formula for the variance of a random variable:

(3–8)�2 = V(X) = E(X2) - [E(X)]2

�2 � �(x � �)2P (x)

� (0 � 2.3)2(0.1) � (1 � 2.3)2(0.2) � (2 � 2.3)2(0.3)
� (3 � 2.3)2(0.2) � (4 � 2.3)2(0.1) � (5 � 2.3)2(0.1)

� 2.01

V (X ) � E (X 2) � [E (X )]2 � 7.3 � (2.3)2 � 2.01

The variance of a discrete random variable can be computed more easily. Equa-
tion 3–7 can be shown mathematically to be equivalent to the following computa-
tional form of the variance.

Equation 3–8 has the same relation to equation 3–7 as equation 1–7 has to equa-
tion 1–3 for the variance of a set of points.

Equation 3–8 states that the variance of X is equal to the expected value of X 2

minus the squared mean of X. In computing the variance using this equation, we use
the definition of the expected value of a function of a discrete random variable, equa-
tion 3–5, in the special case h(X ) � X 2. We compute x 2 for each x, multiply it by P (x),
and add for all x. This gives us E(X 2). To get the variance, we subtract from E(X 2) the
mean of X, squared.

We now compute the variance of the random variable in Example 3–2, using this
method. This is done in Table 3–8. The first column in the table gives the values of X,
the second column gives the probabilities of these values, the third column gives the
products of the values and their probabilities, and the fourth column is the product of
the third column and the first [because we get x2P (x) by just multiplying each entry
xP (x) by x from column 1]. At the bottom of the third column we find the mean of X,
and at the bottom of the fourth column we find the mean of X 2. Finally, we perform
the subtraction E(X 2) � [E(X )]2 to get the variance of X:
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This is the same value we found using the other formula for the variance, equa-
tion 3–7. Note that equation 3–8 holds for all random variables, discrete or otherwise.
Once we obtain the expected value of X 2 and the expected value of X, we can com-
pute the variance of the random variable using this equation.

For random variables, as for data sets or populations, the standard deviation is
equal to the (positive) square root of the variance. We denote the standard deviation
of a random variable X by � or by SD(X ).

106 Chapter 3

TABLE 3–8 Computations Leading to the Variance of the Number of Switches in Example 3–2
Using the Shortcut Formula (Equation 3–8)

x P(x) xP(x) x2P(x)

0 0.1 0 0

1 0.2 0.2 0.2

2 0.3 0.6 1.2

3 0.2 0.6 1.8

4 0.1 0.4 1.6

5 0.1 0.5 2.5

1.00 2.3 ← Mean 7.3 ← Mean
of X of X2

The standard deviation of a random variable:

(3–9)� = SD(X) = 2V(X)

Variance of a linear function of a random variable is

V(aX � b) � a2V(X) � a2�2 (3–10)

where a and b are fixed numbers.

In Example 3–2, the standard deviation is .
What are the variance and the standard deviation, and how do we interpret

their meaning? By definition, the variance is the weighted average squared devia-
tion of the values of the random variable from their mean. Thus, it is a measure of
the dispersion of the possible values of the random variable about the mean. The
variance gives us an idea of the variation or uncertainty associated with the random
variable: The larger the variance, the farther away from the mean are possible val-
ues of the random variable. Since the variance is a squared quantity, it is often
more useful to consider its square root—the standard deviation of the random vari-
able. When two random variables are compared, the one with the larger variance
(standard deviation) is the more variable one. The risk associated with an invest-
ment is often measured by the standard deviation of investment returns. When
comparing two investments with the same average (expected ) return, the investment
with the higher standard deviation is considered riskier (although a higher standard
deviation implies that returns are expected to be more variable—both below and
above the mean).

Variance of a Linear Function of a Random Variable
There is a formula, analogous to equation 3–6, that gives the variance of a linear func-
tion of a random variable. For a linear function of X given by aX � b, we have the
following:

� = 22.01 = 1.418
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Using equation 3–10, we will find the variance of the profit in Example 3–3.
The profit is given by 2X � 8,000. We need to find the variance of X in this example.
We find
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E(X 2) � (5,000)2(0.2) � (6,000)2(0.3) � (7,000)2(0.2) � (8,000)2(0.2)
� (9,000)2(0.1)

� 46,500,000

V (X ) � E (X 2) � [E (X )]2 � 46,500,000 � (6,700)2 � 1,610,000

The expected value of X is E (X ) � 6,700. The variance of X is thus

Finally, we find the variance of the profit, using equation 3–10, as 22(1,610,000) �
6,440,000. The standard deviation of the profit is � 2,537.72.

3–3 Sum and Linear Composites of Random Variables
Sometimes we are interested in the sum of several random variables. For instance, a
business may make several investments, and each investment may have a random
return. What finally matters to the business is the sum of all the returns. Sometimes
what matters is a linear composite of several random variables. A linear composite
of random variables X1, X2, . . . , Xk will be of the form

16,440,000

a1X1 � a2X2 � . . . � ak Xk

The expected value of the sum of several random variables is the sum of the
individual expected values. That is,

E(X1 � X2 � . . . � Xk) � E(X1) � E(X2) � . . . � E(Xk)

Similarly, the expected value of a linear composite is given by

E(a1X1 � a2X2 � . . . � akXk) � a1E(X1) � a2E(X2) � . . . � akE(Xk)

where a1, a2, . . . , ak are constants. For instance, let X1, X2, . . . , Xk be the random
quantities of k different items that you buy at a store, and let a1, a2, . . . , ak be their
respective prices. Then a1X1 � a2X2 � . . . � ak Xk will be the random total amount
you have to pay for the items. Note that the sum of the variables is a linear compos-
ite where all a’s are 1. Also, X1 � X2 is a linear composite with a1 = 1 and a2 = �1.

We therefore need to know how to calculate the expected value and variance of
the sum or linear composite of several random variables. The following results are
useful in computing these statistics.

In the case of variance, we will look only at the case where X1, X2, . . . , Xk are
mutually independent, because if they are not mutually independent, the compu-
tation involves covariances, which we will learn about in Chapter 10. Mutual inde-
pendence means that any event Xi � x and any other event Xj � y are independent.
We can now state the result.
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We will see the application of these results through an example.

108 Chapter 3

If X1, X2, . . . , Xk are mutually independent, then the variance of their sum
is the sum of their individual variances. That is,

V(X1 � X2 � . . . � Xk) � V(X1) � V(X2) � . . . � V(Xk)

Similarly, the variance of a linear composite is given by

V(a1X1 � a2X2 � . . . � akXk) � a1
2V(X1) � a2

2V(X2) � . . . � ak
2V(Xk)

A portfolio includes stocks in three industries: financial, energy, and consumer goods
(in equal proportions). Assume that these three sectors are independent of each other
and that the expected annual return (in dollars) and standard deviations are as fol-
lows: financial: 1,000 and 700; energy 1,200 and 1,100; and consumer goods 600 and
300 (respectively). What are the mean and standard deviation of annual dollar-value
return on this portfolio?

E X A M P L E  3 – 4

The mean of the sum of the three random variables is the sum of the means 1,000 �
1,200 � 600 � $2,800. Since the three sectors are assumed independent, the variance
is the sum of the three variances. It is equal to 7002 � 1,1002 � 3002 � 1,790,000. So the
standard deviation is � $1,337.90.11,790,000

S o l u t i o n

Chebyshev’s Theorem
The standard deviation is useful in obtaining bounds on the possible values of the ran-
dom variable with certain probability. The bounds are obtainable from a well-known
theorem, Chebyshev’s theorem (the name is sometimes spelled Tchebychev, Tchebysheff,
or any of a number of variations). The theorem says that for any number k greater
than 1.00, the probability that the value of a given random variable will be within k
standard deviations of the mean is at least 1 � 1�k2. In Chapter 1, we listed some results
for data sets that are derived from this theorem.

Chebyshev’s Theorem

For a random variable X with mean � and standard deviation �, and for any
number k 
 1,

P(|X � �| � k�) � 1 � 1�k2 (3–11)

Let us see how the theorem is applied by selecting values of k. While k does not
have to be an integer, we will use integers. When k � 2, we have 1 � 1�k2 � 0.75:
The theorem says that the value of the random variable will be within a distance of
2 standard deviations away from the mean with at least a 0.75 probability. Letting 
k � 3, we find that X will be within 3 standard deviations of its mean with at least a
0.89 probability. We can similarly apply the rule for other values of k. The rule holds
for data sets and populations in a similar way. When applied to a sample of obser-
vations, the rule says that at least 75% of the observations lie within 2 standard devi-
ations of the sample mean . It says that at least 89% of the observations lie within
3 standard deviations of the mean, and so on. Applying the theorem to the random
variable of Example 3–2, which has mean 2.3 and standard deviation 1.418, we find
that the probability that X will be anywhere from 2.3 � 2(1.418) to 2.3 � 2(1.418) �
�0.536 to 5.136 is at least 0.75. From the actual probability distribution in this exam-
ple, Table 3–3, we know that the probability that X will be between 0 and 5 is 1.00.

Often, we will know the distribution of the random variable in question, in which
case we will be able to use the distribution for obtaining actual probabilities rather

x
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FIGURE 3–12 Template for the Sum of Independent Variables

1

2
3
4
5
6
7
8
9

1 0
1 1
1 2
1 3
1 4
1 5
1 6

A B C D E F

Sum of Independent Random Variables

Mean
X1

X2

X3

X4

X5

X6

X7

X8

X9

X10

Sum

Variance Std Devn.

Mean Variance Std Devn.

18.72 5.2416 2.289454
4.9 3.185 1.784657
2.4 2.4 1.549193

26.02 10.8266 3.29038

FIGURE 3–11 Descriptive Statistics of a Random Variable X and h(x)
[Random Variable.xls]

1

2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20

A B C D E F G H I J

Statistics of a Random Variable 

x P(x) F(x)
0 0.1 0.1 Statistics of X
1 0.2 0.3 Mean 2.3
2 0.3 0.6 Variance 2.01
3 0.2 0.8 Std. Devn. 1.41774
4 0.1 0.9 Skewness 0.30319
5 0.1 1 (Relative) Kurtosis -0.63132

Definition of h(x) x
h(x) = 8 0

Statistics of h(x)
Mean 44.5

Variance 1400.25
Std. Devn. 37.4199
Skewness 1.24449

(Relative) Kurtosis 0.51413

Title

than the bounds offered by Chebyshev’s theorem. If the exact distribution of the
random variable is not known, but we may assume an approximate distribution, the
approximate probabilities may still be better than the general bounds offered by
Chebyshev’s theorem.

The Templates for Random Variables
The template shown in Figure 3–11 can be used to calculate the descriptive statistics of
a random variable and also those of a function h(x) of that random variable. To calcu-
late the statistics of h(x), the Excel formula for the function must be entered in cell G12.
For instance, if h(x) � 5x 2 � 8, enter the Excel formula =5*x^2+8 in cell G12.

The template shown in Figure 3–12 can be used to compute the statistics about the
sum of mutually independent random variables. While entering the variance of the
individual X ’s, be careful that what you enter is the variance and not the standard
deviation. At times, you know only the standard deviation and not the variance. In
such cases, you can make the template calculate the variance from the standard devi-
ation. For example, if the standard deviation is 1.23, enter the formula =1.23^2,
which will compute and use the variance.

The template shown in Figure 3–13 can be used to compute the statistics about
linear composites of mutually independent random variables. You will enter the coef-
ficients (the ai’s) in column B.

Random Variables 109
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P R O B L E M S

3–11. Find the expected value of the random variable in problem 3–1. Also find the
variance of the random variable and its standard deviation.
3–12. Find the mean, variance, and standard deviation of the random variable in
problem 3–2.
3–13. What is the expected percentage of people responding to an advertisement
when the probability distribution is the one given in problem 3–3? What is the vari-
ance of the percentage of people who respond to the advertisement?
3–14. Find the mean, variance, and standard deviation of the number of cars sold
per day, using the probability distribution in problem 3–4.
3–15. What is the expected number of dots appearing on two dice? (Use the prob-
ability distribution you computed in your answer to problem 3–5.)
3–16. Use the probability distribution in problem 3–6 to find the expected number
of shipment orders per day. What is the probability that on a given day there will be
more orders than the average?
3–17. Find the mean, variance, and standard deviation of the annual income of a
hedge fund manager, using the probability distribution in problem 3–7.
3–18. According to Chebyshev’s theorem, what is the minimum probability that a
random variable will be within 4 standard deviations of its mean?
3–19. At least eight-ninths of a population lies within how many standard devia-
tions of the population mean? Why?
3–20. The average annual return on a certain stock is 8.3%, and the variance of the
returns on the stock is 2.3. Another stock has an average return of 8.4% per year and
a variance of 6.4. Which stock is riskier? Why?
3–21. Returns on a certain business venture, to the nearest $1,000, are known to fol-
low the probability distribution

x P(x)

�2,000 0.1

�1,000 0.1

0 0.2

1,000 0.2

2,000 0.3

3,000 0.1

FIGURE 3–13 Template for Linear Composites of Independent Variables 
[Random Variables.xls, Sheet: Composite]

1

2
3
4
5
6
7
8
9

1 0
1 1
1 2
1 3
1 4
1 5
1 6

A B C D E F G

Linear Composite of Independent Random Variables

Mean
X1

X2

X3

X4

X5

X6

X7

X8

X9

X10

Composite

Variance Std Devn.

Mean Variance Std Devn.

18.72 5.2416 2.289454
4.9 3.185 1.784657
2.4 2.4 1.549193

495.4 4575.14 67.63978

Coef.
20
10
30
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a. What is the most likely monetary outcome of the business venture?
b. Is the venture likely to be successful? Explain.
c. What is the long-term average earning of business ventures of this kind?

Explain.
d. What is a good measure of the risk involved in a venture of this kind?

Why? Compute this measure.
3–22. Management of an airline knows that 0.5% of the airline’s passengers lose
their luggage on domestic flights. Management also knows that the average value
claimed for a lost piece of luggage on domestic flights is $600. The company is
considering increasing fares by an appropriate amount to cover expected com-
pensation to passengers who lose their luggage. By how much should the airline
increase fares? Why? Explain, using the ideas of a random variable and its
expectation.
3–23. Refer to problem 3–7. Suppose that hedge funds must withhold $300 million
from the income of the manager and an additional 5% of the remaining income. Find
the expected net income of a manager in this group. What property of expected val-
ues are you using?
3–24. Refer to problem 3–4. Suppose the car dealership’s operation costs are well
approximated by the square root of the number of cars sold, multiplied by $300.
What is the expected daily cost of the operation? Explain.
3–25. In problem 3–2, suppose that a cost is imposed of an amount equal to the
square of the number of additional hours of sleep. What is the expected cost?
Explain.
3–26. All voters of Milwaukee County were asked a week before election day
whether they would vote for a certain presidential candidate. Of these, 48%
answered yes, 45% replied no, and the rest were undecided. If a yes answer is coded
�1, a no answer is coded –1, and an undecided answer is coded 0, find the mean and
the variance of the code.
3–27. Explain the meaning of the variance of a random variable. What are possible
uses of the variance?
3–28. Why is the standard deviation of a random variable more meaningful than its
variance for interpretation purposes?
3–29. Refer to problem 3–23. Find the variance and the standard deviation of
hedge fund managers’ income.
3–30. For problem 3–10, find the mean and the standard deviation of the dollar to
euros exchange rate.
3–31. Lobsters vary in sizes. The bigger the size, the more valuable the lobster per
pound (a 6-pound lobster is more valuable than two 3-pound ones). Lobster mer-
chants will sell entire boatloads for a certain price. The boatload has a mixture of
sizes. Suppose the distribution is as follows:

x(pound) P(x) v(x) ($)
1⁄2 0.1 2
3⁄4 0.1 2.5

1 0.3 3.0

11⁄4 0.2 3.25

11⁄2 0.2 3.40

13⁄4 0.05 3.60

2 0.05 5.00

What is a fair price for the shipload?

Random Variables 111
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3–4 Bernoulli Random Variable
The first standard random variable we shall study is the Bernoulli random variable,
named in honor of the mathematician Jakob Bernoulli (1654–1705). It is the building
block for other random variables in this chapter. The distribution of a Bernoulli ran-
dom variable X is given in Table 3–9. As seen in the table, x is 1 with probability p
and 0 with probability (1 � p ). The case where x � 1 is called “success” and the case
where x � 0 is called “failure.”

Observe that

112 Chapter 3

TABLE 3–9
Bernoulli Distribution

x P(x)

1 p

0 1 � p

E (X ) � 1 * p � 0 * (1 � p) � p
E (X 2) � 12 * p � 02 * (1 � p) � p
V (X ) � E(X 2) � [E (X )]2 � p � p2 � p(1 � p )

Bernoulli Distribution

If X � BER(p), then

P(1) � p; P(0) � 1 � p
E [X] � p
V(X) � p(1 � p)

For example, if p � 0.8, then

E [X] � 0.8
V(X) � 0.8 * 0.2 � 0.16

Often the quantity (1 � p ), which is the probability of failure, is denoted by the sym-
bol q, and thus V(X ) � pq. If X is a Bernoulli random variable with probability of suc-
cess p, then we write X � BER(p), where the symbol “�” is read “is distributed as”
and BER stands for Bernoulli. The characteristics of a Bernoulli random variable are
summarized in the following box.

Let us look at a practical instance of a Bernoulli random variable. Suppose an
operator uses a lathe to produce pins, and the lathe is not perfect in that it does not
always produce a good pin. Rather, it has a probability p of producing a good pin and
(1 � p) of producing a defective one.

Just after the operator produces one pin, let X denote the “number of good pins
produced.” Clearly, X is 1 if the pin is good and 0 if it is defective. Thus, X follows
exactly the distribution in Table 3–9, and therefore X � BER(p ).

If the outcome of a trial can only be either a success or a failure, then the
trial is a Bernoulli trial.

The number of successes X in one Bernoulli trial, which can be 1 or 0,
is a Bernoulli random variable.

Another example is tossing a coin. If we take heads as 1 and tails as 0, then the
outcome of a toss is a Bernoulli random variable.

A Bernoulli random variable is too simple to be of immediate practical use. But
it forms the building block of the binomial random variable, which is quite useful
in practice. The binomial random variable in turn is the basis for many other useful
cases.
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3–5 The Binomial Random Variable
In the real world we often make several trials, not just one, to achieve one or more
successes. Since we now have a handle on Bernoulli-type trials, let us consider cases
where there are n number of Bernoulli trials. A condition we need to impose on these
trials is that the outcome of any trial be independent of the outcome of any other
trial. Very often this independence condition is true. For example, when we toss a
coin several times, the outcome of one toss is not affected by the outcome of any
other toss.

Consider n number of identically and independently distributed Bernoulli random
variables X1, X2, . . . , Xn. Here, identically means that they all have the same p, and
independently means that the value of one X does not in any way affect the value of
another. For example, the value of X2 does not affect the value of X3 or X5, and so on.
Such a sequence of identically and independently distributed Bernoulli variables is
called a Bernoulli process.

Suppose an operator produces n pins, one by one, on a lathe that has probability
p of making a good pin at each trial. If this p remains constant throughout, then
independence is guaranteed and the sequence of numbers (1 or 0) denoting the good
and bad pins produced in each of the n trials is a Bernoulli process. For example, in
the sequence of eight trials denoted by

Random Variables 113

0 0 1 0 1 1 0 0

X � X1 � X2 � � � � � Xn

the third, fifth, and sixth are good pins, or successes. The rest are failures.
In practice, we are usually interested in the total number of good pins rather than

the sequence of 1’s and 0’s. In the example above, three out of eight are good. In the
general case, let X denote the total number of good pins produced in n trials. We then
have

where all Xi � BER(p) and are independent.

An X that counts the number of successes in many independent, identical
Bernoulli trials is called a binomial random variable.

Conditions for a Binomial Random Variable
Note the conditions that need to be satisfied for a binomial random variable:

1. The trials must be Bernoulli trials in that the outcomes can only be either
success or failure.

2. The outcomes of the trials must be independent.
3. The probability of success in each trial must be constant.

The first condition is easy to understand. Coming to the second condition, we already
saw that the outcomes of coin tosses will be independent. As an example of dependent
outcomes, consider the following experiment. We toss a fair coin and if it is heads
we record the outcome as success, or 1, and if it is tails we record it as failure, or 0. For
the second outcome, we do not toss the coin but we record the opposite of the previ-
ous outcome. For the third outcome, we toss the coin again and repeat the process
of writing the opposite result for every other outcome. Thus in the sequence of all
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outcomes, every other outcome will be the opposite of the previous outcome. We
stop after recording 20 outcomes. In this experiment, all outcomes are random and of
Bernoulli type with success probability 0.5. But they are not independent in that every
other outcome is the opposite of, and thus dependent on, the previous outcome. And
for this reason, the number of successes in such an experiment will not be binomially
distributed. (In fact, the number is not even random. Can you guess what that number
will be?)

The third condition of constant probability of success is important and can be
easily violated. Tossing two different coins with differing probabilities of success will
violate the third condition (but not the other two). Another case that is relevant to the
third condition, which we need to be aware of, is sampling with and without replacement.
Consider an urn that contains 10 green marbles (successes) and 10 red marbles (fail-
ures). We pick a marble from the urn at random and record the outcome. The prob-
ability of success is 10�20 � 0.5. For the second outcome, suppose we replace the first
marble drawn and then pick one at random. In this case the probability of success
remains at 10�20 � 0.5, and the third condition is satisfied. But if we do not replace the
first marble before picking the second, then the probability of the second outcome
being a success is 9�19 if the first was a success and 10�19 if the first was a failure.
Thus the probability of success does not remain constant (and is also dependent on
the previous outcomes). Therefore, the third condition is violated (as is the second
condition). This means that sampling with replacement will follow a binomial distri-
bution, but sampling without replacement will not. Later we will see that sampling
without replacement will follow a hypergeometric distribution.

Binomial Distribution Formulas
Consider the case where five trials are made, and in each trial the probability of suc-
cess is 0.6. To get to the formula for calculating binomial probabilities, let us analyze
the probability that the number of successes in the five trials is exactly three.

First, we note that there are ( 5
3 ) ways of getting three successes out of five trials.

Next we observe that each of these (5
3 ) possibilities has 0.63 * 0.42 probability of occur-

rence corresponding to 3 successes and 2 failures. Therefore,
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CHAPTER 4

P (X � 3) � * 0.63 * 0.42 � 0.3456¢5
3
≤

P(X � x) � px(1 � p)(n�x) for x � 0, 1, 2, . . . , n (3–12)¢n
x
≤

We can generalize this equation with n denoting the number of trials and p the prob-
ability of success:

Equation 3–12 is the famous binomial probability formula.
To describe a binomial random variable we need two parameters, n and p. We

write X � B(n, p) to indicate that X is binomially distributed with n number of trials
and p probability of success in each trial. The letter B in the expression stands for
binomial.

With any random variable, we will be interested in its expected value and its vari-
ance. Let us consider the expected value of a binomial random variable X. We note
that X is the sum of n number of Bernoulli random variables, each of which has an
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FIGURE 3–14 Binomial Distribution Template
[Binomial.xls]

2
3
4
5

6

7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26

A B C D E F G H I J K L M

Binomial Distribution 
n p Mean Variance Stdev
5 0.6 3 1.2 1.095445

x P(Exactly x) P(At most x) P(At least x)
0 0.0102 0.0102 1.0000
1 0.0768 0.0870 0.9898
2 0.2304 0.3174 0.9130
3 0.3456 0.6630 0.6826
4 0.2592 0.9222 0.3370
5 0.0778 1.0000 0.0778

P(Exactly x) 

0.0000

0.0500

0.1000

0.1500

0.2000

0.2500

0.3000

0.3500

0.4000

0 1 2 3 4 5
x

1

expected value of p. Hence the expected value of X must be np, that is, E(X ) � np.
Furthermore, the variance of each Bernoulli random variable is p(1 � p), and they
are all independent. Therefore variance of X is np(1 � p), that is, V(X ) � np(1 � p).
The formulas for the binomial distribution are summarized in the next box, which
also presents sample calculations that use these formulas.
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Binomial Distribution

If X � B(n, p), then

P(X � x) � px(1 � p)(n�x) x � 0, 1, 2, . . . , n

E(X) � np
V(X) � np(1 � p)

For example, if n � 5 and p � 0.6, then

P(X � 3) � 10 * 0.63 * 0.42 � 0.3456
E(X) � 5 * 0.6 � 3
V(X) � 5 * 0.6 * 0.4 � 1.2

¢n
x
≤

The Template
The calculation of binomial probabilities, especially the cumulative probabilities, can
be tedious. Hence we shall use a spreadsheet template. The template that can be used
to calculate binomial probabilities is shown in Figure 3–14. When we enter the values
for n and p, the template automatically tabulates the probability of “Exactly x,” “At
most x,” and “At least x” number of successes. This tabulation can be used to solve
many kinds of problems involving binomial probabilities, as explained in the next
section. Besides the tabulation, a histogram is also created on the right. The his-
togram helps the user to visualize the shape of the distribution.
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P R O B L E M S

3–32. Three of the 10 airplane tires at a hangar are faulty. Four tires are selected at
random for a plane; let F be the number of faulty tires found. Is F a binomial random
variable? Explain.
3–33. A salesperson finds that, in the long run, two out of three sales calls are suc-
cessful. Twelve sales calls are to be made; let X be the number of concluded sales. Is
X a binomial random variable? Explain.

Problem Solving with the Template
Suppose an operator wants to produce at least two good pins. (In practice, one would
want at least some number of good things, or at most some number of bad things.
Rarely would one want exactly some number of good or bad things.) He produces
the pins using a lathe that has 0.6 probability of making a good pin in each trial, and
this probability stays constant throughout. Suppose he produces five pins. What is the
probability that he would have made at least two good ones?

Let us see how we can answer the question using the template. After making sure
that n is filled in as 5 and p as 0.6, the answer is read off as 0.9130 (in cell E9). That is,
the operator can be 91.3% confident that he would have at least two good pins.

Let us go further with the problem. Suppose it is critical that the operator have at
least two good pins, and therefore he wants to be at least 99% confident that he would
have at least two good pins. (In this type of situation, the phrases “at least” and “at
most” occur often. You should read carefully.) With five trials, we just found that he
can be only 91.3% confident. To increase the confidence level, one thing he can do is
increase the number of trials. How many more trials? Using the spreadsheet tem-
plate, we can answer this question by progressively increasing the value of n and
stopping when P (At least 2) in cell E9 just exceeds 99%. On doing this, we find that
eight trials will do and seven will not. Hence the operator should make at least eight
trials.

Increasing n is not the only way to increase confidence. We can increase p, if that
is possible in practice. To see it, we pose another question.

Suppose the operator has enough time to produce only five pins, but he still
wants to have at least 99% confidence of producing at least two good pins by improv-
ing the lathe and thus increasing p. How much should p be increased? To answer this,
we can keep increasing p and stop when P (At least 2) just exceeds 99%. But this
process could get tiresome if we need, say, four decimal place accuracy for p. This is
where the Goal seek . . . command (see the Working with Templates file found on the
student CD) in the spreadsheet comes in handy. The Goal seek command yields
0.7777. That is, p must be increased to at least 0.7777 in order to be 99% confident of
getting at least two good pins in five trials.

We will complete this section by pointing out the use of the AutoCalculate com-
mand. We first note that the probability of at most x number of successes is the same
as the cumulative probability F (x). Certain types of probabilities are easily calculated
using F (x) values. For example, in our operator’s problem, consider the probability
that the number of successes will be between 1 and 3, both inclusive. We know that
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P (1 	 x 	 3) � F (3) � F (0)

Looking at the template in Figure 3–14, we calculate this as 0.6630 � 0.0102 �
0.6528. A quicker way is to use the AutoCalculate facility. When the range of
cells containing P (1) to P (3) is selected, the sum of the probabilities appears in the
AutoCalculate area as 0.6528.
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3–34. A large shipment of computer chips is known to contain 10% defective chips.
If 100 chips are randomly selected, what is the expected number of defective ones?
What is the standard deviation of the number of defective chips? Use Chebyshev’s
theorem to give bounds such that there is at least a 0.75 chance that the number of
defective chips will be within the two bounds.
3–35. A new treatment for baldness is known to be effective in 70% of the cases
treated. Four bald members of the same family are treated; let X be the number of
successfully treated members of the family. Is X a binomial random variable?
Explain.
3–36. What are Bernoulli trials? What is the relationship between Bernoulli trials
and the binomial random variable?
3–37. Look at the histogram of probabilities in the binomial distribution template
[Binomial.xls] for the case n � 5 and p � 0.6.

a. Is this distribution symmetric or skewed? Now, increase the value of n to
10, 15, 20, . . . Is the distribution becoming more symmetric or more
skewed? Make a formal statement about what happens to the distribu-
tion’s shape when n increases.

b. With n � 5, change the p value to 0.1, 0.2, . . . Observe particularly the
case of p � 0.5. Make a formal statement about how the skewness of the
distribution changes with p.

3–38. A salesperson goes door-to-door in a residential area to demonstrate the use
of a new household appliance to potential customers. At the end of a demonstration,
the probability that the potential customer would place an order for the product is a
constant 0.2107. To perform satisfactorily on the job, the salesperson needs at least
four orders. Assume that each demonstration is a Bernoulli trial.

a. If the salesperson makes 15 demonstrations, what is the probability that
there would be exactly 4 orders?

b. If the salesperson makes 16 demonstrations, what is the probability that
there would be at most 4 orders?

c. If the salesperson makes 17 demonstrations, what is the probability that
there would be at least 4 orders?

d. If the salesperson makes 18 demonstrations, what is the probability that
there would be anywhere from 4 to 8 (both inclusive) orders?

e. If the salesperson wants to be at least 90% confident of getting at least
4 orders, at least how many demonstrations should she make?

f. The salesperson has time to make only 22 demonstrations, and she still
wants to be at least 90% confident of getting at least 4 orders. She intends
to gain this confidence by improving the quality of her demonstration and
thereby improving the chances of getting an order at the end of a demon-
stration. At least to what value should this probability be increased in
order to gain the desired confidence? Your answer should be accurate to
four decimal places.

3–39. An MBA graduate is applying for nine jobs, and believes that she has in each
of the nine cases a constant and independent 0.48 probability of getting an offer.

a. What is the probability that she will have at least three offers?
b. If she wants to be 95% confident of having at least three offers, how many

more jobs should she apply for? (Assume each of these additional appli-
cations will also have the same probability of success.)

c. If there are no more than the original nine jobs that she can apply for,
what value of probability of success would give her 95% confidence of at
least three offers?

Random Variables 117
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3–40. A computer laboratory in a school has 33 computers. Each of the 33 com-
puters has 90% reliability. Allowing for 10% of the computers to be down, an instructor
specifies an enrollment ceiling of 30 for his class. Assume that a class of 30 students is
taken into the lab.

a. What is the probability that each of the 30 students will get a computer in
working condition?

b. The instructor is surprised to see the low value of the answer to (a) and
decides to improve it to at least 95% by doing one of the following:

i. Decreasing the enrollment ceiling.
ii. Increasing the number of computers in the lab.
iii. Increasing the reliability of all the computers.

To help the instructor, find out what the increase or decrease should be for each of
the three alternatives.
3–41. A commercial jet aircraft has four engines. For an aircraft in flight to land
safely, at least two engines should be in working condition. Each engine has an inde-
pendent reliability of p � 92%.

a. What is the probability that an aircraft in flight can land safely?
b. If the probability of landing safely must be at least 99.5%, what is the mini-

mum value for p? Repeat the question for probability of landing safely to
be 99.9%.

c. If the reliability cannot be improved beyond 92% but the number of
engines in a plane can be increased, what is the minimum number of
engines that would achieve at least 99.5% probability of landing safely?
Repeat for 99.9% probability.

d. One would certainly desire 99.9% probability of landing safely. Looking
at the answers to (b ) and (c ), what would you say is a better approach
to safety, increasing the number of engines or increasing the reliability of
each engine?

3–6 Negative Binomial Distribution
Consider again the case of the operator who wants to produce two good pins using a
lathe that has 0.6 probability of making one good pin in each trial. Under binomial
distribution, we assumed that he produces five pins and calculated the probability of
getting at least two good ones. In practice, though, if only two pins are needed, the
operator would produce the pins one by one and stop when he gets two good ones.
For instance, if the first two are good, then he would stop right there; if the first
and the third are good, then he would stop with the third; and so on. Notice that
in this scenario, the number of successes is held constant at 2, and the number of
trials is random. The number of trials could be 2, 3, 4, . . . . (Contrast this with the
binomial distribution where the number of trials is fixed and the number of successes
is random.)

The number of trials made in this scenario is said to follow a negative binomial
distribution. Let s denote the exact number of successes desired and p the probabil-
ity of success in each trial. Let X denote the number of trials made until the desired
number of successes is achieved. Then X will follow a negative binomial distribution
and we shall write X � NB(s, p) where NB denotes negative binomial.

Negative Binomial Distribution Formulas
What is the formula for P(X � x) when X � NB(s, p)? We know that the very last trial
must be a success; otherwise, we would have already had the desired number of successes

118 Chapter 3
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2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

A B C D E F G H I J K L M

Negative Binomial Distribution 
s p Mean Variance Stdev.
2 0.6000 3.33333 2.22222 1.490712

x P(Exactly x) P(At most x) P(At least x)
0.3600 0.3600 1.00002
0.2880 0.6480 0.64003
0.1728 0.8208 0.36204
0.0922 0.9130 0.17925
0.0461 0.9590 0.08706

7
8
9

10
11
12
13
14
15
16
17
18
19
20

0.0221 0.9812 0.0410
0.0103 0.9915 0.0188
0.0047 0.9962 0.0085
0.0021 0.9983 0.0036
0.0009 0.9993 0.0017
0.0004 0.9997 0.0007
0.0002 0.9999 0.0003
0.0001 0.9999 0.0001
0.0000 1.0000 0.0001
0.0000 1.0000 0.0000
0.0000 1.0000 0.0000
0.0000 1.0000 0.0000
0.0000 1.0000 0.0000
0.0000 1.0000 0.0000

P(Exactly x) 

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

2 3 4 5 6 7 8 9 10 11
x

1

FIGURE 3–15 Negative Binomial Distribution Template 
[Negative Binomial.xls]

Problem Solving with the Template
Figure 3–15 shows the negative binomial distribution template. When we enter the s
and p values, the template updates the probability tabulation and draws a histogram
on the right.

Random Variables 119

P (X � x) � ps(1 � p)(x�s)¢x - 1
s - 1

≤

Negative Binomial Distribution

If X � NB(s, p), then

P(X � x) � ps(1 � p)(x�s) x � s, s � 1, s � 2, . . .

E(X) � s�p
V(X) � s(1 � p)�p2

For example, if s � 2 and p � 0.6, then

P(X � 5) � * 0.62 * 0.43 � 0.0922

E(X) � 2�0.6 � 3.3333
V(X) � 2 * 0.4�0.62 � 2.2222

¢4
1
≤

¢x � 1
s � 1

≤

The formula for the mean can be arrived at intuitively. For instance, if p � 0.3, and
3 successes are desired, then the expected number of trials to achieve 3 successes
is 10. Thus the mean should have the formula � � s/p. The variance is given by the
formula �2 � s (1 � p)�p2.

with x � 1 trials, and we should have stopped right there. The last trial being a success,
the first x � 1 trials should have had s � 1 successes. Thus the formula should be
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Let us return to the operator who wants to keep producing pins until he has two
good ones. The probability of getting a good one at any trial is 0.6. What is the
probability that he would produce exactly five? Looking at the template, we see that
the answer is 0.0922, which agrees with the calculation in the preceding box. We can,
in addition, see that the probability of producing at most five is 0.9130 and at least
five is 0.1792.

Suppose the operator has enough time to produce only four pins. How confident
can he be that he would have two good ones within the available time? Looking at
the template, we see that the probability of needing at most four trials is 0.8208 and
hence he can be about 82% confident.

If he wants to be at least 95% confident, at least how many trials should he be pre-
pared for? Looking at the template in the “At most” column, we infer that he should
be prepared for at least six trials, since five trials yield only 91.30% confidence and
six trials yield 95.90%.

Suppose the operator has enough time to produce only four pins and still
wants to be at least 95% confident of getting two good pins within the available
time. Suppose, further, he wants to achieve this by increasing the value of p.
What is the minimum p that would achieve this? Using the Goal Seek command,
this can be answered as 0.7514. Specifically, you set cell D8 to 0.95 by changing
cell C3.

3–7 The Geometric Distribution
In a negative binomial distribution, the number of desired successes s can be
any number. But in some practical situations, the number of successes desired
is just one. For instance, if you are attempting to pass a test or get some infor-
mation, it is enough to have just one success. Let X be the (random) number of
Bernoulli trials, each having p probability of success, required to achieve just one
success. Then X follows a geometric distribution, and we shall write X � G(p).
Note that the geometric distribution is a special case of the negative binomial
distribution where s � 1. The reason for the name “geometric distribution” is
that the sequence of probabilities P (X � 1), P (X � 2), . . . , follows a geometric
progression.

Geometric Distribution Formulas
Because the geometric distribution is a special case of the negative binomial distribu-
tion where s � 1, the formulas for the negative binomial distribution with s fixed as 1
can be used for the geometric distribution.

120 Chapter 3

Geometric Distribution Formulas

If X � G(p), then

P(X � x) � p(1 � p)(x�1) x � 1, 2, . . .
E(X) � 1�p
V(X) � (1 � p)�p2

For example, if p � 0.6, then

P(X � 5) � 0.6 * 0.44 � 0.0154
E(X) � 1�0.6 � 1.6667
V(X) � 0.4�0.62 � 1.1111
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FIGURE 3–16 Geometric Distribution Template 
[Geometric.xls]

A B C D E F G H I J K M N

Mean Variance Stdev.
1.666667 1.111111 1.054093

x P(Exactly x) P(At most x) P(At least x)

0.2400 0.8400 0.40002
0.6000 0.6000 1.00001

0.0960 0.9360 0.16003
0.0384 0.9744 0.06404
0.0154 0.9898 0.02565
0.0061 0.9959 0.01026

7
8
9

10
11
12
13
14
15
16
17
18
19
20

0.0025 0.9984 0.0041
0.0010 0.9993 0.0016
0.0004 0.9997 0.0007
0.0002 0.9999 0.0003
0.0001 1.0000 0.0001
0.0000 1.0000 0.0000
0.0000 1.0000 0.0000
0.0000 1.0000 0.0000
0.0000 1.0000 0.0000
0.0000 1.0000 0.0000
0.0000 1.0000 0.0000
0.0000 1.0000 0.0000
0.0000 1.0000 0.0000
0.0000 1.0000 0.0000

P(Exactly x) 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

1 2 3 4 5 6 7 8 109
x

2
3
4
5

6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26

Geometric Distribution 
p

0.6

1

Problem Solving with the Template
Consider the operator who produces pins one by one on a lathe that has 0.6 probabil-
ity of producing a good pin at each trial. Suppose he wants only one good pin and
stops as soon as he gets one. What is the probability that he would produce exactly
five pins? The template that can be used to answer this and related questions is shown
in Figure 3–16. On that template, we enter the value 0.6 for p. The answer can now be
read off as 0.0154, which agrees with the example calculation in the preceding box.
Further, we can read on the template that the probability of at most five is 0.9898 and
at least five is 0.0256. Also note that the probability of exactly 1, 2, 3, . . . , trials follows
the sequence 0.6, 0.24, 0.096, 0.0384, . . . , which is indeed a geometric progression
with common ratio 0.4.

Now suppose the operator has time enough for at most two pins; how confident
can he be of getting a good one within the available time? From the template, the
answer is 0.8400, or 84%. What if he wants to be at least 95% confident? Again from
the template, he must have enough time for four pins, because three would yield only
93.6% confidence and four yields 97.44%.

Suppose the operator wants to be 95% confident of getting a good pin by pro-
ducing at most two pins. What value of p will achieve this? Using the Goal Seek com-
mand the answer is found to be 0.7761.

3–8 The Hypergeometric Distribution
Assume that a box contains 10 pins of which 6 are good and the rest defective. An
operator picks 5 pins at random from the 10, and is interested in the number of good
pins picked. Let X denote the number of good pins picked. We should first note that
this is a case of sampling without replacement and therefore X is not a binomial ran-
dom variable. The probability of success p, which is the probability of picking a good
pin, is neither constant nor independent from trial to trial. The first pin picked has
0.6 probability of being good; the second has either 5�9 or 6�9 probability, depend-
ing on whether or not the first was good. Therefore, X does not follow a binomial
distribution, but follows what is called a hypergeometric distribution. In general,
when a pool of size N contains S successes and (N � S ) failures, and a random sample
of size n is drawn from the pool, the number of successes X in the sample follows

Random Variables 121
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FIGURE 3–17 Schematic for Hypergeometric Distribution 

S           N – S Pool

x     n – x Sample

a hypergeometric distribution. We shall then write X � HG(n , S , N ). The situation is
depicted in Figure 3–17.

Hypergeometric Distribution Formulas
Let us derive the formula for P (X � x) when X is hypergeometrically distributed. The
x number of successes have to come from the S successes in the pool, which can hap-
pen in (S

x ) ways. The (n � x ) failures have to come from the (N � S ) failures in the
pool, which can happen in (N�S

n�x ) ways. Together the x successes and (n � x ) failures
can happen in (S

x )(N�S
n�x ) ways. Finally, there are (N

n ) ways of selecting a sample of size
n. Putting them all together,

122 Chapter 3

P (X = x) =
¢S

x
≤ ¢N - S

n - x
≤

¢N
n
≤

Hypergeometric Distribution Formulas

If X � HG(n, S, N), then

Max(0, n � N � S) 	 x 	 Min(n, S)

E(X) � np where p � S�N

V(X) = np(1 - p) BN - n
N - 1

R

P(X = x) =
¢S

x
≤ ¢N - S

n - x
≤

¢N
n
≤

In this formula n cannot exceed N since the sample size cannot exceed the pool size.
There is also a minimum possible value and a maximum possible value for x,
depending on the values of n, S, and N. For instance, if n � 9, S � 5, and N � 12, you
may verify that there would be at least two successes and at most five. In general, the
minimum possible value for x is Max(0, n � N � S ) and the maximum possible value
is Min(n, S ).
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The proportion of successes in the pool, which is the ratio S/N, is the probability
of the first trial being a success. This ratio is denoted by the symbol p since it resem-
bles the p used in the binomial distribution. The expected value and variance of X are
expressed using p as

Random Variables 123

For example, if n � 5, S � 6, and N � 10, then

E(X) � 5 * (6�10) � 3.00

V(X) � 5 * 0.6 * (1 � 0.6) * (10 � 5)�(10 � 1) � 0.6667

P(X = 2) =
¢6

2
≤ ¢10 - 6

5 - 2
≤

¢10
5
≤

= 0.2381

E(X ) � np

V (X ) = np(1 - p)BN - n
N - 1

R

Notice that the formula for E(X ) is the same as for the binomial case. The formula for
V (X ) is similar to but not the same as the binomial case. The difference is the additional
factor in square brackets. This additional factor approaches 1 as N becomes larger and
larger compared to n and may be dropped when N is, say, 100 times as large as n. We
can then approximate the hypergeometric distribution as a binomial distribution.

Problem Solving with the Template
Figure 3–18 shows the template used for the hypergeometric distribution. Let us con-
sider the case where a box contains 10 pins out of which 6 are good, and the operator
picks 5 at random. What is the probability that exactly 2 good pins are picked? The
answer is 0.2381 (cell C8). Additionally, the probabilities that at most two and at least
two good ones are picked are, respectively, 0.2619 and 0.9762.

Suppose the operator needs at least three good pins. How confident can he be of
getting at least three good pins? The answer is 0.7381 (cell E9). Suppose the operator
wants to increase this confidence to 90% by adding some good pins to the pool. How
many good pins should be added to the pool? This question, unfortunately, cannot be
answered using the Goal Seek command for three reasons. First, the Goal Seek com-
mand works on a continuous scale, whereas S and N must be integers. Second, when n,
S, or N is changed the tabulation may shift and P(at least 3) may not be in cell E9! Third, the
Goal Seek command can change only one cell at a time. But in many problems, two
cells (S and N ) may have to change. Hence do not use the Goal Seek or the Solver on
this template. Also, be careful to read the probabilities from the correct cells.

Let us solve this problem without using the Goal Seek command. If a good pin is
added to the pool, what happens to S and N ? They both increase by 1. Thus we should
enter 7 for S and 11 for N. When we do, P (at least 3) � 0.8030, which is less than the
desired 90% confidence. So we add one more good pin to the pool. Continuing in this
fashion, we find that at least four good pins must be added to the pool.

Another way to increase P (at least 3) is to remove a bad pin from the pool. What
happens to S and N when a bad pin is removed? S will remain the same and N will
decrease by one. Suppose the operator wants to be 80% confident that at least three
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FIGURE 3–18 The Template for the Hypergeometric Distribution
[Hypergeometric.xls]

P(Exactly x) 

2 3 4 5
x

A B C D E F G H I J K L M

Mean Variance Stdev.
3.333333 0.555556 0.745356

x P(Exactly x) P(At most x) P(At least x)

0.4762 0.5952 0.88103
0.1190 0.1190 1.00002

0.3571 0.9524 0.40484
0.0476 1.0000 0.04765

Min x Max x
2 5

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

2
3
4
5

6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26

Hypergeometric Distribution 1

n S
5 6

N
9

good pins will be selected. How many bad pins must be removed from the pool?
Decreasing N one by one, we find that removing one bad pin is enough.

3–9 The Poisson Distribution
Imagine an automatic lathe that mass produces pins. On rare occasions, let us assume
that the lathe produces a gem of a pin which is so perfect that it can be used for a very
special purpose. To make the case specific, let us assume the lathe produces 20,000
pins and has 1�10,000 chance of producing a perfect one. Suppose we are interested
in the number of perfect pins produced. We could try to calculate this number by
using the binomial distribution with n � 20,000 and p � 1�10,000. But the calcula-
tion would be almost impossible because n is so large, p is so small, and the binomial
formula calls for n! and pn �x, which are hard to calculate even on a computer. How-
ever, the expected number of perfect pins produced is np � 20,000*(1�10,000) � 2,
which is neither too large nor too small. It turns out that as long as the expected value
� � np is neither too large nor too small, say, lies between 0.01 and 50, the binomial
formula for P (X � x) can be approximated as

124 Chapter 3

P (X � x) �
e�µµx

x ! x � 0, 1, 2, . . .

where e is the natural base of logarithms, equal to 2.71828. . . . This formula is known
as the Poisson formula, and the distribution is called the Poisson distribution. In
general, if we count the number of times a rare event occurs during a fixed interval,
then that number would follow a Poisson distribution. We know the mean � � np.

Considering the variance of a Poisson distribution, we note that the binomial
variance is np (1 � p). But since p is very small, (1 � p) is close to 1 and therefore can
be omitted. Thus the variance of a Poisson random variable is np, which happens to
be the same as its mean. The Poisson formula needs only �, and not n or p.

We suddenly realize that we need not know n and p separately. All we need to
know is their product, �, which is the mean and the variance of the distribution. Just
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FIGURE 3–19 Poisson Distribution Template 
[Poisson.xls]

A B C D E F G H I J K

Variance Stdev.
8 2.8284271

x P(Exactly x) P(At most x) P(At least x)

0.0027 0.0030 0.99971
0.0003 0.0003 1.00000

0.0107 0.0138 0.99702
0.0286 0.0424 0.98623
0.0573 0.0996 0.95764
0.0916 0.1912 0.90045

6
7
8
9

10
11
12
13
14
15
16
17
18
19

0.1221 0.3134 0.8088
0.1396 0.4530 0.6866
0.1396 0.5925 0.5470
0.1241 0.7166 0.4075
0.0993 0.8159 0.2834
0.0722 0.8881 0.1841
0.0481 0.9362 0.1119
0.0296 0.9658 0.0638
0.0169 0.9827 0.0342
0.0090 0.9918 0.0173
0.0045 0.9963 0.0082
0.0021 0.9984 0.0037
0.0009 0.9993 0.0016
0.0004 0.9997 0.0007

P(Exactly x) 

0

0.04

0.02

0.06

0.08

0.1

0.12

0.14

0.16

0 1 2 3 4 5 6 7 8 9 10
x

2
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4
5
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12
13
14
15
16
17
18
19
20
21
22
23
24
25
26

Poisson Distribution 
Mean

8

1

one number, �, is enough to describe the whole distribution, and in this sense,
the Poisson distribution is a simple one, even simpler than the binomial. If X follows
a Poisson distribution, we shall write X � P(�) where � is the expected value of the
distribution. The following box summarizes the Poisson distribution.

Random Variables 125

Poisson Distribution Formulas

If X � P(�), then

E(X) � np � �

V(X) � np � �

For example, if � � 2, then

E(X) � � � 2.00
V(X) � � � 2.00

P(X = 3) =
e-223

3!
= 0.1804

P(X = x) =
e-��x

x!
x = 0, 1, 2, . . .

The Poisson template is shown in Figure 3–19. The only input needed is the
mean � in cell C4. The starting value of x in cell B7 is usually zero, but it can be
changed as desired.

Problem Solving with the Template
Let us return to the case of the automatic lathe that produces perfect pins on rare
occasions. Assume that the lathe produces on the average two perfect pins a day, and
an operator wants at least three perfect pins. What is the probability that it will pro-
duce at least three perfect pins on a given day? Looking at the template, we find the
answer to be 0.3233. Suppose the operator waits for two days. In two days the lathe
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FIGURE 3–20 Histogram of the Probability Distribution
of Time to Complete a Task, with Time
Measured to the Nearest Minute

P(x)

1
x

0.10

2

0.25

3

0.30

4

0.20

5

0.10

6

0.05

FIGURE 3–21 Histogram of the Probability Distribution
of Time to Complete a Task, with Time
Measured to the Nearest Half-Minute

P(x)

1
x

2 3 4 5 6

will produce on average four perfect pins. We should therefore change the mean in
cell C4 to 4. What is the probability that the lathe will produce at least three perfect
pins in two days? Using the template, we find the answer to be 0.7619. If the operator
wants to be at least 95% confident of producing at least three perfect pins, how many
days should he be prepared to wait? Again, using the template, we find that the oper-
ator should be prepared to wait at least four days.

A Poisson distribution also occurs in other types of situations leading to other forms
of analysis. Consider an emergency call center. The number of distress calls received
within a specific period, being a count of rare events, is usually Poisson-distributed. In
this context, suppose the call center receives on average two calls per hour. In addition,
suppose the crew at the center can handle up to three calls in an hour. What is the prob-
ability that the crew can handle all the calls received in a given hour? Since the crew
can handle up to three calls, we look for the probability of at most three calls. From the
template, the answer is 0.8571. If the crew wanted to be at least 95% confident of han-
dling all the calls received during a given hour, how many calls should it be prepared
to handle? Again, from the template, the answer is five, because the probability of at
most four calls is less than 95% and of at most five calls is more than 95%.

3–10 Continuous Random Variables
Instead of depicting probability distributions by simple graphs, where the height
of the line above each value represents the probability of that value of the random
variable, let us use a histogram. We will associate the area of each rectangle of the his-
togram with the probability of the particular value represented. Let us look at a sim-
ple example. Let X be the time, measured in minutes, it takes to complete a given
task. A histogram of the probability distribution of X is shown in Figure 3–20.

The probability of each value is the area of the rectangle over the value and is writ-
ten on top of the rectangle. Since the rectangles all have the same base, the height of
each rectangle is proportional to the probability. Note that the probabilities add to 1.00,
as required. Now suppose that X can be measured more accurately. The distribution of
X, with time now measured to the nearest half-minute, is shown in Figure 3–21.

Let us continue the process. Time is a continuous random variable; it can take on
any value measured on an interval of numbers. We may, therefore, refine our meas-
urement to the nearest quarter-minute, the nearest 5 seconds, or the nearest second,
or we can use even more finely divided units. As we refine the measurement scale,
the number of rectangles in the histogram increases and the width of each rectangle
decreases. The probability of each value is still measured by the area of the rectangle
above it, and the total area of all rectangles remains 1.00, as required of all probability
distributions. As we keep refining our measurement scale, the discrete distribution of
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FIGURE 3–22 Histograms of the Distribution of Time to Complete a Task as Measurement Is
Refined to Smaller and Smaller Intervals of Time, and the Limiting Density
Function f(x)
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x

f(x)

Probability that X will be between
2 and 3 is the area under f(x)
between the points 2.00 and 3.00

P(x)

1 2 3 4 5 6
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x

x

P(x)

f(x)

Total area under 
f(x) is 1.00

X tends to a continuous probability distribution. The steplike surface formed by the
tops of the rectangles in the histogram tends to a smooth function. This function is
denoted by f (x) and is called the probability density function of the continuous
random variable X. Probabilities are still measured as areas under the curve. The
probability that the task will be completed in 2 to 3 minutes is the area under f (x)
between the points x � 2 and x � 3. Histograms of the probability distribution of X
with our measurement scale refined further and further are shown in Figure 3–22.
Also shown is the density function f (x) of the limiting continuous random variable X.
The density function is the limit of the histograms as the number of rectangles
approaches infinity and the width of each rectangle approaches zero.

Now that we have developed an intuitive feel for continuous random variables,
and for probabilities of intervals of values as areas under a density function, we make
some formal definitions.

A continuous random variable is a random variable that can take on any
value in an interval of numbers.
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FIGURE 3–23 Probability Density Function and Cumulative Distribution 
Function of a Continuous Random Variable
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The probabilities associated with a continuous random variable X are
determined by the probability density function of the random variable.
The function, denoted f(x), has the following properties.

1. f(x) � 0 for all x.
2. The probability that X will be between two numbers a and b is equal

to the area under f(x) between a and b.
3. The total area under the entire curve of f(x) is equal to 1.00.

When the sample space is continuous, the probability of any single given value is
zero. For a continuous random variable, therefore, the probability of occurrence of
any given value is zero. We see this from property 2, noting that the area under a
curve between a point and itself is the area of a line, which is zero. For a continuous
random variable, nonzero probabilities are associated only with intervals of numbers.

We define the cumulative distribution function F (x) for a continuous random vari-
able similarly to the way we defined it for a discrete random variable: F (x) is the
probability that X is less than (or equal to) x.

The cumulative distribution function of a continuous random variable:4

F (x) � P(X 	 x) � area under f(x) between the smallest possible value of X
(often ��) and point x

The cumulative distribution function F (x) is a smooth, nondecreasing function that
increases from 0 to 1.00. The connection between f (x) and F (x) is demonstrated in
Figure 3–23.

The expected value of a continuous random variable X , denoted by E(X ), and its
variance, denoted by V (X ), require the use of calculus for their computation.5
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4If you are familiar with calculus, you know that the area under a curve of a function is given by the integral of the
function. The probability that X will be between a and b is the definite integral of f (x) between these two points: 
P (a � X � b) � �a

b f (x) dx. In calculus notation, we define the cumulative distribution function as F (x) � �x�� f (y) dy.

5E(X ) � ��

��
x f (x)dx; V (X ) � ��

��
[x � E(X )]2 f (x)dx.
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FIGURE 3–24 The Uniform Distribution
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3–11 The Uniform Distribution
The uniform distribution is the simplest of continuous distributions. The probability
density function is

Random Variables 129

f (x) � 1�(b � a) a 	 x 	 b
� 0 all other x

Uniform Distribution Formulas

If X � U(a, b), then

f(x) � 1�(b � a) a 	 x 	 b
� 0 all other x

P(x1 	 X 	 x2) � (x2 � x1)�(b � a) a 	 x1 � x2 	 b
E(X) � (a � b)�2
V(X) � (b � a)2�12

For example, if a � 10 and b � 20, then

P(12 	 X 	 18) � (18 � 12)�(20 � 10) � 0.6
E(X) � (10 � 20)�2 � 15
V(X) � (20 � 10)2�12 � 8.3333

where a is the minimum possible value and b is the maximum possible value of X.
The graph of f (x) is shown in Figure 3–24. Because the curve of f (x) is a flat line, the
area under it between any two points x1 and x2, where a 	 x1 � x2 	 b, will be a rectan-
gle with height 1�(b � a ) and width (x2 � x1). Thus P (x1 	 X 	 x2) � (x2 � x1)�(b � a).
If X is uniformly distributed between a and b, we shall write X � U(a, b).

The mean of the distribution is the midpoint between a and b, which is (a � b)�2.
By using integration, it can be shown that the variance is (b � a)2�12. Because the
shape of a uniform distribution is always a rectangle, the skewness and kurtosis
are the same for all uniform distributions. The skewness is zero. (Why?) Because the
shape is flat, the (relative) kurtosis is negative, always equal to �1.2.

The formulas for uniform distribution are summarized in the following box.
Because the probability calculation is simple, there is no special spreadsheet function
for uniform distribution. The box contains some sample calculations.

A common instance of uniform distribution is waiting time for a facility that goes
in cycles. Two good examples are a shuttle bus and an elevator, which move, roughly,
in cycles with some cycle time. If a user comes to a stop at a random time and waits
till the facility arrives, the waiting time will be uniformly distributed between a mini-
mum of zero and a maximum equal to the cycle time. In other words, if a shuttle bus
has a cycle time of 20 minutes, the waiting time would be uniformly distributed
between 0 and 20 minutes.
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FIGURE 3–25 Template for the Uniform Distribution 
[Uniform.xls]

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

A B C D E F G H I J K

Uniform Distribution

Min Max Mean Var. Stdev.
10 20 15 8.333333333 2.88675

P(<=x) x x P(>=x) x1 P(x1<X<x2) x2

0.2000 12 12 0.8000 12 0.6000 18

11 0.1000 12

1.0000 22 22 0.0000 11 0.9000 22

0.0000 2 5 1.0000 21 0.0000 22

Inverse Calculations

P(<=x) x x P(>=x)

0.2 12 17 0.3

20 0

0 10

10 1

Problem Solving with the Template
Figure 3–25 shows the template for the uniform distributions. If X � U(10, 20), what
is P (12 	 X 	 18)? In the template, make sure the Min and Max are set to 10 and 20
in cells B4 and C4. Enter 12 and 18 in cells H10 and J10. The answer of 0.6 appears
in cell I10.

What is the probability P (X � 12)? To answer this, enter 12 in cell C10. The
answer 0.2 appears in cell B10. What is P (X 
 12)? To answer this, enter 12 in cell
E10. The answer 0.8 appears in F10.

Inverse calculations are possible in the bottom area of the template. Suppose you
want to find x such that P (X � x) � 0.2. Enter 0.2 in cell B20. The answer, 12, appears
in cell C20. To find x such that P (X 
 x) � 0.3, enter 0.3 in cell F20. The answer, 17,
appears in cell E20.

As usual, you may also use facilities such as the Goal Seek command or the
Solver tool in conjunction with this template.

3–12 The Exponential Distribution
Suppose an event occurs with an average frequency of � occurrences per hour and
this average frequency is constant in that the probability that the event will occur dur-
ing any tiny duration t is �t. Suppose further we arrive at the scene at any given
time and wait till the event occurs. The waiting time will then follow an exponential
distribution, which is the continuous limit of the geometric distribution. Suppose
our waiting time was x. For the event (or success) to occur at time x, every tiny duration
t from time 0 to time x should be a failure and the interval x to x �t must be a success.
This is nothing but a geometric distribution. To get the continuous version, we take
the limit of this process as t approaches zero.

The exponential distribution is fairly common in practice. Here are some examples.

1. The time between two successive breakdowns of a machine will be exponentially
distributed. This information is relevant to maintenance engineers. The mean
� in this case is known as the mean time between failures, or MTBF.
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2. The life of a product that fails by accident rather than by wear-and-tear follows
an exponential distribution. Electronic components are good examples. This
information is relevant to warranty policies.

3. The time gap between two successive arrivals to a waiting line, known as the
interarrival time, will be exponentially distributed. This information is
relevant to waiting line management.

When X is exponentially distributed with frequency �, we shall write X � E(�).
The probability density function f (x) of the exponential distribution has the form

Random Variables 131

f (x) � �e��x

Exponential Distribution Formulas

If X � E(�), then
f(x) � �e��x x � 0

P(X 	 x) � 1 � e��x for x � 0
P(X � x) � e��x for x � 0

P(x1 	 X 	 x2) � e��x1 � e��x2 0 	 x1 � x2
E(X) � 1/�
V(X) � 1/�2

For example, if � � 1.2, then

P(X � 0.5) � e�1.2*0.5 � 0.5488
P(1 	 X 	 2) � e�1.2*1 � e�1.2*2 � 0.2105

E(X) � 1�1.2 � 0.8333
V(X) � 1�1.22 � 0.6944

where � is the frequency with which the event occurs. The frequency � is expressed
as so many times per unit time, such as 1.2 times per month. The mean of the distri-
bution is 1�� and the variance is (1��)2. Just like the geometric distribution, the expo-
nential distribution is positively skewed.

A Remarkable Property
The exponential distribution has a remarkable property. Suppose the time between
two successive breakdowns of a machine is exponentially distributed with an MTBF
of 100 hours, and we have just witnessed one breakdown. If we start a stopwatch as
soon as it is repaired and put back into service so as to measure the time until the next
failure, then that time will, of course, be exponentially distributed with a � of 100
hours. What is remarkable is the following. Suppose we arrive at the scene at some
random time and start the stopwatch (instead of starting it immediately after a break-
down); the time until next breakdown will still be exponentially distributed with the
same � of 100 hours. In other words, it is immaterial when the event occurred last
and how much later we start the stopwatch. For this reason, an exponential process is
known as a memoryless process. It does not depend on the past at all.

The Template
The template for this distribution is seen in Figure 3–26. The following box summa-
rizes the formulas and provides example calculations.

To use the exponential distribution template seen in Figure 3–26, the value of �
must be entered in cell B4. At times, the mean � rather than � may be known, in
which case its reciprocal 1�� is what should be entered as � in cell B4. Note that � is
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FIGURE 3–26 Exponential Distribution Template 
[Exponential.xls]

3

1
A B C D E F G H I J K L M

2

4
5
6
7
8
9

10

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29

Exponential Distribution

λ Mean Var. Stdev.
1.2 0.83333 0.69444 0.83333

P(<=x) x P(>=x) x1 x2P(x1<X<x2)

0.4512 0.5 0.5488 1 0.2105 2
0.9093 2 0.0907 2 0.0882 5
0.6988 1

x

0.5
2
1 0.3012

Inverse Calculations

P(<=x) x x P(>=x)
0.4 0.4257 1.00331 0.3

1.91882 0.1

the average number of occurrences of a rare event in unit time and � is the average
time gap between two successive occurrences. The shaded cells are the input cells
and the rest are protected. As usual, the Goal Seek command and the Solver tool can
be used in conjunction with this template to solve problems.
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A particular brand of handheld computers fails following an exponential distribution
with a � of 54.82 months. The company gives a warranty for 6 months.

a. What percentage of the computers will fail within the warranty period?
b. If the manufacturer wants only 8% of the computers to fail during the warranty

period, what should be the average life?

a. Enter the reciprocal of 54.82 � 0.0182 as � in the template. (You may enter the
formula “�1�54.82” in the cell. But then you will not be able to use the Goal
Seek command to change this entry. The Goal Seek command requires that the
changing cell contain a number rather than a formula.) The answer we are
looking for is the area to the left of 6. Therefore, enter 6 in cell C11. The area
to the left, 0.1037, appears in cell B11. Thus 10.37% of the computers will fail
within the warranty period.

b. Enter 0.08 in cell B25. Invoke the Goal Seek command to set cell C25 to the
value of 6 by changing cell B4. The � value in cell B4 reaches 0.0139, which
corresponds to a � value of 71.96 months, as seen in cell E4. Therefore, the
average life of the computers must be 71.96 months.

Value at Risk
When a business venture involves chances of large losses, a measure of risk that many
companies use is the value at risk. Suppose the profit from a venture has a negatively

E X A M P L E  3 – 5

S o l u t i o n
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FIGURE 3–27 Distribution of Profit Showing Value at Risk

Profit ($)

5%

–130K

–200K –100K 0 100K 200K

FIGURE 3–28 Distribution of Loss Showing Value at Risk

Loss ($)

95%

130K

–200K –100K 0 100K 200K

skewed distribution, shown in Figure 3–27. A negative profit signifies loss. The distri-
bution shows that large losses are possible. A common definition of value at risk is the
amount of loss at the 5th percentile of the distribution. In Figure 3–27, the 5th per-
centile is $–130,000, meaning a loss of $130,000. Thus the value at risk is $130,000.

If the profit is a discrete random variable, then the percentile used may be a con-
venient one closest to 5%.

If the distribution of loss rather than profit is plotted, then we will have the mirror
image of Figure 3–27, which is shown in Figure 3–28. In this case, the value at risk is
the 95th percentile.

Keep in mind that value at risk applies only to distributions of profit/loss where
there exist small chances of large losses.

3–13 Using the Computer
Using Excel Formulas for Some Standard Distributions
Excel has built-in functions that you may use to calculate certain probabilities with-
out using templates. These formulas are described in this section.

You can use BINOMDIST to obtain the individual term binomial distribution prob-
ability. In the formula BINOMDIST(x, n, p, cumulative), x is the number of
successes in trials, n is the number of independent trials, p is the probability of success
on each trial, and cumulative is a logical value that determines the form of the function.
If cumulative is TRUE, then BINOMDIST returns the cumulative distribution func-
tion, which is the probability that there are at most x successes; if FALSE, it returns the
probability mass function, which is the probability that there are x successes.
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NEGBINOMDIST returns the negative binomial distribution. By using the for-
mula NEGBINOMDIST(f, s, p) you can obtain the probability that there will be f
failures before the s th success, when the constant probability of a success is p. As
we can see, the conventions for negative binomial distributions are slightly differ-
ent in Excel. We have used the symbol x in this chapter to denote the total number
of trials until the s th success is achieved, but in the Excel formula we count the
total number of failures before the s th success. For example, NEGBINOMDIST
(3,2,0.5)will return the probability of three failures before the 2nd success,
which is the same as probability of 5 trials before the 2nd success. It returns the
value 0.0922.

No function is available for geometric distribution per se, but the negative bino-
mial formula can be used with s=1. For example, the geometric probability of 5 tri-
als when p=0.6 can be computed using the formula NEGBINOMDIST(4,1,0.6).
It returns the value of 0.2381.

HYPGEOMDIST returns the hypergeometric distribution. Using the formula
HYPGEOMDIST(x, n, s, N) you can obtain the probability of x success in a ran-
dom sample of size n, when the population has s success and size N. For example, the
formula HYPGEOMDIST(2,5,6,10) will return a value of 0.2381.

POISSON returns the Poisson distribution. In the formula POISSON(x, mean,
cumulative), x is the number of events, mean is the expected numeric value and cumu-
lative is a logical value that determines the form of the probability distribution returned.
If cumulative is TRUE, POISSON returns the cumulative Poisson probability that the
number of random events occurring will be between zero and x inclusive; if FALSE, it
returns the Poisson probability mass function that the number of events occurring will be
exactly x.

EXPONDIST returns the exponential distribution. In the formula EXPONDIST (x,
lambda, cumulative), x is the value of the function, lambda is the parameter value,
and cumulative is a logical value that indicates which form of the exponential function to
provide. If cumulative is TRUE, EXPONDIST returns the cumulative distribution func-
tion; if FALSE, it returns the probability density function. For example, EXPONDIST
(0.5, 1.2, TRUE) will return the cumulative exponential probability P (X � x ),
which is 0.4512, while EXPONDIST(0.5, 1.2, FALSE) will return the expo-
nential probability density function f (x), which we do not need for any practical
purpose.

No probability function is available for the uniform distribution but the prob-
ability formulas are simple enough to compute manually.

Using MINITAB for Some Standard Distributions
In this section we will demonstrate how we can use MINITAB to obtain the probability
density function or cumulative distribution function of various random variables.

Start by choosing Calc � Probability Distributions from the menu. This option
will display commands that allow you to compute probability densities and cumula-
tive probabilities for continuous and discrete distributions. For example when you
select Calc � Probability Distributions � Binomial, the Binomial Distribution dialog
box will appear. From the items available in the dialog box, you can choose to cal-
culate probabilities or cumulative probabilities. You also need to specify the param-
eters of the binomial distribution, which are number of trials and event probability.
In the input section the values for which you aim to obtain probability densities or
cumulative probabilities are specified. These values can be a constant or a set of val-
ues that have been defined in a column. Then press OK to observe the obtained
result in the Session window. Figure 3–29 shows how MINITAB has been used for
obtaining probability distributions for a binomial distribution with parameters 4
and 0.6. The final result and corresponding session commands are presented in the
session window.
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FIGURE 3–29 Using MINITAB for Generating a Binomial Distribution

Random Variables 135

3–14 Summary and Review of Terms
In this chapter we described several important standard random variables, the asso-
ciated formulas, and problem solving with spreadsheets. In order to use a spread-
sheet template, you need to know which template to use, but first you need to know
the kind of random variable at hand. This summary concentrates on this question.

A discrete random variable X will follow a binomial distribution if it is the
number of successes in n independent Bernoulli trials. Make sure that the probabil-
ity of success, p, remains constant in all trials. X will follow a negative binomial
distribution if it is the number of Bernoulli trials made to achieve a desired number
of successes. It will follow a geometric distribution when the desired number of
successes is one. X will follow a hypergeometric distribution if it is the number of
successes in a random sample drawn from a finite pool of successes and failures. X
will follow a Poisson distribution if it is the number of occurrences of a rare event
during a finite period.

Waiting time for an event that occurs periodically is uniformly distributed.
Waiting time for a rare event is exponentially distributed.

A D D I T I O N A L  P R O B L E M S

3–42. An investment portfolio has equal proportions invested in five stocks.
The expected returns and standard deviations (both in percent per year) are (8, 3),
(5, 2), (12, 8), (7, 9), (14, 15). What are average return and standard deviation for
this portfolio?
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3–43. A graduating student keeps applying for jobs until she has three offers. The
probability of getting an offer at any trial is 0.48.

a. What is the expected number of applications? What is the variance?

b. If she has enough time to complete only six applications, how confident
can she be of getting three offers within the available time?

c. If she wants to be at least 95% confident of getting three offers, how many
applications should she prepare?

d. Suppose she has time for at most six applications. For what minimum
value of p can she still have 95% confidence of getting three offers within
the available time?

3–44. A real estate agent has four houses to sell before the end of the month by
contacting prospective customers one by one. Each customer has an independent
0.24 probability of buying a house on being contacted by the agent.

a. If the agent has enough time to contact only 15 customers, how confident
can she be of selling all four houses within the available time?

b. If the agent wants to be at least 70% confident of selling all the houses
within the available time, at least how many customers should she con-
tact? (If necessary, extend the template downward to more rows.)

c. What minimum value of p will yield 70% confidence of selling all four
houses by contacting at most 15 customers?

d. To answer (c ) above more thoroughly, tabulate the confidence for p values
ranging from 0.2 to 0.6 in steps of 0.05.

3–45. A graduating student keeps applying for jobs until she gets an offer. The
probability of getting an offer at any trial is 0.35.

a. What is the expected number of applications? What is the variance?

b. If she has enough time to complete at most four applications, how confi-
dent can she be of getting an offer within the available time?

c. If she wants to be at least 95% confident of getting an offer, how many
applications should she prepare?

d. Suppose she has time for at most four applications. For what minimum
value of p can she have 95% confidence of getting an offer within the
available time?

3–46. A shipment of pins contains 25 good ones and 2 defective ones. At the
receiving department, an inspector picks three pins at random and tests them. If
any defective pin is found among the three that are tested, the shipment would be
rejected.

a. What is the probability that the shipment would be accepted?

b. To increase the probability of acceptance to at least 90%, it is decided to
do one of the following:

i. Add some good pins to the shipment.

ii. Remove some defective pins in the shipment.

For each of the two options, find out exactly how many pins should be added or
removed.

3–47. A committee of 7 members is to be formed by selecting members at random
from a pool of 14 candidates consisting of 5 women and 9 men.

a. What is the probability that there will be at least three women in the
committee?
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b. It is desired to increase the chance that there are at least three women in
the committee to 80% by doing one of the following:

i. Adding more women to the pool.

ii. Removing some men from the pool.
For each of the two options, find out how many should be added or removed.
3–48. A mainframe computer in a university crashes on the average 0.71 time in a
semester.

a. What is the probability that it will crash at least two times in a given
semester?

b. What is the probability that it will not crash at all in a given semester?
c. The MIS administrator wants to increase the probability of no crash at

all in a semester to at least 90%. What is the largest � that will achieve
this goal?

3–49. The number of rescue calls received by a rescue squad in a city follows a Pois-
son distribution with � � 2.83 per day. The squad can handle at most four calls a day.

a. What is the probability that the squad will be able to handle all the calls
on a particular day?

b. The squad wants to have at least 95% confidence of being able to handle
all the calls received in a day. At least how many calls a day should the
squad be prepared for?

c. Assuming that the squad can handle at most four calls a day, what is the
largest value of � that would yield 95% confidence that the squad can
handle all calls?

3–50. A student takes the campus shuttle bus to reach the classroom building. The
shuttle bus arrives at his stop every 15 minutes but the actual arrival time at the stop
is random. The student allows 10 minutes waiting time for the shuttle in his plan to
make it in time to the class.

a. What is the expected waiting time? What is the variance?
b. What is the probability that the wait will be between four and six minutes?
c. What is the probability that the student will be in time for the class?
d. If he wants to be 95% confident of being on time for the class, how much

time should he allow for waiting for the shuttle?
3–51. A hydraulic press breaks down at the rate of 0.1742 time per day.

a. What is the MTBF?
b. On a given day, what is the probability that it will break down?
c. If four days have passed without a breakdown, what is the probability that

it will break down on the fifth day?
d. What is the probability that five consecutive days will pass without any

breakdown?
3–52. Laptop computers produced by a company have an average life of 38.36
months. Assume that the life of a computer is exponentially distributed (which is a
good assumption).

a. What is the probability that a computer will fail within 12 months?
b. If the company gives a warranty period of 12 months, what proportion of

computers will fail during the warranty period?
c. Based on the answer to (b), would you say the company can afford to give

a warranty period of 12 months?
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p

x

n � 5

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0 0.5905 0.3277 0.1681 0.0778 0.0313 0.0102 0.0024 0.0003 0.0000

1 0.9185 0.7373 0.5282 0.3370 0.1875 0.0870 0.0308 0.0067 0.0005

2 0.9914 0.9421 0.8369 0.6826 0.5000 0.3174 0.1631 0.0579 0.0086

3 0.9995 0.9933 0.9692 0.9130 0.8125 0.6630 0.4718 0.2627 0.0815

4 1.0000 0.9997 0.9976 0.9898 0.9688 0.9222 0.8319 0.6723 0.4095

a. Create the above table.
b. Create a similar table for n � 7.

3–54. Look at the shape of the binomial distribution for various combinations of n
and p. Specifically, let n � 5 and try p � 0.2, 0.5, and 0.8. Repeat the same for other
values of n. Can you say something about how the skewness of the distribution is
affected by p and n?
3–55. Try various values of s and p on the negative binomial distribution template
and answer this question: How is the skewness of the negative binomial distribution
affected by s and p values?
3–56. An MBA graduate keeps interviewing for jobs, one by one, and will stop
interviewing on receiving an offer. In each interview he has an independent proba-
bility 0.2166 of getting the job.

a. What is the expected number of interviews? What is the variance?
b. If there is enough time for only six interviews, how confident can he be

of getting a job within the available time?
c. If he wants to be at least 95% confident of getting a job, how many inter-

views should he be prepared for?
d. Suppose there is enough time for at most six interviews. For what mini-

mum value of p can he have 95% confidence of getting a job within the
available time?

e. In order to answer (d ) more thoroughly, tabulate the confidence level for
p values ranging from 0.1 to 0.5 in steps of 0.05.

3–57. A shipment of thousands of pins contains some percentage of defectives. To
decide whether to accept the shipment, the consumer follows a sampling plan where
80 items are chosen at random from the sample and tested. If the number of defec-
tives in the sample is at most three, the shipment is accepted. (The number 3 is
known as the acceptance number of the sampling plan.)

a. Assuming that the shipment includes 3% defectives, what is the pro-
bability that the shipment will be accepted? (Hint: Use the binomial
distribution.)

b. Assuming that the shipment includes 6% defectives, what is the probabil-
ity that the shipment will be accepted?

d. If the company wants not more than 5% of the computers to fail during
the warranty period, what should be the warranty period?

e. If the company wants to give a warranty period of three months and
still wants not more than 5% of the computers to fail during the
warranty period, what should be the minimum average life of the
computers?

3–53. In most statistics textbooks, you will find cumulative binomial probability
tables in the format shown below. These can be created using spreadsheets using the
Binomial template and Data|Table commands.
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c. Using the Data|Table command, tabulate the probability of acceptance
for defective percentage ranging from 0% to 15% in steps of 1%.

d. Plot a line graph of the table created in (c ). (This graph is known as the
operating characteristic curve of the sampling plan.)

3–58. A shipment of 100 pins contains some defectives. To decide whether to
accept the shipment, the consumer follows a sampling plan where 15 items are cho-
sen at random from the sample and tested. If the number of defectives in the sample
is at most one, the shipment is accepted. (The number 1 is known as the acceptance
number of the sampling plan.)

a. Assuming that the shipment includes 5% defectives, what is the probabil-
ity that the shipment will be accepted? (Hint: Use the hypergeometric
distribution.)

b. Assuming that the shipment includes 8% defectives, what is the probability
that the shipment will be accepted?

c. Using the Data|Table command, tabulate the probability of acceptance
for defective percentage ranging from 0% to 15% in steps of 1%.

d. Plot a line graph of the table created in part (c ) above. (This graph is
known as the operating characteristic curve of the sampling plan.)

3–59. A recent study published in the Toronto Globe and Mail reveals that 25% of
mathematics degrees from Canadian universities and colleges are awarded to women.
If five recent graduates from Canadian universities and colleges are selected at
random, what is the probability that

a. At least one would be a woman.

b. None of them would be a woman.

3–60. An article published in Access magazine states that according to a survey con-
ducted by the American Management Association, 78% of major U.S. companies
electronically monitor their employees. If five such companies are selected at ran-
dom, find the probability that

a. At most one company monitors its employees electronically.

b. All of them monitor their employees electronically.

3–61. An article published in BusinessWeek says that according to a survey by a lead-
ing organization 45% of managers change jobs for intellectual challenge, 35% for pay,
and 20% for long-term impact on career. If nine managers who recently changed jobs
are randomly chosen, what is the probability that

a. Three changed for intellectual challenges.

b. Three changed for pay reasons.

c. Three changed for long-term impact.

3–62. Estimates published by the World Health Organization state that one out of
every three workers may be toiling away in workplaces that make them sick. If seven
workers are selected at random, what is the probability that a majority of them are
made sick by their workplace?

3–63. Based on the survey conducted by a municipal administration in the
Netherlands, Monday appeared to be managements’ preferred day for laying off
workers. Of the total number of workers laid off in a given period, 30% were on
Monday, 25% on Tuesday, 20% on Wednesday, 13% on Thursday, and 12% on Friday.
If a random sample of 15 layoffs is taken, what is the probability that

a. Five were laid off on Monday.

b. Four were laid off on Tuesday.
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c. Three were laid off on Wednesday.

d. Two were laid off on Thursday.

e. One was laid off on Friday.
3–64. A recent survey published in BusinessWeek concludes that Gatorade commands
an 83% share of the sports drink market versus 11% for Coca-Cola’s PowerAde and 3%
for Pepsi’s All Sport. A market research firm wants to conduct a new taste test for which
it needs Gatorade drinkers. Potential participants for the test are selected by random
screening of drink users to find Gatorade drinkers. What is the probability that

a. The first randomly selected drinker qualifies.
b. Three soft drink users will have to be interviewed to find the first

Gatorade drinker.
3–65. The time between customer arrivals at a bank has an exponential distribution
with a mean time between arrivals of three minutes. If a customer just arrived, what
is the probability that another customer will not arrive for at least two minutes?
3–66. Lightbulbs manufactured by a particular company have an exponentially
distributed life with mean 100 hours.

a. What is the probability that the lightbulb I am now putting in will last at
least 65 hours?

b. What is the standard deviation of the lifetime of a lightbulb?

3–67. The Bombay Company offers reproductions of classic 18th- and 19th-century
English furniture pieces, which have become popular in recent years. The following
table gives the probability distribution of the number of Raffles tables sold per day at
a particular Bombay store.

Number of Tables Probability

0 0.05

1 0.05

2 0.10

3 0.15

4 0.20

5 0.15

6 0.15

7 0.10

8 0.05

a. Show that the probabilities above form a proper probability distribution.
b. Find the cumulative distribution function of the number of Raffles tables

sold daily.
c. Using the cumulative distribution function, find the probability that the

number of tables sold in a given day will be at least three and less than seven.
d. Find the probability that at most five tables will be sold tomorrow.
e. What is the expected number of tables sold per day?
f. Find the variance and the standard deviation of the number of tables sold

per day.
g. Use Chebyshev’s theorem to determine bounds of at least 0.75 probability

on the number of tables sold daily. Compare with the actual probability
for these bounds using the distribution itself.

3–68. According to an article in USA Today, 90% of Americans will suffer from high
blood pressure as they age. Out of 20 randomly chosen people what is the probability
that at most 3 will suffer from high blood pressure?
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3–69. The number of orders for installation of a computer information system
arriving at an agency per week is a random variable X with the following probability
distribution:

x P(x)

0 0.10

1 0.20

2 0.30

3 0.15

4 0.15

5 0.05

6 0.05

a. Prove that P (X ) is a probability distribution.
b. Find the cumulative distribution function of X.
c. Use the cumulative distribution function to find probabilities P (2 � X 	 5),

P (3 	 X 	 6), and P (X 
 4).
d. What is the probability that either four or five orders will arrive in a given

week?
e. Assuming independence of weekly orders, what is the probability that

three orders will arrive next week and the same number of orders the fol-
lowing week?

f. Find the mean and the standard deviation of the number of weekly orders.
3–70. Consider the situation in the previous problem, and assume that the distribu-
tion holds for all weeks throughout the year and that weekly orders are independent
from week to week. Let Y denote the number of weeks in the year in which no orders
are received (assume a year of 52 weeks).

a. What kind of random variable is Y? Explain.
b. What is the expected number of weeks with no orders?

3–71. An analyst kept track of the daily price quotation for a given stock. The fre-
quency data led to the following probability distribution of daily stock price:

Price x in Dollars P(x)

17 0.05

17.125 0.05

17.25 0.10

17.375 0.15

17.5 0.20

17.625 0.15

17.75 0.10

17.875 0.05

18 0.05

18.125 0.05

18.25 0.05

Assume that the stock price is independent from day to day.
a. If 100 shares are bought today at 17 1�4 and must be sold tomorrow, by pre-

arranged order, what is the expected profit, disregarding transaction costs?
b. What is the standard deviation of the stock price? How useful is this

information?
c. What are the limitations of the analysis in part (a)? Explain.

3–72. In problem 3–69, suppose that the company makes $1,200 on each order but
has to pay a fixed weekly cost of $1,750. Find the expected weekly profit and the
standard deviation of weekly profits.
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3–73. Out of 140 million cellular telephone subscribers in the United States, 36 mil-
lion use Verizon.6

a. Ten wireless customers are chosen. Under what conditions is the number
of Verizon customers a binomial random variable?

b. Making the required assumptions above, find the probability that at least
two are Verizon customers.

3–74. An advertisement claims that two out of five doctors recommend a certain
pharmaceutical product. A random sample of 20 doctors is selected, and it is found
that only 2 of them recommend the product.

a. Assuming the advertising claim is true, what is the probability of the
observed event?

b. Assuming the claim is true, what is the probability of observing two or
fewer successes?

c. Given the sampling results, do you believe the advertisement? Explain.
d. What is the expected number of successes in a sample of 20?

3–75. Five percent of the many cars produced at a plant are defective. Ten cars
made at the plant are sent to a dealership. Let X be the number of defective cars in
the shipment.

a. Under what conditions can we assume that X is a binomial random variable?
b. Making the required assumptions, write the probability distribution of X.
c. What is the probability that two or more cars are defective?
d. What is the expected number of defective cars?

3–76. Refer to the situation in the previous problem. Suppose that the cars at the
plant are checked one by one, and let X be the number of cars checked until the first
defective car is found. What type of probability distribution does X have?
3–77. Suppose that 5 of a total of 20 company accounts are in error. An auditor selects
a random sample of 5 out of the 20 accounts. Let X be the number of accounts in the
sample that are in error. Is X binomial? If not, what distribution does it have? Explain.
3–78. The time, in minutes, necessary to perform a certain task has the uniform
[5, 9] distribution.

a. Write the probability density function of this random variable.
b. What is the probability that the task will be performed in less than 8 min-

utes? Explain.
c. What is the expected time required to perform the task?

3–79. Suppose X has the following probability density function:

a. Graph the density function.
b. Show that f (x) is a density function.
c. What is the probability that X is greater than 5.00?

3–80. Recently, the head of the Federal Deposit Insurance Corporation (FDIC)
revealed that the agency maintains a secret list of banks suspected of being in finan-
cial trouble. The FDIC chief further stated that of the nation’s 14,000 banks, 1,600
were on the list at the time. Suppose that, in an effort to diversify your savings, you
randomly choose six banks and split your savings among them. What is the proba-
bility that no more than three of your banks are on the FDIC’s suspect list?

f (x) = b (1>8)(x - 3)
0

for 3 … x … 7
otherwise
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3–81. Corporate raider Asher Adelman, teaching a course at Columbia University’s
School of Business, made the following proposal to his students. He would pay
$100,000 to any student who would give him the name of an undervalued company,
which Adelman would then buy.7 Suppose that Adelman has 15 students in his class
and that 5% of all companies in this country are undervalued. Suppose also that due
to liquidity problems, Adelman can give the award to at most three students. Finally,
suppose each student chooses a single company at random without consulting others.
What is the probability that Adelman would be able to make good on his promise?
3–82. An applicant for a faculty position at a certain university is told by the depart-
ment chair that she has a 0.95 probability of being invited for an interview. Once
invited for an interview, the applicant must make a presentation and win the votes of
a majority (at least 8) of the department’s 14 current members. From previous meet-
ings with four of these members, the candidate believes that three of them would cer-
tainly vote for her while one would not. She also feels that any member she has not
yet met has a 0.50 probability of voting for her. Department members are expected
to vote independently and with no prior consultation. What are the candidate’s
chances of getting the position?
3–83. The ratings of viewership for the three major networks during prime time recently
were as follows. Also shown is the proportion of viewers watching each program.

Program Network Rating Proportion

20/20 ABC 13.8 0.44

CSI CBS 10.4 0.33

Law and Order NBC 7.5 0.23

a. What is the mean rating given a program that evening?
b. How many standard deviations above or below the mean is the rating for

each one of the programs?
3–84. A major ski resort in the eastern United States closes in late May. Closing day
varies from year to year depending on when the weather becomes too warm for mak-
ing and preserving snow. The day in May and the number of years in which closing
occurred that day are reported in the table:

Day Number of Years

21 2

22 5

23 1

24 3

25 3

26 1

27 2

28 1

a. Based only on this information, estimate the probability that you could ski
at this resort after May 25 next year.

b. What is the average closing day based on history?
3–85. Ten percent of the items produced at a plant are defective. A random sample
of 20 items is selected. What is the probability that more than three items in the sam-
ple are defective? If items are selected randomly until the first defective item is
encountered, how many items, on average, will have to be sampled before the first
defective item is found?
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3–86. Lee Iacocca volunteered to drive one of his Chryslers into a brick wall to
demonstrate the effectiveness of airbags used in these cars. Airbags are known to acti-
vate at random when the car decelerates anywhere from 9 to 14 miles per hour per
second (mph/s). The probability distribution for the deceleration speed at which bags
activate is given below.

mph/s Probability

9 0.12

10 0.23

11 0.34

12 0.21

13 0.06

14 0.04

a. If the airbag activates at a deceleration of 12 mph/s or more, Iacocca
would get hurt. What is the probability of his being hurt in this demon-
stration?

b. What is the mean deceleration at airbag activation moment?
c. What is the standard deviation of deceleration at airbag activation time?

3–87. In the previous problem, the time that it takes the airbag to completely fill up
from the moment of activation has an exponential distribution with mean 1 second.
What is the probability that the airbag will fill up in less than 1�2 second?
3–88. The time interval between two successive customers entering a store in a mall
is exponentially distributed with a mean of 6.55 seconds.

a. What is the probability that the time interval is more than 10 seconds?
b. What is the probability that the time interval is between 10 and 20

seconds?
c. On a particular day a security camera is installed. Using an entry sensor,

the camera takes pictures of every customer entering the shop. It needs
0.75 second after a picture is taken to get ready for the next picture. What
is the probability that the camera will miss an entering customer?

d. How quick should the camera be if the store owner wants to photograph
at least 95% of entering customers?

3–89. The Dutch consumer-electronics giant, Philips, is protected against takeovers
by a unique corporate voting structure that gives power only to a few trusted share-
holders. A decision of whether to sever Philips’ links with the loss-producing German
electronics firm Grundig had to be made. The decision required a simple majority of
nine decision-making shareholders. If each is believed to have a 0.25 probability of
voting yes on the issue, what is the probability that Grundig will be dumped?
3–90. According to a front-page article in The Wall Street Journal, 30% of all stu-
dents in American universities miss classes due to drinking.8 If 10 students are
randomly chosen, what is the probability that at most 3 of them miss classes due to
drinking?
3–91. According to an article in USA Today, 60% of 7- to 12-year-olds who use the
Internet do their schoolwork on line.9 If 8 kids within this age group who use the
Internet are randomly chosen, what is the probability that 2 of them do their school-
work on line? What is the probability that no more than 5 of them do their school-
work on line?
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Hedge funds are institutions that invest in a wide
variety of instruments, from stocks and bonds
to commodities and real estate. One of the rea-

sons for the success of this industry is that it manages
expected return and risk better than other financial
institutions. Using the concepts and ideas described

in this chapter, discuss how a hedge fund might maxi-
mize expected return and minimize risk by investing
in various financial instruments. Include in your dis-
cussion the concepts of means and variances of linear
composites of random variables and the concept of
independence.

CASE 3 Concepts Testing

3–92. The cafeteria in a building offers three different lunches. The demands for
the three types of lunch on any given day are independent and Poisson distributed
with means 4.85, 12.70, and 27.61. The cost of the three types are $12.00, $8.50, and
$6.00, respectively. Find the expected value and variance of the total cost of lunches
bought on a particular day.
3–93. The mean time between failures (MTBF) of a hydraulic press is to be esti-
mated assuming that the time between failures (TBF) is exponentially distributed. A
foreman observes that the chance that the TBF is more than 72 hours is 50%, and he
quotes 72 hours as the MTBF.

a. Is the foreman right? If not, what is the MTBF?
b. If the MTBF is indeed 72 hours, 50% of the time the TBF will be more

than how many hours?
c. Why is the mean of an exponential distribution larger than its median?

3–94. An operator needs to produce 4 pins and 6 shafts using a lathe which has 72%
chance of producing a defect-free pin at each trial and 65% chance of producing a
defect-free shaft at each trial. The operator will first produce pins one by one until he
has 4 defect-free pins and then produce shafts one by one until he has 6 defect-free
shafts.

a. What is the expected value and variance of the total number of trials that
the operator will make?

b. Suppose each trial for pins takes 12 minutes and each trial for shafts takes
25 minutes. What is the expected value and variance of the total time
required?
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4
After studying this chapter, you should be able to:

• Identify when a random variable will be normally distributed.
• Use the properties of the normal distribution.
• Explain the significance of the standard normal distribution.
• Compute probabilities using normal distribution tables.
• Transform a normal distribution into a standard normal

distribution.
• Convert a binomial distribution into an approximated normal

distribution.
• Solve normal distribution problems using spreadsheet

templates.

THE NORMAL DISTRIBUTION

1
1
1
1
1
1
1

1 1 1 1 1
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In equation 4–1, e is the natural base logarithm, equal to 2.71828 . . . By substituting
desired values for � and �, we can get any desired density function. For example, a
distribution with mean 100 and standard deviation 5 will have the density function

f (x) � (4–2)
122�5

e - 1
2 ( x - 100

5 )2
-q 6 x 6 +q

FIGURE 4–1 A Normal Distribution with Mean 100 and Standard Deviation 5

This function is plotted in Figure 4–1. This is the famous bell-shaped normal curve.
Over the years, many mathematicians have worked on the mathematics behind

the normal distribution and have made many independent discoveries. The discovery

f (x) � (4–1)
122��

e - 1
2 ( x -�

� )2
-q 6 x 6 +q

9085 95 100 105 110 115

The normal distribution is an important con-
tinuous distribution because a good number of
random variables occurring in practice can be
approximated to it. If a random variable is affected

by many independent causes, and the effect of each cause is not overwhelmingly large compared
to other effects, then the random variable will closely follow a normal distribution. The lengths
of pins made by an automatic machine, the times taken by an assembly worker to
complete the assigned task repeatedly, the weights of baseballs, the tensile strengths
of a batch of bolts, and the volumes of soup in a particular brand of canned soup are
good examples of normally distributed random variables. All of these are affected by
several independent causes where the effect of each cause is small. For example, the
length of a pin is affected by many independent causes such as vibrations, tempera-
ture, wear and tear on the machine, and raw material properties.

Additionally, in the next chapter, on sampling theory, we shall see that many of
the sample statistics are normally distributed.

For a normal distribution with mean � and standard deviation �, the probability
density function f (x) is given by the complicated formula

1 1 1 1 1

1
1
1
1
1

4–1 Using Statistics
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of equation 4–1 for the normal density function is attributed to Carl Friedrich Gauss
(1777–1855), who did much work with the formula. In science books, this distribution
is often called the Gaussian distribution. But the formula was first discovered by the
French-born English mathematician Abraham De Moivre (1667–1754). Unfortunately
for him, his discovery was not discovered until 1924.

As seen in Figure 4–1, the normal distribution is symmetric about its mean. It has
a (relative) kurtosis of 0, which means it has average peakedness. The curve reaches its
peak at the mean of 100, and therefore its mode is 100. Due to symmetry, its median
is 100 too. In the figure the curve seems to touch the horizontal axis at 85 on the left
and at 115 on the right; these points are 3 standard deviations away from the center on
either side. Theoretically, the curve never touches the horizontal axis and extends to
infinity on both sides.

If X is normally distributed with mean � and variance �2, we write X � N(�, �2).
If the mean is 100 and the variance is 9, we write X � N(100, 32). Note how the vari-
ance is written. By writing 9 as 32, we explicitly show that the standard deviation
is 3. Figure 4–2 shows three normal distributions: X � N(50, 22); Y � N(50, 52);
W � N(60, 22). Note their shapes and positions.

4–2 Properties of the Normal Distribution
There is a remarkable property possessed only by the normal distribution:

If several independent random variables are normally distributed, then their
sum will also be normally distributed. The mean of the sum will be the sum
of all the individual means, and by virtue of the independence, the vari-
ance of the sum will be the sum of all the individual variances.

We can write this in algebraic form as

If X1, X2, . . . , Xn are independent random variables that are normally dis-
tributed, then their sum S will also be normally distributed with

E(S) � E(X1) � E(X2) � � � � � E(Xn)

and

V(S) � V(X1) � V(X2) � � � � � V(Xn)

FIGURE 4–2 Three Normal Distributions
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The weight of a module used in a spacecraft is to be closely controlled. Since the
module uses a bolt-nut-washer assembly in numerous places, a study was conducted
to find the distribution of the weights of these parts. It was found that the three
weights, in grams, are normally distributed with the following means and variances:

Mean Variance

Bolt 312.8 2.67

Nut 53.2 0.85

Washer 17.5 0.21

Find the distribution of the weight of the assembly. Report the mean, variance, and
standard deviation of the weight.

The weight of the assembly is the sum of the weights of the three component parts,
which are three normal random variables. Furthermore, the individual weights are
independent since the weight of any one component part does not influence the
weight of the other two. Therefore, the weight of the assembly will be normally
distributed.

The mean weight of the assembly will be the sum of the mean weights of the
individual parts: 312.8 � 53.2 � 17.5 � 383.5 grams.

The variance will be the sum of the individual variances: 2.67 � 0.85 � 0.21 �
3.73 gram2.

The standard deviation � � 1.93 grams.13.73

Another interesting property of the normal distribution is that if X is normally
distributed, then aX � b will also be normally distributed with mean aE (X ) � b and
variance a 2V (X ). For example, if X is normally distributed with mean 10 and vari-
ance 3, then 4X � 5 will be normally distributed with mean 4 * 10 � 5 � 45 and
variance 42 * 3 � 48.

E X A M P L E  4 – 2

S o l u t i o n

Note that it is the variances that can be added as in the preceding box, and not the
standard deviations. We will never have an occasion to add standard deviations.

We see intuitively that the sum of many normal random variables will also be
normally distributed, because the sum is affected by many independent individual
causes, namely, those causes that affect each of the original random variables.

Let us see the application of this result through a few examples.

Let X1, X2, and X3 be independent random variables that are normally distributed
with means and variances as follows:

Mean Variance

X1 10 1

X2 20 2

X3 30 3

Find the distribution of the sum S � X1 � X2 � X3. Report the mean, variance, and
standard deviation of S.

The sum S will be normally distributed with mean 10 � 20 � 30 � 60 and variance
1 � 2 � 3 � 6. The standard deviation of S � � 2.45.16

E X A M P L E  4 – 1

S o l u t i o n
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We can combine the above two properties and make the following statement:

150 Chapter 4

If X1, X2, . . . , Xn are independent random variables that are normally dis-
tributed, then the random variable Q defined as Q � a1X1 � a2X2 � � � � �
anXn � b will also be normally distributed with

E(Q) � a1E(X1) � a2E(X2) � � � � � anE(Xn) � b

and
V(Q) � a1

2V(X1) � a2
2V(X2) � � � � � an

2V(Xn)

The application of this result is illustrated in the following sample problems.

E (Q ) � 12 � 2(�5 ) � 3(8) � 4(10) � 5 � 12 � 10 � 24 � 40 � 5 � 11
V (Q ) � 4 � (�2)2 (2) � 32 (5) � (�4)2 (1) � 4 � 8 � 45 � 16 � 73

SD(Q ) � � 8.544273

The four independent normal random variables X1, X2, X3, and X4 have the following
means and variances:

Mean Variance

X1 12 4

X2 �5 2

X3 8 5

X4 10 1

Find the mean and variance of Q � X1 � 2X2 � 3X3 � 4X4 � 5. Find also the standard
deviation of Q.

S o l u t i o n

E X A M P L E  4 – 3

E (Q ) � 12 � 45.75 � 5.8 � 62.35 � 184.50 � $1095.13
V (Q ) � 122 � 1.802 � 5.82 � 2.522 � 680.19

SD(Q ) � � $26.082680.19

A cost accountant needs to forecast the unit cost of a product for next year. He notes
that each unit of the product requires 12 hours of labor and 5.8 pounds of raw mate-
rial. In addition, each unit of the product is assigned an overhead cost of $184.50. He
estimates that the cost of an hour of labor next year will be normally distributed with
an expected value of $45.75 and a standard deviation of $1.80; the cost of the raw
material will be normally distributed with an expected value of $62.35 and a stan-
dard deviation of $2.52. Find the distribution of the unit cost of the product. Report
its expected value, variance, and standard deviation.

S o l u t i o n

E X A M P L E  4 – 4

Let L be the cost of labor and M be the cost of the raw material. Denote the unit cost
of the product by Q. Then Q � 12L � 5.8M � 184.50. Since the cost of labor L may
not influence the cost of raw material M, we can assume that the two are independent.
This makes the unit cost of the product Q a normal random variable. Then
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FIGURE 4–3 The Standard Normal Density Function

z

f(z)

� 0

�1

�

�

We define the table area as

TA � F(z) � 0.5 (4–4)

Z � N(0, 12) (4–3)

4–3 The Standard Normal Distribution
Since, as noted earlier, infinitely many normal random variables are possible, one is
selected to serve as our standard. Probabilities associated with values of this standard
normal random variable are tabulated. A special transformation then allows us to
apply the tabulated probabilities to any normal random variable. The standard
normal random variable has a special name, Z (rather than the general name X we
use for other random variables).

We define the standard normal random variable Z as the normal random
variable with mean � � 0 and standard deviation � � 1.

In the notation established in the previous section, we say

The Normal Distribution 151

Since 12 � 1, we may drop the superscript 2 as no confusion of the standard deviation
and the variance is possible. A graph of the standard normal density function is given
in Figure 4–3.

Finding Probabilities of the Standard Normal Distribution
Probabilities of intervals are areas under the density f (z ) over the intervals in question.
From the range of values in equation 4–1, �� � x � �, we see that any normal ran-
dom variable is defined over the entire real line. Thus, the intervals in which we will
be interested are sometimes semi-infinite intervals, such as a to � or �� to b (where
a and b are numbers). While such intervals have infinite length, the probabilities
associated with them are finite; they are, in fact, no greater than 1.00, as required of all
probabilities. The reason for this is that the area in either of the “tails” of the distribu-
tion (the two narrow ends of the distribution, extending toward �� and ��) becomes
very small very quickly as we move away from the center of the distribution.

Tabulated areas under the standard normal density are probabilities of intervals
extending from the mean � � 0 to points z to its right. Table 2 in Appendix C gives
areas under the standard normal curve between 0 and points z 
 0. The total area
under the normal curve is equal to 1.00, and since the curve is symmetric, the area
from 0 to �� is equal to 0.5. The table area associated with a point z is thus equal to
the value of the cumulative distribution function F (z ) minus 0.5.
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FIGURE 4–4 The Table Area TA for a Point z of the Standard Normal Distribution

TA

0 z

The area given in the standard normal probability
table is the area under the curve between 0 and a
given point z

TABLE 4–1 Standard Normal Probabilities

z .00 .01 .02 .03 .04 .05 .06 .07 .08 .09

0.0 .0000 .0040 .0080 .0120 .0160 .0199 .0239 .0279 .0319 .0359
0.1 .0398 .0438 .0478 .0517 .0557 .0596 .0636 .0675 .0714 .0753
0.2 .0793 .0832 .0871 .0910 .0948 .0987 .1026 .1064 .1103 .1141
0.3 .1179 .1217 .1255 .1293 .1331 .1368 .1406 .1443 .1480 .1517
0.4 .1554 .1591 .1628 .1664 .1700 .1736 .1772 .1808 .1844 .1879
0.5 .1915 .1950 .1985 .2019 .2054 .2088 .2123 .2157 .2190 .2224

0.6 .2257 .2291 .2324 .2357 .2389 .2422 .2454 .2486 .2517 .2549
0.7 .2580 .2611 .2642 .2673 .2704 .2734 .2764 .2794 .2823 .2852
0.8 .2881 .2910 .2939 .2967 .2995 .3023 .3051 .3078 .3106 .3133
0.9 .3159 .3186 .3212 .3238 .3264 .3289 .3315 .3340 .3365 .3389
1.0 .3413 .3438 .3461 .3485 .3508 .3531 .3554 .3577 .3599 .3621

1.1 .3643 .3665 .3686 .3708 .3729 .3749 .3770 .3790 .3810 .3830
1.2 .3849 .3869 .3888 .3907 .3925 .3944 .3962 .3980 .3997 .4015
1.3 .4032 .4049 .4066 .4082 .4099 .4115 .4131 .4147 .4162 .4177
1.4 .4192 .4207 .4222 .4236 .4251 .4265 .4279 .4292 .4306 .4319
1.5 .4332 .4345 .4357 .4370 .4382 .4394 .4406 .4418 .4429 .4441

1.6 .4452 .4463 .4474 .4484 .4495 .4505 .4515 .4525 .4535 .4545
1.7 .4554 .4564 .4573 .4582 .4591 .4599 .4608 .4616 .4625 .4633
1.8 .4641 .4649 .4656 .4664 .4671 .4678 .4686 .4693 .4699 .4706
1.9 .4713 .4719 .4726 .4732 .4738 .4744 .4750 .4756 .4761 .4767
2.0 .4772 .4778 .4783 .4788 .4793 .4798 .4803 .4808 .4812 .4817

2.1 .4821 .4826 .4830 .4834 .4838 .4842 .4846 .4850 .4854 .4857
2.2 .4861 .4864 .4868 .4871 .4875 .4878 .4881 .4884 .4887 .4890
2.3 .4893 .4896 .4898 .4901 .4904 .4906 .4909 .4911 .4913 .4916
2.4 .4918 .4920 .4922 .4925 .4927 .4929 .4931 .4932 .4934 .4936
2.5 .4938 .4940 .4941 .4943 .4945 .4946 .4948 .4949 .4951 .4952

2.6 .4953 .4955 .4956 .4957 .4959 .4960 .4961 .4962 .4963 .4964
2.7 .4965 .4966 .4967 .4968 .4969 .4970 .4971 .4972 .4973 .4974
2.8 .4974 .4975 .4976 .4977 .4977 .4978 .4979 .4979 .4980 .4981
2.9 .4981 .4982 .4982 .4983 .4984 .4984 .4985 .4985 .4986 .4986
3.0 .4987 .4987 .4987 .4988 .4988 .4989 .4989 .4989 .4990 .4990

The table area TA is shown in Figure 4–4. Part of Table 2 is reproduced here as
Table 4–1. Let us see how the table is used in obtaining probabilities for the stan-
dard normal random variable. In the following examples, refer to Figure 4–4 and
Table 4–1.
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FIGURE 4–5 Finding the Probability That Z Is Less Than �2.47

Table area for 2.47

                   0              2.47

Area to the left of – 2.47

– 2.47
z

FIGURE 4–6 Finding the Probability That Z Is between 1 and 2

z
                      0      1      2

P (Z � �2.47) � P (Z 
 2.47) � 0.5000 � 0.4932 � 0.0068

1. Let us find the probability that the value of the standard normal random
variable will be between 0 and 1.56. That is, we want P (0 � Z � 1.56). In
Figure 4–4, substitute 1.56 for the point z on the graph. We are looking for the
table area in the row labeled 1.5 and the column labeled 0.06. In the table, we
find the probability 0.4406.

2. Let us find the probability that Z will be less than �2.47. Figure 4–5 shows the
required area for the probability P (Z � �2.47). By the symmetry of the normal
curve, the area to the left of �2.47 is exactly equal to the area to the right of 2.47.
We find

The Normal Distribution 153

3. Find P (1 � Z � 2). The required probability is the area under the curve
between the two points 1 and 2. This area is shown in Figure 4–6. The table
gives us the area under the curve between 0 and 1, and the area under the
curve between 0 and 2. Areas are additive; therefore, P (1 � Z � 2) � TA(for
2.00) � TA(for 1.00) � 0.4772 � 0.3413 � 0.1359.

In cases where we need probabilities based on values with greater than second-
decimal accuracy, we may use a linear interpolation between two probabilities
obtained from the table. For example, P (0 	 Z 	 1.645) is found as the midpoint
between the two probabilities P (0 	 Z 	 1.64) and P (0 	 Z 	 1.65). This is found,
using the table, as the midpoint of 0.4495 and 0.4505, which is 0.45. If even greater
accuracy is required, we may use computer programs designed to produce standard
normal probabilities.

Finding Values of Z Given a Probability
In many situations, instead of finding the probability that a standard normal random
variable will be within a given interval, we may be interested in the reverse: finding
an interval with a given probability. Consider the following examples.
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FIGURE 4–7 Using the Normal Table to Find a Value, Given a Probability

z .00 .01 .02 .03 .04 .05 .06 .07 .08 .09

0.0 .0000 .0040 .0080 .0120 .0160 .0199 .0239 .0279 .0319 .0359

0.1 .0398 .0438 .0478 .0517 .0557 .0596 .0636 .0675 .0714 .0753

0.2 .0793 .0832 .0871 .0910 .0948 .0987 .1026 .1064 .1103 .1141

0.3 .1179 .1217 .1255 .1293 .1331 .1368 .1406 .1443 .1480 .1517

0.4 .1554 .1591 .1628 .1664 .1700 .1736 .1772 .1808 .1844 .1879

0.5 .1915 .1950 .1985 .2019 .2054 .2088 .2123 .2157 .2190 .2224

0.6 .2257 .2291 .2324 .2357 .2389 .2422 .2454 .2486 .2517 .2549

0.7 .2580 .2611 .2642 .2673 .2704 .2734 .2764 .2794 .2823 .2852

0.8 .2881 .2910 .2939 .2967 .2995 .3023 .3051 .3078 .3106 .3133

0.9 .3159 .3186 .3212 .3238 .3264 .3289 .3315 .3340 .3365 .3389

1.0 .3413 .3438 .3461 .3485 .3508 .3531 .3554 .3577 .3599 .3621

1.1 .3643 .3665 .3686 .3708 .3729 .3749 .3770 .3790 .3810 .3830

1.2 .3849 .3869 .3888 .3907 .3925 .3944 .3962 .3980 .4015

1.3 .4032 .4049 .4066 .4082 .4099 .4115 .4131 .4147 .4162 .4177

1.4 .4192 .4207 .4222 .4236 .4251 .4265 .4279 .4292 .4306 .4319

1.5 .4332 .4345 .4357 .4370 .4382 .4394 .4406 .4418 .4429 .4441

.3997

⎯
→

⎯→

FIGURE 4–8 Finding z Such That P(Z 	 z) � 0.9

z
                   0     1.28

Area = 0.9

1. Find a value z of the standard normal random variable such that the probability
that the random variable will have a value between 0 and z is 0.40. We look
inside the table for the value closest to 0.40; we do this by searching through the
values inside the table, noting that they increase from 0 to numbers close to
0.5000 as we go down b the columns and across the rows. The closest value we
find to 0.40 is the table area .3997. This value corresponds to 1.28 (row 1.2 and
column .08). This is illustrated in Figure 4–7.

2. Find the value of the standard normal random variable that cuts off an area of
0.90 to its left. Here, we reason as follows: Since the area to the left of the given
point z is greater than 0.50, z must be on the right side of 0. Furthermore, the area to
the left of 0 all the way to �� is equal to 0.5. Therefore, TA � 0.9 � 0.5 � 0.4.
We need to find the point z such that TA � 0.4. We know the answer from the
preceding example: z � 1.28. This is shown in Figure 4–8.

3. Find a 0.99 probability interval, symmetric about 0, for the standard normal
random variable. The required area between the two z values that are equidistant
from 0 on either side is 0.99. Therefore, the area under the curve between 0
and the positive z value is TA � 0.99�2 � 0.495. We now look in our normal
probability table for the area closest to 0.495. The area 0.495 lies exactly
between the two areas 0.4949 and 0.4951, corresponding to z � 2.57 and 
z � 2.58. Therefore, a simple linear interpolation between the two values gives
us z � 2.575. This is correct to within the accuracy of the linear interpolation.
The answer, therefore, is z � � 2.575. This is shown in Figure 4–9.
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4–1. Find the following probabilities: P (�1 � Z � 1), P (�1.96 � Z � 1.96),
P (�2.33 � Z � 2.33).
4–2. What is the probability that a standard normal random variable will be between
the values �2 and 1?
4–3. Find the probability that a standard normal random variable will have a value
between �0.89 and �2.50.
4–4. Find the probability that a standard normal random variable will have a value
greater than 3.02.
4–5. Find the probability that a standard normal random variable will be between
2 and 3.
4–6. Find the probability that a standard normal random variable will have a value
less than or equal to �2.5.
4–7. Find the probability that a standard normal random variable will be greater in
value than �2.33.
4–8. Find the probability that a standard normal random variable will have a value
between �2 and 300.
4–9. Find the probability that a standard normal variable will have a value less
than �10.
4–10. Find the probability that a standard normal random variable will be between
�0.01 and 0.05.
4–11. A sensitive measuring device is calibrated so that errors in the measurements
it provides are normally distributed with mean 0 and variance 1.00. Find the proba-
bility that a given error will be between �2 and 2.
4–12. Find two values defining tails of the normal distribution with an area of
0.05 each.
4–13. Is it likely that a standard normal random variable will have a value less than
�4? Explain.
4–14. Find a value such that the probability that the standard normal random
variable will be above it is 0.85.
4–15. Find a value of the standard normal random variable cutting off an area
of 0.685 to its left.
4–16. Find a value of the standard normal random variable cutting off an area of
0.50 to its right. (Do you need the table for this probability? Explain.)
4–17. Find z such that P (Z 
 z) � 0.12.
4–18. Find two values, equidistant from 0 on either side, such that the probability
that a standard normal random variable will be between them is 0.40.

P R O B L E M S

Area = 0.99

– 2.575 0 2.575
z

FIGURE 4–9 A Symmetric 0.99 Probability Interval about 0 for a 
Standard Normal Random Variable
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The transformation of X to Z:

(4–5)Z =
X - �

�

z

x

�10

1.0

Z

X –
Subtraction

Transformation

Division by 

X

 = 50

50 units
0 50

�

�

�

�

FIGURE 4–10 Transforming a Normal Random Variable with Mean 50 and 
Standard Deviation 10 into the Standard Normal Random Variable

4–19. Find two values of the standard normal random variable, z and �z , such that
P (�z � Z � z ) � 0.95.
4–20. Find two values of the standard normal random variable, z and �z , such that
the two corresponding tail areas of the distribution (the area to the right of z and the
area to the left of �z ) add to 0.01.
4–21. The deviation of a magnetic needle from the magnetic pole in a certain area
in northern Canada is a normally distributed random variable with mean 0 and stan-
dard deviation 1.00. What is the probability that the absolute value of the deviation
from the north pole at a given moment will be more than 2.4?

4–4 The Transformation of Normal Random Variables
The importance of the standard normal distribution derives from the fact that any nor-
mal random variable may be transformed to the standard normal random variable.
We want to transform X , where X � N(�, �2), into the standard normal random variable
Z � N(0, 12). Look at Figure 4–10. Here we have a normal random variable X with
mean � � 50 and standard deviation � � 10. We want to transform this random vari-
able to a normal random variable with � � 0 and � � 1. How can we do this?

We move the distribution from its center of 50 to a center of 0. This is done by
subtracting 50 from all the values of X. Thus, we shift the distribution 50 units back so
that its new center is 0. The second thing we need to do is to make the width of the
distribution, its standard deviation, equal to 1. This is done by squeezing the width down
from 10 to 1. Because the total probability under the curve must remain 1.00, the distri-
bution must grow upward to maintain the same area. This is shown in Figure 4–10.
Mathematically, squeezing the curve to make the width 1 is equivalent to dividing the
random variable by its standard deviation. The area under the curve adjusts so that
the total remains the same. All probabilities (areas under the curve) adjust accordingly.
The mathematical transformation from X to Z is thus achieved by first subtracting �
from X and then dividing the result by �.
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Why does the inequality still hold? We subtracted a number from each side of an
inequality; this does not change the inequality. In the next step we divide both sides
of the inequality by the standard deviation �. The inequality does not change
because we can divide both sides of an inequality by a positive number, and a stan-
dard deviation is always a positive number. (Recall that dividing by 0 is not permissi-
ble; and dividing, or multiplying, by a negative value would reverse the direction of
the inequality.) From the transformation, we find that the probability that a normal
random variable with mean 50 and standard deviation 10 will have a value greater
than 60 is exactly the probability that the standard normal random variable Z will be
greater than 1. The latter probability can be found using Table 2 in Appendix C. We
find: P (X 
 60) � P (Z 
 1) � 0.5000 � 0.3413 � 0.1587. Let us now look at a few
examples of the use of equation 4–5.

� P aZ 7 60 � 50
10 b � P (Z 7 1)

P (X 7 60) � P aX � µ
σ 7

60 � µ
σ b � P aZ 7

60 � µ
σ b

The inverse transformation of Z to X:

X � � � Z� (4–6)

The transformation of equation 4–5 takes us from a random variable X with mean �
and standard deviation � to the standard normal random variable. We also have an
opposite, or inverse, transformation, which takes us from the standard normal random
variable Z to the random variable X with mean � and standard deviation �. The
inverse transformation is given by equation 4–6.
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You can verify mathematically that equation 4–6 does the opposite of equation 4–5.
Note that multiplying the random variable Z by the number � increases the width
of the curve from 1 to �, thus making � the new standard deviation. Adding � makes �
the new mean of the random variable. The actions of multiplying and then adding are
the opposite of subtracting and then dividing. We note that the two transformations,
one an inverse of the other, transform a normal random variable into a normal ran-
dom variable. If this transformation is carried out on a random variable that is not
normal, the result will not be a normal random variable.

Using the Normal Transformation
Let us consider our random variable X with mean 50 and standard deviation 10, X �
N(50, 102). Suppose we want the probability that X is greater than 60. That is, we
want to find P (X 
 60). We cannot evaluate this probability directly, but if we can
transform X to Z, we will be able to find the probability in the Z table, Table 2 in
Appendix C. Using equation 4–5, the required transformation is Z � (X � �)��. Let
us carry out the transformation. In the probability statement P (X 
 60), we will sub-
stitute Z for X. If, however, we carry out the transformation on one side of the proba-
bility inequality, we must also do it on the other side. In other words, transforming X
into Z requires us also to transform the value 60 into the appropriate value of the
standard normal distribution. We transform the value 60 into the value (60 � �)��.
The new probability statement is
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Figure 4–11 shows the normal distribution for X � N(160, 302) and the required area
on the scale of the original problem and on the transformed z scale. We have the fol-
lowing (where the probability statement inequality has three sides and we carry out
the transformation of equation 4–5 on all three sides):

Suppose that the time it takes the electronic device in the car to respond to the signal
from the toll plaza is normally distributed with mean 160 microseconds and standard
deviation 30 microseconds. What is the probability that the device in the car will
respond to a given signal within 100 to 180 microseconds?

S o l u t i o n

E X A M P L E  4 – 5

� P (�2 6 Z 6 0.6666) � 0.4772 � 0.2475 � 0.7247

� P a100 � 160
30 6 Z 6  180 � 160

30 b
P (100 6 X 6  180) � P a100 � µ

σ 6
X � µ

σ 6
180 � µ

σ b

From Boston Globe, May 9, 1995, p. 1, with data from industry reports. Copyright 1995 by Globe Newspaper Co.
(MA). Reproduced with permission via Copyright Clearance Center.

Electronic Turnpike Fare

1

2

3

4

How it works
Electronic equipment lets 
drivers pay tolls in designated 
lanes without stopping.

1. Electronic tolls are 
prepaid by cash or 
credit card. Payment 
information is linked 
to a transponder in 
the car.

2. The toll plaza 
communicates with 
the transponder via 
radio link. Some 
systems alert the 
driver if prepaid 
funds are low.

3. The toll is 
deducted from the 
account. Cash tolls 
can be paid to 
attendants in other 
lanes.

4. If funds are 
insufficient or the toll 
is not paid, a video 
image of the car, 
including the license 
plate, is recorded.

Equal areas = 0.7247

z

Z

–2               0  0.6666

x
100            160  180

X

FIGURE 4–11 Probability Computation for Example 4–5
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Fluctuations in the prices of precious metals such as gold have been empirically
shown to be well approximated by a normal distribution when observed over short
intervals of time. In May 1995, the daily price of gold (1 troy ounce) was believed to
have a mean of $383 and a standard deviation of $12. A broker, working under these
assumptions, wanted to find the probability that the price of gold the next day would
be between $394 and $399 per troy ounce. In this eventuality, the broker had an
order from a client to sell the gold in the client’s portfolio. What is the probability
that the client’s gold will be sold the next day?

E X A M P L E  4 – 7

Figure 4–13 shows the setup for this problem and the transformation of X, where 
X � N(383, 122), into the standard normal random variable Z. Also shown are the
required areas under the X curve and the transformed Z curve. We have

S o l u t i o n

(The TA of 0.3520 was obtained by interpolation.) Thus, 85.2% of the semiconduc-
tors are acceptable for use. This also means that the probability that a randomly cho-
sen semiconductor will be acceptable for use is 0.8520. The solution of this example
is illustrated in Figure 4–12.

Equal areas = 0.8520

z

Z

                  0   1.045

x
                     127     150

X

FIGURE 4–12 Probability Computation for Example 4–6

The concentration of impurities in a semiconductor used in the production of
microprocessors for computers is a normally distributed random variable with mean
127 parts per million and standard deviation 22. A semiconductor is acceptable only
if its concentration of impurities is below 150 parts per million. What proportion of
the semiconductors are acceptable for use? 

Now X � N(127, 222), and we need P (X � 150). Using equation 4–5, we have

E X A M P L E  4 – 6

S o l u t i o n

P (X � 150) � P

� P (Z � 1.045) � 0.5 � 0.3520 � 0.8520

aX � µ
σ 6

150 � µ
σ b � P aZ 6 150 � 127

22 b

(Table area values were obtained by linear interpolation.) Thus, the chance that the
device will respond within 100 to 180 microseconds is 0.7247.

The Normal Distribution 159



Aczel−Sounderpandian: 
Complete Business 
Statistics, Seventh Edition

4. The Normal Distribution Text162 © The McGraw−Hill 
Companies, 2009

Transformation formulas of X to Z, where a and b are numbers:

P(X � a) � P

P(X 
 b) � P

P(a � X � b) � P aa � µ
σ 6 Z 6

b � µ
σ b

aZ 7
b � µ

σ b

aZ 6
a � µ

σ b

P R O B L E M S

4–22. For a normal random variable with mean 650 and standard deviation 40,
find the probability that its value will be below 600.
4–23. Let X be a normally distributed random variable with mean 410 and stan-
dard deviation 2. Find the probability that X will be between 407 and 415.
4–24. If X is normally distributed with mean 500 and standard deviation 20, find
the probability that X will be above 555.

Let us summarize the transformation procedure used in computing probabilities
of events associated with a normal random variable X � N (�, �2).

P (394 � X � 399) � P

� P

� P (0.9166 � Z � 1.3333) � 0.4088 � 0.3203 � 0.0885

a394 � 383
12 6 Z 6 399 � 383

12 b

a394 � µ
σ 6

X � µ
σ 6

399 � µ
σ b

(Both TA values were obtained by linear interpolation, although this is not necessary
if less accuracy is acceptable.)

Same area  = 0.0885 

z

Z

                   0      1.33

x
                     383

394

X

0.92

399

FIGURE 4–13 Probability Computation for Example 4–7
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1This information is inferred from data on foreign exchange rates in The New York Times, April 20, 2007, p. C10.
2“The Ratings,” Wine Spectator, May 15, 2007, p. 156.
3Mitchell Martin, “Stock Focus: Ride the Rocket,” Forbes, April 26, 2004, p. 138.

4–25. For a normally distributed random variable with mean �44 and standard devi-
ation 16, find the probability that the value of the random variable will be above 0.
4–26. A normal random variable has mean 0 and standard deviation 4. Find the
probability that the random variable will be above 2.5.
4–27. Let X be a normally distributed random variable with mean � � 16 and stan-
dard deviation � � 3. Find P (11 � X � 20). Also find P (17 � X � 19) and P (X 
 15).
4–28. The time it takes an international telephone operator to place an overseas phone
call is normally distributed with mean 45 seconds and standard deviation 10 seconds.

a. What is the probability that my call will go through in less than 1 minute?
b. What is the probability that I will get through in less than 40 seconds?
c. What is the probability that I will have to wait more than 70 seconds for my

call to go through?
4–29. The number of votes cast in favor of a controversial proposition is believed
to be approximately normally distributed with mean 8,000 and standard deviation
1,000. The proposition needs at least 9,322 votes in order to pass. What is the prob-
ability that the proposition will pass? (Assume numbers are on a continuous scale.)
4–30. Under the system of floating exchange rates, the rate of foreign money to the
U.S. dollar is affected by many random factors, and this leads to the assumption of a
normal distribution of small daily fluctuations. The rate of U.S. dollar per euro is
believed in April 2007 to have a mean of 1.36 and a standard deviation of 0.03.1 Find
the following.

a. The probability that tomorrow’s rate will be above 1.42.
b. The probability that tomorrow’s rate will be below 1.35.
c. The probability that tomorrow’s exchange rate will be between 1.16 and 1.23.

4–31. Wine Spectator rates wines on a point scale of 0 to 100. It can be inferred
from the many ratings in this magazine that the average rating is 87 and the standard
deviation is 3 points. Wine ratings seem to follow a normal distribution. In the
May 15, 2007, issue of the magazine, the burgudy Domaine des Perdrix received a
rating of 89.2 What is the probability that a randomly chosen wine will score this
high or higher?
4–32. The weights of domestic, adult cats are normally distributed with a mean of
10.42 pounds and a standard deviation of 0.87 pounds. A cat food manufacturer sells
three types of foods for underweight, normal, and overweight cats. The manufacturer
considers the bottom 5% of the cats underweight and the top 10% overweight.
Compute what weight range must be specified for each of the three categories.
4–33. Daily fluctuations of the French CAC-40 stock index from March to June 1997
seem to follow a normal distribution with mean of 2,600 and standard deviation of 50.
Find the probability that the CAC-40 will be between 2,520 and 2,670 on a random
day in the period of study.
4–34. According to global analyst Olivier Lemaigre, the average price-to-earnings
ratio for companies in emerging markets is 12.5.3 Assume a normal distribution and
a standard deviation of 2.5. If a company in emerging markets is randomly selected,
what is the probability that its price-per-earnings ratio is above 17.5, which, according
to Lemaigre, is the average for companies in the developed world?
4–35. Based on the research of Ibbotson Associates, a Chicago investment firm,
and Prof. Jeremy Siegel of the Wharton School of the University of Pennsylvania, the
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4“Futures,” The New York Times, April 26, 2007, p. C9.

P (X 7 70) � P aX � µ
σ 7

70 � µ
σ b � P aZ 7 70 � 50

10 b � P (Z 7 2)

average return on large-company stocks since 1920 has been 10.5% per year and the
standard deviation has been 4.75%. Assuming a normal distribution for stock returns
(and that the trend will continue this year), what is the probability that a large-
company stock you’ve just bought will make in 1 year at least 12%? Will lose money?
Will make at least 5%?
4–36. A manufacturing company regularly consumes a special type of glue pur-
chased from a foreign supplier. Because the supplier is foreign, the time gap between
placing an order and receiving the shipment against that order is long and uncertain.
This time gap is called “lead time.” From past experience, the materials manager notes
that the company’s demand for glue during the uncertain lead time is normally dis-
tributed with a mean of 187.6 gallons and a standard deviation of 12.4 gallons. The
company follows a policy of placing an order when the glue stock falls to a pre-
determined value called the “reorder point.” Note that if the reorder point is x gallons
and the demand during lead time exceeds x gallons, the glue would go “stock-out” and
the production process would have to stop. Stock-out conditions are therefore serious.

a. If the reorder point is kept at 187.6 gallons (equal to the mean demand during
lead time) what is the probability that a stock-out condition would occur?

b. If the reorder point is kept at 200 gallons, what is the probability that a stock-
out condition would occur?

c. If the company wants to be 95% confident that the stock-out condition will
not occur, what should be the reorder point? The reorder point minus the
mean demand during lead time is known as the “safety stock.” What is the
safety stock in this case?

d. If the company wants to be 99% confident that the stock-out condition will
not occur, what should be the reorder point? What is the safety stock in
this case?

4–37. The daily price of orange juice 30-day futures is normally distributed. In
March through April 2007, the mean was 145.5 cents per pound, and standard
deviation � 25.0 cents per pound.4 Assuming the price is independent from day to
day, find P (x � 100) on the next day.

4–5 The Inverse Transformation
Let us look more closely at the relationship between X , a normal random variable with
mean � and standard deviation �, and the standard normal random variable. The fact
that the standard normal random variable has mean 0 and standard deviation 1 has
some important implications. When we say that Z is greater than 2, we are also saying
that Z is more than 2 standard deviations above its mean. This is so because the mean of Z
is 0 and the standard deviation is 1; hence, Z 
 2 is the same event as Z 
 [0 � 2(1)].

Now consider a normal random variable X with mean 50 and standard deviation
10. Saying that X is greater than 70 is exactly the same as saying that X is 2 standard
deviations above its mean. This is so because 70 is 20 units above the mean of 50,
and 20 units � 2(10) units, or 2 standard deviations of X. Thus, the event X 
 70 is
the same as the event X 
 (2 standard deviations above the mean). This event is iden-
tical to the event Z 
 2. Indeed, this is what results when we carry out the transfor-
mation of equation 4–5:
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5This is the origin of the empirical rule (in Chapter 1) for mound-shaped data distributions. Mound-shaped data sets
approximate the distribution of a normal random variable, and hence the proportions of observations within a given
number of standard deviations away from the mean roughly equal those predicted by the normal distribution. Compare
the empirical rule (section 1–7) with the numbers given here.

PALCO Industries, Inc., is a leading manufacturer of cutting and welding products.
One of the company’s products is an acetylene gas cylinder used in welding. The
amount of nitrogen gas in a cylinder is a normally distributed random variable with
mean 124 units of volume and standard deviation 12. We want to find the amount
of nitrogen x such that 10% of the cylinders contain more nitrogen than this
amount.

We have X � N(124, 122). We are looking for the value of the random variable X such
that P (X 
 x) � 0.10. In order to find it, we look for the value of the standard normal
random variable Z such that P (Z 
 z ) � 0.10. Figure 4–14 illustrates how we find the
value z and transform it to x. If the area to the right of z is equal to 0.10, the area
between 0 and z (the table area) is equal to 0.5 � 0.10 � 0.40. We look inside the table
for the z value corresponding to TA � 0.40 and find z � 1.28 (actually, TA � 0.3997,

E X A M P L E  4 – 8

S o l u t i o n

Normal random variables are related to one another by the fact that the probabil-
ity that a normal random variable will be above (or below) its mean a certain number
of standard deviations is exactly equal to the probability that any other normal random
variable will be above (or below) its mean the same number of (its) standard deviations.
In particular, this property holds for the standard normal random variable. The prob-
ability that a normal random variable will be greater than (or less than) z standard-
deviation units above its mean is the same as the probability that the standard normal
random variable will be greater than (less than) z. The change from a z value of the
random variable Z to z standard deviations above the mean for a given normal random
variable X should suggest to us the inverse transformation, equation 4–6:

x � � � z �

That is, the value of the random variable X may be written in terms of the number z of
standard deviations � it is above or below the mean �. Three examples are useful here.
We know from the standard normal probability table that the probability that Z is
greater than �1 and less than 1 is 0.6826 (show this). Similarly, we know that the
probability that Z is greater than �2 and less than 2 is 0.9544. Also, the probability
that Z is greater than �3 and less than 3 is 0.9974. These probabilities may be applied
to any normal random variable as follows:5

1. The probability that a normal random variable will be within a distance
of 1 standard deviation from its mean (on either side) is 0.6826, or
approximately 0.68.

2. The probability that a normal random variable will be within 2 standard
deviations of its mean is 0.9544, or approximately 0.95.

3. The probability that a normal random variable will be within 3 standard
deviations of its mean is 0.9974.

We use the inverse transformation, equation 4–6, when we want to get from a
given probability to the value or values of a normal random variable X. We illustrate
the procedure with a few examples.
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z

X

x

Z

5.7         6.865

       0              2.33

Area = 0.01

Area 0.99

Area 0.99

Area = 0.01

FIGURE 4–15 Solution of Example 4–9

The amount of fuel consumed by the engines of a jetliner on a flight between two
cities is a normally distributed random variable X with mean � � 5.7 tons and stan-
dard deviation � � 0.5. Carrying too much fuel is inefficient as it slows the plane. If,
however, too little fuel is loaded on the plane, an emergency landing may be neces-
sary. The airline would like to determine the amount of fuel to load so that there will
be a 0.99 probability that the plane will arrive at its destination.

E X A M P L E  4 – 9

x � � � z � � 124 � (1.28)(12) � 139.36

Thus, 10% of the acetylene cylinders contain more than 139.36 units of nitrogen.

Both
areas are 0.10

each

z

Z

                 0  1.28

x
                 124     139.36

X

FIGURE 4–14 Solution of Example 4–8
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We have X � N(5.7, 0.52). First, we must find the value z such that P (Z � z ) � 0.99.
Following our methodology, we find that the required table area is TA � 0.99 � 0.5 �
0.49, and the corresponding z value is 2.33. Transforming the z value to an x value,
we get x � � � z � � 5.7 � (2.33)(0.5) � 6.865. Thus, the plane should be loaded
with 6.865 tons of fuel to give a 0.99 probability that the fuel will last throughout the
flight. The transformation is shown in Figure 4–15.

S o l u t i o n

which is close enough to 0.4). We need to find the appropriate x value. Here we use
equation 4–6:
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4–38. If X is a normally distributed random variable with mean 120 and standard
deviation 44, find a value x such that the probability that X will be less than x is 0.56.
4–39. For a normal random variable with mean 16.5 and standard deviation 0.8,
find a point of the distribution such that there is a 0.85 probability that the value of
the random variable will be above it.
4–40. For a normal random variable with mean 19,500 and standard deviation 400,
find a point of the distribution such that the probability that the random variable will
exceed this value is 0.02.
4–41. Find two values of the normal random variable with mean 88 and standard
deviation 5 lying symmetrically on either side of the mean and covering an area of
0.98 between them.
4–42. For X � N(32, 72), find two values x1 and x2, symmetrically lying on each side
of the mean, with P (x1 � X � x2) � 0.99.
4–43. If X is a normally distributed random variable with mean �61 and standard
deviation 22, find the value such that the probability that the random variable will be
above it is 0.25.
4–44. If X is a normally distributed random variable with mean 97 and standard
deviation 10, find x2 such that P (102 � X � x2) � 0.05.

P R O B L E M S

Applying this special formula we get x � 2,450 � (1.96)(400) � 1,666 and 3,234.
Thus, management may be 95% sure that sales on any given week will be between
1,666 and 3,234 units.

Weekly sales of Campbell’s soup cans at a grocery store are believed to be approxi-
mately normally distributed with mean 2,450 and standard deviation 400. The store
management wants to find two values, symmetrically on either side of the mean, such
that there will be a 0.95 probability that sales of soup cans during the week will be
between the two values. Such information is useful in determining levels of orders
and stock.

Here X � N(2,450, 4002). From the section on the standard normal random variable, we
know how to find two values of Z such that the area under the curve between them is
0.95 (or any other area). We find that z � 1.96 and z � �1.96 are the required values.
We now need to use equation 4–6. Since there are two values, one the negative of the
other, we may combine them in a single transformation:

E X A M P L E  4 – 1 0

S o l u t i o n

x � � � z � (4–7)

The procedure of obtaining values of a normal random variable, given a proba-
bility, is summarized:

1. Draw a picture of the normal distribution in question and the standard normal
distribution.

2. In the picture, shade in the area corresponding to the probability.
3. Use the table to find the z value (or values) that gives the required probability.
4. Use the transformation from Z to X to get the appropriate value (or values) of

the original normal random variable.
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4–45. Let X be a normally distributed random variable with mean 600 and variance
10,000. Find two values x1 and x2 such that P (X 
 x1) � 0.01 and P (X � x2) � 0.05.
4–46. Pierre operates a currency exchange office at Orly Airport in Paris. His
office is open at night when the airport bank is closed, and he makes most of his
business on returning U.S. tourists who need to change their remaining euros back
to U.S. dollars. From experience, Pierre knows that the demand for dollars on any
given night during high season is approximately normally distributed with mean
$25,000 and standard deviation $5,000. If Pierre carries too much cash in dollars
overnight, he pays a penalty: interest on the cash. On the other hand, if he runs short
of cash during the night, he needs to send a person downtown to an all-night financial
agency to get the required cash. This, too, is costly to him. Therefore, Pierre would
like to carry overnight an amount of money such that the demand on 85% of the
nights will not exceed this amount. Can you help Pierre find the required amount of
dollars to carry?
4–47. The demand for high-grade gasoline at a service station is normally distrib-
uted with mean 27,009 gallons per day and standard deviation 4,530. Find two values
that will give a symmetric 0.95 probability interval for the amount of high-grade
gasoline demanded daily.
4–48. The percentage of protein in a certain brand of dog food is a normally dis-
tributed random variable with mean 11.2% and standard deviation 0.6%. The manu-
facturer would like to state on the package that the product has a protein content of
at least x1% and no more than x2%. It wants the statement to be true for 99% of the
packages sold. Determine the values x1 and x2.
4–49. Private consumption as a share of GDP is a random quantity that follows a
roughly normal distribution. According to an article in BusinessWeek, for the United
States that was about 71%.6 Assuming that this value is the mean of a normal distri-
bution, and that the standard deviation of the distribution is 3%, what is the value of
private consumption as share of GDP such that you are 90% sure that the actual
value falls below it?
4–50. The daily price of coffee is approximately normally distributed over a period
of 15 days with a mean in April 2007 of $1.35 per pound (on the wholesale market)
and standard deviation of $0.15. Find a price such that the probability in the next
15 days that the price will go below it will be 0.90.
4–51. The daily price in dollars per metric ton of cocoa in 2007 was normally dis-
tributed with � � $2,014 per metric ton and � � $2.00. Find a price such that the
probability that the actual price will be above it is 0.80.

4–6 The Template
This normal distribution template is shown in Figure 4–16. As usual, it can be used in
conjunction with the Goal Seek command and the Solver tool to solve many types of
problems.

To use the template, make sure that the correct values are entered for the mean
and the standard deviation in cells B4 and C4. Cell B11 gives the area to the left of the
value entered in cell C11. The five cells below C11 can be similarly used. Cell F11 gives
the area to the right of the value entered in cell E11. Cell I11 contains the area between
the values entered in cells H11 and J11. In the area marked “Inverse Calculations,”
you can input areas (probabilities) and get x values corresponding to those areas. For
example, on entering 0.9 in cell B25, we get the x value of 102.56 in cell C25. This
implies that the area to the left of 102.56 is 0.9. Similarly, cell F25 has been used to
get the x value that has 0.9 area to its right.
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Aczel−Sounderpandian: 
Complete Business 
Statistics, Seventh Edition

4. The Normal Distribution Text 169© The McGraw−Hill 
Companies, 2009

Fill in cell B4 with the mean 100 and cell C4 with standard deviation 2. Fill in cell
H11 with 99. Then on the Data tab, in the Data Tools group, click What If Analysis,
and then click Goal Seek. In the dialog box, ask to set cell I11 to value 0.6 by chang-
ing cell J11. Click OK when the computer finds the answer. The required value of
102.66 for x2 appears in cell J11.

E X A M P L E  4 – 1 1

S o l u t i o n

Suppose X � N(100, 22). Find x2 such that P (99 	 X 	 x2) � 60%.

1

2
3
4

5
6
7
8
9

10

11
12
13
14
15
16
17
18
19
20
21
22
23

24

25
26
27
28
29
30
31

A B C D E F K L MG H I J

Normal Distribution

Mean Stdev
100 2

P(X<x) x x1 P(x1<X<x2) x2

0.8413 102 99 0.6247 103

90 0.0062 95

Inverse Calculations

P(<x) x x P(>x)

0.9 102.56 97.44 0.9 x1 P(x1<X<x2) x2

0.95 103.29 96.71 0.95 94.84834 0.99 105.15166

0.99 104.65 95.35 0.99 96.08007 0.95 103.91993

96.71029 0.9 103.28971

Symmetric Intervals

P(X>x)x

0.1587102

FIGURE 4–16 Normal Distribution Template
[Normal Distribution.xls; Sheet: Normal]

Sometimes we are interested in getting the narrowest interval that contains a
desired amount of area. A little thought reveals that the narrowest interval has to be
symmetric about the mean, because the distribution is symmetric and it peaks at
the mean. In later chapters, we will study confidence intervals, many of which are also
the narrowest intervals that contain a desired amount of area. Naturally, these confi-
dence intervals are symmetric about the mean. For this reason, we have the “Symmetric
Intervals” area in the template. Once the desired area is entered in cell I26, the limits
of the symmetric interval that contains that much area appear in cells H26 and J26.
In the example shown in the Figure 4–16, the symmetric interval (94.85, 105.15) con-
tains the desired area of 0.99.

Problem Solving with the Template
Most questions about normal random variables can be answered using the template
in Figure 4–16. We will see a few problem-solving strategies through examples.
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E X A M P L E  4 – 1 4 A customer who has ordered 1-inch-diameter pins in bulk will buy only those pins
with diameters in the interval 1 � 0.003 inches. An automatic machine produces pins
whose diameters are normally distributed with mean 1.002 inches and standard devi-
ation 0.0011 inch.

1. What percentage of the pins made by the machine will be acceptable to the
customer?

2. If the machine is adjusted so that the mean of the pins made by the machine is
reset to 1.000 inch, what percentage of the pins will be acceptable to the
customer?

3. Looking at the answer to parts 1 and 2, can we say that the machine must be reset?

One way to solve this problem is to use the Solver to find � and � with the objective
of making P (X 
 28) � 0.80 subject to the constraint P (X 
 32) � 0.40. The follow-
ing detailed steps will do just that:

• Fill in cell B4 with 30 (which is a guessed value for �).
• Fill in cell C4 with 2 (which is a guessed value for �).
• Fill in cell E11 with 28.
• Fill in cell E12 with 32.
• Under the Analysis group on the Data tab select the Solver.
• In the Set Cell box enter F11.
• In the To Value box enter 0.80 [which sets up the objective of 

P (X 
 28) � 0.80].
• In the By Changing Cells box enter B4:C4.
• Click on the Constraints box and the Add button.
• In the dialog box on the left-hand side enter F12.
• Select the � sign in the middle drop down box.
• Enter 0.40 in the right-hand-side box [which sets up the constraint of 

P (X 
 32) � 0.40].
• Click the OK button.
• In the Solver dialog box that reappears, click the Solve button.
• In the dialog box that appears at the end, select the Keep Solver Solution option.

The Solver finds the correct values for the cells B4 and C4 as � � 31.08 and � � 3.67.

S o l u t i o n

E X A M P L E  4 – 1 3 Suppose X � N(�, �2); P (X 
 28) � 0.80; P (X 
 32) � 0.40. What are � and �?

Enter the � of 0.5 in cell C4. Since we do not know �, enter a guessed value of 15 in
cell B4. Then enter 16.5 in cell F11. Now invoke the Goal Seek command to set cell
F11 to value 0.20 by changing cell B4. The computer finds the value of � in cell B4
to be 16.08.

S o l u t i o n

E X A M P L E  4 – 1 2 Suppose X � N(�, 0.52); P (X 
 16.5) � 0.20. What is �?

The Goal Seek command can be used if there is only one unknown. With more
than one unknown, the Solver tool has to be used. We shall illustrate the use of the
Solver in the next example.
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1

2
3
4

5
6
7
8
9

10

11
12
13
14
15
16
17
18
19
20
21
22
23

24

25
26
27

A B C D E F K L MG H I J

Normal Approximation of Binomial Distribution

n p

1000 0.2

P(X<x) x x1 P(x1<X<x2) x2

0.0000 102 194.5 0.6681 255.5

Inverse Calculations

P(<x) x x P(>x)

0.9 216.21 183.79 0.9 x1 P(x1<X<x2) x2

0.95 220.81 179.19 0.95 167.4181 0.99 232.58195

175.2082 0.95 224.7918

179.1941 0.9 220.80594

Symmetric Intervals

Mean Stdev

200 12.6491

P(X>x)x

1.0000102

FIGURE 4–17 The Template for Normal Approximation of Binomial Distribution 
[Normal Distribution.xls; Sheet: Normal Approximation]

1. Enter � � 1.002 and � � 0.0011 into the template. From the template P (0.997 �
X � 1.003) � 0.8183. Thus, 81.83% of the pins will be acceptable to the
consumer.

2. Change � to 1.000 in the template. Now, P (0.997 � X � 1.003) � 0.9936.
Thus, 99.36% of the pins will be acceptable to the consumer.

3. Resetting the machine has considerably increased the percentage of pins
acceptable to the consumer. Therefore, resetting the machine is highly desirable.

S o l u t i o n

4 –7 Normal Approximation of Binomial Distributions
When the number of trials n in a binomial distribution is large (
1,000), the calcula-
tion of probabilities becomes difficult for the computer, because the calculation
encounters some numbers that are too large and some that are too small to handle
with needed accuracy. Fortunately, the binomial distribution approaches the normal
distribution as n increases and therefore we can approximate it as a normal distribu-
tion. Note that the mean is np and the standard deviation is . The tem-
plate is shown in Figure 4–17. When the values for n and p of the binomial
distribution are entered in cells B4 and C4, the mean and the standard deviation of
the corresponding normal distribution are calculated in cells E4 and F4. The rest of
the template is similar to the normal distribution template we already saw.

Whenever a binomial distribution is approximated as a normal distribution,
a continuity correction is required because a binomial is discrete and a normal
is continuous. Thus, a column in the histogram of a binomial distribution for, say,
X � 10, covers, in the continuous sense, the interval [9.5, 10.5]. Similarly, if we
include the columns for X � 10, 11, and 12, then in the continuous case, the bars
occupy the interval [9.5, 12.5], as seen in Figure 4–18. Therefore, when we calculate

2np(1 - p)
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P R O B L E M S

In the following problems, use a normal distribution to compute the required prob-
abilities. In each problem, also state the assumptions necessary for a binomial
distribution, and indicate whether the assumptions are reasonable.
4–52. The manager of a restaurant knows from experience that 70% of the people
who make reservations for the evening show up for dinner. The manager decides one
evening to overbook and accept 20 reservations when only 15 tables are available.
What is the probability that more than 15 parties will show up?
4–53. An advertising research study indicates that 40% of the viewers exposed to an
advertisement try the product during the following four months. If 100 people are

P(x)
and
f(x)

9.5
10 11 12

12.5

x

FIGURE 4–18 Continuity Correction

the binomial probability of an interval, say, P (195 	 X 	 255), we should subtract 0.5
from the left limit and add 0.5 to the right limit to get the corresponding normal proba-
bility, namely, P (194.5 � X � 255.5). Adding and subtracting 0.5 in this manner is
known as the continuity correction. In Figure 4–17, this correction has been applied in
cells H11 and J11. Cell I11 has the binomial probability of P (195 	 X 	 255).

170 Chapter 4

a. On the template for normal approximation, enter 2,058 for n and 0.6205 for p.
Enter 1,249.5 in cell H11 and 1,300.5 in cell J11. The answer 0.7514 appears in
cell I11.

b. Enter 1,299.5 in cell E11. The answer 0.1533 appears in cell F11.
c. Use the Goal Seek command to set cell F11 to value 0.5 by changing cell C4.

The computer finds the answer as p � 0.6314.

S o l u t i o n

E X A M P L E  4 – 1 5 A total of 2,058 students take a difficult test. Each student has an independent 0.6205
probability of passing the test.

a. What is the probability that between 1,250 and 1,300 students, both numbers
inclusive, will pass the test?

b. What is the probability that at least 1,300 students will pass the test?
c. If the probability of at least 1,300 students passing the test has to be at least 0.5,

what is the minimum value for the probability of each student passing the test?
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7“Our Company Right or Wrong,” The Economist, March 17, 2007, p. 77.
8“Missouri,” Fortune, March 19, 2007, p. 177.
9Jean Chatzky, “Confessions of an E-Mail Addict,” Money, March 28, 2007, p. 28.

exposed to the ad, what is the probability that at least 20 of them will try the product
in the following four months?
4–54. According to The Economist, 77.9% of Google stockholders have voting
power.7 If 2,000 stockholders are gathered in a meeting, what is the probability that at
least 1,500 of them can vote?
4–55. Sixty percent of the managers who enroll in a special training program will
successfully complete the program. If a large company sends 328 of its managers to
enroll in the program, what is the probability that at least 200 of them will pass?
4–56. A large state university sends recruiters throughout the state to recruit gradu-
ating high school seniors to enroll in the university. University records show that 25%
of the students who are interviewed by the recruiters actually enroll. If last spring the
university recruiters interviewed 1,889 graduating seniors, what is the probability
that at least 500 of them will enroll this fall?
4–57. According to Fortune, Missouri is within 500 miles of 44% of all U.S. manu-
facturing plants.8 If a Missouri company needs parts manufactured in 122 different
plants, what is the probability that at least half of them can be found within 500 miles
of the state? (Assume independence of parts and of plants.)
4–58. According to Money, 59% of full-time workers believe that technology has length-
ened their workday.9 If 200 workers are randomly chosen, what is the probability that at
least 120 of them believe that technology has lengthened their workday?

4–8 Using the Computer

Using Excel Functions for a Normal Distribution
In addition to the templates discussed in this chapter, you can use the built-in func-
tions of Excel to evaluate probabilities for normal random variables.

The NORMDIST function returns the normal distribution for the specified mean and
standard deviation. In the formula NORMDIST(x, mean, stdev, cumulative), x
is the value for which you want the distribution, mean is the arithmetic mean of the distri-
bution, stdev is the standard deviation of the distribution, and cumulative is a logical value
that determines the form of the function. If cumulative is TRUE, NORMDIST returns
the cumulative distribution function; if FALSE, it returns the probability density function.
For example, NORMDIST(102,100,2,TRUE) will return the area to the left of 102 in
a normal distribution with mean 100 and standard deviation 2. This value is 0.8413.
NORMDIST(102,100,2,FALSE) will return the density function f (x), which is not
needed for most practical purposes.

NORMSDIST(z) returns the standard normal cumulative distribution function,
which means the area to the left of z in a standard normal distribution. You can use
this function in place of a table of standard normal curve areas. For example
NORMSDIST(1) will return the value 0.8413.

NORMINV(probability, mean, stdev) returns the inverse of the normal
cumulative distribution for the specified mean and standard deviation. For example
NORMINV(0.8413, 100, 2) will return the value of x on the normal distribution
with mean 100 and standard deviation 2 for which P (X 	 x) � 0.8413. The value of
x is 102.

The function NORMSINV(Probability) returns the inverse of the standard
normal cumulative distribution. For example, the formula NORMSINV(0.8413) will
return the value 1, for which P (Z 	 1) � 0.8413.
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FIGURE 4–19 Using MINITAB for Generating Cumulative and Inverse Cumulative Distribution
Functions of a Normal Distribution

Using MINITAB for a Normal Distribution

As in the previous chapter, choose Calc � Probability Distributions � Normal from
the menu. The Normal Distribution dialog box will appear. Using the items available
in the dialog box, you can choose to calculate probabilities, cumulative probabilities,
or inverse cumulative probabilities for a normal distribution. You also need to specify
the mean and standard deviation of the normal distribution. In the input section the
values for which you aim to obtain probability densities, cumulative probabilities, or
inverse cumulative probabilities are specified. These values can be a constant or a set
of values that have been defined in a column. Then press OK to observe the obtained
result in the Session window. Figure 4–19 shows the Session commands for obtaining
the cumulative distribution in a standard normal distribution as well as a normal dis-
tribution with mean 100 and standard deviation 2. It also shows the dialog box and
Session commands for obtaining inverse cumulative probabilities for a normal distri-
bution with mean 100 and standard deviation 2.

4–9 Summary and Review of Terms
In this chapter, we discussed the normal probability distribution, the most impor-
tant probability distribution in statistics. We defined the standard normal random
variable as the normal random variable with mean 0 and standard deviation 1. We saw
how to use a table of probabilities for the standard normal random variable and how to
transform a normal random variable with any mean and any standard deviation to the
standard normal random variable by using the normal transformation.

We also saw how the standard normal random variable may, in turn, be trans-
formed into any other normal random variable with a specified mean and standard
deviation, and how this allows us to find values of a normal random variable that con-
form with some probability statement. We discussed a method of determining the
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4–59. The time, in hours, that a copying machine may work without breaking
down is a normally distributed random variable with mean 549 and standard devia-
tion 68. Find the probability that the machine will work for at least 500 hours without
breaking down.
4–60. The yield, in tons of ore per day, at a given coal mine is approximately nor-
mally distributed with mean 785 tons and standard deviation 60. Find the probability
that at least 800 tons of ore will be mined on a given day. Find the proportion of
working days in which anywhere from 750 to 850 tons is mined. Find the probability
that on a given day, the yield will be below 665 tons.
4–61. Scores on a management aptitude examination are believed to be normally dis-
tributed with mean 650 (out of a total of 800 possible points) and standard deviation 50.
What is the probability that a randomly chosen manager will achieve a score above
700? What is the probability that the score will be below 750?
4–62. The price of a share of Kraft stock is normally distributed with mean 33.30
and standard deviation 6.10 What is the probability that on a randomly chosen day in
the period for which our assumptions are made, the price of the stock will be more
than $40 per share? Less than $30 per share?
4–63. The amount of oil pumped daily at Standard Oil’s facilities in Prudhoe Bay is
normally distributed with mean 800,000 barrels and standard deviation 10,000. In
determining the amount of oil the company must report as its lower limit of daily
production, the company wants to choose an amount such that for 80% of the days,
at least the reported amount x is produced. Determine the value of the lower limit x.
4–64. An analyst believes that the price of an IBM stock is a normally distributed
random variable with mean $105 and variance 24. The analyst would like to deter-
mine a value such that there is a 0.90 probability that the price of the stock will be
greater than that value.11 Find the required value.
4–65. Weekly rates of return (on an annualized basis) for certain securities over a
given period are believed to be normally distributed with mean 8.00% and variance
0.25. Give two values x1 and x2 such that you are 95% sure that annualized weekly
returns will be between the two values.
4–66. The impact of a television commercial, measured in terms of excess sales
volume over a given period, is believed to be approximately normally distributed
with mean 50,000 and variance 9,000,000. Find 0.99 probability bounds on the
volume of excess sales that would result from a given airing of the commercial.
4–67. A travel agency believes that the number of people who sign up for tours to
Hawaii during the Christmas–New Year’s holiday season is an approximately nor-
mally distributed random variable with mean 2,348 and standard deviation 762. For
reservation purposes, the agency’s management wants to find the number of people

A D D I T I O N A L  P R O B L E M S

mean and/or the standard deviation of a normal random variable from probability
statements about the random variable. We saw how the normal distribution is used as
a model in many real-world situations, both as the true distribution (a continuous one)
and as an approximation to discrete distributions. In particular, we illustrated the use
of the normal distribution as an approximation to the binomial distribution.

In the following chapters, we will make much use of the material presented here.
Most statistical theory relies on the normal distribution and on distributions that are
derived from it.
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such that the probability is 0.85 that at least that many people will sign up. It also
needs 0.80 probability bounds on the number of people who will sign up for the trip.
4–68. A loans manager at a large bank believes that the percentage of her cus-
tomers who default on their loans during each quarter is an approximately normally
distributed random variable with mean 12.1% and standard deviation 2.5%. Give a
lower bound x with 0.75 probability that the percentage of people defaulting on their
loans is at least x. Also give an upper bound x� with 0.75 probability that the percent-
age of loan defaulters is below x�.
4–69. The power generated by a solar electric generator is normally distributed
with mean 15.6 kilowatts and standard deviation of 4.1 kilowatts. We may be 95%
sure that the generator will deliver at least how many kilowatts?
4–70. Short-term rates fluctuate daily. It may be assumed that the yield for 90-day
Treasury bills in early 2007 was approximately normally distributed with mean 4.92%
and standard deviation 0.3%.12 Find a value such that 95% of the time during that
period the yield of 90-day T-bills was below this value.
4–71. In quality-control projects, engineers use charts where item values are plotted
and compared with 3-standard-deviation bounds above and below the mean for the
process. When items are found to fall outside the bounds, they are considered non-
conforming, and the process is stopped when “too many” items are out of bounds.
Assuming a normal distribution of item values, what percentage of values would you
expect to be out of bounds when the process is in control? Accordingly, how would
you define “too many”? What do you think is the rationale for this practice?
4–72. Total annual textbook sales in a certain discipline are normally distributed.
Forty-five percent of the time, sales are above 671,000 copies, and 10% of the time,
sales are above 712,000 copies. Find the mean and the variance of annual sales.
4–73. Typing speed on a new kind of keyboard for people at a certain stage in their
training program is approximately normally distributed. The probability that the
speed of a given trainee will be greater than 65 words per minute is 0.45. The prob-
ability that the speed will be more than 70 words per minute is 0.15. Find the mean
and the standard deviation of typing speed.
4–74. The number of people responding to a mailed information brochure on
cruises of the Royal Viking Line through an agency in San Francisco is approxi-
mately normally distributed. The agency found that 10% of the time, over 1,000 peo-
ple respond immediately after a mailing, and 50% of the time, at least 650 people
respond right after the mailing. Find the mean and the standard deviation of the
number of people who respond following a mailing.
4–75. The Tourist Delivery Program was developed by several European automak-
ers. In this program, a tourist from outside Europe—most are from the United
States—may purchase an automobile in Europe and drive it in Europe for as long as
six months, after which the manufacturer will ship the car to the tourist’s home desti-
nation at no additional cost. In addition to the time limitations imposed, some coun-
tries impose mileage restrictions so that tourists will not misuse the privileges of the
program. In setting the limitation, some countries use a normal distribution assump-
tion. It is believed that the number of kilometers driven by a tourist in the program is
normally distributed with mean 4,500 and standard deviation 1,800. If a country
wants to set the mileage limit at a point such that 80% of the tourists in the program
will want to drive fewer kilometers, what should the limit be?

4–76. The number of newspapers demanded daily in a large metropolitan area is
believed to be an approximately normally distributed random variable. If more
newspapers are demanded than are printed, the paper suffers an opportunity loss,
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in that it could have sold more papers, and a loss of public goodwill. On the other
hand, if more papers are printed than will be demanded, the unsold papers are
returned to the newspaper office at a loss. Suppose that management believes that
guarding against the first type of error, unmet demand, is most important and
would like to set the number of papers printed at a level such that 75% of the time,
demand for newspapers will be lower than that point. How many papers should be
printed daily if the average demand is 34,750 papers and the standard deviation of
demand is 3,560?
4–77. The Federal Funds rate in spring 2007 was approximately normal with � �
5.25% and � � 0.05%. Find the probability that the rate on a given day will be less
than 1.1%.13

4–78. Thirty-year fixed mortgage rates in April 2007 seemed normally distributed
with mean 6.17%.14 The standard deviation is believed to be 0.25%. Find a bound such
that the probability that the actual rate obtained will be this number or below it is 90%.
4–79. A project consists of three phases to be completed one after the other. The
duration of each phase, in days, is normally distributed as follows: Duration of Phase
I � N(84, 32); Duration of Phase II � N(102, 42); Duration of Phase III � N(62, 22).
The durations are independent.

a. Find the distribution of the project duration. Report the mean and the
standard deviation.

b. If the project duration exceeds 250 days, a penalty will be assessed. What
is the probability that the project will be completed within 250 days?

c. If the project is completed within 240 days, a bonus will be earned. What
is the probability that the project will be completed within 240 days?

4–80. The GMAT scores of students who are potential applicants to a university are
normally distributed with a mean of 487 and a standard deviation of 98.

a. What percentage of students will have scores exceeding 500?
b. What percentage of students will have scores between 600 and 700?
c. If the university wants only the top 75% of the students to be eligible to

apply, what should be the minimum GMAT score specified for eligibility?
d. Find the narrowest interval that will contain 75% of the students’ scores.
e. Find x such that the interval [x, 2x] will contain 75% of the students’

scores. (There are two answers. See if you can find them both.)
4–81. The profit (or loss) from an investment is normally distributed with a mean 
of $11,200 and a standard deviation of $8,250.

a. What is the probability that there will be a loss rather than a profit?
b. What is the probability that the profit will be between $10,000 and

$20,000?
c. Find x such that the probability that the profit will exceed x is 25%.
d. If the loss exceeds $10,000 the company will have to borrow additional

cash. What is the probability that the company will have to borrow addi-
tional cash?

e. Calculate the value at risk.
4–82. The weight of connecting rods used in an automobile engine is to be closely
controlled to minimize vibrations. The specification is that each rod must be 974 � 1.2
grams. The half-width of the specified interval, namely, 1.2 grams, is known as the
tolerance. The manufacturing process at a plant produces rods whose weights are
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normally distributed with a mean � of 973.8 grams and a standard deviation � of
0.32 grams.

a. What proportion of the rods produced by this process will be acceptable
according to the specification?

b. The process capability index, denoted by Cp , is given by the formula

Calculate Cp for this process.

c. Would you say a larger value or a smaller value of Cp is preferable?

d. The mean of the process is 973.8 grams, which does not coincide with the
target value of 974 grams. The difference between the two is the offset,
defined as the difference and therefore always positive. Clearly, as the
offset increases, the chances of a part going outside the specification limits
increase. To take into account the effect of the offset, another index,
denoted by Cpk , is defined as

Calculate Cpk for this process.

e. Suppose the process is adjusted so that the offset is zero, and � remains at
0.32 gram. Now, what proportion of the parts made by the process will
fall within specification limits?

f. A process has a Cp of 1.2 and a Cpk of 0.9. What proportion of the parts pro-
duced by the process will fall within specification limits? (Hint: One way to
proceed is to assume that the target value is, say, 1,000, and � = 1. Next,
find the tolerance, the specification limits, and the offset. You should then
be able to answer the question.)

4–83. A restaurant has three sources of revenue: eat-in orders, takeout orders, and
the bar. The daily revenue from each source is normally distributed with mean and
standard deviation shown in the table below.

Cpk = Cp -
Offset
3 * �

Cp =
Tolerance

3 * �

176 Chapter 4

Mean Standard Deviation

Eat in $5,780 $142

Takeout 641 78

Bar 712 72

a. Will the total revenue on a day be normally distributed?

b. What are the mean and standard deviation of the total revenue on a par-
ticular day?

c. What is the probability that the revenue will exceed $7,000 on a particu-
lar day?
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Acompany supplies pins in bulk to a customer.
The company uses an automatic lathe to pro-
duce the pins. Due to many causes—vibration,

temperature, wear and tear, and the like—the lengths of
the pins made by the machine are normally distributed
with a mean of 1.012 inches and a standard deviation of
0.018 inch. The customer will buy only those pins with
lengths in the interval 1.00 � 0.02 inch. In other words,
the customer wants the length to be 1.00 inch but will
accept up to 0.02 inch deviation on either side. This
0.02 inch is known as the tolerance.

1. What percentage of the pins will be acceptable to
the consumer?

In order to improve percentage accepted, the produc-
tion manager and the engineers discuss adjusting the
population mean and standard deviation of the length
of the pins.

2. If the lathe can be adjusted to have the mean of
the lengths to any desired value, what should it
be adjusted to? Why?

3. Suppose the mean cannot be adjusted, but the
standard deviation can be reduced. What
maximum value of the standard deviation would
make 90% of the parts acceptable to the
consumer? (Assume the mean to be 1.012.)

4. Repeat question 3, with 95% and 99% of the pins
acceptable.

5. In practice, which one do you think is easier to
adjust, the mean or the standard deviation?
Why?

The production manager then considers the costs
involved. The cost of resetting the machine to adjust the
population mean involves the engineers’ time and the
cost of production time lost. The cost of reducing
the population standard deviation involves, in addition
to these costs, the cost of overhauling the machine and
reengineering the process.

6. Assume it costs $150 x2 to decrease the standard
deviation by (x�1000) inch. Find the cost of
reducing the standard deviation to the values
found in questions 3 and 4.

7. Now assume that the mean has been adjusted 
to the best value found in question 2 at a cost 
of $80. Calculate the reduction in standard
deviation necessary to have 90%, 95%, and 99%
of the parts acceptable. Calculate the respective
costs, as in question 6.

8. Based on your answers to questions 6 and 7, what
are your recommended mean and standard
deviation?

CASE 4 Acceptable Pins

Acompany sells precision grinding machines to four
customers in four different countries. It has just
signed a contract to sell, two months from now, a

batch of these machines to each customer. The following
table shows the number of machines (batch quantity) to
be delivered to the four customers. The selling price of the
machine is fixed in the local currency, and the company
plans to convert the local currency at the exchange rate
prevailing at the time of delivery. As usual, there is uncer-
tainty in the exchange rates. The sales department esti-
mates the exchange rate for each currency and its
standard deviation, expected at the time of delivery, as
shown in the table. Assume that the exchange rates are
normally distributed and independent.

Exchange Rate

Batch Selling Standard
Customer Quantity Price Mean Deviation

1 12 £ 57,810 $1.41�£ $0.041�£

2 8 ¥ 8,640,540 $0.00904�¥ $0.00045�¥

3 5 €97,800 $0.824�€ $0.0342�€

4 2 R 4,015,000 $0.0211�R $0.00083�R

1. Find the distribution of the uncertain revenue
from the contract in U.S. dollars. Report the
mean, the variance, and the standard deviation.

2. What is the probability that the revenue will
exceed $2,250,000?

CASE 5 Multicurrency Decision
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3. What is the probability that the revenue will be
less than $2,150,000?

4. To remove the uncertainty in the revenue
amount, the sales manager of the company
looks for someone who would assume the risk.
An international bank offers to pay a sure sum
of $2,150,000 in return for the revenue in local
currencies. What useful facts can you tell the
sales manager about the offer, without involving
any of your personal judgment?

5. What is your recommendation to the sales
manager, based on your personal judgment?

6. If the sales manager is willing to accept the
bank’s offer, but the CEO of the company is not,
who is more risk-averse?

7. Suppose the company accepts the bank’s offer.
Now consider the bank’s risk, assuming that the
bank will convert all currencies into U.S. dollars 

at the prevailing exchange rates. What is the
probability that the bank will incur a loss?

8. The bank defines its value at risk as the loss that
occurs at the 5th percentile of the uncertain
revenue. What is the bank’s value at risk?

9. What is the bank’s expected profit?
10. Express the value at risk as a percentage of the

expected profit. Based on this percentage, what
is your evaluation of the risk faced by the bank?

11. Suppose the bank does not plan to convert all
currencies into U.S. dollars, but plans to spend
or save them as local currency or convert them
into some other needed currency. Will this
increase or decrease the risk faced by the bank?

12. Based on the answer to part 11, is the
assumption (made in parts 7 to 10) that the bank
will convert all currencies into U.S. dollars a
good assumption?
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5
After studying this chapter, you should be able to:

• Take random samples from populations.
• Distinguish between population parameters and sample statistics.
• Apply the central limit theorem.
• Derive sampling distributions of sample means and proportions.
• Explain why sample statistics are good estimators of

population parameters.
• Judge one estimator as better than another based on desirable

properties of estimators.
• Apply the concept of degrees of freedom.
• Identify special sampling methods.
• Compute sampling distributions and related results using

templates.

SAMPLING AND SAMPLING DISTRIBUTIONS

LEARNING OBJECTIVES
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5–1 Using Statistics
Statistics is a science of inference. It is the science
of generalization from a part (the randomly
chosen sample) to the whole (the population).1

Recall from Chapter 1 that the population is
the entire collection of measurements in which we are interested, and the sample is
a smaller set of measurements selected from the population. A random sample of
n elements is a sample selected from the population in such a way that every set of
n elements is as likely to be selected as any other set of n elements.2 It is important
that the sample be drawn randomly from the entire population under study. This
increases the likelihood that our sample will be truly representative of the population
of interest and minimizes the chance of errors. As we will see in this chapter, random
sampling also allows us to compute the probabilities of sampling errors, thus provid-
ing us with knowledge of the degree of accuracy of our sampling results. The need
to sample correctly is best illustrated by the well-known story of the Literary Digest
(see page 182).

In 1936, the widely quoted Literary Digest embarked on the project of predicting
the results of the presidential election to be held that year. The magazine boasted it
would predict, to within a fraction of the percentage of the votes, the winner of the
election—incumbent President Franklin Delano Roosevelt or the Republican gover-
nor of Kansas, Alfred M. Landon. The Digest tried to gather a sample of staggering
proportion—10 million voters! One problem with the survey was that only a fraction
of the people sampled, 2.3 million, actually provided the requested information.
Should a link have existed between a person’s inclination to answer the survey and
his or her voting preference, the results of the survey would have been biased: slanted
toward the voting preference of those who did answer. Whether such a link did exist
in the case of the Digest is not known. (This problem, nonresponse bias, is discussed in
Chapter 16.) A very serious problem with the Digest ’s poll, and one known to have
affected the results, is the following.

The sample of voters chosen by the Literary Digest was obtained from lists of
telephone numbers, automobile registrations, and names of Digest readers. Remember
that this was 1936—not as many people owned phones or cars as today, and those
who did tended to be wealthier and more likely to vote Republican (and the same
goes for readers of the Digest). The selection procedure for the sample of voters was
thus biased (slanted toward one kind of voter) because the sample was not randomly
chosen from the entire population of voters. Figure 5–1 demonstrates a correct sam-
pling procedure versus the sampling procedure used by the Literary Digest.

As a result of the Digest error, the magazine does not exist today; it went bankrupt
soon after the 1936 election. Some say that hindsight is useful and that today we
know more statistics, making it easy for us to deride mistakes made more than 60 years
ago. Interestingly enough, however, the ideas of sampling bias were understood in
1936. A few weeks before the election, a small article in The New York Times criticized
the methodology of the Digest poll. Few paid it any attention.

1Not all of statistics concerns inferences about populations. One branch of statistics, called descriptive statistics, deals
with describing data sets—possibly with no interest in an underlying population. The descriptive statistics of Chapter 1,
when not used for inference, fall in this category.

2This is the definition of simple random sampling, and we will assume throughout that all our samples are simple random
samples. Other methods of sampling are discussed in Chapter 6.
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182 Chapter 5

Sampling is very useful in many situations besides political polling, including
business and other areas where we need to obtain information about some popula-
tion. Our information often leads to a decision. There are also situations, as demon-
strated by the examples in the introduction to this book, where we are interested in
a process rather than a single population. One such process is the relationship between
advertising and sales. In these more involved situations, we still make the assumption
of an underlying population—here, the population of pairs of possible advertising and
sales values. Conclusions about the process are reached based on information in our
data, which are assumed to constitute a random sample from the entire population.
The ideas of a population and of a random sample drawn from the population are
thus essential to all inferential statistics.

Digest Poll Gives Landon 32 States
Landon Leads 4–3 in LastDigest Poll

Final Tabulation Gives Him 
370 Electoral Votes to 161 for 
President Roosevelt
Governor Landon will win the elec-
tion by an electoral vote of 370 to 161,
will carry thirty-two of the forty-eight

Democratic Landslide Looked Upon
as Striking Personal Triumph for 
Roosevelt

By Arthur Krock
As the count of ballots cast Tuesday in
the 1936 Presidential election moved
toward completion yesterday, these
facts appeared:

Franklin Delano Roosevelt was re-
elected President, and John N. Garner
Vice President, by the largest popular

and electoral majority since the United
States became a continental nation—a
margin of approximately 11,000,000
plurality of all votes cast, and 523 votes
in the electoral college to 8 won by the
Republican Presidential candidate,
Governor Alfred M. Landon of Kansas.
The latter carried only Maine and
Vermont of the forty-eight States of the
Union . . . .

The New York Times, October 30, 1936. Copyright © 1936 by The New York Times
Company. Reprinted by permission.

Roosevelt’s Plurality Is 11,000,000
History’s Largest Poll 

46 States Won by President,
Maine and Vermont by Landon

Many Phases to Victory

The New York Times, November 5, 1936. Copyright © 1936 by The New York Times
Company. Reprinted by permission.

States, and will lead President Roosevelt
about four to three in their share of the
popular vote, if the final figures in The
Literary Digest poll, made public yes-
terday, are verified by the count of the
ballots next Tuesday.
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The Literary Digest Poll

Sample

Sample

Sample is chosen from
the population of
people who have
phones and/or
cars and/or are Digest
readers

Democrats

Population

Population

People who
have phones and/or cars
and/or are Digest readers

A Good Sampling Procedure

Sample is randomly chosen from
the entire population 

Republicans

FIGURE 5–1 A Good Sampling Procedure and the One Used by the Literary Digest

Sampling and Sampling Distributions 183

In statistical inference we are concerned with populations; the samples are of no
interest to us in their own right. We wish to use our known random sample in the
extraction of information about the unknown population from which it is drawn.
The information we extract is in the form of summary statistics: a sample mean, a
sample standard deviation, or other measures computed from the sample. A statistic
such as the sample mean is considered an estimator of a population parameter—the
population mean. In the next section, we discuss and define sample estimators and
population parameters. Then we explore the relationship between statistics and param-
eters via the sampling distribution. Finally, we discuss desirable properties of statistical
estimators.

5–2 Sample Statistics as Estimators 
of Population Parameters

A population may be a large, sometimes infinite, collection of elements. The popula-
tion has a frequency distribution—the distribution of the frequencies of occurrence of its
elements. The population distribution, when stated in relative frequencies, is also the
probability distribution of the population. This is so because the relative frequency of
a value in the population is also the probability of obtaining the particular value
when an element is randomly drawn from the entire population. As with random
variables, we may associate with a population its mean and its standard deviation.
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In the case of populations, the mean and the standard deviation are called parameters.
They are denoted by � and �, respectively.

A numerical measure of a population is called a population parameter, or
simply a parameter.

Recall that in Chapter 4 we referred to the mean and the standard deviation of a nor-
mal probability distribution as the distribution parameters. Here we view parameters as
descriptive measures of populations. Inference drawn about a population parameter
is based on sample statistics.

A numerical measure of the sample is called a sample statistic, or simply
a statistic.

Population parameters are estimated by sample statistics. When a sample statistic is
used to estimate a population parameter, the statistic is called an estimator of the
parameter.

An estimator of a population parameter is a sample statistic used to esti-
mate the parameter. An estimate of the parameter is a particular numerical
value of the estimator obtained by sampling. When a single value is used
as an estimate, the estimate is called a point estimate of the population
parameter.

The sample mean is the sample statistic used as an estimator of the population
mean �. Once we sample from the population and obtain a value of (using equa-
tion 1–1), we will have obtained a particular sample mean; we will denote this par-
ticular value by . We may have, for example, � 12.53. This value is our estimate
of �. The estimate is a point estimate because it constitutes a single number. In this
chapter, every estimate will be a point estimate—a single number that, we hope, lies
close to the population parameter it estimates. Chapter 6 is entirely devoted to the
concept of an interval estimate—an estimate constituting an interval of numbers rather
than a single number. An interval estimate is an interval believed likely to contain
the unknown population parameter. It conveys more information than just the point
estimate on which it is based.

In addition to the sample mean, which estimates the population mean, other sta-
tistics are useful. The sample variance S 2 is used as an estimator of the population
variance �2. A particular estimate obtained will be denoted by s 2. (This estimate is
computed from the data using equation 1–3 or an equivalent formula.)

As demonstrated by the political polling example with which we opened this
chapter, interest often centers not on a mean or standard deviation of a population,
but rather on a population proportion. The population proportion parameter is also
called a binomial proportion parameter.

The population proportion p is equal to the number of elements in the
population belonging to the category of interest, divided by the total
number of elements in the population.

The population proportion of voters for Governor Landon in 1936, for example,
was the number of people who intended to vote for the candidate, divided by the
total number of voters. The estimator of the population proportion p is the sample
proportion P$, defined as the number of binomial successes in the sample (i.e., the num-
ber of elements in the sample that belong to the category of interest), divided by the

xx

X
X
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sample size n. A particular estimate of the population proportion p is the sample
proportion p$.

The sample proportion is

(5–1)

where x is the number of elements in the sample found to belong to the
category of interest and n is the sample size.

Suppose that we want to estimate the proportion of consumers in a certain area who
are users of a certain product. The (unknown) population proportion is p. We esti-
mate p by the statistic P$, the sample proportion. Suppose a random sample of 100
consumers in the area reveals that 26 are users of the product. Our point estimate of
p is then p$ � x�n � 26�100 � 0.26. As another example, let’s look at a very important
problem, whose seriousness became apparent in early 2007, when more than a dozen
dogs and cats in the United States became sick, and some died, after being fed pet
food contaminated with an unknown additive originating in China. The culprit was
melamine, an artificial additive derived from coal, which Chinese manufacturers
have been adding to animal feed, and it was the cause of the death of pets and has even
caused problems with the safety of eating farm products.3 The wider problem of just
how this harmful additive ended up in animal feed consumed in the United States is
clearly statistical in nature, and it could have been prevented by effective use of sam-
pling. It turned out that in the whole of 2006, Food and Drug Administration (FDA)
inspectors sampled only 20,662 shipments out of 8.9 million arriving at American
ports.4 While this sampling percentage is small (about 0.2%), in this chapter you will
learn that correct scientific sampling methods do not require larger samples, and good
information can be gleaned from random samples of this size when they truly repre-
sent the population of all shipments. Suppose that this had indeed been done, and
that 853 of the sampled shipments contained melamine. What is the sample estimate
of the proportion of all shipments to the United States tainted with melamine? Using
equation 5–1, we see that the estimate is 853�20,662 � 0.0413, or about 4.13%.

In summary, we have the following estimation relationships:

Estimator Population
(Sample Statistic) Parameter

�

S2 �2

P$ p

Let us consider sampling to estimate the population mean, and let us try to visu-
alize how this is done. Consider a population with a certain frequency distribution.
The frequency distribution of the values of the population is the probability distribu-
tion of the value of an element in the population, drawn at random. Figure 5–2 shows
a frequency distribution of some population and the population mean �. If we knew
the exact frequency distribution of the population, we would be able to determine �
directly in the same way we determine the mean of a random variable when we
know its probability distribution. In reality, the frequency distribution of a popula-
tion is not known; neither is the mean of the population. We try to estimate the pop-
ulation mean by the sample mean, computed from a random sample. Figure 5–2
shows the values of a random sample obtained from the population and the resulting
sample mean , computed from the data.x

⎯⎯⎯⎯→
estimates

⎯⎯⎯⎯→
estimates

⎯⎯⎯⎯→
estimatesX

p$ = x
n
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3Alexei Barrionuevo, “U.S. Says Some Chicken Feed Tainted,” The New York Times, May 1, 2007, p. C6.
4Alexei Barrionuevo, “Food Imports Often Escape Scrutiny,” The New York Times, May 1, 2007, p. C1.
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Sample mean

Sample points

Frequency distribution
of the 
population

Population
mean

�

x

xxxxxxxxx
x
x

x
x
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x
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FIGURE 5–2 A Population Distribution, a Random Sample from the Population, and Their
Respective Means

In this example, happens to lie close to �, the population parameter it esti-
mates, although this does not always happen. The sample statistic is a random
variable whose actual value depends on the particular random sample obtained. The
random variable has a relatively high probability of being close to the population
mean it estimates, and it has decreasing probabilities of falling farther and farther
from the population mean. Similarly, the sample statistic S is a random variable with
a relatively high probability of being close to �, the population parameter it estimates.
Also, when sampling for a population proportion p, the estimator P$ has a relatively
high probability of being close to p. How high a probability, and how close to the
parameter? The answer to this question is the main topic of this chapter, presented in
the next section. Before discussing this important topic, we will say a few things about
the mechanics of obtaining random samples.

Obtaining a Random Sample
All along we have been referring to random samples. We have stressed the importance
of the fact that our sample should always be drawn randomly from the entire popula-
tion about which we wish to draw an inference. How do we draw a random sample?

To obtain a random sample from the entire population, we need a list of all the ele-
ments in the population of interest. Such a list is called a frame. The frame allows us
to draw elements from the population by randomly generating the numbers of the
elements to be included in the sample. Suppose we need a simple random sample of
100 people from a population of 7,000. We make a list of all 7,000 people and assign
each person an identification number. This gives us a list of 7,000 numbers—our frame
for the experiment. Then we generate by computer or by other means a set of 100 ran-
dom numbers in the range of values from 1 to 7,000. This procedure gives every set
of 100 people in the population an equal chance of being included in the sample.

As mentioned, a computer (or an advanced calculator) may be used for generat-
ing random numbers. We will demonstrate an alternative method of choosing ran-
dom numbers—a random number table. Table 5–1 is a part of such a table. A random
number table is given in Appendix C as Table 14. To use the table, we start at any
point, pick a number from the table, and continue in the same row or the same col-
umn (it does not matter which), systematically picking out numbers with the number
of digits appropriate for our needs. If a number is outside our range of required num-
bers, we ignore it. We also ignore any number already obtained.

For example, suppose that we need a random sample of 10 data points from a pop-
ulation with a total of 600 elements. This means that we need 10 random drawings of
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x
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elements from our frame of 1 through 600. To do this, we note that the number 600
has three digits; therefore, we draw random numbers with three digits. Since our
population has only 600 units, however, we ignore any number greater than 600 and
take the next number, assuming it falls in our range. Let us decide arbitrarily to
choose the first three digits in each set of five digits in Table 5–1; and we proceed by
row, starting in the first row and moving to the second row, continuing until we have
obtained our 10 required random numbers. We get the following random numbers:
104, 150, 15, 20, 816 (discard), 916 (discard), 691 (discard), 141, 223, 465, 255, 853
(discard), 309, 891 (discard), 279. Our random sample will, therefore, consist of the
elements with serial numbers 104, 150, 15, 20, 141, 223, 465, 255, 309, and 279. A
similar procedure would be used for obtaining the random sample of 100 people
from the population of 7,000 mentioned earlier. Random number tables are included
in books of statistical tables.

In many situations obtaining a frame of the elements in the population is impos-
sible. In such situations we may still randomize some aspect of the experiment and
thus obtain a random sample. For example, we may randomize the location and the
time and date of the collection of our observations, as well as other factors involved.
In estimating the average miles-per-gallon rating of an automobile, for example, we
may randomly choose the dates and times of our trial runs as well as the particular
automobiles used, the drivers, the roads used, and so on.

Other Sampling Methods
Sometimes a population may consist of distinct subpopulations, and including a cer-
tain number of samples from each subpopulation may be useful. For example, the
students at a university may consist of 54% women and 46% men. We know that men
and women may have very different opinions on the topic of a particular survey. Thus
having proper representation of men and women in the random sample is desirable.
If the total sample size is going to be 100, then a proper representation would mean
54 women and 46 men. Accordingly, the 54 women may be selected at random from
a frame of only women students, and the 46 men may be selected similarly. Together
they will make up a random sample of 100 with proper representation. This method
of sampling is called stratified sampling.

In a stratified sampling the population is partitioned into two or more
subpopulations called strata, and from each stratum a desired number of
samples are selected at random. 

Each stratum must be distinct in that it differs from other strata in some aspect that is
relevant to the sampling experiment. Otherwise, stratification would yield no benefit.
Besides sex, another common distinction between strata is their individual variances.
For example, suppose we are interested in estimating the average income of all the
families in a city. Three strata are possible: high-income, medium-income, and low-
income families. High-income families may have a large variance in their incomes,
medium-income families a smaller variance, and low-income families the least variance.
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TABLE 5–1 Random Numbers

10480 15011 01536 02011 81647 91646 69179 14194

22368 46573 25595 85393 30995 89198 27982 53402

24130 48360 22527 97265 76393 64809 15179 24830

42167 93093 06243 61680 07856 16376 93440 53537

37570 39975 81837 16656 06121 91782 60468 81305

77921 06907 11008 42751 27756 53498 18602 70659
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Then, by properly representing the three strata in a stratified sampling process, we
can achieve a greater accuracy in the estimate than by a regular sampling process.

Sometimes, we may have to deviate from the regular sampling process for practi-
cal reasons. For example, suppose we want to find the average opinion of all voters in
the state of Michigan on a state legislation issue. Assume that the budget for the sam-
pling experiment is limited. A normal random sampling process will choose voters
all over the state. It would be too costly to visit and interview every selected voter.
Instead, we could choose a certain number of counties at random and from within the
chosen counties select voters at random. This way, the travel will be restricted to chosen
counties only. This method of sampling is called cluster sampling. Each county in
our example is a cluster. After choosing a cluster at random if we sample every item or
person in that cluster, then the method would be single-stage cluster sampling. If
we choose a cluster at random and select items or people at random within the chosen
clusters, as mentioned in our example, then that is two-stage cluster sampling.
Multistage cluster sampling is also possible. For example, we might choose counties
at random, then choose townships at random within the chosen counties, and finally
choose voters at random within the chosen townships.

At times, the frame we have for a sampling experiment may itself be in random
order. In such cases we could do a systematic sampling. Suppose we have a list of
3,000 customers and the order of customers in the list is random. Assume that we need
a random sample of 100 customers. We first note that 3,000�100 � 30. We then pick a
number between 1 and 30 at random—say, 18. We select the 18th customer in the list
and from there on, we pick every 30th customer in the list. In other words, we pick the
18th, 48th, 78th, and so on. In general, if N is the population size and n is the sample
size, let N�n = k where k is a rounded integer. We pick a number at random between 1
and k—say, l. We then pick the k th, (l � k )th, (l � 2k )th, . . . , items from the frame.

Systematic sampling may also be employed when a frame cannot be prepared.
For example, a call center manager may want to select calls at random for monitor-
ing purposes. Here a frame is impossible but the calls can reasonably be assumed to
arrive in a random sequence, thus justifying a systematic selection of calls. Starting at
a randomly selected time, one may choose every k th call where k depends on the call
volume and the sample size desired.

Nonresponse
Nonresponse to sample surveys is one of the most serious problems that occur in
practical applications of sampling methodology. The example of polling Jewish peo-
ple, many of whom do not answer the phone on Saturday, mentioned in the New York
Times article in 2003 (see Chapter 1), is a case in point. The problem is one of loss of
information. For example, suppose that a survey questionnaire dealing with some
issue is mailed to a randomly chosen sample of 500 people and that only 300 people
respond to the survey. The question is: What can you say about the 200 people who
did not respond? This is a very important question, and there is no immediate answer
to it, precisely because the people did not respond; we know nothing about them.
Suppose that the questionnaire asks for a yes or no answer to a particular public issue
over which people have differing views, and we want to estimate the proportion of
people who would respond yes. People may have such strong views about the issue
that those who would respond no may refuse to respond altogether. In this case, the
200 nonrespondents to our survey will contain a higher proportion of “no” answers
than the 300 responses we have. But, again, we would not know about this. The result
will be a bias. How can we compensate for such a possible bias?

We may want to consider the population as made up of two strata: the respon-
dents’ stratum and the nonrespondents’ stratum. In the original survey, we managed
to sample only the respondents’ stratum, and this caused the bias. What we need to do
is to obtain a random sample from the nonrespondents’ stratum. This is easier said than
done. Still, there are ways we can at least reduce the bias and get some idea about the

188 Chapter 5



Aczel−Sounderpandian: 
Complete Business 
Statistics, Seventh Edition

5. Sampling and Sampling 
Distributions

Text 191© The McGraw−Hill 
Companies, 2009

5–1. Discuss the concepts of a parameter, a sample statistic, an estimator, and an
estimate. What are the relations among these entities?
5–2. An auditor selected a random sample of 12 accounts from all accounts receiv-
able of a given firm. The amounts of the accounts, in dollars, are as follows: 87.50,
123.10, 45.30, 52.22, 213.00, 155.00, 39.00, 76.05, 49.80, 99.99, 132.00, 102.11. Com-
pute an estimate of the mean amount of all accounts receivable. Give an estimate of
the variance of all the amounts.
5–3. In problem 5–2, suppose the auditor wants to estimate the proportion of all the
firm’s accounts receivable with amounts over $100. Give a point estimate of this
parameter.
5–4. An article in the New York Times describes an interesting business phenomenon.
The owners of small businesses tend to pay themselves much smaller salaries than
they would earn had they been working for someone else.5 Suppose that a random
sample of small business owners’ monthly salaries, in dollars, are as follows: 1,000,
1,200, 1,700, 900, 2,100, 2,300, 830, 2,180, 1,300, 3,300, 7,150, 1,500. Compute point
estimates of the mean and the standard deviation of the population monthly salaries of
small business owners.
5–5. Starbucks regularly introduces new coffee drinks and attempts to evaluate
how these drinks fare by estimating the price its franchises can charge for them
and sell enough cups to justify marketing the drink.6 Suppose the following random
sample of prices a new drink sells for in New York (in dollars) is available:
4.50, 4.25, 4.10, 4.75, 4.80, 3.90, 4.20, 4.55, 4.65, 4.85, 3.85, 4.15, 4.85, 3.95, 4.30,
4.60, 4.00. Compute the sample estimators of the population mean and standard
deviation.
5–6. A market research worker interviewed a random sample of 18 people about
their use of a certain product. The results, in terms of Y or N (for Yes, a user of the
product, or No, not a user of the product), are as follows: Y N N Y Y Y N Y N Y Y Y
N Y N Y Y N. Estimate the population proportion of users of the product.

P R O B L E M S

proportion of “yes” answers in the nonresponse stratum. This entails callbacks:
returning to the nonrespondents and asking them again. In some mail questionnaires,
it is common to send several requests for response, and these reduce the uncertainty.
There may, however, be hard-core refusers who just do not want to answer the
questionnaire. Such people are likely to have very distinct views about the issue in
question, and if you leave them out, there will be a significant bias in your conclu-
sions. In such a situation, gathering a small random sample of the hard-core refusers
and offering them some monetary reward for their answers may be useful. In cases
where people may find the question embarrassing or may worry about revealing
their personal views, a random-response mechanism whereby the respondent ran-
domly answers one of two questions—one the sensitive question, and the other an
innocuous question of no relevance—may elicit answers. The interviewer does not
know which question any particular respondent answered but does know the proba-
bility of answering the sensitive question. This still allows for computation of the
aggregated response to the sensitive question while protecting any given respondent’s
privacy.
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5Eva Tahmincioglu, “When the Boss Is Last in Line for a Paycheck,” The New York Times, March 22, 2007, p. C5.
6Burt Helm, “Saving Starbucks’ Soul,” BusinessWeek, April 9, 2007, p. 56.
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5–7. Use a random number table (you may use Table 5–1) to find identification
numbers of elements to be used in a random sample of size n � 25 from a population
of 950 elements.
5–8. Find five random numbers from 0 to 5,600.
5–9. Assume that you have a frame of 40 million voters (something the Literary
Digest should have had for an unbiased polling). Randomly generate the numbers of
five sampled voters.
5–10. Suppose you need to sample the concentration of a chemical in a production
process that goes on continuously 24 hours per day, 7 days per week. You need to
generate a random sample of six observations of the process over a period of one
week. Use a computer, a calculator, or a random number table to generate the six
observation times (to the nearest minute).

5–3 Sampling Distributions
The sampling distribution of a statistic is the probability distribution of
all possible values the statistic may take when computed from random
samples of the same size, drawn from a specified population.

Let us first look at the sample mean . The sample mean is a random variable. The
possible values of this random variable depend on the possible values of the elements
in the random sample from which is to be computed. The random sample, in turn,
depends on the distribution of the population from which it is drawn. As a random
variable, has a probability distribution. This probability distribution is the sampling
distribution of .

The sampling distribution of is the probability distribution of all possi-
ble values the random variable may take when a sample of size n is taken
from a specified population.

Let us derive the sampling distribution of in the simple case of drawing a sample
of size n � 2 items from a population uniformly distributed over the integers 1
through 8. That is, we have a large population consisting of equal proportions of the
values 1 to 8. At each draw, there is a 1�8 probability of obtaining any of the values 1
through 8 (alternatively, we may assume there are only eight elements, 1 through 8,
and that the sampling is done with replacement). The sample space of the values of
the two sample points drawn from this population is given in Table 5–2. This is an
example. In real situations, sample sizes are much larger.

X

X
X

X
X

X

X
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TABLE 5–2 Possible Values of Two Sample Points from a Uniform Population of 
the Integers 1 through 8

First Sample Point

1 2 3 4 5 6 7 8

1 1,1 2,1 3,1 4,1 5,1 6,1 7,1 8,1

2 1,2 2,2 3,2 4,2 5,2 6,2 7,2 8,2

3 1,3 2,3 3,3 4,3 5,3 6,3 7,3 8,3

4 1,4 2,4 3,4 4,4 5,4 6,4 7,4 8,4

5 1,5 2,5 3,5 4,5 5,5 6,5 7,5 8,5

6 1,6 2,6 3,6 4,6 5,6 6,6 7,6 8,6

7 1,7 2,7 3,7 4,7 5,7 6,7 7,7 8,7

8 1,8 2,8 3,8 4,8 5,8 6,8 7,8 8,8
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FIGURE 5–3 The Population Distribution and the Sampling Distribution of the Sample Mean

Using the sample space from the table, we will now find all possible values of the
sample mean and their probabilities. We compute these probabilities, using the fact
that all 64 sample pairs shown are equally likely. This is so because the population is uni-
formly distributed and because in random sampling each drawing is independent of the
other; therefore, the probability of a given pair of sample points is the product (1�8)(1�8) �
1�64. From Table 5–2, we compute the sample mean associated with each of the 64 pairs
of numbers and find the probability of occurrence of each value of the sample mean. The
values and their probabilities are given in Table 5–3. The table thus gives us the sam-
pling distributionof in this particular sampling situation. Verify the values in Table 5–3
using the sample space given in Table 5–2. Figure 5–3 shows the uniform distribution of
the population and the sampling distribution of , as listed in Table 5–3.

Let us find the mean and the standard deviation of the population. We can do this
by treating the population as a random variable (the random variable being the value
of a single item randomly drawn from the population; each of the values 1 through 8
has a 1�8 probability of being drawn). Using the appropriate equations from Chapter 3,
we find � � 4.5 and � � 2.29 (verify these results).

Now let us find the expected value and the standard deviation of the random vari-
able . Using the sampling distribution listed in Table 5–3, we find E ( ) � 4.5 and 

� 1.62 (verify these values by computation). Note that the expected value of 
is equal to the mean of the population; each is equal to 4.5. The standard deviation of

, denoted , is equal to 1.62, and the population standard deviation � is 2.29.
But observe an interesting fact: . The facts we have discovered in this
example are not an accident—they hold in all cases. The expected value of the sample

2.29>12 = 1.62
�xX

X�x

XX

X

X

X
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TABLE 5–3 The Sampling Distribution of for a Sample of Size 2 from a 
Uniformly Distributed Population of the Integers 1 to 8

Particular Value Probability of Particular Value Probability of 

1 1/64 5 7/64

1.5 2/64 5.5 6/64

2 3/64 6 5/64

2.5 4/64 6.5 4/64

3 5/64 7 3/64

3.5 6/64 7.5 2/64

4 7/64 8 1/64

4.5 8/64 1.00

xxxx

X
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We know the two parameters of the sampling distribution of : We know the
mean of the distribution (the expected value of ) and we know its standard
deviation. What about the shape of the sampling distribution? If the population itself
is normally distributed, the sampling distribution of is also normal.X

X
X

192 Chapter 5

mean is equal to the population mean � and the standard deviation of is equal
to the population standard deviation divided by the square root of the sample size.
Sometimes the estimated standard deviation of a statistic is called its standard error.

XX

The expected value of the sample mean is7

(5–2)

The standard deviation of the sample mean is8

(5–3)SD(X ) = �x = �>2n

E(X) = �

When sampling is done from a normal distribution with mean � and standard
deviation �, the sample mean has a normal sampling distribution:

(5–4)X � N(�, �2>n)

X

Thus, when we sample from a normally distributed population with mean � and
standard deviation �, the sample mean has a normal distribution with the same center,
�, as the population but with width (standard deviation) that is the size of the 
width of the population distribution. This is demonstrated in Figure 5–4, which
shows a normal population distribution and the sampling distribution of for differ-
ent sample sizes.

The fact that the sampling distribution of has mean � is very important. It means
that, on the average, the sample mean is equal to the population mean. The distribution of
the statistic is centered on the parameter to be estimated, and this makes the statistic a
good estimator of �. This fact will become clearer in the next section, where we discuss
estimators and their properties. The fact that the standard deviation of is 
means that as the sample size increases, the standard deviation of decreases, making
more likely to be close to �. This is another desirable property of a good estimator, to
be discussed later. Finally, when the sampling distribution of is normal, this allows
us to compute probabilities that will be within specified distances of �. What
happens in cases where the population itself is not normally distributed?

In Figure 5–3, we saw the sampling distribution of when sampling is done
from a uniformly distributed population and with a sample of size n � 2. Let us now
see what happens as we increase the sample size. Figure 5–5 shows results of a sim-
ulation giving the sampling distribution of when the sample size is n � 5, when the
sample size is n � 20, and the limiting distribution of —the distribution of as the
sample size increases indefinitely. As can be seen from the figure, the limiting distri-
bution of is, again, the normal distribution.X

XX
X

X

X
X

XX
�>1nX

X

X

X

1>1n

7The proof of equation 5–2 relies on the fact that the expected value of the sum of several random variables is equal
to the sum of their expected values. Also, from equation 3–6 we know that the expected value of aX , where a is a number,
is equal to a times the expected value of X. We also know that the expected value of each element X drawn from the pop-
ulation is equal to �, the population mean. Using these facts, we find the following: � E(�X�n) � (1�n)E(�X ) �
(1�n)n� � �.

8The proof of equation 5–3 relies on the fact that, when several random variables are independent (as happens in ran-
dom sampling), the variance of the sum of the random variables is equal to the sum of their variances. Also, from equa-
tion 3–10, we know that the variance of aX is equal to a2V(X). The variance of each X drawn from the population is equal
to �2. Using these facts, we find � V (�X�n) � (1�n)2(��2) � (1�n)2(n�2) � �2�n. Hence, � .�>1nSD (X )V (X )

E (X )
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FIGURE 5–4 A Normally Distributed Population and the Sampling Distribution of the Sample
Mean for Different Sample Sizes

Value

Density

Sampling distribution of X
for n = 16

Sampling distribution of X
for n = 4

Sampling distribution of X
for n = 2

Normal population 

µ

FIGURE 5–5 The Sampling Distribution of as the Sample Size IncreasesX

Probability

x

n = 5

Probability
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�/�n
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The Central Limit Theorem
The result we just stated—that the distribution of the sample mean tends to the nor-
mal distribution as the sample size increases—is one of the most important results in
statistics. It is known as the central limit theorem.

X

194 Chapter 5

The Central Limit Theorem (and additional properties)

When sampling is done from a population with mean � and finite standard
deviation �, the sampling distribution of the sample mean will tend to a
normal distribution with mean � and standard deviation as the 
sample size n becomes large.

For “large enough” n (5–5)X ' N(�, �2>n)

�>1n
X

The central limit theorem is remarkable because it states that the distribution of
the sample mean tends to a normal distribution regardless of the distribution of the
population from which the random sample is drawn. The theorem allows us to make
probability statements about the possible range of values the sample mean may take.
It allows us to compute probabilities of how far away may be from the population
mean it estimates. For example, using our rule of thumb for the normal distribution,
we know that the probability that the distance between and � will be less than

is approximately 0.68. This is so because, as you remember, the probability
that the value of a normal random variable will be within 1 standard deviation of its
mean is 0.6826; here our normal random variable has mean � and standard deviation

. Other probability statements can be made as well; we will see their use shortly.
When is a sample size n “large enough” that we may apply the theorem?

The central limit theorem says that, in the limit, as n goes to infinity (n → ∞), the dis-
tribution of becomes a normal distribution (regardless of the distribution of the popu-
lation). The rate at which the distribution approaches a normal distribution does depend,
however, on the shape of the distribution of the parent population. If the population itself
is normally distributed, the distribution of is normal for any sample size n, as stated
earlier. On the other hand, for population distributions that are very different from a
normal distribution, a relatively large sample size is required to achieve a good normal
approximation for the distribution of . Figure 5–6 shows several parent population dis-
tributions and the resulting sampling distributions of for different sample sizes.

Since we often do not know the shape of the population distribution, some gen-
eral rule of thumb telling us when a sample is large enough that we may apply the
central limit theorem would be useful.

In general, a sample of 30 or more elements is considered large enough
for the central limit theorem to take effect.

We emphasize that this is a general, and somewhat arbitrary, rule. A larger mini-
mum sample size may be required for a good normal approximation when the popu-
lation distribution is very different from a normal distribution. By the same token, a
smaller minimum sample size may suffice for a good normal approximation when
the population distribution is close to a normal distribution.

Throughout this book, we will make reference to small samples versus large samples.
By a small sample, we generally mean a sample of fewer than 30 elements. A large sam-
ple will generally mean a sample of 30 or more elements. The results we will discuss as
applicable for large samples will be more meaningful, however, the larger the sample
size. (By the central limit theorem, the larger the sample size, the better the approxima-
tion offered by the normal distribution.) The “30 rule” should, therefore, be applied with
caution. Let us now look at an example of the use of the central limit theorem.

X
X

X

X

�>1n

�>1n
X

X

X
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FIGURE 5–6 The Effects of the Central Limit Theorem: The Distribution of for Different
Populations and Different Sample Sizes

X

Distribution of X:

Normal Uniform Right-skewed

Parent
population:

n = 2

n = 10

n = 30
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Mercury makes a 2.4-liter V-6 engine, the Laser XRi, used in speedboats. The com-
pany’s engineers believe that the engine delivers an average power of 220 horse-
power and that the standard deviation of power delivered is 15 horsepower. A
potential buyer intends to sample 100 engines (each engine to be run a single time).
What is the probability that the sample mean will be less than 217 horsepower?X

In solving problems such as this one, we use the techniques of Chapter 4. There we
used � as the mean of the normal random variable and � as its standard deviation.
Here our random variable is normal (at least approximately so, by the central
limit theorem because our sample size is large) and has mean �. Note, however,
that the standard deviation of our random variable is and not just �. We
proceed as follows:

�>1nX

X

E X A M P L E  5 – 1

S o l u t i o n

Thus, if the population mean is indeed � � 220 horsepower and the standard devia-
tion is � � 15 horsepower, the probability that the potential buyer’s tests will result in
a sample mean less than 217 horsepower is rather small.

= P ¢Z 6
217 - 220

15>2100
≤ = P (Z 6 -2) = 0.0228

P (X 6 217) = P ¢Z 6
217 - �

�>1n
≤
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FIGURE 5–7 A (Nonnormal) Population Distribution and the Normal Sampling Distribution
of the Sample Mean When a Large Sample Is Used

Mean of both population and X

Distribution of population

Normal
distribution of X               σ

Standard deviation 
of population

Value

Density

µ

σy !n
Standard deviation of X

Figure 5–7 should help clarify the distinction between the population distribution
and the sampling distribution of . The figure emphasizes the three aspects of the
central limit theorem:

1. When the sample size is large enough, the sampling distribution of is
normal.

2. The expected value of is �.
3. The standard deviation of is .

The last statement is the key to the important fact that as the sample size increases,
the variation of about its mean � decreases. Stated another way, as we buy more
information (take a larger sample), our uncertainty (measured by the standard devia-
tion) about the parameter being estimated decreases.

X

�>1nX
X

X

X
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Eastern-Based Financial Institutions
Second-Quarter EPS and Statistical Summary

Corporation EPS ($) Summary
Bank of New York 2.53 Sample size 13

Bank Boston 4.38 Mean EPS 4.7377

Banker’s Trust NY 7.53 Median EPS 4.3500

Chase Manhattan 7.53 Standard deviation 2.4346

Citicorp 7.93

Fleet 4.35

MBNA 1.50

Mellon 2.75

JP Morgan 7.25

PNC Bank 3.11

Republic Bank 7.44

State Street Bank 2.04

Summit 3.25

This example shows random samples from the data above. Here 100 random sam-
ples of five banks each are chosen with replacement. The mean for each sample is
computed, and a frequency distribution is drawn. Note the shape of this distribution
(Figure 5–8).

E X A M P L E  5 – 2
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RS 1 RS 2 RS 3 RS 4 RS 5 RS 6 RS 7 RS 8 RS 9 RS 10 RS 11 RS 12 RS 13 RS 14 RS 15 RS 16 RS 17 RS 18 RS 19 RS 20

2.53 2.04 2.53 3.25 7.53 4.35 7.93 2.04 7.53 2.04 7.53 3.11 3.25 2.75 7.44 7.44 2.04 2.53 7.93 7.53

7.53 7.53 2.04 2.75 4.38 1.50 2.53 3.25 3.25 3.25 3.11 7.53 7.53 2.53 4.35 7.53 3.11 4.35 4.38 3.11

7.93 7.44 7.93 7.93 2.04 7.93 7.53 4.35 2.04 7.53 2.75 1.50 3.25 3.25 7.44 7.53 7.53 4.35 7.25 3.25

2.53 3.25 4.38 2.04 4.35 7.25 2.75 7.53 3.11 7.93 1.50 7.53 1.50 3.11 2.53 7.53 1.50 1.50 4.35 2.53

2.75 4.38 4.38 2.53 7.93 3.11 3.25 4.35 2.04 7.53 7.53 2.75 7.53 7.44 3.11 3.25 3.11 4.38 3.25 3.11

Mean 4.65 4.93 4.25 3.70 5.25 4.83 4.80 4.30 3.59 5.66 4.48 4.48 4.61 3.82 4.97 6.66 3.46 3.42 5.43 3.91

RS 21 RS 22 RS 23 RS 24 RS 25 RS 26 RS 27 RS 28 RS 29 RS 30 RS 31 RS 32 RS 33 RS 34 RS 35 RS 36 RS 37 RS 38 RS 39 RS 40

3.11 1.50 2.75 7.53 7.44 7.93 2.53 7.93 7.53 4.38 7.93 7.93 7.44 4.35 7.53 7.93 4.38 4.35 7.44 2.53

2.04 2.04 7.53 2.04 4.35 1.50 3.11 1.50 7.53 7.53 7.93 7.53 3.25 7.25 1.50 2.75 7.93 3.25 7.53 3.25

3.25 1.50 2.04 4.38 2.75 7.53 3.25 3.11 4.38 2.53 2.75 4.35 4.38 7.25 4.35 1.50 7.93 3.11 4.35 2.53

4.38 3.25 7.53 2.53 4.35 2.75 7.25 7.93 7.44 3.11 7.93 7.53 3.25 4.35 4.35 2.04 4.35 1.50 3.25 1.50

2.75 2.75 7.93 2.75 2.04 2.75 1.50 1.50 3.11 7.44 3.11 3.11 7.44 7.53 7.93 2.04 4.38 2.04 2.53 7.53

Mean 3.11 2.21 5.56 3.85 4.19 4.49 3.53 4.39 6.00 5.00 5.93 6.09 5.15 6.15 5.13 3.25 5.79 2.85 5.02 3.47

RS 41 RS 42 RS 43 RS 44 RS 45 RS 46 RS 47 RS 48 RS 49 RS 50 RS 51 RS 52 RS 53 RS 54 RS 55 RS 56 RS 57 RS 58 RS 59 RS 60

1.50 1.50 2.75 2.75 4.35 7.53 7.44 7.53 4.35 7.44 3.25 2.53 2.53 7.53 7.25 2.75 7.53 1.50 2.75 2.75

4.38 7.25 7.44 4.35 1.50 7.93 3.25 4.35 3.11 7.25 2.75 7.53 7.53 4.38 7.53 2.04 2.75 1.50 7.93 7.53

4.38 7.25 1.50 4.35 3.25 3.25 7.25 7.53 7.44 3.11 4.35 2.75 1.50 4.38 1.50 7.53 3.11 2.04 3.11 7.53

3.11 4.38 2.75 3.11 2.75 7.53 2.04 7.25 4.35 3.11 4.35 7.53 7.53 4.38 7.25 1.50 7.93 7.25 7.93 7.53

3.25 7.53 2.04 4.38 7.44 2.04 3.11 4.38 3.25 7.53 4.35 1.50 2.04 7.53 3.25 7.93 2.75 2.75 7.25 3.11

Mean 3.32 5.58 3.30 3.79 3.86 5.66 4.62 6.21 4.50 5.69 3.81 4.37 4.23 5.64 5.36 4.35 4.81 3.01 5.79 5.69

RS 61 RS 62 RS 63 RS 64 RS 65 RS 66 RS 67 RS 68 RS 69 RS 70 RS 71 RS 72 RS 73 RS 74 RS 75 RS 76 RS 77 RS 78 RS 79 RS 80

4.38 7.93 3.25 7.53 3.25 2.53 7.25 3.11 7.25 7.53 2.04 7.44 7.25 7.25 7.44 3.25 7.53 7.44 2.53 3.25

3.25 4.35 7.53 7.44 3.11 7.53 3.11 7.25 7.53 2.75 2.75 7.53 4.38 7.44 7.25 1.50 4.35 4.38 1.50 4.38

7.93 7.53 3.25 4.35 3.11 7.25 7.25 7.44 7.53 7.53 7.44 4.38 7.25 7.53 2.75 7.25 3.11 1.50 7.53 3.25

3.25 2.53 7.25 7.44 4.38 2.75 1.50 7.93 3.25 4.38 7.93 3.11 3.11 1.50 3.25 7.25 3.11 7.53 2.53 3.25

4.35 4.38 3.25 3.25 7.53 4.38 4.38 2.75 7.93 7.25 7.53 7.53 2.04 2.75 3.11 2.04 2.75 2.53 3.25 2.75

Mean 4.63 5.34 4.91 6.00 4.28 4.89 4.70 5.70 6.70 5.89 5.54 6.00 4.81 5.29 4.76 4.26 4.17 4.68 3.47 3.38

RS 81 RS 82 RS 83 RS 84 RS 85 RS 86 RS 87 RS 88 RS 89 RS 90 RS 91 RS 92 RS 93 RS 94 RS 95 RS 96 RS 97 RS 98 RS 99 RS 100

7.53 3.25 7.44 7.93 2.04 7.53 2.75 7.93 7.53 7.25 7.93 7.53 7.53 3.25 2.75 7.93 7.44 2.04 4.35 7.53

3.25 3.11 7.53 2.04 7.53 7.93 4.38 1.50 4.38 4.38 7.25 7.25 3.11 7.93 3.11 2.04 2.04 7.53 7.93 7.53

7.25 7.25 7.25 7.93 7.93 3.11 2.75 7.93 4.38 2.75 2.04 7.93 1.50 2.75 2.04 3.25 4.38 7.53 2.75 7.25

3.11 1.50 7.53 2.04 2.53 3.11 7.25 3.11 2.75 7.53 4.38 7.53 2.04 7.93 4.38 4.35 2.75 7.93 3.25 2.53

4.38 7.53 2.53 1.50 7.25 4.35 7.44 4.35 7.53 1.50 1.50 7.53 7.25 4.38 7.25 2.75 4.35 7.53 2.53 7.53

Mean 5.10 4.53 6.46 4.29 5.46 5.21 4.91 4.96 5.31 4.68 4.62 7.55 4.29 5.25 3.91 4.06 4.19 6.51 4.16 6.47
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FIGURE 5–8 EPS Mean Distribution—Excel Output
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Figure 5–8 shows a graph of the means of the samples from the banks’ data using
Excel.

The History of the Central Limit Theorem
What we call the central limit theorem actually comprises several theorems developed
over the years. The first such theorem was discussed at the beginning of Chapter 4 as
the discovery of the normal curve by Abraham De Moivre in 1733. Recall that De
Moivre discovered the normal distribution as the limit of the binomial distribution.
The fact that the normal distribution appears as a limit of the binomial distribution as
n increases is a form of the central limit theorem. Around the turn of the twentieth
century, Liapunov gave a more general form of the central limit theorem, and in 1922
the final form we use in applied statistics was given by Lindeberg. The proof of the
necessary condition of the theorem was given in 1935 by W. Feller [see W. Feller, An
Introduction to Probability Theory and Its Applications (New York: Wiley, 1971), vol. 2]. A
proof of the central limit theorem is beyond the scope of this book, but the interested
reader is encouraged to read more about it in the given reference or in other books.

The Standardized Sampling Distribution of the Sample Mean 
When � Is Not Known
To use the central limit theorem, we need to know the population standard deviation,
�. When � is not known, we use its estimator, the sample standard deviation S, in its
place. In such cases, the distribution of the standardized statistic

198 Chapter 5

(5–6)
X - �

S>1n

(where S is used in place of the unknown �) is no longer the standard normal distribution.
If the population itself is normally distributed, the statistic in equation 5–6 has a t distribution with
n � 1 degrees of freedom. The t distribution has wider tails than the standard normal distri-
bution. Values and probabilities of t distributions with different degrees of freedom are
given in Table 3 in Appendix C. The t distribution and its uses will be discussed in detail
in Chapter 6. The idea of degrees of freedom is explained in section 5–5 of this chapter.

The Sampling Distribution of the Sample Proportion P̂
The sampling distribution of the sample proportion P$ is based on the binomial distri-
bution with parameters n and p, where n is the sample size and p is the population
proportion. Recall that the binomial random variable X counts the number of suc-
cesses in n trials. Since P$ � X�n and n is fixed (determined before the sampling), the
distribution of the number of successes X leads to the distribution of P$.

As the sample size increases, the central limit theorem applies here as well. Figure 5–9
shows the effects of the central limit theorem for a binomial distribution with p = 0.3.
The distribution is skewed to the right for small values of n but becomes more sym-
metric and approaches the normal distribution as n increases.

We now state the central limit theorem when sampling for the population
proportion p.

As the sample size n increases, the sampling distribution of P$ approaches a
normal distribution with mean p and standard deviation .

(The estimated standard deviation of P$ is also called its standard error.) In order for us
to use the normal approximation for the sampling distribution of P$, the sample size
needs to be large. A commonly used rule of thumb says that the normal approxima-
tion to the distribution of P$ may be used only if both np and n(1 � p) are greater than 5.
We demonstrate the use of the theorem with Example 5–3.

1p(1 - p)>n



Aczel−Sounderpandian: 
Complete Business 
Statistics, Seventh Edition

5. Sampling and Sampling 
Distributions

Text 201© The McGraw−Hill 
Companies, 2009

FIGURE 5–9 The Sampling Distribution of When p � 0.3, as n IncreasesP$
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In recent years, convertible sport coupes have become very popular in Japan. Toyota
is currently shipping Celicas to Los Angeles, where a customizer does a roof lift and
ships them back to Japan. Suppose that 25% of all Japanese in a given income and
lifestyle category are interested in buying Celica convertibles. A random sample of 100
Japanese consumers in the category of interest is to be selected. What is the probability
that at least 20% of those in the sample will express an interest in a Celica convertible?

We need P (P$ � 0.20). Since np � 100(0.25) � 25 and n(1 � p) � 100(0.75) � 75,
both numbers greater than 5, we may use the normal approximation to the distribution
of P$. The mean of P$ is p � 0.25, and the standard deviation of P$ is �
0.0433. We have

2p(1 - p)>n

E X A M P L E  5 – 3

S o l u t i o n

P (P$ Ú 0.20) = P ¢Z Ú
0.20 - 0.25

0.0433
≤ = P (Z Ú -1.15) = 0.8749
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5–11. What is a sampling distribution, and what are the uses of sampling distributions?
5–12. A sample of size n � 5 is selected from a population. Under what conditions
is the sampling distribution of normal?
5–13. In problem 5–12, suppose the population mean is � � 125 and the population
standard deviation is 20. What are the expected value and the standard deviation of ?
5–14. What is the most significant aspect of the central limit theorem?
5–15. Under what conditions is the central limit theorem most useful in sampling
to estimate the population mean?
5–16. What are the limitations of small samples?
5–17. When sampling is done from a population with population proportion 
p � 0.1, using a sample size n � 2,what is the sampling distribution of P$? Is it reason-
able to use a normal approximation for this sampling distribution? Explain.
5–18. If the population mean is 1,247, the population variance is 10,000, and the
sample size is 100, what is the probability that will be less than 1,230?
5–19. When sampling is from a population with standard deviation � � 55, using
a sample of size n � 150, what is the probability that will be at least 8 units away
from the population mean �?
5–20. The Colosseum, once the most popular monument in Rome, dates from
about AD 70. Since then, earthquakes have caused considerable damage to the huge
structure, and engineers are currently trying to make sure the building will survive
future shocks. The Colosseum can be divided into several thousand small sections.
Suppose that the average section can withstand a quake measuring 3.4 on the Richter
scale with a standard deviation of 1.5. A random sample of 100 sections is selected and
tested for the maximum earthquake force they can withstand. What is the probability
that the average section in the sample can withstand an earthquake measuring at least
3.6 on the Richter scale?
5–21. According to Money, in the year prior to March 2007, the average return for
firms of the S&P 500 was 13.1%.9 Assume that the standard deviation of returns was
1.2%. If a random sample of 36 companies in the S&P 500 is selected, what is the
probability that their average return for this period will be between 12% and 15%?
5–22. An economist wishes to estimate the average family income in a certain pop-
ulation. The population standard deviation is known to be $4,500, and the economist
uses a random sample of size n � 225. What is the probability that the sample mean
will fall within $800 of the population mean?
5–23. When sampling is done for the proportion of defective items in a large ship-
ment, where the population proportion is 0.18 and the sample size is 200, what is the
probability that the sample proportion will be at least 0.20?
5–24. A study of the investment industry claims that 58% of all mutual funds out-
performed the stock market as a whole last year. An analyst wants to test this claim
and obtains a random sample of 250 mutual funds. The analyst finds that only 123

X

X

X

X

Sampling distributions are essential to statistics. In the following chapters, we will
make much use of the distributions discussed in this section, as well as others that will
be introduced as we go along. In the next section, we discuss properties of good 
estimators.

200 Chapter 5

9“Market Benchmarks,” Money, March 2007, p. 128.
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of the funds outperformed the market during the year. Determine the probability that
another random sample would lead to a sample proportion as low as or lower than
the one obtained by the analyst, assuming the proportion of all mutual funds that out-
performed the market is indeed 0.58.
5–25. According to a recent article in Worth, the average price of a house on Marco
Island, Florida, is $2.6 million.10 Assume that the standard deviation of the prices is
$400,000. A random sample of 75 houses is taken and the average price is computed.
What is the probability that the sample mean exceeds $3 million?
5–26. It has been suggested that an investment portfolio selected randomly by
throwing darts at the stock market page of The Wall Street Journal may be a sound (and
certainly well-diversified) investment.11 Suppose that you own such a portfolio of 16
stocks randomly selected from all stocks listed on the New York Stock Exchange
(NYSE). On a certain day, you hear on the news that the average stock on the NYSE
rose 1.5 points. Assuming that the standard deviation of stock price movements that
day was 2 points and assuming stock price movements were normally distributed
around their mean of 1.5, what is the probability that the average stock price of your
portfolio increased?
5–27. An advertisement for Citicorp Insurance Services, Inc., claims “one person in
seven will be hospitalized this year.” Suppose you keep track of a random sample of
180 people over an entire year. Assuming Citicorp’s advertisement is correct, what is
the probability that fewer than 10% of the people in your sample will be found to
have been hospitalized (at least once) during the year? Explain.
5–28. Shimano mountain bikes are displayed in chic clothing boutiques in Milan,
Italy, and the average price for the bike in the city is $700. Suppose that the standard
deviation of bike prices is $100. If a random sample of 60 boutiques is selected, what
is the probability that the average price for a Shimano mountain bike in this sample
will be between $680 and $720?
5–29. A quality-control analyst wants to estimate the proportion of imperfect jeans
in a large warehouse. The analyst plans to select a random sample of 500 pairs of
jeans and note the proportion of imperfect pairs. If the actual proportion in the entire
warehouse is 0.35, what is the probability that the sample proportion will deviate
from the population proportion by more than 0.05?

5–4 Estimators and Their Properties12

The sample statistics we discussed— , S, and P$—as well as other sample statistics to
be introduced later, are used as estimators of population parameters. In this section, we
discuss some important properties of good statistical estimators: unbiasedness, efficiency,
consistency, and sufficiency.

An estimator is said to be unbiased if its expected value is equal to the
population parameter it estimates.

Consider the sample mean . From equation 5–2, we know � �. The sample 
mean is, therefore, an unbiased estimator of the population mean �. This means that if
we sample repeatedly from the population and compute for each of our samples,
in the long run, the average value of will be the parameter of interest �. This is an
important property of the estimator because it means that there is no systematic bias
away from the parameter of interest.

X
X

X
E(X )X

X
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10Elizabeth Harris, “Luxury Real Estate Investment,” Worth, April 2007, p. 76.
11See the very readable book by Burton G. Malkiel, A Random Walk Down Wall Street (New York: W. W. Norton, 2003).
12An optional, but recommended, section.
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FIGURE 5–10 The Sample Mean as an Unbiased Estimator of the Population Mean �X
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FIGURE 5–11 An Example of a Biased Estimator of the Population Mean �
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If we view the gathering of a random sample and the calculating of its mean as
shooting at a target—the target being the population parameter, say, �—then the fact
that is an unbiased estimator of � means that the device producing the estimates is
aiming at the center of the target (the parameter of interest), with no systematic deviation
away from it.

Any systematic deviation of the estimator away from the parameter of
interest is called a bias.

The concept of unbiasedness is demonstrated for the sample mean in Figure 5–10.
Figure 5–11 demonstrates the idea of a biased estimator of �. The hypothetical

estimator we denote byY is centered on some point M that lies away from the param-
eter �. The distance between the expected value of Y (the point M ) and � is the bias.

It should be noted that, in reality, we usually sample once and obtain our estimate.
The multiple estimates shown in Figures 5–10 and 5–11 serve only as an illustration
of the expected value of an estimator as the center of a large collection of the actual
estimates that would be obtained in repeated sampling. (Note also that, in reality, the
“target” at which we are “shooting” is one-dimensional—on a straight line rather than
on a plane.)

X

X
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FIGURE 5–12 Two Unbiased Estimators of �, Where the Estimator X Is Efficient 
Relative to the Estimator Z
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The next property of good estimators we discuss is efficiency.

An estimator is efficient if it has a relatively small variance (and standard
deviation).

Efficiency is a relative property. We say that one estimator is efficient relative to
another. This means that the estimator has a smaller variance (also a smaller standard
deviation) than the other. Figure 5–12 shows two hypothetical unbiased estimators of
the population mean �. The two estimators, which we denote by and Z, are unbi-
ased: Their distributions are centered at �. The estimator , however, is more effi-
cient than the estimator Z because it has a smaller variance than that of Z. This is
seen from the fact that repeated estimates produced by Z have a larger spread about
their mean � than repeated estimates produced by .

Another desirable property of estimators is consistency.

An estimator is said to be consistent if its probability of being close to the
parameter it estimates increases as the sample size increases.

The sample mean is a consistent estimator of �. This is so because the standard 
deviation of is � . As the sample size n increases, the standard deviation
of decreases and, hence, the probability that will be close to its expected value �
increases.

We now define a fourth property of good estimators: sufficiency.

An estimator is said to be sufficient if it contains all the information in the
data about the parameter it estimates.

Applying the Concepts of Unbiasedness, Efficiency, 
Consistency, and Sufficiency
We may evaluate possible estimators of population parameters based on whether they
possess important properties of estimators and thus choose the best estimator to be used.

For a normally distributed population, for example, both the sample mean and the
sample median are unbiased estimators of the population mean �. The sample mean,
however, is more efficient than the sample median. This is so because the variance of
the sample median happens to be 1.57 times as large as the variance of the sample

XX
�>1n�xX

X

X

X
X
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5–30. Suppose that you have two statistics A and B as possible estimators of the same
population parameter. Estimator A is unbiased, but has a large variance. Estimator B
has a small bias, but has only one-tenth the variance of estimator A. Which estimator
is better? Explain.
5–31. Suppose that you have an estimator with a relatively large bias. The estimator
is consistent and efficient, however. If you had a generous budget for your sampling
survey, would you use this estimator? Explain.
5–32. Suppose that in a sampling survey to estimate the population variance, the
biased estimator (with n instead of n � 1 in the denominator of equation 1–3) was used
instead of the unbiased one. The sample size used was n � 100, and the estimate obtained
was 1,287. Can you find the value of the unbiased estimate of the population variance?
5–33. What are the advantages of a sufficient statistic? Can you think of a possible
disadvantage of sufficiency?
5–34. Suppose that you have two biased estimators of the same population param-
eter. Estimator A has a bias equal to 1�n (that is, the mean of the estimator is 1�n unit
away from the parameter it estimates), where n is the sample size used. Estimator B
has a bias equal to 0.01 (the mean of the estimator is 0.01 unit away from the param-
eter of interest). Under what conditions is estimator A better than B?
5–35. Why is consistency an important property?

mean. In addition, the sample mean is a sufficient estimator because in computing it
we use the entire data set. The sample median is not sufficient; it is found as the point
in the middle of the data set, regardless of the exact magnitudes of all other data ele-
ments. The sample mean is the best estimator of the population mean �, because it
is unbiased and has the smallest variance of all unbiased estimators of �. The sample
mean is also consistent. (Note that while the sample mean is best, the sample median is
sometimes used because it is more resistant to extreme observations.)

The sample proportion P$ is the best estimator of the population proportion p.
Since � p, the estimator P$ is unbiased. It also has the smallest variance of all
unbiased estimators of p.

What about the sample variance S 2? The sample variance, as defined in equa-
tion 1–3, is an unbiased estimator of the population variance �2. Recall equation 1–3:

E(P$ )

X

204 Chapter 5

S 2 =
©(xi - x )2

n - 1

Dividing the sum of squared deviations in the equation by n rather than by n � 1 seems
logical because we are seeking the average squared deviation from the sample mean. We
have n deviations from the mean, so why not divide by n? It turns out that if we were to
divide by n rather than by n � 1, our estimator of �2 would be biased. Although the
bias becomes small as n increases, we will always use the statistic given in equation 1–3
as an estimator of �2. The reason for dividing by n � 1 rather than n will become clearer
in the next section, when we discuss the concept of degrees of freedom.

Note that while S 2 is an unbiased estimator of the population variance �2, the
sample standard deviation S (the square root of S 2) is not an unbiased estimator of the
population standard deviation �. Still, we will use S as our estimator of the population
standard deviation, ignoring the small bias that results and relying on the fact that
S 2 is the unbiased estimator of �2.
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FIGURE 5–13 Deviations from the Population Mean and the Sample Mean
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5–5 Degrees of Freedom
Suppose you are asked to choose 10 numbers. You then have the freedom to choose
10 numbers as you please, and we say you have 10 degrees of freedom. But suppose
a condition is imposed on the numbers. The condition is that the sum of all the num-
bers you choose must be 100. In this case, you cannot choose all 10 numbers as you
please. After you have chosen the ninth number, let’s say the sum of the nine numbers
is 94. Your tenth number then has to be 6, and you have no choice. Thus you have
only 9 degrees of freedom. In general, if you have to choose n numbers, and a condi-
tion on their total is imposed, you will have only (n — 1) degrees of freedom.

As another example, suppose that I wrote five checks last month, and the total
amount of these checks is $80. Now if I know that the first four checks were for $30,
$20, $15, and $5, then I don’t need to be told that the fifth check was for $10. I can sim-
ply deduce this information by subtraction of the other four checks from $80. My
degrees of freedom are thus four, and not five.

In Chapter 1, we saw the formula for the sample variance

Sampling and Sampling Distributions 205

S 2 � SSD�(n � 1)

where SSD is the sum of squared deviations from the sample mean. In particular,
note that SSD is to be divided by (n � 1) rather than n. The reason concerns the
degrees of freedom for the deviations. A more complex case of degrees of freedom
occurs in the use of a technique called ANOVA, which is discussed in Chapter 9. In
the following paragraphs, we shall see the details of these cases.

We first note that in the calculation of SSD, the deviations are taken from the
sample mean and not from the population mean �. The reason is simple: While
sampling, almost always, the population mean � is not known. Not knowing the popu-
lation mean, we take the deviations from the sample mean. But this introduces a down-
ward bias in the deviations. To see the bias, refer to Figure 5–13, which shows the
deviation of a sample point x from the sample mean and from the population mean.

It can be seen from Figure 5–13 that for sample points that fall to the right of the
midpoint between � and , the deviation from the sample mean will be smaller than
the deviation from the population mean. Since the sample mean is where the sample
points gravitate, a majority of the sample points are expected to fall to the right of the
midpoint. Thus, overall, the deviations will have a downward bias.

To compensate for the downward bias, we use the concept of degrees of freedom.
Let the population be a uniform distribution of the values {1, 2, . . . , 10}. The mean of
this population is 5.5. Suppose a random sample of size 10 is taken from this popu-
lation. Assume that we are told to take the deviations from this population mean.

x

x
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FIGURE 5–14 SSD and df

df � 10
Deviation Deviation

Sample from Deviation Squared

1 10 5.5 4.5 20.25

2 3 5.5 �2.5 6.25

3 2 5.5 �3.5 12.25

4 6 5.5 0.5 0.25

5 1 5.5 �4.5 20.25

6 9 5.5 3.5 12.25

7 6 5.5 0.5 0.25

8 4 5.5 �1.5 2.25

9 10 5.5 4.5 20.25

10 7 5.5 1.5 2.25

SSD 96.5

FIGURE 5–15 SSD and df (continued )

df � 10 � 1 � 9

Deviation Deviation
Sample from Deviation Squared

1 10 5.8 4.2 17.64

2 3 5.8 �2.8 7.84

3 2 5.8 �3.8 14.44

4 6 5.8 0.2 0.04

5 1 5.8 �4.8 23.04

6 9 5.8 3.2 10.24

7 6 5.8 0.2 0.04

8 4 5.8 �1.8 3.24

9 10 5.8 4.2 17.64

10 7 5.8 1.2 1.44

SSD 95.6

(a)

df � 10 � 2 � 8
Deviation Deviation

Sample from Deviation Squared

10 4.4 5.6 31.36

3 4.4 �1.4 1.96

2 4.4 �2.4 5.76

6 4.4 1.6 2.56

1 4.4 �3.4 11.56

9 7.2 1.8 3.24

6 7.2 �1.2 1.44

4 7.2 �3.2 10.24

10 7.2 2.8 7.84

7 7.2 �0.2 0.04

SSD 76

(b)

In Figure 5–14, the Sample column shows the sampled values. The calculation of
SSD is shown taking deviations from the population mean of 5.5. The SSD works out
to 96.5. Since we had no freedom in taking the deviations, all the 10 deviations are completely
left to chance. Hence we say that the deviations have 10 degrees of freedom.

Suppose we do not know the population mean and are told that we can take the
deviation from any number we choose. The best number to choose then is the sam-
ple mean, which will minimize the SSD (see problem 1–85). Figure 5–15a shows the
calculation of SSD where the deviations are taken from the sample mean of 5.8.
Because of the downward bias, the SSD has decreased to 95.6. The SSD would
decrease further if we were allowed to select two different numbers from which the
deviations are taken. Suppose we are allowed to use one number for the first five data
points and another for the next five. Our best choices are the average of the first five
numbers, 4.4, and the average of next five numbers, 7.2. Only these choices will min-
imize the SSD. The minimized SSD works out to 76, as seen in Figure 5–15b.

We can carry this process further. If we were allowed 10 different numbers from
which the deviations are taken, then we could reduce the SSD all the way to zero.

206 Chapter 5
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FIGURE 5–16 SSD and df (continued)

df � 10 � 10 � 0
Deviation Deviation

Sample from Deviation Squared

1 10 10 0 0

2 3 3 0 0

3 2 2 0 0

4 6 6 0 0

5 1 1 0 0

6 9 9 0 0

7 6 6 0 0

8 4 4 0 0

9 10 10 0 0

10 7 7 0 0

SSD 0

How? See Figure 5–16. We choose the 10 numbers equal to the 10 sample points
(which in effect are 10 means). In the case of Figure 5–15a , we had one choice, and
this takes away 1 degree of freedom from the deviations. The df of SSD is then
declared as 10 � 1 � 9. In Figure 5–15b, we had two choices and this took away 2
degrees of freedom from the deviations. Thus the df of SSD is 10 � 2 � 8. In 
Figure 5–16, the df of SSD is 10 � 10 � 0.

In every one of these cases, dividing the SSD by only its corresponding df will yield an
unbiased estimate of the population variance �2. Hence the concept of the degrees of free-
dom is important. This also explains the denominator of (n � 1) in the formula for
sample variance S 2. For the case in Figure 5–15a, SSD/df � 95.6�9 � 10.62, and this
is an unbiased estimate of the population variance.

We can now summarize how the number of degrees of freedom is determined. If we
take a sample of size n and take the deviations from the (known) population mean, then
the deviations, and therefore the SSD, will have df � n. But if we take the deviations
from the sample mean, then the deviations, and therefore the SSD, will have df � n � 1.
If we are allowed to take the deviations from k (	 n) different numbers that we choose,
then the deviations, and therefore the SSD, will have df � n � k . While choosing each
of the k numbers, we should choose the mean of the sample points to which that num-
ber applies. The case of k 
 1 will be seen in Chapter 9, “Analysis of Variance.”
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Sample

1

2

3

4

5

6

7

8

9

10

93

97

60

72

96

83

59

66

88

53

A sample of size 10 is given below. We are to choose three different numbers from
which the deviations are to be taken. The first number is to be used for the first five
sample points; the second number is to be used for the next three sample points; and
the third number is to be used for the last two sample points.

E X A M P L E  5 – 4
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5–36. Three random samples of sizes, 30, 48, and 32, respectively, are collected,
and the three sample means are computed. What is the total number of degrees of
freedom for deviations from the means?
5–37. The data points in a sample of size 9 are 34, 51, 40, 38, 47, 50, 52, 44, 37.

a. If you can take the deviations of these data from any number you select,
and you want to minimize the sum of the squared deviations (SSD), what
number would you select? What is the minimized SSD? How many
degrees of freedom are associated with this SSD? Calculate the mean
squared deviation (MSD) by dividing the SSD by its degrees of freedom.
(This MSD is an unbiased estimate of population variance.)

b. If you can take the deviations from three different numbers you select, and
the first number is to be used with the first four data points to get the devi-
ations, the second with the next three data points, and the third with the
last two data points, what three numbers would you select? What is the
minimized SSD? How many degrees of freedom are associated with this
SSD? Calculate MSD.

c. If you can select nine different numbers to be used with each of the nine
data points, what numbers would you select? What is the minimized
SSD? How many degrees of freedom are associated with this SSD? Does
MSD make sense in this case?

d. If you are told that the deviations are to be taken with respect to 50, what
is the SSD? How many degrees of freedom are associated with this SSD?
Calculate MSD.

208 Chapter 5

1. We choose the means of the corresponding sample points: 83.6, 69.33, 70.5.
2. SSD � 2030.367. See the spreadsheet calculation below.
3. df � 10 � 3 � 7.
4. An unbiased estimate of the population variance is SSD/df � 2030.367�7 �

290.05.

S o l u t i o n

1. What three numbers should we choose to minimize the SSD?
2. Calculate the SSD with the chosen numbers.
3. What is the df for the calculated SSD?
4. Calculate an unbiased estimate of the population variance.

Deviation
Sample Mean Deviation Squared

1 93 83.6 9.4 88.36

2 97 83.6 13.4 179.56

3 60 83.6 �23.6 556.96

4 72 83.6 �11.6 134.56

5 96 83.6 12.4 153.76

6 83 69.33 13.6667 186.7778

7 59 69.33 �10.3333 106.7778

8 66 69.33 �3.33333 11.11111

9 88 70.5 17.5 306.25

10 53 70.5 �17.5 306.25

SSD 2030.367

SSD/df 290.0524
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FIGURE 5–17 The Template for Sampling Distribution of a Sample Mean
[Sampling Distribution.xls; Sheet: X-bar]

1

2

3
4

5
6
7
8
9

10

11

12
13
14
15
16
17
18
19
20
21
22
23

24

25
26
27
28
29

30
31
32
33
34

A B C D E F K LG H I J

Sampling Distribution of Sample Mean

P(<x) x x1 P(x1<X<x2) x2

0.0228 217 219 0.7437 224

Inverse Calculations

Population Distribution
Is the population normal?

P(<x) x x P(>x)

0.9 221.92 218.08 0.9 x1 P(x1<X<x2) x2

216.1363 0.99 223.86374

217.0601 0.95 222.93995

217.5327 0.9 222.46728

Symmetric Intervals

Mean Stdev

220 15

P(>x)x

0.2525221

No

Sample Size
n 100

Sampling Distribution of X-bar
Mean Stdev

220 1.5

known�

Mercury Engines

5–38. Your bank sends you a summary statement, giving the average amount of all
checks you wrote during the month. You have a record of the amounts of 17 out of
the 19 checks you wrote during the month. Using this and the information provided
by the bank, can you figure out the amounts of the two missing checks? Explain.
5–39. In problem 5–38, suppose you know the amounts of 18 of the 19 checks you
wrote and the average of all the checks. Can you figure out the amount of the missing
check? Explain.
5–40. You are allowed to take the deviations of the data points in a sample of size n,
from k numbers you select, in order to calculate the sum of squared deviations (SSD).
You select them to minimize SSD. How many degrees of freedom are associated with
this SSD? As k increases, what happens to the degrees of freedom? What happens to
SSD? What happens to MSD � SSD/df(SSD)?

5–6 Using the Computer
Using Excel for Generating Sampling Distributions
Figure 5–17 shows the template that can be used to calculate the sampling distribu-
tion of a sample mean. It is largely the same as the normal distribution template. The
additional items are the population distribution entries at the top. To use the tem-
plate, enter the population mean and standard deviation in cells B5 and C5. Enter
the sample size in cell B8. In the drop-down box in cell I4, select Yes or No to answer
the question “Is the population normally distributed?” The sample mean will follow
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FIGURE 5–18 The Template for Sampling Distribution of a Sample Proportion
[Sampling Distribution.xls; Sheet: P-hat]

1

2

3
4

5
6
7
8
9

10

11

12
13
14
15
16
17
18
19
20
21
22

23

24
25
26
27
28
29

30
31
32
33
34
35

A B C D E F K LG H I J

Sampling Distribution of Sample Proportion

P(<x) x x1 P(x1<P hat<x2) x2

0.2442 0.22 0.2 0.2846 0.24

Inverse Calculations

Population Proportion

P(<x) x x P(>x)

0.85 0.2949 0.2051 0.85 x1 P(x1<P hat<x2) x2

0.1385 0.99 0.3615

0.1651 0.95 0.3349

0.1788 0.9 0.3212

Symmetric Intervals

p

0.25

P(>x)x

0.87590.2

Sample Size
n 100

Sampling Distribution of P-hat
Mean Stdev

0.25 0.0433

Both np and n(1-p) must be at least 5, for results in this area.

Both np and n(1-p) must be at least 5, for results in this area.

Sport coupes

a normal distribution if either the population is normally distributed or the sample
size is at least 30. Only in such cases should this template be used. In other cases, a
warning message—“Warning: The sampling distribution cannot be approximated as
normal. Results appear anyway”—will appear in cell A10.

To solve Example 5–1, enter the population mean 220 in cell B5 and the popula-
tion standard deviation 15 in cell C5. Enter the sample size 100 in cell B8. To find
the probability that the sample mean will be less than 217, enter 217 in cell C17. The
answer 0.0228 appears in cell B17.

Figure 5–18 shows the template that can be used to calculate the sampling distri-
bution of a sample proportion. To use the template, enter the population proportion
in cell E5 and the sample size in cell B8.

To solve Example 5–3, enter the population proportion 0.25 in cell E5 and the
sample size 100 in cell B8. Enter the value 0.2 in cell E17 to get the probability of the
sample proportion being more than 0.2 in cell F17. The answer is 0.8749.

In addition to the templates discussed above, you can use Excel statistical tools to
develop a variety of statistical analyses.

The Sampling analysis tool of Excel creates a sample from a population by treat-
ing the input range as a population. You can also create a sample that contains only the
values from a particular part of a cycle if you believe that the input data is periodic.
The Sampling analysis tool is accessible via Data Analysis in the Analysis group on
the Data tab. If the Data Analysis command is not available, you need to load the
Analysis ToolPack add-in program as described in Chapter 1.
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FIGURE 5–19 Generating a Random Sample by Excel

FIGURE 5–20 Generating Random Samples from Specific Distributions

As an example, imagine you have a sample of size 10 from a population and you
wish to generate another sample of size 15 from this population. You can start by
choosing Sampling from Data Analysis. The Sampling dialog box will appear as
shown in Figure 5–19. Specify the input range which represents your initial sample,
cells B3 to B12. In the Sampling Method section you can indicate that you need a
random sample of size 15. Determine the output range in the Output Options section.
In Figure 5–19 the output has been placed in the column labeled Generated Sample
starting from cell D3.

Another very useful tool of Excel is the Random Number Generation analysis
tool, which fills a range with independent random numbers that are drawn from one
of several distributions. Start by choosing the Random Number Generation analysis
tool from Data Analysis in the Analysis group on the Data tab. Then the Random
Number Generation dialog box will appear as shown in Figure 5–20. The number of
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variables and number of random numbers at each set are defined by the values 2 and
10, respectively. The type of distribution and its parameters are defined in the next
section. Define the output range in the Output Options. The two sets of random num-
bers are labeled Sample 1 and Sample 2 in Figure 5–20.

Using MINITAB for Generating Sampling Distributions
In this section we will illustrate how to use the Random Number Generation tool
of MINITAB for simulating sampling distributions. To develop a random sample
from a specific distribution you have to start by choosing Calc � Random Data
from the menu. You will observe a list of all distributions. Let’s start by generating
a random sample of size 10 from a binomial distribution with parameters 10 and
0.6 for number of trials and event probability, respectively. After choosing Calc �

Random Data � Binomial from the menu, the Binomial Distribution dialog box
will appear as shown in Figure 5–21. You need to specify the size of your sample as
the number of rows of data to generate. As can be seen, the number 10 has been
entered in the corresponding edit box. Specify the name of the column that will
store the generated random numbers. Define the parameters of the binomial distri-
bution in the next section. Then press the OK button. The generated binomial ran-
dom numbers as well as corresponding Session commands will appear as shown in
Figure 5–21.

MINITAB also enables you to generate a sample with an arbitrary size from
a specific sample space with or without replacement. You need to specify the members
of your sample space in a column. Imagine we need to generate a sample of size 8
from a sample space that has been defined in the first column. Start by choosing Calc
� Random Data � Sample Form Columns from the menu bar. You need to specify

212 Chapter 5
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5–41. Suppose you are sampling from a population with mean � � 1,065 and stan-
dard deviation � � 500. The sample size is n � 100. What are the expected value
and the variance of the sample mean ?
5–42. Suppose you are sampling from a population with population variance �2 �
1,000,000. You want the standard deviation of the sample mean to be at most 25.
What is the minimum sample size you should use?
5–43. When sampling is from a population with mean 53 and standard deviation
10, using a sample of size 400, what are the expected value and the standard devia-
tion of the sample mean?
5–44. When sampling is for a population proportion from a population with actual
proportion p � 0.5, using a sample of size n � 120, what is the standard deviation of
our estimator P$?
5–45. What are the expected value and the standard deviation of the sample
proportion P$ if the true population proportion is 0.2 and the sample size is n � 90?
5–46. For a fixed sample size, what is the value of the true population proportion p
that maximizes the variance of the sample proportion P$ ? (Hint: Try several values of
p on a grid between 0 and 1.)
5–47. The average value of $1.00 in euros in early 2007 was 0.76.13 If � � 0.02 and
n � 30, find P (0.72 � � 0.82).
5–48. In problem 5–41, what is the probability that the sample mean will be at least
1,000? Do you need to use the central limit theorem to answer this question? Explain.
5–49. In problem 5–43, what is the probability that the sample mean will be between
52 and 54?
5–50. In problem 5–44, what is the probability that the sample proportion will be
at least 0.45?

X

X

A D D I T I O N A L  P R O B L E M S

the size of your sample, the column that contains your sample space, and the column
that will store the generated random numbers. You can also specify that the sampling
occurs with or without replacement.

5–7 Summary and Review of Terms
In this chapter, we saw how samples are randomly selected from populations for the
purpose of drawing inferences about population parameters. We saw how sample
statistics computed from the data—the sample mean, the sample standard deviation,
and the sample proportion—are used as estimators of population parameters. We
presented the important idea of a sampling distribution of a statistic, the proba-
bility distribution of the values the statistic may take. We saw how the central limit
theorem implies that the sampling distributions of the sample mean and the sample
proportion approach normal distributions as the sample size increases. Sampling
distributions of estimators will prove to be the key to the construction of confidence
intervals in the following chapter, as well as the key to the ideas presented in later
chapters. We also presented important properties we would like our estimators to
possess: unbiasedness, efficiency, consistency, and sufficiency. Finally, we discussed
the idea of degrees of freedom.
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5–51. Searches at Switzerland’s 406 commercial banks turned up only $3.3 million in
accounts belonging to Zaire’s deposed president, Mobutu Sese Seko. The Swiss banks
had been asked to look a little harder after finding nothing at all the first time round.

a. If President Mobutu’s money was distributed in all 406 banks, how much
was found, on average, per bank?

b. If a random sample of 16 banks was first selected in a preliminary effort to
estimate how much money was in all banks, then assuming that amounts
were normally distributed with standard deviation of $2,000, what was
the probability that the mean of this sample would have been less than
$7,000?

5–52. The proportion of defective microcomputer disks of a certain kind is
believed to be anywhere from 0.06 to 0.10. The manufacturer wants to draw a ran-
dom sample and estimate the proportion of all defective disks. How large should the
sample be to ensure that the standard deviation of the estimator is at most 0.03?
5–53. Explain why we need to draw random samples and how such samples are
drawn. What are the properties of a (simple) random sample?
5–54. Explain the idea of a bias and its ramifications.
5–55. Is the sample median a biased estimator of the population mean? Why do we
usually prefer the sample mean to the sample median as an estimator for the popu-
lation mean? If we use the sample median, what must we assume about the popula-
tion? Compare the two estimators.
5–56. Explain why the sample variance is defined as the sum of squared deviations
from the sample mean, divided by n � 1 and not by n.
5–57. Residential real estate in New York rents for an average of $44 per square
foot, for a certain segment of the market.14 If the population standard deviation is $7,
and a random sample of 50 properties is chosen, what is the probability that the sam-
ple average will be below $35?
5–58. In problem 5–57, give 0.95 probability bounds on the value of the sample
mean that would be obtained. Also give 0.90 probability bounds on the value of the
sample mean.
5–59. According to Money, the average U.S. government bond fund earned 3.9%
over the 12 months ending in February 2007.15 Assume a standard deviation of 0.5%.
What is the probability that the average earning in a random sample of 25 bonds
exceeded 3.0%?
5–60. You need to fill in a table of five rows and three columns with numbers. All
the row totals and column totals are given to you, and the numbers you fill in must
add to these given totals. How many degrees of freedom do you have?
5–61. Thirty-eight percent of all shoppers at a large department store are holders
of the store’s charge card. If a random sample of 100 shoppers is taken, what is the
probability that at least 30 of them will be found to be holders of the card?
5–62. When sampling is from a normal population with an unknown variance,
is the sampling distribution of the sample mean normal? Explain.
5–63. When sampling is from a normal population with a known variance, what
is the smallest sample size required for applying a normal distribution for the
sample mean?
5–64. Which of the following estimators are unbiased estimators of the appropriate
population parameters: , P$, S2, S? Explain.X
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5–65. Suppose a new estimator for the population mean is discovered. The new
estimator is unbiased and has variance equal to �2�n2. Discuss the merits of the new
estimator compared with the sample mean.
5–66. Three independent random samples are collected, and three sample means
are computed. The total size of the combined sample is 124. How many degrees of
freedom are associated with the deviations from the sample means in the combined
data set? Explain.
5–67. Discuss, in relative terms, the sample size needed for an application of a nor-
mal distribution for the sample mean when sampling is from each of the following
populations. (Assume the population standard deviation is known in each case.)

a. A normal population
b. A mound-shaped population, close to normal
c. A discrete population consisting of the values 1,006, 47, and 0, with equal

frequencies
d. A slightly skewed population
e. A highly skewed population

5–68. When sampling is from a normally distributed population, is there an advan-
tage to taking a large sample? Explain.
5–69. Suppose that you are given a new sample statistic to serve as an estimator of
some population parameter. You are unable to assume any theoretical results such
as the central limit theorem. Discuss how you would empirically determine the
sampling distribution of the new statistic.

5–70. Recently, the federal government claimed that the state of Alaska had over-
paid 20% of the Medicare recipients in the state. The director of the Alaska Department
of Health and Social Services planned to check this claim by selecting a random
sample of 250 recipients of Medicare checks in the state and determining the number
of overpaid cases in the sample. Assuming the federal government’s claim is correct,
what is the probability that less than 15% of the people in the sample will be found to
have been overpaid?

5–71. A new kind of alkaline battery is believed to last an average of 25 hours of
continuous use (in a given kind of flashlight). Assume that the population standard
deviation is 2 hours. If a random sample of 100 batteries is selected and tested, is it
likely that the average battery in the sample will last less than 24 hours of continuous
use? Explain.

5–72. Häagen-Dazs ice cream produces a frozen yogurt aimed at health-conscious
ice cream lovers. Before marketing the product in 2007, the company wanted to esti-
mate the proportion of grocery stores currently selling Häagen-Dazs ice cream that
would sell the new product. If 60% of the grocery stores would sell the product and a
random sample of 200 stores is selected, what is the probability that the percentage in
the sample will deviate from the population percentage by no more than 7 percentage
points?

5–73. Japan’s birthrate is believed to be 1.57 per woman. Assume that the popula-
tion standard deviation is 0.4. If a random sample of 200 women is selected, what is
the probability that the sample mean will fall between 1.52 and 1.62?

5–74. The Toyota Prius uses both gasoline and electric power. Toyota claims its
mileage per gallon is 52. A random sample of 40 cars is taken and each sampled car
is tested for its fuel efficiency. Assuming that 52 miles per gallon is the population
mean and 2.4 miles per gallon is the population standard deviation, calculate the
probability that the sample mean will be between 52 and 53.
5–75. A bank that employs many part-time tellers is concerned about the increas-
ing number of errors made by the tellers. To estimate the proportion of errors made
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A company supplies pins in bulk to a customer.
The company uses an automatic lathe to pro-
duce the pins. Factors such as vibration, temper-

ature, and wear and tear affect the pins, so that the
lengths of the pins made by the machine are normally
distributed with a mean of 1.008 inches and a standard
deviation of 0.045 inch. The company supplies the pins
in large batches to a customer. The customer will take a
random sample of 50 pins from the batch and compute
the sample mean. If the sample mean is within the
interval 1.000 inch � 0.010 inch, then the customer will
buy the whole batch.

1. What is the probability that a batch will be
acceptable to the consumer? Is the probability
large enough to be an acceptable level of
performance?

To improve the probability of acceptance, the pro-
duction manager and the engineers discuss adjusting
the population mean and standard deviation of the
lengths of the pins.

2. If the lathe can be adjusted to have the mean of
the lengths at any desired value, what should it
be adjusted to? Why?

3. Suppose the mean cannot be adjusted, but
the standard deviation can be reduced. What
maximum value of the standard deviation
would make 90% of the parts acceptable to

the consumer? (Assume the mean continues to be
1.008 inches.)

4. Repeat part 3 with 95% and 99% of the pins
acceptable.

5. In practice, which one do you think is easier
to adjust, the mean or the standard deviation?
Why?

The production manager then considers the costs
involved. The cost of resetting the machine to adjust
the population mean involves the engineers’ time and
the cost of production time lost. The cost of reducing the
population standard deviation involves, in addition to
these costs, the cost of overhauling the machine and
reengineering the process.

6. Assume it costs $150x2 to decrease the standard
deviation by (x�1,000) inch. Find the cost of
reducing the standard deviation to the values
found in parts 3 and 4.

7. Now assume that the mean has been adjusted to
the best value found in part 2 at a cost of $80.
Calculate the reduction in standard deviation
necessary to have 90%, 95%, and 99% of the
parts acceptable. Calculate the respective costs,
as in part 6.

8. Based on your answers to parts 6 and 7, what are
your recommended mean and standard deviation
to which the machine should be adjusted?

in a day, a random sample of 400 transactions on a particular day was checked. The
proportion of the transactions with errors was computed. If the true proportion of
transactions that had errors was 6% that day, what is the probability that the estimat-
ed proportion is less than 5%?
5–76. The daily number of visitors to a Web site follows a normal distribution with
mean 15,830 and standard deviation 458. The average number of visitors on 10 ran-
domly chosen days is computed. What is the probability that the estimated average
exceeds 16,000?
5–77. According to BusinessWeek, profits in the energy sector have been rising, with
one company averaging $3.42 monthly per share.16 Assume this is an average from a
population with standard deviation of $1.5. If a random sample of 30 months is
selected, what is the probability that its average will exceed $4.00?
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After studying this chapter, you should be able to:

• Explain confidence intervals.
• Compute confidence intervals for population means.
• Compute confidence intervals for population proportions.
• Compute confidence intervals for population variances.
• Compute minimum sample sizes needed for an estimation.
• Compute confidence intervals for special types of sampling

methods.
• Use templates for all confidence interval and sample-size

computations.

CONFIDENCE INTERVALS

LEARNING OBJECTIVES
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6–1 Using Statistics
The alcoholic beverage industry, like many
others, has to reinvent itself every few years:
from beer to wine, to wine coolers, to cocktails.
In 2007 it was clear that the gin-based martini

was back as a reigning libation. But which gin was best for this cocktail? The New York
Times arranged for experts to sample 80 martinis made with different kinds of gin, to
determine the best. It also wanted to estimate the average number of stars that any
given martini would get—its rating by an average drinker. This is an example of
statistical inference, which we study in this chapter and the following ones. In actual-
ity here, four people sampled a total of 80 martinis and determined that the best
value was Plymouth English Gin, which received 31⁄2 stars.1

In the following chapters we will learn how to compare several populations. In
this chapter you will learn how to estimate a parameter of a single population and also
provide a confidence interval for such a parameter. Thus, for example, you will be able
to assess the average number of stars awarded a given gin by the average martini
drinker.

In the last chapter, we saw how sample statistics are used as estimators of popu-
lation parameters. We defined a point estimate of a parameter as a single value
obtained from the estimator. We saw that an estimator, a sample statistic, is a random
variable with a certain probability distribution—its sampling distribution. A given
point estimate is a single realization of the random variable. The actual estimate may
or may not be close to the parameter of interest. Therefore, if we only provide a point
estimate of the parameter of interest, we are not giving any information about the
accuracy of the estimation procedure. For example, saying that the sample mean is
550 is giving a point estimate of the population mean. This estimate does not tell us
how close � may be to its estimate, 550. Suppose, on the other hand, that we also
said: “We are 99% confident that � is in the interval [449, 551].” This conveys much
more information about the possible value of �. Now compare this interval with
another one: “We are 90% confident that � is in the interval [400, 700].” This interval
conveys less information about the possible value of �, both because it is wider and
because the level of confidence is lower. (When based on the same information, how-
ever, an interval of lower confidence level is narrower.)

A confidence interval is a range of numbers believed to include an
unknown population parameter. Associated with the interval is a measure
of the confidence we have that the interval does indeed contain the param-
eter of interest.

The sampling distribution of the statistic gives a probability associated with a range
of values the statistic may take. After the sampling has taken place and a particular
estimate has been obtained, this probability is transformed to a level of confidence for a
range of values that may contain the unknown parameter.

In the next section, we will see how to construct confidence intervals for the
population mean � when the population standard deviation � is known. Then we
will alter this situation and see how a confidence interval for � may be constructed
without knowledge of �. Other sections present confidence intervals in other
situations.

1Eric Asimov, “No, Really, It Was Tough: 4 People, 80 Martinis,” The New York Times, May 2, 2007, p. D1.
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6–2 Confidence Interval for the Population Mean
When the Population Standard Deviation 
Is Known

The central limit theorem tells us that when we select a large random sample from
any population with mean � and standard deviation �, the sample mean is (at
least approximately) normally distributed with mean � and standard deviation
�� . If the population itself is normal, is normally distributed for any sample
size. Recall that the standard normal random variable Z has a 0.95 probability of
being within the range of values �1.96 to 1.96 (you may check this using Table 2
in Appendix C). Transforming Z to the random variable with mean � and standard
deviation �� , we find that—before the sampling—there is a 0.95 probability that 
will fall within the interval:

X1n
X

X1n

X

(6–1)� ; 1.96
�1n

Once we have obtained our random sample, we have a particular value . This
particular either lies within the range of values specified by equation 6–1 or does
not lie within this range. Since we do not know the (fixed) value of the population
parameter �, we have no way of knowing whether is indeed within the range given
in equation 6–1. Since the random sampling has already taken place and a particular

has been computed, we no longer have a random variable and may no longer talk
about probabilities. We do know, however, that since the presampling probab-
ility that will fall in the interval in equation 6–1 is 0.95, about 95% of the values of

obtained in a large number of repeated samplings will fall within the interval.
Since we have a single value that was obtained by this process, we may say that
we are 95% confident that lies within the interval. This idea is demonstrated in
Figure 6–1.

Consider a particular , and note that the distance between and � is the same
as the distance between � and . Thus, falls inside the interval � � 1.96�� if
and only if � happens to be inside the interval � 1.96�� . In a large number of
repeated trials, this would happen about 95% of the time. We therefore call the
interval � 1.96�� a 95% confidence interval for the unknown population mean �.
This is demonstrated in Figure 6–2.

Instead of measuring a distance of 1.96�� on either side of � (an impossible
task since � is unknown), we measure the same distance of 1.96�� on either side 
of our known sample mean . Since, before the sampling, the random interval � 1.96 
�� had a 0.95 probability of capturing �, after the sampling we may be 95% confi-
dent that our particular interval � 1.96�� indeed contains the population
mean �. We cannot say that there is a 0.95 probability that � is inside the interval,
because the interval � 1.96�� is not random, and neither is �. The population
mean � is unknown to us but is a fixed quantity—not a random variable.2 Either �
lies inside the confidence interval (in which case the probability of this event is 1.00),
or it does not (in which case the probability of the event is 0). We do know, however,

1nx

1nx
1n

Xx
1n

1n

1nx

1nx
1nxx

xx

x
x

X
X

x

x

x
x

2We are using what is called the classical, or frequentist, interpretation of confidence intervals. An alternative view, the
Bayesian approach, will be discussed in Chapter 15. The Bayesian approach allows us to treat an unknown population
parameter as a random variable. As such, the unknown population mean � may be stated to have a 0.95 probability of
being within an interval.

FVS
CHAPTER 9
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FIGURE 6–1 Probability Distribution of and Some Resulting Values of the Statistic 
in Repeated Samplings
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that 95% of all possible intervals constructed in this manner will contain �. Therefore,
we may say that we are 95% confident that � lies in the particular interval we have
obtained.

A 95% confidence interval for � when � is known and sampling is done from
a normal population, or a large sample is used, is

(6–2)X ; 1.96
�1n

The quantity 1.96�� is often called the margin of error or the sampling error. Its data-
derived estimate (using s instead of the unknown �) is commonly reported.

To compute a 95% confidence interval for �, all we need to do is substitute the
values of the required entities in equation 6–2. Suppose, for example, that we are
sampling from a normal population, in which case the random variable is normally
distributed for any sample size. We use a sample of size n � 25, and we get a sample
mean � 122. Suppose we also know that the population standard deviation is � � 20.x

X

1n
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FIGURE 6–2 Construction of a 95% Confidence Interval for the Population Mean �
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The sample mean x1 falls inside the interval   ± 1.96 � �n. Therefore,
the confidence interval based on x1, which is x1± 1.96 � �n, contains   . 

Another sample mean, x2, falls outside the interval   ± 1.96 ��n. Therefore,
the confidence interval based on x2, which is x2 ± 1.96 ��n, does not contain   .

Let us compute a 95% confidence interval for the unknown population mean �.
Using equation 6–2, we get
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x � 1.96
�1n

= 122 � 1.96
20225

= 122 � 7.84 =  [114.16, 129.84]

Thus, we may be 95% confident that the unknown population mean � lies anywhere
between the values 114.16 and 129.84.

In business and other applications, the 95% confidence interval is commonly
used. There are, however, many other possible levels of confidence. You may choose
any level of confidence you wish, find the appropriate z value from the standard nor-
mal table, and use it instead of 1.96 in equation 6–2 to get an interval of the chosen
level of confidence. Using the standard normal table, we find, for example, that for a



Aczel−Sounderpandian: 
Complete Business 
Statistics, Seventh Edition

6. Confidence Intervals Text 225© The McGraw−Hill 
Companies, 2009

90% confidence interval we use the z value 1.645, and for a 99% confidence interval
we use z � 2.58 (or, using an accurate interpolation, 2.576). Let us formalize the pro-
cedure and make some definitions.

We define z��2 as the z value that cuts off a right-tail area of ��2 under the
standard normal curve.

For example, 1.96 is z��2 for ��2 � 0.025 because z � 1.96 cuts off an area of 0.025 to
its right. (We find from Table 2 that for z � 1.96, TA � 0.475; therefore, the right-tail
area is ��2 � 0.025.) Now consider the two points 1.96 and �1.96. Each of them cuts
off a tail area of ��2 � 0.025 in the respective direction of its tail. The area between
the two values is therefore equal to 1 � � � 1 � 2(0.025) � 0.95. The area under the
curve excluding the tails, 1 � �, is called the confidence coefficient. (And the com-
bined area in both tails � is called the error probability. This probability will be
important to us in the next chapter.) The confidence coefficient multiplied by 100,
expressed as a percentage, is the confidence level.

Confidence Intervals 223

x � z �>2
�1n

= 122 � 1.28 
20225

= 122 � 5.12 = [116.88, 127.12]

A (1 � �) 100% confidence interval for � when � is known and sampling is
done from a normal population, or with a large sample, is

(6–3)X ; Z�>2
�1n

Thus, for a 95% confidence interval for � we have

(1 � �)100% � 95%
1 � � � 0.95

� � 0.05
�

2
= 0.025

From the normal table, we find z ��2 � 1.96. This is the value we substitute for z ��2 in
equation 6–3.

For example, suppose we want an 80% confidence interval for �. We have 1 � � �
0.80 and � � 0.20; therefore, ��2 � 0.10. We now look in the standard nor-
mal table for the value of z 0.10, that is, the z value that cuts off an area of 0.10 to its
right. We have TA � 0.5 � 0.1 � 0.4, and from the table we find z0.10 � 1.28. The
confidence interval is therefore � 1.28�� . This is demonstrated in Figure 6–3.

Let us compute an 80% confidence interval for � using the information presented
earlier. We have n � 25, and � 122. We also assume � � 20. To compute an 80%
confidence interval for the unknown population mean �, we use equation 6–3
and get

x

1nx
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FIGURE 6–3 Construction of an 80% Confidence Interval for �

0 1.28–1.28

µ

z

x
� �

x – 1.28σ� �n

An 80% confidence interval for

x +1.28σ� �n

Area = 0.1 Area = 0.1

Area = 0.80

Standard normal
density

Comparing this interval with the 95% confidence interval for � we computed earlier,
we note that the present interval is narrower. This is an important property of confi-
dence intervals.

When sampling is from the same population, using a fixed sample size, the
higher the confidence level, the wider the interval.

Intuitively, a wider interval has more of a presampling chance of “capturing” the
unknown population parameter. If we want a 100% confidence interval for a param-
eter, the interval must be [��, �]. The reason for this is that 100% confidence is
derived from a presampling probability of 1.00 of capturing the parameter, and the
only way to get such a probability using the standard normal distribution is by allow-
ing Z to be anywhere from �� to �. If we are willing to be more realistic (nothing is
certain) and accept, say, a 99% confidence interval, our interval will be finite and based
on z � 2.58. The width of our interval will then be 2(2.58�� ). If we further reduce
our confidence requirement to 95%, the width of our interval will be 2(1.96�� ).
Since both � and n are fixed, the 95% interval must be narrower. The more confidence
you require, the more you need to sacrifice in terms of a wider interval.

If you want both a narrow interval and a high degree of confidence, you need to
acquire a large amount of information—take a large sample. This is so because the
larger the sample size n, the narrower the interval. This makes sense in that if you
buy more information, you will have less uncertainty.

When sampling is from the same population, using a fixed confidence
level, the larger the sample size n, the narrower the confidence interval.

Suppose that the 80% confidence interval developed earlier was based on a sample
size n � 2,500, instead of n � 25. Assuming that and � are the same, the new con-
fidence interval should be 10 times as narrow as the previous one (because �
50, which is 10 times as large as ). Indeed, the new interval is125

12,500
x

1n
1n

224 Chapter 6

x � z �>2
�1n

= 122 � 1.28
2022,500

= 122 � 0.512 = [121.49, 122.51]
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The Template
The workbook named Estimating Mean.xls contains sheets for computing confi-
dence intervals for population means when

1. The sample statistics are known.
2. The sample data are known.

Figure 6–5 shows the first sheet. In this template, we enter the sample statistics in
the top or bottom panel, depending on whether the population standard deviation
� is known or unknown.

Since the population standard deviation � may not be known for certain, on the
extreme right, not seen in the figure, there is a sensitivity analysis of the confidence
interval with respect to �. As can be seen in the plot below the panel, the half-width
of the confidence interval is linearly related to �.

Figure 6–6 shows the template to be used when the sample data are known. The
data must be entered in column B. The sample size, the sample mean, and the sample
standard deviation are automatically calculated and entered in cells F7, F8, F18, F19,
and F20 as needed.

Note that in real-life situations we hardly ever know the population standard
deviation. The following sections present more realistic applications.
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This interval has width 2(0.512) � 1.024, while the width of the interval based on a
sample of size n � 25 is 2(5.12) � 10.24. This demonstrates the value of information.
The two confidence intervals are shown in Figure 6–4.

FIGURE 6–4
Width of a Confidence 
Interval as a Function of
Sample Size

x = 122

x = 122

121.49 122.51

116.88 127.12

Interval based
on a sample
of 2,500

Interval based on
a sample of 25

Comcast, the computer services company, is planning to invest heavily in online tele-
vision service.3 As part of the decision, the company wants to estimate the average
number of online shows a family of four would watch per day. A random sample of 
n � 100 families is obtained, and in this sample the average number of shows viewed
per day is 6.5 and the population standard deviation is known to be 3.2. Construct a
95% confidence interval for the average number of online television shows watched
by the entire population of families of four.

We have

E X A M P L E  6 – 1

S o l u t i o n

x � z �>2
�1n

= 6.5 � 1.96
3.22100

= 6.5 � 0.6272 = [5.8728, 7.1272]

Thus Comcast can be 95% confident that the average family of four within its popu-
lation of subscribers will watch an average daily number of online television shows
between about 5.87 and 7.13.

3Ronald Grover, “Comcast Joins the Party,” BusinessWeek, May 7, 2007, p. 26.
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FIGURE 6–5 The Template for Estimating � with Sample Statistics
[Estimating Mean.xls; Sheet: Sample Stats]

No

1

2

3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27

A B C D E F G H I J K L M N O P Q

Confidence Interval for �

Population Normal?
Population Stdev. 20

Sample Size 50 n
Sample Mean 122 x-bar

99% 122 ± 7.28555 = [ 114.714   ,   129.286     ]
= [ 116.456   ,   127.544     ]
= [ 117.348   ,   126.652     ]
= [ 118.375   ,   125.625     ]

95% 122 ± 5.54362
90% 122 ± 4.65235
80% 122 ± 3.62478

� Unknown

� Known

Confidence Interval(1 � �)

Population Normal?
Sample Size 15

Yes

Sample Mean 10.37
Sample Stdev. 3.5 s

99% 10.37 ± 2.69016 = [ 7.67984   ,   13.0602     ]
= [ 8.43176   ,   12.3082     ]
= [ 8.77831   ,   11.9617     ]
= [ 9.1545   ,   11.5855     ]

95% 10.37 ± 1.93824
90% 10.37 ± 1.59169
80% 10.37 ± 1.2155

Confidence Interval

n
x-bar

(1 � �)

�

FIGURE 6–6 The Template for Estimating � with Sample Data
[Estimating Mean.xls; Sheet: Sample Data]

No

1

2

3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28

A B C D E F G H I J K L M N O P

Confidence Interval for �

� Known

� Unknown

Sample
Data

Population Normal?
Population Stdev. 20

Sample Size 42 n
Sample Mean 121.1667 x-bar

99% 121.1667 ± 7.94918 = [ 113.2175   ,   129.1158   ]
= [ 115.1181   ,   127.2152   ]
= [ 116.0905   ,   126.2428   ]
= [ 117.2117   ,   125.1216   ]

95% 121.1667 ± 6.04858
90% 121.1667 ± 5.07613
80% 121.1667 ± 3.95495

Confidence Interval

�

(1 � �)

125
124
120
121
121
128
123
119
124
120
118
119
126
123
120
124
120
117
116
121
125
123
127
120
115

Population Normal?
Sample Size 42

Yes

Sample Mean 121.1667
Sample Stdev. 3.54013 s

99% 121.1667 ± 1.47553 = [ 119.6911   ,   122.6422   ]
= [ 120.0635   ,   122.2698   ]
= [ 120.2474   ,   122.0859   ]
= [ 120.4551   ,   121.8782   ]

95% 121.1667 ± 1.10318
90% 121.1667 ± 0.91928
80% 121.1667 ± 0.71152

Confidence Interval

n
x-bar

(1 � �)
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6–1. What is a confidence interval, and why is it useful? What is a confidence level?
6–2. Explain why in classical statistics describing a confidence interval in terms of
probability makes no sense.
6–3. Explain how the postsampling confidence level is derived from a presampling
probability.
6–4. Suppose that you computed a 95% confidence interval for a population mean.
The user of the statistics claims your interval is too wide to have any meaning in the
specific use for which it is intended. Discuss and compare two methods of solving this
problem.
6–5. A real estate agent needs to estimate the average value of a residential property
of a given size in a certain area. The real estate agent believes that the standard devi-
ation of the property values is � � $5,500.00 and that property values are approxi-
mately normally distributed. A random sample of 16 units gives a sample mean of
$89,673.12. Give a 95% confidence interval for the average value of all properties of
this kind.
6–6. In problem 6–5, suppose that a 99% confidence interval is required. Compute
the new interval, and compare it with the 95% confidence interval you computed in
problem 6–5.
6–7. A car manufacturer wants to estimate the average miles-per-gallon highway
rating for a new model. From experience with similar models, the manufacturer
believes the miles-per-gallon standard deviation is 4.6. A random sample of 100 high-
way runs of the new model yields a sample mean of 32 miles per gallon. Give a 95%
confidence interval for the population average miles-per-gallon highway rating.
6–8. In problem 6–7, do we need to assume that the population of miles-per-gallon
values is normally distributed? Explain.
6–9. A wine importer needs to report the average percentage of alcohol in bottles
of French wine. From experience with previous kinds of wine, the importer believes
the population standard deviation is 1.2%. The importer randomly samples 60 bottles
of the new wine and obtains a sample mean � 9.3%. Give a 90% confidence inter-
val for the average percentage of alcohol in all bottles of the new wine.
6–10. British Petroleum has recently been investing in oil fields in the former Soviet
Union.4 Before deciding whether to buy an oilfield, the company wants to estimate
the number of barrels of oil that the oilfield can supply. For a given well, the company
is interested in a purchase if it can determine that the well will produce, on average,
at least 1,500 barrels a day. A random sample of 30 days gives a sample mean of
1,482 and the population standard deviation is 430. Construct a 95% confidence
interval. What should be the company’s decision?
6–11. Recently, three new airlines, MAXjet, L’Avion, and Eos, began operations
selling business or first-class-only service.5 These airlines need to estimate the highest
fare a business-class traveler would pay on a New York to Paris route, roundtrip.
Suppose that one of these airlines will institute its route only if it can be reasonably
certain (90%) that passengers would pay $1,800. Suppose also that a random sample
of 50 passengers reveals a sample average maximum fare of $1,700 and the popula-
tion standard deviation is $800. 

a. Construct a 90% confidence interval.
b. Should the airline offer to fly this route based on your answer to part (a )?

x

P R O B L E M S

4Jason Bush, “The Kremlin’s Big Squeeze,” BusinessWeek, April 30, 2007, p. 42.
5Susan Stellin, “Friendlier Skies to a Home Abroad,” The New York Times, May 4, 2007, p. D1.
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6–12. According to Money, the average price of a home in Albuquerque is $165,000.6

Suppose that the reported figure is a sample estimate based on 80 randomly chosen
homes in this city, and that the population standard deviation was known to be
$55,000. Give an 80% confidence interval for the population mean home price.

6–13. A mining company needs to estimate the average amount of copper ore per
ton mined. A random sample of 50 tons gives a sample mean of 146.75 pounds. The
population standard deviation is assumed to be 35.2 pounds. Give a 95% confidence
interval for the average amount of copper in the “population” of tons mined. Also
give a 90% confidence interval and a 99% confidence interval for the average amount
of copper per ton.
6–14. A new low-calorie pizza introduced by Pizza Hut has an average of 150 calories
per slice. If this number is based on a random sample of 100 slices, and the population
standard deviation is 30 calories, give a 90% confidence interval for the population
mean.
6–15. “Small-fry” funds trade at an average of 20% discount to net asset value. If � �
8% and n � 36, give the 95% confidence interval for average population percentage.
6–16. Suppose you have a confidence interval based on a sample of size n. Using
the same level of confidence, how large a sample is required to produce an interval of
one-half the width?
6–17. The width of a 95% confidence interval for � is 10 units. If everything else
stays the same, how wide would a 90% confidence interval be for �?

6–3 Confidence Intervals for � When �
Is Unknown—The t Distribution

In constructing confidence intervals for �, we assume a normal population distribu-
tion or a large sample size (for normality via the central limit theorem). Until now,
we have also assumed a known population standard deviation. This assumption was
necessary for theoretical reasons so that we could use standard normal probabilities
in constructing our intervals.

In real sampling situations, however, the population standard deviation � is
rarely known. The reason for this is that both � and � are population parameters.
When we sample from a population with the aim of estimating its unknown mean,
the other parameter of the same population, the standard deviation, is highly unlikely
to be known.

The t Distribution
As we mentioned in Chapter 5, when the population standard deviation is not
known, we may use the sample standard deviation S in its place. If the population is
normally distributed, the standardized statistic

228 Chapter 6

6“The 100 Biggest U.S. Markets,” Money, May 2007, p. 81.

(6–4)t =
X - �

S>1n

has a t distribution with n � 1 degrees of freedom. The degrees of freedom of the
distribution are the degrees of freedom associated with the sample standard deviation
S (as explained in the last chapter). The t distribution is also called Student’s distribu-
tion, or Student’s t distribution. What is the origin of the name Student ?
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FIGURE 6–7 The t-Distribution Template 
[t.xls]
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The t -Distribution
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3 30 (1-Tail) t -Critical p-value (1-Tailed Right)

(1-Tailed Left)
(2-Tailed)

t

p-value
p-value

(1-Tail) z -Critical
1.6377 2.3534 3.1824 4.5407 5.8409

1.2345
0.1524
0.8476
0.3049

1.2816 1.6449 1.9600 2.3263 2.5758

0

0.05

0.1

0.15

0.2

0.25

0.3

0.45

-4 -3 -2 -1 0 1 2 3 4

�

PDF of t -Distribution and Standard Normal Distribution

0.35

0.4

W. S. Gossett was a scientist at the Guinness brewery in Dublin, Ireland. In 1908,
Gossett discovered the distribution of the quantity in equation 6–4. He called the new
distribution the t distribution. The Guinness brewery, however, did not allow its
workers to publish findings under their own names. Therefore, Gossett published his
findings under the pen name Student. As a result, the distribution became known also
as Student’s distribution.

The t distribution is characterized by its degrees-of-freedom parameter df. For any
integer value df � 1, 2, 3, . . . , there is a corresponding t distribution. The t distribution
resembles the standard normal distribution Z: it is symmetric and bell-shaped. The
t distribution, however, has wider tails than the Z distribution.

The mean of a t distribution is zero. For df 
 2, the variance of the t dis-
tribution is equal to df/(df � 2).

We see that the mean of t is the same as the mean of Z , but the variance of t is larger
than the variance of Z. As df increases, the variance of t approaches 1.00, which is the
variance of Z. Having wider tails and a larger variance than Z is a reflection of the fact
that the t distribution applies to situations with a greater inherent uncertainty. The uncer-
tainty comes from the fact that � is unknown and is estimated by the random variable S.
The t distribution thus reflects the uncertainty in two random variables, and S,
while Z reflects only an uncertainty due to . The greater uncertainty in t (which
makes confidence intervals based on t wider than those based on Z ) is the price we
pay for not knowing � and having to estimate it from our data. As df increases, the
t distribution approaches the Z distribution.

Figure 6–7 shows the t-distribution template. We can enter any desired degrees of
freedom in cell B4 and see how the distribution approaches the Z distribution, which
is superimposed on the chart. In the range K3:O5 the template shows the critical values
for all standard � values. The area to the right of the chart in this template can be used
for calculating p-values, which we will learn in the next chapter.

X
X

Confidence Intervals 229



Aczel−Sounderpandian: 
Complete Business 
Statistics, Seventh Edition

6. Confidence Intervals Text232 © The McGraw−Hill 
Companies, 2009

Values of t distributions for selected tail probabilities are given in Table 3 in
Appendix C (reproduced here as Table 6–1). Since there are infinitely many t distri-
butions—one for every value of the degrees-of-freedom parameter—the table contains
probabilities for only some of these distributions. For each distribution, the table
gives values that cut off given areas under the curve to the right. The t table is thus a
table of values corresponding to right-tail probabilities.

Let us consider an example. A random variable with a t distribution with 10
degrees of freedom has a 0.10 probability of exceeding the value 1.372. It has a 0.025
probability of exceeding the value 2.228, and so on for the other values listed in the
table. Since the t distributions are symmetric about zero, we also know, for example,
that the probability that a random variable with a t distribution with 10 degrees of
freedom will be less than �1.372 is 0.10. These facts are demonstrated in Figure 6–8.

As we noted earlier, the t distribution approaches the standard normal distribu-
tion as the df parameter approaches infinity. The t distribution with “infinite” degrees

230 Chapter 6

TABLE 6–1 Values and Probabilities of t Distributions

Degrees of 
Freedom t0.100 t0.050 t0.025 t0.010 t0.005

1 3.078 6.314 12.706 31.821 63.657

2 1.886 2.920 4.303 6.965 9.925

3 1.638 2.353 3.182 4.541 5.841

4 1.533 2.132 2.776 3.747 4.604

5 1.476 2.015 2.571 3.365 4.032

6 1.440 1.943 2.447 3.143 3.707

7 1.415 1.895 2.365 2.998 3.499

8 1.397 1.860 2.306 2.896 3.355

9 1.383 1.833 2.262 2.821 3.250

10 1.372 1.812 2.228 2.764 3.169

11 1.363 1.796 2.201 2.718 3.106

12 1.356 1.782 2.179 2.681 3.055

13 1.350 1.771 2.160 2.650 3.012

14 1.345 1.761 2.145 2.624 2.977

15 1.341 1.753 2.131 2.602 2.947

16 1.337 1.746 2.120 2.583 2.921

17 1.333 1.740 2.110 2.567 2.898

18 1.330 1.734 2.101 2.552 2.878

19 1.328 1.729 2.093 2.539 2.861

20 1.325 1.725 2.086 2.528 2.845

21 1.323 1.721 2.080 2.518 2.831

22 1.321 1.717 2.074 2.508 2.819

23 1.319 1.714 2.069 2.500 2.807

24 1.318 1.711 2.064 2.492 2.797

25 1.316 1.708 2.060 2.485 2.787

26 1.315 1.706 2.056 2.479 2.779

27 1.314 1.703 2.052 2.473 2.771

28 1.313 1.701 2.048 2.467 2.763

29 1.311 1.699 2.045 2.462 2.756

30 1.310 1.697 2.042 2.457 2.750

40 1.303 1.684 2.021 2.423 2.704

60 1.296 1.671 2.000 2.390 2.660

120 1.289 1.658 1.980 2.358 2.617

� 1.282 1.645 1.960 2.326 2.576
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FIGURE 6–8 Table Probabilities for a Selected t Distribution (df � 10)

0

f (t)

– 1.372 1.372

– 2.228 2.228

Area = 0.10

Area = 0.025

Area = 0.10

Area = 0.025

t

of freedom is defined as the standard normal distribution. The last row in Appendix C,
Table 3 (Table 6–1) corresponds to df � �, the standard normal distribution. Note
that the value corresponding to a right-tail area of 0.025 in that row is 1.96, which we
recognize as the appropriate z value. Similarly, the value corresponding to a right-tail
area of 0.005 is 2.576, and the value corresponding to a right-tail area of 0.05 is
1.645. These, too, are values we recognize for the standard normal distribution. Look
upward from the last row of the table to find cutoff values of the same right-tail
probabilities for t distributions with different degrees of freedom. Suppose, for
example, that we want to construct a 95% confidence interval for � using the t dis-
tribution with 20 degrees of freedom. We may identify the value 1.96 in the last
row (the appropriate z value for 95%) and then move up in the same column until
we reach the row corresponding to df � 20. Here we find the required value t ��2 �
t 0.025 � 2.086.

Confidence Intervals 231

A (1 � �) 100% confidence interval for � when � is not known (assuming a
normally distributed population) is

(6–5)

where t��2 is the value of the t distribution with n � 1 degrees of freedom
that cuts off a tail area of ��2 to its right.

x ; t�>2
s1n

A stock market analyst wants to estimate the average return on a certain stock. A ran-
dom sample of 15 days yields an average (annualized) return of � 10.37% and a
standard deviation of s � 3.5%. Assuming a normal population of returns, give a 95%
confidence interval for the average return on this stock.

x

Since the sample size is n � 15, we need to use the t distribution with n �1 � 14
degrees of freedom. In Table 3, in the row corresponding to 14 degrees of free-
dom and the column corresponding to a right-tail area of 0.025 (this is ��2), we find

E X A M P L E  6 – 2

S o l u t i o n
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Thus, the analyst may be 95% sure that the average annualized return on the stock is
anywhere from 8.43% to 12.31%.

232 Chapter 6

t0.025 � 2.145. (We could also have found this value by moving upward from 1.96 in
the last row.) Using this value, we construct the 95% confidence interval as follows:

x � t�>2
s1n

= 10.37 � 2.145 
3.5115

= [8.43, 12.31]

Looking at the t table, we note the convergence of the t distributions to the Z
distribution—the values in the rows preceding the last get closer and closer to the
corresponding z values in the last row. Although the t distribution is the correct dis-
tribution to use whenever � is not known (assuming the population is normal), when
df is large, we may use the standard normal distribution as an adequate approxima-
tion to the t distribution. Thus, instead of using 1.98 in a confidence interval based
on a sample of size 121 (df � 120), we will just use the z value 1.96.

We divide estimation problems into two kinds: small-sample problems and large-
sample problems. Example 6–2 demonstrated the solution of a small-sample problem.
In general, large sample will mean a sample of 30 items or more, and small sample will
mean a sample of size less than 30. For small samples, we will use the t distribution as
demonstrated above. For large samples, we will use the Z distribution as an adequate
approximation. We note that the larger the sample size, the better the normal approxi-
mation. Remember, however, that this division of large and small samples is arbitrary.

Whenever � is not known (and the population is assumed normal), the
correct distribution to use is the t distribution with n � 1 degrees of free-
dom. Note, however, that for large degrees of freedom, the t distribution
is approximated well by the Z distribution.

If you wish, you may always use the more accurate values obtained from the t table
(when such values can be found in the table) rather than the standard normal
approximation. In this chapter and elsewhere (with the exception of some exam-
ples in Chapter 14), we will assume that the population satisfies, at least approxi-
mately, a normal distribution assumption. For large samples, this assumption is less
crucial.

A large-sample (1 � �) 100% confidence interval for � is

(6–6)x ; z�>2
s1n

We demonstrate the use of equation 6–6 in Example 6–3.

An economist wants to estimate the average amount in checking accounts at banks
in a given region. A random sample of 100 accounts gives � $357.60 and s �
$140.00. Give a 95% confidence interval for �, the average amount in any checking
account at a bank in the given region.

x
E X A M P L E  6 – 3
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6–18. A telephone company wants to estimate the average length of long-distance
calls during weekends. A random sample of 50 calls gives a mean � 14.5 minutes and
standard deviation s � 5.6 minutes. Give a 95% confidence interval and a 90% confi-
dence interval for the average length of a long-distance phone call during weekends.
6–19. An insurance company handling malpractice cases is interested in estimating
the average amount of claims against physicians of a certain specialty. The company
obtains a random sample of 165 claims and finds � $16,530 and s � $5,542. Give
a 95% confidence interval and a 99% confidence interval for the average amount of a
claim.
6–20. The manufacturer of batteries used in small electric appliances wants to esti-
mate the average life of a battery. A random sample of 12 batteries yields � 34.2
hours and s � 5.9 hours. Give a 95% confidence interval for the average life of a
battery.
6–21. A tire manufacturer wants to estimate the average number of miles that may
be driven on a tire of a certain type before the tire wears out. A random sample of
32 tires is chosen; the tires are driven on until they wear out, and the number of miles
driven on each tire is recorded. The data, in thousands of miles, are as follows:

32, 33, 28, 37, 29, 30, 25, 27, 39, 40, 26, 26, 27, 30, 25, 30, 31, 29, 24, 36, 25, 37, 37, 20, 22,
35, 23, 28, 30, 36, 40, 41

Give a 99% confidence interval for the average number of miles that may be driven
on a tire of this kind.
6–22. Digital media have recently begun to take over from print outlets.7 A news-
paper owners’ association wants to estimate the average number of times a week peo-
ple buy a newspaper on the street. A random sample of 100 people reveals that the
sample average is 3.2 and the sample standard deviation is 2.1. Construct a 95% con-
fidence interval for the population average.
6–23. Pier 1 Imports is a nationwide retail outlet selling imported furniture and
other home items. From time to time, the company surveys its regular customers by
obtaining random samples based on customer zip codes. In one mailing, customers
were asked to rate a new table from Thailand on a scale of 0 to 100. The ratings of
25 randomly selected customers are as follows: 78, 85, 80, 89, 77, 50, 75, 90, 88, 100,
70, 99, 98, 55, 80, 45, 80, 76, 96, 100, 95, 90, 60, 85, 90. Give a 99% confidence inter-
val for the rating of the table that would be given by an average member of the
population of regular customers. Assume normality.

x

x

x
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x � z �>2
s1n

= 357.60 � 1.96
1401100

= [330.16, 385.04]

We find the 95% confidence interval for � as follows: S o l u t i o n

Thus, based on the data and the assumption of random sampling, the economist may
be 95% confident that the average amount in checking accounts in the area is any-
where from $330.16 to $385.04.

7“Flat Prospects: Digital Media and Globalization Shake Up an Old Industry,” The Economist, March 17, 2007, p. 72.
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6–24. An executive placement service needs to estimate the average salary of exec-
utives placed in a given industry. A random sample of 40 executives gives �
$42,539 and s � $11,690. Give a 90% confidence interval for the average salary of
an executive placed in this industry.

6–25. The following is a random sample of the wealth, in billions of U.S. dollars,
of individuals listed on the Forbes “Billionaires” list for 2007.8

2.1, 5.8, 7.3, 33.0, 2.0, 8.4, 11.0, 18.4, 4.3, 4.5, 6.0, 13.3, 12.8, 3.6, 2.4, 1.0

Construct a 90% confidence interval for the average wealth in $ billions for the peo-
ple on the Forbes list.

6–26. For advertising purposes, the Beef Industry Council needs to estimate the
average caloric content of 3-ounce top loin steak cuts. A random sample of 400
pieces gives a sample mean of 212 calories and a sample standard deviation of 38
calories. Give a 95% confidence interval for the average caloric content of a 3-ounce
cut of top loin steak. Also give a 98% confidence interval for the average caloric
content of a cut.

6–27. A transportation company wants to estimate the average length of time goods
are in transit across the country. A random sample of 20 shipments gives � 2.6
days and s � 0.4 day. Give a 99% confidence interval for the average transit time.

6–28. To aid in planning the development of a tourist shopping area, a state
agency wants to estimate the average dollar amount spent by a tourist in an exist-
ing shopping area. A random sample of 56 tourists gives � $258 and s � $85.
Give a 95% confidence interval for the average amount spent by a tourist at the
shopping area.

6–29. According to Money, the average home in Ventura County, California,
sells for $647,000.9 Assume that this sample mean was obtained from a random
sample of 200 homes in this county, and that the sample standard deviation was
$140,000. Give a 95% confidence interval for the average value of a home in
Ventura County.

6–30. Citibank Visa gives its cardholders “bonus dollars,” which may be spent in
partial payment for gifts purchased with the Visa card. The company wants to esti-
mate the average amount of bonus dollars that will be spent by a cardholder enrolled
in the program during a year. A trial run of the program with a random sample of
225 cardholders is carried out. The results are � $259.60 and s � $52.00. Give a
95% confidence interval for the average amount of bonus dollars that will be spent
by a cardholder during the year.

6–31. An accountant wants to estimate the average amount of an account of a ser-
vice company. A random sample of 46 accounts yields � $16.50 and s � $2.20.
Give a 95% confidence interval for the average amount of an account.

6–32. An art dealer wants to estimate the average value of works of art of a certain
period and type. A random sample of 20 works of art is appraised. The sample mean
is found to be $5,139 and the sample standard deviation $640. Give a 95% confi-
dence interval for the average value of all works of art of this kind.

6–33. A management consulting agency needs to estimate the average number of
years of experience of executives in a given branch of management. A random
sample of 28 executives gives � 6.7 years and s � 2.4 years. Give a 99% confidence
interval for the average number of years of experience for all executives in this
branch.

x

x

x

x

x

x
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8Luisa Krull and Allison Fass, eds., “Billionaires,” Forbes, March 26, 2007, pp. 104–184. 
9“The 100 Biggest U.S. Markets,” Money, May 2007, p. 81.
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6–34. The Food and Drug Administration (FDA) needs to estimate the average
content of an additive in a given food product. A random sample of 75 portions of
the product gives � 8.9 units and s � 0.5 unit. Give a 95% confidence interval for
the average number of units of additive in any portion of this food product.

6–35. The management of a supermarket needs to make estimates of the average
daily demand for milk. The following data are available (number of half-gallon con-
tainers sold per day): 48, 59, 45, 62, 50, 68, 57, 80, 65, 58, 79, 69. Assuming that this
is a random sample of daily demand, give a 90% confidence interval for average
daily demand for milk.
6–36. According to an article in Travel & Leisure, an average plot of land in Spain’s
San Martin wine-producing region yields 600 bottles of wine each year.10 Assume this
average is based on a random sample of 25 plots and that the sample standard devi-
ation is 100 bottles. Give a 95% confidence interval for the population average num-
ber of bottles per plot.
6–37. The data on the daily consumption of fuel by a delivery truck, in gallons,
recorded during 25 randomly selected working days, are as follows:

9.7, 8.9, 9.7, 10.9, 10.3, 10.1, 10.7, 10.6, 10.4, 10.6, 11.6, 11.7, 9.7, 9.7, 9.7, 9.8, 12, 10.4, 8.8,
8.9, 8.4, 9.7, 10.3, 10, 9.2

Compute a 90% confidence interval for the daily fuel consumption.
6–38. According to the Darvas Box stock trading system, a trader looks at a chart of
stock prices over time and identifies box-shaped patterns. Then one buys the stock if
it appears to be in the lower left corner of a box, and sells if in the upper right corner.
In simulations with real data, using a sample of 376 trials, the average hold time for a
stock was 41.12 days.11 If the sample standard deviation was 12 days, give a 90% con-
fidence interval for the average hold time in days.
6–39. Refer to the Darvas Box trading model of problem 6–38. The average profit
was 11.46%.12 If the sample standard deviation was 8.2%, give a 90% confidence
interval for average profit using this trading system.

6–4 Large-Sample Confidence Intervals for the
Population Proportion p

Sometimes interest centers on a qualitative, rather than a quantitative, variable. We
may be interested in the relative frequency of occurrence of some characteristic in a
population. For example, we may be interested in the proportion of people in a pop-
ulation who are users of some product or the proportion of defective items produced
by a machine. In such cases, we want to estimate the population proportion p.

The estimator of the population proportion p is the sample proportion P$. In
Chapter 5, we saw that when the sample size is large, P$ has an approximately normal
sampling distribution. The mean of the sampling distribution of P$ is the population
proportion p, and the standard deviation of the distribution of P$ is , where
q � 1 � p. Since the standard deviation of the estimator depends on the unknown
population parameter, its value is also unknown to us. It turns out, however, that for
large samples we may use our actual estimate P$ instead of the unknown parameter p
in the formula for the standard deviation. We will, therefore, use as our 
estimate of the standard deviation of P$. Recall our large-sample rule of thumb: For
estimating p, a sample is considered large enough when both n � p and n � q are greater

2p$q$>n

1pq>n

x
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10Bruce Schoenfeld, “Wine: Bierzo’s Bounty,” Travel & Leisure, April 2007, p. 119.
11Volker Knapp, “The Darvas Box System,” Active Trader, April 2007, p. 44.
12Ibid.
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than 5. (We guess the value of p when determining whether the sample is large enough.
As a check, we may also compute np$ and nq$ once the sample is obtained.)
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A large-sample (1 � �) 100% confidence interval for the population pro-
portion p is

(6–7)

where the sample proportion p$ is equal to the number of successes in the
sample x, divided by the number of trials (the sample size) n, and q$ � 1 � p$.

p$ ; Z�>2A p$q$
n

We demonstrate the use of equation 6–7 in Example 6–4.

A market research firm wants to estimate the share that foreign companies have in
the U.S. market for certain products. A random sample of 100 consumers is obtained,
and 34 people in the sample are found to be users of foreign-made products; the rest
are users of domestic products. Give a 95% confidence interval for the share of for-
eign products in this market.

We have x � 34 and n � 100, so our sample estimate of the proportion is p$ � x�n �
34�100 � 0.34. We now use equation 6–7 to obtain the confidence interval for the
population proportion p. A 95% confidence interval for p is

E X A M P L E  6 – 4

p$ � z��2 � 0.34 � 1.96 

� 0.34 � 1.96(0.04737) � 0.34 � 0.0928
� [0.2472, 0.4328]

A (0.34)(0.66)
100A p$q$

n

S o l u t i o n

Thus, the firm may be 95% confident that foreign manufacturers control anywhere
from 24.72% to 43.28% of the market.

Suppose the firm is not happy with such a wide confidence interval. What can be
done about it? This is a problem of value of information, and it applies to all estimation
situations. As we stated earlier, for a fixed sample size, the higher the confidence
you require, the wider will be the confidence interval. The sample size is in the
denominator of the standard error term, as we saw in the case of estimating �. If
we should increase n, the standard error of P$ will decrease, and the uncertainty about
the parameter being estimated will be narrowed. If the sample size cannot be
increased but you still want a narrower confidence interval, you must reduce your
confidence level. Thus, for example, if the firm agrees to reduce the confidence level
to 90%, z will be reduced from 1.96 to 1.645, and the confidence interval will shrink to

0.34 � 1.645(0.04737) � 0.34 � 0.07792 � [0.2621, 0.4179]

The firm may be 90% confident that the market share of foreign products is anywhere
from 26.21% to 41.79%. If the firm wanted a high confidence (say 95%) and a narrow
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1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

CA B D E F G H I J K L M N O P Q

Confidence Interval for Population Proportion

Finite Population Correction
Sample size 100 n

Sample proportion 0.34 p-hat Population Size 2000 N
Correction Factor 0.9749

1 � �

99% 0.34 ± 0.1220 = [    0.2180 , 0.4620    ]
= [    0.2472 , 0.4328    ]
= [    0.2621 , 0.4179    ]
= [    0.2793 , 0.4007    ]

------>  [ 0.2210 ,   0.4590 ]
------>  [ 0.2495 ,   0.4305 ]
------>  [ 0.2640 ,   0.4160 ]
------>  [ 0.2808 ,   0.3992 ]

95% 0.34 ± 0.0928
90% 0.34 ± 0.0779
80% 0.34 ± 0.0607

Confidence Interval

FIGURE 6–9 The Template for Estimating Population Proportions
[Estimating Proportion.xls]

confidence interval, it would have to take a larger sample. Suppose that a random
sample of n � 200 customers gave us the same result; that is, x � 68, n � 200, and
p$ � x�n � 0.34. What would be a 95% confidence interval in this case? Using
equation 6–7, we get
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p$ � z��2 � 0.34 � 1.96 � [0.2743, 0.4057]A (0.34)(0.66)
200A p$q$

n

This interval is considerably narrower than our first 95% confidence interval, which
was based on a sample of 100.

When proportions using small samples are estimated, the binomial distribution
may be used in forming confidence intervals. Since the distribution is discrete, it may
not be possible to construct an interval with an exact, prespecified confidence level
such as 95% or 99%. We will not demonstrate the method here.

The Template
Figure 6–9 shows the template that can be used for computing confidence intervals
for population proportions. The template also has provision for finite population
correction. To make this correction, the population size N must be entered in cell N5.
If the correction is not needed, it is a good idea to leave this cell blank to avoid creat-
ing a distraction.

6–40. A maker of portable exercise equipment, designed for health-conscious
people who travel too frequently to use a regular athletic club, wants to estimate the
proportion of traveling business people who may be interested in the product. A
random sample of 120 traveling business people indicates that 28 may be interested
in purchasing the portable fitness equipment. Give a 95% confidence interval for the
proportion of all traveling business people who may be interested in the product.
6–41. The makers of a medicated facial skin cream are interested in determining
the percentage of people in a given age group who may benefit from the ointment.
A random sample of 68 people results in 42 successful treatments. Give a 99%

P R O B L E M S
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confidence interval for the proportion of people in the given age group who may be
successfully treated with the facial cream.
6–42. According to The Economist, 55% of all French people of voting age are
opposed to the proposed European constitution.13 Assume that this percentage is
based on a random sample of 800 French people. Give a 95% confidence interval for
the population proportion in France that was against the European constitution.
6–43. According to BusinessWeek, many Japanese consider their cell phones toys
rather than tools.14 If a random sample of 200 Japanese cell phone owners reveals
that 80 of them consider their device a toy, calculate a 90% confidence interval for
the population proportion of Japanese cell phone users who feel this way.
6–44. A recent article describes the success of business schools in Europe and the
demand on that continent for the MBA degree. The article reports that a survey of
280 European business positions resulted in the conclusion that only one-seventh of
the positions for MBAs at European businesses are currently filled. Assuming that
these numbers are exact and that the sample was randomly chosen from the entire
population of interest, give a 90% confidence interval for the proportion of filled
MBA positions in Europe.
6–45. According to Fortune, solar power now accounts for only 1% of total
energy produced.15 If this number was obtained based on a random sample of 8,000
electricity users, give a 95% confidence interval for the proportion of users of
solar energy.
6–46. Money magazine is on a search for the indestructible suitcase.16 If in a test of
the Helium Fusion Expandable Suiter, 85 suitcases out of a sample of 100 randomly
tested survived rough handling at the airport, give a 90% confidence interval for the
population proportion of suitcases of this kind that would survive rough handling.
6-47. A machine produces safety devices for use in helicopters. A quality-control
engineer regularly checks samples of the devices produced by the machine, and if too
many of the devices are defective, the production process is stopped and the machine
is readjusted. If a random sample of 52 devices yields 8 defectives, give a 98% con-
fidence interval for the proportion of defective devices made by this machine.
6–48. Before launching its Buyers’ Assurance Program, American Express wanted
to estimate the proportion of cardholders who would be interested in this automatic
insurance coverage plan. A random sample of 250 American Express cardholders
was selected and sent questionnaires. The results were that 121 people in the sample
expressed interest in the plan. Give a 99% confidence interval for the proportion of
all interested American Express cardholders.
6–49. An airline wants to estimate the proportion of business passengers on a new
route from New York to San Francisco. A random sample of 347 passengers on this
route is selected, and 201 are found to be business travelers. Give a 90% confidence
interval for the proportion of business travelers on the airline’s new route.
6–50. According to the Wall Street Journal, the rising popularity of hedge funds
and similar investment instruments has made splitting assets in cases of divorce
much more difficult.17 If a random sample of 250 divorcing couples reveals that 53
of them have great difficulties in splitting their family assets, construct a 90% confi-
dence interval for the proportion of all couples getting divorced who encounter such
problems.
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13“Constitutional Conundrum,” The Economist, March 17, 2007, p. 10.
14Moon Ihlwan and Kenji Hall, “New Tech, Old Habits,” BusinessWeek, March 26, 2007 p. 49.
15Jigar Shah, “Question Authority,” Fortune, March 5, 2007, p. 26.
16“Five Bags, Checked,” Money, May 2007, p. 126.
17Rachel Emma Silverman, “Divorce: Counting Money Gets Tougher,” The Wall Street Journal, May 5–6, 2007, p. B1.
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FIGURE 6–10 Several Chi-Square Distributions with Different Values of the df Parameter
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6–51. According to BusinessWeek, environmental groups are making headway on
American campuses. In a survey of 570 schools, 130 were found to incorporate chap-
ters of environmental organizations.18 Assume this is a random sample of universi-
ties and use the reported information to construct a 95% confidence interval for the
proportion of all U.S. schools with environmental chapters.

6–5 Confidence Intervals for the Population Variance
In some situations, our interest centers on the population variance (or, equivalently,
the population standard deviation). This happens in production processes, queuing
(waiting line) processes, and other situations. As we know, the sample variance S 2 is
the (unbiased) estimator of the population variance �2.

To compute confidence intervals for the population variance, we must learn to
use a new probability distribution: the chi-square distribution. Chi (pronounced ki ) is
one of two X letters in the Greek alphabet and is denoted by �. Hence, we denote the
chi-square distribution by �2.

The chi-square distribution, like the t distribution, has associated with it a
degrees-of-freedom parameter df. In the application of the chi-square distribution to
estimation of the population variance, df � n � 1 (as with the t distribution in its
application to sampling for the population mean). Unlike the t and the normal dis-
tributions, however, the chi-square distribution is not symmetric.

The chi-square distribution is the probability distribution of the sum of
several independent, squared standard normal random variables.

As a sum of squares, the chi-square random variable cannot be negative and is therefore
bounded on the left by zero. The resulting distribution is skewed to the right. Figure 6–10
shows several chi-square distributions with different numbers of degrees of freedom.

The mean of a chi-square distribution is equal to the degrees-of-freedom
parameter df. The variance of a chi-square distribution is equal to twice the
number of degrees of freedom.

Note in Figure 6–10 that as df increases, the chi-square distribution looks more and
more like a normal distribution. In fact, as df increases, the chi-square distribution
approaches a normal distribution with mean df and variance 2(df ).
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18Heather Green, “The Greening of America’s Campuses,” BusinessWeek, April 9, 2007, p. 64.
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Table 4 in Appendix C gives values of the chi-square distribution with different
degrees of freedom, for given tail probabilities. An abbreviated version of part of the
table is given as Table 6–2. We apply the chi-square distribution to problems of esti-
mation of the population variance, using the following property.

240 Chapter 6

TABLE 6–2 Values and Probabilities of Chi-Square Distributions

Area in Right Tail

df 0.995 0.990 0.975 0.950 0.900 0.100 0.050 0.025 0.010 0.005

1 0.04393 0.03157 0.03982 0.02393 0.0158 2.71 3.84 5.02 6.63 7.88

2 0.0100 0.0201 0.0506 0.103 0.211 4.61 5.99 7.38 9.21 10.6

3 0.0717 0.115 0.216 0.352 0.584 6.25 7.81 9.35 11.3 12.8

4 0.207 0.297 0.484 0.711 1.06 7.78 9.49 11.1 13.3 14.9

5 0.412 0.554 0.831 1.15 1.61 9.24 11.1 12.8 15.1 16.7

6 0.676 0.872 1.24 1.64 2.20 10.6 12.6 14.4 16.8 18.5

7 0.989 1.24 1.69 2.17 2.83 12.0 14.1 16.0 18.5 20.3

8 1.34 1.65 2.18 2.73 3.49 13.4 15.5 17.5 20.1 22.0

9 1.73 2.09 2.70 3.33 4.17 14.7 16.9 19.0 21.7 23.6

10 2.16 2.56 3.25 3.94 4.87 16.0 18.3 20.5 23.2 25.2

11 2.60 3.05 3.82 4.57 5.58 17.3 19.7 21.9 24.7 26.8

12 3.07 3.57 4.40 5.23 6.30 18.5 21.0 23.3 26.2 28.3

13 3.57 4.11 5.01 5.89 7.04 19.8 22.4 24.7 27.7 29.8

14 4.07 4.66 5.63 6.57 7.79 21.1 23.7 26.1 29.1 31.3

15 4.60 5.23 6.26 7.26 8.55 22.3 25.0 27.5 30.6 32.8

16 5.14 5.81 6.91 7.96 9.31 23.5 26.3 28.8 32.0 34.3

17 5.70 6.41 7.56 8.67 10.1 24.8 27.6 30.2 33.4 35.7

18 6.26 7.01 8.23 9.39 10.9 26.0 28.9 31.5 34.8 37.2

19 6.84 7.63 8.91 10.1 11.7 27.2 30.1 32.9 36.2 38.6

20 7.43 8.26 9.59 10.9 12.4 28.4 31.4 34.2 37.6 40.0

21 8.03 8.90 10.3 11.6 13.2 29.6 32.7 35.5 38.9 41.4

22 8.64 9.54 11.0 12.3 14.0 30.8 33.9 36.8 40.3 42.8

23 9.26 10.2 11.7 13.1 14.8 32.0 35.2 38.1 41.6 44.2

24 9.89 10.9 12.4 13.8 15.7 33.2 36.4 39.4 43.0 45.6

25 10.5 11.5 13.1 14.6 16.5 34.4 37.7 40.6 44.3 46.9

26 11.2 12.2 13.8 15.4 17.3 35.6 38.9 41.9 45.6 48.3

27 11.8 12.9 14.6 16.2 18.1 36.7 40.1 43.2 47.0 49.6

28 12.5 13.6 15.3 16.9 18.9 37.9 41.3 44.5 48.3 51.0

29 13.1 14.3 16.0 17.7 19.8 39.1 42.6 45.7 49.6 52.3

30 13.8 15.0 16.8 18.5 20.6 40.3 43.8 47.0 50.9 53.7

In sampling from a normal population, the random variable

(6–8)

has a chi-square distribution with n � 1 degrees of freedom.

x2 =
(n - 1)s2

s2

The distribution of the quantity in equation 6–8 leads to a confidence interval for �2.
Since the �2 distribution is not symmetric, we cannot use equal values with opposite
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FIGURE 6–11 Values and Tail Areas of a Chi-Square Distribution with 29 Degrees of Freedom
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� 

We now demonstrate the use of equation 6–9 with an example.
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A (1 � �) 100% confidence interval for the population variance �2 (where
the population is assumed normal) is

(6–9)

where �2
��2 is the value of the chi-square distribution with n � 1 degrees of

freedom that cuts off an area of ��2 to its right and �2
1���2 is the value of the

distribution that cuts off an area of ��2 to its left (equivalently, an area of 
1 � �/2 to its right).

C (n - 1)s2

x2
�>2

,
(n - 1)s2

x2
1-�>2

S

In an automated process, a machine fills cans of coffee. If the average amount filled
is different from what it should be, the machine may be adjusted to correct the mean.
If the variance of the filling process is too high, however, the machine is out of control
and needs to be repaired. Therefore, from time to time regular checks of the variance
of the filling process are made. This is done by randomly sampling filled cans, meas-
uring their amounts, and computing the sample variance. A random sample of 30 cans
gives an estimate s 2 � 18,540. Give a 95% confidence interval for the population
variance � 2.

Figure 6–11 shows the appropriate chi-square distribution with n � 1 � 29 degrees
of freedom. From Table 6–2 we get, for df � 29, �2

0.025 � 45.7 and �2
0.975 � 16.0.

Using these values, we compute the confidence interval as follows:

E X A M P L E  6 – 5

S o l u t i o n

c29(18,540)
45.7

,
29(18,540)

16.0
d = [11,765, 33,604]

We can be 95% sure that the population variance is between 11,765 and 33,604.

signs (such as �1.96 as we did with Z ) and must construct the confidence interval
using the two distinct tails of the distribution.
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FIGURE 6–12 The Template for Estimating Population Variances
[Estimating Variance.xls; Sheet: Sample Stats]

1
2
3
4
5
6
7
8
9

10
11

CA B D E F G H I J K L M

Confidence Interval for Population Variance

Sample Size 30 n
Sample Variance 18.54 s2

1 � �

95% [ 11.7593 , 33.5052 ]

The population is normally distributed

[ 11.7593 , 33.5052 ]
[ 12.6339 , 30.3619 ]
[ 13.7553 , 27.1989 ]

95%
90%
80%

Confidence Interval

Assumption:

FIGURE 6–13 The Template for Estimating Population Variances
[Estimating Variance.xls; Sheet: Sample Data]

1
2
3
4
5
6
7
8
9

10
11
12

CA B D E F G H I J K L M N

Confidence Interval for Population Variance

Sample Size 25 n
Sample Variance 1.979057 s2

1 � �

Sample
Data

95% [ 1.20662 , 3.83008 ]

The population is normally distributed

[ 1.20662 , 3.83008 ]
[ 1.30433 , 3.4298   ]
[ 1.43081 , 3.03329 ]

95%
90%
80%

Confidence Interval123
125
122
120
124
123
121
121

Assumption:

The Template
The workbook named Estimating Variance.xls provides sheets for computing confi-
dence intervals for population variances when

1. The sample statistics are known.
2. The sample data are known.

Figure 6–12 shows the first sheet and Figure 6–13 shows the second. An assumption
in both cases is that the population is normally distributed.
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In the following problems, assume normal populations.
6–52. The service time in queues should not have a large variance; otherwise, the
queue tends to build up. A bank regularly checks service time by its tellers to deter-
mine its variance. A random sample of 22 service times (in minutes) gives s2 � 8.
Give a 95% confidence interval for the variance of service time at the bank.
6–53. A sensitive measuring device should not have a large variance in the errors of
measurements it makes. A random sample of 41 measurement errors gives s2 � 102.
Give a 99% confidence interval for the variance of measurement errors.
6–54. A random sample of 60 accounts gives a sample variance of 1,228. Give a
95% confidence interval for the variance of all accounts.
6–55. In problem 6–21, give a 99% confidence interval for the variance of the num-
ber of miles that may be driven on a tire.
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6–56. In problem 6–25, give a 95% confidence interval for the variance of the pop-
ulation of billionaires’ worth in dollars.
6–57. In problem 6–26, give a 95% confidence interval for the variance of the
caloric content of all 3-ounce cuts of top loin steak.
6–58. In problem 6–27, give a 95% confidence interval for the variance of the transit
time for all goods.

6–6 Sample-Size Determination
One of the questions a statistician is most frequently asked before any actual sam-
pling takes place is: “How large should my sample be?” From a statistical point of
view, the best answer to this question is: “Get as large a sample as you can afford. If
possible, ‘sample’ the entire population.” If you need to know the mean or propor-
tion of a population, and you can sample the entire population (i.e., carry out a cen-
sus), you will have all the information and will know the parameter exactly. Clearly,
this is better than any estimate. This, however, is unrealistic in most situations due to
economic constraints, time constraints, and other limitations. “Get as large a sample
as you can afford” is the best answer if we ignore all costs, because the larger the sam-
ple, the smaller the standard error of our statistic. The smaller the standard error, the
less uncertainty with which we have to contend. This is demonstrated in Figure 6–14.

When the sampling budget is limited, the question often is how to find the minimum
sample size that will satisfy some precision requirements. In such cases, you should
explain to the designer of the study that he or she must first give you answers to the
following three questions:

1. How close do you want your sample estimate to be to the unknown parameter?
The answer to this question is denoted by B (for “bound”).

2. What do you want the confidence level to be so that the distance between the
estimate and the parameter is less than or equal to B ?

3. The last, and often misunderstood, question that must be answered is: What is your
estimate of the variance (or standard deviation) of the population in question?

Only after you have answers to all three questions can you specify the minimum
required sample size. Often the statistician is told: “How can I give you an estimate of
the variance? I don’t know. You are the statistician.” In such cases, try to get from your
client some idea about the variation in the population. If the population is approxi-
mately normal and you can get 95% bounds on the values in the population, divide the
difference between the upper and lower bounds by 4; this will give you a rough guess of �. Or
you may take a small, inexpensive pilot survey and estimate � by the sample standard
deviation. Once you have obtained the three required pieces of information, all you
need to do is to substitute the answers into the appropriate formula that follows:
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Standard
error
of statistic

Smaller
standard
error
of statistic

Sample size n

Sample size
m 
 n

FIGURE 6–14
Standard Error of a Statistic
as a Function of Sample Size

Minimum required sample size in estimating the population mean � is

(6–10)n =
Z2

�>2�2

B2

Minimum required sample size in estimating the population proportion p is

(6–11)n =
Z2

�>2pq

B2
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Equations 6–10 and 6–11 are derived from the formulas for the corresponding con-
fidence intervals for these population parameters based on the normal distribution.
In the case of the population mean, B is the half-width of a (1 � �) 100% confidence
interval for �, and therefore

244 Chapter 6

(6–12)B = z�>2
�1n

Equation 6–10 is the solution of equation 6–12 for the value of n. Note that B is the
margin of error. We are solving for the minimum sample size for a given margin of
error.

Equation 6–11, for the minimum required sample size in estimating the popula-
tion proportion, is derived in a similar way. Note that the term pq in equation 6–11
acts as the population variance in equation 6–10. To use equation 6–11, we need a
guess of p, the unknown population proportion. Any prior estimate of the parameter
will do. When none is available, we may take a pilot sample, or—in the absence of
any information—we use the value p � 0.5. This value maximizes pq and thus ensures
us a minimum required sample size that will work for any value of p.

n =
z 2
a>2�2

B
2

� 42.684n =
(1.96)2160,000

1202

A market research firm wants to conduct a survey to estimate the average amount
spent on entertainment by each person visiting a popular resort. The people who
plan the survey would like to be able to determine the average amount spent by all
people visiting the resort to within $120, with 95% confidence. From past operation
of the resort, an estimate of the population standard deviation is � � $400. What is
the minimum required sample size?

S o l u t i o n

E X A M P L E  6 – 6

Using equation 6–10, the minimum required sample size is

We know that B � 120, and �2 is estimated at 4002 � 160,000. Since we want 95%
confidence, z ��2 � 1.96. Using the equation, we get

Therefore, the minimum required sample size is 43 people (we cannot sample 42.684
people, so we go to the next higher integer).

The manufacturer of a sports car wants to estimate the proportion of people in a
given income bracket who are interested in the model. The company wants to know
the population proportion p to within 0.10 with 99% confidence. Current company
records indicate that the proportion p may be around 0.25. What is the minimum
required sample size for this survey?

E X A M P L E  6 – 7
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n =
z2

�>2pq

B2 =
(2.576)2(0.25)(0.75)

0.102 = 124.42

Using equation 6–11, we get S o l u t i o n

The company should, therefore, obtain a random sample of at least 125 people. Note
that a different guess of p would have resulted in a different sample size.

6–59. What is the required sample size for determining the proportion of defec-
tive items in a production process if the proportion is to be known to within
0.05 with 90% confidence? No guess as to the value of the population proportion is
available.
6–60. How many test runs of the new Volvo S40 model are required for determin-
ing its average miles-per-gallon rating on the highway to within 2 miles per gallon
with 95% confidence, if a guess is that the variance of the population of miles per
gallon is about 100?
6–61. A company that conducts surveys of current jobs for executives wants to esti-
mate the average salary of an executive at a given level to within $2,000 with 95%
confidence. From previous surveys it is known that the variance of executive salaries
is about 40,000,000. What is the minimum required sample size?
6–62. Find the minimum required sample size for estimating the average return on
real estate investments to within 0.5% per year with 95% confidence. The standard
deviation of returns is believed to be 2% per year.
6–63. A company believes its market share is about 14%. Find the minimum required
sample size for estimating the actual market share to within 5% with 90% confidence.
6–64. Find the minimum required sample size for estimating the average number
of designer shirts sold per day to within 10 units with 90% confidence if the standard
deviation of the number of shirts sold per day is about 50.
6–65. Find the minimum required sample size of accounts of the Bechtel Corpora-
tion if the proportion of accounts in error is to be estimated to within 0.02 with 95%
confidence. A rough guess of the proportion of accounts in error is 0.10.

6–7 The Templates
Optimizing Population Mean Estimates
Figure 6–15 shows the template that can be used for determining minimum sample size
for estimating a population mean. Upon entering the three input data—confidence
level desired, half-width (B ) desired, and the population standard deviation—in the
cells C5, C6, and C7, respectively, the minimum required sample size appears in
cell C9.

Determining the Optimal Half-Width
Usually, the population standard deviation � is not known for certain, and we would
like to know how sensitive the minimum sample size is to changes in �. In addition,
there is no hard rule for deciding what the half-width B should be. Therefore, a
tabulation of the minimum sample size for various values of � and B will help us to

P R O B L E M S
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FIGURE 6–15 The Template for Determining Minimum Sample Size
[Sample Size.xls; Sheet: Population Mean]

1

2

3
4
5
6
7

8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36

A C D E F G H I

Sample Size Determination for Population Mean

Tabulation of 

Confidence Level Desired 95% 50 70 90 110 130 150
Half-Width Desired 120 B

�

300 139 71 43 29 21 16

Population Stdev. 400 320 158 81 49 33 24 18
340 178 91 55 37 27 20

Minimum Sample Size 43 360 200 102 62 42 30 23
380 222 114 69 46 33 25
400 246 126 76 51 37 28

Cost Analysis 420 272 139 84 57 41 31
440 298 152 92 62 45 34

Sampling Cost $         211 460 326 166 101 68 49 37
Error Cost $         720 480 355 181 110 74 53 40
Total Cost $         931 500 385 196 119 80 57 43

Popn.
Std.

Devn.

Half Width Desired

Minimum Sample Size

J K L M NB

50 70 90 110 130 150

300
340

380

420

460

500

0

50

100

150

200

250

300

350

400

Sample Size

Half Width

Popn. Std.
Devn.

3-D Plot of the
Tabulation

choose a suitable B. To create the table, enter the desired starting and ending values
of � in cells F6 and F16, respectively. Similarly, enter the desired starting and ending
values for B in cells G5 and L5, respectively. The complete tabulation appears imme-
diately. Note that the tabulation pertains to the confidence level entered in cell C5. If
this confidence level is changed, the tabulation will be immediately updated.

To visualize the tabulated values a 3-D plot is created below the table. As can
be seen from the plot, the minimum sample size is more sensitive to the half-width B than
the population standard deviation �. That is, when B decreases, the minimum sample
size increases sharply. This sensitivity emphasizes the issue of how to choose B.
The natural decision criterion is cost. When B is small, the possible error in the
estimate is small and therefore the error cost is small. But a small B means large
sample size, increasing the sampling cost. When B is large, the reverse is true. Thus
B is a compromise between sampling cost and error cost. If cost data are available,
an optimal B can be found. The template contains features that can be used to find
optimal B.

The sampling cost formula is to be entered in cell C14. Usually, sampling cost
involves a fixed cost that is independent of the sample size and a variable cost that
increases linearly with the sample size. The fixed cost would include the cost of plan-
ning and organizing the sampling experiment. The variable cost would include the
costs of selection, measurement, and recording of each sampled item. For example, if
the fixed cost is $125 and the variable cost is $2 per sampled item, then the cost of
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sampling a total of 43 items will be $125 � $2*43 � $211. In the template, we enter
the formula “=125+2*C9” in cell C14, so that the sampling cost appears in cell C14.
The instruction for entering the formula appears also in the comment attached to
cell C14.

The error cost formula is entered in cell C15. In practice, error costs are more
difficult to estimate than sampling costs. Usually, the error cost increases more rapid-
ly than linearly with the amount of error. Often a quadratic formula is suitable for
modeling the error cost. In the current case seen in the template, the formula
“=0.05*C6^2” has been entered in cell C15. This means the error cost equals
0.05B 2. Instructions for entering this formula appear in the comment attached to
cell C15.

When proper cost formulas are entered in cells C14 and C15, cell C16 shows the
total cost. It is possible to tabulate, in place of minimum sample size, the sampling
cost, the error cost, or the total cost. You can select what you wish to tabulate using
the drop-down box in cell G3.

Using the Solver
By manually adjusting B, we can try to minimize the total cost. Another way to find
the optimal B that minimizes the total cost is to use the Solver. Unprotect the sheet
and select the Solver command in the Analysis group on the Data tab and click on
the Solve button. If the formulas entered in cells C14 and C15 are realistic, the Solver
will find a realistic optimal B, and a message saying that an optimal B has been found
will appear in a dialog box. Select Keep Solver Solution and press the OK button. In
the present case, the optimal B turns out to be 70.4.

For some combinations of sampling and error cost formulas, the Solver may not
yield meaningful answers. For example, it may get stuck at a value of zero for B. In
such cases, the manual method must be used. At times, it may be necessary to start
the Solver with different initial values for B and then take the B value that yields the
least total cost.

Note that the total cost also depends on the confidence level (in cell C5) and the
population standard deviation (in cell C7). If these values are changed, then the total
cost will change and so will the optimal B. The new optimum must be found once
again, manually or using the Solver.

Optimizing Population Proportion Estimates
Figure 6–16 shows the template that can be used to determine the minimum sample
size required for estimating a population proportion. This template is almost identical
to the one in Figure 6–15, which is meant for estimating the population mean. The
only difference is that instead of population standard deviation, we have population
proportion in cell C7.

The tabulation shows that the minimum sample size increases with population
proportion p until p reaches a value of 0.5 and then starts decreasing. Thus, the worst
case occurs when p is 0.5.

The formula for error cost currently in cell C15 is “=40000*C6^2.” This
means the cost equals 40,000B2. Notice how different this formula looks compared to
the formula 0.05B2 we saw in the case of estimating population mean. The coefficient
40,000 is much larger than 0.05. This difference arises because B is a much smaller
number in the case of proportions. The formula for sampling cost currently entered
in cell C14 is “=125+2*C9” (same as the previous case).

The optimal B that minimizes the total cost in cell C16 can be found using the
Solver just as in the case of estimating population mean. Select the Solver command
in the Analysis group on the Data tab and press the Solve button. In the current case,
the Solver finds the optimal B to be 0.07472.

Confidence Intervals 247



Aczel−Sounderpandian: 
Complete Business 
Statistics, Seventh Edition

6. Confidence Intervals Text250 © The McGraw−Hill 
Companies, 2009

FIGURE 6–16 The Template for Determining Minimum Sample Size
[Sample Size.xls; Sheet: Population Proportion]

1

2

3
4
5
6
7

8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36

A C D E F G H I

Sample Size Determination for Population Proportion

Tabulation of 

Confidence Level Desired 95% 0.5 0.08 0.11 0.14 0.17 0.2
Half-Width Desired 0.1 B 0.2 246 97 51 32 22 16

Population Proportion 0.25 0.24 281 110 58 36 25 18
0.28 310 122 65 40 27 20

Minimum Sample Size 73 0.32 335 131 70 43 29 21
0.36 355 139 74 46 31 23

0.4 369 145 77 48 32 24

Cost Analysis 0.44 379 148 79 49 33 24
0.48 384 150 80 49 34 24

Sampling Cost $         271 0.52 384 150 80 49 34 24
Error Cost $         400 0.56 379 148 79 49 33 24
Total Cost $         671 0.6 369 145 77 48 32 24

Popn.
Proportion

Half Width Desired

Minimum Sample Size

J K L MB

Sample Size

Half Width

Popn. Proportion

3-D Plot of the
Tabulation
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6–8 Using the Computer
Using Excel Built-In Functions for Confidence Interval Estimation
In addition to the Excel templates that were described in this chapter, you can use
various statistical functions of Excel to directly build the required confidence inter-
vals. In this section we review these functions.

The function CONFIDENCE returns a value that you can use to construct a confi-
dence interval for a population mean. The confidence interval is a range of values.
Your sample mean x is at the center of this range and the range is x ± CONFIDENCE.
In the formula CONFIDENCE(alpha,Stdev,Size), alpha is the significance
level used to compute the confidence level. Thus, the confidence level equals
100*(1 � alpha)%, or, in other words, an alpha of 0.1 indicates a 90% confidence
level. Stdev is the population standard deviation for the data and is assumed to be
known. Size is the sample size. The value of alpha should be between zero and one. If
Size is not an integer number, it is truncated. As an example, suppose we observe
that, in a sample of 40 employees, the average length of travel to work is 20 minutes
with a population standard deviation of 3.5. With alpha � .05, CONFIDENCE(.05,
3.5, 40) returns the value 1.084641, so the corresponding confidence interval is
20 ± 1.084641, or [18.915, 21.084].

No function is available for constructing confidence intervals for population pro-
portion or variance per se. But you can use the following useful built-in functions to
build the corresponding confidence intervals.
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FIGURE 6–17 Confidence Interval on a Population Mean Using MINITAB

The function NORMSINV, which was discussed in Chapter 4, returns the inverse of
the standard normal cumulative distribution. For example, NORMSINV(0.975) returns
the value 1.95996, or approximately the value of 1.96, which is extensively used for
constructing the 95% confidence intervals on the mean. You can use this function to
construct confidence intervals on the population mean or population proportion.

The function TINV returns the t value of the Student’s t distribution as a function
of the probability and the degrees of freedom. In the formula TINV(p,df) p is the
probability associated with the two-tailed Student’s t distribution, and df is the num-
ber of degrees of freedom that characterizes the distribution. Note that if df is not an
integer, it is truncated. Given a value for probability p, TINV seeks that value t such
that P(|T|>t)=P(T>t or T<-t)=p, where T is a random variable that follows the
t distribution. You can use TINV for constructing a confidence interval for a popula-
tion mean when the population standard deviation is not known. For example, for
building a 95% confidence interval for the mean of the population assuming a sample
of size 15, you need to multiply TINV(0.05, 14) by the sample standard deviation
and divide it by the square root of sample size to construct the half width of your con-
fidence interval. 

The function CHIINV returns the inverse of the one-tailed probability of the
chi-squared distribution. You can use this function to construct a confidence interval
for the population variance. In the formula CHIINV(p,df), p is a probability associ-
ated with the chi-squared distribution, and df is the number of degrees of freedom.
Given a value for probability p, CHIINV seeks that value x such that P (X 
 x ) = p,
where X is a random variable with the chi-square distribution. As an example,
CHIINV(0.025, 10) returns the value 20.483. 

Using MINITAB for Confidence Interval Estimation
MINITAB can be used for obtaining confidence interval estimates for various popu-
lation parameters. Let’s start by obtaining the confidence interval for the population
mean when the population standard deviation is known. In this case start by choos-
ing Stat � Basic Statistics � 1-Sample Z from the menu bar. Then the 1-Sample Z
dialog box will appear as shown in Figure 6–17. Enter the name of the column that
contains the values of your sample. If you have summarized data of your sample, you
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FIGURE 6–18 Confidence Interval on Population Variance Using MINITAB

can also enter it in the corresponding section. Enter the value of the population stan-
dard deviation in the next box. You can define the desired confidence level of your
interval by clicking on the Options button. Then press the OK button. The resulting
confidence interval and corresponding Session commands will appear in the Session
window as seen in Figure 6–17.

For obtaining the confidence interval for the population mean when the popu-
lation standard deviation is not known you need to choose Stat � Basic Statistics �
1-Sample t from the menu bar. The setting is the same as the previous dialog box
except that you need to determine the sample standard deviation if you choose to
enter summarized data of your sample.

MINITAB can also be used for obtaining a confidence interval for a population
proportion by selecting Stat � Basic Statistics � 1Proportion from the menu bar. As
before, we can define the summarized data of our sample as number of trials (sample
size) and number of events (number of samples with the desired condition). After
defining the required confidence level press the OK button.

MINITAB also enables you to obtain a confidence interval for the population
variance. For this purpose, start by choosing Stat � Basic Statistics � 1 Variance
from the menu bar. In the corresponding dialog box, as seen in Figure 6–18, use the
drop-down menu to choose whether input values refer to standard deviation or vari-
ance. After entering the summarized data or the name of the column that contains
the raw data, you can set the desired confidence level by clicking on the Options but-
ton. Then press the OK button. The final result, which will be shown in the Session
window, contains confidence intervals for both population variance and standard
deviation.

6–9 Summary and Review of Terms
In this chapter, we learned how to construct confidence intervals for population
parameters. We saw how confidence intervals depend on the sampling distributions of
the statistics used as estimators. We also encountered two new sampling distributions:
the t distribution, used in estimating the population mean when the population

250 Chapter 6



Aczel−Sounderpandian: 
Complete Business 
Statistics, Seventh Edition

6. Confidence Intervals Text 253© The McGraw−Hill 
Companies, 2009

6–66. Tradepoint, the electronic market set up to compete with the London Stock
Exchange, is losing on average $32,000 per day. A potential long-term financial partner
for Tradepoint needs a confidence interval for the actual (population) average daily
loss, in order to decide whether future prospects for this venture may be profitable.
In particular, this potential partner wants to be confident that the true average loss at
this period is not over $35,000 per day, which it would consider hopeless. Assume the
$32,000 figure given above is based on a random sample of 10 trading days, assume
a normal distribution for daily loss, and assume a standard deviation of s � $6,000.
Construct a 95% confidence interval for the average daily loss in this period. What
decision should the potential partner make?
6–67. Landings and takeoffs at Schiphol, Holland, per month are (in 1,000s) as
follows:

26, 19, 27, 30, 18, 17, 21, 28, 18, 26, 19, 20, 23, 18, 25, 29, 30, 26, 24, 22, 31, 18, 30, 19

Assume a random sample of months. Give a 95% confidence interval for the average
monthly number of takeoffs and landings.
6–68. Thomas Stanley, who surveyed 200 millionaires in the United States for his
book The Millionaire Mind, found that those in that bracket had an average net worth
of $9.2 million. The sample variance was 1.3 million $2. Assuming that the surveyed
subjects are a random sample of U.S. millionaires, give a 99% confidence interval for
the average net worth of U.S. millionaires.
6–69. The Java computer language, developed by Sun Microsystems, has the
advantage that its programs can run on types of hardware ranging from mainframe
computers all the way down to handheld computing devices or even smart phones.
A test of 100 randomly selected programmers revealed that 71 preferred Java to their
other most used computer languages. Construct a 95% confidence interval for the
proportion of all programmers in the population from which the sample was selected
who prefer Java.
6–70. According to an advertisement in Worth, in a survey of 68 multifamily office
companies, the average client company had assets of $55.3 million.19 If this is a result
of a random sample and the sample standard deviation was $21.6 million, give a 95%
confidence interval for the population average asset value.
6–71. According to the Wall Street Journal, an average of 44 tons of carbon dioxide
will be saved per year if new, more efficient lamps are used.20 Assume that this aver-
age is based on a random sample of 15 test runs of the new lamps and that the sam-
ple standard deviation was 18 tons. Give a 90% confidence interval for average
annual savings. 
6–72. Finjan is a company that makes a new security product designed to protect
software written in the Java programming language against hostile interference. The
market for this program materialized recently when Princeton University experts

A D D I T I O N A L  P R O B L E M S

standard deviation is unknown, and the chi-square distribution, used in estimating
the population variance. The use of either distribution assumes a normal population.
We saw how the new distributions, as well as the normal distribution, allow us to con-
struct confidence intervals for population parameters. We saw how to determine the
minimum required sample size for estimation.
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19Ad: “The FMO Industry,” Worth, April 2007, p. 55.
20John J. Fialka and Kathryn Kranhold, “Households Would Need New Bulbs to Meet Lighting Efficiency Rules,” The

Wall Street Journal, May 5–6, 2007, p. A1.



Aczel−Sounderpandian: 
Complete Business 
Statistics, Seventh Edition

6. Confidence Intervals Text254 © The McGraw−Hill 
Companies, 2009

showed that a hacker could write misleading applets that fool Java’s built-in security
rules. If, in 430 trials, the system was fooled 47 times, give a 95% confidence interval
for p � probability of successfully fooling the machine.
6–73. Sony’s new optical disk system prototype tested and claimed to be able to
record an average of 1.2 hours of high-definition TV. Assume n � 10 trials and � �
0.2 hour. Give a 90% confidence interval.
6–74. The average customer of the Halifax bank in Britain (of whom there are 7.6
million) received $3,600 when the institution changed from a building society to a
bank. If this is based on a random sample of 500 customers with standard deviation
� $800, give a 95% confidence interval for the average amount paid to any of the 7.6
million bank customers.
6–75. FinAid is a new, free Web site that helps people obtain information on
180,000 college tuition aid awards. A random sample of 500 such awards revealed
that 368 were granted for reasons other than financial need. They were based on the
applicant’s qualifications, interests, and other variables. Construct a 95% confidence
interval for the proportion of all awards on this service made for reasons other than
financial need.
6–76. In May 2007, a banker was arrested and charged with insider trading after
government investigators had secretly looked at a sample of nine of his many trades
and found that on these trades he had made a total of $7.5 million.21 Compute the
average earning per trade. Assume also that the sample standard deviation was
$0.5 million and compute a 95% confidence interval for the average earning per trade
for all trades made by this banker. Use the assumption that the nine trades were
randomly selected.
6–77. In problem 6–76, suppose the confidence interval contained the value 0.00.
How could the banker’s attorney use this information to defend his client?
6–78. A small British computer-game firm, Eidos Interactive PLC, stunned the
U.S.- and Japan-dominated market for computer games when it introduced Lara Croft,
an Indiana Jones-like adventuress. The successful product took two years to develop.
One problem was whether Lara should have a swinging ponytail, which was decided
after taking a poll. If in a random sample of 200 computer-game enthusiasts, 161
thought she should have a swinging ponytail (a computer programmer’s nightmare to
design), construct a 95% confidence interval for the proportion in this market. If the
decision to incur the high additional programming cost was to be made if p 
 0.90,
was the right decision made (when Eidos went ahead with the ponytail)?
6–79. In a survey, Fortune rated companies on a 0 to 10 scale. A random sample of
10 firms and their scores is as follows.22

FedEx 8.94, Walt Disney 8.76, CHS 8.67, McDonald’s 7.82, CVS 6.80, Safeway 6.57,
Starbucks 8.09, Sysco 7.42, Staples 6.45, HNI 7.29.

Construct a 95% confidence interval for the average rating of a company on Fortune ’s
entire list.
6–80. According to a survey published in the Financial Times, 56% of executives at
Britain’s top 500 companies are less willing than they had been five years ago to sac-
rifice their family lifestyle for their career. If the survey consisted of a random sample
of 40 executives, give a 95% confidence interval for the proportion of executives less
willing to sacrifice their family lifestyle.
6–81. Fifty years after the birth of duty-free shopping at international airports and
border-crossing facilities, the European commission announced plans to end this form
of business. A study by Cranfield University was carried out to estimate the average
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percentage rise in airline landing charges that would result as airlines try to make up
for the loss of on-board duty-free shopping revenues. The study found the average
increase to be 60%. If this was based on a random sample of 22 international flights
and the standard deviation of increase was 25%, give a 90% confidence interval for
the average increase.
6–82. When NYSE, NASDAQ, and the British government bonds market were
planning to change prices of shares and bonds from powers of 2, such as 1�2, 1�4,
1�8, 1�16, 1�32, to decimals (hence 1�32 � 0.03125), they decided to run a test. If the
test run of trading rooms using the new system revealed that 80% of the traders pre-
ferred the decimal system and the sample size was 200, give a 95% confidence inter-
val for the percentage of all traders who will prefer the new system.
6–83. A survey of 5,250 business travelers worldwide conducted by OAG Business
Travel Lifestyle indicated that 91% of business travelers consider legroom the most
important in-flight feature. (Angle of seat recline and food service were second and
third, respectively.) Give a 95% confidence interval for the proportion of all business
travelers who consider legroom the most important feature.
6–84. Use the following random sample of suitcase prices to construct a 90% confi-
dence interval for the average suitcase price.23

$285, 110, 495, 119, 450, 125, 250, 320

6–85. According to Money, 60% of men have significant balding by age 50.24 If this
finding is based on a random sample of 1,000 men of age 50, give a 95% confidence
interval for the population of men of 50 who show some balding.
6–86. An estimate of the average length of pins produced by an automatic lathe is
wanted to within 0.002 inch with a 95% confidence level. � is guessed to be 0.015 inch.

a. What is the minimum sample size?
b. If the value of � may be anywhere between 0.010 and 0.020 inch, tabulate

the minimum sample size required for � values from 0.010 to 0.020 inch.
c. If the cost of sampling and testing n pins is (25 � 6n) dollars, tabulate the

costs for � values from 0.010 to 0.020 inch.
6–87. Wells Fargo Bank, based in San Francisco, offered the option of applying for a
loan over the Internet. If a random sample of 200 test runs of the service reveal an aver-
age of 8 minutes to fill in the electronic application and standard deviation � 3 minutes,
construct a 75% confidence interval for �.
6–88. An estimate of the percentage defective in a lot of pins supplied by a vendor
is desired to within 1% with a 90% confidence level. The actual percentage defective
is guessed to be 4%.

a. What is the minimum sample size?
b. If the actual percentage defective may be anywhere between 3% and 6%,

tabulate the minimum sample size required for actual percentage defective
from 3% to 6%.

c. If the cost of sampling and testing n pins is (25 � 6n) dollars, tabulate the
costs for the same percentage defective range as in part (b).

6–89. The lengths of pins produced by an automatic lathe are normally distributed.
A random sample of 20 pins gives a sample mean of 0.992 inch and a sample stan-
dard deviation of 0.013 inch.

a. Give a 95% confidence interval for the average lengths of all pins produced.
b. Give a 99% confidence interval for the average lengths of all pins produced.
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A company wants to conduct a telephone survey
of randomly selected voters to estimate the pro-
portion of voters who favor a particular candidate

in a presidential election, to within 2% error with 95%
confidence. It is guessed that the proportion is 53%.

1. What is the required minimum sample size?
2. The project manager assigned to the survey is not

sure about the actual proportion or about the 2%

error limit. The proportion may be anywhere
from 40% to 60%. Construct a table for the
minimum sample size required with half-width
ranging from 1% to 3% and actual proportion
ranging from 40% to 60%.

3. Inspect the table produced in question 2 above.
Comment on the relative sensitivity of the
minimum sample size to the actual proportion
and to the desired half-width.

CASE 7 Presidential Polling

6–90. You take a random sample of 100 pins from the lot supplied by the vendor
and test them. You find 8 of them defective. What is the 95% confidence interval for
percentage defective in the lot?
6–91. A statistician estimates the 90% confidence interval for the mean of a nor-
mally distributed population as 172.58 � 3.74 at the end of a sampling experiment,
assuming a known population standard deviation. What is the 95% confidence
interval?
6–92. A confidence interval for a population mean is to be estimated. The popula-
tion standard deviation � is guessed to be anywhere from 14 to 24. The half-width B
desired could be anywhere from 2 to 7.

a. Tabulate the minimum sample size needed for the given ranges of � and B.
b. If the fixed cost of sampling is $350 and the variable cost is $4 per sample,

tabulate the sampling cost for the given ranges of � and B.
c. If the cost of estimation error is given by the formula 10B2, tabulate the total

cost for the given ranges of � and B. What is the value of B that minimizes
the total cost when � = 14? What is the value of B that minimizes the total
cost when � = 24?

6–93. A marketing manager wishes to estimate the proportion of customers who
prefer a new packaging of a product to the old. He guesses that 60% of the customers
would prefer the new packaging. The manager wishes to estimate the proportion to
within 2% with 90% confidence. What is the minimum required sample size?
6–94. According to Money, a survey of 1,700 executives revealed that 51% of them
would likely choose a different field if they could start over.25 Construct a 95% confi-
dence interval for the proportion of all executives who would like to start over,
assuming the sample used was random and representative of all executives.
6–95. According to Shape, on the average, 1�2 cup of edamame beans contains
6 grams of protein.26 If this conclusion is based on a random sample of 50 half-cups
of edamames and the sample standard deviation is 3 grams, construct a 95% confi-
dence interval for the average amount of protein in 1�2 cup of edamames.
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25Jean Chatzky, “To Invent the New You, Don’t Bankrupt Old You,” Money, May 2007, p. 30.
26Susan Learner Barr, “Smart Eating,” Shape, June 2007, p. 202.
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A business office has private information about its
customers. A manager finds it necessary to
check whether the workers inadvertently give

away any private information over the phone. To esti-
mate the percentage of times that a worker does give
away such information, an experiment is proposed. At
a randomly selected time, a call will be placed to the
office and the caller will ask several routine questions.
The caller will intersperse the routine questions with
three questions (attempts) that ask for private informa-
tion that should not be given out. The caller will note
how many attempts were made and how many times
private information was given away. 

The true proportion of the times that private
information is given away during an attempt is
guessed to be 7%. The cost of making a phone call,
including the caller’s wages, is $2.25. This cost is per
call, or per three attempts. Thus the cost per attempt
is $0.75. In addition, the fixed cost to design the
experiment is $380.

1. What is the minimum sample size (of attempts) if
the proportion is to be estimated within �2% with
95% confidence? What is the associated total cost?

2. What is the minimum sample size if the
proportion is to be estimated within �1% with
95% confidence? What is the associated total cost?

3. Prepare a tabulation and a plot of the total cost as
the desired accuracy varies from �1% to �3% and
the population proportion varies from 5% to 10%.

4. If the caller can make as many as five attempts in
one call, what is the total cost for �2% accuracy
with 95% confidence? Assume that cost per call
and the fixed cost do not change.

5. If the caller can make as many as five attempts in
one call, what is the total cost for �1% accuracy
with 95% confidence? Assume that the cost per
call and the fixed cost do not change.

6. What are the problems with increasing the
number of attempts in one call?

CASE 8 Privacy Problem
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4. At what value of the actual proportion is the
required sample size the maximum?

5. The cost of polling includes a fixed cost of $425
and a variable cost of $1.20 per person sampled,
thus the cost of sampling n voters is $(425 � 1.20n).
Tabulate the cost for range of values as in
question 2 above.

6. A competitor of the company that had announced
results to within �3% with 95% confidence has
started to announce results to within �2% with
95% confidence. The project manager wants to
go one better by improving the company’s
estimate to be within �1% with 95% confidence.
What would you tell the manager?
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7
After studying this chapter, you should be able to:

• Explain why hypothesis testing is important.
• Describe the role of sampling in hypothesis testing.
• Identify type I and type II errors and discuss how they conflict

with each other.
• Interpret the confidence level, the significance level, and the

power of a test.
• Compute and interpret p-values.
• Determine the sample size and significance level for a given

hypothesis test.
• Use templates for p-value computations.
• Plot power curves and operating characteristic curves using

templates.

HYPOTHESIS TESTING

LEARNING OBJECTIVES
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7–1 Using Statistics
On June 18, 1964, a woman was robbed while
walking home along an alley in San Pedro,
California. Some time later, police arrested
Janet Collins and charged her with the robbery.

The interesting thing about this case of petty crime is that the prosecution had no
direct evidence against the defendant. Janet Collins was convicted of robbery on purely
statistical grounds.

The case, People v. Collins, drew much attention because of its use of probability—
or, rather, what was perceived as a probability—in determining guilt. An instructor of
mathematics at a local college was brought in by the prosecution and testified as an
expert witness in the trial. The instructor “calculated the probability” that the defendant
was a person other than the one who committed the crime as 1 in 12,000,000. This led
the jury to convict the defendant.

The Supreme Court of California later reversed the guilty verdict against Janet
Collins when it was shown that the method of calculating the probability was incor-
rect. The mathematics instructor had made some very serious errors.1

Despite the erroneous procedure used in deriving the probability, and the justi-
fied reversal of the conviction by the Supreme Court of California, the Collins case
serves as an excellent analogy for statistical hypothesis testing. Under the U.S. legal
system, the accused is assumed innocent until proved guilty “beyond a reasonable
doubt.” We will call this the null hypothesis—the hypothesis that the accused is innocent.
We will hold the null hypothesis as true until a time when we can prove, beyond a
reasonable doubt, that it is false and that the alternative hypothesis—the hypothesis that
the accused is guilty—is true. We want to have a small probability (preferably zero) of
convicting an innocent person, that is, of rejecting a null hypothesis when the null
hypothesis is actually true.

In the Collins case, the prosecution claimed that the accused was guilty since, oth-
erwise, an event with a very small probability had just been observed. The argument
was that if Collins were not guilty, then another woman fitting her exact characteris-
tics had committed the crime. According to the prosecution, the probability of this
event was 1�12,000,000, and since the probability was so small, Collins was very likely
the person who committed the robbery.

The Collins case illustrates hypothesis testing, an important application of statis-
tics. A thesis is something that has been proven to be true. A hypothesis is something that
has not yet been proven to be true. Hypothesis testing is the process of determining
whether or not a given hypothesis is true. Most of the time, a hypothesis is tested
through statistical means that use the concepts we learned in previous chapters.

The Null Hypothesis
The first step in a hypothesis test is to formalize it by specifying the null hypothesis.

A null hypothesis is an assertion about the value of a population parame-
ter. It is an assertion that we hold as true unless we have sufficient statisti-
cal evidence to conclude otherwise.

1The instructor multiplied the probabilities of the separate events comprising the reported description of the robber:
the event that a woman has blond hair, the event that she drives a yellow car, the event that she is seen with an African-
American man, the event that the man has a beard. Recall that the probability of the intersection of several events is equal
to the product of the probabilities of the separate events only if the events are independent. In this case, there was no rea-
son to believe that the events were independent. There were also some questions about how the separate “probabilities”
were actually derived since they were presented by the instructor with no apparent justification. See W. Fairley and
F. Mosteller, “A Conversation about Collins,” University of Chicago Law Review 41, no. 2 (Winter 1974), pp. 242–53.
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For example, a null hypothesis might assert that the population mean is equal to 100.
Unless we obtain sufficient evidence that it is not 100, we will accept it as 100. We
write the null hypothesis compactly as

H0: � � 100

H1: � 
 100

H0: p � 40%

H1: p � 40%

H0: �2 	 50

H1: �2 
 50

where the symbol H0 denotes the null hypothesis.

The alternative hypothesis is the negation of the null hypothesis.

For the null hypothesis � � 100, the alternative hypothesis is � 
 100. We will write
it as

using the symbol H1 to denote the alternative hypothesis.2 Because the null and alter-
native hypotheses assert exactly opposite statements, only one of them can be true.
Rejecting one is equivalent to accepting the other.

Hypotheses about other parameters such as population proportion or population
variance are also possible. In addition, a hypothesis may assert that the parameter in
question is at least or at most some value. For example, the null hypothesis may
assert that the population proportion p is at least 40%. In this case, the null and alter-
native hypotheses are

Yet another example is where the null hypothesis asserts that the population variance
is at most 50. In this case

Note that in all cases the equal to sign appears in the null hypothesis.
Although the idea of a null hypothesis is simple, determining what the null

hypothesis should be in a given situation may be difficult. Generally what the statisti-
cian aims to prove is the alternative hypothesis, the null hypothesis standing for the
status quo, do-nothing situation.

2In some books, the symbol Ha is used for alternative hypothesis.
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H0: � 	 6 days
H1: � 
 6 days

A vendor claims that his company fills any accepted order, on the average, in at most
six working days. You suspect that the average is greater than six working days and
want to test the claim. How will you set up the null and alternative hypotheses?

The claim is the null hypothesis and the suspicion is the alternative hypothesis. Thus,
with � denoting the average time to fill an order,

E X A M P L E  7 – 1

S o l u t i o n

H0: �2 	 0.0028 oz2

H1: �2 
 0.0028 oz2

A manufacturer of golf balls claims that the variance of the weights of the company’s
golf balls is controlled to within 0.0028 oz2. If you wish to test this claim, how will
you set up the null and alternative hypotheses?

The claim is the null hypothesis. Thus, with �2 denoting the variance,

E X A M P L E  7 – 2

S o l u t i o n

H0: p � 0.20
H1: p � 0.20

At least 20% of the visitors to a particular commercial Web site where an electronic
product is sold are said to end up ordering the product. If you wish to test this claim,
how will you set up the null and alternative hypotheses?

With p denoting the proportion of visitors ordering the product,

E X A M P L E  7 – 3

S o l u t i o n

7–1. A pharmaceutical company claims that four out of five doctors prescribe the
pain medicine it produces. If you wish to test this claim, how would you set up the
null and alternative hypotheses?
7–2. A medicine is effective only if the concentration of a certain chemical in it is
at least 200 parts per million (ppm). At the same time, the medicine would produce
an undesirable side effect if the concentration of the same chemical exceeds 200
ppm. How would you set up the null and alternative hypotheses to test the concen-
tration of the chemical in the medicine?
7–3. It is found that Web surfers will lose interest in a Web page if downloading
takes more than 12 seconds at 28K baud rate. If you wish to test the effectiveness of
a newly designed Web page in regard to its download time, how will you set up the
null and alternative hypotheses?

P R O B L E M S
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CHAPTER 11

3Later we will see that “not rejecting” is a more accurate term than “accepting.”

7–4. The average cost of a traditional open-heart surgery is claimed to be, $49,160.
If you suspect that the claim exaggerates the cost, how would you set up the null and
alternative hypotheses?
7–5. During the sharp increase in gasoline prices in the summer of the year 2006,
oil companies claimed that the average price of unleaded gasoline with minimum
octane rating of 89 in the Midwest was not more than $3.75. If you want to test this
claim, how would you set up the null and alternative hypotheses?

7–2 The Concepts of Hypothesis Testing
We said that a null hypothesis is held as true unless there is sufficient evidence against
it. When can we say that we have sufficient evidence against it and thus reject it? This
is an important and difficult question. Before we can answer it we have to understand
several preliminary concepts.

Evidence Gathering
After the null and alternative hypotheses are spelled out, the next step is to gather
evidence. The best evidence is, of course, data that leave no uncertainty at all. If we
could measure the whole population and calculate the exact value of the population
parameter in question, we would have perfect evidence. Such evidence is perfect in
that we can check the null hypothesis against it and be 100% confident in our conclu-
sion that the null hypothesis is or is not true. But in all real-world cases, the evidence
is gathered from a random sample of the population. In the rest of this chapter, unless
otherwise specified, the evidence is from a random sample.

An important limitation of making inferences from sample data is that we cannot
be 100% confident about it. How confident we can be depends on the sample size
and parameters such as the population variance. In view of this fact, the sampling
experiment for evidence gathering must be carefully designed. Among other consid-
erations, the sample size needs to be large enough to yield a desired confidence level
and small enough to contain the cost. We will see more details of sample size deter-
mination later in this chapter.

Type I and Type II Errors
In our professional and personal lives we often have to make an accept–reject type of
decision based on incomplete data. An inspector has to accept or reject a batch
of parts supplied by a vendor, usually based on test results of a random sample. A
recruiter has to accept or reject a job applicant, usually based on evidence gathered
from a résumé and interview. A bank manager has to accept or reject a loan applica-
tion, usually based on financial data on the application. A person who is single has to
accept or reject a suitor’s proposal of marriage, perhaps based on the experiences
with the suitor. A car buyer has to buy or not buy a car, usually based on a test drive.
As long as such decisions are made based on evidence that does not provide 100%
confidence, there will be chances for error. No error is committed when a good
prospect is accepted or a bad one is rejected. But there is a small chance that a bad
prospect is accepted or a good one is rejected. Of course, we would like to minimize
the chances of such errors.

In the context of statistical hypothesis testing, rejecting a true null hypothesis is
known as a type I error and accepting3 a false null hypothesis is known as a type II
error. (Unfortunately, these names are unimaginative and nondescriptive. Because
they are nondescriptive, you have to memorize which is which.) Table 7–1 shows the
instances of type I and type II errors.

260 Chapter 7
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TABLE 7–1 Instances of Type I and Type II Errors

H0 True H0 False

Accept H0 No error Type II error

Reject H0 Type I error No error

H0: � � 1,000
H1: � � 1,000

A random sample of size 30 yields a sample mean of only 999. Because the sample
mean is less than 1,000, the evidence goes against the null hypothesis (H0). Can we
reject H0 based on this evidence? Immediately we realize the dilemma. If we reject
it, there is some chance that we might be committing a type I error, and if we accept
it, there is some chance that we might be committing a type II error. A natural ques-
tion to ask at this situation is, What is the probability that H0 can still be true despite
the evidence? The question asks for the “credibility” of H0 in light of unfavorable evi-
dence. Unfortunately, due to mathematical complexities, computing the probability
that H0 is true is impossible. We therefore settle for a question that comes very close.
Recall that H0: � � 1,000. We ask,

When the actual � � 1,000, and with sample size 30, what is the probability of getting a
sample mean that is less than or equal to 999?

The answer to this question is then taken as the “credibility rating” of H0. Study the
question carefully. There are two aspects to note:

1. The question asks for the probability of the evidence being as unfavorable
or more unfavorable to H0. The reason is that in the case of continuous
distributions, probabilities can be calculated only for a range of values. Here
we pick a range for the sample mean that disfavors H0, namely, less than or
equal to 999.

Let us see how we can minimize the chances of type I and type II errors. Is it
possible, even with imperfect sample evidence, to reduce the probability of type I
error all the way down to zero? The answer is yes. Just accept the null hypothesis,
no matter what the evidence is. Since you will never reject any null hypothesis, you
will never reject a true null hypothesis and thus you will never commit a type I
error! We immediately see that this would be foolish. Why? If we always accept a
null hypothesis, then given a false null hypothesis, no matter how wrong it is, we
are sure to accept it. In other words, our probability of committing a type II error
will be 1. Similarly, it would be foolish to reduce the probability of type II error all
the way to zero by always rejecting a null hypothesis, for we would then reject
every true null hypothesis, no matter how right it is. Our probability of type I error
will be 1.

The lesson is that we should not try to completely avoid either type of error. We
should plan, organize, and settle for some small, optimal probability of each type of
error. Before we can address this issue, we need to learn a few more concepts.

The p-Value
Suppose the null and alternative hypotheses are
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2. The condition assumed is � � 1,000, although H0 states � � 1,000. The reason
for assuming � � 1,000 is that it gives the most benefit of doubt to H0. If we assume
� � 1,001, for instance, the probability of the sample mean being less than or
equal to 999 will only be smaller, and H0 will only have less credibility. Thus
the assumption � � 1,000 gives the maximum credibility to H0.

Suppose the answer to the question is 26%. That is, there is a 26% chance for a
sample of size 30 to yield a sample mean less than or equal to 999 when the actual
� � 1,000. Statisticians call this 26% the p-value. As mentioned before, the p-value is
a kind of “credibility rating” of H0 in light of the evidence. The formal definition of
the p-value follows:

Given a null hypothesis and sample evidence with sample size n, the 
p-value is the probability of getting a sample evidence that is equally or
more unfavorable to the null hypothesis while the null hypothesis is actually
true. The p-value is calculated giving the null hypothesis the maximum
benefit of doubt.

Most people in most circumstances would consider a 26% chance of commit-
ting a type I error to be too high and would not reject H0. That is understandable.
Now consider another scenario where the sample mean was 998 rather than 999.
Here the evidence is more unfavorable to the null hypothesis. Hence there will
be less credibility to H0 and the p-value will be smaller. Suppose the new p-value
is 2%, meaning that H0 has only 2% credibility. Can we reject H0 now? We clearly
see a need for a policy for rejecting H0 based on p-value. Let us see the most common
policy.

The Significance Level
The most common policy in statistical hypothesis testing is to establish a significance
level, denoted by �, and to reject H0 when the p-value falls below it. When this policy
is followed, one can be sure that the maximum probability of type I error is �.

Rule: When the p-value is less than �, reject H0.

The standard values for � are 10%, 5%, and 1%. Suppose � is set at 5%. This means
that whenever the p-value is less than 5%, H0 will be rejected. In the preceding exam-
ple, for a sample mean of 999 the p-value was 26%, and H0 will not be rejected. For
a sample mean of 998 the p-value was 2%, which has fallen below � � 5%. Hence
H0 will be rejected.

Let us see in more detail the implications of using a significance level � for reject-
ing a null hypothesis. The first thing to note is that if we do not reject H0 , this does not
prove that H0 is true. For example, if � � 5% and the p-value � 6%, we will not reject
H0. But the credibility of H0 is only 6%, which is hardly proof that H0 is true. It may
very well be that H0 is false and by not rejecting it, we are committing a type II error.
For this reason, under these circumstances we should say “We cannot reject H0 at an
� of 5%” rather than “We accept H0.”

The second thing to note is that � is the maximum probability of type I error we
set for ourselves. Since � is the maximum p-value at which we reject H0, it is the max-
imum probability of committing a type I error. In other words, setting � � 5% means
that we are willing to put up with up to 5% chance of committing a type I error.

The third thing to note is that the selected value of � indirectly determines the
probability of type II error as well. Consider the case of setting � � 0. Although this may
appear good because it reduces the probability of type I error to zero, this corresponds
to the foolish case we already discussed: never rejecting H0. Every H0, no matter how
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FIGURE 7–1 Probability of Type II Error versus � for the Case H0: � � 1,000, � � 10, n � 30,
Assumed � for Type II Error � 994
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wrong it is, is accepted and thus the probability of type II error becomes 1. To
decrease the probability of type II error we have to increase �. In general, other things
remaining the same, increasing the value of � will decrease the probability of type II error. This
should be intuitively obvious. For example, increasing � from 5% to 10% means that
in those instances with a p-value in the range 5% to 10% the H0 that would not have
been rejected before would now be rejected. Thus, some cases of false H0 that
escaped rejection before may not escape now. As a result, the probability of type II
error will decrease.

Figure 7–1 is a graph of the probability of type II error versus �, for a case where
H0: � � 1,000, the evidence is from a sample of size 30, and the probability of type
II error is calculated for the case � � 994. Notice how the probability of type II error
decreases as � increases. That the probability of type II error decreases is good news.
But as � increases, the probability of type I error increases. That is bad news. This
brings out the important compromise between type I and type II errors. If we set a
low value for �, we enjoy a low probability of type I error but suffer a high probability
of type II error; if we set a high value for �, we will suffer a high probability of type I
error but enjoy a low probability of type II error. Finding an optimal � is a difficult
task. We will address the difficulties in the next subsection.

Our final note about � is the meaning of (1 � �). If we set � � 5%, then (1 � �) �
95% is the minimum confidence level that we set in order to reject H0. In other
words, we want to be at least 95% confident that H0 is false before we reject it. This
concept of confidence level is the same that we saw in the previous chapter. It should
explain why we use the symbol � for the significance level.

Optimal � and the Compromise between Type I and Type II Errors
Setting the value of � affects both type I and type II error probabilities as seen in
Figure 7–1. But this figure is only one snapshot of a much bigger picture. In the figure,
the type II error probability corresponds to the case where the actual � � 994. But the
actual � can be any one of an infinite number of possible values. For each one of those
values, the graph will be different. In addition, the graph is only for a sample size of 30.
When the sample size changes, so will the curve. This is the first difficulty in trying to
find an optimal �.
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Moreover, we note that selecting a value for � is a question of compromise
between type I and type II error probabilities. To arrive at a fair compromise we
should know the cost of each type of error. Most of the time the costs are difficult to
estimate since they depend, among other things, on the unknown actual value of the
parameter being tested. Thus, arriving at a “calculated” optimal value for � is imprac-
tical. Instead, we follow an intuitive approach of assigning one of the three standard
values, 1%, 5%, and 10%, to �.

In the intuitive approach, we try to estimate the relative costs of the two types
of errors. For example, suppose we are testing the average tensile strength of a
large batch of bolts produced by a machine to see if it is above the minimum speci-
fied. Here type I error will result in rejecting a good batch of bolts and the cost
of the error is roughly equal to the cost of the batch of bolts. Type II error will
result in accepting a bad batch of bolts and its cost can be high or low depend-
ing on how the bolts are used. If the bolts are used to hold together a structure,
then the cost is high because defective bolts can result in the collapse of the struc-
ture, causing great damage. In this case, we should strive to reduce the probability
of type II error more than that of type I error. In such cases where type II error is
more costly, we keep a large value for �, namely, 10%. On the other hand, if the bolts
are used to secure the lids on trash cans, then the cost of type II error is not high
and we should strive to reduce the probability of type I error more than that of
type II error. In such cases where type I error is more costly, we keep a small value for �,
namely, 1%.

Then there are cases where we are not able to determine which type of error is
more costly. If the costs are roughly equal, or if we have not much knowledge about the relative
costs of the two types of errors, then we keep � � 5%.

� and Power
The symbol used for the probability of type II error is �. Note that � depends on the
actual value of the parameter being tested, the sample size, and �. Let us see exactly
how it depends. In the example plotted in Figure 7–1, if the actual � is 993 rather than
994, H0 would be “even more wrong.” This should make it easier to detect that it is
wrong. Therefore, the probability of type II error, or �, will decrease. If the sample
size increases, then the evidence becomes more reliable and the probability of any
error, including �, will decrease. As Figure 7–1 depicts, as � increases, � decreases.
Thus, � is affected by several factors.

The complement of � (1 � �) is known as the power of the test.

The power of a test is the probability that a false null hypothesis will be
detected by the test.

You can see how � and � as well as (1 � �) and (1 � �) are counterparts of each other
and how they apply respectively to type I and type II errors. In a later section, we
will see more about � and power.

Sample Size
Figure 7–1 depicts how � and � are related. In the discussion above we said that we
can keep a low � or a low � depending on which type of error is more costly. What if
both types of error are costly and we want to have low � as well as low �? The only
way to do this is to make our evidence more reliable, which can be done only by
increasing the sample size. Figure 7–2 shows the relationship between � and � for
various values of the sample size n. As n increases, the curve shifts downward, reducing
both � and �. Thus, when the costs of both types of error are high, the best policy is
to have a large sample and a low �, such as 1%.

264 Chapter 7



Aczel−Sounderpandian: 
Complete Business 
Statistics, Seventh Edition

7. Hypothesis Testing Text 267© The McGraw−Hill 
Companies, 2009

FIGURE 7–2 � versus � for Various Values of n
[Taken from Testing Population Mean.xls; Sheet: Beta vs. Alpha]
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7–6. What is the power of a hypothesis test? Why is it important?
7–7. How is the power of a hypothesis test related to the significance level �?
7–8. How can the power of a hypothesis test be increased without increasing the
sample size?
7–9. Consider the use of metal detectors in airports to test people for concealed
weapons. In essence, this is a form of hypothesis testing.

a. What are the null and alternative hypotheses?
b. What are type I and type II errors in this case?
c. Which type of error is more costly?
d. Based on your answer to part (c ), what value of � would you recommend for

this test?
e. If the sensitivity of the metal detector is increased, how would the probabili-

ties of type I and type II errors be affected?
f. If � is to be increased, should the sensitivity of the metal detector be

increased or decreased?
7–10. When planning a hypothesis test, what should be done if the probabilities of
both type I and type II errors are to be small?

7–3 Computing the p-Value
We will now examine the details of calculating the p-value. Recall that given a null
hypothesis and sample evidence, the p-value is the probability of getting evidence
that is equally or more unfavorable to H0. Using what we have already learned in the
previous two chapters, this probability can be calculated for hypotheses regarding
population mean, proportion, and variance.

P R O B L E M S

In this section, we have seen a number of important concepts about hypothesis
testing. The mechanical details of computations, templates, and formulas remain.
You must have a clear understanding of all the concepts discussed before proceeding.
If necessary, reread this entire section.
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H0: � � 1,000
H1: � � 1,000

Z =
X - 1,000

�>1n

H0: � � 1,000

H1: � � 1,000

Z =
X - 1,000

�>1n
=

999 - 1,000
5>1100

= -2.00

Suppose the population standard deviation � is known and a random sample of size
n � 30 is taken and the sample mean is calculated. From sampling theory we know
that when � � 1,000, will be normally distributed with mean 1,000 and standard
deviation . This implies that ( � 1,000)�( ) will follow a standard normal
distribution, or Z distribution. Since we know the Z distribution well, we can calculate
any probability and, in particular, the p-value. In other words, by calculating first

�>1nX�>1n
X

X

we can then calculate the p-value and decide whether or not to reject H0. Since
the test result boils down to checking just one value, the value of Z, we call Z the test
statistic in this case.

A test statistic is a random variable calculated from the sample evidence,
which follows a well-known distribution and thus can be used to calculate
the p-value.

Most of the time, the test statistic we see in this book will be Z, t, �2, or F. The distri-
butions of these random variables are well known and spreadsheet templates can be
used to calculate the p-value.

p-Value Calculations
Once again consider the case

Suppose the population standard deviation � is known and a random sample of size
n � 30 is taken. This means Z � ( � 1,000)�(�� ) is the test statistic. If the sample
mean is 1,000 or more, we have nothing against H0 and we will not reject it. But if 
is less than 1,000, say 999, then the evidence disfavors H0 and we have reason to suspect
that H0 is false. If decreases below 999, it becomes even more unfavorable to H0.
Thus the p-value when � 999 is the probability that 	 999. This probability is the
shaded area shown in Figure 7–3. But the usual practice is to calculate the probability
using the distribution of the test statistic Z. So let us switch to the Z statistic.

Suppose the population standard deviation � is 5 and the sample size n is 100.
Then

XX
X

XX
1nX

The Test Statistic
Consider the case
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H0: � � 1,000

H1: � � 1,000

FIGURE 7–3 The p-Value Shaded in the Distribution of X
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FIGURE 7–4 The p-Value Shaded in the Distribution of the Test Statistic Z where H0: � � 1,000

Z

X decreases

Z decreases

0�1�2�3 1 2 3

In this case, only when is significantly less than 1,000 will we reject H0, or only when
Z falls significantly below zero will we reject H0. Thus the rejection occurs only
when Z takes a significantly low value in the left tail of its distribution. Such a case
where rejection occurs in the left tail of the distribution of the test statistic is called a
left-tailed test, as seen in Figure 7–5. At the bottom of the figure the direction in
which Z, , and the p-value decrease is shown.X

X

Thus the p-value � P (Z ��2.00). See Figure 7–4, in which the probability is shaded.
The figure also shows the direction in which and Z decrease. The probability
P (Z � �2.00) can be calculated from the tables or using a spreadsheet template. We
will see full details of the templates later. For now, let us use the tables. From the stan-
dard normal distribution table, the p-value is 0.5 � 0.4772 � 0.0228, or 2.28%. This
means H0 will be rejected when � is 5% or 10% but will not be rejected when � is 1%.

One-Tailed and Two-Tailed Tests
Let us repeat the null and alternative hypotheses for easy reference:

X
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FIGURE 7–5 A Left-Tailed Test: The Rejection Region for H0: � � 1,000; � � 5%
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FIGURE 7–6 A Right-Tailed Test: The Rejection Region for H0: � � 1,000; � � 5%
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In the case of a left-tailed test, the p-value is the area to the left of the calculated value of the
test statistic. The case we saw above is a good example. Suppose the calculated value
of Z is �2.00. Then the area to the left of it, using tables, is 0.5 � 0.4772 � 0.0228, or
the p-value is 2.28%.

Now consider the case where H0: � 	 1,000. Here rejection occurs when is sig-
nificantly greater than 1,000 or Z is significantly greater than zero. In other words,
rejection occurs on the right tail of the Z distribution. This case is therefore called a
right-tailed test, as seen in Figure 7–6. At the bottom of the figure the direction in
which the p-value decreases is shown.

In the case of a right-tailed test, the p-value is the area to the right of the calculated value
of the test statistic. Suppose the calculated z � �1.75. Then the area to the right of it,
using tables, is 0.5 � 0.4599 � 0.0401, or the p-value is 4.01%.

In left-tailed and right-tailed tests, rejection occurs only on one tail. Hence each
of them is called a one-tailed test.

Finally, consider the case H0: � � 1,000. In this case, we have to reject H0 in both
cases, that is, whether is significantly less than or greater than 1,000. Thus, rejection
occurs when Z is significantly less than or greater than zero, which is to say that

X

X
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FIGURE 7–7 A Two-Tailed Test: Rejection Region for H0: � � 1,000, � � 5%
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In a hypothesis test, the test statistic Z � �1.86.

1. Find the p-value if the test is (a) left-tailed, (b) right-tailed, and (c ) two-tailed.
2. In which of these three cases will H0 be rejected at an � of 5%?

E X A M P L E  7 – 4

1. (a) The area to the left of �1.86, from the tables, is 0.5 � 0.4686 � 0.0314,
or the p-value is 3.14%. (b ) The area to the right of �1.86, from the tables, is
0.5 � 0.4686 � 0.9686, or the p-value is 96.86%. (Such a large p-value means
that the evidence greatly favors H0, and there is no basis for rejecting H0.)
(c) The value �1.86 falls on the left tail. The area to the left of �1.86 is 3.14%.
Multiplying that by 2, we get 6.28%, which is the p-value.

2. Only in the case of a left-tailed test does the p-value fall below the � of 5%.
Hence that is the only case where H0 will be rejected.

S o l u t i o n

H0: � � 1,000

H1: � � 1,000

Let � = 5, � = 5%, and n = 100. We wish to compute � when � = �1 = 998.

Computing �

In this section we shall see how to compute �, the probability of type II error. We
consider the null and alternative hypotheses:

rejection occurs on both tails. Therefore, this case is called a two-tailed test. See
Figure 7–7, where the shaded areas are the rejection regions. As shown at the bottom
of the figure, the p-value decreases as the calculated value of test statistic moves away
from the center in either direction.

In the case of a two-tailed test, the p-value is twice the tail area. If the calculated value of
the test statistic falls on the left tail, then we take the area to the left of the calculated value and
multiply it by 2. If the calculated value of the test statistic falls on the right tail, then we take
the area to the right of the calculated value and multiply it by 2. For example, if the calcu-
lated z � �1.75, the area to the right of it is 0.0401. Multiplying that by 2, we get the
p-value as 0.0802.
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FIGURE 7–8 Computing � for a Left-Tailed Test

µ0 = 1000µ1 = 998

0

Z

X

− zα = −1.645

.99918=critX

βα

Distribution of X
when µ = µ1

Distribution of X
when µ = µ0

Xcrit = �0 - z � �>1n = 1,000 - 1.645 * 5>2100 = 999.18

� = P cZ 7
X crit - �1

�>1n
d = P 1Z 7 1.18>0.52 = P 1Z 7 2.362 = 0.0091

H0: � � 1,000

H1: � 
 1,000

H0: � � 1,000

H1: � 
 1,000

Conversely, H0 will not be rejected whenever is greater than . When � = �1 =
998, � will be the probability of not rejecting H0, which therefore equals P ( > ).
Also, when � � �1, will follow a normal distribution with mean �1 and standard devi-
ation � . Thus�>1n

X
X critX

X critXFVS
CHAPTER 11

The power is the complement of �. For this example, power = 1 � 0.0091 = 0.9909.
The power and � can also be calculated using the template shown in Figure 7–22.

Note that � is 0.0091 only when � = 998. If � is greater than 998, say, 999, what
will happen to �? Referring to Figure 7–8, you can see that the distribution of 
when � = 999 will be to the right of the one shown for 998. will remain where it
is. As a result, � will increase.

Figure 7–9 shows a similar figure for a right-tailed test with 

X crit

X

and with � = 5, � = 5%, n = 100. The figure shows � when � = 1,002.
Figure 7–10 shows � for a two-tailed test with

We will use Figure 7–8, which shows the distribution of when � � �0 � 1,000
and when � � �1 � 998. First we note that H0 will be rejected whenever is less
than the critical value given by

X
X
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FIGURE 7–10 � for a Two-Tailed Test
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FIGURE 7–9 � for a Right-Tailed Test
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7–11. For each one of the following null hypotheses, determine if it is a left-tailed,
a right-tailed, or a two-tailed test.

a. � � 10.
b. p 	 0.5.
c. � is at least 100.
d. � 	 �20.
e. p is exactly 0.22.
f. � is at most 50.
g. �2 � 140.

7–12. The calculated z for a hypothesis test is �1.75. What is the p-value if the test
is (a) left-tailed, (b) right-tailed, and (c) two-tailed?

P R O B L E M S

A tiny area of interest is seen in Figure 7–10 on the left tail of the distribution of
when � = �1. It is the area where H0 is rejected because is significantly smaller

than 1,000. The true �, though, is more than 1,000, namely, 1,000.2. That is to say,
H0 is false because � is more than 1,000 and thus it deserves to be rejected. It is
indeed rejected but the reason for rejection is that the evidence suggests � is smaller
than 1,000. The tiny area thus marks the chances of rejecting a false H0 through faulty
evidence.

XX
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FVS
CHAPTER 9

Z =
X - �

�>1n

t =
X - �

S>1n

The value of � in this equation is the claimed value that gives the maximum benefit
of doubt to the null hypothesis. For example, if H0: � � 1,000, we use the value of
1,000 in the equation. Once the Z value is known, the p-value is calculated using
tables or the template described below.

Cases in Which the Test Statistic Is t
The population is normal and � is unknown but the sample standard
deviation S is known.

In this case, as we saw in the previous chapter, the quantity ( � �)�(S� ) will follow
a t distribution with (n � 1) degrees of freedom. Thus

1nX

7–13. In which direction of will the p-value decrease for the null hypotheses
(a) � � 10, (b) � 	 10, and (c) � � 10?
7–14. What is a test statistic? Why do we have to know the distribution of the test
statistic?
7–15. The null hypothesis is � 	 12. The test statistic is Z. Assuming that other
things remain the same, will the p-value increase or decrease when (a) increases,
(b ) � increases, and (c) n increases?

7–4 The Hypothesis Test
We now consider the three common types of hypothesis tests:

1. Tests of hypotheses about population means.
2. Tests of hypotheses about population proportions.
3. Tests of hypotheses about population variances.

Let us see the details of each type of test and the templates that can be used.

Testing Population Means
When the null hypothesis is about a population mean, the test statistic can be either
Z or t. There are two cases in which it will be Z.

Cases in Which the Test Statistic Is Z
1. � is known and the population is normal.
2. � is known and the sample size is at least 30. (The population need

not be normal.)

The normality of the population may be established by direct tests or the normal-
ity may be assumed based on the nature of the population. Recall that if a random
variable is affected by many independent causes, then it can be assumed to be nor-
mally distributed.

The formula for calculating Z is

X

X
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1. H0: � � 2,000
H1: � � 2,000

FVS
CHAPTER 5

An automatic bottling machine fills cola into 2-liter (2,000-cm3) bottles. A consumer
advocate wants to test the null hypothesis that the average amount filled by the
machine into a bottle is at least 2,000 cm3. A random sample of 40 bottles coming out
of the machine was selected and the exact contents of the selected bottles are recorded.
The sample mean was 1,999.6 cm3. The population standard deviation is known from
past experience to be 1.30 cm3.

1. Test the null hypothesis at an � of 5%.
2. Assume that the population is normally distributed with the same � of 1.30 cm3.

Assume that the sample size is only 20 but the sample mean is the same
1,999.6 cm3. Conduct the test once again at an � of 5%.

3. If there is a difference in the two test results, explain the reason for the difference.

E X A M P L E  7 – 5

S o l u t i o n

becomes the test statistic. The value of � used in this equation is the claimed value
that gives the maximum benefit of doubt to the null hypothesis. For example, if
H0: � � 1,000, then we use the value of 1,000 for � in the equation for calculating t.

A Note on t Tables and p-Values
Since the t table provides only the critical values, it cannot be used to find exact 
p-values. We have to use the templates described below or use other means of calcula-
tion. If we do not have access to the templates or other means, then the critical values
found in the tables can be used to infer the range within which the p-value will fall. For
example, if the calculated value of t is 2.000 and the degrees of freedom are 24, we see
from the tables that t0.05 is 1.711 and t0.025 is 2.064. Thus, the one-tailed p-value corre-
sponding to t � 2.000 must be somewhere between 0.025 and 0.05, but we don’t
know its exact value. Since the exact p-value for a hypothesis test is generally desired,
it is advisable to use the templates.

A careful examination of the cases covered above, in which Z or t is the test sta-
tistic, reveals that a few cases do not fall under either category.

Cases Not Covered by the Z or t Test Statistic
1. The population is not normal and � is unknown. (Many statisticians

will be willing to accept a t test here, as long as the sample size is
“large enough.” The size is large enough if it is at least 30 in the
case of populations believed to be not very skewed. If the population
is known to be very skewed, then the size will have to be corre-
spondingly larger.)

2. The population is not normal and the sample size is less than 30.
3. The population is normal and � is unknown. Whoever did the

sampling provided only the sample mean but not the sample
standard deviation S. The sample data are also not provided and
thus S cannot be calculated. (Obviously, this case is rare.)

Using templates to solve hypothesis testing problems is always a better alterna-
tive. But to understand the computation process, we shall do one example manually
with Z as the test statistic.

X
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Since � is known and the sample size is more than 30, the test statistic is Z. Then

z =
x - �

�>1n
=

1,999.6 - 2,000
1.30>140

= - 1.95

z =
x - �

�>1n
=

1,999.6 - 2,000
1.30>120

= - 1.38

Using the table for areas of Z distribution, the p-value � 0.5000 � 0.4744 �
0.0256, or 2.56%. Since this is less than the � of 5%, we reject the null
hypothesis.

2. Since the population is normally distributed, the test statistic is once again Z :

Using the table for areas of Z distribution, the p-value � 0.5000 � 0.4162 �
0.0838, or 8.38%. Since this is greater than the � of 5%, we do not reject the
null hypothesis.

3. In the first case we could reject the null hypothesis but in the second we could
not, although in both cases the sample mean was the same. The reason is that in
the first case the sample size was larger and therefore the evidence against the null
hypothesis was more reliable. This produced a smaller p-value in the first case.

The Templates
Figure 7–11 shows the template that can be used to test hypotheses about population
means when sample statistics are known (rather than the raw sample data). The top
portion of the template is used when � is known and the bottom portion when � is
unknown. On the top part, entries have been made to solve Example 7–5, part 1. The
p-value of 0.0258 in cell G13 is read off as the answer to the problem. This answer is
more accurate than the value of 0.0256 manually calculated using tables.

Correction for finite population is possible in the panel on the right. It is applied
when n�N 
 1%. If no correction is needed, it is better to leave the cell K8, meant for
the population size N, blank to avoid causing distraction.

Note that the hypothesized value entered in cell F12 is copied into cells F13 and F14.
Only cell F12 is unlocked and therefore that is the only place where the hypothesized
value of � can be entered regardless of which null hypothesis we are interested in.

Once a value for � is entered in cell H11, the “Reject” message appears wherever
the p-value is less than the �. All the templates on hypothesis testing work in this
manner. In the case shown in Figure 7–11, the appearance of “Reject” in cell H13
means that the null hypothesis � � 2,000 is to be rejected at an � of 5%.

Figure 7–12 shows the template that can be used to test hypotheses about popula-
tion means, when the sample data are known. Sample data are entered in column B.
Correction for finite population is possible in the panel on the right.

A bottling machine is to be tested for accuracy of the amount it fills in 2-liter bottles.
The null hypothesis is � � 2,000 cm3. A random sample of 37 bottles is taken and the
contents are measured. The data are shown below. Conduct the test at an � of 5%.

1. Assume � � 1.8 cm3. What is the test statistic and what is its value? What is the
p-value?

E X A M P L E  7 – 6
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FIGURE 7–11 Testing Hypotheses about Population Means Using Sample Statistics
[Testing Population Mean.xls; Sheet: Sample Stats]

1
2
3
4
5
6
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8
9
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11
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13

14
15
16
17
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19
20
21

22

23
24
25

26

27

28

C D E F G H I J K L M N O

<- Use this part if � is known.

Hypothesis Testing - Population Mean

Evidence
Sample size 40 n

Sample Mean 1999.6 x-bar

Known; Normal Population or Sample Size >= 30 Correction for Finite Population

Population Stdev. 1.3
Test Statistic -1.9460 z

At an � of At an � of
p-value 5% p-value 5%

H0: � � 2000 0.0517

H0: � � 2000 0.0258
H0: � � 2000 0.9742

Reject

Null Hypothesis

�

�

A B

Population size
Test Statistic z

N

<- Use this part if � is unknown.Evidence
Sample size 55 n

s
Sample Mean
Sample Stdev.

1998.2 x-bar

Unknown; Population Normal
Test Statistic -2.0537 t

At an � of
p-value 5%

H0: � � 2000 0.0449

H0: � � 2000 0.0224
H0: � � 2000 0.9776

Reject

Reject

Null Hypothesis

�

6.5

FIGURE 7–12 Testing Hypotheses about Population Means Using Sample Data
[Testing Population Mean.xls; Sheet: Sample Data]

1
2
3
4
5
6

7

8
9
10
11

12

13

14
15
16
17
18
19
20
21

22

23
24
25

26

27

28

C D E F G H I J K L M N P QO

<- Use this part if � is known.

Hypothesis Testing - Population Mean

Evidence
Sample size 37 n

Sample Mean 1999.54 x-bar

Known; Normal Population or Sample Size >= 30 Correction for Finite Population

Population Stdev. 1.8
Test Statistic -1.5472 z

At an � of At an � of
p-value 5% p-value 5%

H0: � � 2000 0.1218

H0: � � 2000 0.0609
H0: � � 2000 0.9391

Null Hypothesis

�

�

A B

Population size
Test Statistic z

N

<- Use this part if � is unknown.Evidence
Sample size 37 n

s
Sample Mean
Sample Stdev.

1999.54 x-bar

Unknown; Population Normal
Test Statistic -2.0345 t

At an � of
p-value 5%

H0: � � 2000 0.0493

H0: � � 2000 0.0247
H0: � � 2000 0.9753

Reject

Reject

Null Hypothesis

�

1.36884

Sample
Data

1998.411
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

2000.34
2001.68
2000.98
2000.89
2001.07
1997.01
2000.34
1997.86
1998.43
1998.12
1997.85
2000.25
1997.65
2001.17
1997.44
1998.7
1998.67
1997.58
2000.28
1998.89
2000.13
2000.1
2000.39

Example 7-6
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S o l u t i o n

2. Assume � is not known and the population is normal. What is the test statistic
and what is its value? What is the p-value?

3. Looking at the answers to parts 1 and 2, comment on any difference in the two
results.

Sample Data

1998.41 1998.12 1998.89 2001.68

2000.34 1997.85 2000.13 2000.76

2001.68 2000.25 2000.1 1998.53

2000.98 1997.65 2000.39 1998.24

2000.89 2001.17 2001.27 1998.18

2001.07 1997.44 1998.98 2000.67

1997.01 1998.7 2000.21 2001.11

2000.34 1998.67 2000.36

1997.86 1997.58 2000.17

1998.43 2000.28 1998.67

Open the template shown in Figure 7–12. Enter the data in column B. To answer
part 1, use the top panel. Enter 1.8 for � in cell H8, 2000 in cell H12, and 5% in
cell J11. Since cell J12 is blank, the null hypothesis cannot be rejected. The test sta-
tistic is Z, and its value of �1.5472 appears in cell H9. The p-value is 0.1218, as seen
in cell I12.

To answer part 2, use the bottom panel. Enter 2000 in cell H26 and 5% in cell J25.
Since cell J26 says “Reject,” we reject the null hypothesis. The test statistic is t , and its
value of �2.0345 appears in cell H23. The p-value is 0.0493, as seen in cell I26.

The null hypothesis is not rejected in part 1, but is rejected in part 2. The main
difference is that the sample standard deviation of 1.36884 (in cell G20) is less than
the 1.8 used in part 1. This makes the value of the test statistic t � �2.0345 in part 2,
significantly different from Z � �1.5472 in part 1. As a result, the p-value falls below
5% in part 2 and the null hypothesis is rejected.

Testing Population Proportions
Hypotheses about population proportions can be tested using the binomial distribu-
tion or normal approximation to calculate the p-value. The cases in which each
approach is to be used are detailed below.

Cases in Which the Binomial Distribution Can Be Used
The binomial distribution can be used whenever we are able to calculate
the necessary binomial probabilities. This means for calculations using
tables, the sample size n and the population proportion p should have
been tabulated. For calculations using spreadsheet templates, sample sizes
up to 500 are feasible.

Cases in Which the Normal Approximation Is to Be Used
If the sample size n is too large (
 500) to calculate binomial probabilities,
then the normal approximation method is to be used.

The advantage of using the binomial distribution, and therefore of this template, is
that it is more accurate than the normal approximation. When the binomial distribution is
used, the number of successes X serves as the test statistic. The p-value is the appropriate tail
area, determined by X , of the binomial distribution defined by n and the hypothesized
value of population proportion p. Note that X follows a discrete distribution, and recall
that the p-value is the probability of the test statistic being equally or more unfavorable to H0
than the value obtained from the evidence. As an example, consider a right-tailed test
with H0: p 	 0.5. For this case, the p-value � P (X � observed number of successes).
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A coin is to be tested for fairness. It is tossed 25 times and only 8 heads are observed.
Test if the coin is fair at � � 5%.

E X A M P L E  7 – 7

Let p denote the probability of getting a head, which must be 0.5 for a fair coin.
Hence the null and alternative hypotheses are

S o l u t i o n

H0: p � 0.5
H1: p 
 0.5

Because this is a two-tailed test, the p-value � 2*P (X 	 8). From the binomial distri-
bution table (Appendix C, Table 1), this value is 2*0.054 � 0.108. Since this value is
more than the � of 5%, we cannot reject the null hypothesis. (For the use of the tem-
plate to solve this problem, see Figure 7–13.)

Figure 7–13 shows the template that can be used to test hypotheses regarding
population proportions using the binomial distribution. This template will work only for
sample sizes up to approximately 500. Beyond that, the template that uses normal
approximation (shown in Figure 7–14) should be used. The data entered in Figure 7–13
correspond to Example 7–7.

FIGURE 7–13 Testing Population Proportion Using the Binomial Distribution
[Testing Population Proportion.xls; Sheet: Binomial]

1

2

3

4

5

6

7

8

9

10

11

12
13

A B C D E F G H

Testing Population Proportion

Evidence Assumption
Sample size 25 n Large Population
#Successes 8 x

Sample Proportion 0.3200 p-hat

At an � of

p-value 5%

H0: p = 0.5 0.1078

H0: p >= 0.5 0.0539

H0: p <= 0.5 0.9461

Null Hypothesis

FIGURE 7–14 A Normal Distribution Template for Testing Population Proportion
[Testing Population Proportion.xls; Sheet: Normal]

1

2
3
4
5
6
7

8
9
10
11
12
13

14

15

C D E F G H I J K L

z-Test for Population Proportion

Evidence

Sample size 210 n
#Successes

Sample Proportion
Test statistic

132
0.6286
-2.2588

x
p-hat
z

Correction for Finite Population

At an � of At an � of
p-value 5% p-value 5%

H0: p = 0.7 0.0239

H0: p >= 0.7 0.0119
H0: p <= 0.7 0.9881

Reject

Reject 0.0170

0.0085

0.9915

Reject

Reject

Null Hypothesis

A B

Population Size
Test statistic z

N2000
-2.3870

Assumption
Both np and n(1-p) >= 5

Hypothesis Testing 277



Aczel−Sounderpandian: 
Complete Business 
Statistics, Seventh Edition

7. Hypothesis Testing Text280 © The McGraw−Hill 
Companies, 2009

Z =
p$ - p01p011 - p02>n

H0: �2 	1
H1: �2 
1

where p0 is the hypothesized value for the proportion, is the sample proportion, and
n is the sample size. A correction for finite population can also be applied in this case.
The correction is based on the hypergeometric distribution, and is applied if the sam-
ple size is more than 1% of the population size. If a correction is not needed, it is bet-
ter to leave the cell J8, meant for population size N, blank to avoid any distraction.

Testing Population Variances
For testing hypotheses about population variances, the test statistic is �2 �
(n � 1)S 2��0

2. Here �0 is the claimed value of population variance in the null hy-
pothesis. The degrees of freedom for this �2 is (n � 1). Since the �2 table provides only
the critical values, it cannot be used to calculate exact p-values. As in the case of t
tables, only a range of possible values can be inferred. Use of a spreadsheet template is
therefore better for this test. Figure 7–15 shows the template that can be used for testing
hypotheses regarding population variances when sample statistics are known.

p$

FVS
CHAPTER 5

CHAPTER 9

FIGURE 7–15 The Template for Testing Population Variances
[Testing Population Variance.xls; Sheet: Sample Stats]
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12
13

14

15

A B C D E F G H

Testing Population Variance

Evidence Assumption
Sample size 31 n Population Normal

Sample Variance 1.62 s2

Test Statistic 48.6 �2

At an � of

p-value 5%

H0: �2 = 1 0.0345

H0: �2 >= 1 0.9827
H0: �2 <= 1 0.0173

Null Hypothesis

Reject

Reject

A manufacturer of golf balls claims that the company controls the weights of the golf
balls accurately so that the variance of the weights is not more than 1 mg2. A random
sample of 31 golf balls yields a sample variance of 1.62 mg2. Is that sufficient evidence
to reject the claim at an � of 5%?

E X A M P L E  7 – 8

The null and alternative hypotheses areS o l u t i o n

Figure 7–14 shows the template that can be used to test hypotheses regarding
population means using normal distribution. The test statistic is Z defined by
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FIGURE 7–16 The Template for Testing Population Variances with Raw Sample Data
[Testing Population Variance.xls; Sheet: Sample Data]
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14
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16

17

A B C D E F G H I J

Testing Population Variance

Evidence Assumption
Sample size 15 n Population Normal

Sample Variance 1702.6 s2

Test Statistic 23.837 �2

At an � of

p-value 5%

H0: �2 = 1000 0.0959

H0: �2 >= 1000 0.9521
H0: �2 <= 1000 0.0479

Null Hypothesis

Reject

Data
1541

2

3

4

5

6

7

8

9

10

11

12

13

14

135

187

198

133

126

200

149

187

214

156

257

206

198

7–16. An automobile manufacturer substitutes a different engine in cars that were
known to have an average miles-per-gallon rating of 31.5 on the highway. The man-
ufacturer wants to test whether the new engine changes the miles-per-gallon rating of
the automobile model. A random sample of 100 trial runs gives � 29.8 miles per
gallon and s � 6.6 miles per gallon. Using the 0.05 level of significance, is the average
miles-per-gallon rating on the highway for cars using the new engine different from
the rating for cars using the old engine?
7–17. In controlling the quality of a new drug, a dose of medicine is supposed
to contain an average of 247 parts per million (ppm) of a certain chemical. If the
concentration is higher than 247 ppm, the drug may cause some side effects; and if
the concentration is below 247 ppm, the drug may be ineffective. The manufacturer
wants to check whether the average concentration in a large shipment is the required
247 ppm or not. A random sample of 60 portions is tested, and the sample mean is
found to be 250 ppm and the sample standard deviation 12 ppm. Test the null
hypothesis that the average concentration in the entire large shipment is 247 ppm
versus the alternative hypothesis that it is not 247 ppm using a level of significance
� � 0.05. Do the same using � � 0.01. What is your conclusion? What is your deci-
sion about the shipment? If the shipment were guaranteed to contain an average con-
centration of 247 ppm, what would your decision be, based on the statistical
hypothesis test? Explain.

x

P R O B L E M S

In the template (see Figure 7–15), enter 31 for sample size and 1.62 for sample vari-
ance. Enter the hypothesized value of 1 in cell D11. The p-value of 0.0173 appears in
cell E13. Since this value is less than the � of 5%, we reject the null hypothesis. This
conclusion is also confirmed by the “Reject” message appearing in cell F13 with 5%
entered in cell F10.

Figure 7–16 shows the template that can be used to test hypotheses regarding
population variances when the sample data are known. The sample data are entered
in column B.
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5Marlys Harris, “Real Estate vs. Stocks,” Money, May 2007, p. 94.

7–18. The Boston Transit Authority wants to determine whether there is any need for
changes in the frequency of service over certain bus routes. The transit authority needs
to know whether the frequency of service should increase, decrease, or remain the same.
The transit authority determined that if the average number of miles traveled by bus
over the routes in question by all residents of a given area is about 5 per day, then no
change will be necessary. If the average number of miles traveled per person per day
is either more than 5 or less than 5, then changes in service may be necessary. The
authority wants, therefore, to test the null hypothesis that the average number of miles
traveled per person per day is 5.0 versus the alternative hypothesis that the average is
not 5.0 miles. The required level of significance for this test is � � 0.05. A random
sample of 120 residents of the area is taken, and the sample mean is found to be
2.3 miles per resident per day and the sample standard deviation 1.5 miles. Advise
the authority on what should be done. Explain your recommendation. Could you
state the same result at different levels of significance? Explain.
7–19. Many recent changes have affected the real estate market.4 A study was under-
taken to determine customer satisfaction from real estate deals. Suppose that before
the changes, the average customer satisfaction rating, on a scale of 0 to 100, was 77.
A survey questionnaire was sent to a random sample of 50 residents who bought new
plots after the changes in the market were instituted, and the average satisfaction rat-
ing for this sample was found to be � 84; the sample standard deviation was found
to be s � 28. Use an � of your choice, and determine whether statistical evidence indi-
cates a change in customer satisfaction. If you determine that a change did occur, state
whether you believe customer satisfaction has improved or deteriorated.
7–20. According to Money, the average appreciation, in percent, for stocks has been
4.3% for the five-year period ending in May 2007.5 An analyst tests this claim by look-
ing at a random sample of 50 stocks and finds a sample mean of 3.8% and a sample
standard deviation of 1.1%. Using � � 0.05, does the analyst have statistical evidence
to reject the claim made by the magazine?
7–21. A certain commodity is known to have a price that is stable through time and
does not change according to any known trend. Price, however, does change from
day to day in a random fashion. If the price is at a certain level one day, it is as likely
to be at any level the next day within some probability bounds approximately given
by a normal distribution. The mean daily price is believed to be $14.25. To test the
hypothesis that the average price is $14.25 versus the alternative hypothesis that it is
not $14.25, a random sample of 16 daily prices is collected. The results are � $16.50
and s � $5.8. Using � � 0.05, can you reject the null hypothesis?
7–22. Average total daily sales at a small food store are known to be $452.80. The
store’s management recently implemented some changes in displays of goods, order
within aisles, and other changes, and it now wants to know whether average sales vol-
ume has changed. A random sample of 12 days shows � $501.90 and s � $65.00.
Using � � 0.05, is the sampling result significant? Explain.
7–23. New software companies that create programs for World Wide Web applica-
tions believe that average staff age at these companies is 27. To test this two-tailed
hypothesis, a random sample is collected:

41, 18, 25, 36, 26, 35, 24, 30, 28, 19, 22, 22, 26, 23, 24, 31, 22, 22, 23, 26, 27, 26, 29, 28, 23,
19, 18, 18, 24, 24, 24, 25, 24, 23, 20, 21, 21, 21, 21, 32, 23, 21, 20

Test, using � � 0.05.
7–24. A study was undertaken to evaluate how stocks are affected by being listed in the
Standard & Poor’s 500 Index. The aim of the study was to assess average excess returns

x

x

x
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for these stocks, above returns on the market as a whole. The average excess return on
any stock is zero because the “average” stock moves with the market as a whole. As part
of the study, a random sample of 13 stocks newly included in the S&P 500 Index was
selected. Before the sampling takes place, we allow that average “excess return” for
stocks newly listed in the Standard & Poor’s 500 Index may be either positive or negative;
therefore, we want to test the null hypothesis that average excess return is equal to zero
versus the alternative that it is not zero. If the excess return on the sample of 13 stocks
averaged 3.1% and had a standard deviation of 1%, do you believe that inclusion in the
Standard & Poor’s 500 Index changes a stock’s excess return on investment, and if so,
in which direction? Explain. Use � � 0.05.
7–25. A new chemical process is introduced by Duracell in the production of
lithium-ion batteries. For batteries produced by the old process, the average life of a
battery is 102.5 hours. To determine whether the new process affects the average life
of the batteries, the manufacturer collects a random sample of 25 batteries produced
by the new process and uses them until they run out. The sample mean life is found
to be 107 hours, and the sample standard deviation is found to be 10 hours. Are these
results significant at the � � 0.05 level? Are they significant at the � � 0.01 level?
Explain. Draw your conclusion.
7–26. Average soap consumption in a certain country is believed to be 2.5 bars per
person per month. The standard deviation of the population is known to be � � 0.8. While
the standard deviation is not believed to have changed (and this may be substantiated
by several studies), the mean consumption may have changed either upward or
downward. A survey is therefore undertaken to test the null hypothesis that average
soap consumption is still 2.5 bars per person per month versus the alternative that it
is not. A sample of size n � 20 is collected and gives � 2.3. The population is
assumed to be normally distributed. What is the appropriate test statistic in this case?
Conduct the test and state your conclusion. Use � � 0.05. Does the choice of level of
significance change your conclusion? Explain.
7–27. According to Money, which not only looked at stocks (as in problem 7–20) but
also compared them with real estate, the average appreciation for all real estate sold
in the five years ending May 2007 was 12.4% per year. To test this claim, an analyst
looks at a random sample of 100 real estate deals in the period in question and finds
a sample mean of 14.1% and a sample standard deviation of 2.6%. Conduct a two-
tailed test using the 0.05 level of significance.
7–28. Suppose that the Goodyear Tire Company has historically held 42% of the
market for automobile tires in the United States. Recent changes in company opera-
tions, especially its diversification to other areas of business, as well as changes in
competing firms’ operations, prompt the firm to test the validity of the assumption
that it still controls 42% of the market. A random sample of 550 automobiles on the
road shows that 219 of them have Goodyear tires. Conduct the test at � � 0.01.
7–29. The manufacturer of electronic components needs to inform its buyers of the
proportion of defective components in its shipments. The company has been stating
that the percentage of defectives is 12%. The company wants to test whether the pro-
portion of all components that are defective is as claimed. A random sample of 100
items indicates 17 defectives. Use � � 0.05 to test the hypothesis that the percentage
of defective components is 12%.
7–30. According to BusinessWeek, the average market value of a biotech company is
less than $250 million.6 Suppose that this indeed is the alternative hypothesis you
want to prove. A sample of 30 firms reveals an average of $235 million and a stan-
dard deviation of $85 million. Conduct the test at � � 0.05 and � � 0.01. State your
conclusions.

x
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7–31. A company’s market share is very sensitive to both its level of advertising and
the levels of its competitors’ advertising. A firm known to have a 56% market share
wants to test whether this value is still valid in view of recent advertising campaigns of
its competitors and its own increased level of advertising. A random sample of 500
consumers reveals that 298 use the company’s product. Is there evidence to conclude
that the company’s market share is no longer 56%, at the 0.01 level of significance?
7–32. According to a financial planner, individuals should in theory save 7% to
10% of their income over their working life, if they desire a reasonably comfortable
retirement. An agency wants to test whether this actually happens with people in the
United States, suspecting the overall savings rate may be lower than this range. A
random sample of 41 individuals revealed the following savings rates per year:

4, 0, 1.5, 6, 3.1, 10, 7.2, 1.2, 0, 1.9, 0, 1.0, 0.5, 1.7, 8.5, 0, 0, 0.4, 0, 1.6, 0.9, 10.5, 0, 1.2, 2.8,
0, 2.3, 3.9, 5.6, 3.2, 0, 1, 2.6, 2.2, 0.1, 0.6, 6.1, 0, 0.2, 0, 6.8

Conduct the test and state your conclusions. Use the lower value, 7%, in the null
hypothesis. Use � � 0.01. Interpret.
7–33. The theory of finance allows for the computation of “excess” returns, either
above or below the current stock market average. An analyst wants to determine
whether stocks in a certain industry group earn either above or below the market
average at a certain time period. The null hypothesis is that there are no excess
returns, on the average, in the industry in question. “No average excess returns”
means that the population excess return for the industry is zero. A random sample of
24 stocks in the industry reveals a sample average excess return of 0.12 and sample
standard deviation of 0.2. State the null and alternative hypotheses, and carry out the
test at the � � 0.05 level of significance.
7–34. According to Fortune, on February 27, 2007, the average stock in all U.S.
exchanges fell by 3.3%.7 If a random sample of 120 stocks reveals a drop of 2.8% on that
day and a standard deviation of 1.7%, are there grounds to reject the magazine’s claim?
7–35. According to Money, the average amount of money that a typical person in
the United States would need to make him or her feel rich is $1.5 million. A
researcher wants to test this claim. A random sample of 100 people in the United
States reveals that their mean “amount to feel rich” is $2.3 million and the standard
deviation is $0.5 million. Conduct the test.
7–36. The U.S. Department of Commerce estimates that 17% of all automobiles on
the road in the United States at a certain time are made in Japan. An organization
that wants to limit imports believes that the proportion of Japanese cars on the road
during the period in question is higher than 17% and wants to prove this. A random
sample of 2,000 cars is observed, 381 of which are made in Japan. Conduct the
hypothesis test at � � 0.01, and state whether you believe the reported figure.
7–37. Airplane tires are sensitive to the heat produced when the plane taxis along
runways. A certain type of airplane tire used by Boeing is guaranteed to perform well
at temperatures as high as 125°F. From time to time, Boeing performs quality control
checks to determine whether the average maximum temperature for adequate per-
formance is as stated, or whether the average maximum temperature is lower than
125°F, in which case the company must replace all tires. Suppose that a random sam-
ple of 100 tires is checked. The average maximum temperature for adequate per-
formance in the sample is found to be 121°F and the sample standard deviation 2°F.
Conduct the hypothesis test, and conclude whether the company should take action
to replace its tires.
7–38. An advertisement for Qualcomm appearing in various business publications
in fall 2003 said: “The average lunch meeting starts seven minutes late.” A research
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firm tested this claim to see whether it is true. Using a random sample of 100 business
meetings, the researchers found that the average meeting in this sample started
4 minutes late and the standard deviation was 3 minutes. Conduct the test using the
0.05 level of significance.
7–39. A study of top executives’ midlife crises indicates that 45% of all top execu-
tives suffer from some form of mental crisis in the years following corporate success.
An executive who had undergone a midlife crisis opened a clinic providing counsel-
ing for top executives in the hope of reducing the number of executives who might
suffer from this problem. A random sample of 125 executives who went through the
program indicated that only 49 eventually showed signs of a midlife crisis. Do you
believe that the program is beneficial and indeed reduces the proportion of execu-
tives who show signs of the crisis?
7–40. The unemployment rate in Britain during a certain period was believed to
have been 11%. At the end of the period in question, the government embarked on a
series of projects to reduce unemployment. The government was interested in deter-
mining whether the average unemployment rate in the country had decreased as a
result of these projects, or whether previously employed people were the ones hired
for the project jobs, while the unemployed remained unemployed. A random sample
of 3,500 people was chosen, and 421 were found to be unemployed. Do you believe
that the government projects reduced the unemployment rate?
7–41. Certain eggs are stated to have reduced cholesterol content, with an average
of only 2.5% cholesterol. A concerned health group wants to test whether the claim is
true. The group believes that more cholesterol may be found, on the average, in the
eggs. A random sample of 100 eggs reveals a sample average content of 5.2% choles-
terol, and a sample standard deviation of 2.8%. Does the health group have cause for
action?
7–42. An ad for flights to Palm Springs, California, claims that “the average tem-
perature (in Fahrenheit) on Christmas Day in Palm Springs is 56º.”8 Suppose you think
this ad exaggerates the temperature upwards, and you look at a random sample of 30
Christmas days and find an average of 50º and standard deviation of 8º. Conduct the
test and give the p-value.
7–43. An article in Active Trader claims that using the Adaptive Renko trading sys-
tem seems to give a 75% chance of beating the market.9 Suppose that in a random
simulation of 100 trades using this system, the trading rule beat the market only
61 times. Conduct the test at the 0.05 level of significance.
7–44. Several U.S. airlines carry passengers from the United States to countries in the
Pacific region, and the competition in these flight routes is keen. One of the leverage
factors for United Airlines in Pacific routes is that, whereas most other airlines fly to
Pacific destinations two or three times weekly, United offers daily flights to Tokyo,
Hong Kong, and Osaka. Before instituting daily flights, the airline needed to get an
idea as to the proportion of frequent fliers in these routes who consider daily service
an important aspect of business flights to the Pacific. From previous information,
the management of United estimated that 60% of the frequent business travelers to
the three destinations believed that daily service was an important aspect of airline
service. Following changes in the airline industry, marked by reduced fares and other
factors, the airline management wanted to check whether the proportion of frequent
business travelers who believe that daily service is an important feature was still about
60%. A random sample of 250 frequent business fliers revealed that 130 thought
daily service was important. Compute the p-value for this test (is this a one-tailed or a
two-tailed test?), and state your conclusion.
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7–45. An advertisement for the Audi TT model lists the following performance
specifications: standing start, 0–50 miles per hour in an average of 5.28 seconds;
braking, 60 miles per hour to 0 in 3.10 seconds on the average. An independent test-
ing service hired by a competing manufacturer of high-performance automobiles
wants to prove that Audi’s claims are exaggerated. A random sample of 100 trial
runs gives the following results: standing start, 0–50 miles per hour in an average of

� 5.8 seconds and s � 1.9 seconds; braking, 60 miles per hour to 0 in an average
of � 3.21 seconds and s � 0.6 second. Carry out the two hypothesis tests, state the
p-value of each test, and state your conclusions.
7–46. Borg-Warner manufactures hydroelectric miniturbines that generate low-cost,
clean electric power from the energy in small rivers and streams. One of the models
was known to produce an average of 25.2 kilowatts of electricity. Recently the
model’s design was improved, and the company wanted to test whether the model’s
average electric output had changed. The company had no reason to suspect, a priori,
a change in either direction. A random sample of 115 trial runs produced an average
of 26.1 kilowatts and a standard deviation of 3.2 kilowatts. Carry out a statistical
hypothesis test, give the p-value, and state your conclusion. Do you believe that the
improved model has a different average output?
7–47. Recent near misses in the air, as well as several fatal accidents, have brought
air traffic controllers under close scrutiny. As a result of a high-level inquiry into the
accuracy of speed and distance determinations through radar sightings of airplanes, a
statistical test was proposed to check the air traffic controllers’ claim that a commercial
jet’s position can be determined, on the average, to within 110 feet in the usual range
around airports in the United States. The proposed test was given as H0: � 	 110 versus
the alternative H1: � 
 110. The test was to be carried out at the 0.05 level of signifi-
cance using a random sample of 80 airplane sightings. The statistician designing the
test wants to determine the power of this test if the actual average distance at detec-
tion is 120 feet. An estimate of the standard deviation is 30 feet. Compute the power
at �1 � 120 feet.

7–48. According to the New York Times, the Martha Stewart Living Omnimedia
Company concentrates mostly on food.10 An analyst wants to disprove a claim that
60% of the company’s public statements have been related to food products in favor of
a left-tailed alternative. A random sample of 60 public statements revealed that only
21 related to food. Conduct the test and provide a p-value.

7–49. According to the Wall Street Journal, the average American jockey makes only
$25,000 a year.11 Suppose you try to disprove this claim against a right-tailed alterna-
tive and your random sample of 100 U.S. jockeys gives you a sample mean of $45,600
and sample standard deviation of $20,000. What is your p-value?

7–50. A large manufacturing firm believes that its market share is 45%. From time
to time, a statistical hypothesis test is carried out to check whether the assertion is
true. The test consists of gathering a random sample of 500 products sold nationally
and finding what percentage of the sample constitutes brands made by the firm.
Whenever the test is carried out, there is no suspicion as to the direction of a possible
change in market share, that is, increase or decrease; the company wants to detect
any change at all. The tests are carried out at the � � 0.01 level of significance. What
is the probability of being able to statistically determine a true change in the market
share of magnitude 5% in either direction? (That is, find the power at p � 0.50 or
p � 0.40. Hint: Use the methods of this section in the case of sampling for propor-
tions. You will have to derive the formulas needed for computing the power.)

x
x
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7–51. The engine of the Volvo model S70 T-5 is stated to provide 246 horsepower.
To test this claim, believing it is too high, a competitor runs the engine n � 60 times,
randomly chosen, and gets a sample mean of 239 horsepower and standard deviation
of 20 horsepower. Conduct the test, using � � 0.01.
7–52. How can we increase the power of a test without increasing the sample size?
7–53. According to BusinessWeek, the Standard & Poor’s 500 Index posted an aver-
age gain of 13% for 2006.12 If a random sample of 50 stocks from this index reveals an
average gain of 11% and standard deviation of 6%, can you reject the magazine’s
claim in a two-tailed test? What is your p-value?
7–54. A recent marketing and promotion campaign by Charles of the Ritz more
than doubled the sales of the suntan lotion Bain de Soleil, which has become the
nation’s number 2 suntan product. At the end of the promotional campaign, the com-
pany wanted to test the hypothesis that the market share of its product was 0.35
versus the alternative hypothesis that the market share was higher than 0.35. The
company polled a random sample of bathers on beaches from Maine to California
and Hawaii, and found that out of the sample of 3,850 users of suntan lotions, 1,367
were users of Bain de Soleil. Do you reject the null hypothesis? What is the p-value?
Explain your conclusion.
7–55. Efforts are under way to make the U.S. automobile industry more efficient
and competitive so that it will be able to survive intense competition from foreign
automakers. An industry analyst is quoted as saying, “GM is sized for 60% of the
market, and they only have 43%.” General Motors needs to know its actual market
share because such knowledge would help the company make better decisions about
trimming down or expanding so that it could become more efficient. A company
executive, pushing for expansion rather than for cutting down, is interested in prov-
ing that the analyst’s claim that GM’s share of the market is 43% is false and that,
in fact, GM’s true market share is higher. The executive hires a market research firm
to study the problem and carry out the hypothesis test she proposed. The market
research agency looks at a random sample of 5,500 cars throughout the country and
finds that 2,521 are GM cars. What should be the executive’s conclusion? How should
she present her results to GM’s vice president for operations?
7–56. According to Money, the average house owner stays with the property for 6
years.13 Suppose that a random sample of 120 house owners reveals that the average
ownership period until the property is sold was 7.2 years and the standard deviation
was 3.5 years. Conduct a two-tailed hypothesis test using � � 0.05 and state your con-
clusion. What is your p-value?
7–57. Before a beach is declared safe for swimming, a test of the bacteria count in
the water is conducted with the null and alternative hypotheses formulated as

H0: Bacteria count is less than or equal to the specified upper limit for safety
H1: Bacteria count is more than the specified upper limit for safety

a. What are type I and type II errors in this case?
b. Which error is more costly?
c. In the absence of any further information, which standard value will you

recommend for �?
7–58. Other things remaining the same, which of the following will result in an
increase in the power of a hypothesis test?

a. Increase in the sample size.
b. Increase in �.
c. Increase in the population standard deviation.
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7–59. The null and alternative hypotheses of a t test for the mean are

H0: � � 1,000

H1: � � 1,000

Other things remaining the same, which of the following will result in an increase in
the p-value?

a. Increase in the sample size.

b. Increase in the sample mean.

c. Increase in the sample standard deviation.

d. Increase in �.

7–60. The null and alternative hypotheses of a test for population proportion are

H0: p � 0.25

H1: p 
 0.25

Other things remaining the same, which of the following will result in an increase in
the p-value?

a. Increase in sample size.

b. Increase in sample proportion.

c. Increase in �.

7–61. While designing a hypothesis test for population proportion, the cost of a
type I error is found to be substantially greater than originally thought. It is possible,
as a response, to change the sample size and/or �. Should they be increased or
decreased? Explain.

7–62. The p-value obtained in a hypothesis test for population mean is 8%. Select
the most precise statement about what it implies. Explain why the other statements
are not precise, or are false.

a. If H0 is rejected based on the evidence that has been obtained, the proba-
bility of type I error would be 8%.

b. We can be 92% confident that H0 is false.

c. There is at most an 8% chance of obtaining evidence that is even more
unfavorable to H0 when H0 is actually true.

d. If � � 1%, H0 will not be rejected and there will be an 8% chance of type
II error.

e. If � � 5%, H0 will not be rejected and no error will be committed.

f. If � � 10%, H0 will be rejected and there will be an 8% chance of type I
error.

7–63. Why is it useful to know the power of a test?

7–64. Explain the difference between the p-value and the significance level �.

7–65. Corporate women are still struggling to break into senior management ranks,
according to a study of senior corporate executives by Korn/Ferry International,
New York recruiter. Of 1,362 top executives surveyed by the firm, only 2%, or 29,
were women. Assuming that the sample reported is a random sample, use the results
to test the null hypothesis that the percentage of women in top management is 5% or
more, versus the alternative hypothesis that the true percentage is less than 5%. If the
test is to be carried out at � � 0.05, what will be the power of the test if the true per-
centage of female top executives is 4%?
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7–66. According to The Economist, the current office vacancy rate in San Jose,
California, is 21%.14 An economist knows that this British publication likes to dispar-
age America and suspects that The Economist is overestimating the office vacancy rate
in San Jose. Suppose that this economist looks at a random sample of 250 office-
building properties in San Jose and finds that 12 are vacant. Using � � 0.05, conduct
the appropriate hypothesis test and state your conclusion. What is the p-value?
7–67. At Armco’s steel plant in Middletown, Ohio, statistical quality-control meth-
ods have been used very successfully in controlling slab width on continuous casting
units. The company claims that a large reduction in the steel slab width variance
resulted from the use of these methods. Suppose that the variance of steel slab widths
is expected to be 156 (squared units). A test is carried out to determine whether the
variance is above the required level, with the intention to take corrective action if it is
concluded that the variance is greater than 156. A random sample of 25 slabs gives a
sample variance of 175. Using � � 0.05, should corrective action be taken?
7–68. According to the mortgage banking firm Lomas & Nettleton, 95% of all
households in the second half of last year lived in rental accommodations. The com-
pany believes that lower interest rates for mortgages during the following period
reduced the percentage of households living in rental units. The company therefore
wants to test H0: p � 0.95 versus the alternative H1: p � 0.95 for the proportion dur-
ing the new period. A random sample of 1,500 households shows that 1,380 are
rental units. Carry out the test, and state your conclusion. Use an � of your choice.
7–69. A recent study was aimed at determining whether people with increased
workers’ compensation stayed off the job longer than people without the increased
benefits. Suppose that the average time off per employee per year is known to be 3.1
days. A random sample of 21 employees with increased benefits yielded the follow-
ing number of days spent off the job in one year: 5, 17, 1, 0, 2, 3, 1, 1, 5, 2, 7, 5, 0, 3,
3, 4, 22, 2, 8, 0, 1. Conduct the appropriate test, and state your conclusions.
7–70. Environmental changes have recently been shown to improve firms’ compet-
itive advantages. The approach is called the multiple-scenario approach. A study was
designed to find the percentage of the Fortune top 1,000 firms that use the multiple-
scenario approach. The null hypothesis was that 30% or fewer of the firms use the
approach. A random sample of 166 firms in the Fortune top 1,000 was chosen, and 59 of
the firms replied that they used the multiple-scenario approach. Conduct the hypoth-
esis test at � � 0.05. What is the p-value? (Do you need to use the finite-population
correction factor?)
7–71. According to an article in the New York Times, new Internet dating Web sites
use sex to advertise their services. One such site, True.com, reportedly received an
average of 3.8 million visitors per month.15 Suppose that you want to disprove this
claim, believing the actual average is lower, and your random sample of 15 months
revealed a sample mean of 2.1 million visits and a standard deviation of 1.2 million.
Conduct the test using � � 0.05. What is the approximate p-value?
7–72. Executives at Gammon & Ninowski Media Investments, a top television sta-
tion brokerage, believe that the current average price for an independent television
station in the United States is $125 million. An analyst at the firm wants to check
whether the executives’ claim is true. The analyst has no prior suspicion that the
claim is incorrect in any particular direction and collects a random sample of 25
independent TV stations around the country. The results are (in millions of dollars)
233, 128, 305, 57, 89, 45, 33, 190, 21, 322, 97, 103, 132, 200, 50, 48, 312, 252, 82, 212,
165, 134, 178, 212, 199. Test the hypothesis that the average station price nationwide
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is $125 million versus the alternative that it is not $125 million. Use a significance
level of your choice.
7–73. Microsoft Corporation makes software packages for use in microcomputers.
The company believes that if at least 25% of present owners of microcomputers of
certain types would be interested in a particular new software package, then the com-
pany will make a profit if it markets the new package. A company analyst therefore
wants to test the null hypothesis that the proportion of owners of microcomputers of
the given kinds who will be interested in the new package is at most 0.25, versus the
alternative that the proportion is greater than 0.25. A random sample of 300 micro-
computer owners shows that 94 are interested in the new Microsoft package. Should
the company market its new product? Report the p-value.
7–74. A recent National Science Foundation (NSF) survey indicates that more than
20% of the staff in U.S. research and development laboratories are foreign-born.
Results of the study have been used for pushing legislation aimed at limiting the num-
ber of foreign workers in the United States. An organization of foreign-born scientists
wants to prove that the NSF survey results do not reflect the true proportion of
foreign workers in U.S. laboratories. The organization collects a random sample of
5,000 laboratory workers in all major laboratories in the country and finds that 876
are foreign. Can these results be used to prove that the NSF study overestimated the
proportion of foreigners in U.S. laboratories?
7–75. The average number of weeks that banner ads run at a Web site is estimated to
be 5.5. You want to check the accuracy of this estimate. A sample of 50 ads reveals a
sample average of 5.1 weeks with a sample standard deviation of 2.3 weeks. State the
null and alternative hypotheses and carry out the test at the 5% level of significance.
7–76. According to The New York Times, 3-D printers are now becoming a reality.16 If
a manufacturer of the new high-tech printers claims that the new device can print a
page in 3 seconds on average, and a random sample of 20 pages shows a sample mean
of 4.6 seconds and sample standard deviation of 2.1 seconds, can the manufacturer’s
claim be rejected? Explain and provide numerical support for your answer.
7–77. Out of all the air-travel bookings in major airlines, at least 58% are said to
be done online. A sample of 70 airlines revealed that 52% of bookings for last year
were done online. State the null and alternative hypotheses and carry out the test at
the 5% level of significance.
7–78. According to The Economist, investors in Porsche are the dominant group
within the larger VW company that now owns the sportscar maker.17 Let’s take dom-
inance to mean 50% ownership, and suppose that a random sample of 700 VW
shareholders reveals that 220 of them own Porsche shares. Conduct the left-tailed test
aimed at proving that Porsche shareholders are not dominant. What is the p-value?
7–79. Suppose that a claim is made that the average billionaire is 60 years old or
younger. The following is a random sample of billionaires’ ages, drawn from the
Forbes list.18

80, 70, 76, 54, 59, 52, 74, 64, 76, 67, 39, 67, 43, 62, 57, 91, 55

Conduct the test using the 0.05 level of significance.
7–80. An article in BusinessWeek says: “Today companies use a mere 40% of their
space.”19 Suppose you want to disprove this claim, suspecting that it is an upward
exaggeration. A random sample of the percentage used space for companies is 38, 18,
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The tensile strength of parts made of an alloy is claimed to be at least 1,000 kg/cm2.
The population standard deviation is known from past experience to be 10 kg/cm2.
It is desired to test the claim at an � of 5% with the probability of type II error, �,
restricted to 8% when the actual strength is only 995 kg/cm2. The engineers are not
sure about their decision to limit � as described and want to do a sensitivity analysis
of the sample size on actual � ranging from 994 to 997 kg/cm2 and limits on � rang-
ing from 5% to 10%. Prepare a plot of the sensitivity.

E X A M P L E  7 – 9

We use the template shown in Figure 7–17. The null and alternative hypotheses in this
case are

S o l u t i o n

H0: � � 1,000 kg/cm2

H1: � � 1,000 kg/cm2

91, 37, 55, 80, 71, 92, 68, 78, 40, 36, 50, 45, 22, 19, 62, 70, 82, 25. Conduct the test
using � � 0.05.
7–81. Redo problem 7–80 using a two-tailed test. Did your results change? Compare
the p-values of the two tests. Explain.
7–82. The best places in the United States to be a job seeker are state capitals and
university towns, which are claimed to have jobless rates below the national average
of 4.2%. A sample of 50 towns and state capitals showed average jobless rate of 1.4%
with a standard deviation of 0.8%. State the null and alternative hypotheses and carry
out the test at the 1% level of significance.

7–5 Pretest Decisions
Sampling costs money, and so do errors. In the previous chapter we saw how to mini-
mize the total cost of sampling and estimation errors. In this chapter, we do the same
for hypothesis testing. Unfortunately, however, finding the cost of errors in hypothesis
testing is not as straightforward as in estimation. The reason is that the probabilities of
type I and type II errors depend on the actual value of the parameter being tested. Not
only do we not know the actual value, but we also do not usually know its distribution.
It is therefore difficult, or even impossible, to estimate the expected cost of errors. As
a result, people follow a simplified policy of fixing a standard value for � (1%, 5%, or
10%) and a certain minimum sample size for evidence gathering. With the advent of
spreadsheets, we can look at the situation more closely and, if needed, change policies.

To look at the situation more closely, we can use the following templates that
compute various parameters of the problem and plot helpful charts:

1. Sample size template.
2. � versus � for various sample sizes.
3. The power curve.
4. The operating characteristic curve.

We will see these four templates in the context of testing population means. Similar
templates are also available for testing population proportions.

Testing Population Means
Figure 7–17 shows the template that can be used for determining sample sizes when
� has been fixed and a limit on the probability of type II error at a predetermined
actual value of the population mean has also been fixed. Let us see the use of the tem-
plate through an example.
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FIGURE 7–17 The Template for Computing and Plotting Required Sample Size
[Testing Population Mean.xls; Sheet: Sample Size]
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Sample Size Determination for Testing �

Assumption
H0: � 1000 Either Normal Population Tabulation of required sample size

Popn. Stdev. 10 Or n >= 30 

Significance Level 5.00%
: 994 995 996 997

Probability of  Type II Error 5.0% 31 44 68 121
When � = 995 6.0% 29 41 64 114

Desired Maximum 8.00% 7.0% 28 39 61 109
8.0% 26 38 59 104

Required Sample Size 38 n 9.0% 25 36 56 100
10.0% 24 35 54 96

Actual �
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9
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19
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22
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25
26
27
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32

To enter the null hypothesis, choose “>=” in the drop-down box, and enter 1000 in
cell C4. Enter � of 10 in cell C5 and � of 5% in cell C6. Enter 995 in cell C9 and the
limit of 8% in cell C10. The result 38 appears in cell C12. Since this is greater than 30,
the assumption of n � 30 is satisfied and all calculations are valid.

To do the sensitivity analysis, enter 5% in cell I8, 10% in cell I13, 994 in cell J7,
and 997 in cell M7. The required tabulation and the chart appear, and they may be
printed and reported to the engineers.

Manual Calculation of Required Sample Size
The equation for calculating the required sample size is

where �0 � hypothesized value of � in H0
�1 � the value of � at which type II error is to be monitored
z0 � z� or z��2 depending on whether the test is one-tailed or two-tailed
z1 � z� where � is the limit on type II error probability when � � �1

The symbol stands for rounding up to the next integer. For example, � 36.
Note that the formula calls for the absolute values of z0 and z1, so enter positive val-
ues regardless of right-tailed or left-tailed test. If the template is not available, this
equation can be used to calculate the required n manually.

<35.2=< =
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FIGURE 7–18 The Template for Plotting � versus � for Various n
[Testing Population Mean.xls; Sheet: Beta vs. Alpha]

�

H0: �
Data Assumption

Type I and Type II Error probabilities
Tabulation of � when � =

1000 Either Normal Population 0.3% 0.4% 0.5% 0.6% 0.8% 1.0% 1.2% 2.0% 4.0% 10.0%

Popn. Stdev. 10 Or n >= 30 30 30% 26% 24% 22% 19% 17% 15% 11% 6% 2%
1-Tail test 35 21% 18% 17% 15% 13% 11% 10% 7% 4% 1%

40 15% 13% 11% 10% 8% 7% 6% 4% 2% 1%
50 7% 6% 5% 4% 3% 3% 2% 1% 1% 0%

n
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The manual calculation of required sample size for Example 7–9 is

Figure 7–18 shows the template that can be used to plot � versus � for four dif-
ferent values of n. We shall see the use of this template through an example.

The tensile strength of parts made of an alloy is claimed to be at least 1,000 kg/cm2. The
population standard deviation is known from past experience to be 10 kg/cm2. The
engineers at a company want to test this claim. To decide n, �, and the limit on �,
they would like to look at a plot of � when actual � � 994 kg/cm2 versus � for n �
30, 35, 40, and 50. Further, they believe that type II errors are more costly and there-
fore would like � to be not more than half the value of �. Can you make a suggestion
for the selection of � and n?

Use the template shown in Figure 7–18. Enter the null hypothesis H0: � � 1000 in
the range B5:C5. Enter the � value of 10 in cell C6. Enter the actual � � 994 in the
range N2:O2. Enter the n values 30, 35, 40, and 50 in the range J6:J9. The desired
plot of � versus � is created.

Looking at the plot, for the standard � value of 5%, a sample size of 40 yields a
� of approximately 2.5%. Thus the combination � � 5% and n � 40 is a good choice.

Figure 7–19 shows the template that can be used to plot the power curve of a
hypothesis test once � and n have been determined. This curve is useful in determining
the power of the test for various actual � values. Since � and n are usually selected
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without knowing the actual �, this plot can be used to check if they have been select-
ed well with respect to power. In Example 7–10, if the engineers wanted a power
curve of the test, the template shown in Figure 7–19 can be used to produce it. The
data and the chart in the figure correspond to Example 7–10. A vertical line appears
at the hypothesized value of the population mean, which in this case is 1,000.

The operating characteristic curve (OC curve) of a hypothesis test shows how
the probability of not rejecting (accepting) the null hypothesis varies with the actual
�. The advantage of an OC curve is that it shows both type I and type II error
instances. See Figure 7–20, which shows an OC curve for the case H0: � � 75; � � 10;
n � 40; � � 10%. A vertical line appears at 75, which corresponds to the hypothe-
sized value of the population mean. Areas corresponding to errors in the test deci-
sions are shaded. The dark area at the top right represents type I error instances,
because in that area � 
 75, which makes H0 true, but H0 is rejected. The shaded
area below represents instances of type II error, because � � 75, which makes H0
false, but H0 is accepted. By looking at both type I and type II error instances on a
single chart, we can design a test more effectively.

Figure 7–21 shows the template that can be used to plot OC curves. The tem-
plate will not shade the areas corresponding to the errors. But that is all right, because
we would like to superpose two OC curves on a single chart corresponding to two
sample sizes, n1 and n2 entered in cells H7 and H8. We shall see the use of the template
through an example.

292 Chapter 7
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FIGURE 7–19 The Template for Plotting the Power Curve
[Testing Population Mean; Sheet: Power]

Power Curve for a � Test

Assumption:
Either Normal Population 
Or n >= 30

When � = 996

Popn. Stdev. 10 P(Type II Error) 0.1881
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H0: � >= 1000
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Consider the problem in Example 7–10. The engineers want to see the complete
picture of type I and type II error instances. In particular, when � � 10%, they want
to know the effect of increasing the sample size from 40 to 100 on type I and type II
error possibilities. Construct the OC curves for n1 � 40 and n2 � 100 and comment
on the effects.
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Open the template shown in Figure 7–21. Enter the null hypothesis in the range
B6:D6, and the � value of 10 in cell D7. Enter the � value of 10% in cell D8. Enter 40
and 100 in cells H7 and H8. The needed OC curves appear in the chart.

Looking at the OC curves, we see that increasing the sample size from 40 to 100
does not affect the instances of type I error much but substantially reduces type II error
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FIGURE 7–20 An Operating Characteristic Curve for the Case H0: � � 75; � � 10; n � 40;
� � 10%
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FIGURE 7–21 The Template for Plotting the Operating Characteristic Curve
[Testing Population Mean.xls; Sheet: OC Curve]
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instances. For example, the chart reveals that when actual � � 998 the probability of
type II error, �, is reduced by more than 50% and when actual � � 995 � is almost
zero. If these gains outweigh the cost of additional sampling, then it is better to go for
a sample size of 100.

Testing Population Proportions
Figure 7–22 shows the template that can be used to calculate the required sample size
while testing population means.

At least 52% of a city’s population is said to oppose the construction of a highway
near the city. A test of the claim at � � 10% is desired. The probability of type II
error when the actual proportion is 49% is to be limited to 6%.

1. How many randomly selected residents of the city should be polled to test the
claim?

2. Tabulate the required sample size for limits on � varying from 2% to 10% and
actual proportion varying from 46% to 50%.

3. If the budget allows only a sample size of 2,000 and therefore that is the
number polled, what is the probability of type II error when the actual
proportion is 49%?

294 Chapter 7

FIGURE 7–22 The Template for Finding the Required Sample Size
[Testing Population Proportion.xls; Sheet: Sample Size]

Sample Size Determination for Testing p
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>=H0: p 0.52

Tabulation of Required Sample Size

Significance Level 10.00% 0.46 0.47 0.48 0.49

Chances of  Type II Error
2% 769 1110 1736 3088

When p = 0.49
4% 636 917 1435 2552

Desired Maximum 6.00%
6% 557 803 1255 2233
8% 500 720 1126 2004

Required Sample Size 2233 n
10% 455 656 1025 1824

Actual p

0.5
6949
5743
5025
4508

4103
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Open the template shown in Figure 7–22. Enter the null hypothesis, H0: p � 52%
in the range C4:D4. Enter � in cell D5, and type II error information in cells D8
and D9.

1. The required sample size of 2233 appears in cell D11.
2. Enter the � values 2% in cell I6 and 10% in cell I10. Enter 0.46 in J5 and 0.50

in cell N5. The needed tabulation appears in the range I5:N10.
3. In the tabulation of required sample size, in the column corresponding to p �

0.49, the value 2004 appears in cell M9, which corresponds to a � value of 8%.
Thus the probability of type II error is about 8%.

Manual Calculation of Sample Size
If the template is not available, the required sample size for testing population
proportions can be calculated using the equation

where p0 � hypothesized value of � in H0
p1 � the value of p at which type II error is to be monitored
z0 � z� or z��2 depending on whether the test is one-tailed or two-tailed
z1 � z� where � is the limit on type II error probability when p � p1

For the case in Example 7–12, the calculation will be
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n = l a 1 ƒz 0 ƒ1p011 - p02 + ƒz1 ƒ1p111 - p122
p0 - p1

b2 m

The difference of 2 in the manual and template results is due to the approximation
of z0 and z1 in manual calculation.

The power curve and the OC curves can be produced for hypothesis tests regard-
ing population proportions using the templates shown in Figures 7–23 and 7–24. Let
us see the use of the charts through an example.

The hypothesis test in Example 7–12 is conducted with sample size 2,000 and � � 10%.
Draw the power curve and the OC curve of the test.

For the power curve, open the template shown in Figure 7–23. Enter the null hypoth-
esis, sample size, and � in their respective places. The power curve appears below the
data. For the power at a specific point use the cell F7. Entering 0.49 in cell F7 shows
that the power when p � 0.49 is 0.9893.

For the OC curve open the template shown in Figure 7–24. Enter the null
hypothesis and � in their respective places. Enter the sample size 2000 in cell C7 and
leave cell D7 blank. The OC curve appears below the data.

n = la11.2810.5211 - 0.522 + 1.55510.4911 - 0.4922
0.52 - 0.49

b2m = <2,230.5= = 2,231



Aczel−Sounderpandian: 
Complete Business 
Statistics, Seventh Edition

7. Hypothesis Testing Text298 © The McGraw−Hill 
Companies, 2009

296 Chapter 7

FIGURE 7–23 The Template for Drawing a Power Curve
[Testing Population Proportion.xls; Sheet: Power]
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FIGURE 7–24 The Template for Drawing OC Curves
[Testing Population Proportion.xls; Sheet: OC Curve]
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20Jean Chatzky, “To Invent the New You, Don’t Bankrupt Old You,” Money, May 2007, p. 30.

7–83. Consider the null hypothesis � � 56. The population standard deviation is
guessed to be 2.16. Type II error probabilities are to be calculated at � � 55.

a. Draw a � versus � chart with sample sizes 30, 40, 50, and 60.
b. The test is conducted with a random sample of size 50 with � � 5%. Draw

the power curve. What is the power when � � 55.5?
c. Draw an OC curve with n � 50 and 60; � � 5%. Is there a lot to gain by

going from n � 50 to n � 60?
7–84. The null hypothesis p � 0.25 is tested with n � 1,000 and � � 5%.

a. Draw the power curve. What is the power when p � 0.22?
b. Draw the OC curve for n � 1,000 and 1,200. Is there a lot to gain by going

from n � 1,000 to n � 1,200?
7–85. The null hypothesis � 	 30 is to be tested. The population standard deviation
is guessed to be 0.52. Type II error probabilities are to be calculated at � � 30.3.

a. Draw a � versus � chart with sample sizes 30, 40, 50, and 60.
b. The test is conducted with a random sample of size 30 with an � of 5%. Draw

the power curve. What is the power when � � 30.2?
c. Draw an OC curve with n � 30 and 60; � � 5%. If type II error is to be

almost zero when � � 30.3, is it better to go for n � 60?
7–86. If you look at the power curve or the OC curve of a two-tailed test, you see
that there is no region that represents instances of type I error, whereas there are large
regions that represent instances of type II error. Does this mean that there is no
chance of type I error? Think carefully, and explain the chances of type I error and
the role of � in a two-tailed test.
7–87. The average weight of airline food packaging material is to be controlled so
that the total weight of catering supplies does not exceed desired limits. An inspector
who uses random sampling to accept or reject a batch of packaging materials uses the
null hypothesis H0: � 	 248 grams and an � of 10%. He also wants to make sure that
when the average weight in a batch is 250 grams, � must be 5%. The population stan-
dard deviation is guessed to be 5 grams.

a. What is the minimum required sample size?
b. For the sample size found in the previous question, plot the OC curve.
c. For actual � varying from 249 to 252 and � varying from 3% to 8%, tabulate

the minimum required sample size.
7–88. A company orders bolts in bulk from a vendor.  The contract specifies that a
shipment of bolts will be accepted by testing the null hypothesis that the percentage
defective in the shipment is not more than 3% at an � of 5% using random sampling
from the shipment. The company further wishes that any shipment containing 8%
defectives should have no more than 10% chance of acceptance.

a. Find the minimum sample size required.
b. For the sample size found in the previous question, plot the OC curve.
c. For the actual percentage defective varying from 6% to 10% and � varying

from 8% to 12%, tabulate the minimum sample size required.
7–89. According to Money, “3 in 5 executives said they anticipate making a major
career change.”20 Suppose a random sample of 1,000 executives shows that 55% said
they anticipate making a major career change. Can you reject the claim made by the
magazine? What is the p-value?

P R O B L E M S
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7–6 Using the Computer

Using Excel for One-Sample Hypothesis Testing
In addition to the templates discussed in this chapter, you can use Microsoft Excel
functions to directly run hypothesis tests using Excel.

To perform a Z test of a hypothesis for the mean when the population standard devi-
ation is known, use the function ZTEST. This function returns the one-tailed probability
value of a z test. For a given hypothesized population mean �0, ZTEST returns the p-
value corresponding to the alternative hypothesis � 
 �0, where � represents the popu-
lation mean. In the syntax ZTEST(array, µ0,sigma), array represents the range of
data against which to test �0, �0 is the value to test, and sigma is the population (known)
standard deviation. If omitted, the sample standard deviation is used. In terms of Excel
formulas we can say ZTEST is calculated as follows when sigma is not omitted: 

ZTEST(array, µ0, sigma) = 1 — NORMSDIST((x̄ — µ0)/(sigma/ ))

When sigma is omitted ZTEST is calculated as follows:

ZTEST(array, µ0) = 1 — NORMSDIST((x̄ — µ0)/(s/ ))

In the preceding formulas =AVERAGE(array) is the sample mean, s=STDEV
(array) is the sample standard deviation, and n=COUNT(array) is the number of
observations in the sample. It is obvious that when the population standard deviation
sigma is not known, ZTEST returns an approximately valid result if the size of the sample
is greater than 30. Since ZTEST returns the p-value, it actually represents the probability
that the sample mean would be greater than the observed value AVERAGE(array)
when the hypothesized population mean is �0. From the symmetry of the normal dis-
tribution, if AVERAGE(array) � �0, ZTEST will return a value greater than 0.5. In
this case you have to use 1-ZTEST as your desired and valid p-value. If you need to run
a two-tailed ZTEST on the alternative hypothesis � 
 �0, the following Excel formula
can be used for obtaining the corresponding p-value:

= 2*MIN(ZTEST(array, µ0, sigma), 1 — ZTEST(array, µ0, sigma))

Excel does not have a specific test entitled one-sample t test. So when the population
standard deviation is not known and sample size is less than 30, we need to use the other
Excel formulas to do the mathematical calculations required for this test. At first we need
to describe the TDIST function of Excel. In the syntax TDIST(t,df,tails), t is the
numeric value at which to evaluate the distribution, df is an integer indicating the
number of degrees of freedom, and tails specifies the number of distribution tails to
return. If tails = 1, TDIST returns the one-tailed distribution, which means TDIST is
calculated as P (T 
 t ) in which T is a random variable that follows a t distribution.
If tails = 2, TDIST returns the two-tailed distribution. In this case TDIST is calculated
as P (|T | 
 t ) � P (T � �t or T 
 t ). Note that the value of t has to be positive. So, if
you need to use TDIST when t � 0, you can consider the symmetrical behavior of the
t distribution and use the relation TDIST(—t,df,1) = 1 — TDIST(t,df,1) as well
as TDIST(—t,df,2) = TDIST(t,df,2). As an example, TDIST(2.33,10,1)
returns the value 0.021025, while TDIST(2.33,10,2) returns the value 0.04205,
which is twice 0.021025.

To use this function for conducting a hypothesis test for a population mean, we need
to first calculate the value of the test statistics. Let array represent the array or range of
values against which you test �0. Calculate the sample mean, sample standard devia-
tion, and number of observations in the sample by the functions AVERAGE(array),
STDEV(array), and COUNT(array), respectively. Then the value of the test statis-
tic t is calculated as

t = (AVERAGE(array) — µ0)/(STDEV(array)/SQRT(COUNT(array)))

while SQRT(n) returns the square root of n.

x

1n
1n
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If your null hypothesis is in the form of � 
 �0, you need to use the TDIST
function as TDIST(t, COUNT(array)-1, 1). The obtained result is the p-value
corresponding to the obtained test statistics. By comparing the obtained p-value with
the desired significance level, you can decide to reject or accept the null hypothesis.
Note that if you wish to run a test of the hypothesis that � 
 �0, you need to set the
tails parameter of the TDIST function to the value of 2. The obtained result is the p-value
corresponding to a two-tailed t test.

To run a one-sample z test for a population proportion, again you need to first find
the test statistic z based on the formula described in the chapter. Then the function
NORMSDIST(z) or 1- NORMSDIST(z) is used to return the p-value corresponding
to the alternative hypotheses p � p0 or p 
 p0, respectively. For a two-tailed test
p 
 p0, the p-value is obtained by the following formula:

p-value = 2*MIN(NORMSDIST(z), 1-NORMSDIST(z))

To run a test for a population variance, the required function that will return the
p-value corresponding to the test statistic is CHIDIST(x, degrees_freedom). In
this function x represents the value for which you want to find the cumulative distri-
bution, and degrees_freedom is the number of degrees of freedom for the chi-square
distribution.

Using MINITAB for One-Sample Hypothesis Testing
MINITAB can be used to carry out different one-sample hypothesis tests. Suppose we
need to run a test on the population mean when the population standard deviation is
known. Start by choosing Stat � Basic Statistics � 1-Sample z from the menu bar. In
the corresponding dialog box you can define the name of the column that contains
your sample data or you can directly enter the summarized data of your sample. Enter
the value of the population standard deviation in the next box. You need to check the
box to perform the hypothesis test. Enter the hypothesized mean �0 in the correspond-
ing edit box. To define the desired significance level of the test as well as the form of
your null hypothesis, click on the Options button. In the alternative drop-down list
box, select less than or greater than for one-tailed tests, or not equal for a two-tailed
test. Click the OK button. The results and corresponding Session commands will
appear in the Session window. Figure 7–25 shows the result of an example in which
we run a test of the population mean based on a sample of size 15. The population
standard deviation is known and equal to 11.5. The hypothesized mean is 62 and the
corresponding alternative hypothesis is in the form of � > 62. The desired significance
level is 0.05. As can be seen, based on the obtained p-value 0.203, we cannot reject the
null hypothesis at the stated significance level.

In cases where the population standard deviation is not known, start by choosing
Stat � Basic Statistics � 1-Sample t. The required setting is the same as the previous
dialog box except that you need to specify the sample standard deviation instead of
the population standard deviation.

To run a test of the population proportion start by selecting Stat � Basic Statistics �
1 Proportion from the menu bar. In the corresponding dialog box you need to define
your sample in the form of a column of data or in the form of summarized data by
number of trials (sample size) and number of events (number of samples with desired
condition). Check the box to perform the hypothesis test. Enter the hypothesized pro-
portion p0 in the corresponding box. Click the Options button to define the desired
significance level of the test as well as the form of the alternative hypothesis. Then
click the OK button. The results and corresponding Session commands will appear in
the Session window.

For a test of the population variance or standard deviation start by choosing Stat �

Basic Statistics � 1 Variance from the menu bar. The required setting follows the
same structure that we described for previous dialog boxes. As an example, suppose
we have a sample of size 31. Our sample variance is 1.62. We wish to test the null
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hypothesis that the population variance is equal to 1 at significance level 0.05.
Figure 7–26 shows the corresponding dialog box and Session commands for this test.
Based on the obtained p-value 0.035, we reject the null hypothesis at significance
level 0.05.

7–7 Summary and Review of Terms
In this chapter, we introduced the important ideas of statistical hypothesis testing. We
discussed the philosophy behind hypothesis tests, starting with the concepts of null
hypothesis and alternative hypothesis. Depending on the type of null hypothesis,
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FIGURE 7–25 Using MINITAB for a Hypothesis Test of the Mean (� known)

FIGURE 7–26 Using MINITAB for a Hypothesis Test on Population Variance
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the rejection occurred either on one or both tails of the test statistic. Correspond-
ingly, the test became either a one-tailed test or a two-tailed test. In any test, we
saw that there will be chances for type I and type II errors. We saw how the p-value
is used in an effort to systematically contain the chances of both types of error. When
the p-value is less than the level of significance �, the null hypothesis is rejected. The
probability of not committing a type I error is known as the confidence level, and the
probability of not committing a type II error is known as the power of the test. We also
saw how increasing the sample size decreases the chances of both types of errors.

In connection with pretest decisions we saw the compromise between the costs of
type I and type II errors. These cost considerations help us in deciding the optimal
sample size and a suitable level of significance �. In the next chapter we extend
these ideas of hypothesis testing to differences between two population parameters.

Hypothesis Testing 301

When a tire is constructed of more than one
ply, the interply shear strength is an impor-
tant property to check. The specification for

a particular type of tire calls for a strength of 2,800
pounds per square inch (psi). The tire manufacturer
tests the tires using the null hypothesis

CASE 9 Tiresome Tires I

versus � chart for sample sizes of 30, 40, 60, and
80. If � is to be at most 1% with � � 5%, which
sample size among these four values is suitable?

2. Calculate the exact sample size required for 
� � 5% and � � 1%. Construct a sensitivity
analysis table for the required sample size for
� ranging from 2,788 to 2,794 psi and � ranging
from 1% to 5%.

3. For the current practice of n � 40 and � � 5%
plot the power curve of the test. Can this chart be
used to convince the manufacturer about the high
probability of passing batches that have a strength
of less than 2,800 psi?

4. To present the manufacturer with a comparison of
a sample size of 80 versus 40, plot the OC curve
for those two sample sizes. Keep an � of 5%.

5. The manufacturer is hesitant to increase the
sample size beyond 40 due to the concomitant
increase in testing costs and, more important, due
to the increased time required for the tests. The
production process needs to wait until the tests are
completed, and that means loss of production
time. A suggestion is made by the production
manager to increase � to 10% as a means of
reducing �. Give an account of the benefits and
the drawbacks of that move. Provide supporting
numerical results wherever possible.

H0: � � 2,800 psi

where � is the mean strength of a large batch of tires.
From past experience, it is known that the population
standard deviation is 20 psi.

Testing the shear strength requires a costly destruc-
tive test and therefore the sample size needs to be kept
at a minimum. A type I error will result in the rejection
of a large number of good tires and is therefore costly.
A type II error of passing a faulty batch of tires can
result in fatal accidents on the roads, and therefore is
extremely costly. (For purposes of this case, the proba-
bility of type II error, �, is always calculated at � �
2,790 psi.) It is believed that � should be at most 1%.
Currently, the company conducts the test with a sam-
ple size of 40 and an � of 5%.

1. To help the manufacturer get a clear picture of
type I and type II error probabilities, draw a �
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8
After studying this chapter, you should be able to:

• Explain the need to compare two population parameters.
• Conduct a paired-difference test for difference in population

means.
• Conduct an independent-samples test for difference in

population means.
• Describe why a paired-difference test is better than an

independent-samples test.
• Conduct a test for difference in population proportions.
• Test whether two population variances are equal.
• Use templates to carry out all tests.

THE COMPARISON OF TWO POPULATIONS

LEARNING OBJECTIVES
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8–1 Using Statistics

The comparison of two populations with respect to some population parameter—the
population mean, the population proportion, or the population variance—is the topic
of this chapter. Testing hypotheses about population parameters in the single-population
case, as was done in Chapter 7, is an important statistical undertaking. However, the
true usefulness of statistics manifests itself in allowing us to make comparisons, as in the
article above, where the weight of children who drink soda was compared to that of
those who do not. Almost daily we compare products, services, investment opportu-
nities, management styles, and so on. In this chapter, we will learn how to conduct
such comparisons in an objective and meaningful way.

We will learn first how to find statistically significant differences between two
populations. If you understood the methodology of hypothesis testing presented in
the last chapter and the idea of a confidence interval from Chapter 6, you will find
the extension to two populations straightforward and easy to understand. We will
learn how to conduct a test for the existence of a difference between the means of
two populations. In the next section, we will see how such a comparison may be made
in the special case where the observations may be paired in some way. Later we will
learn how to conduct a test for the equality of the means of two populations, using
independent random samples. Then we will see how to compare two population pro-
portions. Finally, we will encounter a test for the equality of the variances of two pop-
ulations. In addition to statistical hypothesis tests, we will learn how to construct
confidence intervals for the difference between two population parameters.

School programs discouraging carbonated drinks appear to be effective in
reducing obesity among children, a new study suggests.

A high intake of sweetened carbonated drinks probably contributes to
childhood obesity, and there is a growing movement against soft drinks in
schools. But until now there have been no studies showing that efforts to
lower children’s consumption of soft drinks would do any good.

The study outlined this week on the Web site of The British Medical Journal,
found that a one-year campaign discouraging both sweetened and diet soft
drinks led to a decrease in the percentage of elementary school children who
were overweight or obese. The improvement occurred after a reduction in con-
sumption of less than a can a day.

Representatives of the soft drink industry contested the implications of the
results.

The investigators studied 644 children, ages 7 to 11, in the 2001–2002
school year.

The percentage of overweight and obese children increased by 7.5 percent
in the group that did not participate and dipped by 0.2 percent among those
who did.

Excerpt from “Study offers proof of an obesity-soda link” Associated Press, © 2004.
Used with permission.

Study Offers Proof of an Obesity–Soda Link
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8–2 Paired-Observation Comparisons
In this section, we describe a method for conducting a hypothesis test and construct-
ing a confidence interval when our observations come from two populations and are
paired in some way. What is the advantage of pairing observations? Suppose that a
taste test of two flavors is carried out. It seems intuitively plausible that if we let every
person in our sample rate each one of the two flavors (with random choice of which
flavor is tasted first), the resulting paired responses will convey more information
about the taste difference than if we had used two different sets of people, each group
rating only one flavor. Statistically, when we use the same people for rating the two
products, we tend to remove much of the extraneous variation in taste ratings—the
variation in people, experimental conditions, and other extraneous factors—and con-
centrate on the difference between the two flavors. When possible, pairing the obser-
vations is often advisable, as this makes the experiment more precise. We will
demonstrate the paired-observation test with an example.

Home Shopping Network, Inc., pioneered the idea of merchandising directly to
customers through cable television. By watching what amounts to 24 hours of com-
mercials, viewers can call a number to buy products. Before expanding their ser-
vices, network managers wanted to test whether this method of direct marketing
increased sales on the average. A random sample of 16 viewers was selected for an
experiment. All viewers in the sample had recorded the amount of money they spent
shopping during the holiday season of the previous year. The next year, these people
were given access to the cable network and were asked to keep a record of their total
purchases during the holiday season. The paired observations for each shopper are
given in Table 8–1. Faced with these data, Home Shopping Network managers want
to test the null hypothesis that their service does not increase shopping volume,
versus the alternative hypothesis that it does. The following solution of this problem
introduces the paired-observation t test.

S o l u t i o n

E X A M P L E  8 – 1

The test involves two populations: the population of shoppers who have access to the
Home Shopping Network and the population of shoppers who do not. We want to
test the null hypothesis that the mean shopping expenditure in both populations is

TABLE 8–1 Total Purchases of 16 Viewers with and without Home Shopping

Current Year’s Previous Year’s 
Shopper Shopping ($) Shopping ($) Difference ($)

1 405 334 71

2 125 150 �25

3 540 520 20

4 100 95 5

5 200 212 �12

6 30 30 0

7 1,200 1,055 145

8 265 300 �35

9 90 85 5

10 206 129 77

11 18 40 �22

12 489 440 49

13 590 610 �20

14 310 208 102

15 995 880 115

16 75 25 50
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equal versus the alternative hypothesis that the mean for the home shoppers is greater.
Using the same people for the test and pairing their observations in a before-and-after
way makes the test more precise than it would be without pairing. The pairing removes
the influence of factors other than home shopping. The shoppers are the same peo-
ple; thus, we can concentrate on the effect of the new shopping opportunity, leaving
out of the analysis other factors that may affect shopping volume. Of course, we must
consider the fact that the first observations were taken a year before. Let us assume,
however, that relative inflation between the two years has been accounted for and
that people in the sample have not had significant changes in income or other vari-
ables since the previous year that might affect their buying behavior.

Under these circumstances, it is easy to see that the variable in which we are
interested is the difference between the present year’s per-person shopping expendi-
ture and that of the previous year. The population parameter about which we want
to draw an inference is the mean difference between the two populations. We denote
this parameter by �D , the mean difference. This parameter is defined as �D � �1 �
�2, where �1 is the average holiday season shopping expenditure of people who use
home shopping and �2 is the average holiday season shopping expenditure of people
who do not. Our null and alternative hypotheses are, then,

H0: �D 	 0

H1: �D 
 0 (8–1)

Looking at the null and alternative hypotheses and the data in the last column of
Table 8–1, we note that the test is a simple t test with n � 1 degrees of freedom, where
our variable is the difference between the two observations for each shopper. In a
sense, our two-population comparison test has been reduced to a hypothesis test
about one parameter—the difference between the means of two populations. The test, as
given by equation 8–1, is a right-tailed test, but it need not be. In general, the paired-
observation t test can be done as one-tailed or two-tailed. In addition, the hypothe-
sized difference need not be zero. We can state any other value as the difference in
the null hypothesis (although zero is most commonly used). The only assumption we
make when we use this test is that the population of differences is normally distributed.
Recall that this assumption was used whenever we carried out a test or constructed a
confidence interval using the t distribution. Also note that, for large samples, the stan-
dard normal distribution may be used instead. This is also true for a normal popula-
tion if you happen to know the population standard deviation of the differences �D.
The test statistic (assuming �D is not known and is estimated by sD , the sample standard
deviation of the differences) is given in equation 8–2.

The test statistic for the paired-observation t test is

(8–2)

where is the sample average difference between each pair of observations,
sD is the sample standard deviation of these differences, and the sample size n
is the number of pairs of observations (here, the number of people in the
experiment). The symbol �D0

is the population mean difference under the null
hypothesis. When the null hypothesis is true and the population mean differ-
ence is �D0

, the statistic has a t distribution with n � 1 degrees of freedom.

D

t =
D - �D 0

sD>2n
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Let us now conduct the hypothesis test. From the differences reported in Table 8–1,
we find that their mean is � $32.81 and their standard deviation is sD � $55.75.
Since the sample size is small, n � 16, we use the t distribution with n � 1 � 15
degrees of freedom. The null hypothesis value of the population mean is �D0

� 0.
The value of our test statistic is obtained as

D

306 Chapter 8

t =
32.81 - 0

55.75/216
= 2.354

This computed value of the test statistic is greater than 1.753, which is the critical
point for a right-tailed test at � � 0.05 using a t distribution with 15 degrees of
freedom (see Appendix C, Table 3). The test statistic value is less than 2.602, which
is the critical point for a one-tailed test using � � 0.01, but greater than 2.131, which is
the critical point for a right-tailed area of 0.025. We may conclude that the p-value is
between 0.025 and 0.01. This is shown in Figure 8–1. Home Shopping Network
managers may conclude that the test gave significant evidence for increased
shopping volume by network viewers.

The Template
Figure 8–2 shows the template that can be used to test paired differences in popula-
tion means when the sample data are known. The data are entered in columns B
and C. The data and the results seen in the figure correspond to Example 8–1. The
hypothesized value of the difference is entered in cell F12, and this value is automat-
ically copied into cells F13 and F14 below. The desired � is entered in cell H11. For
the present case, the null hypothesis is �1 � �2 	 0. The corresponding p-value of
0.0163 appears in cell G14. As seen in cell H14, the null hypothesis is to be rejected at
an � of 5%.

If a confidence interval is desired, then the confidence level must be entered in
cell J12. The � corresponding to the confidence level in cell J12 need not be the same
as the � for the hypothesis test entered in cell H11. If a confidence interval is not
desired, then cell J12 may be left blank to avoid creating a distraction.

FIGURE 8–1 Carrying Out the Test of Example 8–1

t distribution with
15 degrees of freedom

1.753

Area = 0.05

Rejection region
Nonrejection region

0

2.131
(Critical point 
for  = 0.025)

2.354
Test statistic

2.602
(Critical point for

 = 0.01)�

�
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FIGURE 8–2 The Template for Testing Paired Differences
[Testing Paired Difference.xls; Sheet: Sample Data]

Assumption

Note: Difference has been defined as
Sample1 - Sample2

Paired Difference Test

Current Previous Evidence

Sample1 Sample2

Stdev. of Difference

Test Statistic

Size 16 n

1 405 334 Average Difference 32.8125 Populations Normal

2 125 150 55.7533 sD

�D

3 540 520

4 100 95 2.3541 t

5 200 212 df 15

6 30 30 Hypothesis Testing At an � of Confidence Intervals for the Difference in Means

7 1200 1055 p-value 5% (1 � �)

8 265 300 H0: �1 � �2 = 0

H0: �1 � �2 >= 0

H0: �1 � �2 <= 0

0.0326 Reject 95% 32.8125 ± 29.7088 = [ 3.10367 , 62.5213 ]

9 90 85 0.9837

10 206 129 0.0163 Reject

11 18 40

12 489 440

Data

Confidence IntervalNull Hypothesis

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

A B C D E F G H I J K M PL N O Q SR

Recently, returns on stocks have been said to change once a story about a company
appears in the Wall Street Journal column “Heard on the Street.” An investment portfo-
lio analyst wants to check the statistical significance of this claim. The analyst collects a
random sample of 50 stocks that were recommended as winners by the editor of
“Heard on the Street.” The analyst proceeds to conduct a two-tailed test of whether the
annualized return on stocks recommended in the column differs between the month
before the recommendation and the month after the recommendation. The analyst
decides to conduct a two-tailed rather than a one-tailed test because she wants to allow
for the possibility that stocks may be recommended in the column after their price has
appreciated (and thus returns may actually decrease in the following month), as well as
allowing for an increased return. For each stock in the sample of 50, the analyst com-
putes the return before and after the event (the appearance of the story in the column)
and the difference between the two return figures. Then the sample average difference
of returns is computed, as well as the sample standard deviation of return differences.
The results are � 0.1% and sD � 0.05%. What should the analyst conclude?D

The null and alternative hypotheses are H0: �D � 0 and H1: �D 
 0. We now use the
test statistic given in equation 8–2, noting that the distribution may be well approxi-
mated by the normal distribution because the sample size n � 50 is large. We have

E X A M P L E  8 – 2

S o l u t i o n

t =
D - �D0

sD2n
=

0.1 - 0
0.05>7.07

= 14.14

The value of the test statistic falls very far in the right-hand rejection region, and the
p-value, therefore, is very small. The analyst should conclude that the test offers
strong evidence that the average returns on stocks increase (because the rejection
occurred in the right-hand rejection region and D � current price � previous price)
for stocks recommended in “Heard on the Street,” as asserted by financial experts. 

Confidence Intervals
In addition to tests of hypotheses, confidence intervals can be constructed for
the average population difference �D . Analogous to the case of a single-population
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parameter, we define a (1 � �) 100% confidence interval for the parameter �D as
follows.

308 Chapter 8

A (1 � �) 100% confidence interval for the mean difference �D is

(8–3)

where t�/2 is the value of the t distribution with n � 1 degrees of freedom
that cuts off an area of �/2 to its right. When the sample size n is large, we
may approximate t�/2 as z�/2.

D  � t�>2
sD1n

� 0.1 � � [0.086%, 0.114%]1.96
0.05
7.07

D  � t�>2
sD1n

Based on the data, the analyst may be 95% confident that the average difference in
annualized return rate on a stock, measured the month before and the month following
a positive recommendation in the column, is anywhere from 0.086% to 0.114%.

The Template
Figure 8–3 shows the template that can be used to test paired differences, when
sample statistics rather than sample data are known. The data and results in this
figure correspond to Example 8–2.

In this section, we compared population means for paired data. The following
sections compare means of two populations where samples are drawn randomly and
independently of each other from the two populations. When pairing can be done, our
results tend to be more precise because the experimental units (e.g., the people, each
trying two different products) are different from each other, but each acts as an
independent measuring device for the two products. This pairing of similar items is
called blocking, and we will discuss it in detail in Chapter 9.

FIGURE 8–3 The Template for Testing Paired Differences
[Testing Paired Difference.xls; Sheet: Sample Stats]

Paired Difference Test
Evidence

Size 50 n Assumption

Average Difference 0.1 Populations Normal

0.05 sD

�D

Note: Difference has been defined as
Sample1 - Sample214.1421 t

df 49

Hypothesis Testing At an � of Confidence Intervals for the Difference in Means
p-value 5% (1 � �)

H0: �1 � �2 = 0

H0: �1 � �2 >= 0

H0: �1 � �2 <= 0

0.0000 Reject 95% 0.1 ± 0.01421 = [ 0.08579 , 0.11421   ]

1.0000

0.0000 Reject

Confidence IntervalNull Hypothesis

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

A B C D E F G H I J K M PL N O

Stdev. of Difference

Test Statistic

In Example 8–2, we may construct a 95% confidence interval for the average
difference in annualized return on a stock before and after its being recommended in
“Heard on the Street.” The confidence interval is



Aczel−Sounderpandian: 
Complete Business 
Statistics, Seventh Edition

8. The Comparison of Two 
Populations

Text 311© The McGraw−Hill 
Companies, 2009

8–1. A market research study is undertaken to test which of two popular electric
shavers, a model made by Norelco or a model made by Remington, is preferred
by consumers. A random sample of 25 men who regularly use an electric shaver, but
not one of the two models to be tested, is chosen. Each man is then asked to shave
one morning with the Norelco and the next morning with the Remington, or vice
versa. The order, which model is used on which day, is randomly chosen for each
man. After every shave, each man is asked to complete a questionnaire rating his
satisfaction with the shaver. From the questionnaire, a total satisfaction score on a
scale of 0 to 100 is computed. Then, for each man, the difference between the satis-
faction score for Norelco and that for Remington is computed. The score differences
(Norelco score � Remington score) are 15, �8, 32, 57, 20, 10, �18, �12, 60, 72, 38,
�5, 16, 22, 34, 41, 12, �38, 16, �40, 75, 11, 2, 55, 10. Which model, if either, is sta-
tistically preferred over the other? How confident are you of your finding? Explain.
8–2. The performance ratings of two sports cars, the Mazda RX7 and the Nissan
300ZX, are to be compared. A random sample of 40 drivers is selected to drive the
two models. Each driver tries one car of each model, and the 40 cars of each model
are chosen randomly. The time of each test drive is recorded for each driver and
model. The difference in time (Mazda time � Nissan time) is computed, and from
these differences a sample mean and a sample standard deviation are obtained. The
results are � 5.0 seconds and sD � 2.3 seconds. Based on these data, which model
has higher performance? Explain. Also give a 95% confidence interval for the aver-
age time difference, in seconds, for the two models over the course driven.
8–3. Recent advances in cell phone screen quality have enabled the showing of
movies and commercials on cell phone screens. But according to the New York Times,
advertising is not as successful as movie viewing.1 Suppose the following data are
numbers of viewers for a movie (M) and for a commercial aired with the movie (C).
Test for equality of movie and commercial viewing, on average, using a two-tailed test
at � � 0.05 (data in thousands):

M: 15 17 25 17 14 18 17 16 14
C: 10 9 21 16 11 12 13 15 13

8–4. A study is undertaken to determine how consumers react to energy conserva-
tion efforts. A random group of 60 families is chosen. Their consumption of electricity
is monitored in a period before and a period after the families are offered certain dis-
counts to reduce their energy consumption. Both periods are the same length. The
difference in electric consumption between the period before and the period after the
offer is recorded for each family. Then the average difference in consumption and
the standard deviation of the difference are computed. The results are � 0.2 kilo-
watt and sD � 1.0 kilowatt. At � � 0.01, is there evidence to conclude that conservation
efforts reduce consumption?
8–5. A nationwide retailer wants to test whether new product shelf facings are effec-
tive in increasing sales volume. New shelf facings for the soft drink Country Time are
tested at a random sample of 15 stores throughout the country. Data on total sales of
Country Time for each store, for the week before and the week after the new facings
are installed, are given below:

Store : 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Before: 57 61 12 38 12 69 5 39 88 9 92 26 14 70 22
After : 60 54 20 35 21 70 1 65 79 10 90 32 19 77 29

Using the 0.05 level of significance, do you believe that the new shelf facings increase
sales of Country Time?

D

D
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P R O B L E M S

1Laura M. Holson, “Hollywood Loves the Tiny Screen. Advertisers Don’t,” The New York Times, May 7, 2007, p. C1.
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8–6. Travel & Leisure conducted a survey of affordable hotels in various European
countries.2 The following list shows the prices (in U.S. dollars) for one night of a dou-
ble hotel room at comparable paired hotels in France and Spain.

France: 258 289 228 200 190 350 310 212 195 175 200 190
Spain: 214 250 190 185 114 285 378 230 160 120 220 105

Conduct a test for equality of average hotel room prices in these two countries against
a two-tailed alternative. Which country has less expensive hotels? Back your answer
using statistical inference, including the p-value. What are the limitations of your
analysis?
8–7. In problem 8–4, suppose that the population standard deviation is 1.0 and
that the true average reduction in consumption for the entire population in the area is
�D � 0.1. For a sample size of 60 and � � 0.01, what is the power of the test?
8–8. Consider the information in the following table.

Program Rating (Scale: 0 to 100)

Program Men Women

60 Minutes 99 96

ABC Monday Night Football 93 25

American Idol 88 97

Entertainment Tonight 90 35

Survivor 81 33

Jeopardy 61 10

Dancing with the Stars 54 50

Murder, She Wrote 60 48

The Sopranos 73 73

The Heat of the Night 44 33

The Simpsons 30 11

Murphy Brown 25 58

Little People, Big World 38 18

L. A. Law 52 12

ABC Sunday Night Movies 32 61

King of Queens 16 96

Designing Women 8 94

The Cosby Show 18 80

Wheel of Fortune 9 20

NBC Sunday Night Movies 10 6

Assume that the television programs were randomly selected from the population
of all prime-time TV programs. Also assume that ratings are normally distributed.
Conduct a statistical test to determine whether there is a significant difference
between average men’s and women’s ratings of prime-time television programs.

8–3 A Test for the Difference between Two
Population Means Using Independent
Random Samples

The paired-difference test we saw in the last section is more powerful than the tests we
are going to see in this section. It is more powerful because with the same data and the
same �, the chances of type II error will be less in a paired-difference test than in other
tests. The reason is that pairing gets at the difference between two populations more

310 Chapter 8

2“Affordable European Hotels,” Travel & Leisure, May 2007, pp. 158–165.
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CHAPTER 10
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directly. Therefore, if it is possible to pair the samples and conduct a paired-
difference test, then that is what we must do. But in many situations the samples
cannot be paired, so we cannot take a paired difference. For example, suppose two
different machines are producing the same type of parts and we are interested in the
difference between the average time taken by each machine to produce one part. To
pair two observations we have to make the same part using each of the two machines.
But producing the same part once by one machine and once again by the other
machine is impossible. What we can do is time the machines as randomly and
independently selected parts are produced on each machine. We can then compare
the average time taken by each machine and test hypotheses about the difference
between them.

When independent random samples are taken, the sample sizes need not be the
same for both populations. We shall denote the sample sizes by n1 and n2. The two
population means are denoted by �1 and �2 and the two population standard
deviations are denoted by �1 and �2. The sample means are denoted by 1 and 2.
We shall use (�1 � �2)0 to denote the claimed difference between the two population
means.

The null hypothesis can be any one of the three usual forms:

XX

The Comparison of Two Populations 311

H0: �1 � �2 � (�1 � �2)0 leading to a two-tailed test
H0: �1 � �2 � (�1 � �2)0 leading to a left-tailed test
H0: �1 � �2 	 (�1 � �2)0 leading to a right-tailed test

The test statistic can be either Z or t.
Which statistic is applicable to specific cases? This section enumerates the criteria

used in selecting the correct statistic and gives the equations for the test statistics.
Explanations about why the test statistic is applicable follow the listed cases.

Cases in Which the Test Statistic Is Z
1. The sample sizes n1 and n2 are both at least 30 and the population

standard deviations �1 and �2 are known.
2. Both populations are normally distributed and the population standard

deviations �1 and �2 are known.

The formula for the test statistic Z is

(8–4)

where (�1 � �2)0 is the hypothesized value for the difference in the two
population means.

In the preceding cases, 1 and 2 each follows a normal distribution and therefore
( 1 � 2) also follows a normal distribution. Because the two samples are independent,
we have

XX
XX

Z =
(X1 - X2) - (�1 - �2)02�2

1/n1 + �2
2/n2

1 � 2) � 1) � Var( 2) � �2
1�n1 � �2

2�n2.XVar(XXVar(X
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Therefore, if the null hypothesis is true, then the quantity

312 Chapter 8

(X1 - X2) - (�1 - �2)02�2
1>n1 + �2

2>n2

must follow a Z distribution.
The templates to use for cases where Z is the test statistic are shown in Figures 8–4

and 8–5.

FIGURE 8–4 The Template for Testing the Difference in Population Means
[Testing Difference in Means.xls; Sheet: Z-Test from Data]

Testing the Difference in Two Population Means

Current Previous Evidence

Sample1 Sample2 Sample1 Sample2
Size 16 n

z

x-bar

Assumptions

1 405 334
Mean 352.375

16

319.563

Either 1. Populations normal
Or 2. Large samples

�1 , �2 known
2 125 150

3 540 520

4 100 95

5 200 212

6 30 30 Hypothesis Testing

At an � of

Confidence Interval for the Difference in Means

7 1200 1055

p-value 5%

1 � �

8 265 300

H0: �1 � �2 = 0

H0: �1 � �2 >= 0

H0: �1 � �2 <= 0

0.5089

95% 32.8125 ± 97.369 = [ -64.556 , 130.181 ]

9 90 85

0.7455

10 206 129

0.2545

11 18 40

12

13

14

15

489 440

Data

Confidence Interval

Null Hypothesis

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

A B C D E F G H I J K M PL N O Q UR S T

590 610

310 208

995 880

Popn. 1 Popn. 2
Popn. Std. Devn. 152 �128

Test Statistic 0.6605

FIGURE 8–5 The Template for Testing Difference in Means
[Testing Difference in Means.xls; Sheet: Z-Test from Stats]

Comparing Two population Means

Evidence

Sample1 Sample2
Size 1200 n

z

x-bar

Assumptions

Mean 452

800

Amex vs. Visa

523

Either 1. Populations normal
Or 2. Large samples

�1 , �2 known

Hypothesis Testing

At an � of

Confidence Interval for the Difference in Meansp-value 5%

1 � �H0: �1 � �2 = 0

H0: �1 � �2 >= 0

H0: �1 � �2 <= 0

0.0000

95% -71 ± 17.5561 = [ -88.556 , -53.444 ]0.0000

Reject

Reject

1.0000

Confidence Interval

Null Hypothesis

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

A B C D E F G H I J K M PL N O Q R

Popn. 1 Popn. 2
Popn. Std. Devn. 212 �185

Test Statistic -7.9264
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Cases in Which the Test Statistic Is t
Both populations are normally distributed; population standard deviations
�1 and �2 are unknown, but the sample standard deviations S1 and S2 are
known. The equations for the test statistic t depends on two subcases:

Subcase 1: �1 and �2 are believed to be equal (although unknown). In
this subcase, we calculate t using the formula

(8–5)

where Sp
2 is the pooled variance of the two samples, which serves as the

estimate of the common population variance given by the formula

(8–6)

The degrees of freedom for t are (n1 � n2 � 2).

Subcase 2: �1 and �2 are believed to be unequal (although unknown).
In this subcase, we calculate t using the formula

(8–7)

The degrees of freedom for this t are given by

df � z { (8–8)

Subcase 1 is the easier of the two. In this case, let �1 � �2 � �. Because the two
populations are normally distributed, 1 and 2 each follows a normal distribution
and thus ( 1 � 2) also follows a normal distribution. Because the two samples are
independent, we have

XX
XX

(S2
1>n1 + S2

2>n2)
2

 (S2
1>n1)

2>(n1 - 1) + (S2
2>n2)

2>(n2 - 1)

t =
(X1 - X2) - (�1 - �2)02S2

1>n1 + S2
2>n2

SP
2 =

(n1 - 1)S2
1 + (n2 - 1)S2

2

n1 + n2 - 2

t =
(X1 - X2) - (�1 - �2)02S2

P(1>n1 + 1>n2)

The Comparison of Two Populations 313

1 � 2) � 1) � Var( 2) � �2�n1 � �2�n2 � �2(1�n1 � 1�n2)XVar(XXVar(X

Sp
2 �

(n1 � 1)S2
1 � (n2 � 1)S2

2

(n1 � n2 � 2)

(X1 - X2) - (�1 - �2)0
Sp21>n1 + 1>n2

We estimate �2 by

which is a weighted average of the two sample variances. As a result, if the null
hypothesis is true, then the quantity

must follow a t distribution with (n1 � n1 � 2) degrees of freedom.
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Subcase 2 does not neatly fall into a t distribution as it combines two sample
means from two populations with two different unknown variances. When the null
hypothesis is true, the quantity

314 Chapter 8

(X1 - X2) - (�1 - �2)02S 2
1 >n1 + S 2

2>n2

can be shown to approximately follow a t distribution with degrees of freedom given
by the complex equation 8–8. The symbol :; used in this equation means rounding
down to the nearest integer. For example, :15.8; � 15. We round the value down to
comply with the principle of giving the benefit of doubt to the null hypothesis.

Because approximation is involved in this case, it is better to use subcase 1 whenever
possible, to avoid approximation. But, then, subcase 1 requires the strong assumption
that the two population variances are equal. To guard against overuse of subcase 1 we
check the assumption using an F test that will be described later in this chapter. In any
case, if we use subcase 1, we should understand fully why we believe that the two vari-
ances are equal. In general, if the sources or the causes of variance in the two popula-
tions are the same, then it is reasonable to expect the two variances to be equal.

The templates that can be used for cases where t is the test statistic are shown in
Figures 8–7 and 8–8 on pages 319 and 320.

Cases Not Covered by Z or t
1. At least one population is not normally distributed and the sample size

from that population is less than 30.
2. At least one population is not normally distributed and the standard

deviation of that population is unknown.
3. For at least one population, neither the population standard deviation

nor the sample standard deviation is known. (This case is rare.)

In the preceding cases, we are unable to find a test statistic that would follow a
known distribution. It may be possible to apply the nonparametric method, the
Mann-Whitney U test, described in Chapter 14.

The Templates
Figure 8–4 shows the template that can be used to test differences in population
means when sample data are known. The data are entered in columns B and C. If a
confidence interval is desired, enter the confidence level in cell K16.

Figure 8–5 shows the template that can be used to test differences in population
means when sample statistics rather than sample data are known. The data in the
figure correspond to Example 8–3.

Until a few years ago, the market for consumer credit was considered to be seg-
mented. Higher-income, higher-spending people tended to be American Express
cardholders, and lower-income, lower-spending people were usually Visa cardholders.
In the last few years, Visa has intensified its efforts to break into the higher-income
segments of the market by using magazine and television advertising to create a high-
class image. Recently, a consulting firm was hired by Visa to determine whether
average monthly charges on the American Express Gold Card are approximately
equal to the average monthly charges on Preferred Visa. A random sample of 1,200
Preferred Visa cardholders was selected, and the sample average monthly charge was
found to be x1 � $452. An independent random sample of 800 Gold Card members
revealed a sample mean � $523. Assume �1 � $212 and �2 � $185. (Holders
of both the Gold Card and Preferred Visa were excluded from the study.) Is there
evidence to conclude that the average monthly charge in the entire population of

x2

E X A M P L E  8 – 3
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American Express Gold Card members is different from the average monthly charge
in the entire population of Preferred Visa cardholders?

The Comparison of Two Populations 315

Since we have no prior suspicion that either of the two populations may have a
higher mean, the test is two-tailed. The null and alternative hypotheses are

S o l u t i o n

H0: �1 � �2 � 0
H1: �1 � �2 
 0

The value of our test statistic (equation 8–4) is

z =
452 - 523 - 022122>1,200 + 1852>800

= -7.926

The computed value of the Z statistic falls in the left-hand rejection region for any
commonly used �, and the p-value is very small. We conclude that there is a
statistically significant difference in average monthly charges between Gold Card and
Preferred Visa cardholders. Note that this does not imply any practical significance. That
is, while a difference in average spending in the two populations may exist, we cannot
necessarily conclude that this difference is large. The test is shown in Figure 8–6.

H0: �1 � �2 	 45
H1: �1 � �2 
 45

Suppose that the makers of Duracell batteries want to demonstrate that their size AA
battery lasts an average of at least 45 minutes longer than Duracell’s main competi-
tor, the Energizer. Two independent random samples of 100 batteries of each kind
are selected, and the batteries are run continuously until they are no longer opera-
tional. The sample average life for Duracell is found to be � 308 minutes. The
result for the Energizer batteries is � 254 minutes. Assume �1 � 84 minutes and
�2 � 67 minutes. Is there evidence to substantiate Duracell’s claim that its batteries
last, on average, at least 45 minutes longer than Energizer batteries of the same size?

x2

x1

Our null and alternative hypotheses are

E X A M P L E  8 – 4

S o l u t i o n

The makers of Duracell hope to demonstrate their claim by rejecting the null hypoth-
esis. Recall that failing to reject a null hypothesis is not a strong conclusion. This is

FIGURE 8–6 Carrying Out the Test of Example 8–3

Z distribution

Rejection region
at 0.01 level

Rejection region
at 0.01 level

Test statistic
value = –7.926

–2.576 2.576
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why—in order to demonstrate that Duracell batteries last an average of at least 45
minutes longer—the claim to be demonstrated is stated as the alternative hypothesis.

The value of the test statistic in this case is computed as follows:

316 Chapter 8

z =
308 - 254 - 452842>100 + 672>100

= 0.838

523 � 452 � 1.96 � [53.44, 88.56]A 2122

1,200
+ 1852

800

This value falls in the nonrejection region of our right-tailed test at any conventional
level of significance �. The p-value is equal to 0.2011. We must conclude that there is
insufficient evidence to support Duracell’s claim.

Confidence Intervals
Recall from Chapter 7 that there is a strong connection between hypothesis tests and
confidence intervals. In the case of the difference between two population means, we
have the following:

A large-sample (1 � �) 100% confidence interval for the difference between
two population means �1 � �2, using independent random samples, is

(8–9)x1 - x2 � z�>2A�2
1

n1
+

�2
2

n2

Equation 8–9 should be intuitively clear. The bounds on the difference between the
two population means are equal to the difference between the two sample means,
plus or minus the z coefficient for (1 � �) 100% confidence times the standard devia-
tion of the difference between the two sample means (which is the expression with
the square root sign).

In the context of Example 8–3, a 95% confidence interval for the difference
between the average monthly charge on the American Express Gold Card and the
average monthly charge on the Preferred Visa Card is, by equation 8–9,

P R O B L E M S

8–9. Ethanol is getting wider use as car fuel when mixed with gasoline.3 A car
manufacturer wants to evaluate the performance of engines using ethanol mix with
that of pure gasoline. The sample average for 100 runs using ethanol is 76.5 on a 0 to

3John Carey, “Ethanol Is Not the Only Green in Town,” BusinessWeek, April 30, 2007, p. 74.

The consulting firm may report to Visa that it is 95% confident that the average
American Express Gold Card monthly bill is anywhere from $53.44 to $88.56 higher
than the average Preferred Visa bill.

With one-tailed tests, the analogous interval is a one-sided confidence interval.
We will not give examples of such intervals in this chapter. In general, we construct
confidence intervals for population parameters when we have no particular values of
the parameters we want to test and are interested in estimation only.
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100 scale and the sample standard deviation is 38. For a sample of 100 runs of pure
gasoline, the sample average is 88.1 and the standard deviation is 40. Conduct
a two-tailed test using � � 0.05, and also provide a 95% confidence interval for the
difference between means.
8–10. The photography department of a fashion magazine needs to choose a cam-
era. Of the two models the department is considering, one is made by Nikon and one
by Minolta. The department contracts with an agency to determine if one of the two
models gets a higher average performance rating by professional photographers, or
whether the average performance ratings of these two cameras are not statistically
different. The agency asks 60 different professional photographers to rate one of the
cameras (30 photographers rate each model). The ratings are on a scale of 1 to 10.
The average sample rating for Nikon is 8.5, and the sample standard deviation is 2.1.
For the Minolta sample, the average sample rating is 7.8, and the standard deviation
is 1.8. Is there a difference between the average population ratings of the two cam-
eras? If so, which one is rated higher?
8–11. Marcus Robert Real Estate Company wants to test whether the average sale
price of residential properties in a certain size range in Bel Air, California, is approx-
imately equal to the average sale price of residential properties of the same size
range in Marin County, California. The company gathers data on a random sample
of 32 properties in Bel Air and finds � $2.5 million and s � $0.41 million. A ran-
dom sample of 35 properties in Marin County gives � $4.32 million and s � $0.87
million. Is the average sale price of all properties in both locations approximately
equal or not? Explain.
8–12. Fortune compared global equities versus investments in the U.S. market. For
the global market, the magazine found an average of 15% return over five years, while
for U.S. markets it found an average of 6.2%.4 Suppose that both numbers are based
on random samples of 40 investments in each market, with a standard deviation of
3% in the global market and 3.5% in U.S. markets. Conduct a test for equality of aver-
age return using � � 0.05, and construct a 95% confidence interval for the difference
in average return in the global versus U.S. markets.
8–13. Many companies that cater to teenagers have learned that young people
respond to commercials that provide dance-beat music, adventure, and a fast pace
rather than words. In one test, a group of 128 teenagers were shown commercials fea-
turing rock music, and their purchasing frequency of the advertised products over the
following month was recorded as a single score for each person in the group. Then a
group of 212 teenagers was shown commercials for the same products, but with the
music replaced by verbal persuasion. The purchase frequency scores of this group
were computed as well. The results for the music group were � 23.5 and s � 12.2;
and the results for the verbal group were � 18.0 and s � 10.5. Assume that the two
groups were randomly selected from the entire teenage consumer population. Using
the � � 0.01 level of significance, test the null hypothesis that both methods of adver-
tising are equally effective versus the alternative hypothesis that they are not equally
effective. If you conclude that one method is better, state which one it is, and explain
how you reached your conclusion.
8–14. New corporate strategies take years to develop. Two methods for facilitating
the development of new strategies by executive strategy meetings are to be compared.
One method is to hold a two-day retreat in a posh hotel; the other is to hold a series of
informal luncheon meetings on company premises. The following are the results of
two independent random samples of firms following one of these two methods. The
data are the number of months, for each company, that elapsed from the time an idea
was first suggested until the time it was implemented.

x
x

x
x
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4Katie Banner, “Global Strategies: Finding Pearls in Choppy Waters,” Fortune, March 19, 2007, p. 191.
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Hotel On-Site

17 6

11 12

14 13

25 16

9 4

18 8

36 14

19 18

22 10

24 5

16 7

31 12

23 10

Test for a difference between means, using � � 0.05.
8–15. A fashion industry analyst wants to prove that models featuring Liz Claiborne
clothing earn on average more than models featuring clothes designed by Calvin
Klein. For a given period of time, a random sample of 32 Liz Claiborne models
reveals average earnings of $4,238.00 and a standard deviation of $1,002.50. For the
same period, an independent random sample of 37 Calvin Klein models has mean
earnings of $3,888.72 and a sample standard deviation of $876.05.

a. Is this a one-tailed or a two-tailed test? Explain.
b. Carry out the hypothesis test at the 0.05 level of significance.
c. State your conclusion.
d. What is the p-value? Explain its relevance.
e. Redo the problem, assuming the results are based on a random sample of

10 Liz Claiborne models and 11 Calvin Klein models.
8–16. Active Trader compared earnings on stock investments when companies made
strong pre-earnings announcements versus cases where pre-earnings announcements
were weak. Both sample sizes were 28. The average performance for the strong pre-
earnings announcement group was 0.19%, and the average performance for the weak
pre-earnings group was 0.72%. The standard deviations were 5.72% and 5.10%,
respectively.5 Conduct a test for equality of means using � � 0.01 and construct a
99% confidence interval for difference in means.
8–17. A brokerage firm is said to provide both brokerage services and “research” if,
in addition to buying and selling securities for its clients, the firm furnishes clients with
advice about the value of securities, information on economic factors and trends, and
portfolio strategy. The Securities and Exchange Commission (SEC) has been studying
brokerage commissions charged by both “research” and “nonresearch” brokerage
houses. A random sample of 255 transactions at nonresearch firms is collected as well
as a random sample of 300 transactions at research firms. These samples reveal that
the difference between the average sample percentage of commission at research
firms and the average percentage of commission in the nonresearch sample is 2.54%.
The standard deviation of the research firms’ sample is 0.85%, and that of the nonre-
search firms is 0.64%. Give a 95% confidence interval for the difference in the average
percentage of commissions in research versus nonresearch brokerage houses.

The Templates
Figure 8–7 shows the template that can be used to conduct t tests for difference in
population means when sample data are known. The top panel can be used if there is

318 Chapter 8

5David Bukey, “The Earnings Guidance Game,” Active Trader, April 2007, p. 16.
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reason to believe that the two population variances are equal; the bottom panel
should be used in all other cases. As an additional aid to deciding which panel to use,
the null hypothesis H0: �2

1 � �2
2 � 0 is tested at top right. The p-value of the test

appears in cell M7. If this value is at least, say, 20%, then there is no problem in using
the top panel. If the p-value is less than 10%, then it is not wise to use the top panel.
In such circumstances, a warning message—“Warning: Equal variance assumption is
questionable”—will appear in cell K10.

If a confidence interval for the difference in the means is desired, enter the
confidence level in cell L15 or L24.

Figure 8–8 shows the template that can be used to conduct t tests for difference in
population means when sample statistics rather than sample data are known. The top
panel can be used if there is reason to believe that the two population variances are
equal; the bottom panel should be used otherwise. As an additional aid to deciding
which panel to use, the null hypothesis that the population variances are equal is tested
at top right. The p-value of the test appears in cell J7. If this value is at least, say, 20%,
then there is no problem in using the top panel. If it is less than 10%, then it is not
wise to use the top panel. In such circumstances, a warning message—“Warning:
Equal variance assumption is questionable”—will appear in cell H10.

If a confidence interval for the difference in the means is desired, enter the confi-
dence level in cell I15 or I24.
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FIGURE 8–7 The Template for the t Test for Difference in Means
[Testing Difference in Means.xls; Sheet: t-Test from Data]

t-Test for Difference in Population Means

Assuming Population Variances are Equal

Name1 Name2 Evidence

Sample1 Sample2 Sample1 Sample2

Size 27 n

x-bar

Assumptions

1 1547 1366
Mean 1381.3

Populations Normal

H0: Population Variances Equal

2 1299 1547

Std. Deviation 107.005

F ratio 1.25268

p-value 0.5698

27

1374.96

95.6056 s3 1508 1530

4 1323 1500

Test Statistic 0.2293 t

s2
p

5 1294 1411

df 52

Pooled Variance 10295.26 1566 1290

At an � of Confidence Interval for difference in Population Means

7 1318 1313

p-value 5% 1 � �

8 1349 1390

H0: �1 � �2 = 0

H0: �1 � �2 >= 0

H0: �1 � �2 <= 0

0.8195 95% 6.33333 ± 55.4144 = [ -49.081 , 61.7477 ]

9 1254 1466

0.5902

10 1465 1528

0.4098

11 1474 1369

12 1271 1239

Data

Confidence IntervalNull Hypothesis

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

A B C D E F G H I J K M PL N O Q S VR UT

13 1325 129317

14 1238 131618

15 1340 151819

16 1333 143520

17 1239 126421

18 1314 129322

19 1436 135923

20 1342 128024

21 1524 135225

22 1490 142626

23 1400 130227

Assuming Population Variances are Unequal
Test Statistic 0.22934 t

df 51

At an � of Confidence Interval for difference in Population Means

p-value 5% 1 � �

H0: �1 � �2 = 0

H0: �1 � �2 >= 0

H0: �1 � �2 <= 0

0.8195 95% 6.33333 ± 55.4402 = [ -49.107 , 61.7736 ]

0.5902

0.4098

Confidence IntervalNull Hypothesis

Changes in the price of oil have long been known to affect the economy of the United
States. An economist wants to check whether the price of a barrel of crude oil affects
the consumer price index (CPI), a measure of price levels and inflation. The economist
collects two sets of data: one set comprises 14 monthly observations on increases in
the CPI, in percentage per month, when the price of crude oil is $66.00 per barrel;

E X A M P L E  8 – 5
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the other set consists of 9 monthly observations on percentage increase in the CPI
when the price of crude oil is $58.00 per barrel. The economist assumes that her data
are a random set of observations from a population of monthly CPI percentage
increases when oil sells for $66.00 per barrel, and an independent set of random
observations from a population of monthly CPI percentage increases when oil sells
for $58.00 per barrel. She also assumes that the two populations of CPI percentage
increases are normally distributed and that the variances of the two populations are
equal. Considering the nature of the economic variables in question, these are reason-
able assumptions. If we call the population of monthly CPI percentage increases when
oil sells for $66.00 population 1, and that of oil at $58.00 per barrel population 2,
then the economist’s data are as follows: � 0.317%, s1 � 0.12%, n1 � 14; � 0.210%,
s2 � 0.11%, n2 � 9. Our economist is faced with the question: Do these data provide
evidence to conclude that average percentage increase in the CPI differs when oil
sells at these two different prices?

x2x1

320 Chapter 8

FIGURE 8–8 The Template for the t Test for Difference in Means
[Testing Difference in Means.xls; Sheet: t-Test from Stats]

Test for Difference in Population Means

Assuming Population Variances are Equal

Evidence

Sample1 Sample2

Size 28 n

x-bar

Assumptions

Mean 0.19

Populations Normal

H0: Population Variances Equal

Std. Deviation 5.72

F ratio 1.25792

p-value 0.5552

28

0.72

5.1 s

-0.3660 t

s2
p

df 54

Pooled Variance 29.3642

At an � of Confidence Interval for difference in Population Means

p-value 1% 1 � �

H0: �1 � �2 = 0

H0: �1 � �2 >= 0

H0: �1 � �2 <= 0

0.7158 99% -0.53 ± 3.86682 = [ -4.3968 , 3.33682 ]

0.3579

0.6421

Confidence IntervalNull Hypothesis

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

B C D E F G H I J K M PL N O Q SR

17

18

19

20

21

22

23

24

25

26

27

Assuming Population Variances are Unequal
-0.366 t

df 53

At an � of Confidence Interval for difference in Population Means

p-value 5% 1 � �

H0: �1 � �2 = 0

H0: �1 � �2 >= 0

H0: �1 � �2 <= 0

0.7159 95% -0.53 ± 2.90483 = [ -3.4348 , 2.37483 ]

0.3579

0.6421

Confidence IntervalNull Hypothesis

Test Statistic

Test Statistic

Although the economist may have a suspicion about the possible direction of change
in the CPI as oil prices decrease, she decides to approach the situation with an open
mind and let the data speak for themselves. That is, she wants to carry out the two-
tailed test. Her test is H0: �1 � �2 � 0 versus H1: �1 � �2 
 0. Using equation 8–5,
the economist computes the value of the test statistic, which has a t distribution with
n1 � n2 � 2 � 21 degrees of freedom:

S o l u t i o n

t =
0.317 - 0.210 - 0

A (13)(0.12)2 + (8)(0.11)2

21 a 1
14

+
1
9 b

= 2.15
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Confidence Intervals
As usual, we can construct confidence intervals for the parameter in question—here,
the difference between the two population means. The confidence interval for this
parameter is based on the t distribution with n1 � n2 � 2 degrees of freedom (or z
when df is large).
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The manufacturers of compact disk players want to test whether a small price reduc-
tion is enough to increase sales of their product. Randomly chosen data on 15 weekly
sales totals at outlets in a given area before the price reduction show a sample mean
of $6,598 and a sample standard deviation of $844. A random sample of 12 weekly
sales totals after the small price reduction gives a sample mean of $6,870 and a sam-
ple standard deviation of $669. Is there evidence that the small price reduction is
enough to increase sales of compact disk players?

E X A M P L E  8 – 6

This is a one-tailed test, except that we will reverse the notation 1 and 2 so we can
conduct a right-tailed test to determine whether reducing the price increases sales
(if sales increase, then �2 will be greater than �1, which is what we want the alterna-
tive hypothesis to be). We have H0: �1 � �2 � 0 and H1: �1 � �2 � 0. We assume an
equal variance of the populations of sales at the two price levels. Our test statistic has
a t distribution with n1 � n2 � 2 � 15 � 12 � 2 � 25 degrees of freedom. The com-
puted value of the statistic, by equation 8–7, is

S o l u t i o n

t =
(6,870 - 6,598) - 0

A (14)(844)2 + (11)(669)2

25
a 1

15
+ 1

12
b

= 0.91

This value of the statistic falls inside the nonrejection region for any usual level of
significance.

A (1 � �) 100% confidence interval for (�1 � �2), assuming equal popula-
tion variance, is

(8–10)x1 - x2 � t�>2AS2
pa 1

n1
+

1
n2
b

FVS
CHAPTER 10

The confidence interval in equation 8–10 has the usual form: Estimate � Distribution
coefficient � Standard deviation of estimator.

In Example 8–6, forgetting that the test was carried out as a one-tailed test, we
compute a 95% confidence interval for the difference between the two means. Since
the test resulted in nonrejection of the null hypothesis (and would have also resulted
so had it been carried out as two-tailed), our confidence interval should contain the
null hypothesis difference between the two population means: zero. This is due to the

The computed value of the test statistic t � 2.15 falls in the right-hand rejection
region at � � 0.05, but not very far from the critical point 2.080. The p-value is there-
fore just less than 0.05. The economist may thus conclude that, based on her data and
the validity of the assumptions made, evidence suggests that the average monthly
increase in the CPI is greater when oil sells for $66.00 per barrel than it is when oil
sells for $58.00 per barrel.
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In each of the following problems assume that the two populations of interest are nor-
mally distributed with equal variance. Assume independent random sampling from
the two populations.
8–18. The recent boom in sales of travel books has led to the marketing of other travel-
related guides, such as video travel guides and audio walking-tour tapes. Waldenbooks
has been studying the market for these travel guides. In one market test, a random sam-
ple of 25 potential travelers was asked to rate audiotapes of a certain destination, and
another random sample of 20 potential travelers was asked to rate videotapes of the same
destination. Both ratings were on a scale of 0 to 100 and measured the potential travelers’
satisfaction with the travel guide they tested and the degree of possible purchase intent
(with 100 the highest). The mean score for the audio group was 87, and their standard
deviation was 12. The mean score for the video group was 64, and their standard devia-
tion was 23. Do these data present evidence that one form of travel guide is better than
the other? Advise Waldenbooks on a possible marketing decision to be made.
8–19. Business schools at certain prestigious universities offer nondegree manage-
ment training programs for high-level executives. These programs supposedly develop
executives’ leadership abilities and help them advance to higher management posi-
tions within 2 years after program completion. A management consulting firm wants
to test the effectiveness of these programs and sets out to conduct a one-tailed test,
where the alternative hypothesis is that graduates of the programs under study do
receive, on average, salaries more than $4,000 per year higher than salaries of com-
parable executives without the special university training. To test the hypotheses, the
firm traces a random sample of 28 top executives who earn, at the time the sample is
selected, about the same salaries. Out of this group, 13 executives—randomly selected
from the group of 28 executives—are enrolled in one of the university programs under
study. Two years later, average salaries for the two groups and standard deviations
of salaries are computed. The results are � 48 and s � 6 for the nonprogram execu-
tives and � 55 and s � 8 for the program executives. All numbers are in thousands
of dollars per year. Conduct the test at � � 0.05, and evaluate the effectiveness of the
programs in terms of increased average salary levels.
8–20. Recent low-fare flights between Britain and eastern European destinations
have brought large groups of English partygoers to cities such as Prague and Budapest.
According to the New York Times, cheap beer is a big draw, with an average price of $1
as compared with $6 in Britain.6 Assume these two reported averages were obtained
from two random samples of 20 establishments in London and in Prague, and that the
sample standard deviation in London was $2.5 and in Prague $1.1. Conduct a test for

x
x

� [�343.85, 887.85]

x1 - x2 � t0.025 As2
p a 1

n1
+ 1

n2
b = (6,870 - 6,598) � 2.062(595,835)(0.15)

We see that the confidence interval indeed contains the null-hypothesized difference of
zero, as expected from the fact that a two-tailed test would have resulted in nonrejec-
tion of the null hypothesis.

6Craig S. Smith, “British Bachelor Partiers Are Taking Their Revels East,” The New York Times, May 8, 2007, p. A10.

connection between hypothesis tests and confidence intervals. Let us see if this really
happens. The 95% confidence interval for �1 � �2 is
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equality of means using � � 0.05 and provide a 95% confidence interval for the aver-
age savings per beer for a visitor versus the amount paid at home in London.
8–21. As the U.S. economy cools down, investors look to emerging markets to offer
growth opportunities. In China, investments have continued to grow.7 Suppose that a
random sample of 15 investments in U.S. corporations had an average annual return
of 3.8% and standard deviation of 2.2%. For a random sample of 18 investments in
China, the average return was 6.1% and the standard deviation was 5.3%. Conduct a
test for equality of population means using � � 0.01.
8–22. Ikarus, the Hungarian bus maker, lost its important Commonwealth of Inde-
pendent States market and is reported on the verge of collapse. The company is now
trying a new engine in its buses and has gathered the following random samples of
miles-per-gallon figures for the old engine versus the new:

Old engine: 8, 9, 7.5, 8.5, 6, 9, 9, 10, 7, 8.5, 6, 10, 9, 8, 9, 5, 9.5, 10, 8
New engine: 10, 9, 9, 6, 9, 11, 11, 8, 9, 6.5, 7, 9, 10, 8, 9, 10, 9, 12, 11.5, 10, 7,

10, 8.5

Is there evidence that the new engine is more economical than the old one?
8–23. Air Transport World recently named the Dutch airline KLM “Airline of the
Year.” One measure of the airline’s excellent management is its research effort in devel-
oping new routes and improving service on existing routes. The airline wanted to test
the profitability of a certain transatlantic flight route and offered daily flights from
Europe to the United States over a period of 6 weeks on the new proposed route.
Then, over a period of 9 weeks, daily flights were offered from Europe to an alternative
airport in the United States. Weekly profitability data for the two samples were col-
lected, under the assumption that these may be viewed as independent random
samples of weekly profits from the two populations (one population is flights to the
proposed airport, and the other population is flights to an alternative airport). Data
are as follows. For the proposed route, � $96,540 per week and s � $12,522. For
the alternative route, � $85,991 and s � $19,548. Test the hypothesis that the pro-
posed route is more profitable than the alternative route. Use a significance level of
your choice.
8–24. According to Money, the average yield of a 6-month bank certificate of deposit
(CD) is 3.56%, and the average yield for money market funds (MMFs) is 4.84%.8

Assume that these two averages come from two random samples of 20 each from
these two kinds of investments, and that the sample standard deviation for the CDs is
2.8% and for the MMFs it is 3.2%. Use statistical inference to determine whether, on
average, one mode of investment is better than the other.
8–25. Mark Pollard, financial consultant for Merrill Lynch, Pierce, Fenner &
Smith, Inc., is quoted in national advertisements for Merrill Lynch as saying:
“I’ve made more money for clients by saying no than by saying yes.” Suppose that
Pollard allowed you access to his files so that you could conduct a statistical test
of the correctness of his statement. Suppose further that you gathered a random
sample of 25 clients to whom Pollard said yes when presented with their invest-
ment proposals, and you found that the clients’ average gain on investments was
12% and the standard deviation was 2.5%. Suppose you gathered another sample
of 25 clients to whom Pollard said no when asked about possible investments; the
clients were then offered other investments, which they consequently made. For
this sample, you found that the average return was 13.5% and the standard devia-
tion was 1%. Test Pollard’s claim at � � 0.05. What assumptions are you making
in this problem?

x
x
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7James Mehring, “As Trade Deficit Shrinks, a Plus for Growth,” BusinessWeek, April 30, 2007, p. 27.
8Walter Updegrave, “Plan Savings and Credit: Wave and You’ve Paid,” Money, March 2007, p. 40.
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8–26. An article reports the results of an analysis of stock market returns before and
after antitrust trials that resulted in the breakup of AT&T. The study concentrated
on two periods: the pre-antitrust period of 1966 to 1973, denoted period 1, and the
antitrust trial period of 1974 to 1981, called period 2. An equation similar to equation 8–7
was used to test for the existence of a difference in mean stock return during the two
periods. Conduct a two-tailed test of equality of mean stock return in the population
of all stocks before and during the antitrust trials using the following data: n1 � 21,

� 0.105, s1 � 0.09; n2 � 28, � 0.1331, s2 � 0.122. Use � � 0.05.
8–27. The cosmetics giant Avon Products recently hired a new advertising firm to
promote its products.9 Suppose that following the airing of a random set of 8 com-
mercials made by the new firm, company sales rose an average of 3% and the stan-
dard deviation was 2%. For a random set of 10 airings of commercials by the old
advertising firm, average sales rise was 2.3% and the standard deviation was 2.1%. Is
there evidence that the new advertising firm hired by Avon is more effective than the
old one? Explain.
8–28. In problem 8–25, construct a 95% confidence interval for the difference
between the average return to investors following a no recommendation and the
average return to investors following a yes recommendation. Interpret your results.

8–4 A Large-Sample Test for the Difference between
Two Population Proportions

When sample sizes are large enough that the distributions of the sample proportions
and are both approximated well by a normal distribution, the difference

between the two sample proportions is also approximately normally distributed, and
this gives rise to a test for equality of two population proportions based on the stan-
dard normal distribution. It is also possible to construct confidence intervals for
the difference between the two population proportions. Assuming the sample sizes
are large and assuming independent random sampling from the two populations,
the following are possible hypotheses (we consider situations similar to the ones
discussed in the previous two sections; other tests are also possible).

P$2P 1
$

x2x1
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9Stuart Elliott, “Avon Comes Calling with a New Campaign,” The New York Times, March 15, 2007, p. C4.

Situation I: H0: p1 � p2 � 0
H1: p1 � p2 
 0

Situation II: H0: p1 � p2 	 0
H1: p1 � p2 
 0

Situation III: H0: p1 � p2 	 D
H1: p1 � p2 
 D

Here D is some number other than 0.
In the case of tests about the difference between two population proportions,

there are two test statistics. One statistic is appropriate when the null hypothesis
is that the difference between the two population proportions is equal to (or greater
than or equal to, or less than or equal to) zero. This is the case, for example, in situa-
tions I and II. The other test statistic is appropriate when the null hypothesis differ-
ence is some number D different from zero. This is the case, for example, in situation
III (or in a two-tailed test, situation I, with D replacing 0).
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Note that 0 in the numerator of equation 8–11 is the null hypothesis difference
between the two population proportions; we retain it only for conceptual reasons—
to maintain the form of our test statistic: (Estimate � Hypothesized value of the
parameter)/(Standard deviation of the estimator). When we carry out computations
using equation 8–11, we will, of course, ignore the subtraction of zero. Under the null
hypothesis that the difference between the two population proportions is zero, both
sample proportions 1 and 2 are estimates of the same quantity, and therefore—
assuming, as always, that the null hypothesis is true—we pool the two estimates when
computing the estimated standard deviation of the difference between the two sample
proportions: the denominator of equation 8–11.

When the null hypothesis is that the difference between the two population
proportions is a number other than zero, we cannot assume that 1 and 2 are estimates
of the same population proportion (because the null hypothesis difference between the
two population proportions is D 
 0); in such cases we cannot pool the two estimates
when computing the estimated standard deviation of the difference between the two
sample proportions. In such cases, we use the following test statistic.

$pp$

p$p$
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The test statistic for the difference between two population proportions
where the null hypothesis difference is zero is

(8–11)

where � x1/n1 is the sample proportion in sample 1 and � x2/n2 is the
sample proportion in sample 2. The symbol stands for the combined sample
proportion in both samples, considered as a single sample. That is,

(8–12)$p =
x1 + x2

n1 + n2

p$
p$2p$1

z =
$p1 - $p2 - 02 $p(1 - $p)(1>n1 + 1>n2)

The test statistic for the difference between two population proportions
when the null hypothesis difference between the two proportions is some
number D, other than zero, is

(8–13)z =
$p1 - $p2 - D2 $p

1
(1 - $p

1
)>n1 + $p2(1 - $p2)>n2

We will now demonstrate the use of the test statistics presented in this section
with the following examples.

Finance incentives by the major automakers are reducing banks’ share of the market
for automobile loans. Suppose that in 2000, banks wrote about 53% of all car loans, and
in 2007, the banks’ share was only 43%. Suppose that these data are based on a random
sample of 100 car loans in 2000, where 53 of the loans were found to be bank loans;
and the 2007 data are also based on a random sample of 100 loans, 43 of which were
found to be bank loans. Carry out a two-tailed test of the equality of banks’ share of the
car loan market in 2000 and in 2007.

E X A M P L E  8 – 7

S o l u t i o nOur hypotheses are those described as situation I, a two-tailed test of the equality of
two population proportions. We have H0: p1 � p2 � 0 and H1: p1 � p2 
 0. Since the
null hypothesis difference between the two population proportions is zero, we can
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This value of the test statistic falls in the nonrejection region even if we use � � 0.10.
In fact, the p-value, found using the standard normal table, is equal to 0.157. We con-
clude that the data present insufficient evidence that the share of banks in the car
loan market has changed from 2000 to 2007. The test is shown in Figure 8–9.

326 Chapter 8

We also have 1 � � 0.52.
We now compute the value of the test statistic, equation 8–11:

p$

z =
$p1 - $p22 $p (1 - $p ) (1>n1 + 1>n2)

=
0.53 - 0.432(0.48)(0.52)(0.01 + 0.01)

= 1.415

FIGURE 8–9 Carrying Out the Test of Example 8–7

Rejection region
at 0.10 level

Area = 0.05

Test statistic
value = 1.415

Z distribution

Rejection region
at 0.10 level

Area = 0.05

–1.645 0 1.645

Nonrejection region

From time to time, BankAmerica Corporation comes out with its Free and Easy Travelers
Cheques Sweepstakes, designed to increase the amounts of BankAmerica traveler’s
checks sold. Since the amount bought per customer determines the customer’s chances of
winning a prize, a manager hypothesizes that, during sweepstakes time, the proportion of
BankAmerica traveler’s check buyers who buy more than $2,500 worth of checks will
be at least 10% higher than the proportion of traveler’s check buyers who buy more
than $2,500 worth of checks when there are no sweepstakes. A random sample of
300 traveler’s check buyers, taken when the sweepstakes are on, reveals that 120 of
these people bought checks for more than $2,500. A random sample of 700 traveler’s
check buyers, taken when no sweepstakes prizes are offered, reveals that 140 of these
people bought checks for more than $2,500. Conduct the hypothesis test.

E X A M P L E  8 – 8

S o l u t i o n The manager wants to prove that the population proportion of traveler’s check buyers
who buy at least $2,500 in checks when sweepstakes prizes are offered is at least 10%
higher than the proportion of such buyers when no sweepstakes are on. Therefore, this

$p =
x1 + x2

n1 + n2
=

53 + 43
100 + 100

= 0.48

use the test statistic of equation 8–11. First we calculate , the combined sample pro-
portion, using equation 8–12:

p$
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This value of the test statistic falls in the rejection region for � � 0.001 (corresponding
to the critical point 3.09 from the normal table). The p-value is therefore less than
0.001, and the null hypothesis is rejected. The manager is probably right. Figure 8–10
shows the result of the test.

Confidence Intervals
When constructing confidence intervals for the difference between two population
proportions, we do not use the pooled estimate because we do not assume that the
two proportions are equal. The estimated standard deviation of the difference
between the two sample proportions, to be used in the confidence interval, is the
denominator in equation 8–13.

The Comparison of Two Populations 327

=
(0.4 - 0.2) - 0.12(0.4)(0.6)>300 + (0.2)(0.8)>700

= 3.118

=
120>300 - 140>700 - 0.102[(120>300)(180>300)]>300 + [(140>700)(560>700)]>700

z =
$p1 - $p2 - D2 $p1 (1 - $p1 )>n1 + $p2(1 - $p2)>n2

A large-sample (1 � �) 100% confidence interval for the difference between
two population proportions is

(8–14)$p1 - $p2 � za/2 A $p1(1 - $p1)
n1

+
$p2(1 - $p2)

n2

In the context of Example 8–8, let us now construct a 95% confidence interval for
the difference between the proportion of BankAmerica traveler’s check buyers who
buy more than $2,500 worth of checks during sweepstakes and the proportion of

FIGURE 8–10 Carrying Out the Test of Example 8–8

Z distribution Test statistic
value = 3.118

Rejection region
Area = 0.001

0 3.09

Nonrejection region

should be the manager’s alternative hypothesis. We have H0: p1 � p2 	 0.10 and H1:
p1 � p2 
 0.10. The appropriate test statistic is the statistic given in equation 8–13:
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8–29. Airline mergers cause many problems for the airline industry. One variable
often quoted as a measure of an airline’s efficiency is the percentage of on-time depar-
tures. Following the merger of Republic Airlines with Northwest Airlines, the per-
centage of on-time departures for Northwest planes declined from approximately

328 Chapter 8
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FIGURE 8–11 The Template for Testing Differences in Proportions
[Testing Difference in Proportions.xls]

Comparing Two Population Proportions

Hypothesis Testing

Evidence Sample 1

Test Statistic

Test Statistic

Sample 2

Size 300 n

x

Assumption

#Successes 120
Large Samples

Proportion 0.4000

700

140

0.2000 p-hat

6.6075 z

Pooled p-hat 0.2600

At an � of

p-value 5%

H0: p1 � p2 = 0

H0: p1 � p2 >= 0

H0: p1 � p2 <= 0

0.0000

1.0000

0.0000

Reject

Reject

Null Hypothesis

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

A B C D E F G H I J K ML N O

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

Confidence Interval

1 � �

95% 0.2000 ± 0.0629 = [ 0.1371 , 0.2629 ]

Confidence Interval

Hypothesized Difference Zero

3.1180 z

At an � of

p-value 5%

H0: p1 � p2 = 0.1

H0: p1 � p2 >= 0.1

H0: p1 � p2 <= 0.1

0.0018

0.9991

0.0009

Reject

Reject

Null Hypothesis

Hypothesized Difference Nonzero

0.4 � 0.2 � 1.96 � 0.2 � 1.96(0.032)

� [0.137, 0.263]
A (0.4)(0.6)

300
+ (0.2)(0.8)

700

buyers of checks greater than this amount when no sweepstakes prizes are offered.
Using equation 8–14, we get

The manager may be 95% confident that the difference between the two proportions
of interest is anywhere from 0.137 to 0.263.

The Template
Figure 8–11 shows the template that can be used to test differences in population pro-
portions. The middle panel is used when the hypothesized difference is zero. The
bottom panel is used when the hypothesized difference is nonzero. The data in the
figure correspond to Example 8–8, where H0: p1 – p2 	 0.10. The bottom panel shows
that the p-value is 0.009, and H0 is to be rejected.
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85% to about 68%. Suppose that the percentages reported above are based on two
random samples of flights: a sample of 100 flights over a period of two months before
the merger, of which 85 are found to have departed on time; and a sample of 100
flights over a period of two months after the merger, 68 of which are found to have
departed on time. Based on these data, do you believe that Northwest’s on-time
percentage declined during the period following its merger with Republic?
8–30. A physicians’ group is interested in testing to determine whether more people in
small towns choose a physician by word of mouth in comparison with people in large
metropolitan areas. A random sample of 1,000 people in small towns reveals that 850
chose their physicians by word of mouth; a random sample of 2,500 people living in
large metropolitan areas reveals that 1,950 chose a physician by word of mouth. Conduct
a one-tailed test aimed at proving that the percentage of popular recommendation of
physicians is larger in small towns than in large metropolitan areas. Use � � 0.01.
8–31. A corporate raider has been successful in 11 of 31 takeover attempts. Anoth-
er corporate raider has been successful in 19 of 50 takeover bids. Assuming that the
success rate of each raider at each trial is independent of all other attempts, and that
the information presented can be regarded as based on two independent random
samples of the two raiders’ overall performance, can you say whether one of the
raiders is more successful than the other? Explain.
8–32. A random sample of 2,060 consumers shows that 13% prefer California
wines. Over the next three months, an advertising campaign is undertaken to show
that California wines receive awards and win taste tests. The organizers of the cam-
paign want to prove that the three-month campaign raised the proportion of people
who prefer California wines by at least 5%. At the end of the campaign, a random
sample of 5,000 consumers shows that 19% of them now prefer California wines.
Conduct the test at � � 0.05.
8–33. In problem 8–32, give a 95% confidence interval for the increase in the pop-
ulation proportion of consumers preferring California wines following the campaign.
8–34. Federal Reserve Board regulations permit banks to offer their clients commer-
cial paper. A random sample of 650 customers of Bank of America reveals that 48 own
commercial paper as part of their investment portfolios with the bank. A random
sample of customers of Chemical Bank reveals that out of 480 customers, only 20 own
commercial paper as part of their investments with the bank. Can you conclude that
Bank of America has a greater share of the new market for commercial paper? Explain.
8–35. Airbus Industrie, the European maker of the A380 long-range jet, is currently try-
ing to expand its market worldwide. At one point, Airbus managers wanted to test whether
their potential market in the United States, measured by the proportion of airline industry
executives who would prefer the A380, is greater than the company’s potential market for
the A380 in Europe (measured by the same indicator). A random sample of 120 top exec-
utives of U.S. airlines looking for new aircraft were given a demonstration of the plane, and
34 indicated that they would prefer the model to other new planes on the market. A ran-
dom sample of 200 European airline executives were also given a demonstration of the
plane, and 41 indicated that they would be interested in the A380. Test the hypothesis that
more U.S. airline executives prefer the A380 than their European counterparts.
8–36. Data from the Bureau of Labor Statistics indicate that in one recent year the
unemployment rate in Cleveland was 7.5% and the unemployment rate in Chicago
was 7.2%. Suppose that both figures are based on random samples of 1,000 people in
each city. Test the null hypothesis that the unemployment rates in both cities are
equal versus the alternative hypothesis that they are not equal. What is the p-value?
State your conclusion.
8–37. Recently, Venezuela instituted a new accounting method for its oil revenues.10

Suppose that a random sample of 100 accounting transactions using the old method
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10 José de Córdoba, “Chávez Moves Suggest Inflation Worry,” The Wall Street Journal, May 5–6, 2007, p. A4.
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reveals 18 in error, and a random sample of 100 accounts using the new method
reveals 6 errors. Is there evidence of difference in method effectiveness? Explain.
8–38. According to USA Today, 32% of the public think that credit cards are safer
than debit cards, while 19% believe that debit cards are safer than credit cards.11 If
these results are based on two independent random samples, one of people who use
primarily credit cards, and the other of people who use mostly debit cards, and the
two samples are of size 100 each, test for equality of proportions using the 0.01 level
of significance.
8–39. Several companies have been developing electronic guidance systems for cars.
Motorola and Germany’s Blaupunkt are two firms in the forefront of such research.
Out of 120 trials of the Motorola model, 101 were successful; and out of 200 tests of the
Blaupunkt model, 110 were successful. Is there evidence to conclude that the Motorola
electronic guidance system is superior to that of the German competitor?

8–5 The F Distribution and a Test for Equality of Two
Population Variances

In this section, we encounter the last of the major probability distributions useful in
statistics, the F distribution. The F distribution is named after the English statistician
Sir Ronald A. Fisher.

The F distribution is the distribution of the ratio of two chi-square random
variables that are independent of each other, each of which is divided by
its own degrees of freedom.

If we let �2
1 be a chi-square random variable with k1 degrees of freedom, and �2

2 another
chi-square random variable independent of �2

1 and having k2 degrees of freedom, the
ratio in equation 8–15 has the F distribution with k1 and k2 degrees of freedom.

330 Chapter 8

An F random variable with k1 and k2 degrees of freedom is

(8–15)F(k1, k2) =
�2

1/k1

�2
2/k2

11“Credit Card vs. Debit Card,” USA Today, March 14, 2007, p. 1B.

The F distribution thus has two kinds of degrees of freedom: k1 is called the degrees
of freedom of the numerator and is always listed as the first item in the parentheses;
k2 is called the degrees of freedom of the denominator and is always listed second
inside the parentheses. The degrees of freedom of the numerator, k1, are “inherited”
from the chi-square random variable in the numerator; similarly, k2 is “inherited”
from the other, independent chi-square random variable in the denominator of
equation 8–15.

Since there are so many possible degrees of freedom for the F random variable,
tables of values of this variable for given probabilities are even more concise than the
chi-square tables. Table 5 in Appendix C gives the critical points for F distributions with
different degrees of freedom of the numerator and the denominator corresponding to
right-tailed areas of 0.10, 0.05, 0.025, and 0.01. The second part of Table 5 gives critical
points for � � 0.05 and � � 0.01 for a wider ranger of F random variables. For example,
use Table 5 to verify that the point 3.01 cuts off an area of 0.05 to its right for an F ran-
dom variable with 7 degrees of freedom for the numerator and 11 degrees of freedom

FVS
CHAPTER 10
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for the denominator. This is demonstrated in Figure 8–12. Figure 8–13 shows various
F distributions with different degrees of freedom. The F distributions are asymmetric (a
quality inherited from their chi-square parents), and their shape resembles that of the
chi-square distributions. Note that F(7, 11) 
 F(11, 7). It is important to keep track of which
degrees of freedom are for the numerator and which are for the denominator.

Table 8–2 is a reproduction of a part of Table 5, showing values of F distributions
with different degrees of freedom cutting off a right-tailed area of 0.05.

The F distribution is useful in testing the equality of two population variances.
Recall that in Chapter 7 we defined a chi-square random variable as
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FIGURE 8–12 An F Distribution with 7 and 11 Degrees of Freedom

0 3.01

F(7,11)

Area = 0.05

Density  f(x)

x

FIGURE 8–13 Several F Distributions

0

F(5,6)

F(10,15)

F(25,30)

Density  f(x)

x

F distributions with different 
degrees of freedom

(in parentheses) 

(8–16)�2 =
(n - 1)S 2

�2

where S 2 is the sample variance from a normally distributed population. This was
the definition in the single-sample case, where n � 1 was the appropriate number
of degrees of freedom. Now suppose that we have two independent random sam-
ples from two normally distributed populations. The two samples will give rise to two sample
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(8–17)
S 2

1

S 2
2

=
�2

1�2
1>(n1 - 1)

�2
2�2

2>(n2 - 1)

When the two population variances �2
1 and �2

2 are equal, the two terms �2
1 and �2

2 can-
cel, and equation 8–17 is equal to equation 8–15, which is the ratio of two inde-
pendent chi-square random variables, each divided by its own degrees of freedom
(k1 is n1 � 1, and k2 is n2 � 1). This, therefore, is an F random variable with n1 � 1 and
n2 � 1 degrees of freedom.

The test statistic for the equality of the variances of two normally distributed
populations is

(8–18)F(n1-1, n2-1) =
S2

1

S2
2

0 Fa

� = 0.05

TABLE 8–2 Critical Points Cutting Off a Right-Tailed Area of 0.05 for Selected F Distributions

Degrees of Freedom of the Numerator (k1)

1 2 3 4 5 6 7 8 9

1 161.4 199.5 215.7 224.6 230.2 234.0 236.8 238.9 240.5

2 18.51 19.00 19.16 19.25 19.30 19.33 19.35 19.37 19.38

3 10.13 9.55 9.28 9.12 9.01 8.94 8.89 8.85 8.81

4 7.71 6.94 6.59 6.39 6.26 6.16 6.09 6.04 6.00

5 6.61 5.79 5.41 5.19 5.05 4.95 4.88 4.82 4.77

6 5.99 5.14 4.76 4.53 4.39 4.28 4.21 4.15 4.10

7 5.59 4.74 4.35 4.12 3.97 3.87 3.79 3.73 3.68

8 5.32 4.46 4.07 3.84 3.69 3.58 3.50 3.44 3.39

9 5.12 4.26 3.86 3.63 3.48 3.37 3.29 3.23 3.18

10 4.96 4.10 3.71 3.48 3.33 3.22 3.14 3.07 3.02

11 4.84 3.98 3.59 3.36 3.20 3.09 3.01 2.95 2.90

12 4.75 3.89 3.49 3.26 3.11 3.00 2.91 2.85 2.80

13 4.67 3.81 3.41 3.18 3.03 2.92 2.83 2.77 2.71

14 4.60 3.74 3.34 3.11 2.96 2.85 2.76 2.70 2.65

15 4.54 3.68 3.29 3.06 2.90 2.79 2.71 2.64 2.59

variances, S 2
1 and S 2

2, with n1 � 1 and n2 � 1 degrees of freedom, respectively. The
ratio of these two random variables is the random variable

Degrees of
Freedom of the

Denominator (k2)
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Now that we have encountered the important F distribution, we are ready to
define the test for the equality of two population variances. Incidentally, the F distri-
bution has many more uses than just testing for equality of two population variances.
In chapters that follow, we will find this distribution extremely useful in a variety of
involved statistical contexts.

A Statistical Test for Equality of Two Population Variances
We assume independent random sampling from the two populations in question. We
also assume that the two populations are normally distributed. Let the two popula-
tions be labeled 1 and 2. The possible hypotheses to be tested are the following:

A two-tailed test: H0: �2
1 � �2

2

H1: �2
1 
 �2

2

A one-tailed test: H0: �2
1 	 �2

2

H1: �2
1 
 �2

2

We will consider the one-tailed test first, because it is easier to handle. Suppose that
we want to test whether �2

1 is greater than �2
2. We collect the two independent random

samples from populations 1 and 2, and we compute the statistic in equation 8–18. We
must be sure to put s 2

1 in the numerator, because in a one-tailed test, rejection may
occur only on the right. If s2

1 is actually less than s 2
2, we can immediately not reject the

null hypothesis because the statistic value will be less than 1.00 and, hence, certainly
within the nonrejection region for any level �.

In a two-tailed test, we may do one of two things:

1. We may use the convention of always placing the larger sample variance in the
numerator. That is, we label the population with the larger sample variance
population 1. Then, if the test statistic value is greater than a critical point
cutting off an area of, say, 0.05 to its right, we reject the null hypothesis that the
two variances are equal at � � 0.10 (that is, at double the level of significance
from the table). This is so because, under the null hypothesis, either of the two
sample variances could have been greater than the other, and we are carrying
out a two-tailed test on one tail of the distribution. Similarly, if we can get 
a p-value on the one tail of rejection, we need to double it to get the actual 
p-value. Alternatively, we can conduct a two-tailed test as described next.

2. We may choose not to relabel the populations such that the greater sample
variance is on top. Instead, we find the right-hand critical point for � � 0.01 or
0.05 (or another level) from Appendix C, Table 5. We compute the left-hand
critical point for the test (not given in the table) as follows:

The left-hand critical point to go along with F(k1, k2) is given by

(8–19)

where F(k2, k1) is the right-hand critical point from the table for an F random
variable with the reverse order of degrees of freedom.

1
F(k2, k1)

Thus, the left-hand critical point is the reciprocal of the right-hand critical point
obtained from the table and using the reverse order of degrees of freedom for numer-
ator and denominator. Again, the level of significance � must be doubled. For exam-
ple, from Table 8–2, we find that the right-hand critical point for � � 0.05 with
degrees of freedom for the numerator equal to 6 and degrees of freedom for the
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S o l u t i o n Our test is a right-tailed test. We have H0: �2
1 	 �2

2 and H1: �2
1 
 �2

2. We compute the
test statistic of equation 8–18:

F(n1-1, n2-1) = F(24, 23) =
s 2

1

s 2
2

=
9.3
3.0

= 3.1

As can be seen from Figure 8–15, this value of the test statistic falls in the rejection
region for � � 0.05 and for � � 0.01. The critical point for � � 0.05, from Table 5,

FIGURE 8–14 The Critical Points for a Two-Tailed Test Using F(6, 9) and � � 0.10

0
3.37

F(6,9) distribution

Area = 0.05

0.2439

Area = 0.05

One of the problems that insider trading supposedly causes is unnaturally high stock
price volatility. When insiders rush to buy a stock they believe will increase in price,
the buying pressure causes the stock price to rise faster than under usual conditions.
Then, when insiders dump their holdings to realize quick gains, the stock price dips
fast. Price volatility can be measured as the variance of prices.

An economist wants to study the effect of the insider trading scandal and ensuing
legislation on the volatility of the price of a certain stock. The economist collects
price data for the stock during the period before the event (interception and
prosecution of insider traders) and after the event. The economist makes the assump-
tions that prices are approximately normally distributed and that the two price data
sets may be considered independent random samples from the populations of prices
before and after the event. As we mentioned earlier, the theory of finance supports
the normality assumption. (The assumption of random sampling may be somewhat
problematic in this case, but later we will deal with time-dependent observations
more effectively.) Suppose that the economist wants to test whether the event has
decreased the variance of prices of the stock. The 25 daily stock prices before the
event give s2

1 � 9.3 (dollars squared), and the 24 stock prices after the event give s2
1 �

3.0 (dollars squared). Conduct the test at � � 0.05.

E X A M P L E  8 – 9

denominator equal to 9 is C � 3.37. So, for a two-tailed test at � � 0.10 (double the
significance level from the table), the critical points are 3.37 and the point obtained
using equation 8–19, 1�F(9, 6), which, using the table, is found to be 1�4.10 � 0.2439.
This is shown in Figure 8–14.

We will now demonstrate the use of the test for equality of two population vari-
ances with examples.
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Here we placed the larger variance in the numerator because it was already labeled 1
(we did not purposely label the larger variance as 1). We can carry this out as a one-
tailed test, even though it is really two-tailed, remembering that we must double the
level of significance. Choosing � � 0.05 from the table makes this a test at true level
of significance equal to 2(0.05) � 0.10. The critical point, using 12 and 8 degrees of
freedom for numerator and denominator, respectively, is 3.28. (This is the closest
value, since our table does not list critical points for 13 and 8 degrees of freedom.) 
As can be seen, our test statistic falls inside the nonrejection region, and we may
conclude that at the 0.10 level of significance, there is no evidence that the two
population variances are different from each other.

Let us now see how this test may be carried out using the alternative method of
solution: finding a left-hand critical point to go with the right-hand one. The right-
hand critical point remains 3.28 (let us assume that this is the exact value for 13 and
8 degrees of freedom). The left-hand critical point is found by equation 8–19 as 1�F(8, 13) �
1�2.77 � 0.36 (recall that the left-hand critical point is the inverse of the critical
point corresponding to reversed-order degrees of freedom). The two tails are shown

The Comparison of Two Populations 335

FIGURE 8–15 Carrying Out the Test of Example 8–9

0
2.01 2.7

F(24,23)

Area = 0.05

Area = 0.01

Test statistic
value = 3.1

F(13, 8) =
s2

1

s2
2

=
0.122

0.112 = 1.19

Use the data of Example 8–5—n1 � 14, s1 � 0.12; n2 � 9, s2 � 0.11—to test the assump-
tion of equal population variances.

E X A M P L E  8 – 1 0

The test statistic is the same as in the previous example, given by equation 8–18: S o l u t i o n

is equal to 2.01 (see 24 degrees of freedom for the numerator and 23 degrees of
freedom for the denominator). Referring to the F table for � � 0.01 with
24 degrees of freedom for the numerator and 23 degrees of freedom for the
denominator gives a critical point of 2.70. The computed value of the test statistic,
3.1, is greater than both of these values. The p-value is less than 0.01, and the econ-
omist may conclude that (subject to the validity of the assumptions) the data pres-
ent significant evidence that the event in question has reduced the variance of the
stock’s price.
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FIGURE 8–17 The F-Distribution Template [F.xls]

F Distribution

df1 df2 Mean Variance 10% 5% 1% 0.50%

5 10 1.2500 1.3542 (1-Tail) F-Critical 2.5216 3.3258 5.6363 6.8724

0

0.1

0.2

0.3

0.4f(
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)

0.5
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15
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17

18

19

20

21

22

2.5078

p-value (1-Tailed Right)

F

0.1013

0.8987

0.2026

p-value (1-Tailed Left)

p-value (2-Tailed)

PDF of F Distribution

FIGURE 8–16 Carrying Out the Two-Tailed Test of Example 8–10

3.28

F(13,8)

Area = 0.05

Test statistic
value = 1.19

0

Area = 0.05

0.36

in Figure 8–16. Again, the value of the test statistic falls inside the nonrejection region
for this test at � � 2(0.05) � 0.10.

The Templates
Figure 8–17 shows the F-distribution template. The numerator and denominator
degrees of freedom are entered in cells B4 and C4. For any combination of degrees of
freedom, the template can be used to visualize the distribution, get critical F values,
or compute p-values corresponding to a calculated F value.

Figure 8–18 shows the template that can be used to test the equality of two popu-
lation variances from sample data. In other words, the hypothesized difference
between the variances can only be zero.

Figure 8–19 shows the template that can be used to test the equality of two
population variances when sample statistics, rather than sample data, are known. The
data in the figure correspond to Example 8–9.
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FIGURE 8–18 The Template for Testing Equality of Variances
[Testing Equality of Variances.xls; Sheet: Sample Data]

F-Test for Equality of Variances

Name 1 Name 2

Sample1 Sample2

Sample 1 Sample 2
Size 16 n

F

s21 334 405 Variance 95858.8

16

118367.7

2 150 125

3 520 540

4 95 100

5 212 200

6 30 30

At an � of7 1055 1200

p-value 5%8 300 265

H0: �2
1 � �2

2 = 0

H0: �2
1 � �2

2 >= 0

H0: �2
1 � �2

2 <= 0

0.68829 85 90

0.344110 129 206

0.655911 40 18

12

13

14

440 489

Data

Null Hypothesis

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

A B C D E F G H I J

610 590

208 310

Test Statistic 0.809839

df1 15

df2 15

FIGURE 8–19 The Template for Testing Equality of Variances
[Testing Equality of Variances.xls; Sheet: Sample Stats]

F-Test for Equality of Variances

Sample 1 Sample 2
Size 25 n

F

s2Variance 9.3

24

3

At an � of

p-value 5%

H0: �2
1 � �2

2 = 0

H0: �2
1 � �2

2 >= 0

H0: �2
1 � �2

2 <= 0

0.0085 Reject

Reject

0.9958

0.0042

Null Hypothesis

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

A B C D E

Stock Price Volatility

F G

Test Statistic 3.1

df1 24

df2 23

H I

In the following problems, assume that all populations are normally distributed.

8–40. Compaq Computer Corporation has an assembly plant in Houston, where the
company’s Deskpro computer is built. Engineers at the plant are considering a new
production facility and are interested in going online with the new facility if and only if
they can be fairly sure that the variance of the number of computers assembled per day
using the new facility is lower than the production variance of the old system. A ran-
dom sample of 40 production days using the old production method gives a sample
variance of 1,288; and a random sample of 15 production days using the proposed new
method gives a sample variance of 1,112. Conduct the appropriate test at � � 0.05.
8–41. Test the validity of the equal-variance assumption in problem 8–27.
8–42. Test the validity of the equal-variance assumption for the data presented in
problem 8–25.

P R O B L E M S
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8–43. Test the validity of the equal-variance assumption for the data presented in
problem 8–26.
8–44. The following data are independent random samples of sales of the Nissan
Pulsar model made in a joint venture of Nissan and Alfa Romeo. The data represent
sales at dealerships before and after the announcement that the Pulsar model will no
longer be made in Italy. Sales numbers are monthly.

Before: 329, 234, 423, 328, 400, 399, 326, 452, 541, 680, 456, 220
After: 212, 630, 276, 112, 872, 788, 345, 544, 110, 129, 776

Do you believe that the variance of the number of cars sold per month before the
announcement is equal to the variance of the number of cars sold per month after the
announcement?
8–45. A large department store wants to test whether the variance of waiting time
in two checkout counters is approximately equal. Two independent random
samples of 25 waiting times in each of the counters gives s1 � 2.5 minutes and s2 �
3.1 minutes. Carry out the test of equality of variances, using � � 0.02.
8–46. An important measure of the risk associated with a stock is the standard devi-
ation, or variance, of the stock’s price movements. A financial analyst wants to test
the one-tailed hypothesis that stock A has a greater risk (larger variance of price) than
stock B. A random sample of 25 daily prices of stock A gives s 2

A � 6.52, and a random
sample of 22 daily prices of stock B gives a sample variance of s 2

B � 3.47. Carry out
the test at � � 0.01.
8–47. Discuss the assumptions made in the solution of the problems in this section.

8–6 Using the Computer
Using Excel for Comparison of Two Populations
A built-in facility is available in Excel to test differences in population means. It is
described below. We shall first see the paired-difference test.

• Enter the data from the two samples in columns B and C. See Figure 8–20, where
the data are in the range B4:C12. The columns are labeled Before and After.

• Select Data Analysis in the Analysis group on the Data tab.
• In the dialog box that appears, select t-Test: Paired Two Sample for Means.

338 Chapter 8

FIGURE 8–20 Paired-Difference Test Using Excel
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• In the next dialog box that appears, enter the Variable 1 range. For the case in
the figure this range is B3:B12. Note that the range includes the label “Before.”

• Enter Variable 2 range. In the figure it is C3:C12.
• In the next box, enter the hypothesized difference between the two

populations. Often it is zero.
• If the range you entered for Variables 1 and 2 includes labels, click the Labels

box. Otherwise, leave it blank.
• Enter the desired alpha.
• Select Output range and enter E3. 
• Click the OK button. You should see an output similar to the one shown in

Figure 8–21.

The output shows that the p-value for the example is 0.000966 for the one-tailed
test and 0.001933 for the two-tailed test. While the null hypothesis for the two-tailed
test is obvious, Excel output does not make explicit what the null hypothesis for the
one-tailed test is. By looking at the means in the first line of the output we see that
the mean is larger for Before than for After. Thus we infer that the null hypothesis is
�Before � �After.

Since the p-values are so small the null hypotheses will be rejected even at an �
of 1%.

To conduct an independent random sample test, 

• Select Data Analysis in the Analysis group on the Data tab.
• In the dialog box that appears, select t-Test: Two Sample Assuming Equal

Variances.
• Fill in the dialog box as before. (See Figure 8–20.)
• Click the OK button and you should see an output similar to the one in 

Figure 8–22.

This time, the p-value for the one-tailed test is 0.117291 and for the two-tailed test,
0.234582. Since these values are larger than 10%, the null hypotheses cannot be
rejected even at an � of 10%.

You can see, from the Data Analysis dialog box, that a t-test is available for the
unequal variance case and a Z-test is available for known �’s case. The procedure is
similar for these two cases. In the case of the Z-test you will have to enter the two �’s
as well.
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FIGURE 8–21 Paired-Difference Test Output

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17

A B C D E G H
Testing Difference in Population Means

Before After t-Test: Paired Two Sample for Means
2020 2004
2037 2004 Before After
2047 2021 Mean 2100 2065.111
2056 2031 Variance 3628.25 3551.861
2110 2045 Observations 9 9
2141 2059 Pearson Correlation 0.925595
2151 2133 Hypothesized Mean Difference 0
2167 2135 df 8
2171 2154 t Stat 4.52678

P(T<=t) one-tail 0.000966
t Critical one-tail 1.859548
P(T<=t) two-tail 0.001933
t Critical two-tail 2.306004

F
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FIGURE 8–22 Output of t-Test Assuming Equal Variances

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17

A B C D E G H
Testing Difference in Population Means

Before After t-Test: Two-Sample Assuming Equal Variances
2020 2004
2037 2004 Before After
2047 2021 Mean 2100 2065.111
2056 2031 Variance 3628.25 3551.861
2110 2045 Observations 9 9
2141 2059 Pooled Variance 3590.056
2151 2133 Hypothesized Mean Difference 0
2167 2135 df 16
2171 2154 t Stat 1.235216

P(T<=t) one-tail 0.117291
t Critical one-tail 1.745884
P(T<=t) two-tail 0.234582
t Critical two-tail 2.119905

F

FIGURE 8–23 Output of F-Test for Equality of Population Variances

1
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4
5
6
7
8
9
10
11
12
13

A B C D E G H
Testing Difference in Population Means

Before After F-Test: Two-Sample for Variances
2020 2004
2037 2004 Before After
2047 2021 Mean 2100 2065.111
2056 2031 Variance 3628.25 3551.861
2110 2045 Observations 9 9
2141 2059 df 8
2151 2133 F 1.021507
2167 2135 P(F<=f) one-tail 0.488365
2171 2154 F Critical one-tail 3.438101

F

8

A built-in F-test in Excel can be used to test if two population variances are equal:

• Enter the sample data from the two populations in columns B and C. For our
example, we will use the same data we used above.

• Select Data Analysis in the Analysis group on the Data tab.
• In the dialog box that appears, select F-Test Two Sample for Variances.
• Fill in the F-Test dialog box as in the previous examples.
• Click the OK button. You should see an output similar to Figure 8–23.

Using MINITAB for Comparison of Two Samples
In this section we illustrate the use of MINITAB for hypothesis testing to compare
two populations.

To run a t test of the difference between two population means, start by choosing
Stat � Basic Statistics � 2-Sample t. This option performs an independent two-
sample t test and generates a confidence interval. When the corresponding dialog box
appears as shown in Figure 8–24, select Samples in one column if the sample data
are in a single column, differentiated by subscript values (group codes) in a second
column. Enter the column containing the data in Samples and the column containing
the sample subscripts in Subscripts. If the data of the two samples are in separate
columns, select Samples in different columns and enter the column containing each
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sample in the corresponding box. You can also choose Summarized data if you have
summary values for the sample size, mean, and standard deviation for each sample.
Check Assume equal variances to assume that the populations have equal variances.
The default is to assume unequal variances. If you check Assume equal variances, the
sample standard deviations are pooled to obtain a single estimate of �. Then click on
the Options button. Enter the level of confidence desired. You can also define the
null hypothesis value in the Test difference box. The default is zero, or that the two
population means are equal. Choose less than (left-tailed), not equal (two-tailed), or
greater than (right-tailed) from Alternative, depending on the kind of test that you
want. Then click the OK button. The corresponding Session commands and dialog
box are shown in Figure 8–24.

MINITAB can also run a paired t test. Choose Stat � Basic Statistics � Paired t to
compute a confidence interval and perform a hypothesis test of the mean difference
between paired observations in the population. Paired t evaluates the first sample
minus the second sample. The settings are similar to the previous dialog box.

You can also use MINITAB to perform a test for comparing two population
proportions. Choose Stat � Basic Statistics � 2 Proportions from the menu bar to
compute a confidence interval and perform a hypothesis test of the difference
between two proportions.

Many statistical procedures, including the two-sample t-test procedures, assume
that the two samples are from populations with equal variance. The two-variances
test procedure will test the validity of this assumption. To perform a hypothesis test for
equality, or homogeneity, of variance in two populations, choose Stat � Basic Statistics
� 2 Variances from the menu bar.

8–7 Summary and Review of Terms
In this chapter, we extended the ideas of hypothesis tests and confidence intervals to
the case of two populations. We discussed the comparisons of two population means,
two population proportions, and two population variances. We developed a hypothe-
sis test and confidence interval for the difference between two population means when

The Comparison of Two Populations 341

FIGURE 8–24 Using MINITAB for the t Test of the Difference between Two Means
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12“Why Buy Your New Grad Some Health Coverage,” Money, May 2007, p. 20.
13Louise Story, “Viewers Fast-Forwarding Past Ads? Not Always,” The New York Times, February 16, 2007, p. A1.

A D D I T I O N A L  P R O B L E M S

8–48. According to Money, the average cost of repairing a broken leg is $10,402,
and the average cost of repairing a knee injury is $11,359.12 Assume that these two
statistics are sample averages based on two independent random samples of 200 peo-
ple each and that the sample standard deviation for the cost of repairing a broken leg
was $8,500 and for a knee injury it was $9,100. Conduct a test for equality of means
using � � 0.05.

8–49. In problem 8–48, construct a 99% confidence interval for the difference
between the average cost of repairing a broken leg and the average cost of repairing
an injured knee. Interpret your results.

8–50. “Strategizing for the future” is management lingo for sessions that help man-
agers make better decisions. Managers who deliver the best stock performance get
results by bold, rule-breaking strategies. To test the effectiveness of “strategizing for
the future,” companies’ 5-year average stock performance was considered before,
and after, consultant-led “strategizing for the future” sessions were held.

Before (%) After (%)

10 12

12 16

8 �2

�5 10

�1 11

5 18

�3 �8

16 20

�2 �1

13 21

17 24

Test the effectiveness of the program, using � � 0.05.
8–51. For problem 8–50, construct a 95% confidence interval for the difference in
stock performance.
8–52. According to a study reported in the New York Times, 48% of the viewers who
watched NFL Football on TiVo viewed 1 to 6 commercials, while 26% of the viewers
who watched Survivor: Cook Islands on TiVo viewed 1 to 6 commercials.13 If this infor-
mation is based on two independent random samples of 200 viewers each, test for
equality of proportions using � � 0.05.
8–53. For problem 8-52, give a 99% confidence interval for the difference between
the proportions for viewers of the two shows who watched 1 to 6 commercials. Inter-
pret the results.

the population variances were believed to be equal, and in the general case when they
are not assumed equal. We introduced an important family of probability distributions:
the F distributions. We saw that each F distribution has two kinds of degrees of free-
dom: one associated with the numerator and one associated with the denominator of
the expression for F. We saw how the F distribution is used in testing hypotheses about
two population variances. In the next chapter, we will make use of the F distribution in
tests of the equality of several population means: the analysis of variance.
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8–54. According to the New York Times, the average number of roses imported to
the United States from Costa Rica is 1,242 per month, while the average number
imported from Guatemala each month is 1,240.14 Assume that these two numbers are
the averages of samples of 15 months each, and that both sample standard deviations
are 50. Conduct a test for equality of means using the 0.05 level of significance.
8–55. Two movies were screen-tested at two different samples of theaters. Mystic
River was viewed at 80 theaters and was considered a success in terms of box office
sales in 60 of these theaters. Swimming Pool was viewed at a random sample of 100
theaters and was considered a success in 65. Based on these data, do you believe that
one of these movies was a greater success than the other? Explain.
8–56. For problem 8–55, give a 95% confidence interval for the difference in
proportion of theaters nationwide where one movie will be preferred over the other.
Is the point 0 contained in the interval? Discuss.
8–57. Two 12-meter boats, the K boat and the L boat, are tested as possible con-
tenders in the America’s Cup races. The following data represent the time, in minutes,
to complete a particular track in independent random trials of the two boats:

K boat: 12.0, 13.1, 11.8, 12.6, 14.0, 11.8, 12.7, 13.5, 12.4, 12.2, 11.6, 12.9
L boat: 11.8, 12.1, 12.0, 11.6, 11.8, 12.0, 11.9, 12.6, 11.4, 12.0, 12.2, 11.7

Test the null hypothesis that the two boats perform equally well. Is one boat faster, on
average, than the other? Assume equal population variances.
8–58. In problem 8–57, assume that the data points are paired as listed and that
each pair represents performance of the two boats at a single trial. Conduct the test,
using this assumption. What is the advantage of testing using the paired data versus
independent samples?
8–59. Home loan delinquencies have recently been causing problems throughout
the American economy. According to USA Today, the percentage of homeowners
falling behind on their mortgage payments in some sections of the West has been
4.95%, while in some areas of the South that rate was 6.79%.15 Assume that these num-
bers are derived from two independent samples of 1,000 homeowners in each region.
Test for equality of proportions of loan default in the two regions using � � 0.05.
8–60. The IIT Technical Institute claims “94% of our graduates get jobs.” Assume
that the result is based on a random sample of 100 graduates of the program. Suppose
that an independent random sample of 125 graduates of a competing technical insti-
tute reveals that 92% of these graduates got jobs. Is there evidence to conclude that
one institute is more successful than the other in placing its graduates?
8–61. The power of supercomputers derives from the idea of parallel processing.
Engineers at Cray Research are interested in determining whether one of two paral-
lel processing designs produces faster average computing time, or whether the two
designs are equally fast. The following are the results, in seconds, of independent
random computation times using the two designs.

Design 1 Design 2

2.1, 2.2, 1.9, 2.0, 1.8, 2.4, 2.6, 2.5, 2.0, 2.1, 2.6, 3.0,

2.0, 1.7, 2.3, 2.8, 1.9, 3.0, 2.3, 2.0, 2.4, 2.8, 3.1, 2.7,

2.5, 1.8, 2.2 2.6

Assume that the two populations of computing time are normally distributed and that
the two population variances are equal. Is there evidence that one parallel processing
design allows for faster average computation than the other?
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14“Faraway Flowers,” The New York Times, February 11, 2007, p. B2.
15Noelle Knox, “Record Foreclosures Reel Lenders,” USA Today, March 14, 2007, p. 1B.
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8–62. Test the validity of the equal-variance assumption in problem 8–61. If you
reject the null hypothesis of equal-population variance, redo the test of problem 8–61
using another method.

8–63. The senior vice president for marketing at Westin Hotels believes that the
company’s recent advertising of the Westin Plaza in New York has increased the aver-
age occupancy rate at that hotel by at least 5%. To test the hypothesis, a random
sample of daily occupancy rates (in percentages) before the advertising is collected. A
similar random sample of daily occupancy rates is collected after the advertising took
place. The data are as follows.

Before Advertising (%) After Advertising (%)

86, 92, 83, 88, 79, 81, 90, 88, 94, 97, 99, 89, 93, 92,

76, 80, 91, 85, 89, 77, 91, 98, 89, 90, 97, 91, 87, 80,

83 88, 96

Assume normally distributed populations of occupancy rates with equal population
variances. Test the vice president’s hypothesis.

8–64. For problem 8–63, test the validity of the equal-variance assumption.

8–65. Refer to problem 8–48. Test the null hypothesis that the variance of the cost of
repairing a broken leg is equal to the variance of the cost of repairing an injured knee.

8–66. Refer to problem 8–57. Do you believe that the variance of performance
times for the K boat is about the same as the variance of performance times for the L
boat? Explain. What are the implications of your result on the analysis of problem
8–57? If needed, redo the analysis in problem 8–57.

8–67. A company is interested in offering its employees one of two employee ben-
efit packages. A random sample of the company’s employees is collected, and each
person in the sample is asked to rate each of the two packages on an overall prefer-
ence scale of 0 to 100. The order of presentation of each of the two plans is random-
ly selected for each person in the sample. The paired data are:

Program A: 45, 67, 63, 59, 77, 69, 45, 39, 52, 58, 70, 46, 60, 65, 59, 80
Program B: 56, 70, 60, 45, 85, 79, 50, 46, 50, 60, 82, 40, 65, 55, 81, 68

Do you believe that the employees of this company prefer, on the average, one pack-
age over the other? Explain.

8–68. A company that makes electronic devices for use in hospitals needs to decide
on one of two possible suppliers for a certain component to be used in the devices.
The company gathers a random sample of 200 items made by supplier A and finds
that 12 items are defective. An independent random sample of 250 items made by
supplier B reveals that 38 are defective. Is one supplier more reliable than the other?
Explain.

8–69. Refer to problem 8–68. Give a 95% confidence interval for the difference in
the proportions of defective items made by suppliers A and B.

8–70. Refer to problem 8–63. Give a 90% confidence interval for the difference in
average occupancy rates at the Westin Plaza hotel before and after the advertising.

8–71. Toys are entering the virtual world, and Mattel recently developed a digital
version of its famous Barbie. The average price of the virtual doll is reported to
be $60.16 A competing product sells for an average of $65. Suppose both averages are
sample estimates based on independent random samples of 25 outlets selling Barbie

344 Chapter 8

16Christopher Palmeri, “Barbie Goes from Vinyl to Virtual,” BusinessWeek, May 7, 2007, p. 68.
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software and 20 outlets selling the competing virtual doll, and suppose the sample
standard deviation for Barbie is $14 and for the competing doll it is $8. Test for equal-
ity of average price using the 0.05 level of significance.

8–72. Microlenders are institutions that lend relatively small amounts of money to
businesses. An article on microlenders compared the average return on equity for
lenders of two categories based on their credit ratings: Alpha versus Beta. For the
Alpha group, a random sample of 74 firms, the average return on equity was 28%.
For the Beta group, a random sample of 65 firms, the average return on equity was
22%.17 Assume both sample standard deviations were 6%, and test for equality of
mean return on investment using � � 0.05.

8–73. Refer to the situation of problem 8–72. The study also compared average port-
folios of microloans. For the Alpha group it was $50 million, and for the Beta group
it was $14 million. Assume the Alpha group had a standard deviation of $20 million
and the Beta group had a standard deviation of $8 million. Construct a 95% confi-
dence interval for the difference in mean portfolio size for firms in the two groups of
credit ratings.

8–74. According to Labor Department statistics, the average U.S. work week short-
ened from 39 hours in the 1950s and early 1960s to 35 hours in the 1990s. Assume
the two statistics are based on independent t samples of 2,500 workers each, and the
standard deviations are both 2 hours. 

a. Test for significance of change.
b. Give a 95% confidence interval for the difference.

8–75. According to Fortune, there has been an average decrease of 86% in the
Atlantic cod catch over the last two decades.18 Suppose that two areas are monitored
for catch sizes and one of them has a daily average of 1.7 tons and a standard devia-
tion of 0.4 ton, while the other has an average daily catch of 1.5 tons and a standard
deviation of 0.7 ton. Both estimates are obtained from independent random samples
of 25 days. Conduct a test for equality of mean catch and report your p-value.

8–76. A survey finds that 62% of lower-income households have Internet access at
home as compared to 70% of upper-income households. Assume that the data are
based on random samples of size 500 each. Does this demonstrate that lower-income
households are less likely to have Internet access than the upper-income households?
Use � � 0.05.

8–77. For problem 8—75, construct a 95% confidence interval for the difference
between average catch in the two locations.

8–78. Two statisticians independently estimate the variance of the same normally
distributed population, each using a random sample of size 10. One of their estimates
is 3.18 times as large as the other. In such situations, how likely is the larger estimate
to be at least 3.18 times the smaller one?

8–79. A manufacturer uses two different trucking companies to ship its merchan-
dise. The manufacturer suspects that one company is charging more than the other
and wants to test it. A random sample of the amounts charged for one truckload
shipment from Chicago to Detroit on various days is collected for each trucking
company. The data (in dollars) is given below.

Company 1: 2,570, 2,480, 2,870, 2,975, 2,660, 2,380, 2,590, 2,550, 2,485,
2,585, 2,710

Company 2: 2,055, 2,940, 2,850, 2,475, 1,940, 2,100, 2,655, 1,950, 2,115
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17“Small Loans and Big Ambitions,” The Economist, March 17, 2007, p. 84.
18 Susan Casey, “Eminence Green,” Fortune, April 2, 2007, p. 67.



Aczel−Sounderpandian: 
Complete Business 
Statistics, Seventh Edition

8. The Comparison of Two 
Populations

Text348 © The McGraw−Hill 
Companies, 2009

346 Chapter 8

Atire manufacturing company invents a new,
cheaper method for carrying out one of the
steps in the manufacturing process. The compa-

ny wants to test the new method before adopting it,
because the method could alter the interply shear
strength of the tires produced.

To test the acceptability of the new method,
the company formulates the null and alternative
hypotheses as

CASE 10 Tiresome Tires II

a. Assuming that the two populations are normally distributed with equal
variance, test the null hypothesis that the two companies’ average charges
are equal.

b. Test the assumption of equal variance.
c. Assuming unequal variance, test the null hypothesis that the two compa-

nies’ average charges are equal.

H0: �1 � �2 	 0
H1: �1 � �2 
 0

where �1 is the population mean of the interply shear
strength of the tires produced by the old method and
�2 that of the tires produced by the new method. The
evidence is gathered through a destructive test of 40
randomly selected tires from each method. Following
are the data gathered:

No. Sample 1 Sample 2 No. Sample 1 Sample 2
1 2792 2713 13 2718 2680

2 2755 2741 14 2719 2786

3 2745 2701 15 2751 2737

4 2731 2731 16 2755 2740

5 2799 2747 17 2685 2760

6 2793 2679 18 2700 2748

7 2705 2773 19 2712 2660

8 2729 2676 20 2778 2789

9 2747 2677 21 2693 2683

10 2725 2721 22 2740 2664

11 2715 2742 23 2731 2757

12 2782 2775 24 2707 2736

25 2754 2741 33 2741 2757

26 2690 2767 34 2789 2788

27 2797 2751 35 2723 2676

28 2761 2723 36 2713 2779

29 2760 2763 37 2781 2676

30 2777 2750 38 2706 2690

31 2774 2686 39 2776 2764

32 2713 2727 40 2738 2720

1. Test the null hypothesis at � � 0.05.
2. Later it was found that quite a few tires failed

on the road. As a part of the investigation, the
above hypothesis test is reviewed. Considering
the high cost of type II error, the value of 5%
for � is questioned. The response was that the
cost of type I error is also high because the
new method could save millions of dollars.
What value for � would you say is appropriate?
Will the null hypothesis be rejected at that �?

3. A review of the tests conducted on the samples
reveals that 40 otherwise identical pairs of tires
were randomly selected and used. The two
tires in each pair underwent the two different
methods, and all other steps in the manufacturing
process were identically carried out on the two
tires. By virtue of this fact, it is argued that a
paired difference test is more appropriate.
Conduct a paired difference test at � � 0.05.

4. The manufacturer moves to reduce the variance
of the strength by improving the process. Will the
reduction in the variance of the process increase
or decrease the chances of type I and type II
errors?
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9
After studying this chapter, you should be able to:

• Explain the purpose of ANOVA.
• Describe the model and computations behind ANOVA.
• Explain the test statistic F.
• Conduct a one-way ANOVA.
• Report ANOVA results in an ANOVA table.
• Apply a Tukey test for pairwise analysis.
• Conduct a two-way ANOVA.
• Explain blocking designs.
• Apply templates to conduct one-way and two-way ANOVA.

ANALYSIS OF VARIANCE

1
1
1
1
1
1
1

1 1 1 1 1
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Recently, interest has been growing around the
world in good wine. But navigating the enchant-
ing world of wines is not easy. There are hun-
dreds of kinds of grapes, thousands of wineries,

some very small and some huge, and then there are the vintage years—some excellent
in some regions, some not remarkable. The wine-making industry has therefore been
researched heavily. Several agencies as well as newspapers, magazines, and Web sites
rate wines, either on a five-star system or on a 0-to-100 scale, giving a rating for a
particular wine made from a given grape at a given winery, located at a given wine-
making region in a particular year. Often wines are compared to see which one the
public and wine experts like best. Often grapes themselves are rated in wine tests. For
example, wine experts will rate many wines broken into the four important types of
grapes used in making the wine: chardonnay, merlot, chenin blanc, and cabernet
sauvignon. A wine industry researcher will want to know whether, on average, these
four wine categories based on grape used are equally rated by experts. Since more than
two populations are to be compared (there are four kinds of grape in this example),
the methods of the previous chapter no longer apply. A set of pairwise tests cannot
be conducted because the power of the test will decrease. To carry out a compari-
son of the means of several populations calls for a new statistical method, analysis of
variance. The method is often referred to by its acronym: ANOVA. Analysis of vari-
ance is the first of several advanced statistical techniques to be discussed in this book.
Along with regression analysis, described in the next two chapters, ANOVA is the
most commonly quoted advanced research method in the professional business and
economic literature. What is analysis of variance? The name of the technique may
seem misleading.

ANOVA is a statistical method for determining the existence of differences
among several population means.

While the aim of ANOVA is to detect differences among several population means,
the technique requires the analysis of different forms of variance associated with the
random samples under study—hence the name analysis of variance.

The original ideas of analysis of variance were developed by the English statisti-
cian Sir Ronald A. Fisher during the first part of the 20th century. (Recall our men-
tion of Fisher in Chapter 8 in reference to the F distribution.) Much of the early work
in this area dealt with agricultural experiments where crops were given different
“treatments,” such as being grown using different kinds of fertilizers. The researchers
wanted to determine whether all treatments under study were equally effective or
whether some treatments were better than others. Better referred to those treatments
that would produce crops of greater average weight. This question is answerable
by the analysis of variance. Since the original work involved different treatments, the
term remained, and we use it interchangeably with populations even when no actual
treatment is administered. Thus, for example, if we compare the mean income in
four different communities, we may refer to the four populations as four different
treatments.

In the next section, we will develop the simplest form of analysis of variance—the
one-factor, fixed-effects, completely randomized design model. We may ignore this
long name for now.

1 1 1 1 1

1
1
1
1
1
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n � n1 � n2 � � � � � nr

9–2 The Hypothesis Test of Analysis of Variance

The hypothesis test of analysis of variance is as follows:

H0: �1 � �2 � �3 � � � � � �r
H1: Not all �i (i � 1, . . . , r) are equal (9–1)

350 Chapter 9

There are r populations, or treatments, under study. We draw an independent ran-
dom sample from each of the r populations. The size of the sample from population
i (i � 1, . . . , r) is ni , and the total sample size is

From the r samples we compute several different quantities, and these lead to a com-
puted value of a test statistic that follows a known F distribution when the null
hypothesis is true and some assumptions hold. From the value of the statistic and the
critical point for a given level of significance, we are able to make a determination of
whether we believe that the r population means are equal.

Usually, the number of compared means r is greater than 2. Why greater than 2?
If r is equal to 2, then the test in equation 9–1 is just a test for equality of two popu-
lation means; although we could use ANOVA to conduct such a test, we have seen
relatively simple tests of such hypotheses: the two-sample t tests discussed in Chapter 8.
In this chapter, we are interested in investigating whether several population means
may be considered equal. This is a test of a joint hypothesis about the equality of several
population parameters. But why can we not use the two-sample t tests repeatedly?
Suppose we are comparing r � 5 treatments. Why can we not conduct all possible
pairwise comparisons of means using the two-sample t test? There are 10 such possible
comparisons (10 choices of five items taken two at a time, found by using a combina-
torial formula presented in Chapter 2). It should be possible to make all 10 comparisons.
However, if we use, say, � � 0.05 for each test, then this means that the probability
of committing a type I error in any particular test (deciding that the two population
means are not equal when indeed they are equal) is 0.05. If each of the 10 tests has a
0.05 probability of a type I error, what is the probability of a type I error if we state,
“Not all the means are equal” (i.e., rejecting H0 in equation 9–1)? The answer to this
question is not known!1

If we need to compare more than two population means and we want to remain
in control of the probability of committing a type I error, we need to conduct a joint
test. Analysis of variance provides such a joint test of the hypotheses in equation 9–1.
The reason for ANOVA’s widespread applicability is that in many situations we need
to compare more than two populations simultaneously. Even in cases in which we need
to compare only two treatments, say, test the relative effectiveness of two different
prescription drugs, our actual test may require the use of a third treatment: a control
treatment, or a placebo.

We now present the assumptions that must be satisfied so that we can use the
analysis-of-variance procedure in testing our hypotheses of equation 9–1.

1The problem is complicated because we cannot assume independence of the 10 tests, and therefore we cannot use
a probability computation for independent events. The sample statistics used in the 10 tests are not independent since two
such possible statistics are 1 � 2 and 2 � 3. Both statistics contain a common term 3 and thus are not independent
of each other.

XXXXX
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ANOVA test statistic � F(r � 1, n � r) (9–2)

The required assumptions of ANOVA:

1. We assume independent random sampling from each of the r
populations.

2. We assume that the r populations under study are normally distrib-
uted, with means �i that may or may not be equal, but with equal
variances �2.

Suppose, for example, that we are comparing three populations and want to deter-
mine whether the three population means �1, �2, and �3 are equal. We draw separate
random samples from each of the three populations under study, and we assume that
the three populations are distributed as shown in Figure 9–1.

These model assumptions are necessary for the test statistic used in analysis
of variance to possess an F distribution when the null hypothesis is true. If the
populations are not exactly normally distributed, but have distributions that are close
to a normal distribution, the method still yields good results. If, however, the distri-
butions are highly skewed or otherwise different from normality, or if the population
variances are not approximately equal, then ANOVA should not be used, and
instead we must use a nonparametric technique called the Kruskal-Wallis test. This
alternative technique is described in Chapter 14.

The Test Statistic
As mentioned earlier, when the null hypothesis is true, the test statistic of analysis of
variance follows an F distribution. As you recall from Chapter 8, the F distribution
has two kinds of degrees of freedom: degrees of freedom for the numerator and
degrees of freedom for the denominator.

In the analysis of variance, the numerator degrees of freedom are r � 1, and the
denominator degrees of freedom are n � r. In this section, we will not present the cal-
culations leading to the computed value of the test statistic. Instead, we will assume
that the value of the statistic is given. The computations are a topic in themselves and
will be presented in the next section. Analysis of variance is an involved technique,
and it is difficult and time-consuming to carry out the required computations by
hand. Consequently, computers are indispensable in most situations involving analy-
sis of variance, and we will make extensive use of the computer in this chapter. For
now, let us assume that a computer is available to us and that it provides us with the
value of the test statistic.
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FIGURE 9–1 Three Normally Distributed Populations with Different Means 
but with Equal Variance
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Major roasters and distributors of coffee in the United States have long felt great
uncertainty in the price of coffee beans. Over the course of one year, for example,
coffee futures prices went from a low of $1.40 per pound up to $2.50 and then down
to $2.03. The main reason for such wild fluctuations in price, which strongly affect
the performance of coffee distributors, is the constant danger of drought in Brazil.
Since Brazil produces 30% of the world’s coffee, the market for coffee beans is very
sensitive to the annual rumors of impending drought.

Recently a domestic coffee distributor decided to avert the problem altogether by
eliminating Brazilian coffee from all blends the company distributes. Before taking
such action, the distributor wanted to minimize the chances of suffering losses in sales
volume. Therefore, the distributor hired a market research firm to conduct a statisti-
cal test of consumers’ taste preferences. The research firm made arrangements with
several large restaurants to serve randomly chosen groups of their customers differ-
ent kinds of after-dinner coffee. Three kinds of coffee were served: a group of 21 ran-
domly chosen customers were served pure Brazilian coffee; another group of 20
randomly chosen customers were served pure Colombian coffee; and a third group
of 22 randomly chosen customers were served pure African-grown coffee.

This is the completely randomized design part of the name of the ANOVA technique
we mentioned at the end of the last section. In completely randomized design, the
experimental units (in this case, the people involved in the experiment) are randomly
assigned to the three treatments, the treatment being the kind of coffee they are served.
Later in this chapter, we will encounter other designs useful in many situations. To pre-
vent a response bias, the people in this experiment were not told the kind of coffee
they were being served. The coffee was listed as a “house blend.”

Suppose that data for the three groups were consumers’ ratings of the coffee on a
scale of 0 to 100 and that certain computations were carried out with these data (compu-
tations will be discussed in the next section), leading to the following value of the ANOVA

E X A M P L E  9 – 1

FIGURE 9–2 Distribution of the ANOVA Test Statistic for r � 4 Populations 
and a Total Sample Size n � 54

2.790

Area = 0.05

F(3, 50)

Figure 9–2 shows the F distribution with 3 and 50 degrees of freedom, which would
be appropriate for a test of the equality of four population means using a total sample
size of 54. Also shown is the critical point for � � 0.05, found in Appendix C, Table 5.
The critical point is 2.79. For reasons explained in the next section, the test is carried
out as a right-tailed test.

We now have the basic elements of a statistical hypothesis test within the context of
ANOVA: the null and alternative hypotheses, the required assumptions, and a distribution
of the test statistic when the null hypothesis is true. Let us look at an example.
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H0: �1 � �2 � �3

H1: Not all three �i are equal

FIGURE 9–3 Some of the Possible Relationships among the Relative Magnitudes 
of the Three Population Means �1, �2, and �3

M
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�
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are all different
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Legend:
Population 1
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test statistic: F � 2.02. Is there evidence to conclude that any of the three kinds of coffee
leads to an average consumer rating different from that of the other two kinds?
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The null and alternative hypotheses here are, by equation 9–1, S o l u t i o n

Let us examine the meaning of the null and alternative hypotheses in this example.
The null hypothesis states that average consumer responses to each of the three kinds
of coffee are equal. The alternative hypothesis says that not all three population
means are equal. What are the possibilities covered under the alternative hypothesis?
The possible relationships among the relative magnitudes of any three real numbers
�1, �2, and �3 are shown in Figure 9–3.

As you can see from Figure 9–3, the alternative hypothesis is composed of sever-
al different possibilities—it includes all the cases where not all three means are equal.
Thus, if we reject the null hypothesis, all we know is that statistical evidence allows us
to conclude that not all three population means are equal. However, we do not know
in what way the means are different. Therefore, once we reject the null hypothesis,
we need to conduct further analysis to determine which population means are differ-
ent from one another. The further analysis following ANOVA will be discussed in
a later section.

We have a null hypothesis and an alternative hypothesis. We also assume that the
conditions required for ANOVA are met; that is, we assume that the three popula-
tions of consumer responses are (approximately) normally distributed with equal
population variance. Now we need to conduct the test.

Since we are studying three populations, or treatments, the degrees of freedom
for the numerator are r � 1 � 3 � 1 � 2. Since the total sample size is n � n1 � n2 �
n3 � 21 � 20 � 22 � 63, we find that the degrees of freedom for the denominator are
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P R O B L E M S

9–1. Four populations are compared by analysis of variance. What are the possible
relations among the four population means covered under the null and alternative
hypotheses?
9–2. What are the assumptions of ANOVA?
9–3. Three methods of training managers are to be tested for relative effectiveness.
The management training institution proposes to test the effectiveness of the three
methods by comparing two methods at a time, using a paired-t test. Explain why this
is a poor procedure.
9–4. In an analysis of variance comparing the output of five plants, data sets of 21
observations per plant are analyzed. The computed F statistic value is 3.6. Do you
believe that there are differences in average output among the five plants? What is
the approximate p-value? Explain.
9–5. A real estate development firm wants to test whether there are differences in the
average price of a lot of a given size in the center of each of four cities: Philadelphia,

FIGURE 9–4 Carrying Out the Test of Example 9–1

F(2, 60)

Computed
test statistic
value = 2.02

Rejection
region

Area = 0.10

Area = 0.05

2.39 3.15

n � r � 63 � 3 � 60. Thus, when the null hypothesis is true, our test statistic has an
F distribution with 2 and 60 degrees of freedom: F(2, 60). From Appendix C, Table 5,
we find that the right-tailed critical point at � � 0.05 for an F distribution with 2 and
60 degrees of freedom is 3.15. Since the computed value of the test statistic is equal
to 2.02, we may conclude that at the 0.05 level of significance there is insufficient
evidence to conclude that the three means are different. The null hypothesis that
all three population means are equal cannot be rejected. Since the critical point for
� � 0.10 is 2.39, we find that the p-value is greater than 0.10.

Our data provide no evidence that consumers tend to prefer the Brazilian coffee
to the other two brands. The distributor may substitute one of the other brands for
the price-unstable Brazilian coffee. Note that we usually prefer to make conclusions
based on the rejection of a null hypothesis because nonrejection is often considered a
weak conclusion. The results of our test are shown in Figure 9–4.

In this section, we have seen the basic elements of the hypothesis test underlying
analysis of variance: the null and alternative hypotheses, the required assumptions,
the test statistic, and the decision rule. We have not, however, seen how the test
statistic is computed from the data or the reasoning behind its computation. The theory
and the computations of ANOVA are explained in the following sections.
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New York, Washington, and Baltimore. Random samples of 52 lots in Philadelphia, 38
lots in New York, 43 lots in Washington, and 47 lots in Baltimore lead to a computed
test statistic value of 12.53. Do you believe that average lot prices in the four cities are
equal? How confident are you of your conclusion? Explain.

9–3 The Theory and the Computations of ANOVA
Recall that the purpose of analysis of variance is to detect differences among several
population means based on evidence provided by random samples from these popula-
tions. How can this be done? We want to compare r population means. We use r random
samples, one from each population. Each random sample has its own mean. The mean
of the sample from population i will be denoted by xi. We may also compute the mean
of all data points in the study, regardless of which population they come from. The mean
of all the data points (when all data points are considered a single set) is called the grand
mean and is denoted by . These means are given by the following equations.

The mean of sample i (i � 1, . . . , r) is

(9–3)

The grand mean, the mean of all the data points, is

(9–4)

where xij is the particular data point in position j within the sample from
population i. The subscript i denotes the population, or treatment, and
runs from 1 to r. The subscript j denotes the data point within the sample
from population i; thus, j runs from 1 to ni.

In Example 9–1, r � 3, n1 � 21, n2 � 20, n3 � 22, and n � n1 � n2 � n3 � 63. The
third data point (person) in the group of 21 people who consumed Brazilian coffee is
denoted by x13 (that is, i � 1 denotes treatment 1 and j � 3 denotes the third point in
that sample).

We will now define the main principle behind the analysis of variance.

If the r population means are different (i.e., at least two of the population
means are not equal), then the variation of the data points about their
respective sample means is likely to be small when compared with the
variation of the r sample means about the grand mean .

We will demonstrate the ANOVA principle, using three hypothetical popula-
tions, which we will call the triangles, the squares, and the circles. Table 9–1 gives the
values of the sample points from the three populations. For demonstration purposes,
we use very small samples. In real situations, the sample sizes should be much larger.
The data given in Table 9–1 are shown in Figure 9–5. The figure also shows the devi-
ations of the data points from their sample means and the deviations of the sample
means from the grand mean.

Look carefully at Figure 9–5. Note that the average distance (in absolute value) of
data points from their respective group means (i.e., the average distance, in absolute
value, of a triangle from the mean of the triangles x1 and similarly for the squares and

x
xi

x =
a

r

j=1
a
ni

j=1
xij

n

xi =
a
ni

j=1
xij
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x
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TABLE 9–1 Data and the Various Sample Means for Triangles, Squares, and Circles

Treatment i Sample Point j Value xij

i � 1 Triangle 1 4

Triangle 2 5

Triangle 3 7

Triangle 4 8

Mean of triangles 6

i � 2 Square 1 10

Square 2 11

Square 3 12

Square 4 13

Mean of squares 11.5

i � 3 Circle 1 1

Circle 2 2

Circle 3 3

Mean of circles 2

Grand mean of all data points 6.909

FIGURE 9–5 Deviations of the Triangles, Squares, and Circles from Their Sample Means 
and the Deviations of the Sample Means from the Grand Mean

14 Values X131211109876543210

x3 = 2 x1 = 6

x = 6.909

x2 = 11.5

Treatment Legend:

Distance from
data point to its
sample mean

Distance from
sample mean
to grand mean

the circles) is relatively small compared with the average distance (in absolute value)
of the three sample means from the grand mean. If you are not convinced of this,
note that there are only three distances of sample means to the grand mean (in the
computation, each distance is weighted by the actual number of points in the group),
and that only one of them, the smallest distance—that of to —is of the relative
magnitude of the distances between the data points and their respective sample
means. The two other distances are much greater; hence, the average distance of the
sample means from the grand mean is greater than the average distance of all data
points from their respective sample means.

The average deviation from a mean is zero. We talk about the average absolute
deviation—actually, we will use the average squared deviation—to prevent the devia-
tions from canceling. This should remind you of the definition of the sample variance
in Chapter 1. Now let us define some terms that will make our discussion simpler.

xx1
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The ANOVA principle thus says:

When the population means are not equal, the “average” error is relatively
small compared with the “average” treatment deviation.

Again, if we actually averaged all the deviations, we would get zero. Therefore, when
we apply the principle computationally, we will square the error and treatment devi-
ations before averaging them. This way, we will maintain the relative (squared) mag-
nitudes of these quantities. The averaging process is further complicated because we
have to average based on degrees of freedom (recall that degrees of freedom were
used in the definition of a sample variance). For now, let the term average be used in a
simplified, intuitive sense.

Since we noted that the average error deviation in our triangle-square-circle exam-
ple looks small relative to the average treatment deviation, let us see what the popu-
lations that brought about our three samples look like. Figure 9–6 shows the three

FIGURE 9–6 Samples of Triangles, Squares, and Circles and Their Respective Populations 
(the three populations are normal with equal variance but with different means)

14 Values X131211109876543210

Treatment

�1

�2

�3
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We define a treatment deviation as the deviation of a sample mean from
the grand mean. Treatment deviations ti are given by

ti � � (9–6)xxi

We define an error deviation as the difference between a data point and
its sample mean. Errors are denoted by e, and we have

eij � xij � (9–5)xi

Thus, all the distances from the data points to their sample means in Figure 9–5 are
errors (some are positive, and others are negative). The reason these distances are
called errors is that they are unexplained by the fact that the corresponding data
points belong to population i. The errors are assumed to be due to natural variation,
or pure randomness, within the sample from treatment i.

On the other hand,
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FIGURE 9–7 Samples of Triangles, Squares, and Circles Where the Average Error Deviation 
Is Not Smaller than the Average Treatment Deviation

14 Values X131211109876543210

Treatment
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1 �2

Here the triangles,
squares, and circles all
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(and thus the three population
means are equal:
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sample mean and grand mean
as compared with
a typical error

=  3� = � =
x1

x
x2

x3

)

populations, assumed normally distributed with equal variance. (This can be seen
from the equal width of the three normal curves. Note also that the three samples
seem to have equal dispersion about their sample means.) The figure also shows that
the three population means are not equal.

Figure 9–7, in contrast, shows three samples of triangles, squares, and circles in
which the average error deviation is of about the same magnitude as (not smaller
than) the average treatment deviation. As can be seen from the superimposed normal
populations from which the samples have arisen in this case, the three population
means �1, �2, and �3 are all equal. Compare the two figures to convince yourself of
the ANOVA principle.

The Sum-of-Squares Principle
We have seen how, when the population means are different, the error deviations in
the data are small when compared with the treatment deviations. We made general
statements about the average error being small when compared with the average
treatment deviation. The error deviations measure how close the data within each
group are to their respective group means. The treatment deviations measure the dis-
tances between the various groups. It therefore seems intuitively plausible (as seen
in Figures 9–5 to 9–7) that when these two kinds of deviations are of about equal
magnitude, the population means are about equal. Why? Because when the average
error is about equal to the average treatment deviation, the treatment deviation
may itself be viewed as just another error. That is, the treatment deviation in this
case is due to pure chance rather than to any real differences among the popu-
lation means. In other words, when the average t is of the same magnitude as the
average e, both are estimates of the internal variation within the data and carry no
information about a difference between any two groups—about a difference in
population means.

We will now make everything quantifiable, using the sum-of-squares principle. We
start by returning to Figure 9–5, looking at a particular data point, and analyzing dis-
tances associated with the data point. We choose the fourth data point from the sam-
ple of squares (population 2). This data point is x24 � 13 (verify this from Table 9–1).
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For any data point xij ,

Tot � t � e (9–8)

In words:

Total deviation � Treatment deviation � Error deviation

t2 � e24 � 4.591 � 1.5 � 6.091 � Tot24

ti � eij � ( i � ) � (xij � i ) � xij � � Totij (9–9)xxxx

Equation 9–8 works for every data point in our data set. Here is how it is derived
algebraically:

FIGURE 9–8 Total Deviation as the Sum of the Treatment Deviation and the Error Deviation 
for a Particular Data Point

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

This is the total
deviation = x24 – x = 6.091

This is the 
treatment deviation
= x2 – x = 4.591

This is the 
error deviation
= x24 – x2 = 1.5

x24 = 13

x2 = 11.5x = 6.909

Values X

We now magnify a section of Figure 9–5, the section surrounding this particular data
point. This is shown in Figure 9–8.

We define the total deviation of a data point xij (denoted by Totij) as the
deviation of the data point from the grand mean:

Totij � xij � (9–7)

Figure 9–8 shows that the total deviation is equal to the treatment deviation plus the
error deviation. This is true for any point in our data set (even when some of the num-
bers are negative).

x
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In the case of our chosen data point x24, we have
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As seen in equation 9–9, the term cancels out when the two terms in parentheses
are added. This shows that for every data point, the total deviation is equal to the
treatment part of the deviation plus the error part. This is also seen in Figure 9–8.
The total deviation of a data point from the grand mean is thus partitioned into a
deviation due to treatment and a deviation due to error. The deviation due to treatment
differences is the between-treatments deviation, while the deviation due to error is the
within-treatment deviation.

We have considered only one point, x24. To determine whether the error devia-
tions are small when compared with the treatment deviations, we need to aggregate
the partition over all data points. This is done, as we noted earlier, by averaging
the deviations. We take the partition of the deviations in equation 9–9 and we square
each of the three terms (otherwise our averaging process would lead to zero).2 The
squaring of the terms in equation 9–9 gives, on one side,

xi

ti
2 � eij

2 � ( i � )2 � (xij � i)2 (9–10)xxx

Tot2
ij � (xij � )2 (9–11)x

and, on the other side,

Note an interesting thing: The two sides of equation 9–9 are equal, but when all three
terms are squared, the two sides (now equations 9–10 and 9–11) are not equal. Try this
with any of the data points. The surprising thing happens next.

We take the squared deviations of equations 9–10 and 9–11, and we sum them over
all our data points. Interestingly, the sum of the squared error deviations and the sum
of the squared treatment deviations do add up to the sum of the squared total devia-
tions. Mathematically, cross-terms in the equation drop out, allowing this to happen.
The result is the sum-of-squares principle.

We have the following:
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This can be written in longer form as

The Sum-of-Squares Principle
The sum-of-squares total (SST) is the sum of the two terms: the sum of
squares for treatment (SSTR) and the sum of squares for error (SSE).

SST � SSTR � SSE (9–12)
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2This can be seen from the data in Table 9–1. Note that the sum of the deviations of the triangles from their mean of
6 is (4 � 6) � (5 � 6) � (7 � 6) � (8 � 6) � 0; hence, an average of these deviations, or those of the squares or circles,
leads to zero.
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FIGURE 9–9 Partition of the Sum-of-Squares Total into Treatment and Error Parts

SSTR SSE

SST

The sum-of-squares principle partitions the sum-of-squares total within the data SST
into a part due to treatment effect SSTR and a part due to errors SSE. The squared
deviations of the treatment means from the grand mean are counted for every data
point—hence the term ni in the first summation on the right side (SSTR) of equation
9–12. The second term on the right-hand side is the sum of the squared errors, that is,
the sum of the squared deviations of the data points from their respective sample
means.

See Figure 9–8 for the different deviations associated with a single point. Imagine
a similar relation among the three kinds of deviations for every one of the data
points, as shown in Figure 9–5. Then imagine all these deviations squared and added
together—errors to errors, treatments to treatments, and totals to totals. The result is
equation 9–12, the sum-of-squares principle.

Sums of squares measure variation within the data. SST is the total amount of
variation within the data set. SSTR is that part of the variation within the data that is
due to differences among the groups, and SSE is that part of the variation within the
data that is due to error—the part that cannot be explained by differences among the
groups. Therefore, SSTR is sometimes called the sum of squares between (variation
among the groups), and SSE is called the sum of squares within (within-group varia-
tion). SSTR is also called the explained variation (because it is the part of the total vari-
ation that can be explained by the fact that the data points belong to several different
groups). SSE is then called the unexplained variation. The partition of the sum of
squares in analysis of variance is shown in Figure 9–9.

Breaking down the sum of squares is not enough, however. If we want to deter-
mine whether the errors are small compared with the treatment part, we need to find
the average (squared) error and the average (squared) treatment deviation. Averaging,
in the context of variances, is achieved by dividing by the appropriate number of
degrees of freedom associated with each sum of squares.

The Degrees of Freedom
Recall our definition of degrees of freedom in Chapter 5. The degrees of free-
dom are the number of data points that are “free to move,” that is, the number of
elements in the data set minus the number of restrictions. A restriction on a data
set is a quantity already computed from the entire data set under consideration;
thus, knowledge of this quantity makes one data point fixed and reduces by 1 the
effective number of data points that are free to move. This is why, as was shown in
Chapter 5, knowledge of the sample mean reduces the degrees of freedom of the
sample variance to n � 1. What are the degrees of freedom in the context of analysis
of variance?
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df(total) � df(treatment) � df(error) (9–13)

MSTR � (9–14)

MSE � (9–15)SSE
n � r

SSTR
r � 1

Consider the total sum of squares, SST. In computing this sum of squares, we use
the entire data set and information about one quantity computed from the data: the
grand mean (because, by definition, SST is the sum of the squared deviations of all
data points from the grand mean). Since we have a total of n data points and one
restriction,

The number of degrees of freedom associated with SST is n � 1.

The sum of squares for treatment SSTR is computed from the deviations of r sample
means from the grand mean. The r sample means are considered r independent data
points, and the grand mean (which can be considered as having been computed from
the r sample means) thus reduces the degrees of freedom by 1.

The number of degrees of freedom associated with SSTR is r � 1.

The sum of squares for error SSE is computed from the deviations of a total of n data
points (n � n1 � n2 � � � � � nr) from r different sample means. Since each of the sam-
ple means acts as a restriction on the data set, the degrees of freedom for error are n � r.
This can be seen another way: There are r groups with ni data points in group i. Thus,
each group, with its own sample mean acting as a restriction, has degrees of freedom
equal to ni � 1. The total number of degrees of freedom for error is the sum of the
degrees of freedom in the r groups: df � (n1 � 1) � (n2 � 1) � � � � � (nr � 1) �
n � r.

The number of degrees of freedom associated with SSE is n � r.

An important principle in analysis of variance is that the degrees of freedom of
the three components are additive in the same way that the sums of squares are
additive.

362 Chapter 9

This can easily be verified by noting the following: n � 1 � (r � 1) � (n � r)—the r
drops out. We are now ready to compute the average squared deviation due to treat-
ment and the average squared deviation due to error.

The Mean Squares
In finding the average squared deviations due to treatment and to error, we divide
each sum of squares by its degrees of freedom. We call the two resulting averages
mean square treatment (MSTR) and mean square error (MSE), respectively.

The Expected Values of the Statistics MSTR and MSE 
under the Null Hypothesis
When the null hypothesis of ANOVA is true, all r population means are equal, and in
this case there are no treatment effects. In such a case, the average squared deviation
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E(MSE) � �2 (9–16)
and

E(MSTR) � �2 � (9–17)

where �i is the mean of population i and � is the combined mean of all r
populations.

gni(�i � �)2

r � 1

Equation 9–16 says that MSE is an unbiased estimator of �2, the assumed common variance
of the r populations. The mean square error in ANOVA is therefore just like the sample
variance in the one-population case of earlier chapters.

The mean square treatment, however, comprises two components, as seen from
equation 9–17. The first component is �2, as in the case of MSE. The second com-
ponent is a measure of the differences among the r population means �i. If the null
hypothesis is true, all r population means are equal—they are all equal to �. In such
a case, the second term in equation 9–17 is equal to zero. When this happens, the
expected value of MSTR and the expected value of MSE are both equal to �2.

When the null hypothesis of ANOVA is true and all r population means are
equal, MSTR and MSE are two independent, unbiased estimators of the
common population variance �2.

If, on the other hand, the null hypothesis is not true and differences do exist among
the r population means, then MSTR will tend to be larger than MSE. This happens
because, when not all population means are equal, the second term in equation 9–17
is a positive number.

The F Statistic
The preceding discussion suggests that the ratio of MSTR to MSE is a good indicator
of whether the r population means are equal. If the r population means are equal,
then MSTR/MSE would tend to be close to 1.00. Remember that both MSTR and
MSE are sample statistics derived from our data. As such, MSTR and MSE will have
some randomness associated with them, and they are not likely to exactly equal their
expected values. Thus, when the null hypothesis is true, MSTR/MSE will vary
around the value 1.00. When not all the r population means are equal, the ratio
MSTR/MSE will tend to be greater than 1.00 because the expected value of MSTR,
from equation 9–17, will be larger than the expected value of MSE. How large is
“large enough” for us to reject the null hypothesis?

This is where statistical inference comes in. We want to determine whether the
difference between our observed value of MSTR/MSE and the number 1.00 is due
just to chance variation, or whether MSTR/MSE is significantly greater than 1.00—
implying that not all the population means are equal. We will make the determina-
tion with the aid of the F distribution.

Under the assumptions of ANOVA, the ratio MSTR/MSE possesses an F
distribution with r � 1 degrees of freedom for the numerator and n � r
degrees of freedom for the denominator when the null hypothesis is true.

In Chapter 8, we saw how the F distribution is used in determining differences
between two population variances—noting that if the two variances are equal, then
the ratio of the two independent, unbiased estimators of the assumed common vari-
ance follows an F distribution. There, too, the appropriate degrees of freedom for the
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due to “treatment” is just another realization of an average squared error. In terms of
the expected values of the two mean squares, we have
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The test statistic in analysis of variance is

F(r � 1, n � r) � (9–18)MSTR
MSE

P R O B L E M S

9–6. Define treatment and error.
9–7. Explain why trying to compute a simple average of all error deviations and
of all treatment deviations will not lead to any results.
9–8. Explain how the total deviation is partitioned into the treatment deviation and
the error deviation.
9–9. Explain the sum-of-squares principle.
9–10. Where do errors come from, and what do you think are their sources?
9–11. If, in an analysis of variance, you find that MSTR is greater than MSE, why
can you not immediately reject the null hypothesis without determining the F ratio
and its distribution? Explain.
9–12. What is the main principle behind analysis of variance?
9–13. Explain how information about the variance components in a data set can
lead to conclusions about population means.
9–14. An article in Advertising Age discusses the need for corporate transparency of
all transactions and hails the imperative “Get naked,” which, it said, appeared on the
cover of a recent issue of Wired. The article tried to compare the transparency poli-
cies of Microsoft, Google, Apple, and Wal-Mart.3 Suppose that four independent ran-
dom samples of 20 accountants each rate the transparency of these four corporations
on a scale of 0 to 100.

a. What are the degrees of freedom for Factor?
b. What are the degrees of freedom for Error?
c. What are the degrees of freedom for Total?

9–15. By the sum-of-squares principle, SSE and SSTR are additive, and their sum is
SST. Does such a relation exist between MSE and MSTR? Explain.
9–16. Does the quantity MSTR/MSE follow an F distribution when the null
hypothesis of ANOVA is false? Explain.
9–17. (A mathematically demanding problem) Prove the sum-of-squares principle,
equation 9–12.

9–4 The ANOVA Table and Examples
Table 9–2 shows the data for our triangles, squares, and circles. In addition, the table
shows the deviations from the group means, and their squares. From these quantities,
we find the sum of squares and mean squares.

364 Chapter 9

numerator and the denominator of F came from the degrees of freedom of the sample
variance in the numerator and the sample variance in the denominator of the ratio.
In ANOVA, the numerator is MSTR and has r � 1 degrees of freedom; the denomi-
nator is MSE and has n � r degrees of freedom. We thus have the following:

In this section, we have seen the theoretical rationale for the F statistic we used in
Section 9–2. We also saw the computations required for arriving at the value of the
test statistic. In the next section, we will encounter a convenient tool for keeping track
of computations and reporting our results: the ANOVA table.

3Matthew Creamer, “You Call This Transparency? They Can See Right Through You,” Advertising Age, April 30,
2007, p. 7.



Aczel−Sounderpandian: 
Complete Business 
Statistics, Seventh Edition

9. Analysis of Variance Text 367© The McGraw−Hill 
Companies, 2009

� 17.00SSE = a
r

i=1
a
ni

j=1
(xij - xi)2

Now we want to compute the sum of squares for treatment. Recall from Table 9–1
that � 6.909. Again using the definitions in equation 9–12, we havex

SSTR � � 4(6 � 6.909)2 � 4(11.5 � 6.909)2 � 3(2 � 6.909)2

� 159.9

a
r

i=1
ni(xi - x )2

We now compute the mean squares. From equations 9–14 and 9–15, respectively,
we get

MSTR �

MSE � 
SSE

n � r �
17
8 � 2.125

SSTR
r � 1 �

159.9
2 �  79.95

TABLE 9–2 Computations for Triangles, Squares, and Circles

Treatment i j Value xij xij � i (xij � j)2

Triangle 1 4 4 � 6 � �2 (�2)2 � 4

Triangle 2 5 5 � 6 � �1 (�1)2 � 1

Triangle 3 7 7 � 6 � 1 (1)2 � 1

Triangle 4 8 8 � 6 � 2 (2)2 � 4

Square 1 10 10 � 11.5 � �1.5 (�1.5)2 � 2.25

Square 2 11 11 � 11.5 � �0.5 (�0.5)2 � 0.25

Square 3 12 12 � 11.5 � 0.5 (0.5)2 � 0.25

Square 4 13 13 � 11.5 � 1.5 (1.5)2 � 2.25

Circle 1 1 1 � 2 � �1 (�1)2 � 1

Circle 2 2 2 � 2 � 0 (0)2 � 0

Circle 3 3 3 � 2 � 1 (1)2 � 1

Sum � 0 Sum � 17

xx

Using equation 9–18, we get the computed value of the F statistic:

F(2, 8) �
MSTR
MSE

�
79.95
2.125 � 37.62

We are finally in a position to conduct the ANOVA hypothesis test to determine
whether the means of the three populations are equal. From Appendix C, Table 5, we
find that the critical point at � � 0.01 (for a right-tailed test) for the F distribution with
2 degrees of freedom for the numerator and 8 degrees of freedom for the denominator

As we see in the last row of the table, the sum of all the deviations of the data
points from their group means is zero, as expected. The sum of the squared deviations
from the sample means (which, from equation 9–12, is SSE) is equal to 17.00:

Analysis of Variance 365
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4If you must carry out ANOVA computations by hand, there are equivalent computational formulas for the sums of
squares that may be easier to apply than equation 9–12. These are

SST � �i�j (xij )2 � (�i�j xij )2�n
SSTR � �i[(�j xij )2�ni ] � (�i�jxij )2�n

and we obtain SSE by subtraction: SSE � SST � SSTR.

TABLE 9–3 ANOVA Table

Source of Sum of Degrees of Mean
Variation Squares Freedom Square F Ratio

Treatment SSTR � 159.9 r � 1 � 2 MSTR � F �

� 79.95 � 37.62

Error SSE � 17.0 n � r � 8 MSE �

� 2.125

Total SST � 176.9 n � 1 � 10

SSE
n - r

MSTR
MSE

SSTR
r - 1

FIGURE 9–10 Rejecting the Null Hypothesis in the Triangles, Squares, and Circles Example

F(2, 8)

Computed
test statistic
value = 37.62

Rejection region

(far in the
rejection
region)

Area = 0.01

0 8.65

Density

x

is 8.65. We can therefore reject the null hypothesis. Since 37.62 is much greater than
8.65, the p-value is much smaller than 0.01. This is shown in Figure 9–10.

As usual, we must exercise caution in the interpretation of results based on such
small samples. As we noted earlier, in real situations we use large data sets, and the
computations are usually done by computer. In the rest of our examples, we will
assume that sums of squares and other quantities are produced by a computer.4

An essential tool for reporting the results of an analysis of variance is the
ANOVA table. An ANOVA table lists the sources of variation: treatment, error, and
total. (In the two-factor ANOVA, which we will see in later sections, there will be
more sources of variation.) The ANOVA table lists the sums of squares, the degrees
of freedom, the mean squares, and the F ratio. The table format simplifies the analy-
sis and the interpretation of the results. The structure of the ANOVA table is based
on the fact that both the sums of squares and the degrees of freedom are additive. We
will now present an ANOVA table for the triangles, squares, and circles example.
Table 9–3 shows the results computed above.

Note that the entries in the second and third columns, sum of squares and degrees
of freedom, are both additive. The entries in the fourth column, mean square, are
obtained by dividing the appropriate sums of squares by their degrees of freedom. We
do not define a mean square total, which is why no entry appears in that particular

366 Chapter 9
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Let us first construct an ANOVA table and fill in the information we have: SST �
112,564, SSE � 98,356, n � 200, and r � 5. This has been done in Table 9–5. We
now compute SSTR as the difference between SST and SSE and enter it in the appro-
priate place in the table. We then divide SSTR and SSE by their respective degrees of
freedom to give us MSTR and MSE. Finally, we divide MSTR by MSE to give us the
F ratio. All these quantities are entered in the ANOVA table. The result is the complete
ANOVA table for the study, Table 9–6.

S o l u t i o n

Club Med has more than 30 major resorts worldwide, from Tahiti to Switzerland.
Many of the beach resorts are in the Caribbean, and at one point the club wanted to
test whether the resorts on Guadeloupe, Martinique, Eleuthera, Paradise Island, and
St. Lucia were all equally well liked by vacationing club members. The analysis was
to be based on a survey questionnaire filled out by a random sample of 40 respon-
dents in each of the resorts. From every returned questionnaire, a general satisfaction
score, on a scale of 0 to 100, was computed. Analysis of the survey results yielded the
statistics given in Table 9–4.

The results were computed from the responses by using a computer program that
calculated the sums of squared deviations from the sample means and from the grand
mean. Given the values of SST and SSE, construct an ANOVA table and conduct the
hypothesis test. (Note: The reported sample means in Table 9–4 will be used in the
next section.)

E X A M P L E  9 – 2

TABLE 9–4 Club Med Survey Results

Resort i Mean Response i

1. Guadeloupe 89

2. Martinique 75

3. Eleuthera 73

4. Paradise Island 91

5. St. Lucia 85

SST � 112,564 SSE � 98,356

X

TABLE 9–5 Preliminary ANOVA Table for Club Med Example

Source of Sum of Degrees of Mean
Variation Squares Freedom Square F Ratio

Treatment SSTR � r � 1 � 4 MSTR � F �

Error SSE � 98,356 n � r � 195 MSE �

Total SST � 112,564 n � 1 � 199

TABLE 9–6 ANOVA Table for Club Med Example

Source of Sum of Degrees Mean
Variation Squares of Freedom Square F Ratio

Treatment SSTR � 14,208 r � 1 � 4 MSTR � 3,552 F � 7.04

Error SSE � 98,356 n � r � 195 MSE � 504.4

Total SST � 112,564 n � 1 � 199

Analysis of Variance 367

position in the table. The last entry in the table is the main objective of our analysis: the
F ratio, which is computed as the ratio of the two entries in the previous column. No
other entries appear in the last column. Example 9–2 demonstrates the use of the
ANOVA table.
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Table 9–6 contains all the pertinent information for this study. We are now ready
to conduct the hypothesis test.

FIGURE 9–11 Club Med Test

F(4, 200)

Computed
test statistic
value = 7.04

Rejection region

Area = 0.01

0 3.41

Density

X

H0: �1 � �2 � �3 � �4 � �5 (average vacationer satisfaction for
each of the five resorts is equal)

H1: Not all �i (i � 1, . . . , 5) are equal (on average, vacationer satisfaction 
is not equal among the five resorts)

As shown in Table 9–6, the test statistic value is F(4, 195) � 7.04. As often happens, the
exact number of degrees of freedom we need does not appear in Appendix C, Table 5.
We use the nearest entry, which is the critical point for F with 4 degrees of freedom
for the numerator and 200 degrees of freedom for the denominator. The critical point
for � � 0.01 is C � 3.41. The test is illustrated in Figure 9–11.

Since the computed test statistic value falls in the rejection region for � � 0.01,
we reject the null hypothesis and note that the p-value is smaller than 0.01. We may
conclude that, based on the survey results and our assumptions, it is likely that the
five resorts studied are not equal in terms of average vacationer satisfaction. Which
resorts are more satisfying than others? This question will be answered when we
return to this example in the next section.

368 Chapter 9

Recent research studied job involvement of salespeople in the four major career
stages: exploration, establishment, maintenance, and disengagement. Results of the
study included an analysis of variance aimed at determining whether salespeople in
each of the four career stages are, on average, equally involved with their jobs.
Involvement is measured on a special scale developed by psychologists. The analysis
is based on questionnaires returned by a total of 543 respondents, and the reported F
value is 8.52. The authors note the result is “significant at p � .01.” Assuming that
MSE � 34.4, construct an ANOVA table for this example. Also verify the authors’
claim about the significance of their results.

E X A M P L E  9 – 3

S o l u t i o n In this problem, another exercise in the construction of ANOVA tables, we are doing
the opposite of what is usually done: We are going from the final result of an F ratio
to the earlier stages of an analysis of variance. First, multiplying the F ratio by MSE
gives us MSTR. Then, from the sample size n � 543 and from r � 4, we get the num-
ber of degrees of freedom for treatment, error, and total. Using our information, we
construct the ANOVA table (Table 9–7).
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TABLE 9–7 ANOVA Table for Job Involvement

Source of Sum of Degrees Mean 
Variation Squares of Freedom Square F Ratio

Treatment SSTR � 879.3 r � 1 � 3 MSTR � 293.1 F � 8.52

Error SSE � 18,541.6 n � r � 539 MSE � 34.4

Total SST � 19,420.9 n � 1 � 542

9–18. Gulfstream Aerospace Company produced three different prototypes as can-
didates for mass production as the company’s newest large-cabin business jet, the
Gulfstream IV. Each of the three prototypes has slightly different features, which may
bring about differences in performance. Therefore, as part of the decision-making
process concerning which model to produce, company engineers are interested in
determining whether the three proposed models have about the same average flight
range. Each of the models is assigned a random choice of 10 flight routes and depar-
ture times, and the flight range on a full standard fuel tank is measured (the planes
carry additional fuel on the test flights, to allow them to land safely at certain desti-
nation points). Range data for the three prototypes, in nautical miles (measured to the
nearest 10 miles), are as follows.5

Prototype A Prototype B Prototype C

4,420 4,230 4,110

4,540 4,220 4,090

4,380 4,100 4,070

4,550 4,300 4,160

4,210 4,420 4,230

4,330 4,110 4,120

4,400 4,230 4,000

4,340 4,280 4,200

4,390 4,090 4,150

4,510 4,320 4,220

Do all three prototypes have the same average range? Construct an ANOVA table,
and carry out the test. Explain your results.
9–19. In the theory of finance, a market for any asset or commodity is said to be
efficient if items of identical quality and other attributes (such as risk, in the case of
stocks) are sold at the same price. A Geneva-based oil industry analyst wants to test
the hypothesis that the spot market for crude oil is efficient. The analyst chooses the
Rotterdam oil market, and he selects Arabian Light as the type of oil to be studied.
(Differences in location may cause price differences because of transportation costs,
and differences in the type of oil—hence, in the quality of oil—also affect the price.

P R O B L E M S

From Appendix C, Table 5, we find that the critical point for a right-tailed test at
� � 0.01 for an F distribution with 3 and 400 degrees of freedom (the entry for
degrees of freedom closest to the needed 3 and 539) is 3.83. Thus, we may conclude
that differences do exist among the four career stages with respect to average job
involvement. The authors’ statement about the p-value is also true: the p-value is
much smaller than 0.01.

Analysis of Variance 369

5General information about the capabilities of the Gulfstream IV is provided courtesy of Gulfstream Aerospace
Company.
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Therefore, both the type and the location must be fixed.) A random sample of eight
observations from each of four sources of the spot price of a barrel of oil during
February 2007 is collected. Data, in U.S. dollars per barrel, are as follows.

U.K. Mexico U.A.E. Oman

$62.10 $56.30 $55.60 $53.11

63.20 59.45 54.22 52.90

55.80 60.02 53.18 53.75

56.90 60.00 56.12 54.10

61.20 58.75 60.01 59.03

60.18 59.13 53.20 52.35

60.90 53.30 54.00 52.80

61.12 60.17 55.19 54.95

Based on these data, what should the analyst conclude about whether the market for
crude oil is efficient? Are conclusions valid only for the Rotterdam market? Are con-
clusions valid for all types of crude oil? What assumptions are necessary for the
analysis? Do you believe that all the assumptions are met in this case? What are the
limitations, if any, of this study? Discuss.
9–20. A study was undertaken to assess how both majority and minority groups per-
ceive the degree of participation of African-American models in television commer-
cials. The authors designated the three groups in this study as European Americans,
African Americans, and Other. The purpose of this research was to determine if there
were any statistically significant differences in the average perceptions within these
three groups of the extent of the role played by African-American models in commer-
cials the subjects viewed. The results of the ANOVA carried out were summarized as
F (2, 101) = 3.61.6 Analyze this result and state a conclusion about this study.
9–21. Research has shown that in the fast-paced world of electronics, the key factor
that separates the winners from the losers is actually how slow a firm is in making
decisions: The most successful firms take longer to arrive at strategic decisions on
product development, adopting new technologies, or developing new products. The
following values are the number of months to arrive at a decision for firms ranked
high, medium, and low in terms of performance:

High Medium Low

3.5 3 1

4.8 5.5 2.5

3.0 6 2

6.5 4 1.5

7.5 4 1.5

8 4.5 6

2 6 3.8

6 2 4.5

5.5 9 0.5

6.5 4.5 2

7 5 3.5

9 2.5 1.0

5 7 2

10
6

Do an ANOVA. Use � � 0.05.
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6 Donnel A. Briley, J.L. Shrum, and Robert S. Wyer Jr., “Subjective Impressions of Minority Group Representation in
the Media: A Comparison of Majority and Minority Viewers’ Judgments and Underlying Processes,” Journal of Consumer
Psychology 17, no. 1 (2007), pp. 36–48.
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FIGURE 9–12 The ANOVA Diagram

ANOVA Not reject H0

Reject H0

Stop

Further
analysis

Data

9–22. In assessing South Korean monetary policy, researchers at the Bank of
Korea studied the effects of three inflation-fighting policies the bank had instituted,
to determine whether there were any statistically significant differences in the average
monetary-economic reaction to these three policies. The results of an ANOVA the bank
carried out were reported as df = (2, 55), F-distribution statistic = 52.787.7 Interpret these
ANOVA results. Are all three policies equally effective?
9–23. A study was undertaken to assess the effect of sheer size of a portfolio (leav-
ing out all other effects, such as degree of diversification) on abnormal performance,
that is, performance of a stock portfolio that is above what one can expect based on
the stock market as a whole. In a four-factor design based on portfolio size for well-
diversified portfolios, with 240 data points, the F statistic was significant at the 1% level
of significance.8 Explain.

9–5 Further Analysis
You have rejected the ANOVA null hypothesis. What next? This is an important
question often overlooked in elementary introductions to analysis of variance. After
all, what is the meaning of the statement “not all r population means are equal” if we
cannot tell in what way the population means are not equal? We need to know which
of our population means are large, which are small, and the magnitudes of the differ-
ences among them. These issues are addressed in this section.

ANOVA can be viewed as a machine or a box: In go the data, and out comes a
conclusion—“all r population means are equal” or “not all r population means are
equal.” If the ANOVA null hypothesis H0: �1 � �2 � � � � � �r is not rejected and we
therefore state that there is no strong evidence to conclude that differences exist
among the r population means, then there is nothing more to say or do (unless, of
course, you believe that differences do exist and you are able to gather more infor-
mation to prove so). If the ANOVA null hypothesis is rejected, then we have evi-
dence that not all r population means are equal. This calls for further analysis—other
hypothesis tests and/or the construction of confidence intervals to determine where
the differences exist, their directions, and their magnitudes. The schematic diagram
of the “ANOVA box” is shown in Figure 9–12.

Analysis of Variance 371

7Young Sun Kwon, “Estimation of the Asymmetric Monetary Policy Reaction Functions in Korea,” Bank of Korea
Economic Papers 9, no. 2 (2006), pp. 20–37.

8Marcin Kacperczyk, Clemens Sialm, and Lu Zheng, “Industry Concentration and Mutual Fund Performance,”
Journal of Investment Management 5, no. 1 (first quarter 2007), pp. 50–64.
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Several methods have been developed for further analysis following the rejection
of the null hypothesis in ANOVA. All the methods make use of the following two
properties:

1. The sample means i are unbiased estimators of the corresponding
population means �i.

2. The mean square error, MSE, is an unbiased estimator of the common
population variance �2.

Since MSE can be read directly from the ANOVA table, we have another advan-
tage of using an ANOVA table. This extends the usefulness of the table beyond
the primary stages of analysis. The first and simplest post-ANOVA analysis is the
estimation of separate population means �i. Under the assumptions of analysis of
variance, we can show that each sample mean i has a normal distribution with mean
�i and standard deviation �� i , where � is the common standard deviation of the
r populations. Since � is not known, we estimate it by . We get the following
relation:

2MSE
1n

X

X

372 Chapter 9

has a t distribution with n � r degrees of freedom (9–19)
Xi - �i2MSE >2ni

This property leads us to the possibility of constructing confidence intervals for
individual population means.

A (1 � �) 100% confidence interval for �i, the mean of population i, is

� t��2 (9–20)

where t�/2 is the value of the t distribution with n � r degrees of freedom
that cuts off a right-tailed area equal to ��2.

2MSE2ni

x

Confidence intervals given by equation 9–20 are included in the template.
We now demonstrate the use of equation 9–20 with the continuation of Example

9–2, the Club Med example. From Table 9–4, we get the sample means :

Guadeloupe: 1 � 89

Martinique: 2 � 75

Eleuthera: 3 � 73

Paradise Island: 4 � 91

St. Lucia: 5 � 85

From Table 9–6, the ANOVA table for this example, we get MSE � 504.4 and
degrees of freedom for error � n � r � 195. We also know that the sample size in
each group is ni � 40 for all i � 1, . . . , 5. Since a t distribution with 195 degrees of
freedom is, for all practical purposes, a standard normal distribution, we use z �1.96
in constructing 95% confidence intervals for the population mean responses of
vacationers on the five islands. We will construct a 95% confidence interval for the
mean response on Guadeloupe and will leave the construction of the other four

x

x

x

x

x

xi
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1 � t��2 � 89 � 1.96 � [82.04, 95.96]

The real usefulness of ANOVA, however, does not lie in the construction of individual
confidence intervals for population means (these are of limited use because the confi-
dence coefficient does not apply to a series of estimates). The power of ANOVA lies in
providing us with the ability to make joint conclusions about population parameters.

As mentioned earlier, several procedures have been developed for further analysis.
The method we will discuss here is the Tukey method of pairwise comparisons of the
population means. The method is also called the HSD (honestly significant differences)
test. This method allows us to compare every possible pair of means by using a single
level of significance, say � � 0.05 (or a single confidence coefficient, say, 1 � � � 0.95).
The single level of significance applies to the entire set of pairwise comparisons.

The Tukey Pairwise-Comparisons Test
We will use the studentized range distribution.

The studentized range distribution q has a probability distribution with
degrees of freedom r and n � r.

Note that the degrees of freedom of q are similar, but not identical, to the degrees of
freedom of the F distribution in ANOVA. The F distribution has r � 1 and n � r
degrees of freedom. The q distribution has degrees of freedom r and n � r. Critical
points for q with different numbers of degrees of freedom for � � 0.05 and for � �
0.01 are given in Appendix C, Table 6. Check, for example, that for � � 0.05, r � 3,
and n � r � 20, we have the critical point q� � 3.58. The table gives right-hand criti-
cal points, which is what we need since our test will be a right-tailed test. We now
define the Tukey criterion T.

2504.4240

2MSE2n1

x

The Tukey Criterion

T � q� (9–21)

Equation 9–21 gives us a critical point, at a given level �, with which we will compare
the computed values of test statistics defined later. Now let us define the hypothesis tests.
As mentioned, the usefulness of the Tukey test is that it allows us to perform jointly all
possible pairwise comparisons of the population means using a single, “family” level
of significance. What are all the possible pairwise comparisons associated with an
ANOVA?

Suppose that we had r � 3. We compared the means of three populations, using
ANOVA, and concluded that not all the means were equal. Now we would like to be
able to compare every pair of means to determine where the differences among
population means exist. How many pairwise comparisons are there? With three
populations, there are

2MSE2ni

¢3
2
≤ =

3!
2! 1!

= 3 comparisons

confidence intervals as an exercise. For Guadeloupe, we have the following 95% con-
fidence interval for the population mean �1:
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I. H0: �1 � �2 VI. H0: �2 � �4
H1: �1 
 �2 H1: �2 
 �4

II. H0: �1 � �3 VII. H0: �2 � �5
H1: �1 
 �3 H1: �2 
 �5

III. H0: �1 � �4 VIII. H0: �3 � �4
H1: �1 
 �4 H1: �3 
 �4

IV. H0: �1 � �5 IX. H0: �3 � �5
H1: �1 
 �5 H1: �3 
 �5

V. H0: �2 � �3 X. H0: �4 � �5
H1: �2 
 �3 H1: �4 
 �5

1 with 2
2 with 3
1 with 3

(9–22)¢ r
2
≤ =

r !
2!(r - 2)!

These comparisons are
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As a general rule, the number of possible pairwise comparisons of r means is

You do not really need equation 9–22 for cases where listing all the possible pairs is rel-
atively easy. In the case of Example 9–2, equation 9–22 gives us 5!�(2!3!) � (5)(4)(3)(2)�
(2)(3)(2) � 10 possible pairwise comparisons. Let us list all the comparisons:

Guadeloupe (1)–Martinique (2)
Guadeloupe (1)–Eleuthera (3)
Guadeloupe (1)–Paradise Island (4)
Guadeloupe (1)–St. Lucia (5)
Martinique (2)–Eleuthera (3)
Martinique (2)–Paradise Island (4)
Martinique (2)–St. Lucia (5)
Eleuthera (3)–Paradise Island (4)
Eleuthera (3)–St. Lucia (5)
Paradise Island (4)–St. Lucia (5)

These pairings are apparent if you look at Table 9–4 and see that we need to compare
the first island, Guadeloupe, with all four islands below it. Then we need to com-
pare the second island, Martinique, with all three islands below it (we already have
the comparison of Martinique with Guadeloupe). We do the same with Eleuthera and
finally with Paradise Island, which has only St. Lucia listed below it; therefore, this is
the last comparison. (In the preceding list, we wrote the number of each population
in parentheses after the population name.)

The parameter �1 denotes the population mean of all vacationer responses for
Guadeloupe. The parameters �2 to �5 have similar meanings. To compare the popu-
lation mean vacationer responses for every pair of island resorts, we use the following
set of hypothesis tests:
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|x1 - x2| = |89 - 75| = 14

T � q� � 3.86 � 13.7A504.4
 40AMSE

ni

| 1 � 2| � |89 � 75| � 14 
 13.7*
| 1 � 3| � |89 � 73| � 16 
 13.7*
| 1 � 4| � |89 � 91| � 2 � 13.7
| 1 � 5| � |89 � 85| � 4 � 13.7
| 2 � 3| � |75 � 73| � 2 � 13.7
| 2 � 4| � |75 � 91| � 16 
 13.7*
| 2 � 5| � |75 � 85| � 10 � 13.7*
| 3 � 4| � |73 � 91| � 18 
 13.7*
| 3 � 5| � |73 � 85| � 12 � 13.7
| 4 � 5| � |91 � 85| � 6 � 13.7xx

xx
xx
xx
xx
xx
xx
xx
xx
xx

The Tukey method allows us to carry out simultaneously all 10 hypothesis tests at a
single given level of significance, say, � � 0.05. Thus, if we use the Tukey procedure
for reaching conclusions as to which population means are equal and which are not,
we know that the probability of reaching at least one erroneous conclusion, stating
that two means are not equal when indeed they are equal, is at most 0.05.

The test statistic for each test is the absolute difference of the appropriate
sample means.

Thus, the test statistic for the first test (I) is

Analysis of Variance 375

Conducting the Tests
We conduct the tests as follows. We compute each of the test statistics and compare
them with the value of T that corresponds to the desired level of significance �. We
reject a particular null hypothesis if the absolute difference between the corresponding pair of
sample means exceeds the value of T.

Using � � 0.05, we now conduct the Tukey test for Example 9–2. All absolute dif-
ferences of sample means corresponding to the pairwise tests I through X are
computed and compared with the value of T. For � � 0.05, r � 5, and n � r � 195
(we use �, the last row in the table), we get, from Appendix C, Table 6, q � 3.86. We
also know that MSE � 504.4 and ni � 40 for all i. (Later we will see what to do when
not all r samples are of equal size.) Therefore, from equation 9–21,

We now compute all 10 pairwise absolute differences of sample means and compare
them with T � 13.7 to determine which differences are statistically significant at � �
0.05 (these are marked with an asterisk).

From these comparisons we determine that our data provide statistical evidence to con-
clude that �1 is different from �2; �1 is different from �3; �2 is different from �4; and �3
is different from �4. There are no other statistically significant differences at � � 0.05.

Drawing a diagram of the significant differences that we found will aid in inter-
pretation. This has been done in Figure 9–13. Looking at the figure, you may be puz-
zled by the fact that we believe, for example, that �1 is different from �2, yet we
believe that �1 is no different from �5 and that �5 is no different from �2. You may
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9–24. Give 95% confidence intervals for the remaining four population mean
responses to the Club Med resorts (the one for Guadeloupe having been given in the
text).

FIGURE 9–13 Differences among the Population Means in Example 9–2 
Suggested by the Tukey Procedure

�1�2 �5 �4�3

Denotes that there is no statistical evidence that the
covered population means are different

(The population means are placed approximately at the
locations on the line where the sample means would be.)

say: If A is equal to B, and B is equal to C, then mathematically we must have A equal
to C (the transitivity of equality). But remember that we are doing statistics, not dis-
cussing mathematical equality. In statistics, not rejecting the null hypothesis that two
parameters are equal does not mean that they are necessarily equal. The nonrejection
just means that we have no statistical evidence to conclude that they are different.
Thus, in our present example, we conclude that there is statistical evidence to support
the claim that, on average, vacationers give higher ratings to Guadeloupe (1) than
they give to Martinique (2) or Eleuthera (3), as well as the claim that Paradise Island
(4) is, on average, rated higher than Martinique or Eleuthera. No statistical evidence
supports any other claim of differences in average ratings among the five island
resorts. Note also that we do not have to hypothesize any of the assertions of tests I
through X before doing the analysis. The Tukey method allows us to make all the
above conclusions at a single level of significance, � � 0.05.

The Case of Unequal Sample Sizes, and Alternative Procedures
What can we do if the sample sizes are not equal in all groups? We use the smallest
sample size of all the ni in computing the criterion T of equation 9–21. The Tukey pro-
cedure is the best follow-up to ANOVA when the sample sizes are all equal. The case
of equal sample sizes is called the balanced design. For very unbalanced designs (i.e.,
when sample sizes are very different), other methods of further analysis can be used
following ANOVA. Two of the better-known methods are the Bonferroni method
and the Scheffé method. We will not discuss these methods.

The Template
Figure 9–14 shows the template that can be used to carry out single-factor ANOVA
computations. The ANOVA table appears at the top right. Below it appears a table of
confidence intervals for each group mean. The � used for confidence intervals need not
be the same as the one used in cell S3 for the F test in the ANOVA table. Below the
confidence intervals appears a Tukey comparison table. Enter the q0 corresponding
to r, n � r, and desired � in cell O21 before reading off the results from this table. The
message “Sig” appears in a cell if the difference between the two corresponding
groups is significant at the � used for q0 in cell O21.

376 Chapter 9
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9David M. Hardesty, William O. Bearden, and Jay P. Carlson, “Persuasion Knowledge and Consumer Reactions to
Pricing Tactics,” Journal of Retailing 83, no. 2 (2007), pp. 199–210.

10Marcus Christen and Miklos Sarvary, “Competitive Pricing of Information: A Longitudinal Experiment,” Journal of
Marketing Research, February 2007, pp. 42–56.

FIGURE 9–14 The Template for Single-Factor ANOVA 
[Anova.xls; Sheet: 1-Way]

M

ANOVA

n ANOVA Table 5%

A B C Source SS df MS F Fcritical p -value

1 4 10 1

4 4 3

Between 2 37.626 4.459 0.0001 Reject
2 5 11 2 Within 8
3 7

8
12 3 Total 10

4 13

Confidence Intervals for Group Means

Grand Mean

Confidence Intervals for Group Means - Plot

Group
A 6 ±      1.6808 95%
B 11.5 ±      1.6808 95%
C 2 ±      1.9408 95%

Tukey test for pairwise comparison of group means
A

r 3 B Sig B
n - r 8 C Sig Sig

q0 4.04
T 3.40017

6.90909

Confidence Interval

1

2
3

4

5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22

25
24
23

A C D E F N P Q R S T U V W X

1 � �
Grand Mean

0 5 10 15

17
159.909

176.909

79.955
2.125

B O

�
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9–25. Use the data of Table 9–1 and the Tukey procedure to determine where dif-
ferences exist among the triangle, circle, and square population means. Use � � 0.01.
9–26. For problem 9–18, find which, if any, of the three prototype planes has an
average range different from the others. Use � � 0.05.
9–27. For problem 9–19, use the Tukey method to determine which oil types, if any,
have an average price different from the others. Use � � 0.05.
9–28. For problem 9–20, suppose that the appropriate sample means are 6.4, 2.5,
and 4.9 (as scores for participation by European American, African-American, and
Other models in commercials). Find where differences, if any, exist among the three
population means. Use � � 0.05.
9–29. Researchers in retail studies wanted to find out how children and adults react
to companies’ pricing tactics. They looked at a random sample of 44 10th-grade stu-
dents, a random sample of pretested adults consisting of 42 people, and a third sam-
ple of 71 adults. For each person, they evaluated the response to a pricing tactic. The
reported overall level of significance was p � 0.01. A further analysis of differences
between every pair of groups was reported as all p � 0.01.9 Interpret these reported
findings. What were the degrees of freedom for Factor, Error, and Total?
9–30. A study was carried out to find out whether prices differed, on average, within
three possible market conditions: monopoly, limited competition, and strong compe-
tition. The results were reported as F (2, 272) � 44.8. Further analysis reported that
for the difference between monopoly and limited competition, F (1, 272) � 67.9 and for
the difference between monopoly and strong competition, F (1, 272) � 71.3.10

a. What was the total sample size used?
b. Is the overall ANOVA statistically significant?
c. Interpret the results of the further analysis. Explain.
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9–6 Models, Factors, and Designs
A statistical model is a set of equations and assumptions that capture the
essential characteristics of a real-world situation.

The model discussed in this chapter is the one-factor ANOVA model. In this model,
the populations are assumed to be represented by the following equation.

378 Chapter 9

The one-factor ANOVA model is

xij � �i � �ij � � � �i � �ij (9–23)

where �ij is the error associated with the jth member of the ith population. The
errors are assumed to be normally distributed with mean zero and variance �2.

The ANOVA model assumes that the r populations are normally distributed with
means �i, which may be different, and with equal variance �2. The right-hand side of
equation 9–23 breaks the mean of population i into a common component � and a
unique component due to the particular population (or treatment) i. This component
is written as �i. When we sample, the sample means i are unbiased estimators of
the respective population means �i. The grand mean is an unbiased estimator of
the common component of the means �. The treatment deviations ai are estimators
of the differences among population means �i. The data errors eij are estimates of the
population errors �ij.

Much more will be said about statistical models in the next chapter, dealing with
regression analysis. The one-factor ANOVA null hypothesis H0: �1 � �2 � � � � � �r
may be written in an equivalent form, using equation 9–23, as H0: �i � 0 for all i.
(This is so because if �i � � for all i, then the “extra” components �i are all zero.)
This form of the hypothesis will be extended in the two-factor ANOVA model, also
called the two-way ANOVA model, discussed in the following section.

We may want to check that the assumptions of the ANOVA model are indeed
met. To check that the errors are approximately normally distributed, we may draw a
histogram of the observed errors eij, which are called residuals. If serious deviations
from the normal-distribution assumption exist, the histogram will not resemble a nor-
mal curve. Plotting the residuals for each of the r samples under study will reveal
whether the population variances are indeed (at least approximately) equal. If the
spread of the data sets around their group means is not approximately equal for all r
groups, then the population variances may not be equal. When model assumptions
are violated, a nonparametric alternative to ANOVA must be used. An alternative
method of analysis uses the Kruskal-Wallis test, discussed in Chapter 14. Residual
analysis will be discussed in detail in the next chapter.

One-Factor versus Multifactor Models
In each of the examples and problems you have seen so far, we were interested in
determining whether differences existed among several populations, or treatments.
These treatments may be considered as levels of a single factor.

A factor is a set of populations or treatments of a single kind.

Examples of factors are vacationer ratings of a set of resorts, the range of different types
of airplanes, and the durability of different kinds of sweaters.

Sometimes, however, we may be interested in studying more than one factor. For
example, an accounting researcher may be interested in testing whether there are dif-
ferences in average error percentage rate among the Big Eight accounting firms, and
among different geographical locations, such as the Eastern Seaboard, the South, the

x
X
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Midwest, and the West. Such an analysis involves two factors: the different firms (fac-
tor A, with eight levels) and the geographical location (factor B, with four levels).

Another example is that of an advertising firm interested in studying how the
public is influenced by color, shape, and size in an advertisement. The firm could
carry out an ANOVA to test whether there are differences in average responses to
three different colors, as well as to four different shapes of an ad, and to three differ-
ent ad sizes. This would be a three-factor ANOVA. Important statistical reasons for
jointly studying the effects of several factors in a multifactor ANOVA will be
explained in the next section, on two-factor ANOVA.

Fixed-Effects versus Random-Effects Models
Recall Example 9–2, where we wanted to determine whether differences existed
among the five particular island resorts of Guadeloupe, Martinique, Eleuthera,
Paradise Island, and St. Lucia. Once we reject or do not reject the null hypothesis,
the inference is valid only for the five islands studied. This is a fixed-effects model.

A fixed-effects model is a model in which the levels of the factor under
study (the treatments) are fixed in advance. Inference is valid only for the
levels under study.

Consider another possible context for the analysis. Suppose that Club Med had no
particular interest in the five resorts listed, but instead wanted to determine whether
differences existed among any of its more than 30 resorts. In such a case, we may con-
sider all Club Med resorts as a population of resorts, and we may draw a random sample
of five (or any other number) of the resorts and carry out an ANOVA to determine
differences among population means. The ANOVA would be carried out in exactly
the same way. However, since the resorts themselves were randomly selected for
analysis from the population of all Club Med resorts, the inference would be valid for
all Club Med resorts. This is called the random-effects model.

The random-effects model is an ANOVA model in which the levels of the
factor under study are randomly chosen from an entire population of levels
(treatments). Inference is valid for the entire population of levels.

The idea should make sense to you if you recall the principle of inference using ran-
dom sampling, discussed in Chapter 5, and the story of the Literary Digest. To make
inferences that are valid for an entire population, we must randomly sample from the
entire population. Here this principle is applied to a population of treatments.

Experimental Design
Analysis of variance often involves the ideas of experimental design. If we want to
study the effects of different treatments, we are sometimes in a position to design the
experiment by which we plan to study these effects. Designing the experiment
involves the choice of elements from a population or populations and the assignment of
elements to different treatments. The model we have been using involves a completely
randomized design.

A completely randomized design is a design in which elements are
assigned to treatments completely at random. Thus, every element chosen
for the study has an equal chance of being assigned to any treatment.

Among the other types of design are blocking designs, which are very useful in
reducing experimental errors, that is, reducing variation due to factors other than
the ones under study. In the randomized complete block design, for example, experi-
mental units are assigned to treatments in blocks of similar elements, with random-
ized treatment order within each block. In the Club Med situation of Example 9–2,

Analysis of Variance 379
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9–31. For problem 9–18, suppose that four more prototype planes are built after the
study is completed. Could the inference from the ANOVA involving the first three
prototypes be extended to the new planes? Explain.
9–32. What is a blocking design?
9–33. For problem 9–18, can you think of a blocking design that would reduce
experimental errors?
9–34. How can we determine whether there are violations of the ANOVA model
assumptions? What should we do if such violations exist?
9–35. Explain why the factor levels must be randomly chosen in the random-
effects model to allow inference about an entire collection of treatments.
9–36. For problem 9–19, based on the given data, can you tell whether the world
oil market is efficient?

9–7 Two-Way Analysis of Variance
In addition to being interested in possible differences in the general appeal of its five
Caribbean resorts (Example 9–2), suppose that Club Med is also interested in the
respective appeal of four vacation attributes: friendship, sports, culture, and excite-
ment.11 Club Med would like to have answers to the following two questions:

1. Are there differences in average vacationer satisfaction with the five Caribbean
resorts?

2. Are there differences in average vacationer satisfaction in terms of the four
vacation attributes?

In cases such as this one, where interest is focused on two factors—resort and vacation
attribute—we can answer the two questions jointly. In addition, we can answer a third,
very important question, which may not be apparent to us:

3. Are there any interactions between some resorts and some attributes?

The three questions are statistically answerable by conducting a two-factor, or two-
way, ANOVA. Why a two-way ANOVA? Why not conduct each of the two ANOVAs
separately?

Several reasons justify conducting a two-way ANOVA. One reason is efficiency.
When we conduct a two-way ANOVA, we may use a smaller total sample size for the
analysis than would be required if we were to conduct each of the two tests separately.
Basically, we use the same data resources to answer the two main questions. In the
case of Club Med, the club may run a friendship program at each of the five resorts
for one week; then the next week (with different vacationers) it may run a sports pro-
gram in each of the five resorts; and so on. All vacationer responses could then be
used for evaluating both the satisfaction from the resorts and the satisfaction from the
attributes, rather than conducting two separate surveys, requiring twice the effort and
number of respondents. A more important reason for conducting a two-way ANOVA
is that three questions must be answered.

a randomized complete block design could involve sending each vacationer in the
sample to all five resorts, the order of the resorts chosen randomly; each vacationer
is then asked to rate all the resorts. A design such as this one, with experimental units
(here, people) given all the treatments, is called a repeated-measures design. More will
be said about blocking designs later.

380 Chapter 9

11Information on the attributes and the resorts was provided through the courtesy of Club Med.
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FIGURE 9–15 Two-Way ANOVA Data Layout
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Let us call the first factor of interest (here, resorts) factor A and the second factor
(here, attributes) factor B. The effects of each factor alone are the factor’s main effects.
The combined effects of the two factors, beyond what we may expect from the con-
sideration of each factor separately, are the interaction between the two factors.

Two factors are said to interact if the difference between levels (treat-
ments) of one factor depends on the level of the other factor. Factors that
do not interact are called additive.

An interaction is thus an extra effect that appears as a result of a particular combina-
tion of a treatment from one factor with a treatment from another factor. An interac-
tion between two factors exists when, for at least one combination of treatments—say
Eleuthera and sports—the effect of the combination is not additive: some special
“chemistry” appears between the two treatments. Suppose that Eleuthera is rated
lowest of all resorts and that sports is rated lowest of all attributes. We then expect the
Eleuthera–sports combination to be rated, on average, lowest of all combinations. If
this does not happen, the two levels are said to interact.

The three questions answerable by two-way ANOVA:

1. Are there any factor A main effects?
2. Are there any factor B main effects?
3. Are there any interaction effects of factors A and B?

Let nij be the sample size in the “cell” corresponding to level i of factor A and level
j of factor B. Assume there is a uniform sample size for each factor A–factor B combi-
nation, say, nij � 4. The layout of the data of a two-way ANOVA, using the Club Med
example, is shown in Figure 9–15. Figure 9–16 shows the effects of an interaction. We
arrange the levels of each factor in increasing order of sample mean responses. The
general two-variable trend of increasing average response is the response plane shown
in Figure 9–16. An exception to the plane is the Eleuthera–sports interaction, which
leads to a higher-than-expected average response for this combination of levels.

The Two-Way ANOVA Model
There are a levels of factor A (a � 5 resorts in the Club Med example) and b levels of
factor B (b � 4 attributes in the same example). Thus, there are a � b combinations of
levels, or cells, as shown in Figure 9–15. Each one is considered a treatment. We must
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The two-way ANOVA model is

xijk � � � �i � �j � (��)ij � �ijk (9–24)

where � is the overall mean; �i is the effect of level i (i � 1, . . . , a) of factor A;
�j is the effect of level j (j � 1, . . . , b) of factor B; (��)ij is the interaction effect
of levels i and j; and �ijk is the error associated with the kth data point from
level i of factor A and level j of factor B. As before, we assume that the error �ijk
is normally distributed12 with mean zero and variance �2 for all i, j, and k.

FIGURE 9–16 Graphical Display of Interaction Effects
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assume equal sample sizes in all the cells. If we do not have equal sample sizes, we must
use an alternative to the method of this chapter and solve the ANOVA problem by
using multiple regression analysis (Chapter 11). Since we assume an equal sample size
in each cell, we will simplify our notation and will call the sample size in each cell n,
omitting the subscripts i, j. We will denote the total sample size (formerly called n) by
the symbol N. In the two-way ANOVA model, the assumptions of normal populations
and equal variance for each two-factor combination treatment are still maintained.

382 Chapter 9

12Since the terms �i , �j , and (��)ij are deviations from the overall mean �, in the fixed-effects model the sums of all
these deviations are all zero: ��i � 0, ��j � 0, and �(��)ij � 0.

Our data, assumed to be random samples from populations modeled by equation 9–24,
give us estimates of the model parameters. These estimates—as well as the different
measures of variation, as in the one-way ANOVA case—are used in testing hypotheses.
Since, in two-way ANOVA, three questions are to be answered rather than just one,
three hypothesis tests are relevant to any two-way ANOVA. The hypothesis tests that
answer questions 1 to 3 are presented next.

The Hypothesis Tests in Two-Way ANOVA
Factor A main-effects test:

H0: �i � 0 for all i � 1, . . . , a
H1: Not all �i are 0
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FIGURE 9–17
Partition of the Sum of
Squares in Two-Way ANOVA
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This hypothesis test is designed to determine whether there are any factor A main
effects. That is, the null hypothesis is true if and only if there are no differences in
means due to the different treatments (populations) of factor A.

Factor B main-effects test:

H0: �j � 0 for all j � 1, . . . , b
H1: Not all �j are 0

This test will detect evidence of any factor B main effects. The null hypothesis is true
if and only if there are no differences in means due to the different treatments (popu-
lations) of factor B.

Test for AB interactions:

H0: (��)ij � 0 for all i � 1, . . . , a and j � 1, . . . , b
H1: Not all (��)ij are 0

This is a test for the existence of interactions between levels of the two factors. The
null hypothesis is true if and only if there are no two-way interactions between levels
of factor A and levels of factor B, that is, if the factor effects are additive.

In carrying out a two-way ANOVA, we should test the third hypothesis first. We do
so because it is important to first determine whether interactions exist. If interactions
do exist, our interpretation of the ANOVA results will be different from the case where
no interactions exist (i.e., in the case where the effects of the two factors are additive).

Sums of Squares, Degrees of Freedom, and Mean Squares
We define the data, the various means, and the deviations from the means as follows.

xijk is the kth data point from level i of factor A and level j of factor B.
is the grand mean.

ij is the mean of cell ij.
i is the mean of all data points in level i of factor A.
j is the mean of all data points in level j of factor B.

Using these definitions, we have

SST � SSTR � SSE (9–25)

(This can be further partitioned.)

Equation 9–25 is the usual decomposition of the sum of squares, where each cell (a
combination of a level of factor A and a level of factor B) is considered a separate
treatment. Deviations of the data points from the cell means are squared and
summed. Equation 9–25 is the same as equation 9–12 for the partition of the total
sum of squares into sum-of-squares treatment and sum-of-squares error in one-way
ANOVA. The only difference between the two equations is that here the summations
extend over three subscripts: one subscript for levels of each of the two factors and
one subscript for the data point number. The interesting thing is that SSTR can be
further partitioned into a component due to factor A, a component due to factor B,
and a component due to interactions of the two factors. The partition of the total sum
of squares into its components is given in equation 9–26.

Do not worry about the mathematics of the summations. Two-way ANOVA is
prohibitively tedious for hand computation, and we will always use a computer. The
important thing to understand is that the total sum of squares is partitioned into a part
due to factor A, a part due to factor B, a part due to interactions of the two factors,
and a part due to error. This is shown in Figure 9–17.

a
ai

1
a
b

1
a
n

1
(xijk - x)2 = aaa (xij - x)2 + aaa (xijk - xij)

2

x
x
x
x
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SST � SSTR � SSE

SSA � SSB � SS(AB)

Thus,

SST � SSA � SSB � SS(AB) � SSE (9–26)

where SSA � sum of squares due to factor A, SSB � sum of squares due to
factor B, and SS(AB) � sum of squares due to the interactions of factors A
and B.

aaa (xi - x)2 + aaa  (xj - x)2 + a (xij - xi - xj + x)2

aaa (x - x)2 = aaa  (x - x)2 + aaa (x - x)2

TABLE 9–8 ANOVA Table for Two-Way Analysis

Source of Sum of Degrees Mean
Variation Squares of Freedom Square F Ratio

Factor A SSA a � 1 MSA � F �

Factor B SSB b � 1 MSB � F �

Interaction SS(AB) (a � 1)(b � 1) MS(AB) � F �

Error SSE ab(n � 1) MSE �

Total SST abn � 1

SSE
ab(n - 1)

MS(AB)

MSE

SS(AB)

(a - 1)(b - 1)

MSB
MSE

SSB
b - 1

MSA
MSE

SSA
a - 1

What are the degrees of freedom? Since there are a levels of factor A, the degrees
of freedom for factor A are a � 1. Similarly, there are b � 1 degrees of freedom for
factor B, and there are (a � 1)(b � 1) degrees of freedom for AB interactions. The
degrees of freedom for error are ab(n � 1). The total degrees of freedom are abn � 1.
But we knew that [because (a � 1) � (b � 1) � (a � 1)(b � 1) � ab(n � 1) � a �
b � 2 � ab � a � b � 1 � abn � ab � abn � 1]! Note that since we assume an equal
sample size n in each cell and since there are ab cells, we have N � abn, and the total
number of degrees of freedom is N � 1 � abn � 1.

384 Chapter 9

Let us now construct an ANOVA table. The table includes the sums of squares,
the degrees of freedom, and the mean squares. The mean squares are obtained by
dividing each sum of squares by its degrees of freedom. The final products of the
table are three F ratios. We define the F ratios as follows.

The F Ratios and the Two-Way ANOVA Table
The F ratio for each one of the hypothesis tests is the ratio of the appropriate mean
square to the MSE. That is, for the test of factor A main effects, we use F �
MSA/MSE; for the test of factor B main effects, we use F � MSB/MSE; and for the
test of interactions of the two factors, we use F � MS(AB)/MSE. We now construct
the ANOVA table for two-way analysis, Table 9–8.

The degrees of freedom associated with each F ratio are the degrees of freedom
of the respective numerator and denominator (the denominator is the same for all
three tests). For the testing of factor A main effects, our test statistic is the first F ratio

644444444444444744444444444448
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H0: There is no difference in the average price of paintings of the kind studied
across the three locations

H1: There are differences in average price across locations

in the ANOVA table. When the null hypothesis is true (there are no factor A main
effects), the ratio F � MSA/MSE follows an F distribution with a � 1 degrees of free-
dom for the numerator and ab(n � 1) degrees of freedom for the denominator. We
denote this distribution by F[a � 1, ab(n � 1)]. Similarly, for the test of factor B main effects,
when the null hypothesis is true, the distribution of the test statistic is F[b � 1, ab(n � 1)].
The test for the existence of AB interactions uses the distribution F[(a � 1)(b � 1), ab(n � 1)].

We will demonstrate the use of the ANOVA table in two-way analysis, and the
three tests, with a new example.

Analysis of Variance 385

There are claims that the Japanese have now joined the English and people in the
United States in paying top dollar for paintings at art auctions. Suppose that an art
dealer is interested in testing two hypotheses. The first is that paintings sell for the
same price, on average, in London, New York, and Tokyo. The second hypothesis is
that works of Picasso, Chagall, and Dali sell for the same average price. The dealer is
also aware of a third question. This is the question of a possible interaction between
the location (and thus the buyers: people from the United States, English, Japanese)
and the artist. Data on auction prices of 10 works of art by each of the three painters at
each of the three cities are collected, and a two-way ANOVA is run on a computer.
The results include the following: The sums of squares associated with the location
(factor A) is 1,824. The sum of squares associated with the artist (factor B) is 2,230. The
sum of squares for interactions is 804. The sum of squares for error is 8,262. Construct
the ANOVA table, carry out the hypothesis tests, and state your conclusions.

We enter the sums of squares into the table. Since there are three levels in each of the
two factors, and the sample size in each cell is 10, the degrees of freedom are a � 1 �
2, b � 1 � 2, (a � 1)(b � 1) � 4, and ab(n � 1) � 81. Also, abn � 1 � 89, which
checks as the sum of all other degrees of freedom. These values are entered in the
table as well. The mean squares are computed, and so are the appropriate F ratios.
Check to see how each result in the ANOVA table, Table 9–9, is obtained.

Let us now conduct the three hypothesis tests relevant to this problem. We will
state the hypothesis tests in words. The factor A test is

E X A M P L E  9 – 4

S o l u t i o n

TABLE 9–9 ANOVA Table for Example 9–4

Source of Sum of Degrees Mean 
Variation Squares of Freedom Square F Ratio

Location 1,824 2 912 8.94

Artist 2,230 2 1,115 10.93

Interaction 804 4 201 1.97

Error 8,262 81 102

Total 13,120 89

The test statistic is an F random variable with 2 and 81 degrees of freedom (see
Table 9–9). The computed value of the test statistic is 8.94. From Appendix C, Table 5,
we find that the critical point for � � 0.01 is close to 4.88. Thus, the null hypothesis is
rejected, and we know that the p-value is much smaller than 0.01. Computer printouts
of ANOVA results often list p-values in the ANOVA table, in a column after the F
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H0: There are no differences in the average price of paintings by the three 
artists studied

H1: There are differences in the average price of paintings by the three artists

Here again, the test statistic is an F random variable with 2 and 81 degrees of free-
dom, and the computed value of the statistic is 10.93. The null hypothesis is rejected,
and the p-value is much smaller than 0.01. The test is shown in Figure 9–19.

The hypothesis test for interactions is

FIGURE 9–19 Example 9–4: Artist Hypothesis Test

F(2, 81)

Computed
test statistic
value = 10.93

Rejection region

Area = 0.01

0 4.88

Density

x

H0: There are no interactions of the locations and the artists under study
H1: There is at least one interaction of a location and an artist

FIGURE 9–18 Example 9–4: Location Hypothesis Test

F(2, 81)

Computed
test statistic
value = 8.94

Rejection region

Area = 0.01

0 4.88

Density

x

ratios. Often, the computer output will show p � 0.0000. This means that the p-value is
smaller than 0.0001. The results of the hypothesis test are shown in Figure 9–18.

Now we perform the hypothesis test for factor B:
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FIGURE 9–20 Example 9–4: Test for Interaction

F(4, 81)

Computed
test statistic
value = 1.97

Rejection region

Area = 0.05

0 2.48

Density

x

Nonrejection
region

The test statistic is an F random variable with 4 and 81 degrees of freedom. At a level of
significance � � 0.05, the critical point (see Appendix C, Table 5) is approximately
equal to 2.48, and our computed value of the statistic is 1.97, leading us not to reject the
null hypothesis of no interaction at levels of significance greater than 0.05. This is
shown in Figure 9–20.

As mentioned earlier, we look at the test for interactions first. Since the null
hypothesis of no interactions was not rejected, we have no statistical evidence of
interactions of the two factors. This means, for example, that if a work by Picasso sells
at a higher average price than works by the other two artists, then his paintings will
fetch—on average—higher prices in all three cities. It also means that if paintings sell
for a higher average price in London than in the other two cities, then this holds
true—again, on average—for all three artists. Now we may interpret the results of the
two main-effects tests.

We may conclude that there is statistical evidence that paintings (by these artists)
do not fetch the same average price across the three cities. We may similarly con-
clude that paintings by the three artists under study do not sell, on average, for the
same price. Where do the differences exist? This can be determined by a method for
further analysis, such as the Tukey method.

In cases where we do find evidence of an interaction effect, our results have a dif-
ferent interpretation. In such cases, we must qualify any statement about differences
among levels of one factor (say, factor A) as follows: There exist differences among levels
of factor A, averaged over all levels of factor B.

We demonstrate this with a brief example. An article in Accounting Review reports
the results of a two-way ANOVA on the factors “accounting” and “materiality.” The
exact nature of the study need not concern us here, as it is very technical. The results
of the study include the following:

Source df Mean Square F Probability
Materiality 2 1.3499 4.5 0.0155

Accounting–materiality interaction 4 0.8581 2.9 0.0298

From these partial results, we see that the p-values (“probability”) are each less than
0.05. Therefore, at the 0.05 level of significance for each of the two tests (separately),
we find that there is an interaction effect, and we find a main effect for materiality. We
may now conclude that, at the 0.05 level of significance, there are differences among
the levels of materiality, averaged over all levels of accounting.

Analysis of Variance 387
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FIGURE 9–21 The Template for Two-Way ANOVA 
[Anova.xls; Sheet: 2-Way]

M

2-Way ANOVA

ANOVA Table 5%

C1 C2 C3 C4

Source SS df MS F Fcritical p-value

R1 158 147 139

Row 2 3.5868
24.082
1.4845

3.2594 0.0380
2.8663 0.0000
2.3638 0.2112

Reject
Reject

154 143 135

Column 3

146
150

140 142

Interaction
Error
Total

6
36
47

144 139

144
145
139
136

1

2
3

4
5
6
7
8
9

10
11
12

A C D E F N P Q R S T U V W

1295.42
128.625

159.708
645.5

2229.25

64.3125
431.806
26.6181
17.9306

B O

^ Press the + button to see row means. Scroll down for column and cell means.  
This template can be used only if there are an equal number of replications in each cell.

�

The Template
Figure 9–21 shows the template that can be used for computing two-way ANOVA.
This template can be used only if the number of replications in each cell is equal. Up to 5 levels
of row factor, 5 levels of column factor, and 10 replications in each cell can be entered
in this template. Be sure that the data are entered properly in the cells.

To see the row means, unprotect the sheet and click on the “�” button above
column M. Scroll down to see the column means and the cell means.

The Overall Significance Level
Remember our discussion of the Tukey analysis and its importance in allowing us to
conduct a family of tests at a single level of significance. In two-way ANOVA, as we
have seen, there is a family of three tests, each carried out at a given level of significance.
Here the question arises: What is the level of significance of the set of three tests? A
bound on the probability of making at least one type I error in the three tests is given
by Kimball’s inequality. If the hypothesis test for factor A main effects is carried out at �1,
the hypothesis test for factor B main effects is carried out at �2, and the hypothesis
test for interactions is carried out at �3, then the level of significance � of the three
tests together is bounded from above as follows.

388 Chapter 9

Kimball’s Inequality

� 	 1 � (1 � �1)(1 � �2)(1 � �3) (9–27)

In Example 9–4 we conducted the first two tests—the tests for main effects—at the
0.01 level of significance. We conducted the test for interactions at the 0.05 level.
Using equation 9–27, we find that the level of significance of the family of three tests
is at most 1 � (1 � 0.01)(1 � 0.01)(1 � 0.05) � 0.0689.

The Tukey Method for Two-Way Analysis
Equation 9–21, the Tukey statistic for pairwise comparisons, is easily extended to two-
way ANOVA. We are interested in comparing the levels of a factor once the ANOVA
has led us to believe that differences do exist for that factor. The only difference in
the Tukey formula is the number of degrees of freedom. In making pairwise compar-
isons of the levels of factor A, the test statistics are the pairwise differences between
the sample means for all levels of factor A, regardless of factor B. For example, the
pairwise comparisons of all the mean prices at the three locations in Example 9–4
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| London � NY|
| Tokyo � London|
| NY � Tokyo|xx

xx
xx

Tukey criterion for factor A is

T � q� (9–28)

where the degrees of freedom of the q distribution are now a and ab(n � 1).
Note also that MSE is divided by bn.

AMSE
bn
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Now we compare these differences with the Tukey criterion:

In Example 9–4 both a and b are 3. The sample size in each cell is n � 10. At � � 0.05,
the Tukey criterion is equal to (3.4) � 6.27.13 Suppose that the sample
mean in New York is 19.6 (hundred thousand dollars), in Tokyo it is 21.4, and in London
it is 15.1. Comparing all absolute differences of the sample means leads us to the con-
clusion that the average prices in London and Tokyo are significantly different; but
the average prices in Tokyo and New York are not different, and neither are the aver-
age prices in New York and London. The overall significance level of these joint
conclusions is � � 0.05.

Extension of ANOVA to Three Factors
To carry out a three-way ANOVA, we assume that in addition to a levels of factor A
and b levels of factor B, there are c levels of factor C. Three pairwise interactions of
factors and one triple interaction of factors are possible. These are denoted AB, BC,
AC, and ABC. Table 9–10 is the ANOVA table for three-way analysis.

Examples of three-way ANOVA are beyond the scope of this book. However,
the extension of two-way analysis to this method is straightforward, and if you should
need to carry out such an analysis, Table 9–10 will provide you with all the informa-
tion you need. Three-factor interactions ABC imply that at least some of the two-
factor interactions AB, BC, and AC are dependent on the level of the third factor.

Two-Way ANOVA with One Observation per Cell
The case of one data point in every cell presents a problem in two-way ANOVA. Can
you guess why? (Hint: Degrees of freedom for error are the answer.) Look at Fig-
ure 9–22, which shows the layout of the data in a two-way ANOVA with five levels of
factor A and four levels of factor B. Note that the sample size in each of the 20 cells is
n � 1.

As you may have guessed, there are no degrees of freedom for error! With
one observation per cell, n � 1; the degrees of freedom for error are ab(n � 1) �
ab(1 � 1) � 0. This can be seen from Table 9–11. What can we do? If we believe that
there are no interactions (this assumption cannot be statistically tested when n � 1),
then our sum of squares SS(AB) is due to error and contains no other information. In
such a case, we can use SS(AB) and its associated degrees of freedom (a � 1)(b � 1)
in place of SSE and its degrees of freedom. We can thus conduct the tests for the
main effects by dividing MSA by MS(AB) when testing for factor A main effects. The

(2102>230)

13If the interaction effect is ignored because it was not significant, then MSE � (8,262 � 804)/(81 � 4) � 107; T � 6.41
with df � 2, 85.

will be done as follows. We compute the absolute differences of all the pairs of
sample means:
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TABLE 9–11 ANOVA Table for Two-Way Analysis with One Observation per Cell, 
Assuming No Interactions

Source of Sum of Degrees Mean 
Variation Squares of Freedom Square F Ratio

Factor A SSA a � 1 MSA � F �

Factor B SSB b � 1 MSB � F �

“Error” SS(AB) (a � 1)(b � 1) MS(AB) �

Total SST ab � 1

SS(AB)
(a � 1)(b � 1)

MSB
MS(AB)

SSB
b � 1

MSA
MS(AB)

SSA
a � 1

FIGURE 9–22 Data Layout in a Two-Way ANOVA with n � 1

– – – – –

– – – – –

– – – – –

– – – – –

1 2 3 a = 54

1

2

3

b = 4

Factor A

Fa
ct

or
 B

n = 1 (one observation in each of
the ab = (5)(4) = 20 cells) 

TABLE 9–10 Three-Way ANOVA Table

Source of Sum of Degrees Mean 
Variation Squares of Freedom Square F Ratio

Factor A SSA a � 1 MSA � F �

Factor B SSB b � 1 MSB � F �

Factor C SSC c � 1 MSC � F �

AB SS(AB) (a � 1)(b � 1) MS(AB) � F �

BC SS(BC) (b � 1)(c � 1) MS(BC) � F �

AC SS(AC) (a � 1)(c � 1) MS(AC) � F �

ABC SS(ABC) (a � 1)(b � 1)(c � 1) MS(ABC) F �

Error SSE abc(n � 1) MSE

Total SST abcn � 1

MS(ABC)

MSE

MS(AC)

MSE

SS(AC)

(a - 1)(c - 1)

MS(BC)

MSE

SS(BC)

(b - 1)(c - 1)

MS(AB)

MSE

SS(AB)

(a - 1)(b - 1)

MSC
MSE

SSC
c - 1

MSB
MSE

SSB
b - 1

MSA
MSE

SSA
a - 1
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The two-way ANOVA model with one observation per cell is

xij � � � �i � �j � �ij (9–29)

where � is the overall mean, �i is the effect of level i of factor A, �j is the
effect of level j of factor B, and �ij is the error associated with xij. We assume
the errors are normally distributed with zero mean and variance �2.

9–37. Discuss the context in which Example 9–4 can be analyzed by using a
random-effects model.
9–38. What are the reasons for conducting a two-way analysis rather than two sep-
arate one-way ANOVAs? Explain.
9–39. What are the limitations of two-way ANOVA? What problems may be
encountered?
9–40. (This is a hard problem.) Suppose that a limited data set is available. Explain
why it is not desirable to increase the number of factors under study (say, four-way
ANOVA, five-way ANOVA, and so on). Give two reasons for this—one of the rea-
sons should be a statistical one.
9–41. Market researchers carried out an analysis of the emotions that arise in cus-
tomers who buy or do not buy a product at an unintended purchase opportunity
and how these emotions later affect the subjects’ responses to advertisements by the
makers of the product they bought or declined to buy. The results were analyzed
using a mixed design and blocking, and the reported results were as follows.14

Main effects: F (1, 233) = 26.04
Interactions: F (1, 233) = 14.05

Interpret these findings.
9–42. The following table reports salaries, in thousands of dollars per year, for
executives in three job types and three locations. Conduct a two-way ANOVA on
these data.

Job

Location Type I Type II Type III

East 54, 61, 59, 48, 50, 49, 71, 76, 65, 
56, 70, 62, 60, 54, 52, 70, 68, 62, 
63, 57, 68 49, 55, 53 73, 60, 79

Central 52, 50, 58, 44, 49, 54, 61, 64, 69, 
59, 62, 57, 53, 51, 60, 58, 57, 63, 
58, 64, 61 55, 47, 50 65, 63, 50

West 63, 67, 68, 65, 58, 62, 82, 75, 79, 
72, 68, 75, 70, 57, 61, 77, 80, 69, 
62, 65, 70 68, 65, 73 84, 83, 76

P R O B L E M S

resulting F statistic has a � 1 and (a � 1)(b � 1) degrees of freedom. Similarly, when
testing for factor B main effects, we divide MSB by MS(AB) and obtain an F statistic
with b � 1 and (a � 1)(b � 1) degrees of freedom.

Remember that this analysis assumes no interactions between the two factors.
Remember also that in statistics, having as many data as possible is always desirable.
Therefore, the two-way ANOVA with one observation per cell is, in itself, of limited
use. The idea of two factors and one observation per cell is useful, however, as it
brings us closer to the idea of blocking, presented in the next section.
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14Anirban Mukhopadhyay and Gita Venkataramani Johar, “Tempted or Not? The Effect of Recent Purchase History
on Responses to Affective Advertising,” Journal of Consumer Research 33 (March 2007), pp. 445–453.



Aczel−Sounderpandian: 
Complete Business 
Statistics, Seventh Edition

9. Analysis of Variance Text394 © The McGraw−Hill 
Companies, 2009

9–43. The Neilsen Company, which issues television popularity rating reports, is
interested in testing for differences in average viewer satisfaction with morning
news, evening news, and late news. The company is also interested in determining
whether differences exist in average viewer satisfaction with the three main net-
works: CBS, ABC, and NBC. Nine groups of 50 randomly chosen viewers are
assigned to each combination cell CBS–morning, CBS–evening, . . . , NBC–late.
The viewers’ satisfaction ratings are recorded. The results are analyzed via two-
factor ANOVA, one factor being network and the other factor being news time.
Complete the following ANOVA table for this study, and give a full interpretation of
the results.

Source of Sum of Degrees Mean 
Variation Squares of Freedom Square F Ratio

Network 145

News time 160

Interaction 240

Error 6,200

Total

9–44. An article reports the results of an analysis of salespersons’ performance level
as a function of two factors: task difficulty and effort. Included in the article is the
following ANOVA table:

Variable df F Value p
Task difficulty 1 0.39 0.5357

Effort 1 53.27 �0.0001

Interaction 1 1.95 0.1649

a. How many levels of task difficulty were studied?
b. How many levels of effort were studied?
c. Are there any significant task difficulty main effects?
d. Are there any significant effort main effects?
e. Are there any significant interactions of the two factors? Explain.

9–45. A study evaluated the results of a two-way ANOVA on the effects of the two
factors—exercise price of an option and the time of expiration of an option—on
implied interest rates (the measured variable). Included in the article is the following
ANOVA table.

Source of Degrees of Sum of Mean 
Variation Freedom Squares Square F Ratio
Exercise prices 2 2.866 1.433 0.420

Time of expiration 1 16.518 16.518 4.845

Interaction 2 1.315 0.658 0.193

Explained 5 20.699 4.140 1.214

Residuals (error) 144 490.964 3.409

a. What is meant by Explained in the table, and what is the origin of the 
information listed under that source?

b. How many levels of exercise price were used?
c. How many levels of time of expiration were used?
d. How large was the total sample size?
e. Assuming an equal number of data points in each cell, how large was the 

sample in each cell?
f. Are there any exercise price main effects?
g. Are there any time-of-expiration main effects?
h. Are there any interactions of the two factors?

392 Chapter 9



Aczel−Sounderpandian: 
Complete Business 
Statistics, Seventh Edition

9. Analysis of Variance Text 395© The McGraw−Hill 
Companies, 2009

i. Interpret the findings of this study.
j. Give approximate p-values for the tests.
k. In this particular study, what other equivalent distribution may be used

for testing for time-of-expiration main effects? (Hint: df.) Why?
9–46. An analysis was recently carried out to assess the effects of competency sim-
ilarity and new service performance on the reputation durability of service compa-
nies. The results of a two-factor analysis of variance, with interaction of factors, is
given below.15 Completely interpret and explain these findings.

Source df F Statistic
Competence similarity (CS) 1 0.01

New service performance (P) 1 0.65

CS � P 1 5.71
Error 313

9–8 Blocking Designs
In this section, we discuss alternatives to the completely randomized design. We seek
special designs for data analysis that will help us reduce the effects of extraneous fac-
tors (factors not under study) on the measured variable. That is, we seek to reduce the
errors. These designs allow for restricted randomization by grouping the experimental
units (people, items in our data) into homogeneous groups called blocks and then
randomizing the treatments within each block.

The first, and most important, blocking design we will discuss is the randomized
complete block design.

Randomized Complete Block Design
Recall the first part of the Club Med example, Example 9–2, where we were inter-
ested only in determining possible differences in average ratings among the five
resorts (no attributes factor). Suppose that Club Med can get information about its
vacationers’ age, sex, marital status, socioeconomic level, etc., and then can random-
ly assign vacationers to the different resorts. The club could form groups of five vaca-
tioners each such that the vacationers within each group are similar to one another
in age, sex, and marital status, etc. Each group of five vacationers is a block. Once
the blocks are formed, one member from each block is randomly assigned to one of the
five resorts (Guadeloupe, Martinique, Eleuthera, Paradise Island, or St. Lucia). Thus,
the vacationers sent to each resort will comprise a mixture of ages, of males and females,
of married and single people, of different socioeconomic levels, etc. The vacationers
within each block, however, will be more or less homogeneous.

The vacationers’ ratings of the resorts are then analyzed using an ANOVA that
utilizes the blocking structure. Since the members of each block are similar to one
another (and different from members of other blocks), we expect them to react to
similar conditions in similar ways. This brings about a reduction in the experimental
errors. Why? If we cannot block, it is possible, for example, that the sample of people
we get for Eleuthera will happen to be wealthier (or predominantly married, pre-
dominantly male, or whatever) and will tend to react less favorably to a resort of this
kind than a more balanced sample would react. In such a case, we will have greater
experimental error. If, on the other hand, we can block and send one member of each
homogeneous group of people to each of the resorts and then compare the responses of
the block as a whole, we will be more likely to find real differences among the resorts
than differences among the people. Thus, the errors (differences among people and
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The model for randomized complete block design is

xij � � � �i � �j � �ij (9–30)

where � is the overall mean, �i is the effect of level i of factor A, �j is the
effect of block j on factor B, and �ij is the error associated with xij. We assume
the errors are normally distributed with zero mean and variance �2.

H0: The average ratings of the five resorts are equal
H1: Not all the average ratings of the five resorts are equal

FIGURE 9–23 Blocking in the Club Med Example
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income $90,000–$150,000
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Block 3: Single
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income  $150,000–$200,000 

•
•
•
•

etc.

not among the resorts) are reduced by the blocking design. When all members of
every block are randomly assigned to all treatments, such as in this example, our
design is called the randomized complete block design.

394 Chapter 9

Figure 9–23 shows the formation of blocks in the case of Club Med. We assume
that the club is able—for the purpose of a specific study—to randomly assign vaca-
tioners to resorts.

The analysis of the results in a randomized complete block design, with a single
factor, is very similar to the analysis of two-factor ANOVA with one observation per
cell (see Table 9–11). Here, one “factor” is the blocks, and the other is the factor of
interest (in our example, resorts). The ANOVA table for a randomized complete
block design is illustrated in Table 9–12. Compare this table with Table 9–11. There
are n blocks of r elements each. We assume that there are no interactions between
blocks and treatments; thus, the degrees of freedom for error are (n � 1) (r � 1). The
F ratio reported in the table is for use in testing for treatment effects. It is possible to
test for block effects with a similar F ratio, although usually such a test is of no interest.

As an example, suppose that Club Med did indeed use a blocking design with
n � 10 blocks. Suppose the results are SSTR � 3,200, SSBL � 2,800, and SSE �
1,250. Let us conduct the following test:
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Weintraub Entertainment is a new movie company backed by financial support from
Coca-Cola Company. For one of the company’s first movies, the director wanted to
find the best actress for the leading role. “Best” naturally means the actress who
would get the highest average viewer rating. The director was considering three can-
didates for the role and had each candidate act in a particular test scene. A random
group of 40 viewers was selected, and each member of the group watched the same
scene enacted by each of the three actresses. The order of actresses was randomly

E X A M P L E  9 – 5

TABLE 9–13 Club Med Blocking Design ANOVA Table

Source of Sum of Degrees Mean 
Variation Squares of Freedom Square F Ratio

Blocks 2,800 9 311.11

Resorts 3,200 4 800.00 23.04

Error 1,250 36 34.72

Total 7,250

TABLE 9–12 ANOVA Table for Randomized Complete Block Design

Source of Sum of Degrees Mean 
Variation Squares of Freedom Square F Ratio

Blocks SSBL n � 1 MSBL

Treatments SSTR r � 1 MSTR F �

Error SSE (n � 1)(r � 1) MSE

Total nr � 1

MSTR
MSE

We enter the information into the ANOVA table and compute the remaining en-
tries we need and the F statistic value, which has an F distribution with r � 1 and
(n � 1)(r � 1) degrees of freedom when H0 is true. We have as a result Table 9–13.

We see that the value of the F statistic with 4 and 36 degrees of freedom is 23.04.
This value exceeds, by far, the critical point of the F distribution with 4 and 36
degrees of freedom at � � 0.01, which is 3.89. The p-value is, therefore, much smaller
than 0.01. We thus reject the null hypothesis and conclude that there is evidence that
not all resorts are rated equally, on average. By blocking the respondents into homo-
geneous groups, Club Med was able to reduce the experimental errors.

You can probably find many examples where blocking can be useful. For exam-
ple, recall the situation of problem 9–18. Three prototype airplanes were tested on
different flight routes to determine whether differences existed in the average range
of the planes. A design that would clearly reduce the experimental errors is a block-
ing design where all planes are flown over the same routes, at the same time, under
the same weather conditions, etc. That is, fly all three planes using each of the sample
route conditions. A block in this case is a route condition, and the three treatments
are the three planes.

A special case of the randomized complete block design is the repeated-
measures design. In this design, each experimental unit (person or item) is assigned
to all treatments in a randomly selected order. Suppose that a taste test is to be con-
ducted, where four different flavors are to be rated by consumers. In a repeated-
measures design, each person in the random sample of consumers is assigned to taste
all four flavors, in a randomly determined order, independent of all other consumers.
A block in this design is one consumer. We demonstrate the repeated-measures
design with the following example.
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Check the appropriate critical point for � � 0.01 in Appendix C, Table 5, to see that
this null hypothesis is rejected in favor of the alternative that differences do exist and
that not all three actresses are equally highly rated, on average. Since the null hypoth-
esis is rejected, there is place for further analysis to determine which actress rates
best. Such analysis can be done using the Tukey method or another method of fur-
ther analysis.

Another method of analysis can be used in cases where a repeated-measures
design is used on rankings of several treatments—here, if we had asked each viewer to
rank the three actresses as 1, 2, or 3, rather than rate them on a 0-to-100 scale. This
method is the Friedman test, discussed in Chapter 14.

The Template
Figure 9–25 shows the template that can be used for computing ANOVA in the case
of a randomized block design. The group means appear at the top of each column
and the block means appear in each row to the right of the data.

H0: There are no differences among average population ratings 
of the three actresses

The test statistic has an F distribution with 2 and 78 degrees of freedom when the
following null hypothesis is true.

S o l u t i o n

TABLE 9–14 The ANOVA Table for Example 9–5

Source of Sum of Degrees Mean
Variation Squares of Freedom Square F Ratio

Blocks 2,750 39 70.51

Treatments 2,640 2 1,320.00 12.93

Error 7,960 78 102.05

Total 13,350 119

FIGURE 9–24 Data Layout for Example 9–5

Randomized Viewing Order

First sampled person Actress B Actress C Actress A

Second sampled person Actress C Actress B Actress A

Third sampled person Actress A Actress C Actress B

Fourth sampled person Actress B Actress A Actress C

etc.

and independently chosen for each viewer. Ratings were on a scale of 0 to 100. The
results were analyzed using a block design ANOVA, where each viewer constituted a
block of treatments. The results of the analysis are given in Table 9–14. Figure 9–24
shows the layout of the data in this example. Analyze the results. Are all three actresses
equally rated, on average?
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FIGURE 9–25 The Template for Randomized Block Design ANOVA 
[Anova.xls; Sheet: RBD]
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9–47. Explain the advantages of blocking designs.
9–48. A study of emerging markets was conducted on returns on equity, bonds,
and preferred stock. Data are available on a random sample of firms that issue all
three types of instruments. How would you use blocking in this study, aimed at find-
ing which instrument gives the highest average return?
9–49. Suggest a blocking design for the situation in problem 9–19. Explain.
9–50. Suggest a blocking design for the situation in problem 9–21. Explain.
9–51. Is it feasible to design a study utilizing blocks for the situation in problem
9–20? Explain.
9–52. Is it possible to design a blocking design for the situation in problem 9–23?
9–53. How would you design a block ANOVA for the two-way analysis of the situ-
ation described in problem 9–42? Which ANOVA method is appropriate for the
analysis?
9–54. What important assumption about the relation between blocks and treat-
ments is necessary for carrying out a block design ANOVA?
9–55. Public concern has recently focused on the fact that although people in the
United States often try to lose weight, statistics show that the general population has
gained weight, on average, during the last 10 years. A researcher hired by a weight-
loss organization is interested in determining whether three kinds of artificial sweet-
ener currently on the market are approximately equally effective in reducing weight.
As part of a study, a random sample of 300 people is chosen. Each person is given
one of the three sweeteners to use for a week, and the number of pounds lost is
recorded. To reduce experimental errors, the people in the sample are divided into
100 groups of three persons each. The three people in every group all weigh about
the same at the beginning of the test week and are of the same sex and approximate-
ly the same age. The results are SSBL � 2,312, SSTR � 3,233, and SSE � 12,386.
Are all three sweeteners equally effective in reducing weight? How confident are you
of your conclusion? Discuss the merits of blocking in this case as compared with the
completely randomized design.
9–56. IBM Corporation has been retraining many of its employees to assume
marketing positions. As part of this effort, the company wanted to test four possible
methods of training marketing personnel to determine if at least one of the methods
was better than the others. Four groups of 70 employees each were assigned to the
four training methods. The employees were pretested for marketing ability and put
into groups of four, each group constituting a block with approximately equal prior
ability. Then the four employees in each group were randomly assigned to the four
training methods and retested after completion of the three-week training session.

P R O B L E M S
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FIGURE 9–26 One-Way ANOVA Setup
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The differences between their initial scores and final scores were computed. The
results were analyzed using a block design ANOVA. The results of the analysis
include: SSTR � 9,875, SSBL � 1,445, and SST � 22,364. Are all four training
methods equally effective? Explain.

9–9 Using the Computer
Using Excel for Analysis of Variance 
An ANOVA can be conducted using built-in Excel commands. In this section, we
shall solve the sample problems in this chapter using the built-in commands.

ONE-WAY ANOVA

• Enter the sample data in the range B3:D7 as shown in Figure 9–26.
• Select Data Analysis in the Analysis group on the Data tab.
• In the dialog box that appears select ANOVA: Single Factor, and click OK.
• In the ANOVA dialog box, fill in the Input Range as B3:D7. Note that the

input range includes a blank cell D7. But the blank cell cannot be avoided since
the range has to be of rectangular shape. You must select a rectangular input
range such that it includes all the data. Blanks do not matter.

• Select Columns for Grouped By entry, because the three groups appear as
columns in the input range.

• Click the Labels in First Row box, because the input range includes group
labels.

• Enter the desired alpha of 0.05.
• Select Output Range and enter F3. This tells Excel to start the output report at F3.
• Click OK. You should see the results shown in Figure 9–27.

Note that the p-value in cell K14 appears as 8.53E-05, which is the scientific nota-
tion for 0.0000853. Since the p-value is so small, the null hypothesis that all group
means are equal is rejected.

TWO-WAY ANOVA

Another built-in command is available for a two-way ANOVA. We shall see the
details by solving a problem. For our sample problem the data are entered in the range
A3:E15 as shown in Figure 9–28. (There should be no gaps in the data. The data
entered in the template in Figure 9–21 has gaps because each cell in the template
has 10 rows.)
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FIGURE 9–28 Two-Way ANOVA Setup
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2-Way ANOVA

FIGURE 9–27 One-Way ANOVA Results
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• Select Data Analysis in the Analysis group on the Data tab.
• In the dialog box that appears, select ANOVA: Two-Factor With

Replication.
• In the ANOVA dialog box that appears enter the Input Range. For the sample

problem it is A3:E15. The input range must include the first row and the first column
that contain the labels.

• For the Rows per sample box, enter the number of replications per cell, which
in this case is 4.

• Enter the desired alpha as 0.05.
• Select Output Range and enter G3.
• Click OK. You should see results similar to those seen in Figure 9–29.

In the results you can see the ANOVA table at the bottom. Above the ANOVA
table, you see the count, sum, average, and variance for each cell. In the Total
columns and rows you see the count, sum, average, and variance for row factors and
column factors.

You can also use Microsoft Excel for the randomized block design by choosing
ANOVA: Two Factors Without Replication from Data Analysis in the Analysis group
on the Data tab. In this case, the data are classified on two different dimensions as in
Two-Factor With Replication. However, for this tool, it is assumed that there is only a
single observation for each pair.
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FIGURE 9–29 Two-Way ANOVA Results
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Using MINITAB for Analysis of Variance
To perform a one-way analysis of variance, with the response variable in one column and
factor levels in another, choose Stat � ANOVA � One-way from the menu bar. If each
group is entered in its own column, use Stat � ANOVA � One-Way (Unstacked).  After
choosing Stat � ANOVA � One-way, the One-way Analysis of Variance dialog box
appears. Then enter the column containing the response variable in the Response edit
box and the column containing the factor levels in the Factor edit box. Check Residuals
to store residuals in the next available column. Check Store fits to store the fitted values
(level means) in the next available column. You can also enter the desired confidence
level. The button Comparison provides you with confidence intervals for all pairwise dif-
ferences between level means, using four different methods. Click on the Graphs button
if you want to display an individual value plot, a box plot, or a residual plot. MINITAB
built-in graphs help you check the validity of your assumptions.

As an example, suppose the following data represent the result of running an experi-
ment under four different levels, A, B, C, and D, of a single factor.

A B C D

18 17.75 17.92 18.01

17.98 18 18.01 17.94

18.2 17.77 17.88 18.23

18 18.01 18.3 18.2

17.99 18.01 18.22 18

18.1 18.12 18.56 17.84

17.9 18.2 18.1 18.11

We wish to run a one-way ANOVA to test for equality of means among these four groups.
After choosing Stat � ANOVA � One-way from the menu, the corresponding dialog box
appears as shown in Figure 9–30. Note that we have to enter data corresponding to the
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FIGURE 9–30 One-Way ANOVA Using MINITAB

FIGURE 9–31 Pairwise Comparison between Level Means Using Tukey’s Method

response variable in one column and the factor variable in another column in the
MINITAB worksheet (stacked format). As we can see in Figure 9–30, MINITAB gener-
ates an ANOVA table as well as the confidence intervals on the means of all groups.
Based on the obtained p-value, 0.244, we don’t reject the null hypothesis. So there is no
significant difference among the means of these four groups.

If you choose the Comparisons button to find confidence intervals for all pairwise
differences between level means, MINITAB will generate the confidence intervals on
the differences between every two means as well. In our example, Tukey’s method was
chosen in the One-Way Multiple Comparison window that appears after you click on
the Comparison button. The obtained confidence intervals are seen in Figure 9–31.
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FIGURE 9–32 Two-Way ANOVA Using MINITAB

As we can see, all confidence intervals on pairwise comparisons of the means con-
tain the value zero, which shows that the means of every two groups are equal. This
result confirms the validity of our earlier conclusion regarding not rejecting the null
hypothesis based on the obtained p -value from the ANOVA table.

MINITAB also enables you to run a two-way analysis of variance for testing the
equality of populations’ means when classification of treatments is by two factors. For this
procedure, the data must be balanced (all cells must have the same number of observa-
tions) and factors must be fixed. Start by choosing Stat � ANOVA � Two-Way. When the
corresponding dialog box appears, enter the column containing the response variable in
Response. Enter one of the factor level columns in Row Factor and the other factor level
column in Column Factor. You can check Display means for both row and column fac-
tors if you wish to compute marginal means and confidence intervals for each level of the
column or row factor. Check Fit additive model to fit a model without an interaction
term. You can also have access to various built-in graphs using the Graphs button. Then
click on the OK button.

As an example, consider the data set of problem 9–42, the salaries for executives in
three job types and three locations. We aim to run a two-way ANOVA on these data.
Note that the data need to be entered in a stacked format in the MINITAB worksheet.
Select Stat � ANOVA � Two-Way from the menu bar. The corresponding dialog box,
Session commands, and obtained ANOVA table are shown in Figure 9–32.

As you can see, the p-values corresponding to the location and job main effects are
zero. So we reject the null hypothesis and state that the main effects exist for both factors,
location and job. But the p-value of the interaction effect is not significant at significance
level 0.05. So we do not reject the null hypothesis and conclude that there is no interac-
tion between these two factors. If we check Box plots of data by clicking on the Graphs
button, we will observe the corresponding box plot.

Finally, if you wish to run a test at which certain factors are random, you need to
choose Stat � ANOVA � Balanced ANOVA from the menu bar when your data are bal-
anced. If your data are unbalanced, you have to choose Stat � ANOVA � General Linear
Model from the menu bar. The settings are similar to the previous dialog boxes.
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9–57. An enterprising art historian recently started a new business: the production
of walking-tour audiotapes for use by those visiting major cities. She originally pro-
duced tapes for eight cities: Paris, Rome, London, Florence, Jerusalem, Washington,
New York, and New Haven. A test was carried out to determine whether all eight
tapes (featuring different aspects of different cities) were equally appealing to poten-
tial users. A random sample of 160 prospective tourists was selected, 20 per city. Each
person evaluated the tape he or she was given on a scale of 0 to 100. The results were
analyzed using one-way ANOVA and included SSTR � 7,102 and SSE � 10,511. Are
all eight tapes equally appealing, on average? What can you say about the p-value?
9–58. NAMELAB is a San Francisco–based company that uses linguistic analysis
and computers to invent catchy names for new products. The company is credited
with the invention of Acura, Compaq, Sentra, and other names of successful prod-
ucts. Naturally, statistical analysis plays an important role in choosing the final name
for a product. In choosing a name for a compact disk player, NAMELAB is consid-
ering four names and uses analysis of variance for determining whether all four
names are equally liked, on average, by the public. The results include n1 � 32, n2 �
30, n3 � 28, n4 � 41, SSTR � 4,537, and MSE � 412. Are all four names approxi-
mately equally liked, on average? What is the approximate p-value?
9–59. As software for microcomputers becomes more and more sophisticated, the
element of time becomes more crucial. Consequently, manufacturers of software
packages need to work on reducing the time required for running application pro-
grams. Speed of execution also depends on the computer used. A two-way ANOVA
is suggested for testing whether differences exist among three software packages, and
among four microcomputers made by NEC, Toshiba, Kaypro, and Apple, with
respect to the average time for performing a certain analysis. The results include
SS(software) � 77,645, SS(computer) � 54,521, SS(interaction) � 88,699, and SSE �
434,557. The analysis used a sample of 60 runs of each software package–computer
combination. Complete an ANOVA table for this analysis, carry out the tests, and
state your conclusions.
9–60. An ANOVA assessing the effects of three blocks of respect and three levels of
altruism was carried out.16 The F-statistic value was 13.65 and the degrees of freedom

A D D I T I O N A L  P R O B L E M S

9–10 Summary and Review of Terms
In this chapter, we discussed a method of making statistical comparisons of more
than two population means. The method is analysis of variance, often referred to as
ANOVA. We defined treatments as the populations under study. A set of treatments
is a factor. We defined one-factor ANOVA, also called one-way ANOVA, as the test
for equality of means of treatments belonging to one factor. We defined a two-factor
ANOVA, also called two-way ANOVA, as a set of three hypothesis tests: (1) a test for
main effects for one of the two factors, (2) a test for main effects for the second factor,
and (3) a test for the interaction of the two factors. We defined the fixed-effects
model and the random-effects model. We discussed one method of further analysis
to follow an ANOVA once the ANOVA leads to rejection of the null hypothesis of
equal treatment means. The method is the Tukey HSD procedure. We also men-
tioned two other alternative methods of further analysis. We discussed experimental
design in the ANOVA context. Among these designs, we mentioned blocking as a
method of reducing experimental errors in ANOVA by grouping similar items. We
also discussed the repeated-measures design.
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were 74 for blocks, 2 for treatment, and 224 for total. What was the total sample size?
Are the results of the ANOVA significant? Explain.
9–61. Young affluent U.S. professionals are creating a growing demand for exot-
ic pets. The most popular pets are the Shiba Inu dog breed, Rottweilers, Persian
cats, and Maine coons. Prices for these pets vary and depend on supply and
demand. A breeder of exotic pets wants to know whether these four pets fetch the
same average prices, whether prices for these exotic pets are higher in some geo-
graphic areas than in others, and whether there are any interactions—one or more
of the four pets being more favored in one location than in others. Prices for 10 of
each of these pets at four randomly chosen locations around the country are
recorded and analyzed. The results are SS(pet) � 22,245, SS(location) � 34,551,
SS(interaction) � 31,778, and SSE � 554,398. Are there any pet main effects? Are
there any location main effects? Are there any pet–location interactions? Explain
your findings.
9–62. Analysis of variance has long been used in providing evidence of the effec-
tiveness of pharmaceutical drugs. Such evidence is required before the Food and
Drug Administration (FDA) will allow a drug to be marketed. In a recent test of the
effectiveness of a new sleeping pill, three groups of 25 patients each were given the
following treatments. The first group was given the drug, the second group was given
a placebo, and the third group was given no treatment at all. The number of minutes
it took each person to fall asleep was recorded. The results are as follows.

Drug group: 12, 17, 34, 11, 5, 42, 18, 27, 2, 37, 50, 32, 12, 27, 21, 10,
4, 33, 63, 22, 41,19, 28, 29, 8

Placebo group: 44, 32, 28, 30, 22, 12, 3, 12, 42, 13, 27, 54, 56, 32, 37, 28,
22, 22, 24, 9, 20, 4, 13, 42, 67

No-treatment group: 32, 33, 21, 12, 15, 14, 55, 67, 72, 1, 44, 60, 36, 38, 49, 66,
89, 63, 23, 6, 9, 56, 28, 39, 59

Use a computer (or hand calculations) to determine whether the drug is effective.
What about the placebo? Give differences in average effectiveness, if any exist.
9–63. A more efficient experiment than the one described in problem 9–62 was
carried out to determine whether a sleeping pill was effective. Each person in a ran-
dom sample of 30 people was given the three treatments: drug, placebo, nothing.
The order in which these treatments were administered was randomly chosen for
each person in the sample.

a. Explain why this experiment is more efficient than the one described for
the same investigation in problem 9–62. What is the name of the experi-
mental design used here? Are there any limitations to the present method
of analysis?

b. The results of the analysis include SSTR � 44,572, SSBL � 38,890, and
SSE � 112,672. Carry out the analysis, and state your conclusions. Use
� � 0.05.

9–64. Three new high-definition television models are compared. The distances (in
miles) over which a clear signal is received in random trials for each of the models are
given below.

General Instrument: 111, 121, 134, 119, 125, 120, 122, 138, 115, 123, 130, 124,
132, 127, 130

Philips: 120, 121, 122, 123, 120, 132, 119, 116, 125, 123, 116, 118,
120, 131, 115

Zenith: 109, 100, 110, 102, 118, 117, 105, 104, 100, 108, 128, 117,
101, 102, 110
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Carry out a complete analysis of variance, and report your results in the form of a
memorandum. State your hypotheses and your conclusions. Do you believe there are
differences among the three models? If so, where do they lie?
9–65. A professor of food chemistry at the University of Wisconsin recently devel-
oped a new system for keeping frozen foods crisp and fresh: coating them with
watertight, edible film. The Pillsbury Company wants to test whether the new prod-
uct is tasty. The company collects a random sample of consumers who are given the
following three treatments, in a randomly chosen order for each consumer: regular
frozen pizza, frozen pizza packaged in a plastic bag, and the new edible-coating
frozen pizza (all reheated, of course). Fifty people take part in the study, and the
results include SSTR � 128,899, SSBL � 538,217, and SSE � 42,223,987. (These
are ANOVA results for taste scores on a 0–1000 scale.) Based on these results, are
all three frozen pizzas perceived as equally tasty?
9–66. Give the statistical reason for the fact that a one-way ANOVA with only two
treatments is equivalent to a two-sample t test discussed in Chapter 8.
9–67. Following is a computer output of an analysis of variance based on randomly
chosen rents in four cities. Do you believe that the average rent is equal in the four
cities studied? Explain.

ANALYSIS OF VARIANCE

SOURCE DF SS MS F

FACTOR 3 37402 12467 1.76

ERROR 44 311303 7075

TOTAL 47 348706

9–68. One of the oldest and most respected survey research firms is the Gallup
Organization. This organization makes a number of special reports available at its
corporate Web site www.gallup.com. Select and read one of the special reports
available at this site. Based on the information in this report, design a 3 � 3
ANOVA on a response of interest to you, such as buying behavior. The design
should include two factors that you think influence the response, such as location,
age, income, or education. Each factor should have three levels for testing in the
model.
9–69. Interpret the following computer output.

ANALYSIS OF VARIANCE ON SALES

SOURCE DF SS MS F p

STORE 2 1017.33 508.67 156.78 0.000

ERROR 15 48.67 3.24

TOTAL 17 1066.00

INDIVIDUAL 95 PCT CI’S FOR MEAN BASED 

ON POOLED STDEV

LEVEL N MEAN STDEV -+----------+----------+----------+----

1 6 53.667 1.862 (-*--)

2 6 67.000 1.673 (-*-)

3 6 49.333 1.862 (-*-)

-+----------+----------+----------+----

POOLED STDEV = 1.801 48.0 54.0 60.0 66.0

Analysis of Variance 405
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Let us continue discussing the ideas about studying
wines using analysis of variance begun in the
introduction to this chapter. The four important

wine grapes in the introduction are to be compared
using ANOVA to see whether experts rate random
samples of wines in these groups similarly, on average,
or whether differences in average ratings exist that are
due to the kind of grape used. The following data are
scores on a 0-to-100 scale for these wines.

Chardonnay Merlot Chenin Blanc Cabernet Sauvignon

89 91 81 92
88 88 81 89
89 99 81 89
78 90 82 91
80 91 81 92

86 88 78 90
87 88 79 91
88 89 80 93
88 90 83 91
89 87 81 97
88 88 88

85
86

The above data are independent random samples of
wine ratings in the four groups. Carry out an analysis of
variance to determine whether average population rat-
ings are equal for all groups, or whether there is statis-
tical evidence for differences due to the kind of grape
used. If you find such evidence, carry out further analy-
sis to find out where these differences are.

CASE11 Rating Wines

Three checkout lines at a supermarket use three dif-
ferent scanner systems that read the UPC symbols
on products and find the prices. The store manag-

er suspects that the three scanner systems have different
efficiencies and wants to check their speeds. He meas-
ures at randomly selected times the speed of each system
in number of items scanned per minute. The measure-
ments are given in the table below. Assume normal dis-
tribution with equal variance for the three systems.

1. Conduct a one-way ANOVA to test the null
hypothesis that all three scanner systems have the
same average number scanned per minute. Use
an � of 0.05. 

After studying the test results, a representative of
the manufacturer of one of the three scanner systems
remarks that the ANOVA results may be affected by

the differing skills of the checkout clerks. The clerks
were not the same for all measurements. 

Wanting to know the difference in the efficiencies
of the clerks as well as the systems, the manager redesigns
the experiment to yield measurements for all combina-
tions of five clerks and three systems. The measurements
from this experiment are tabulated below. Assume nor-
mal distribution with equal variance for all cells.

2. Conduct a two-way ANOVA with the above data.
Interpret your findings.

Scan 1 Scan 2 Scan 3
Clerk 1 15 16 18

15 17 17
14 14 15
15 12 15

Clerk 2 14 15 14
15 17 18
13 16 19
12 13 20

Clerk 3 15 16 17
14 14 18
16 13 17
13 14 16

Clerk 4 14 15 20
15 17 19
16 18 17
15 14 16

Clerk 5 15 16 20
17 16 18
14 17 18
13 19 17

Scan 1 Scan 2 Scan 3

16 13 18
15 18 19
12 13 15
15 15 14
16 18 19
15 14 16
15 15 17
14 15 14
12 14 15
14 16 17

CASE12 Checking Out Checkout
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After studying this chapter, you should be able to:

• Determine whether a regression experiment would be useful 
in a given instance.

• Formulate a regression model.
• Compute a regression equation.
• Compute the covariance and the correlation coefficient of two

random variables.
• Compute confidence intervals for regression coefficients.
• Compute a prediction interval for a dependent variable.
• Test hypotheses about regression coefficients.
• Conduct an ANOVA experiment using regression results.
• Analyze residuals to check the validity of assumptions about

the regression model.
• Solve regression problems using spreadsheet templates.
• Use the LINEST function to carry out a regression.

SIMPLE LINEAR REGRESSION
AND CORRELATION

1
1
1
1
1
1
1

LEARNING OBJECTIVES

1 1 1 1 1
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In 1855, a 33-year-old Englishman settled
down to a life of leisure in London after several
years of travel throughout Europe and Africa.
The boredom brought about by a comfortable

life induced him to write, and his first book was, naturally, The Art of Travel. As his
intellectual curiosity grew, he shifted his interests to science and many years later
published a paper on heredity, “Natural Inheritance” (1889). He reported his discov-
ery that sizes of seeds of sweet pea plants appeared to “revert,” or “regress,” to the
mean size in successive generations. He also reported results of a study of the rela-
tionship between heights of fathers and the heights of their sons. A straight line was
fit to the data pairs: height of son versus height of father. Here, too, he found a
“regression to mediocrity”: The heights of the sons represented a movement away
from their fathers, toward the average height. The man was Sir Francis Galton, a
cousin of Charles Darwin. We credit him with the idea of statistical regression.

While most applications of regression analysis may have little to do with the
“regression to the mean” discovered by Galton, the term regression remains. It now
refers to the statistical technique of modeling the relationship between variables.
In this chapter on simple linear regression, we model the relationship between
two variables: a dependent variable, denoted by Y, and an independent variable,
denoted by X. The model we use is a straight-line relationship between X and Y. When
we model the relationship between the dependent variableY and a set of several inde-
pendent variables, or when the assumed relationship between Y and X is curved and
requires the use of more terms in the model, we use a technique called multiple regression.
This technique will be discussed in the next chapter.

Figure 10–1 is a general example of simple linear regression: fitting a straight
line to describe the relationship between two variables X and Y. The points on the
graph are randomly chosen observations of the two variables X andY, and the
straight line describes the general movement in the data—an increase inY correspon-
ding to an increase in X. An inverse straight-line relationship is also possible, con-
sisting of a general decrease in Y as X increases (in such cases, the slope of the line is
negative).

Regression analysis is one of the most important and widely used statistical tech-
niques and has many applications in business and economics. A firm may be inter-
ested in estimating the relationship between advertising and sales (one of the most
important topics of research in the field of marketing). Over a short range of values—
when advertising is not yet overdone, giving diminishing returns—the relationship
between advertising and sales may be well approximated by a straight line. The
X variable in Figure 10–1 could denote advertising expenditure, and the Y variable
could stand for the resulting sales for the same period. The data points in this case would
be pairs of observations of the form x1 � $75,570, y1 � 134,679 units; x2 � $83,090,
y2 � 151,664 units; etc. That is, the first month the firm spent $75,570 on advertising,
and sales for the month were 134,679 units; the second month the company spent
$83,090 on advertising, with resulting sales of 151,664 units for that month; and so on
for the entire set of available data.

The data pairs, values of X paired with corresponding values of Y, are the points
shown in a sketch of the data (such as Figure 10–1). A sketch of data on two variables
is called a scatter plot. In addition to the scatter plot, Figure 10–1 shows the
straight line believed to best show how the general trend of increasing sales corre-
sponds, in this example, to increasing advertising expenditures. This chapter will
teach you how to find the best line to fit a data set and how to use the line once you
have found it.

1 1 1 1 1

1
1
1
1
1

10–1 Using Statistics
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Although, in reality, our sample may consist of all available information on the two
variables under study, we always assume that our data set constitutes a random sample
of observations from a population of possible pairs of values of X and Y. Incidentally,
in our hypothetical advertising sales example, we assume no carryover effect of adver-
tising from month to month; every month’s sales depend only on that month’s level of
advertising. Other common examples of the use of simple linear regression in business
and economics are the modeling of the relationship between job performance (the
dependent variable Y ) and extent of training (the independent variable X ); the rela-
tionship between returns on a stock (Y ) and the riskiness of the stock (X ); and the
relationship between company profits (Y ) and the state of the economy (X ).

Model Building
Like the analysis of variance, both simple linear regression and multiple regression
are statistical models. Recall that a statistical model is a set of mathematical formulas
and assumptions that describe a real-world situation. We would like our model to
explain as much as possible about the process underlying our data. However, due to
the uncertainty inherent in all real-world situations, our model will probably not
explain everything, and we will always have some remaining errors. The errors are
due to unknown outside factors that affect the process generating our data.

A good statistical model is parsimonious, which means that it uses as few mathemat-
ical terms as possible to describe the real situation. The model captures the systematic
behavior of the data, leaving out the factors that are nonsystematic and cannot be fore-
seen or predicted—the errors. The idea of a good statistical model is illustrated in
Figure 10–2. The errors, denoted by �, constitute the random component in the model.
In a sense, the statistical model breaks down the data into a nonrandom, systematic
component, which can be described by a formula, and a purely random component.

How do we deal with the errors? This is where probability theory comes in. Since our
model, we hope, captures everything systematic in the data, the remaining random errors
are probably due to a large number of minor factors that we cannot trace. We assume that
the random errors � are normally distributed. If we have a properly constructed model, the
resulting observed errors will have an average of zero (although few, if any, will actually
equal zero), and they should also be independent of one another. We note that the assump-
tion of a normal distribution of the errors is not absolutely necessary in the regression
model. The assumption is made so that we can carry out statistical hypothesis tests using
the F and t distributions. The only necessary assumption is that the errors � have mean
zero and a constant variance �2 and that they be uncorrelated with one another. In the
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next section, we describe the simple linear regression model. We now present a general
model-building methodology.

First, we propose a particular model to describe a given situation. For example,
we may propose a simple linear regression model for describing the relationship
between two variables. Then we estimate the model parameters from the random
sample of data we have. The next step is to consider the observed errors resulting
from the fit of the model to the data. These observed errors, called residuals, repre-
sent the information in the data not explained by the model. For example, in the
ANOVA model discussed in Chapter 9, the within-group variation (leading to SSE
and MSE) is due to the residuals. If the residuals are found to contain some nonran-
dom, systematic component, we reevaluate our proposed model and, if possible,
adjust it to incorporate the systematic component found in the residuals; or we may
have to discard the model and try another. When we believe that model residuals
contain nothing more than pure randomness, we use the model for its intended pur-
pose: prediction of a variable, control of a variable, or the explanation of the relation-
ships among variables.

In the advertising sales example, once the regression model has been estimated
and found to be appropriate, the firm may be able to use the model for predicting sales
for a given level of advertising within the range of values studied. Using the model, the
firm may be able to control its sales by setting the level of advertising expenditure. The
model may help explain the effect of advertising on sales within the range of values
studied. Figure 10–3 shows the usual steps of building a statistical model.

10–2 The Simple Linear Regression Model
Recall from algebra that the equation of a straight line is Y � A � BX , where A is the Y
intercept and B is the slope of the line. In simple linear regression, we model the rela-
tionship between two variables X and Y as a straight line. Therefore, our model must
contain two parameters: an intercept parameter and a slope parameter. The usual
notation for the population intercept is �0, and the notation for the population
slope is �1. If we include the error term �, the population regression model is given
in equation 10–1.

Simple Linear Regression and Correlation 411

Specify a statistical model: 
formula and assumptions

Estimate the parameters of the 
model from the data set

Examine the residuals
and test for appropriateness of 
the model

Use the model for its 
intended purpose

If the model
is not appropriate

FIGURE 10–3 Steps in Building a Statistical Model
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The model parameters are as follows:

�0 is the Y intercept of the straight line given by Y � �0 � �1X (the line
does not contain the error term).
�1 is the slope of the line Y � �0 � �1X.

The simple linear regression model of equation 10–1 is composed of two
components: a nonrandom component, which is the line itself, and a purely random
component—the error term �. This is shown in Figure 10–4. The nonrandom part of
the model, the straight line, is the equation for the mean of Y, given X. We denote the
conditional mean of Y, given X, by E (Y | X ). Thus, if the model is correct, the average
value of Y for a given value of X falls right on the regression line. The equation for the
mean of Y, given X, is given as equation 10–2.

412 Chapter 10

The population simple linear regression model is

Y � �0 � �1X � � (10–1)

where Y is the dependent variable, the variable we wish to explain or predict;
X is the independent variable, also called the predictor variable; and � is the
error term, the only random component in the model and thus the only
source of randomness in Y.

The conditional mean of Y is

E (Y | X) � �0 � �1X (10–2)

Model assumptions:

1. The relationship between X and Y is a straight-line relationship.
2. The values of the independent variable X are assumed fixed (not

random); the only randomness in the values of Y comes from the
error term �.

Comparing equations 10–1 and 10–2, we see that our model says that each
value of Y comprises the average Y for the given value of X (this is the straight line),
plus a random error. We will sometimes use the simplified notation E (Y ) for the
line, remembering that this is the conditional mean of Y for a given value of X. As
X increases, the average population value of Y also increases, assuming a positive
slope of the line (or decreases, if the slope is negative). The actual population value
of Y is equal to the average Y conditional on X, plus a random error �. We thus
have, for a given value of X,

Y � Average Y for given X � Error

Figure 10–5 shows the population regression model.
We now state the assumptions of the simple linear regression model.

FIGURE 10–4
Simple Linear Regression
Model

Y � �0 � �1X � �
123 123 

Nonrandom Random
component: error
straight line
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Figure 10–6 shows the distributional assumptions of the errors of the simple linear
regression model. The population regression errors are normally distributed about
the population regression line, with mean zero and equal variance. (The errors are
equally spread about the regression line; the error variance does not increase or
decrease as X increases.)

The simple linear regression model applies only if the true relationship between
the two variables X and Y is a straight-line relationship. If the relationship is curved
(curvilinear ), then we need to use the more involved methods of the next chapter. In
Figure 10–7, we show various relationships between two variables. Some are straight-
line relationships that can be modeled by simple linear regression, and others are not.

So far, we have described the population model, that is, the assumed true rela-
tionship between the two variables X and Y. Our interest is focused on this unknown
population relationship, and we want to estimate it, using sample information. We
obtain a random sample of observations on the two variables, and we estimate the
regression model parameters �0 and �1 from this sample. This is done by the method
of least squares, which is discussed in the next section.

Simple Linear Regression and Correlation 413

3. The errors � are normally distributed with mean 0 and a constant
variance �2. The errors are uncorrelated (not related) with one
another in successive observations.1 In symbols:s:

� � N(0, �2) (10–3)
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10–1. What is a statistical model?
10–2. What are the steps of statistical model building?
10–3. What are the assumptions of the simple linear regression model?
10–4. Define the parameters of the simple linear regression model.

P R O B L E M S

1The idea of statistical correlation will be discussed in detail in Section 10–5. In the case of the regression errors, we
assume that successive errors �1, �2, �3, . . . are uncorrelated: they are not related with one another; there is no trend, no
joint movement in successive errors. Incidentally, the assumption of zero correlation together with the assumption of a
normal distribution of the errors implies the assumption that the errors are independent of one another. Independence
implies noncorrelation, but noncorrelation does not imply independence, except in the case of a normal distribution (this
is a technical point).
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10–5. What is the conditional mean of Y, given X ?
10–6. What are the uses of a regression model?
10–7. What are the purpose and meaning of the error term in regression?
10–8. A simple linear regression model was used for predicting the success of
private-label products, which, according to the authors of the study, now account for
20% of global grocery sales, and the per capita gross domestic product for the coun-
try at which the private-label product is sold.2 The regression equation is given as

PLS � � GDPC � �

where PLS � private label success, GDPC � per capita gross domestic product, � �
regression slope, and � � error term. What kind of regression model is this?

10–3 Estimation: The Method of Least Squares
We want to find good estimates of the regression parameters �0 and �1. Remember the
properties of good estimators, discussed in Chapter 5. Unbiasedness and efficiency are
among these properties. A method that will give us good estimates of the regression

414 Chapter 10

Here a straight
line describes the
relationship well

y

x

Here a curve, rather
than a straight line,
is a good description
of the relationship

y

x

Here a
straight line
describes the
relationship well

y

x

Here a curve describes
the relationship better
than a line

y

x

FIGURE 10–7 Some Possible Relationships between X and Y

2Lien Lamey et al., “How Business Cycles Contribute to Private-Label Success: Evidence from the United States and
Europe,” Journal of Marketing 71 ( January 2007), pp. 1–15.
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coefficients is the method of least squares. The method of least squares gives us the
best linear unbiased estimators (BLUE) of the regression parameters �0 and �1. These
estimators both are unbiased and have the lowest variance of all possible unbiased
estimators of the regression parameters. These properties of the least-squares estima-
tors are specified by a well-known theorem, the Gauss-Markov theorem. We denote the
least-squares estimators by b0 and b1.

The least-squares estimators are

Simple Linear Regression and Correlation 415

estimatesb0 ⎯⎯⎯→ �0

estimatesb1 ⎯⎯⎯→ �1

The estimated regression equation is

Y � b0 � b1X � e (10–4)

where b0 estimates �0, b1 estimates �1, and e stands for the observed
errors—the residuals from fitting the line b0 � b1X to the data set of 
n points.

The regression line is

Ŷ � b0 � b1X (10–6)

where Ŷ (pronounced “Y hat”) is the Y value lying on the fitted regression
line for a given X.

In terms of the data, equation 10–4 can be written with the subscript i to signify each
particular data point:

yi � b0 � b1xi � ei (10–5)

where i = 1, 2, . . . , n. Then e1 is the first residual, the distance from the first data point
to the fitted regression line; e 2 is the distance from the second data point to the line;
and so on to en , the n th error. The errors ei are viewed as estimates of the true popu-
lation errors �i . The equation of the regression line itself is as follows:

Thus, ŷ1 is the fitted value corresponding to x1, that is, the value of y1 without the error
e1, and so on for all i � 1, 2, . . . , n. The fitted valueY is also called the predicted value
of Ŷ because if we do not know the actual value of Y, it is the value we would predict
for a given value of X, using the estimated regression line.

Having defined the estimated regression equation, the errors, and the fitted val-
ues of Y, we will now demonstrate the principle of least squares, which gives us the
BLUE regression parameters. Consider the data set shown in Figure 10–8(a). In parts
(b ), (c ), and (d ) of the figure, we show different lines passing through the data set and
the resulting errors ei.

As can be seen from Figure 10–8, the regression line proposed in part (b )
results in very large errors. The errors corresponding to the line of part (c ) are
smaller than the ones of part (b), but the errors resulting from using the line pro-
posed in part (d ) are by far the smallest. The line in part (d ) seems to move with
the data and minimize the resulting errors. This should convince you that the line
that best describes the trend in the data is the line that lies “inside” the set of
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points; since some of the points lie above the fitted line and others below the line,
some errors will be positive and others will be negative. If we want to minimize
all the errors (both positive and negative ones), we should minimize the sum of the
squared errors (SSE, as in ANOVA). Thus, we want to find the least-squares line—the
line that minimizes SSE. We note that least squares is not the only method of fit-
ting lines to data; other methods include minimizing the sum of the absolute
errors. The method of least squares, however, is the most commonly used method
to estimate a regression relationship. Figure 10–9 shows how the errors lead to the 
calculation of SSE.

We define the sum of squares for error in regression as

416 Chapter 10

The data

(d)(b)

(a) (c)

Another
proposed
regression
line

Examples of three
of the resulting errors

The least-squares
regression line

The resulting errors 
are minimized

A
proposed
regression
line

These are three of the 
resulting errors, ei

y

xx

y

y

x x

y

FIGURE 10–8 A Data Set of X and Y Pairs, and Different Proposed Straight Lines to Describe the Data

(10–7)SSE = a
n

i =1
ei

2 = a
n

i =1
(yi - y$i)2

Figure 10–10 shows different values of SSE corresponding to values of b0 and b1. The
least-squares line is the particular line specified by values of b0 and b1 that minimize
SSE, as shown in the figure.
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Calculus is used in finding the expressions for b0 and b1 that minimize SSE. These
expressions are called the normal equations and are given as equations 10–8.3 This system
of two equations with two unknowns is solved to give us the values of b0 and b1 that
minimize SSE. The results are the least-squares estimators b0 and b1 of the simple linear
regression parameters �0 and �1.

Simple Linear Regression and Correlation 417

y

x
X i

Regression line
Ŷ  = b0 + b1 X

SSE = �(e
i
)2 = �(Y

i
– Ŷ

i
)2

(sum over all data)

Y ̂ i , the predicted Y for Xi

Data point
(Xi , Yi)

Error ei

Error ei = Yi – Ŷ i

FIGURE 10–9 Regression Errors Leading to SSE

Least squares b0

Least squares b1

At this point SSE
is minimized with
respect to b0 and b1

The corresponding
values of b0 and b1 are
the least-squares
estimates

b1

b0

SSE

FIGURE 10–10 The Particular Values b0 and b1 That Minimize SSE

3We leave it as an exercise to the reader with background in calculus to derive the normal equations by taking the
partial derivatives of SSE with respect to b0 and b1 and setting them to zero.

The normal equations are

(10–8)a
n

i=1
xiyi = b0a

n

i=1
xi + b1a

n

i=1
x2

i

a
n

i=1
yi = nb0 + b1a

n

i=1
xi
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Before we present the solutions to the normal equations, we define the sums of
squares SSX and SSY and the sum of the cross-products SSXY. These will be very useful
in defining the least-squares estimates of the regression parameters, as well as in other
regression formulas we will see later. The definitions are given in equations 10–9.

418 Chapter 10

Definitions of sums of squares and cross-products useful in regression analysis:

(10–9)

The first definition in each case is the conceptual one using squared distances
from the mean; the second part is a computational definition. Summations
are over all data.

SSxy � a (x � x)(y � y) � a xy �
(gx)(gy)

n

SSy � a (y � y)2 � a y2 �
(gy)2

n

SSx � a (x � x)2 � a x2 �
(gx)2

n

Least-squares regression estimators include the slope

and the intercept

(10–10)b0 = y - b1x

b1 =
SSxy

SSx

We now give the solutions of the normal equations, the least-squares estimators
b0 and b1.

The formula for the estimate of the intercept makes use of the fact that the least-squares
line always passes through the point ( ), the intersection of the mean of X and the mean
of Y.

Remember that the obtained estimates b0 and b1 of the regression relationship are
just realizations of estimators of the true regression parameters �0 and �1. As always,
our estimators have standard deviations (and variances, which, by the Gauss-Markov
theorem, are as small as possible). The estimates can be used, along with the assump-
tion of normality, in the construction of confidence intervals for, and the conducting
of hypothesis tests about, the true regression parameters �0 and �1. This will be done
in the next section.

We demonstrate the process of estimating the parameters of a simple linear
regression model in Example 10–1.

x, y

American Express Company has long believed that its cardholders tend to travel
more extensively than others—both on business and for pleasure. As part of a com-
prehensive research effort undertaken by a New York market research firm on behalf
of American Express, a study was conducted to determine the relationship between
travel and charges on the American Express card. The research firm selected a ran-
dom sample of 25 cardholders from the American Express computer file and
recorded their total charges over a specified period. For the selected cardholders,
information was also obtained, through a mailed questionnaire, on the total number
of miles traveled by each cardholder during the same period. The data for this study
are given in Table 10–1. Figure 10–11 is a scatter plot of the data.

E X A M P L E  1 0 – 1
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TABLE 10–1
American Express Study
Data

Miles Dollars

1,211 1,802

1,345 2,405

1,422 2,005

1,687 2,511

1,849 2,332

2,026 2,305

2,133 3,016

2,253 3,385

2,400 3,090

2,468 3,694

2,699 3,371

2,806 3,998

3,082 3,555

3,209 4,692

3,466 4,244

3,643 5,298

3,852 4,801

4,033 5,147

4,267 5,738

4,498 6,420

4,533 6,059

4,804 6,426

5,090 6,321

5,233 7,026

5,439 6,964

Miles
6,0000 1,000 2,000 3,000 4,000 5,000

8,000

7,000

6,000

5,000

4,000

3,000
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1,000
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FIGURE 10–11 Data for the American Express Study
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The least-squares line:
Ŷ = 274.8497 + 1.2553X

FIGURE 10–12 Least-Squares Line for the American Express Study

As can be seen from the figure, it seems likely that a straight line will describe the
trend of increase in dollar amount charged with increase in number of miles traveled.
The least-squares line that fits these data is shown in Figure 10–12.

We will now show how the least-squares regression line in Figure 10–12 is
obtained. Table 10–2 shows the necessary computations. From equations 10–9, using
sums at the bottom of Table 10–2, we get

S o l u t i o n

SSX = a x2 -
(gx)2

n
= 293,426,946 -

79,4482

25
= 40,947,557.84

SSXY = a xy -
(gx)(gy)

n
= 390,185,014 -

(79,448)(106,605)
25

= 51,402,852.4

and
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TABLE 10–2 The Computations Required for the American Express Study

Miles X Dollars Y X2 Y2 XY

1,211 1,802 1,466,521 3,247,204 2,182,222

1,345 2,405 1,809,025 5,784,025 3,234,725

1,422 2,005 2,022,084 4,020,025 2,851,110

1,687 2,511 2,845,969 6,305,121 4,236,057

1,849 2,332 3,418,801 5,438,224 4,311,868

2,026 2,305 4,104,676 5,313,025 4,669,930

2,133 3,016 4,549,689 9,096,256 6,433,128

2,253 3,385 5,076,009 11,458,225 7,626,405

2,400 3,090 5,760,000 9,548,100 7,416,000

2,468 3,694 6,091,024 13,645,636 9,116,792

2,699 3,371 7,284,601 11,363,641 9,098,329

2,806 3,998 7,873,636 15,984,004 11,218,388

3,082 3,555 9,498,724 12,638,025 10,956,510

3,209 4,692 10,297,681 22,014,864 15,056,628

3,466 4,244 12,013,156 18,011,536 14,709,704

3,643 5,298 13,271,449 28,068,804 19,300,614

3,852 4,801 14,837,904 23,049,601 18,493,452

4,033 5,147 16,265,089 26,491,609 20,757,851

4,267 5,738 18,207,289 32,924,644 24,484,046

4,498 6,420 20,232,004 41,216,400 28,877,160

4,533 6,059 20,548,089 36,711,481 27,465,447

4,804 6,426 23,078,416 41,293,476 30,870,504

5,090 6,321 25,908,100 39,955,041 32,173,890

5,233 7,026 27,384,289 49,364,676 36,767,058

5,439 6,964 29,582,721 48,497,296 37,877,196

79,448 106,605 293,426,946 521,440,939 390,185,014

b1 =
SSXY

SSX
=

51,402,852.40
40,947,557.84

= 1.255333776

b0 = y - b1x =
106,605

25
- 1.2553337776¢79,448

25
≤ = 274.8496866

and

Always carry out as many significant digits as you can in these computations. Here
we carried out the computations by hand, for demonstration purposes. Usually, all
computations are done by computer or by calculator. There are many hand calcula-
tors with a built-in routine for simple linear regression. From now on, we will present

Using equations 10–10 for the least-squares estimates of the slope and intercept
parameters, we get
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Y � 274.85 � 1.26X � e (10–11)

� 274.85 � 1.26X (10–12)Y$

The Template
Figure 10–13 shows the template that can be used to carry out a simple regression.
The X and Y data are entered in columns B and C. The scatter plot at the bottom
shows the regression equation and the regression line. Several additional statistics
regarding the regression appear in the remaining parts of the template; these are
explained in later sections. The error values appear in column D.

Below the scatter plot is a panel for residual analysis. Here you will find the
Durbin-Watson statistic, the residual plot, and the normal probability plot. The
Durbin-Watson statistic will be explained in the next chapter, and the normal prob-
ability plot will be explained later in this chapter. The residual plot shows that there
is no relationship between X and the residuals. Figure 10–14 shows the panel.

1 � � (1 � �) C.I. for �1

Simple Regression American Express Study

Quality Mkt Share r2 0.9652 Coefficient of Determination
X Y Error Confidence Interval for Slope r

t
p -value

0.9824 Coefficient of Correlation
1 1211 1802 6.94111
2 1345 2405 441.726 95% 1.25533   + or -   0.10285 s(bt) 0.04972

25.2482
0.0000

Standard Error of Slope

3 1422 2005 -54.9343
4 1687 2511 118.402
5 1849 2332 -263.962
6 2026 2305 -513.156 s(b0) 170.337 Standard Error of Intercept

7 2133 3016 63.5234
8 2253 3385 281.883
9 2400 3090 -197.651

10 2468 3694 320.987 s 318.158 Standard Error of prediction

11 2699 3371 -291.996
12 2806 3998 200.684
13 3082 3555 -588.788
14 3209 4692 388.784
15 3466 4244 -381.837
16 3643 5298 449.969 ANOVA Table
17 3852 4801 -309.395 Source SS df MS F Fcritical p -value
18 4033 5147 -190.611 Regn. 6.5E+07 1 6.5E+07 637.472 4.27934 0.0000
19 4267 5738 106.641 Error 2328161 23 101224
20 4498 6420 498.659 Total 6.7E+07 24
21 4533 6059 93.7223
22 4804 6426 120.527 Scatter Plot, Regression Line and Regression Equation
23 5090 6321 -343.499
24 5233 7026 181.989
25 5439 6964 -138.61

y = 1.2553x + 274.85
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A C D G H I J K L M N O P QB

1 � � (1 � �) C.I. for �0

Confidence Interval for Intercept

95% 274.85   + or -   352.369

1 � � X (1 � �) C.I. for Y given X
Prediction Interval for Y

+ or -

1 � � X (1 � �) C.I. for E[Y | X ]
Prediction Interval for E[Y | X ]

+ or -

FIGURE 10–13 The Simple Regression Template
[Simple Regression.xls; Sheet: Regression]

only the computed results, the least-squares estimates. The estimated least-squares
relationship for Example 10–1 is reporting estimates to the second significant decimal:

The equation of the line itself, that is, the predicted value of Y for a given X, is
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44
45
46
47
48
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50
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53
54
55
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62
63
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68
69
70
71
72
73
74
75
76

A C D G H I J K L M N O PB

Residual Analysis Durbin-Watson statistic
d 2.84692

Residual Plot
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Normal Probability Plot of Residuals

FIGURE 10–14 Residual Analysis in the Template
[Simple Regression.xls; Sheet: Regression]

P R O B L E M S

10–9. Explain the advantages of the least-squares procedure for fitting lines to data.
Explain how the procedure works.
10–10. (A conceptually advanced problem) Can you think of a possible limitation
of the least-squares procedure?
10–11. An article in the Journal of Monetary Economics assesses the relationship
between percentage growth in wealth over a decade and a half of savings for baby
boomers of age 40 to 55 with these people’s income quartiles. The article presents a
table showing five income quartiles, and for each quartile there is a reported percent-
age growth in wealth. The data are as follows.4

Income quartile: 1 2 3 4 5

Wealth growth (%): 17.3 23.6 40.2 45.8 56.8

Run a simple linear regression of these five pairs of numbers and estimate a linear
relationship between income and percentage growth in wealth.
10-12. A financial analyst at Goldman Sachs ran a regression analysis of monthly
returns on a certain investment (Y ) versus returns for the same month on the Standard &
Poor’s index (X ). The regression results included SSX � 765.98 and SSXY � 934.49. Give
the least-squares estimate of the regression slope parameter.

4Edward N. Wolff, “The Retirement Wealth of the Baby Boom Generation,” Journal of Monetary Economics 54 ( January
2007), pp. 1–40.
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10–13. Recently, research efforts have focused on the problem of predicting a man-
ufacturer’s market share by using information on the quality of its product. Suppose
that the following data are available on market share, in percentage (Y ), and product
quality, on a scale of 0 to 100, determined by an objective evaluation procedure (X ):

X: 27 39 73 66 33 43 47 55 60 68 70 75 82

Y: 2 3 10 9 4 6 5 8 7 9 10 13 12

Estimate the simple linear regression relationship between market share and product
quality rating.
10–14. A pharmaceutical manufacturer wants to determine the concentration of a
key component of cough medicine that may be used without the drug’s causing
adverse side effects. As part of the analysis, a random sample of 45 patients is admin-
istered doses of varying concentration (X ), and the severity of side effects (Y ) is
measured. The results include � 88.9, � 165.3, SSX � 2,133.9, SSXY � 4,502.53,
SSY � 12,500. Find the least-squares estimates of the regression parameters.
10–15. The following are data on annual inflation and stock returns. Run a regres-
sion analysis of the data and determine whether there is a linear relationship between
inflation and total return on stocks for the periods under study.

Inflation (%) Total Return on Stocks (%)

1 –3

2 36

12.6 12

–10.3 –8

0.51 53

2.03 –2

–1.8 18

5.79 32

5.87 24

10–16. An article in Worth discusses the immense success of one of the world’s most
prestigious cars, the Aston Martin Vanquish. This car is expected to keep its value as
it ages. Although this model is new, the article reports resale values of earlier Aston
Martin models over various decades.

Decade: 1960s 1970s 1980s 1990s 2000s
Present value 
of Aston
Martin model
(average): $180,000 $40,000 $60,000 $160,000 $200,000

Based on these limited data, is there a relationship between age and average price of
an Aston Martin? What are the limitations of this analysis? Can you think of some
hidden variables that could affect what you are seeing in the data?
10–17. For the data given below, regress one variable on the other. Is there an impli-
cation of causality, or are both variables affected by a third?

Sample of Annual Transactions ($ millions)

Year Credit Card Online Debit Card

2002 156 211

2003 204 280

2004 279 386

2005 472 551

2006 822 684

2007 1,213 905

yx
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10–18. (A problem requiring knowledge of calculus) Derive the normal equations
(10–8) by taking the partial derivatives of SSE with respect to b0 and b1 and setting
them to zero. [Hint: Set SSE � �e2 � �(y � )2 � �(y � b0 � b1x)2, and take the deriv-
atives of the last expression on the right.]

10–4 Error Variance and the Standard Errors
of Regression Estimators

Recall that �2 is the variance of the population regression errors � and that this vari-
ance is assumed to be constant for all values of X in the range under study. The error
variance is an important parameter in the context of regression analysis because it is
a measure of the spread of the population elements about the regression line. Gen-
erally, the smaller the error variance, the more closely the population elements fol-
low the regression line. The error variance is the variance of the dependent variable
Y as “seen” by an eye looking in the direction of the regression line (the error vari-
ance is not the variance of Y ). These properties are demonstrated in Figure 10–15.

The figure shows two regression lines. The top regression line in the figure has a
larger error variance than the bottom regression line. The error variance for each
regression is the variation in the data points as seen by the eye located at the base of
the line, looking in the direction of the regression line. The variance of Y, on the other
hand, is the variation in the Y values regardless of the regression line. That is, the
variance of Y for each of the two data sets in the figure is the variation in the data as
seen by an eye looking in a direction parallel to the X axis. Note also that the spread
of the data is constant along the regression lines. This is in accordance with our
assumption of equal error variance for all X.

Since �2 is usually unknown, we need to estimate it from our data. An unbiased
estimator of �2, denoted by S 2, is the mean square error (MSE ) of the regression. As you
will soon see, sums of squares and mean squares in the context of regression analysis
are very similar to those of ANOVA, presented in the preceding chapter. The degrees
of freedom for error in the context of simple linear regression are n � 2 because we
have n data points, from which two parameters, �0 and �1, are estimated (thus, two
restrictions are imposed on the n points, leaving df � n � 2). The sum of squares for
error (SSE) in regression analysis is defined as the sum of squared deviations of the
data values Y from the fitted values Ŷ. The sum of squares for error may also be
defined in terms of a computational formula using SSX , SSY , and SSXY as defined in
equations 10–9. We state these relationships in equations 10–13.

y$

424 Chapter 10

Regression with
relatively large
error variance

y

x

Normal distribution
of errors about
regression line

Variance of the
regression errors
is equal along the line

Regression with
relatively small error variance

This eye sees the 
variation in Y
(not the error 
variance)

This eye sees the 
error variance
(The eye here
is looking at
vertical deviations
of the points
from the line) 

This eye sees
a smaller 
error variance

FIGURE 10-15 Two Examples of Regression Lines Showing the Error Variance
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CHAPTER 15
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df(error) � n � 2

(10–13)

An unbiased estimator of �2, denoted by S2, is

MSE =
SSE

n - 2

= SSY - b1SSXY

= SSY -
(SSXY)

2

SSX

SSE = a (Y - Y$ )2

In Example 10–1, the sum of squares for error is

SSE � SSY � b1SSXY � 66,855,898 � (1.255333776)(51,402,852.4)
� 2,328,161.2

MSE =
SSE

n - 2
=

2,328,161.2
23

= 101,224.4

and

An estimate of the standard deviation of the regression errors � is s, which is the square
root of MSE. (The estimator S is not unbiased because the square root of an unbiased esti-
mator, such as S 2, is not itself unbiased. The bias, however, is small, and the point is a tech-
nical one.) The estimate s � of the standard deviation of the regression errors is
sometimes referred to as standard error of estimate. In Example 10–1 we have

1MSE

s = 2MSE = 2101,224.4 = 318.1578225

The computation of SSE and MSE for Example 10–1 is demonstrated in Figure 10–16.
The standard deviation of the regression errors � and its estimate s play an impor-

tant role in the process of estimation of the values of the regression parameters �0 and �1.

MSE = SSE/(n − 2) = 101224.4

All the regression errors, 
such as the ones shown, 
are squared and summed 
to give us SSE
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FIGURE 10–16 Computing SSE and MSE in the American Express Study
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The standard error of b1 is

(10–15)s(b1) =
s2SSX

A (1 � �) 100% confidence interval for �0 is

b0 � t(��2, n�2)s(b0) (10–16)

where s(b0) is as given in equation 10–14.

A (1 � �) 100% confidence interval for �1 is

b1 � t(��2, n�2)s(b1) (10–17)

where s(b1) is as given in equation 10–15.

Formulas such as equation 10–15 are nice to know, but you should not worry too
much about having to use them. Regression analysis is usually done by computer,
and the computer output will include the standard errors of the regression estimates.
We will now show how the regression parameter estimates and their standard errors
can be used in the construction of confidence intervals for the true regression param-
eters �0 and �1. In Section 10–6, as mentioned, we will use the standard error of b1 for
conducting the very important hypothesis test about the existence of a linear rela-
tionship between X andY.

Confidence Intervals for the Regression Parameters

Confidence intervals for the true regression parameters �0 and �1 are easy to compute.

Let us construct 95% confidence intervals for �0 and �1 in the American Express
example. Using equations 10–14 to 10–17, we get

(10–18a)s (b0) =
s2gx2

2nSSX

= 318.16
2293,426,9462(25)(40,947,557.84)

= 170.338

The standard error of b0 is

(10–14)

where s = 2MSE.

s(b0) =
s2gx2

2nSSx

This is so because � is part of the expressions for the standard errors of both parame-
ter estimators. The standard errors are defined next; they give us an idea of the accu-
racy of the least-squares estimates b0 and b1. The standard error of b1 is especially
important because it is used in a test for the existence of a linear relationship between X and Y.
This will be seen in Section 10–6.

The standard error of b1 is very important, for the reason just mentioned. The true
standard deviation of b1 is � , but since � is not known, we use the estimated
standard deviation of the errors, s.

1SSx>

where the various quantities were computed earlier, including �x 2, which is found at
the bottom of Table 10–2.
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(10–19a)s (b1) =
s2SSX

=
318.16240,947,557.84

= 0.04972

b1 � t(��2, n � 2)s (b1) � 1.25533 � 2.069(0.04972)
� [1.15246, 1.35820] (10–19b)

b0 � t(��2, n � 2)s(b0) � 274.85 � 2.069(170.338) � [�77.58, 627.28] (10–18b)

where the value 2.069 is obtained from Appendix C, Table 3, for 1 � � � 0.95 and
23 degrees of freedom. We may be 95% confident that the true regression intercept is
anywhere from �77.58 to 627.28. Again using equations 10–14 to 10–17, we get

A 95% confidence interval for �1 is

From the confidence interval given in equation 10–19b, we may be 95% confident
that the true slope of the (population) regression line is anywhere from 1.15246 to
1.3582. This range of values is far from zero, and so we may be quite confident that
the true regression slope is not zero. This conclusion is very important, as we will see
in the following sections. Figure 10–17 demonstrates the meaning of the confidence
interval given in equation 10–19b.

In the next chapter, we will discuss joint confidence intervals for both regression
parameters �0 and �1, an advanced topic of secondary importance. (Since the two esti-
mates are related, a joint interval will give us greater accuracy and a more meaningful,
single confidence coefficient 1 � �. This topic is somewhat similar to the Tukey analy-
sis of Chapter 9.) Again, we want to deemphasize the importance of inference about �0,
even though information about the standard error of the estimator of this parameter
is reported in computer regression output. It is the inference about �1 that is of interest
to us. Inference about �1 has implications for the existence of a linear relationship
between X and Y; inference about �0 has no such implications. In addition, you may be
tempted to use the results of the inference about �0 to “force” this parameter to equal

Least-squares point estimate
of regression slope = 1.25533

Lower 95% bound on the
regression slope = 1.15246

Height = Slope

0 (not a possible value of the
regression slope, at 95%)

Upper 95% bound on
the regression slope = 1.35820

Length = 1

FIGURE 10–17 Interpretation of the Slope Estimation for Example 10–1
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The data below are international sales versus U.S. sales for the McDonald’s chain for
10 years.

Sales for McDonald’s at Year End (in billions)

U.S. Sales International Sales

7.6 2.3
7.9 2.6
8.3 2.9
8.6 3.2
8.8 3.7
9.0 4.1
9.4 4.8

10.2 5.7
11.4 7.0
12.1 8.9

Use the template to regress McDonald’s international sales, then answer the following
questions:

1. What is the regression equation?
2. What is the 95% confidence interval for the slope?
3. What is the standard error of estimate?

E X A M P L E  1 0 – 2

1 � � (1 � �) C.I. for �1

Simple Regression No. of McDonald’s

Quality Mkt Share r2 0.9846 Coefficient of Determination
X Y Error Confidence Interval for Slope r

t
p -value

0.9923 Coefficient of Correlation
1 7.6 2.3 0.24289
2 7.9 2.6 0.1158 95% 1.42364   + or -   0.1452 s(bt) 0.06297

22.6098
0.0000

Standard Error of Slope

3 8.3 2.9 -0.15365
4 8.6 3.2 -0.28075
5 8.8 3.7 -0.06547
6 9 4.1 0.0498 s(b0) 0.59409 Standard Error of Intercept

7 9.4 4.8 0.18035
8 10.2 5.7 -0.05856
9 11.4 7 -0.46693

10 12.1 8.9 0.43653 s 0.27976 Standard Error of prediction

ANOVA Table
Source SS df MS F Fcritical p -value

Regn. 40.0099 1 40.0099 511.201 5.31766 0.0000
Error 0.62613 8 0.07827
Total 40.636 9

Scatter Plot, Regression Line and Regression Equation

y = 1.423x - 8.762

0

4

2

6

8

10

0 2 4 6 8 10 12 14
X

Y

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38

A C D G H I J K L M N O P QB

1 � � (1 � �) C.I. for �0

Confidence Interval for Intercept

95% -8.76252   + or -   1.36998

1 � � X (1 � �) C.I. for Y given X
Prediction Interval for Y

+ or -

1 � � X (1 � �) C.I. for E[Y | X ]
Prediction Interval for E[Y | X ]

+ or -

S o l u t i o n

zero or another number. Such temptation should be resisted for reasons that will be
explained in a later section; therefore, we deemphasize inference about �0.
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1. From the template, the regression equation is Ŷ � 1.4326X � 8.7625.
2. The 95% confidence interval for the slope is 1.4236 � 0.1452.
3. The standard error of estimate is 0.2798.
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10–19. Give a 99% confidence interval for the slope parameter in Example 10–1. Is
zero a credible value for the true regression slope?
10–20. Give an unbiased estimate for the error variance in the situation of problem
10–11. In this problem and others, you may either use a computer or do the compu-
tations by hand.
10–21. Find the standard errors of the regression parameter estimates for problem
10–11.
10–22. Give 95% confidence intervals for the regression slope and the regression
intercept parameters for the situation of problem 10–11.
10–23. For the situation of problem 10–13, find the standard errors of the estimates
of the regression parameters; give an estimate of the variance of the regression errors.
Also give a 95% confidence interval for the true regression slope. Is zero a plausible
value for the true regression slope at the 95% level of confidence?
10–24. Repeat problem 10–23 for the situation in problem 10–17. Comment on
your results.
10–25. In addition to its role in the formulas of the standard errors of the regression
estimates, what is the significance of s 2?

10–5 Correlation
We now digress from regression analysis to discuss an important related con-
cept: statistical correlation. Recall that one of the assumptions of the regression
model is that the independent variable X is fixed rather than random and that
the only randomness in the values of Y comes from the error term �. Let us 
now relax this assumption and assume that both X and Y are random variables.
In this new context, the study of the relationship between two variables is 
called correlation analysis.

In correlation analysis, we adopt a symmetric approach: We make no distinction
between an independent variable and a dependent one. The correlation between two
variables is a measure of the linear relationship between them. The correlation gives
an indication of how well the two variables move together in a straight-line fashion.
The correlation between X and Y is the same as the correlation between Y and X. We
now define correlation more formally.

The correlation between two random variables X and Y is a measure of the
degree of linear association between the two variables.

Two variables are highly correlated if they move well together. Correlation is indi-
cated by the correlation coefficient.

The population correlation coefficient is denoted by �. The coefficient �
can take on any value from �1, through 0, to 1.

The possible values of � and their interpretations are given below.

1. When � is equal to zero, there is no correlation. That is, there is no linear 
relationship between the two random variables.

P R O B L E M S

FVS
CHAPTER 14
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2. When � � 1, there is a perfect, positive, linear relationship between the two
variables. That is, whenever one of the variables, X or Y, increases, the other
variable also increases; and whenever one of the variables decreases, the other
one must also decrease.

3. When � � �1, there is a perfect negative linear relationship between X and Y.
When X or Y increases, the other variable decreases; and when one decreases,
the other one must increase.

4. When the value of � is between 0 and 1 in absolute value, it reflects the relative
strength of the linear relationship between the two variables. For example, a
correlation of 0.90 implies a relatively strong positive relationship between the
two variables. A correlation of �0.70 implies a weaker, negative (as indicated
by the minus sign), linear relationship. A correlation � � 0.30 implies a
relatively weak (positive) linear relationship between X andY.

A few sets of data on two variables, and their corresponding population correlation
coefficients, are shown in Figure 10–18.

How do we arrive at the concept of correlation? Consider the pair of random
variables X andY. In correlation analysis, we will assume that both X and Y are normally
distributed random variables with means �X and �Y and standard deviations �X and �Y,
respectively. We define the covariance of X andY as follows:

430 Chapter 10

The covariance of two random variables X and Y is

Cov(X, Y) � E [(X � �X)(Y � �Y)] (10–20)

where �X is the (population) mean of X and �Y is the (population) mean of Y.

The population correlation coefficient is

(10–21)� =
Cov(X,Y )

�X�Y

The covariance of X andY is thus the expected value of the product of the deviation of
X from its mean and the deviation of Y from its mean. The covariance is positive when
the two random variables move together in the same direction, it is negative when the
two random variables move in opposite directions, and it is zero when the two vari-
ables are not linearly related. Other than this, the covariance does not convey much. Its
magnitude cannot be interpreted as an indication of the degree of linear association
between the two variables, because the covariance’s magnitude depends on the magni-
tudes of the standard deviations of X and Y. But if we divide the covariance by these
standard deviations, we get a measure that is constrained to the range of values �1 to 1
and conveys information about the relative strength of the linear relationship between
the two variables. This measure is the population correlation coefficient �.

Figure 10–18 gives an idea of what data from populations with different values of �
may look like.

Like all population parameters, the value of � is not known to us, and we need to
estimate it from our random sample of (X,Y ) observation pairs. It turns out that a
sample estimator of Cov(X,Y ) is SSXY�(n � 1); an estimator of �X is
and an estimator of �Y is Substituting these estimators for their pop-
ulation counterparts in equation 10–21, and noting that the term n � 1 cancels, we
get the sample correlation coefficient, denoted by r. This estimate of �, also referred to
as the Pearson product-moment correlation coefficient, is given in equation 10–22.

2SSY>(n - 1).
2SSX >(n - 1);
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In regression analysis, the square of the sample correlation coefficient, or r 2, has
a special meaning and importance. This will be seen in Section 10–7.
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FIGURE 10–18 Several Possible Correlations between Two Variables

The sample correlation coefficient is

(10–22)r =
SSXY1SSxSSY
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This test statistic may also be used for carrying out a one-tailed test for the exis-
tence of a positive only, or a negative only, correlation betweenX andY. These would
be one-tailed tests instead of the two-tailed test of equation 10–23, and the only dif-
ference is that the critical points for t would be the appropriate one-tailed values for a
given �. The test statistic, however, is good only for tests where the null hypothesis
assumes a zero correlation. When the true correlation between the two variables is
anything but zero, the t distribution in equation 10–24 does not apply; in such cases
the distribution is more complicated.5 The test in equation 10–23 is the most com-
mon hypothesis test about the population correlation coefficient because it is a test
for the existence of a linear relationship between two variables. We demonstrate this
test with the following example.

432 Chapter 10

We often use the sample correlation coefficient for descriptive purposes as a point
estimator of the population correlation coefficient �. When r is large and positive
(closer to �1), we say that the two variables are highly correlated in a positive way;
when r is large and negative (toward �1), we say that the two variables are highly
correlated in an inverse direction, and so on. That is, we view r as if it were the
parameter �, which r estimates. However, r can be used as an estimator in testing
hypotheses about the true correlation coefficient �. When such hypotheses are tested,
the assumption of normal distributions of the two variables is required.

The most common test is a test of whether two random variables X and Y are
correlated. The hypothesis test is

H0: � � 0
(10–23)

H1: � 
 0

(10–24)t(n-2) =
r2(1 - r2)>(n - 2)

The test statistic for this particular test is

A study was carried out to determine whether there is a linear relationship between
the time spent in negotiating a sale and the resulting profits. A random sample of 27
market transactions was collected, and the time taken to conclude the sale as well as the
resulting profit were recorded for each transaction. The sample correlation coefficient
was computed: r � 0.424. Is there a linear relationship between the length of negoti-
ations and transaction profits?

E X A M P L E  1 0 – 3

S o l u t i o n We want to conduct the hypothesis test H0: � � 0 versus H1: � 
 0. Using the test
statistic in equation 10–24, we get

t(25) =
r2(1 - r 2)>(n - 2)

=
0.4242(1 - 0.4242)>25

= 2.34

5In cases where we want to test H0: � � a versus H1: � 
 a, where a is some number other than zero, we may do so
by using the Fisher transformation: z � � (1�2) log [(1 � r)�(1 � r)], where z � is approximately normally distributed with
mean �� � (1�2) log [(1 � �)�(1 � �)] and standard deviation �� � 1� . (Here log is taken to mean natural
logarithm.) Such tests are less common, and a more complete description may be found in advanced texts. As an exercise,
the interested reader may try this test on some data. [You need to transform z � to an approximate standard normal 
z � (z � � ��)/��; use the null-hypothesis value of � in the formula for ��.]

1n - 3
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From Appendix C, Table 3, we find that the critical points for a t distribution with
25 degrees of freedom and � � 0.05 are �2.060. Therefore, we reject the null
hypothesis of no correlation in favor of the alternative that the two variables are lin-
early related. Since the critical points for � � 0.01 are �2.787, and 2.787 
 2.34, we
are unable to reject the null hypothesis of no correlation between the two variables if
we want to use the 0.01 level of significance. If we wanted to test (before looking at
our data) only for the existence of a positive correlation between the two variables,
our test would have been H0: � 	 0 versus H1: � 
 0 and we would have used only
the right tail of the t distribution. At � � 0.05, the critical point of t with 25 degrees of
freedom is 1.708, and at � � 0.01 it is 2.485. The null hypothesis would, again, be
rejected at the 0.05 level but not at the 0.01 level of significance.

Simple Linear Regression and Correlation 433

In regression analysis, the test for the existence of a linear relationship between
X and Y is a test of whether the regression slope �1 is equal to zero. The regression
slope parameter is related to the correlation coefficient (as an exercise, compare the
equations of the estimates r and b1); when two random variables are uncorrelated, the
population regression slope is zero.

We end this section with a word of caution. First, the existence of a correlation
between two variables does not necessarily mean that one of the variables causes the
other one. The determination of causality is a difficult question that cannot be direct-
ly answered in the context of correlation analysis or regression analysis. Also, the
statistical determination that two variables are correlated may not always mean that
they are correlated in any direct, meaningful way. For example, if we study any two
population-related variables and find that both variables increase “together,” this
may merely be a reflection of the general increase in population rather than any
direct correlation between the two variables. We should look for outside variables
that may affect both variables under study.

10–26. What is the main difference between correlation analysis and regression
analysis?

10–27. Compute the sample correlation coefficient for the data of problem 10–11.

10–28. Compute the sample correlation coefficient for the data of problem 10–13.

10–29. Using the data in problem 10–16, conduct the hypothesis test for the exis-
tence of a linear correlation between the two variables. Use � � 0.01.

10–30. Is it possible that a sample correlation of 0.51 between two variables will not
indicate that the two variables are really correlated, while a sample correlation of
0.04 between another pair of variables will be statistically significant? Explain.

10–31. The following data are indexed prices of gold and copper over a 10-year
period. Assume that the indexed values constitute a random sample from the popu-
lation of possible values. Test for the existence of a linear correlation between the
indexed prices of the two metals.

Gold: 76, 62, 70, 59, 52, 53, 53, 56, 57, 56
Copper: 80, 68, 73, 63, 65, 68, 65, 63, 65, 66

Also, state one limitation of the data set.

10–32. Follow daily stock price quotations in the Wall Street Journal for a pair of
stocks of your choice, and compute the sample correlation coefficient. Also, test for
the existence of a nonzero linear correlation in the “population” of prices of the two
stocks. For your sample, use as many daily prices as you can.

P R O B L E M S
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10–33. Again using the Wall Street Journal as a source of data, determine whether
there is a linear correlation between morning and afternoon price quotations in
London for an ounce of gold (for the same day). Any ideas?

10–34. A study was conducted to determine whether a correlation exists between
consumers’ perceptions of a television commercial (measured on a special scale) and
their interest in purchasing the product (measured on a scale). The results are n � 65 and
r � 0.37. Is there statistical evidence of a linear correlation between the two variables?

10–35. (Optional, advanced problem) Using the Fisher transformation (described
in footnote 5), carry out a two-tailed test of the hypothesis that the population corre-
lation coefficient for the situation of problem 10–34 is � � 0.22. Use � � 0.05.

10–6 Hypothesis Tests about the
Regression Relationship

When X andY have no linear relationship, the population regression slope �1 is equal to
zero. Why? The population regression slope is equal to zero in either of two situations:

1. When Y is constant for all values of X. For example, Y � 457.33 for all X. This is
shown in Figure 10–19(a). If Y is constant for all values of X , the slope of Y with
respect to X, parameter �1, is identically zero; there is no linear relationship
between the two variables.
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y

x

y

x

457.33   1 = 0

(a)
Y = 457.33 for all X. Y is constant for all X

  1 = 0

(b) Y is uncorrelated with X.
Y may be either large or

       small when X is large; 
Y may be large or small

       when X is small. There is no
       systematic trend in Y as X increases.

β

β

FIGURE 10–19 Two Possibilities Where the Population Regression Slope Is Zero
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This test statistic is a special version of a general test statistic
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2. When the two variables are uncorrelated. When the correlation between X and
Y is zero, as X increases Y may increase, or it may decrease, or it may remain
constant. There is no systematic increase or decrease in the values of Y as X
increases. This case is shown in Figure 10–19(b). As can be seen in the figure,
data from this process are not “moving” in any pattern; thus, the line has no
direction to follow. With no direction, the slope of the line is, again, zero.

Also, remember that the relationship may be curved, with no linear correlation, as
was seen in the last part of Figure 10–18. In such cases, the slope may also be zero.

In all cases other than these, at least some linear relationship exists between the
two variables X andY ; the slope of the line in all such cases would be either positive
or negative, but not zero. Therefore, the most important statistical test in simple linear
regression is the test of whether the slope parameter �1 is equal to zero. If we conclude in any
particular case that the true regression slope is equal to zero, this means that there
is no linear relationship between the two variables: Either the dependent variable 
is constant, or—more commonly—the two variables are not linearly related. We thus
have the following test for determining the existence of a linear relationship between
two variables X and Y :

A hypothesis test for the existence of a linear relationship between X and Y is

H0: �1 � 0
(10–25)H1: �1 
 0

This test is, of course, a two-tailed test. Either the true regression slope is equal to
zero, or it is not. If it is equal to zero, the two variables have no linear relationship;  if
the slope is not equal to zero, then it is either positive or negative (the two tails of
rejection), in which case there is a linear relationship between the two variables. The
test statistic for determining the rejection or nonrejection of the null hypothesis is
given in equation 10–26. Given the assumption of normality of the regression errors,
the test statistic possesses the t distribution with n � 2 degrees of freedom.

The test statistic for the existence of a linear relationship between X and Y is

(10–26)

where b1 is the least-squares estimate of the regression slope and s(b1) is
the standard error of b1. When the null hypothesis is true, the statistic has
a t distribution with n � 2 degrees of freedom.

t(n-2) =
b1

s(b1)

(10–27)t (n-2) =
b1 - (�1)0

s (b1)

where (�1)0 is the value of �1 under the null hypothesis. This statistic follows the for-
mat (Estimate � Hypothesized parameter value)/(Standard error of estimator). Since,
in the test of equation 10–25, the hypothesized value of �1 is zero, we have the sim-
plified version of the test statistic, equation 10–26. One advantage of the simple form
of our test statistic is that it allows us to conduct the test very quickly. Computer out-
put for regression analysis usually contains a table similar to Table 10–3.

FVS
CHAPTER 15
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The estimate associated with X (or whatever name the user may have given to the
independent variable in the computer program) is b1. The standard error associated
with X is s(b1). To conduct the test, all you need to do is to divide b1 by s(b1). In the
example of Table 10–3, 4.88�0.1 � 48.8. The answer is reported in the table as the
t ratio. The t ratio can now be compared with critical points of the t distribution with
n � 2 degrees of freedom. Suppose that the sample size used was 100. Then the critical
points for � � 0.05, from the spreadsheet, are �1.98, and since 48.8 
 1.98, we con-
clude that there is evidence of a linear relationship between X andY in this hypotheti-
cal example. (Actually, the p-value is very small. Some computer programs will also
report the p-value in an extra column on the right.) What about the first row in the
table? The test suggested here is a test of whether the intercept �0 (this is the constant)
is equal to zero. The test statistic is the same as equation 10–26, but with subscripts 0
instead of 1. As we mentioned earlier, this test, although suggested by the output of
computer routines, is usually not meaningful and should generally be avoided.

We now conduct the hypothesis test for the existence of a linear relationship
between miles traveled and amount charged on the American Express card in Example
10–1. Our hypotheses are H0: �1 � 0 and H1: �1 
 0. Recall that for the American
Express study, b1 � 1.25533 and s(b1) � 0.04972 (from equations 10–11 and 10–19a).
We now compute the test statistic, using equation 10–26:

436 Chapter 10

TABLE 10–3 An Example of a Part of the Computer Output for Regression

Variable Estimate Standard Error t Ratio

Constant 5.22 0.5 10.44

X 4.88 0.1 48.80

t(23) distribution

2.807

Rejection region
at 0.01 level

–2.807

Rejection region
at 0.01 level

Test statistic value = 25.25,
far in the rejection region

FIGURE 10–20 Test for a Linear Relationship for Example 10–1

t =
b1

s(b1)
=

1.25533
0.04972

= 25.25

From the magnitude of the computed value of the statistic, we know that there is sta-
tistical evidence of a linear relationship between the variables, because 25.25 is
certainly greater than any critical point of a t distribution with 23 degrees of freedom.
We show the test in Figure 10–20. The critical points of t with 23 degrees of freedom
and � � 0.01 are obtained from Appendix C, Table 3. We conclude that there is evi-
dence of a linear relationship between the two variables “miles traveled” and “dollars
charged” in Example 10–1.
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Other Tests6

Although the test of whether the slope parameter is equal to zero is a very important
test, because it is a test for the existence of a linear relationship between the two vari-
ables, other tests are possible  in the context of regression. These tests serve second-
ary purposes. In financial analysis, for example, it is often important to determine
from past performance data of a particular stock whether the stock generally moves
with the market as a whole. If the stock does move with the stock market as a whole,
the slope parameter of the regression of the stock’s returns (Y ) versus returns on the
market as a whole (X ) would be equal to 1.00. That is, �1 � 1. We demonstrate this
test with Example 10–4.

t (n-2) =
b1 - (�1)0

s (b1)
=

1.24 - 1
0.21

= 1.14

The Market Sensitivity Report, issued by Merrill Lynch, Inc., lists estimated beta coeffi-
cients of common stocks as well as their standard errors. Beta is the term used in the
finance literature for the estimate b1 of the regression of returns on a stock versus
returns on the stock market as a whole. Returns on the stock market as a whole are
taken by Merrill Lynch as returns on the Standard & Poor’s 500 index. The report lists
the following findings for common stock of Time, Inc.: beta � 1.24, standard error of
beta � 0.21, n � 60. Is there statistical evidence to reject the claim that the Time stock
moves, in general, with the market as a whole?

E X A M P L E  1 0 – 4

S o l u t i o nWe want to carry out the special-purpose test H0: �1 � 1 versus H1: �1 
 1. We use
the general test statistic of equation 10–27:

Since n � 2 � 58, we use the standard normal distribution. The test statistic value is
in the nonrejection region for any usual level �, and we conclude that there is no sta-
tistical evidence against the claim that Time moves with the market as a whole.

6This subsection may be skipped without loss of continuity.
7Jeff Wang and Melanie Wallendorf, “Materialism, Status Signaling, and Product Satisfaction,” Journal of the Academy of

Marketing Science 34, no. 4 (2006), pp. 494–505.

10–36. An interesting marketing research effort has recently been reported, which
incorporates within the variables that predict consumer satisfaction from a product not
only attributes of the product itself but also characteristics of the consumer who buys the
product. In particular, a regression model was developed, and found successful, regress-
ing consumer satisfaction S on a consumer’s materialism M measured on a psychologi-
cally devised scale. For satisfaction with the purchase of sunglasses, the estimate of beta,
the slope of S with respect to M ,was b � �2.20. The reported t statistic was �2.53. The
sample size was n = 54.7 Is this regression statistically significant? Explain the findings.
10–37. A regression analysis was carried out of returns on stocks (Y ) versus the ratio
of book to market value (X ). The resulting prediction equation is

Y � 1.21 � 3.1X (2.89)

where the number in parentheses is the standard error of the slope estimate. The
sample size used is n � 18. Is there evidence of a linear relationship between returns
and book to market value?

P R O B L E M S
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10–38. In the situation of problem 10–11, test for the existence of a linear relationship
between the two variables.
10–39. In the situation of problem 10–13, test for the existence of a linear relationship
between the two variables.
10–40. In the situation of problem 10–16, test for the existence of a linear relationship
between the two variables.
10–41. For Example 10–4, test for the existence of a linear relationship between
returns on the stock and returns on the market as a whole.
10–42. A regression analysis was carried out to determine whether wages increase
for blue-collar workers depending on the extent to which firms that employ them
engage in product exportation. The sample consisted of 585,692 German blue-collar
workers. For each of these workers, the income was known as well as the percentage
of the work that was related to exportation. The regression slope estimate was 0.009,
and the t-statistic value was 1.51.8 Carefully interpret and explain these findings.
10–43. An article in Financial Analysts Journal discusses results of a regression
analysis of average price per share P on the independent variable X�k, where X�k is
the contemporaneous earnings per share divided by firm-specific discount rate. The
regression was run using a random sample of 213 firms listed in the Value Line
Investment Survey. The reported results are

P � 16.67 � 0.68X�k (12.03)

where the number in parentheses is the standard error. Is there a linear relationship
between the two variables?
10–44. A management recruiter wants to estimate a linear regression relationship
between an executive’s experience and the salary the executive may expect to earn
after placement with an employer. From data on 28 executives, which are assumed
to be a random sample from the population of executives that the recruiter places,
the following regression results are obtained: b1 � 5.49 and s(b1) � 1.21. Is there a
linear relationship between the experience and the salary of executives placed by the
recruiter?

10–7 How Good Is the Regression?
Once we have determined that a linear relationship exists between the two variables,
the question is: How strong is the relationship? If the relationship is a strong one, pre-
diction of the dependent variable can be relatively accurate, and other conclusions
drawn from the analysis may be given a high degree of confidence.

We have already seen one measure of the regression fit: the mean square error.
The MSE is an estimate of the variance of the true regression errors and is a measure
of the variation of the data about the regression line. The MSE, however, depends on
the nature of the data, and what may be a large error variation in one situation may
not be considered large in another. What we need, therefore, is a relative measure of
the degree of variation of the data about the regression line. Such a measure allows us
to compare the fits of different models.

The relative measure we are looking for is a measure that compares the variation
of Y about the regression line with the variation of Y without a regression line. This
should remind you of analysis of variance, and we will soon see the relation of
ANOVA to regression analysis. It turns out that the relative measure of regression fit

438 Chapter 10

8Thorsten Schank, Claus Schnabel, and Joachim Wagner, “Do Exporters Really Pay Higher Wages? First Evidence
from German Linked Employer–Employee Data,” Journal of International Economics 72 (May 2007), pp. 52–74.
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FIGURE 10–21 The Three Deviations Associated with a Data Point

we are looking for is the square of the estimated correlation coefficient r. It is called
the coefficient of determination.

The coefficient of determination r 2 is a descriptive measure of the
strength of the regression relationship, a measure of how well the regres-
sion line fits the data.

The coefficient of determination r 2 is an estimator of the corresponding population
parameter �2, which is the square of the population coefficient of correlation between
two variables X and Y. Usually, however, we use r 2 as a descriptive statistic—a relative
measure of how well the regression line fits the data. Ordinarily, we do not use r 2 for
inference about �2.

We will now see how the coefficient of determination is obtained directly from a
decomposition of the variation in Y into a component due to error and a component
due to the regression. Figure 10–21 shows the least-squares line that was fit to a data
set. One of the data points (x, y) is highlighted. For this data point, the figure shows
three kinds of deviations: the deviation of y from its mean y � , the deviation of y
from its predicted value using the regression y � ŷ, and the deviation of the regression-
predicted value of y from the mean of y, which is ŷ � . Note that the least-squares
line passes through the point ( , ).

We will now follow exactly the same mathematical derivation we used in Chapter 9
when we derived the ANOVA relationships. There we looked at the deviation of a
data point from its respective group mean—the error; here the error is the deviation of
a data point from its regression-predicted value. In ANOVA, we also looked at the total
deviation, the deviation of a data point from the grand mean; here we have the deviation
of the data point from the mean of Y. Finally, in ANOVA we also considered the treat-
ment deviation, the deviation of the group mean from the grand mean; here we have
the regression deviation—the deviation of the predicted value from the mean of Y.

The error is also called the unexplained deviation because it is a deviation that cannot
be explained by the regression relationship; the regression deviation is also called the
explained deviation because it is that part of the deviation of a data point from the mean
that can be explained by the regression relationship between X and Y. We explain why the
Y value of a particular data point is above the mean of Y by the fact that its X component

yx
y

y
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(10–30)r 2 =
SSR
SST

= 1 -
SSE
SST

The coefficient of determination can be interpreted as the proportion of the variation in
Y that is explained by the regression relationship of Y with X.

Recall that the correlation coefficient r can be between �1 and 1. Its square, r 2, can
therefore be anywhere from 0 to 1. This is in accordance with the interpretation of r 2 as
the percentage of the variation in Y explained by the regression. The coefficient is a measure
of how closely the regression line fits the data; it is a measure of how much the variation
in the values of Y is reduced once we regress Y on variable X. When r 2 � 1, we know
that 100% of the variation in Y is explained by X. This means that the data all lie right
on the regression line, and no errors result (because, from equation 10–30, SSE must be
equal to zero). Since r 2 cannot be negative, we do not know whether the line slopes
upward or downward (the direction can be found from b1 or r), but we know that
the line gives a perfect fit to the data. Such cases do not occur in business or economics.
In fact, when there are no errors, no natural variation, there is no need for statistics.

At the other extreme is the case where the regression line explains nothing. Here
the errors account for everything, and SSR is zero. In this case, we see from equation
10–30 that r 2 � 0. In such cases, X and Y have no linear relationship, and the true
regression slope is probably zero (we say probably because r 2 is only an estimator, given
to chance variation; it could possibly be estimating a nonzero �2). Between the two
cases r 2 � 0 and r 2 � 1 are values of r 2 that give an indication of the relative fit of the
regression model to the data. The higher r 2 is, the better the fit and the higher our confidence

happens to be above the mean of X and by the fact that X andY are linearly (and posi-
tively) related. As can be seen from Figure 10–21, and by simple arithmetic, we have

y � � y � ŷ � ŷ �

Total Unexplained Explained
deviation

�
deviation (error)

�
deviation (regression) (10–28)

yy

As in the analysis of variance, we square all three deviations for each one of our data
points, and we sum over all n points. Here, again, cross-terms drop out, and we are
left with the following important relationship for the sums of squares:9

(yi � )2 � (yi � ŷ i)2 � (ŷi � )2

SST � SSE � SSR
(Total sum (Sum of (Sum of 
of squares) � squares for error) � squares for regression) (10–29)

ya
n

i=1
a
n

i=1
ya

n

i=1

9The proof of the relation is left as an exercise for the mathematically interested reader.

The term SSR is also called the explained variation; it is the part of the variation inY that
is explained by the relationship of Y with the explanatory variable X. Similarly, SSE is
the unexplained variation, due to error; the sum of the two is the total variation in Y.

We define the coefficient of determination as the sum of squares due to the regression
divided by the total sum of squares. Since by equation 10–29 SSE and SSR add to SST,
the coefficient of determination is equal to 1 minus SSE/SST. We have
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in the regression. Be wary, however, of situations where the reported r 2 is exceptionally
high, such as 0.99 or 0.999. In such cases, something may be wrong. We will see an
example of this in the next chapter. Incidentally, in the context of multiple regression,
discussed in the next chapter, we will use the notation R2 for the coefficient of determi-
nation to indicate that the relationship is based on several explanatory X variables.

How high should the coefficient of determination be before we can conclude that
a regression model fits the data well enough to use the regression with confidence?
This question has  no clear-cut answer. The answer depends on the intended use of
the regression model. If we intend to use the regression for prediction, the higher the
r 2, the more accurate will be our predictions.

An r 2 value of 0.9 or more is very good, a value greater than 0.8 is good, and a
value of 0.6 or more may be satisfactory in some applications, although we must be
aware of the fact that, in such cases, errors in prediction may be relatively high.
When the r 2 value is 0.5 or less, the regression explains only 50% or less of the vari-
ation in the data; therefore, predictions may be poor. If we are interested only in
understanding the relationship between the variables, lower values of r 2 may be
acceptable, as long as we realize that the model does not explain much.

Figure 10–22 shows several regressions and their corresponding r 2 values. If you
think of the total sum of squared deviations as being in a box, then r 2 is the propor-
tion of the box that is filled with the explained sum of squares, the remaining part
being the squared errors. This is shown for each regression in the figure.

Computing r 2 is easy if we express SSR, SSE, and SST in terms of the computa-
tional sums of squares and cross-products (equations 10–9):

Simple Linear Regression and Correlation 441

SST � SSY SSR � b1SSXY SSE � SSY � b1SSXY (10–31)

SSE � SST � SSR � 2,328,161.2

SST � SSY � 66,855,898
SSR � b1SSXY � (1.255333776)(51,402,852.4) � 64,527,736.8

r2 =
SSR
SST

=
64,527,736.8
66,855,898

= 0.96518

We will now use equation 10–31 in computing the coefficient of determination for
Example 10–1. For this example, we have

and

(These were computed when we found the MSE for this example.) We now compute
r 2 as

The r 2 in this example is very high. The interpretation is that over 96.5% of the vari-
ation in charges on the American Express card can be explained by the relationship
between charges on the card and extent of travel (miles). Again we note that while
the computational formulas are easy to use, r 2 is always reported in a prominent
place in regression computer output.
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In the next section, we will see how the sums of squares, along with the corre-
sponding degrees of freedom, lead to mean squares—and to an analysis of variance
in the context of regression. In closing this section, we note that in Chapter 11, we
will introduce an adjusted coefficient of determination that accounts for degrees of
freedom.

442 Chapter 10
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FIGURE 10–22 Value of the Coefficient of Determination in Different Regressions

P R O B L E M S

10–45. In problem 10–36, the coefficient of determination was found to be r 2 �
0.09.10 What can you say about this regression, as far as its power to predict cus-
tomer satisfaction with sunglasses using information on a customer’s materialism
score?

10Jeff Wang and Melanie Wallendorf, “Materialism, Status Signaling, and Product Satisfaction,” Journal of the Academy
of Marketing 34, no. 4 (2006), pp. 494–505.
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10–46. Results of a study reported in Financial Analysts Journal include a simple
linear regression analysis of firms’ pension funding (Y ) versus profitability (X ). The
regression coefficient of determination is reported to be r 2 � 0.02. (The sample size
used is 515.)

a. Would you use the regression model to predict a firm’s pension funding?
b. Does the model explain much of the variation in firms’ pension funding

on the basis of profitability?
c. Do you believe these regression results are worth reporting? Explain.

10–47. What percentage of the variation in percent growth in wealth is explained by
the regression in problem 10–11?
10–48. What is r 2 in the regression of problem 10–13? Interpret its meaning.
10–49. What is r 2 in the regression of problem 10–16?
10–50. What is r 2 for the regression in problem 10–17? Explain its meaning.
10–51. A financial regression analysis was carried out to estimate the linear rela-
tionship between long-term bond yields and the yield spread, a problem of signifi-
cance in finance. The sample sizes were 242 monthly observations in each of five
countries, and the results were the obtained regression r 2 values for these countries.
The results were as follows.11

Canada Germany Japan U.K. U.S.

5.9% 13.3% 3.5% 31.7% 3.3%

Assuming that all five linear regressions were statistically significant, comment on
and interpret the reported r 2 values.
10–52. Analysts assessed the effects of bond ratings on bond yields. They reported
a regression with r 2 � 61.56%, which, they said, confirmed the economic intuition
that predicted higher yields for bonds with lower ratings (by economic theory, an
investor would require a higher expected yield for investing in a riskier bond). The
conclusion was that, on average, each notch down in rating added an approximate
14.6 basis points to the bond’s yield.12 How accurate is this prediction?
10–53. Find r 2 for the regression in problem 10–15.
10–54. (A mathematically demanding problem) Starting with equation 10–28,
derive equation 10–29.
10–55. Using equation 10–31 for SSR, show that SSR � (SSXY)2�SSX.

10–8 Analysis-of-Variance Table and an F Test
of the Regression Model

We know from our discussion of the t test for the existence of a linear relationship
that the degrees of freedom for error in simple linear regression are n � 2. For the
regression, we have 1 degree of freedom because there is one independent X variable
in the regression. The total degrees of freedom are n � 1 because here we only con-
sider the mean of Y, to which 1 degree of freedom is lost. These are similar to the
degrees of freedom for ANOVA in the last chapter. Mean squares are obtained, as
usual, by dividing the sums of squares by their corresponding degrees of freedom.
This gives us the mean square regression (MSR) and mean square error (MSE),
which we encountered earlier. Further dividing MSR by MSE gives us an F ratio

Simple Linear Regression and Correlation 443

11Huarong Tang and Yihong Xia, “An International Examination of Affine Term Structure Models and the Expecta-
tions Hypothesis,” Journal of Financial and Quantitative Analysis 42, no. 1 (2007), pp. 111–180.

12William H. Beaver, Catherine Shakespeare, and Mark T. Soliman, “Differential Properties in the Ratings of Certified
versus Non-Certified Bond-Rating Agencies,” Journal of Accounting and Economics 42 (December 2006), pp. 303–334.
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TABLE 10–4 ANOVA Table for Regression

Source of Sum of Degrees of Mean
Variation Squares Freedom Square F Ratio

Regression SSR 1 MSR � F(1, n�2) �

Error SSE n � 2 MSE �

Total SST n � 1

SSE
n - 2

MSR
MSE

SSR
1

TABLE 10–5 ANOVA Table for American Express Example

Source of Sum of Degrees Mean
Variation Squares of Freedom Square F Ratio p

Regression 64,527,736.8 1 64,527,736.8 637.47 0.000

Error 2,328,161.2 23 101,224.4

Total 66,855,898.0 24

with degrees of freedom 1 and n � 2. All these can be put in an ANOVA table for
regression. This has been done in Table 10–4.

In regression, three sources of variation are possible (see Figure 10–21):
regression—the explained variation; error—the unexplained variation; and their sum,
the total variation. We know how to obtain the sums of squares and the degrees of
freedom, and from them the mean squares. Dividing the mean square regression
by the mean square error should give us another measure of the accuracy of our
regression because MSR is the average squared explained deviation and MSE
is the average squared error (where averaging is done using the appropriate
degrees of freedom). The ratio of the two has an F distribution with 1 and n � 2
degrees of freedom when there is no regression relationship between X and Y. This sug-
gests an F test for the existence of a linear relationship between X and Y. In simple
linear regression, this test is equivalent to the t test. In multiple regression, as we will
see in the next chapter, the F test serves a general role, and separate t tests are
used to evaluate the significance of different variables. In simple linear regression,
we may conduct either an F test or a t test; the results of the two tests will be
the same. The hypothesis test is as given in equation 10–25; the test is carried
on the right tail of the F distribution with 1 and n � 2 degrees of freedom. We
illustrate the analysis with data from Example 10–1. The ANOVA results are given
in Table 10–5.

To carry out the test for the existence of a linear relationship between miles trav-
eled and dollars charged on the card, we compare the computed F ratio of 637.47
with a critical point of the F distribution with 1 degree of freedom for the numerator
and 23 degrees of freedom for the denominator. Using � � 0.01, the critical point
from Appendix C, Table 5, is found to be 7.88. Clearly, the computed value is far in
the rejection region, and the p-value is very small. We conclude, again, that there is
evidence of a linear relationship between the two variables.

Recall from Chapter 8 that an F distribution with 1 degree of freedom for the
numerator and k degrees of freedom for the denominator is the square of a t distribu-
tion with k degrees of freedom. In Example 10–1 our computed F statistic value is
637.47, which is the square of our obtained t statistic 25.25 (to within rounding error).
The same relationship holds for the critical points: for � � 0.01, we have a critical
point for F(1, 23) equal to 7.88, and the (right-hand) critical point of a two-tailed test at
� � 0.01 for t with 23 degrees of freedom is 2.807 � .17.88
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10–56. Conduct the F test for the existence of a linear relationship between the two
variables in problem 10–11.
10–57. Carry out an F test for a linear relationship in problem 10–13. Compare your
results with those of the t test.
10–58. Repeat problem 10–57 for the data of problem 10–17.
10–59. Conduct an F test for the existence of a linear relationship in the case of
problem 10–15.
10–60. In a regression, the F statistic value is 6.3. Assume the sample size used was
n � 104, and conduct an F test for the existence of a linear relationship between the
two variables.
10–61. In a simple linear regression analysis, it is found that b1 � 2.556 and s (b1) �
4.122. The sample size is n � 22. Conduct an F test for the existence of a linear rela-
tionship between the two variables.
10–62. (A mathematically demanding problem) Using the definition of the t statistic
in terms of sums of squares, prove (in the context of simple linear regression) that
t 2 � F.

10–9 Residual Analysis and Checking 
for Model Inadequacies

Recall our discussion of statistical models in Section 10–1. We said that a good statisti-
cal model accounts for the systematic movement in the process, leaving out a series of
uncorrelated, purely random errors �, which are assumed to be normally distributed
with mean zero and a constant variance �2. In Figure 10–3, we saw a general method-
ology for statistical model building, consisting of model identification, estimation,
tests of validity, and, finally, use of the model. We are now at the third stage of the
analysis of a simple linear regression model: examining the residuals and testing the
validity of the model.

Analysis of the residuals could reveal whether the assumption of normally dis-
tributed errors holds. In addition, the analysis could reveal whether the variance
of the errors is indeed constant, that is, whether the spread of the data around
the regression line is uniform. The analysis could also indicate whether there are
any missing variables that should have been included in our model (leading to a
multiple regression equation). The analysis may reveal whether the order of data
collection (e.g., time of observation) has any effect on the data and whether the
order should have been incorporated as a variable in the model. Finally, analysis
of the residuals may determine whether the assumption that the errors are uncor-
related is satisfied. A test of this assumption, the Durbin-Watson test, entails more
than a mere examination of the model residuals, and discussion of this test is
postponed until the next chapter. We now describe some graphical methods
for the examination of the model residuals that may lead to discovery of model
inadequacies.

A Check for the Equality of Variance of the Errors
A graph of the regression errors, the residuals, versus the independent variable X , or
versus the predicted values Ŷ, will reveal whether the variance of the errors is constant.
The variance of the residuals is indicated by the width of the scatter plot of the residuals
as X increases. If the width of the scatter plot of the residuals either increases or decreases
as X increases, then the assumption of constant variance is not met. This problem is called

P R O B L E M S
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Residuals

x or ŷ

Residual
variance is 
increasing

0

FIGURE 10–23 A Residual Plot Indicating Heteroscedasticity

Residuals

x or ŷ or time

Residuals appear random with no pattern:
no indication of model inadequacy

0

FIGURE 10–24 A Residual Plot Indicating No Heteroscedasticity

heteroscedasticity. When heteroscedasticity exists, we cannot use the ordinary least-
squares method for estimating the regression and should use a more complex method,
called generalized least squares. Figure 10–23 shows how a plot of the residuals versus X or
Ŷ looks in the case of heteroscedasticity. Figure 10–24 shows a residual plot in a good
regression, with no heteroscedasticity.

Testing for Missing Variables
Figure 10–24 also shows how the residuals should look when plotted against time
(or the order in which data are collected). No trend should be seen in the residuals
when plotted versus time. A linear trend in the residuals plotted versus time is shown in
Figure 10–25.

446 Chapter 10
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0

Time

Residuals exhibit a
linear trend with time

Residuals

FIGURE 10–25 A Residual Plot Indicating a Trend with Time

y

x

A straight-line fit forced
onto a curved data set

FIGURE 10–26 Results of Forcing a Straight Line to Fit a Curved Data Set
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CHAPTER 18

If the residuals exhibit a pattern when plotted versus time, then time should
be incorporated as an explanatory variable in the model in addition to X. The
same is true for any other variable against which we may plot the residuals: If any
trend  appears in the plot, the variable should be included in our model along with X.
Incorporating additional variables leads to a multiple regression model.

Detecting a Curvilinear Relationship between Y and X
If the relationship between X and Y is curved, “forcing” a straight line to fit the data
will result in a poor fit. This is shown in Figure 10–26. In this case, the residuals are at
first large and negative, then decrease, become positive, and again become negative.
The residuals are not random and independent; they show curvature. This pattern
appears in a plot of the residuals versus X , shown in Figure 10–27.

The situation can be corrected by adding the variable X 2 to the model. This
also entails the techniques of multiple regression analysis. We note that, in cases
where we have repeated Y observations at some levels of X , there is a statistical
test for model lack of fit such as that shown in Figure 10–26. The test entails
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decomposing the sum of squares for error into a component due to lack of fit
and a component due to pure error. This gives rise to an F test for lack of fit.
This test is described in advanced texts. We point out, however, that examina-
tion of the residuals is an excellent tool for detecting such model deficiencies,
and this simple technique does not require the special data format needed for
the formal test.

The Normal Probability Plot
One of the assumptions in the regression model is that the errors are normally distrib-
uted. This assumption is necessary for calculating prediction intervals and for hypothesis
tests about the regression. One of several ways to test for the normality of the residuals is
to plot a histogram of the residuals and visually observe whether the shape of the histogram
is close to the shape of a normal distribution. To do this we can use the histogram tem-
plate, Histogram.xls, from Chapter 1, shown in Figure 10–28.

Let us plot the histogram for the residuals in the American Express study (Exam-
ple 10–1) seen in Figure 10–13. First we copy the residuals from column D and paste
them (using the Paste Special command and choosing “values” only to be pasted)
into the data area (column Y) of the histogram template. We then enter suitable Start,
Interval Width, and End values, which in this case could be �600, 100, and 600. The
resulting histogram, shown in Figure 10–28, looks more like a uniform distribution
than like a normal distribution. But this is only a visual test rather than a formal
hypothesis test, and therefore we do not get a p-value for this test. In Chapter 14, we
will see a formal �2 test for normality, which yields a p-value and thus can be used to
possibly reject the null hypothesis that the residuals are normally distributed. Coming
back to the histogram, to the extent the shape of the histogram deviates from the nor-
mal distribution, the prediction intervals and t or F tests about the regression are
questionable.

Checking the normality of residuals using a histogram may work, but a wrong
choice of Start, Interval Width, and End values can distort the shape of the distri-
bution to some extent. A slightly better method to use is a normal probability
plot of the residuals. The simple regression template creates this plot automatically
(see Figure 10–14). In this plot, the residual values are on the horizontal axis and

Curved pattern
in the residuals

Residuals

0

x

FIGURE 10–27 Resulting Pattern of the Residuals When a Straight Line Is Forced to Fit 
a Curved Data Set
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Histogram from Raw Data Residuals

Interval Freq.
<=-600 0

(-600, -500] 2
(-500, -400] 0
(-400, -300] 3
(-300, -200] 2
(-200, -100] 3

(100, 200] 4
(200, 300] 2
(300, 400] 2
(400, 500] 3
(500, 600] 0

>600 0

(-100, 0]
(0, 100]

1
3

Total 25

Start -600 Interval Width 100 End 600

Frequency
4.5

4

3.5

3

2.5

2

1.5

1

0.5

0

Data
1 6.941111
2 441.7264
3 -54.93432
4 118.4022
5 -263.9618
6 -513.1559
7 63.52337
8 281.8833
9 -197.6507

1 0 320.9866
1 1 -291.9955
1 2 200.6837
1 3 -588.7884
1 4 388.7842
1 5 -381.8366
1 6 449.9694
1 7 -309.3954
1 8 -190.6108
1 9 106.6411
2 0 498.659
2 1 93.72231
2 2 120.5269
2 3 -343.4986
2 4 181.9887
2 5 -138.6101

1

2
3
4
5
6
7
8
9

1 0
1 1
1 2
1 3
1 4
1 5
1 6
1 7
1 8
1 9
2 0
2 1
2 2
2 3
2 4
2 5
2 6
2 7
2 8

A C D G H I J K L M N W X Y

<=-600 (-500,
-400]

(-300,
-200]

(-100,
0]

(100,
200]

(300,
400]

(500,
600]

FIGURE 10–28 A Histogram of the Residuals

the corresponding z values from the normal distribution are on the vertical axis.
If the residuals are normal, then they should align themselves along the straight
line that appears on the plot. To the extent the points deviate from this straight
line, the residuals deviate from a normal distribution. Note that this also is only a
visual test and does not provide a p-value. In Figure 10–14, the points do deviate
from the straight line, causing some concern and confirming what we saw in the
histogram.

The normal probability plot is constructed as follows. For each value e of the
residual, its quartile (cumulative probability) is calculated using the equation

q =
l + 1 + m>2

n + 1

where l is the number of residuals less than e, m is the number of residuals equal to
e, and n is the total number of observations. Then the z value corresponding to the
quartile q, denoted by z q, is calculated. A point with this zq on the vertical axis and
e on the horizontal axis is plotted. This process is repeated, with one point plotted
for each observation. The diagonal straight line is drawn by connecting 3 standard
deviations on either side of zero both on vertical and horizontal axes.

It is useful to recognize different nonnormal cases on a normal probability plot.
Figure 10–29 shows four different patterns of lines along which the points will align.
Figure 10–30 shows a case where the residuals are clearly nonnormal. From the pat-
tern of the points we can infer that the distribution of the residuals is flatter than the
normal distribution.
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FIGURE 10–30 Distribution of the Residuals Is Flatter Than Normal

P R O B L E M S

10–63. For each of the following plots of regression residuals versus X ,
state whether there is any indication of model inadequacy; if so, identify the
inadequacy.

(a) Flatter than Normal

Z

e

(c) Positively Skewed

Z

e

(b) More Peaked than Normal

Z

e

(d) Negatively Skewed

Z

e

FIGURE 10–29 Patterns of Nonnormal Distributions on the Normal Probability Plot
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10–64. In the following plots of the residuals versus time of observation, state
whether there is evidence of model inadequacy. How would you correct any inade-
quacy?
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10–65. Is there any indication of model inadequacy in the following plots of resid-
uals on a normal probability scale?
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10–66. Produce residual plots for the regression of problem 10–11. Is there any
apparent model inadequacy?
10–67. Repeat problem 10–66 for the regression of problem 10–13.
10–68. Repeat problem 10–66 for the regression of problem 10–16.

10–10 Use of the Regression Model for Prediction
As mentioned in the first section of this chapter, a regression model has several
possible uses. One is to understand the relationship between the two variables.
As with correlation analysis, understanding a relationship between two variables
in regression does not imply that one variable causes the other. Causality is a
much more complicated issue and cannot be determined by a simple regression
analysis.

A more frequent use of a regression analysis is prediction: providing estimates of
values of the dependent variable by using the prediction equation Ŷ � b0 � b1X. It is
important that prediction be done in the region of the data used in the estimation
process. You should be aware that using a regression for extrapolating outside the estimation
range is risky, as the estimated relationship may not be appropriate outside this range. This is
demonstrated in Figure 10–31.

Point Predictions
Producing point predictions using the estimated regression equation is very easy.
All we need to do is to substitute the value of X for which we want to predict Y into
the prediction equation. In Example 10–1 suppose that American Express wants to

454 Chapter 10
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predict charges on the card for a member who traveled 4,000 miles during a period
equal to the one studied (note that x � 4,000 is in the range of X values used in the
estimation). We use the prediction equation, equation 10–12, but with greater accuracy
for b1:

Simple Linear Regression and Correlation 455

y

x

Least-squares
line gives good
fit to data
in the range

but not outside of the range

Range of 
available data

FIGURE 10–31 The Danger of Extrapolation

ŷ � 274.85 � 1.2553x � 274.85 � 1.2553(4,000) � 5,296.05 (dollars)

The process of prediction in this example is demonstrated in Figure 10–32.

Prediction Intervals
Point predictions are not perfect and are subject to error. The error is due to the
uncertainty in estimation as well as the natural variation of points about the regres-
sion line. A (1 � �) 100% prediction interval forY is given in equation 10–32.

A (1 � �) 100% prediction interval for Y is

ŷ � t��2 s (10–32)A1 +
1
n

+
(x - x )2

SSX

As can be seen from the formula, the width of the interval depends on the distance
of our value x (for which we wish to predict Y ) from the mean . This is shown in
Figure 10–33.

We will now use equation 10–32 to compute a 95% prediction interval for the
amount charged on the American Express card by a member who traveled 4,000
miles. We know that in this example � �x�n � 79,448�25 � 3,177.92. We also knowx

x
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that SSX � 40,947,557.84 and s � 318.16. From Appendix C, Table 3, we get the crit-
ical point for t with 23 degrees of freedom: 2.069. Applying equation 10–32, we get

Based on the validity of the study, we are 95% confident that a cardholder who trav-
eled 4,000 miles during a period of the given length will have charges on her or his
card totaling anywhere from $4,619.43 to $5,972.67.
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Prediction band

The prediction band about
the least-squares line widens 
as X gets farther
away from 

Y = b0 + b1X

Y
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X
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FIGURE 10–33 Prediction Band and Its Width
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Ŷ  = 274.8497 + 1.2553X

FIGURE 10–32 Prediction in American Express Study

5,296.05 � (2.069)(318.16)

� 5,296.05 � 676.62 � [4,619.43, 5,972.67]

21 + 1>25 + (4,000 - 3,177.92)2>40,947,577.84
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What about the average total charge of all cardholders who traveled 4,000 miles?
This is E(Y | x � 4,000). The point estimate of E(Y | x � 4,000) is also equal to Ŷ, but
the confidence interval for this quantity is different.

A Confidence Interval for the Average Y, Given a Particular Value of X
We may compute a confidence interval for E (Y | X ), the expected value of Y for a
given X. Here the variation is smaller because we are dealing with the average Y for
a given X , rather than a particular Y. Thus, the confidence interval is narrower than
a prediction interval of the same confidence level. The confidence interval for E (Y | X )
is given in equation 10–33:

Simple Linear Regression and Correlation 457

5,296.05 � (2.069)(318.16)

� 5,296.05 � 156.48 � [5,139.57, 5,452.53]

21>25 + (4,000 - 3,177.92)2>40,947,557.84

A (1 � �) 100% confidence interval for E(Y | X) is

ŷ � t��2 s (10–33)A1
n

+
(x - x)2

SSX

The confidence band for E(Y | X ) around the regression line looks like Figure 10–33
except that the band is narrower. The standard error of the estimator of the condi-
tional mean E(Y | X ) is smaller than the standard error of the predicted Y. Therefore,
the 1 is missing from the square root quantity in equation 10–33 as compared with
equation 10–32.

For the American Express example, let us now compute a 95% confidence inter-
val for E(Y | x � 4,000). Applying equation 10–33, we have

Being a confidence interval for a conditional mean, the interval is much narrower
than the prediction interval, which has the same confidence level for covering any
given observation at the level of X.

10–69. For the American Express example, give a 95% prediction interval for the
amount charged by a member who traveled 5,000 miles. Compare the result with the
one for x � 4,000 miles.
10–70. In problem 10–52, if the rating for a bond falls by three levels, how much
higher must be its yield?
10–71. For problem 10–69, give a 99% prediction interval.
10–72. For problem 10–11, give a point prediction and a 99% prediction interval for
wealth growth when the income quartile is 5.
10–73. For problem 10–72, give a 99% prediction interval for wealth growth when
the income quartile is 5.
10–74. For problem 10–16, give a 95% prediction interval for the present value
when the model is from the 1990s.

P R O B L E M S
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10–75. For problem 10–16, give a 95% prediction interval for the present value
when the model is from the 2000s.
10–76. For problem 10–15 predict the total return on stocks when the inflation
rate is 5%.

10–11 Using the Computer

The Excel Solver Method for Regression
The Solver macro available in Excel can also be used to conduct a simple linear
regression. The advantage of using this method is that additional constraints can be
imposed on the slope and the intercept. For instance, if we want the intercept to be a
particular value, or if we want to force the regression line to go through a desired
point, we can do that by imposing appropriate constraints. As an example, suppose
we are regressing the weight of a certain amount of a chemical against its volume (in
order to find the average density). We know that when the volume is zero, the weight
should be zero. This means the intercept for the regression line must be zero. We can
impose this as a constraint, if we use the Solver method, and be assured that the inter-
cept will be zero. The slope obtained with the constraint can be quite different from
the slope obtained without the constraint.

As another example, consider a common type of regression carried out in the
area of finance. The risk of a stock (or any capital asset) is measured by regressing its
returns against the market return (which is the average return from all the assets in
the market) during the same period. The Capital Asset Pricing Model (CAPM) stipu-
lates that when the market return equals the risk-free interest rate (such as the interest
rate of short-term Treasury bills), the stock will also return the same amount. In other
words, if the market return � risk-free interest rate � 7%, then the stock’s return,
according to the CAPM, will also be 7%. This means that according to the CAPM,
the regression line must pass through the point (7, 7). This can be imposed as a con-
straint in the Solver method of regression.

Note that forcing a regression line through the origin, (0, 0), is the same as forcing
the intercept to equal zero, and forcing the line through the point (0, 5) is the same as
forcing the intercept to equal 5.

The criterion for the line of best fit by the Solver method is still the same as
before—minimize the sum of squared errors (SSE).

A limitation of this method is that we cannot find confidence intervals for the regres-
sion coefficients or prediction intervals for Y. All we get is the constrained line of best fit
and point predictions based on that line. Also, we cannot conduct hypothesis tests about
the regression, because we are deviating from the model assumptions given in equation
10–3. In particular, the errors may not be normally distributed.

We shall see the use of this method through an example.

458 Chapter 10

A certain fuel produced by a chemical company varies in its composition and therefore in
its density. The average density of the fuel is to be determined for engineering purposes.
Rather than take the average of all the densities observed, it was decided to estimate the
density through regression, thus minimizing SSE. Different amounts of the fuel were sam-
pled at different times and the weights (in grams) and volumes (in cubic centimeters) were
accurately measured. The results are in Figure 10–34.

1. Regress the weight against the volume and find the regression equation.
Predict the weight when the volume is 7 cm3.

2. Force the regression line through the origin and find the regression line that
minimizes SSE. What is the new regression equation? What is the density implied
by this regression equation? Predict the weight when the volume is 7 cm3.

E X A M P L E  1 0 – 5
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S o l u t i o n1. Without any constraint, the regression equation is Ŷ � 1.352X � 0.847
(obtained from the template for regular regression). For a volume of 7 cm3,
the predicted weight is 8.62 grams.

2. Use the template shown in Figure 10–34. Enter the data in columns B and C.
Enter zero in cell J5. Choose the Solver command in the Analysis group on the
Data tab. In the dialog box that appears, press the Add button. The dialog
box shown in Figure 10–35 appears. In this Add Constraint dialog box, enter
the constraint K5 � 0. Note the use of the drop-down box in the middle to
choose the relationship. Press the OK button. The Solver dialog box appears
again, as seen in Figure 10–36. Click the Solve button. When the problem is
solved the dialog box shown in Figure 10–37 appears. Make sure Keep Solver
Solution is selected. Click the OK button.

The result is seen in Figure 10–34. The intercept is zero, as expected, and the
slope is 1.21969. Thus the new regression equation isŶ � 1.21969X. The average den-
sity implied by the equation is 1.21969 g/cm3.

To get the predicted value for X � 7, enter 7 in cell J5. The predicted value of
8.53785 g appears in cell K5.

Intercept Slope

Regression Using the Solver

Volume Weight
X Y Error

1 6.23 7.75 0.1513

0.525396
SSE

2 6.87 6.5 0.1207
3 5.54 6.85 0.0929
4 5.9 6.78 -0.4162
5 6.45 8 0.1330
6 6.55 7.8 -0.1890
7 5.75 7.05 0.0368
8 6 7.35 0.0318
9 6.2 7.3 -0.2621

10 6.7 8 -0.1719
11 7 8.59 0.1521
12 7.23 8.86 0.0416
13 5.3 6.25 -0.2144
14 6.35 7.9 0.1549
15 7.15 8.96 0.2392

1

2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

A C E F G H I J K L M NB D

b0 b1

0 1.219694

Prediction
X Y
0 0

0

1

2

3

4

5

6

7

8

9

10

0 2 4 6 8

X

Y

FIGURE 10–34 The Template for Using the Solver for Regression
[Simple Regression.xls; Sheet: Solver]

FIGURE 10–35 The Add Constraint Dialog Box
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Several other types of constraints can be imposed. For example, we can impose
the condition that the slope must be less than or equal to 10. We can even impose a
condition that the slope must be numerically less than the intercept, although why
we would want such a constraint is not clear. In any case, all constraints are entered
using the dialog box seen in Figure 10–35. Some syntax rules must be followed when
entering constraints in this dialog box. For example, the entry in the right-hand-side
box of Figure 10–35 (0 in the figure) cannot be a formula, whereas the entry in the
left-hand-side box ($K$5 in the figure) can be a formula such as 3*$K$5 � 6. Such
details can be obtained from the help screens.

460 Chapter 10

FIGURE 10–36 The Solver Dialog Box

FIGURE 10–37 The Solver Results Dialog Box

P R O B L E M S

10–77. Consider the following sample data of X and Y:

X Y

8 22.30

6 16.71

9 25.21

6 15.84

1 2.75

8 21.22

2 5.27

1 2.32

10 27.39

7 19.35
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a. Regress Y against X without any constraints. What is the regression equa-
tion? Predict Y when X � 10.

b. Force the regression line through the origin. What is the new regression
equation? Predict Y when X � 10 with this equation.

c. Force the regression line to go through the point (5, 13). What is the new
regression line? What is the new regression equation? Predict Y when X �
10 with this equation.

d. Regress Y against X with the constraint that the slope must be less than or
equal to 2. What is the new regression equation? Predict Y when X � 10
with this equation.

10–78. Why would it be silly to force a regression line through two distinct points
at the same time?

The Excel LINEST Function
The LINEST function available in Excel can be used to carry out a quick regression
if you do not have access to the template for any reason. The following discussion
explains the use of the function.

• Enter the data in columns B and C as shown in Figure 10–38.
• Select the range E5:F9. The area you select is going to contain the results. You

need five rows and two columns for the results.
• Click the Insert Function in the Formulas tab.
• Select Statistical under Function Category. In the list of functions that appear at

right, select LINEST.
• In the LINEST dialog box make the entries as follows (see Figure 10–38): 

— In the box for Known_y’s, enter the range that contains the Y values.
— In the box for Known_x’s, enter the range that contains the X values.
– Leave the Const box blank. Entering TRUE in that box will force the

intercept to be zero. We don’t need that.
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1
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3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28

A B C D E F G H I J K
The LINEST Function

X Y

7.6 2.32.3
7.9 2.6
8.3 2.9
8.6 3.2
8.8 3.7
9 4.1

9.4 4.8
10.2 5.7
11.4 7
12.1 8.9

..TRUE)

= =LINEST(C5:C14,B5:B14,,TRUE)

FIGURE 10–38 Using the LINEST Function for Simple Regression
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• Keeping the CTRL and SHIFT keys pressed, click the OK button. The reason for
keeping the CTRL and SHIFT keys pressed is that the formula we are entering
is an array formula. An array formula is simultaneously entered in a range of
cells at once, and that range behaves as one cell.  When an array formula is
entered, Excel will add the { } braces around the formula.

• You should see the results seen in Figure 10–39.

Unfortunately, Excel does not label the results and therefore it is not immediately
clear which result is where. A legend has been provided in Figure 10–39 for
reference. If you do not have the legend, you may consult Excel help screens to see
which result is where.

Looking at the results and the legend, you can see that the estimated slope
b1 � 1.423636, and the estimated intercept b0 � �8.76252. Thus the regression
equation is

462 Chapter 10

1
2
3
4
5
6
7
8
9

10
11
12
13
14

A B C D E F G H I
The LINEST Function

X Y LINEST Output Legend
7.6 2.3 1.423636 b 1 b 0

7.9 2.6 0.062966 s(b 1) s(b 0)
8.3 2.9 0.984592 0.279761 r 2 s
8.6 3.2 511.2009 8 F df(SSE)
8.8 3.7 40.00987 0.626131 SSR SSE
9 4.1

9.4 4.8
10.2 5.7
11.4 7
12.1 8.9

-8.76252
0.594093

FIGURE 10–39 LINEST Output and Legend

Y$ = - 8.76252 + 1.423636X

In addition to the tools and functions mentioned above, Excel also provides a
very useful and easy-to-use regression analysis tool that performs linear regression
analysis by using the least-squares method to fit a line through a set of observations.
This tool enables you to analyze how a single dependent variable is affected by the
values of one or more independent variables. The Regression tool uses the worksheet
function LINEST described earlier. To access these tools click Data Analysis in
the Analysis group on the Data tab. In the Data Analysis window select Regression.
The corresponding Regression window will appear as shown in Figure 10–40.
Assuming you have your raw data of X and Y in a worksheet, you can define the
range of Y and X in the input section. If the ranges contain the label of the X and
Y columns, check Label. Define the desired confidence level that will be used to con-
struct a confidence interval for all coefficients of the estimated model. Check the
Constant is Zero check box if you wish to impose the constraint that the intercept is
zero. Define the range of output in the next section. You can also get other statistics
and graphs such as residual plot or probability plot by checking corresponding check
boxes. Then click the OK button. The result will contain a summary output, ANOVA
table, model coefficients and their corresponding confidence intervals, residuals, and
related graphs as shown in Figure 10–41.
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FIGURE 10-40 Using the Excel Regression Tool for a Simple Linear Regression 

FIGURE 10-41 Excel Results for Simple Linear Regression 
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Volume Weight SUMMARY OUTPUT

Regression Statistics

df

Observation Predicted Y Residuals

SS MS F Significance F

Standard ErrorCoefficients t Stat p-value Lower 95% Upper 95% Lower 95.0% Upper 95.0%

Multiple R
R Square
Adjusted R Square
Standard Error
Observations

0.975561951
0.95172112
0.94800736

0.184266157
15

1
13
14

8.701358
0.033954

8.701357783
0.441402217

9.14276

256.2689 6.17069E-10

-0.846543368 -1.572820.538234411 0.139775 -2.009328117 0.316241381 -2.009328117 0.316241381
1.352007462 16.00840.084456126 6.17E-10 1.169551096 1.534463828 1.169551096 1.534463828

X Y
6.23 7.75
6.87 8.5
5.54 6.85
5.9 6.78
6.45 8
6.55 7.8
5.75 7.05

6 7.35
6.2 7.3
6.7 8
7 8.69

7.23 8.86
5.3 6.25
6.35 7.9
7.15 8.96

K L M

ANOVA

Regression
Residual
Total

Intercept
X Variable 1

7.57646312 0.173536881
8.441747895 0.0582521052
6.643577971 0.2064220293
7.130300657 -0.3503006574
7.873904761 0.1260952395
8.009105507 -0.2091055076
6.927499538 0.1225004627
7.265501403 0.0844985978
7.535902896 -0.2359028969
8.211906627 -0.21190662710

RESIDUAL OUTPUT X Variable 1 Residual Plot
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Using MINITAB for Simple Linear Regression Analysis
MINITAB enables you to perform simple linear regression using least squares.
Choose Stat � Regression � Regression for fitting general least-squares models, storing
regression statistics, examining residual diagnostics, generating point estimates,
generating prediction and confidence intervals, and performing lack-of-fit tests.
When the Regression dialog box appears, select the column containing the Y, or
enter the response variable in the Response edit box. The column(s) containing the X ,



Aczel−Sounderpandian: 
Complete Business 
Statistics, Seventh Edition

10. Simple Linear 
Regression and Correlation

Text466 © The McGraw−Hill 
Companies, 2009

or predictor variable(s), are entered in the Predictors edit box. The Graphs button
provides you with different plots such as residual plot or normal plot of residuals,
which can be used for validating the assumptions of your analysis. The Options but-
ton enables you to define the desired confidence level for confidence intervals as
well as prediction intervals of new observations. The Results button controls the level
of detail in the display of output to the Session window. By clicking the Storage
button you can set to store diagnostic measures and characteristics of the estimated
regression equation such as residuals, coefficients, and fits. The result of using the
MINITAB regression tool for the data set that was used in the previous example (Excel
Regression Tool) appears in Figure 10-42.

10–12 Summary and Review of Terms
In this chapter, we introduced simple linear regression, a technique for estimating
the straight-line relationship between two variables. We defined the dependent
variable as the variable we wish to predict by, or understand the relation with,
the independent variable (also called the explanatory or predictor variable). We
described the least-squares estimation procedure as the procedure that produces
the best linear unbiased estimators (BLUE) of the regression coefficients, the
slope and intercept parameters. We learned how to conduct two statistical tests
for the existence of a linear relationship between the two variables: the t test and the
F test. We noted that in the case of simple linear regression, the two tests are equiva-
lent. We saw how to evaluate the fit of the regression model by considering the
coefficient of determination r 2. We learned how to check the validity of the assump-
tions of the simple linear regression model by examining the residuals. We saw how
the regression model can be used for prediction. In addition, we discussed a linear
correlation model. We saw that the correlation model is appropriate when the two
variables are viewed in a symmetric role: both being normally distributed random
variables, rather than one of them (X ) being considered nonrandom, as in regression
analysis.

464 Chapter 10

FIGURE 10-42 Using MINITAB for Simple Regression Analysis
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10–79. A regression was carried out aimed at assessing the effect of the offer price
of an initial public offering (IPO) on the chances of failure of the firm issuing the IPO
over various time periods from the time of the offering (the maximum length of time
being 5 years). The sample was of 2,058 firms, and the regression slope estimate was
�0.051. The reported p-value was 0.034.13 What was the standard error of the slope
estimate? Interpret the findings.
10–80. A study was undertaken to find out whether neuroticism affected job per-
formance. The slope estimate of the regression line was 0.16 and the r 2 was 0.19. The
sample size was 151. The reported value of the statistical significance of the slope esti-
mate was p < 0.001, two-tailed.14 Interpret and discuss these findings. Does the degree of
“neurosis” affect a worker’s performance for the particular jobs studied in this research?
10–81. A regression analysis was performed to assess the impact of the perception
of risk (credit card information theft, identity theft, etc.) on the frequency of online
shopping. The estimated slope of the regression line of frequency of shopping versus
level of perceived risk was found to be �0.233 and the standard error was 0.055. The
sample size was 72.15 Is there statistical evidence of a linear relationship between fre-
quency of online shopping and the level of perceived risk?
10–82. The following data are operating income X and monthly stock closeY for
Clorox, Inc. Graph the data. Then regress log Y on X.

X ($ millions): 240, 250, 260, 270, 280, 300, 310, 320, 330, 340, 350, 360, 370,
400, 410, 420, 430, 450

Y ($s): 45, 42, 44, 46, 47, 50, 48, 60, 61, 59, 67, 75, 74, 85, 95, 110, 125, 130

Predict Y for X � 305.
10–83. One of several simple linear regressions run to assess firms’ stock perfor-
mance based on the Capital Asset Pricing Model (CAPM) for firms with high ratios
of cash flow to stock price was the following.16

Firm excess return � 0.95 � 0.92 Market excess return + Error

The standard error of the slope estimate was 0.01 and the sample size was 600
(50 years of monthly observations).

a. Is this regression relationship statistically significant?
b. If the market excess return is 1%, predict the excess return for a firm’s stock.

10–84. A simple regression produces the regression equation Ŷ � 5X � 7.
a. If we add 2 to all the X values in the data (and keep the Y values the same

as the original), what will the new regression equation be?
b. If we add 2 to all theY values in the data (and keep the X values the same

as the original), what will the new regression equation be?
c. If we multiply all the X values in the data by 2 (and keep theY values the

same as the original), what will the new regression equation be?
d. If we multiply all theY values in the data by 2 (and keep the X values the

same as the original), what will the new regression equation be?

A D D I T I O N A L  P R O B L E M S

13Elizabeth Demers and Philip Joos, “IPO Failure Risk,” Journal of Accounting Research 45, no. 2 (2007), pp. 333–384.
14Eric A. Fong and Henry L. Tosi Jr., “Effort, Performance, and Conscientiousness: An Agency Theory Perspective,”

Journal of Management 33, no. 2 (2007), pp. 161–179.
15Hyun-Joo Lee and Patricia Huddleston, “Effects of E-Tailer and Product Type on Risk Handling in Online

Shopping,” Journal of Marketing Channels 13, no. 3 (2006), pp. 5–28.
16Martin Lettau and Jessica A. Wachter, “Why Is Long-Horizon Equity Less Risky? A Duration-Based Explanation of

the Value Premium,” Journal of Finance 62, no. 1 (2007), pp. 55–92.
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10–85. In a simple regression the regression equation is Ŷ � 5X � 7. Now if we
interchange the X and Y data (that is, what was originally X is now Y and vice versa)
and repeat the regression, we would expect the slope of the new regression line to be
exactly equal to 1�5 � 0.2. But the slope will only be approximately equal to 0.2 and
almost never exactly equal to 0.2. Why?
10–86. Regress Y against X with the following data from a random sample of 15
observations:

X Y

12 100
4 60

10 96
15 102
6 68
4 70

13 102
11 92
10 95
18 125
20 134
22 133
8 87

20 122
11 101

a. What is the regression equation?
b. What is the 90% confidence interval for the slope?
c. Test the null hypothesis “X does not affect Y ” at an � of 1%.
d. Test the null hypothesis “the slope is zero” at an � of 1%.
e. Make a point prediction of Y when X � 10.
f. Assume that the value of X is controllable. What should be the value of

X if the desired value for Y is 100?
g. Construct a residual plot. Are the residuals random?
h. Construct a normal probability plot. Are the residuals normally distributed?

466 Chapter 10

Astudy was undertaken to assess the relationship
between a firm’s level of leverage and the strength
of its shareholders’ rights. The authors found that

firms with more restricted shareholder rights tended
to use higher leverage: they assumed more debt. This
empirical result is consistent with the theory of finance.
The regression resulted in an intercept estimate of
�0.118 and a slope estimate of �0.040. The t-statistic
value was �2.62, and the sample size was 1,309.

1. Write the estimated regression equation predicting
leverage (L ) based on shareholder rights (R ).

2. Carry out a statistical test for the existence of a
linear relationship between the two variables.

3. The reported r 2 value was 16.50%. Comment on
the predictive power of the regression equation
linking a firm’s leverage with the strength of the
rights of its shareholders.

Source: Pornsit Jiraporn and Kimberly C. Gleason, “Capital Structure, Shareholder Rights, and Corporate Governance,” Journal of Financial Research 30, no. 1
(2007), pp. 21–33.

CASE 13 Firm Leverage and
Shareholder Rights
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According to the Capital Asset Pricing Model
(CAPM), the risk associated with a capital asset
is proportional to the slope �1 (or simply �)

obtained by regressing the asset’s past returns with the
corresponding returns of the average portfolio called
the market portfolio. (The return of the market portfolio
represents the return earned by the average investor. It
is a weighted average of the returns from all the assets
in the market.) The larger the slope � of an asset, the
larger is the risk associated with that asset. A � of 1.00
represents average risk.

The returns from an electronics firm’s stock and the
corresponding returns for the market portfolio for the
past 15 years are given below.

Market Return Stock’s Return
(%) (%)

16.02 21.05

12.17 17.25

11.48 13.1

17.62 18.23

20.01 21.52

14 13.26

13.22 15.84

17.79 22.18

15.46 16.26

8.09 5.64

11 10.55

18.52 17.86

14.05 12.75

8.79 9.13

11.6 13.87

CASE14 Risk and Return

1. Carry out the regression and find the � for the
stock. What is the regression equation?

2. Does the value of the slope indicate that the stock
has above-average risk? (For the purposes of this
case assume that the risk is average if the slope is
in the range 1 � 0.1, below average if it is less
than 0.9, and above average if it is more than 1.1.)

3. Give a 95% confidence interval for this �. Can we
say the risk is above average with 95% confidence?

4. If the market portfolio return for the current year
is 10%, what is the stock’s return predicted by the
regression equation? Give a 95% confidence
interval for this prediction.

5. Construct a residual plot. Do the residuals appear
random?

6. Construct a normal probability plot. Do the
residuals appear to be normally distributed?

7. (Optional) The risk-free rate of return is the rate
associated with an investment that has no risk at all,
such as lending money to the government. Assume
that for the current year the risk-free rate is 6%.
According to the CAPM, when the return from the
market portfolio is equal to the risk-free rate, the
return from every asset must also be equal to the
risk-free rate. In other words, if the market portfolio
return is 6%, then the stock’s return should also be
6%. It implies that the regression line must pass
through the point (6, 6). Repeat the regression
forcing this constraint. Comment on the risk based
on the new regression equation.
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11–3 The F Test of a Multiple Regression Model 473
11–4 How Good Is the Regression? 477
11–5 Tests of the Significance of Individual Regression 

Parameters 482
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After studying this chapter, you should be able to:

• Determine whether multiple regression would be applicable to
a given instance.

• Formulate a multiple regression model.
• Carry out a multiple regression using the spreadsheet template.
• Test the validity of a multiple regression by analyzing residuals.
• Carry out hypothesis tests about the regression coefficients.
• Compute a prediction interval for the dependent variable.
• Use indicator variables in a multiple regression.
• Carry out a polynomial regression.
• Conduct a Durbin-Watson test for autocorrelation in residuals.
• Conduct a partial F test.
• Determine which independent variables are to be included 

in a multiple regression model.
• Solve multiple regression problems using the Solver macro.

MULTIPLE REGRESSION

1
1
1
1
1
1
1

1 1 1 1 1

468

LEARNING OBJECTIVES

11



Aczel−Sounderpandian: 
Complete Business 
Statistics, Seventh Edition

11. Multiple Regression Text 471© The McGraw−Hill 
Companies, 2009

People often think that if something is good, then
more of it is even better. In the case of the simple
linear regression, explained in Chapter 10, this
turns out to be true—as long as some rules are fol-

lowed. Thus, if one X variable can help predict the value of Y, then several X variables
may do an even better job—as long as they contain more information about Y.

A survey of the research literature in all areas of business reveals an overwhelm-
ingly wide use of an extension of the method of Chapter 10, a model called multiple
regression, which uses several independent variables in predicting a variable of
interest.

11–2 The k-Variable Multiple Regression Model

1 1 1 1 1

1
1
1
1
1

11–1 Using Statistics

The population regression model of a dependent variable Y on a set of k
independent variables X1, X2, . . . , Xk is given by

Y � �0 � �1X1 � �2X2 � � � � � �kXk � � (11–1)

where �0 is the Y intercept of the regression surface and each �i, i � 1, . . . , k,
is the slope of the regression surface—sometimes called the response
surface—with respect to variable Xi.

Model assumptions:

1. For each observation, the error term � is normally distributed with
mean zero and standard deviation � and is independent of the error
terms associated with all other observations. That is,

�j � N(0, �2) for all j � 1, 2, . . . , n (11–2)

independent of other errors.1

2. In the context of regression analysis, the variables Xj are considered
fixed quantities, although in the context of correlational analysis, they
are random variables. In any case, Xj are independent of the error
term �. When we assume that Xj are fixed quantities, we are assum-
ing that we have realizations of k variables Xj and that the only ran-
domness in Y comes from the error term �.

As with the simple linear regression model, we have some assumptions.

1The multiple regression model is valid under less restrictive assumptions than these. The assumptions of normality of
the errors allows us to perform t tests and F tests of model validity. Also, all we need is that the errors be uncorrelated with
one another. However, normal distribution � noncorrelation � independence.

For a case with k = 2 variables, the response surface is a plane in three dimen-
sions (the dimensions are Y, X1, and X2). The plane is the surface of average response
E (Y ) for any combination of the two variables X1 and X2. The response surface is
given by the equation for E (Y ), which is the expected value of equation 11–1 with
two independent variables. Taking the expected value of Y gives the value 0 to the
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These are equations analogous to the case of simple linear regression. Here, instead
of a regression line, we have a regression plane. Some values of Y (i.e., combinations of
the Xi variables times their coefficients �i , and the errors �) are shown in Figure 11–1.
The figure shows the response surface, the plane corresponding to equation 11–4.

We estimate the regression parameters of equation 11–3 by the method of least
squares. This is an extension of the procedure used in simple linear regression. In the
case of two independent variables where the population model is equation 11–3, we
need to estimate an equation of a plane that will minimize the sum of the squared
errors (Y � Ŷ )2 over the entire data set of n points. The method is extendable to any
k independent variables. In the case of k � 2, there are three equations, and their
solutions are the least-squares estimates b0, b1, and b2. These are estimates of the Y inter-
cept, the slope of the plane with respect to X1, and the slope of the plane with respect
to X2. The normal equations for k � 2 follow.

When the various sums �y, �x1, and the other sums and products are entered into
these equations, it is possible to solve the three equations for the three unknowns b0,
b1, and b2. These computations are always done by computer. We will, however,
demonstrate the solution of equations 11–5 with a simple example.

470 Chapter 11

Y � �0 � �1X1 � �2X2 � � (11–3)

E(Y ) � �0 � �1X1 � �2X2 (11–4)

FIGURE 11–1
A Two-Dimensional Response
Surface E(Y) � �0 	 �1X1 	
�2X2 and Some Points

x1

x2

y

The normal equations for the case of two independent variables:

y � nb0 � b1 x1 � b2 x2

x1y � b0 x1 � b1 x2
1 � b2 x1x2

x2y � b0 x2 � b1 x1x2 � b2 x2
2 (11–5)gggg

gggg

ggg

Y � �0 � �1X1 � �2X2 � �

Alka-Seltzer recently embarked on an in-store promotional campaign, with displays
of its antacid featured prominently in supermarkets. The company also ran its usual
radio and television commercials. Over a period of 10 weeks, the company kept track
of its expenditure on radio and television advertising, variable X1, as well as its spend-
ing on in-store displays, variable X2. The resulting sales for each week in the area
studied were recorded as the dependent variable Y. The company analyst conducting
the study hypothesized a linear regression model of the form

S o l u t i o n

E X A M P L E  1 1 – 1

linking sales volume with the two independent variables, advertising and in-store pro-
motions. The analyst wanted to use the available data, considered a random sample
of 10 weekly observations, to estimate the parameters of the regression relationship.

Table 11–1 gives the data for this study in terms of Y, X1, and X2, all in thousands of
dollars. The table also gives additional columns of products and squares of data

error term �. The equations for Y and E (Y ) in the case of regression with two inde-
pendent variables are
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values needed for the solution of the normal equations. These columns are X1X2, ,
X1Y, and X2Y. The sums of these columns are then substituted into equations 11–5,

which are solved for the estimates b0, b1, and b2 of the regression parameters.
From Table 11–1, the sums needed for the solution of the normal equations are

�y � 743, �x1 � 123, �x2 � 65, �x1y � 9,382, �x2y � 5,040, �x1x2 � 869, � �
1,615, and � � 509. When these sums are substituted into equations 11–5, we
get the resulting normal equations:

x2
2

x2
1

X 2
2,

X 2
1

Multiple Regression 471

TABLE 11–1 Various Quantities Needed for the Solution of the Normal Equations for 
Example 11–1 (numbers are in thousands of dollars)

Y X1 X2 X1X2 X1Y X2Y

72 12 5 60 144 25 864 360

76 11 8 88 121 64 836 608

78 15 6 90 225 36 1,170 468

70 10 5 50 100 25 700 350

68 11 3 33 121 9 748 204

80 16 9 144 256 81 1,280 720

82 14 12 168 196 144 1,148 984

65 8 4 32 64 16 520 260

62 8 3 24 64 9 496 186

90 18 10 180 324 100 1,620 900

743 123 65 869 1,615 509 9,382 5,040

x2
2x2

1

743 � 10b0 � 123b1 � 65b2

9,382 � 123b0 � 1,615b1 � 869b2

5,040 � 65b0 � 869b1 � 509b2

Solution of this system of equations by substitution, or by any other method of solu-
tion, gives

b0 � 47.164942 b1 � 1.5990404 b2 � 1.1487479

These are the least-squares estimates of the true regression parameters �0, �1, and �2.
Recall that the normal equations (equations 11–5) are originally obtained by calculus
methods. (They are the results of differentiating the sum of squared errors with
respect to the regression coefficients and setting the results to zero.)

Figure 11–2 shows the results page of the template on which the same problem
has been solved. The template is described later.

The meaning of the estimates b0, b1, and b2 as the Y intercept, the slope with
respect to X1, and the slope with respect to X2, respectively, of the estimated regres-
sion surface is illustrated in Figure 11–3.

The general multiple regression model, equation 11–1, has one Y intercept param-
eter and k slope parameters. Each slope parameter �i , i � 1, . . . , k , represents the
amount of increase (or decrease, in case it is negative) in E (Y ) for an increase of 1 unit
in variable Xi when all other variables are kept constant. The regression coefficients �i
are therefore sometimes referred to as net regression coefficients because they represent
the net change in E (Y ) for a change of 1 unit in the variable they represent, all else
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remaining constant.2 This is often difficult to achieve in multiple regression analysis
since the explanatory variables are often interrelated in some way.

The Estimated Regression Relationship

472 Chapter 11

FIGURE 11–3 The Least-Squares Regression Surface for Example 11–1

x1

b0 = 47.165

b2 = 1.149

b1 = 1.599

x2

y

2For the reader with knowledge of calculus, we note that the coefficient �i is the partial derivative of E(Y ) with respect
to Xi : �i � �E (Y )��Xi.

The estimated regression relationship is

Ŷ � b0 � b1X1 � b2X2 � � � � � bk Xk (11–6)

where Ŷ is the predicted value of Y, the value lying on the estimated regres-
sion surface. The terms bi , i � 0, . . . , k, are the least-squares estimates of
the population regression parameters �i.

FVS
CHAPTER 17

FIGURE 11–2 The Results from the Template 
[Multiple Regression.xls; Sheet: Results]

Multiple Regression Results Example 11-1

0 1 2 3 4 5 6 7 8 9 10
Intercept X1 X2

b 47.1649 1.59904 1.1487
s(b) 2.47041 0.28096 0.3052

t 19.0919 5.69128 3.7633
p-value

VIF

0.0000 0.0007 0.0070

2.2071 2.2071

1
2
3
4
5
6
7
8
9
10
11

12

13
14
15
16
17
18

A C D E F G H I J K L MB

ANOVA Table
Source SS df MS F FCritical p -value

Regn. s630.538 2 315.27 86.335 4.7374 0.0000 1.9109
Error 25.5619 7 3.6517
Total 656.1 9 Adjusted R2 0.9499R2 0.9610

The least-squares estimators giving us the bi are BLUEs (best linear unbiased estimators).
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The estimated regression relationship can also be written in a way that shows
how each value of Y is expressed as a linear combination of the values of Xi plus an
error term. This is given in equation 11–7.

yj � b0 � b1x1j � b2x2j � � � � � bk xk j � ej j � 1, . . . , n (11–7)

In Example 11–1 the estimated regression relationship of sales volume Y on adver-
tising X1 and in-store promotions X2 is given by

Ŷ � 47.164942 � 1.5990404X1 � 1.1487479X2

11–1. What are the assumptions underlying the multiple regression model? What is
the purpose of the assumption of normality of the errors?
11–2. In a regression analysis of sales volume Y versus the explanatory variables
advertising expenditure X1 and promotional expenditures X2, the estimated coeffi-
cient b2 is equal to 1.34. Explain the meaning of this estimate in terms of the impact of
promotional expenditure on sales volume.
11–3. In terms of model assumptions, what is the difference between a multiple
regression model with k independent variables and a correlation analysis involving
these variables?
11–4. What is a response surface? For a regression model with seven independent
variables, what is the dimensionality of the response surface?
11–5. Again, for a multiple regression model with k � 7 independent variables,
how many normal equations are there leading to the values of the estimates of the
regression parameters?
11–6. What are the BLUEs of the regression parameters?
11–7. For a multiple regression model with two independent variables, results of
the analysis include �y � 852, �x1 � 155, �x2 � 88, �x1y � 11,423, �x2y � 8,320,
�x1x2 � 1,055, � � 2,125, and � � 768, n � 100. Solve the normal equations for
this regression model, and give the estimates of the parameters.
11–8. A realtor is interested in assessing the impact of size (in square feet) and dis-
tance from the center of town (in miles) on the value of homes (in thousands of
dollars) in a certain area. Nine randomly chosen houses are selected; data are as follows.

Y (value): 345, 238, 452, 422, 328, 375, 660, 466, 290
X1 (size): 1,650, 1,870, 2,230, 1,740, 1,900, 2,000, 3,200, 1,860, 1,230
X2 (distance): 3.5, 0.5, 1.5, 4.5, 1.8, 0.1, 3.4, 3.0, 1.0

Compute the estimated regression coefficients, and explain their meaning.
11–9. The estimated regression coefficients in Example 11–1 are b0 � 47.165,
b1 � 1.599, and b2 � 1.149 (rounded to three decimal places). Explain the meaning
of each of the three numbers in terms of the situation presented in the example.

11–3 The F Test of a Multiple Regression Model
The first statistical test we need to conduct in our evaluation of a multiple regression
model is a test that will answer the basic question: Is there a linear regression rela-
tionship between the dependent variable Y and any of the explanatory, independent

x2
2x2

1

P R O B L E M S
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variables Xi suggested by the regression equation under consideration? If the pro-
posed regression relationship is given in equation 11–1, a statistical test that can
answer this important question is as follows.
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FIGURE 11–4 Decomposition of the Total Deviation in Multiple Regression Analysis

x1

x2

y

Y

Y�Y^

Y�Ŷ
^

Y�Y
Total
deviation

Y

Y

Regression deviation

Error deviation

A statistical hypothesis test for the existence of a linear relationship between
Y and any of the Xi is

H0: �1 � �2 � �3 � � � � � �k � 0

H1: Not all the �i (i � 1, . . . , k) are zero (11–8)

If the null hypothesis is true, no linear relationship exists between Y and any of the
independent variables in the proposed regression equation. In such a case, there is
nothing more to do. There is no regression. If, on the other hand, we reject the null
hypothesis, there is statistical evidence to conclude that a regression relationship
exists between Y and at least one of the independent variables proposed in the
regression model.

To carry out the important test in equation 11–8, we will perform an analysis of
variance. The ANOVA is the same as the one given in Chapter 10 for simple linear
regression, except that here we have k independent variables instead of just 1.
Therefore, the F test of the analysis of variance is not equivalent to the t test for the
significance of the slope parameter, as was the case in Chapter 10. Since in multiple
regression there are k slope parameters, we have k different t tests to follow
the ANOVA.

Figure 11–4 is an extension of Figure 10–21 to the case of k � 2 independent
variables—to a regression plane instead of a regression line. The figure shows a
particular data point y, the predicted point ŷ which lies on the estimated regression
surface, and the mean of the dependent variable . The figure shows the three devia-
tions associated with the data point: the error deviation y � ŷ, the regression devia-
tion ŷ � , and the total deviation y � . As seen from the figure, the three deviations
satisfy the relation: Total deviation � Regression deviation � Error deviation. As in
the case of simple linear regression, when we square the deviations and sum them over
all n data points, we get the following relation for the sums of squares. The sums of

yy

y
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squares are denoted by SST for the total sum of squares, SSR for the regression sum
of squares, and SSE for the error sum of squares.

Multiple Regression 475

SST � SSR � SSE (11–9)

TABLE 11–2 ANOVA Table for Multiple Regression

Source of Variation Sum of Squares Degrees of Freedom Mean Square F Ratio

Regression SSR k MSR � F �

Error SSE n � (k � 1) MSE �

Total SST n � 1

SSE
n � (k � 1)

MSR
MSE

SSR
k

TABLE 11–3 ANOVA Table Produced by the Template 
[Multiple Regression.xls; Sheet: Results]

ANOVA Table

Source SS df MS F FCritical p -value

Regn. 630.538 2 315.27 86.335 4.7374 0.0000 s 1.9109
Error 25.5619 7 3.6517

Total 656.1 9 0.60509 R2 0.9610 Adjusted R2
0.9499

1 0
1 1

1 2

1 3

1 4
1 5

1 6
1 7

This is the same as equation 10–29. The difference lies in the degrees of freedom. In
simple linear regression, the degrees of freedom for error were n � 2 because two
parameters, an intercept and a slope, were estimated from a data set of n points. In
multiple regression, we estimate k slope parameters and an intercept from a data set
of n points. Therefore, the degrees of freedom for error are n � (k � 1). The degrees
of freedom for the regression are k, and the total degrees of freedom are n � 1. Again,
the degrees of freedom are additive. Table 11–2 is the ANOVA table for a multiple
regression model with k independent variables.

For Example 11–1, we present the ANOVA table computed by using the tem-
plate. The results are shown in Table 11–3. Since the p-value is small, we reject the
null hypothesis that both slope parameters �1 and �2 are zero (equation 11–8), in
favor of the alternative that the slope parameters are not both zero. We conclude that
there is evidence of a linear regression relationship between sales and at least one of
the two variables, advertising or in-store promotions (or both). The F test is shown in
Figure 11–5.

Note that since Example 11–1 has two independent variables, we do not yet
know whether there is a regression relationship between sales and both advertising
and in-store promotions, or whether the relationship exists between sales and one of
the two variables only—and if so, which one. All we know is that our data present sta-
tistical evidence to conclude that a relationship exists between sales and at least one
of the two independent variables. This is, of course, true for all cases with two or
more independent variables. The F test only tells us that there is evidence of a
relationship between the dependent variable and at least one of the independent
variables in the full regression equation under consideration. Once we conclude that
a relationship exists, we need to conduct separate tests to determine which of the
slope parameters �i, where i � 1, . . . , k , are different from zero. Therefore, k further
tests are needed.
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Compare the use of ANOVA tables in multiple regression with the analysis of
variance discussed in Chapter 9. Once we rejected the null hypothesis that all r pop-
ulation means are equal, we required further analysis (the Tukey procedure or an
alternative technique) to determine where the differences existed. In multiple regres-
sion, the further tests necessary for determining which variables are important are
t tests. These tests tell us which variables help explain the variation in the values of
the dependent variable and which variables have no explanatory power and should
be eliminated from the regression model. Before we get to the separate tests of mul-
tiple regression parameters, we want to be able to evaluate how good the regression
relationship is as a whole.
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11–10. Explain what is tested by the hypothesis test in equation 11–8. What con-
clusion should be reached if the null hypothesis is not rejected? What conclusion
should be reached if the null hypothesis is rejected?
11–11. In a multiple regression model with 12 independent variables, what are the
degrees of freedom for error? Explain.
11–12. A study was reported about the effects of the number of hours worked, on
average, and the average hourly income on unemployment in different countries.3

Suppose that the regression analysis resulted in SSE � 8,650, SSR � 988, and the
sample size was 82 observations. Is there a regression relationship between the
unemployment rate and at least one of the explanatory variables?
11–13. Avis is interested in estimating weekly costs of maintenance of its rental cars
of a certain size based on these variables: number of miles driven during the week,
number of renters during the week, the car’s total mileage, and the car’s age. A
regression analysis is carried out, and the results include n � 45 cars (each car selected
randomly, during a randomly selected week of operation), SSR � 7,768, and SST �
15,673. Construct a complete ANOVA table for this problem, and test for the exis-
tence of a linear regression relationship between weekly maintenance costs and any
of the four independent variables considered.

3Christopher A. Pissarides, “Unemployment and Hours of Work,” International Economic Review, February 2007, 
pp. 1–36.

FIGURE 11–5 Regression F Test for Example 11–1
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11–14. Nissan Motor Company wanted to find leverage factors for marketing the
Maxima model in the United States. The company hired a market research firm in
New York City to carry out an analysis of the factors that make people favor the model
in question. As part of the analysis, the market research firm selected a random sam-
ple of 17 people and asked them to fill out a questionnaire about the importance of
three automobile characteristics: prestige, comfort, and economy. Each respondent
reported the importance he or she gave to each of the three attributes on a 0–100
scale. Each respondent then spent some time becoming acquainted with the car’s fea-
tures and drove it on a test run. Finally, each of the respondents gave an overall appeal
score for the model on a 0–100 scale. The appeal score was considered the dependent
variable, and the three attribute scores were considered independent variables. A mul-
tiple regression analysis was carried out, and the results included the following
ANOVA table. Complete the table. Based on the results, is there a regression relation-
ship between the appeal score and at least one of the attribute variables? Explain.

Analysis of Variance

SOURCE      DF      SS      MS

Regression          7474.0

Error

Total               8146.5

11–4 How Good Is the Regression?
The mean square error MSE is an unbiased estimator of the variance of the population
errors �, which we denote by �2. The mean square error is defined in equation 11–10.

Multiple Regression 477

The mean square error is

MSE � � (11–10)
a
n

j=1

(yj - y$ j)
2

n - (k + 1)
SSE

n � (k � 1)

The errors resulting from the fit of a regression surface to our set of n data points
are shown in Figure 11–6. The smaller the errors, the better the fit of the regression

FIGURE 11–6 Errors in a Multiple Regression Model (shown for k � 2)

x1

x2

y

Errors Y – Ŷ
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model. Since the mean square error is the average squared error, where averaging is
done by dividing by the degrees of freedom, MSE is a measure of how well the
regression fits the data. The square root of MSE is an estimator of the standard
deviation of the population regression errors �. (Note that a square root of an unbi-
ased estimator is not unbiased; therefore, is not an unbiased estimator of �,
but is still a good estimator.) The square root of MSE is usually denoted by s and is
referred to as the standard error of estimate.

1MSE
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The multiple coefficient of determination R2 measures the proportion of
the variation in the dependent variable that is explained by the combination
of the independent variables in the multiple regression model:

R2 � (11–12)
SSR
SST

= 1 -
SSE
SST

This statistic is usually reported in computer output of multiple regression analysis.
The mean square error and its square root are measures of the size of the errors in
regression and give no indication about the explained component of the regression fit
(see Figure 11–4, showing the breakdown of the total deviation of any data point to
the error and regression components). A measure of regression fit that does incorpo-
rate the explained as well as the unexplained components is the multiple coefficient of
determination, denoted by R2. This measure is an extension to multiple regression of
the coefficient of determination in simple linear regression, denoted by r2.

The standard error of estimate is

s � (11–11)1MSE

Note that R2 is also equal to SSR/SST because SST � SSR � SSE. We prefer the def-
inition in equation 11–12 for consistency with another measure of how well the
regression model fits our data, the adjusted multiple coefficient of determination,
which will be introduced shortly.

The measures SSE, SSR, and SST are reported in the ANOVA table for multiple
regression. Because of the importance of R2, however, it is reported separately in
computer output of multiple regression analysis. The square root of the multiple coef-
ficient of determination, R � , is the multiple correlation coefficient. In the
context of multiple regression analysis (rather than correlation analysis), the multiple
coefficient of determination R2 is the important measure, not R . The coefficient of
determination measures the percentage of variation in Y explained by the X vari-
ables; thus, it is an important measure of how well the regression model fits the data.
In correlation analysis, where the Xi variables as well as Y are assumed to be random
variables, the multiple correlation coefficient R measures the strength of the linear
relationship between Y and the k variables Xi.

Figure 11–7 shows the breakdown of the total sum of squares (the sum of squared
deviations of all n data points from the mean of Y; see Figure 11–6) into the sum of
squares due to the regression (the explained variation) and the sum of squares due to
error (the unexplained variation). The interpretation of R2 is the same as that of r2 in
simple linear regression. The difference is that here the regression errors are measured
as deviations from a regression surface that has higher dimensionality than a regres-
sion line. The multiple coefficient of determination R2 is a very useful measure of per-
formance of a multiple regression model. It does, however, have some limitations.

1R2
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Recall the story at the beginning of this chapter about the student who wanted to
predict the nation’s economic future with a multiple regression model that had
many variables. It turns out that, for any given data set of n points, as the number of
variables in the regression model increases, so does R2. You have already seen how
this happens: The greater the number of variables in the regression equation, the
more the regression surface “chases” the data until it overfits them. Since the fit of
the regression model increases as we increase the number of variables, R2 cannot
decrease and approaches 1.00, or 100% explained variation in Y. This can be very
deceptive, as the model—while appearing to fit the data very well—would produce
poor predictions.

Therefore, a new measure of fit of a multiple regression model must be introduced:
the adjusted (or corrected) multiple coefficient of determination. The adjusted multiple
coefficient of determination, denoted , is the multiple coefficient of determina-
tion corrected for degrees of freedom. It accounts, therefore, not only for SSE and
SST, but also for their appropriate degrees of freedom. This measure does not always
increase as new variables are entered into our regression equation. When does
increase as a new variable is entered into the regression equation, including the vari-
able in the equation may be worthwhile. The adjusted measure is defined as follows:

R2

R2

Multiple Regression 479

FIGURE 11–7 Decomposition of the Sum of Squares in Multiple Regression, 
and the Definition of R2

SSR

SST

SSE

R2 = = 1 –SSR
SST

SSE
SST

The adjusted multiple coefficient of determination is

� 1 � (11–13)
SSE>[n - (k + 1)]

SST>(n - 1)
R2

(11–14)R2 = 1 - (1 - R2)
n - 1

n - (k + 1)

The adjusted R2 is the R2 (defined in equation 11–12) where both SSE and SST are
divided by their respective degrees of freedom. Since SSE/[n � (k � 1)] is the MSE,
we can say that, in a sense, is a mixture of the two measures of the performance
of a regression model: MSE and R2. The denominator on the right-hand side of
equation 11–13 would be mean square total, were we to define such a measure.

Computer output for multiple regression analysis usually includes the adjusted
R2. If it is not reported, we can get from R2 by a simple formula:R2

R2
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The proof of the relation between R2 and 2 has instructional value and is left as an
exercise. Note: Unless the number of variables is relatively large compared to the
number of data points (as in the economics student’s problem), R2 and 2 are close to
each other in value. Thus, in many situations, consideration of only the uncorrected
measures R2 is sufficient. We evaluate the fit of a multiple regression model based on
this measure. When we are considering whether to include an independent variable
in a regression model that already contains other independent variables, the increase
in R2 when the new variable is added must be weighed against the loss of 1 degree of
freedom for error resulting from the addition of the variable (a new parameter would
be added to the equation). With a relatively small data set and several independent
variables in the model, adding a new variable if R2 increases, say, from 0.85 to 0.86,
may not be worthwhile. As mentioned earlier, in such cases, the adjusted measure 2

may be a good indicator of whether to include the new variable. We may decide to
include the variable if 2 increases when the variable is added.

Of several possible multiple regression models with different independent vari-
ables, the model that minimizes MSE will also maximize 2. This should not surprise
you, since MSE is related to the adjusted measure 2. The use of the two criteria
MSE and 2 in selecting variables to be included in a regression model will be dis-
cussed in a later section.

We now return to the analysis of Example 11–1. Note that in Table 11–3 R2 �
0.961, which means that 96.1% of the variation in sales volume is explained by the
combination of the two independent variables, advertising and in-store promotions.
Note also that the adjusted R2 is 0.95, which is very close to the unadjusted measure.
We conclude that the regression model fits the data very well since a high percentage
of the variation in Y is explained by X1, and/or X2 (we do not yet know which of the
two variables, if not both, is important). The standard error of estimate s is an esti-
mate of �, the standard deviation of the population regression errors. Note that R2 is
also a statistic, like s or MSE. It is a sample estimate of the population multiple
coefficient of determination �2, a measure of the proportion of the explained varia-
tion in Y in the entire population of Y and Xi values.

All three measures of the performance of a regression model—MSE (and its square
root s), the coefficient of determination R2, and the adjusted measure 2—are obtain-
able from quantities reported in the ANOVA table. This is shown in Figure 11–8,
which demonstrates the relations among the different measures.

R

R
R

R

R

R

R

R
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FIGURE 11–8 Measures of Performance of a Regression Model and the ANOVA Table
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11–15. Under what conditions is it important to consider the adjusted multiple
coefficient of determination?

11–16. Explain why the multiple coefficient of determination never decreases as
variables are added to the multiple regression model.

11–17. Would it be useful to consider an adjusted coefficient of determination in a
simple linear regression situation? Explain.

11–18. Prove equation 11–14.

11–19. Can you judge how well a regression model fits the data by considering the
mean square error only? Explain.

11–20. A regression analysis was carried out of the stock return on the first day of
an IPO (initial public offering) based on four variables: assessed benefit of the IPO,
assessed improved market perception, assessed perception of market strength at
the time of the IPO, and assessed growth potential due to patent or copyright
ownership. The adjusted R 2 was 2.1%, and the F value was 2.27. The sample consisted
of 438 responses from the chief financial officers of firms who issued IPOs from
January 1, 1996, through June 15, 2002.4 Analyze these results.

11–21. A portion of the regression output for the Nissan Motor Company study of
problem 11–14 follows. Interpret the findings, and show how these results are obtain-
able from the ANOVA table results presented in problem 11–14. How good is the
regression relationship between the overall appeal score for the automobile and the
attribute-importance scores? Also, obtain the adjusted R2 from the multiple coeffi-
cient of determination.

s � 7.192        R2 � 91.7%        R2 (ADJ) � 89.8%

11–22. A study of the market for mortgage-backed securities included a regression
analysis of security effects and time effects on market prices as dependent variable.
The sample size was 383 and the R2 was 94%.5 How good is this regression? Would
you confidently predict market price based on security and time effects? Explain.

11–23. In the Nissan Motor Company situation in problem 11–21, suppose that a
new variable is considered for inclusion in the equation and a new regression rela-
tionship is analyzed with the new variable included. Suppose that the resulting multi-
ple coefficient of determination is R2 � 91.8%. Find the adjusted multiple coefficient
of determination. Should the new variable be included in the final regression equa-
tion? Give your reasons for including or excluding the variable.

11–24. An article on pricing and competition in marketing reports the results of a
regression analysis.6 Information price was the dependent variable, and the inde-
pendent variables were six marketing measures. The R2 was 76.9%. Interpret the
strength of this regression relationship. The number of data points was 242, and the
F-test value was 44.8. Conduct the test and state your conclusions.
11–25. The following excerpt reports the results of a regression of excess stock
returns on firm size and stock price, both variables being ranked on some scale.
Explain, critique, and evaluate the reported results.

4James C. Brau, Patricia A. Ryan, and Irv DeGraw, “Initial Public Offerings: CFO Perceptions,” Financial Review 41
(2006), pp. 483–511.

5Xavier Garbaix, Arvind Krishnamurthy, and Olivier Vigneron, “Limits of Arbitrage: Theory and Evidence from the
Mortgage-Backed Securities Market,” Journal of Finance 42, no. 2 (2007), pp. 557–595.

6Markus Christen and Miklos Sarvary, “Competitive Pricing of Information: A Longitudinal Experiment,” Journal of
Marketing Research 44 (February 2007), pp. 42–56.
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Estimated Coefficient Value (t Statistic)

INTCPT X1 X2 ADJUSTED-R2

Ordinary Least-Squares Regression Results

0.484 �0.030 �0.017 0.093

(5.71)*** (�2.91)*** (�1.66)*

*Denotes significance at the 10% level.

**Denotes significance at the 5% level.

***Denotes significance at the 1% level.

11–26. A study of Dutch tourism behavior included a regression analysis using a
sample of 713 respondents. The dependent variable, number of miles traveled on
vacation, was regressed on the independent variables, family size and family income;
and the multiple coefficient of determination was R2 � 0.72. Find the adjusted multi-
ple coefficient of determination 2. Is this a good regression model? Explain.
11–27. A regression analysis was carried out to assess sale prices of land in Uganda
based on many variables that describe the owner of the land: age, educational level,
number of males in the household, and more.7 Suppose that there are eight inde-
pendent variables, 500 data points, SSE = 6,179, and SST = 23,108. Construct an
ANOVA table, conduct the F test, find R2 and 2, and find the MSE.

11–5 Tests of the Significance of Individual
Regression Parameters

Until now, we have discussed the multiple regression model in general. We saw how
to test for the existence of a regression relationship between Y and at least one of a
set of independent Xi variables by using an F test. We also saw how to evaluate the fit
of the general regression model by using the multiple coefficient of determination
and the adjusted multiple coefficient of determination. We have not yet seen, however,
how to evaluate the significance of individual regression parameters �i. A test for the
significance of an individual parameter is important because it tells us whether the vari-
able in question, Xh, has explanatory power with respect to the dependent variable.
Such a test tells us whether the variable in question should be included in the regres-
sion equation.

In the last section, we saw that some indication about the benefit from inclusion
of a particular variable in the regression equation is gained by comparing the adjusted
coefficient of determination of a regression that includes the variable of interest with
the value of this measure when the variable is not included. In this section, we will
perform individual t tests for the significance of each slope parameter  �i . As we will
see, however, we must use caution in interpreting the results of the individual t tests.

In Chapter 10 we saw that the hypothesis test

R

R
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7J.M. Baland et al., “The Distributive Impact of Land Markets in Uganda,” Economic Development and Cultural Change
55, no. 2 (2007), pp. 283–311.

H0: �1 � 0
H1: �1 
 0

can be carried out using either a t statistic t � b1�s (b1) or an F statistic. Both tests were
shown to be equivalent because F with 1 degree of freedom for the numerator is a
squared t random variable with the same number of degrees of freedom as the denom-
inator of F. A simple linear regression has only one slope, �1, and if that slope is zero,
there is no linear regression relationship. In multiple regression, where k 
 1, the two
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tests are not equivalent. The F test tells us whether a relationship exists between Y and
at least one of the Xi , and the k ensuing t tests tell us which of the Xi variables are
important and should be included in the regression equation. From the similarity of
this situation with the situation of analysis of variance discussed in Chapter 9, you
probably have guessed at least one of the potential problems: The individual t tests are
each carried out at a single level of significance �, and we cannot determine the level
of significance of the family of all k tests of the regression slopes jointly. The problem
is further complicated by the fact that the tests are not independent of each other
because the regression estimates come from the same data set.

Recall that hypothesis tests and confidence intervals are related. We may test
hypotheses about regression slope parameters (in particular, the hypothesis that a
slope parameter is equal to zero), or we may construct confidence intervals for the
values of the slope parameters. If a 95% confidence interval for a slope parameter �h
contains the point zero, then the hypothesis test H0: �h � 0 carried out using � � 0.05
would lead to nonrejection of the null hypothesis and thus to the conclusion that
there is no evidence that the variable Xh has a linear relationship with Y.

We will demonstrate the interdependence of the separate tests of significance of
the slope parameters with the use of confidence intervals for these parameters.
When k � 2, there are two regression slope parameters: �1 and �2. (As in simple lin-
ear regression, usually there is no interest in testing hypotheses about the intercept
parameter.) The sample estimators of the two regression parameters are b1 and b2.
These estimators (and their standard errors) are correlated with each other (and
assumed to be normally distributed). Therefore, the joint confidence region for the
pair of parameters (�1, �2) is an ellipse. If we consider the estimators b1 and b2 sepa-
rately, the joint confidence region will be a rectangle, with each side a separate con-
fidence interval for a single parameter. This is demonstrated in Figure 11–9. A point
inside the rectangle formed by the two separate confidence intervals for the param-
eters, such as point A in the figure, seems like a plausible value for the pair of regres-
sion slopes (�1, �2) but is not jointly plausible for the parameters. Only points inside
the ellipse in the figure are jointly plausible for the pair of parameters.

Another problem that may arise in making inferences about individual regres-
sion slope coefficients is due to multicollinearity—the problem of correlations
among the independent variables themselves. In multiple regression, we hope to
have a strong correlation between each independent variable and the dependent
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for the Slope Parameters �1 and �2
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variable Y. Such correlations give the independent Xi variables predictive power
with respect to Y. However, we do not want the independent variables to be corre-
lated with one another. When the independent variables are correlated with one
another, we have multicollinearity. When this happens, the independent variables
rob one another of explanatory power. Many problems may then arise. One prob-
lem is that the standard errors of the individual slope estimators become unusually
high, making the slope coefficients seem statistically not significant (not different
from zero). For example, if we run a regression of job performance Y versus the vari-
ables age X1 and experience X 2, we may encounter multicollinearity. Since, in gen-
eral, as age increases so does experience, the two independent variables are not
independent of each other; the two variables rob each other of explanatory power
with respect to Y. If we run this regression, it is likely that—even though experience
affects job performance—the individual test for significance of the slope parameter
�2 would lead to nonrejection of the null hypothesis that this slope parameter is
equal to zero. Much will be said later about the problem of multicollinearity.
Remember that in the presence of multicollinearity, the significance of any regres-
sion parameter depends on the other variables included in the regression equation.
Multicollinearity may also cause the signs of some estimated regression parameters
to be the opposite of what we expect.

Another problem that may affect the individual tests of significance of model
parameters occurs when one of the model assumptions is violated. Recall from Sec-
tion 11–2 that one of the assumptions of the regression model is that the error terms
�j are uncorrelated with one another. When this condition does not hold, as may
happen when our data are time series observations (observations ordered by time:
yearly data, monthly data, etc.), we encounter the problem of autocorrelation of the
errors. This causes the standard errors of the slope estimators to be unusually small,
making some parameters seem more significant than they really are. This problem,
too, should be considered, and we will discuss it in detail later.

Forewarned of problems that may arise, we now consider the tests of the individual
regression parameters. In a regression model of Y versus k independent variables X1,
X2, . . . , Xk , we have k tests of significance of the slope parameters �1, �2, . . . , �k:

484 Chapter 11

Hypothesis tests about individual regression slope parameters:

(1) H0: �1 � 0
H1: �1 
 0

(2) H0: �2 � 0
H1: �2 
 0

� �
� �
� �

(k) H0: �k � 0
H1: �k 
 0 (11–15)

These tests are carried out by comparing each test statistic with a critical point of the dis-
tribution of the test statistic. The distribution of each test statistic, when the appropriate
null hypothesis is true, is the t distribution with n � (k � 1) degrees of freedom. The dis-
tribution depends on our assumption that the regression errors are normally distributed.
The test statistic for each hypothesis test (i ) in equations 11–15 (where i � 1, 2, . . . , k) is
the slope estimate bi , divided by the standard error of the estimator s(bi). The estimates
and the standard errors are reported in the computer output. Each s(bi) is an estimate of
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Test statistics for tests about individual regression slope parameters:

For test i (i � 1, . . . , k):

t[n�(k�1)] � (11–16)
bi - 0
s(bi)

We write each test statistic as the estimate minus zero (the null-hypothesis value of �i)
to stress the fact that we may test the null hypothesis that �i is equal to any number,
not necessarily zero. Testing for equality to zero is most important because it tells us
whether there is evidence that variable Xi has a linear relationship with Y. It tells us
whether there is statistical evidence that variable Xi has explanatory power with
respect to the dependent variable.

Let us look at a quick example. Suppose that a multiple regression analysis is
carried out relating the dependent variableY to five independent variables X1, X 2,
X3, X4, and X5. In addition, suppose that the F test resulted in rejection of the null
hypothesis that none of the predictor variables has any explanatory power with
respect to Y; suppose also that R2 of the regression is respectably high. As a result,
we believe that the regression equation gives a good fit to the data and potentially
may be used for prediction purposes. Our task now is to test the importance of each
of the Xi variables separately. Suppose that the sample size used in this regression
analysis is n � 150. The results of the regression estimation procedure are given in
Table 11–4.

From the information in Table 11–4, which variables are important, and which
are not? Note that the first variable listed is “Constant.” This is the Y intercept. As we
noted earlier, testing whether the intercept is zero is less important than testing
whether the coefficient parameter of any of the k variables is zero. Still, we may do so
by dividing the reported coefficient estimate, 53.12, by its standard error, 5.43. The
result is the value of the test statistic that has a t distribution with n � (k � 1) � 150 �
6 � 144 degrees of freedom when the null hypothesis that the intercept is zero is true.
For manual calculation purposes, we shall approximate this t random variable as a
standard normal variable Z. The test statistic value is z � 53.12�5.43 � 9.78. This
value is greater than 1.96, and we may reject the null hypothesis that �0 is equal to
zero at the � � 0.05 level of significance. Actually, the p-value is very small. The
regression hyperplane, therefore, most probably does not pass through the origin.

8Each s(bi) is the product of s � and a term denoted by ci, which is a diagonal element in a matrix obtained in
the regression computations. You need not worry about matrices. However, the matrix approach to multiple regression is
discussed in a section at the end of this chapter for the benefit of students familiar with matrix theory.

1 MSE

TABLE 11–4 Regression Results for Individual Parameters

Variable Coefficient Estimate Standard Error

Constant 53.12 5.43

X1 2.03 0.22

X2 5.60 1.30

X3 10.35 6.88

X4 3.45 2.70

X5 �4.25 0.38

the population standard deviation of the estimator �(bi), which is unknown to us.8 The
test statistics for the hypothesis tests (1) through (k) in equations 11–15 are as follows:
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Let us now turn to the tests of significance of the slope parameters of the variables
in the regression equation. We start with the test for the significance of variable X1 as
a predictor variable. The hypothesis test is H0: �1 � 0 versus H1: �1 
 0. We now
compute our test statistic (again, we will use Z for t(144)):

486 Chapter 11

Computed test statistic value
z = 9.227

Z distribution

Rejection region
at 0.05 level

Rejection region
at 0.05 level

0 1.96– 1.96

FIGURE 11–10 Testing Whether �1 � 0

z �
b1 � 0

s(b1)
�

2.03
0.22 � 9.227

The value of the test statistic, 9.227, lies far in the right-hand rejection region of Z for
any conventional level of significance; the p-value is very small. We therefore con-
clude that there is statistical evidence that the slope of Y with respect to X1, the popu-
lation parameter �1, is not zero. Variable X1 is shown to have some explanatory
power with respect to the dependent variable.

If it is not zero, what is the value of �1? The parameter, as in the case of all popu-
lation parameters, is not known to us. An unbiased estimate of the parameter’s value
is b1 � 2.03. We can also compute a confidence interval for �1. A 95% confidence
interval for �1 is b1 � 1.96s(b1) � 2.03 � 1.96(0.22) � [1.599, 2.461]. Based on our data
and the validity of our assumptions, we can be 95% confident that the true slope of Y
with respect to X1 is anywhere from 1.599 to 2.461. Figure 11–10 shows the hypothesis
test for the significance of variable X1.

For the other variables X2 through X5, we show the hypothesis tests without figures.
The tests are carried out in the same way, with the same distribution. We also do not
show the computation of confidence intervals for the slope parameters. These are done
exactly as shown for �1. Note that when the hypothesis test for the significance of a
slope parameter leads to nonrejection of the null hypothesis that the slope parameter
is zero, the point zero will be included in a confidence interval with the same confi-
dence level as the level of significance of the test.

The hypothesis test for �2 is H0: �2 � 0 versus H1: �2 
 0. The test statistic value
is z � 5.60�1.30 � 4.308. This value, too, is in the right-hand rejection region for
usual levels of significance; the p-value is small. We conclude that X2 is also an impor-
tant variable in the regression equation.

The hypothesis test for �3 is H0: �3 � 0 versus H1: �3 
 0. Here the test statistic
value is z � 10.35�6.88 � 1.504. This value lies in the nonrejection region for lev-
els of � even larger than 0.10. The p-value is greater than 0.133, as you can verify
from a normal table. We conclude that variable X3 is probably not important.
Remember our cautionary comments that preceded this discussion—there is a pos-
sibility that X3 is actually an important variable. The variable may appear to have a
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slope that is not different from zero because its standard error, s(b3) � 6.88, may be
unduly inflated; the variable may be correlated with another explanatory variable
(the problem of multicollinearity). A way out of this problem is to drop another vari-
able, one that we suspect to be correlated with X3, and see if X3 becomes significant
in the new regression model. We will come back to this problem in the section on
multicollinearity and in the section on selection of variables to be included in a
regression model.

The hypothesis test about �4 is H0: �4 � 0 versus H1: �4 
 0. The value of the
test statistic for this test is z � 3.45�2.70 � 1.278. Again, we cannot reject the null
hypothesis that the slope parameter of X4 is zero and that the variable has no
explanatory power. Note, however, the caution in our discussion of the test of �3. It
is possible, for example, that X 3 and X4 are collinear and that this is the reason for
their respective tests resulting in nonsignificance. It would be wise to drop one of
these two variables and check whether the other variable then becomes significant.
If it does, the reason for our test result is multicollinearity, and not the absence of
explanatory power of the variable in question. Another point worth mentioning is
the idea of joint inference, discussed earlier. Although the separate tests of �3 and �4
both may lead to the nonrejection of the hypothesis that the parameters are zero, it
may be that the two parameters are not jointly equal to zero. This would be the situ-
ation if, in Figure 11–9, the rectangle contained the point zero while the ellipse—
the true joint confidence region for both parameters—did not contain that point.
Note that the t tests are conditional. The significance or nonsignificance of a variable
in the equation is conditional on the fact that the regression equation contains the
other variables.

Finally, the test for parameter �5 is H0: �5 � 0 versus H1: �5 
 0. The computed
value of the test statistic is z � �4.25�0.38 � �11.184. This value falls far in the left-
hand rejection region, and we conclude that variable X5 has explanatory power with
respect to the dependent variable and therefore should be included in the regression
equation. The slope parameter is negative, which means that, everything else staying
constant, the dependent variable Y decreases on average as X5 increases. We note that
these tests can be carried out very quickly by just considering the p-values.

We now return to Example 11–1 and look at the rest of the results from the tem-
plate. For easy reference the results from Table 11–4 are repeated here in Table 11–5.
As seen in the table, the test statistic t is very significant for both advertisement and
promotion variables, because the p-value is less than 1% in both cases. We therefore
declare that both of these variables affect the sales.
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TABLE 11–5 Multiple Regression Results from the Template
[Multiple Regression.xls; Sheet: Results]

Multiple Regression Results Example 11-1

0 1 2 3 4 5 6 7 8 9 1 0
Intercept Advt. Promo

b 47.165 1.599 1.1487
s(b) 2.4704 0.281 0.3052

t 19.092 5.6913 3.7633
p-value 0.0000 0.0007 0.0070

1
2
3
4
5
6
7
8
9

A B C D E F G H I J K L M

In recent years, many U.S. firms have intensified their efforts to market their prod-
ucts in the Pacific Rim. Among the major economic powers in that area are Japan,
Hong Kong, and Singapore. A consortium of U.S. firms that produce raw materials
used in Singapore is interested in predicting the level of exports from the United

E X A M P L E  1 1 – 2
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TABLE 11–6 Example 11–2 Data

Row Exports M1 Lend Price Exchange

1 2.6 5.1 7.8 114 2.16

2 2.6 4.9 8.0 116 2.17

3 2.7 5.1 8.1 117 2.18

4 3.0 5.1 8.1 122 2.20

5 2.9 5.1 8.1 124 2.21

6 3.1 5.2 8.1 128 2.17

7 3.2 5.1 8.3 132 2.14

8 3.7 5.2 8.8 133 2.16

9 3.6 5.3 8.9 133 2.15

10 3.4 5.4 9.1 134 2.16

11 3.7 5.7 9.2 135 2.18

12 3.6 5.7 9.5 136 2.17

13 4.1 5.9 10.3 140 2.15

14 3.5 5.8 10.6 147 2.16

15 4.2 5.7 11.3 150 2.21

16 4.3 5.8 12.1 151 2.24

17 4.2 6.0 12.0 151 2.16

18 4.1 6.0 11.4 151 2.12

19 4.6 6.0 11.1 153 2.11

20 4.4 6.0 11.0 154 2.13

21 4.5 6.1 11.3 154 2.11

22 4.6 6.0 12.6 154 2.09

23 4.6 6.1 13.6 155 2.09

24 4.2 6.7 13.6 155 2.10

25 5.5 6.2 14.3 156 2.08

26 3.7 6.3 14.3 156 2.09

27 4.9 7.0 13.7 159 2.10

28 5.2 7.0 12.7 161 2.11

29 4.9 6.6 12.6 161 2.15

30 4.6 6.4 13.4 161 2.14

31 5.4 6.3 14.3 162 2.16

32 5.0 6.5 13.9 160 2.17

33 4.8 6.6 14.5 159 2.15

34 5.1 6.8 15.0 159 2.10

35 4.4 7.2 13.2 158 2.06

36 5.0 7.6 11.8 155 2.05

(Continued)

States to Singapore, as well as understanding the relationship between U.S. exports to
Singapore and certain variables affecting the economy of that country. Understanding
this relationship would allow the consortium members to time their marketing efforts
to coincide with favorable conditions in the Singapore economy. Understanding the
relationship would also allow the exporters to determine whether expansion of
exports to Singapore is feasible. The economist hired to do the analysis obtained
from the Monetary Authority of Singapore (MAS) monthly data on five economic
variables for the period of January 1989 to August 1995. The variables were U.S.
exports to Singapore in billions of Singapore dollars (the dependent variable,
Exports), money supply figures in billions of Singapore dollars (variable M1), mini-
mum Singapore bank lending rate in percentages (variable Lend), an index of 
local prices where the base year is 1974 (variable Price), and the exchange rate of
Singapore dollars per U.S. dollar (variable Exchange). The monthly data are given in
Table 11–6.
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Use the template to perform a multiple regression analysis with Exports as the
dependent variable and the four economic variables M1, Lend, Price, and Exchange
as the predictor variables. Table 11–7 shows the results.

Let us analyze the regression results. We start with the ANOVA table and the
F test for the existence of linear relationships between the independent variables and
exports from the United States to Singapore. We have F(4, 62) � 73.059 with a p-value
of “0.000.” We conclude that there is strong evidence of a linear regression relation-
ship here. This is further confirmed by noting that the coefficient of determination is
high: R2 � 0.825. Thus, the combination of the four economic variables explains
82.5% of the variation in exports to Singapore. The adjusted coefficient of determi-
nation 2 is a little smaller: 0.8137. Now the question is, Which of the four variables
are important as predictors of export volume to Singapore and which are not? Look-
ing at the reported p-values, we see that the Singapore money supply M1 is an impor-
tant variable; the level of prices in Singapore is also an important variable. The
remaining two variables, minimum lending rate and exchange rate, have very large
p-values. Surprisingly, the lending rate and the exchange rate of Singapore dollars to
U.S. dollars seem to have no effect on the volume of Singapore’s imports from the
United States. Remember, however, that we may have a problem of multicollinearity.

R
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FVS
CHAPTER 17

Row Exports M1 Lend Price Exchange

37 5.1 7.2 11.2 155 2.06

38 4.8 7.1 10.1 154 2.11

39 5.4 7.0 10.0 154 2.12

40 5.0 7.5 10.2 154 2.13

41 5.2 7.4 11.0 153 2.04

42 4.7 7.4 11.0 152 2.14

43 5.1 7.3 10.7 152 2.15

44 4.9 7.6 10.2 152 2.16

45 4.9 7.8 10.0 151 2.17

46 5.3 7.8 9.8 152 2.20

47 4.8 8.2 9.3 152 2.21

48 4.9 8.2 9.3 152 2.15

49 5.1 8.3 9.5 152 2.08

50 4.3 8.3 9.2 150 2.08

51 4.9 8.0 9.1 147 2.09

52 5.3 8.2 9.0 147 2.10

53 4.8 8.2 9.0 146 2.09

54 5.3 8.0 8.9 145 2.12

55 5.0 8.1 9.0 145 2.13

56 5.1 8.1 9.0 146 2.14

57 4.8 8.1 9.0 147 2.14

58 4.8 8.1 8.9 147 2.13

59 5.2 8.6 8.9 147 2.13

60 4.9 8.8 9.0 146 2.13

61 5.5 8.4 9.1 147 2.13

62 4.3 8.2 9.0 146 2.13

63 5.2 8.3 9.2 146 2.09

64 4.7 8.3 9.6 146 2.09

65 5.4 8.4 10.0 146 2.10

66 5.2 8.3 10.0 147 2.11

67 5.6 8.2 10.1 146 2.15
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This is especially true when we are dealing with economic variables, which tend to
be correlated with one another.9

When M1 is dropped from the equation and the new regression analysis consid-
ers the independent variables Lend, Price, and Exchange, we see that the lending
rate, which was not significant in the full regression equation, now becomes signifi-
cant! This is seen in Table 11–8. Note that R2 has dropped greatly with the removal of
M1. The fact that the lending rate is significant in the new equation is an indication of
multicollinearity; variables M1 and Lend are correlated with each other. Therefore,
Lend is not significant when M1 is in the equation, but in the absence of M1, Lend
does have explanatory power.

Note that the exchange rate is still not significant. Since R2 and the adjusted R2

both decrease significantly when the money supply M1 is dropped, let us put that
variable back into the equation and run U.S. exports to Singapore versus the inde-
pendent variables M1 and Price only. The results are shown in Table 11–9. In this
regression equation, both independent variables are significant. Note that R2 in this
regression is virtually the same as R2 with all four variables in the equation (see

490 Chapter 11

Multiple Regression Results Exports

0 1 2 3 4 5 6 7 8 9 1 0
Intercept Lend Price Exch.

b -0.2891 -0.2114 0.0781 -2.095
s(b) 3.3085 0.0393 0.0073 1.3551

t -0.0874 -5.3804 10.753 -1.546
p-value 0.9306 0.0000 0.0000 0.1271

ANOVA Table

Source SS df MS F FCritical p-value

Regn. 29.192 3 9.7306 57.057 2.7505 0.0000 s 0.413
Error 10.744 63 0.1705

Total 39.936 66 0.60509 R2 0.7310 Adjusted R2 0.7182

TABLE 11–8 Regression Results for Singapore Exports without M1

9The analysis of economic variables presents special problems. Economists have developed methods that account for
the intricate interrelations among economic variables. These methods, based on multiple regression and time series analy-
sis, are usually referred to as econometric methods.

TABLE 11–7 Regression Results from the Template for Exports to Singapore
[Multiple Regression.xls]

Multiple Regression Results Exports

0 1 2 3 4 5 6 7 8 9 1 0
Intercept M1 Lend Price Exch.

b -4.0155 0.3685 0.0047 0.0365 0.2679
s(b) 2.7664 0.0638 0.0492 0.0093 1.1754

t -1.4515 5.7708 0.0955 3.9149 0.2279
p-value 0.1517 0.0000 0.9242 0.0002 0.8205

ANOVA Table

Source SS df MS F FCritical p-value

Regn. 32.946 4 8.2366 73.059 2.5201 0.0000 s 0.3358
Error 6.9898 62 0.1127

Total 39.936 66 0.60509 R2 0.8250 Adjusted R2 0.8137
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Multiple Regression Results Exports

0 1 2 3 4 5 6 7 8 9 1 0
Intercept M1 Price

b -3.423 0.3614 0.0037
s(b) 0.5409 0.0392 0.0041

t -6.3288 9.209 9.0461
p-value 0.0000 0.0000 0.0000

ANOVA Table

Source SS df MS F FCritical p-value

Regn. 32.94 2 16.47 150.67 3.1404 0.0000 s 0.3306
Error 6.9959 64 0.1093

Total 39.936 66 0.60509 R2 0.8248 Adjusted R2 0.8193

TABLE 11–9 Regressing Exports against M1 and Price

11–28. A regression analysis is carried out, and a confidence interval for �1 is com-
puted to be [1.25, 1.55]; a confidence interval for �2 is [2.01, 2.12]. Both are 95% con-
fidence intervals. Explain the possibility that the point (1.26, 2.02) may not lie inside
a joint confidence region for (�1, �2) at a confidence level of 95%.
11–29. A multiple regression model was developed for predicting firms’ gover-
nance level, measured on a scale, based on firm size, firm profitability, fixed-asset
ratio, growth opportunities, and nondebt tax shield size. For firm size, the coefficient
estimate was 0.06 and the standard error was 0.005. For firm profitability, the estimate
was �0.166 and the standard error was 0.03. For fixed-asset ratio the estimate was
�0.004 and standard error 0.05. For growth opportunities the estimate was –0.018
and standard error 0.025. And for nondebt tax shield the estimate was 0.649 and
standard error 0.151. The F statistic was 44.11 and the adjusted R2 was 16.5%.10

Explain these results completely and offer a next step in this analysis. Assume a very
large sample size.

P R O B L E M S

10Pornsit Jiraporn and Kimberly C. Gleason, “Capital Structure, Shareholder Rights, and Corporate Governance,”
Journal of Financial Research 30, no. 1 (2007), pp. 21–33.

Table 11–7). However, the adjusted coefficient of determination 2 is different. The
adjusted R2 actually increases as we drop the variables Lend and Exchange. In the full
model with the four variables (Table 11–7), 2 � 0.8137, while in the reduced model,
with variables M1 and Price only (Table 11–9), 2 � 0.8193. This demonstrates the
usefulness of the adjusted R2. When unimportant variables are added to the equation
(unimportant in the presence of other variables), 2 decreases even if R2 increases.
The best model, in terms of explanatory power gauged against the loss of degrees of
freedom, is the reduced model in Table 11–9, which relates exports to Singapore with
only the money supply and price level. This is also seen by the fact that the other two
variables are not significant once M1 and Price are in the equation. Later, when we
discuss stepwise regression—a method of letting the computer choose the best vari-
ables to be included in the model—we will see that this automatic procedure also
chooses the variables M1 and Price as the best combination for predicting U.S.
exports to Singapore.

R

R
R

R
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11–30. Give three reasons why caution must be exercised in interpreting the sig-
nificance of single regression slope parameters.

11–31. Give 95% confidence intervals for the slope parameters �2 through �5, using
the information in Table 11–4. Which confidence intervals contain the point (0, 0)?
Explain the interpretation of such outcomes.

11–32. A regression analysis was carried out to predict a firm’s reputation (defined
on a scale called the Carter-Manaster reputation ranking) on the basis of unexpected
accruals, auditor quality, return on investment, and expenditure on research and
development. The parameter estimates (and standard errors, in parentheses), in the
order these predictor variables are listed, are �2.0775(0.4111), �0.1116(0.2156),
0.4192(0.2357), and 0.0328(0.0155). The number of observations was 487, and the R2

was 36.51%.11 Interpret these findings.

11–33. A computer program for regression analysis produces a joint confidence
region for the two slope parameters considered in the regression equation, �1
and �2. The elliptical region of confidence level 95% does not contain the point
(0, 0). Not knowing the value of the F statistic, or R2, do you believe there is a linear
regression relationship between Y and at least one of the two explanatory variables?
Explain.

11–34. In the Nissan Motor Company situation of problems 11–14 and 11–21, the
regression results, using MINITAB, are as follows. Give a complete interpretation of
these results.

The regression equation is

RATING � 24.1 � 0.166 PRESTIGE � 0.324 COMFORT � 0.514 ECONOMY

Predictor      Coef       Stdev

Constant       24.14      18.22

PRESTIGE �0.1658     0.1215

COMFORT       0.3236     0.1228

ECONOMY       0.5139     0.1143

11–35. Refer to Example 11–2, where exports to Singapore were regressed on sev-
eral economic variables. Interpret the results of the following MINITAB regression
analysis, and compare them with the results reported in the text. How does the pres-
ent model fit with the rest of the analysis? Explain.

The regression equation is

EXPORTS � � 3.40 � 0.363 M1 � 0.0021 LEND � 0.0367 PRICE

Predictor       Coef        Stdev    t-ratio      P

CONSTANT �3.4047       0.6821 �4.99     0.000

M1            0.36339      0.05940     6.12     0.000

LEND         0.00211      0.04753     0.04     0.965

PRICE        0.036666     0.009231     3.97     0.000

s � 0.3332     R-sq � 82.5%     R-sq (adj) � 81.6%

11–36. After the model of problem 11–35, the next model was run:

The regression equation is

EXPORTS � � 1.09 � 0.552 M1 � 0.171 LEND

492 Chapter 11

11Hoje Jo, Yongtae Kim, and Myung Seok Park, “Underwriter Choice and Earnings Management: Evidence from
Seasoned Equity Offerings,” Review of Accounting Studies 12, no. 1 (2007), pp. 23–59.
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Predictor      Coef       Stdev     t-ratio      P

Constant �1.0859      0.3914 �2.77     0.007

M1           0.55222     0.03950     13.98     0.000

LEND         0.17100     0.02357      7.25     0.000

s � 0.3697     R-sq � 78.1%     R-sq (adj) � 77.4%

Analysis of Variance

SOURCE      DF       SS         MS          F         P

Regression     2     31.189     15.594     114.09     0.000

Error         64      8.748      0.137

Total         66     39.936

a. What happened when Price was dropped from the regression equation?
Why?

b. Compare this model with all previous models of exports versus the
economic variables, and draw conclusions.

c. Which model is best overall? Why?
d. Conduct the F test for this particular model.
e. Compare the reported value of s in this model with the reported s value

in the model of problem 11–35. Why is s higher in this model?
f. For the model in problem 11–35, what is the mean square error?

11–37. A regression analysis of monthly sales versus four independent variables is
carried out. One of the variables is known not to have any effect on sales, yet its slope
parameter in the regression is significant. In your opinion, what may have caused this
to happen?

11–38. A study of 14,537 French firms was carried out to assess employment growth
based on levels of new technological process, organizational innovation, commercial
innovation, and research and development. The R 2 was 74.3%. The coefficient esti-
mates for these variables (and standard errors) were reported, in order, as follows:
�0.014(0.004), 0.001(0.004), 0.016(0.005), and 0.027(0.006).12 Which of these variables
have explanatory power over a firm’s employment growth? Explain.

11–39. Run a regression of profits against revenues and number of employees
for the airline industry using the data in the following table. Interpret all your
findings.

Profit Revenue Employees
($ billion) ($ billion) (thousands)

�1.2 17 96

�2.8 13 68

�0.2 13 70

0.2 9.5 39

0.03 8.8 38

1.4 6.8 32

0.4 5.9 33

0.01 2.4 13

0.06 2.3 11

0.1 1.3 6
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12Pierre Biscourp and Francis Kramarz, “Employment, Skill Structure and Internal Trade: Firm-Level Evidence for
France,” Journal of International Economics 72 (May 2007), pp. 22–51.
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11–6 Testing the Validity of the Regression Model
In Chapter 10, we stressed the importance of the three stages of statistical model
building: model specification, estimation of parameters, and testing the validity of the
model assumptions. We will now discuss the third and very important stage of check-
ing the validity of the model assumptions in multiple regression analysis.

Residual Plots
As with simple linear regression, the analysis of regression residuals is an important
tool for determining whether the assumptions of the multiple regression model are
met. Residual plots are easy to use, and they convey much information quickly. The
saying “A picture is worth a thousand words” is a good description of the technique
of examining plots of regression residuals. As with simple linear regression, we may
plot the residuals against the predicted values of the dependent variable, against each
independent variable, against time (or the order of selection of the data points), and
on a probability scale, to check the normality assumption. Since we have already dis-
cussed the use of residual plots in Chapter 10, we will demonstrate only some of the
residual plots, using Example 11–2. Figure 11–11 is a plot of the residuals produced
from the model with the two independent variables M1 and Price (Table 11–9)
against variable M1. It appears that the residuals are randomly distributed with no
pattern and with equal variance as M1 increases.

Figure 11–12 is a plot of the regression residuals against the variable Price. Here
the picture is quite different. As we examine this figure carefully, we see that the spread
of the residuals increases as Price increases. Thus, the variance of the residuals is not
constant. We have the situation called heteroscedasticity—a violation of the assumption of
equal error variance. In such cases, the ordinary least-squares (OLS) estimation method
is not efficient, and an alternative method, called weighted least squares (WLS ), should be
used instead. The WLS procedure is discussed in advanced texts on regression analysis.

Figure 11–13 is a plot of the regression residuals against the variable Time, that is,
the order of the observations. (The observations are a time sequence of monthly data.)
This variable was not included in the model, and the plot could reveal whether time
should have been included as a variable in our regression model. The plot of the resid-
uals against time reveals no pattern in the residuals as time increases. The residuals
seem to be more or less randomly distributed about their mean of zero.

Figure 11–14 is a plot of the regression residuals against the predicted export
values . We leave it as an exercise to the reader to interpret the information in
this plot.

Standardized Residuals
Remember that under the assumptions of the regression model, the population errors
�j are normally distributed with mean zero and standard deviation �. As a result,

Y$
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FIGURE 11–15 The Normal Probability Plot of the Residuals
[Multiple Regression.xls; Sheet: Residuals]
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Therefore, dividing the observed regression errors ej by their estimated standard
deviation s will give us standardized residuals. Examination of a histogram of these
residuals may give us an idea as to whether the normal assumption is valid.13

The Normal Probability Plot
Just as we saw in the simple regression template, the multiple regression template
also produces a normal probability plot of the residuals. If the residuals are perfectly
normally distributed, they will lie along the diagonal straight line in the plot. The
more they deviate from the diagonal line, the more they deviate from the normal dis-
tribution. In Figure 11–15, the deviations do not appear to be significant. Conse-
quently, we assume that the residuals are normally distributed.

Outliers and Influential Observations
An outlier is an extreme observation. It is a point that lies away from the rest of the data
set. Because of this, outliers may exert greater influence on the least-squares estimates
of the regression parameters than do other observations. To see why, consider the data
in Figure 11–16. The graph shows the estimated least-squares regression line without the
outlier and the line obtained when the outlier is considered.

As can be seen from Figure 11–16, the outlier has a strong effect on the estimation
of model parameters. (We used a line showing Y versus variable X1. The same is true
for a regression plane or hyperplane: The outlier “tilts” the regression surface away
from the other points.) The reason for this effect is the nature of least squares: The
procedure minimizes the squared deviations of the data points from the regression
surface. A point with an unusually large deviation “attracts” the surface toward itself
so as to make its squared deviation smaller.

We must, therefore, pay special attention to outliers. If an outlier can be traced to
an error in recording the data or to another type of error, it should, of course, be
removed. On the other hand, if an outlier is not due to error, it may have been caused
by special circumstances, and the information it provides may be important. For exam-
ple, an outlier may be an indication of a missing variable in the regression equation.

13Actually, the residuals are not independent and do not have equal variance; therefore, we really should divide the
residuals ej by something a little more complicated than s. However, the simpler procedure outlined here and implemented
in some computer packages is usually sufficiently accurate.

the errors divided by their standard deviation should follow the standard normal
distribution:

Pj

�
' N(0, 1)˚for all j

FVS
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The data shown in Figure 11–16 may be maximum speed for an automobile as a func-
tion of engine displacement. The outlier may be an automobile with four cylinders,
while all others are six-cylinder cars. Thus, the fact that the point lies away from the
rest may be explained. Because of the possible information content in outliers, they
should be carefully scrutinized before being discarded. Some alternative regression
methods do not use a squared-distance approach and are therefore more robust—less
sensitive to the influence of outliers.

Sometimes an outlier is actually a point that is distant from the rest because the
value of one of its independent variables is larger than the rest of the data. For exam-
ple, suppose we measure chemical yield Y as a function of temperature X1. There may
be other variables, but we will consider only these two. Suppose that most of our data
are obtained at low temperatures within a certain range, but one observation is taken
at a high temperature. This outlying point, far in the X1 direction, exerts strong in-
fluence on the estimation of the model parameters. This is shown in Figure 11–17.
Without the point at high temperature, the regression line may have slope zero, and
no relationship may be detected, as can be seen from the figure. We must also be

Multiple Regression 497

x1

y The estimated regression line
when the outlier is ignored
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FIGURE 11–16 A Least-Squares Regression Line Estimated with and without the Outlier
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FIGURE 11–17 Influence of an Observation Far in the X1 Direction
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careful in such cases to guard against estimating a straight-line relation where a curvi-
linear one may be more appropriate. This could become evident if we had more data
points in the region between the far point and the rest of the data. This is shown in
Figure 11–18.

Figure 11–18 serves as a good reminder that regression analysis should not be
used for extrapolation. We do not know what happens in the region in which we have
no data. This region may be between two regions where we have data, or it may
lie beyond the last observation in a given direction. The relationship may be quite
different from what we estimate from the data. This is also a reason why forcing the
regression surface to go through the origin (that is, carrying out a regression with no
constant term �0 � 0), as is done in some applications, is not a good idea. The rea-
soning in such cases follows the idea expressed in the statement “In this particular
case, when there is zero input, there must be zero output,” which may very well be
true. Forcing the regression to go through the origin, however, may make the estima-
tion procedure biased. This is because in the region where the data points are
located—assuming they are not near the origin—the best straight line to describe the
data may not have an intercept of zero. This happens when the relationship is not a
straight-line relationship. We mentioned this problem in Chapter 10.

A data point far from the other point in some Xi direction is called an influential
observation if it strongly affects the regression fit. Statistical techniques can be used to test
whether the regression fit is strongly affected by a given observation. Computer routines
such as MINITAB automatically search for outliers and influential observations,
reporting them in the regression output so that the user is alerted to the possible effects
of these observations. Table 11–10 shows part of the MINITAB output for the analysis
of Example 11–2. The table reports “unusual observations”: large residuals and influ-
ential observations that affect the estimation of the regression relationship.

Lack of Fit and Other Problems
Model lack of fit occurs if, for example, we try to fit a straight line to curved data.
The statistical method of determining the existence of lack of fit consists of breaking
down the sum of squares for error to a sum of squares due to pure error and a sum
of squares due to lack of fit. The method requires that we have observations at equal
values of the independent variables or near-neighbor points. This method is described
in advanced texts on regression.
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11–41. The normal probability plots of two regression experiments are given below.
For each case, give your comments.

Multiple Regression 499

TABLE 11–10 Part of the MINITAB Output for Example 11–2

Unusual Observations

Obs.    M1   EXPORTS      Fit     Stdev.Fit Residual  St.Resid

1     5.10     2.6000     2.6420     0.1288   –0.0420   –0.14 X

2     4.90     2.6000     2.6438     0.1234    –0.0438    –0.14 X

25     6.20     5.5000     4.5949     0.0676     0.9051     2.80R

26     6.30     3.7000     4.6311     0.0651    –0.9311    –2.87R

50     8.30     4.3000     5.1317     0.0648    –0.8317    –2.57R

67     8.20     5.6000     4.9474     0.0668     0.6526     2.02R

R denotes an obs. with a large st.resid.

X denotes an obs. whose X value gives it large influence.

11–40. Analyze the following plot of the residuals versus Ŷ.
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b.

A statistical method for determining whether the errors in a regression model
are correlated through time (thus violating the regression model assumptions) is the
Durbin-Watson test. This test is discussed in a later section of this chapter. Once we
determine that our regression model is valid and that there are no serious violations
of assumptions, we can use the model for its intended purpose.

11–42. Explain what an outlier is.
11–43. How can you detect outliers? Discuss two ways of doing so.
11–44. Why should outliers not be discarded and the regression run without them?
11–45. Discuss the possible effects of an outlier on the regression analysis.

a.
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11–46. What is an influential observation? Give a few examples.
11–47. What are the limitations of forcing the regression surface to go through the
origin?
11–48. Analyze the residual plot of Figure 11–14.

11–7 Using the Multiple Regression Model
for Prediction

The use of the multiple regression model for prediction follows the same lines as in
the case of simple linear regression, discussed in Chapter 10. We obtain a regression
model prediction of a value of the dependent variable Y, based on given values of the
independent variables, by substituting the values of the independent variables into
the prediction equation. That is, we substitute the values of Xi variables into the equa-
tion for Ŷ. We demonstrate this in Example 11–1.

The predicted value of Y is given by substituting the given values of advertising
X1 and in-store promotions X2 for which we want to predict sales Y into equation
11–6, using the parameter estimates obtained in Section 11–2. Let us predict sales
when advertising is at a level of $10,000 and in-store promotions are at a level of
$5,000.

500 Chapter 11

Ŷ � 47.165 � 1.599X1 � 1.149X2
� 47.165 � (1.599)(10) � (1.149)(5) � 68.9 (thousand dollars)

89.76

80.98

72.20

63.42

12
9

6
3 8.00

11.33

14.67

18.00

Sales

Promotions

Advertising

FIGURE 11–19 Estimated Regression Plane for Example 11–1

This prediction is not bad, since the value of Y actually occurring for these values of
X1 and X 2 is known from Table 11–1 to be Y � 70 (thousand dollars). Our point
estimate of the expected value of Y, denoted E (Y ), given these values of X1 and X2, is
also 68.9 (thousand dollars). Note that our predictions lie on the estimated regression
surface. The estimated regression surface for Example 11–1 is the plane shown in Fig-
ure 11–19.
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We may also compute prediction intervals as well as confidence intervals for
E(Y ), given values of the independent variables. As you recall, while the predicted
value and the estimate of the mean value of Y are equal, the prediction interval is
wider than a confidence interval for E (Y ) using the same confidence level. There is
more uncertainty about the predicted value than there is about the average value
of Y given the values Xi . The equation for a (1 � �) 100% prediction interval is an
extension of equation 10–32 for simple linear regression. The only difference is that
the degrees of freedom of the t distribution are n � (k � 1) rather than just n � 2, as
is the case for k � 1. The standard error, when there are several explanatory vari-
ables, is a complicated expression, and we will not give it here; we will denote it by
s(Ŷ ). The prediction interval is given in equation 11–17.

Multiple Regression 501

A (1 � �) 100% prediction interval for a value of Y given values of Xi is

ŷ � t[��2, n�(k�1)] (11–17)2s2(Y$ ) + MSE

A (1 � �) 100% confidence interval for the conditional mean of Y is

ŷ � t[�/2, n�(k�1)]s [E( ŷ )] (11–18)

While the expression in the square root is complex, it is computed by most computer
packages for regression. The prediction intervals for any values of the independent
variables and a given level of confidence are produced as output.

Similarly, the equation for a (1 � �) 100% confidence interval for the conditional
mean of Y is an extension of equation 10–33 for the simple linear regression. It is
given as equation 11–18. Again, the degrees of freedom are n � (k � 1). The formula
for the standard error is complex and will not be given here. We will call the standard
error s [E (Ŷ )]. The confidence interval for the conditional mean of Y is computable
and may be reported, upon request, in the output of most computer packages that
include regression analysis.

Equations 11–17 and 11–18 are implemented in the template on the Results sheet.
These equations are also produced by other computer packages for regression, and
are presented here—as many other formulas—for information only.14 To make a pre-
diction, we enter the values of the independent variables in row 22 and the confi-
dence level desired in row 25. Table 11–11 shows the case of Example 11–2 with

14Note also that equations 11–17 and 11–18 are extensions to multiple regression of the analogous equations, 10–32
and 10–33, of simple linear regression—which is a special case of multiple regression with one explanatory variable.

TABLE 11–11 Prediction Using Multiple Regression
[Multiple Regression.xls; Sheet: Results]

Prediction Interval

Given X M1 Price
1 5 150

P.I. for Y for given X P.I. for E[Y | X]

95% 3.939 + or - 0.6846 95% 3.939 + or - 0.1799

1 8
1 9
2 0
2 1
2 2

2 3
2 4

2 5
2 6

1� � (1� )� 1� � (1� )�
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independent variables M1 and Price. The 95% prediction interval has been computed
for the exports when M1 � 5 and Price � 150. A similar interval for the expected
value of the exports for the given M1 and Price values has also been computed. The
two prediction intervals appear in row 24.

The predictions are not very reliable because of the heteroscedasticity we dis-
covered in the last section, but they are useful as a demonstration of the procedure.
Remember that it is never a good idea to try to predict values outside the region of
the data used in the estimation of the regression parameters, because the regression
relationship may be different outside that range. In this example, all predictions use
values of the independent variables within the range of the estimation data.

When using regression models, remember that a regression relationship between
the dependent variable and some independent variables does not imply causality.
Thus, if we find a linear relationship between Y and X, it does not necessarily mean
that X causes Y. Causality is very different to determine and to prove. There is also the
issue of spurious correlations between variables—correlations that are not real.
Montgomery and Peck give an example of a regression analysis of the number of
mentally disturbed people in the United Kingdom versus the number of radio receiver
licenses issued in that country.15 The regression relationship is close to a perfect
straight line, with r2 � 0.9842. Can the conclusion be drawn that there is a relation-
ship between the number of radio receiver licenses and the incidence of mental
illness? Probably not. Both variables—the number of licenses and the incidence of
mental illness—are related to a third variable: population size. The increase in both of
these variables reflects the growth of the population in general, and there is probably
no direct connection between the two variables. We must be very careful in our inter-
pretation of regression results.

The Template
The multiple regression template [Multiple Regression.xls] consists of a total of five
sheets. The sheet titled “Data” is used to enter the data (see Figure 11–28 for an exam-
ple). The sheet titled “Results” contains the regression coefficients, their standard
errors, the corresponding t tests, the ANOVA table, and a panel for prediction inter-
vals. The sheet titled “Residuals” contains a plot of the residuals, the Durbin-Watson
statistic (described later), and a normal probability plot for testing the normality
assumption of the error term. The sheet titled “Correl” displays the correlation coef-
ficient between every pair of variables. The use of the correlation matrix is described
later in this chapter. The sheet titled “Partial F” can be used to find partial F, which is
also described later in this chapter.

Setting Recalculation to “Manual” on the Template
Since the calculations performed in the multiple regression template are voluminous,
a recalculation can take a little longer than in other templates. Therefore, entering
data in the Data sheet may be difficult, especially on slower PCs (Pentium II or ear-
lier), because the computer will recalculate every result before taking in the next data
entry. If this problem occurs, set the Recalculation feature to manual. This can be
done by clicking the Microsoft Office button and then Formulas. Choose Manual
under the Calculation options. When this is done, a change made in the data or in
any cell will not cause the spreadsheet to automatically update itself. Only when recalcula-
tion is manually initiated will the spreadsheet update itself. To initiate recalculation,
press the F9 key on the keyboard. A warning message about pressing the F9 key is
displayed at a few places in the template. If the recalculation has not been set to
manual, this message can be ignored.

502 Chapter 11

15D. Montgomery, E. Peck, and G. G. Vining, Introduction to Linear Regression Analysis, 4th ed. (New York: Wiley, 2006).
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11–49. Explain why it is not a good idea to use the regression equation for pre-
dicting values outside the range of the estimation data set.
11–50. Use equation 11–6 to predict sales in Example 11–1 when the level of adver-
tising is $8,000 and in-store promotions are at a level of $12,000.
11–51. Using the regression relationship you estimated in problem 11–8, predict the
value of a home 1,800 square feet located 2.0 miles from the center of the town.
11–52. Using the regression equation from problem 11–25, predict excess stock
return when SIZRNK � 5 and PRCRNK � 6.
11–53. Using the information in Table 11–11, what is the standard error of Ŷ ? What
is the standard error of E (Ŷ )?
11–54. Use a computer to produce a prediction interval and a confidence interval
for the conditional mean of Y for the prediction in problem 11–50. Use the data in
Table 11–1.
11–55. What is the difference between a predicted value of the dependent variable
and the conditional mean of the dependent variable?
11–56. Why is the prediction interval of 95% wider than the 95% confidence inter-
val for the conditional mean, using the same values of the independent variables?

11–8 Qualitative Independent Variables
The variables we have encountered so far in this chapter have all been quantitative
variables: variables that can take on values on a scale. Sales volume, advertising
expenditure, exports, the money supply, and people’s ratings of an automobile are
all examples of quantitative variables. In this section, we will discuss the use of
qualitative variables as explanatory variables in a regression model. Qualitative vari-
ables are variables that describe a quality rather than a quantity. This should remind
you of analysis of variance in Chapter 9. There we had qualitative variables: the kind
of resort in the Club Med example, type of airplane, type of coffee, and so on.

In some cases, including information on one or more qualitative variables in our
multiple regression model is very useful. For example, a hotel chain may be inter-
ested in predicting the number of occupied rooms as a function of the economy of
the area in which the hotel is located, as well as advertising level and some other
quantitative variables. The hotel may also want to know whether the peak season is
in progress—a qualitative variable that may have a lot to do with the level of occu-
pancy at the hotel. A property appraiser may be interested in predicting the value of
different residential units on the basis of several quantitative variables, such as age of
the unit and area in square feet, as well as the qualitative variable of whether the unit
is owned or rented.

Each of these qualitative variables has only two levels: peak season versus nonpeak
season, rental unit versus nonrental unit. An easy way to quantify such a qualitative
variable is by way of a single indicator variable, also called a dummy variable.
An indicator variable is a variable that indicates whether some condition holds. It
has the value 1 when the condition holds and the value 0 when the condition does

P R O B L E M S
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Note also that when the recalculation is set to manual, none of the open spreadsheets
will update itself. That is, if other spreadsheets were open, they will not update them-
selves either. The F9 key needs to be pressed on every open spreadsheet to initiate
recalculation. This state of manual recalculation will continue until the Excel pro-
gram is closed and reopened. For this reason, set the recalculation to manual only
after careful consideration.
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The data are entered into the template. The resulting output is presented in Fig-
ure 11–20. The coefficient of determination of this regression is very high; the F statis-
tic value is very significant, and we have a good regression relationship. From the
individual t ratios and their p-values, we find that all three independent variables are
important in the equation.

From the intercept of 7.84, we could (erroneously, of course) deduce that a movie
costing nothing to produce or promote, and that is not based on a book, would still
gross $7.84 million! The point 0 (X1 � 0, X2 � 0, X3 � 0) is outside the estimation
region, and the regression relationship may not hold for that region. In our case, it
evidently does not. The intercept is merely a reference point used to move the regres-
sion surface upward to where it should be in the estimation region.

The estimated slope for the cost variable, 2.85, means that—within the estimation
region—an increase of $1 million in a movie’s production cost (the other variables
held constant) increases the movie’s gross earnings by an average of $2.85 million.
Similarly, the estimated slope coefficient for the promotion variable means that,
in the estimation region of the variables, an increase of $1 million in promotional

The use of indicator variables in regression analysis is very simple. No special
computational routines are required. All we do is code the indicator variable as 1
whenever the quality of interest is obtained for a particular data point and as 0 when
it is not obtained. The rest of the variables in the regression equation are left the
same. We demonstrate the use of an indicator variable in modeling a qualitative vari-
able with two levels in the following example.

504 Chapter 11

An indicator variable of qualitative level A is

Xh �
if level A is obtained
if level A is not obtained (11–19)

e1
0

A motion picture industry analyst wants to estimate the gross earnings generated
by a movie. The estimate will be based on different variables involved in the film’s
production. The independent variables considered are X1 � production cost of the
movie and X2 � total cost of all promotional activities. A third variable that the ana-
lyst wants to consider is the qualitative variable of whether the movie is based on a
book published before the release of the movie. This third, qualitative variable is
handled by the use of an indicator variable: X3 � 0 if the movie is not based on a
book, and X3 � 1 if it is. The analyst obtains information on a random sample of 20
Hollywood movies made within the last 5 years (the inference is to be made only
about the population of movies in this particular category). The data are given in
Table 11–12. The variable Y is gross earnings, in millions of dollars. The two quanti-
tative independent variables are also in millions of dollars.

E X A M P L E  1 1 – 3

S o l u t i o n

not hold. If you are familiar with computer science, you probably know the indica-
tor variable by another name: binary variable, because it takes on only two possible
values, 0 and 1.

When included in the model of hotel occupancy, the indicator variable will equal
0 if it is not peak season and 1 if it is (or vice versa; it makes no difference). Similarly,
in the property value analysis, the dummy variable will have the value 0 when the
unit is rented and the value 1 when the unit is owned, or vice versa. We define the
general form of an indicator variable in equation 11–19.
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TABLE 11–12 Data for Example 11–3

Gross Earnings Y, Production Cost X1, Promotion Cost X2,
Movie Million $ Million $ Million $ Book X3

1 28 4.2 1 0

2 35 6.0 3 1

3 50 5.5 6 1

4 20 3.3 1 0

5 75 12.5 11 1

6 60 9.6 8 1

7 15 2.5 0.5 0

8 45 10.8 5 0

9 50 8.4 3 1

10 34 6.6 2 0

11 48 10.7 1 1

12 82 11.0 15 1

13 24 3.5 4 0

14 50 6.9 10 0

15 58 7.8 9 1

16 63 10.1 10 0

17 30 5.0 1 1

18 37 7.5 5 0

19 45 6.4 8 1

20 72 10.0 12 1

Multiple Regression Results Movies

0 1 2 3 4 5 6 7 8 9 1 0
Intercept rod.Cos Promo Book

b 7.8362 2.8477 2.2782 7.1661
s(b) 2.3334 0.3923 0.2534 1.818

t 3.3583 7.2582 8.9894 3.9418
p-value 0.0040 0.0000 0.0000 0.0012

ANOVA Table

Source SS df MS F FCritical p -value

Regn. 6325.2 3 2108.4 154.89 3.2389 0.0000 s 3.6895
Error 217.8 16 13.612

Total 6543 19 0.60509 R2 0.9667 Adjusted R2 0.9605

1
2
3
4
5
6
7
8
9

1 0
1 1

1 2

1 3

1 4
1 5

1 6
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FIGURE 11–20 Multiple Regression Results for Example 11–3.
[Multiple Regression.xls; Sheet: Results]

activities (with the other variables constant) increases the movie’s gross earnings by
an average of $2.28 million.

How do we interpret the estimated coefficient of variable X3? The estimated coef-
ficient of 7.17 means that having the movie based on a published book (X3 � 1)
increases the movie’s gross earnings by an average of $7.17 million. Again, the infer-
ence is valid only for the region of the data used in the estimation. When X3 � 0, that
is, when the movie is not based on a book, the last term in the estimated equation
for drops out—there is no added $7.17 million.

What do we learn from this example about the function of the indicator variable?
Note that the predicted value of Y, given the values of the quantitative independent

Y$
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variables, shifts upward (or downward, depending on the sign of the estimated coeffi-
cient) by an amount equal to the coefficient of the indicator variable whenever the
variable is equal to 1. In this particular case, the surface of the regression—the plane
formed by the variables Y, X1, and X2—is split into two surfaces: one corresponding
to movies based on books and the other corresponding to movies not based on
books. The appropriate surface depends on whether X3 � 0 or X3 � 1; the two esti-
mated surfaces are separated by a distance equal to b3 � 7.17. This is demonstrated in
Figure 11–21. The regression surface in this example is a plane, so we can draw its
image (for a higher-dimensional surface, the same idea holds).
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Plane corresponding to X3 = 1

Movie based on book

b3 = 7.17
Plane corresponding to X3 = 0

Movie not based on book

y

x2

x1

X

X

X

X X

X

X

X
X

FIGURE 11–21 Two Regression Planes of Example 11–3

We will now look at the simpler case, with one independent quantitative variable
and one indicator variable. Here we assume an estimated regression relationship of
the form Ŷ � b0 � b1X1 � b2X2, where X1 is a quantitative variable and X2 is an in-
dicator variable. The regression relationship is a straight line, and the indicator vari-
able splits the line into two parallel straight lines, one for each level (0 or 1) of the
qualitative variable. The points belonging to one level (a level could be Book, as in
Example 11–3) are shown as triangles, and the points belonging to the other level are
shown as squares. The distance between the two parallel lines (measured as the
difference between the two intercepts) is equal to the estimated coefficient of the
dummy variable X2. The situation is demonstrated in Figure 11–22.

We have been dealing with qualitative variables that have only two levels.
Therefore, it has sufficed to use an indicator variable with two possible values, 0 and 1.
What about situations where we have a qualitative variable with more than two levels?
Should we use an “indicator” variable with more than two values? The answer is no.
Were we to do this and give our variable values such as 0, 1, 2, 3, . . . , to indicate qual-
itative levels, we would be using a quantitative variable that has several discrete values
but no values in between. Also, the assignment of the qualities to the values would
be arbitrary. Since there may be no justification for using the values 1, 2, 3, etc., we
would be imposing a very special measuring scale on the regression problem—a scale
that may not be appropriate. Instead, we will use several indicator variables.

We account for a qualitative variable with r levels by the use of r � 1
indicator (0/1) variables.
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We will now demonstrate the use of this rule by changing Example 11–3 somewhat.
Suppose that the analyst is interested not in whether a movie is based on a book, but
rather in using an explanatory variable that represents the category to which each
movie belongs: adventure, drama, or romance. Since this qualitative variable has
r � 3 levels, the rule tells us that we need to model this variable by using r � 1 � 2
indicator variables. Each of the two indicator variables will have one of two possible
values, as before: 0 or 1. The setup of the two dummy variables indicating the level of
the qualitative variable, movie category, is shown in the following table. For sim-
plicity, let us also assume that the only quantitative variable in the equation is pro-
duction cost (we leave out the promotion variable). This will allow us to have lines
rather than planes. We let X1 � production cost, as before. We now define the two
dummy variables X2 and X3.

Category X2 X3

Adventure 0 0

Drama 0 1

Romance 1 0

The definition of the values of X2 and X3 for representing the different categories is
arbitrary; we could just as well have assigned the values X2 � 0, X3 � 0 to drama or
to romance as to adventure. The important thing to remember is that the number of
dummy variables is 1 less than the number of categories they represent. Otherwise
our model will be overspecified, and problems will occur. In this example, variable
X2 is the indicator variable for romance; when a movie is in the romance category,
this variable has the value 1. Similarly, X3 is the indicator for drama and has the
value 1 in cases where a movie is in the drama category. Only three categories are
under consideration, so when both X2 and X3 are zero, the movie is neither a drama
nor a romance; therefore, it must be an adventure movie.

If we use the model
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Slope = b1

Line for X2 = 1

Line for X2 = 0

Slope = b1b0 + b2

b2

b0

y

x

1

1

FIGURE 11–22 A Regression with One Quantitative Variable and One Dummy Variable

Y � �0 � �1X1 � �2X2 � �3X3 � � (11–20)

with X2 and X3 as defined, we will be estimating three regression lines, one line per
category. The line for adventure movies will be Ŷ � b0 � b1X1 because here both X2
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and X3 are zero. The drama line will be Ŷ � b0 � b3 � b1X1 because here X3 � 1 and 
X2 � 0. In the case of romance movies, our line will be Ŷ � b0 � b2 � b1X1 because
in this case X2 � 1 and X3 � 0. Since the estimated coefficients bi may be negative as
well as positive, the different parallel lines may position themselves above or below
one another, as determined by the data. Of course, the bi may be estimates of zero.
If we did not reject the null hypothesis H0: �3 � 0, using the usual t test, it would
mean that there was no evidence that the adventure and the drama lines were differ-
ent. That is, it would mean that, on average, adventure movies and drama movies
have the same gross earnings as determined by the production costs. If we determine
that �2 is not different from zero, the adventure and romance lines will be the same
and the drama line may be different. In case the adventure line is different from
drama and romance, these two being the same, we would determine statistically that
both �2 and �3 are different from zero, but not different from each other.

If we have three regression lines, why bother with indicator variables at all?
Why not just run three separate regressions, each for a different movie category?
One answer to this question has already been given: The use of indicator variables
and their estimated regression coefficients with their standard errors allows us to test
statistically whether the qualitative variable of interest has any effect on the depend-
ent variable. We are able to test whether we have one distinct line, two lines, three
lines, or as many lines as there are levels of the qualitative variable. Another reason
is that even if we know that there are, say, three distinct lines, estimating them
together via a regression analysis with dummy variables allows us to pool the
degrees of freedom for the three regressions, leading to better estimation and a more
efficient analysis.

Figure 11–23 shows the three regression lines of our new version of Example 11–3;
each line shows the regression relationship between a movie’s production cost and
the resulting movie’s gross earnings in its category. In case there are two independent
quantitative variables, say, if we add promotions as a second quantitative variable, we
will have three regression planes like the two planes shown in Figure 11–21. In Fig-
ure 11–23, we show adventure movies as triangles, romance movies as squares, and
drama movies as circles. Assuming that adventure movies have the highest average
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Slope = b1

Line for X2 = 1

Line for X2 = X3 = 0

Line for X2 = 0

Slope = b1

Slope = b1
b0 + b2

b0 + b3

b0

y

x1

1

1

1

  X3 = 0

  X3 = 1

FIGURE 11–23 The Three Possible Regression Lines, Depending on Movie Category
(modified Example 11–3)
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gross earnings, followed by romance and drama, the estimated coefficients b2 and b3
have to be negative, as can be seen from the figure.

Can we run a regression on a qualitative variable (by use of dummy variables)
only? Yes. You have already seen this model, essentially. Running a regression on
a qualitative variable only means modeling some quantitative response by levels
of a qualitative factor: it is the analysis of variance, discussed in Chapter 9. Doing the
analysis by regression means using a different computational procedure than was
done in Chapter 9, but it is still the analysis of variance. Two qualitative variables
make the analysis a two-way ANOVA, and interaction terms are cross-products of the
appropriate dummy variables, such as X2 X3. We will say more about cross-products a
little later. For now, we note that the regression approach to ANOVA allows us more
freedom. Remember that a two-way ANOVA, using the method in Chapter 9,
required a balanced design (equal sample size in each cell). If we use the regression
approach, we are no longer restricted to the balanced design and may use any sam-
ple size.

Let us go back to regressions using quantitative independent variables with some
qualitative variables. In some situations, we are not interested in using a regression
equation for prediction or for any of the other common uses of regression analysis.
Instead, we are intrinsically interested in a qualitative variable used in the regression.
Let us be more specific. Recall our original Example 11–3. Suppose we are not inter-
ested in predicting a movie’s gross earnings based on the production cost, promotions,
and whether the movie is based on a book. Suppose instead that we are interested
in answering the question: Is there a difference in average gross earnings between
movies based on books and movies not based on books?

To answer this question, we use the estimated regression relationship. We use the
estimate b3 and its standard error in testing the null hypothesis H0: �3 � 0 versus the
alternative H1: �3 
 0. The question is really an ANOVA question. We want to
know whether a difference exists in the population means of the two groups of
movies based on books and movies not based on books. However, we have some
quantitative variables that affect the variable we are measuring (gross earnings). We
therefore incorporate information on these variables (production cost and promo-
tions) in a regression model aimed at answering our ANOVA question. When we
do this, that is, when we attempt to answer the question of whether differences in
population means exist, using a regression equation to account for other sources of
variation in our data (the quantitative independent variables), we are conducting an
analysis of covariance. The independent variables used in the analysis of covari-
ance are called concomitant variables, and their purpose in the analysis is not to
explain or predict the independent variable, but rather to reduce the errors in the
test of significance of the indicator variable or variables.

One of the interesting applications of analysis of covariance is in providing statis-
tical evidence in cases of sex or race discrimination. We demonstrate this particular
use in the following example.
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A large service company was sued by its female employees in a class action suit alleg-
ing sex discrimination in salary levels. The claim was that, on average, a man and a
woman of the same education and experience received different salaries: the man’s
salary was believed to be higher than the woman’s salary. The attorney representing
the women employees hired a statistician to provide statistical evidence supporting
the women’s side of the case. The statistician was allowed access to the company’s
payroll files and obtained a random sample of 100 employees, 40 of whom were
women. In addition to salary, the files contained information on education and expe-
rience. The statistician then ran a regression analysis of salary Y versus three vari-
ables: education level X1 (on a scale based on the total number of years in school,
with an additional value added to the score for each college degree earned, by type),

E X A M P L E  1 1 – 4
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Our test statistic is t(96) � b3/s(b3) � �3,256�212.4 � �15.33. Since t with 96 degrees
of freedom [df � n � (k � 1) � 100 � 4 � 96] is virtually a standard normal random
variable, we conduct this as a Z test. The computed test statistic value of �15.33 lies
very far in the left-hand rejection region. This means that there are two regressions:
one for men and one for women. Since we coded X3 as 0 for a man and 1 for a
woman, the women’s estimated regression plane lies $3,256 below the regression
plane for men. Since the parameter of the sex variable is significantly different from
zero (with an extremely small p-value) and is negative, there is statistical evidence of
sex discrimination in this case. The situation here is as seen in Figure 11–21 for the
previous example: We have two regression planes, one below the other. The only dif-
ference is that in this example, we were not interested in using the regression for pre-
diction, but rather for an ANOVA-type statistical test.
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H0: �3 � 0
H1: �3 
 0

TABLE 11–13 Regression Results for Example 11–4

Variable Coefficient Estimate Standard Error

Constant 8,547 32.6

Education 949 45.1

Experience 1,258 78.5

Sex �3,256 212.4

Interactions between Qualitative and Quantitative Variables
Do the different regression lines or higher-dimensional surfaces have to be parallel?
The answer is no. Sometimes, there are interactions between a qualitative variable and
one or more quantitative variables. The idea of an interaction in regression analysis
is the same as the idea of interaction between factors in a two-way ANOVA model
(as well as higher-order ANOVAs). In regression analysis with qualitative variables,

FVS
CHAPTER 19

Let us analyze the regression results. Remember that we are using a regression with
a dummy variable to perform an analysis of covariance. There is certainly a regres-
sion relationship between salary and at least some of the variables, as evidenced
by the very large F value, which is beyond any critical point we can find in a table.
The p-value is very small. The coefficient of determination is not extremely high, but
then we are using very few variables to explain variation in salary levels. This being
the case, 67% explained variation, based on these variables only, is quite respectable.
Now we consider the information in Table 11–13.

Dividing the four coefficient estimates by their standard errors, we find that all
three variables are important, and the intercept is different from zero. However, we
are particularly interested in the hypothesis test:

S o l u t i o n

years of experience X2 (on a scale that combined the number of years of experience
directly related to the job assignment with the number of years of similar job experi-
ence), and gender X3 (0 if the employee was a man and 1 if the employee was a
woman). The computer output for the regression included the results F ratio �
1,237.56 and R2 � 0.67, as well as the coefficient estimates and standard errors given
in Table 11–13. Based on this information, does the attorney for the women employ-
ees have a case against the company?
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the interaction between a qualitative variable and a quantitative variable makes the
regression lines or planes at different levels of the dummy variables have different
slopes. Let us look at the simple case where we have one independent quantitative
variable X1 and one qualitative variable with two levels, modeled by the dummy vari-
able X2. When an interaction exists between the qualitative and the quantitative vari-
ables, the slope of the regression line for X2 � 0 is different from the slope of the
regression line for X2 � 1. This is shown in Figure 11–24.

We model the interactions between variables by the cross-product of the vari-
ables. The interaction of X1 with X2 in this case is modeled by adding the term X1X2
to the regression equation. We are thus interested in the model
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Y � �0 � �1X1 � �2X2 � �3X1X2 � � (11–21)

Slope = b1

Line for X2 = 1

Slope = b1 + b3

x1

y Line for X2 = 0

The two regression lines with different
intercepts and different slopes corresponding
to the estimated equation:
Y = b0 + b1X1 + b2X2 + b3X1X2

b0

b0 + b2 ^

1

1

FIGURE 11–24 Effects of an Interaction between a Qualitative Variable 
and a Quantitative Variable

We can use the results of the estimation procedure to test for the existence of an inter-
action. We do so by testing the significance of parameter �3.

When regression parameters �1, �2, and �3 are all nonzero, we have two distinct
lines with different intercepts and different slopes. When �2 is zero, we have two lines
with the same intercept and different slopes (this is unlikely to happen, except when
both intercepts are zero). When �3 is zero, we have two parallel lines, as in the case
of equation 11–20. If �1 is zero, of course, we have no regression—just an ANOVA
model; we then assume that �3 is also zero. Assuming the full model of equation 11–21,
representing two distinct lines with different slopes and different intercepts, the inter-
cept and the slope of each line will be as shown in Figure 11–24. By substituting X2 � 0
or X2 � 1 into equation 11–21, verify the definition of each slope and each intercept.

Again, estimating a single model for the different levels of the indicator variable
offers two advantages. These are the pooling of degrees of freedom (we assume that the
spread of the data about the two or more lines is equal) and an understanding of the
joint process generating the data. More important, we may use the model to statistically
test for the equality of intercepts and slopes. Note that when several indicator variables
are used in modeling one or more qualitative variables, the model has several possible
interaction terms. We will learn more about interactions in general in the next section.
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16Matthew T. Billett, Tao-Hsien Dolly King, and David Mauer, “Growth Opportunities and the Choice of Leverage,
Debt Maturity, and Covenants,” Journal of Finance 42, no. 2 (2007), pp. 697–730.

11–57. Echlin, Inc., makes parts for automobiles. The company is engaged in strong
competition with Japanese, Taiwanese, and Korean manufacturers of the same auto-
mobile parts. Recently, the company hired a statistician to study the relationship
between monthly sales and the independent variable, number of cars on the road.
Data on the explanatory variable are published in national statistical reports. Because
of the keen competition with Asian firms, an indicator variable was also used. This
variable was given the value 1 during months when restrictions on imports from Asia
were in effect and 0 when such restrictions were not in effect. Denoting sales by Y,
total number of cars on the road by X1, and the import restriction dummy variable
by X2, the following regression equation was estimated:

Ŷ � �567.3 � 0.006X1 � 26,540X2

The standard error of the intercept estimate was 38.5, that of the coefficient of X1 was
0.0002, and the standard error of the coefficient of X2 was 1,534.67. The multiple
coefficient of determination was R2 � 0.783. The sample size used was n � 60
months (5 years of data). Analyze the results presented. What kind of regression
model was used? Comment on the significance of the model parameters and the
value of R2. How many distinct regression lines are there? What likely happens dur-
ing times of restricted trade with Asia?

11–58. A regression analysis was carried out based on 7,016 observations of firms,
aimed at assessing the factors that determine the level of a firm’s leverage. The inde-
pendent variables included amount of fixed assets, profitability, firm size, volatility,
and abnormal earnings level, as well as a dummy variable that indicated whether the
firm was regulated (1) or unregulated (0). The coefficient estimate for this dummy
variable was �0.003 and its standard error was �0.29.16 Does a firm’s being regulated
affect its leverage level? Explain.

11–59. If we have a regression model with no quantitative variables and only two
qualitative variables, represented by some indicator variables and cross-products,
what kind of analysis is carried out?

11–60. Recall our Club Med example of Chapter 9. Suppose that not all vacation-
ers at Club Med resorts stay an equal length of time at the resort—different people
stay different numbers of days. The club’s research director knows that people’s rat-
ings of the resorts tend to differ depending on the number of days spent at the resort.
Design a new method for studying whether there are differences among the average
population ratings of the five Caribbean resorts. What is the name of your method
of analysis, and how is the analysis carried out? Explain.

11–61. A financial institution specializing in venture capital is interested in predict-
ing the success of business operations that the institution helps to finance. Success
is defined by the institution as return on its investment, as a percentage, after
3 years of operation. The explanatory variables used are Investment (in thousands
of dollars), Early investment (in thousands of dollars), and two dummy variables
denoting the category of business. The values of these variables are (0, 0) for high-
technology industry, (0, 1) for biotechnology companies, and (1, 0) for aerospace
firms. Following is part of the computer output for this analysis. Interpret the out-
put, and give a complete analysis of the results of this study based on the provided
information.

P R O B L E M S
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The regression equation is

Return � 6.16 � 0.617 INVEST � 0.151 EARLY � 11.1 DUM1 � 4.15 DUM2

Predictor     Coef      Stdev

Constant     6.162       1.642

INVEST       0.6168      0.1581

EARLY        0.1509      0.1465

DUM1        11.051       1.355

DUM2         4.150       1.315

s � 2.148     R-sq � 91.6%     R-sq (adj) � 89.4%

Analysis of Variance

SOURCE     DF       SS

Regression    4     755.99

Error        15      69.21

Total        19     825.20

11–9 Polynomial Regression
Often, the relationship between the dependent variable Y and one or more of the
independent X variables is not a straight-line relationship but, rather, has some cur-
vature to it. Several such situations are shown in Figure 11–25 (we show the curved
relationship between Y and a single explanatory variable X ). In each of the situations
shown, a straight line provides a poor fit to the data. Instead, polynomials of order
higher than 1, that is, functions of higher powers of X , such as X 2 and X 3, provide
much better fit to our data. Such polynomials in the X variable or in several Xi vari-
ables are still considered linear regression models. Only models where the parame-
ters �i are not all of the first power are called nonlinear models. The multiple linear
regression model thus covers situations of fitting data to polynomial functions. The
general form of a polynomial regression model in one variable X is given in equa-
tion 11–22.
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FIGURE 11–25 Situations Where the Relationship between X and Y Is Curved
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CHAPTER 18
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Figure 11–26 shows how second- and third-degree polynomial models provide
good fits for the data sets in Figure 11–25. A straight line is also shown in each case, for
comparison. Compare the fit provided in each case by a polynomial with the poor fit
provided by a straight line. Some authors, for example, Cook and Weisberg, recom-
mend using polynomials of order no greater than 2 (the third-order example in
Figure 11–26 would be an exception) because of the overfitting problem.17 At any rate,
models should never be of order 6 or higher (unless the powers of X have been
transformed in a special way). Seber shows that when a polynomial of degree 6 or
greater is fit to a data set, a matrix involved in regression computations becomes ill-
conditioned, which means that very small errors in the data cause relatively large errors
in the estimated model parameters.18 In short, we must be very careful with polynomial
regression models and try to obtain the most parsimonious polynomial model that
will fit our data. In the next section, we will discuss transformations of data that often
can change curved data sets into a straight-line form. If we can find such a transforma-
tion for a data set, it is always better to use a first-order model on the transformed data
set than to use a higher-order polynomial model on the original data. It should be intu-
itively clear that problems may arise in polynomial regression. The variables X and X 2,
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FIGURE 11–26 The Fits Provided for the Data Sets in Figure 11–25 by Polynomial Models

17R. Dennis Cook and Sanford Weisberg, Applied Regression Including Computing and Graphics (New York: Wiley, 1999).
18George A. F. Seber and Alan J. Lee, Linear Regression Analysis, 2nd ed. (New York: Wiley, 2003).

A one-variable polynomial regression model is

Y � �0 � �1X � �2X2 � �3X3 � � � � � �mXm � � (11–22)

where m is the degree of the polynomial—the highest power of X appearing
in the equation. The degree of the polynomial is the order of the model.
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for example, are clearly not independent of each other. This may cause the problem of
multicollinearity in cases where the data are confined to a narrow range of values.

Having seen what to beware of in using polynomial regression, now we see how
these models are used. Since powers of X can be obtained directly from the value of
variable X , it is relatively easy to run polynomial models. We enter the data into the
computer and add a command that uses X to form a new variable. In a second-order
model, we create an X 2 column using spreadsheet commands. Then we run a multiple
regression model with two “independent” variables: X and X 2. We demonstrate this
with a new example.
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Y � �0 � �1X � �2X 2 � �

A quadratic response function such as this one is shown in Figure 11–27.
It is very important for a firm to identify its own point Xm , shown in the figure.

At this point, a maximum benefit is achieved from advertising in terms of the
resulting sales profits. Figure 11–27 shows a general form of the sales response to
advertising. To find its own maximum point Xm , a firm needs to estimate its response-
to-advertising function from its own operation data, obtained by using different
levels of advertising at different time periods and observing the resulting sales profits.
For a particular firm, the data on monthly sales Y and monthly advertising expenditure
X , both in hundred thousand dollars, are given in Table 11–14. The table also shows
the values of X 2 used in the regression analysis.

Sales response to advertising usually follows a curve reflecting the diminishing
returns to advertising expenditure. As a firm increases its advertising expenditure,
sales increase, but the rate of increase drops continually after a certain point. If we
consider company sales profits as a function of advertising expenditure, we find that
the response function can be very well approximated by a second-order (quadratic)
model of the form

E X A M P L E  1 1 – 5

y

x

Sales profits

0 Xm Advertising dollars

FIGURE 11–27 A Quadratic Response Function of Sales Profits to Advertising Expenditure
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TABLE 11–14 Data for Example 11–5

Row Sales Advert Advsqr

1 5.0 1.0 1.00
2 6.0 1.8 3.24
3 6.5 1.6 2.56
4 7.0 1.7 2.89
5 7.5 2.0 4.00
6 8.0 2.0 4.00
7 10.0 2.3 5.29
8 10.8 2.8 7.84
9 12.0 3.5 12.25

10 13.0 3.3 10.89
11 15.5 4.8 23.04
12 15.0 5.0 25.00
13 16.0 7.0 49.00
14 17.0 8.1 65.61
15 18.0 8.0 64.00
16 18.0 10.0 100.00
17 18.5 8.0 64.00
18 21.0 12.7 161.29
19 20.0 12.0 144.00
20 22.0 15.0 225.00
21 23.0 14.4 207.36

E5 � �D5ˆ2

Multiple Regression Example 11-51
2

A B C D E F G

Y X1 X2 X3 X4
Sl.No. Sales Advert Advsqr

1 5
6

6.5
7

7.5
8

10
10.8

12
13

15.5
15
16
17
18
18

18.5
21
20
22
23

1
1.8
1.6
1.7

2
2

2.3
2.8
3.5
3.3
4.8

5
7

8.1
8

10
8

12.7
12
15

14.4

1
3.24
2.56
2.89

4
4

5.29
7.84

12.25
10.89
23.04

25
49

65.61
64

100
64

161.29
144
225

207.36

2
3
4
5 1
6 1
7 1
8 1
9 1

1 0 1
1 1 1
1 2 1
1 3 1
1 4 1
1 5 1
1 6 1
1 7 1
1 8 1
1 9 1
2 0 1
2 1 1

3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

1

1
1
1
1

FIGURE 11–28 Data for the Regression
[Multiple Regression.xls; Sheet: Data]

S o l u t i o n Figure 11–28 shows the data entered in the template. In cell E5, the formula “=D5^2”
has been entered. This calculates X 2. The formula has been copied down through
cell E25. The regression results from the Results sheet of the template are shown in
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Table 11–15. The coefficient of determination is R2 � 0.9587, the F ratio is significant,
and both Advert and Advsqr are very significant. The minus sign of the squared vari-
able, Advsqr, is logical because a quadratic function with a maximum point has
a negative leading coefficient (the coefficient of X 2). We may write the estimated
quadratic regression model of Y in terms of X and X 2 as follows:
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TABLE 11–15 Results of the Regression
[Multiple Regression; Sheet: Results]

0 1 2 3 4 5 6 7 8 9 1 0
Intercept Advert Advsqr

b 3.51505 2.51478 -0.0875
s(b) 0.73840 0.25796 0.0166

t 4.7599 9.7487 -5.2751
p-value 0.0002 0.0000 0.0001

ANOVA Table

Source SS df MS F FCritical p-value

Regn. 630.258 2 315.13 208.99 3.5546 0.0000 s 1.228
Error 27.142 18 1.5079

Total 657.4 20 0.60509 R2 0.9587 Adjusted R2 0.9541

Y � 3.52 � 2.51X — 0.0875X 2 � e (11–23)

Ŷ � 3.52 � 2.51X � 0.0875X 2 (11–24)

The equation of the estimated regression curve itself is given by dropping the error
term e, giving an equation for the predicted values Ŷ that lie on the quadratic curve

In our particular example, the equation of the curve (equation 11–24) is of impor-
tance, as it can be differentiated with respect to X, with the derivative then set to zero
and the result solved for the maximizing value Xm shown in Figure 11–27. (If you
have not studied calculus, you may ignore the preceding statement.) The result here
is xm � 14.34 (hundred thousand dollars). This value maximizes sales profits with
respect to advertising (within estimation error of the regression). Thus, the firm
should set its advertising level at $1.434 million. The fact that polynomials can
always be differentiated gives these models an advantage over alternative models.
Remember, however, to keep the order of the model low.

Other Variables and Cross-Product Terms
The polynomial regression model in one variable X, given in equation 11–22, can
easily be extended to include more than one independent explanatory variable. The
new model, which includes several variables at different powers, is a mixture of the
usual multiple regression model in k variables (equation 11–1) and the polynomial
regression model (equation 11–22). When several variables are in a regression equa-
tion, we may also consider interactions among variables. We have already encoun-
tered interactions in the previous section, where we discussed interactions between
an indicator variable and a quantitative variable. We saw that an interaction term is
just the cross-product of the two variables involved. In this section, we discuss the
general concept of interactions between variables, quantitative or not.
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The interaction term XiXj is a second-order term (the product of two variables is
classified the same way as an X 2 term). Similarly, Xi , for example, is a third-order
term. Thus, models that incorporate interaction terms find their natural place within
the class of polynomial models. Equation 11–25 is a second-order regression model
in two variables X1 and X2. This model includes both first and second powers of both
variables and an interaction term.

X 2
j
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Y = �0 + �1X1 + �2X2 + �3 + �4 + �5X1X2 + � (11–25)X 2
2X 2

1

A regression surface of a model like that of equation 11–25 is shown in Fig-
ure 11–29. Of course, many surfaces are possible, depending on the values of the
coefficients of all terms in the equation. Equation 11–25 may be generalized to more
than two explanatory variables, to higher powers of each variable, and to more inter-
action terms.

When we are considering polynomial regression models in several variables, it
is very important not to get carried away by the number of possible terms we can
include in the model. The number of variables, as well as the powers of these vari-
ables and the number of interaction terms, should be kept to a minimum.

How do we choose the terms to include in a model? This question will be answered
in Section 11–13, where we discuss methods of variable selection. You already know
several criteria for the inclusion of variables, powers of variables, and interaction terms
in a model. One thing to consider is the adjusted coefficient of determination. If this
measure decreases when a term is included in the model, then the term should be
dropped. Also, the significance of any particular term in a model depends on which
other variables, powers, or interaction terms are in the model. We must consider the
significance of each term by its t statistic, and we must consider what happens to the
significance of regression terms once other terms are added to the model or removed
from it. For example, let us consider the regression output in Table 11–16.

The results in the table clearly show that only X1, X2, and are significant. The
apparent nonsignificance of and X1X2 may be due to multicollinearity. At anyX 2

2

X 2
1

x1

x2

– 0.75

y

48.98

148.43

98.71

1.17

–1.17

1.17

– 1.17

–3.50
–3.50

3.50

3.50

FIGURE 11–29 An Example of the Regression Surface of a Second-Order Model
in Two Variables
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rate, a regression without these last two variables should be carried out. We must also
look at R2 and the adjusted R2 of the different regressions, and find the most parsi-
monious model with statistically significant parameters that explain as much as possi-
ble of the variation in the values of the dependent variable. Incidentally, the surface
in Figure 11–29 was generated by computer, using all the coefficient estimates given
in Table 11–16 (regardless of their significance) and an intercept of zero.
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TABLE 11–16 Example of Regression Output for a Second-Order Model in Two Variables

Variable Estimate Standard Error t Ratio

X1 2.34 0.92 2.54

X2 3.11 1.05 2.96

4.22 1.00 4.22

3.57 2.12 1.68

X1X2 2.77 2.30 1.20

X2
2

X2
1

11–62. The following results pertain to a regression analysis of the difference
between the mortgage rate and the Treasury bill rate (SPREAD) on the shape of the
yield curve (S ) and the corporate bond yields spread (R ). What kind of regression
model is used? Explain.

SPREAD � b0 � b1S � b2R � b3S 2 � b4S * R

11–63. Use the data in Table 11–6 to run a polynomial regression model of exports
to Singapore versus M1 and M1 squared, as well as Price and Price squared, and an
interaction term. Also try to add a squared exchange rate variable into the model.
Find the best, most parsimonious regression model for the data.
11–64. Use the data of Example 11–3, presented in Table 11–12, to try to fit a poly-
nomial regression model of movie gross earnings on production cost and production
cost squared. Also try promotion and promotion squared. What is the best, most par-
simonious model?
11–65. An ingenious regression analysis was reported in which the effects of the 1985
French banking deregulation were assessed. Bank equity was the dependent variable,
and each data point was a tax return for a particular quarter and bank in France from
1978 to the time the research was done. This resulted in 325,928 data points, assumed
a random sample. The independent variables were Bankdep—average debt in the
industry during this period; ROA—the given firm’s average return on assets for the
entire period, and After—0 before 1985, and 1 after 1985. The variables used in this
regression were all cross-products. These variables and their coefficient estimates (with
their standard errors) are given below.

After * Bankdep �0.398 (0.035)

After * Bankdep * ROA 0.155 (0.057)

After * ROA �0.072 (0.024)

Bankdep * ROA �0.286 (0.073)

The adjusted R2 was 53%.19 Carefully analyze these results and try to draw a conclu-
sion about the effects of the 1985 French Banking Deregulation Act.

P R O B L E M S

19Marianne Bertrand, Antoinette Schoar, and David Thesmar, “Banking Deregulation and Industry Structure:
Evidence from the French Banking Reforms of 1985,” Journal of Finance 42, no. 2 (2007), pp. 597–628.
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11–66. A regression model of sales Y versus advertising X1, advertising squared ,
competitors’ advertising X2, competitors’ advertising squared , and the interaction
of X1 and X2 is run. The results are as follows.

Variable Parameter Estimate Standard Error

X1 5.324 2.478

X2 3.229 1.006

4.544 3.080

1.347 0.188

X1X2 2.692 1.517

R2 � 0.657 Adjusted R2 � 0.611 n � 197

Interpret the regression results. Which regression equation should be tried next?
Explain.
11–67. What regression model would you try for the following data? Give your
reasons why.

X2
2

X2
1

X 2
2

X 2
1
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11–68. The regression model Y � �0 � �1X � �2X 2 � �3X 3 � �4X 4 � � was fit to
the following data set. Can you suggest a better model? If so, which?
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11–10 Nonlinear Models and Transformations
Sometimes the relationship between Y and one or more of the independent Xi vari-
ables is nonlinear. Remember that powers of the Xi variables in the regression model
still keep the model linear, but that powers of the coefficients �i make the model non-
linear. We may have prior knowledge about the process generating the data that indi-
cates that a nonlinear model is appropriate; or we may observe that the data follow
one of the general nonlinear curves shown in the figures in this section.

In many cases, a nonlinear model may be changed to a linear model by use of
an appropriate transformation. Models that can be transformed to linear models
are called intrinsically linear models. These models are the subject of this section.
The “hard-core” nonlinear models, those that cannot be transformed into linear
models, are difficult to analyze and therefore are outside the scope of this book.

The first model we will encounter is the multiplicative model, given by equa-
tion 11–26.
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FVS
CHAPTER 18

The multiplicative model is

Y � �0 � (11–26)X�1
1 X�2

2 X�3
3

This is a multiplicative model in the three variables X1, X2, and X3. The generaliza-
tion to k variables is clear. The �i are unknown parameters, and � is a multiplicative
random error.

The multiplicative model of equation 11–26 can be transformed to a linear
regression model by the use of a logarithmic transformation. A logarithmic trans-
formation is the most common transformation of data in statistical analysis. We will
use natural logarithms—logs to base e—although any log transformation would do (we
may use logs to any base, as long as we are consistent throughout the equation).
Taking natural logs (sometimes denoted by ln) of both sides of equation 11–26 gives
us the following linear model:

log Y � log �0 � �1 log X1 � �2 log X2 � �3 log X3 � log � (11–27)

Y � �0 � (11–28)X �1

Equation 11–27 is now in the form of equation 11–1: It is a linear regression equa-
tion of log Y in terms of log X1, log X2, and log X 3 as independent variables. The
error term in the linearized model is log �. To conform with the assumptions of the
multiple regression model and to allow us to perform tests of significance of model
parameters, we must assume that the linearized errors log � are normally distributed
with mean 0 and equal variance �2 for successive observations and that these errors
are independent of each other.

When we consider only one independent variable, the model of equation 11–26
is a power curve in X , of the form

Depending on the values of parameters �0 and �1, equation 11–28 gives rise to a wide-
range family of power curves. Several members of this family of curves, showing the
relationship between X and Y, leaving out the errors �, are shown in Figure 11–30.
When more than one independent variable is used, as in equation 11–26, the graph
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of the relationship between the Xi variables and Y is a multidimensional extension of
Figure 11–30.

As you can see from the figure, many possible data relationships may be well
modeled by a power curve in one variable or its extension to several independent
variables. The resemblance of the curves in Figure 11–30 to at least two curves shown
in Figure 11–26 is also evident. As you look at Figure 11–30, we repeat our sugges-
tion from the last section that, when possible, a transformed model with few param-
eters is better than a polynomial model with more parameters.

When dealing with a multiplicative, or power, model, we take logs of both sides
of the equation and run a linear regression model on the logs of the variables. Again,
understanding that the errors must be multiplicative is important. This makes sense
in situations where the magnitude of an error is proportional to the magnitude of the
response variable. We assume that the logs of the errors are normally distributed and
satisfy all the assumptions of the linear regression model. Models where the error
term is additive rather than multiplicative, such as Y � �0 � �, are not
intrinsically linear because they include no expression for logs of sums.

When using a model such as equation 11–26 or equation 11–28, we enter the data
into the computer, form new variables by having the computer take logs of the Y and
Xi variables, and run a regression on the transformed variables. In addition to making
sure that the model assumptions seem to hold, we must remember that computer-
generated predictions and confidence intervals will be in terms of the transformed
variables unless the computer algorithm is designed to convert information back to
the original variables. The conversion back to the original variables is done by taking
antilogs.

In many situations, we can determine the need for a log transformation by
inspecting a scatter plot of the data. We demonstrate the analysis, using the data of
Example 11–5. We will assume that a model of the form of equation 11–28 fits the
relationship between sales profits Y and advertising dollars X. We assume a power
curve with multiplicative errors. Thus, we assume that the relationship between X and
Y is given by

X 3
�3X 2

�2X1
�1

522 Chapter 11

1 
 1
1 = 1

�
�

�

�

0 � 1 � 1

1 < 0

y

x

FIGURE 11–30 A Family of Power Curves of the Form Y � �0X�1

Y � �0 �X �1
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Our choice of a power curve and a transformation using logarithms is prompted by
the fact that our data in this example exhibit curvature that may resemble a member
of the family of curves in Figure 11–30, and by the fact that a quadratic regression
model, which is similar to a power curve, was found to fit the data well. (Data for this
example are shown in Figure 11–28.)

To solve this problem using the template we use the “=LN()” function available
in Excel. This function calculates the natural logarithm of the number in parenthe-
ses. Unprotect the Data sheet and enter the Sales and Advert data in some unused
columns, say, columns N and O, as in Figure 11–31. Then enter the formula
“=LN(N5)” in cell B5. Copy that formula down to cell B25. Next, in cell D5, enter
the formula “=LN(O5)” and copy it down to cell D25. Press the F9 key and the
regression is complete. Protect the Data sheet. Table 11–17 shows the regression
results.

Comparing the results in Table 11–17 with those of the quadratic regression,
given in Table 11–15, we find that, in terms of R2 and the adjusted R2, the quadratic
regression is slightly better than the log Y versus log X regression.

Do we have to take logs of both X and Y, or can we take the log of one of the vari-
ables only? That depends on the kind of nonlinear model we wish to linearize. It
turns out that there is indeed a nonlinear model that may be linearized by taking the
log of one of the variables. Equation 11–30 is a nonlinear regression model of Y ver-
sus the independent variable X that may be linearized by taking logs of both sides of
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Taking logs of both sides of the equation, we get the linearized model

log Y � log �0 � �1 log X � log � (11–29)

Multiple Regression Exponential Model1
2

A B C D E F G

Y 1 X1 X2 X3 X4
Sl.No. Log Sales Log Advt

1 1.60944
1.79176

1.8718
1.94591

2.0149
2.07944
2.30259
2.37955
2.48491
2.56495
2.74084
2.70805
2.77259
2.83321
2.89037
2.89037
2.91777
3.04452
2.99573
3.09104
3.13549

0
0.5878

0.47
0.5306
0.6931
0.6931
0.8329
1.0296
1.2528
1.1939
1.5686
1.6094
1.9459
2.0919
2.0794
2.3026
2.0794
2.5416
2.4849
2.7081
2.6672

Sales
5
6

6.5
7

7.5
8

10
10.8

12
13

15.5
15
16
17
18
18

18.5
21
20
22
23

Advert
1

1.8
1.6
1.7

2
2

2.3
2.8
3.5
3.3
4.8

5
7

8.1
8

10
8

12.7
12
15

14.4

1
2 1
3 1
4 1
5 1
6 1
7 1
8 1
9 1

1 0 1
1 1 1
1 2 1
1 3 1
1 4 1
1 5 1
1 6 1
1 7 1
1 8 1
1 9 1
2 0 1
2 1 1

3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26

N O

FIGURE 11–31 Data Entry for the Exponential Model
[Multiple Regression.xls; Sheet: Data]
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the equation. To use the resulting linear model, given in equation 11–31, we run a
regression of log Y versus X (not log X ).

524 Chapter 11

TABLE 11–17 Regression Results
[Multiple Regression.xls; Sheet: Results]

0 1 2 3 4 5 6 7 8 9 1 0
Intercept Log Advt

b 1.70082 0.55314
s(b) 0.05123 0.03011

t 33.2006 18.3727
p-value 0.0000 0.0000

ANOVA Table

Source SS df MS F FCritical p-value

Regn. 4.27217 1 4.2722 337.56 4.3808 0.0000 s 0.1125
Error 0.24047 19 0.0127

Total 4.51263 20 0.60509 R2 0.9467 Adjusted R2 0.9439

The exponential model is

Y � �0 � (11–30)e�1x

An exponential model in two independent variables is

Y � � (11–32)e�0 � �1x1 � �2x2

The linearized model of the exponential relationship, obtained by taking logs of both
sides of equation 11–30, is given by

log Y � log �0 � �1X � log � (11–31)

log Y � �0 � �1X1 � �2X2 � log � (11–33)

When the relationship between Y and X is of the exponential form, the relationship
is mildly curved upward or downward. Thus, taking log of Y only and running a
regression of log Y versus X may be useful when our data display mild curvature.

The exponential model of equation 11–30 is extendable to several independent
Xi variables. The model is given in equation 11–32.

The letter e in equation 11–32, as in equation 11–30, denotes the natural number
e � 2.7182 . . . , the base of the natural logarithm. Taking the natural logs of both sides
of equation 11–32 gives us the following linear regression model:
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This relationship is extendable to any number of independent variables. The trans-
formation of log Y, leaving the Xi variables in their natural form, allows us to perform
linear regression analysis. The data of Example 11–5, shown in Figure 11–28, do
not display a mild curvature. The next model we discuss, however, may be more
promising.

Figure 11–32 shows curves corresponding to the logarithmic model given in
equation 11–34.
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The logarithmic model is

Y � �0 � �1 log X � � (11–34)

Y � �0 � �1X � � � (11–35)

FIGURE 11–32
Curves Corresponding
to a Logarithmic Model

y

x

1< 0�

1> 0�

This nonlinear model can be linearized by substituting the variable X � � log X into
the equation. This gives us the linear model in X �:

From Figure 11–30, the logarithmic model with �1 
 0 seems to fit the data of
Example 11–5. We will therefore try to fit this model. The required transformation
to obtain the linearized model in equation 11–35 is to take the log of X only, leaving
Y as is. We will tell the computer program to run Y versus log X. By doing so, we
assume that our data follow the logarithmic model of equation 11–34. The results of
the regression analysis of sales profits versus the natural logarithm of advertising
expenditure are given in Table 11–18.

As seen from the regression results, the model of equation 11–35 is probably
the best model to describe the data of Example 11–5. The coefficient of determina-
tion is R2 � 0.978, which is higher than those of both the quadratic model and
the power curve model we tried earlier. Figure 11–33 is a plot of the sales variable
versus the log of advertising (the regression model of equation 11–35). As can be
seen from the figure, we have a straight-line relationship between log advertising and
sales. Compare this figure with Figure 11–34, which is the relationship of log sales
versus log advertising, the model of equation 11–31 we tried earlier. In the latter
graph, some extra curvature appears, and a straight line does not quite fit the trans-
formed variable. We conclude that the model given by equation 11–34 fits the sales

TABLE 11–18 Results of the Logarithmic Model
[Multiple Regression.xls; Sheet: Results]

0 1 2 3 4 5 6 7 8 9 1 0
Intercept Log Advt

b 3.66825 6.784
s(b) 0.40159 0.23601

t 9.13423 28.7443
p-value 0.0000 0.0000

ANOVA Table

Source SS df MS F FCritical p-value

Regn. 642.622 1 642.62 826.24 4.3808 0.0000 s 0.8819
Error 14.7777 19 0.7778

Total 657.4 20 0.60509 R2 0.9775 Adjusted R2 0.9763
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profits–advertising expenditure relationship best. The estimated regression rela-
tionship is as given in Table 11–18: Sales � 3.67 � 6.78 Log Advt.

Remember that when we transform our data, the least-squares method minimizes
the sum of the squared errors for the transformed variables. It is, therefore, very impor-
tant for us to check for any violations of model assumptions that may occur as a result
of the transformations. We must be especially careful with the assumptions about the
regression errors and their distribution. This is why residual plots are very important
when transformations of variables are used. In our present model for the data of
Example 11–5, a plot of the residuals versus the predicted sales values Ŷ is given in
Figure 11–35. The plot of the residuals does not indicate any violation of assump-
tions, and we therefore conclude that the model is adequate. We note also that confi-
dence intervals for transformed models do not always correspond to correct intervals
for the original model.

526 Chapter 11

FIGURE 11–33 Plot of Sales versus the Natural Log of Advertising Expenditure (Example 11–5)

FIGURE 11–34 Plot of Log Sales versus Log Advertising Expenditure (Example 11–5)
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Another nonlinear model that may be linearized by an appropriate transfor-
mation is the reciprocal model. A reciprocal model in several variables is given in
equation 11–36.
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FIGURE 11–35 Residual Plot of the Logarithmic Model; X Axis Is Sales
[Multiple Regression.xls; Sheet: Residuals]

The reciprocal model is

Y � (11–36)
1

�0 + �1X1 + �2X2 + �3X3 + P

This model becomes a linear model upon taking the reciprocals of both sides of
the equation. In practical terms, we run a regression of 1/Y versus the Xi variables
unchanged. A particular reciprocal model with one independent variable has a com-
plicated form, which will not be explicitly stated here. This model calls for lineariza-
tion by taking the reciprocals of both X and Y. Two curves corresponding to this
particular reciprocal model are shown in Figure 11–36. When our data display the
acute curvature of one of the curves in the figure, running a regression of 1/Y versus
1/X may be fruitful.

Next we will discuss transformations of the dependent variable Y only. These are
transformations designed to stabilize the variance of the regression errors.

Variance-Stabilizing Transformations
Remember that one of the assumptions of the regression model is that the regression
errors � have equal variance. If the variance of the errors increases or decreases as
one or more of the independent variables change, we have the problem of het-
eroscedasticity. When heteroscedasticity is present, our regression coefficient estima-
tors are not efficient. This violation of the regression assumptions may sometimes be
corrected by the use of a transformation. We will consider three major transforma-
tions of the dependent variable Y to correct for heteroscedasticity.

Transformations of Y that may help correct the problem of heteroscedasticity:

1. The square root transformation: Y� �
This is the least “severe” transformation. It is useful when the
variance of the regression errors is approximately proportional to
the mean of Y, conditional on the values of the independent
variables Xi.

1Y

FIGURE 11–36
Two Examples of a
Relationship Where
a Regression of 1/Y versus
1/X Is Appropriate

y

x
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2. The logarithmic transformation: Y� � log Y (to any base)
This is a transformation of a stronger nature and is useful when the 
variance of the errors is approximately proportional to the square of
the conditional mean of Y.

3. The reciprocal transformation: Y� � 1/Y
This is the most severe of the three transformations and is required
when the violation of equal variance is serious. This transformation
is useful when the variance of the errors is approximately propor-
tional to the conditional mean of Y to the fourth power.

Other transformations are possible, although the preceding transformations are most
commonly used. In a given situation, we want to find the transformation that makes
the errors have approximately equal variance as evidenced by the residual plots. An
alternative to using transformations to stabilize the variance is the use of the weighted
least-squares procedure mentioned in our earlier discussion of the heteroscedasticity
problem. We note that a test for heteroscedasticity exists. The test is the Goldfeld-
Quandt test, discussed in econometrics books.

It is important to note that transformations may also correct problems of
nonnormality of the errors. A variance-stabilizing transformation may thus make
the distribution of the new errors closer to a normal distribution. In using
transformations—whether to stabilize the variance, to make the errors approximate a
normal distribution, or to make a nonlinear model linear—remember that all results
should be converted back to the original variables. As a final example of a non-
linear model that can be linearized by using a transformation, we present the logistic
regression model.

Regression with Dependent Indicator Variable
In Section 11–8, we discussed models with indicator variables as independent Xi vari-
ables. In this subsection, we discuss regression analysis where the dependent variable
Y is an indicator variable and may obtain only the value 0 or the value 1. This is the
case when the response to a set of independent variables is in binary form: success or
failure. An example of such a situation is the following.

A bank is interested in predicting whether a given loan applicant would be
a good risk, i.e., pay back his or her loan. The bank may have data on past
loan applicants, such as applicant’s income, years of employment with the same
employer, and value of the home. All these independent variables may be used
in a regression analysis where the dependent variable is binary: Y � 0 if the appli-
cant did not repay the loan, and Y � 1 if she or he did pay back the loan. When
only one explanatory variable X is used, the model is the logistic function, given in
equation 11–37.
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The logistic function is

E(Y | X) � (11–37)
e�0+�1X

1 + e�0+�1X

The expected value of Y given X, that is, E (Y |X ), has a special meaning: It is the
probability that Y will equal 1 (the probability of success), given the value of X. Thus,
we write E(Y | X ) � p. The transformation given below linearizes equation 11–37.
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We leave it to the reader to show that the resulting regression equation is linear. In
practical terms, the transformed model is difficult to employ because resulting errors
are intrinsically heteroscedastic. A better approach is to use the more involved meth-
ods of nonlinear regression analysis. We present the example to show that, in many
cases, the dependent variable may be an indicator variable as well. Much research is
being done today on the logistic regression model, which reflects the model’s grow-
ing importance. Fitting data to the curve of the logistic function is called logit analysis.
A graph of the logistic function of equation 11–37 is shown in Figure 11–37. Note the
typical elongated S shape of the graph. This function is useful as a “threshold model,”
where the probability that the dependent variable Y will be equal to 1 (a success
in the experiment) increases as X increases. This increase becomes very dramatic as
X reaches a certain threshold value (the point T in the figure).

Multiple Regression 529

Transformation to linearize the logistic function:

p� � log (11–38)a p
1 - p

b

FIGURE 11–37
The Logistic Function

0 T

y

x

1

11–69. What are the two main reasons for using transformations?
11–70. Explain why a transformed model may be better than a polynomial model.
Under what conditions is this true?
11–71. Refer to the residual plot in Figure 11–12. What transformation would you
recommend be tried to correct the situation?
11–72. For the Singapore data of Example 11–2, presented in Table 11–6, use sev-
eral different data transformations of the variables Exports, M1, and Price, and find
a better model to describe the data. Comment on the properties of your new
model.
11–73. Which transformation would you try for modeling the following data set?

P R O B L E M S
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11–74. Which transformation would you recommend for the following 
data set?
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11–75. An analysis of the effect of advertising on consumer price sensitivity is
carried out. The log of the quantity purchased (ln q), the dependent variable,
is run against the log of an advertising-related variable called RP (the log is
variable ln RP ). An additive error term � is included in the transformed regres-
sion. What assumptions about the model relating q and RP are implied by the
transformation?

11–76. The following regression model is run.

log Y � 3.79 � 1.66X1 � 2.91X2 � log e

Give the equation of the original, nonlinear model linking the explanatory variables
with Y.

11–77. Consider the following nonlinear model.

Is this model intrinsically linear? Explain.

11–78. The model used in economics to describe production is

Q � �0C �1 K �2 L �3 �

where the dependent variable Q is the quantity produced, C is the capacity of a pro-
duction unit, K is the capital invested in the project, and L is labor input, in days.
Transform the model to linear regression form.

Y = e�1X1 + e�2X2 + P
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11–79. Consider the nonlinear model

What transformation linearizes this model?

11–80. If the residuals from fitting a linear regression model display mild het-
eroscedasticity, what data transformation may correct the problem?

11–81. The model in problem 11–78 is transformed to a linear regression model
and analyzed with a computer. Do the estimated regression coefficients minimize the
sum of the squared deviations of the data from the original curve? Explain.

11–82. In the French banking deregulation analysis of problem 11–65, part of the
analysis included adding to the equation a variable that was the logarithm of the
firm’s total assets. In your opinion, what might be the reason for including such a
variable? (The estimate and standard error for the effect of this variable were not
reported in this study.)

11–11 Multicollinearity
The idea of multicollinearity permeates every aspect of multiple regression, and we
have encountered this idea in earlier sections of this chapter. The reason multi-
collinearity (or simply collinearity) has such a pervasive effect on multiple regression is
that whenever we study the relationship between Y and several Xi variables, we are
bound to encounter some relationships among the Xi variables themselves. Ideally,
the Xi variables in a regression equation are uncorrelated with one another; each
variable contains a unique piece of information about Y—information that is not con-
tained in any of the other Xi. When the ideal occurs in practice, we have no multi-
collinearity. On the other extreme, we encounter the case of perfect collinearity.
Suppose that we run a regression of Y on two explanatory variables X1 and X 2.
Perfect collinearity occurs when one X variable can be expressed precisely in terms
of the other X variable for all elements in our data set.

Y =
1

�0 + �1X1 + �2X2 + P

Multiple Regression 531

Variables X1 and X2 are perfectly collinear if

X1 � a � bX2 (11–39)

for some real numbers a and b.

In the case of equation 11–39, the two variables are on a straight line, and one of
them perfectly determines the other. No new information about Y is gained by
adding X2 to a regression equation that already contains X1 (or vice versa).

In practice, most situations fall between the two extremes. Often, several of the
independent variables in a regression equation show some degree of collinearity. A
measure of the collinearity between two Xi variables is the correlation between the
two. Recall that in regression analysis we assume that the Xi are constants and not
random variables. Here we relax this assumption and measure the correlation
between the independent variables (this assumes they are random variables in their
own right). When two independent Xi variables are found to be highly correlated
with each other, we may expect the adverse effects of multicollinearity on the regres-
sion estimation procedure.
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x2

x1

X variables  Dependent variable Y
Orthogonal X variables
provide information from
independent sources.
No multicollinearity. y

x2 x1

Perfectly collinear
X variables.
Identical information
content.  No regression. y

x2

x1

High negative correlation
between the X variables.
Strong collinearity.

y

x2

x1

Some degree of collinearity
between the X variables.
Problems with the 
regression depend on the 
degree of collinearity.

y

FIGURE 11–38 Collinearity Viewed as the Relationship between Two Directions in Space
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In the case of perfect collinearity, the regression algorithm breaks down com-
pletely. Even if we were able to get regression coefficient estimates in such a case,
their variance would be infinite. When the degree of collinearity is less severe,
we may expect the variance of the regression estimators (and the standard errors) to
be large. Other problems may occur, and we will discuss them shortly. Multi-
collinearity is a problem of degree. When the correlations among the independent
regression variables are minor, the effects of multicollinearity may not be serious.
In cases of strong correlations, the problem may affect the regression more adversely,
and we may need to take some corrective action. Note that in a multiple regression
analysis with several independent variables, several of the Xi may be correlated. A
set of independent variables that are correlated with one another is called a
multicollinearity set.

Let us imagine a variable and its information content as a direction in space. Two
uncorrelated variables can be viewed as orthogonal directions in space—directions that
are at 90° to each other. Perfectly correlated variables represent directions that have
an angle of 0° or 180° between them, depending on whether the correlation is �1 or
�1. Variables that are partly correlated are directions that form an angle greater than
0° but less than 90° (or between 90° and 180° if the correlation is negative). The closer
the angle between the directions is to 0° or 180°, the greater the collinearity. This is
illustrated in Figure 11–38.

Causes of Multicollinearity
Several different factors cause multicollinearity. A data collection method may
produce multicollinearity if, without intention, we tend to gather data with related
values on several variables. For example, we may be interested in running a regres-
sion of size of home Y versus family income X1 and family size X2. If, unwittingly, we
always sample families with high income and large size (rather than also obtaining
sample families with low income and large size or high income and small size), then
we have multicollinearity. In such cases, improving the sampling method would solve
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the problem. In other cases, the variables may by nature be related to one another,
and sampling adjustments may not work. In such cases, one of the correlated variables
should probably be excluded from the model to avoid the collinearity problem.

In industrial processes, sometimes there are physical constraints on the data. For
example, if we run a regression of chemical yield Y versus the concentration of two
elements X1 and X2, and the total amount of material in the process is constant, then
as one chemical increases in concentration, we must reduce the concentration of
the other. In this case, X1 and X2 are (negatively) correlated, and multicollinearity is
present.

Yet another source of collinearity is the inclusion of higher powers of the Xi.
Including X 2 in a model that contains the variable X may cause collinearity if our
data are restricted to a narrow range of values. This was seen in one of the problems
in an earlier section.

Whatever the source of the multicollinearity, we must remain aware of its exis-
tence so that we may guard against its adverse effects on the estimation procedure
and the ensuing use of the regression equation in prediction, control, or understand-
ing the underlying process. In particular, it is hard to separate out the effects of each
collinear variable; and it is hard to know which model is correct, because removing
one collinear variable may cause large changes in the coefficient estimates of other
variables. We now present several methods of detecting multicollinearity and a
description of its major symptoms.

Detecting the Existence of Multicollinearity
Many statistical computer packages have built-in warnings about severe cases of mul-
ticollinearity. When multicollinearity is extreme (i.e., when we have near-perfect cor-
relation between some of the explanatory variables), the program may automatically
drop collinear variables so that computations may be possible. In such cases, the
MINITAB program, for example, will print the following message:

[variable name] is highly correlated with other X variables.

[variable name] has been omitted from the equation.

In less serious cases, the program prints the first line of the warning above but does
not drop the variable.

In cases where multicollinearity is not serious enough to cause computational
problems, it may still disturb the statistical estimation procedure and make our esti-
mators have large variances. In such cases, the computer may not print a message
telling us about multicollinearity, but we will still want to know about it. Two meth-
ods are available in most statistical packages to help us determine the extent of mul-
ticollinearity present in our regression.

The first method is the computation of a correlation matrix of the independent
regression variables. The correlation matrix is an array of all estimated pairwise cor-
relations between the independent variables Xi. The format of the correlation matrix
is shown in Figure 11–39. The correlation matrix allows us to identify those explana-
tory variables that are highly correlated with one another and thus cause the problem
of multicollinearity when they are included together in the regression equation. For
example, in the correlation matrix shown in Figure 11–39, we see that the correla-
tion between variable X1 and variable X2 is very high (0.92). This means that the
two variables represent very much the same direction in space, as was shown in Fig-
ure 11–38. Being highly correlated with each other, the two variables contain much
of the same information about Y and therefore cause multicollinearity when both
are in the regression equation. A similar statement can be made about X3 and X 6,
which have a 0.89 correlation. Remember that multicollinearity is a matter of extent
or degree. It is hard to give a rule of thumb as to how high a correlation may be
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before multicollinearity has adverse effects on the regression analysis. Correlations as
high as the ones just mentioned are certainly large enough to cause multicollinearity
problems.

The template has a sheet titled “Correl” in which the correlation matrix is
computed and displayed. Table 11–19 shows the correlation matrix among all the
variables in Example 11–2.

The highest pairwise correlation exists between Lend and Price. This correlation
of 0.745 is the source of the multicollinearity detected in problem 11–36. Recall
that the model we chose as best in our solution of Example 11–2 did not include the
lending rate. In our solution of Example 11–2, we discussed other collinear variables
as well. The multicollinearity may have been caused by the smaller pairwise correla-
tions in Table 11–19, or it may have been caused by more complex correlations in the
data than just the pairwise correlations. This brings us to the second statistical
method of detecting multicollinearity: variance inflation factors.

The degree of multicollinearity introduced to the regression by variable Xh , once
variables X1, . . . , Xk are in the regression equation, is a function of the multiple
correlation between Xh and the other variables X1, . . . , Xk. Thus, suppose we run a
multiple regression—not of Y, but of Xh—on all the other X variables. From this
multiple regression, we get an R2 value. This R2 is a measure of the multicollinearity
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X1

X2

X3

X4

X5

X6

X1 X2 X3 X4 X5 X6

1

1

1
1

1

1

.92

.76 .82
.43 .61

.49

.89

.76

.16 .55

.21

.37

.65

.38

.48

This is the correlation between
variable X3 and variable X4,
for example.

Diagonal elements are
all 1s because every variable
is 100% correlated with itself. 

The matrix is symmetric 
because the correlation 
between Xi and Xj is the 
same as the correlation 
between Xj and Xi. We 
therefore leave the upper 
area above the diagonal 
empty.

FIGURE 11–39 A Correlation Matrix

TABLE 11–19 The Correlation Matrix for Example 11–2
[Multiple Regression.xls; Sheet: Correl]

0 1 2 3 4 5 6 7 8 9 1 0
M1 Lend

M1 11
2
3
4
5
6
7
8
9

10

Lend -0.112 1
Price 0.4471 0.7451
Exch. -0.4097 -0.2786

Price

1
-0.4196

Exch.

1

Exports 0.7751Y 0.335 0.7699 -0.4329
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“exerted” by variable Xh. Recall that a major problem caused by multicollinearity is
the inflation of the variance of the regression coefficient estimators. To measure this
ill effect of multicollinearity, we use the variance inflation factor (VIF) associated with
variable Xh.
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The variance inflation factor associated with Xh is

VIF(Xh) � (11–40)

where Rh
2 is the R2 value obtained for the regression of Xh, as dependent vari-

able, on the other X variables in the original equation aimed at predicting Y.

1
1 - R2

h

R2
h

VIF

100

50

10
1

0 0.9 1

FIGURE 11–40 Relationship between R2
h and VIF

The VIF of variable Xh can be shown to be equal to the ratio of the variance of the
coefficient estimator bh in the original regression (with Y as dependent variable) and
the variance of the estimator bh in a regression where Xh is orthogonal to the other X
variables.20 The VIF is the inflation factor of the variance of the estimator as com-
pared with what that variance would have been if Xh were not collinear with any of
the other X variables in the regression. A graph of the relationship between and
the VIF is shown in Figure 11–40.

As can be seen from the figure, when the R2 value of Xh versus the other X vari-
ables increases from 0.9 to 1, the VIF rises very dramatically. In fact, for � 1.00,
the VIF is infinite. The graph, however, should not deceive you. Even for values of

less than 0.9, the VIF is still large. A VIF of 6, for example, means that the vari-
ance of the regression coefficient estimator bh is 6 times what it should be (when no
collinearity exists). Most computer packages will report, on request, the VIFs for all
the independent variables in a regression model.

Table 11–20 shows the template output for the regression from Example 11–2,
which contains the VIF values in row 10. We note that the VIF for variables Lend

R2
h

R2
h

R2
h

20J. Johnston, Econometric Methods, 4th ed. (New York: McGraw-Hill, 2001).
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and Price are greater than 5 and thus indicate that some degree of multicollinearity
exists with respect to these two variables. Some action, as described in the next sub-
section, is required to take care of this multicollinearity.

What symptoms and effects of multicollinearity would we find without looking at
a variable correlation matrix or the VIFs? Multicollinearity has several noticeable
effects. The major ones are presented in the following list.

The effects of multicollinearity:

1. The variances (and standard errors) of regression coefficient esti-
mators are inflated.

2. The magnitudes of the regression coefficient estimates may be
different from what we expect.

3. The signs of the regression coefficient estimates may be the opposite
of what we expect.

4. Adding or removing variables produces large changes in the coeffi-
cient estimates or their signs.

5. Removing a data point causes large changes in the coefficient esti-
mates or their signs.

6. In some cases, the F ratio is significant, but none of the t ratios is.

When any of or all these effects are present, multicollinearity is likely to be present.
How bad is the problem? What are the adverse consequences of multicollinearity? The
problem is not always as bad as it may seem. Actually, if we wish to use the regression
model for prediction purposes, multicollinearity may not be a serious problem.

From the effects of multicollinearity just listed (some of them were mentioned in
earlier sections), we know that the regression coefficient estimates are not reliable
when multicollinearity is present. The most serious effect is the variance inflation,
which makes some variables seem not significant. Then there is the problem of the
magnitudes of the estimates, which may not be accurate, and the problem of the signs
of the estimates. We see that in the presence of multicollinearity, we may be unable
to assess the impact of a particular variable on the dependent variable Y because we
do not have a reliable estimate of the variable’s coefficient. If we are interested in pre-
diction only and do not care about understanding the net effect of each independent
variable on Y, the regression model may be adequate even in the presence of multi-
collinearity. Even though individual regression parameters may be poorly estimated
when collinearity exists, the combination of all regression coefficients in the regres-
sion may, in some cases, be estimated with sufficient accuracy that satisfactory pre-
dictions are possible. In such cases, however, we must be very careful to predict
values of Y only within the range of the X variables where the multicollinearity is the
same as in the region of estimation. If we try to predict in regions of the X variables
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Multiple Regression Results Exports

0 1 2 3 4
Intercept M1 Lend Price Exch.

b -4.0155 0.36846 0.0047 0.0365 0.2679
s(b) 2.7664 0.06385 0.04922 0.00933 1.17544

t -1.45151 5.7708 0.09553 3.91491 0.22791
p-value 0.1517 0.0000 0.9242 0.0002 0.8205

VIF 3.2072 5.3539 6.2887 1.3857

1
2
3
4
5
6
7
8
9

1 0
1 1

A B C D E F

TABLE 11–20 VIF Values for the Regression from Example 11–2
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where the multicollinearity is not present or is different from that present in the esti-
mation region, large errors may result. We will now explore some of the solutions
commonly used to remedy the problem of multicollinearity.

Solutions to the Multicollinearity Problem
1. One of the best solutions to the problem of multicollinearity is to drop collinear

variables from the regression equation. Suppose that we have a regression of Y on X1, X2, X3,
and X4 and we find that X1 is highly correlated with X4. In this case, much of the infor-
mation about Y in X1 is also contained in X4. If we dropped one of the two variables
from the regression model, we would solve the multicollinearity problem and lose little
information about Y. By comparing the R2 and the adjusted R2 of different regressions
with and without one of the variables, we can decide which of the two independent
variables to drop from the regression. We want to maintain a high R2 and therefore
should drop a variable if R2 is not reduced much when the variable is removed from
the equation. When the adjusted R2 increases when a variable is deleted, we certainly
want to drop the variable. For example, suppose that the R2 of the regression with all
four independent variables is 0.94, the R2 when X1 is removed is 0.87, and the R2 of the
regression of X1, X2, and X3 on Y (X4 removed) is 0.92. In this case, we clearly want to
drop X4 and not X1. The variable selection methods to be discussed in Section 11–13
will help us determine which variables to include in a regression model.

We note a limitation of this remedy to multicollinearity. In some areas, such as
economics, theoretical considerations may require that certain variables be in the
equation. In such cases, the bias resulting from deletion of a collinear variable must
be weighed against the increase in the variance of the coefficient estimators when the
variable is included in the model. The method of weighing the consequences and
choosing the best model is presented in advanced books.

2. When the multicollinearity is caused by sampling schemes that, by their
nature, tend to favor elements with similar values of some of the independent vari-
ables, a change in the sampling plan to include elements outside the multicollinearity
range may reduce the extent of this problem.

3. Another method that sometimes helps to reduce the extent of the multicolli-
nearity, or even eliminate it, is to change the form of some of the variables. This can be
done in several ways. The best way is to form new combinations of the X variables that
are uncorrelated with one another and then run the regression on the new combina-
tions instead of on the original variables. Thus the information content in the original
variables is maintained, but the multicollinearity is removed. Other ways of changing
the form of the variables include centering the data—a technique of subtracting the
means from the variables and running a regression on the resulting new variables.

4. The problem of multicollinearity may be remedied by using an alternative to
the least-squares procedure called ridge regression. The coefficient estimators produced
by ridge regression are biased, but in some cases, some bias in the regression estima-
tors can be tolerated in exchange for a reduction in the high variance of the estimators
that results from multicollinearity.

In summary, the problem of multicollinearity is an important one. We need to be
aware of the problem when it exists and to try to solve it when we can. Removing
collinear variables from the equation, when possible, is the simplest method of solv-
ing the multicollinearity problem.
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11–83. For the data of Example 11–3 presented in Table 11–12, find the sample cor-
relations between every pair of variables (the correlation matrix), and determine
whether you believe that multicollinearity exists in the regression.

P R O B L E M S
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11–84. For the data of Example 11–3, find the variance inflation factors, and com-
ment on their relative magnitudes.
11–85. Find the correlation between X1 and X2 for the data of Example 11–1 pre-
sented in Table 11–1. Is multicollinearity a problem here? Also find the variance
inflation factors, and comment on their magnitudes.
11–86. Regress Y against X1, X2, and X3 with the following sample data:

Y X1 X2 X3

13.79 76.45 44.47 8.00

21.23 24.37 37.45 7.56

66.49 98.46 95.04 19.00

35.97 49.21 2.17 0.44

37.88 76.12 36.75 7.50

72.70 82.93 42.83 8.74

81.73 23.04 82.17 16.51

58.91 80.98 7.84 1.59

30.47 47.45 88.58 17.86

8.51 65.09 25.59 5.12

39.96 44.82 74.93 15.05

67.85 85.17 55.70 11.16

10.77 27.71 30.60 6.23

72.30 62.32 12.97 2.58

a. What is the regression equation?
b. Change the first observation of X3 from 8.00 to 9.00. Repeat the regres-

sion. What is the new regression equation?
c. Compare the old and the new regression equations. Does the comparison

prove multicollinearity in the data? What is your suggestion for getting rid
of the multicollinearity?

d. Looking at the results of the original regression only, could you have fig-
ured out that there is a multicollinearity problem? How?

11–87. How does multicollinearity manifest itself in a regression situation?
11–88. Explain what is meant by perfect collinearity. What happens when perfect
collinearity is present?
11–89. Is it true that the regression equation can never be used adequately for pre-
diction purposes if multicollinearity exists? Explain.
11–90. In a regression of Y on the two explanatory variables X1 and X 2, the F ratio
was found not to be significant. Neither t ratio was found to be significant, and R2

was found to be 0.12. Do you believe that multicollinearity is a problem here?
Explain.
11–91. In a regression of Y on X1, X2, and X3, the F ratio is very significant, and R2

is 0.88, but none of the t ratios are significant. Then X1 is dropped from the equation,
and a new regression is run of Y on X2 and X3 only. The R2 remains approximately
the same, and F is still very significant, but the two t ratios are still not significant.
What do you think is happening here?
11–92. A regression is run of Y versus X1, X2, X3, and X4. The R2 is high, and F is
significant, but only the t ratio corresponding to X1 is significant. What do you pro-
pose to do next? Why?
11–93. In a regression analysis with several X variables, the sign of the coefficient
estimate of one of the variables is the opposite of what you believe it should be. How
would you test to determine whether multicollinearity is the cause?
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11–12 Residual Autocorrelation
and the Durbin-Watson Test

Remember that one of the assumptions of the regression model is that the errors �
are independent from observation to observation. This means that successive errors
are not correlated with one another at any lag; that is, the error at position i is not
correlated with the error at position i � 1, i � 2, i � 3, etc. The idea of correlation
of the values of a variable (in this case we consider the errors as a variable) with val-
ues of the same variable lagged one, two, three, or more time periods back is called
autocorrelation.

An autocorrelation is a correlation of the values of a variable with values
of the same variable lagged one or more time periods back.

Here we demonstrate autocorrelation in the case of regression errors. Suppose that
we have 10 observed regression errors e10 = 1, e9 = 0, e8 = �1, e7 = 2, e6 = 3, e5 = �2,
e4 = 1, e3 = 1.5, e2 = 1, and e1 = �2.5. We arrange the errors in descending order of
occurrence i. Then we form the lag 1 errors, the regression errors lagged one period
back in time. The first error is now e10�1 = e9 = 0, the second error is now e9�1 =
e8 = �1, and so on. We demonstrate the formation of variable ei �1 from variable ei
(that is, the formation of the lag 1 errors from the original errors), as well as the vari-
ables ei�2, ei �3, etc., in Table 11–21.

We now define the autocorrelations. The error autocorrelation of lag 1 is the cor-
relation between the population errors �i and �i �1. We denote this correlation by �1.
This autocorrelation is estimated by the sample error autocorrelation of lag 1, denoted
r1, which is the computed correlation between variables ei and ei�1. Similarly �2 is the
lag 2 error autocorrelation. This autocorrelation is estimated by r2, computed from
the data for ei and ei �2 in the table. Note that lagging the data makes us lose data
points; one data point is lost for each lag. When computing the estimated error auto-
correlations rj , we use as many points as we have for ei �j and shorten ei appropriately.
We will not do any of these computations.

The assumption that the regression errors are uncorrelated means that they are
uncorrelated at any lag. That is, we assume �1 � �2 � �3 � �4 � � � � � 0. A statistical
test was developed in 1951 by Durbin and Watson for the purpose of detecting when
the assumption is violated. The test, called the Durbin-Watson test, checks for evidence
of the existence of a first-order autocorrelation.
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TABLE 11–21 Formation of the Lagged Errors

i ei ei �1 ei �2 ei �3 ei �4 � � �

10 1 0 �1 2 3

9 0 �1 2 3 �2

8 �1 2 3 �2 1

7 2 3 �2 1 1.5

6 3 �2 1 1.5 1

5 �2 1 1.5 1 �2.5

4 1 1.5 1 �2.5 —

3 1.5 1 �2.5 — —

2 1 �2.5 — — —

1 �2.5 — — — —

M

M
M
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In testing for the existence of a first-order error autocorrelation, we use the Durbin-
Watson test statistic. Critical points for this test statistic are given in Appendix C,
Table 7. Part of the table is reproduced here as Table 11–22. The formula of the
Durbin-Watson test statistic is equation 11–42.
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TABLE 11–22 Critical Points of the Durbin-Watson Statistic d at � � 0.05 (n � sample size, 
k � number of independent variables in the regression) (partial table)

k � 1 k � 2 k � 3 k � 4 k � 5

n dL dU dL dU dL dU dL dU dL dU

15 1.08 1.36 0.95 1.54 0.82 1.75 0.69 1.97 0.56 2.21

16 1.10 1.37 0.98 1.54 0.86 1.73 0.74 1.93 0.62 2.15

17 1.13 1.38 1.02 1.54 0.90 1.71 0.78 1.90 0.67 2.10

18 1.16 1.39 1.05 1.53 0.93 1.69 0.82 1.87 0.71 2.06
� � � � � �
� � � � � �
� � � � � �

65 1.57 1.63 1.54 1.66 1.50 1.70 1.47 1.73 1.44 1.77

70 1.58 1.64 1.55 1.67 1.52 1.70 1.49 1.74 1.46 1.77

75 1.60 1.65 1.57 1.68 1.54 1.71 1.51 1.74 1.49 1.77

80 1.61 1.66 1.59 1.69 1.56 1.72 1.53 1.74 1.51 1.77

85 1.62 1.67 1.60 1.70 1.57 1.72 1.55 1.75 1.52 1.77

90 1.63 1.68 1.61 1.70 1.59 1.73 1.57 1.75 1.54 1.78

95 1.64 1.69 1.62 1.71 1.60 1.73 1.58 1.75 1.56 1.78

100 1.65 1.69 1.63 1.72 1.61 1.74 1.59 1.76 1.57 1.78

The Durbin-Watson test is

H0: �1 � 0

H1: �1 
 0 (11–41)

The Durbin-Watson test is

d � (11–42)
gn

i=2(ei - ei-1)
2

gn
i=1e2

1

Note that the test statistic21 d is not the sample autocorrelation r1. The statistic d has a
known, tabulated distribution. Also note that the summation in the numerator
extends from 2 to n rather than from 1 to n, as in the denominator. An inspection of
the first two columns in Table 11–21, corresponding to ei and ei �1, and our comment
on the “lost” data points (here, one point) reveal the reason for this.

Using a given level � from the table (0.05 or 0.01), we may conduct either a test
for �1 � 0 or a test for �1 
 0. The test has two critical points for testing for a positive
autocorrelation (the one-tailed half of H1 in equation 11–41). When the test statistic d
falls to the left of the lower critical point dL , we conclude that there is evidence of a

21Actually, d is approximately equal to 2(1 � r1).
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positive error autocorrelation of order 1. When d falls between dL and the upper
critical point dU , the test is inconclusive. When d falls above dU , we conclude that
there is no evidence of a positive first-order autocorrelation (conclusions are at the
appropriate level �). Similarly, when testing for negative autocorrelation, if d is
greater than 4 � dL , we conclude that there is evidence of negative first-order error
autocorrelation. When d is between 4 � dU and 4 � dL, the test is inconclusive; and
when d is below 4 � dU , there is no evidence of negative first-order autocorrelation of
the errors. When we test the two-tailed hypothesis in equation 11–41, the actual level
of significance � is double what is shown in the table. In cases where we have no
prior suspicion of one type of autocorrelation (positive or negative), we carry out the
two-tailed test and double the �. The critical points for the two-tailed test are shown
in Figure 11–41.

For example, suppose we run a regression using n � 18 data points and k � 3
independent variables, and the computed value of the Durbin-Watson statistic is
d � 3.1. Suppose that we want to conduct the two-tailed test. From Table 11–22 (or
Appendix C, Table 7), we find that at � � 0.10 (twice the level of the table) we have
dL � 0.93 and dU � 1.69. We compute 4 � dL � 3.07 and 4 � dU � 2.31. Since
the computed value d � 3.1 is greater than 4 � dL , we conclude that there is evi-
dence of a negative first-order autocorrelation in the errors. As another example,
suppose n � 80, k � 2, and d � 1.6. In this case, the statistic value falls between dL
and dU , and the test is inconclusive.

The Durbin-Watson statistic helps us test for first-order autocorrelation in the
errors. In most cases, when autocorrelation exists, there is a first-order autocorrela-
tion. In some cases, however, second- or higher-order autocorrelation exists without
there being a first-order autocorrelation. In such cases, the test does not help us.
Fortunately, such cases are not common.

In the template, the Durbin-Watson statistic appears in cell H4 of the Residuals
sheet. For the Exports problem of Example 11–2, the template computes the statistic
to be 2.58. Recall that for this example, n � 67 and k � 4 (in this version of the equa-
tion). At � � 0.10, for a two-tailed test, we have dU � 1.73, dL � 1.47, 4 � dL � 2.53,
and 4 � dU � 2.27. We conclude that there is evidence that our regression errors are
negatively correlated at lag 1. This, of course, sheds doubt on the regression results;
an alternative to least-squares estimation should be used. One alternative procedure
that is useful in cases where the ordinary least-squares routine produces autocorre-
lated errors is a procedure called generalized least squares (GLS ). This method is
described in advanced books.
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0 dL dU 4 – dU 4 – dL 4

Positive
autocorrelation

No autocorrelation Negative
autocorrelationTest is

inconclusive
Test is
inconclusive

When d falls in the following regions, conclusions
at the 2 alpha level are as stated below.

FIGURE 11–41 Critical Regions of the Durbin-Watson Test
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11–94. What is the purpose of the Durbin-Watson test?
11–95. Discuss the meaning of autocorrelation. What is a third-order auto-
correlation?
11–96. What is a first-order autocorrelation? If a fifth-order autocorrelation exists,
is it necessarily true that a first-order autocorrelation exists as well? Explain.
11–97. State three limitations of the Durbin-Watson test.
11–98. Find the value of the Durbin-Watson statistic for the data of Example 11–5,
and conduct the Durbin-Watson test. State your conclusion.
11–99. Find the value of the Durbin-Watson statistic for the model of Example
11–3, and conduct the Durbin-Watson test. Is the assumption of no first-order error
autocorrelation satisfied? Explain.
11–100. Do problem 11–99 for the data of Example 11–1.
11–101. State the conditions under which a one-sided Durbin-Watson test is appro-
priate (i.e., a test for positive autocorrelation only, or a test for a negative autocorre-
lation only).
11–102. For the regression you performed in problem 11–39, produce and interpret
the Durbin-Watson statistic.

11–13 Partial F Tests and Variable Selection Methods
Our method of deciding which variables to include in a given multiple regression
model has been trial and error. We started by asserting that several variables may
have an effect on our variable of interest Y, and we tried to run a multiple linear
regression model of Y versus these variables. The “independent” variables have
included dummy variables, powers of a variable, transformed variables, and a com-
bination of all the above. Then we scrutinized the regression model and tested the
significance of any individual variable (while being cautious about multicollinearity).
We also tested the predictive power of the regression equation as a whole. If we found
that an independent variable seemed insignificant due to a low t ratio, we dropped
the variable and reran the regression without it, observing what happened to the
remaining independent variables. By a process of adding and deleting variables,
powers, or transformations, we hoped to end up with the best model: the most parsi-
monious model with the highest relative predictive power.

Partial F Tests
In this section, we present a statistical test, based on the F distribution and, in simple
cases, the t distribution, for evaluating the relative significance of parts of a regression
model. The test is sometimes called a partial F test because it is an F test (or a t test, in
simple cases) of a part of our regression model.

Suppose that a regression model of Y versus k independent variables is postu-
lated, and the analysis is carried out (the k variables may include dummy vari-
ables, powers, etc.). Suppose that the equation of the regression model is as given in
equation 11–1:

Y � �0 � �1X1 � �2X2 � �3X3 � � � � � �k Xk � �

We will call this model the full model. It is the full model in the sense that it includes
the maximal set of independent variables Xi that we consider as predictors of Y.
Now suppose that we want to test the relative significance of a subset of r of the k
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By comparing the two models, we are asking the question: Given that variables X1
and X2 are already in the regression model, would we be gaining anything by adding
X3 and X4 to the model? Will the reduced model be improved in terms of its predic-
tive power by the addition of the two variables X3 and X4?

The statistical way of posing and answering this question is, of course, by way of
a test of a hypothesis. The null hypothesis that the two variables X3 and X4 have no
additional value once X1 and X2 are in the regression model is the hypothesis that
both �3 and �4 are zero (given that X1 and X2 are in the model). The alternative
hypothesis is that the two slope coefficients are not both zero. The hypothesis test is
stated in equation 11–45.
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independent variables in the full model. (By relative significance we mean the sig-
nificance of the r variables given that the remaining k � r variables are in the model.)
We will do this by comparing the reduced model, consisting of Y and the k � r inde-
pendent variables that remain once the r variables have been removed, with the full
model, equation 11–1. The statistical comparison of the reduced model with the full
model is done by the partial F test.

We will present the partial F test, using a more specific example. Suppose that we
are considering the following two models.

Full model:

Y � �0 � �1X1 � �2X2 � �3X3 � �4X4 � � (11–43)

Reduced model:

Y � �0 � �1X1 � �2X2 � � (11–44)

Partial F test:

H0: �3 � �4 � 0 (given that X1 and X2 are in the model)

H1: �3 and �4 are not both zero (11–45)

The partial F statistic is

F[r, n�(k�1)] � (11–46)

where SSER is the sum of squares for error of the reduced model; SSEF is the
sum of squares for error of the full model; MSEF is the mean square error of
the full model: MSEF � SSEF/[n � (K � 1)]; k is the number of independent
variables in the full model (k � 4 in the present example); and r is the number
of variables dropped from the full model in creating the reduced model
(in the present example, r � 2).

(SSER - SSEF)>r
MSEF

The test statistic for this hypothesis test is the partial F statistic.

The difference SSER � SSEF is called the extra sum of squares associated with the
reduced model. Since this additional sum of squares for error is due to r variables, it
has r degrees of freedom. (Like the sums of squares, degrees of freedom are additive.
Thus, the extra sum of squares for error has degrees of freedom [n � (k � 1)] �
[n � (k � r � 1)] � r.)
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Suppose that the sum of squares for error of the full model, equation 11–43, is
37,653 and that the sum of squares for error of the reduced model, equation 11–44, is
42,900. Suppose also that the regression analysis is based on a data set of n � 45
points. Is there a statistical justification for including X3 and X4 in a model already
containing X1 and X2?

To answer this question, we conduct the hypothesis test, equation 11–45. To do
so, we compute the F statistic of equation 11–46:
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F (2, 40) =
(SSER - SSEF )>2

SSEF >40
=

(42,900 - 37,653)>2
37,653>40

= 2.79

This value of the statistic falls in the nonrejection region for � � 0.05, and so we do
not reject the null hypothesis and conclude that the decrease in the sum of squares for
error when we go from the reduced model to the full model, adding X3 and X4 to the
model that already has X1 and X2, is not statistically significant. It is not worthwhile to
add the two variables.

Figure 11–42 shows the Partial F sheet of the Multiple Regression template.
When we enter the value of r in cell D4, the partial F value appears in cell C9 and
the corresponding p-value appears in cell C10. We can also see the SSE values for the
full and reduced models in cells C6 and C7.

Figure 11–42 shows the partial F calculation for the exports problem of Exam-
ple 11–2. Recall that the four independent variables in the problem are M1, Price,
Lend, and Exchange. The p-value of 0.0010 for the partial F indicates that we should
reject the null hypothesis H0: the slopes for Lend and Exchange are zero (when M1
and Price are in the model).

In this example, we conducted a partial F test for the conditional significance of a
set of r � 2 independent variables. This test can be carried out for the significance of
any number of independent variables, powers of variables, or transformed variables,
considered jointly as a set of variables to be added to a model. Frequently, however, we
are interested in considering the relative merit of a single variable at a time. We may be
interested in sequentially testing the conditional significance of a single independent
variable, once other variables are already in the model (when no other variables are in
the model, the F test is just a test of the significance of a single-variable regression). The
F statistic for this test is still given by equation 11–46, but since the degrees of freedom
are 1 and n � (k � 1), this statistic is equal to the square of a t statistic with n � (k � 1)
degrees of freedom. Thus, the partial F test for the significance of a single variable may
be carried out as a t test.

It may have occurred to you that a computer may be programmed to sequentially
test the significance of each variable as it is added to a potential regression model,

A B C D E F
Partial F Calculations Exports

#Independent variables in full model 4 k
#Independent variables dropped from the model 2 r

SSEF 6.989784

SSER 8.747573

Partial F 7.795877.79587
p -value 0.00100.0010

1
2
3
4
5
6

7
8
9

1 0

FIGURE 11–42 Partial F from the Template
[Multiple Regression.xls; Sheet: Partial F]
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starting with one variable and building up until a whole set of variables has been tested
and the best subset of variables chosen for the final regression model. We may also
start with a full model, consisting of the entire set of potential variables, and delete
variables from the model, one by one, whenever these variables are found not to be
significant. Indeed, computers have been programmed to carry out both kinds of
sequential single-variable tests and even a combination of the two methods. We will
now discuss these three methods of variable selection called, respectively, forward
selection, backward elimination, and their combination, stepwise regression. We will also
discuss a fourth method, called all possible regressions.

Variable Selection Methods
1. All possible regressions: This method consists of running all possible

regressions when k independent variables are considered and choosing the best
model. If we assume that every one of the models we consider has an intercept
term, then there are 2k possible models. This is so because each of the k
variables may be either included in the model or not included, which means
that there are two possibilities for each variable—2k possibilities for a model
consisting of k potential variables. When four potential variables are considered,
such as in Example 11–2, there are 24 � 16 possible models: four models with
a single variable, six models with a pair of variables, four models with three
variables, one model with all four variables, and one model with no variables
(an intercept term only). As you can see, the number of possible regression
models increases very quickly as the number of variables considered increases.

The different models are evaluated according to some criterion of model
performance. There are several possible criteria: We may choose to select the
model with the highest adjusted R2 or the model with the lowest MSE (an
equivalent condition). We may also choose to find the model with the highest
R2 for a given number of variables and then assess the increase in R2 as we go
to the best model with one more variable, to see if the increase in R2 is worth
the addition of a parameter to the model. Other criteria, such as Mallows’ Cp
statistic, are described in advanced books. The SAS System software has a
routine called RSQUARE that runs all possible regressions and identifies the
model with the highest R2 for each number of variables included in the model.
The all-possible-regressions procedure is thorough but tedious to carry out.
The next three methods we describe are all stepwise procedures for building
the best model. While the procedure called stepwise regression is indeed
stepwise, the other two methods, forward selection and backward elimination,
are also stepwise methods. These procedures are usually listed in computer
manuals as variations of the stepwise method.

2. Forward selection: Forward selection starts with a model with no variables.
The method then considers all k models with one independent variable and
chooses the model with the highest significant F statistic, assuming that at least one
such model has an F statistic with a p-value smaller than some predetermined value
(this may be set by the user; otherwise a default value is used). Then the procedure
looks at the variables remaining outside the model, considers all partial F statistics
(i.e., keeping the added variables in the model, the statistic is equation 11–46), and
adds the variable with the highest F value to the equation, again assuming that at
least one variable is found to meet the required level of significance. The
procedure is then continued until no variable left outside the model has a partial
F statistic that satisfies the level of significance required to enter the model.

3. Backward elimination: This procedure works in a manner opposite to forward
selection. We start with a model containing all k variables. Then the partial F
statistic, equation 11–46, is computed for each variable, treated as if it were the
last variable to enter the regression (i.e., we evaluate each variable in terms of its
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contribution to a model that already contains all other variables). When the
significance level of a variable’s partial F statistic is found not to meet a preset
standard (i.e., when the p-value is above the preset p-value), the variable is
removed from the equation. All statistics are then computed for the new,
reduced model, and the remaining variables are screened to see if they meet the
significance standard. When a variable is found to have a higher p-value than
required, the variable is dropped from the equation. The process continues until
all variables left in the equation are significant in terms of their partial F statistic.

4. Stepwise regression: This is probably the most commonly used, wholly
computerized method of variable selection. The procedure is an interesting
mixture of the backward elimination and the forward selection methods. In
forward selection, once a variable enters the equation, it remains there. This
method does not allow for a reevaluation of a variable’s significance once it is
in the model. Recall that multicollinearity may cause a variable to become
redundant in a model once other variables with much of the same information
are included. This is a weakness of the forward selection technique. Similarly,
in the backward elimination method, once a variable is out of the model, it
stays out. Since a variable that was not significant due to multicollinearity and
was dropped may have predictive power once other variables are removed
from the model, backward elimination has limitations as well.

Stepwise regression is a combination of forward selection and backward
elimination that reevaluates the significance of every variable at every stage.
This minimizes the chance of leaving out important variables or keeping
unimportant ones. The procedure works as follows. The algorithm starts, as
with the forward selection method, by finding the most significant single-
variable regression model. Then the variables left out of the model are checked
via a partial F test, and the most significant variable, assuming it meets the
entry significance requirement, is added to the model. At this point, the
procedure diverges from the forward selection scheme, and the logic of
backward elimination is applied. The original variable in the model is
reevaluated to see if it meets preset significance standards for staying in the
model once the new variable has been added. If not, the variable is dropped.
Then variables still outside the model are screened for the entry requirement,
and the most significant one, if found, is added. All variables in the model are
then checked again for staying significance once the new variable has been
added. The procedure continues until there are no variables outside that should
be added to the model and no variables inside the model that should be out.

The minimum significance requirements to enter the model and to stay in the
model are often called PIN and POUT, respectively. These are significance levels of the
partial F statistic. For example, suppose that PIN is 0.05 and POUT is also 0.05. This
means that a variable will enter the equation if the p-value associated with its partial
F statistic is less than 0.05, and it will stay in the model as long as the p-value of its
partial F statistic is less than 0.05 after the addition of other variables. The two signif-
icance levels PIN and POUT do not have to be equal, but we must be careful when set-
ting them (or leave their values as programmed) because if PIN is less strict than POUT
(that is, PIN 
 POUT), then we may end up with a circular routine where a variable
enters the model, then leaves it, then reenters, etc., in an infinite loop. We demon-
strate the stepwise regression procedure as a flowchart in Figure 11–43. Note that
since we test the significance of one variable at a time, our partial F test may be car-
ried out as a t test. This is done in some computer packages.

It is important to note that computerized variable selection algorithms may not
find the best model. When a model is found, it may not be a unique best model; there
may be several possibilities. The best model based on one evaluation criterion may
not be best based on other criteria. Also, since there is order dependence in the selec-
tion process, we may not always arrive at the same “best” model. We must remember
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that computers do only what we tell them to do; and so if we have not considered
some good variables to include in the model, including cross-products of variables,
powers, and transformations, our model may not be as good as it could be. We must
always use judgment in model selection and not rely blindly on the computer to find
the best model. The computer should be used as an aid.

Table 11–23 shows output from a MINITAB stepwise regression for the Singapore
exports example, Example 11–2. Note that the procedure chose the same “best”
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Compute F statistic for each separate variable outside model

Is there at least one variable with p-value < PIN? STOP

Enter most significant variable (smallest p-value) into model

Compute partial F for all variables in model

Remove
variable

No

No

Yes

Yes

Is there a variable with p-value > POUT?

FIGURE 11–43 The Stepwise Regression Algorithm

TABLE 11–23 Stepwise Regression Using MINITAB for Example 11–2

MTB > Stepwise 'Exports' 'M1' 'Lend' 'Price' 'Exch.';

SUBC> AEnter 0.15;

SUBC> ARemove 0.15;

SUBC> Best 0;

SUBC> Constant.

Stepwise Regression: Exports versus M1, Lend, Price, Exch.

Alpha-to-Enter: 0.15 Alpha-to-Remove: 0.15

Response is Exports on 4 predictors, with N = 67

Step 1 2

Constant 0.9348 -3.4230

M1 0.520 0.361

T-Value 9.89 9.21

P-Value 0.000 0.000

Price 0.0370

T-Value 9.05

P-Value 0.000

S 0.495 0.331

R-Sq 60.08 82.48

R-Sq(adj) 59.47 81.93

Mallows Cp 78.4 1.1
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model (out of the 16 possible regression models) as we did in our analysis. The table
also shows the needed commands for the stepwise regression analysis. Note that
MINITAB uses t tests rather than the equivalent F tests.
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11–103. Use equation 11–46 and the information in Tables 11–7 and 11–9 to con-
duct a partial F test for the significance of the lending rate and the exchange rate in
the model of Example 11–2.
11–104. Use a stepwise regression program to find the best set of variables for
Example 11–1.
11–105. Redo problem 11–104, using the data of Example 11–3.
11–106. Discuss the relative merits and limitations of the four variable selection
methods described in this section.
11–107. In the stepwise regression method, why do we need to test the significance of
a variable that is already determined to be included in the model, assuming PIN � POUT?
11–108. Discuss the commonly used criteria for determining the best model.
11–109. Is there always a single “best” model in a given situation? Explain.

11–14 Using the Computer

Multiple Regression Using the Solver
Just as we did in simple regression, we can conduct a multiple regression using the
Solver command in Excel. The advantage of the method is that we can impose all kinds
of constraints on the regression coefficients. The disadvantage is that our assumptions
about the errors being normally distributed will not be valid. Hence, hypothesis tests
about the regression coefficients and calculation of prediction intervals are not possible.
We can make point predictions, though.

Figure 11–44 shows the template that can be used to carry out a multiple re-
gression using the Solver. After entering the data, we may start with zeroes for all the
regression coefficients in row 6. Enter zeroes even in unused columns. (Strictly, this
row of cells should have been shaded in green. For the sake of clarity, they have not
been shaded.) Then the Solver is invoked by selecting the Solver command under the
Data tab. If a constraint needs to be entered, the Add button in the Solver dialog box
should be used to enter the constraint. Click the Solve button to start the Solver. When
the problem is solved, select Keep Solver Solution and press the OK button.

The results seen in Figure 11–44 are for the exports to Singapore problem
(Example 11–2) using all four independent variables. One way to drop an inde-
pendent variable from the model is to force the regression coefficient (slope) of that
variable to equal zero. Figure 11–45 presents the Solver dialog box showing the
constraints needed to drop the variables Lend and Exchange from the model.
Figure 11–46 shows the results of this constrained regression. Note that the regres-
sion coefficients for Lend and Exchange show up as zeroes.

As we saw in simple regression, many different types of constraint can be
imposed. The possibilities are more extensive in the case of multiple regression since
there are more regression coefficients. For instance, we can enter a constraint such as

2b1 � 5b2 � 6b3 	 10

Such constraints may be needed in econometric regression problems.
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I J K L M N O

Using the Solver Exports
Unprotect the sheet before using the Solver.

Regression Coefficients
b 0 b 1 b2 b3 b4 b5 b6 b7 b8 b9 b1 0

-4.024 0.3686 0.0048 0.0365 0.2714 0 0 0 0 0 0
SSE

Y 1 X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 6.98979
Sl.No. Exports OnesOnesOnes M1 Lend Price Exch. Error

1 2.6 1 5.1 7.8 114 2.16 -0.04107
2 2.6 1 4.9 8 116 2.17 -0.04404
3 2.7 1 5.1 8.1 117 2.18 -0.05744
4 3 1 5.1 8.1 122 2.2 0.05459
5 2.9 1 5.1 8.1 124 2.21 -0.12114

1
2
3
4
5

6
7

8
9

1 0
1 1
1 2
1 3
1 4

G HE FC DA B

FIGURE 11–44 The Template for Multiple Regression by Solver
[Mult Regn by Solver.xls]

FIGURE 11–45 Solver Dialog Box Containing Two Constraints

I J K L M N O

Using the Solver Exports
Unprotect the sheet before using the Solver.

Regression Coefficients
b0 b1 b2 b3 b4 b5 b6 b7 b8 b9 b10

-3.423 0.361 0 0.037 0 0 0 0 0 0 0
SSE

Y 1 X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 6.9959
Sl.No. Exports M1 Lend Price Exch. Error

1 2.6 1 5.1 7.8 114 2.16 -0.042
2 2.6 1 4.9 8 116 2.17 -0.0438
3 2.7 1 5.1 8.1 117 2.18 -0.0531
4 3 1 5.1 8.1 122 2.2 0.0617

1
2
3
4
5

6
7

8
9

1 0
1 1
1 2
1 3

G HE FC DA B

OnesOnes

FIGURE 11–46 Results of Constrained Regression

A COMMENT ON R2

The idea of constrained regression makes it easy to understand an important concept
in multiple regression. Note that the SSE in the unconstrained regression (Figure 11–44) is
6.9898, whereas it has increased to 6.9959 in the constrained regression (Figure 11–46).
When a constraint is imposed, it cannot decrease SSE. Why? Whatever values
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we have for the regression coefficients in the constrained version are certainly feasi-
ble in the unconstrained version. Thus, whatever SSE is achieved in the constrained
version can be achieved in the unconstrained version just as well. Thus the SSE in
the constrained version will be more than, or at best equal to, the SSE in the uncon-
strained version. Therefore, a constraint cannot decrease SSE. Dropping an independ-
ent variable from the model is the same as constraining its slope to zero. Thus
dropping a variable cannot decrease SSE. Note that R2 � 1 � SSE/SST. We can
therefore say that dropping a variable cannot increase R2. Conversely, introducing
a new variable cannot increase SSE, which is to say, introducing a new variable cannot
decrease R2.

In an effort to increase R2, an experimenter may be tempted to include more and
more independent variables in the model, reasoning that this cannot decrease R2 but
will very likely increase R2. This is an important reason why we have to look carefully
at the included variables in any model. In addition, we should also look at adjusted
R2 and the difference between R2 and adjusted R2. A large difference means that
some questionable variables have been included.

LINEST Function for Multiple Regression
The LINEST function we saw for simple linear regression can also be used for mul-
tiple regression. We will solve the problem introduced in Example 11–2 using the
LINEST function.

• Enter the Y values in the range B5:B71 as shown in  Figure 11–47.
• Enter the X1, X2, X3, X4 values in the range D5:G71.
• Select the 5 rows � 5 columns range I5:M9. The selected range should have 5

rows and k + 1 columns where k is the number of X variables in the data.  In
our problem k = 4.

• Click the Insert Function in the Formulas tab.
• Select Statistical under Function category. In the list of functions that appear at

right, select LINEST.
• Fill in the LINEST dialog box as follows (see Figure 11–47):

—In the box for Known_y’s, enter the range that contains the Y values.
—In the box for Known_x’s, enter the range that contains the X values.
—Leave the Const box blank. Entering TRUE in that box will force the

intercept to be zero. We don’t need that.

550 Chapter 11

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

A B C D E F G
LINEST for Multiple Regression

Exports M1

140 2.15
3.5 5.8 10.6 147 2.16
4.2 5.7 11.3 150 2.21
4.3 5.8 12.1 151 2.24
4.2 6 12 151 2.16
4.1 6 11.4 151 2.12
4.6 6 11.1 153 2.11
4.4 6 11 154 2.13

G H I J K L M

2.6
2.6
2.7
3
2.9
3.1
3.2
3.7
3.6
3.4
3.7
3.6
4.1

5.1
4.9
5.1
5.1
5.1
5.2
5.1
5.2
5.3
5.4
5.7
5.7
5.9

Lend
7.8
8

8.1
8.1
8.1
8.1
8.3
8.8
8.9
9.1
9.2
9.5

10.3

Price
114
116
117
122
124
128
132
133
133
134
135
136

Exch.
2.16

Y X1 X2 X3 X4

2.17
2.18
2.2

2.21
2.17
2.14
2.16
2.15
2.16
2.18
2.17

FIGURE 11–47 Using the LINEST Function for Multiple Regression
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• Keeping the CTRL and SHIFT keys pressed, click the OK button. The reason for
keeping the CTRL and SHIFT keys pressed is that the formula we are entering
is an array formula. An array formula is simultaneously entered in a range of
cells at once, and that range behaves as one cell.  When an array formula is
entered, Excel will add the { } braces around the formula.

• You should see the results seen in Figure 11–48.

LINEST does not label any of its outputs. You need a legend to see which result
is where. The legend is shown is Figure 11–48. Note that there are some unused
cell in the output range, and LINEST fills them with #N/A, which stands for “Not
Applicable.”

Using the legend, you can see that the regression equation is

Multiple Regression 551

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16

A B C D E F G H I J K L M
LINEST for Multiple Regression

LINEST Output
0.267896 0.036511 0.004702 0.368456 -4.015461

1.17544 0.009326 0.049222 0.063848 2.766401
0.824976 0.335765 #N/A #N/A #N/A
73.05922 62 #N/A #N/A #N/A
32.94634 6.989784 #N/A #N/A #N/A

Legend
b4 b3 b2 b1 b0
s(b4) s(b3) s (b2) s (b1) s(b0)
R2 s
F df (SSE)
SSR SSE

Exports
2.6

Y X1 X2 X3 X4

2.6
2.7
3

2.9
3.1
3.2
3.7
3.6
3.4
3.7
3.6

M1
5.1
4.9
5.1
5.1
5.1
5.2
5.1
5.2
5.3
5.4
5.7
5.7

Lend
7.8
8

8.1
8.1
8.1
8.1
8.3
8.8
8.9
9.1
9.2
9.5

Price
114
116
117
122
124
128
132
133
133
134
135
136

Exch.
2.16
2.17
2.18
2.2
2.21
2.17
2.14
2.16
2.15
2.16
2.18
2.17

FIGURE 11–48 LINEST Output for Multiple Regression

Ŷ � �4.01546 + 0.368456X1 + 0.004702X2 + 0.036511X3 + 0.267896X4

As in the previous chapter, we can use the Excel Regression tool to perform a
multiple regression analysis. The Regression tool uses the worksheet function
LINEST that was described before. Start by clicking the Data Analysis in the Analysis
group on the Data tab. In the Data Analysis window select Regression. The corre-
sponding Regression window will appear as shown in Figure 11–49. The setting is
very similar to what we described in Chapter 10 for a single regression analysis using
the Excel Regression tool.

Using the data of Example 11–2, the obtained result will contain a summary out-
put, ANOVA table, model coefficients and their corresponding confidence intervals,
residuals, and related graphs if they have been selected. Figure 11–50 shows the
result.

Using MINITAB for Multiple Regression
In Chapter 10, we provided instructions for using MINITAB for simple linear regres-
sion analysis choosing Stat � Regression � Regression from the menu bar. The same set
of instructions can be applied to using MINITAB in a multiple as well as polynomial
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regression analysis. Figure 11–51 shows the Regression window as well as correspon-
ding Session commands for running a multiple regression analysis on the data of
Example 11–2. Note that by clicking the Options button in the main dialog box, you
can choose to display variance inflation factors (VIF) to check for multicollinearity
effects associated with each predictor. In addition, you can display the Durbin-Watson
statistic to detect autocorrelation in the residuals by selecting the Durbin-Watson
statistic check box.

Based on the obtained p-value of the ANOVA table, which is approximately
zero, we conclude that a linear relation exists between the dependent and independ-
ent variables. On the other hand, the p-value corresponding to the coefficients of the
independent variables Lend and Exch are considerably large. So the estimated coeffi-
cients of these two variables are not statistically significant. This conclusion can also
be confirmed by considering the 95% confidence intervals on the model coefficients
obtained in Figure 11–50. As we can see, the only two intervals that contain the value
zero belong to the variables Lend and Exch.
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1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20

A C D FE G H I J KB

Exports M1
2.6
2.6
2.7

3
2.9
3.1
3.2
3.7
3.6
3.4
3.7
3.6
4.1
3.5
4.2
4.3
4.2
4.1

5.1
4.9
5.1
5.1
5.1
5.2
5.1
5.2
5.3
5.4
5.7
5.7
5.9
5.8
5.7
5.8

6
6

L M N

Lend Price
7.8

8
8.1
8.1
8.1
8.1
8.3
8.8
8.9
9.1
9.2
9.5

10.3
10.6
11.3
12.1

12

114
116
117
122
124
128
132
133
133
134
135
136
140
147
150
151
151
151

Exch.
2.16
2.17
2.18
2.2

2.21
2.17
2.14
2.16
2.15
2.16
2.18
2.17
2.15
2.16
2.21
2.24
2.16
2.1211.4

FIGURE 11–49 Using the Excel Regression Tool for a Multiple Regression

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23

A C D FE G H I J KB

Exports Excel Regression Tool for Multiple Regression AnalysisM1
2.6 5.1
2.6 4.9
2.7 5.1

3 5.1
2.9 5.1
3.1 5.2
3.2 5.1
3.7 5.2
3.6 5.3
3.4 5.4
3.7 5.7
3.6 5.7
4.1 5.9
3.5 5.8
4.2 5.7
4.3 5.8
4.2 6
4.1 6

L M N O P

Lend Price
7.8 114

8 116
8.1 117
8.1 122
8.1 124
8.1 128
8.3 132
8.8 133
8.9 133
9.1 134
9.2 135
9.5 136

10.3 140
10.6 147
11.3 150
12.1 151

12 151
151

Exch.
2.16
2.17
2.18

2.2
2.21
2.17
2.14
2.16
2.15
2.16
2.18
2.17
2.15
2.16
2.21
2.24
2.16
2.1211.4

4.6 6
4.4 6
4.5 6.1

11.1 153
11 154

11.3 154

2.11
2.13
2.11

SUMMARY OUTPUT

Regression Statistics

Multiple R
R Square
Adjusted R Square
Standard Error
Observations

0.908281831
0.824975884
0.813684006
0.335765471

67

df SS MS F Significance F
4

62
66

8.236584
0.112738

32.94633542
6.989783981

39.9361194

73.05922 9.13052E-23

ANOVA

Regression
Residual
Total

Standard ErrorCoefficients t Stat p-value Lower 95% Upper 95% Lower 95.0% Upper 95.0%
-4.015461451 -1.451512.766400566 0.151679 -9.545417333 1.514494431 -9.545417333 1.514494431
0.368456401 5.77080.063848409 2.71E-07 0.24082525 0.496087551 0.24082525 0.496087551

Intercept
M1

0.004702202 0.0955310.049221863 0.924201 -0.0936909 0.103095304 -0.0936909 0.103095304
0.036510524 3.9149140.009326009 0.000228 0.017868098 0.05515295 0.017868098 0.05515295

Lend
Price

0.267896248 0.2279111.175440162 0.820465 -2.081775134 2.617567629 -2.081775134 2.617567629Exch.

FIGURE 11–50 Excel Results for Multiple Regression
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If you need to use MINITAB for a polynomial regression or adding cross-
product terms to the model, you have to transform variables before starting the
regression analysis. Select Calc � Calculator to enter the column number or name of
the new variable in the Store result in the variable edit box. Choose the function,
such as power, square root, or natural log, that should be used in the transformation
from the Functions drop-down box. The names of the independent variables that
should be transformed are entered in the Expression edit box. Click the OK button and
continue with your regression analysis.

MINITAB can also be used to build a model based on the stepwise regression
method. As described earlier in this chapter, this method enables you to identify a
useful subset of the predictors by removing and adding variables to the regression
model. MINITAB provides three frequently used procedures: standard stepwise
regression (adds and removes variables), forward selection (adds variables), and
backward elimination (removes variables). Start by choosing Stat � Regression
� Stepwise. When the Stepwise Regression dialog box appears, enter the response
variable in the Response edit box. The columns containing the predictor variables
to include in the model are entered in the Predictors edit box. Indicate which pre-
dictors should never be removed from the model in Predictors to include in every
model. Click on the Methods button. Check Use alpha value if you wish to use the
alpha value as the criterion for adding or removing a variable to or from the
model. When you choose the stepwise or forward selection method, you can set
the value of � for entering a new variable in the model in Alpha to enter. If you
wish to run a stepwise or backward elimination method, you can set the value of
� for removing a variable from the model in Alpha to remove. If you check Use
F values, then the F value will be used as the criterion for adding or removing a
variable to or from the model. The value of F for entering or removing a new
variable in the model can be defined in the F to enter and F to remove edit boxes,
respectively. You can also enter a starting set of predictor variables in Predictors in
initial model. Figure 11–52 shows the corresponding dialog box as well as corre-
sponding Session commands for the data set of Example 11–2.

As we can see, as the result of the stepwise regression method, M1 and Price com-
pose the best subset of independent variables that have been chosen to build the

Multiple Regression 553

FIGURE 11–51 Using MINITAB for Multiple Regression Analysis
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FIGURE 11–52 Using MINITAB for a Stepwise Regression

model. Note that MINITAB has used the t test to add or eliminate the independent
variables. The obtained coefficients and adjusted R2 are the same as the result we
obtained by applying the regular regression method. 

MINITAB has many other options and tools that enable you to run different
types of regression analysis. All these options are available via Stat � Regression from
the menu bar.

11–15 Summary and Review of Terms
In this chapter, we extended the simple linear regression method of Chapter 10 to
include several independent variables. We saw how the F test and the t test are adapted
to the extension: The F test is aimed at determining the existence of a linear relation-
ship between Y and any of the explanatory variables, and the separate t tests are each
aimed at checking the significance of a single variable. We saw how the geometry
of least-squares estimation is extended to planes and to higher-dimensional surfaces as
more independent variables are included in a model. We extended the coefficient of
determination to multiple regression situations, as well as the correlation coefficient.
We discussed the problem of multicollinearity and its effects on estimation and pre-
diction. We extended our discussion of the use of residual plots and mentioned the
problem of outliers and the problem of autocorrelation of the errors and its detection.
We discussed qualitative variables and their modeling using indicator (dummy)
variables. We also talked about higher-order models: polynomials and cross-product
terms. We emphasized the need for parsimony. We showed the relationship between
regression and ANOVA and between regression and analysis of covariance. We
also talked about nonlinear models and about transformations. Finally, we dis-
cussed methods for selecting variables to find the “best” multiple regression model:
forward selection, backward elimination, stepwise regression, and all possible
regressions.
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11–110. Go to the Web site http://www.lib.umich.edu/govdocs/stforeig.html, which
lists economic variables in foreign countries. Choose a number of economic vari-
ables for various years, and run a multiple regression aimed at predicting one vari-
able based on a set of independent variables.
11–111. A multiple regression analysis of mutual fund performance includes a num-
ber of variables as they are, but the variable size of fund is used only as the logarithm
of the actual value.22 Why?
11–112. A multiple regression of price versus the independent variables quality,
industry, category, and quality � industry and quality � category was carried out.
The R2 was 67.5%. The t statistic for each variable alone was significant, but the cross-
products were not.23 Explain.
11–113. An article in Psychology and Marketing describes four variables that have
been found to impact the effectiveness of commercials for high-performance auto-
mobiles: sincerity, excitement, ruggedness, and sophistication.24 Suppose that the
following data are available on commercials’ effectiveness and these variables, all on
appropriate scales.

Commercial Assessed Assessed Assessed Assessed
Effectiveness Sincerity Excitement Ruggedness Sophistication

75 12 50 32 17
80 10 55 32 18
71 20 48 33 16
90 15 57 32 15
92 21 56 34 19
60 17 42 33 14
58 18 41 30 16
65 22 49 31 18
81 20 54 30 19
90 14 58 33 11
95 10 59 31 12
76 17 51 30 20
61 21 42 29 11

Is there a regression relation here between commercial effectiveness and any of the
independent variables? Explain.
11–114. The following data are the asking price and other variables for condomini-
ums in a small town. Try to construct a prediction equation for the asking price based
on any of or all the other reported variables.

Number of Number of Number of Assessed Area
Price ($) Rooms Bedrooms Baths Age Value ($) (square feet)

145,000 4 1 1 69 116,500 790
144,900 4 2 1 70 127,200 915
145,900 3 1 1 78 127,600 721
146,500 4 1 1 75 121,700 800
146,900 4 2 1 40 94,800 718
147,900 4 1 1 12 169,700 915
148,000 3 1 1 20 151,800 870

(continued)

A D D I T I O N A L  P R O B L E M S

Multiple Regression 555

22Josh Lerner, Antoinette Schoar, and Wan Wongsunwai, “Smart Institutions, Foolish Choices: The Limited Partner
Performance Puzzle,” Journal of Finance 62, no. 2 (2007), pp. 731–764.

23Markus Christen and Miklos Sarvary, “Competitive Pricing of Information: A Longitudinal Experiment,” Journal of
Marketing Research 44 (February 2007), pp. 42–56.

24Kong Cheen Lau and Ian Phav, “Extending Symbolic Brands Using Their Personality,” Psychology and Marketing 24,
no. 5 (2007), pp. 421–443.
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Number of Number of Number of Assessed Area
Price ($) Rooms Bedrooms Baths Age Value ($) (square feet)

148,900 3 1 1 20 147,800 875

149,000 4 2 1 70 140,500 1,078

149,000 4 2 1 60 120,400 705

149,900 4 2 1 65 160,800 834

149,900 3 1 1 20 135,900 725

149,900 4 2 1 65 125,400 900

152,900 5 2 1 37 134,500 792

153,000 3 1 1 100 132,100 820

154,000 3 1 1 18 140,800 782

158,000 5 2 1 89 158,000 955

158,000 4 2 1 69 127,600 920

159,000 4 2 1 60 152,800 1,050

159,000 5 2 2 49 157,000 1,092

179,900 5 2 2 90 165,800 1,180

179,900 6 3 1 89 158,300 1,328

179,500 5 2 1 60 148,100 1,175

179,000 6 3 1 87 158,500 1,253

175,000 4 2 1 80 156,900 650

11–115. By definition, the U.S. trade deficit is the sum of the trade deficits it has
with all its trading partners. Consider a model of the trade deficit based on regions such
as Asia, Africa, and Europe. Whether there is collinearity, meaning the deficits
move in the same direction, among these trading regions depends on the similarities
of the goods that the United States trades in each region. You can investigate the
collinearity of these regional deficits from data available from the U.S. Census Bureau,
www.census.gov/. At this site, locate the trade data in the International Trade Reports.
(Hint: Start at the A–Z area; locate foreign trade by clicking on “F.”)

Read the highlights of the current report, and examine current-year country-
by-commodity detailed data for a selection of countries in each of the regions of Asia,
Africa, and Europe. Based on the country-by-commodity detailed information,
would you expect the deficits in these regions to be correlated? How would you
design a statistical test for collinearity among these regions?

556 Chapter 11

The table that follows presents financial data of
some companies drawn from four different
industry sectors. The data include return on cap-

ital, sales, operating margin, and debt-to-capital ratio
all pertaining to the same latest 12 months for which
data were available for that company. The period may
be different for different companies, but we shall
ignore that fact.

Using suitable indicator variables to represent the
sector of each company, regress the return on capital
against all other variables, including the indicator
variables.

1. The sectors are to be ranked in descending order
of return on capital. Based on the regression
results, what will that ranking be?

2. It is claimed that the sector that a company
belongs to does not affect its return on capital.
Conduct a partial F test to see if all the indicator
variables can be dropped from the regression
model.

3. For each of the four sectors, give a 95%
prediction interval for the expected return on
capital for a company with the following annual
data: sales of $2 billion, operating margin of 35%,
and a debt-to-capital ratio of 50%.

CASE 15 Return on Capital for Four
Different Sectors
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Return on Sales Operating Debt/
Capital (%) ($ millions) Margin (%) Capital (%)

Banking
Bank of New York 17.2 7,178 38.1 28.5

Bank United 11.9 1,437 26.7 24.3

Comerica 17.1 3,948 38.9 65.6

Compass Bancshares 15.4 1,672 27 26.4

Fifth Third Bancorp 16.6 4,123 34.8 46.4

First Tennessee National 15.1 2,317 21.3 20.1

Firstar 13.7 6,804 36.6 17.7

Golden State Bancorp 15.9 4,418 21.5 65.8

Golden West Financial 14.6 3,592 23.8 17

GreenPoint Financial 11.3 1,570 36 14.1

Hibernia 14.7 1,414 26 0

M&T Bank 13.4 1,910 30.2 21.4

Marshall & Ilsley 14.7 2,594 24.4 19.2

Northern Trust 15.3 3,379 28.4 35.7

Old Kent Financial 16.6 1,991 26 21.9

PNC Financial Services 15 7,548 32 29.5

SouthTrust 12.9 3,802 24 26.1

Synovus Financial 19.7 1,858 27.3 5.1

UnionBanCal 16.5 3,085 31.4 14.6

Washington Mutual 13.8 15,197 24.7 39.6

Wells Fargo 11.9 24,532 38.9 50.7

Zions Bancorp 7.7 1,845 23.5 19.3

Computers

Agilent Technologies 22.4 10,773 14 0

Altera 32.4 1,246 41.7 0

American Power Conversion 21.2 1,459 22.2 0

Analog Devices 36.8 2,578 35.3 34

Applied Materials 42.2 9,564 32.5 7.4

Atmel 16.4 1,827 30.8 28.1

Cisco Systems 15.5 21,529 27.3 0

Dell Computer 38.8 30,016 9.6 7.8

EMC 24.9 8,127 31 0.2

Gateway 26.6 9,461 9.8 0.1

Intel 28.5 33,236 46.3 1.5

Jabil Circuit 25 3,558 8.4 1.9

KLA-Tencor 21.8 1,760 26.7 0

Micron Technology 26.5 7,336 44.8 11.8

Palm 10.1 1,282 7.8 0

Sanmina 14.1 3,912 13.9 39

SCI Systems 12.5 8,707 5.8 35.9

Solectron 14.6 14,138 7 46.6

Sun Microsystems 30.5 17,621 19.6 14.7

Tech Data 13 19,890 2 22.6

Tektronix 41.3 1,118 12.3 13.2

Teradyne 40.4 2,804 27 0.54

Texas Instruments 25.5 11,406 29.9 8.4

Xilinx 35.8 1,373 36.8 0

(continued)
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Return on Sales Operating Debt/
Capital (%) ($ millions) Margin (%) Capital (%)

Construction
Carlisle Companies 15.7 1,752 13.9 34.3
Granite Construction 14.1 1,368 9.8 13.7
DR Horton 12.3 3,654 9.3 58
Kaufman & Broad Home 12.1 3,910 9.2 58.4
Lennar 14.7 3,955 10.7 59.7
Martin Marietta Materials 10.3 1,354 26.4 39.3
Masco 14.3 7,155 18.4 38.3
MDC Holdings 21.4 1,674 12.3 28.4
Mueller Industries 15 1,227 15.9 14.2
NVR 40.8 2,195 11.9 31.5
Pulte Homes 11.5 4,052 8.9 37.6
Standard Pacific 13.7 1,198 10.7 52.9
Stanley Works 16.9 2,773 14 18.9
Toll Brothers 11 1,642 14.7 53.5
URS 8.7 2,176 9.8 62.9
Vulcan Materials 11.8 2,467 23.5 27.1
Del Webb 8.2 2,048 10.3 64.8

Energy

Allegheny Energy 7.8 3,524 26.4 47.9
Apache 12.5 2,006 79.8 32.3
BJ Services 9.8 1,555 19.1 10.6
BP Amoco 19.4 131,450 15.4 17.9
Chevron 16.6 43,957 23 16
Cinergy 7.7 7,130 16.7 42.3
Conoco 17.5 30 14 36.7
Consol Energy 20.4 2,036 17.1 55.9
Duke Energy 7.8 40,104 10.4 37.7
Dynegy 18.4 24,074 3.7 39.4
Enron 8.1 71,011 3.2 40.6
Exelon 8.6 5,620 33.9 56.8
ExxonMobil 14.9 196,956 14.7 7.9
FPL Group 8.6 6,744 33.1 32.8
Halliburton 11.9 12,424 8 18.2
Kerr-McGee 17.2 3,760 54.7 45
KeySpan 8.9 4,123 23.1 39.9
MDU Resources 8.7 1,621 17.7 40.5
Montana Power 10.5 1,055 23.5 24
Murphy Oil 17.5 3,172 20.5 22.1
Noble Affiliates 13.5 1,197 42.4 36
OGE Energy 7.9 2,894 18.7 48.6
Phillips Petroleum 14.9 19,414 21.6 47
PPL 10.1 5,301 26.4 54
Progress Energy 8.3 3,661 40.8 38.7
Reliant Energy 8.3 23,576 11.9 37.8
Royal Dutch Petroleum 17.9 129,147 19.8 5.7
Scana 7.2 2,839 42.5 47.4
Smith International 7 2,539 9.3 22.8
Sunoco 13.4 11,791 6.4 34.3
TECO Energy 9 2,189 31.2 40.4
Tosco 16.7 21,287 5.9 41.5
Valero Energy 14.5 13,188 4.7 35.8

Source: Forbes, January 8, 2001.
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After studying this chapter, you should be able to:

• Differentiate between qualitative and quantitative methods 
of forecasting.

• Carry out a trend analysis in time series data.
• Identify seasonal and cyclical patterns in time series data.
• Forecast using simple and weighted moving-average methods.
• Forecast using the exponential smoothing method.
• Forecast when the time series contains both trend 

and seasonality.
• Assess the efficiency of forecasting methods using measures 

of error.
• Make forecasts using templates.
• Compute index numbers.

TIME SERIES, FORECASTING,
AND INDEX NUMBERS

1
1
1
1
1
1
1

LEARNING OBJECTIVES

1 1 1 1 1
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12–1 Using Statistics

FVS
CHAPTER 20

E X A M P L E  1 2 – 1

S o l u t i o n

Everything in life changes through time. Even
the value of money is not constant in this
world: A dollar today is not the same as a dollar
a year ago, or a dollar a year from now. While

most people know this, they think that the cause is inflation. In fact, the value of
one dollar a year from now should be lower than the value of a dollar today for a
basic economic reason. A dollar today can be invested or put in the bank or loaned
to someone. Since the investor (or bank depositor or lender) must be paid for giving
someone else his dollar for a year, that one dollar now must be equal to a dollar plus
some amount a year from now—the amount it earns the investor in one year. Thus,
one dollar today is worth more than a dollar a year hence.

So how can we evaluate the worth of money across years? One way to do this is
to use the most famous time series data in America, called the consumer price index
(CPI), which is computed and published by the U.S. Bureau of Labor Statistics (and
can be found at http://www.bls.gov). This index defines a base year (1967, or the
years 1982–84; the user can choose which one to use), for which the value is defined
as 100. Using base year 1967, the series value for 2006 was 603.9. This means that one
dollar in 1967 was worth 6.039 dollars in 2006.

This chapter will teach you about the CPI and its uses. The chapter also presents
methods for forecasting time series—data sets that are ordered through time.

12–2 Trend Analysis
Sometimes a time series displays a steady tendency of increase or decrease through
time. Such a tendency is called a trend. When we plot the observations against time,
we may notice that a straight line can describe the increase or decrease in the series
as time goes on. This should remind us of simple linear regression, and, indeed, in
such cases we will use the method of least squares to estimate the parameters of a
straight-line model.

At this point, we make an important remark. When one is dealing with time series data,
the errors of the regression model may not be independent of one another: Time series observations
tend to be sequentially correlated. Therefore, we cannot give much credence to regression
results. Our estimation and hypothesis tests may not be accurate. We must be aware of
such possible problems and must realize that fitting lines to time series data is less an
accurate statistical method than a simple descriptive method that may work in some
cases. We will now demonstrate the procedure of trend analysis with an example.

An economist is researching banking activity and wants to find a model that would
help her forecast total net loans by commercial banks. The economist gets the hypo-
thetical data presented in Table 12–1. A plot of the data is shown in Figure 12–1.

As can be seen from the figure, the observations may be described by a straight line.
A simple linear regression equation is fit to the data by least squares. A straight-line
model to account for a trend is of the form

Zt � �0 � �1t � at (12–1)

where t is time and at is the error term. The coefficients �0 and �1 are the regression
intercept and slope, respectively. The regression can be carried out as we saw in
Chapter 10. To simplify the calculation, the first year in the data (2000) is coded t � 1,
and next t � 2, and so on. We shall see the regression results in a template.
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Figure 12–2 shows the template that can be used for trend forecast. The data are
entered in columns B and D. The coded t values appear in column C. As seen in the
range M7:M8, the slope and the intercept of the regression line are, respectively,
109.19 and 696.89. In other words, the regression equation is

Zt � 696.89 � 109.19t

By substituting 9 for t, we get the forecast for year 2008 as 1,679.61. In the template,
this appears in cell G5. Indeed, the template contains forecasts for t � 9 through
20, which correspond to the years 2008 to 2019. In the range I5:I16, we can enter
any desired values for t and get the corresponding forecast in the range J5:J16.

Remember that forecasting is an extrapolation outside the region of the estima-
tion data. This, in addition to the fact that the regression assumptions are not met in
trend analysis, causes our forecast to have an unknown accuracy. We will, therefore,
not construct any prediction interval.

Trend analysis includes cases where the trend is not necessarily a straight
line. Curved trends can be modeled as well, and here we may use either polynomi-
als or transformations, as we saw in Chapter 11. In fact, a careful examination of
the data in Figure 12–1 and of the fitted line in Figure 12–2 reveals that the data
are actually curved upward somewhat. We will, therefore, fit an exponential model
Z � �0e at, where �0 and �1 are constants and e is the number 2.71828 . . . , the
base of the natural logarithm. We assume a multiplicative error at . We run a regres-
sion of the natural log of Z on variable t. The transformed regression, in terms of
the original exponential equation, is shown in Figure 12–3. The coefficient of deter-
mination of this model is very close to 1.00. The figure also shows the forecast for
2002, obtained from the equation by substituting t � 9, as we did when we tried
fitting the straight line.

A polynomial regression with t and t2 leads to a fit very similar to the one shown
in Figure 12–3, and the forecast is very close to the one obtained by the exponential
equation. We do not elaborate on the details of the analysis here because much was
explained about regression models in Chapters 10 and 11. Remember that trend
analysis does not enjoy the theoretical strengths that regression analysis does in

�1t

562 Chapter 12

TABLE 12–1
Annual Total Net Loans 
by Commercial Banks

Year Loans ($ billions)

2000 833

2001 936

2002 1,006

2003 1,120

2004 1,212

2005 1,301

2006 1,490

2007 1,608

FIGURE 12–1 Hypothetical Annual Total Net Loans by Commercial Banks
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FIGURE 12–2 The Template for Trend Analysis 
[Trend Forecast.xls]
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Forecasting with Trend Loans
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FIGURE 12–3 Fitting an Exponential Model to the Data of Example 12–1
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$1,761.8 billion

The estimated regression equation is
Z = 765.84e0.0926^

non-time-series contexts; therefore, your forecasts are of questionable accuracy. In
the case of Example 12–1, we conclude that an exponential or quadratic fit is prob-
ably better than a straight line, but there is no way to objectively evaluate our forecast.
The main advantage of trend analysis is that when the model is appropriate and the
data exhibit a clear trend, we may carry out a simple analysis.
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The following data are a price index for industrial metals for the years 1999 to 2007.
A company that uses the metals in this index wants to construct a time series model
to forecast future values of the index.

E X A M P L E  1 2 – 2

1
2
3
4
5
6
7
8
9
10
11
12
13

A B
Time Series

A Price Index

Year
1999
2000
2001
2002
2003
2004
2005
2006
2007

Price
122.55
140.64
164.93
167.24
211.28
242.17
247.08
277.72
353.40

Figure 12–4 shows the results on the template. As seen in the template, the regres-
sion equation is Zt � 82.96 � 26.23t. The forecast for t � 10, or year 2008, is 345.27.

S o l u t i o n

FIGURE 12–4 Price Index Forecast 
[Trend Forecast.xls]
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P R O B L E M S

12–1. What are the advantages and disadvantages of trend analysis? When would
you use this method of forecasting?
12–2. An article in Real Estate Finance displays the following data for Brazil’s
short-term interest rates (in percent).1

January 1996 43%

July 1996 31

January 1997 23

July 1997 20

January 1998 21

July 1998 25

January 1999 26

July 1999 25

January 2000 21

July 2000 17

January 2001 15

July 2001 15

January 2002 16

July 2002 17

January 2003 18

July 2003 22

January 2004 20

July 2004 16

January 2005 15

July 2005 17

January 2006 17

July 2006 15

January 2007 14

Develop a good forecasting model, and use it to forecast Brazil’s short-term rate for
July 2007.
12–3. The following data are a local newspaper’s readership figures, in thousands:

Year: 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007
Readers: 53 65 74 85 92 105 120 128 144 158 179 195

Do a trend regression on the data, and forecast the total number of readers for 2008
and for 2009.
12–4. The following data are the share of foreign shareholding as a percentage of
total market capitalization in Korea for the past 12 years: 5, 10, 10, 12, 13, 14, 18, 21,
30, 37, 37, 40.2 Develop a forecasting model for these data and forecast foreign share-
holding percentage for Korea in the following year.
12–5. Would trend analysis, by itself, be a useful forecasting tool for monthly sales
of swimming suits? Explain.
12–6. A firm’s profits are known to vary with a business cycle of several years.
Would trend analysis, by itself, be a good forecasting tool for the firm’s profits? Why?

1Paulo Gomez and Gretchen Skedsvold, “Brazil: Trying to Realize Potential,” Real Estate Finance 23, no. 5 (2007),
pp. 8–20.

2Joshua Aizenman, Yeonho Lee, and Youngseop Rhee, “International Reserves Management and Capital Mobility in
a Volatile World: Policy Considerations and a Case Study of Korea,” Journal of the Japanese and International Economies 21,
no. 1 (2007), pp. 1–15.
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12–3 Seasonality and Cyclical Behavior
Monthly time series observations very often display seasonal variation. The seasonal
variation follows a complete cycle throughout a whole year, with the same general pat-
tern repeating itself year after year. The obvious examples of such variation are sales of
seasonal items, for example, suntan oil. We expect that sales of suntan oil will be very
high during the summer months. We expect sales to taper off during the onset of fall
and to decline drastically in winter—with another peak during the winter holiday sea-
son, when many people travel to sunny places on vacation—and then increase again as
spring progresses into summer. The pattern repeats itself the following year.

Seasonal variation, which is very obvious in a case such as suntan oil, actually
exists in many time series, even those that may not appear at first to have a seasonal
characteristic. Electricity consumption, gasoline consumption, credit card spending,
corporate profits, and sales of most discretionary items display distinct seasonal vari-
ation. Seasonality is not confined to monthly observations. Monthly time series
observations display a 12-month period: a 1-year cycle. If our observations of a sea-
sonal variable are quarterly, these observations will have a four-quarter period.
Weekly observations of a seasonal time series will display a 52-week period. The
term seasonality, or seasonal variation, frequently refers to a 12-month cycle.

In addition to a linear or curvilinear trend and seasonality, a time series may
exhibit cyclical variation (where the period is not 1 year). In the context of business
and economics, cyclical behavior is often referred to as the business cycle. The busi-
ness cycle is marked by troughs and peaks of business activity in a cycle that lasts
several years. The cycle is often of irregular, unpredictable pattern, and the period
may be anything from 2 to 15 years and may change within the same time series. We
repeat the distinction between the terms seasonal variation and cyclical variation:

When a cyclical pattern in our data has a period of 1 year, we usually call
the pattern seasonal variation. When a cyclical pattern has a period other
than 1 year, we refer to it as cyclical variation.

We now give an example of a time series with a linear trend and with seasonal
variation and no cyclical variation. Figure 12–5 shows sales data for suntan oil. Note

566 Chapter 12
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FIGURE 12–5 Monthly Sales of Suntan Oil
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that the data display both a trend (increasing sales as one compares succeeding years)
and a seasonal variation.

Figure 12–6 shows a time series of annual corporate gross earnings for a given
company. Since the data are annual, there is no seasonal variation. As seen in the
figure, the data exhibit both a trend and a cyclical pattern. The business cycle here
has a period of approximately 4 years (the period does change during the time span
under study). Figure 12–7 shows monthly total numbers of airline passengers travel-
ing between two cities. See what components you can visually detect in the plot of
the time series.

How do we incorporate seasonal behavior in a time series model? Several different
approaches can be applied to the problem. Having studied regression analysis, and
having used it (somewhat informally) in trend analysis, we now extend regression
analysis to account for seasonal behavior. If you think about it for a while and recall
the methods described in Chapter 11, you probably realize that one of the tools of
multiple regression—the dummy variable—is applicable here. We can formulate a
regression model for the trend, whether linear or curvilinear, and add 11 dummy
variables to the model to account for seasonality if our data are monthly. (Why 11?
Reread the appropriate section of Chapter 11 if you do not know.) If data are quarterly,

Time Series, Forecasting, and Index Numbers 567

FIGURE 12–6 Annual Corporate Gross Earnings
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FIGURE 12–7 Monthly Total Numbers of Airline Passengers Traveling between Two Cities
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we use three dummy variables to denote the particular quarter. You have probably
spotted a limitation to this analysis, in addition to the fact that the assumptions of the
regression model are not met in the context of time series. The new limitation is lack
of parsimony. If you have 2 years’ worth of monthly data and you use the dummy
variable technique along with linear trend, then you have a regression analysis of 24
observations using a model with 12 variables. If, on the other hand, your data are
quarterly and you have many years of data, then the problem of the proliferation of
variables does not arise. Since the regression assumptions are not met anyway, we
will not worry about this problem.

Using the dummy variable regression approach to seasonal time series assumes
that the effect of the seasonal component of the series is additive. The seasonality is
added to the trend and random error, as well as to the cycle (nonseasonal periodicity)—
if one exists. We are thus assuming a model of the following form.

An additive model is

Zt � Tt � St � Ct � It (12–2)

where T is the trend component of the series, S is the seasonal component,
C is the cyclical component, and I is the irregular component

(The irregular component is the error at; we use It because it is the usual notation in
decomposition models.) Equation 12–2 states the philosophy inherent in the use of
dummy variable regression to account for seasonality: The time series is viewed as
comprising four components that are added to each other to give the observed values
of the series.

The particular regression model, assuming our data are quarterly, is given by the
following equation.

A regression model with dummy variables for seasonality is

Zt � �0 � �1t � �2Q1 � �3Q2 � �4Q3 � at (12–3)

where Q1 � 1 if the observation is in the first quarter of the year and 0
otherwise; Q2 � 1 if the observation is in the second quarter of the year
and 0 otherwise; Q3 � 1 if the observation is in the third quarter of the
year and 0 otherwise; and all three Qi are 0 if the observation is in the
fourth quarter of the year.

Since the procedure is a straightforward application of the dummy variable regres-
sion technique of Chapter 11, we will not give an example.

A second way of modeling seasonality assumes a multiplicative model for the com-
ponents of the time series. This is more commonly used than the additive model,
equation 12–2, and is found to describe appropriately time series in a wide range of
applications. The overall model is of the following form.

A multiplicative model is
Zt � (Tt)(St)(Ct)(It) (12–4)

Here the observed time series values are viewed as the product of the four components,
when all exist. If there is no cyclicity, for example, then Ct � 1. When equation 12–4

568 Chapter 12
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is the assumed overall model for the time series, we deal with the seasonality by
using a method called ratio to moving average. Once we account for the seasonality, we
may also model the cyclical variation and the trend. We describe the procedure in
the next section.
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12–7. Explain the difference between the terms seasonal variation and cyclical variation.
12–8. What particular problem would you encounter in fitting a dummy variable
regression to 70 weekly observations of a seasonal time series?
12–9. In your opinion, what could be the reasons why the seasonal component is
not constant? Give examples where you believe the seasonality may change.
12–10. The following data are the monthly profit margins, in dollars per gallon, for
an ethanol marketer from January 2005 through December 2006.3

0.5, 0.7, 0.8, 1.0, 1.0, 0.9, 1.1, 1.4, 1.5, 1.4, 0.7, 0.8, 0.8, 0.7, 1.1, 1.5, 1.7, 1.5, 1.6, 1.9, 2.1, 2.4,
2.6, 1.4

Construct a forecasting model for these data and forecast the profit margin for
January 2007.

12–4 The Ratio-to-Moving-Average Method
A moving average of a time series is an average of a fixed number of obser-
vations (say, five observations) that moves as we progress down the series.4

A moving average based on five observations is demonstrated in Table 12–2. Fig-
ure 12–8 shows how the moving average in Table 12–2 is obtained and how this aver-
age moves as the series progresses. Note that the first moving average is obtained from
the first five observations, so we must wait until t � 5 to produce the first moving
average. Therefore, there are fewer observations in the moving-average series than
there are in the original series, Zt. A moving average smoothes the data of their variations.
The original data of Table 12–2 along with the smoothed moving-average series are
displayed in Figure 12–9.

The idea may have already occurred to you that if we have a seasonal time series
and we compute a moving-average series for the data, then we will smooth out the
seasonality. This is indeed the case. Assume a multiplicative time series model of the
form given in equation 12–4:

Z � TSCI

3William K. Caesar, Jens Riese, and Thomas Seitz, “Betting on Biofuels,” McKinsey Quarterly, no. 3 (2007), pp. 53–64.
4The term moving average has another meaning within the Box-Jenkins methodology (an advanced forecasting tech-

nique not discussed in this book).

TABLE 12–2 Demonstration of a Five-Observation Moving Average

Time t: 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Series values, Zt: 15 12 11 18 21 16 14 17 20 18 21 16 14 19

Corresponding
series of five-
observation 
moving
average: 15.4 15.6 16 17.2 17.6 17 18 18.4 17.8 17.6
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(here we drop the subscript t ). If we smooth out the series by using a 12-month mov-
ing average when data are monthly, or four-quarter moving average when data are
quarterly, then the resulting smoothed series will contain trend and cycle but not sea-
sonality or the irregular component; the last two will have been smoothed out by the
moving average. If we then divide each observation by the corresponding value of
the moving-average (MA) series, we will have isolated the seasonal and irregular
components. Notationally,

(12–5)

This is the ratio to moving average. If we average each seasonal value with all val-
ues of Zt/MA for the same season (i.e., for quarterly data, we average all values cor-
responding to the first quarter, all values of the second quarter, and so on), then we
cancel out most of the irregular component It and isolate the seasonal component of

Zt

MA
=

TSCI
TC

= SI

570 Chapter 12

FIGURE 12–8 Computing the Five-Observation Moving Averages for the Data in Table 12–2
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FIGURE 12–9 Original Series and Smoothed Moving-Average Series
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the series. Two more steps must be followed in the general procedure just described:
(1) we compute the seasonal components as percentages by multiplying Zt/MA by
100; and (2) we center the dates of the moving averages by averaging them. In the case
of quarterly data, we average every two consecutive moving averages and center
them midway between quarters. Centering is required because the number of terms
in the moving average is even (4 quarters or 12 months).

Summary of the ratio-to-moving-average procedure for quarterly data 
(a similar procedure is carried out when data are monthly):

1. Compute a four-quarter moving-average series.
2. Center the moving averages by averaging every consecutive pair.
3. For each data point, divide the original series value by the correspon-

ding moving average. Then multiply by 100.
4. For each quarter, average all data points corresponding to the quarter.

The averaging can be done in one of several ways: find the simple aver-
age; find a modified average, which is the average after dropping the
highest and lowest points; or find the median. Once we average the
ratio-to-moving-average figures for each quarter, we will have four quar-
terly indexes. Finally, we adjust the indexes so that their mean will be
100. This is done by multiplying each by 400 and dividing by their sum.

We demonstrate the procedure with Example 12–3.

Time Series, Forecasting, and Index Numbers 571

The distribution manager of Northern Natural Gas Company needs to analyze the time
series of quarterly sales of natural gas in a Midwestern region served by the company.
Quarterly data for 2004 through 2007 are given in Table 12–3. The table also shows the
four-quarter moving averages, the centered moving averages, and the ratio to moving
average (multiplied by 100 to give percentages). Figure 12–10 shows both the original
series and the centered four-quarter moving-average series. Note how the seasonal
variation is smoothed out.

The ratio-to-moving-average column in Table 12–3 gives us the contribution of
the seasonal component and the irregular component within the multiplicative model,

E X A M P L E  1 2 – 3

TABLE 12–3 Data and Four-Quarter Moving Averages for Example 12–3

Sales Four-Quarter Centered Ratio to Moving
Quarter (billions Btu) Moving Average Moving Average Average (%)

2004 W 170

Sp 148
152.25

(141�151.125)100

Su 141
150

151.125 93.3

F 150 ●
147.25

148.625 100.9

2005 W 161 ●
145

146.125 110.2

Sp 137 ●
147

146 93.8

Su 132 ●
146

146.5 90.1

F 158
148

147 107.5

2006 W 157
147

147.5 106.4

Sp 145
141

144 100.7

Su 128
141.75

141.375 90.5

F 134 ●
140.25

141 95.0

2007 W 160 ●
140.75

140.5 113.9

Sp 139 ●
143.25

142 97.9

Su 130
(139/142)100

F 144

t
t r

r

t r

S o l u t i o n
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as seen from equation 12–5. We now come to step 4 of the procedure—averaging each
seasonal term so as to average out the irregular effects and isolate the purely seasonal
component as much as possible. We will use the simple average in obtaining the four
seasonal indexes. This is done in Table 12–4, with the ratio-to-moving-average figures
from Table 12–3.

Due to rounding, the indexes do not add to exactly 400, but their sum is very
close to 400. The seasonal indexes quantify the seasonal effects in the time series of
natural gas sales. We will see shortly how these indexes and other quantities are used
in forecasting future values of the time series.

The ratio-to-moving-average procedure, which gives us the seasonal indexes,
may also be used for deseasonalizing the data. Deseasonalizing a time series is a
procedure that is often used to display the general movement of a series without
regard to the seasonal effects. Many government economic statistics are reported in
the form of deseasonalized time series. To deseasonalize the data, we divide every
data point by its appropriate seasonal index. If we assume a multiplicative time series

FIGURE 12–10 Northern Natural Gas Sales: Original Series and Moving Average
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TABLE 12–4 Obtaining the Seasonal Indexes for Example 12–3

Quarter

Winter Spring Summer Fall

2004 93.3 100.9
2005 110.2 93.8 90.1 107.5
2006 106.4 100.7 90.5 95.0
2007 113.9 97.9

Sum 330.5 292.4 273.9 303.4

Average 110.17 97.47 91.3 101.13

Sum of averages � 400.07

Seasonal index � (Average)(400)�(400.07):

110.15 97.45 91.28 101.11
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model (equation 12–4), then dividing by the seasonal index gives us a series contain-
ing the other components only:

(12–6)

Table 12–5 shows how the series of Example 12–3 is deseasonalized. The
deseasonalized natural gas time series, along with the original time series, is shown in
Figure 12–11. Note that we have to multiply our results Z/S by 100 to cancel out the
fact that our seasonal indexes were originally multiplied by 100 by convention.

Z
S

=
TSCI

S
= CTI

TABLE 12–5 Deseasonalizing the Series for Example 12–3

Sales Z Seasonal Deseasonalized
Quarter (billions Btu) Indexes S Series (Z/S)(100)

2004 Winter 170 110.15 154.33
Spring 148 97.45 151.87
Summer 141 91.28 154.47
Fall 150 101.11 148.35

2005 Winter 161 110.15 146.16
Spring 137 97.45 140.58
Summer 132 91.28 144.61
Fall 158 101.11 156.27

2006 Winter 157 110.15 142.53
Spring 145 97.45 148.79
Summer 128 91.28 140.23
Fall 134 101.11 132.53

2007 Winter 160 110.15 145.26
Spring 139 97.45 142.64
Summer 130 91.28 142.42
Fall 144 101.11 142.42

FIGURE 12–11 Original and Deseasonalized Series for the Northern Natural Gas Example
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FIGURE 12–12 The Template for the Ratio-to-Moving-Average Method of 
Trend	Season Forecasting
[Trend	Season Forecast.xls; Sheet: Quarterly]

M

Forecasting with Trend and Seasonality
Trend Equation

Seasonal IndicesForecasts
Q Indext Year Q Y

152.264 –0.83741

Intercept slopeNorthern Natural Gas
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4
1
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4
1
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3
4
1
2
3
4

1
148
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150
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137
132
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145
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134
160
139
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144

170
151.876007

154.4511554
148.3350966
146.1793232
140.5879254
144.592571

156.2463018
142.5475387
148.7974393
140.2109779
132.5126863
145.271377

142.6403039
142.4017745
142.4016927

154.3508381
2004
2004
2004
2005
2005
2005
2005
2006
2006
2006
2006
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2007
2007
2007

2004
18
19
20
21
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24
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27
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17
2
3
4
1
2
3
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1
2
3
4

1
2
3
4

400

1
133.6892
124.478

137.0366
148.3328
130.425
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118.3622
130.2621

152.002
97.45
91.29

101.12

110.14
2008
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2008
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2009
2009
2009
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2010
2010
2010

2008

B

Data
Forecast

The deseasonalized series in Figure 12–11 does have some variation in it. Compar-
ing this series with the moving-average series in Figure 12–10, containing only the trend
and cyclical components TC , we conclude that the relatively high residual variation in
the deseasonalized series is due to the irregular component I (because the deseasonal-
ized series is TCI and the moving-average series is TC ). The large irregular component
is likely due to variation in the weather throughout the period under study.

The Template
The template that can be used for Trend � Season Forecasting using the ratio-to-
moving-average method is shown in Figure 12–12. In this figure, the sheet meant for
quarterly data is shown. The same workbook, Trend�Season Forecasting.xls, inclu-
des a sheet meant for monthly data, which is shown in Figure 12–13.

The Cyclical Component of the Series
Since the moving-average series is TC , we could isolate the cyclical component of the
series by dividing the moving-average series by the trend T. We must, therefore, first
estimate the trend. By visually inspecting the moving-average series in Figure 12–10, we
notice a slightly decreasing linear trend and what looks like two cycles. We should there-
fore try to fit a straight line to the data. The line, fit by simple linear regression of cen-
tered moving average against t , is shown in Figure 12–14. The estimated trend line is

� 152.26 � 0.837t (12–7)Z$
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FIGURE 12–13 The Template for Trend	Season Forecasting with Monthly Data
[Trend	Season Forecast.xls; Sheet: Monthly]

N

Forecasting with Trend and Seasonality
Trend Equation

Seasonal IndicesForecasts
Month Indext Year Month Y
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FIGURE 12–14 Trend Line and Moving Average for the Northern Natural Gas Example
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As we noted, obtaining reliable forecasts of the cyclical component is very dif-
ficult. The trend is forecast simply by substituting the appropriate value of t in
the least-squares line, as was done in Section 12–2. Then we multiply the value by
the seasonal index (expressed as a decimal—divided by 100) to give us TS. Finally,
we follow the cyclical component and try to guess what it may be at the point we
need to forecast; then we multiply by this component to get TSC. In our example,
since the cyclical component seems small, we may avoid the nebulous task of
guessing the future value of the cyclical component. We will therefore forecast
using only S and T.

Let us forecast natural gas sales for winter 2008. Equation 12–7 for the trend was
estimated with each quarter sequentially numbered from 1 to 16. Winter 2008 is t �17.
Substituting this value into equation 12–7, we get

ẑ � 152.26 � 0.837(17) � 138.03 (billion Btu)

The next stage is to multiply this result by the seasonal index (divided by 100). Since
the point is a winter quarter, we use the winter index. From the bottom of Table 12–4
(or the second column of Table 12–5), we get the seasonal index for winter: 110.15.
Ignoring the (virtually unforecastable) cyclical component by letting it equal 1, we
find, using the forecast equation, equation 12–8:

ẑ � TSC � (1)(138.03)(1.1015) � 152.02 (billion Btu)

This is our forecast of sales for winter 2008. See Figure 12–12 for further
forecasts.

576 Chapter 12

From Figure 12–14, it seems that the cyclical component is relatively small in com-
parison with the other components of this particular series.

If we want to isolate the cyclical component, we divide the moving-average
series (the product TC ) by the corresponding trend value for the period. Multi-
plying the answer by 100 gives us a kind of cyclical index for each data point. There
are problems, however, in dealing with the cycle. Unlike the seasonal compo-
nent, which is fairly regular (with a 1-year cycle), the cyclical component of the time
series may not have a dependable cycle at all. Both the amplitude and the cycle
(peak-to-peak distance) of the cyclical component may be erratic, and it may be very
difficult, if not impossible, to predict. Thus forecasting future series observations is
difficult.

Forecasting a Multiplicative Series
Forecasting a series of the form Z �TSCI entails trying to forecast the three “regular”
components C , T, and S. We try to forecast each component separately and then
multiply them to get a series forecast:

The forecast of a multiplicative series is

Ẑ � TSC (12–8)
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12–11. The following data, from the U.S. Department of the Treasury’s Treasury
Bulletin, are monthly total federal debt, in millions of dollars, for December 2005
through December 2006.5

Dec 2005 Jan 2006 Feb 2006 Mar 2006 Apr 2006 May 2006 Jun 2006

8,194,251 8,219,745 8,293,333 8,394,740 8,379,083 8,380,354 8,443,683

Jul 2006 Aug 2006 Sep 2006 Oct 2006 Nov 2006 Dec 2006

8,467,856 8,538,350 8,530,366 8,607,540 8,656,590 8,703,738

Forecast total federal debt for January 2007. How confident are you in your forecast?
12–12. The following data are monthly figures of factory production, in millions of
units, from July 2004 through April 2007:

7.4, 6.8, 6.4, 6.6, 6.5, 6.0, 7.0, 6.7, 8.2, 7.8, 7.7, 7.3, 7.0, 7.1, 6.9, 7.3, 7.0, 6.7, 7.6, 7.2, 7.9, 7.7,
7.6, 6.7, 6.3, 5.7, 5.6, 6.1, 5.8, 5.9, 6.2, 6.0, 7.3, 7.4

Decompose the series into its components, using the methods of this section, and
forecast steel production for May 2007.
12–13. The following data are monthly price discovery contributions for gold prices
from the COMEX open outcry contract for November 2004 through August 2006.6

0.38, 0.38, 0.44, 0.42, 0.44, 0.46, 0.48, 0.49, 0.51, 0.52, 0.45, 0.40, 0.39, 0.37, 0.38, 0.37,
0.33, 0.33, 0.32, 0.32, 0.32, 0.31

Construct a forecasting model and forecast the next period’s value.
12–14. An article in Harvard Business Review looked at the percentage of negative
media stories about British Petroleum (BP) in 2005 and 2006. The monthly data, in
percent, from January 2005 through September 2006, are as follows.7

14, 10, 50, 24, 16, 15, 20, 42, 18, 26, 21, 20, 18, 10, 22, 24, 26, 24, 18, 58, 40

Can you predict the percentage of negative media stories about BP for October
2006? Comment on the value of such an analysis.
12–15. The following are quarterly data, in millions of dollars, of corporate rev-
enues for a firm in the apparel industry from first quarter 2005 through first quarter
2007:

3.4, 4.5, 4.0, 5.0, 4.2, 5.4, 4.9, 5.7, 4.6

Predict corporate revenue for the second quarter of 2004.

12–5 Exponential Smoothing Methods
One method that is often useful in forecasting time series is exponential smoothing. There
are exponential smoothing methods of varying complexity, but we will discuss only the
simplest model, called simple exponential smoothing. Simple exponential smoothing is a
useful method for forecasting time series that have no pronounced trend or seasonality.
The concept is an extension of the idea of a moving average, introduced in the last sec-
tion. Look at Figures 12–9 and 12–10, and notice how the moving average smoothes the
original series of its sharp variations. The idea of exponential smoothing is to smooth
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the original series the way the moving average does and to use the smoothed series in
forecasting future values of the variable of interest. In exponential smoothing, however,
we want to allow the more recent values of the series to have greater influence on the
forecasts of future values than the more distant observations.

Exponential smoothing is a forecasting method in which the forecast is
based on a weighted average of current and past series values. The largest
weight is given to the present observation, less weight to the immediately
preceding observation, even less weight to the observation before that,
and so on. The weights decline geometrically as we go back in time.

We define a weighting factor w as a selected number between 0 and 1

0 � w � 1 (12–9)

Once we select w—for example, w � 0.4—we define the forecast equation. The fore-
cast equation is

t �1 � w(Zt ) � w(1 � w)(Zt � 1) � w(1 � w)2(Zt � 2)
� w(1 � w)3(Zt � 3) � � � � (12–10)

where t �1 is the forecast value of the variable Z at time t � 1 from knowledge of the
actual series values Zt , Zt �1, Zt �2, and so on back in time to the first known value of
the time series Z1.

The series of weights used in producing the forecast t �1 is w, w (1 � w),
w(1 � w)2, . . . These weights decline toward 0 in an exponential fashion; thus, as we go
back in the series, each value has a smaller weight in terms of its effect on the fore-
cast. If w � 0.4, then the rest of the weights are w(1 � w) � 0.24, w (1 � w)2 � 0.144,
w (1 � w)3 � 0.0864, w(1 � w)4 � 0.0518, w(1 � w)5 � 0.0311, w (1 � w)6 � 0.0187,
and so on. The exponential decline of the weights toward 0 is evident. This is shown
in Figure 12–15.

Z$

Z$

Z$
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FIGURE 12–15 Exponentially Declining Weights
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The recursive equation, equation 12–11, can be restated in words as

Next forecast � w(Present actual value) � (1 � w)(Present forecast)

The forecast value for time period t � 1 is thus seen as a weighted average of the
actual value of the series at time t and the forecast value of the series at time t (the
forecast having been made at time t � 1). Yet a third way of writing the formula for
the simple exponential smoothing model follows.

An equivalent form of the exponential smoothing model is

Ẑt�1 � Zt � (1 � w)(Ẑt � Zt) (12–12)

The proofs of the equivalence of equations 12–10, 12–11, and 12–12 are left as exer-
cises at the end of this section. The importance of equation 12–12 is that it describes
the forecast of the value of the variable at time t � 1 as the actual value of the variable
at the previous time period t plus a fraction of the previous forecast error. The forecast
error is the difference between the forecast t and the actual series value Zt . We will
formally define the forecast error soon.

The recursive equation (equation 12–11) allows us to compute the forecast value
of the series for each time period in a sequential manner. This is done by substituting
values for t (t � 1, 2, 3, 4, . . .) and using equation 12–11 for each t to produce the fore-
cast at the next period t � 1. Then the forecast and actual values at the last known
time period, t and Zt , are used in producing a forecast of the series into the future.
The recursive computation is done by applying equation 12–11 as follows:

2 � w(Z1) � (1 � w)( 1)

3 � w(Z2) � (1 � w)( 2)

4 � w(Z3) � (1 � w)( 3)

5 � w(Z4) � (1 � w)( 4)
�

�

� (12–13)

Z$Z$
Z$Z$
Z$Z$
Z$Z$

Z$

Z$

Before we show how the exponential smoothing model is used, we will rewrite
the model in a recursive form that uses both previous observations and previous fore-
casts. Let us look at the forecast of the series value at time t � 1, denoted t �1. The
exponential smoothing model of equation 12–10 can be shown to be equivalent to
the following model.

The exponential smoothing model is

Ẑt �1 � w(Zt) � (1 � w)(Ẑt) (12–11)

where Zt is the actual, known series value at time t and Ẑt is the forecast
value for time t.

Z$
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The problem is how to determine the first forecast 1. Customarily, we use 1 � Z1.
Since the effect of the first forecast in a series of values diminishes as the series pro-
gresses toward the future, the choice of the first forecast is of little importance (it is an
initial value of the series of forecasts, and its influence diminishes exponentially).

The choice of w, which is up to the person carrying out the analysis, is very
important, however. The larger the value of w, the faster the forecast series responds to change
in the original series. Conversely, the smaller the value of w, the less sensitive is the
forecast to changes in the variable Zt. If we want our forecasts not to respond quickly
to changes in the variable, we set w to be a relatively small number. Conversely, if we
want the forecast to quickly follow abrupt changes in variable Zt, we set w to be rela-
tively large (closer to 1.00 than to 0). We demonstrate this, as well as the computation
of the exponentially smoothed series and the forecasts, in Example 12–4. 

A sales analyst is interested in forecasting weekly firm sales in thousands of units. The
analyst collects 15 weekly observations in 2007 and recursively computes the expo-
nentially smoothed series of forecasts, using w � 0.4 and the exponentially smoothed
forecast series for w � 0.8. The original data and both exponentially smoothed series
are given in Table 12–6. 

The original series and the two exponentially smoothed forecast series, correspon-
ding to w � 0.4 and w � 0.8, are shown in Figure 12–16. The figure also shows the
forecasts of the unknown value of the series at the 16th week produced by the two
exponential smoothing procedures (w � 0.4 and w � 0.8). As was noted earlier, the
smoothing coefficient w is set at the discretion of the person carrying out the analy-
sis. Since w has a strong effect on the magnitude of the forecast values, the forecast
accuracy depends on guessing a “correct” value for the smoothing coefficient. We
have presented a simple exponential smoothing method. When the data exhibit a
trend or a seasonal variation, or both, more complicated exponential smoothing
methods apply.

Z$Z$

TABLE 12–6 Exponential Smoothing Sales Forecasts Using w � 0.4 and w � 0.8

Zt Ẑt Ẑt
Day Original Series Forecast Using w � 0.4 Forecast Using w � 0.8

1 925 925 925

2 940 0.4(925) � 0.6(925) � 925 925

3 924 0.4(940) � 0.6(925) � 931 937

4 925 928.2 926.6

5 912 926.9 925.3

6 908 920.9 914.7

7 910 915.7 909.3

8 912 913.4 909.9

9 915 912.8 911.6

10 924 913.7 914.3

11 943 917.8 922.1

12 962 927.9 938.8

13 960 941.5 957.4

14 958 948.9 959.5

15 955 952.5 958.3

16 (Forecasts) 953.5 955.7 
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The Template
The template that can be used for exponential smoothing is shown in Figure 12–17.
An additional feature available on the template is the use of the Solver to find the
optimal w. We saw the results of using w � 0.4 and w � 0.8 in Example 12–4. Suppose
we want to find the optimal w that minimizes MSE. To do this, unprotect the sheet and
invoke the Solver. Click the Solve button, and when the Solver is done, choose Keep
Solver Solution. The value of w found in the template is the optimal w that minimizes
MSE. These instructions are also available in the comment at cell C4.

FIGURE 12–16 The Sales Data: Original Series and Two Exponentially Smoothed Series

t

Zt

When w = 0.4,
forecast series
follows original series
less closely than
when w = 0.8

Forecast of the 16th week
using w = 0.4

Forecast of the 16th week
using w = 0.8

Original series

Exponential smoothing w = 0.8

Exponential smoothing w = 0.4
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FIGURE 12–17 The Template for Exponential Smoothing
[Exponential Smoothing.xls]

970

960

950

940

930

920

910

900

890

880
1

t

Z

Exponential Smoothing

Forecastt

w

Zt

940
924
925
912
908
910
912
915

2
3
4
5
6
7
8
9

925
9251 925

931
928.2
926.92
920.952
915.771
913.463
912.878

92410 913.727
94311 917.836
96212 927.902
96013 941.541
95814 948.925
95515 952.555

16 953.533

1

2
3
4

6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

BA C D GFE H I J K L M N O P Q

|Error|

MAE MAPE MSE

%Error Error2

0.76%
0.35%
1.64%
1.43%
0.63%
0.16%
0.23%

7
3.2

14.92
12.952
5.7712
1.46272
2.12237

49
10.24

222.606
167.754
33.3067
2.13955
4.50445

1.11%10.2734 105.543
2.67%25.1614 633.23
3.54%34.0984 1162.7
1.92%18.4591 340.737
0.95%9.07544 5.9793
0.26%2.44526 82.3635

Actual

Forecast

0.4 11.3034 1.20% 216.931

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
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The Solver works better with MSE than MAPE (mean absolute percent error),
because MSE is a “smooth” function of w whereas MAPE is not. With MAPE, the
Solver may be stuck at a local minimum and miss the global minimum. 

12–16. The following data are Vodafone’s quarterly market share of revenue (in
percent) for 1992 through 2003 in Portugal.8

28, 39, 41, 43, 46, 48, 53, 55, 59, 60, 61, 60, 58, 59, 60, 60, 57, 55, 56, 52, 49, 52, 52, 53, 46,
45, 42, 40, 39, 40, 39, 38, 35, 37, 36, 33, 30, 32, 33, 32, 27, 28, 28, 26, 27, 26, 27, 28

Forecast Vodafone’s revenue market share in Portugal for the following quarter, using
an exponential smoothing model.
12–17. The following are weekly sales data, in thousands of units, for microcomputer
disks:

57, 58, 60, 54, 56, 53, 55, 59, 62, 57, 50, 48, 52, 55, 58, 61

Use w � 0.3 and w � 0.8 to produce an exponential smoothing model for these data.
Which value of w produces better forecasts? Explain.
12–18. Construct an exponential smoothing forecasting model, using w � 0.7, for
new orders reported by a manufacturer. Monthly data (in thousands of dollars) to
April 2007 are

195, 193, 190, 185, 180, 190, 185, 186, 184, 185, 198, 199, 200, 201, 199, 187, 186, 191, 195,
200, 200, 190, 186, 196, 198, 200, 200

12–19. The following data are from the Treasury Bulletin, published by the U.S.
Department of the Treasury. They represent total U.S. liabilities to foreigners for the
years 2000 to 2006 in millions of dollars9:

2000 2001 2002 2003 2004 2005 2006

2,565,942 2,724,292 3,235,231 3,863,508 4,819,747 5,371,689 6,119,114

Can you forecast total U.S. liabilities to foreigners for 2007?
12–20. Use the Wall Street Journal or another source to gather information on the
daily price of gold. Collect a series of prices, and construct an exponential smoothing
model. Choose the weighting factor w that seems to fit the data best. Forecast the next
day’s price of gold, and compare the forecast with the actual price once it is known.
12–21. Prove that equation 12–10 is equivalent to equation 12–11.
12–22. Prove the equivalence of equations 12–11 and 12–12.

12–6 Index Numbers
It was dubbed the “Crash of ’87.” Measured as a percentage, the decline was worse
than the one that occurred during the same month in 1929 and ushered in the Great
Depression. Within a few hours on Monday, October 19, 1987, the Dow Jones Indus-
trial Average plunged 508.32 points, a drop of 22.6%—the greatest percentage drop
ever recorded in one day.

What is the Dow Jones Industrial Average, and why is it useful? The Dow Jones
average is an example of an index. It is one of several quantitative measures of price
movements of stocks through time. Another commonly used index is the New York

582 Chapter 12

8Philippe Gagnepain and Pedro Pereira, “Entry, Costs Reduction, and Competition in the Portuguese Mobile
Telephony Industry,” International Journal of Industrial Organization 25, no. 3 (2007), pp. 461–481.

9Selected U.S. Liability to Foreigners, Treasury Bulletin, March 2007, p. 56.

P R O B L E M S
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Stock Exchange (NYSE) Index, and there are others. The Dow Jones captures in one
number (e.g., the 508.32 points just mentioned) the movements of 30 industrial
stocks considered by some to be representative of the entire market. Other indexes
are based on a wider proportion of the market than just 30 big firms.

Indexes are useful in many other areas of business and economics. Another com-
monly quoted index is the consumer price index (CPI), which measures price fluc-
tuations. The CPI is a single number representing the general level of prices that
affect consumers.

An index number is a number that measures the relative change in a set
of measurements over time.

When the measurements are of a single variable, for example, the price of a certain
commodity, the index is called a simple index number. A simple index number is the
ratio of two values of a variable, expressed as a percentage. First, a base period is chosen.
The value of the index at any time period is equal to the ratio of the current value of
the variable divided by the base-period value, times 100. 

E X A M P L E  1 2 – 5The following data are annual cost figures for residential natural gas for the years
1984 to 1997 (in dollars per thousand cubic feet):

121, 121, 133, 146, 162, 164, 172, 187, 197, 224, 255, 247, 238, 222

If we want to describe the relative change in price of residential natural gas, we con-
struct a simple index of these prices. Suppose that we are interested in comparing
prices of residential natural gas of any time period to the price in 1984 (the first year
in our series). In this case, 1984 is our base year, and the index for that year is defined
as 100. The index for any year is defined by equation 12–14.

Index number for period i � 100 (12–14)

Thus, the index number for 1986 (using the third data point in the series) is computed as

Index number for 1986 � 100

� 100 � 109.9

This means that the price of residential natural gas increased by 9.9% from 1984 to
1986. Incidentally, the index for 1985 is also 100 since the price did not change from
1984 to 1985. Let us now compute the index for 1987:

Index number for 1987 � 100 � 120.66

Thus, compared with the price in 1984, the price in 1987 was 20.66% higher. It is
very important to understand that changes in the index from year to year may not be
interpreted as percentages except when one of the two years is the base year. The fact
that the index for 1987 is 120.66 and for 1986 is 109.9 does not imply that the price
in 1987 was 20.66 � 9.9 � 10.76% higher than in 1986. Comparisons in terms of

a146
121
b

a133
121
b

aPrice in 1986
Price in 1984

b

a Value in period i
Value in base period

b

S o l u t i o n
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percentages may be made only with the base year. We can only say that the price in
1986 was 9.9% higher than 1984, and the price in 1987 was 20.66% higher than in
1984. Table 12–7 shows the year, the price, and the price index for residential natural
gas from 1984 to 1997, inclusive.

From the table, we see, for example, that the price in 1994 was more than 210% of
what it was in 1984 and that by 1997 the price declined to only 183.5% of what it was in
1984. Figure 12–18 shows both the raw price and the index with base year 1984. (The
units of the two plots are different, and no comparison between them is suggested.)

As time goes on, the relevance of any base period in the past decreases in terms
of comparison with values in the present. Therefore, changing the base period and
moving it closer to the present is sometimes useful. Many indexed economic variables,
for example, use the base year 1967. As we move into more recent years, the base
year for these variables is changed to 1980 or later. To easily change the base period
of an index, all we need to do is to change the index number of the new base period
so that it will equal 100 and to change all other numbers using the same operation.
Thus, we divide all numbers in the index by the index value of the proposed new
base period and multiply them by 100. This is shown in equation 12–15.

584 Chapter 12

TABLE 12–7
Price Index for Residential
Natural Gas, Base Year 1984

Year Price Index

1984 121 100

1985 121 100

1986 133 109.9

1987 146 120.7

1988 162 133.9

1989 164 135.5

1990 172 142.1

1991 187 154.5

1992 197 162.8

1993 224 185.1

1994 255 210.7

1995 247 204.1

1996 238 196.7

1997 222 183.5

FIGURE 12–18 Price and Index (Base Year 1984) of Residential Natural Gas

9284

300

200

100

0 Year

Price
and
index

Price

Index (base year 1984)

Suppose that we want to change the base period of the residential natural gas index
(Table 12–7) from 1984 to 1991. We want the index for 1991 to equal 100, so we
divide all index values in the table by the current value for 1991, which is 154.5, and
we multiply these values by 100. For 1992, the new index value is (162.8�154.5)100 �
105.4. The new index, using 1991 as base, is shown in Table 12–8.

Figure 12–19 shows the two indexes of the price of residential natural gas using
the two different base years. Note that the changes in the index numbers that use 1984
as the base year are more pronounced. This is so because 1991, when used as the
base year, is close to the middle of the series, and percentage changes with respect to
that year are smaller.

Changing the base period of an index:

New index value � � 100 (12–15)
Old index value

Index value of new base
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TABLE 12–8 Residential Natural Gas Price Index

Year Index Using 1984 Base Index Using 1991 Base

1984 100 64.7

1985 100 64.7

1986 109.9 71.1

1987 120.7 78.1

1988 133.9 86.7

1989 135.5 87.7

1990 142.1 92.0

1991 154.5 100

1992 162.8 105.4

1993 185.1 119.8

1994 210.7 136.4

1995 204.1 132.1

1996 196.7 127.3

1997 183.5 118.7

Note: All entries in the rightmost column are obtained from the entries in the middle column by multiplication by
100�154.5.

FIGURE 12–19 Comparison of the Two Price Indexes for Residential Natural Gas

91 9784

300

200

100

0 Year

Index

(Base year 1984)

(Base year 1991)

An important use of index numbers is as deflators. This allows us to compare
prices or quantities through time in a meaningful way. Using information on the relative
price of natural gas at different years, as measured by the price index for this com-
modity, we can better assess the effect of changes in consumption by consumers. The
most important use of index numbers as deflators, however, is in the case of composite
index numbers. In particular, the consumer price index is an overall measure of relative
changes in prices of many goods and thus reflects changes in the value of the dollar.
We all know that a dollar today is not worth the same as a dollar 20 years ago. Using
the consumer price index, or another composite index, allows us to compare prices
through time in “constant” dollars.

The Consumer Price Index
The CPI is probably the best-known price index. It is published by the U.S. Bureau
of Labor Statistics and is based on the prices of several hundred items. The base year
is 1967. For obtaining the base-year quantities used as weights, the Bureau of Labor
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Statistics interviewed thousands of families to determine their consumption patterns.
Since the CPI reflects the general price level in the country, it is used, among other
purposes, in converting nominal amounts of money to what are called real amounts
of money: amounts that can be compared through time without requiring us to con-
sider changes in the value of money due to inflation. This use of the CPI is what we
referred to earlier as using an index as a deflator. By simply dividing X dollars in year i
by the CPI value for year i and multiplying by 100, we convert our X nominal (year i )
dollars to constant (base-year) dollars. This allows us to compare amounts of money
across time periods. Let us look at an example. 

Table 12–9 gives the CPI values for the years 1950 to 2007. The base year is 1967.
This is commonly denoted by [1967 � 100]. The data in Table 12–9 are from the U.S.
Bureau of Labor Statistics Web site, http://data.bls.gov.

We see, for example, that the general level of prices in the United States in 1994
was almost 41⁄2 times what it was in 1967 (the base year). Thus, a dollar in 1994 could
buy, on average, only what 1�4.44 � $0.225, or 22.5 cents, could buy in 1967. By
dividing any amount of money in a given year by the CPI value for that year and mul-
tiplying by 100, we convert the amount to constant (1967) dollars. The term constant
means dollars of a constant point in time—the base year.

586 Chapter 12
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TABLE 12–9 The Consumer Price Index [1967 � 100]

Year CPI Year CPI

1950 72.1 1978 195.4

1951 77.8 1979 217.4

1952 79.5 1980 246.8

1953 80.1 1981 272.4

1954 80.5 1982 289.1

1955 80.2 1983 298.4

1956 81.4 1984 311.1

1957 84.3 1985 322.2

1958 86.6 1986 328.4

1959 87.3 1987 340.4

1960 88.7 1988 354.3

1961 89.6 1989 371.3

1962 90.6 1990 391.4

1963 91.7 1991 408.0

1964 92.9 1992 420.3

1965 94.5 1993 432.7

1966 97.2 1994 444.0

1967 100.0 1995 456.0

1968 104.2 1996 469.9

1969 109.8 1997 480.8

1970 116.3 1998 488.3

1971 121.3 1999 499.0

1972 125.3 2000 515.8

1973 133.1 2001 530.4

1974 147.7 2002 538.8

1975 161.2 2003 551.1

1976 170.5 2004 565.8

1977 181.5 2005 585.0

2006 603.9

2007 619.1(estimate)
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Let us illustrate the use of the CPI as a price deflator. Suppose that during the
years 1980 to 1985, an analyst was making the following annual salaries:

1980 $29,500 1983 $35,000

1981 31,000 1984 36,700

1982 33,600 1985 38,000

Looking at the raw numbers, we may get the impression that this analyst has done
rather well. His or her salary has increased from $29,500 to $38,000 in just 5 years.
Actually the analyst’s salary has not even kept up with inflation! That is, in real terms
of actual buying power, this analyst’s 1985 salary is smaller than what it was in 1980.
To see why this is true, we use the CPI. 

If we divide the 1980 salary of $29,500 by the CPI value for that year and multiply by
100, we will get the equivalent salary in 1967 dollars: (29,500�246.8)(100) � $11,953.
We now take the 1985 salary of $38,000 and divide it by the CPI value for 1985 and
multiply by 100. This gives us (38,000�322.2)(100) � $11,794—a decrease of $159 (1967)!

If you perform a similar calculation for the salaries of all other years, you will find
that none of them have kept up with inflation. If we transform all salaries to 1967 dollars
(or for that matter, to dollars of any single year), the figures can be compared with one
another. Often, time series data such as these are converted to constant dollars of a sin-
gle time period and then are analyzed by using methods of time series analysis such as
the ones presented earlier in this chapter. To convert to dollars of another year (not the
base year), you need to divide the salary by the CPI for the current year and multiply
by the CPI value for the constant year in which you are interested. For example, let us
convert the 1985 salary to 1980 (rather than 1967) dollars. We do this as follows:
(38,000�322.2)(246.8) � $29,107. Thus, in terms of 1980 dollars, the analyst was making
only $29,107 in 1985, whereas in 1980 he or she was making $29,500 (1980)!

The Template
The template that can be used for index calculations is shown in Figure 12–20. The
data entered in the template are from Table 12–7. 

S o l u t i o n

FIGURE 12–20 The Template for Index Calculations
[Index.xls]
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Year Price Index

133
146
162
164
172
187
197

1986
1987
1988
1989
1990
1991
1992

109.92
120.66
133.88
135.54
142.15
154.55
162.81

2241993 185.12
2551994 210.74
2471995 204.13
2381996 196.69
2221997 183.47

1211985 100
1211984

BaseYear

100 Price

Index

1984 121 Base

1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997
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12–23. In 1987, the base year was changed to [1982 � 100]. Change the base for all
the figures in Table 12–9.
12–24. The percentage change in the price index of food and beverages in the
United States from July 2000 to July 2001 was �3.1%. The change in the same index
from June 2001 to July 2001 was �0.3%. The index was 174.0 in July 2001, with
base year 1982. Calculate what the index was in July 2000 and June 2001, with base
year 1982.
12–25. What is a simple price index?
12–26. What are the uses of index numbers?
12–27. The following is Nigeria’s Industrial Output Index for the years 1984 to
1997:

Year Index of Output

1984 175

1985 190

1986 132

1987 96

1988 100

1989 78

1990 131

1991 135

1992 154

1993 163

1994 178

1995 170

1996 145

1997 133

a. What is the base year used here?
b. Change the base year to 1993.
c. What happened to Nigeria’s industrial output from 1996 to 1997?
d. Describe the trends in industrial output throughout the years 1984 to

1997.

12–28. The following data are June 2003 to June 2004 commodity price index for
a category of goods: 142, 137, 143, 142, 145, 151, 147, 144, 149, 154, 148, 153, 154.
Form a new index, using January 2004 as the base month.

12–7 Using the Computer
Using Microsoft Excel in Forecasting and Time Series
Microsoft Excel Analysis Toolpack provides you with several tools that are used widely
in forecasting. The Moving Average analysis tool is one of them, and it enables you to
forecast the trend in your data based on the average value of the variable over a specific
number of preceding periods. To start, choose Data Analysis in the Analysis group on
the Data tab. Click Moving Average in the Data Analysis dialog box and then press
OK. Then the Moving Average dialog box appears. In the Input Range box, enter a sin-
gle row or column of your original data. Based on the example shown in Figure 12–21,
enter $B$4:$B$15 in the corresponding edit box. In the Interval box, enter the number
of values that you want to include in the moving average. Enter 4 in our example.
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FIGURE 12–21 Moving Average Generated by Excel Moving Average Tool
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Note that larger intervals provide you with smoother moving average lines. For smaller
intervals, the moving average is more strongly affected by individual data point fluc-
tuations. In the Output Range box, enter the cell address where you want the results
to start. Enter $C$4 in our example. Select the Chart Output check box to see a
graph comparing the actual and forecasted inventory levels. Then click the OK but-
ton. Figure 12–21 shows the result. The generated moving average is stored in a col-
umn starting from cell C4. We have labeled this column Forecast.

The next Excel forecasting tool is Exponential Smoothing. As before, you need
to select the Exponential Smoothing tool from the Data Analysis dialog box. When
the corresponding dialog box appears, enter the cell reference for the range of data
you want to analyze in the Input Range. The range must contain a single column or
row with four or more cells of data. In the Damping factor edit box enter the damp-
ing factor you want to use as the exponential smoothing constant. The damping fac-
tor is obtained by deducting the weighting factor w from 1. The default damping
factor is 0.3. Enter the reference for the output table as the next step. If you select
the Standard Errors check box, Microsoft Excel generates a two-column output table
with standard error values in the right column. If you have insufficient historical
values to project a forecast or calculate a standard error, Microsoft Excel returns the
#N/A error value. Figure 12–22 shows the Exponential Smoothing dialog box as
well as the obtained result stored in a column labeled Forecast. The original data set
we used belongs to Example 12–4. 

Using MINITAB in Forecasting and Time Series
MINITAB provides you with a set of statistical tools that can be used in time series
and forecasting. You can access these tools by choosing Stat � Time Series from
the menu bar. The first option is a time series plot. You can select this tool either from
Stat � Time Series � Time Series Plot or from Graph � Time Series Plot. This tool is
used for evaluating patterns in data over time. MINITAB plots the data in worksheet
order, in equally spaced time intervals. For cases in which your data were not collected
at regular intervals or are not entered in chronological order, you may want to use
Graph � Scatterplot. The next feature is the MINITAB trend analysis tool, which fits
a trend line using a linear, quadratic, growth, or S-curve model. Trend analysis fits a
general trend model to time series data and provides forecasts. This tool is accessible
via Stat � Time Series � Trend Analysis from the menu bar.

MINITAB also enables you to run a moving average analysis. This procedure
calculates moving averages, which can be used either to smooth a time series or to
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generate forecasts. Start by choosing Stat � Time Series � Moving Average from the
menu bar. When the dialog box appears enter the column containing the time series
in the Variable edit box. Enter a positive integer to indicate the desired length for
the moving average in the MA Length edit box. If you check Center the moving
averages, MINITAB places the moving average values at the period which is in the
center of the range rather than at the end of the range. This is called centering the
moving average. You can also generate forecasts by checking the option Generate
forecasts. Enter an integer in the Number of forecasts edit box to indicate how many
forecasts you want. The forecasts will appear in green on the time series plot with
95% prediction interval bands. You can set a starting point for your forecast by enter-
ing a positive integer in Starting from origin edit box. If you leave this space blank,
MINITAB generates forecasts from the end of the data. You can specify your data
time scale by clicking on the Time button. By clicking on the Storage button, you
can store various statistics generated during the process. If you check the Moving
averages in the Storage dialog box, MINITAB will store the averages of consecutive
groups of data in a time series. If you choose to center the moving average in previ-
ous steps, MINITAB will store the centered moving average instead. As an example,
we use this tool to run a moving average analysis of the data of Example 12–3.
Don’t forget to click the Time button and choose Quarter in the Calendar drop-down
box. In addition, choose Moving Average from the Storage dialog box. Figure 12–23
shows the generated Session commands, the predicted value for the following
quarter, the centered moving averages stored in the second column of the work-
sheet, as well as the plot of smoothed versus actual values.

MINITAB can also be used for running an exponential smoothing procedure.
This procedure works best for data without a trend or seasonal component. To
start choose Stat � Time Series � Single Exp Smoothing from the menu bar.
Single exponential smoothing smoothes your data by computing exponentially
weighted averages and provides short-term forecasts. In the corresponding dialog
box you need to define the column that contains the time series, weight to use in
smoothing, how many forecasts you want, and other required settings. The
Graphs, Storage, and Time buttons work the same as before. Other time series
tools and procedures of MINITAB are also available via Stat � Time Series from
the menu bar.

590 Chapter 12

FIGURE 12–22 Exponential Smoothing for w � 0.4 Performed by the Excel Exponential 
Smoothing Tool
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12–8 Summary and Review of Terms
In this chapter, we discussed forecasting methods. We saw how simple Cycle � Trend �
Seasonality � Irregular components models are created and used. We then talked
about exponential smoothing models. We also discussed index numbers. 

Time Series, Forecasting, and Index Numbers 591

FIGURE 12–23 Result of Using the MINITAB Moving Average Procedure on the 
Data of Example 12–3

12–29. The following data are monthly existing-home sales, in millions of dwelling
units, for January 2006 through June 2007. Construct a forecasting model for these
data, and use it in forecasting sales for July 2007.

4.4, 4.2, 3.8, 4.1, 4.1, 4.0, 4.0, 3.9, 3.9, 3.8, 3.7, 3.7, 3.8, 3.9, 3.8, 3.7, 3.5, 3.4

12–30. Discuss and compare all the forecasting methods presented in this chapter.
What are the relative strengths and weaknesses of each method? Under what
conditions would you use any of the methods?
12–31. Discuss the main principle of the exponential smoothing method of fore-
casting. What effect does the smoothing constant w have on the forecasts?

A D D I T I O N A L  P R O B L E M S
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10Navroz Patel, “Credit Market Ricochet,” Risk, April 2007, pp. 23–26.
11George P. Nishiotis, “Further Evidence on Closed-End Country Fund Prices and International Capital Flows,”

Journal of Business 79, no. 4 (2006), pp. 1727–1743.

12–32. The following data represent the performance of a constant-proportion debt
obligation (CPDO), executed on October 10, 2006, from that day until March 10,
2007, recorded biweekly: 99, 102, 102, 101, 103, 103, 104, 103, 104, 106, 101, 102.10

Construct a forecasting model for these data and predict the CPDO’s performance
for the following period.
12–33. The following data are annual time series measurements of market segmen-
tation in Thailand for 1991 and onward.11

18, 17, 15, 14, 15, 11, 8, 5, 4, 3, 5, 4, 6, 5, 7, 8

Construct a forecasting model for these data and predict market segmentation in
Thailand for the following year, 2007.
12–34. Open the Trend�Season Forecasting template shown in Figure 12–13, used
for monthly data and do a sensitivity analysis on this template. Change some of the
values in the table and see how the forecasts change. Are there large relative changes?
12–35. The following data are annual percentage changes in GDP for a small
country from 2001 to 2007:

6.3, 6.6, 7.3, 7.4, 7.8, 6.9, 7.8

Do trend-line forecasting.
12–36. Use your library to research the Standard & Poor’s 500 index. Write a short
report explaining this index, its construction, and its use.
12–37. The CPI is the most pervasively used index number in existence. You can
keep current with it at the Bureau of Labor Statistics site http://stats.bls.gov/. Locate
the CPI index-All urban consumers.

If the majority of new college graduates in 1978 could expect to land a job earning
$20,000 per year, what must the starting salary be for the majority of new college
graduates in 2007 in order for them to be at the same standard of living as their coun-
terparts in 1978? Is today’s typical college graduate better or worse off than her or his
1978 counterpart?C

The quarterly sales of a large manufacturer of
spare parts for automobiles are tabulated below.
Since the sales are in millions of dollars, forecast

errors can be costly. The company wants to forecast the
sales as accurately as possible.

Non-Farm-
M2 Activity Oil

Quarter Sales Index Index Price
04 Q1 $35,452,300 2.356464 34.2 19.15

04 Q2 $41,469,361 2.357643 34.27 16.46

04 Q3 $40,981,634 2.364126 34.3 18.83

04 Q4 $42,777,164 2.379493 34.33 19.75

05 Q1 $43,491,652 2.373544 34.4 18.53

05 Q2 $57,669,446 2.387192 34.33 17.61

05 Q3 $59,476,149 2.403903 34.37 17.95

05 Q4 $76,908,559 2.42073 34.43 15.84

06 Q1 $63,103,070 2.431623 34.37 14.28

06 Q2 $84,457,560 2.441958 34.5 13.02

06 Q3 $67,990,330 2.447452 34.5 15.89

06 Q4 $68,542,620 2.445616 34.53 16.91

07 Q1 $73,457,391 2.45601 34.6 16.29

07 Q2 $89,124,339 2.48364 34.7 17

07 Q3 $85,891,854 2.532692 34.67 18.2

07 Q4 $69,574,971 2.564984 34.73 17

w w w . e x e r c i s e

CASE 16 Auto Parts Sales Forecast
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Indicator

Q2 Q3 Q4

Q1 0 0 0

Q2 1 0 0

Q3 0 1 0

Q4 0 0 1

He wants to run the multiple regression with a total of
six independent variables—the original three plus the
three indicator variables.

4. Carry out the multiple regression with the six
independent variables and report the regression
equation.

5. Make a forecast for the next four quarters with
this new regression model.

6. Conduct a partial F test to test the claim that the
three indicator variables can be dropped from the
model.

7. Compare the forecasts from the three methods
employed and rank order them according to their
forecast accuracy.

1. Carry out a Trend�Season forecast with the sales
data, and forecast the sales for the four quarters
of 2008.

The director of marketing research of the company
believes that the sales can be predicted better using a
multiple regression of sales against three selected
econometric variables that the director believes have
significant impact on the sales. These variables are M2
Index, Non-Farm-Activity Index, and Oil Price. The
values of these variables for the corresponding periods
are available in the data tabulated to the left.

2. Conduct a multiple regression of sales against 
the three econometric variables, following the
procedure learned in Chapter 11. What is the
regression equation?

3. Make a prediction for the four quarters of 2008
based on the regression equation using projected
values of the following econometric variables:

Non-Farm-
M2 Activity Oil

Quarter Index Index Price

08 Q1 2.597688 34.7 17.1

08 Q2 2.630159 34.4 17.3

08 Q3 2.663036 34.5 18

08 Q4 2.696324 34.5 18.2

After seeing large errors and wide prediction intervals
in the multiple regression approach to forecasting, the

director of marketing research decides to include
indicator variables to take into account the seasonal
effects that may not be captured in the three independ-
ent variables. He adds the following three indicator
variables:
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x

After studying this chapter, you should be able to:

• Determine when to use control charts.
• Create control charts for sample means, ranges,

and standard deviations.
• Create control charts for sample proportions.
• Create control charts for a number of defectives.
• Draw Pareto charts using spreadsheet templates.
• Draw control charts using spreadsheet templates.

QUALITY CONTROL
AND IMPROVEMENT

1
1
1
1
1
1
1

LEARNING OBJECTIVES

1 1 1 1 1
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Not long after the Norman Conquest of
England, the Royal Mint was established in
London. The Mint has been in constant
operation from its founding to this very

day, producing gold and silver coins for the Crown (and in later periods, coins
from cheaper metals). Sometime during the reign of Henry II (1154–1189), a mysteri-
ous ceremony called the “Trial of the Pyx” was initiated.

The word pyx is Old English for “box,” and the ceremony was an actual trial by
jury of the contents of a box. The ancient trial had religious overtones, and the jurors
were all members of the Worshipful Company of Goldsmiths. The box was thrice
locked and held under guard in a special room, the Chapel of the Pyx, in Westminster
Abbey. It was ceremoniously opened at the trial, which was held once every three or
four years.

What did the Pyx box contain, and what was the trial? Every day, a single coin of
gold (or silver, depending on what was being minted) was randomly selected by the
minters and sent to Westminster Abbey to be put in the Pyx. In three or four years,
the Pyx contained a large number of coins. For a given type of coin, say a gold
sovereign, the box also contained a royal standard, which was the exact desired
weight of a sovereign. At the trial, the contents of the box were carefully inspected
and counted, and later some coins were assayed. The total weight of all gold sover-
eigns was recorded. Then the weight of the royal standard was multiplied by the
number of sovereigns in the box and compared with the actual total weight of the
sovereigns. A given tolerance was allowed in the total weight, and the trial was
declared a success if the total weight was within the tolerance levels established
above and below the computed standard.

The trial was designed so that the King or Queen could maintain control of the
use of the gold and silver ingots furnished to the Mint for coinage. If, for example,
coins were too heavy, then the monarch’s gold was being wasted. A shrewd merchant
could then melt down such coins and sell them back to the Mint at a profit. This actu-
ally happened often enough that such coins were given the name come again guineas as
they would return to the Mint in melted-down form, much to the minters’ embar-
rassment. On the other hand, if coins contained too little gold, then the currency was
being debased and would lose its value. In addition, somebody at the Mint could
then be illegally profiting from the leftover gold.

When the trial was successful, a large banquet would be held in celebration. We
may surmise that when the trial was not successful . . . the Tower of London was not
too far away. The Trial of the Pyx is practiced (with modifications) to this very day.
Interestingly, the famous scientist and mathematician Isaac Newton was at one time
(1699 to 1727) Master of the Mint. In fact, one of the trials during Newton’s tenure
was not successful, but he survived.1

The Trial of the Pyx is a classic example, and probably the earliest on record, of
a two-tailed statistical test for the population mean. The Crown wants to test the null
hypothesis that, on average, the weight of the coins is as specified. The Crown wants
to test this hypothesis against the two-tailed alternative that the average coin is either
too heavy or too light—both having negative consequences for the Crown. The test
statistic used is the sum of the weights of n coins, and the critical points are obtained
as n times the standard weight, plus or minus the allowed tolerance.2 The Trial of the
Pyx is also a wonderful example of quality control. We have a production process, the
minting of coins, and we want to ensure that high quality is maintained throughout

1 1 1 1 1

1
1
1
1
1

13–1 Using Statistics

1Adapted from the article “Eight Centuries of Sampling Inspection: The Trial of the Pyx,” by S. Stigler, originally
published in the Journal of the American Statistical Association, copyright 1977 by the American Statistical Association. All
rights reserved.

2According to Professor Stigler, the tolerance was computed in a manner incongruent with statistical theory, but he
feels we may forgive this error as the trial seems to have served its purpose well through the centuries.



Aczel−Sounderpandian: 
Complete Business 
Statistics, Seventh Edition

13. Quality Control and 
Improvement

Text598 © The McGraw−Hill 
Companies, 2009

the operation. We sample from the production process, and we take corrective action
whenever we believe that the process is out of control—producing items that, on average,
lie outside our specified target limits.

13–2 W. Edwards Deming Instructs
We now jump 800 years, to the middle of the 20th century and to the birth of mod-
ern quality control theory. In 1950 Japan was trying to recover from the devastation
of World War II. Japanese industry was all but destroyed, and its leaders knew that
industry must be rebuilt well if the nation was to survive. But how? By an ironic twist
of fate, Japanese industrialists decided to hire a U.S. statistician as their consultant.
The man they chose was the late W. Edwards Deming, at the time a virtually unknown
government statistician. No one in the United States paid much attention to Deming’s
theories on how statistics could be used to improve industrial quality. The Japanese
wanted to listen. They brought Deming to Japan in 1950, and in July of that year
he met with the top management of Japan’s leading companies. He then gave the
first of many series of lectures to Japanese management. The title of the course was
“Elementary Principles of the Statistical Control of Quality,” and it was attended by
230 Japanese managers of industrial firms, engineers, and scientists.

The Japanese listened closely to Deming’s message. In fact, they listened so well
that in a few short decades, Japan became one of the most successful industrial nations
on earth. Whereas “Made in Japan” once meant low quality, the phrase has now
come to denote the highest quality. In 1960, Emperor Hirohito awarded Dr. Deming
the Medal of the Sacred Treasure. The citation with the medal stated that the Japanese
people attribute the rebirth of Japanese industry to W. Edwards Deming. In addi-
tion, the Deming Award was instituted in Japan to recognize outstanding develop-
ments and innovations in the field of quality improvement. On the walls of the main
lobby of Toyota’s headquarters in Tokyo hang three portraits. One portrait is of the
company’s founder, another is of the current chairman, and the largest portrait is of
Dr. Deming.

Ironically, Dr. Deming’s ideas did get recognized in the United States—alas, when
he was 80 years old. For years, U.S. manufacturing firms had been feeling the pressure
to improve quality, but not much was actually being done while the Japanese were
conquering the world markets. In June 1980, Dr. Deming appeared in a network
television documentary entitled “If Japan Can, Why Can’t We?” Starting the next
morning, Dr. Deming’s mail quadrupled, and the phone was constantly ringing. Offers
came from Ford, General Motors, Xerox, and many others.

While well into his 90s, Dr. Ed Deming was one of the most sought-after consultants
to U.S. industry. His appointment book was filled years in advance, and companies were
willing to pay very high fees for an hour of his time. He traveled around the country,
lecturing on quality and how to achieve it. The first U.S. company to adopt the Deming
philosophy and to institute a program of quality improvement at all levels of production
was Nashua Corporation. The company kindly agreed to provide us with actual data of
a production process and its quality improvement. This is presented as Case 17 at the
end of this chapter. How did Deming do it? How did he apply statistical quality control
schemes so powerful that they could catapult a nation to the forefront of the industrial-
ized world and are now helping U.S. firms improve as well? This chapter should give
you an idea.

13–3 Statistics and Quality
In all fairness, Dr. Deming did not invent the idea of using statistics to control and
improve quality; that honor goes to a colleague of his. What Deming did was to
expand the theory and demonstrate how it could be used very successfully in indus-
try. Since then, Deming’s theories have gone beyond statistics and quality control,

596 Chapter 13
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and they now encompass the entire firm. His tenets to management are the well-
known “14 points” he advocated, which deal with the desired corporate approach to
costs, prices, profits, labor, and other factors. Deming even liked to expound about
antitrust laws and capitalism and to have fun with his audience. At a lecture attended
by one author (A.D.A.) around Deming’s 90th birthday, Dr. Deming opened by writ-
ing on a transparency: “Deming’s Second Theorem: ‘Nobody gives a hoot about
profits.’” He then stopped and addressed the audience, “Ask me what is Deming’s
First Theorem.” He looked expectantly at his listeners and answered, “I haven’t
thought of it yet!” The philosophical approach to quality and the whole firm, and
how it relates to profits and costs, is described in the ever-growing literature on this
subject. It is sometimes referred to as total quality management (TQM). Dr. Deming’s
vision of what a firm can do by using the total quality management approach to con-
tinual improvement is summarized in his famous 14 points. The Deming approach
centers on creating an environment in which the 14 points can be implemented
toward the achievement of quality.

Deming’s 14 Points

1. Create constancy of purpose for continual improvement of products and
service to society, allocating resources to provide for long-range needs rather
than only short-term profitability, with a plan to become competitive, to stay
in business, and to provide jobs.

2. Adopt the new philosophy. We are in a new economic age, created in Japan.
We can no longer live with commonly accepted levels of delays, mistakes,
defective materials, and defective workmanship. Transformation of Western
management style is necessary to halt the continued decline of industry.

3. Eliminate the need for mass inspection as the way of life to achieve quality by
building quality into the product in the first place. Require statistical evidence
of built-in quality in both manufacturing and purchasing functions.

4. End the practice of awarding business solely on the basis of price tag. Instead,
require meaningful measures of quality along with the price. Reduce the
number of suppliers for the same item by eliminating those that do not
qualify with statistical and other evidence of quality. The aim is to minimize
total cost, not merely initial cost, by minimizing variation. This may be
achievable by moving toward a single supplier for any one item, on a long-
term relationship of loyalty and trust. Purchasing managers have a new job
and must learn it.

5. Improve constantly and forever every process for planning, production, and
service. Search continually for problems in order to improve every activity in
the company, to improve quality and productivity, and thus to constantly
decrease costs. Institute innovation and constant improvement of product,
service, and process. It is the management’s job to work continually on the
system (design, incoming materials, maintenance, improvement of machines,
supervision, training, and retraining).

6. Institute modern methods of training on the job for all, including management,
to make better use of every employee. New skills are required to keep up with
changes in materials, methods, product design, machinery, techniques, and
service.

7. Adopt and institute leadership aimed at helping people to do a better job. The
responsibility of managers and supervisors must be changed from sheer
numbers to quality. Improvement of quality will automatically improve
productivity. Management must ensure that immediate action is taken on
reports of inherited defects, maintenance requirements, poor tools, fuzzy
operational definitions, and all conditions detrimental to quality.

Quality Control and Improvement 597
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8. Encourage effective two-way communication and other means to drive out fear
throughout the organization so that everybody may work effectively and more
productively for the company.

9. Break down barriers between departments and staff areas. People in different
areas, such as research, design, sales, administration, and production, must
work in teams to tackle problems that may be encountered with products or
service.

10. Eliminate the use of slogans, posters, and exhortations for the workforce,
demanding zero defects and new levels of productivity, without providing
methods. Such exhortations only create adversarial relationships; the bulk of
the causes of low quality and low productivity belong to the system, and thus
lie beyond the power of the workforce.

11. Eliminate work standards that prescribe quotas for the workforce and
numerical goals for people in management. Substitute aids and helpful
leadership in order to achieve continual improvement of quality and
productivity.

12. Remove the barriers that rob hourly workers, and people in management, of
their right to pride of workmanship. This implies, inter alia, abolition of the
annual merit rating (appraisal of performance) and of management by
objective. Again, the responsibility of managers, supervisors, and foremen
must be changed from sheer numbers to quality.

13. Institute a vigorous program of education, and encourage self-improvement for
everyone. What an organization needs is not just good people; it needs people
who are improving with education. Advances in competitive position will have
their roots in knowledge.

14. Clearly define top management’s permanent commitment to ever-improving
quality and productivity, and their obligation to implement all these principles.
Indeed, it is not enough that top managers commit themselves for life to
quality and productivity. They must know what it is that they are committed
to—that is, what they must do. Create a structure in top management that will
push every day on the preceding 13 points, and take action in order to
accomplish the transformation. Support is not enough: Action is required.

Process Capability
Process capability is the best in-control performance that an existing process can
achieve without major expenditures. The capability of any process is the natural
behavior of the particular process after disturbances are eliminated. In an effort to
improve quality and productivity in the firm, it is important to first try to establish
the capability of the process. An investigation is undertaken to actually achieve a
state of statistical control in a process based on current data. This gives a live image
of the process. For example, in trying to improve the quality of car production, we
first try to find how the process operates in the best way, then make improvements.
Control charts are a useful tool in this analysis.

Control Charts
The first modern ideas on how statistics could be used in quality control came in the
mid-1920s from a colleague of Deming’s, Walter Shewhart of Bell Laboratories.
Shewhart invented the control chart for industrial processes. A control chart is a
graphical display of measurements (usually aggregated in the form of means or other
statistics) of an industrial process through time. By carefully scrutinizing the chart, a
quality control engineer can identify any potential problems with the production
process. The idea is that when a process is in control, the variable being measured—
the mean of every four observations, for example—should remain stable through
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time. The mean should stay somewhere around the middle line (the grand mean for
the process) and not wander off “too much.” By now you understand what “too
much” means in statistics: more than several standard deviations of the process. The
required number of standard deviations is chosen so that there will be a small prob-
ability of exceeding them when the process is in control. Addition and subtraction of
the required number of standard deviations (generally three) give us the upper con-
trol limit (UCL) and the lower control limit (LCL) of the control chart. The UCL
and LCL are similar to the “tolerance” limits in the story of the Pyx. When the
bounds are breached, the process is deemed out of control and must be corrected.
A control chart is illustrated in Figure 13–1. We assume throughout that the variable
being charted is at least approximately normally distributed.

In addition to looking for the process exceeding the bounds, quality control
workers look for patterns and trends in the charted variable. For example, if the
mean of four observations at a time keeps increasing or decreasing, or it stays too
long above or below the centerline (even if the UCL and LCL are not breached), the
process may be out of control.

A control chart is a time plot of a statistic, such as a sample mean, range,
standard deviation, or proportion, with a centerline and upper and lower
control limits. The limits give the desired range of values for the statistic.
When the statistic is outside the bounds, or when its time plot reveals
certain patterns, the process may be out of control.

Central to the idea of a control chart—and, in general, to the use of statistics in
quality control—is the concept of variance. If we were to summarize the entire field
of statistical quality control (also called statistical process control, or SPC) in one word,
that word would have to be variance. Shewhart, Deming, and others wanted to bring
the statistical concept of variance down to the shop floor. If supervisors and produc-
tion line workers could understand the existence of variance in the production
process, then this awareness by itself could be used to help minimize the variance.
Furthermore, the variance in the production process could be partitioned into two
kinds: the natural, random variation of the process and variation due to assignable
causes. Examples of assignable causes are fatigue of workers and breakdown of com-
ponents. Variation due to assignable causes is especially undesirable because it is due
to something’s being wrong with the production process, and may result in low quality

Quality Control and Improvement 599

FIGURE 13–1 A Control Chart
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of the produced items. Looking at the chart helps us detect an assignable cause, by
asking what has happened at a particular time on the chart where the process looks
unusual.

A process is considered in statistical control when it has no assignable
causes, only natural variation.

Figure 13–2 shows how a process could be in control or out of control. Recall the
assumption of a normal distribution—this is what is meant by the normal curves
shown on the graphs. These curves stand for the hypothetical populations from
which our data are assumed to have been randomly drawn.

Actually, any kind of variance is undesirable in a production process. Even
the natural variance of a process due to purely random causes rather than to
assignable causes can be detrimental. The control chart, however, will detect only
assignable causes. As the following story shows, one could do very well by remov-
ing all variance.

600 Chapter 13

FIGURE 13–2 A Production Process in, and out of, Statistical Control
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An American car manufacturer was having problems with transmissions made at one of its
domestic plants, and warranty costs were enormous. The identical type of transmission
made in Japan was not causing any problems at all. Engineers carefully examined 12 trans-
missions made at the company’s American plant. They found that variations existed among
the 12 transmissions, but there were no assignable causes and a control chart revealed noth-
ing unusual. All transmissions were well within specifications. Then they looked at 12 trans-
missions made at the Japanese plant. The engineer who made the measurements reported
that the measuring equipment was broken: in testing one transmission after the other, the
needle did not move at all. A closer investigation revealed that the measuring equipment
was perfectly fine: the transmissions simply had no variation. They did not just satisfy speci-
fications; for all practical purposes, the 12 transmissions were identical!3

Such perfection may be difficult to achieve, but the use of control charts can go
a long way toward improving quality. Control charts are the main topic of this chapter,
and we will discuss them in later sections. We devote the remainder of this section to
brief descriptions of other quality control tools.

Pareto Diagrams
In instituting a quality control and improvement program, one important question to
answer is: What are the exact causes of lowered quality in the production process? A
ceramics manufacturer may be plagued by several problems: scratches, chips, cracks,
surface roughness, uneven surfaces, and so on. It would be very desirable to find out
which of these problems were serious and which not. A good and simple tool for such
analysis is the Pareto diagram. Although the diagram is named after an Italian
economist, its use in quality control is due to J. M. Juran.

A Pareto diagram is a bar chart of the various problems in production and
their percentages, which must add to 100%.

A Pareto diagram for the ceramics example above is given in Figure 13–3. As can
be seen from the figure, scratches and chips are serious problems, accounting for
most of the nonconforming items produced. Cracks occur less frequently, and the
other problems are relatively rare. A Pareto diagram thus helps management to iden-
tify the most significant problems and concentrate on their solution rather than waste
time and resources on unimportant causes.

Quality Control and Improvement 601

3From “Ed Deming wants big changes and he wants them fast,” by Lloyd Dobyns, Smithsonian Magazine, August 1990,
pp. 74–83. Copyright © 1990 Lloyd Dobyns. Used with permission.

FIGURE 13–3 Pareto Diagram for Ceramics Example
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Six Sigma
Six Sigma is a further innovation, beyond Deming’s work, in the field of quality
assurance and control. This system of quality control practices was developed by Bill
Smith at Motorola Inc. in 1986.

The purpose of Six Sigma was to push the defect levels at Motorola to below the
threshold defined as 3.4 defects per million opportunities (3.4 DPMO), meaning that
with this new methodology, the company was hoping that only 3.4 or fewer items out
of 1 million produced would be found defective.

The key to Six Sigma is a precise definition of the production process, followed
by accurate measurements and valid collection of data. A detailed analysis then
measures the relationships and causality of factors in production. Experimental
design (as described in Chapter 9) is used in an effort to identify key factors. Finally,
strict control of the production process is exercised. Any variations are corrected,
and the process is further monitored as it goes on line.

Six Sigma has been a very successful undertaking at Motorola, and has since
been adopted by Caterpillar, Raytheon, General Electric, and even service compa-
nies such as Bank of America and Merrill Lynch. The essence of Six Sigma is the
statistical methods described in this chapter.

Acceptance Sampling
Finished products are grouped in lots before being shipped to customers. The lots are
numbered, and random samples from these lots are inspected for quality. Such
checks are made both before lots are shipped out and when lots arrive at their desti-
nation. The random samples are measured to find out which and how many items
do not meet specifications.

A lot is rejected whenever the sample mean exceeds or falls below some pre-
specified limit. For attribute data, the lot is rejected when the number of defective or
nonconforming items in the sample exceeds a prespecified limit. Acceptance sam-
pling does not, by itself, improve quality; it simply removes bad lots. To improve
quality, it is necessary to control the production process itself, removing any assign-
able causes and striving to reduce the variation in the process.

Analysis of Variance and Experimental Design
As statistics in general is an important collection of tools to improve quality, so
in particular is experimental design. Industrial experiments are performed to find
production methods that can bring about high quality. Experiments are designed to
identify the factors that affect the variable of interest, for example, the diameter of a
rod. We may find that method B produces rods with diameters that conform to
specifications more often than those produced by method A or C. Analysis of variance
(as well as regression and other techniques) is used in making such a determination.
These tools are more “active” in the quest for improved quality than the control
charts, which are merely diagnostic and look at a process already in place. However,
both types of tool should be used in a comprehensive quality improvement plan.

Taguchi Methods
The Japanese engineer Genichi Taguchi developed new notions about quality engi-
neering. Taguchi’s ideas transcend the customary wisdom of tolerance limits, where
we implicitly assume that any value for a parameter within the specified range is as
good as any other value. Taguchi aims at the ideal optimal value for a parameter in
question. For example, if we look at a complete manufactured product, such as a car,
the car’s quality may not be good even if all its components are within desired levels
when considered alone. The idea is that the quality of a large system deteriorates as
we add the small variations in quality for all its separate components.

To try to solve this problem, Taguchi developed the idea of a total loss to society
due to the lowered quality of any given item. That loss to society is to be minimized.

602 Chapter 13
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That is, we want to minimize the variations in product quality, not simply keep them
within limits. This is done by introducing a loss function associated with the parameter
in question (e.g., rod diameter) and by trying to create production systems that mini-
mize this loss both for components and for finished products.

The Template
Figure 13–4 shows the template that can be used to draw Pareto diagrams. After
entering the data in columns B and C, make sure that the frequencies are in descend-
ing order. To sort them in descending order, select the whole range of data, B4:C23,
choose the Sort command under the Data menu and click the OK button.

The chart has a cumulative relative frequency line plotted on top of the histogram.
This line helps to calculate the cumulative percentage of cases that are covered by a
set of defects. For example, we see from the cumulative percentage line that approx-
imately 90% of the cases are covered by the first three types: scratches, chips, and
cracks. Thus, a quality control manager can hope to remedy 90% of the problems by
concentrating on and eliminating the first three types.

In the following sections, we describe Shewhart’s control charts in detail, since
they are the main tool currently used for maintaining and improving quality. Informa-
tion on the other methods we mentioned in this section can be found in the ever-
increasing literature on quality improvement. (For example, see the appropriate
references in Appendix A at the end of this book.) Our discussion of control charts will
roughly follow the order of their frequency of use in industry today. The charts we will
discuss are the chart, the R chart, the s chart, the p chart, the c chart, and the x chart.x-
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FIGURE 13–4 The Template for Pareto Diagrams 
[Pareto.xls]
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13–1. Discuss what is meant by quality control and quality improvement.
13–2. What is the main statistical idea behind current methods of quality control?
13–3. Describe the two forms of variation in production systems and how they
affect quality.
13–4. What is a quality control chart, and how is it used?
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13–5. What are the components of a quality control chart?
13–6. What are the limitations of quality control charts?
13–7. What is acceptance sampling?
13–8. Describe how one would use experimental design in an effort to improve
industrial quality.
13–9. The errors in the inventory records of a company were analyzed for their
causes. The findings were 164 cases of omissions, 103 cases of wrong quantity
entered, 45 cases of wrong part numbers entered, 24 cases of wrong dates entered,
and 8 cases of withdrawal versus deposit mixup. Draw a Pareto diagram for the
different causes.

a. What percentage of the cases is covered by the top two causes?
b. If at least 90% of the cases are to be covered, which causes must be

addressed?
13–10. Out of 1,000 automobile engines tested for quality, 62 had cracked blocks,
17 had leaky radiators, 106 had oil leaks, 29 had faulty cylinders, and 10 had ignition
problems. Draw a Pareto diagram for these data, and identify the key problems in
this particular production process.
13–11. In an effort to improve quality, AT&T has been trying to control pollution
problems. Problem causes and their relative seriousness, as a percentage of the total,
are as follows: chlorofluorocarbons, 61%; air toxins, 30%; manufacturing wastes, 8%;
other, 1%. Draw a Pareto diagram of these causes.
13–12. The journal People Management reports on new ways to use directive training
to improve the performance of managers. The percentages of managers who benefit-
ed from the training from 2003 to 2007 are: 34%, 36%, 38%, 39%, and 41% for 2007.4

Comment on these results from a quality-management viewpoint.

13–4 The Chart
We want to compute the centerline and the upper and lower control limits for a
process believed to be in control. Then future observations can be checked against
these bounds to make sure the process remains in control. To do this, we first conduct
an initial run. We determine trial control limits to test for control of past data, and
then we remove out-of-control observations and recompute the control limits. We
apply these improved control limits to future data. This is the philosophy behind all
control charts discussed in this chapter. Although we present the chart first, in an
actual quality control program we would first want to test that the process variation is
under control. This is done by using the R (range) or the s (standard deviation) chart.
Unless the process variability is under statistical control, there is no stable distribu-
tion of values with a fixed mean.

An chart can help us to detect shifts in the process mean. One reason for a con-
trol chart for the process mean (rather than for a single observation) has to do with the
central limit theorem. We want to be able to use the known properties of the normal
curve in designing the control limits. By the central limit theorem, the distribution of
the sample mean tends toward a normal distribution as the sample size increases.
Thus, when we aggregate data from a process, the aggregated statistic, or sample
mean, becomes closer to a normal random variable than the original, unaggregated
quantity. Typically, a set number of observations will be aggregated and averaged. For
example, a set of four measurements of rod diameter will be made every hour of pro-
duction. The four rods will be chosen randomly from all rods made during that hour.

x

x-

x

604 Chapter 13

4Daniel Wain, “Learning Center,” People Management, April 19, 2007, p. 34.
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If the distribution of rod diameters is roughly mound-shaped, then the sample means
of the groups of four diameters will have a distribution closer to normal.

The mean of the random variable is the population mean �, and the standard
deviation of is , where � is the population standard deviation. We know all
this from the theory in Chapter 5. We also know from the theory that the probability
that a normal random variable will exceed 3 of its standard deviations on either side
of the mean is 0.0026 (check this by using the normal table). Thus, the interval

�>14X
X

Quality Control and Improvement 605

� � (13–1)3�>1n

should contain about 99.74% of the sample means. This is, in fact, the logic of the
control chart for the process mean. The idea is the same as that of a hypothesis test
(conducted in a form similar to a confidence interval). We try to select the bounds so
that they will be as close as possible to equation 13–1. We then chart the bounds,
with an estimate of � in the center (the centerline) and the upper and lower bounds
(UCL and LCL) as close as possible to the bounds of the interval specified by equa-
tion 13–1. Out of 1,000 ’s, fewer than 3 are expected to be out of bounds. Therefore,
with a limited number of ’s on the control chart, observing even one of them out of
bounds is cause to reject the null hypothesis that the process is in control, in favor of
the alternative that it is out of control. (One could also compute a p-value here,
although it is more complicated since we have several ’s on the chart, and in general
this is not done.)

We note that the assumption of random sampling is important here as well. If
somehow the process is such that successively produced items have values that are
correlated—thus violating the independence assumption of random sampling—the
interpretation of the chart may be misleading. Various new techniques have been
devised to solve this problem.

To construct the control chart for the sample mean, we need estimates of the
parameters in equation 13–1. The grand mean of the process, that is, the mean of all
the sample means (the mean of all the observations of the process), is our estimate of
�. This is our centerline. To estimate �, we use s, the standard deviation of all the
process observations. However, this estimate is good only for large samples, n 
10.
For smaller sample sizes we use an alternative procedure. When sample sizes are
small, we use the range of the values in each sample used to compute an . Then we
average these ranges, giving us a mean range . When the mean range is multi-
plied by a constant, which we call A2, the result is a good estimate for 3�. Values of A2
for all sample sizes up to 25 are found in Appendix C, Table 13, at the end of the
book. The table also contains the values for all other constants required for the quality
control charts discussed in this chapter.

The box on page 606 shows how we compute the centerline and the upper and
lower control limits when constructing a control chart for the process mean.

In addition to a sample mean being outside the bounds given by the UCL and
LCL, other occurrences on the chart may lead us to conclude that there is evidence
that the process is out of control. Several such sets of rules have been developed, and
the idea behind them is that they represent occurrences that have a very low
probability when the process is indeed in control. The set of rules we use is given in
Table 13–1.5

RR
x

x

x
x

5This particular set of rules was provided courtesy of Dr. Lloyd S. Nelson of Nashua Corporation, one of the pioneers
in the area of quality control. See L. S. Nelson, “The Shewhart Control Chart—Tests for Special Causes,” Journal of Quality
Technology Issue 16 (1984), pp. 237–239. The MINITAB package tests for special causes using Nelson’s criteria. © 1984
American Society for Quality. Reprinted by permission.
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Elements of a control chart for the process mean:

Centerline:

UCL: � A2

LCL:

where k � number of samples, each of size n
sample mean for ith sample
range of the ith sample

If the sample size in each group is over 10, then

UCL � � 3 LCL � � 3

where is the average of the standard deviations of all groups and c4 is a con-
stant found in Appendix C, Table 13.

s

s>c41n
x

s>c41n
x

Ri =
x =

x - A2R

R =
g k

i =1Ri

k
Rx

x =
g k

i =1xi

k

TABLE 13–1 Tests for Assignable Causes

Test 1: One point beyond 3� (3s)

Test 2: Nine points in a row on one side of the centerline

Test 3: Six points in a row steadily increasing or decreasing

Test 4: Fourteen points in a row alternating up and down

Test 5: Two out of three points in a row beyond 2� (2s)

Test 6: Four out of five points in a row beyond 1� (1s)

Test 7: Fifteen points in a row within 1� (1s) of the centerline

Test 8: Eight points in a row on both sides of the centerline, all beyond 1� (1s)

A pharmaceutical manufacturer needs to control the concentration of the active
ingredient in a formula used to restore hair to bald people. The concentration should
be around 10%, and a control chart is desired to check the sample means of 30 obser-
vations, aggregated in groups of 3. The template containing the data, as well as the
control chart it produced, are given in Figure 13–5. As can be seen from the control
chart, there is no evidence here that the process is out of control.

The grand mean is � 10.253. The ranges of the groups of three observations each
are 0.15, 0.53, 0.69, 0.45, 0.55, 0.71, 0.90, 0.68, 0.11, and 0.24. Thus, From
Table 13 we find for n � 3, A2 � 1.023. Thus, UCL � 10.253 � 1.023(0.501) � 10.766,
and LCL � 10.253 � 1.023(0.501) � 9.74. Note that the chart cannot be interpreted
unless the R or s chart has been examined and is in control. These two charts are
presented in the next section.

x

R = 0.501.
x

E X A M P L E  1 3 – 1

The Template
The template for drawing X-bar charts is shown in Figure 13–5. Its use is illustrated
through Example 13–1.
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P R O B L E M S

13–13. What is the logic behind the control chart for the sample mean, and how is
the chart constructed?
13–14. Boston-based Legal Seafoods prides itself on having instituted an advanced
quality control system that includes the control of both food quality and service quality.
The following are successive service times at one of the chain’s restaurants on a Saturday
night in May 2007 (time is stated in minutes from customer entry to appearance of
waitperson):

5, 6, 5, 5.5, 7, 4, 12, 4.5, 2, 5, 5.5, 6, 6, 13, 2, 5, 4, 4.5, 6.5, 4, 1, 
2, 3, 5.5, 4, 4, 8, 12, 3, 4.5, 6.5, 6, 7, 10, 6, 6.5, 5, 3, 6.5, 7

Aggregate the data into groups of four, and construct a control chart for the process
mean. Is the waiting time at the restaurant under control?
13–15. What assumptions are necessary for constructing an chart?
13–16. Rolls Royce makes the Trent 900 jet engines used in the new Airbus A380
planes, and needs to control the maximum thrust delivered by the engines. The fol-
lowing are readings related to power for successive engines produced:

121, 122, 121, 125, 123, 121, 129, 123, 122, 122, 120, 121, 119, 118, 121,
125, 139, 150, 121, 122, 120, 123, 127, 123, 128, 129, 122, 120, 128, 120

Aggregate the data in groups of 3, and create a control chart for the process mean.
Use the chart to test the assumption that the production process is under control.

x

FIGURE 13–5 The Template for X-bar Chart 
[Control Charts.xls; Sheet: X-bar R s Charts]
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13–17. The following data are tensile strengths, in pounds, for a sample of string for
industrial use made at a plant. Construct a control chart for the mean, using groups
of 5 observations each. Test for statistical control of the process mean.

5, 6, 4, 6, 5, 7, 7, 7, 6, 5, 3, 5, 5, 5, 6, 5, 5, 6, 7, 7, 7, 7, 6, 7, 5,
5, 5, 6, 7, 7, 7, 7, 7, 5, 5, 6, 4, 6, 6, 6, 7, 6, 6, 6, 6, 6, 7, 5, 7, 6 

13–5 The R Chart and the s Chart
In addition to the process mean, we want to control the process variance. When
the variation in the production process is high, produced items will have a wider
range of values, and this jeopardizes the product’s quality. Recall also that in general
we want as small a variance as possible. As noted earlier, it is advisable first to check
the process variance and then to check its mean. Two charts are commonly used to
achieve this aim. The more frequently used of the two is a control chart for the
process range, called the R chart. The other is a control chart for the process stan-
dard deviation, the s chart. A third chart is a chart for the actual variance, called the

chart, but we will not discuss it since it is the least frequently used of the three.

The R Chart
Like the chart, the R chart contains a centerline and upper and lower control limits.
One would expect the limits to be of the form

x

s2

608 Chapter 13

(13–2)R � 3�R

The elements of an R chart:

Centerline:

LCL: D3

UCL: D4

where is the sum of group ranges, divided by the number of groups.R

R

R

R

Returning to Example 13–1, we find that � 0.501, and from Table 13, D3 � 0
and D4 � 2.574. Thus, the centerline is 0.501, the lower control limit is 0, and the
upper control limit is (0.501)(2.574) � 1.29. Figure 13–6 gives the control chart for the
process range for this example.

The test for control in the case of the process range is just to look for at least one
observation outside the bounds. Based on the R chart for Example 13–1, we conclude
that the process range seems to be in control.

The s Chart
The R chart is in common use because it is easier (by hand) to compute ranges than
to compute standard deviations. Today (as compared with the 1920s, when these

R

But the distribution of R is not normal and hence the limits need not be symmetric.
Additionally, the lower limit cannot go below zero and is therefore bounded by
zero. With these considerations in mind, the limits are calculated using the formu-
las in the box below, where the constants D3 and D4 are obtained from Table 13
of Appendix C. Notice that the constant D3 is bounded below at zero for small
samples.

FVS
CHAPTER 21
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FIGURE 13–6 The R Chart for Example 13–1 
[Control Charts.xls; Sheet: X-bar R s charts]
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Elements of the s chart:

Centerline:

LCL: B3

UCL: B4

where is the sum of group standard deviations, divided by the number of
groups.

s-

s

s

s

The s chart for Example 13–1 is given in Figure 13–7.
Again, we note that the process standard deviation seems to be in control. Since

s charts are done by computer, we will not carry out the computations of the standard
deviations of all the groups.

FIGURE 13–7 The s Chart for Example 13–1 
[Control Charts.xls; Sheet: X-bar R s charts]
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charts were invented), computers are usually used to create control charts, and an s
chart should be at least as good as an R chart. We note, however, that the standard
deviation suffers from the same nonnormality (skewness) as does the range. Again,
symmetric bounds as suggested by equation 13–2, with s replacing R , are still used.
The control chart for the process standard deviation is similar to that for the range.
Here we use constants B3 and B4, also found in Appendix C, Table 13. The bounds
and the centerline are given in the following box.
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FIGURE 13–8 The Charts for Example 13–2
[Control Charts.xls; Sheet: X-bar R s charts]

X-bar, R and s Charts1

3
4
5
6
14
15
16

18
19
20

22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50

A C D E F G H I J K L M N O P Q RB

x-bar-barn R-bar
UCL
LCL

UCL
LCL

s-bar
UCL
LCL

3 4.8
7.358
2.243

2.5
6.438

0

1.287
3.306

0

1
2
3

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

x-bar
R
s

4.333
3

1.528

3
6
4

5.333
1

0.577

5
5
6

4.667
3

1.528

3
5
6

3.667
4

2.082

2
6
3

6.333
3

1.528

5
6
8

3.667
3

1.528

2
4
5

4
2
1

5
4
3

5.667
1

0.577

6
6
5

3.333
3

1.528

2
3
5

7
2
1

6
8
7

X-bar Chart

9

8

6

4

2

0
1 3 5 7 11 13 15

8

6

4

2

0
1 3 5 7

R Chart

9 11 13 15

4

3

2

1

0
1 3 5 7

s Chart

9 11 13 15

13–18. Why do we need a control chart for the process range?
13–19. Compare and contrast the control charts for the process range and the
process standard deviation.
13–20. What are the limitations of symmetric LCL and UCL? Under what condi-
tions are symmetric bounds impossible in practice?
13–21. Create R and s charts for problem 13–14. Is the process in control?
13–22. Create R and s charts for problem 13–16. Is the process in control?
13–23. Create R and s charts for problem 13–17. Is the process in control?

P R O B L E M S

The nation’s largest retailer wants to make sure that supplier delivery times are under
control. Consistent supply times are critical factors in forecasting. The actual number
of days it took each of the 30 suppliers to deliver goods last month is grouped into
10 sets in Figure 13–8.

E X A M P L E  1 3 – 2
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13–24. Create X-bar, R , and s charts for the following data on the diameter of pins
produced by an automatic lathe. The data summarize 12 samples of size 5 each,
obtained at random on 12 different days. Is the process in control? If it is not, remove
the sample that is out of control and redraw the charts.

1 2 3 4 5 6 7 8 9 10 11 12
1.300 1.223 1.310 1.221 1.244 1.253 1.269 1.325 1.306 1.255 1.221 1.268

1.207 1.232 1.290 1.218 1.206 1.289 1.318 1.285 1.288 1.260 1.256 1.208

1.287 1.289 1.255 1.200 1.294 1.279 1.270 1.301 1.243 1.296 1.245 1.207

1.237 1.310 1.317 1.273 1.302 1.303 1.224 1.315 1.288 1.270 1.239 1.218

1.258 1.228 1.260 1.219 1.269 1.229 1.224 1.224 1.238 1.307 1.265 1.238

13–25. The capacity of the fuel tank of the 2007 Volvo S40 is designed to be 12.625
gallons. The actual capacity of tanks produced is controlled using a control chart.
The data of 9 random samples of size 5 each collected on 9 different days are tabu-
lated below. Draw X-bar, R , and s charts. Is the process in control? If it is not, remove
the sample that is out of control, and redraw the charts.

1 2 3 4 5 6 7 8 9

12.667 12.600 12.599 12.607 12.738 12.557 12.646 12.710 12.529

12.598 12.711 12.583 12.524 12.605 12.745 12.647 12.627 12.725

12.685 12.653 12.515 12.718 12.640 12.626 12.651 12.605 12.306

12.700 12.703 12.653 12.615 12.653 12.694 12.607 12.648 12.551

12.722 12.579 12.599 12.554 12.507 12.574 12.589 12.545 12.600

13–26. The amount of mineral water filled in 2-liter bottles by an automatic bot-
tling machine is monitored using a control chart. The actual contents of random sam-
ples of 4 bottles collected on 8 different days are tabulated below. Draw X-bar, R , and
s charts. Is the process in control? If it is not, remove the sample that is out of control,
and redraw the charts.

1 2 3 4 5 6 7 8

2.015 2.006 1.999 1.983 2.000 1.999 2.011 1.983

2.012 1.983 1.988 2.008 2.016 1.982 1.983 1.991

2.001 1.996 2.012 1.999 2.016 1.997 1.983 1.989

2.019 2.003 2.015 1.999 1.988 2.005 2.000 1.998

2.018 1.981 2.004 2.005 1.986 2.017 2.006 1.990

13–6 The p Chart
The example of a quality control problem used most frequently throughout the book
has been that of controlling the proportion of defective items in a production process.
This, indeed, is the topic of this section. Here we approach the problem by using a
control chart.

The number of defective items in a random sample chosen from a population
has a binomial distribution: the number of successes x out of a number of trials n
with a constant probability of success p in each trial. The parameter p is the pro-
portion of defective items in the population. If the sample size n is fixed in
repeated samplings, then the sample proportion derives its distribution from
a binomial distribution. Recall that the binomial distribution is symmetric when
p � 0.5, and it is skewed for other values of p. By the central limit theorem, as n
increases, the distribution of approaches a normal distribution. Thus, a normal
approximation to the binomial should work well with large sample sizes; a rela-
tively small sample size would suffice if p � 0.5 because of the symmetry of the
binomial in this case.

P$

P$

Quality Control and Improvement 611
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(13–3)p$ � 3�p$

Ap (1 - p )

n

The chart for p is called the p chart. Using the normal approximation, we want
bounds of the form

The idea is, again, that the probability of a sample proportion falling outside the
bounds is small when the process is under control. When the process is not under
control, the proportion of defective or nonconforming items will tend to exceed the
upper bound of the control chart. The lower bound is sometimes zero, which hap-
pens when is sufficiently small. Being at the lower bound of zero defectives is, of
course, a very good occurrence.

Recall that the sample proportion is given by the number of defectives x,
divided by the sample size n. We estimate the population proportion p by the total
number of defectives in all the samples of size n we have obtained, divided by the
entire sample size (all the items in all our samples). This is denoted by , and it
serves as the centerline of the chart. Also recall that the standard deviation of this
statistic is given by

p

p$

p$

Thus, the control chart for the proportion of defective items is given in the following
box. The process is believed to be out of control when at least one sample proportion
falls outside the bounds.

The elements of a control chart for the process proportion:

Centerline:

LCL: � 3

UCL: � 3

where n is the number of items in each sample and is the proportion of
defectives in the combined, overall sample.

p

Ap(1 - p )
n

p

Ap(1 - p )
n

p

p

The Template
The template for drawing p charts can be seen in Figure 13–9. Example 13–3 demon-
strates use of the template.

The French tire manufacturer Michelin randomly samples 40 tires at the end of each
shift to test for tires that are defective. The number of defectives in 12 shifts is as
follows: 4, 2, 0, 5, 2, 3, 14, 2, 3, 4, 12, 3. Construct a control chart for this process. Is
the production process under control?

E X A M P L E  1 3 – 3
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The results are shown in Figure 13–9. Our estimate of p, the centerline, is the sum of
all the defective tires, divided by 40 � 12. It is � 0.1125. Our standard error of 
is � 0.05; thus, LCL � 0.1125 � 3(0.05) � –0.0375, which means that
the LCL should be 0. Similarly, UCL � 0.1125 � 3(0.05) � 0.2625.

As we can see from the figure, two sample proportions are outside the UCL.
These correspond to the samples with 14 and 12 defective tires, respectively. There is
ample evidence that the production process is out of control.

1p (1 - p )>n pp

Quality Control and Improvement 613

FIGURE 13–9 The Template for p Charts
[Control Charts.xls; Sheet: p Chart]

p Chart1

2
3
4
5
6
7
8
9
10
11
12
13
14

16
17
18
19
20
21
22
23

A C D E F G H I J K L M N O P QB
Defective tires

R-bar
UCL
LCL

0.11
0.26

0

x
p

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

4
0.1

2
0.05

0
0

5
0.13

2
0.05

3
0.08

14
0.35

2

40n

0.05
3

0.08
4

0.1
12
0.3

3
0.08

0.4

0.3

0.2

0.1

0
1 3 5 7 9 11 13 15

p Chart

15

S o l u t i o n

13–27. The manufacturer of steel rods used in the construction of a new nuclear
reactor in Shansi Province in China in Spring 2007 looks at random samples of 20
items from each production shift and notes the number of nonconforming rods in
these samples. The results of 10 shifts are 8, 7, 8, 9, 6, 7, 8, 6, 6, 8. Is there evidence
that the process is out of control? Explain.
13–28. A battery manufacturer looks at samples of 30 batteries at the end of every
day of production and notes the number of defective batteries. Results are 1, 1, 0, 0,
1, 2, 0, 1, 0, 0, 2, 5, 0, 1. Is the production process under control?

13–29. BASF Inc. makes CDs for use in computers. A quality control engineer at
the plant tests batches of 50 disks at a time and plots the proportions of defective
disks on a control chart. The first 10 batches used to create the chart had the following
numbers of defective disks: 8, 7, 6, 7, 8, 4, 3, 5, 5, 8. Construct the chart and interpret
the results.

13–30. If the proportion of defective items in a production process of specially
designed carburetors used in a limited-edition model Maserati introduced in
2007 is very small, and few items are tested in each batch, what problems do you
foresee? Explain.

P R O B L E M S
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13–7 The c Chart
Often in production activities we want to control the number of defects or imperfections
per item. When fabric is woven, for example, the manufacturer may keep a record of
the number of blemishes per yard and take corrective action when this number is out
of control.

Recall from Chapter 3 that the random variable representing the count of the
number of errors occurring in a fixed time or space is often modeled using the Poisson
distribution. This is the model we use here. For the Poisson distribution, we know that
the mean and the variance are both equal to the same parameter. Here we call that
parameter c, and our chart for the number of defects per item (or yard, etc.) is the
c chart. In this chart we plot a random variable, the number of defects per item. We
estimate c by , which is the average number of defects per item, the total number
averaged over all the items we have. The standard deviation of the random variable
is thus the square root of c. Now, the Poisson distribution can be approximated by
the normal distribution for large c, and this again suggests the form

c-

614 Chapter 13

(13–4)c � 32c

Equation 13–4 leads to the control bounds and centerline given in the box that
follows.

Elements of the c chart:

Centerline:

LCL: � 3

UCL: � 3

where is the average number of defects or imperfections per item (or
area, volume, etc.).

c

2cc

2cc

c

The Template
The template that produces c charts can be seen in Figure 13–10. We shall see the use
of the template through Example 13–4.

The following data are the numbers of nonconformities in bolts for use in cars made
by the Ford Motor Company:6 9, 15, 11, 8, 17, 11, 5, 11, 13, 7, 10, 12, 4, 3, 7, 2, 3, 3,
6, 2, 7, 9, 1, 5, 8. Is there evidence that the process is out of control?

E X A M P L E  1 3 – 4

We need to find the mean number of nonconformities per item. This is the sum of the
numbers, divided by 25, or 7.56. The standard deviation of the statistic is the square
root of this number, or 2.75, and the control limits are obtained as shown in the box.
Figure 13–10 gives the template solution.

S o l u t i o n

6From T. P. Ryan, Statistical Methods for Quality Improvement (New York: Wiley, 1989), p. 198.
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FIGURE 13–10 The Template for c Charts
[Control Charts.xls; Sheet: c Chart]

c Chart1

2
3

5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20

A C D E F G H I J K L M N O P Q R S T U V W X Y Z AAB
Nonconformities in Bolts

c-bar
UCL
LCL

7.6
16

0

c
1 2 3 4 5 6 7 8 9 10 11 12 13 14 2515 16 17 18 19 20 21 22 23 24

9 15 11 8 17 11 5 1311 7 12 410 3 7 2 3 3 6 2 7 9 1 5 8

1 6

20

15

10

5

0
11

c Chart

16 21

13–31. The following are the numbers of imperfections per yard of yarn produced
in a mill in Pennsylvania in May 2007: 5, 3, 4, 8, 2, 3, 1, 2, 5, 9, 2, 2, 2, 3, 4, 2, 1.
Is there evidence that the process is out of control?

13–32. The following are the numbers of blemishes in the coat of paint of new auto-
mobiles made by Ford in June 2007: 12, 25, 13, 20, 5, 22, 8, 17, 31, 40, 9, 62, 14, 16,
9, 28. Is there evidence that the painting process is out of control?

13–33. The following are the numbers of imperfections in rolls of wallpaper made
by Laura Ashley: 5, 6, 3, 4, 5, 2, 7, 4, 5, 3, 5, 5, 3, 2, 0, 5, 5, 6, 7, 6, 9, 3, 3, 4, 2, 6.
Construct a c chart for the process, and determine whether there is evidence that
the process is out of control.

13–34. What are the assumptions underlying the use of the c chart?

13–8 The x Chart
Sometimes we are interested in controlling the process mean, but our observations
come so slowly from the production process that we cannot aggregate them into
groups. In such a case, and in other situations as well, we may consider an x chart.
An x chart is a chart for the raw values of the variable in question.

As you may guess, the chart is effective if the variable in question has a distribu-
tion that is close to normal. We want to have the bounds as mean of the process �3
standard deviations of the process. The mean is estimated by , and the standard
deviation is estimated by s/c4.

The tests for special causes in Table 13–1 can be used in conjunction with an x
chart as well. Case 17 at the end of this chapter will give you an opportunity to study
an actual x chart using all these tests.

x

P R O B L E M S

From the figure we see that one observation is outside the upper control limit,
indicating that the production process may be out of control. We also note a general
downward trend, which should be investigated (maybe the process is improving).
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13–9 Using the Computer

Using MINITAB for Quality Control
MINITAB offers many tools to help you detect and eliminate quality problems.
MINITAB’s quality tools can assist with a wide variety of tasks, for example, control
charts, Pareto charts, and capability analysis. To look for any evidence of patterns in
your process data you can choose Stat � Quality Tools � Run Chart from the menu
bar. Run Chart plots all of the individual observations versus their number. You can
also choose Stat � Quality Tools � Pareto Chart to plot a Pareto chart. Pareto charts
can help focus improvement efforts on areas where the largest gains can be made. 

MINITAB draws a wide variety of control charts by choosing Stat � Control
Charts from the menu bar. One of the available options is Variables control charts,
which creates control charts for measurement data in subgroups. Let’s start by select-
ing Stat � Control Charts � Variables Charts for Subgroups � Xbar-R from the menu
bar to display a control chart for subgroup means (an X chart) and a control chart for
subgroup ranges (an R chart) in the same graph window. The X chart is drawn in the
upper half of the screen; the R chart in the lower half. By default, MINITAB’s X and
R Chart bases the estimate of the process variation, �, on the average of the subgroup
ranges. You can also use a pooled standard deviation or enter a historical value for �,
as we will describe later. When the Xbar-R Chart dialog box appears choose whether
the data are in one or more columns and then enter the columns. Enter a number or
a column of subscripts in the Subgroup sizes edit box. If subgroups are arranged in
rows across several columns, choose Observations for a subgroup are in one row of
columns and enter the columns. The Multiple Graphs button controls the placement
and scales of multiple control charts. Click on the Data Options button to include or
exclude rows when creating a graph. Click on the Xbar-R button. When the corre-
sponding dialog box appears, you can enter the historical data for estimating � and �
in the Parameters tab. If you do not specify a value for � or �, MINITAB estimates it
from the data. In the Estimate tab you can omit or include certain subgroups to esti-
mate � and �. You can also select one of two methods to estimate �. In the Test tab
select a subset of the tests to detect a specific pattern in the data plotted on the chart.
MINITAB marks the point that fails a test with the test number on the plot. In cases
at which a point fails more than one test, MINITAB marks it by the lowest numbered
test. As an example, we have used MINITAB Xbar-R tool to plot the control charts
for the data of Example 13–1. Figure 13–11 shows the corresponding dialog box, Ses-
sion commands, and the obtained control charts. As you can see in this example, sub-
groups have been arranged in rows across several columns.

You can also choose Stat � Control Charts � Variables Charts for Subgroups
� Xbar-S to display a control chart for subgroup means (an X chart) and a control
chart for subgroup standard deviations (an S chart) in the same graph window. The X
chart is drawn in the upper half of the screen; the S chart in the lower half. By default,
MINITAB’s X and S Chart command bases the estimate of the process variation, s,
on the average of the subgroup standard deviations. You can also use a pooled stan-
dard deviation or enter a historical value for s. Required settings for the corre-
sponding dialog box are the same as those we discussed for an Xbar-R control chart.
Choosing Stat � Control Charts � Variables Charts for Subgroups also provides you
with three other options for constructing Xbar, R, and S control charts separately. 

To construct a P chart or a C chart using MINITAB you need to choose Stat �

Control Charts � Attributes Charts from menu bar. Attributes control charts plot sta-
tistics from count data rather than measurement data. MINITAB control charts for
defectives are the P Chart and NP Chart. P Chart shows the proportion of defectives in
each subgroup, while NP Chart shows the number of defectives in each subgroup. In
addition, MINITAB provides you with two other charts that can be used for classify-
ing a product by its number of defects. The control charts for defects are the C Chart
and U Chart. The former charts the number of defects in each subgroup, while the latter

616 Chapter 13
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charts the number of defects per unit sampled in each subgroup. U Chart is used
when the subgroup size varies. The corresponding dialog boxes and required settings
are very similar to what we have discussed for the Xbar-R control chart. 

13–10 Summary and Review of Terms
Quality control and improvement is a fast-growing, important area of application of
statistics in both production and services. We discussed Pareto diagrams, which are
relatively simple graphical ways of looking at problems in production. We discussed
quality control in general and how it relates to statistical theory and hypothesis testing.
We mentioned process capability and Deming’s 14 points. Then we described
control charts, graphical methods of determining when there is evidence that a process
is out of statistical control. The control chart has a centerline, an upper control limit,
and a lower control limit. The process is believed to be out of control when one of
the limits is breached at least once. The control charts we discussed were the chart,
for the mean; the R chart, for the range; the s chart, for the standard deviation; the
p chart, for the proportion; the c chart, for the number of defects per item; and the
x chart, a chart of individual observations for controlling the process mean.

x

Quality Control and Improvement 617

FIGURE 13–11 Xbar-R Control Chart Using MINITAB
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A D D I T I O N A L  P R O B L E M S

13–35. Discuss and compare the various control charts discussed in this chapter.
13–36. The number of blemishes in rolls of Scotch brand tape coming out of a pro-
duction process at a plant of the 3M Company in Minnesota is as follows: 17, 12, 13,
18, 12, 13, 14, 11, 18, 29, 13, 13, 15, 16. Is there evidence that the production process
is out of control?
13–37. The number of defective items out of random samples of 100 windshield
wipers selected at the end of each production shift at a factory is as follows: 4, 4, 5, 4,
4, 6, 6, 3, 3, 3, 3, 2, 2, 4, 5, 3, 4, 6, 4, 12, 2, 2, 0, 1, 1, 1, 2, 3, 1. Is there evidence that
the production process is out of control?
13–38. Weights of pieces of tile made in Arizona in April 2007 (in ounces) are as
follows: 2.5, 2.66, 2.8, 2.3, 2.5, 2.33, 2.41, 2.88, 2.54, 2.11, 2.26, 2.3, 2.41, 2.44, 2.17,
2.52, 2.55, 2.38, 2.89, 2.9, 2.11, 2.12, 2.13, 2.16. Create an R chart for these data, using
subgroups of size 4. Is the process variation under control?
13–39. Use the data in problem 13–38 to create an chart to test whether the
process mean is under control.
13–40. Create an s chart for the data in problem 13–38.
13–41. The weight of a connecting rod used in a diesel engine made at a plant of the
General Motors Corporation needs to be strictly uniform to minimize vibrations in
the engine. The connecting rod is produced by a forging process. Every day, five rods
coming out of the process are selected at random and weighed. The data for 10 days’
samples in early 2007 are given below.

1 2 3 4 5 6 7 8 9 10

1 577 579 576 579 577 579 579 577 577 584

2 577 580 580 580 580 576 578 579 579 580

3 579 578 580 580 578 578 580 578 579 582

4 580 580 579 578 580 577 578 579 577 579

5 578 580 576 577 578 578 577 580 576 580

On the 10th day, the supervisor stopped the process, declaring it out of control. Prepare
one or more appropriate control charts and test whether the process is indeed out of
control.

x

In 1979, Nashua Corporation, with an increasing
awareness of the importance of always maintaining
and improving quality, invited Dr. W. Edwards

Deming for a visit and a consultation. Dr. Deming, then
almost 80 years old, was the most sought-after quality
guru in the United States.

Following many suggestions by Deming, Nashua
hired Dr. Lloyd S. Nelson the following year as director
of statistical methods. The idea was to teach everyone at
the company about quality and how it can be maintained
and improved by using statistics.

Dr. Nelson instituted various courses and workshops
lasting 4 to 10 weeks for all the employees. Workers on
the shop floor became familiar with statistical process
control (SPC) charts and their use in maintaining and
improving quality. Nashua uses individual x charts as
well as , R, and p charts. These are among the most
commonly used SPC charts today. Here we will con-
sider the x chart. This chart is used when values come
slowly, as in the following example, and taking the
time to form the subgroups necessary for an or R
chart is not practical.

x

x

CASE 17
Quality Control and 
Improvement at 
Nashua Corporation
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Among the many products Nashua makes is ther-
mally responsive paper, which is used in printers and
recording instruments. The paper is coated with a
chemical mixture that is sensitive to heat, thus produc-
ing marks in a printer or instrument when heat is
applied by a print head or stylus. The variable of inter-
est is the amount of material coated on the paper (the
weight coat). Large rolls, some as long as 35,000 feet, are
coated, and samples are taken from the ends of the rolls.
A template 12 � 18 inches is used in cutting through
four layers of the paper—first from an area that was
coated and second from an uncoated area. A gravimet-
ric comparison of the coated and uncoated samples
gives four measurements of the weight coat. The aver-
age of these is the individual x value for that roll.

Assume that 12 rolls are coated per shift and that
each roll is tested as described above. For two shifts,
the 24 values of weight coat, in pounds per 3,000
square feet, were

3.46, 3.56, 3.58, 3.49, 3.45, 3.51, 3.54, 3.48, 3.54,
3.49, 3.55, 3.60, 3.62, 3.60, 3.53, 3.60, 3.51, 3.54,
3.60, 3.61, 3.49, 3.60, 3.60, 3.49.

Exhibit 1 shows the individual control chart for this
process, using all 24 values to calculate the limits. Is the
production process in statistical control? Explain.
Discuss any possible actions or solutions.

Quality Control and Improvement 619

We are indebted to Dr. Lloyd S. Nelson of Nashua Corporation for pro-
viding us with this interesting and instructive case.

EXHIBIT 1 Standardized x Chart
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After studying this chapter, you should be able to:

• Differentiate between parametric and nonparametric tests.
• Conduct a sign test to compare population means.
• Conduct a runs test to detect abnormal sequences.
• Conduct a Mann-Whitney test for comparing population

distributions.
• Conduct a Wilcoxon test for paired differences.
• Conduct a Friedman test for randomized block designs.
• Compute Spearman’s rank correlation coefficient for ordinal

data.
• Conduct a chi-square test for goodness of fit.
• Conduct a chi-square test for independence.
• Conduct a chi-square test for equality of proportions.

NONPARAMETRIC METHODS
AND CHI-SQUARE TESTS

1
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An article in Technical Analysis of Stocks and
Commodities discussed the many definitions of the
business cycle. According to the Kondratieff
definition, the U.S. business cycle is 54 years

long.1 Research on aspects of the economy and the stock and commodity markets
that employ this definition—rather than definitions of a business cycle lasting only
four or five years—face a serious statistical problem. Since most models of the economy
consider its behavior after World War II, a 54-year cycle would imply at most two
postwar peaks. Thus a researcher would be left with only two data points in studying
postwar peak-cycle behavior. This is a real example of the fact that a statistical analyst
is sometimes constrained by having few data points.

Although two observations is not enough for any meaningful analysis, this chap-
ter will teach you how to perform a statistical analysis when at least some of the
requirements of the standard statistical methods are not met. Nonparametric methods
are alternative statistical methods of analysis in such cases.

Many hypothesis-testing situations have nonparametric alternatives to be used
when the usual assumptions we make are not met. In other situations, nonparametric
methods offer unique solutions to problems at hand. Because a nonparametric test
usually requires fewer assumptions and uses less information in the data, it is often
said that a parametric procedure is an exact solution to an approximate problem, whereas a
nonparametric procedure is an approximate solution to an exact problem.

In short, we define a nonparametric method as one that satisfies at least
one of the following criteria.

1. The method deals with enumerative data (data that are frequency
counts).

2. The method does not deal with specific population parameters such as
� or �.

3. The method does not require assumptions about specific population distri-
butions (in particular, the assumption of normality).

Since nonparametric methods require fewer assumptions than do parametric ones,
the methods are useful when the scale of measurement is weaker than required for
parametric methods. As we will refer to different measurement scales, you may want
to review Section 1–7 at this point.

14–2 The Sign Test
In Chapter 8, we discussed statistical methods of comparing the means of two popu-
lations. There we used the t test, which required the assumption that the populations
were normally distributed with equal variance. In many situations, one or both of
these assumptions are not satisfied. In some situations, it may not even be possible to
make exact measurements except for determining the relative magnitudes of the
observations. In such cases, the sign test is a good alternative. The sign test is also
useful in testing for a trend in a series of ordinal values and in testing for a correlation,
as we will see soon.

1 1 1 1 1

1
1
1
1
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14–1 Using Statistics

1Martha Stokes, “The Missing Cycle,” Technical Analysis of Stocks and Commodities, April 2007, p. 19.
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As a test for comparing two populations, the sign test is stated in terms of the prob-
ability that values of one population are greater than values of a second population
that are paired with the first in some way. For example, we may be interested in test-
ing whether consumer responses to one advertisement are about the same as
responses to a second advertisement. We would take a random sample of consumers,
show them both ads, and ask them to rank the ads on some scale. For each person in
our sample, we would then have two responses: one response for each advertise-
ment. The null hypothesis is that the probability that a consumer’s response to one ad
will be greater than his or her response to the other ad is equal to 0.50. The alterna-
tive hypothesis is that the probability is not 0.50. Note that these null and alternative
hypotheses are more general than those of the analogous parametric test—the paired-t
test—which is stated in terms of the means of the two populations. When the two
populations under study are symmetric, the test is equivalent to a test of the equality
of two means, like the parametric t test. As stated, however, the sign test is more
general and requires fewer assumptions.

We define p as the probability that X will be greater than Y, where X is the value
from population 1 and Y is the value from population 2. Thus,

622 Chapter 14

p � P (X 
 Y ) (14–1)

The test could be a two-tailed test, or a one-tailed test in either direction. Under the
null hypothesis, X is as likely to exceed Y as Y is to exceed X: The probability of
either occurrence is 0.50. We leave out the possibility of a tie, that is, the possibility
that X � Y. When we gather our random sample of observations, we denote every
pair (X , Y ) where X is greater than Y by a plus sign (�), and we denote every pair
where Y is greater than X by a minus sign (�) (hence the name sign test ). In terms of
signs, the null hypothesis is that the probability of a plus sign [that is, P (X 
 Y )] is
equal to the probability of a minus sign [that is, P (X � Y )], and both are equal to
0.50. These are the possible hypothesis tests:

Possible hypotheses for the sign test:

Two-tailed test

H0: p � 0.50

H1: p 
 0.50 (14–2)

Right-tailed test

H0: p 	 0.50

H1: p 
 0.50 (14–3)

Left-tailed test

H0: p � 0.50

H1: p � 0.50 (14–4)

The test assumes that the pairs of (X , Y ) values are independent and that the meas-
urement scale within each pair is at least ordinal. After discarding any ties, we are left
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Suppose the null hypothesis is p 	 0.5, which makes it a right-tailed test. Then the
larger the T, the more unfavorable it would be to the null hypothesis. The p-value2 is
therefore the binomial probability of observing a value greater than or equal to the
observed T. The calculation of a binomial probability requires two parameters, n and
p. The value of n used is the sample size minus the tied cases, and the value of p used
is 0.5 (which gives the maximum benefit of doubt to the null hypothesis).

If the null hypothesis is p � 0.5, which makes it a left-tailed test, the p-value is
the probability of observing a value less than or equal to the observed T. If the
null hypothesis is p � 0.5, which makes it a two-tailed test, the p-value is twice the
tail area.

Figure 14–1 shows the template that can be used for conducting a sign test. Its use
will be illustrated in Example 14–1.

Nonparametric Methods and Chi-Square Tests 623

The test statistic is

T � number of plus signs (14–5)

2Unfortunately, we cannot avoid using the p symbol in two different senses. Take care not to confuse the two senses.

FIGURE 14–1 The Template for the Sign Test
[Nonparametric.xls; Sheet: Sign]

1

2
3
4
5
6
7
8
9

10
11

12

13

14

15
16
17
18
19

A B C D E F G H

Sign Test

Data
1 + n = 15
2 +
3 + Test Statistic
4 + T = 12 <- number of + signs
5 +
6 -
7 + At an α of
8 - p-value 5%

9 + H0: p = 0.5 0.0000 Reject

10 + H0: p >= 0.5 0.9963

11 + H0: p <= 0.5 0.0176 Reject

12 +
13 +
14 -
15 +

Null Hypothesis

According to a recent survey of 220 chief executive officers (CEOs) of Fortune 1000
companies, 18.3% of the CEOs in these firms hold MBA degrees. A management
consultant wants to test whether there are differences in attitude toward CEOs who
hold MBA degrees. In order to control for extraneous factors affecting attitudes
toward different CEOs, the consultant designed a study that recorded the attitudes
toward the same group of 19 CEOs before and after these people completed
an MBA program. The consultant had no prior intention of proving one kind of

E X A M P L E  1 4 – 1

with the number of plus signs and the number of minus signs. These are used in
defining the test statistic.



Aczel−Sounderpandian: 
Complete Business 
Statistics, Seventh Edition

14. Nonparametric 
Methods and Chi−Square 
Tests

Text626 © The McGraw−Hill 
Companies, 2009

versus

624 Chapter 14

H1: There is a change in attitude toward a CEO following the award of an 
MBA degree

The consultant defined variable Xi as the attitude toward CEO i before receipt
of the MBA degree, as rated by his or her professional associates on a scale of 1 to 5
(5 being highest). Similarly, she defined Yi as the attitude toward CEO i follow-
ing receipt of the MBA degree, as rated by his or her professional associates on the
same scale. 

H0: There is no change in attitude toward a CEO following his or her being
awarded an MBA degree

attitudinal change; she believed it was possible that the attitude toward a CEO could
change for the better, change for the worse, or not change at all following the
completion of an MBA program. Therefore, the consultant decided to use the fol-
lowing two-tailed test.

In this framework, the null and alternative hypotheses may be stated in terms of the
probability that the attitude score after (Y ) is greater than the attitude before (X ). The
null hypothesis is that the probability that the attitude after receipt of the degree is
higher than the attitude before is 0.50 (i.e., the attitude is as likely to improve as it
is to become worse, where worse means a lower numerical score). The alternative
hypothesis is that the probability is not 0.50 (i.e., the attitude is likely to change in one
or the other direction). The null and alternative hypotheses can now be stated in
the form of equation 14–2:

S o l u t i o n

versus

H0: p � 0.50

� � � � � � � � � � � � � � �

H1: p 
 0.50

The consultant looked at her data of general attitude scores toward the 17 randomly
chosen CEOs both before and after these CEOs received their MBAs. Data are given
in Table 14–1. The first thing to note is that there are two ties: for CEOs 2 and 5.
We thus remove these two from our data set and reduce the sample size to n � 15.
We now (arbitrarily) define a plus sign to be any data point where the after-attitude
score is greater than the before score. In terms of plus and minus symbols, the data in
Table 14–1 are as follows:
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According to our definition of the test statistic (equation 14–5), we have

Nonparametric Methods and Chi-Square Tests 625

H0: Population median � a
H1: Population median 
 a

T � number of pluses � 12

TABLE 14–1 Data for Example 14–1

CEO: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

Attitude before: 3 5 2 2 4 2 1 5 4 5 3 2 2 2 1 3 4

Attitude after: 4 5 3 4 4 3 2 4 5 4 4 5 5 3 2 2 5

We now carry out the statistical hypothesis test. From Appendix C, Table 1 (pages
755–757), the binomial table, we find for p � 0.5, n � 15 that the point C1 � 3 corre-
sponds to a “tail” probability of 0.018. That is, F (3) � 0.018. The p-value is 0.036.
Since the rejection happened in the right-hand rejection region, the consultant may
conclude that there is evidence that attitudes toward CEOs who recently received
their MBA degrees have become more positive (as defined by the attitude test).

Figure 14–1 shows the same results obtained through the template. The data,
entered in column C, should consist of only � and � symbols. All ties should be
removed from the data before entry. The p-value for the null hypothesis p � 0.5
appears in cell G12; it is 0.0352. It is more accurate than the manually calculated
0.036. As seen in cell H12, the null hypothesis is rejected at an � of 5%.

The sign test can be viewed as a test of the hypothesis that the median difference
between two populations is zero. As such, the test may be adapted for testing whether
the median of a single population is equal to any prespecified number. The null and
alternative hypotheses here are

where a is some number. One-tailed tests of this hypothesis are also possible, and the
extension is straightforward.

To conduct the test, we pair our data observations with the null-hypothesis value of
the median and perform the sign test. If the null hypothesis is true, then we expect that
about one-half of the signs will be pluses and one-half minuses because, by the definition
of the median, one-half of the population values are above it and one-half are below it.

Suppose that we wish to test the null hypothesis that median income in a certain
region is $24,000 per family per year. The following random sample of family incomes is
available (in thousands of dollars): 22, 30, 28, 22, 34, 19, 42, 18, 16, 26, 30, 25, 29, 20, 17,
33, 32, 24, 15, 31. In terms of � signs, � signs, and ties (t), the data are as follows when
paired with the hypothesized median of 24: � � � � � � � � � � � � � � � � �
t � �. (The choice of how to define a � versus a � is, again, arbitrary.) Discarding the
single tie, we see that the number of plus signs is 11, and the sample size is n � 19.

Since 11 is more than the average of 9.5 (� np � 19 * 0.5), the tail area is to the
right of 11. The tail area is the binomial probability P (T � 11) with n � 19, p � 0.5.
From the binomial template, this probability is 0.3238. The p -value is twice the tail
area and therefore equal to 2 * 0.3238 � 0.6476. Since this p-value is so large, we can-
not reject the null hypothesis that the median equals 24.
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14–1. An article in Bloomberg Markets compares returns for the Hermitage Fund with
those of the Russian Trading System Index.3 Paired data of rates of return for the two
funds during 12 randomly chosen years are as follows:

Year Hermitage Russian Trading

1 12 15
2 15 10
3 12 7
4 17 12
5 8 8
6 7 11
7 21 16
8 13 7
9 15 17

10 22 12
11 17 15
12 25 19

Conduct the sign test for determining whether returns on the Hermitage Fund and
the Russian Trading System Index are equal.
14–2. Breakstone Company makes whipped butter and whipped margarine. A
company market analyst wanted to test whether people prefer the taste of one of
these products over the other. A random sample of consumers was selected, and each
one was asked to taste both the butter and the margarine and then to state a preference.
The data follow. Is there evidence that one of the two products is preferred over the
other? (M denotes margarine and B is for butter.) M B B B M B B M B B B B M M B
M M M B B M B B B B (no pref.) M B B B B (no pref.) M M M B M B B B B B M B
14–3. The median amount of accounts payable to a CVS retail outlet in May 2007
is believed to be $78.50. Conduct a test to assess whether this assumption is still true
after several changes in company operations have taken place. A random sample of
30 accounts is collected. The data follow (in dollars):

34.12, 58.90, 73.25, 33.70, 69.00, 70.53, 12.68, 100.00, 82.55, 23.12, 57.55, 124.20, 89.60,
79.00, 150.13, 30.35, 42.45, 50.00, 90.25, 65.20, 22.28, 165.00, 120.00, 97.25, 78.45, 24.57,
12.11, 5.30, 234.00, 76.65

14–4. Biometrics is a technology that helps identify people by facial and body fea-
tures and is used by banks to reduce fraud. If in 15 trials the machine correctly iden-
tified 10 people, test the hypothesis that the machine’s identification rate is 50%.
14–5. The median age of a tourist to Aruba in the summer of 2007 was believed to
be 41 years. A random sample of 18 tourists gives the following ages:

25, 19, 38, 52, 57, 39, 46, 46, 30, 49, 40, 27, 39, 44, 63, 31, 67, 42

Test the hypothesis against a two-tailed alternative using � � 0.05.

14–3 The Runs Test—A Test for Randomness
In his well-known book Introduction to Probability Theory and Its Applications (New York:
John Wiley & Sons, 1973), William Feller tells of noticing how people occupy bar
stools. Let S denote an occupied seat and E an empty seat. Suppose that, entering a
bar, you find the following sequence:

626 Chapter 14

3Stephanie Baker-Said, “Russia’s Hedge Fund Outcast,” Bloomberg Markets, July 2006, pp. 58–66.

S E S E S E S E S E S E S E S E S E S E (case 1)

P R O B L E M S
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Do you believe that this sequence was formed at random? Is it likely that the 10 seated
persons took their seats by a random choice, or did they purposely make sure they
sat at a distance of one seat away from their neighbors? Just looking at the perfect
regularity of this sequence makes us doubt its randomness.

Let us now look at another way the people at the bar might have been occupying
10 out of 20 seats:

Nonparametric Methods and Chi-Square Tests 627

S S S S S S S S S S E E E E E E E E E E (case 2)

S E E S S E E E S E S S E S E E S S S E (case 3)

Is it likely that this sequence was formed at random? In this case, rather than perfect
separation between people, there is a perfect clustering together. This, too, is a form
of regularity not likely to have arisen by chance.

Let us now look at yet a third case:

This last sequence seems more random. It is much more likely that this sequence was
formed by chance than the sequences in cases 1 and 2. There does not seem to be
any consistent regularity in the series in case 3.

What we feel intuitively about order versus randomness in these cases can indeed
be quantified. There is a statistical test that can help us determine whether we believe
that a sequence of symbols, items, or numbers resulted from a random process. The
statistical test for randomness depends on the concept of a run.

A run is a sequence of like elements that are preceded and followed by
different elements or no element at all.

Using the symbols S and E, Figure 14–2 demonstrates the definition of a run by show-
ing all runs in a particular sequence of symbols. There are seven runs in the sequence
of elements in Figure 14–2.

Applying the definition of runs to cases 1, 2, and 3, we see that case 1 has 20 runs
in a sequence of 20 elements! This is clearly the largest possible number of runs. The
sequence in case 2 has only two runs (the smallest possible number). In the first case,
there are too many runs, and in the second case, there are too few runs for random-
ness to be a probable generator of the process. Case 3 has 12 runs—neither too few
nor too many. This sequence could very well have been generated by a random
process. To quantify how many runs are acceptable before we begin to doubt the
randomness of the process, we use a probability distribution. This distribution leads
to a statistical test for randomness.

Let us call the number of elements of one kind (S) n1 and the number of elements
of the second kind (E) n2. The total sample size is n � n1 � n2. In all three cases, both
n1 and n2 are equal to 10. For a given pair (n1, n2) and a given number of runs, Appen-
dix C, Table 8 (pages 778–779), gives the probability that the number of runs will be
less than or equal to the given number (i.e., left-hand “tail” probabilities).

FIGURE 14–2 Examples of Runs

SSSS EE S EEE SSSS E SSS

run run run run run run run

⎯
→

⎯
→

⎯
→

⎯
→

⎯
→

⎯
→

⎯
→

rrMrrrM
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Based on our example, look at the row in Table 8 corresponding to (n1, n2) �
(10, 10). We find that the probability that four or fewer runs will occur is 0.001; the
probability that five or fewer will occur is 0.004; the probability that six or fewer runs
will occur is 0.019; and so on.

The logic of the test for randomness is as follows. We know the probabilities of
obtaining any number of runs, and if we obtain an extreme number of runs—too many
or too few—we will decide that the elements in our sequence were not generated in a
random fashion.

628 Chapter 14

A two-tailed hypothesis test for randomness:

H0: Observations are generated randomly
H1: Observations are not randomly generated (14–6)

The test statistic is
R � number of runs (14–7)

The mean of the normal distribution of the number of runs is

� 1 (14–8)

The standard deviation is

�R � (14–9)

Therefore, when the sample size is large, we may use a standard normal
test statistic given by

(14–10)z =
R - E(R)

�R

A 2n1n2(2n1n2 - n1 - n2)

(n1 + n2)
2(n1 + n2 - 1)

E(R) =
2n1n2

n1 + n2

The decision rule is to reject H0 at level � if R 	 C1 or R � C2, where C1 and
C2 are critical values obtained from Appendix C, Table 8, with total tail
probability P(R 	 C1) � P(R � C2) � �.

Let us conduct the hypothesis test for randomness (equation 14–6) for the
sequences in cases 1, 2, and 3. Note that the tail probability for 6 or fewer runs is 0.019,
and the probability for 16 or more runs is P (R � 16) � 1 � F (15) � 1 � 0.981 � 0.019.
Thus, if we choose � � 2(0.019) � 0.038, which is as close to 0.05 as we can get with
this discrete distribution, our decision rule will be to reject H0 for R � 16 or R 	 6.

In case 1, we have R � 20. We reject the null hypothesis. In fact, the p-value
obtained by looking in the table is less than 0.001. The same is true in case 2, where
R � 2. In case 3, we have R � 12. We find the p-value as follows: 2[P (R � 12)] � 2[(1 �
F (11)] � 2(1 � 0.586) � 2(0.414) � 0.828. The null hypothesis cannot be rejected.

Large-Sample Properties
As you may have guessed, as the sample sizes n1 and n2 increase, the distribution of
the number of runs approaches a normal distribution.

We demonstrate the large-sample test for randomness with Example 14–2. 
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One of the most important uses of the test for randomness is its application in residual
analysis. Recall that a regression model, or a time series model, is adequate if the errors
are random (no regular pattern). A time series model was fitted to sales data of multiple-
vitamin pills. After the model was fitted to the data, the following residual series was
obtained from the computer. Is there any statistical evidence to conclude that the time
series errors are not random and, hence, that the model should be corrected?

�23, 30, 12, �10, �5, �17, �22, 57, 43, �23, 31, 42, 50, 61, �28, �52, 10, 34, 28, 55, 60,
32, 88, �75, �22, �56, �89, �34, �20, �2, �5, 29, 12, 45, 77, 78, 91, 25, 60, �25, 45, 42,
30, �59, �60, �40, �75, �25, �34, �66, �90, 10, �20

(The sequence of residuals continues, and their sum is zero.) Using this part of the
sequence, we reason that since the mean residual is zero, we may look at the sign of
the residuals and write them as plus or minus signs. Then we may count the number
of runs of positive and negative residuals and perform the runs test for randomness.

E X A M P L E  1 4 – 2

We have the following signs: S o l u t i o n

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � �

E (R ) �
2(27)(26)
27 + 26

+ 1 = 27.49

�R = A 2(27)(26)[2(27)(26) - 27 - 26]
(27 + 26)2(27 + 26 - 1)

= 3.6

z =
R - E (R )

�R
=

15 - 27.49
3.6

= -3.47

Letting n1 be the number of positive residuals and n2 the number of negative ones,
we have n1 � 27 and n2 � 26. We count the number of runs and find that R � 15.

We now compute the value of the Z statistic from equation 14–10. We have, for
the mean and standard deviation given in equations 14–8 and 14–9, respectively,

and

The computed value of the Z test statistic is

From the Z table we know that the p-value is 0.0006 (this is a two-tailed test). We
reject the null hypothesis that the residuals are random and conclude that the time
series model needs to be corrected.

The Template
The same results for Example 14–2 could have been obtained using the template
shown in Figure 14–3. The data, which should be � or � only, are entered in column
B. The p-value appears in cell F18. For the current example the p-value of 0.0005 is
more accurate than the manually calculated value of 0.0006.
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The Wald-Wolfowitz Test
An extension of the runs test for determining whether two populations have the same
distribution is the Wald-Wolfowitz test.

630 Chapter 14

FIGURE 14–3 The Template for the Runs Test
[Nonparametric Tests.xls; Sheet: Runs]

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17

1

3
4

5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20

A B D E F G H I
Runs Test

Data
- n 1 27

J

+ n 2 26
+
- Test Statistic
- R 15 <- Number of runs in the data
-
-
+ In case of large samples (n1 or n2 > 10)
+

Test Statistic
-

z -3.4662 E(R) 27.4906
+

σ (R) 3.60358
+
+ At an α of
+ Null

Data is random
Hypothesis p-value 5%

- 0.0005 Reject
-
+

The null and alternative hypotheses for the Wald-Wolfowitz test are

H0: The two populations have the same distribution
H1: The two populations have different distributions (14–11)

This is one nonparametric analog to the t test for equality of two population means.
Since the test is nonparametric, it is stated in terms of the distributions of the two pop-
ulations rather than their means; however, the test is aimed at determining the differ-
ence between the two means. The test is two-tailed, but it is carried out on one tail of
the distribution of the number of runs.

The only assumptions required for this test are that the two samples are inde-
pendently and randomly chosen from the two populations of interest, and that values
are on a continuous scale. The test statistic is, as before, R � number of runs.

We arrange the values of the two samples in increasing order in one sequence,
regardless of the population from which each is taken. We denote each value by the
symbol representing its population, and this gives us a sequence of symbols of
two types. We then count the number of runs in the sequence. This gives us the
value of R.

Logically, if the two populations have the same distribution, we may expect a
higher degree of overlapping of the symbols of the two populations (i.e., a large
number of runs). If, on the other hand, the two populations are different, we may
expect a clustering of the sample items from each of the groups. If, for example,
the values in population 1 tend to be larger than the values in population 2, then we
may expect the items from sample 1 to be clustered to the right of the items from
sample 2. This produces a small number of runs. We would like to reject the null
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The total number of runs is R � 4.
From Appendix C, Table 8, we find that the probability of four or fewer runs for

sample sizes of 9 and 10 is 0.002. As the p-value is 0.002, we reject the null hypothe-
sis that the two salespeople are equally effective. Since salesperson A had the larger
values, we conclude that he or she tends to sell more than salesperson B.

Nonparametric Methods and Chi-Square Tests 631

FIGURE 14–4 Overlap versus Clustering of Two Samples

A B A B AA B AA AB B A B A B B A B A AA B
| | | | | | | | | | | | | | | | | | | | | | |⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯→ Value of 

Here the populations are identical, and the values of the
sample item

sample items overlap when they are arranged on an 
increasing scale. Thus the number of runs is large: 
R � 16.

B B B B B B B BB B A B AA AAAA AAA AAA
| | | | | | | | | | | | | | | | | | | | | | |⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯→ Value of 

Here the population of A’s has larger values than the 
sample item

population of B’s and hence the A sample points tend 
to be to the right of the B sample points. The two 
samples are separately clustered with little overlap. 
The number of runs is small: R � 4.

The manager of a record store wants to test whether her two salespeople are
equally effective. That is, she wants to test whether the number of sales made by
each salesperson is about the same or whether one salesperson is better than the
other. The manager gets the following random samples of daily sales made by each
salesperson.

Salesperson A: 35, 44, 39, 50, 48, 29, 60, 75, 49, 66
Salesperson B: 17, 23, 13, 24, 33, 21, 18, 16, 32 

We have n1 � 10 and n2 � 9. We arrange the items from the two samples in increasing
order and denote them by A or B based on which population they came from. We get

E X A M P L E  1 4 – 3

S o l u t i o n

B B B B B B B A B B A A A A A A A A A

We have assumed here that the sales of the two salespersons cannot be paired as
taking place on the same days. Otherwise, a paired test would be more efficient, as
it would reduce day-to-day variations.

The Wald-Wolfowitz test is a weak test. There are other nonparametric tests, as we
will see, that are more powerful than this test in determining differences between two
populations. The advantage of the present test is that it is easy to carry out. There is
no need to compute any quantity from the data values—all we need to do is to order
the data on an increasing scale and to count the number of runs of elements from the
two samples. 

hypothesis when the number of runs is too small. We illustrate the idea of overlapping
versus clustering in Figure 14–4.

We demonstrate the Wald-Wolfowitz test with Example 14–3. 
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14–6. According to Strategic Finance, Medtronic, Inc., recently applied two quality
improvement methods to its global finance operations. The two methods were aimed
at reducing the cycle time of an operation.4 The following data are time, in seconds, for
the operation, using Method A and Method B.

Method A: 477  482  471 419 470  410
Method B: 453  469  450  423  472  425

Is there statistical evidence that one method is better than the other?
14–7. A computer is used for generating random numbers. It is necessary to test
whether the numbers produced are indeed random. A common method of doing this
is to look at runs of odd versus even digits. Conduct the test using the following
sequence of numbers produced by the computer.

276589837644544998675213879756374587645342678987633482191093473640898763

14–8. In a regression analysis, 12 out of 30 residuals are greater than 1.00 in value,
and the rest are not. With A denoting a residual greater than 1 and B a residual less
than 1, the residuals are as follows:

B B B B B B B B B A A A A A A A A A A B B B B B B B B B A A

Do you believe that the regression errors are random? Explain.
14–9. A messenger service employs eight men and nine women. Every day, the
assignments of errands are supposed to be done at random. On a certain day, all the
best jobs, in order of desirability, were given to the eight men. Is there evidence of
sex discrimination? Discuss this also in the context of a continuing, daily operation.
What would happen if you tested the randomness hypothesis every day?
14–10. Bids for a government contract are supposed to be opened in a random
order. For a given contract, there were 42 bids, 30 of them from domestic firms and
12 from foreign firms. The order in which the sealed bids were opened was as follows
(D denotes a domestic firm and F a foreign one):

D D D D D D D D F D D D D D D F F D D D D D D D D F D D F 
D D D D D D F F F F F F F

Could the foreign firms claim that they had been discriminated against? Explain.
14–11. Two advertisements for tourism and vacation on Turks and Caicos Islands,
which ran in business publications in May 2007, were compared for their appeal. A
random sample of eight people was selected, and their responses to ad 1 were recorded.
Another random sample, of nine people, was shown ad 2, and their responses were
also recorded. The response data are as follows (10 is highest appeal).

Ad 1: 7, 8, 6, 7, 8, 9, 9, 10
Ad 2: 3, 4, 3, 5, 5, 4, 2, 5, 4

Is there a quick statistical proof that one ad is better than the other?

P R O B L E M S

4Renee Cveykus and Erin Carter, “Fix the Process, Not the People,” Strategic Finance, July 2006, pp. 27–33.
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14–12. The following data are salaries of seven randomly chosen managers of
furniture-making firms and eight randomly chosen managers of paper product firms.
The data are in thousands of dollars per year.

Furniture: 175, 170, 166, 168, 204, 96, 147
Paper products: 89, 120, 136, 160, 111, 101, 98, 80

Use the Wald-Wolfowitz test to determine whether there is evidence that average
owner salaries in the two business lines are not equal.

14–4 The Mann-Whitney U Test
In this section, we present the first of several statistical procedures that are based on
ranks. In these procedures, we rank the observations from smallest to largest and then
use the ranks instead of the actual sample values in our computations. Sometimes,
our data are themselves ranks. Methods based on ranks are useful when the data are
at least on an ordinal scale of measurement. Surprisingly, when we substitute ranks
for actual observations, the loss of information does not weaken the tests very much.
In fact, when the assumptions of the corresponding parametric tests are met, the non-
parametric tests based on ranks are often about 95% as efficient as the parametric
tests. When the assumptions needed for the parametric tests (usually, a normal distri-
bution) are not met, the tests based on ranks are excellent, powerful alternatives.

We demonstrate the ranking procedure with a simple set of numbers: 17, 32, 99, 12,
14, 44, 50. We rank the observations from smallest to largest. This gives us 3, 4, 7, 1, 2,
5, 6. (The reason is that the smallest observation is 12, the next one up is 14, and so on.
The largest observation—the seventh—is 99.) This simple ranking procedure is the basis
of the test presented in this section, as well as of the tests presented in the next few sec-
tions. Tests based on ranks are probably the most widely used nonparametric procedures.

In this section, we present the Mann-Whitney U test, also called the Wilcoxon
rank sum test, or just the rank sum test. This test is different from the test we discuss in
the next section, called the Wilcoxon signed-rank test. Try not to get confused by these
names. The Mann-Whitney test is an adaptation of a procedure due to Wilcoxon,
who also developed the signed-rank test. The most commonly used name for the
rank sum test, however, is the Mann-Whitney U test.

The Mann-Whitney U test is a test of equality of two population distributions.
The test is most useful, however, in testing for equality of two population means. As
such, the test is an alternative to the two-sample t test and is used when the assump-
tion of normal population distributions is not met. The test is only slightly weaker
than the t test and is more powerful than the Wald-Wolfowitz runs test described in
the previous section.

Nonparametric Methods and Chi-Square Tests 633

The null and alternative hypotheses for the Mann-Whitney U test are

H0: The distributions of the two populations are identical
H1: The two population distributions are not identical (14–12)

Often, the hypothesis test in equation 14–12 is written in terms of equality versus non-
equality of two population means or equality versus nonequality of two population
medians. As such, we may also have one-tailed versions of the test. We may test whether
one population mean is greater than the other. We may state these hypotheses in terms
of population medians.

The only assumptions required by the test are that the samples be random samples
from the two populations of interest and that they be drawn independently of each
other. If we want to state the hypotheses in terms of population means or medians,
however, we need to add an assumption, namely, that if a difference exists between
the two populations, the difference is in location (mean, median).
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The Computational Procedure
We combine the two random samples and rank all our observations from smallest to
largest. To any ties we assign the average rank of the tied observations. Then we sum
all the ranks of the observations from one of the populations and denote that popula-
tion as population 1. The sum of the sample ranks is R1.

634 Chapter 14

The Mann-Whitney U statistic is

U � n1n2 � � R1 (14–13)

where n1 is the sample size from population 1 and n2 is the sample size
from population 2

n1(n1 + 1)
2

The mean of the distribution of U is

(14–14)

The standard deviation of U is

�U � (14–15)

The large-sample test statistic is

z � (14–16)
U - E(U)

�U

A n1n2(n1 + n2 + 1)
12

E(U) =
n1n2

2

The U statistic is a measure of the difference between the ranks of the two samples.
Large values of the statistic, or small ones, provide evidence of a difference between
the two populations. If we assume that differences between the two populations are
only in location, then large or small values of the statistic provide evidence of a dif-
ference in the location (mean, median) of the two populations.

The distribution of the U statistic for small samples is given in Appendix C,
Table 9 (pages 780–784). The table assumes that n1 is the smaller sample size. For
large samples, we may, again, use a normal approximation. The convergence to the
normal distribution is relatively fast, and when both n1 and n 2 are greater than 10 or
so, the normal approximation is good.

For large samples, the test is straightforward. In a two-tailed test, we reject the null
hypothesis if z is greater than or less than the values that correspond to our chosen
level of � (for example, �1.96 for � � 0.05). Similarly, in a one-tailed test, we reject
H0 if z is greater than (or less than) the appropriate critical point. Note that U is large
when R1 is small, and vice versa. Thus, if we want to prove the alternative hypothesis
that the location parameter of population 1 is greater than the location parameter of
population 2, we reject on the left tail of the normal distribution.

With small samples, we have a problem because the U table lists only left-hand-side
probabilities of the statistic [the table gives F (U ) values]. Here we will use the following
procedure. For a two-tailed test, we define R1 as the larger of the two sums of ranks.
This will make U small so it can be tested against a left-hand critical point with tail
probability ��2. For a one-tailed test, if we want to prove that the location parameter of
population 1 is greater than that of population 2, we look at the sum of the ranks of
sample 1 and do not reject H0 if this sum is smaller than that for sample 2. Otherwise,
we compute the statistic and test on the left side of the distribution. We choose the
left-hand critical point corresponding to �. Relabel populations 1 and 2 if you want to
prove the other one-tailed possibility.

We demonstrate the Mann-Whitney test with two examples. 
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Federal aviation officials tested two proposed versions of the Copter-plane, a twin-
engine plane with tilting propellers that make takeoffs and landings easy and save
time during short flights. The two models, made by Bell Helicopter Textron, Inc.,
were tested on the New York–Washington route. The officials wanted to know
whether the two models were equally fast or whether one was faster than the other.
Each model was flown six times, at randomly chosen departure times. The data, in
minutes of total flight time for models A and B, are as follows.

Model A: 35, 38, 40, 42, 41, 36
Model B: 29, 27, 30, 33, 39, 37 

E X A M P L E  1 4 – 4

First we order the data so that they can be ranked. This has been done in Figure 14–5.
We note that the sum of the ranks of the sample points from the population of model
A should be higher since the ranks for this model are higher. We will thus define R1
as the sum of the ranks from this sample because we need a small value of U (which
happens when R1 is large) for comparison with table values. We find the value of R1
as R1 � 5 � 6 � 8 � 10 � 11 � 12 � 52. This is the sum of the circled ranks in
Figure 14–5, the ranks belonging to the sample for model A.

We now compute the test statistic U. From equation 14–13, we find

S o l u t i o n

U � n1n2 � � R1 � (6)(6) � � 52 � 5
(6)(7)

2
n1(n1 + 1)

2

Looking at Appendix C, Table 9, we find that the probability that U will attain a
value of 5 or less is 0.0206. Since this is a two-tailed test, we want to reject the null
hypothesis if the value of the statistic is less than or equal to the (left-hand) critical
point corresponding to ��2; if we choose � � 0.05, then ��2 � 0.025. Since 0.0206
is less than 0.025, we reject the null hypothesis at the 0.05 level. The p-value for this
test is 2(0.0206) � 0.0412. (Why?)

Suppose that we had chosen to conduct this as a one-tailed test. If we had origi-
nally wanted to test whether model B was slower than model A, then we would not
be able to reject the null hypothesis that model B was not slower because the sum of
the ranks of model B is smaller than the sum of the ranks of model A, and, hence, U
would be large and not in the (left-side) rejection region. If, on the other hand, we
wanted to test whether model A was slower, the test statistic would have been the
same as the one we used, except that we could have rejected with a value of U as high
as 7 (from Table 9, the tail probability for U � 7 is 0.0465, which is less than � � 0.05).
Remember that in a one-tailed test, we use the (left-hand) critical point corresponding
to � and not to ��2. In any case, we reject the null hypothesis and state that there is
evidence to conclude that model B is generally faster. Note that Table 9 values are
approximate and will differ slightly from the values obtained by the computer.

FIGURE 14–5 Ordering and Ranking the Data for Example 14–4

Model A: 35 36 38 40 41 42

Model B: 27 29 30 33 37 39

Rank: 1 2 3 4 5 6 7 8 9 10 11 12 

When the sample sizes are large and we use the normal approximation, con-
ducting the test is much easier since we do not have to redefine U so that it is always
on the left-hand side of the distribution. We just compute the standardized Z statistic,
using equations 14–14 through 14–16, and consult the standard normal table. This is
demonstrated in Example 14–5.
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Thus, the value of the statistic is

636 Chapter 14

A multinational corporation is about to open a subsidiary in Greece. Since the oper-
ation will involve a large number of executives who will have to move to that coun-
try, the company plans to offer an extensive program of teaching the language to the
executives who will operate in Greece. For its previous operation starts in France and
Italy, the company used cassettes and books provided by Educational Services
Teaching Cassettes, Inc. Recently one of the company directors suggested that the
book-and-cassette program offered by Metacom, Inc., sold under the name The
Learning Curve, might provide a better introduction to the language. The company
therefore decided to test the null hypothesis that the two programs were equally
effective versus the one-tailed alternative that students who go through The Learning
Curve program achieve better proficiency scores in a comprehensive examination
following the course. Two groups of 15 executives were randomly selected, and each
group studied the language under a different program. The final scores for the two
groups, Educational Services (ES) and Learning Curve (LC), are as follows. Is there
evidence that The Learning Curve method is more effective?

ES: 65, 57, 74, 43, 39, 88, 62, 69, 70, 72, 59, 60, 80, 83, 50
LC: 85, 87, 92, 98, 90, 88, 75, 72, 60, 93, 88, 89, 96, 73, 62 

E X A M P L E  1 4 – 5

We order the scores and rank them. When ties occur, we assign to each tied obser-
vation the average rank of the ties.

ES: 39 43 50 57 59 60 62 65 69 7072 74 80 83 88
LC: 60 62 72 73 75 85 87 88 89 9092 9396 98

88

The tied observations are 60 (two—one from each group), 62 (two—one from each
group), 72 (two—one from each group), and 88 (three—one from ES and two from LC).
If we disregarded ties, the two observations of 60 would have received ranks 6 and 7.
Since either one of them could have been rank 6 or rank 7, each gets the average rank of
6.5 (and the next rank up is 8). The next two observations are also tied (both are 62).
They would have received ranks 8 and 9, so each gets the average rank of 8.5, and we
continue with rank 10, which goes to the observation 65. The two 72 observations each
get the average rank of 13.5 [(13 � 14)�2]. There are three 88 observations; they occupy
ranks 22, 23, and 24. Therefore, each of them gets the average rank of 23.

We now list the ranks of all the observations in each of the two groups:

ES: 1 2 3 4 5 6.5 8.5 10 11 12 13.5 16 18 19 23
LC: 6.5 8.5 13.5 15 17 20 21 23 23 25 26 27 28 29 30

Note that 2 of the 23 ranks belong to LC and 1 belongs to ES. We may now compute
the test statistic U. To be consistent with the small-sample procedure, let us define LC
as population 1. We have

S o l u t i o n

R1 � 6.5 � 8.5 � 13.5 � 15 � 17 � 20 � 21 � 23 � 23 � 25 � 26 � 27 
� 28 � 29 � 30

� 312.5

U � (15)(15) � � 312.5 � 32.5
(15)(16)

2



Aczel−Sounderpandian: 
Complete Business 
Statistics, Seventh Edition

14. Nonparametric 
Methods and Chi−Square 
Tests

Text 639© The McGraw−Hill 
Companies, 2009

Nonparametric Methods and Chi-Square Tests 637

E(U ) � � 112.5
(15)(15)

2

We now compute the value of the standardized Z statistic, equation 14–16. From
equation 14–14,

and from equation 14–15,

�U � � 24.1A (15)(15)(31)
12

z � � � �3.32
32.5 - 112.5

24.1
U - E(U )

�U

We get

We want to reject the null hypothesis if we believe that LC gives higher scores. Our
test statistic is defined to give a negative value in such a case. Since the computed
value of the statistic is in the rejection region for any usual � value, we reject the null
hypothesis and conclude that there is evidence that the LC program is more effective.
Our p-value is 0.0005. Figure 14–6 shows the same result was obtained by the Mann-
Whitney analysis tool of MINITAB.

FIGURE 14–6 Mann-Whitney Test Using MINITAB
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In Example 14–5 we used the Mann-Whitney test instead of the parametric t test
because some people have a facility with language and tend to score high on language
tests, whereas others do not and tend to score low. This can create a bimodal distribu-
tion (one with two modes) rather than a normal curve, which is required for the t test.

In Example 14–4, we had small samples. When small samples are used, the para-
metric tests are sensitive to deviations from the normal assumption required for the
t distribution. In such cases, use of a nonparametric method such as the Mann-Whitney
test is more suitable, unless there is a good indication that the populations in question
are approximately normally distributed.

638 Chapter 14

P R O B L E M S

14–13. Gotex is considering two possible bathing suit designs for the 2008 summer
season. One is called Nautical Design, and the other is Geometric Prints. Since the
fashion industry is very competitive, Gotex needs to test before marketing the bathing
suits. Ten randomly chosen top models are selected for modeling Nautical Design,
and 10 other randomly chosen top models are selected to model Geometric Prints
bathing suits. The results of the judges’ ratings of the 20 bathing suits follow.

ND: 86, 90, 77, 81, 86, 95, 99, 92, 93, 85
GP: 67, 72, 60, 59, 78, 69, 70, 85, 65, 62

Is there evidence to conclude that one design is better than the other? If so, which
one is it, and why?
14–14. The May 1, 2007, College Retirement Equity Fund (CREF) prospectus lists
the following sample returns on $1 invested in two of the fund’s accounts, per year.5

Equity Index Account ($): 1.636, 1.441, 0.973, 1.055, 1.400
Money Market Account ($): 1.169, 1.273, 0.976, 0.998, 0.953

Assuming these data are random samples, is there statistical evidence that one
account is better than the other?
14–15. Explain when you would use the Mann-Whitney test, when you would use
the two-sample t test, and when you would use the Wald-Wolfowitz test. Discuss your
reasons for choosing each test in the appropriate situation.
14–16. An article in Money compares investment in an income annuity, offered by
insurance companies, and a mix of low-cost mutual funds.6 Suppose the following
data are annualized returns (in percent) randomly sampled from these two kinds of
investments.

Income Annuity: 9, 7.5, 8.3, 6.2, 9.1, 6.8, 7.9, 8.8
Mutual Funds Mix: 10, 10.5, 11.0, 8.9, 12.1, 10.3, 9.1, 9.7

Test to determine which investment mode, if either, is better than the other.
14–17. Shearson Lehman Brothers, Inc., now encourages its investors to consider
real estate limited partnerships. The company offers two limited partnerships—one in
a condominium project in Chicago and one in Dallas. Annualized rates of return for
the two investments during separate eight-month periods are as follows. Is one type
of investment better than the other? Explain.

Chicago (%): 12, 13, 10, 14, 15, 9, 11, 10
Dallas (%): 10, 9, 8, 7, 9, 11, 6, 13

5Prospectus of College Retirement Equity Fund (CREF), May 1, 2007, pp. 8–10.
6Walter Updegrave, “Those Annuity Ads on TV? Monkey Feathers!” Money, March 2007, p. 42.
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14–18. An article in BusinessWeek discusses the salvage value of bankrupt hedge
funds compared with the salvage value of bankrupt consumer lenders.7 Suppose the
following data are the value a shareholder can salvage, in cents per invested dollar,
for random samples of the two kinds of institutions.

Hedge funds: 10, 15, 10, 17, 10, 11, 9, 9, 12
Consumer lenders: 25, 15, 15, 28, 33, 10, 29, 25, 18

Which kind of institution, if either, falls harder and leaves its unfortunate investors in
more trouble?

14–5 The Wilcoxon Signed-Rank Test
The Wilcoxon signed-rank test is useful in comparing two populations for which
we have paired observations. This happens when our data can be paired off in a nat-
ural way, for example, husband’s score and wife’s score in a consumer rating study.
As such, the test is a good alternative to the paired-observations t test in cases where
the differences between paired observations are not believed to be normally distrib-
uted. We have already seen a nonparametric test for such a situation—the sign test.
Unlike the sign test, the Wilcoxon test accounts for the magnitude of differences
between paired values, not only their signs. The test does so by considering the ranks
of these differences. The test is therefore more efficient than the sign test when the
differences may be quantified rather than just given a positive or negative sign. The
sign test, on the other hand, is easier to carry out.

The Wilcoxon procedure may also be adapted for testing whether the location
parameter of a single population (its median or its mean) is equal to any given value.
Each test has one-tailed and two-tailed versions. We start with the paired-
observations test for the equality of two population distributions (or the equality of
the location parameters of the two populations).

The Paired-Observations Two-Sample Test
The null hypothesis is that the median difference between the two populations is
zero. The alternative hypothesis is that it is not zero.

Nonparametric Methods and Chi-Square Tests 639

7Matthew Goldstein, “Vultures to the Rescue: A New Market Gives Holders of Distressed Hedge Funds a Quick
Escape,” BusinessWeek, April 9, 2007, p. 78.

The hypothesis test is

H0: The median difference between populations 1 and 2 is zero
H1: The median difference between populations 1 and 2 

is not zero (14–17)

We assume that the distribution of differences between the two populations is symmet-
ric, that the differences are mutually independent, and that the measurement scale is at
least interval. By the assumption of symmetry, hypotheses may be stated in terms of
means. The alternative hypothesis may also be a directed one: that the mean (or median)
of one population is greater than the mean (or median) of the other population.

First, we list the pairs of observations we have on the two variables (the two pop-
ulations). The data are assumed to be a random sample of paired observations. For
each pair, we compute the difference

D � x1 � x2 (14–18)

Then we rank the absolute values of the differences D.
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In the next step, we form sums of the ranks of the positive and of the negative
differences.

640 Chapter 14

The Wilcoxon T statistic is defined as the smaller of the two sums of
ranks—the sum of the negative or the positive ones

T � min (14–19)

where (�) is the sum of the ranks of the positive differences and (�)
is the sum of the ranks of the negative differences

gg

cg1+2, g 1-2d

The decision rule: Critical points of the distribution of the test statistic T
(when the null hypothesis is true) are given in Appendix C, Table 10
(page 785). We carry out the test on the left tail; that is, we reject the null
hypothesis if the computed value of the statistic is less than a critical point
from the table, for a given level of significance.

For a one-tailed test, suppose that the alternative hypothesis is that the mean
(median) of population 1 is greater than that of population 2; that is,

H0: �1 	 �2

H1: �1 
 �2 (14–20)

Here we use the sum of the ranks of negative differences. If the alternative hypothe-
sis is reversed (populations 1 and 2 are switched), then we use the sum of the ranks
of the positive differences as the statistic. In either case, the test is carried out on the
left “tail” of the distribution. Appendix C, Table 10, gives critical points for both one-
tailed and two-tailed tests.

Large-Sample Version of the Test
As in other situations, when the sample size increases, the distribution of the Wilcoxon
statistic T approaches the normal probability distribution. In the Wilcoxon test, n is
defined as the number of pairs of observations from populations 1 and 2. As the num-
ber of pairs n gets large (as a rule of thumb, n 
 25 or so), T may be approximated by
a normal random variable as follows.

The mean of T is

E(T ) � (14–21)

The standard deviation of T is

�T � (14–22)

The standardized z statistic is

z � (14–23)
T - E(T )

�T

A n(n + 1)(2n + 1)
24

n(n + 1)
4

We now demonstrate the Wilcoxon signed-rank test with Example 14–6. 
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TABLE 14–2 Data and Computations for Example 14–6

Number of Number of Rank of
Violet Sold Pink Sold Difference Absolute Rank of Rank of 

Store X1 X2 D � X1 � X2 Difference |D| Positive D Negative D

1 56 40 16 9 9

2 48 70 �22 12 12

3 100 60 40 15 15

4 85 70 15 8 8

5 22 8 14 7 7

6 44 40 4 2 2

7 35 45 �10 6 6

8 28 7 21 11 11

9 52 60 �8 5 5

10 77 70 7 3.5 3.5

11 89 90 �1 1 1

12 10 10 0

13 65 85 �20 10 10

14 90 61 29 13 13

15 70 40 30 14 14

16 33 26 7 3.5 3.5

(�) � 86 (�) � 34gg

The Sunglass Hut of America, Inc., operates kiosks occupying previously unused
space in the well-traveled aisles of shopping malls. Sunglass Hut owner Sanford
Ziff hopes to expand within a few years to every major shopping mall in the
United States. He is using the present $4.5 million business as a test of the mar-
ketability of different types of sunglasses. Two types of sunglasses are sold: violet
and pink. Ziff wants to know whether there is a difference in the quantities sold of
each type. The numbers of sunglasses sold of each kind are paired by store; these
data for each of 16 stores during the first month of operation are given in
Table 14–2. The table also shows how the differences and their absolute values
are computed and ranked, and how the signed ranks are summed, leading to the
computed value of T.

E X A M P L E  1 4 – 6

Note that a difference of zero is discarded, and the sample size is reduced by 1. The
effective sample size for this experiment is now n � 15. Note also that ties are han-
dled as before: We assign the average rank to tied differences. Since the smaller sum
is the one associated with the negative ranks, we define T as that sum. We therefore
have the following value of the Wilcoxon test statistic:

S o l u t i o n

T � �(�) � 34

We now conduct the test of the hypotheses in equation 14–17. We compare the com-
puted value of the statistic T � 34 with critical points of T from Appendix C,
Table 10. For a two-tailed test, we find that for � � 0.05 (P � 0.05 in the table)
and n � 15, the critical point is 25. Since the test is carried out on the “left tail”—
that is, we do not reject the null hypothesis if the computed value of T is greater than
or equal to the table value—we do not reject the null hypothesis that the distribution
of sales of the violet sunglasses is identical to the distribution of sales of the pink
sunglasses.
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A Test for the Mean or Median of a Single Population
As stated earlier, the Wilcoxon signed-rank test may be adapted for testing whether
the mean (or median) of a single population is equal to any given number. There
are three possible tests. The first is a left-tailed test where the alternative hypothesis is
that the mean (or median—both are equal if we assume a symmetric population distri-
bution) is smaller than some value specified in the null hypothesis. The second is a
right-tailed test where the alternative hypothesis is that the mean (or median) is greater
than some value. The third is a two-tailed test where the alternative hypothesis is that
the mean (or median) is not equal to the value specified in the null hypothesis.

The computational procedure is as follows. Using our n data points x1,x2, . . . , xn,
we form pairs: (x1, m), (x2, m), . . . , (xn, m), where m is the value of the mean (or median)
specified in the null hypothesis. Then we perform the usual Wilcoxon signed-rank
test on these pairs.

In a right-tailed test, if the negative ranks have a larger sum than the positive
ranks, we do not reject the null hypothesis. If the negative ranks have a smaller sum
than the positive ones, we conduct the test (on the left tail of the distribution, as usual)
and use the critical points in the table corresponding to the one-tailed test. We use
the same procedure in the left-tailed test. For a two-tailed test, we use the two-tailed
critical points. In any case, we always reject the null hypothesis if the computed value
of T is less than or equal to the appropriate critical point from Appendix C, Table 10.

We will now demonstrate the single-sample Wilcoxon test for a mean using the
large-sample normal approximation. 

642 Chapter 14

The average hourly number of messages transmitted by a private communications
satellite is believed to be 149. The satellite’s owners have recently been worried
about the possibility that demand for this service may be declining. They therefore
want to test the null hypothesis that the average number of messages is 149 (or more)
versus the alternative hypothesis that the average hourly number of relayed messages
is less than 149. A random sample of 25 operation hours is selected. The data (num-
bers of messages relayed per hour) are

151, 144, 123, 178, 105, 112, 140, 167, 177, 185, 129, 160, 110, 170, 198, 165, 109, 118, 155,
102, 164, 180, 139, 166, 182

Is there evidence of declining use of the satellite? 

E X A M P L E  1 4 – 7

We form 25 pairs, each pair consisting of a data point and the null-hypothesis mean
of 149. Then we subtract the second number from the first number in each pair (i.e.,
we subtract 149 from every data point). This gives us the differences D.

2, �5, �26, 29, �44, �37, �9, 18, 28, 36, �20, 11, �39, 21, 49, 16, �40, �31, 6, �47, 15,
31, �10, 17, 33

The next step is to rank the absolute value of the differences from smallest to
largest. We have the following ranks, in the order of the data:

1, 2, 13, 15, 23, 20, 4, 10, 14, 19, 11, 6, 21, 12, 25, 8, 22, 16.5, 3, 24, 7, 16.5, 5, 9, 18

Note that the differences 31 and �31 are tied, and since they would occupy positions
16 and 17, each is assigned the average of these two ranks, or 16.5.

The next step is to compute the sum of the ranks of the positive differences and
the sum of the ranks of the negative differences. The ranks associated with the posi-
tive differences are 1, 15, 10, 14, 19, 6, 12, 25, 8, 3, 7, 16.5, 9, and 18. (Check this.) The
sum of these ranks is �(�) � 163.5. When using the normal approximation, we may
use either sum of ranks. Since this is a left-tailed test, we want to reject the null
hypothesis that the mean is 149 only if there is evidence that the mean is less than 149,

S o l u t i o n
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that is, when the sum of the positive ranks is too small. We will therefore carry out the
test on the left tail of the normal distribution.

Using equations 14–21 to 14–23, we compute the value of the test statistic Z as

Nonparametric Methods and Chi-Square Tests 643

z � � � 0.027
T - n(n + 1)>42n(n + 1)(2n + 1)>24

=
163.5 - (25)(26)>42(25)(26)(51)>24

T - E(T )
�T

This value of the statistic lies inside the nonrejection region, far from the critical point
for any conventional level of significance. (If we had decided to carry out the test at � �
0.05, our critical point would have been �1.645.) We do not reject the null hypothesis
and conclude that there is no evidence that use of the satellite is declining.

In closing this section, we note that the Wilcoxon signed-rank test assumes that
the distribution of the population is symmetric in the case of the single-sample test,
and that the distribution of differences between the two populations in the paired,
two-sample case is symmetric. This assumption allows us to make inferences about
population means or medians. Another assumption inherent in our analysis is that
the random variables in question are continuous. The measurement scale of the data
is at least ordinal.

The Template
Figure 14–7 shows the use of the template for testing the mean (or median). The
data entered correspond to Example 14–7. Note that we enter the claimed value of the
mean (median) in every used row of the second column of data. In the problem,
the null hypothesis is �1 � �2. Since the sample size is large, the p-values appear in
the range J17:J19. The p-value we need is 0.5107. Since this is too large, we cannot
reject the null hypothesis.

Note that the template always uses the sum of the negative ranks to calculate the test
statistic Z. Hence its sign differs from the manual calculation. The final results—the p-value
and whether or not we reject the null hypothesis—will be the same in both cases.

FIGURE 14–7 Wilcoxon Test for the Mean or Median
[Nonparametric Tests.xls; Sheet: Wilcoxon]
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P R O B L E M S

14–19. Explain the purpose of the Wilcoxon signed-rank test. When is this test
useful? Why?
14–20. For problem 14–17, suppose that the returns for the Chicago and Dallas
investments are paired by month: the first observation for each investment is for the
first month (say, January), the second is for the next month, and so on. Conduct the
analysis again, using the Wilcoxon signed-rank test. Is there a difference in your
conclusion? Explain.
14–21. According to an article in the New York Times, a new trend has been intro-
duced by some of America’s finest restaurants: refusing to offer diners bottled water,
and pushing instead the restaurant’s filtered tap water.8 A restaurant owner is consid-
ering following this new trend but wants to research the option. The owner collects a
random sample of paired observations on the numbers of bottled water orders per
night and the number of customers who agreed to drink filtered tap water that night.
The data are (15, 8), (17, 12), (25, 10), (19, 3), (28, 5), (17, 18), (12, 13), (20, 11), (16, 18).
Is there evidence that tap water can be as popular as bottled water?
14–22. The average life of a 100-watt lightbulb is stated on the package to be 750
hours. The quality control director at the plant making the lightbulbs needs to check
whether the statement is correct. The director is only concerned about a possible
reduction in quality and will stop the production process only if statistical evidence
exists to conclude that the average life of a lightbulb is under 750 hours. A random
sample of 20 bulbs is collected and left on until they burn out. The lifetime of each
bulb is recorded. The data are (in hours of continuous use) 738, 752, 710, 701, 689,
779, 650, 541, 902, 700, 488, 555, 870, 609, 745, 712, 881, 599, 659, 793. Should the
process be stopped and corrected? Explain why or why not.
14–23. A retailer of tapes and compact disks wants to test whether people can dif-
ferentiate the two products by the quality of sound only. A random sample of con-
sumers who agreed to participate in the test and who have no particular experience
with high-quality audio equipment is selected. The same musical performance is
played for each person, once on a disk and once on a tape. The listeners do not know
which is playing, and the order has been determined randomly. Each person is asked
to state which of the two performances he or she prefers. What statistical test is most
appropriate here? Why?
14–24. From experience, a manager knows that the commissions earned by her
salespeople are very well approximated by a normal distribution. The manager
wants to test whether the average commission is $439 per month. A random sam-
ple of 100 observations is available. What statistical test is best in this situation?
Why?
14–25. Returns on stock of small firms have been shown to be symmetrically dis-
tributed, but the distributions are believed to be “long-tailed”—not well approximated
by the normal distribution. To test whether the average return on a stock of a small
firm is equal to 12% per year, what test would you recommend? Why?
14–26. According to Money, a water filter (which costs about $26) will save a con-
sumer more than $1 per gallon of water over one year compared with buying bottled
water.9 Suppose that a random sample of 15 consumers agrees to participate in a
study aimed at proving this claim, and that their results, extrapolated to savings per
gallon per year are ($): 0.95, 1.07, 1.09, 1.12, 0.85, 1.17, 1.25, 0.82, 0.99, 1.02, 1.15,
0.90, 1.32, 1.01, 0.88. Conduct the test and state your conclusion.

8Marian Burros, “Fighting the Tide, a Few Restaurants Tilt to Tap Water,” The New York Times, May 30, 2007, p. D1.
9Jean Chatzky, “Save a Buck, Save the World,” Money, June 2007, p. 32.
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14–27. Fidelity Investments’ February 2007 prospectus compares the value of
$10,000 invested in the S&P 500 versus its value invested in Fidelity’s Select Natural
Resources Portfolio over the life of this fund. The paired data below are the values, in
dollars, of the $10,000 invested in the S&P 500, and in the Fidelity Select Natural
Resources (FSNR) fund for a random sample of years:10 (9,200, 14,500), (16,300,
21,000), (18,700, 33,100) (28,500, 36,700), (19,600, 29,200), (35,300, 37,200), (8,900,
21,700), (20,700, 36,100), (14,800, 7,800). Within the limitations of this analysis, is
FSNR a better investment, over the range of years reported, than the S&P 500?
14–28. A stock market analyst wants to test whether there are higher-than-usual
returns on stocks following a two-for-one split. A random sample of 10 stocks that
recently split is available. For each stock, the analyst records the percentage return
during the month preceding the split and the percentage return for the month fol-
lowing the split. The data are

Before split (%): 0.5, 20.2, 0.9, 1.1, 20.7, 1.5, 2.0, 1.3, 1.6, 2.1
After split (%): 1.1, 0.3, 1.2, 1.9, �0.2, 1.4, 1.8, 1.8, 2.4, 2.2

Is there evidence that a stock split causes excess returns for the month following the
split? Redo the problem, using the sign test. Compare the results of the sign test with
those of the Wilcoxon test.
14–29. Much has been said about airline deregulation and the effects it has had on
the airline industry and its performance. Following a deluge of complaints from pas-
sengers, the public relations officer of one of the major airlines asked the company’s
operations manager to look into the problem. The operations manager obtained
average takeoff delay figures for a random sample of the company’s routes over time
periods of equal length before and after the deregulation. The data, in minutes of
average delay per route, are as follows.

Before: 3, 2, 4, 5, 1, 0, 1, 5, 6, 3, 10, 4, 11, 7
After: 6, 8, 2, 9, 8, 2, 6, 12, 5, 9, 8, 12, 11, 10

Is there evidence in these data that the airline’s delays have increased after de-
regulation?
14–30. The following data are the one-year return to investors in world stock
investment funds, as published in Pensions & Investments.11 The data are in percent
return (%): 35.9, 34.5, 33.7, 31.7, 27.5, 27.3, 27.3, 27.2, 27.1 25.5. Assume these data
constitute a random sample of such funds, and use them to test the claim that the
average world stock fund made more than 25% for its investors during this period.

14–6 The Kruskal-Wallis Test—A Nonparametric
Alternative to One-Way ANOVA

Remember that the ANOVA procedure discussed in Chapter 9 requires the assump-
tion that the populations being compared are all normally distributed with equal 
variance. When we have reason to believe that the populations under study are not
normally distributed, we cannot use the ANOVA procedure. However, a nonpara-
metric test that was designed to detect differences among populations requires no
assumptions about the shape of the population distributions. This test is the Kruskal-
Wallis test. The test is the nonparametric alternative to the (completely randomized
design) one-way analysis of variance. In the next section, we will see a nonparamet-
ric alternative to the randomized block design analysis of variance, the Friedman test.
Both of these tests use ranks.

Nonparametric Methods and Chi-Square Tests 645

10Fidelity Select Portfolios, Fidelity Investments, February 28, 2007, p. 27.
11Mark Bruno, “Value Comeback,” Pensions & Investments, May 14, 2007, p. 14.
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The Kruskal-Wallis test is an analysis of variance that uses the ranks of the obser-
vations rather than the data themselves. This assumes, of course, that the observations
are on an interval scale. If our data are in the form of ranks, we use them as they are.
The Kruskal-Wallis test is identical to the Mann-Whitney test when only two popula-
tions are involved. We thus use the Kruskal-Wallis test for comparing k populations,
where k is greater than 2. The null hypothesis is that the k populations under study
have the same distribution, and the alternative hypothesis is that at least two of the
population distributions are different from each other.

646 Chapter 14

The Kruskal-Wallis hypothesis test is

H0: All k populations have the same distribution
H1: Not all k populations have the same distribution (14–24)

The Kruskal-Wallis test statistic is

H � � 3(n � 1) (14–25)aa
k

j=1

R2
j

nj
b12

n(n + 1)

Although the hypothesis test is stated in terms of the distributions of the populations
of interest, the test is most sensitive to differences in the locations of the populations.
Therefore, the procedure is actually used to test the ANOVA hypothesis of equality
of k population means. The only assumptions required for the Kruskal-Wallis test are
that the k samples are random and are independently drawn from the respective
populations. The random variables under study are continuous, and the measurement
scale used is at least ordinal.

We rank all data points in the entire set from smallest to largest, without regard
to which sample they come from. Then we sum all the ranks from each separate
sample. Let n1 be the sample size from population 1, n2 the sample size from popula-
tion 2, and so on up to nk , which is the sample size from population k . Define n as the
total sample size: n � n1 � n2 � � � � � nk .We define R1 as the sum of the ranks from
sample 1, R2 as the sum of the ranks from sample 2, and so on to Rk , the sum of the
ranks from sample k . We now define the Kruskal-Wallis test statistic H.

For very small samples (nj � 5), tables for the exact distribution of H under the
null hypothesis are found in books devoted to nonparametric statistics. Usually, how-
ever, we have samples that are greater than 5 for each group (remember the serious
limitations of inference based on very small samples). For larger samples, as long as
each nj is at least 5, the distribution of the test statistic H under the null hypothesis is
well approximated by the chi-square distribution with k � 1 degrees of freedom.

We reject the null hypothesis on the right-hand tail of the chi-square distribution.
That is, we reject the null hypothesis if the computed value of H is too large, exceed-
ing a critical point of �2

(k �1) for a given level of significance �. We demonstrate the
Kruskal-Wallis test with an example.

A company is planning to buy a word processing software package to be used by its
office staff. Three available packages, made by different companies, are considered:
Multimate, WordPerfect, and Microsoft Word. Demonstration packages of the three
alternatives are available, and the company selects a random sample of 18 staff mem-
bers, 6 members assigned to each package. Every person in the sample learns how to

E X A M P L E  1 4 – 8



Aczel−Sounderpandian: 
Complete Business 
Statistics, Seventh Edition

14. Nonparametric 
Methods and Chi−Square 
Tests

Text 649© The McGraw−Hill 
Companies, 2009

use the particular package to which she or he is assigned. The time required for
every member to learn how to use the word processing package is recorded. The
question is: Is approximately the same amount of time needed to learn how to use
each package proficiently?

None of the office staff has used any of these packages before, and because of sim-
ilarity in use, each person is assigned to learn only one package. The staff, however,
have varying degrees of experience. In particular, some are very experienced typists,
and others are beginners. Therefore, it is believed that the three populations of time
it takes to learn how to use a package are not normally distributed. If a conclusion is
reached that one package takes longer to learn than the others, then learning time
will be a consideration in the purchase decision. Otherwise, the decision will be
based only on package capabilities and price. Table 14–3 gives the data, in minutes,
for every person in the three samples. It also shows the ranks and the sum of the
ranks for each group. 
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Using the obtained sums of ranks for the three groups, we compute the Kruskal-
Wallis statistic H. From equation 14–25 we get

S o l u t i o n

H � � 3(n � 1) � � 3(19)

� 12.3625

12
(18)(19)

¢902

6
+

562

6
+

252

6
≤aa

R2
j

nj
b12

n(n + 1)

We now perform the test of the hypothesis that the populations of the learning
times of the three software packages are identical. We compare the computed value
of H with critical points of the chi-square distribution with k � 1 � 3 � 1 � 2 degrees
of freedom. Using Appendix C, Table 4 (pages 760–761), we find that H � 12.36
exceeds the critical point for � � 0.01, which is given as 9.21. We therefore reject the
null hypothesis and conclude that there is evidence that the time required to learn
how to use the word processing packages is not the same for all three; at least one
package takes longer to learn. Our p-value is smaller than 0.01. The test is demon-
strated in Figure 14–8.

TABLE 14–3 The Data (in minutes) and Ranks for Example 14–8

Multimate WordPerfect Microsoft Word

Time Rank Time Rank Time Rank

45 14 30 8 22 4

38 10 40 11 19 3

56 16 28 7 15 1

60 17 44 13 31 9

47 15 25 5 27 6

65 18 42 12 17 2

R1 � 90 R2 � 56 R3 � 25

We note that even though our example had a balanced design (equal sample
sizes in all groups), the Kruskal-Wallis test can also be performed if sample sizes are
different. We also note that we had no ties in this example. If ties do exist, we assign
them the average rank, as we have done in previous tests based on ranks. The effect
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of ties can be corrected for by using a correction formula, which may be found in
advanced books.

The Template
The template for the Kruskal-Wallis test is shown in Figure 14–9. Note that the group
numbers are to be entered in the first column of data as 1, 2, 3, . . . . The group num-
bers need not be in a particular order.

The data seen in the template correspond to Example 14–8. The advantage in using
the template is that we get to know the exact p-value. It is 0.0021, seen in cell K10. In
addition, the tabulation in the range G18:O26 shows if the difference in the means of
every pair of groups is significant. The appearance of “Sig” means the corresponding

648 Chapter 14

FIGURE 14–8 Carrying Out the Test for Example 14–8

Density

Chi-square distribution with 2 degrees of freedom

Computed test
statistic H

Value
9.21 12.360

Nonrejection region  Rejection region 

FIGURE 14–9 The Template for the Kruskal-Wallis Test
[Nonparametric Tests.xls; Sheet: Kruskal-Wallis]

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28

A B C D E F G H I J K L M N O P

Kruskal-Wallis Test

Group Data Rank Group R n Avg. R Test Statistic
1 1 1 90 6 H 12.363
2 1 2 56 6
3 1 3 25 6 Null Hypothesis
4 1 H0: All the Groups have the same distribution

5 1 At an α of
6 1 p-value 5%
7 2 0.0021 Reject
8 2
9 2

10 2
11 2 3 Total 18
12 2
13 3 Further Analysis
14 3 1
15 3 2 2

3 Sig 3

45 14
38 10
56 16
60 17
47 15
65 18
30 8
40 11
28 7
44 13
25 5
42 12
22 4
19 3
15 1

16 3 31 9

17 3 27 6
18 3 17 2

15
9.3333
4.1667
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Because its delivery times are too slow, a trucking company is on the verge of losing
an important customer. A manager wants to explore upgrading the fleet of trucks.
There are three new models to choose from, each of which claims significant fuel
efficiency improvements. Better gas mileage translates to fewer stops on long trips,
cutting delivery times.

The manager is allowed to test-drive the trucks for a few days and randomly
picks 15 drivers to do so. Five drivers will test each truck. The mpg results are as fol-
lows. Conduct a Kruskal-Wallis rank test for differences in the three population
medians.

A B

Truck MPG

1 Truck A 17.00

2 Truck A 18.20

3 Truck A 18.50

4 Truck C 18.70

5 Truck A 19.40

6 Truck C 19.90

7 Truck C 20.30

8 Truck C 21.10

9 Truck B 22.70

10 Truck A 23.50

11 Truck B 23.80

12 Truck C 23.90

13 Truck B 24.20

14 Truck B 25.10

15 Truck B 26.30

Figure 14–10 shows the template solution to the problem. Since the p-value of 0.014
is less than 5%, we reject the null hypothesis that the medians of the mileage for the
three groups are equal at an � of 5%.

E X A M P L E  1 4 – 9

FIGURE 14–10 The Template Solution to Example 14–9
[Nonparametric Tests.xls; Sheet: Kruskal-Wallis]

2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20

A B C D E F G H I J K L M N O P

Group Data Rank Group R n Avg. R Test Statistic
1 1 1 21 5 H 8.54
2 1 2 62 5
3 1 3 37 5 Null Hypothesis
4 3 H0: All the Groups have the same distribution

5 1 At an α of
6 3 p-value 5%
7 3 0.0140 Reject
8 3
9 2

10 1
11 2 3 Total 15
12 3
13 2 Further Analysis
14 2 1
15 2 2 2

3
Sig

3

17 1
18.2 2
18.5 3
18.7 4
19.4 5
19.9 6
20.3 7
21.1 8
22.7 9
23.5 10
23.8 11
23.9 12
24.2 13
25.1 14
26.3 15

4.2
12.4
7.4

S o l u t i o n

difference is significant. In the current problem, the difference in the means of groups
1 and 3 is significantly more than zero. This aspect of the problem is discussed a little
later, in the subsection “Further Analysis.” 
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Further Analysis
As in the case of the usual ANOVA, once we reject the null hypothesis of no difference
among populations, the question arises: Where are the differences? That is, which
populations are different from which? Here we use a procedure that is similar to the
Tukey method of further analysis following ANOVA. For every pair of populations
we wish to compare (populations i and j, for example), we compute the average rank
of the sample.
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and (14–26)Rj =
Ri

nj
Ri =

Ri

ni

where Ri and Rj are the sums of the ranks from samples i and j, respectively, computed
as part of the original Kruskal-Wallis test. We now define the test statistic D as the
absolute difference between and .RjRi

The test statistic for determining whether there is evidence to reject the null
hypothesis that populations i and j are identical is

D � (14–27)|Ri - Rj |

We carry out the test by comparing the test statistic D with a quantity that we com-
pute from the critical point of the chi-square distribution at the same level � at which
we carried out the Kruskal-Wallis test. The quantity is computed as follows.

The critical point for the paired comparisons is

CKW � (14–28)

where �2
�,k�1 is the critical point of the chi-square distribution used in the

original, overall test.

Ax2
a,k-1

n(n + 1)
12

a 1
ni

+
1
nj
b

By comparing the value of the statistic D with CKW for every pair of populations, we
can perform all pairwise comparisons jointly at the level of significance � at which
we performed the overall test. We reject the null hypothesis if and only if D 
 CKW.
We demonstrate the procedure by performing all three pairwise comparisons of the
populations in Example 14–8.

Since we have a balanced design, ni � nj � 6 for all three samples, the critical
point CKW will be the same for all pairwise comparisons. Using equation 14–28 and
9.21 as the value of chi-square for the overall test at � � 0.01, we get

CKW � � 9.35A9.21
(18)(19)

12 a1
6

+
1
6 b

Comparing populations 1 and 2: From the bottom of Table 14–3, we find that R1 � 90
and R 2 � 56. Since the sample sizes are each 6, we find that the average rank for
sample 1 is 90�6 � 15, and the average rank for sample 2 is 56�6 � 9.33. Hence,
the test statistic for comparing these two populations is the absolute value of the
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difference between 15 and 9.33, which is 5.67. This value is less than CKW, and we must
conclude that there is no evidence, at � � 0.01, of a difference between populations
1 and 2.

Comparing populations 1 and 3: Here the absolute value of the difference between
the average ranks is |(90�6) � (25�6)| � 10.83. Since 10.83 is greater than CKW �
9.35, we conclude that there is evidence, at � � 0.01, that population 1 is different
from population 3.

Comparing populations 2 and 3: Here we have D � |(56�6) � (25�6)| � 5.17, which
is less than 9.35. Therefore we conclude that there is no evidence, at � � 0.01, that
populations 2 and 3 are different.

Our interpretation of the data is that at � � 0.01, significant differences are evi-
dent only between the time it takes to learn Multimate and the time it takes to learn
Microsoft Word. Since the values for Multimate are larger, we conclude that the
study provides evidence that Multimate takes longer to learn. 
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14–31. With the continuing surge in the number of mergers and acquisitions in
2007, research effort has been devoted to determining whether the size of an acquisi-
tion has an effect on stockholders’ abnormal returns (in percent) following the
announcement of an impending acquisition.12 Given the data below about abnormal
stockholder returns for three size groups of acquired firms, test for equality of mean
abnormal return.

Large: 11.9, 13.2, 8.7, 9.8, 12.1, 8.8, 10.3, 11.0
Medium: 8.6, 8.9, 5.3, 4.1, 6.2, 8.1, 6.0, 7.1
Small: 5.2, 4.1, 8.8, 10.7, 12.6, 13.0, 9.1, 8.0

14–32. An analyst in the publishing industry wants to find out whether the cost of
a newspaper advertisement of a given size is about the same in four large newspaper
groups. Random samples of seven newspapers from each group are selected, and the
cost of an ad is recorded. The data follow (in dollars). Do you believe that there are
differences in the price of an ad across the four groups?

Group A: 57, 65, 50, 45, 70, 62, 48
Group B: 72, 81, 64, 55, 90, 38, 75
Group C: 35, 42, 58, 59, 46, 60, 61
Group D: 73, 85, 92, 68, 82, 94, 66

14–33. Lawyers representing the Beatles filed a $15 million suit in New York against
Nike, Inc., over Nike’s Air Max shoe commercial set to the Beatles’ 1968 hit song
“Revolution.” As part of all such lawsuits, the plaintiff must prove a financial damage—
in this case, that Nike improperly gained from the unlicensed use of the Beatles’ song.
In proving their case, lawyers for the Beatles had to show that “Revolution,” or any
Beatles’ song, is not just a tune played with the commercial and that, in fact, the use of
the song made the Nike commercial more appealing than it would have been if it had
featured another song or melody. A statistician was hired to aid in proving this point.
The statistician designed a study in which the Air Max commercial was recast using
two other randomly chosen songs that were in the public domain and did not require
permission, and that were not sung by the Beatles. Then three groups of 12 people

P R O B L E M S

12Martin Sikora, “Changes in SEC Price Rule Should Spark More Tenders,” Mergers & Acquisitions, January 2007, p. 22.
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each were randomly selected. Each group was shown one of the commercials, and
every person’s appeal score for the commercial was recorded. Using the following
appeal scores, determine whether there is statistical evidence that not all three songs
would be equally effective in the commercial. If you do reject the null hypothesis of
equal appeal, go the required extra step to prove that the Beatles’ “Revolution” does
indeed have greater appeal over other songs, and that Nike should pay the Beatles
for using it.

“Revolution”: 95, 98, 96, 99, 91, 90, 97, 100, 96, 92, 88, 93
Random alternative A: 65, 67, 66, 69, 60, 58, 70, 64, 64, 68, 61, 62
Random alternative B: 59, 57, 55, 63, 59, 44, 49, 48, 46, 60, 47, 45

14–34. According to Mediaweek, there are three methods of advertising on the Web.
Method 1 is to serve ads to users who clicked on an icon for the ad. Method 2 serves
ads through visits to the company’s Web site. And Method 3 uses highly targeted
content sites.13 Which method, if any, is most effective? Suppose the following data
are the numbers of responders to each method who have eventually made a pur-
chase, taken over a random sample of days for each method.

Method 1: 55, 79, 88, 41, 29, 85, 70, 68, 90
Method 2: 42, 21, 38, 40, 39, 61, 44, 26, 28
Method 3: 108, 111, 81, 65, 89, 100, 92, 97, 80

Conduct the test and state your conclusion.
14–35. According to an article in Real Estate Finance, developers and hotel operators
have three ways of controlling shared facilities: the square footage allocation (SF)
method, the revenue-generating (RG) allocation method, and the purchase price
value (PPV) method.14 An industry analyst wants to know if one of these methods is
more successful than the others and collects random samples of return on equity data
(in percent) for firms that have used one of these methods. The data are as follows.

SF: 15, 17, 8.5, 19, 22, 16, 15, 11.5, 16.5, 17
RG: 8.6, 9.5, 11, 15, 10.3, 16, 9.5, 12, 10.2
PPV: 3.8, 5.7, 12, 6.8, 10.1, 11.2, 9.9, 10.4, 6.1

Test for equality of means, and state your conclusion.
14–36. According to an article in Risk, three Danish financial institutions recently
offered new structured investment programs.15 Suppose that data, in percent return,
for a random sample of investments offered by these banks, are as follows.

Bank 1: 8.5, 7.9, 8.3, 8.2, 8.2, 7.7, 8.1, 7.9
Bank 2: 6.8, 7.1, 6.6, 7.3, 7.5, 6.9, 7.7, 8.0
Bank 3: 5.9, 6.0, 6.1, 5.8, 7.3, 5.9, 6.5, 6.3

Conduct a test for equality of means and state your conclusions.
14–37. What assumptions did you use when solving problems 14–31 through 14–36?
What assumptions did you not make about the populations in question? Explain.
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13Michael Cassidy, “Remarketing 101: This New Form of Online Behavioral Marketing Takes Three Forms,”
Mediaweek, May 14, 2007, p. 12.

14Melissa Turra and Melissa Nelson, “How Developers and Hotel Operators Can Control Shared Facilities and Fairly
Allocate Shared Facilities Expenses,” Real Estate Finance, April 2007, pp. 12–14.

15“Structured Products,” Risk, April 2007, p. 62. 
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14–7 The Friedman Test for a Randomized
Block Design

Recall the randomized block design, which was discussed in Chapter 9. In this design,
each block of units is assigned all k treatments, and our aim is to determine possible
differences among treatments or treatment means (in the context of ANOVA). A block
may be one person who is given all k treatments (asked to try k different products, to
rate k different items, etc.). The Kruskal-Wallis test discussed in the previous section is
a nonparametric version of the one-way ANOVA with completely randomized
design. Similarly, the Friedman test, the subject of this section, is a nonparametric
version of the randomized block design ANOVA. Sometimes this design is referred to
as a two-way ANOVA with one item per cell because the blocks may be viewed as
one factor and the treatment levels as the other. In the randomized block design, how-
ever, we are interested in the treatments as a factor and not in the blocks themselves.
Like the methods we discussed in preceding sections, the Friedman test is based on
ranks. The test may be viewed as an extension of the Wilcoxon signed-rank test or an
extension of the sign test to more than two treatments per block. Recall that in each
of these tests, two treatments are assigned to each element in the sample—the obser-
vations are paired. In the Friedman test, the observations are more than paired: each
block, or person, is assigned to all k 
 2 treatments.

Since the Friedman test is based on the use of ranks, it is especially useful for
testing treatment effects when the observations are in the form of ranks. In fact, in
such situations, we cannot use the randomized block design ANOVA because the
assumption of a normal distribution cannot hold for very discrete data such as ranks.
The Friedman test is a unique test for a situation where data are in the form of ranks
within each block. Our example will demonstrate the use of the test in this particular
situation. When our data are on an interval scale and not in the form of ranks, but we
believe that the assumption of normality may not hold, we use the Friedman test
instead of the parametric ANOVA and transform our data to ranks.
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The null and alternative hypotheses of the Friedman test are

H0: The distributions of the k treatment populations are identical
H1: Not all k distributions are identical (14–29)

The data for the Friedman test are arranged in a table in which the rows are
blocks (or units, if each unit is a block). There are n blocks. The columns are treat-
ments, and there are k of them. Let us assume that each block is one person who is
assigned to all treatments. The data in this case are arranged as in Table 14–4.

TABLE 14–4 Data Layout for the Friedman Test

Treatment 1 Treatment 2 Treatment 3 . . . Treatment k

Person 1

Person 2

Person 3

. . .

Person n

Sum of ranks: R1 R2 R3 . . . Rk

. . .

. . .

. . .

. . .

. . .
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If the data are not already in the form of ranks within each block, we rank the
observations within each block from 1 to k. That is, the smallest observation in the
block is given rank 1, the second smallest gets rank 2, and the largest gets rank k.
Then we sum all the ranks for every treatment. The sum of all the ranks for treatment
1 is R1, the sum of the ranks for treatment 2 is R2, and so on to Rk , the sum of all the
ranks given to treatment k.

If the distributions of the k populations are indeed identical, as stated in the null
hypothesis, then we expect that the sum of the ranks for each treatment would not
differ much from the sum of the ranks of any other treatment. The differences among
the sums of the ranks are measured by the Friedman test statistic, denoted by X 2.
When this statistic is too large, we reject the null hypothesis and conclude that at least
two treatments do not have the same distribution.

654 Chapter 14

The Friedman test statistic is

X2 � � 3n(k � 1) (14–30)
12

nk(k + 1) a
k

j=1
R2

j

When the null hypothesis is true, the distribution of X 2 approaches the chi-square
distribution with k � 1 degrees of freedom as n increases. For small values of k and n ,
tables of the exact distribution of X 2 under the null hypothesis may be found in
nonparametric statistics books. Here we will use the chi-square distribution as our
decision rule. We note that for small n, the chi-square approximation is conservative;
that is, we may not be able to reject the null hypothesis as easily as we would if we
use the exact distribution table. Our decision rule is to reject H0 at a given level, �,
if X 2 exceeds the critical point of the chi-square distribution with k � 1 degrees of
freedom and right-tail area �. We now demonstrate the use of the Friedman test with
an example.

A particular segment of the population, mostly retired people, frequently go on low-
budget cruises. Many travel agents specialize in this market and maintain mailing
lists of people who take frequent cruises. One such travel agent in Fort Lauderdale
wanted to find out whether “frequent cruisers” prefer some of the cruise lines in the
low-budget range over others. If so, the agent would concentrate on selling tickets on
the preferred line(s) rather than on a wider variety of lines. From a mailing list of peo-
ple who have taken at least one cruise on each of the three cruise lines Carnival,
Costa, and Sitmar, the agent selected a random sample of 15 people and asked them
to rank their overall experiences with the three lines. The ranks were 1 (best), 2 (sec-
ond best), and 3 (worst). The results are given in Table 14–5. Are the three cruise lines
equally preferred by people in the target population? 

E X A M P L E  1 4 – 1 0

Using the sums of the ranks of the three treatments (the three cruise lines), we com-
pute the Friedman test statistic. From equation 14–30, we get

S o l u t i o n

X 2 � ( � � ) � 3n(k � 1)

� (312 � 212 � 382) � 3(15)(4) � 9.73
12

(15)(3)(4)

R2
3R2

2R2
1

12
nk (k + 1)
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The Template
Figure 14–11 shows the template that can be used to conduct a Friedman test. The
data seen in the figure correspond to Example 14–10. The RowSum column in the
template can be used to make a quick check of data entry. All the sums must
be equal.
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TABLE 14–5 Sample Results of Example 14–10

Respondent Carnival Costa Sitmar

1 1 2 3

2 2 1 3

3 1 3 2

4 2 1 3

5 3 1 2

6 3 1 2

7 1 2 3

8 3 1 2

9 2 1 3

10 1 2 3

11 2 1 3

12 3 1 2

13 1 2 3

14 3 1 2

15 3 1 2

R1 � 31 R2 � 21 R3 � 38

We now compare the computed value of the statistic with values of the right tail
of the chi-square distribution with k � 1 � 2 degrees of freedom. The critical point
for � � 0.01 is found from Appendix C, Table 4, to be 9.21. Since 9.73 is greater than
9.21, we conclude that there is evidence that not all three low-budget cruise lines are
equally preferred by the frequent cruiser population.

FIGURE 14–11 The Template for the Friedman Test
[Nonparametric Tests.xls; Sheet: Friedman]

10
11
12
13
14
15

1
2
3
4
5
6
7

8
9

10
11
12
13
14
15
16
17
18
19
20
21

A B C D E F G H I J K L M N O P

Friedman Test Cruise Lines

R 31 21 38
1 2 3 4 5 6 7 8 9 10 RowSum

1 1 2 3 6 n 15
2 2 1 3 6 k 3
3 1 3 2 6

4 2 1 3 6 X2
9.733333

5 3 1 2 6
6 3 1 2 6 p -value 0.0077
7 1 2 3 6
8 3 1 2 6
9 2 1 3 6

1 2 3 6
2 1 3 6
3 1 2 6
1 2 3 6
3 1 2 6
3 1 2 6
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14–38. A random sample of 12 consumers are asked to rank their preferences of
four new fragrances that Calvin Klein wants to introduce to the market in the fall of
2008. The data are as follows (best liked denoted by 1 and least liked denoted by 4).
Do you believe that all four fragrances are equally liked? Explain.

Respondent Fragrance 1 Fragrance 2 Fragrance 3 Fragrance 4

1 1 2 4 3

2 2 1 3 4

3 1 3 4 2

4 1 2 3 4

5 1 3 4 2

6 1 4 3 2

7 1 3 4 2

8 2 1 4 3

9 1 3 4 2

10 1 3 2 4

11 1 4 3 2

12 1 3 4 2

14–39. While considering three managers for a possible promotion, the company
president decided to solicit information from employees about the managers’ relative
effectiveness. Each person in a random sample of 10 employees who had worked
with all three managers was asked to rank the managers, where best is denoted by 1,
second best by 2, and worst by 3. The data follow. Based on the survey, are all three
managers perceived as equally effective? Explain.

Respondent Manager 1 Manager 2 Manager 3

1 3 2 1

2 3 2 1

3 3 1 2

4 3 2 1

5 2 3 1

6 3 1 2

7 3 2 1

8 3 2 1

9 3 1 2

10 3 1 2

14–40. In testing to find a cure for congenital heart disease, the condition of a
patient after he or she has been treated with a drug cannot be directly quantified, but
the patient’s condition can be compared with those of other patients with the same
illness severity who were treated with other drugs. A pharmaceutical firm conducting
clinical trials therefore selects a random sample of 27 patients. The sample is then
separated into blocks of three patients each, with the three patients in each block hav-
ing about the same pretreatment condition. Each person in a block is then randomly
assigned to be treated by one of the three drugs under consideration. After the treat-
ment, a physician evaluates each person’s condition and ranks the patient in compar-
ison with the others in the same block (with 1 indicating the most improvement and
3 indicating the least improvement). Using the following data, do you believe that all
three drugs are equally effective?

P R O B L E M S

The template provides the p-value in cell O10. Since it is less than 1%, we can
reject the null hypothesis that all cruise lines are equally preferred at an � of 1%. 
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Block Drug A Drug B Drug C

1 2 3 1

2 2 3 1

3 2 3 1

4 2 3 1

5 1 3 2

6 2 3 1

7 2 1 3

8 2 3 1

9 1 2 3

14–41. Four different processes for baking Oreo cookies are considered for the 2008
season. The cookies produced by each process are evaluated in terms of their overall
quality. Since the cookies sometimes may not bake correctly, the distribution of quality
ratings is different from a normal distribution. When conducting a test of the quality of
the four processes, cookies are blocked into groups of four according to the ingredients
used. The ratings of the cookies baked by the four processes are as follows. (Ratings are
on a scale of 0 to 100.) Are the four processes equally good? Explain.

Block Process 1 Process 2 Process 3 Process 4

1 87 65 73 20

2 98 60 39 45

3 85 70 50 60

4 90 80 85 50

5 78 40 60 45

6 95 35 70 25

7 70 60 55 40

8 99 70 45 60

14–8 The Spearman Rank Correlation Coefficient
Recall our discussion of correlation in Chapter 10. There we stressed the assumption
that the distributions of the two variables in question, X and Y, are normal. In cases
where this assumption is not realistic, or in cases where our data are themselves in
the form of ranks or are otherwise on an ordinal scale, we have alternative measures
of the degree of association between the two variables. The most frequently used
nonparametric measure of the correlation between two variables is the Spearman rank
correlation coefficient, denoted by rs.

Our data are pairs of n observations on two variables X and Y—pairs of the form
(xi , yi ), where i � 1, . . . , n. To compute the Spearman correlation coefficient, we first
rank all the observations of one variable within themselves from smallest to largest.
Then we independently rank the values of the second variable from smallest to
largest. The Spearman rank correlation coefficient is the usual (Pearson) correlation coefficient
applied to the ranks. When no ties exist, that is, when there are no two values of X or
two values of Y with the same rank, there is an easier computational formula for the
Spearman correlation coefficient. The formula follows.
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The Spearman rank correlation coefficient (assuming no ties) is

rs � 1 � (14–31)

where di, i � 1, . . . , n, are the differences in the ranks of xi and yi:
di � R(xi) � R(yi).

6gn
i=1d2

i

n(n2 - 1)
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If we do have ties within the X values or the Y values, but the number of ties is small
compared with n, equation 14–31 is still useful.

The Spearman correlation coefficient satisfies the usual requirements of correla-
tion measures. It is equal to 1 when the variables X and Y are perfectly positively
related, that is, whenY increases whenever X does, and vice versa. It is equal to �1 in
the opposite situation, where X increases whenever Y decreases. It is equal to 0 when
there is no relation between X and Y. Values between these extremes give a relative
indication of the degree of association between X and Y.

As with the parametric Pearson correlation coefficient, the Spearman statistic has
two possible uses. It may be used as a descriptive statistic giving us an indication of
the association between X and Y. We may also use it for statistical inference. In the con-
text of inference, we assume a certain correlation in the ranks of the values of the
bivariate population of X and Y. This population rank correlation is denoted by �s.
We want to test whether �s � 0, that is, whether there is an association between the
two variables X and Y.

658 Chapter 14

The hypothesis test for association between two variables is

H0: �s � 0
H1: �s 
 0 (14–32)

A large-sample test statistic for association is

z � rs (14–33)1n - 1

This is a two-tailed test for the existence of a relation between X and Y. One-tailed
versions of the test are also possible. If we want to test for a positive association
between the variables, then the alternative hypothesis is that the parameter �s is strictly
greater than zero. If we want to test for a negative association only, then the alter-
native hypothesis is that �s is strictly less than zero. The test statistic is simply rs , as
defined in equation 14–31.

When the sample size is less than or equal to 30, we use Appendix C, Table 11
(page 786). The table gives critical points for various levels of significance �. For a
two-tailed test, we double the � level given in the table and reject the null hypothesis
if rs is either greater than or equal to the table value C or less than or equal to �C. In
a right-tailed test, we reject only if rs is greater than or equal to C; and in a left-tailed
test, we reject only if rs is less than or equal to �C. In either one-tailed case, we use
the � given in one of the columns in the table (we do not double it).

For larger sample sizes, we use the normal approximation to the distribution of rs
under the null hypothesis. The Z statistic for such a case is as follows.

We demonstrate the computation of Spearman’s statistic, and a test of whether
the population rank correlation is zero, with Example 14–11. 

The S&P 100 Index is an index of 100 stock options traded on the Chicago Board
Options Exchange. The MMI is an index of 20 stocks with options traded on the
American Stock Exchange. Since options are volatile, the assumption of a normal
distribution may not be appropriate, and the Spearman rank correlation coefficient
may provide us with information about the association between the two indexes.16

Using the reported data on the two indexes, given in Table 14–6, compute the rs

E X A M P L E  1 4 – 1 1

16Volatility means that there are jumps to very small and very large values. This gives the distribution long tails and
makes it different from the normal distribution. For stock returns, however, the normal assumption is a good one, as men-
tioned in previous chapters.
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statistic, and test the null hypothesis that the MMI and the S&P 100 are not related
against the alternative that they are positively correlated. 
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We rank the MMI values and the S&P 100 values and compute the 10 differences:
di � rank(MMIi ) � rank(S&P100i ). This is shown in Table 14–7. The order of the
values in the table corresponds to their order in Table 14–6.

We now use equation 14–31 and compute rs:

S o l u t i o n

rs � 1 � � 1 � � 0.9758
24
990

6(d 2
1 + d 2

2 + # # # + d 2
10)

10(102 - 1)

H0: �s 	 0
H1: �s 
 0 (14–34)

The sample correlation is very high.
We now use the rs statistic in testing the hypotheses:

We want to test for the existence of a positive rank correlation between MMI and
S&P 100 in the population of values of the two indexes. We want to test whether the
high sample rank correlation we found is statistically significant. Since this is a right-
tailed test, we reject the null hypothesis if rs is greater than or equal to a point C found
in Appendix C, Table 11, at a level of � given in the table. We find from the table that
for � � 0.005 and n � 10, the critical point is 0.794. Since rs � 0.9758 
 0.794, we
reject the null hypothesis and conclude that the MMI and the S&P 100 are positively
correlated. The p-value is less than 0.005.

In closing this section, we note that Spearman’s rank correlation coefficient is
sometimes referred to as Spearman’s rho (the Greek letter �). There is another com-
monly used nonparametric measure of correlation. This one was developed by
Kendall and is called Kendall’s tau (the Greek letter �). Since Kendall’s measure is not
as simple to compute as the Spearman coefficient of rank correlation, we leave it to
texts on nonparametric statistics.

The Template
Figure 14–12 shows the template that can be used for calculating and testing
Spearman’s rank correlation coefficients. The data entered in columns B and C can
be raw data or ranks themselves. The p-values in the range J15:J17 appear only if the
sample is large (n 
 30). Otherwise, the message “Look up the tables for p-value”
appears in cell J6. 

TABLE 14–6
Data on the MMI and S&P
100 Indexes for Example
14–11

MMI S&P 100

220 151

218 150

216 148

217 149

215 147

213 146

219 152

236 165

237 162

235 161

TABLE 14–7 Ranks and Rank Differences for Example 14–11

Rank(MMI) Rank(S&P 100) Difference

7 6 1
5 5 0
3 3 0
4 4 0
2 2 0
1 1 0
6 7 �1
9 10 �1

10 9 1
8 8 0
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FIGURE 14–12 The Template for Calculating Spearman’s Rank Correlation
[Nonparametric Tests.xls; Sheet: Spearman]

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

16

17
18

A B C D E F G H I J K L

Spearman Rank Correlation Coefficient

X Y Rank X Rank Y
1 220 151 7 6 n 10
2 218 150 5 5 ρs 0.9758 Look up the tables for p-value.
3 216 148 3 3
4 217 149 4 4
5 215 147 2 2
6 213 146 1 1 For large samples (n > 30)
7 219 152 6 7 Test Statistic
8 236 165 9 10 z
9 237 162 10 9 At an α of

10 235 161 8 8 Null Hypothesis p-value 5%
H0 : ρs = 0

H0 : ρs >= 0

H0 : ρs <=0

P R O B L E M S

14–42. The director of a management training program wants to test whether there
is a positive association between an applicant’s score on a test prior to her or his
being admitted to the program and the same person’s success in the program. The
director ranks 15 participants according to their performance on the pretest and sep-
arately ranks them according to their performance in the program:

Participant: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Pretest rank: 8 9 4 2 3 10 1 5 6 15 13 14 12 7 11
Performance rank: 7 5 9 6 1 8 2 10 15 14 4 3 11 12 13

Using these data, carry out the test for a positive rank correlation between pretest
scores and success in the program.
14–43. An article in Money looks at the relationship between people’s investments
in large-cap stocks and international stocks.17 Suppose that the following data are
available for a random sample of families, the percentage of the portfolio invested in
large-cap stocks, and the percentage invested in international stocks:

Large-cap (%): 25 28 15 17 30 22 12 13 20
International (%): 30 32 23 25 40 29 17 21 32

Compute the Spearman rank correlation coefficient and test for the existence of a
population correlation.
14–44. Recently the European Community (EC) decided to lower its subsidies to
makers of pasta. In deciding by what amount to reduce total subsidies, experiments
were carried out for determining the possible reduction in exports, mainly to the
United States, that would result from the subsidy reduction. Over a small range of
values, economists wanted to test whether there is a positive correlation between
level of subsidy and level of exports. A computer simulation of the economic variables
involved in the pasta exports market was carried out. The results follow. Assuming
that the simulation is an accurate description of reality and that the values obtained
may be viewed as a random sample of the populations of possible outcomes, state

17“The Portfolio,” Money, June 2007, p. 69.
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whether you believe that a positive rank correlation exists between subsidy level and
exports level over the short range of values studied.

Subsidy(millions of dollars/year): 5.1 5.3 5.2 4.9 4.8 4.7 4.5 5.0 4.6 4.4 5.4
Exports(millions of dollars/year): 22 30 35 29 27 36 40 39 42 45 21

14–45. An advertising research analyst wanted to test whether there is any relation-
ship between a magazine advertisement’s color intensity using a new digital photogra-
phy technique introduced in 2007 and the ad’s appeal. Ten ads of varying degrees of
color intensity, but identical in other ways, were shown to randomly selected groups of
respondents. The respondents rated each ad for its general appeal. The respondents
were segmented in such a way that each group viewed a different ad, and every group’s
responses were aggregated. The results were ranked as follows.

Color intensity: 8 7 2 1 3 4 10 6 5 9
Appeal score: 1 3 4 2 5 8 7 6 9 10

Is there a rank correlation between color intensity and appeal?

14–9 A Chi-Square Test for Goodness of Fit
In this section and the next two, we describe tests that make use of the chi-square
distribution. The data used in these tests are enumerative: The data are counts, or fre-
quencies. Our actual observations may be on a nominal (or higher) scale of measure-
ment. Because many real-world situations in business and other areas allow for the
collection of count data (e.g., the number of people in a sample who fall into different
categories of age, sex, income, and job classification), chi-square analysis is very com-
mon and very useful. The tests are easy to carry out and are versatile: we can employ
them in a wide variety of situations. The tests presented in this and the next two
sections are among the most useful statistical techniques of analyzing data. Quite
often, in fact, a computer program designed merely to count the number of items
falling in some categories automatically prints out a chi-square value. The user then
has to consider the question: What statistical test is implied by the chi-square statistic
in this particular situation? Among their other purposes, these sections should help
you answer this question.

We will discuss a common principle of all the chi-square tests. The principle is
summarized in the following steps:

Steps in a chi-square analysis:

1. We hypothesize about a population by stating the null and alternative
hypotheses.

2. We compute frequencies of occurrence of certain events that we expect
under the null hypothesis. These give us the expected counts of data
points in different cells.

3. We note the observed counts of data points falling in the different cells.
4. We consider the difference between the observed and the expected.

This difference leads us to a computed value of the chi-square statistic.
The formula of the statistic is given as equation 14–35.

5. We compare the value of the statistic with critical points of the chi-square
distribution and make a decision.

The analysis in this section and the next two involves tables of data counts. The
chi-square statistic has the same form in the applications in all three sections. The
statistic is equal to the squared difference between the observed count and the expected count in

Nonparametric Methods and Chi-Square Tests 661
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each cell, divided by the expected count, summed over all cells. If our data table has k cells, let
the observed count in cell i be Oi and the expected count (expected under H0) be Ei.
The definition is for all cells i � 1, 2, . . . , k.

662 Chapter 14

The chi-square statistic is

X2 � (14–35)a
k

i=1

(Oi - Ei)
2

Ei

As the total sample size increases, for a given number of cells k, the distribution of the
statistic X 2 in equation 14–35 approaches the chi-square distribution. The degrees of
freedom of the chi-square distribution are determined separately in each situation.

Remember the binomial experiment, where the number of successes (items falling in
a particular category) is a random variable. The probability of a success is a fixed num-
ber p. Recall from the beginning of Chapter 4 that as the number of trials n increases,
the distribution of the number of binomial successes approaches a normal distribution.
In the situations in this and the next two sections, the number of items falling in any of
several categories is a random variable, and as the number of trials increases, the
observed number in any cell Oi approaches a normal random variable. Remember
also that the sum of several squared standard normal random variables has a chi-
square distribution. The terms summed in equation 14–35 are standardized random
variables that are squared. Each one of these variables approaches a normal random
variable. The sum, therefore, approaches a chi-square distribution as the sample size n
gets large.

A goodness-of-fit test is a statistical test of how well our data support an
assumption about the distribution of a population or random variable of
interest. The test determines how well an assumed distribution fits the data.

For example, we often make an assumption of a normal population. A test of how
well a normal distribution fits a given data set may be of interest. Shortly we will see
how to carry out a test of the normal distribution assumption.

We start our discussion of goodness-of-fit tests with a simpler test, and a very use-
ful one—a test of goodness of fit in the case of a multinomial distribution. The
multinomial distribution is a generalization of the binomial distribution to more than
two possibilities (success versus failure). In the multinomial situation, we have k 
 2
possible categories for the data. A data point can fall into only one of the k categories,
and the probability that the point will fall in category i (where i � 1, 2, . . . , k) is con-
stant and equal to pi. The sum of all k probabilities pi is 1.

Given five categories, for example, such as five age groups, a respondent can fall
into only one of the (nonoverlapping) groups. If the probabilities that the respondent
will fall into any of the k groups are given by the five parameters p1, p2, p3, p4, and p5,
then the multinomial distribution with these parameters and n, the number of people
in a random sample, specifies the probability of any combination of cell counts. For
example, if n � 100 people, the multinomial distribution gives us the probability that
10 people will fall in category 1; 15 in category 2; 12 in category 3; 50 in category 4;
and the remaining 13 in category 5. The distribution gives us the probabilities of all
possible counts of 100 people (or items) distributed into five cells.

When we have a situation such as this, we may use the multinomial distribution
to test how well our data fit the assumption of k fixed probabilities p1, . . . , pk of falling
into k cells. However, working with the multinomial distribution is difficult, and the
chi-square distribution is a very good alternative when sample size considerations
allow its use.
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A Goodness-of-Fit Test for the Multinomial Distribution

Nonparametric Methods and Chi-Square Tests 663

The null and the alternative hypotheses for the multinomial distribution are

H0: The probabilities of occurrence of events E1, E2, . . . , Ek are given by
the specified probabilities p1, p2, . . . , pk

H1: The probabilities of the k events are not the pi stated in the 
null hypothesis (14–36)

The test statistic is as given in equation 14–35. For large enough n (a rule for how
large is “enough” will be given shortly), the distribution of the statistic may be
approximated by a chi-square distribution with k � 1 degrees of freedom. We
demonstrate the test with Example 14–12. 

Raymond Weil is about to come out with a new watch and wants to find out whether
people have special preferences for the color of the watchband, or whether all four
colors under consideration are equally preferred. A random sample of 80 prospec-
tive watch buyers is selected. Each person is shown the watch with four different
band colors and asked to state his or her preference. The results—the observed counts—
are given in Table 14–8.

E X A M P L E  1 4 – 1 2

The null and alternative hypotheses, equation 14–36, take the following specific form: S o l u t i o n

H0: The four band colors are equally preferred; that is, the probabilities of
choosing any of the four colors are equal: p1 � p2 � p3 � p4 � 0.25

H1: Not all four colors are equally preferred (the probabilities of choosing the 
four colors are not all equal)

To compute the value of our test statistic (equation 14–35), we need to find the expected
counts in all four cells (in this example, each cell corresponds to a color).

Recall that for a binomial random variable, the mean—the expected value—is
equal to the number of trials n times the probability of success in a single trial p.
Here, in the multinomial experiment, we have k cells, each with probability pi,
where i � 1, 2, . . . , k. For each cell, we have a binomial experiment with proba-
bility pi and number of trials n. The expected number in each cell is therefore equal
to n times pi.

The expected count in cell i is

Ei � npi (14–37)

In this example, the number of trials is the number of people in the random sample:
n � 80. Under the null hypothesis, the expected number of people who will choose

TABLE 14–8 Watchband Color Preferences

Tan Brown Maroon Black Total

12 40 8 20 80
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color i is equal to Ei � npi. Furthermore, since all the probabilities in this case are
equal to 0.25, we have the following:

664 Chapter 14

E1 � E2 � E3 � E4 � (80)(0.25) � 20

When the null hypothesis is true, and the probability that any person will choose any
one of the four colors is equal to 0.25, we may not observe 20 people in every cell. In
fact, observing exactly 20 people in each of the four cells is an event with a small prob-
ability. However, the number of people we observe in each cell should not be too far
from the expected number, 20. Just how far is “too far” is determined by the chi-square
distribution. We use the expected counts and the observed counts in computing the
value of the chi-square test statistic. From equation 14–35, we get the following:

X 2 �

� � 0 � 3.2 � 20 � 7.2 � 0 � 30.4
64
20

+
400
20

+
144
20

(Oi - Ei )2

Ei
=

(12 - 20)2

20
+

(40 - 20)2

20
+

(8 - 20)2

20
+

(20 - 20)2

20a
k

i=1

We now conduct the test by comparing the computed value of our statistic, X 2 �
30.4, with critical points of the chi-square distribution with k � 1 � 4 � 1 � 3 degrees
of freedom. From Appendix C, Table 4, we find that the critical point for a chi-square
random variable with 3 degrees of freedom and right-hand-tail area � � 0.01 is 11.3.
(Note that all the chi-square tests in this chapter are carried out only on the right-hand tail of
the distribution.) Since the computed value is much greater than the critical point at
� � 0.01, we conclude that there is evidence to reject the null hypothesis that all four
colors are equally likely to be chosen. Some colors are probably preferable to others.
Our p-value is very small.

The Template
The template for conducting chi-square tests for goodness of fit is shown in Figure 14–13.
The data in the template correspond to Example 14–12. The results agree with the hand
calculations. In addition, the template reveals that the p-value is almost zero.

Unequal Probabilities
The test for multinomial probabilities does not always entail equal probabilities, as was
the case in our example. The probabilities may very well be different. All we need to

FIGURE 14–13 The Template for Goodness of Fit
[Chi-Square Tests.xls; Sheet: Goodness-of-Fit]

1
2
3
4
5
6
7
8
9

10
11
12

13
14
15
16

A B C D E F G H I J K L

Chi-Square Test for Goodness-of-Fit Watchband color

Frequency data
Tan Brown Maroon Black

Actual 12 40 8 20
Expected 20 20 20 20

k 4
df 3

Test Statistic
χ2 30.4

p -value 0.0000
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do is to specify the probabilities in the null hypothesis and then use the hypothesized
probabilities in computing the expected cell counts (using equation 14–37). Then we
use the expected counts along with the observed counts in computing the value of the
chi-square statistic.

Under what conditions can we assume that, under the null hypothesis, the dis-
tribution of the test statistic in equation 14–37 is well-approximated by a chi-square
distribution? This important question has no exact answer. As the sample size n
increases, the approximation gets better and better. On the other hand, there is also a
dependence on the cell k. If the expected number of counts in some cells is too small,
the approximation may not be valid. We will give a good rule of thumb that specifies
the minimum expected count in each cell needed for the chi-square approximation
to be valid. The rule is conservative in the sense that other rules have been given that
allow smaller expected counts under certain conditions. If we follow the rule given
here, we will usually be safe using the chi-square distribution.

The chi-square distribution may be used as long as the expected count in
every cell is at least 5.0.

Suppose that while conducting an analysis, we find that for one or more cells, the
expected number of items is less than 5. We may still continue our analysis if we can
combine cells so that the expected number has a total of at least 5. For example, sup-
pose that our null hypothesis is that the distribution of ages in a certain population is
as follows: 20% are between the ages of 0 to 15, 10% are in the age group of 16 to 25,
10% are in the age group of 26 to 35, 20% are in the age group of 36 to 45, 30% are
in the age group of 45 to 60, and 10% are age 61 or over. If we number the age group
cells consecutively from 1 to 6, then the null hypothesis is H0: p1 � 0.20, p2 � 0.10,
p3 � 0.10, p4 � 0.20, p5 � 0.30, p6 � 0.10.

Now suppose that we gather a random sample of n � 40 people from this pop-
ulation and use this group to test for goodness of fit of the multinomial assumption
in the null hypothesis. What are our expected cell counts? In the 0–15 cell, the
expected number of people is np1 � (40)(0.20) � 8, which is fine. But for the next
age group, 16 to 25, we find that the expected number is np2 � (40)(0.10) � 4,
which is less than 5. If we want to continue the analysis, we may combine age
groups that have small expected counts with other age groups. We may combine
the 16–25 age group with the 26–35 age group, which also has a low expected
count. Or we may combine the 16–25 group with the 0–15 group, and the 26–35
group with the 36–45 group—whichever makes more sense in terms of the inter-
pretation of the analysis. We also need to combine the 61-and-over group with the
45–60 age group. Once we make sure that all expected counts are at least 5, we
may use the chi-square distribution. Instead of combining groups, we may choose
to increase the sample size.

We will now discuss the determination of the number of degrees of freedom,
denoted by df. The total sample size is n � 80 in Table 14–8 of Example 14–12. The
total count acts similarly to the way does when we use it in computing the sample
standard deviation. The total count reduces the number of degrees of freedom by 1. Why?
Because knowing the total allows us not to know directly any one of the cell counts. If
we knew, for example, the counts in the cells corresponding to tan, black, and
maroon but did not know the count in the brown cell, we could still figure out the
count for this cell by subtracting the sum of the three cell counts we do know from
the total of 80. Thus, when we know the total, 1 degree of freedom is lost from the
category cells. Out of four cells in this example, any three are free to move. Out of k
cells, since we know their total, only k � 1 are free to move: df � k � 1.

Next we note another fact that will be important in our next example.

If we have to use the data for estimating the parameters of the probability
distribution stated in the null hypothesis, then for every parameter we esti-
mate from the data, we lose an additional degree of freedom.

x-

Nonparametric Methods and Chi-Square Tests 665
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The chi-square goodness-of-fit test may be applied to testing any hypothesis
about the distribution of a population or a random variable. As mentioned earlier,
the test may be applied in particular to testing how well an assumption of a normal
distribution is supported by a given data set. The standard normal distribution table,
Appendix C, Table 2, gives us the probability that a standard normal random vari-
able will be between any two given values. Through the transformation X � � � �Z,
we may then find boundaries in terms of the original variable X for any given prob-
abilities of occurrence. These boundaries can be used in forming cells with known
probabilities and, hence, known expected counts for a given sample size. This analy-
sis, however, assumes that we know � and �, the mean and the standard deviation
of the population or variable in question.

When � and � are not known and when the null and alternative hypotheses are
stated as

666 Chapter 14

H0: The population (or random variable) has a normal distribution
H1: The population (or random variable) is not normally distributed (14–38)

there is no mention in the statement of the hypotheses of what the mean or standard
deviation may be, and we need to estimate them directly from our data. When this
happens, we lose a degree of freedom for each parameter estimated from the data
(unless we use another data set for the estimation). We estimate � by and � by S, as
usual. The degrees of freedom of the chi-square statistic are df � k � 2 � 1 � k � 3
(instead of k � 1, as before). We will now demonstrate the test for a normal distribu-
tion with Example 14–13.

X

An analyst working for a department store chain wants to test the assumption that the
amount of money spent by a customer in any store is approximately normally dis-
tributed. It is important to test this assumption because the analyst plans to conduct
an analysis of variance to determine whether average sales per customer are equal at
several stores in the same chain (as we recall, the normal-distribution assumption is
required for ANOVA). A random sample of 100 shoppers at one of the department
stores reveals that the average spending is � $125 and the standard deviation is s �
$40. These are sample estimates of the population mean and standard deviation. (The
breakdown of the data into cells is included in the solution.) 

x

E X A M P L E  1 4 – 1 3

We begin by defining boundaries with known probabilities for the standard normal ran-
dom variable Z. We know that the probability that the value of Z will be between �1
and �1 is about 0.68. We also know that the probability that Z will be between �2 and
�2 is about 0.95, and we know other such probabilities. We may use Appendix C,
Table 2, to find more exact probabilities. Let us use the table and define several
nonoverlapping intervals for Z with known probabilities. We will form intervals of
about the same probability. Figure 14–14 shows one possible partition of the standard
normal distribution to intervals and their probabilities, obtained from Table 2. You
may use any partition you desire.

The partition was obtained as follows. We know that the area under the curve
between 0 and 1 is 0.3413 (from Table 2). Looking for an area of about half that size,
0.1700, we find that the appropriate point is z � 0.44. A similar relationship exists on
the negative side of the number line. Thus, using just the values 0.44 and 1 and their
negatives, we get a complete partition of the Z scale into the six intervals: �� to �1,
with associated probability of 0.1587; �1 to �0.44, with probability 0.1713; �0.44 to
0, with probability 0.1700; 0 to 0.44, with probability 0.1700; 0.44 to 1, with probability
0.1713; and, finally, 1 to �, with probability 0.1587. Breakdowns into other intervals
may also be used.

S o l u t i o n
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Now we transform the Z scale values to interval boundaries for the original
problem. Taking and s as if they were the mean and the standard deviation of the
population, we use the transformation X � � � �Z with � 125 and s � 40 substituted
for the unknown parameters. The Z value boundaries we just obtained are substituted
into the transformation, giving us the following cell boundaries:

x
x

Nonparametric Methods and Chi-Square Tests 667

x1 � 125 � (�1)(40) � 85
x2 � 125 � (�0.44)(40) � 107.4
x3 � 125 � (0)(40) � 125
x4 � 125 � (0.44)(40) � 142.6
x5 � 125 � (1)(40) � 165

FIGURE 14–14 Intervals and Their Standard Normal Probabilities

Area = 0.1587

Area = 0.1713

Area = 0.1700 Area = 0.1700

Area = 0.1713

Area = 0.1587

–1 1–0.44 0.440
z

The cells and their expected counts are given in Table 14–9. Cell boundaries are
broken at the nearest cent. Recall that the expected count in each cell is equal to the
cell probability times the sample size Ei � npi. In this example, the pi are obtained
from the normal table and are, in order, 0.1587, 0.1713, 0.1700, 0.1700, 0.1713, and
0.1587. Multiplying these probabilities by n � 100 gives us the expected counts. (Note
that the theoretical boundaries of �� and �� have no practical meaning; therefore,
the lowest bound is replaced by 0 and the highest bound by and above.) Note that all
expected cell counts are above 5, and, therefore, the chi-square distribution is an ade-
quate approximation to the distribution of the test statistic X 2 in equation 14–35
under the null hypothesis.

Table 14–10 gives the observed counts of the sales amounts falling in each of the
cells. The table was obtained by the analyst by looking at each data point in the sam-
ple and classifying the amount into one of the chosen categories.

To facilitate the computation of the chi-square statistic, we arrange the observed
and expected cell counts in a single table and show the computations necessary for
obtaining the value of the test statistic. This has been done in Table 14–11. The sum of
all the entries in the last column in the table is the value of the chi-square statistic. The
appropriate distribution has k � 3 � 6 � 3 � 3 degrees of freedom. We now consult

TABLE 14–9 Cells and Their Expected Counts

0–$84.99 $85.00–$107.39 $107.4–$124.99 $125–$142.59 $142.6–$164.99 $165 and above

15.87 17.13 17.00 17.00 17.13 15.87 Total � 100
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the chi-square table, Appendix C, Table 4, and we find that the computed statistic
value X 2 � 1.12 falls in the nonrejection region for any level of � in the table. There is
therefore no statistical evidence that the population is not normally distributed.
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TABLE 14–10 Observed Cell Counts

0–$84.99 $85.00–$107.39 $107.4–$124.99 $125–$142.59 $142.6–$164.99 $165 and above

14 20 16 19 16 15 Total � 100

TABLE 14–11 Computing the Value of the Chi-Square Statistic for Example 14–13

Cell i Oi Ei Oi � Ei (Oi � Ei)2 (Oi � Ei)2/Ei

0–$84.99 1 14 15.87 �1.87 3.50 0.22

$85.00–$107.39 2 20 17.13 2.87 8.24 0.48

$107.40–$124.99 3 16 17.00 �1.00 1.00 0.06

$125.00–$142.59 4 19 17.00 2.00 4.00 0.24

$142.60–$164.99 5 16 17.13 �1.13 1.28 0.07

$165.00 and above 6 15 15.87 �0.87 0.76 0.05

1.12

FIGURE 14–15 The Template for Testing Normal Distributions
[Chi-Square Tests.xls; Sheet: Normal Fit]

1
2
3
4
5
6
7
8

9
10
11
12
13
14
15

A B C D FE G JH K LI

Data

Chi-Square Test for Normal Distribution

Class Interval 

1 Mean
2 Std. Devn.
3 Size
4
5
6 χ 2 0.90006 df 3

7
8 p -value 0.8254
9

10
11
12

6.58
6.69
5.46
3.04
0.15
12.5
9.27

10.68
11.26
2.63
4.2

0.23

7
7
6
5
8

to
to
to
to
to
to 7

6.348
6.852

6.8
6.8

6.852
6.348

-infinity
2.6854
4.7186

9.9468

2.685
4.719
6.316
7.914
9.947

infinity

6.31608
3.63069

40

6.3161
7.9136

ExpectedActual

The Template
The template for testing the normal distribution of a given data set is shown in
Figure 14–15. Since the calculated mean and standard deviation of the data set are
used to define the class intervals, the degrees of freedom � k – 3 � 3.

The chi-square goodness-of-fit test may be applied to testing the fit of any hypothe-
sized distribution. In general, we use an appropriate probability table for obtain-
ing probabilities of intervals of values. The intervals define our data cells. Using
the sample size, we then find the expected count in each cell. We compare the
expected counts with the observed counts and compute the value of the chi-square
test statistic.

The chi-square statistic is useful in other areas as well. In the next section, we will
describe the use of the chi-square statistic in the analysis of contingency tables—an
analysis of whether two principles of classification are contingent on each other or
independent of each other. The following section extends the contingency table
analysis to a test of homogeneity of several populations. 
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14–46. A company is considering five possible names for its new product. Before
choosing a name, the firm decides to test whether all five names are equally
appealing. A random sample of 100 people is chosen, and each person is asked to
state her or his choice of the best name among the five possibilities. The numbers of
people who chose each one of the names are as follows.

Name: A B C D E
Number of choices: 4 12 34 40 10

Conduct the test.
14–47. A study reports an analysis of 35 key product categories. At the time of the
study, 72.9% of the products sold were of a national brand, 23% were private label,
and 4.1% were generic. Suppose that you want to test whether these percentages are
still valid for the market today. You collect a random sample of 1,000 products in the
35 product categories studied, and you find the following: 610 products are of a
national brand, 290 are private label, and 100 are generic. Conduct the test, and state
your conclusions.
14–48. Overbooking of airline seats has now become a major problem for every-
one who flies, because in order to stay profitable despite rising fuel costs, airlines
now fly at an unprecedented average seat occupancy of 85%.18 The following are the
results, occupancy rates and counts, for some flights. Assume these data represent a
random sample, and test the assumption that occupancy rates are normally distrib-
uted given that the mean is 85% and the standard deviation is 5%. 

Range (%): 65–70 71–75 76–80 81–85 86–90 91–95
Count 21 18 11 9 5 4

(number of flights):

14–49. Returns on an investment have been known to be normally distributed with
mean 11% (annualized rate) and standard deviation 2%. A brokerage firm wants to
test the null hypothesis that this statement is true and collects the following returns
data in percent (assume a random sample): 8, 9, 9.5, 9.5, 8.6, 13, 14.5, 12, 12.4, 19, 9,
10, 10, 11.7, 15, 10.1, 12.7, 17, 8, 9.9, 11, 12.5, 12.8, 10.6, 8.8, 9.4, 10, 12.3, 12.9, 7.
Conduct the analysis and state your conclusion.
14–50. Using the data provided in problem 14–49, test the null hypothesis that
returns on the investment are normally distributed, but with unknown mean and
standard deviation. That is, test only for the validity of the normal-distribution
assumption. How is this test different from the one in problem 14–49?

14–10 Contingency Table Analysis—
A Chi-Square Test for Independence

Recall the important concept of independence of events, which we discussed in Chapter 2.
Two events A and B are independent if the probability of their joint occurrence is equal
to the product of their marginal (i.e., separate) probabilities. This was given as:

A and B are independent if P(A � B) � P(A)P(B)

In this section, we will develop a statistical test that will help us determine
whether two classification criteria, such as gender and job performance, are
independent of each other. The technique will make use of contingency tables—
tables with cells corresponding to cross-classifications of attributes or events. In mar-
ket research studies, such tables are referred to as cross-tabs. The basis for our analysis
will be the property of independent events just stated.

18Jeff Bailey, “Overbooking: Bumped Fliers and No Plan B,” The New York Times, May 30, 2007, p. A1.

FVS
CHAPTER 14
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The contingency tables may have several rows and several columns. The rows
correspond to levels of one classification category, and the columns correspond to
another. We will denote the number of rows by r, and the number of columns by c. The
total sample size is n , as before. The count of the elements in cell (i, j), that is, the cell in
row i and column j (where i � 1, 2, . . . , r and j � 1, 2, . . . , c), is denoted by Oij. The
total count for row i is Ri , and the total count for column j is Cj. The general form of a
contingency table is shown in Figure 14–16. The table is demonstrated for r � 5 and
c � 6. Note that n is also the sum of all r row totals and the sum of all c column totals.

Let us now state the null and alternative hypotheses.

670 Chapter 14

FIGURE 14–16 Layout of a Contingency Table

First Classification CategorySecond
Classification

Category 1 2 3 4 5 6 Total

1 O11 O12 O13 O14 O15 O16 R1

2 O21 O22 O23 O24 O25 O26 R2

3 O31 O32 O33 O34 O35 O36 R3

4 O41 O42 O43 O44 O45 O46 R4

5 O51 O52 O53 O54 O55 O56 R5

Total C1 C2 C3 C4 C5 C6 n

The hypothesis test for independence is

H0: The two classification variables are independent of each other

H1: The two classification variables are not independent (14–39)

The principle of our analysis is the same as that used in the previous section. The chi-
square test statistic for this set of hypotheses is the one we used before, given in equa-
tion 14–35. The only difference is that the summation extends over all cells in the
table: the c columns and the r rows (in the previous application, goodness-of-fit tests,
we only had one row). We will rewrite the statistic to make it clearer:

The chi-square test statistic for independence is

X2 � (14–40)a
r

i=1
a
c

j=1

(Oij - Eij)
2

Eij

The double summation in equation 14–40 means summation over all rows and all
columns.

The degrees of freedom of the chi-square statistic are

df � (r � 1)(c � 1) (14–41)

Now all we need to do is to find the expected cell counts Eij. Here is where we use
the assumption that the two classification variables are independent. Remember that
the philosophy of hypothesis testing is to assume that H0 is true and to use this
assumption in determining the distribution of the test statistic. Then we try to show
that the result is unlikely under H0 and thus reject the null hypothesis.

Assuming that the two classification variables are independent, let us derive the
expected counts in all cells. Look at a particular cell in row i and column j. Recall
from equation 14–37 that the expected number of items in a cell is equal to the
sample size times the probability of the occurrence of the event signified by the
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particular cell. In the context of an r � c contingency table, the probability associated
with cell (i, j ) is the probability of occurrence of event i and event j. Thus, the expected
count in cell (i, j ) is Eij � nP (i � j ). If we assume independence of the two
classification variables, then event i and event j are independent events, and by the
law of independence of events, P (i � j ) � P (i )P ( j ).

From the row totals, we can estimate the probability of event i as Ri�n. Similarly,
we estimate the probability of event j by Cj�n. Substituting these estimates of the
marginal probabilities, we get the following expression for the expected count in cell
(i, j ): Eij � n(Ri�n)(Cj�n) � RiCj�n.

Nonparametric Methods and Chi-Square Tests 671

The expected count in cell (i, j) is

Eij � (14–42)
RiCj

n

Equation 14–42 allows us to compute the expected cell counts. These, along with
the observed cell counts, are used in computing the value of the chi-square statistic,
which leads us to a decision about the null hypothesis of independence.

We will now illustrate the analysis with two examples. The first example is an illus-
tration of an analysis of the simplest contingency table, a 2 � 2 table. In such tables,
the two rows correspond to the occurrence versus nonoccurrence of one event, and
the two columns correspond to the occurrence or nonoccurrence of another event.

In order to study the profits and losses of firms by industry, a random sample of 100
firms is selected, and for each firm in the sample, we record whether the company
made money or lost money, and whether the firm is a service company. The data are
summarized in the 2 � 2 contingency table, Table 14–12. Using the information in
the table, determine whether you believe that the two events “the company made a
profit this year” and “the company is in the service industry” are independent.

E X A M P L E  1 4 – 1 4

Table 14–12 is the table of observed counts. We now use its marginal totals R1, R2, C1,
and C2 as well as the sample size n, in creating a table of expected counts. Using equa-
tion 14–42, we get

S o l u t i o n

E 11 � R 1C1�n � (60)(48)�100 � 28.8
E 12 � R 1C2�n � (60)(52)�100 � 31.2
E 21 � R 2C1�n � (40)(48)�100 � 19.2
E 22 � R 2C2�n � (40)(52)�100 � 20.8

We now arrange these values in a table of expected counts, Table 14–13. Using the val-
ues shown in the table, we now compute the chi-square test statistic of equation 14–40:

X 2 � � 29.09
(42 - 28.8)2

28.8
+

(18 - 31.2)2

31.2
+

(6 - 19.2)2

19.2
+

(34 - 20.8)2

20.8

TABLE 14–12 Contingency Table of Profit/Loss versus Industry Type

Industry Type

Service Nonservice Total

Profit 42 18 60
Loss 6 34 40

Total 48 52 100
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Yates-corrected X 2

�

� 26.92

(13.2 - 0.5)2

28.8
+

(13.2 - 0.5)2

31.2
+

(13.2 - 0.5)2

19.2
+

(13.2 - 0.5)2

20.8

TABLE 14–13 Expected Counts (with the observed counts shown in parentheses) 
for Example 14–14

Service Nonservice

Profit 28.8 31.2

(42) (18)

Loss 19.2 20.8

(6) (34)

In the analysis of 2 � 2 contingency tables, our chi-square statistic has 1 degree
of freedom. In such cases, the value of the statistic frequently is “corrected” so that its
discrete distribution will be better approximated by the continuous chi-square distri-
bution. The correction is called the Yates correction and entails subtracting the
number 1�2 from the absolute value of the difference between the observed and the
expected counts before squaring them as required by equation 14–40. The Yates-
corrected form of the statistic is as follows.

Yates-corrected X2 � (14–43)a
r

i=1
a
c

j=1

(|Oij - Eij | - 0.5)2

Eij

For our example, the corrected value of the chi-square statistic is found as

As we see, the correction yields a smaller computed value. This value still leads to a
strong rejection of the null hypothesis of independence. In many cases, the correc-
tion will not significantly change the results of the analysis. We will not emphasize the
correction in the applications in this book.

The Template
The template for testing independence using the chi-square distribution is shown in
Figure 14–17. The data correspond to Example 14–14. 

To conduct the test, we compare the computed value of the statistic with critical
points of the chi-square distribution with (r � 1)(c � 1) � (2 � 1)(2 � 1) � 1 degree
of freedom. From Appendix C, Table 4, we find that the critical point for � � 0.01 is
6.63, and since our computed value of the X 2 statistic is much greater than the criti-
cal point, we reject the null hypothesis and conclude that the two qualities, profit/loss
and industry type, are probably not independent.

To better identify its target market, Alfa Romeo conducted a market research study. A
random sample of 669 respondents was chosen, and each was asked to select one of four
qualities that best described him or her as a driver. The four possible self-descriptive
qualities were defensive, aggressive, enjoying, and prestigious. Each respondent was then

E X A M P L E  1 4 – 1 5
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asked to choose one of three Alfa Romeo models as her or his choice of the most suit-
able car. The three models were Alfasud, Giulia, and Spider. The purpose of the study
was to determine whether a relationship existed between a driver’s self-image and
choice of an Alfa Romeo model. The response data are given in Table 14–14. 

Figure 14–18 shows the template solution to Example 14–15. The p-value of 0.0019 is
less than 1% and therefore we reject the null hypothesis that the choice of Alfa
Romeo model and self-image are independent. 

S o l u t i o n

FIGURE 14–17 The Template for Testing Independence
[Chi-Square Tests.xls; Sheet: Independence]

M

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16

A B C D E F G H I J K L N O P

Chi-Square Test for Independence

Frequencies Data Yates Correction 0.5
1 2 3 4 5 6 7 8 9 10 Total

1 18 #Rows 2
2 34 #Cols 2
3 df 1
4
5 Test Statistic

6 χ 2

7
8 p -value

9
10

Total 48 52 0 0 0 0 0 0 0 0

26.925

0.0000

60
40

0
0
0

0
0
0
0
0

100

42
6

Alfa Romeo

TABLE 14–14 The Observed Counts: Alfa Romeo Study

Self-Image
Alfa Romeo 

Model Defensive Aggressive Enjoying Prestigious Total

Alfasud 22 21 34 56 133

Giulia 39 45 42 68 194

Spider 77 89 96 80 342

Total 138 155 172 204 669

FIGURE 14–18 Template Solution to Example 14–15
[Chi-Square Tests.xls; Sheet: Independence]

M

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16

A B C D E F G H I J K L N O P

Chi-Square Test for Independence

Frequencies Data Yates Correction

Alfa Romeo

0

1 2 3 4 5 6 7 8 9 10 Total
1 21 #Rows 3
2 45

89

34
42
96

56
68
80

#Cols 4
3 df 6
4
5 Test Statistic
6 χ 2

7
8 p -value

9
10

Total 138 155 172 204 0 0 0 0 0 0

20.867

0.0019

133
194
342

0
0
0

0
0
0
0

669

22
39
77



Aczel−Sounderpandian: 
Complete Business 
Statistics, Seventh Edition

14. Nonparametric 
Methods and Chi−Square 
Tests

Text676 © The McGraw−Hill 
Companies, 2009

674 Chapter 14

P R O B L E M S

14–51. An article reports that smaller firms seem to be hiring more than large ones
as the economy picks up its pace. The table below gives numbers of employees hired
and those laid off, out of a random sample of 1,032, broken down by firm size. Is
there evidence that hiring practices are dependent on firm size?

Small Firm Medium-Size Firm Large Firm Total

Number hired 210 290 325 825
Number laid off 32 95 80 207

Total 242 385 405 1,032

14–52. An article in the Journal of Business reports the results of an analysis of
takeovers of U.S. firms by foreign corporations. The article looked at the reaction to
the attempted takeover by the management of the target firm: friendly, hostile, or
white knight.19 Suppose the data are as follows.

Managerial Reaction Successful Takeover Unsuccessful Takeover Total

Friendly 174 8 182
Hostile 18 12 30
White knight 14 2 16

Total 206 22 228

Does managerial reaction by the target firm affect the success of the takeover?
14–53. The table below gives the number of cars, out of a random sample of 100
rental cars, belonging to each of the listed firms in 2005 and in 2007. Is there evidence
of a change in the market shares of the car rental firms?

Hertz Avis National Budget Other Total

2005 39 26 18 14 3 100
2007 29 25 16 19 11 100

14–54. The following table describes recent purchases of U.S. stocks by individual
or institution as well as domestic or foreign. Is there evidence of a dependence to
institutional buying on whether the buyer is foreign or domestic?

Domestic Foreign

Individual 25 32
Institution 30 13

14–55. A study was conducted to determine whether a relationship existed between
certain shareholder characteristics and the level of risk associated with the sharehold-
ers’ investment portfolios. As part of the analysis, portfolio risk (measured by the port-
folio beta) was divided into three categories: low-risk, medium-risk, and high-risk; and
the portfolios were cross-tabulated according to the three risk levels and seven family-
income levels. The results of the analysis, conducted using a random sample of 180
investors, are shown in the following contingency table. Test for the existence of a rela-
tionship between income and investment risk taking. [Be careful here! (Why?)]

Portfolio Risk Level

Income Level ($) Low Medium High Total

0 to 60,000 5 4 1 10
61,000 to 100,000 6 3 0 9
101,000 to 150,000 22 30 11 63
151,000 to 200,000 11 20 20 51
201,000 to 250,000 8 10 4 22
251,000 to 300,000 2 0 10 12
301,000 and above 1 1 11 13

Total 55 68 57 180

19Jun-Koo Kang et al., “Post Takeover Restructuring and the Sources of Gains in Foreign Takeovers: Evidence from
U.S. Targets,” Journal of Business 79, no. 5 (2006), pp. 2503–2537.
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14–56. When new paperback novels are promoted at bookstores, a display is often
arranged with copies of the same book with differently colored covers. A publishing
house wanted to find out whether there is a dependence between the place where the
book is sold and the color of its cover. For one of its latest novels, the publisher sent
displays and a supply of copies of the novel to large bookstores in five major cities.
The resulting sales of the novel for each city–color combination are as follows. Numbers
are in thousands of copies sold over a 3-month period.

Color

City Red Blue Green Yellow Total

New York 21 27 40 15 103

Washington 14 18 28 8 68

Boston 11 13 21 7 52

Chicago 3 33 30 9 75

Los Angeles 30 11 34 10 85

Total 79 102 153 49 383

a. Assume that the data are random samples for each particular color–city
combination and that the inference may apply to all novels. Conduct the
overall test for independence of color and location.

b. Before the analysis, the publisher stated a special interest in the issue
of whether there is any dependence between the red versus blue preference
and the two cities Chicago versus Los Angeles. Conduct the test. Explain.

14–11 A Chi-Square Test for Equality of Proportions
Contingency tables and the chi-square statistic are also useful in another kind of
analysis. Sometimes we are interested in whether the proportion of some characteris-
tic is equal in several populations. An insurance company, for example, may be inter-
ested in finding out whether the proportion of people who submit claims for
automobile accidents is about the same for the three age groups 25 and under, over
25 and under 50, and 50 and over. In a sense, the question of whether the propor-
tions are equal is a question of whether the three age populations are homogeneous with
respect to accident claims. Therefore, tests of equality of proportions across several
populations are also called tests of homogeneity.

The analysis is carried out in exactly the same way as in the previous application.
We arrange the data in cells corresponding to population-characteristic combina-
tions, and for each cell, we compute the expected count based on its row and column
totals. The chi-square statistic is computed exactly as before. Two things are different
in this analysis. First, we identify our populations of interest before the analysis and
sample directly from these populations. Contrast this with the previous application,
where we sampled from one population and then cross-classified according to two
criteria. Second, because we identify populations and sample from them directly, the
sizes of the samples from the different populations of interest are fixed. This is called
a chi-square analysis with fixed marginal totals. This fact, however, does not affect the
analysis.

We will demonstrate the analysis with the insurance company example just men-
tioned. The null and alternative hypotheses are

Nonparametric Methods and Chi-Square Tests 675

H0: The proportion of claims is the same for all three age groups (i.e., the 
age groups are homogeneous with respect to claim proportions)

H1: The proportion of claims is not the same across age groups 
(the age groups are not homogeneous) (14–44)
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Suppose that random samples, selected from company records for the three age
categories, are classified according to claim versus no claim and are counted. The data
are presented in Table 14–15.

To carry out the test, we first calculate the expected counts in all the cells. The
expected cell counts are obtained, as before, by using equation 14–42. The expected
count in each cell is equal to the row total times the column total, divided by the total
sample size (the pooled sample size from all populations). The reason for the formu-
la in this new context is that if the proportion of items in the class of interest (here,
the proportion of people who submit a claim) is equal across all populations, as stated
in the null hypothesis, then pooling this proportion across populations gives us the
expected proportion in the cells for the class. Thus, the expected proportion in the
claim class is estimated by the total in the claim class divided by the grand total, or
R1�n � 135�300 � 0.45. If we multiply this pooled proportion by the total number in
the sample from the population of interest (say, the sample of people 25 and under),
this should give us the expected count in the cell claim—25 and under. We get E11 �
C1(R1�n) � (C1R1)�n. This is exactly as prescribed by equation 14–42 in the test for
independence. Here we get E11 � (100)(0.45) � 45. This is the expected count under
the null hypothesis. We compute the expected counts for all other cells in the table in
a similar manner. Table 14–16 is the table of expected counts in this example.

Note that since we used equal sample sizes (100 from each age population), the
expected count is equal in all cells corresponding to the same class. The proportions
are expected to be equal under the null hypothesis. Since these proportions are mul-
tiplied by the same sample size, the counts are also equal.

We are now ready to compute the value of the chi-square test statistic. From equa-
tion 14–40, we get

676 Chapter 14

TABLE 14–15 Data for the Insurance Company Example

Age Group

25 and under Over 25 and under 50 50 and over Total

Claim 40 35 60 135

No claim 60 65 40 165

Total 100 100 100 300

There are fixed sample sizes for all three populations.

TABLE 14–16 Expected Counts for the Insurance Company Example

25 and under Over 25 and under 50 50 and over Total

Claim 45 45 45 135

No claim 55 55 55 165

Total 100 100 100 300

The degrees of freedom are obtained as usual. We have two rows and three
columns, so the degrees of freedom are (2 � 1)(3 � 1) � 2. Alternatively, cross out

X 2 �

� � 14.14
(60 - 551)2

55
+

(65 - 55)2

55
+

(40 - 55)2

55

a
all cells

(O - E )2

E
=

(40 - 45)2

45
+

(35 - 45)2

45
+

(60 - 45)2

45
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any one row and any one column in Table 14–15 or 14–16 (ignoring the Total row and
column). This leaves you with two cells, giving df � 2.

Comparing the computed value of the statistic with critical points of the chi-
square distribution with 2 degrees of freedom, we find that the null hypothesis may
be rejected and that the p-value is less than 0.01. (Check this, using Appendix C,
Table 4.) We conclude that the proportions of people who submit claims to the insur-
ance company are not the same across the age groups studied.

In general, when we compare c populations (or r populations, if they are arranged
as the rows of the table rather than the columns), the hypotheses in equation 14–44
may be written as

Nonparametric Methods and Chi-Square Tests 677

H0: p1 � p2 � � � � � pc
H1: Not all pi , i � 1, . . . , c, are equal (14–45)

where pi (i � 1, . . . , c) is the proportion in population i of the characteristic of inter-
est. The test of equation 14–45 is a generalization to c populations of the test of equal-
ity of two population proportions discussed in Chapter 8. In fact, when c � 2, the test
is identical to the simple test for equality of two population proportions. In our pres-
ent context, the two-population test for proportion may be carried out using a 2 � 2
contingency table. The results of such a test would be identical to the results of a test
using the method of Chapter 8 (a Z test).

The test presented in this section may also be applied to several proportions with-
in each population. That is, instead of just testing for the proportion of claim versus no
claim, we could be testing a more general hypothesis about the proportions of several
different types of claims: no claim, claim under $1,000, claim of $1,000 to $5,000,
and claim over $5,000. Here the null hypothesis would be that the proportion of each
type of claim is equal across all populations. (This does not mean that the proportions
of all types of claims are equal within a population.) The alternative hypothesis would
be that not all proportions are equal across all populations under study. The analysis
is done using an r � c contingency table (instead of the 2 � c table we used in the pre-
ceding example). The test statistic is the same, and the degrees of freedom are as
before: (r � 1) � (c � 1). We now discuss another extension of the test presented in
this section.

The Median Test

Using the c random samples from the populations of interest, we determine the grand
median, that is, the median of all our data points regardless of which population they
are from. Then we divide each sample into two sets. One set contains all points that
are greater than the grand median, and the second set contains all points in the sam-
ple that are less than or equal to the grand median. We construct a 2 � c contingency
table in which the cells in the top row contain the counts of all points above the medi-
an for all c samples. The second row contains cells with the counts of the data points
in each sample that are less than or equal to the grand median. Then we conduct the
usual chi-square analysis of the contingency table. If we reject H0, then we may con-
clude that there is evidence that not all c population medians are equal. We now
demonstrate the median test with Example 14–16. 

The hypotheses for the median test are

H0: The c populations have the same median
H1: Not all c populations have the same median (14–46)
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An economist wants to test the null hypothesis that median family incomes in three
rural areas are approximately equal. Random samples of family incomes in the three
regions (in thousands of dollars per year) are given in Table 14–17.

678 Chapter 14

TABLE 14–17 Family Incomes ($1,000s per year)

Region A Region B Region C

22 31 28
29 37 42
36 26 21
40 25 47
35 20 18
50 43 23
38 27 51
25 41 16
62 57 30
16 32 48

TABLE 14–18 Observed and Expected Counts for Example 14–16

Region A Region B Region C Total

Less than or equal to 4 5 6 15

(5) (5) (5)

Above grand median 6 5 4 15

(5) (5) (5)

Total 10 10 10 30

X 2 � [(4 � 5)2 � (5 � 5)2 � (6 � 5)2 � (6 � 5)2 � (5 � 5)2 � (4 � 5)2]

� � 0.8
4
5

1
5

For simplicity, we chose an equal sample size of 10 in each population. This is not
necessary; the sample sizes may be different. There is a total of 30 observations, and
the median is therefore the average of the 15th and the 16th observations. Since the
15th observation (counting from smallest to largest) is 31 and the 16th is 32, the grand
median is 31.5. Table 14–18 shows the counts of the sample points in each sample
that are above the grand median and those that are less than or equal to the grand
median. The table also shows the expected cell counts (in parentheses). Note that all
expected counts are 5—the minimum required for the chi-square test. We now com-
pute the value of the chi-square statistic.

S o l u t i o n

E X A M P L E  1 4 – 1 6

Comparing this value with critical points of the chi-square distribution with 2 degrees
of freedom, we conclude that there is no evidence to reject the null hypothesis. The
p-value is greater than 0.20.

Note that the median test is a weak test. Other tests could have resulted in the
rejection of the null hypothesis (try them). We presented the test as an illustration of
the wide variety of possible uses of the chi-square statistic. Other uses may be found
in advanced books. We note that if the test had led to rejection, then other tests would
probably have done so, too. Sometimes this test is easier to carry out and may lead
to a quick answer (when we reject the null hypothesis). 
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14–57. An advertiser runs a commercial on national television and wants to deter-
mine whether the proportion of people exposed to the commercial is equal through-
out the country. A random sample of 100 people is selected at each of five locations,
and the number of people in each location who have seen the commercial at least
once during the week is recorded. The numbers are as follows: location A, 32 people;
location B, 59 people; location C, 78 people; location D, 40 people; and location E,
10 people. Do you believe that the proportion of people exposed to the commercial
is equal across the five locations?
14–58. An accountant wants to test the hypothesis that the proportion of incorrect
transactions at four client accounts is about the same. A random sample of 80 transac-
tions of one client reveals that 21 are incorrect; for the second client, the sample pro-
portion is 25 out of 100; for the third client, the proportion is 30 out of 90 sampled; and
for the fourth, 40 are incorrect out of a sample of 110. Conduct the test at � � 0.05.
14–59. An article in BusinessWeek describes how three online news services now
supply Web surfers quick information on developing stories.20 Suppose that a ran-
dom sample of users is available from various parts of the country. Data are shown in
the table below. Is there evidence that the three Web news services have different
success rates at different regions of the country?

Northeast South West Midwest

Google News 78 15 109 65

PBS Online 115 10 88 50

New York Times 208 3 52 40

14–60. Data mining for use in marketing products to consumers has recently under-
gone much growth.21 HP, NCR, and IBM have been involved in this business, and
suppose the following data are available about successful marketing efforts by these
three firms within three industry groups. Based on these data, are the three firms
equally successful in the three industry groups? Explain.

Consumer Goods Luxury Items Financial Services

HP 2,517 1,112 850

NCR 7,042 8,998 12,420

IBM 15,103 6,014 1,997

14–61. As markets become more and more international, many firms invest in
research aimed at determining the maximum possible extent of sales in foreign mar-
kets. A U.S. manufacturer of coffeemakers wants to find out whether the company’s
market share and the market shares of two main competitors are about the same in
three European countries to which all three companies export their products. The
results of a market survey are summarized in the following table. The data are ran-
dom samples of 150 consumers in each country. Conduct the test of equality of pop-
ulation proportions across the three countries.

Country

France England Spain Total

Company 55 38 24 117

First competitor 28 30 21 79

Second competitor 20 18 31 69

Other 47 64 74 185

Total 150 150 150 450

P R O B L E M S

20Burt Helm and Paula Lehman, “Buying Clicks to a Tragedy,” BusinessWeek, May 7, 2007, p. 42.
21Louise Lee, “HP Sees a Gold Mine in Data Mining,” BusinessWeek, April 30, 2007, p. 71.
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14–62. New production methods stressing teamwork have recently been instituted at
car manufacturing plants in Detroit. Three teamwork production methods are to be
compared to see if they are equally effective. Since large deviations often occur in the
numbers produced daily, it is desired to test for equality of medians (rather than means).
Samples of daily production volume for the three methods are as follows. Assume that
these are random samples from the populations of daily production volume. Use the
median test to help determine whether the three methods are equally effective.

Method A: 5, 7, 19, 8, 10, 16, 14, 9, 22, 4, 7, 8, 15, 18, 7
Method B: 8, 12, 15, 28, 5, 14, 19, 16, 23, 19, 25, 17, 20
Method C: 14, 28, 13, 10, 8, 29, 30, 26, 17, 13, 10, 31, 27, 20

14–12 Using the Computer
Using MINITAB for Nonparametric Tests
MINITAB enables you to carry out a variety of nonparametric tests by the com-
mands that are available via Stat � Nonparametrics in the menu bar. 

To perform a one-sample sign test of the median or calculate the corresponding
point estimate and confidence interval, choose Stat � Nonparametrics � 1-Sample
Sign from the menu bar. This test is used as a nonparametric alternative to one-sample
Z tests and to one-sample t tests, which use the mean instead of median. When the
corresponding dialog box appears you need to select the column(s) containing the vari-
able(s) you want to test. Enter a confidence level between 0 and 100 for calculating
confidence intervals. Check Test Median to perform a sign test, and then specify the
null hypothesis value. You also need to choose the kind of test performed by selecting
less than (left-tailed), not equal (two-tailed), or greater than (right-tailed) from the
drop-down box.

You can also perform a one-sample Wilcoxon signed rank test by choosing Stat �

Nonparametrics � 1-Sample Wilcoxon from the menu bar. An assumption for this
test is that the data are a random sample from a continuous, symmetric population.
The dialog box setting is the same as for the previous test. MINITAB also carries out
a two-sample Wilcoxon rank sum test or Mann-Whitney test of the equality of two
population medians. Start by choosing Stat � Nonparametrics � Mann-Whitney
from the menu bar. The assumption for the Mann-Whitney test is that the data were
chosen randomly and independently from two populations that have the same shape
and equal variances. The required settings are as before.

A Kruskal-Wallis test of the equality of medians for two or more populations is
performed via Stat � Nonparametrics � Kruskal-Wallis. This test offers a nonpara-
metric alternative to the one-way analysis of variance. An assumption for this test is
that the samples were chosen randomly and independently from continuous distri-
butions with the same shape. When the corresponding dialog box appears, you need
to enter the column that contains the response variable from all the samples as well
as the column that contains the factor levels.

MINITAB can also perform the Friedman test for the analysis of a randomized
block experiment, and thus provides an alternative to the two-way analysis of vari-
ance. Start by choosing Stat � Nonparametrics � Friedman from the menu bar.
When the corresponding dialog box appears, enter the column containing the
response variable in the Response edit box. Enter the column that contains the treat-
ments in the Treatment edit box, and enter the column that contains the blocks in the
Block edit box. You can also check to store the residuals or fitted values in the work-
sheet. MINITAB prints the test statistic, which has approximately a chi-square distri-
bution, and the associated degrees of freedom. If there are ties within one or more
blocks, the average rank is used, and a test statistic corrected for ties is also printed.
An estimated median for each treatment level will be displayed as well.

680 Chapter 14
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FIGURE 14–19 Chi-Square Goodness-of-Fit Test (One Variable) Using MINITAB

To perform a runs test choose Stat � Nonparametrics � Runs Test. A run is defined
as a set of consecutive observations that are all either less than or greater than a speci-
fied value. This test is used when you want to determine if the order of responses above
or below a specified value is random. When the corresponding dialog box appears,
select the columns containing the variables you want to test for randomness in the
Variables edit box. Check Above and below the mean if you want to use the mean as
the baseline to determine the number of runs. If you want to choose a value other than
the mean as the baseline, choose Above and below and then enter a value.

MINITAB tools for chi-square tests are available via Stat � Tables from the menu
bar. To evaluate whether the data follow a multinomial distribution with certain pro-
portions choose Stat � Tables � Chi-Square Goodness-of-Fit Test (One Variable). Note
that the results may not be accurate if the expected frequency of any category is less
than 5. In the corresponding dialog box you need to choose if you have summary
values of observed counts for each category. Enter the column containing the observed
counts or type the observed counts for each category in the Observed counts edit
box. Enter the column containing the category names or type each category’s name in
the Category names. If you have raw categorical data in a column, enter the column
name in the Categorical data edit box. Check Equal proportions to assume equal pro-
portions across categories. If you have different proportions for each category, select
Specific proportions and then enter the column name that contains the proportions.
If you want to type the proportion for each category, choose Input constants. Then
you can type the proportions for the corresponding categories. The Graph button
enables you to display a bar chart of the observed and the expected values as well as
a bar chart of each category’s contribution to the chi-square value. Figure 14–19 shows
the Session commands and the chart obtained by using the MINITAB chi-square test
on the data of Example 14–12. 

You can also perform a chi-square test of independence between variables if your
data are in table form. Start by choosing Stat � Tables � Chi-Square Test (Two-Way
Table in Worksheet) from the menu bar. Enter the columns containing the contin-
gency table data in the Columns containing the table edit box. Rows with missing
data should be deleted before using this procedure.

Nonparametric Methods and Chi-Square Tests 681
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14–13 Summary and Review of Terms
This chapter was devoted to nonparametric tests (summarized in Table 14–19).
Interpreted loosely, the term refers to statistical tests in situations where stringent
assumptions about the populations of interest may not be warranted. Most notably,
the very common assumption of a normal distribution—required for the parametric
t and F tests—is not necessary for the application of nonparametric methods. The
methods often use less of the information in the data and thus tend to be less power-
ful than parametric methods, when the assumptions of the parametric methods are
met. The nonparametric methods include methods for handling categorical data, and
here the analysis entails use of a limiting chi-square distribution for our test statistic.
Chi-square analysis is often discussed separately from nonparametric methods,
although the analysis is indeed “nonparametric,” as it usually involves no specific ref-
erence to population parameters such as � and �. The other nonparametric methods
(ones that require no assumptions about the distribution of the population) are often
called distribution-free methods.

Besides chi-square analyses of goodness of fit, independence, and tests for
equality of proportions, the methods we discussed included many based on ranks.
These included a rank correlation coefficient due to Spearman; a test analogous to
the parametric paired-sample t test—the Wilcoxon signed-rank test; a ranks-based
ANOVA—the Kruskal-Wallis test; and a method for investigating two independent
samples analogous to the parametric two-sample t test, called the Mann-Whitney
test. We also discussed a test for randomness—the runs test; a paired-difference test
called the sign test, which uses less information than the Wilcoxon signed-rank test;
and several other methods. 

682 Chapter 14

TABLE 14–19 Summary of Nonparametric Tests

Situation Nonparametric Test(s) Corresponding Parametric Test

Single-sample test for location Sign test Single-sample t test
Wilcoxon test (more powerful)

Goodness of fit Chi-square test

Randomness Runs test

Paired-differences test Sign test Paired-data t test
Wilcoxon test (more powerful)

Test for difference of two independent samples Wald-Wolfowitz (weaker) Two-sample t test
Mann-Whitney (more powerful)
Median test (weaker)

Test for difference of more than two independent Kruskal-Wallis test ANOVA
samples Median test (weaker)

Test for difference of more than two samples, blocked Friedman test Randomized block-design ANOVA

Correlation Spearman’s statistic and test
Chi-square test for independence

Equality of several population proportions Chi-square test

A D D I T I O N A L  P R O B L E M S

14–63. The following data are daily price quotations of two stocks:

Stock A: 12.50, 12.75, 12.50, 13.00, 13.25, 13.00, 13.50, 14.25, 14.00
Stock B: 35.25, 36.00, 37.25, 37.25, 36.50, 36.50, 36.00, 36.00, 36.25

Is there a correlation between the two stocks? Explain.
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14–64. The Hyatt Gold Passport is a card designed to allow frequent guests at Hyatt
hotels to enjoy privileges similar to the ones enjoyed by frequent air travelers. When
the program was initiated, a random sample of 15 Hyatt Gold Passport members
were asked to rate the program on a scale of 0 to 100 and also to rate (on the same
scale) an airline frequent-flier card that all of them had. The results are as follows.

Hyatt card: 98, 99, 87, 56, 79, 89, 86, 90, 95, 99, 76, 88, 90, 95
Airline card: 84, 62, 90, 77, 80, 98, 65, 97, 58, 74, 80, 90, 85, 70

Is the Hyatt Gold Passport better liked than the airline frequent-flier card by holders
of both cards? Explain.
14–65. Two telecommunication systems are to be compared. A random sample of
14 users of one system independently rate the system on a scale of 0 to 100. An inde-
pendent random sample of 12 users of the other system rate their system on the same
scale. The data are as follows.

System A: 65, 67, 83, 39, 45, 20, 95, 64, 99, 98, 76, 78, 82, 90
System B: 45, 57, 76, 54, 60, 72, 34, 50, 63, 39, 44, 70

Based on these data, are the two telecommunication systems equally liked? Explain.
14–66. What is the distinction between distribution-free methods and nonparametric
methods?
14–67. The following data are the net wealth, in billions of dollars, of a random
sample of U.S. billionaires in the Forbes 2007 list:22 1.0, 1.0, 1.2, 1.3, 2.5, 2.3, 4.1, 4.8,
2.5, 2.5, 2.7, 5.2, 2.3, 5.5, 2.0, 2.1, 3.5, 4.0, 52.0, 21.5, 5.5, 2.1, 6.0, 1.8, 16.7, 1.8, 18.0,
2.1, 1.9, 3.1, 3.5, 1.4, 1.2, 1.3, 1.1. Do you believe that the wealth of American billion-
aires is normally distributed?
14–68. In a chi-square analysis, the expected count in one of the cells is 2.1. Can
you conduct the analysis? If not, what can be done?
14–69. New credit card machines use two receipts, to be signed by the payer. This
has recently caused confusion as many customers forget to sign the copy they leave
with the establishment. If 6 out of 17 randomly selected patrons forgot to sign their
slips, test the hypothesis that a full one-half of the customers do so, using � � 0.05,
against a left-tailed alternative.
14–70. An article in The Economist compares divorce procedures in New York to
those in England, France, and Germany.23 Suppose the following data are available
for these places on numbers of divorces, broken down by whether a prenuptial
agreement had been signed.

New York England France Germany
Prenuptial agreement 8,049 17,139 3,044 1,014

No prenuptial agreement 75,113 25,108 19,800 16,131

In light of these data, are the percentages of divorcing couples with prenuptial agree-
ments equal in these four places?

Nonparametric Methods and Chi-Square Tests 683

22“Billionaires: United States,” Forbes, March 26, 2007, pp. 154–168.
23“For Richer and Poorer,” The Economist, March 3, 2007, pp. 64–65.
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684 Chapter 14

In a fascinating article in the Journal of Marketing
(April 1986), “The Nine Nations of North America
and the Value Basis of Geographic Segmentation,”

Professor Lynn Kahle explores the possible market-
ing implications of Joel Garreau’s idea of the nine
nations.

Garreau traveled extensively throughout North
America, studying people, customs, traditions, and
ways of life. This research led Garreau to the conclu-
sion that state boundaries or the Census Bureau’s divi-
sions of the United States into regions are not very
indicative of the cultural and social boundaries that
really exist on the continent. Instead, Garreau suggest-
ed in his best-selling book The Nine Nations of North
America (New York: Avon, 1981) that the real bound-
aries divide the entire North American continent
into nine separate, homogeneous regions, which he
called “nations.” Each nation, according to Garreau,
is inhabited by people who share the same traditions,
values, hopes, and world outlook and are different
from the people of the other nations. The nine
nations cross national boundaries of the United States,
Canada, and the Caribbean. Garreau named his nations
very descriptively, as follows: New England, Quebec,
The Foundry, Dixie, The Islands, Empty Quarter,

Breadbasket, MexAmerica, and Ecotopia. Exhibit 1
shows the boundaries of these nations.

Geographic segmentation is a very important con-
cept in marketing. Thus, Garreau’s novel idea prom-
ised potential gains in marketing. Professor Kahle
suggested a statistical test of whether Garreau’s division
of the country (without the nation of Quebec, which
lies entirely outside the United States) could be found
valid with respect to marketing-related values. Such a
division could then replace currently used geographic
segmentation methods.

Two currently used segmentation schemes studied
by Kahle were the quadrants and the Census Bureau
regions. Kahle used a random sample of 2,235 people
across the country and collected responses pertaining
to eight self-assessed personal attributes: self-respect,
security, warm relationships with others, sense of accom-
plishment, self-fulfillment, being well respected, sense
of belonging, and fun–enjoyment–excitement. Kahle
showed that these self-assessment attributes were directly
related to marketing variables. The attributes determine,
for example, the magazines a person is likely to read and
the television programs he or she is likely to watch.

Kahle’s results, using the nine-nations division (with-
out Quebec), the quadrants division, and the Census

EXHIBIT 1 The Nine Nations

The Empty
Quarter

Ecotopia

Breadbasket

MexAmerica

The Islands

Dixie

The
Foundry

New
England

Quebec

CASE 18 The Nine Nations of 
North America
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division of the country, are presented in Exhibits 2
through 4. These tables are reprinted by permission
from Kahle (1986). (Values reported in the exhibits are
percentages.)

Carefully analyze the results presented in the
exhibits. Is the nine-nations segmentation a useful alter-
native to the quadrants or the Census Bureau divisions
of the country? Explain.

Nonparametric Methods and Chi-Square Tests 685

EXHIBIT 2 Distribution of Values across the Nine Nations

New The The Bread- Mex- Empty Eco-
Value England Foundry Dixie Islands basket America Quarter topia N

Self-respect 22.5% 20.5% 22.5% 25.0% 17.9% 22.7% 35.3% 18.0% 471
Security 21.7 19.6 23.3 15.6 20.2 17.3 17.6 19.6 461
Warm relationships with others 14.2 16.7 13.8 9.4 20.5 18.0 5.9 18.5 362
Sense of accomplishment 14.2 11.7 10.0 9.4 12.4 11.3 8.8 12.2 254
Self-fulfillment 9.2 9.9 8.4 3.1 7.5 16.0 5.9 12.7 214
Being well respected 8.3 8.7 11.0 15.6 10.1 2.7 2.9 4.2 196
Sense of belonging 5.0 8.4 7.5 12.5 7.8 6.7 17.6 7.9 177
Fun–enjoyment–excitement 5.0 4.5 3.5 9.4 3.6 5.3 5.9 6.9 100

Total 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 2,235
N 120 750 653 32 307 150 34 189

EXHIBIT 3 Distribution of Values across Quadrants of the United States

Value East Midwest South West N

Self-respect 19.7% 19.1% 23.4% 21.6% 471
Security 18.9 21.6 22.0 18.4 461
Warm relationships with others 16.0 17.8 14.5 17.1 362
Sense of accomplishment 13.2 12.5 9.2 11.4 254
Self-fulfillment 9.5 9.0 8.1 13.5 214
Being well respected 8.0 9.1 11.6 3.6 196
Sense of belonging 8.4 7.3 8.0 8.3 117
Fun–enjoyment–excitement 6.3 3.3 3.4 6.2 100

Total 100.0 100.0 100.0 100.0 2,235
N 476 634 740 385

EXHIBIT 4 Distribution of Values across Census Regions of the United States

East East West West
New Middle South South North North South

Value England Atlantic Atlantic Central Central Central Central Mountain Pacific N

Self-respect 22.6% 18.6% 23.1% 23.4% 20.2% 16.7% 23.8% 29.2% 19.8% 471
Security 21.2 18.0 18.3 26.9 22.1 20.6 23.8 18.1 18.5 461
Warm relationships 
with others 13.9 16.8 15.7 11.4 16.0 21.6 14.9 15.3 17.6 362
Sense of 
accomplishment 13.9 13.0 10.7 9.6 11.4 14.7 6.8 8.3 12.1 254
Self-fulfillment 8.0 10.0 10.1 7.8 9.3 8.3 5.5 6.9 15.0 214
Being well 
respected 8.8 7.7 9.8 12.0 10.0 7.4 14.0 4.2 3.5 196
Sense of belonging 7.3 8.8 9.2 7.8 7.4 6.9 6.4 13.9 7.0 177
Fun–enjoyment–
excitement 4.4 7.1 3.3 1.2 3.5 3.9 4.7 4.2 6.4 100

Total 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 2,235
N 137 339 338 167 430 204 235 72 313
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After studying this chapter, you should be able to:

• Apply Bayes’ theorem to revise population parameters.
• Solve sequential decision problems using the decision tree

technique.
• Conduct decision analyses for cases without probability data.
• Conduct decision analyses for cases with probability data.
• Evaluate the expected value of perfect information.
• Evaluate the expected value of sample information.
• Use utility functions to model the risk attitudes of decision

makers.
• Solve decision analysis problems using spreadsheet templates.
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15–1 Using Statistics
Anyone who’s used the Internet is familiar with
spam— that ubiquitous, irritating, and sometimes
even dangerous, virus-carrying, unwanted e-mail.
Many methods have been devised to help peo-

ple get rid of such unwelcome electronic solicitation for anything from low interest
rates to schemes for enlarging of certain body parts. But, as with any statistical
method for making a decision—here, the decision to automatically delete a message
before you see it on your screen—two errors are possible. One is the error of deleting
a good e-mail message, one that may be very important to you. The other is the error
of keeping a bad message, one that unnecessarily clogs up your mailbox and may
even contain a virus that can destroy your system. These methods, therefore, are
never perfect. Most of them have not done well at all.

Recently, a science reporter at the New York Times, George Johnson, tried a new
method for automatically detecting and deleting spam, and he reported a success rate of
over 98%. Johnson used a revolutionary statistical method called Bayesian analysis.1

The Bayesian approach allows the statistician to use prior information about a par-
ticular problem, in addition to the information obtained from sampling. This approach
is called Bayesian because the mathematical link between the probabilities associated
with data results and the probabilities associated with the prior information is Bayes’
theorem, which was introduced in Chapter 2. The theorem allows us to combine the
prior information with the results of our sampling, giving us posterior (postsampling)
information. A schematic comparison of the classical and the Bayesian approaches is
shown in Figure 15–1.

The Bayesian philosophy does not necessarily lead to conclusions that are
more accurate than those obtained by using the frequentist, or classical, approach.
If the prior information we have is accurate, then using it in conjunction with
sample information leads to more accurate results than would be obtained without
prior information. If, on the other hand, the prior information is inaccurate, then
using it in conjunction with our sampling results leads to a worse outcome than
would be obtained by using frequentist statistical inference. The very use of prior
knowledge in a statistical analysis often brings the entire Bayesian methodology
under attack.

When prior information is a direct result of previous statistical surveys, or when
prior information reflects no knowledge about the problem at hand (in which case
the prior probabilities are called noninformative), the Bayesian analysis is purely objec-
tive, and few people would argue with its validity. Sometimes, however, the prior
information reflects the personal opinions of the individual doing the analysis—or
possibly those of an expert who has knowledge of the particular problem at hand. In
such cases, where the prior information is of a subjective nature, one may criticize
the results of the analysis.

One way to classify statisticians is according to whether they are Bayesian or
non-Bayesian (i.e., frequentist). The Bayesian group used to be a minority, but in
recent years its numbers have grown. Even though differences between the two
groups exist, when noninformative prior probabilities are used, the Bayesian
results can be shown to parallel the frequentist statistical results. This fact lends
credibility to the Bayesian approach. If we are careful with the use of any prior
information, we may avoid criticism and produce good results via the Bayesian
methodology.

1George Johnson, “Cognitive Rascal in the Amorous Swamp: A Robot Battles Spam,” The New York Times, April 27,
2004, p. D3.
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In the next two sections, we give some basic elements of Bayesian statistics.
These sections extend the idea of Bayes’ theorem, first to discrete random variables
and then to continuous ones. Section 15–4 discusses some aspects of subjective
probabilities and how they can be elicited from a person who has knowledge of the
situation at hand.

There is another important area, not entirely in the realm of statistics, that makes
use of Bayes’ theorem as well as subjective probabilities. This is the area of decision
analysis. Decision analysis is a methodology developed in the 1960s, and it quanti-
fies the elements of a decision-making process in an effort to determine the optimal
decision.

15–2 Bayes’ Theorem and Discrete 
Probability Models

In Section 2–7, we introduced Bayes’ theorem. The theorem was presented in
terms of events. The theorem was shown to transform prior probabilities of the
occurrence of certain events into posterior probabilities of occurrence of the same
events. Recall Example 2–10. In that example, we started with a prior probability
that a randomly chosen person has a certain illness, given by P (I) � 0.001.
Through the information that the person tested positive for the illness, and the
reliability of the test, known to be P (Z | I ) � 0.92 and P (Z | ) � 0.04, we obtained
through Bayes’ theorem (equation 2–21) the posterior probability that the person
was sick:

I

FIGURE 15–1 A Comparison of Bayesian and Classical Approaches

Prior information

Data

Data (only)

Statistical conclusion

Statistical conclusion

Bayesian
inference

Classical
inference

P (I | Z) � � 0.0225
P (Z | I)P (I)

P (Z | I)P (I) + P (Z | I )P (I )

The fact that the person had a positive reaction to the test may be considered our
data. The conditional probabilities P (Z | I) and P (Z | ) help incorporate the data in
the computation. We will now extend these probabilities to include more than just an
event and its complement, as was done in this example, or one of three events, as was
the case in Example 2–10. Our extension will cover a whole set of values and their
prior probabilities. The conditional probabilities, when extended over the entire set of
values of a random variable, are called the likelihood function.

The likelihood function is the set of conditional probabilities P(x | �) for
given data x, considered a function of an unknown population parameter �.

I
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In Bayesian statistics, we assume that population parameters such as the
mean, the variance, or the population proportion are random variables
rather than fixed (but unknown) quantities, as in the classical approach.

We assume that the parameter of interest is a random variable; thus, we may specify
our prior information about the parameter as a prior probability distribution of
the parameter. Then we obtain our data, and from them we get the likelihood
function, that is, a measure of how likely we are to obtain our particular data, given
different values of the parameter specified in the parameter’s prior probability distri-
bution. This information is transformed via Bayes’ theorem, equation 15–1, to a
posterior probability distribution of the value of the parameter in question. The
posterior distribution includes the prior information as well as the data results. The
posterior distribution can then be used in statistical inference. Such inference may
include computing confidence intervals. Bayesian confidence intervals are often
called credible sets of given posterior probability.

The following example illustrates the use of Bayes’ theorem when the population
parameter of interest is the population proportion p.

A market research analyst is interested in estimating the proportion of people in a cer-
tain area who use a product made by her client. That is, the analyst is interested in
estimating her client’s market share. The analyst denotes the parameter in question—
the true (population) market share of her client—by S. From previous studies of a sim-
ilar nature, and from other sources of information about the industry, the analyst
constructs the table of prior probabilities of the possible values of the market share S.
This is the analyst’s prior probability distribution of S. It contains different values of
the parameter in question and the analyst’s degree of belief that the parameter is
equal to any of the values, given as a probability. The prior probability distribution
is presented in Table 15–1.

As seen from the prior probabilities table, the analyst does not believe that her
client’s market share could be above 0.6 (60% of the market). For example, she may
know that a competitor controls 40% of the market, so values above 60% are impossible
as her client’s share. Similarly, she may know for certain that her client’s market share is
at least 10%. The assumption that S may equal one of six discrete values is a restrictive
approximation. In the next section, we will explore a continuous space of values.

The analyst now gathers a random sample of 20 people and finds out that 4 out of
the 20 in the sample do use her client’s product. The analyst wishes to use Bayes’ theo-
rem to combine her prior distribution of market share with the data results to obtain
a posterior distribution of market share. Recall that in the classical approach, all that

Bayes’ theorem for a discrete random variable is

(15–1)

where � is an unknown population parameter to be estimated from the
data. The summation in the denominator is over all possible values of the
parameter of interest �i, and x stands for our particular data set.

P(� |x) =
P(x | �)P(�)
g iP(x | �i)P(�i)

E X A M P L E  1 5 – 1

TABLE 15–1
Prior Probabilities of
Market Share S

S P(S )

0.1 0.05

0.2 0.15

0.3 0.20

0.4 0.30

0.5 0.20

0.6 0.10

1.00

Using the likelihood function and the prior probabilities P (�) of the values of the
parameter in question, we define Bayes’ theorem for discrete random variables in the
following form:
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TABLE 15–2 Prior Distribution, Likelihood, and Posterior Distribution of Market Share
(Example 15–1)

S P(S) P(x | S) P(S)P(x | S) P(S | x)

0.1 0.05 0.0898 0.00449 0.06007

0.2 0.15 0.2182 0.03273 0.43786

0.3 0.20 0.1304 0.02608 0.34890

0.4 0.30 0.0350 0.01050 0.14047

0.5 0.20 0.0046 0.00092 0.01230

0.6 0.10 0.0003 0.00003 0.00040

1.00 0.07475 1.00000 

Using Bayes’ theorem for discrete random variables (equation 15–1), the analyst updates
her prior information to incorporate the data results. This is done in a tabular format
and is shown in Table 15–2. As required by equation 15–1, the conditional probabilities
P (x | S ) are evaluated. These conditional probabilities are our likelihood function. To
evaluate these probabilities, we ask the following questions:

1. How likely are we to obtain the data results we have, that is, 4 successes out
of 20 trials, if the probability of success in a single trial (the true population
proportion) is equal to 0.1?

2. How likely are we to obtain the results we have if the population proportion
is 0.2?

3. How likely are we to obtain these results when the population proportion
is 0.3?

4. How likely are we to obtain these results when the population proportion is 0.4?
5. How likely are we to obtain these results when the population proportion

is 0.5?
6. How likely are we to obtain these results when the population proportion is 0.6?

The answers to these six questions are obtained from a table of the binomial distri-
bution (Appendix C, Table 1) and written in the appropriate places in the third
column of Table 15–2. The fourth column is the product, for each value of S, of the
prior probability of S and its likelihood. The sum of the entries in the fourth column
is equal to the denominator in equation 15–1. When each entry in column 4 is divided
by the sum of that column, we get the posterior probabilities, which are written in
column 5. This procedure corresponds to an application of equation 15–1 for each
one of the possible values of the population proportion S.

By comparing the values in column 2 of Table 15–2 with the values in column 5,
we see how the prior probabilities of different possible market share values changed
by the incorporation, via Bayes’ theorem, of the information in the data (i.e., the fact
that 4 people in a sample of 20 were found to be product users). The influence of the
prior beliefs about the actual market share is evident in the posterior distribution.
This is illustrated in Figure 15–2, which shows the prior probability distribution of S,
and Figure 15–3, which shows the posterior probability distribution of S.

As the two figures show, starting with a prior distribution that is spread in a some-
what symmetric fashion over the six possible values of S, we end up, after the incor-
poration of data results, with a posterior distribution that is concentrated over the
three values 0.2, 0.3, and 0.4, with the remaining values having small probabilities.
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S o l u t i o n

FIGURE 15–2
Prior Distribution of Market
Share (Example 15–1)
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FIGURE 15–3
Posterior Distribution of
Market Share (Example 15–1)
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can be used is the sample estimate of the market share, which is p̂ � x/n � 4�20 � 0.2
and may be used in the construction of a confidence interval or a hypothesis test.
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The total posterior probability of the three values 0.2, 0.3, and 0.4 is equal to 0.92723
(from summing Table 15–2 entries). The three adjacent values are thus a set of highest
posterior probability and can be taken as a credible set of values for S with posterior
probability close to the standard 95% confidence level. Recall that with discrete
random variables, it is hard to get values corresponding to exact, prespecified levels
such as 95%, and we are fortunate in this case to be close to 95%. We may state as our
conclusion that we are about 93% confident that the market share is anywhere
between 0.2 and 0.4. Our result is a Bayesian conclusion, which may be stated in
terms of a probability; it includes both the data results and our prior information.
(As a comparison, compute an approximate classical confidence interval based on
the sampling result.)

One of the great advantages of the Bayesian approach is the possibility of carry-
ing out the analysis in a sequential fashion. Information obtained from one sampling
study can be used as the prior information set when new information becomes avail-
able. The second survey results are considered the data set, and the two sources are
combined by use of Bayes’ theorem. The resulting posterior distribution may then be
used as the prior distribution when new data become available, and so on.

We now illustrate the sequential property by continuing Example 15–1. Suppose
that the analyst is able to obtain a second sample after her analysis of the first sample
is completed. She obtains a sample of 16 people and finds 3 users of the product of
interest in this sample. The analyst now wants to combine this new sampling infor-
mation with what she already knows about the market share. To do this, the analyst
considers her last posterior distribution, from column 5 of Table 15–2, as her new
prior distribution when the new data come in. Note that the last posterior distribution
contains all the analyst’s information about market share before the incorporation of
the new data, because it includes both her prior information and the results of the
first sampling. Table 15–3 shows how this information is transformed into a new pos-
terior probability distribution by incorporating the new sample results. The likeli-
hood function is again obtained by consulting Appendix C, Table 1. We look for the
binomial probabilities of obtaining 3 successes in 16 trials, using the given values of
S (0.1, 0.2, . . . , 0.6), each in turn taken as the binomial parameter p.

The new posterior distribution of S is shown in Figure 15–4. Note that the highest
posterior probability after the second sampling is given to the value S � 0.2, the poste-
rior probability being 0.6191. With every additional sampling, the posterior distribution
will get more peaked at values indicated by the data. The posterior distribution keeps
moving toward data-derived results, and the effects of the prior distribution become
less and less important. This fact becomes clear as we compare the distributions
shown in Figures 15–2, 15–3, and 15–4. This property of Bayesian analysis is reas-
suring. It allows the data to speak for themselves, thus moving away from prior
beliefs if these beliefs are away from reality. In the presence of limited data,
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TABLE 15–3 Prior Distribution, Likelihood, and Posterior Distribution of Market Share 
for Second Sampling

S P(S) P(x | S) P(S)P(x | S) P(S | x)

0.1 0.06007 0.1423 0.0085480 0.049074

0.2 0.43786 0.2463 0.1078449 0.619138

0.3 0.34890 0.1465 0.0511138 0.293444

0.4 0.14047 0.0468 0.0065740 0.037741

0.5 0.01230 0.0085 0.0001046 0.000601

0.6 0.00040 0.0008 0.0000003 0.000002

1.00000 0.1741856 1.000000

FIGURE 15–4
Second Posterior
Distribution of Market Share
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Bayesian analysis allows us to compensate for the small data set by allowing us to use
previous information—obtained either by prior sampling or by other means.

Incidentally, what would have happened if our analyst had decided to combine
the results of the two surveys before considering them in conjunction with her prior
information? That is, what would have happened if the analyst had decided to
consider the two samples as one, where the total number of trials is 20 � 16 � 36
and the total number of successes is 4 � 3 � 7 users? Surprisingly, the posterior
probability distribution for the combined sample incorporated with the prior distri-
bution would have been exactly the same as the posterior distribution presented in
Table 15–3. This fact demonstrates how well the Bayesian approach handles succes-
sive pieces of information. When or how information is incorporated in the model
does not matter—the posterior distribution will contain all information available at
any given time.

In the next section, we discuss Bayesian statistics in the context of continuous
probability distributions. In particular, we develop the normal probability model for
Bayesian analysis. As will be seen in the next section, the normal distribution is par-
ticularly amenable to Bayesian analysis. If our prior distribution is normal and the
likelihood function is normal, then the posterior distribution is also normal. We will
develop two simple formulas: one for the posterior mean and one for the posterior
variance (and standard deviation) in terms of the prior distribution parameters and
the likelihood function.

The Template
Figure 15–5 shows the template for revising binomial probabilities. The data seen in
the figure correspond to Example 15–1.

To get the new posterior distribution, copy the posterior probabilities in the
range C13:L13 and use the Paste Special (values) command to paste them into the
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FIGURE 15–5 The Template for Bayesian Revision—Binomial
[Bayesian Revision.xls; Sheet: Binomial]

1
2
3
4
5
6
7
8
9

1 0
11
1 2
1 3
1 4
1 5
1 6
1 7
1 8
1 9
2 0
2 1
2 2
2 3
2 4
2 5
2 6
2 7
2 8
2 9
3 0
3 1
3 2

A B C D E F G H I J K L M N O

Bayesian Revision Market Share

Binomial

p 0.1 0.2 0.3 0.4 0.5 0.6 Total
Prior 0.05 0.15 0.2 0.3 0.2 0.1 1

New Evidence
n 20 x 4

Total
Joint Prob. 0.0045 0.0327 0.0261 0.0105 0.0009 0.0000 0.0748

Posterior 0.0601 0.4379 0.3489 0.1404 0.0124 0.0004

Bayesian Revision - Binomial
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range C5:L5. They thus become the new prior probabilities. Add the new evidence
of n � 16 and x � 3. The new posterior probabilities appear in row 13, as seen in
Figure 15–6.

15–1. Bank of America recently launched a special credit card designed to reward
people who pay their bills on time by allowing them to pay a lower-than-usual inter-
est rate. Some research went into designing the new program. The director of the
bank’s regular credit card systems was consulted, and she gave her prior probability
distribution of the proportion of cardholders who would qualify for the new program.
Then a random sample of 20 cardholders was selected and tracked over several
months. It was found that 6 of them paid all their credit card bills on time. Using this
information and the information in the following table—the director’s prior distribu-
tion of the proportion of all cardholders who pay their bills on time—construct the
posterior probability distribution for this parameter. Also give a credible set of highest
posterior probability close to 95% for the parameter in question. Plot both the prior
and the posterior distributions of the parameter.

Proportion Probability

0.1 0.2

0.2 0.3

0.3 0.1

0.4 0.1

0.5 0.1

0.6 0.1

0.7 0.1
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FIGURE 15–6 The New Posterior Probabilities for Example 15–1
[Bayesian Revision.xls; Sheet: Binomial]
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Bayesian Revision Market Share

Binomial

p 0.1 0.2 0.3 0.4 0.5 0.6 Total
Prior 0.06 0.438 0.349 0.14 0.012 0.0004 1.00

New Evidence
n 16 x 3

Total
Joint Prob. 0.0085 0.1079 0.0511 0.0066 0.0001 0.0000 0.1742

Posterior 0.0490 0.6193 0.2935 0.0376 0.0006 0.0000
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15–2. In the situation of problem 15–1, suppose that a second random sample of
cardholders was selected, and 7 out of the 17 people in the sample were found to pay
their bills on time. Construct the new posterior distribution containing information
from the prior distribution and both samplings. Again, give a credible set of highest
posterior probability close to 95%, and plot the posterior distribution.
15–3. For Example 15–1 suppose that a third sample is obtained. Three out of 10
people in the sample are product users. Update the probabilities of market share after
the third sampling, and produce the new posterior distribution.
15–4. The magazine Inc. recently surveyed managers to determine the proportion
of managers who participate in planning meetings.2 Consider the following prior
probability distribution for this proportion.

Proportion Probability

0.80 0.4

0.85 0.5

0.90 0.05

0.95 0.04

1.00 0.01

If a random sample of 10 managers reveals that all of them participate in planning
meetings, revise the probabilities to find the posterior probability distribution.
15–5. Recent years have seen a sharp decline in the Alaska king crab fishery. One
problem identified as a potential cause of the decline has been the prevalence of a
deadly parasite believed to infect a large proportion of the adult king crab popula-
tion. A fisheries management agency monitoring crab catches needed to estimate the
proportion of the adult crab population infected by the parasite. The agency’s biolo-
gists constructed the following prior probability distribution for the proportion of
infected adult crabs (denoted by R ):

R P(R)

0.25 0.1

0.30 0.2

0.35 0.2

0.40 0.3

0.45 0.1

0.50 0.1

A random sample of 10 adult king crabs was collected, and 3 of them were found to
be infected with the parasite. Construct the posterior probability distribution of the
proportion of infected adult crabs, and plot it.
15–6. To continue problem 15–5, a second random sample of 12 adult crabs was
collected, and it revealed that 4 individual crabs had been infected. Revise your
probability distribution, and plot it. Give a credible set of highest posterior probability
close to 95%.
15–7. For problem 15–5, suppose the biologists believed the proportion of infected
crabs in the population was equally likely to be anywhere from 10% to 90%. Using
the discrete points 0.1, 0.2, etc., construct a uniform prior distribution for the propor-
tion of infected crabs, and compute the posterior distribution after the results of the
sampling in problem 15–5.
15–8. American Airlines is interested in the proportion of flights that are full
during the 2008 summer season. The airline uses data from past experience and
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2“How to Vet a Board Member,” Inc., May 2007, p. 35.
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constructs the following prior distribution of the proportion of flights that are full
to capacity:

S P(S)

0.70 0.1

0.75 0.2

0.80 0.3

0.85 0.2

0.90 0.1

0.95 0.1

1.0

A sample of 20 flights shows that 17 of these flights are full. Update the probability
distribution to obtain a posterior distribution for the proportion of full flights.
15–9. In the situation of problem 15–8, another sample of 20 flights reveals that 18
of them are full. Obtain the second posterior distribution of the proportion of full
flights. Graph the prior distribution of problem 15–8, as well as the first posterior and
the second posterior distributions. How did the distribution of the proportion in
question change as more information became available?
15–10. An article in the Harvard Business Review discusses new products and services
offered by the famous British department store Marks & Spencer.3 Suppose that
Marks & Spencer plans to offer a new line of women’s shoes and estimates the pro-
portion of its customers who will be interested in the new line using the following
probability distribution:

Proportion Probability

0.3 0.1

0.4 0.3

0.5 0.3

0.6 0.2

0.7 0.05

0.8 0.05

A survey of 20 randomly selected customers reveals that 5 of them are interested in
the new line. Compute the posterior probability distribution.

15–3 Bayes’ Theorem and Continuous 
Probability Distributions

We will now extend the results of the preceding section to the case of continuous prob-
ability models. Recall that a continuous random variable has a probability density func-
tion, denoted by f (x). The function f (x) is nonnegative, and the total area under the
curve of f (x) must equal 1.00. Recall that the probability of an event is defined as the
area under the curve of f (x) over the interval or intervals corresponding to the event.

We define f(�) as the prior probability density of the parameter �. We
define f(x | �) as the conditional density of the data x, given the value of �.
This is the likelihood function.

The joint density of � and x is obtained as the product:

Bayesian Statistics and Decision Analysis 695

3Stuart Rose, “Back in Fashion: How We’re Reviving a British Icon,” Harvard Business Review, May 2007, 
pp. 51–58.

f (�, x) � f (x | �)f (�) (15–2)
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Using these functions, we may now write Bayes’ theorem for continuous probability
distributions. The theorem gives us the posterior density of the parameter �, given
the data x.
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Bayes’ theorem for continuous distributions4 is

(15–3)f (� | x) =
f (x | �) f (�)

total area under f(�, x)

The posterior mean and variance of the normal distribution of the population
mean � are

M� � (15–4)

��2 � (15–5)
1

1>�¿2 + n>�2

(1>�¿2)M¿ + (n>�2)M

1>�¿2 + n>�2

Equation 15–3 is the analog for continuous random variables of equation 15–1.
We may use the equation for updating a prior probability density function of a
parameter � once data x are available. In general, computing the posterior density is
a complicated operation. However, in the case of a normal prior distribution and a
normal data-generating process (or large samples, leading to central-limit conditions),
the posterior distribution is also a normal distribution. The parameters of the posterior
distribution are easy to calculate, as will be shown next.

The Normal Probability Model
Suppose that you want to estimate the population mean � of a normal population that
has a known standard deviation �. Also suppose that you have some prior beliefs about
the population in question. Namely, you view the population mean as a random vari-
able with a normal (prior) distribution with mean M� and standard deviation ��.

If you draw a random sample of size n from the normal population in question
and obtain a sample mean M, then the posterior distribution for the population mean
� is a normal distribution with mean M � and standard deviation �� obtained, respectively,
from equations 15–4 and 15–5.

The two equations are very useful in many applications. We are fortunate that the
normal distribution family is closed; that is, when the prior distribution of a parameter
is normal and the population (or process) is normal, the posterior distribution of the
parameter in question is also normal. Be sure that you understand the distinction
among the various quantities involved in the computations—especially the distinction
between �2 and ��2. The quantity �2 is the variance of the population, and ��2 is the
prior variance of the population mean �. We demonstrate the methodology with
Example 15–2.

A stockbroker is interested in the return on investment for a particular stock. Since
Bayesian analysis is especially suited for the incorporation of opinion or prior knowl-
edge with data, the stockbroker wishes to use a Bayesian model. The stockbroker

E X A M P L E  1 5 – 2

4For the reader with knowledge of calculus, we note that Bayes’ theorem is written as f (� | x) � f (x | �)f (�)/
[��

�� f (x | �) f (�) d�].
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quantifies his beliefs about the average return on the stock by a normal probability
distribution with mean 15 (percentage return per year) and a standard deviation
of 8. Since it is relatively large, compared with the mean, the stockbroker’s prior
standard deviation of � reflects a state of relatively little prior knowledge about the
stock in question. However, the prior distribution allows the broker to incorporate
into the analysis some of his limited knowledge about the stock. The broker collects
a sample of 10 monthly observations on the stock and computes the annualized
average percentage return. He gets a mean M � 11.54 (percent) and a standard devi-
ation s � 6.8. Assuming that the population standard deviation is equal to 6.8 and
that returns are normally distributed, what is the posterior distribution of average
stock returns?

Bayesian Statistics and Decision Analysis 697

S o l u t i o nWe know that the posterior distribution is normal, with mean and variance given by
equations 15–4 and 15–5, respectively. We have

M � � � 11.77

�� � � 2.077A 1
1>64 + 10>46.24

(1>64)15 + (10>46.24)11.54
1>64 + 10>46.24

Note how simple it is to update probabilities when you start with a normal prior
distribution and a normal population. Incidentally, the assumption of a normal
population is very appropriate in our case, as the theory of finance demonstrates
that stock returns are well approximated by the normal curve. If the population
standard deviation is unknown, the sample standard deviation provides a reasonable
estimate.

Figure 15–7 shows the stockbroker’s prior distribution, the normal likelihood
function (normalized to have a unit area), and the posterior density of the average
return on the stock of interest. Note that the prior distribution is relatively flat—
this is due to the relatively large standard deviation. The standard deviation is
a measure of uncertainty, and here it reflects the fact that the broker does not
know much about the stock. Prior distributions such as the one used here are called

FIGURE 15–7 Prior Distribution, Likelihood Function, and Posterior Distribution 
of Average Return � (Example 15–2)
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Posterior distribution of �

Prior distribution of �
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Credible Sets
Unlike the discrete case, in the continuous case credible sets for parameters with
an exact, prespecified probability level are easy to construct. In Example 15–2, the
stockbroker may construct a 95% highest-posterior-density (HPD) credible set for the
average return on the stock directly from the posterior density. The posterior distri-
bution is normal, with mean 11.77 and standard deviation 2.077. Therefore, the 95%
HPD credible set for � is simply

698 Chapter 15

M � � 1.96�� � 11.77 � 1.96(2.077)
� [7.699, 15.841]

M � � � 12.32

�� � � 1.89A 1
1>16 + 10>46.24

11>16215 + 110>46.24211.54
1>16 + 10>46.24

Thus, the stockbroker may conclude there is a 0.95 probability that the average
return on the stock is anywhere from 7.699% to 15.841% per year.

Recall that in the classical approach, we would have to rely only on the data and
would not be able to use prior knowledge. As a conclusion, we would have to say:
“Ninety-five percent of the intervals constructed in this manner will contain the
parameter of interest.” In the Bayesian approach, we are free to make probability state-
ments as conclusions. Incidentally, the idea of attaching a probability to a result
extends to the Bayesian way of testing hypotheses. A Bayesian statistician can give a
posterior probability to the null hypothesis. Contrast this with the classical p-value,
as defined in Chapter 7.

Suppose the stockbroker believed differently. Suppose that he believed that
returns on the stock had a mean of 15 and a standard deviation of 4. In this case, the
broker admits less uncertainty in his knowledge about average stock returns. The
sampling results are the same, so the likelihood is unchanged. However, the posterior
distribution does change as it now incorporates the data (through the likelihood) with
a prior distribution that is not diffuse, as in the last case, but more peaked over its
mean of 15. In our present case, the broker has a stronger belief that the average
return is around 15% per year, as indicated by a normal distribution more peaked
around its mean. Using equations 15–4 and 15–5, we obtain the posterior mean and
standard deviation:

As can be seen, the fact that the broker felt more confident about the average return’s
being around 15% (as manifested by the smaller standard deviation of his prior prob-
ability distribution) caused the posterior mean to be closer to 15% than it was when
the same data were used with a more diffuse prior (the new mean is 12.32, compared
with 11.77, obtained earlier). The prior distribution, the likelihood function, and the

diffuse priors. They convey little a priori knowledge about the process in question.
A relatively flat prior normal distribution conveys some information but lets the data
tell us more.
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posterior distribution of the mean return on the stock are shown in Figure 15–8.
Compare this figure with Figure 15–7, which corresponds to the earlier case with a
more diffuse prior.

The Template
Figure 15–9 shows the template for revising beliefs about the mean of a normal
distribution. The data in the figure correspond to Example 15–2.

Changing the 8 in cell E5 to 4 solves the less diffuse case. See Figure 15–10.
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FIGURE 15–8 Prior Distribution, Likelihood Function, and Posterior Distribution of Average
Return Using a More Peaked Prior Distribution
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Likelihood
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Posterior distribution

Prior distribution 

�
1512.3211.54

FIGURE 15–9 The Template for Revising Beliefs about a Normal Mean
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FIGURE 15–10 A Second Case of Revising the Normal Mean
[Bayesian Revision.xls; Sheet: Normal]
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15–11. The partner-manager of a franchise of Au Bon Pain, Inc., the French bakery-
restaurant chain, believes that the average daily revenue of her business may be
viewed as a random variable (she adheres to the Bayesian philosophy) with mean
$8,500 and standard deviation $1,000. Her prior probability distribution of average
daily revenue is normal. A random sample of 35 days reveals a mean daily revenue
of $9,210 and a standard deviation of $365. Construct the posterior distribution of
average daily revenue. Assume a normal distribution of daily revenues.
15–12. Money surveyed mutual funds as a good investment instrument.5 Suppose
that the annual average percentage return from mutual funds is a normally distrib-
uted random variable with mean 8.7% and standard deviation 5%, and suppose that
a random sample of 50 such funds gave a mean return of 10.1% and standard devia-
tion of 4.8%. Compute a 95% highest-posterior-density credible set for the average
annual mutual fund return.
15–13. Claude Vrinat, owner of Taillevent—one of Europe’s most highly acclaimed
restaurants—is reported to regularly sample the tastes of his patrons. From experi-
ence, Vrinat believes that the average rating (on a scale of 0 to 100) that his clients
give his foie gras de canard may be viewed as normally distributed with mean 94 and
standard deviation 2. A random sample of 10 diners gives an average rating of 96 and
standard deviation of 1. What should be Vrinat’s posterior distribution of average rat-
ing of foie gras de canard, assuming ratings are normally distributed?
15–14. In the context of problem 15–13, a second random sample of 15 diners is
asked to rate the foie gras, giving a mean rating of 95 and standard deviation of 1.

5“The Best Mutual Funds You Can Buy,” Money, February 2007, p. 61.
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Incorporate the new information to give a posterior distribution that accounts for both
samplings and the prior distribution. Give a 95% HPD credible set for mean rating.
15–15. An article in Forbes discusses the problem of oil and gas reserves around the
world.6 Forecasting the amount of oil available is difficult. If the average number of
barrels that can be pumped daily from an oil field is a normal random variable with
mean 7,200 barrels and standard deviation 505 barrels, and a random sample of 20
days reveals a sample average of 6,100 barrels and standard deviation of 800, give a
95% highest-posterior-density credible set for the average number of barrels that can
be pumped daily.
15–16. Continuing problem 15–15, suppose that a second random sample of 20
days reveals an average of 5,020 barrels and standard deviation of 650. Create a new
95% HPD credible set.
15–17. In an effort to predict Alaska’s oil-related state revenues, a Delphi session is
regularly held where experts in the field give their expectations of the average future
price of crude oil over the next year. The views of five prominent experts who par-
ticipated in the last Delphi session may be stated as normal prior distributions with
means and standard deviations given in the following table. To protect their identities
(the Delphi sessions are closed to the public), we will denote them by the letters A
through E. Data are in dollars per barrel.

Expert Mean Standard Deviation

A 23 4

B 19 7

C 25 1

D 20 9

E 27 3

Compare the views of the five experts, using this information. What can you say
about the different experts’ degrees of belief in their own respective knowledge? One
of the experts is the governor of Alaska, who, due to the nature of the post, devotes
little time to following oil prices. All other experts have varying degrees of experi-
ence with price analysis; one of them is the ARCO expert who assesses oil prices on
a daily basis. Looking only at the reported prior standard deviations, who is likely to
be the governor, and who is likely to be the ARCO expert? Now suppose that at the
end of the year the average daily price of crude oil was $18 per barrel. Who should
be most surprised (and embarrassed), and why?

15–4 The Evaluation of Subjective Probabilities
Since Bayesian analysis makes extensive use of people’s subjective beliefs in the form
of prior probabilities, it is only natural that the field should include methods for the
elicitation of personal probabilities. We begin by presenting some simple ideas on
how to identify a normal prior probability distribution and give a rough estimate of
its mean and standard deviation.

Assessing a Normal Prior Distribution
As you well know by now, the normal probability model is useful in a wide variety of
applications. Furthermore, since we know probabilities associated with the normal
distribution, results can easily be obtained if we do make the assumption of normality.
How can we estimate a decision maker’s subjective normal probability distribution?
For example, how did the stockbroker of Example 15–2 decide that his prior distri-
bution of average returns was normal with mean 15 and standard deviation 8?
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The normal distribution appears naturally and as an approximation in many sit-
uations due to the central limit theorem. Therefore, in many instances, it makes sense
to assume a normal distribution. In other cases, we frequently have a distribution that
is not normal but still is symmetric with a single mode. In such cases, it may still make
sense to assume a normal distribution as an approximation because this distribution
is easily estimated as a subjective distribution, and the resulting inaccuracies will not
be great. In cases where the distribution is skewed, however, the normal approximation
will not be adequate.

Once we determine that the normal distribution is appropriate for describing our
personal beliefs about the situation at hand, we need to estimate the mean and the
standard deviation of the distribution. For a symmetric distribution with one mode,
the mean is equal to the median and to the mode. Therefore, we may ask the decision
maker whose subjective probability we are trying to assess what he or she believes to
be the center of the distribution. We may also ask for the most likely value. We may
ask for the average, or we may ask for the point that splits the distribution into two
equal parts. All these questions would lead us to the central value, which we take to
be the mean of the subjective distribution. By asking the person whose probabilities
we are trying to elicit several of these questions, we have a few checks on the answer.
Any discrepancies in the answers may lead to possible violations of our assumption
of the symmetry of the distribution or its unimodality (having only one mode), which
would obviate the normal approximation. Presumably, questions such as these lead
the stockbroker of Example 15–2 to determine that the mean of his prior distribution
for average returns is 15%.

How do we estimate the standard deviation of a subjective distribution? Recall
the simple rules of thumb for the normal probability model:

Approximately 68% of the distribution lies within 1 standard deviation
of the mean.

Approximately 95% of the distribution lies within 2 standard deviations
of the mean.

These rules lead us to the following questions for the decision maker whose probabili-
ties we are trying to assess: “Give me two values of the distribution in question such that
you are 95% sure that the variable in question is between the two values,” or equiva-
lently, “Give me two values such that 95% of the distribution lies between them.” We
may also ask for two values such that 68% of the distribution is between these values.

For 95% sureness, assuming symmetry, we know that the two values we obtain as
answers are each 2 standard deviations away from the mean. In the case of the stock-
broker, he must have felt there was a 0.95 chance that the average return on the stock
was anywhere from �1% to 31%. The two points �1 and 31 are 2 � 8 units on either
side of the mean of 15. Hence, the standard deviation is 8. The stockbroker could also
have said that he was 68% sure that the average return was anywhere from 7% to
23% (each of these two values is 1 standard deviation away from the mean of 15).
Using 95% bounds is more useful than 68% limits because people are more likely to
think in terms of 95% sureness. Be sure you understand the difference between this
method of obtaining bounds on values of a population (or random variable) and the
construction of confidence intervals (or credible sets) for population parameters.

15–5 Decision Analysis: An Overview
Some years ago, the state of Massachusetts had to solve a serious problem: an alarm-
ing number of road fatalities caused by icy roads in winter. The state department of
transportation wanted to solve the problem by salting the roads to reduce ice buildup.
The introduction of large amounts of salt into the environment, however, would even-
tually cause an increase in the sodium content of drinking water, thus increasing the
risk of heart problems in the general population.
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This is the kind of problem that can be solved by decision analysis. There is a deci-
sion to be made: to salt or not to salt. With each of the two possible actions, we may
associate a final outcome, and each outcome has a probability of occurrence. An addi-
tional number of deaths from heart disease would result if roads were salted. The
number of deaths is uncertain, but its probability may be assessed. On the other hand,
a number of highway deaths would be prevented if salt were used. Here again, the
number is uncertain and governed by some probability law. In decision analysis we
seek the best decision in a given situation. Although it is unpleasant to think of deaths,
the best (optimal) decision here is the decision that would minimize the expected total
number of deaths. Expected means averaged using the different probabilities as weights.

The area of decision analysis is independent of most of the material in this book.
To be able to perform decision analysis, you need to have a rudimentary understand-
ing of probability and of expected values. Some problems make use of additional infor-
mation, obtained either by sampling or by other means. In such cases, we may have
an idea about the reliability of our information—which may be stated as a probability—
and the information is incorporated in the analysis by use of Bayes’ theorem.

When a company is interested in introducing a new product, decision analysis
offers an excellent aid in coming to a final decision. When one company considers a
merger with another, decision analysis may be used as a way of evaluating all possi-
ble outcomes of the move and deciding whether to go ahead based on the best
expected outcome. Decision analysis can help you decide which investment or com-
bination of investments to choose. It could help you choose a job or career. It could
help you decide whether to pursue an MBA degree.

We emphasize the use of decision analysis as an aid in corporate decision making.
Since quantifying the aspects of human decision making is often difficult, it is impor-
tant to understand that decision analysis should not be the only criterion for making
a decision. A stockbroker’s hunch, for example, may be a much better indication of
the best investment decision than a formal mathematical analysis, which may very
well miss some important variables.

Decision analysis, as described in this book, has several elements.

The elements of a decision analysis:

1. Actions
2. Chance occurrences
3. Probabilities
4. Final outcomes
5. Additional information
6. Decision

Actions
By an action, we mean anything that the decision maker can do. An action is some-
thing you, the decision maker, can control. You may choose to take an action, or you
may choose not to take it. Often, there are several choices for action: You may buy
one of several different products, travel one of several possible routes, etc. Many
decision problems are sequential in nature: You choose one action from among
several possibilities; later, you are again in a position to take an action. You may keep
taking actions until a final outcome is reached; you keep playing the game until the
game is over. Finally, you have reached some final outcome—you have gained a
certain amount or lost an amount, achieved a goal or failed.

Chance Occurrences
Even if the decision problem is essentially nonsequential (you take an action, some-
thing happens, and that is it), we may gain a better understanding of the problem if
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we view the problem as sequential. We assume that the decision maker takes an
action, and afterward “chance takes an action.” The action of chance is the chance
occurrence. When you decide to buy ABC stock, you have taken an action. When
the stock falls 3 points the next day, chance has taken an action.

Probabilities
All actions of chance are governed by probabilities, or at least we view them that way
because we cannot predict chance occurrences. The probabilities are obtained by
some method. Often, the probabilities of chance occurrences are the decision maker’s
(or consulted expert’s) subjective probabilities. Thus, the chief executive officer of a
firm bidding for another firm will assign certain probabilities to the various outcomes
that may result from the attempted merger.

In other cases, the probabilities of chance occurrences are more objective. If we
use sampling results as an aid in the analysis (see the section on additional informa-
tion, which follows), then statistical theory gives us measures of the reliability of
results and, hence, probabilities of relevant chance occurrences.

Final Outcomes
We assume that the decision problem is of finite duration. After you, the decision
maker, have taken an action or a sequence of actions, and after chance has taken
action or a sequence of actions, there is a final outcome. An outcome may be viewed
as a payoff or reward, or it may be viewed as a loss. We will look at outcomes as rewards
(positive or negative). A payoff is an amount of money (or other measure of benefit,
called a utility) that you receive at the end of the game—at the end of the decision
problem.

Additional Information
Each time chance takes over, a random occurrence takes place. We may have some
prior information that allows us to assess the probability of any chance occurrence.
Often, however, we may be able to purchase additional information. We may consult
an expert, at a cost, or we may sample from the population of interest (assuming
such a population exists) for a price. The costs of obtaining additional information
are subtracted from our final payoff. Therefore, buying new information is, in itself,
an action that we may choose to take or not. Deciding whether to obtain such infor-
mation is part of the entire decision process. We must weigh the benefit of the addi-
tional information against its cost.

Decision
The action, or sequential set of actions, we decide to take is called our decision. The
decision obtained through a useful analysis is that set of actions that maximizes our
expected final-outcome payoff. The decision will often give us a set of alternative
actions in addition to the optimal set of actions. In a decision to introduce a new prod-
uct, suppose that the result of the decision analysis indicates that we should proceed
with the introduction of the product without any market testing—that is, without any
sampling. Suppose, however, that a higher official in the company requires us to test
the product even though we may not want to do so. A comprehensive solution to the
decision problem would provide us not only with the optimal action (market the
product), but also with information on how to proceed in the best possible way
when we are forced to take some suboptimal actions along the way. The complete
solution to the decision problem would thus include information on how to treat the
results of the market test. If the results are unfavorable, the optimal action at this
point may be not to go ahead with introducing the product. The solution to the deci-
sion problem—the decision—gives us all information on how to proceed at any given
stage or circumstance.
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As you see, we have stressed a sequential approach to decision making. At the
very least, a decision analysis consists of two stages: The decision maker takes an
action out of several possible ones, and then chance takes an action. This sequential
approach to decision making is very well modeled and visualized by what is called a
decision tree.

A decision tree is a set of nodes and branches. At a decision node, the decision
maker takes an action; the action is the choice of a branch to be followed. The branch
leads to a chance node, where chance determines the outcome; that is, chance chooses
the branch to be followed. Then either the final outcome is reached (the branch
ends), or the decision maker gets to take another action, and so on. We mark a deci-
sion node by a square and a chance node by a circle. These are connected by the
branches of the decision tree. An example of a decision tree is shown in Figure 15–11.
The decision tree shown in the figure is a simple one: It consists of only four branches,
one decision node, and one chance node. In addition, there is no product-testing
option. As we go on, we will see more complicated decision trees, and we will
explore related topics.

Bayesian Statistics and Decision Analysis 705

FIGURE 15–11 An Example of a Decision Tree for New-Product Introduction

Market

Final outcome

$100,000

– $20,000

$0

Product is not
successful

Product is
successful

Do not market

15–18. What are the uses of decision analysis?
15–19. What are the limitations of decision analysis?
15–20. List the elements of a decision problem, and explain how they interrelate.
15–21. What is the role of probabilities in a decision problem, and how do these
probabilities arise?
15–22. What is a decision tree?

15–6 Decision Trees
As mentioned in the last section, a decision tree is a useful aid in carrying out a
decision analysis because it allows us to visualize the decision problem. If nothing
else, the tree gives us a good perspective on our decision problem: It lets us see when
we, as decision makers, are in control and when we are not. To handle the instances
when we are not in control, we use probabilities. These probabilities—assuming they
are assessed in some accurate, logical, and consistent way—are our educated guesses
as to what will happen when we are not in control.

P R O B L E M S
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The aforementioned use of decision trees in clarifying our perspective on a deci-
sion problem may not seem terribly important, say, compared with a quantitatively
rigorous solution to a problem involving exact numbers. However, this use of decision
trees is actually more important than it seems. After you have seen how to use a deci-
sion tree in computing the expected payoff at each chance node and the choice of the
optimal action at each decision node, and after you have tried several decision prob-
lems, you will find that the trees have an added advantage. You will find that just
drawing the decision tree helps you better understand the decision problem you
need to solve. Then, even if the probabilities and payoffs are not accurately assessed,
making you doubt the exact optimality of the solution you have obtained, you will
still have gained a better understanding of your decision problem. This in itself
should help you find a good solution.

In a sense, a decision tree is a good psychological tool. People are often confused
about decisions. They are not always perfectly aware of what they can do and what
they cannot do, and they often lack an understanding of uncertainty and how it
affects the outcomes of their decisions. This is especially true of large-scale decision
problems, entailing several possible actions at several different points, each followed
by chance outcomes, leading to a distant final outcome. In such cases, drawing a deci-
sion tree is an indispensable way of gaining familiarity with all aspects of the decision
problem. The tree shows which actions affect which, and how the actions interrelate
with chance outcomes. The tree shows how combinations of actions and chance out-
comes lead to possible final outcomes and payoffs.

Having said all this, let us see how decision problems are transformed to visual
decision trees and how these trees are analyzed. Let us see how decision trees can
lead us to optimal solutions to decision problems. We will start with the simple new-
product introduction example shown in the decision tree in Figure 15–11. Going step
by step, we will show how that simple tree was constructed. The same technique is
used in constructing more complicated trees, with many branches and nodes.

The Payoff Table
The first step in the solution of any decision problem is to prepare the payoff table
(also called the payoff matrix ). The payoff table is a table of the possible payoffs we
would receive if we took certain actions and certain chance occurrences followed.
Generally, what takes place will be called state of nature, and what we do will be called
the decision. This leads us to a table that is very similar to Table 7–1. There we dealt
with hypothesis testing, and the state of nature was whether the null hypothesis was
true; our decision was either to reject or not reject the null hypothesis. In that con-
text, we could have associated the result “not reject H0 when H0 is true” with some
payoff (because a correct decision was made); the outcome “not reject H0 when H0 is
false” could have been associated with another (negative) payoff, and similarly for the
other two possible outcomes. In the context of decision analysis, we might view the
hypothesis testing as a sequential process. We make a decision (to reject or not to
reject H0), and then “chance” takes over and makes H0 either true or false.

Let us now write the payoff table for the new-product introduction problem. Here
we assume that if we do not introduce the product, nothing is gained and nothing is
lost. This assumes we have not invested anything in developing the product, and it
assumes no opportunity loss. If we do not introduce the new product, our payoff is zero.

If our action is to introduce the product, two things may happen: The product may
be successful, or it may not. If the product is successful, our payoff will be $100,000;
and if it is not successful, we will lose $20,000, so our payoff will be �$20,000. The
payoff table for this simple problem is Table 15–4. In real-world situations, we may
assess more possible outcomes: finely divided degrees of success. For example, the
product may be extremely successful—with payoff $150,000; very successful—payoff
$120,000; successful—payoff $100,000; somewhat successful—payoff $80,000; barely
successful—payoff $40,000; breakeven—payoff $0; unsuccessful—payoff �$20,000;

706 Chapter 15



Aczel−Sounderpandian: 
Complete Business 
Statistics, Seventh Edition

15. Bayesian Statistics and 
Decision Analysis

Text 709© The McGraw−Hill 
Companies, 2009

or disastrous—payoff �$50,000. Table 15–4 can be easily extended to cover these
expanded states of nature. Instead of two columns, we would have eight, and we
would still have two rows corresponding to the two possible actions.

The values in Table 15–4 give rise to the decision tree that was shown in
Figure 15–11. We take an action: If we do not market the product, the payoff is zero,
as shown by the arc from the decision node to the final outcome of zero. If we choose
to market the product, chance either will take us to success and a payoff of $100,000
or will lead us to failure and a loss of $20,000. We now need to deal with chance. We
do so by assigning probabilities to the two possible states of nature, that is, to the two
possible actions of chance. Here, some elicitation of personal probabilities is done.
Suppose that our marketing manager concludes that the probability of success of the
new product is 0.75. The probability of failure then must be 1 � 0.75 � 0.25. Let us
write these probabilities on the appropriate branches of our decision tree. The tree,
with payoffs and probabilities, is shown in Figure 15–12.

We now have all the elements of the decision tree, and we are ready to solve the
decision problem.

The solution of decision tree problems is achieved by working backward
from the final outcomes.

The method we use is called averaging out and folding back. Working backward
from the final outcomes, we average out all chance occurrences. This means that we find
the expected value at each chance node. At each chance node (each circle in the tree),
we write the expected monetary value of all branches leading out of the node; we fold
back the tree. At each decision node (each square in the tree), we choose the action that
maximizes our (expected ) payoff. That is, we look at all branches emanating from the
decision node, and we choose the branch leading to the highest monetary value.
Other branches may be clipped; they are not optimal. The problem is solved once we
reach the beginning: the first decision node.

Bayesian Statistics and Decision Analysis 707

TABLE 15–4 Payoff Table: New-Product Introduction

Product Is

Action Successful Not Successful

Market the product �$100,000 �$20,000

Do not market the product 0 0

FIGURE 15–12 Decision Tree for New-Product Introduction
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Let us solve the decision problem of the new-product introduction. We start at
the final outcomes. There are three such outcomes, as seen in Figure 15–12. The out-
come with payoff $0 emanates directly from the decision node; we leave it for now.
The other two payoffs, $100,000 and �$20,000, both emanate from a chance node.
We therefore average them out—using their respective probabilities—and fold back
to the chance node. To do this, we find the expected monetary value at the chance
node (the circle in Figure 15–12). Recall the definition of the expected value of a
random variable, given as equation 3–4.

The expected value of X, denoted E(X), is

The outcome as you leave the chance node is a random variable with two possible
values: 100,000 and �20,000. The probability of outcome 100,000 is 0.75, and the
probability of outcome �20,000 is 0.25. To find the expected value at the chance
node, we apply equation 3–4:

E(X) = a
all x

xP(x)
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E(outcome at chance node) � (100,000)(0.75) � (�20,000)(0.25)
� 70,000

Thus, the expected value associated with the chance node is �$70,000; we write this
value next to the circle in our decision tree. We can now look at the decision node
(the square), since we have folded back and reached the first node in the tree. We
know the (expected) monetary values associated with the two branches emanating
from this node. Recall that at decision nodes we do not average. Rather, we choose
the best branch to be followed and clip the other branches, as they are not optimal.
Thus, at the decision node, we compare the two values �$70,000 and $0. Since
70,000 is greater than 0, the expected monetary outcome of the decision to market
the new product is greater than the monetary outcome of the decision not to market
the new product. We follow the rule of choosing the decision that maximizes the
expected payoff, so we choose to market the product. (We clip the branch corresponding
to “not market” and put a little arrow by the branch corresponding to “market.”) In
Section 15–8, where we discuss utility, we will see an alternative to the “maximum
expected monetary value” rule, which takes into account our attitudes toward risk
rather than simply aims for the highest average payoff, as we have done here. The
solution of the decision tree is shown in Figure 15–13.

FIGURE 15–13 Solution of the New-Product Introduction Decision Tree
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We follow the arrow and make the decision to market the new product. Then
chance takes over, and the product either becomes successful (an event which, a pri-
ori, we believe to have a 0.75 probability of occurring) or does not become success-
ful. On average—that is, if we make decisions such as this one very many times—we
should expect to make $70,000.

Let us now consider the extended market possibilities mentioned earlier. Suppose
that the outcomes and their probabilities in the case of extended possibilities are as
given in Table 15–5. In this new example, the payoff is more realistic: It has many pos-
sible states. Our payoff is a random variable. The expected value of this random vari-
able is computed, as usual, by multiplying the values by their probabilities and adding
(equation 3–4). This can easily be done by adding a column for Payoff � Probability
to Table 15–5 and adding all entries in the column. This gives us E (payoff ) � $77,500
(verify this). The decision tree for this example—with many branches emanating from
the chance node—is shown in Figure 15–14. The optimal decision in this case is, again,
to market the product.

We have seen how to analyze a decision problem by using a decision tree. Let us
now look at an example. In Example 15–3, chance takes over after either action we
take, and the problem involves more than one action. We will take an action; then a
chance occurrence will take place. Then we will again decide on an action, after
which chance will again take over, leading us to a final outcome.

Bayesian Statistics and Decision Analysis 709

TABLE 15–5 Possible Outcomes and Their Probabilities

Outcome Payoff Probability

Extremely successful $150,000 0.1

Very successful 120,000 0.2

Successful 100,000 0.3

Somewhat successful 80,000 0.1

Barely successful 40,000 0.1

Breakeven 0 0.1

Unsuccessful �20,000 0.05

Disastrous �50,000 0.05

FIGURE 15–14 Extended-Possibilities Decision Tree for New-Product Introduction
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Final outcome
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0
– $20,000
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E(payoff) = $77,500

0.1
0.2
0.3
0.1
0.1
0.1

0.050.05
Not market

Recently, Digital Equipment Corporation arranged to get the Cunard Lines ship
Queen Elizabeth 2 (QE2) for use as a floating hotel for the company’s annual con-
vention. The meeting took place in September and lasted nine days. In agreeing to

E X A M P L E  1 5 – 3
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lease the QE2, Cunard had to make a decision. If the cruise ship were leased to
Digital, Cunard would get a flat fee and an additional percentage of profits from the
gala convention, which could attract as many as 50,000 people. Cunard analysts
therefore estimated that if the ship were leased, there would be a 0.50 probability
that the company would make $700,000 for the nine days; a 0.30 probability that
profits from the venture would be about $800,000; a 0.15 probability that profits
would be about $900,000; and a 0.05 probability that profits would be as high as $1
million. If the ship were not leased to Digital, the vessel would be used for its usual
Atlantic crossing voyage, also lasting nine days. If this happened, there would be a
0.90 probability that profits would be $750,000 and a 0.10 probability that profits
would be about $780,000. The tighter distribution of profits on the voyage was due
to the fact that Cunard analysts knew much about the company’s usual business of
Atlantic crossings but knew relatively little about the proposed venture.

Cunard had one additional option. If the ship were leased to Digital, and it
became clear within the first few days of the convention that Cunard’s profits from
the venture were going to be in the range of only $700,000, the steamship company
could choose to promote the convention on its own by offering participants discounts
on QE2 cruises. The company’s analysts believed that if this action were chosen,
there would be a 0.60 probability that profits would increase to about $740,000 and
a 0.40 probability that the promotion would fail, lowering profits to $680,000 due
to the cost of the promotional campaign and the discounts offered. What should
Cunard have done?

Let us analyze all the components of this decision problem. One of two possible
actions must be chosen: to lease or not to lease. We can start constructing our tree by
drawing the square denoting this decision node and showing the two appropriate
branches leading out of it.

Once we make our choice, chance takes over. If we choose to lease, chance will
lead us to one of four possible outcomes. We show these possibilities by attaching
a circle node at the end of the lease action branch, with four branches emanating
from it. If we choose not to lease, chance again takes over, leading us to two possible
outcomes. This is shown by a chance node attached at the end of the not-lease action
branch, with two branches leading out of it and into the possible final outcome
payoffs of $750,000 and $780,000.

We now go back to the chance occurrences following the lease decision. At the
end of the branch corresponding to an outcome of $700,000, we attach another
decision node corresponding to the promotion option. This decision node has two
branches leaving it: One goes to the final outcome of $700,000, corresponding to
nonpromotion of the convention; and the other, the one corresponding to promotion,
leads to a chance node, which in turn leads to two possible final outcomes: a profit of
$740,000 and a profit of $680,000. All other chance outcomes following the lease
decision lead directly to final outcomes. These outcomes are profits of $800,000,
$900,000, and $1 million. At each chance branch, we note its probability. The chance
outcomes of the lease action have probabilities 0.5, 0.3, 0.15, and 0.05 (in order of
increasing monetary outcome). The probabilities of the outcomes following the not-
lease action are 0.9 and 0.1, respectively. Finally, the probabilities corresponding to
the chance outcomes following the promote action are 0.4 and 0.6, again in order of
increasing profit.

Our decision tree for the problem is shown in Figure 15–15. Having read the pre-
ceding description of the details of the tree, you will surely agree that “A picture is
worth 1,000 words.”

We now solve the decision tree. Our method of solution, as you recall, is averag-
ing out and folding back. We start at the end; that is, we look at the final-outcome
payoffs and work backward from these values. At every chance node, we average the
payoffs, using their respective probabilities. This gives us the expected monetary

710 Chapter 15
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value associated with the chance node. At every decision node, we choose the action
with the highest expected payoff and clip the branches corresponding to all other,
nonoptimal actions. Once we reach the first decision node in the tree, we are done
and will have obtained a complete solution to the decision problem.

Let us start with the closest chance node to the final outcomes—the one corre-
sponding to the possible outcomes of the promote action. The expected payoff at this
chance node is obtained as

Bayesian Statistics and Decision Analysis 711

FIGURE 15–15 Decision Tree for the Cunard Lease Example
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E (payoff) � (680,000)(0.4) � (740,000)(0.6) � $716,000

We now move back to the promote/not-promote decision node. Here we must
choose the action that maximizes the expected payoff. This is done by comparing
the two payoffs: the payoff of $700,000 associated with the not-promote action and the
expected payoff of $716,000 associated with the promote action. Since the expected
value of $716,000 is greater, we choose to promote. We show this with an arrow, and
we clip the nonoptimal action not to promote. The expected value of $716,000 now
becomes associated with the decision node, and we write it next to the node.

We now fold back to the chance node following the lease action. Four branches
lead out of that node. One of them leads to the promote decision node, which, as we
just decided, is associated with an (expected) outcome of $716,000. The probability of
reaching the decision node is 0.5. The next branch leads to an outcome of $800,000
and has a probability of 0.3; and the next two outcomes are $900,000 and $1 million,
with probabilities 0.15 and 0.05, respectively. We now average out the payoffs at this
chance node as follows:

E (payoff ) � (716,000)(0.5) � (800,000)(0.3) � (900,000)(0.15)
� (1,000,000)(0.05) � $783,000

This expected monetary value is now written next to the chance node.
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Let us now look at the last chance node, the one corresponding to outcomes
associated with the not-lease action. Here, we have two possible outcomes: a payoff
of $750,000, with probability 0.9; and a payoff of $780,000, with probability 0.1. We
now find the expected monetary value of the chance node:

712 Chapter 15

E (payoff) � (750,000)(0.9) � (780,000)(0.1) � $753,000

FIGURE 15–16 Solution of the Cunard Leasing Problem
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We are now finally at the first decision node of the entire tree. Here we must
choose the action that maximizes the expected payoff. The choice is done by com-
paring the expected payoff associated with the lease action, $783,000, and the expected
payoff associated with not leasing, $753,000. Since the higher expected payoff is that
associated with leasing, the decision is to lease. This is shown by an arrow on the tree
and by clipping the not-lease action as nonoptimal. The stages of the solution are
shown in Figure 15–16.

We now have a final solution to the decision problem: We choose to lease our ship
to Digital Equipment Corporation. Then, if we should find out that our profit from
the lease were in the range of only $700,000, our action would be to promote the con-
vention. Note that in this decision problem, the decision consists of a pair of actions.
The decision tells us what to do in any eventuality.

If the tree had more than just two decision nodes, the final solution to the prob-
lem would have consisted of a set of optimal actions at all decision nodes. The solu-
tion would have told us what to do at any decision node to maximize the expected
payoff, given that we arrive at that decision node. Note, again, that our solution is
optimal only in an expected monetary value sense. If Cunard is very conservative and does
not want to take any risk of getting a profit lower than the minimum of $750,000 it is
assured of receiving from an Atlantic crossing, then, clearly, the decision to lease
would not be optimal because it does admit such a risk. If the steamship company
has some risk aversion but would accept some risk of lower profits, then the analysis
should be done using utilities rather than pure monetary values. The use of utility in a
way that accounts for people’s attitudes toward risk is discussed in Section 15–8.
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15–23. During the Super Bowl, a 30-second commercial costs $2.5 million.7 The
maker of Doritos corn chips was considering purchasing such an ad. The marketing
director felt that there was a 0.35 probability that the commercial would boost sales
volume to $20 million over the next month; there was a 0.60 probability that excess
sales would be $10 million; and a 0.05 probability that excess sales would be only
$1 million. Carry out an analysis of whether to purchase a 30-second commercial
during the Super Bowl using a complete decision tree.

15–24. An article in the Asia Pacific Journal of Management discusses the importance
for firms to invest in social ties.8 A company is considering paying $150,000 for social
activities over one year, hoping that productivity for the year will rise. Estimates are
that there is a 50% chance that productivity would not change; there is a 20% chance
that the company’s profits would rise by $300,000; and there is a 10% chance of a rise
of $500,000. There is also a 20% chance that employees will learn to waste time and
that profits would fall by $50,000. Construct a decision tree and recommend a course
of action.

15–25. Drug manufacturing is a risky business requiring much research and devel-
opment. Recently, several drug manufacturers had to make important decisions.9

Developing a new drug for Alzheimer’s can cost $250 million. An analyst believes
that such a drug would be approved by the FDA with probability 0.70. In this case,
the company could make $850 million over the next few years. If the FDA did not
approve the new drug, it could still be sold overseas, and the company could make
$200 million over the same number of years. Construct a decision tree and recom-
mend a decision on whether to develop the new drug.

15–26. Predicting the styles that will prevail in a coming year is one of the most
important and difficult problems in the fashion industry. A fashion designer must
work on designs for the coming fall long before he or she can find out for certain
what styles are going to be “in.” A well-known designer believes that there is a 0.20
chance that short dresses and skirts will be popular in the coming fall; a 0.35 chance
that popular styles will be of medium length; and a 0.45 chance that long dresses and
skirts will dominate fall fashions. The designer must now choose the styles on which
to concentrate. If she chooses one style and another turns out to be more popular,
profits will be lower than if the new style were guessed correctly. The following table
shows what the designer believes she would make, in hundreds of thousands of
dollars, for any given combination of her choice of style and the one that prevails in
the new season.

Prevailing Style

Designer’s Choice Short Medium Long

Short 8 3 1

Medium 1 9 2

Long 4 3 10

Construct a decision tree, and determine what style the designer should choose to
maximize her expected profits.

P R O B L E M S

7“Give Consumers Control ,” Adweek, December 11, 2006, p. 14.
8Peter Ping Li, “Social Tie, Social Capital, and Social Behavior: Toward an Integrative Model of Informal Exchange,”

Asia Pacific Journal of Management 24, no. 2 (2007), pp. 227–246.
9Alex Berenson, “Manufacturer of Risky Drug to Sell Shares,” The New York Times, May 31, 2007, p. C1.
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15–27. For problem 15–26, suppose that if the designer starts working on long
designs, she can change them to medium designs after the prevailing style for the sea-
son becomes known—although she must then pay a price for this change because of
delays in delivery to manufacturers. In particular, if the designer chooses long and
the prevailing style is medium, and she then chooses to change to medium, there is
a 0.30 chance that her profits will be $200,000 and a 0.70 chance that her profits will
be $600,000. No other change from one style to another is possible. Incorporate this
information in your decision tree of problem 15–26, and solve the new tree. Give a
complete solution in the form of a pair of decisions under given circumstances that
maximize the designer’s expected profits.

15–28. Commodity futures provide an opportunity for buyers and suppliers of
commodities such as wheat to arrange in advance sales of a commodity, with deliv-
ery and payment taking place at a specified time in the future. The price is decided
at the time the order is placed, and the buyer is asked to deposit an amount less than
the value of the order, but enough to protect the seller from loss in case the buyer
should decide not to meet the obligation.

An investor is considering investing $15,000 in wheat futures and believes
that there is a 0.10 probability that he will lose $5,000 by the expiration of the
contract, a 0.20 probability that he will make $2,000, a 0.25 probability that
he will make $3,000, a 0.15 probability he will make $4,000, a 0.15 probability he
will make $5,000, a 0.10 probability he will make $6,000, and a 0.05 probability
that he will make $7,000. If the investor should find out that he is going to lose
$5,000, he can pull out of his contract, losing $3,500 for certain and an additional
$3,000 with probability 0.20 (the latter amount deposited with a brokerage firm as
a guarantee). Draw the decision tree for this problem, and solve it. What should
the investor do?

15–29. For problem 15–28, suppose that the investor is considering another invest-
ment as an alternative to wheat. He is considering investing his $15,000 in a limited
partnership for the same duration of time as the futures contract. This alternative has
a 0.50 chance of earning $5,000 and a 0.50 chance of earning nothing. Add this infor-
mation to your decision tree of problem 15–28, and solve it.

15–7 Handling Additional Information Using
Bayes’ Theorem

In any kind of decision problem, it is very natural to ask: Can I gain additional infor-
mation about the situation? Any additional information will help in making a deci-
sion under uncertainty. The more we know, the better able we are to make decisions
that are likely to maximize our payoffs. If our information is perfect, that is, if we can
find out exactly what chance will do, then there really is no randomness, and the situa-
tion is perfectly determined. In such cases, decision analysis is unnecessary because we
can determine the exact action that will maximize the actual (rather than the expected)
payoff. Here we are concerned with making decisions under uncertainty, and we
assume that when additional information is available, such information is prob-
abilistic in nature. Our information has a certain degree of reliability. The reliability
is stated as a set of conditional probabilities.

If we are considering the introduction of a new product into the market,
we would be wise to try to gain information about the prospects for success of the
new product by sampling potential consumers and soliciting their views about the
product. (Is this not what statistics is all about?) Results obtained from random
sampling are always probabilistic; the probabilities originate in the sampling distri-
butions of our statistics. The reliability of survey results may be stated as a set of
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conditional probabilities in the following way. Given that the market is ripe for our
product and that it is in fact going to be successful, there is a certain probability
that the sampling results will tell us so. Conversely, given that the market will
not accept the new product, there is a certain probability that the random sample
of people we select will be representative enough of the population in question to
tell us so.

To show the use of the conditional probabilities, let S denote the event that the prod-
uct will be a success and F � (the complement of S) be the event that the product will
fail. Let IS be the event that the sample indicates that the product will be a success, and
IF the event that the sample indicates that the product will fail. The reliability of the sam-
pling results may be stated by the conditional probabilities P(IS | S), P(IS | F), P(IF | S),
and P(IF | F). [Each pair of conditional probabilities with the same condition has a sum
of 1.00. Thus, P(IS | S) � P(IF | S) � 1, and P(IS | F) � P(IF | F) � 1. So we need to be
given only two of the four conditional probabilities.]

Once we have sampled, we know the sample outcome: either the event IS (the
sample telling us that the product will be successful) or the event IF (the sample
telling us that our product will not be a success). What we need is the probability that
the product will be successful given that the sample told us so, or the probability that the
product will fail, if that is what the sample told us. In symbols, what we need is
P (S | IS) and P (F | IS) (its complement), or the pair of probabilities P (S | IF) and
P (F | IF). We have P (IS | S), and we need P (S | IS). The conditions in the two prob-
abilities are reversed. Remember that Bayes’ theorem reverses the conditionality of
events. This is why decision analysis is usually associated with Bayesian theory. In
order to transform information about the reliability of additional information in a
decision problem to usable information about the likelihood of states of nature, we
need to use Bayes’ theorem.

To restate the theorem in this context, suppose that the sample told us that the
product will be a success. The (posterior) probability that the product will indeed be
a success is given by

S

Bayesian Statistics and Decision Analysis 715

P (S | IS) � (15–6)
P (IS | S) P (S)

P (IS | S)P (S) + P (IS | F)P (F)

The probabilities P (S) and P (F) are our prior probabilities of the two possible out-
comes: successful product versus unsuccessful product. Knowing these prior proba-
bilities and knowing the reliability of survey results, here in the form of P (IS | S) and
P (IS | F), allows us to compute the posterior, updated probability that the product
will be successful given that the sample told us that it will be successful.

How is all this used in a decision tree? We extend our decision problem to
include two possible actions: to test or not to test, that is, to obtain additional infor-
mation or not to obtain such information. The decision of whether to test must
be made before we make any other decision. In the case of a new-product intro-
duction decision problem, our decision tree must be augmented to include the pos-
sibility of testing or not testing before we decide whether to market our new
product. We will assume that the test costs $5,000. Our new decision tree is shown
in Figure 15–17.

As shown in Figure 15–17, we first decide whether to test. If we test, we get a test
result. The result is a chance outcome—the test indicates success, or the test indicates
failure (event IS or event IF). If the test indicates success, then we may choose to
market or not to market. The same happens if the test indicates failure: We may still
choose to market, or we may choose not to market. If the test is worthwhile, it is
not logical to market once the test tells us the product will fail. But the point of the
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decision analysis is that we do not know whether the test is worthwhile; this is one of
the things that we need to decide. Therefore, we allow for the possibility of marketing
even if the test tells us not to market, as well as allowing for all other possible com-
binations of decisions.

Determining the Payoffs
Recall that if the product is successful, we make $100,000, and if it is not success-
ful, we lose $20,000. The test is assumed to cost $5,000. Thus, we must subtract
$5,000 from all final-outcome payoffs that are reached via testing. If we test, we
spend $5,000. If we then market and the product is successful, we make $100,000,
but we must deduct the $5,000 we had to pay for the test, leaving us a net profit
of $95,000. Similarly, we must add the $5,000 cost of the market test to the possi-
ble loss of $20,000. This brings the payoff that corresponds to product failure to
�$25,000.

Determining the Probabilities
We have now reached the crucial step of determining the probabilities associated
with the different branches of our decision tree. As shown in Figure 15–17, we know
only two probabilities: the probability of a successful product without any testing
and the probability of an unsuccessful product without any testing. (These are our
old probabilities from the decision tree of Figure 15–12.) These probabilities are
P (S) � 0.75 and P (F) � 0.25. The two probabilities are also our prior probabilities—
the probabilities before any sampling or testing is undertaken. As such, we will use
them in conjunction with Bayes’ theorem for determining the posterior probabili-
ties of success and of failure, and the probabilities of the two possible test results
P (IS) and P (IF). The latter are the total probabilities of IS and IF, respectively, and
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FIGURE 15–17 New-Product Decision Tree with Testing
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are obtained from the denominator in equation 15–6 and its analog, using the event
IF. These are sometimes called predictive probabilities because they predict the test
results.

For the decision tree in Figure 15–17, we have two probabilities, and we need to
fill in the other six. First, let us look at the particular branches and define our prob-
abilities. The probabilities of the two upper branches of the chance node immediately
preceding the payoffs correspond to the two sequences

Bayesian Statistics and Decision Analysis 717

Test → Test indicates success → Market → Product is successful

Test → Test indicates success → Market → Product is not successful

P (Product is successful | Test has indicated success)

P (Product is not successful | Test has indicated success)

P (IS | S) � 0.9 P (IF | S) � 0.1 P (IF | F) � 0.85 P (IS | F) � 0.15

=
0.675
0.7125

= 0.9474

P (S | IS) =
P (IS | S) P (S)

P (IS | S)P (S) + P (IS | F)P (F)
=

(0.9)(0.75)
(0.9)(0.75) + (0.15)(0.25)

and

These are the two sequences of events leading to the payoffs $95,000 and �$25,000,
respectively. The probabilities we seek for the two final branches are

and

These are the required probabilities because we have reached the branches success
and no-success via the route: Test → Test indicates success. In symbols, the two prob-
abilities we seek are P (S | IS) and P (F | IS). The first probability will be obtained from
Bayes’ theorem, equation 15–6, and the second will be obtained as P (F | IS) � 1 �
P (S | IS). What we need for Bayes’ theorem—in addition to the prior probabilities—is
the conditional probabilities that contain the information about the reliability of the
market test. Let us suppose that these probabilities are

Thus, when the product is indeed going to be successful, the test has a 0.90 chance
of telling us so. Ten percent of the time, however, when the product is going to be
successful, the test erroneously indicates failure. When the product is not going to
be successful, the test so indicates with probability 0.85 and fails to do so with prob-
ability 0.15. This information is assumed to be known to us at the time we consider
whether to test.

Applying Bayes’ theorem, equation 15–6, we get
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The denominator in the equation, 0.7125, is an important number. Recall from
Section 2–7 that this is the total probability of the conditioning event; it is the prob-
ability of IS. We therefore have
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P (S | IS) =  0.9474          and       P (IS) =  0.7125

(15–7)P (S | IF) =
P (IF | S)P (S)

P (IF | S)P (S) + P (IF | F)P (F)

E(payoff) � (0.9474)(95,000) � (0.0526)(�25,000)
� $88,688 (top chance node)

E(payoff) � (0.2609)(95,000) � (0.7391)(�25,000)
� $6,308 (middle chance node)

E(payoff) � (0.75)(100,000) � (0.25)(�20,000)
� $70,000 (bottom chance node)

These two probabilities give rise to two more probabilities (namely, those of their com-
plements): P (F | IS) � 1 � 0.9474 � 0.0526 and P (IF) � 1 � P (IS) � 1 � 0.7125 �
0.2875.

Using Bayes’ theorem and its denominator, we have found that the probability
that the test will indicate success is 0.7125, and the probability that it will indicate fail-
ure is 0.2875. Once the test indicates success, there is a probability of 0.9474 that the
product will indeed be successful and a probability of 0.0526 that it will not be suc-
cessful. This gives us four more probabilities to attach to branches of the decision
tree. Now all we need are the last two probabilities, P (S | IF) and P (F | IF). These are
obtained via an analog of equation 15–6 for when the test indicates failure. It is given
as equation 15–7.

The denominator of equation 15–7 is, by the law of total probability, simply the prob-
ability of the event IF, and we have just solved for it: P (IF) � 0.2875. The numerator
is equal to (0.1)(0.75) � 0.075. We thus get P (S | IF) � 0.075�0.2875 � 0.2609. The
last probability we need is P (F | IF) � 1 � P (S | IF) � 1 � 0.2609 � 0.7391.

We will now enter all these probabilities into our decision tree. The complete tree
with all probabilities and payoffs is shown in Figure 15–18. (To save space in the
figure, events are denoted by their symbols: S, F, IS, etc.)

We are finally in a position to solve the decision problem by averaging out and
folding back our tree. Let us start by averaging out the three chance nodes closest to
the final outcomes:

We can now fold back and look for the optimal actions at each of the three pre-
ceding decision nodes. Again, starting from top to bottom, we first compare $88,688
with �$5,000 and conclude that—once the test indicates success—we should market
the product. Then, comparing $6,308 with �$5,000, we conclude that even if the test
says that the product will fail, we are still better off if we go ahead and market the
product (remember, all our conclusions are based on the expected monetary value
and have no allowance for risk aversion). The third comparison again tells us to mar-
ket the product, because $70,000 is greater than $0.
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We are now at the chance node corresponding to the outcome of the test. At this
point, we need to average out $88,688 and $6,308, with probabilities 0.7125 and
0.2875, respectively. This gives us
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FIGURE 15–18 New-Product Decision Tree with Probabilities
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P(S IF) = 0.2609
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E (payoff) � (0.7125)(88,688) � (0.2875)(6,308) � $65,003.75

Finally, we are at the very first decision node, and here we need to compare
$65,003.75 with $70,000. Since $70,000 is greater, our optimal decision is not
to test and to go right ahead and market the new product. If we must, for some
reason, test the product, then we should go ahead and market it regardless of
the outcome of the test, if we want to maximize our expected monetary payoff.
Note that our solution is, of course, strongly dependent on the numbers we have
used. If these numbers were different—for example, if the prior probability of suc-
cess were not as high as it is—the optimal solution could very well have been to test
first and then follow the result of the test. Our solution to this problem is shown in
Figure 15–19.

We now demonstrate the entire procedure of decision analysis with additional
information by Example 15–4. To simplify the calculations, which were explained
earlier on a conceptual level using equations, we will use tables.

Insurance companies need to invest large amounts of money in opportunities that
provide high yields and are long-term. One type of investment that has recently
attracted some insurance companies is real estate.

E X A M P L E  1 5 – 4
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Aetna Life and Casualty Company is considering an investment in real estate in
central Florida. The investment is for a period of 10 years, and company analysts
believe that the investment will lead to returns that depend on future levels of eco-
nomic activity in the area. In particular, the analysts believe that the invested amount
would bring the profits listed in Table 15–6, depending on the listed levels of eco-
nomic activity and their given (prior) probabilities. The alternative to this investment
plan—one that the company has used in the past—is a particular investment that has
a 0.5 probability of yielding a profit of $4 million and a 0.5 probability of yielding
$7 million over the period in question.

The company may also seek some expert advice on economic conditions in cen-
tral Florida. For an amount that would be equivalent to $1 million 10 years from now
(when invested at a risk-free rate), the company could hire an economic consulting
firm to study the future economic prospects in central Florida. From past dealings
with the consulting firm, Aetna analysts believe that the reliability of the consulting
firm’s conclusions is as listed in Table 15–7. The table lists as columns the three con-
clusions the consultants may reach about the future of the area’s economy. The rows
of the table correspond to the true level of the economy 10 years in the future, and
the table entries are conditional probabilities. For example, if the future level of the
economy is going to be high, then the consultants’ statement will be “high” with
probability 0.85. What should Aetna do?
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FIGURE 15–19 New-Product Introduction: Expected Values and Optimal Decision
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Expected payoff for optimal decision = $70,000

TABLE 15–6 Information for Example 15–4

Profit from Investment Level of Economic Activity Probability

$ 3 million Low 0.20

6 million Medium 0.50

12 million High 0.30
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First, we construct the decision tree, including all the known information. The
decision tree is shown in Figure 15–20. Now we need to use the prior probabilities
in Table 15–6 and the conditional probabilities in Table 15–7 in computing both
the posterior probabilities of the different payoffs from the investment given the
three possible consultants’ conclusions, and the predictive probabilities of the three
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TABLE 15–7 Reliability of the Consulting Firm

Consultants’ Conclusion

True Future State of Economy High Medium Low

Low 0.05 0.05 0.90

Medium 0.15 0.80 0.05

High 0.85 0.10 0.05

FIGURE 15–20 Decision Tree for Example 15–4
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S o l u t i o n
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consultants’ conclusions. This is done in Tables 15–8, 15–9, and 15–10. Note that the
probabilities of the outcomes of the alternative investment do not change with the
consultants’ conclusions (the consultants’ conclusions pertain only to the central
Florida investment prospects, not to the alternative investment).

These tables represent a way of using Bayes’ theorem in an efficient manner. Each
table gives the three posterior probabilities and the predictive probability for a partic-
ular consultant’s statement. The structure of the tables is the same as that of Table 15–2,
for example. Let us define our events in shortened form: H indicates that the level of
economic activity will be high; L and M are defined similarly. We let H be the event
that the consultants will predict a high level of economic activity. We similarly define
L and M. Using this notation, the following is a breakdown of Table 15–8.

The prior probabilities are just the probabilities of events H, L, and M, as given in
Table 15–6. Next we consider the event that the consultants predict a low economy:
event L. The next column in Table 15–8 consists of the conditional probabilities P(L | L),
P (L | M), and P (L | H). These probabilities come from the last column of Table 15–7.
The joint probabilities column in Table 15–8 consists of the products of the entries in
the first two probabilities columns. The sum of the entries in this column is the denom-
inator in Bayes’ theorem: It is the total (or predictive) probability of the event L. Finally,
dividing each entry in the joint probabilities column by the sum of that column [i.e., by
P (L)] gives us the posterior probabilities: P (L | L), P (M | L), and P (H | L). Tables 15–9
and 15–10 are interpreted in the same way, for events M and H, respectively.

Now that we have all the required probabilities, we can enter them in the tree.
We can then average out at the chance nodes and fold back the tree. At each decision
node, we choose the action that maximizes the expected payoff. The tree, with all
its probabilities, final-outcome payoffs, expected payoffs at the chance nodes, and
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TABLE 15–8 Events and Their Probabilities: Consultants Say “Low”

Event Prior Conditional Joint Posterior

Low 0.20 0.90 0.180 0.818

Medium 0.50 0.05 0.025 0.114

High 0.30 0.05 0.015 0.068

P(Consultants say “low”) � 0.220 1.000

TABLE 15–9 Events and Their Probabilities: Consultants Say “Medium”

Event Prior Conditional Joint Posterior

Low 0.20 0.05 0.01 0.023

Medium 0.50 0.80 0.40 0.909

High 0.30 0.10 0.03 0.068

P(Consultants say medium) � 0.44 1.000

TABLE 15–10 Events and Their Probabilities: Consultants Say “High”

Event Prior Conditional Joint Posterior

Low 0.20 0.05 0.010 0.029

Medium 0.50 0.15 0.075 0.221

High 0.30 0.85 0.255 0.750

P(Consultants say high) � 0.340 1.000
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indicators of the optimal action at each decision node, is shown in Figure 15–21. The
figure is a complete solution to this problem.

The final solution is not to hire the consultants and to invest in the central Florida
project. If we have to consult, then we should choose the alternative investment if the
consultants predict a low level of economic activity for the region, and invest in the
central Florida project if they predict either a medium or a high level of economic
activity. The expected value of the investment project is $7.2 million.

A template solution to this problem is given in Section 15–10.
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FIGURE 15–21 Solution to Aetna Decision Problem
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15–30. Explain why Bayes’ theorem is necessary for handling additional informa-
tion in a decision problem.

15–31. Explain the meaning of the term predictive probability.

P R O B L E M S
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15–32. For Example 15–4, suppose that hiring the economic consultants costs only
$100,000 (in 10-years-after dollars). Redo the analysis. What is the optimal decision?
Explain.

15–33. For problem 15–23, suppose that before deciding whether to advertise on
television, the company can test the commercial. The test costs $300,000 and has the
following reliability. If sales volume would go up by $20 million, the test would indi-
cate this with probability 0.96. It would wrongly indicate that sales would be $10 mil-
lion more with probability 0.03, and wrongly indicate that sales would be $1 million
more with probability 0.01. If sales would increase by $10 million, the test would indi-
cate this with probability 0.90, and the other two (wrong) possibilities with probability
0.05 each. The test would indicate that sales would rise by $1 million with probability
0.80 if that was really to happen, and wrongly indicate the other two possibilities with
probability 0.1 each. Redo the decision problem.

15–34. One of the most powerful people in Hollywood is not an actor, director, or
producer. It is Richard Soames, an insurance director for the London-based Film
Finances Ltd. Soames is a leading provider of movie completion bond guarantees.
The guarantees are like insurance policies that pay the extra costs when films go over
budget or are not completed on time. Suppose that Soames is considering insuring
the production of a movie and feels there is a 0.65 chance that his company will make
$80,000 on the deal (i.e., the production will be on time and not exceed budget). He
believes there is a 0.35 chance that the movie will exceed budget and his company will
lose $120,000, which would have to be paid to complete production. Soames could pay
a movie industry expert $5,000 for an evaluation of the project’s success. He believes
that the expert’s conclusions are true 90% of the time. What should Soames do?

15–35. Many airlines flying overseas have recently considered changing the kinds
of goods they sell at their in-flight duty-free services. Swiss, for example, is consider-
ing selling watches instead of the usual liquor and cigarettes. A Swiss executive
believes that there is a 0.60 chance that passengers would prefer these goods to the
usual items and that revenues from in-flight sales would increase by $500,000 over a
period of several years. She believes there is a 0.40 chance that revenues would
decrease by $700,000, which would happen should people not buy the watches and
instead desire the usual items. Testing the new idea on actual flights would cost
$60,000, and the results would have a 0.85 probability of correctly detecting the state
of nature. What should Swiss do?

15–36. For problem 15–26, suppose that the designer can obtain some expert advice
for a cost of $30,000. If the fashion is going to be short, there is a 0.90 probability that
the expert will predict short, a 0.05 probability that the expert will predict medium,
and a 0.05 probability that the expert will predict long. If the fashion is going to be
medium, there is a 0.10 probability that the expert will predict short, a 0.75 probability
that the expert will predict medium, and a 0.15 probability that the expert will predict
long. If the fashion is going to be long, there is a 0.10 probability that the expert will
predict short, a 0.10 probability that the expert will predict medium, and a 0.80 prob-
ability that the expert will predict long. Construct the decision tree for this problem.
What is the optimal decision for the designer?

15–37. A cable television company is considering extending its services to a rural
community. The company’s managing director believes that there is a 0.50 chance
that profits from the service will be high and amount to $760,000 in the first year, and
a 0.50 chance that profits will be low and amount to $400,000 for the year. An alter-
native operation promises a sure profit of $500,000 for the period in question. The
company may test the potential of the rural market for a cost of $25,000. The test has
a 90% reliability of correctly detecting the state of nature. Construct the decision tree
and determine the optimal decision.

15–38. An investor is considering two brokerage firms. One is a discount broker
offering no investment advice, but charging only $50 for the amount the investor
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intends to invest. The other is a full-service broker who charges $200 for the amount
of the intended investment. If the investor chooses the discount broker, there is a
0.45 chance of a $500 profit (before charges) over the period of the investment, a 0.35
chance of making only $200, and 0.20 chance of losing $100. If the investor chooses
the full-service broker, then there is a 0.60 chance that the investment will earn $500,
a 0.35 chance that it will earn $200, and a 0.05 chance that it will lose $100. What is
the best investment advice in this case?

15–8 Utility
Often we have to make decisions where the rewards are not easily quantifiable. The
reputation of a company, for example, is not easily measured in terms of dollars and
cents. Such rewards as job satisfaction, pride, and a sense of well-being also fall into this
category. Although you may feel that a stroll on the beach is “priceless,” sometimes you
may order such things on a scale of values by gauging them against the amount of
money you would require for giving them up. When such scaling is possible, the value
system used is called a utility.

If a decision affecting a firm involves rewards or losses that either are nonmone-
tary or—more commonly—represent a mixture of dollars and other benefits such as
reputation, long-term market share, and customer satisfaction, then we need to con-
vert all the benefits to a single scale. The scale, often measured in dollars or other
units, is a utility scale. Once utilities are assessed, the analysis proceeds as before, with
the utility units acting as dollars and cents. If the utility function was correctly evalu-
ated, results of the decision analysis may be meaningful.

The concept of utility is derived not only from seemingly nonquantifiable rewards.
Utility is a part of the very way we deal with money. For most people, the value of
$1,000 is not constant. For example, suppose you were offered $1,000 to wash some-
one’s dirty dishes. Would you do it? Probably yes. Now suppose that you were given
$1 million and then asked if you would do the dishes for $1,000. Most people would
refuse because the value of an additional $1,000 seems insignificant once you have $1
million (or more), as compared with the value of $1,000 if you do not have $1 million.

The value you attach to money—the utility of money—is not a straight-line func-
tion, but a curve. Such a curve is shown in Figure 15–22. Looking at the figure, we see
that the utility (the value) of one additional dollar, as measured on the vertical axis,
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FIGURE 15–22 A Utility-of-Money Curve
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decreases as our wealth (measured on the horizontal axis) increases. The type of func-
tion shown in Figure 15–22 is well suited for modeling a situation where an additional
amount of money $x has different worth to us depending on our wealth, that is,
where the utility of each additional dollar decreases as we acquire more money. This
utility function is the utility curve of a risk-averse individual. Indeed, utility can be
used to model people’s attitudes toward risk. Let us see why and how.

Suppose that you are offered the following choice. You can get $5,000 for cer-
tain, or you could get a lottery ticket where you have a 0.5 chance of winning
$20,000 and a 0.5 chance of losing $2,000. Which would you choose? The expected
payoff from the lottery is E (payoff) � (0.5)(20,000) � (0.5)(–2,000) � $9,000. This is
almost twice the amount you could get with probability 1.0, the $5,000. Expected
monetary payoff would tell us to choose the lottery. However, few people would
really do so; most would choose the $5,000, a sure amount. This shows us that a pos-
sible loss of $2,000 is not worth the possible gain of $20,000, even if the expected
payoff is large. Such behavior is typical of a risk-averse individual. For such a per-
son, the reward of a possible gain of $1 is not worth the “pain” of a possible loss of
the same amount.

Risk aversion is modeled by a utility function (the value-of-money function) such
as the one shown in Figure 15–22. Again, let us look at such a function. Figure 15–23
shows how, for a risk-averse individual, the utility of $1 earned ($1 to the right of
zero) is less than the value of a dollar lost ($1 to the left of zero).

Not everyone is risk-averse, especially if we consider companies rather than indi-
viduals. The utility functions in Figures 15–22 and 15–23 are concave functions: They
are functions with a decreasing slope, and these are characteristic of a risk-averse
person. For a risk-seeking person, the utility is a convex function: a function with an
increasing slope. Such a function is shown in Figure 15–24. Look at the curve in the
figure, and convince yourself that an added dollar is worth more to the risk taker than
the pain of a lost dollar (use the same technique used in Figure 15–23).

For a risk-neutral person, a dollar is a dollar no matter what. Such an individual
gives the same value to $1 whether he or she has $10 million or nothing. For such a
person, the pain of the loss of a dollar is the same as the reward of gaining a dollar.
The utility function for a risk-neutral person is a straight line. Such a utility function
is shown in Figure 15–25. Again, convince yourself that the utility of �$1 is equal
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FIGURE 15–23 Utility of a Risk Avoider
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(in absolute value) to the utility of �$1 for such a person. Figure 15–26 shows a mixed
utility function. The individual is a risk avoider when his or her wealth is small and
a risk taker when his or her wealth is great. We now present a method that may be
used for assessing an individual’s utility function.

A Method of Assessing Utility
One way of assessing the utility curve of an individual is to do the following:

1. Identify the maximum payoff in a decision problem, and assign it the utility 1:
U (maximum value) � 1.

2. Identify the minimum payoff in a decision problem, and assign it the value 0:
U (minimum value) � 0.

3. Conduct the following game to determine the utility of any intermediate value
in the decision problem (in this chosen scale of numbers). Ask the person
whose utility you are trying to assess to determine the probability p such that
he or she expresses indifference between the two choices: receive the payoff R
with certainty or have probability p of receiving the maximum value and
probability 1 � p of receiving the minimum value. The determined p is the
utility of the value R. This is done for all values R whose utility we want to
assess.

The assessment of a utility function is demonstrated in Figure 15–27. The utility curve
passes through all the points (Ri, pi ) (i � 1, 2 . . .) for which the utility was assessed.
Let us look at an example.
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FIGURE 15–27
Assessment of a Utility
Function
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Suppose that an investor is considering decisions that lead to the following possible
payoffs: $1,500, $4,300, $22,000, $31,000, and $56,000 (the investments have differ-
ent levels of risk). We now try to assess the investor’s utility function.

Starting with step 1, we identify the minimum payoff as $1,500. This value is assigned
the utility of 0. The maximum payoff is $56,000, and we assign the utility 1 to that
figure. We now ask the investor a series of questions that should lead us to the deter-
mination of the utilities of the intermediate payoff values. Let us suppose the investor
states that he is indifferent between receiving $4,300 for certain and receiving
$56,000 with probability 0.2 and $1,500 with probability 0.8. This means that the
utility of the payoff $4,300 is 0.2. We now continue to the next payoff, of $22,000.
Suppose that the investor is indifferent between receiving $22,000 with certainty and
$56,000 with probability 0.7 and $1,500 with probability 0.3. The investor’s utility of
$22,000 is therefore 0.7. Finally, the investor indicates indifference between a certain
payoff of $31,000 and receiving $56,000 with probability 0.8 and $1,500 with prob-
ability 0.2. The utility of $31,000 is thus equal to 0.8. We now plot the corresponding
pairs (payoff, utility) and run a rough curve through them.

The curve—the utility function of the investor—is shown in Figure 15–28. Whatever
the decision problem facing the investor, the utilities rather than the actual payoffs are
the values to be used in the analysis. The analysis is based on maximizing the investor’s
expected utility rather than the expected monetary outcome.

E X A M P L E  1 5 – 5

S o l u t i o n

Note that utility is not unique. Many possible scales of values may be used to rep-
resent a person’s attitude toward risk, as long as the general shape of the curve, for a
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given individual, remains the same—convex, concave, or linear—and with the same
relative curvature. In practice, the assessment of utilities may not always be a feasible
procedure, as it requires the decision maker to play the hypothetical game of assess-
ing the indifference probabilities.
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P R O B L E M S

15–39. What is a utility function?
15–40. What are the advantages of using a utility function?
15–41. What are the characteristics of the utility function of a risk-averse individual?
Of a risk taker?
15–42. What can you say about the risk attitude of the investor in Example 15–5?
15–43. Choose a few hypothetical monetary payoffs, and determine your own utility
function. From the resulting curve, draw a conclusion about your attitude toward risk.

15–9 The Value of Information
In decision-making problems, the question often arises as to the value of information:
How much should we be willing to pay for additional information about the situation
at hand? The first step in answering this question is to find out how much we should
be willing to pay for perfect information, that is, how much we should pay for a crys-
tal ball that would tell us exactly what will happen—what the exact state of nature
will be. If we can determine the value of perfect information, this will give us an
upper bound on the value of any (imperfect) information. If we are willing to pay D
dollars to know exactly what will happen, then we should be willing to pay an
amount no greater than D for information that is less reliable. Since sample infor-
mation is imperfect (in fact, it is probabilistic, as we well know from our discussion of
sampling), the value of sample information is less than the value of perfect infor-
mation. It will equal the value of perfect information only if the entire population is
sampled.

Let us see how the upper bound on the value of information is obtained. Since we
do not know what the perfect information is, we can only compute the expected value
of perfect information in a given decision-making situation. The expected value is a
mean computed using the prior probabilities of the various states of nature. It
assumes, however, that at any given point when we actually take an action, we know
its exact outcome. Before we (hypothetically) buy the perfect information, we do not
know what the state of nature will be, and therefore we must average payoffs using
our prior probabilities.

The expected value of perfect information (EVPI) is

EVPI � The expected monetary value of the decision situation when
perfect information is available, minus the expected value of the
decision situation when no additional information is available

This definition of the expected value of perfect information is logical: It says that the
(expected) maximum amount we should be willing to pay for perfect information is
equal to the difference between our expected payoff from the decision situation when
we have the information and our expected payoff from the decision situation without
the information. The expected value of information is equal to what we stand to gain
from this information. We will demonstrate the computation of the expected value of
perfect information with an example.
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An article in the Journal of Marketing Research gives an example of decision making in
the airline industry. The situation involves a price war that ensues when one airline
determines the fare it will set for a particular route. Profits depend on the fare that
will be set by a competing airline for the same route. Competitive situations such as
this one are modeled using game theory. In this example, however, we will look at
the competitor’s action as a chance occurrence and consider the problem within the
realm of decision analysis.

Table 15–11 shows the payoffs (in millions of dollars) to the airline over a given
period of time, for a given fare set by the airline and by its competitor. We assume
that there is a certain probability that the competitor will choose the low ($200) price
and a certain probability that the competitor will choose the high price. Suppose that
the probability of the low price is 0.6 and that the probability of the high price is 0.4.

The decision tree for this situation is given in Figure 15–29. Solving the tree, we find
that if we set our price at $200, the expected payoff is equal to E (payoff) � (0.6)(8) �
(0.4)(9) � $8.4 million. If we set our price at $300, then our expected payoff is
E(payoff) � (0.6)(4) � (0.4)(10) � $6.4 million. The optimal action is, therefore, to set
our price at $200. This is shown with an arrow in Figure 15–29.

Now we ask whether it may be worthwhile to obtain more information. Obtaining
new information in this case may entail hiring a consultant who is knowledgeable
about the operating philosophy of the competing airline. We may seek other ways of
obtaining information; we may, for example, make an analysis of the competitor’s
past pricing behavior. The important question is: What do we stand to gain from the
new information? Suppose that we know exactly what our competitor plans to do. If
we know that the competitor plans to set the price at $200, then our optimal action
is to set ours at $200 as well; this is seen by comparing the two amounts in the first
payoff column of Table 15–11, the column corresponding to the competitor’s setting

E X A M P L E  1 5 – 6

S o l u t i o n

TABLE 15–11 Airline Payoffs (in millions of dollars)

Competitor’s Fare (State of Nature)

Airline’s Fare (Action) $200 $300

$200 8 9

$300 4 10

FIGURE 15–29 Decision Tree for Example 15–6

Payoff

$8 million

$9 million

$4 million

$10 million

Competitor's fare

Airline fare
$200

$200

$300

$300

$200

$300

0.6

0.4

0.6

0.4
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the price at $200. We see that our maximum payoff is then $8 million, obtained by
choosing $200 as our own price as well. If the competitor chooses to set its price at
$300, then our optimal action is to set our price at $300 as well and obtain a payoff of
$10 million.

We know that without any additional information, the optimal decision is to set
the price at $200, obtaining an expected payoff of $8.4 million (the expected value of
the decision situation without any information). What is the expected payoff with
perfect information? We do not know what the perfect information may be, but we
assume that the prior probabilities we have are a true reflection of the long-run pro-
portion of the time our competitor sets either price. Therefore, 60% of the time our
competitor sets the low price, and 40% of the time the competitor sets the high price.
If we had perfect information, we would know—at the time—how high to set the
price. If we knew that the competitor planned to set the price at $200, we would do
the same because this would give us the maximum payoff, $8 million. Conversely,
when our perfect information tells us that the competitor is setting the price at $300, we
again follow suit and gain a maximum payoff, $10 million. Analyzing the situation now,
we do not know what the competitor will do (we do not have the perfect information),
but we do know the probabilities. We therefore average the maximum payoff in each
case, that is, the payoff that would be obtained under perfect information, using our
probabilities. This gives us the expected payoff under perfect information. We get
E(payoff under perfect information) � (Maximum payoff if the competitor chooses
$200) � (Probability that the competitor will choose $200) � (Maximum payoff if the
competitor chooses $300) � (Probability that the competitor will choose $300) �
(8)(0.6) � (10)(0.4) � $8.8 million. If we could get perfect information, we could expect
(on the average) to make a profit of $8.8 million. Without perfect information, we
expect to make $8.4 million (the optimal decision without any additional information).

We now use the definition of the expected value of perfect information:

730 Chapter 15

EVPI � E (payoff under perfect information) � E (payoff without information)

Applying the rule in this case, we get EVPI � 8.8 � 8.4 � $0.4 million, or simply
$400,000. Therefore, $400,000 is the maximum amount of money we should be will-
ing to pay for additional information about our competitor’s price intentions. This is
the amount of money we should be willing to pay to know for certain what our com-
petitor plans to do. We should pay less than this amount for all information that is not
as reliable.

What about sampling—when sampling is possible? (In the airlines example, it
probably is not possible to sample.) The expected value of sample information is
equal to the expected value of perfect information, minus the expected cost of sam-
pling errors. The expected cost of sampling errors is obtained from the probabilities
of errors—known from sampling theory—and the resulting loss of payoff due to mak-
ing less-than-optimal decisions. The expected net gain from sampling is equal to the
expected value of sampling information, minus the cost of sampling. As the sample
size increases, the expected net gain from sampling first increases, as our new infor-
mation is valuable and improves our decision-making ability. Then the expected net
gain decreases because we are paying for the information at a constant rate, while the
information content in each additional data point becomes less and less important as
we get more and more data. (A sample of 1,100 does not contain much more infor-
mation than a sample of 1,000. However, the same 100 data points may be very valu-
able if they are all we have.)

At some particular sample size n, we maximize our expected net gain from sam-
pling. Determining the optimal sample size to be used in a decision situation is a
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difficult problem, and we will not say more about it here. We will, however, show the
relationship between sample size and the expected net gain from sampling in
Figure 15–30. The interested reader is referred to advanced works on the subject.10
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FIGURE 15–30 Expected Net Gain from Sampling (in Dollars) as a Function of the Sample Size
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15–44. Explain the value of additional information within the context of decision
making.
15–45. Explain how we compute the expected value of perfect information, and
why it is computed that way.
15–46. Compute the expected value of perfect information for the situation in
problem 15–26.
15–47. For the situation in problem 15–26, suppose the designer is offered expert
opinion about the new fall styles for a price of $300,000. Should she buy the advice?
Explain why or why not.
15–48. What is the expected value of perfect information in the situation of prob-
lem 15–23? Explain.

15–10 Using the Computer
Most statistical computer packages do not have extensive Bayesian statistics or deci-
sion analysis capabilities. There are, however, several commercial computer pro-
grams that do decision analysis. Also, you may be able to write your own computer
program for solving a decision tree.

The Template
The decision analysis template can be used only if the problem is representable by a
payoff table.11 In the Aetna decision example, it is possible to represent the problem

P R O B L E M S

10From C. Barenghi, A. Aczel, and R. Best, “Determining the Optimal Sample Size for Decision Making,” Journal of
Statistical Computation and Simulation, Spring 1986, pp. 135–45. © 1986 Taylor & Francis Ltd. Reprinted with permission.

11Theoretically speaking, all the problems can be represented in a payoff table format. But the payoff table can get too
large and cumbersome for cases where the set of consequences is different for different decision alternatives.



Aczel−Sounderpandian: 
Complete Business 
Statistics, Seventh Edition

15. Bayesian Statistics and 
Decision Analysis

Text734 © The McGraw−Hill 
Companies, 2009

by Table 15–12. Note that the returns from the alternative investment have been
reduced to a constant expected value of $5.5 million to fit the payoff table format. If this
manipulation of the payoff were not possible, then we could not use the template.

The template consists of three sheets, Data, Results, and Calculation. The Data
sheet is shown in Figure 15–31. On this sheet the payoffs are entered at the top and
conditional probabilities of additional information (such as a consultant’s informa-
tion) at the bottom. The probabilities of all the states entered in row 16 must add
up to 1, or an error message will appear in row 17. Similarly, every column of the con-
ditional probabilities in the bottom must add up to 1.

Once the data are entered properly, we can read off the results on the Results page
shown in Figure 15–32. The optimal decision for each possible information from the
consultant appears in row 7. The corresponding expected payoff (EV) appears in row
8. The marginal probability of obtaining each possible information appears in row 9.
The maximum expected payoff achieved by correctly following the optimal decision
under each information is $7.54 million, which appears in cell H12. It has been labeled
as “EV with SI,” where SI stands for sample information. The sample information in
this example is the consultant’s prediction of the state of the economy.

In cell E11, we get the expected value of perfect information (EVPI), and in cell
E12, we get the expected value of sample information (EVSI). This EVSI is the
expected value of the consultant’s information. Recall that the consultant’s fee is
$1 million. Since EVSI is only $0.34 million, going by expected values, Aetna should
not hire the consultant. Note also that the best decision without any information is d1
(seen in cell C7), which stands for real estate investment. Thus Aetna should simply
invest in real estate without hiring the consultant. It can then expect a payoff of

732 Chapter 15

FIGURE 15–31 The Data Sheet for Decision Analysis
[Decision Analysis.xls; Sheet: Data]

Data Aetna Decision

Payoff Table Low Medium High
s1 s2 s3 s4 s5 s6 s7 s8 s9 s10

Invest 3 6 12
Alternative 5.5 5.5 5.5

d1
d2
d3
d4
d5
d6
d7
d8
d9
d10

Probability 0.2 0.5 0.3

Conditional Probabilities of Additional Information

s1 s2 s3 s4 s5 s6 s7 s8 s9 s10
Low P(I1| . ) 0.9

Low Medium High 0 0 0 0 0 0 0

0.05 0.05
Med P(I2| . ) 0.05 0.8 0.1
High P(I3| . ) 0.05 0.15 0.85

P(I4| . )
P(I5| . )

A B C D E F G H I J K L M

15

1
2
3
4
5
6
7
8
9

10
11
12
13

16
17
18
19
20
21
22
23
24
25

14

TABLE 15–12 The Payoff Table for the Aetna Decision Problem (Example 15–4)

State of the Economy

Low Medium High

Real estate investment $ 3 million $ 6 million $ 12 million

Alternative investment 5.5 million 5.5 million 5.5 million
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$7.2 million (seen in cell C8). All these results agree with what we already saw using
manual calculations.

The efficiency of the sample information is defined as (EVSI/EVPI) � 100%,
and it appears in cell E13.

The third sheet, Calculation, is where all the calculations are carried out. The
user need not look at this sheet at all, and it is not shown here.

15–11 Summary and Review of Terms
In this chapter, we presented two related topics: Bayesian statistics and decision
analysis. We saw that the Bayesian statistical methods are extensions of Bayes’ theo-
rem to discrete and continuous random variables. We saw how the Bayesian
approach allows the statistician to use, along with the data, prior information about
the situation at hand. The prior information is stated in terms of a prior probability
distribution of population parameters. We saw that the Bayesian approach is less
restrictive in that it allows us to consider an unknown parameter as a random vari-
able. In this context, as more sampling information about a parameter becomes
available to us, we can update our prior probability distribution of the parameter,
thus creating a posterior probability distribution. The posterior distribution may
then serve as a prior distribution when more data become available. We also may
use the posterior distribution in computing a credible set for a population parame-
ter, in the discrete case, and a highest-posterior-density (HPD) set in the continu-
ous case. We discussed the possible dangers in using the Bayesian approach and the
fact that we must be careful in our choice of prior distributions.

We saw how decision analysis may be used to find the decision that maximizes our
expected payoff from an uncertain situation. We discussed personal or subjective
probabilities and saw how these can be assessed and used in a Bayesian statistics
problem or in a decision problem. We saw that a decision tree is a good method of
solving problems of decision making under uncertainty. We learned how to use the
method of averaging out and folding back, which leads to the determination of
the optimal decision—the decision that maximizes the expected monetary payoff.
We saw how to assess the usefulness of obtaining additional information within the
context of the decision problem, using a decision tree and Bayes’ theorem. Finally,
we saw how to incorporate people’s attitudes toward risk into our analysis and how
these attitudes lead to a utility function. We saw that this leads to solutions to
decision problems that maximize the expected utility rather than the expected
monetary payoff. We also discussed the expected value of perfect information
and saw how this value serves as an upper bound for the amount of money we are
willing to pay for additional information about a decision-making situation.
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FIGURE 15–32 The Results
[Decision Analysis.xls; Sheet: Results]
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A B C D E F G H I
Results Aetna Decision

Decision with probabilities and additional information

Best Decision Under
No Info. Low Med High

d* d1 d2 d1 d1
EV 7.2 5.5 6.340909 10.41176

Prob. 0.22 0.44 0.34

EVPI 0.5
EVSI 0.34

Efficiency of SI 68.00%
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A D D I T I O N A L  P R O B L E M S

15–49. A quality control engineer believes that the proportion of defective items in
a production process is a random variable with a probability distribution that is
approximated as follows:

x P(x)

0.1 0.1
0.2 0.3
0.3 0.2
0.4 0.2
0.5 0.1
0.6 0.1

The engineer collects a random sample of items and finds that 5 out of the 16 items in
the sample are defective. Find the engineer’s posterior probability distribution of the
proportion of defective items.
15–50. To continue problem 15–49, determine a credible set for the proportion of
defective items with probability close to 0.95. Interpret the meaning of the credible set.
15–51. For problem 15–49, suppose that the engineer collects a second sample of 20
items and finds that 5 items are defective. Update the probability distribution of the pop-
ulation proportion you computed in problem 15–49 to incorporate the new information.
15–52. What are the main differences between the Bayesian approach to statistics
and the classical (frequentist) approach? Discuss these differences.
15–53. What is the added advantage of the normal probability distribution in the
context of Bayesian statistics?
15–54. GM is designing a new car, the Chevrolet Volt, which is expected to get 100
mpg on the highway.12 In trying to estimate how much people would be willing to
pay for the new car, the company assesses a normal distribution for the average max-
imum price with mean $29,000 and standard deviation $6,000. A random sample of
30 potential buyers yields an average maximum price of $26,500 and standard devi-
ation $3,800. Give a 95% highest-posterior-density credible set for the average maxi-
mum price a consumer would pay.
15–55. For problem 15–54, give a highest-posterior-density credible set of probabil-
ity 0.80 for the population mean.
15–56. For problem 15–54, a second sample of 60 people gives a sample mean of
$27,050. Update the distribution of the population mean, and give a new HPD cred-
ible set of probability 0.95 for �.
15–57. What is a payoff table? What is a decision tree? Can a payoff table be used
in decision making without a decision tree?
15–58. What is a subjective probability, and what are its limitations?
15–59. Discuss the advantages and the limitations of the assessment of personal
probabilities.
15–60. Why is Bayesian statistics controversial? Try to argue for, and then against,
the Bayesian methodology.
15–61. Suppose that I am indifferent about the following two choices: a sure $3,000
payoff, and a payoff of $5,000 with probability 0.2 and $500 with probability 0.8. Am
I a risk taker or a risk-averse individual (within the range $500 to $5,000)? Explain.
15–62. An investment is believed to earn $2,000 with probability 0.2, $2,500 with
probability 0.3, and $3,000 with probability 0.5. An alternative investment may earn
$0 with probability 0.1, $3,000 with probability 0.2, $4,000 with probability 0.5, and
$7,000 with probability 0.2. Construct a decision tree for this problem, and determine

12Matt Vella, “In Cars,” BusinessWeek, March 12, 2007, p. 6.
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the investment with the highest expected monetary outcome. What are the limita-
tions of the analysis?
15–63. A company is considering merging with a smaller firm in a related indus-
try. The company’s chief executive officer believes that the merger has a 0.55 prob-
ability of success. If the merger is successful, the company stands to gain in the next
2 years $5 million with probability 0.2; $6 million with probability 0.3; $7 million
with probability 0.3; and $8 million with probability 0.2. If the attempted merger
should fail, the company stands to lose $2 million (due to loss of public goodwill)
over the next 2 years with probability 0.5 and to lose $3 million over this period with
probability 0.5. Should the merger be attempted? Explain.
15–64. For problem 15–63, suppose that the chief executive officer may hire a con-
sulting firm for a fee of $725,000. The consulting firm will advise the CEO about the
possibility of success of the merger. This consulting firm is known to have correctly
predicted the outcomes of 89% of all successful mergers and the outcomes of 97% of
all unsuccessful ones. What is the optimal decision?
15–65. What is the expected value of perfect information about the success or
failure of the merger in problem 15–63?
15–66. Money suggests an interesting decision problem for family investments.13

Start with $50,000 to invest over 20 years. There are two possibilities: a low-cost
index fund and a fixed-interest investment paying 6.5% per year. The index fund has
two possibilities: If equities rise by 6% a year, the $50,000 invested would be worth
$160,356. If, on the other hand, equities rise at an average of 10% a year, the $50,000
investment would be worth $336,375. The fixed-interest investment would be worth
$176,182. Suppose the probability of equities rising 6% per year is 60% and the prob-
ability that they rise 10% per year is 40%. Conduct the decision analysis.
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13Pat Regnier, “The Road Ahead,” Money, March 2007, pp. 69–74.

Pizzas ‘R’ Us is a national restaurant chain with
close to 100 restaurants across the United States.
It is continuously in the process of finding and

evaluating possible locations for new restaurants. For
any potential site, Pizzas ‘R’ Us needs to decide the size
of the restaurant to build at that site—small, medium, or
large—or whether to build none. For a particular
prospective site, the accounting department estimates
the present value (PV) of possible annual profit, in
thousands of dollars, for each size as follows:

Demand

Size Low Medium High

Small 48 32 30
Medium �64 212 78
Large �100 12 350
No restaurant 0 0 0

The prior probabilities are estimated for low demand
at 0.42 and for medium demand at 0.36.

1. What is the best decision if the PV of expected
profits is to be maximized?

2. What is the EVPI?

Since the EVPI is large, Pizzas ‘R’ Us decides to
gather additional information. It has two potential mar-
ket researchers, Alice Miller and Becky Anderson, both
of whom it has contracted many times in the past. The
company has a database of the demand levels predicted
by these researchers in the past and the corresponding
actual demand levels realized. The cross-tabulation of
these records are as follows:
Alice Miller Becky Anderson

Actual Actual

Pre- Pre-
dicted Low Medium High dicted Low Medium High

Low 9 4 2 Low 12 2 1
Medium 8 12 4 Medium 2 15 2
High 4 3 13 High 0 3 20

3. Alice Miller charges $12,500 for the research and
Becky Anderson $48,000. With which one should
the company contract for additional information?
Why?

CASE19 Pizzas ‘R’ Us
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Apharmaceutical company is planning to develop
a new drug. The development will take place in
two phases. Phase I will cost $1 million and

Phase II will cost $2 million. Any new drug has to be
approved by the FDA (U.S. Federal Drug Administra-
tion) before it can be marketed. If the drug is approved
by the FDA, then a profit contribution of $6,250,000
can be realized by marketing the drug. The only fixed
costs to be subtracted from this contribution is the
$3 million development cost. In other words, if the drug
is approved, the profit would be $3,250,000. If the drug
is not approved, then all the development cost has to be
written off as a loss.

The managers estimate a 70% chance that the FDA
will approve the drug. This still leaves a 30% chance of
a $3 million loss. Because of the risk involved, one of the
managers proposes a plan to conduct a test at the end
of Phase I to determine the chances of FDA approval.
The test itself will cost $165,000. If the test result is
positive, the company will continue with Phase II;
otherwise, the project will be aborted. The motivation

for the test is that in case the chances of FDA approval
are slim, at least Phase II costs can be saved by abort-
ing the project.

The manager has drawn the decision tree seen in
Exhibit 1 to show possible outcomes. The tree shows
the expenses and income along the relevant branches.
However, the manager has not been able to arrive at
the probabilities for the branches from chance nodes.

The researcher who conducts the test says that the
test is not 100% accurate in predicting whether the
FDA will approve the drug. He estimates the following
probabilities:

P (Test positive | FDA will approve) � 0.90
P (Test negative | FDA will not approve) � 0.80

1. Given the above probabilities, compute the
required probabilities for the decision tree. [Hint:
You need to compute P (FDA will approve | Test

CASE 20 New Drug Development

EXHIBIT 1 The Decision Tree

$6,250,000

$5,750,000

FDA approves?

FDA approves?

Test result

Test?

Do Phase I?

$0

($2,000,000)

($1,000,000)

$0

($165,000)

($2,000,000)

$0

$0

Yes

No

No

Phase II

Phase II

Negative

Positive

Abort

Yes

No

Yes

No

Yes

New Drug
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positive) and P (FDA will not approve | Test
positive) for the case where the test is conducted.
For the case where the test is not conducted, use
the given nonconditional P (FDA will approve)
and P (FDA will not approve).]

2. Assuming that the company wants to maximize
the expected monetary value, what is the best
decision strategy?

3. The company assumed that if the test result is
negative, the best decision is to abort the project.
Prove that it is the best decision.

4. At what cost of the test will the company be
indifferent between conducting and not
conducting the test?

5. Is your answer to question 4 the same as the
EVSI of the test information?

Bayesian Statistics and Decision Analysis 737
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After studying this chapter, you should be able to:

• Apply nonprobability sampling methods.
• Decide when to use a stratified sampling method.
• Compute estimates from stratified sample results.
• Decide when to use a cluster sampling method.
• Compute estimates from cluster sampling results.
• Decide when to use a systematic sampling method.
• Compute estimates from systematic sampling results.
• Avoid nonresponse biases in estimates.

SAMPLING METHODS

1
1
1
1
1
1
1

LEARNING OBJECTIVES

1 1 1 1 116
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Throughout this book, we have always assumed
that information is obtained through random
sampling. The method we have used until now
is called simple random sampling. In simple

random sampling, we assume that our sample is randomly chosen from the entire
population of interest, and that every set of n elements in the population has an equal
chance of being selected as our sample.

We assume that a randomization device is always available to the experimenter.
We also assume that the entire population of interest is known, in the sense that a ran-
dom sample can be drawn from the entire population where every element has an
equal chance of being included in our sample. Randomly choosing our sample from
the entire population in question is our insurance against sampling bias. This was
demonstrated in Chapter 5 with the story of the Literary Digest.

But do these conditions always hold in real sampling situations? Also, are there any
easier ways—more efficient, more economical ways—of drawing random samples? Are
there any situations where, instead of randomly drawing every single sample point, we
may randomize less frequently and still obtain an adequately random sample for use
in statistical inference? Consider the situation where our population is made up of sev-
eral groups and the elements within each group are similar to one another, but different
from the elements in other groups (e.g., sampling an economic variable in a city where
some people live in rich neighborhoods and thus form one group, while others live in
poorer neighborhoods, forming other groups). Is there a way of using the homogeneity
within the groups to make our sampling more efficient? The answers to these questions,
as well as many other questions related to sampling methodology, are the subject of this
chapter.

In the next section, we will thoroughly explore the idea of random sampling
and discuss its practical limitations. We will see that biases may occur if samples
are chosen without randomization. We will also discuss criteria for the prevention
of such selection biases. In the following sections, we will present more efficient and
involved methods of drawing random samples that are appropriate in different
situations.

16–2 Nonprobability Sampling and Bias
The advantage of random sampling is that the probabilities that the sample estimator
will be within a given number of units from the population parameter it estimates
are known. Sampling methods that do not use samples with known probabilities of
selection are known as nonprobability sampling methods. In such sampling methods,
we have no objective way of evaluating how far away from the population parameter
our estimate may be. In addition, when we do not select our sample randomly out
of the entire population of interest, our sampling results may be biased. That is, the
average value of the estimate in repeated sampling is not equal to the parameter of
interest. Put simply, our sample may not be a true representative of the population
of interest.

1 1 1 1 1

1
1
1
1
1

16–1 Using Statistics

A market research firm wants to estimate the proportion of consumers who might be
interested in purchasing the Spanish sherry Jerez if this product were available at
liquor stores in this country. How should information for this study be obtained?

E X A M P L E  1 6 – 1
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We should randomize the selection of people or elements in our sample. However,
if our sample is not chosen in a purely random way, it may still suffice for our purposes
as long as it behaves as a purely random sample and no biases are introduced. In
designing the study, we should collect a few random samples at different locations,
chosen at different times and handled by different field workers, to minimize the
chances of a bias. The results of different samples validate the assumption that we are
indeed getting a representative sample.

16–3 Stratified Random Sampling
In some cases, a population may be viewed as comprising different groups where
elements in each group are similar to one another in some way. In such cases, we
may gain sampling precision (i.e., reduce the variance of our estimators) as well as
reduce the costs of the survey by treating the different groups separately. If we con-
sider these groups, or strata, as separate subpopulations and draw a separate random
sample from each stratum and combine the results, our sampling method is called
stratified random sampling.

In stratified random sampling, we assume that the population of N units
may be divided into m groups with Ni units in group i, i � 1, . . . , m. The

16-2 Chapter 16

The population relevant to our case is not a clear-cut one. Before embarking on our
study, we need to define our population more precisely. Do we mean all consumers in
the United States? Do we mean all families of consumers? Do we mean only people of
drinking age? Perhaps we should consider our population to be only those people
who, at least occasionally, consume similar drinks. These are important questions to
answer before we begin the sampling survey. The population must be defined in
accordance with the purpose of the study. In the case of a proposed new product such
as Jerez, we are interested in the product’s potential market share. We are interested in
estimating the proportion of the market for alcoholic beverages that will go to Jerez
once it is introduced. Therefore, we define our population as all people who, at least
occasionally, consume alcoholic beverages.

Now we need to know how to obtain a random sample from this population. To
obtain a random sample out of the whole population of people who drink alcoholic
beverages at least occasionally, we must have a frame. That is, we need a list of
all such people, from which we can randomly choose as many people as we need for
our sample. In reality, of course, no such list is available. Therefore, we must obtain
our sample in some other way. Market researchers send field workers to places where
consumers may be found, usually shopping malls. There shoppers are randomly
selected and prescreened to ascertain that they are in the population of interest—in
this case, that they are people who at least occasionally consume alcoholic beverages.
Then the selected people are given a taste test of the new product and asked to fill out
a questionnaire about their response to the product and their future purchase intent.
This method of obtaining a random sample works as long as the interviewers do not
choose people in a nonrandom fashion, for example, choosing certain types of peo-
ple because of their appearance. If this should happen, a bias may be introduced if
the variable favoring selection is somehow related to interest in the product.

Another point we must consider is the requirement that people selected at the
shopping mall constitute a representative sample from the entire population in which
we are interested. We must consider the possibility that potential buyers of Jerez may
not be found in shopping malls, and if their proportion outside the malls is different
from what it is in the malls where surveys take place, a bias will be introduced. We
must consider the location of shopping malls and must ascertain that we are not
favoring some segments of the population over others. Preferably, several shopping
malls, located in different areas, should be chosen.

S o l u t i o n
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m strata are nonoverlapping and together they make up the total popula-
tion: N1 � N2 � � � � � Nm � N.

We define the true weight of stratum i as Wi � Ni �N. That is, the weight of stratum
i is equal to the proportion of the size of stratum i in the whole population. Our total
sample, of size n, is divided into subsamples from each of the strata. We sample ni
items in stratum i, and n1 � n2 � � � � � nm � n. We define the sampling fraction in
stratum i as fi � ni�Ni.

The true mean of the entire population is �, and the true mean in stratum i is �i.
The variance of stratum i is �i

2, and the variance of the entire population is �2. The
sample mean in stratum i is i , and the combined estimator, the sample mean in strat-
ified random sampling, st is defined as follows:X

X

Sampling Methods 16-3

The estimator of the population mean in stratified random sampling is

(16–1)Xst = a
m

i=1
WiXi

In simple random sampling with no stratification, the stratified estimator in
equation 16–1 is, in general, not equal to the simple estimator of the population mean.
The reason is that the estimator in equation 16–1 uses the true weights of the strata
Wi. The simple random sampling estimator of the population mean is �
(�all data X )�n � (� ni i )�n. This is equal to st only if we have ni�n � Ni�N for each
stratum, that is, if the proportion of the sample taken from each stratum is equal to
the proportion of each stratum in the entire population. Such a stratification is called
stratification with proportional allocation.

Following are some important properties of the stratified estimator of the popu-
lation mean:

1. If the estimator of the mean in each stratum i is unbiased, then the stratified
estimator of the mean st is an unbiased estimator of the population mean �.

2. If the samples in the different strata are drawn independently of one another, then
the variance of the stratified estimator of the population mean st is given byX

X
X

XXm
i=1

X

V ( st ) V ( i ) (16–2)X= a
m

i=1
W 2

iX

V ( st ) (16–3)= a
m

i=1
W 2

i a�2
i

ni
b (1 - fi )X

V ( st ) (16–4)= a
m

i=1
W 2

i
�2

i

ni
X

where V ( i ) is the variance of the sample mean in stratum i.
3. If sampling in all strata is random, then the variance of the estimator, given in

equation 16–2, is further equal to

X

When the sampling fractions fi are small and may be ignored, we get
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4. If the sample allocation is proportional [ni � n(Ni �N ) for all i ], then

16-4 Chapter 16

V ( st ) (16–5)=
1 - f

n a
m

i=1
Wi �

2
iX

V ( st ) (16–6)=
�2

n
X

(16–7)S 2
i = a

data in stratum i

(X - Xi )2

ni - 1

(16–8)S 2(X st ) = a
m

i=1
aW 2

i S 2
i

ni
b (1 - fi )

which reduces to (1�n) � Wi�
2
i when the sampling fraction is small. Note

that f is the sampling fraction, that is, the size of the sample divided by the
population size.

In addition, if the population variances in all the strata are equal, then

m
i=1

when the sampling fraction is small.

Practical Applications
In practice, the true population variances in the different strata are usually not
known. When the variances are not known, we estimate them from our data. An
unbiased estimator of �2

i , the population variance in stratum i, is given by

The estimator in equation 16–7 is the usual unbiased sample estimator of the popula-
tion variance in each stratum as a separate population. A particular estimate of the
variance in stratum i will be denoted by si

2. If sampling in each stratum is random,
then an unbiased estimator of the variance of the sample estimator of the population
mean is

Any of the preceding formulas apply in the special situations where they can be used
with the estimated variances substituted for the population variances.

Confidence Intervals
We now give a confidence interval for the population mean � obtained from strati-
fied random sampling.
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When the sample sizes in some of the strata are small and the population variances
are unknown, but the populations are at least approximately normal, we use the
t distribution instead of Z. We denote the degrees of freedom of the t distribution
by df. The exact value of df is difficult to determine, but it lies somewhere between
the smallest ni � 1 (the degrees of freedom associated with the sample from stratum i )
and the sum of the degrees of freedom associated with the samples from all strata
� (ni � 1). An approximation for the effective number of degrees of freedom is
given by

m
i =1

Sampling Methods 16-5

A (1 � �) 100% confidence interval for the population mean � using strati-
fied sampling is

st � ( st) (16–9)

where s( st) is the square root of the estimate of the variance of st given in
equation 16–8.

XX

XZa>2sX

(16–10)Effective df =
ca

m

i=1
Ni (Ni - ni)s 2

i >ni d
2

a
m

i=1
[Ni (Ni - ni )>ni ]2s4

i >(ni - 1)

TABLE 16–1 The Fortune Service 500

Group Number of Firms

1. Diversified service companies 100

2. Commercial banking companies 100

3. Financial service companies 
(including savings and insurance) 150

4. Retailing companies 50

5. Transportation companies 50

6. Utilities 50

500

We demonstrate the application of the theory of stratified random sampling pre-
sented so far by the following example.

Once a year, Fortune magazine publishes the Fortune Service 500, a list of the largest
service companies in the United States. The 500 firms belong to six major industry
groups. The industry groups and the number of firms in each group are listed in
Table 16–1.

The 500 firms are considered a complete population: the population of the top
500 service companies in the United States. An economist who is interested in this
population wants to estimate the mean net income of all firms in the index. However,
obtaining the data for all 500 firms in the index is difficult, time-consuming, or costly.
Therefore, the economist wants to gather a random sample of the firms, compute a
quick average of the net income for the firms in the sample, and use it to estimate the
mean net income for the entire population of 500 firms.

E X A M P L E  1 6 – 2
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The economist believes that firms in the same industry group share common char-
acteristics related to net income. Therefore, the six groups are treated as different
strata, and a random sample is drawn from each stratum. The weights of each of the
strata are known exactly as computed from the strata sizes in Table 16–1. Using the
definition of the population weights Wi � Ni�N, we get the following weights:

S o l u t i o n

W1 � N1�N � 100�500 � 0.2
W2 � N2�N � 100�500 � 0.2

W3 � N3�N � 150�500 � 0.3

W4 � N4�N � 50�500 � 0.1

W5 � N5�N � 50�500 � 0.1
W6 � N6�N � 50�500 � 0.1

n1 � 20 n2 � 20 n3 � 30 n4 � 10 n5 � 10 n6 � 10

= $66.12 million
+ (0.1)(8.9) + (0.1)(52.3)

x st = a
6

i=1
Wi xi = (0.2)(52.7) + (0.2)(112.6) + (0.3)(85.6) + (0.1)(12.6)

�

� (0.1)(9,037) � (0.1)(83,500)]
� 23.08

A 0.8
100

[(0.2)(97,650) + (0.2)(64,300) + (0.3)(76,990) + (0.1)(18,320)

= A1 - f
n a

6

i=1
Wis2

is (X st)

The economist decides to select a random sample of 100 of the 500 firms listed in
Fortune. The economist chooses to use a proportional allocation of the total sample to
the six strata (another method of allocation will be presented shortly). With propor-
tional allocation, the total sample of 100 must be allocated to the different strata in
proportion to the computed strata weights. Thus, for each i, i � 1, . . . , 6, we compute
ni as ni � nWi. This gives the following sample sizes:

We will assume that the net income values in the different strata are approximately
normally distributed and that the estimated strata variances (to be estimated from the
data) are the true strata variances �i

2, so that the normal distribution may be used.
The economist draws the random samples and computes the sample means and

variances. The results, in millions of dollars (for the means) and in millions of dollars
squared (for the variances), are given in Table 16–2, along with the sample sizes in the
different strata and the strata weights. From the table, and with the aid of equation 16–1
for the mean and equation 16–5 for the variance of the sample mean (with the esti-
mated sample variances substituted for the population variances in the different strata),
we will now compute the stratified sample mean and the estimated variance of the
stratified sample mean.

and
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TABLE 16–2 Sampling Results for Example 16–2

Stratum Mean Variance ni Wi

1 52.7 97,650 20 0.2
2 112.6 64,300 20 0.2
3 85.6 76,990 30 0.3
4 12.6 18,320 10 0.1
5 8.9 9,037 10 0.1
6 52.3 83,500 10 0.1

FIGURE 16–1 The Template for Estimating Means by Stratified Sampling
[Stratified Sampling.xls; Sheet: Mean]

1
2

3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

A B C E G H I J K L M N O P Q

Stratified Sampling for Estimating � Fortune Service 500 

Stratum N n x-bar s2

1 100 20 52.7 97650
2 100 20 112.6 64300
3 150 30 85.6 76990 X-bar V(X-bar) S(X-bar) df
4 50 10 12.6 18320 66.12 532.5816 23.07773 80
5 50 10 8.9 9037
6 50 10 52.3 83500 1 � �

7 66.12     + or -     45.92614 or 20.19386 to 112.0461
8
9
10
11
12
13
14
15
16
17
18
19
20

Total 500 100

(1 � �) CI for X-bar
95%

x st � za> 2s (X st) = 66.12 � (1.96)(23.08) = [20.88, 111.36]

(Our sampling fraction is f � 100�500 � 0.2.) Our unbiased point estimate of the
average net income of all firms in the Fortune Service 500 is $66.12 million.

Using equation 16–9, we now compute a 95% confidence interval for �, the mean
net income of all firms in the index. We have the following:

Thus, the economist may be 95% confident that the average net income for all firms
in the Fortune Service 500 is anywhere from 20.88 to 111.36 million dollars.
Incidentally, the true population mean net income for all 500 firms in the index is
� � $61.496 million.

The Template
Figure 16–1 shows the template that can be used to estimate population means by
stratified sampling in the example.

Stratified Sampling for the Population Proportion
The theory of stratified sampling extends in a natural way to sampling for the popu-
lation proportion p. Let the sample proportion in stratum i be � Xi�ni , where Xi is
the number of successes in a sample of size ni. Then the stratified estimator of the
population proportion p is the following.

P$i
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The following is an approximate expression for the variance of the estimator of
the population proportion , for use with large samples.P$st

16-8 Chapter 16

The approximate variance of P̂st is

V( st) (16–12)

where � 1 � .P$iQ$ i

= a
m

i=1
Wi

2 P$iQ
$

i

ni
P$

(16–13)V (P$st) =
1

N 2a
m

i =1
N 2

i (Ni - ni )
P$iQ$ i

(Ni - 1)ni

(16–14)V (P$st ) =
1 - f

n a
m

i=1
Wi P$iQ$ i

p$st = a
2

i=1
Wip$i = (0.65)

28
130

+ (0.35)
18
70

= 0.23

The stratified estimator of the population proportion p is

(16–11)

where the weights Wi are defined as in the case of sampling for the popula-
tion mean: Wi � Ni�N.

P$st = a
m

i=1
Wi P$i

When finite-population correction factors fi must be considered, the following expres-
sion is appropriate for the variance of :P$st

When proportional allocation is used, an approximate expression is

Let us now return to Example 16–1, sampling for the proportion of people who
might be interested in purchasing the Spanish sherry Jerez. Suppose that the market
researchers believe that preferences for imported wines differ between consumers in
metropolitan areas and those in other areas. The area of interest for the survey covers
a few states in the Northeast, where it is known that 65% of the people live in metro-
politan areas and 35% live in nonmetropolitan areas. A sample of 130 people randomly
chosen at shopping malls in metropolitan areas shows that 28 are interested in Jerez,
while a random sample of 70 people selected at malls outside the metropolitan areas
shows that 18 are interested in the sherry.

Let us use these results in constructing a 90% confidence interval for the propor-
tion of people in the entire population who are interested in the product. From equa-
tion 16–11, using two strata with weights 0.65 and 0.35, we get
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Our allocation is proportional because n1 � 130, n2 � 70, and n � 130 � 70 � 200,
so that n1�n � 0.65 � W1 and n2�n � 0.35 � W2. In addition, the sample sizes of 130
and 70 represent tiny fractions of the two strata; hence, no finite-population correction
factor is required. The equation for the estimated variance of the sample estimator of
the proportion is therefore equation 16–14 without the finite-population correction:

Sampling Methods 16-9

p$st � za>2 s(P$st) = 0.23 � (1.645)(0.0297) = [0.181, 0.279]

� 0.0008825

V (P$st ) =
1
na

2

i=1
Wi p$i q$i =

1
200

[(0.65)(0.215)(0.785) + (0.35)(0.257)(0.743)]

FIGURE 16–2 The Template for Estimating Proportions by Stratified Sampling
[Stratified Sampling.xls; Sheet: Proportion]

1
2

3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

A B C E G H I J K L M N O P Q

Stratified Sampling for Estimating Proportion Jerez

Stratum N n x p -hat
1 650000 130 28 0.21538
2 350000 70 18 0.25714
3 P-hat V(P-hat) S(P-hat)
4 0.2300 0.000883 0.0297
5
6 1 � �

7 0.2300     + or -     0.0489 or 0.1811  to  0.2789
8
9
10
11
12
13
14
15
16
17
18
19
20

Total 1000000 200

(1 � �) CI for P
90%

The standard error of is therefore � � 0.0297. Thus, our 90%
confidence interval for the population proportion of people interested in Jerez is

10.00088252V (P$st)P$st

The stratified point estimate of the percentage of people in the proposed market
area for Jerez who may be interested in the product, if it is introduced, is 23%. A 90%
confidence interval for the population percentage is 18.1% to 27.9%.

The Template
Figure 16–2 shows the template that can be used to estimate population proportions
by stratified sampling. The data in the figure correspond to the Jerez example.

What Do We Do When the Population Strata Weights Are Unknown?
Here and in the following subsections, we will explore some optional, advanced
aspects of stratified sampling. When the true strata weights Wi = Ni/N are unknown—
that is, when we do not know what percentage of the whole population belongs to each
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stratum—we may still use stratified random sampling. In such cases, we use estimates
of the true weights, denoted by wi. The consequence of using estimated weights
instead of the true weights is the introduction of a bias into our sampling results. The
interesting thing about this kind of bias is that it is not eliminated as the sample size
increases. When errors in the stratum weights exist, our results are always biased; the
greater the errors, the greater the bias. These errors also cause the standard error of
the sample mean s( st) to underestimate the true standard deviation. Consequently,
confidence intervals for the population parameter of interest tend to be narrower
than they should be.

How Many Strata Should We Use?
The number of strata to be used is an important question to consider when you are
designing any survey that uses stratified sampling. In many cases, there is a natural
breakdown of the population into a given number of strata. In other cases, there may
be no clear, unique way of separating the population into groups. For example, if age
is to be used as a stratifying variable, there are many ways of breaking the variable
and forming strata. The two guidance rules for constructing strata are presented
below.

Rules for Constructing Strata
1. The number of strata should preferably be less than or equal to 6.
2. Choose the strata so that Cum is approximately constant for all

strata [where Cum is the cumulative square root of the frequen-
cy of X, the variable of interest].

The first rule is clear. The second rule says that in the absence of other guidelines for
breaking down a population into strata, we partition the variable used for stratification
into categories so that the cumulative square root of the frequency function of the vari-
able is approximately equal for all strata. We illustrate this rule in the hypothetical case
of Table 16–3. As can be seen in this simplified example, the combined age groups
20–30, 31–35, and 36–45 all have a sum of equal to 5; hence, these groups make
good strata with respect to age as a stratifying variable according to rule 2.

Postsampling Stratification
At times, we conduct a survey using simple random sampling with no stratification,
and after obtaining our results, we note that the data may be broken into categories of
similar elements. Can we now use the techniques of stratified random sampling and
enjoy its benefits in terms of reduced variances of the estimators? Surprisingly, the
answer is yes. In fact, if the subsamples in each of our strata contain at least 20 ele-
ments, and if our estimated weights of the different strata wi (computed from the data
as ni �n, or from more accurate information) are close to the true population strata
weights Wi , then our stratified estimator will be almost as good as that of stratified ran-
dom sampling with proportional allocation. This procedure is called poststratification.

2f

1f1x2 1f1x2

X
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TABLE 16–3 Constructing Strata by Age

Age Frequency f Cum

20–25 1 1

26–30 16 4 5

31–35 25 5 5

36–40 4 2

41–45 9 3 5

2f2f
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We close this section with a discussion of an alternative to proportional allocation of
the sample in stratified random sampling, called optimum allocation.

Optimum Allocation
With optimum allocation, we select the sample sizes to be allocated to each of the
strata so as to minimize one of two criteria. Either we minimize the cost of the survey
for a given value of the variance of our estimator, or we minimize the variance of our
estimator for a given cost of taking the survey.

We assume a cost function of the form

Sampling Methods 16-11

Optimum allocation:

(16–16)
ni

n
=

Wi �i>2Ci

a
m

i=1
Wi �i>2Ci

The Neyman allocation:

(16–17)
ni

n
=

Wi�i

a
m

i=1
Wi�i

(16–15)C = C0 + a
m

i=1
Cini

where C is the total cost of the survey, C0 is the fixed cost of setting up the survey, and
Ci is the cost per item sampled in stratum i. Clearly, the total cost of the survey is the
sum of the fixed cost and the costs of sampling in all the strata (where the cost of sam-
pling in stratum i is equal to the sample size ni times the cost per item sampled Ci ).

Under the assumption of a cost function given in equation 16–15, the optimum
allocation that will minimize our total cost for a fixed variance of the estimator, or
minimize the variance of the estimator for a fixed total cost, is as follows.

Equation 16–16 has an intuitive appeal. It says that for a given stratum, we should take
a larger sample if the stratum is more variable internally (greater �i ), if the relative size
of the stratum is larger (greater Wi ), or if sampling in the stratum is cheaper (smaller Ci ).

If the cost per unit sampled is the same in all the strata (i.e., if Ci � c for all i),
then the optimum allocation for a fixed total cost is the same as the optimum alloca-
tion for fixed sample size, and we have what is called the Neyman allocation (after
J. Neyman, although this allocation was actually discovered earlier by A. A.
Tschuprow in 1923).

Suppose that we want to allocate a total sample of size 1,000 to three strata,
where stratum 1 has weight 0.4, standard deviation 1, and cost per sampled item of
4 cents; stratum 2 has weight 0.5, standard deviation 2, and cost per item of 9 cents;
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and stratum 3 has weight 0.1, standard deviation 3, and cost per item of 16 cents.
How should we allocate this sample if optimum allocation is to be used? We have
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a
3

i=1

Wi�i2Ci

=
(0.4)(1)24

+
(0.5)(2)29

+
(0.1)(3)216

= 0.608

n3

n
=

W3�3>2C3

a
3

i=1
(Wi�i>2Ci)

=
(0.1)(3)>216

0.608
= 0.123

n2

n
=

W2�2>2C2

a
3

i=1
(Wi�i>2Ci)

=
(0.5)(2)>29

0.608
= 0.548

n1

n
=

W1�1>2C1

a
3

i=1
(Wi �i>2Ci)

=
(0.4)(1)>24

0.608
= 0.329

n3

n
=

W3�3

a
3

i=1
Wi�i

=
(0.1)(3)

1.7
= 0.176

n2

n
=

W2�2

a
3

i=1
Wi�i

=
(0.5)(2)

1.7
= 0.588

n1

n
=

W1�1

a
3

i=1
Wi�i

=
(0.4)(1)

1.7
= 0.235

From equation 16–16, we get

The optimum allocation in this case is 329 items from stratum 1; 548 items from
stratum 2; and 123 items from stratum 3 (making a total of 1,000 sample items, as
specified).

Let us now compare this allocation with proportional allocation. With a sample of
size 1,000 and a proportional allocation, we would allocate our sample only by the
stratum weights, which are 0.4, 0.5, and 0.1, respectively. Therefore, our allocation
will be 400 from stratum 1; 500 from stratum 2; and 100 from stratum 3. The opti-
mum allocation is different, as it incorporates the cost and variance considerations.
Here, the difference between the two sets of sample sizes is not large.

Suppose, in this example, that the costs of sampling from the three strata are the
same. In this case, we can use the Neyman allocation and get, from equation 16–17,

Thus, the Neyman allocation gives a sample of size 235 to stratum 1; 588 to stra-
tum 2; and 176 to stratum 3. Note that these subsamples add only to 999, due to
rounding error. The last sample point may be allocated to any of the strata.
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In general, stratified random sampling gives more precise results than those
obtained from simple random sampling: The standard errors of our estimators
from stratified random sampling are usually smaller than those of simple random
sampling. Furthermore, in stratified random sampling, an optimum allocation will
produce more precise results than a proportional allocation if some strata are more
expensive to sample than others or if the variances within strata are different from
one another.

The Template
Figure 16–3 shows the template that can be used to estimate population proportions
by stratified sampling. The data in the figure correspond to the example we have
been discussing.

The same template can be used for Neyman allocation. In column E, enter the
same cost C, say $1, for all the strata.

Sampling Methods 16-13

FIGURE 16–3 The Template for Optimal Allocation for Stratified Sampling
[Stratified Sampling.xls; Sheet: Allocation]

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26

A B C D E H I J K L M

Optimum Allocation

Planned Total Sample Size 1000

Stratum W � C n
1 0.4 1
2

$      4.00 329 Fixed Cost
2 0.5 2 $      9.00 548 Variable Cost $    8,216.00
3 0.1 3 $    16.00 123 Total Cost $    8,216.00 
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20

Total 1 Actual total 1000

16–1. A securities analyst wants to estimate the average percentage of institutional
holding of all publicly traded stocks in the United States. The analyst believes that
stocks traded on the three major exchanges have different characteristics and there-
fore decides to use stratified random sampling. The three strata are the New York
Stock Exchange (NYSE), the American Exchange (AMEX), and the Over the
Counter (OTC) exchange. The weights of the three strata, as measured by the number
of stocks listed in each exchange, divided by the total number of stocks, are NYSE,
0.44; AMEX, 0.15; OTC, 0.41. A total random sample of 200 stocks is selected, with
proportional allocation. The average percentage of institutional holdings of the sub-
sample selected from the issues of the NYSE is 46%, and the standard deviation is 8%.
The corresponding results for the AMEX are 9% average institutional holdings and a
standard deviation of 4%, and the corresponding results for the OTC stocks are 29%
average institutional holdings and a standard deviation of 16%.

a. Give a stratified estimate of the mean percentage of institutional holdings
per stock.

b. Give the standard error of the estimate in a.

P R O B L E M S
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c. Give a 95% confidence interval for the mean percentage of institutional
holdings.

d. Explain the advantages of using stratified random sampling in this case.
Compare with simple random sampling.

16–2. A company has 2,100 employees belonging to the following groups: produc-
tion, 1,200; marketing, 600; management, 100; other, 200. The company president
wants to obtain an estimate of the views of all employees about a certain impending
executive decision. The president knows that the management employees’ views are
most variable, along with employees in the “other” category, while the marketing
and production people have rather uniform views within their groups. The produc-
tion people are the most costly to sample, because of the time required to find them
at their different jobs, and the management people are easiest to sample.

a. Suppose that a total sample of 100 employees is required. What are the
sample sizes in the different strata under proportional allocation?

b. Discuss how you would design an optimum allocation in this case.
16–3. Last year, consumers increasingly bought fleece (industry jargon for hot-
selling jogging suits, which now rival jeans as the uniform for casual attire). A New
York designer of jogging suits is interested in the new trend and wants to estimate the
amount spent per person on jogging suits during the year. The designer knows that
people who belong to health and fitness clubs will have different buying behavior
than people who do not. Furthermore, the designer finds that, within the proposed
study area, 18% of the population are members of health and fitness clubs. A random
sample of 300 people is selected, and the sample is proportionally allocated to the
two strata: members of health clubs and nonmembers of health clubs. It is found that
among members, the average amount spent is $152.43 and the standard deviation is
$25.77, while among the nonmembers, the average amount spent is $15.33 and the
standard deviation is $5.11.

a. What is the stratified estimate of the mean?
b. What is the standard error of the estimator?
c. Give a 90% confidence interval for the population mean �.
d. Discuss one possible problem with the data. (Hint: Can the data be con-

sidered normally distributed? Why?)
16–4. A financial analyst is interested in estimating the average amount of a foreign
loan by U.S. banks. The analyst believes that the amount of a loan may be different
depending on the bank, or, more precisely, on the extent of the bank’s involvement in
foreign loans. The analyst obtains the following data on the percentage of profits of U.S.
banks from loans to Mexico and proposes to use these data in the construction of stratum
weights. The strata are the different banks: First Chicago, 33%; Manufacturers Hanover,
27%; Bankers Trust, 21%; Chemical Bank, 19%; Wells Fargo Bank, 19%; Citicorp, 16%;
Mellon Bank, 16%; Chase Manhattan, 15%; Morgan Guarantee Trust, 9%.

a. Construct the stratum weights for proportional allocation.
b. Discuss two possible problems with this study.

16–4 Cluster Sampling
Let us consider the case where we have no frame (i.e., no list of all the elements in
the population) and the elements are clustered in larger units. Each unit, or cluster,
contains several elements of the population. In this case, we may choose to use the
method of cluster sampling. This may also be the case when the population is large
and spread over a geographic area in which smaller subregions are easily sampled
and where a simple random sample or a stratified random sample may not be carried
out as easily.

16-14 Chapter 16
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Suppose that the population is composed of M clusters and there is a list of all M clus-
ters from which a random sample of m clusters is selected. Two possibilities arise. First,
we may sample every element in every one of the m selected clusters. In this case, our sam-
pling method is called single-stage cluster sampling. Second, we may select a random
sample of m clusters and then select a random sample of n elements from each of the
selected clusters. In this case, our sampling method is called two-stage cluster sampling.

The Relation with Stratified Sampling
In stratified sampling, we sample elements from every one of our strata, and this assures
us of full representation of all segments of the population in the sample. In cluster sam-
pling, we sample only some of the clusters, and although elements within any cluster
may tend to be homogeneous, as is the case with strata, not all the clusters are repre-
sented in the sample; this leads to lowered precision of the cluster sampling method. In
stratified random sampling, we use the fact that the population may be broken into sub-
groups. This usually leads to a smaller variance of our estimators. In cluster sampling,
however, the method is used mainly because of ease of implementation or reduction in
sampling costs, and the estimates do not usually lead to more precise results.

Single-Stage Cluster Sampling for the Population Mean
Let n1, n2, . . . , nm be the number of elements in each of the m sampled clusters. Let 

1, 2, . . . , m be the means of the sampled clusters. The cluster sampling unbiased
estimator of the population mean � is given as follows.

XXX
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The cluster sampling estimator of � is

(16–18)Xcl =
a
m

i=1
niXi

a
m

i=1
ni

The cluster sampling estimator of the population proportion p is

(16–20)

where the are the proportions of interest within the sampled clusters.P$i

P$cl =
a
m

i=1
niP$i

a
m

i=1
ni

(16–19)s2(X cl) =
M - m
Mmn2

a
m

i=1
n2

i (Xi - X cl)2

m - 1

An estimator of the variance of the estimator of � in equation 16–18 is

where � (� ni )�m is the average number of units in the sampled clusters.

Single-Stage Cluster Sampling for the Population Proportion

m
i=1n
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From equation 16–18, we getS o l u t i o n

xcl =
a
m

i=1
nixi

a
m

i=1
ni

=

= 1.587
+ 92(11 - 21.83)2 + . . . + 112(22 - 21.83)2]>19

=
110 - 20

(110)(20)(9)2
[82(21 - 21.83)2 + 82(22 - 21.83)2

s2(X cl ) =
M - m
Mmn 2

a
20

i=1
n2

i (xi - xcl)2

m - 1

x cl � 1.96s (X cl) =  21.83 � 1.9621.587 =  [19.36, 24.30]

[21(8) � 22(8) � 11(9) � 34(10) � 28(7) � 25(8) � 18(10) 
� 24(12) � 19(11) � 20(6) � 30(8) � 26(9) � 12(9) � 17(8)
� 13(10) � 29(8) � 24(8) � 26(10) � 18(10) � 22(11)]	(8
� 8 � 9 � 10 � 7 � 8 � 10 � 12 � 11 � 6 � 8 � 9 � 9
� 8 � 10 � 8 � 8 � 10 � 10 � 11)

� 21.83

From equation 16–19, we find that the estimated variance of our sample estimator of
the mean is

Using the preceding information, we construct a 95% confidence interval for � as follows:

The estimated variance of the estimator in equation 16–20 is given by

16-16 Chapter 16

(16–21)s2(P$cl) =
M - m
Mmn2

a
m

i=1
n2

i (P$i - P$cl)2

m - 1

We now demonstrate the use of cluster sampling for the population mean with
the following example.

J. B. Hunt Transport Company is especially interested in lowering fuel costs in order
to survive in the tough world of deregulated trucking. Recently, the company intro-
duced new measures to reduce fuel costs for all its trucks. Suppose that company
trucks are based in 110 centers throughout the country and that the company’s man-
agement wants to estimate the average amount of fuel saved per truck for the week
following the institution of the new measures. For reasons of lower cost and admin-
istrative ease, management decides to use single-stage cluster sampling, select a ran-
dom sample of 20 trucking centers, and measure the weekly fuel saving for each of
the trucks in the selected centers (each center is a cluster). The average fuel savings
per truck, in gallons, for each of the 20 selected centers are as follows (the number of
trucks in each center is given in parentheses): 21 (8), 22 (8), 11 (9), 34 (10), 28 (7),
25 (8), 18 (10), 24 (12), 19 (11), 20 (6), 30 (8), 26 (9), 12 (9), 17 (8), 13 (10), 29 (8), 24 (8),
26 (10), 18 (10), 22 (11). From these data, compute an estimate of the average amount
of fuel saved per truck for all Hunt’s trucks over the week in question. Also give a
95% confidence interval for this parameter.

E X A M P L E  1 6 – 3
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Thus, based on the sampling results, Hunt’s management may be 95% confident that
average fuel savings per truck for all trucks over the week in question is anywhere
from 19.36 to 24.30 gallons.

FIGURE 16–4 The Template for Estimating Means by Cluster Sampling
[Cluster Sampling.xls; Sheet: Mean]

21
22
11
34
28
25
18
24
19
20
30
26
12
17
13
29
24
26
18
22

1
2

3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

A B C D E F G H I J K L M

Cluster Sampling J. B. Hunt Transport Co.

Cluster n x-bar
1 8

M
110

m
20

n-bar
9

2 8
3 9

X-bar V(X-bar) S(X-bar)

4 10

21.8333 1.58691 1.25973

5 7
6 8

10
12
11
6
8
9
9
8

10
8
8

10
10

1 � �

7

21.8333     + or -     2.46902 or 19.3643  to  24.3024

8
9

10
11
12
13
14
15
16
17
18
19
20 11

Total 180

(1 � �) CI for X -bar
95%

FIGURE 16–5 The Template for Estimating Proportions by Cluster Sampling
[Cluster Sampling.xls; Sheet: Proportion]

0.3
0.26
0.28

1
2

3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

A B C D E F G H I J K L M

Cluster Sampling

Cluster n p
1 18

M
12

m
3

n-bar
35

2 65
3 22

P V(P) s(P)

4

0.27105 8.4E-05 0.00918

5
6

1 � �

7

0.27105     + or -     0.01799 or 0.25305  to  0.28904

8
9

10
11
12
13
14
15
16
17
18
19
20

Total 105

(1 � �) CI for P
95%

The Templates
The template for estimating a population mean by cluster sampling is shown in
Figure 16–4. The data in the figure correspond to Example 16–3.

The template for estimating a population proportion by cluster sampling is
shown in Figure 16–5.
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Two-Stage Cluster Sampling
When clusters are very large or when elements within each cluster tend to be similar,
we may gain little information by sampling every element within the selected clusters.
In such cases, selecting more clusters and sampling only some of the elements within
the chosen clusters may be more economical. The formulas for the estimators and
their variances in the case of two-stage cluster sampling are more complicated and
may be found in advanced books on sampling methodology.

16-18 Chapter 16

P R O B L E M S

16–5. There are 602 aerobics and fitness centers in Japan (up from 170 five years ago).
Adidas, the European maker of sports shoes and apparel, is very interested in this fast-
growing potential market for its products. As part of a marketing survey, Adidas wants
to estimate the average income of all members of Japanese fitness centers. (Members
of one such club pay $62 to join and another $62 per month. Adidas believes that the
average income of all fitness club members in Japan may be higher than that of the
general population, for which census data exist.) Since travel and administrative costs
for conducting a simple random sample of all members of fitness clubs throughout
Japan would be prohibitive, Adidas decided to conduct a cluster sampling survey. Five
clubs were chosen at random out of the entire collection of 602 clubs, and all members
of the five clubs were interviewed. The following are the average incomes (in U.S. dol-
lars) for the members of each of the five clubs (the number of members in each club is
given in parentheses): $37,237 (560), $41,338 (435), $28,800 (890), $35,498 (711),
$47,446 (230). Give the cluster sampling estimate of the population mean income for
all fitness club members in Japan. Also give a 90% confidence interval for the popula-
tion mean. Are there any limitations to the methodology in this case?
16–6. Israel’s kibbutzim are by now well diversified beyond their agrarian roots, pro-
ducing everything from lollipops to plastic pipe. These 282 widely scattered communes
of several hundred members maintain hundreds of factories and other production facil-
ities. An economist wants to estimate the average annual revenues of all kibbutz pro-
duction facilities. Since each kibbutz has several production units, and since travel and
other costs are high, the economist wants to consider a sample of 15 randomly chosen
kibbutzim and find the annual revenues of all production units in the selected kibbut-
zim. From these data, the economist hopes to estimate the average annual revenue per
production unit in all 282 kibbutzim. The sample results are as follows:

Total Kibbutz Annual Revenues
Kibbutz Number of Production Units (in millions of dollars)

1 4 4.5

2 2 2.8

3 6 8.9

4 2 1.2

5 5 7.0

6 3 2.2

7 2 2.3

8 1 0.8

9 8 12.5

10 4 6.2

11 3 5.5

12 3 6.2

13 2 3.8

14 5 9.0

15 2 1.4
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From these data, compute the cluster sampling estimate of the mean annual revenue
of all kibbutzim production units, and give a 95% confidence interval for the mean.
16–7. Under what conditions would you use cluster sampling? Explain the differ-
ences among cluster sampling, simple random sampling, and stratified random sam-
pling. Under what conditions would you use two-stage cluster sampling? Explain the
difference between single-stage and two-stage cluster sampling. What are the limita-
tions of cluster sampling?
16–8. Recently a survey was conducted to assess the quality of investment brokers.
A random sample of 6 brokerage houses was selected from a total of 27 brokerage
houses. Each of the brokers in the selected brokerage houses was evaluated by an
independent panel of industry experts as “highly qualified” (HQ) or was given an
evaluation below this rating. The designers of the survey wanted to estimate the pro-
portion of all brokers in the entire industry who would be considered highly quali-
fied. The survey results are in the following table.

Brokerage House Total Number of Brokers Number of HQ Brokers

1 120 80

2 150 75

3 200 100

4 100 65

5 88 45

6 260 200

Use the cluster sampling estimator of the population proportion to estimate the pro-
portion of all highly qualified brokers in the investment industry. Also give a 99%
confidence interval for the population proportion you estimated.
16–9. Forty-two cruise ships come to Alaska’s Glacier Bay every year. The state tourist
board wants to estimate the average cruise passenger’s satisfaction from this experience,
rated on a scale of 0 to 100. Since the ships’ arrivals are evenly spread throughout the
season, simple random sampling is costly and time-consuming. Therefore, the agency
decides to send its volunteers to board the first five ships of the season, consider them
as clusters, and randomly choose 50 passengers in each ship for interviewing.

a. Is the method employed single-stage cluster sampling? Explain.
b. Is the method employed two-stage cluster sampling? Explain.
c. Suppose that each of the ships has exactly 50 passengers. Is the proposed

method single-stage cluster sampling?
d. The 42 ships belong to 12 cruise ship companies. Each company has its own

characteristics in terms of price, luxury, services, and type of passengers.
Suggest an alternative sampling method, and explain its benefits.

16–5 Systematic Sampling
Sometimes a population is arranged in some order: files in a cabinet, crops in a field,
goods in a warehouse, etc. In such cases drawing our random sample in a systematic
way may be easier than generating a simple random sample that would entail looking
for particular items within the population. To select a systematic sample of n
elements from a population of N elements, we divide the N elements in the popula-
tion into n groups of k elements and then use the following rule:

We randomly select the first element out of the first k elements in the pop-
ulation, and then we select every kth unit afterward until we have a sample
of n elements.

Sampling Methods 16-19
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The systematic sampling estimator of the population mean � is

(16–22)
Xsy =

a
n

i=1
Xi

n

(16–23)s2(X sy) =
N - n

Nn
S 2

For example, suppose k � 20, and we need a sample of n � 30 items. We randomly
select the first item from the integers 1 to 20. If the random number selected is 11,
then our systematic sample will contain the elements 11, 11 � 20 � 31, 31 � 20 �
51, . . . , and so on until we have 30 elements in our sample.

A variant of this rule, which solves the problems that may be encountered when
k is not an integer multiple of the sample size n (their product being N ), is to let k
be the nearest integer to N/n. We now regard the N elements as being arranged in a
circle (with the last element preceding the first element). We randomly select the first
element from all N population members and then select every k th item until we have
n items in our sample.

The Advantages of Systematic Sampling
In addition to the ease of drawing samples in a systematic way—for example, by
simply measuring distances with a ruler in a file cabinet and sampling every fixed
number of inches—the method has some statistical advantages as well. First, when
k � N/n, the sample estimator of the population mean is unbiased. Second, system-
atic sampling is usually more precise than simple random sampling because it
actually stratifies the population into n strata, each stratum containing k elements.
Therefore, systematic sampling is approximately as precise as stratified random
sampling with one unit per stratum. The difference between the two methods is that
the systematic sample is spread more evenly over the entire population than a strat-
ified sample, because in stratified sampling the samples in the strata are drawn
separately. This adds precision in some cases. Systematic sampling is also related
to cluster sampling in that it amounts to selecting one cluster out of a population of
k clusters.

Estimation of the Population Mean in Systematic Sampling

16-20 Chapter 16

The estimator is, of course, the same as the simple random sampling estimator of the
population mean based on a sample of size n. The variance of the estimator in equa-
tion 16–22 is difficult to estimate from the results of a single sample. The estimation
requires some assumptions about the order of the population. The estimated vari-
ances of sy in different situations are given below.

1. When the population values are assumed to be in no particular order with
respect to the variable of interest, the estimated variance of the estimator of
the mean is the same as in the case of simple random sampling

X

where S 2 is the usual sample variance, and the first term accounts for finite-
population correction as well as division by n.



Aczel−Sounderpandian: 
Complete Business 
Statistics, Seventh Edition

16. Sampling Methods Text 761© The McGraw−Hill 
Companies, 2009

2. When the mean is constant within each stratum of k elements but different
from stratum to stratum, the estimated variance of the sample mean is

Sampling Methods 16-21

(16–24)s 2(X sy) =
N - n

Nn

a
n

i=1
(Xi - Xi+k )2

2(n - 1)

3. When the population is assumed to be either increasing or decreasing linearly
in the variable of interest, and when the sample size is large, the appropriate
estimator of the variance of our estimator of the mean is

(16–25)s 2(X sy) =
N - n

Nn

a
n

i=1
(Xi - 2Xi+k + Xi+2k )2

6(n - 1)

s2(X sy) =
N - n

Nn
S 2 =

2,100 - 100
210,000

 0.36 = 0.0034

for 1 	 i 	 n � 2.

There are formulas that apply in more complicated situations as well.
We demonstrate the use of systematic sampling with the following example.

An investor obtains a copy of The Wall Street Journal and wants to get a quick estimate
of how the New York Stock Exchange has performed since the previous day. The
investor knows that there are about 2,100 stocks listed on the NYSE and wants to
look at a quick sample of 100 stocks and determine the average price change for the
sample. The investor thus decides on an “every 21st” systematic sampling scheme.
The investor uses a ruler and finds that this means that a stock should be selected
about every 1.5 inches along the listings columns in the Journal. The first stock is ran-
domly selected from among the first 21 stocks listed on the NYSE by using a random-
number generator in a calculator. The selected stock is the seventh from the top, which
happens to be ANR. For the day in question, the price change for ANR is �0.25.
The next stock to be included in the sample is the one in position 7 � 21 � 28th from
the top. The stock is Aflpb, which on this date had a price change of 0 from the pre-
vious day. As mentioned, the selection is not done by counting the stocks, but by the
faster method of successively measuring 1.5 inches down the column from each
selected stock. The resulting sample of 100 stocks gives a sample mean of sy � � 0.5
and S 2 � 0.36. Give a 95% confidence interval for the average price change of all
stocks listed on the NYSE.

x

We have absolutely no reason to believe that the order in which the NYSE stocks are
listed in The Wall Street Journal (i.e., alphabetically) has any relationship to the stocks’
price changes. Therefore, the appropriate equation for the estimated variance of sy
is equation 16–23. Using this equation, we get

X

E X A M P L E  1 6 – 4

S o l u t i o n
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A 95% confidence interval for �, the average price change on this day for all stocks
on the NYSE, is therefore

x sy � 1.96s (X sy) = 0.5 � (1.96)(20.0034) = [0.386, 0.614]

The investor may be 95% sure that the average stock on the NYSE gained anywhere
from $0.386 to $0.614.

When sampling for the population proportion, use the same equations as the
ones used for simple random sampling if it may be assumed that no inherent order
exists in the population. Otherwise use variance estimators given in advanced texts.

The Template
The template for estimating a population mean by systematic sampling is shown in
Figure 16–6. The data in the figure correspond to Example 16–4.

P R O B L E M S

16–10. A tire manufacturer maintains strict quality control of its tire production.
This entails frequent sampling of tires from large stocks shipped to retailers. Samples
of tires are selected and run continuously until they are worn out, and the average
number of miles “driven” in the laboratory is noted. Suppose a warehouse contains
11,000 tires arranged in a certain order. The company wants to select a systematic
sample of 50 tires to be tested in the laboratory. Use randomization to determine the
first item to be sampled, and give the rule for obtaining the rest of the sample in
this case.
16–11. A large discount store gives its sales personnel bonuses based on their aver-
age sale amount. Since each salesperson makes hundreds of sales each month, the
store management decided to base average sale amount for each salesperson on a
random sample of the person’s sales. Since records of sales are kept in books, the
use of systematic sampling is convenient. Suppose a salesperson has made 855 sales
over the month, and management wants to choose a sample of 30 sales for estima-
tion of the average amount of all sales. Suggest a way of doing this so that no
problems would result due to the fact that 855 is not an integer multiple of 30. Give

16-22 Chapter 16

FIGURE 16–6 The Template for Estimating Population Means by Systematic Sampling
[Systematic Sampling.xls; Sheet: Sheet 1]

1
2

3
4
5
6
7
8
9

1 0

11
1 2

A B C D E F G H I J

Systematic Sampling Average price change

N n x - bar s 2

2100 100 0.5 0.36

X - bar 0.5
V(X - bar) 0.003429 Assuming that the population is in no particular order.
S(X - bar) 0.058554

1−α (1-α) CI for X-bar

95% 0 .5 + or - 0 .11476 or 0 .38524 to 0 .61476
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the first element you choose to select, and explain how the rest of the sample is
obtained.
16–12. An accountant always audits the second account and every fourth account
thereafter when sampling a client’s accounts.

a. Does the accountant use systematic sampling? Explain.
b. Explain the problems that may be encountered when this sampling scheme

is used.
16–13. Beer sales in a tavern are cyclical over the week, with large volume during
weekend nights, lower volume during the beginning of the week, and somewhat
higher volume at midweek. Explain the possible problems that could arise, and
the conditions under which they might arise, if systematic sampling were used to
estimate beer sales volume per night.
16–14. A population is composed of 100 items arranged in some order. Every
stratum of 10 items in the order of arrangement tends to be similar in its values. An
“every 10th” systematic sample is selected. The first item, randomly chosen, is the
6th item, and its value is 20. The following items in the sample are, of course, the
16th, the 26th, etc. The values of all items in the systematic sample are as follows:
20, 25, 27, 34, 28, 22, 28, 21, 37, 31. Give a 90% confidence interval for the popula-
tion mean.
16–15. Explain the relationship between the method employed in problem 16–14
and the method of stratified random sampling. Explain the differences between the
two methods.

16–6 Nonresponse
Nonresponse to sample surveys is one of the most serious problems that occur in
practical applications of sampling methodology. The problem is one of loss of infor-
mation. For example, suppose that a survey questionnaire dealing with some issue is
mailed to a randomly chosen sample of 500 people and that only 300 people respond
to the survey. The question is: What can you say about the 200 people who did not
respond? This is a very important question, with no immediate answer, precisely
because the people did not respond; we know nothing about them. Suppose that the
questionnaire asks for a yes or no answer to a particular public issue over which
people have differing views, and we want to estimate the proportion of people who
would respond yes. People may have such strong views about the issue that those
who would respond no may refuse to respond altogether. In this case, the 200 nonre-
spondents to our survey will contain a higher proportion of “no” answers than the
300 responses we have. But, again, we would not know about this. The result will
be a bias. How can we compensate for such a possible bias?

We may want to consider the population as made up of two strata: the respon-
dents’ stratum and the nonrespondents’ stratum. In the original survey, we managed
to sample only the respondents’ stratum, and this caused the bias. What we need to
do is to obtain a random sample from the nonrespondents’ stratum. This is easier
said than done. Still, there are ways we can at least reduce the bias and get some
idea about the proportion of “yes” answers in the nonresponse stratum. This entails
callbacks: returning to the nonrespondents and asking them again. In some mail
questionnaires, it is common to send several requests for response, and these reduce
the uncertainty. There may, however, be hard-core refusers who just do not want to
answer the questionnaire. These people are likely to have distinct views about the
issue in question, and if you leave them out, your conclusions will reflect a significant
bias. In such a situation, gathering a small random sample of the hard-core refusers
and offering them some monetary reward for their answers may be useful. In cases
where people may find the question embarrassing or may worry about revealing their

Sampling Methods 16-23
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personal views, a random-response mechanism may be used; here the respondent
randomly answers one of two questions, one is the sensitive question, and the other
is an innocuous question of no relevance. The interviewer does not know which
question any particular respondent answered but does know the probability of
answering the sensitive question. This still allows for computation of the aggregated
response to the sensitive question while protecting any given respondent’s privacy.

16–7 Summary and Review of Terms
In this chapter, we considered some advanced sampling methods that allow for
better precision than simple random sampling, or for lowered costs and easier
survey implementation. We concentrated on stratified random sampling, the
most important and useful of the advanced methods and one that offers statistical
advantages of improved precision. We then discussed cluster sampling and sys-
tematic sampling, two methods that are used primarily for their ease of implemen-
tation and reduced sampling costs. We mentioned a few other advanced methods,
which are described in books devoted to sampling methodology. We discussed the
problem of nonresponse.

16-24 Chapter 16

A D D I T I O N A L  P R O B L E M S

16–16. Bloomingdale’s main store in New York has the following departments on
its mezzanine level: Stendahl, Ralph Lauren, Beauty Spot, and Lauder Prescriptives.
The mezzanine level is managed separately from the other levels, and during the
store’s postholiday sale, the level manager wanted to estimate the average sales
amount per customer throughout the sale. The following table gives the relative
weights of the different departments (known from previous operation of the store), as
well as the sample means and variances of the different strata for a total sample of
1,000 customers, proportionally allocated to the four strata. Give a 95% confidence
interval for the average sale (in dollars) per customer for the entire level over the
period of the postholiday sale.

Stratum Weight Sample Mean Sample Variance

Stendahl 0.25 65.00 123.00

Ralph Lauren 0.35 87.00 211.80

Beauty Spot 0.15 52.00 88.85

Lauder Prescriptives 0.25 38.50 100.40

Note: We assume that shoppers visit the mezzanine level to purchase from only one
of its departments. Since the brands and designers are competitors, and since shop-
pers are known to have a strong brand loyalty in this market, the assumption seems
reasonable.

16–17. A state department of transportation is interested in sampling commuters to
determine certain of their characteristics. The department arranges for its field work-
ers to board buses at random as well as stop private vehicles at intersections and ask
the commuters to fill out a short questionnaire. Is this method cluster sampling?
Explain.

16–18. Use systematic sampling to estimate the average performance of all stocks in
one of the listed stock exchanges on a given day. Compare your results with those
reported in the media for the day in question.

16–19. An economist wants to estimate average annual profits for all businesses in
a given community and proposes to draw a systematic sample of all businesses listed
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in the local Yellow Pages. Comment on the proposed methodology. What potential
problem do you foresee?

16–20. In an “every 23rd” systematic sampling scheme, the first item was ran-
domly chosen to be the 17th element. Give the numbers of 6 sample items out of a
population of 120.

16–21. A quality control sampling scheme was carried out by Sony for estimating
the percentage of defective radios in a large shipment of 1,000 containers with 100
radios in each container. Twelve containers were chosen at random, and every radio
in them was checked. The numbers of defective radios in each of the containers are
8, 10, 4, 3, 11, 6, 9, 10, 2, 7, 6, 12. Give a 95% confidence interval for the proportion
of defective radios in the entire shipment.

16–22. Suppose that the radios in the 1,000 containers of problem 16–21 were pro-
duced in five different factories, each factory known to have different internal pro-
duction controls. Each container is marked with a number denoting the factory
where the radios were made. Suggest an appropriate sampling method in this case,
and discuss its advantages.

16–23. The makers of Taster’s Choice instant coffee want to estimate the propor-
tion of underfilled jars of a given size. The jars are in 14 warehouses around the coun-
try, and each warehouse contains crates of cases of jars of coffee. Suggest a sampling
method, and discuss it.

16–24. Cadbury, Inc., is interested in estimating people’s responses to a new choco-
late. The company believes that people in different age groups differ in their prefer-
ences for chocolate. The company believes that in the region of interest, 25% of the
population are children, 55% are young adults, and 20% are older people. A propor-
tional allocation of a total random sample of size 1,000 is undertaken, and people’s
responses on a scale of 0 to 100 are solicited. The results are as follows. For the chil-
dren, � 90 and s � 5; for the young adults, � 82 and s � 11; and for the older
people, � 88 and s � 6. Give a 95% confidence interval for the population average
rating for the new chocolate.

16–25. For problem 16–24, suppose that it costs twice as much money to sample a
child as the younger and older adults, where costs are the same per sampled person.
Use the information in problem 16–24 (the weights and standard deviations) to deter-
mine an optimal allocation of the total sample.

16–26. Refer to the situation in problem 16–24. Suppose that the following relative
age frequencies in the population are known:

Age Group Frequency

Under 10 0.10

10 to 15 0.10

16 to 18 0.05

19 to 22 0.05

23 to 25 0.15

26 to 30 0.15

31 to 35 0.10

36 to 40 0.10

41 to 45 0.05

46 to 50 0.05

51 to 55 0.05

56 and over 0.05

Define strata to be used in the survey.

x
xx

Sampling Methods 16-25



Aczel−Sounderpandian: 
Complete Business 
Statistics, Seventh Edition

16. Sampling Methods Text766 © The McGraw−Hill 
Companies, 2009

16–27. Name two sampling methods that are useful when there is information
about a variable related to the variable of interest.

16–28. Suppose that a study was undertaken using a simple random sample from
a particular population. When the results of the study became available, they
revealed that the population could be viewed as consisting of several strata. What can
be done now?

16–29. For problem 16–28, suppose that the population is viewed as comprising
18 strata. Is using this number of strata advantageous? Are there any alternative
solutions?

16–30. Discuss and compare the three sampling methods: cluster sampling, strati-
fied sampling, and systematic sampling.

16–31. The following table reports return on capital for insurance companies.
Consider the data a population of U.S. insurance companies, and select a random
sample of firms to estimate mean return on capital. Do the sampling two ways: first,
take a systematic sample considering the entire list as a uniform, ordered population;
and second, use stratified random sampling, the strata being the types of insurance
company. Compare your results.

16-26 Chapter 16

Return on Return on Return on
Capital Capital Capital
Latest Latest Latest

12 Mos. Company 12 Mos. Company 12 Mos.
Company Diversified % Life & Health % Property & Casualty %

Marsh & McLennan Cos 25.4 Conseco 13.7 20th Century Industries 25.1

Loews 13.8 First Capital Holding 10.7 Geico 20.4

American Intl Group 14.6 Torchmark 18.4 Argonaut Group 17.1

General Rental 17.4 Capital Holding 9.9 Hartford Steam Boiler 19.1

Safeco 11.6 American Family 8.5 Progressive 10.1

Leucadia National 27.0 Kentucky Central Life 6.3 WR Berkley 11.5

CNA Financial 8.6 Provident Life & Acc 13.1 Mercury General 28.3

Aon 12.8 NWNL 8.4 Selective Insurance 13.6

Kemper 1.4 UNUM 13.2 Hanover Insurance 6.3

Cincinnati Financial 10.7 Liberty Corp 10.1 St Paul Cos 16.9

Reliance Group 23.1 Jefferson-Pilot 9.5 Chubb 14.3

Alexander & Alexander 9.9 USLife 6.7 Ohio Casualty 9.3

Zenith National Ins 9.8 American Natl Ins 5.2 First American Finl 4.8

Old Republic Intl 13.4 Monarch Capital 0 Berkshire Hathaway 7.3

Transamerica 7.5 Washington National 1.2 ITT 10.2

Uslico 7.7 Broad 8.0 USF&G 6.6

Aetna Life & Cas 8.0 First Executive 0 Xerox 5.3

American General 8.2 ICH 0 Orion Capital 10.8

Lincoln National 9.2 Fremont General 12.6

Sears, Roebuck 7.2 Foremost Corp of Amer 0

Independent Insurance 7.8 Continental Corp 6.6

Cigna 7.0 Alleghany 9.0

Travelers 0

American Bankers 8.3

Unitrin 6.1

From “Annual Report on American Industry,” Forbes, January 7, 1991. Reprinted by permission of Forbes Magazine. © 2001 Forbes Inc.CA
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The Boston Redevelopment Authority is mandat-
ed with the task of improving and developing
urban areas in Boston. One of the Authority’s

main concerns is the development of the community of
Roxbury. This community has undergone many changes
in recent years, and much interest is given to its future
development.

Currently, only 2% of the total land in this commu-
nity is used in industry, and 9% is used commercially.
As part of its efforts to develop the community, the

Boston Redevelopment Authority is interested in deter-
mining the attitudes of the residents of Roxbury toward
the development of more business and industry in their
region. The authority therefore plans to sample resi-
dents of the community to determine their views
and use the sample or samples to infer about the views
of all residents of the community. Roxbury is divided
into 11 planning subdistricts. The population density is
believed to be uniform across all 11 subdistricts, and
the population of each subdistrict is approximately pro-

portional to the subdis-
trict’s size. There is no
known list of all the peo-
ple in Roxbury. A map of
the community is shown
in Exhibit 1. Advise the
Boston Redevelopment
Authority on designing
the survey.

CASE 21 The Boston Redevelopment Authority

EXHIBIT 1 Roxbury Planning Subdistrict
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After studying this chapter, you should be able to:

• Describe a multivariate normal distribution.
• Explain when a discriminant analysis could be conducted.
• Interpret the results of a discriminant analysis.
• Explain when a factor analysis could be conducted.
• Differentiate between principal components and factors.
• Interpret factor analysis results.

MULTIVARIATE ANALYSIS

1
1
1
1
1
1
1

LEARNING OBJECTIVES

1 1 1 1 117
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A couple living in a suburb of Chicago, earning
a modest living on salaries and claiming only
small and reasonable deductions on their taxes,
nonetheless gets audited by the IRS every year.

The reason: The couple has 21 children. A formula residing deep inside the big IRS
computer in West Virginia plucks taxpayers for audit based on the information on
their tax returns. The formula is a statistical one and constitutes one of the advanced
methods described in this chapter. The technique is called discriminant analysis. This
example shows how not to use statistics, since the IRS has never been able to collect
additional tax from this couple. And the IRS’s discriminant analysis makes a variety
of other errors with thousands of taxpayers.1 Used correctly, however, discriminant
analysis can lead to a reasonable breakdown of a population into two categories (in
this example: the category of people who owe more tax and the category of people
who do not owe more tax). This multivariate technique will be introduced in this
chapter, along with a few others.

Multivariate statistical methods, or simply multivariate methods, are statistical
methods for the simultaneous analysis of data on several variables. Suppose that a com-
pany markets two related products, say, toothbrushes and toothpaste. The company’s
marketing director may be interested in analyzing consumers’ preferences for the two
products. The exact type of analysis may vary depending on what the company needs
to know. What distinguishes the analysis—whatever form it may take—is that it should
consider people’s perceptions of both products jointly. Why? If the two products are
related, it is likely that consumers’ perceptions of the two products will be correlated.
Incorporating knowledge of such correlations in our analysis makes the analysis
more accurate and more meaningful.

Recall that regression analysis and correlation analysis are methods involving sev-
eral variables. In a sense, they are multivariate methods even though, strictly speak-
ing, in regression analysis we make the assumption that the independent variable or
variables are not random but are fixed quantities. In this chapter, we discuss statistical
methods that are usually referred to as multivariate. These are more advanced than
regression analysis or simple correlational analysis. In a multivariate analysis, we usu-
ally consider data on several variables as a single element—for example, an ordered
set of values such as (x1, x2, x3, x4) is considered a single element in an analysis that
concerns four variables. In the case of the analysis of consumers’ preference scores
for two products, we will have a consumer’s response as the pair of scores (x1, x2),
where x1 is the consumer’s preference for the toothbrush, measured on some scale, and
x2 is his or her preference for the toothpaste, measured on some scale. In the analysis,
we consider the pair of scores (x1, x2) as one sample point. When k variables are
involved in the analysis, we will consider the k-tuple of numbers (x1, x2, . . . , xk ) as one
element—one data point. Such an ordered set of numbers is called a vector. Vectors
form the basic elements of our analysis in this chapter.

As you recall, the normal distribution plays a crucial role in most areas of statistical
analysis. You should therefore not be surprised that the normal distribution plays an
equally important role in multivariate analysis. Interestingly, the normal distribution is
easily extendable to several variables. As such, it is the distribution of vector random
variables of the form X = (X1, X2, X3, . . . , Xk). The distribution is called the multivariate
normal distribution. When k = 2, the bivariate case, we have a two-dimensional nor-
mal distribution. Instead of a bell-shaped curve, we have a (three-dimensional)
bell-shaped mound as our density function. When k is greater than 2, the probability

1 1 1 1 1

1
1
1
1
1

17–1 Using Statistics

17-1

1More on the IRS’s use of statistics can be found in A. Aczel, How to Beat the IRS at Its Own Game, 2d ed. (New York:
Four Walls, 1995).
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function is a surface of higher dimensionality than 3, and we cannot graph it. The
multivariate normal distribution will be discussed in the next section. It forms the
basis for multivariate methods.

17–2 The Multivariate Normal Distribution
In the introduction, we mentioned that in multivariate analysis our elements are vec-
tors rather than single observations. We did not define a vector, counting on the intu-
itive interpretation that a vector is an ordered set of numbers. For our purposes, a
vector is just that: an ordered set of numbers, with each number representing a value
of one of the k variables in our analysis.

17-2 Chapter 17

A k-dimensional random variable X is

X = (X1, X2, . . . , Xk) (17–1)

where k is some integer.

A joint cumulative probability distribution function of a k-dimensional
random variable X is

F(x1, x2, . . . , xk) = P(X1 ≤ x1, X2 ≤ x2, . . . , Xk ≤ xk) (17–3)

A realization of a k-dimensional random variable X is

x = (x1, x2, . . . , xk) (17–2)

A realization of the random variable X is a drawing from the populations of values
of the k variables and will be denoted, as usual, by lowercase letters.

Thus, in our simple example of consumer preferences for two products, we will be
interested in the bivariate (two-component) random variable X = (X1, X2 ), where X1
denotes a consumer’s preference for the toothbrush and X2 is the same consumer’s
preference for the toothpaste. A particular realization of the bivariate random vari-
able may be (89, 78). If this is a result of random sampling from a population, it
means that the particular sampled individual rates the toothbrush an 89 (on a scale of
0 to 100) and the toothpaste a 78.

For the k-dimensional random variable X = (X1, X2, X3, . . . , Xk ), we may define
a cumulative probability distribution function F (x1, x2, x3, . . . , xk ). This is a joint
probability function for all k random variables Xi , where i = 1, 2, 3, . . . , k.

Equation 17–3 is a statement of the probability that X1 is less than or equal to some
value x1, and x2 is less than or equal to some value x2, and . . . and Xk is less than or
equal to some value xk. In our simple example, F (55, 60) is the joint probability that
a consumer’s preference score for the toothbrush is less than or equal to 55 and that
his or her preference score for the toothpaste is less than or equal to 60.

The multivariate normal distribution is an extension of the normal curve to several
variables—it is the distribution of a k-dimensional vector random variable.
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The multivariate normal distribution is an essential element in multivariate statis-
tical techniques. Most such techniques assume that the data (on several variables),
and the underlying multivariate random variable, are distributed according to a mul-
tivariate normal distribution. Figure 17–1 shows a bivariate (two-dimensional) normal
probability density function.

17–3 Discriminant Analysis
A bank is faced with the following problem: Due to economic conditions in the area
the bank serves, a large percentage of the bank’s mortgage holders are defaulting on
their loans. It therefore is very important for the bank to develop some criteria for
making a statistical determination about whether any particular loan applicant is likely
to be able to repay the loan. Is such a determination possible?

There is a very useful multivariate technique aimed at answering such a question.
The idea is very similar to multiple regression analysis. In multiple regression, we try
to predict values of a continuous-scale variable—the dependent variable—based on the
values of a set of independent variables. The independent variables may be continu-
ous, or they may be qualitative (in which case we use dummy variables to model
them, as you recall from Chapter 11). In discriminant analysis, the situation is sim-
ilar. We try to develop an equation that will help us predict the value of a dependent
variable based on values of a set of independent variables. The difference is that the
dependent variable is qualitative. In the bank loan example, the qualitative dependent
variable is a classification: repay or default. The independent variables that help us
make a classification of the loan outcome category may be family income, family

Multivariate Analysis 17-3

A multivariate normal random variable has the probability density function

f(x1, x2, . . . , xk) = (17–4)

where X is the vector random variable defined in equation 17–1; the term
� = (�1, �2, . . . , �k) is the vector of means of the component variables Xj ; and
∑ is the variance-covariance matrix. The operations ’ and �1 are transposition
and inversion of matrices, respectively, and � � denotes the determinant of a
matrix.

e-11>221X-�2¿a - 11X-�21

12�2k>2 ƒg ƒ1>2

FIGURE 17–1 The Bivariate Normal Probability Density Function
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assets, job stability (number of years with present employer), and any other variables
we think may have an effect on whether the loan will be repaid. There is also an
option where the algorithm itself chooses which variables should be included in the
prediction equation. This is similar to a stepwise regression procedure.

If we let our dependent, qualitative variable be D and we consider k independent
variables, then our prediction equation has the following form.

17-4 Chapter 17

The form of an estimated prediction equation is

D = b0 + b1X1 + b2X2 + · · · + bkXk (17–5)

where the bi, i = 1, . . . , k, are the discriminant weights—they are like the
estimated regression coefficients in multiple regression; b0 is a constant.

FIGURE 17–2 Maximizing the Separation between Two Groups
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X1 measurements (line of sight
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X2

X1

�1

Group 1

Group 2

Line L

�2

Developing a Discriminant Function
In discriminant analysis, we aim at deriving the linear combination of the independ-
ent variables that discriminates best between the two or more a priori defined groups
(the repay group versus the default group in the bank loan example). This is done by
finding coefficient estimates bi in equation 17–5 that maximize the among-groups
variation relative to the within-groups variation.

Figure 17–2 shows how we develop a discriminant function. We look for a direc-
tion in space, a combination of variables (here, two variables, X1 and X2) that maximizes
the separation between the two groups. As seen in the figure, if we consider only the X2
component of every point in the two groups, we do not have much separation
between the two groups. Look at the data in Figure 17–2 from the direction specified
by having the eye located by the X2 axis. As you see from your vantage point, the two
groups overlap, and some of the upper points in group 2 look as if they belong
in group 1. Now look at the data with the eye located below the X1 axis. Here you
have better separation between the two groups. From this vantage point, however,
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the points blend together into one big group, and you will still not be able to easily
classify a point as belonging to a single group based solely on its location. Now look
at the data with the eye above and perpendicular to line L. Here you have perfect
separation of the two groups, and if you were given the coordinate along line L of a
new point, you would probably be able to logically classify that point as belonging to
one group or the other. (Such classification will never be perfect with real data because
there will always be the chance that a point belonging to population 1 will somehow
happen to have a low X2 component and/or a large X1 component that would throw
it into the region we classify as belonging to population 2.) In discriminant analysis,
we find the combination of variables (i.e., the direction in space) that maximizes the
discrimination between groups. Then we classify new observations as belonging to
one group or the other based on their score on the weighted combination of variables
chosen as the discriminant function.

Since in multivariate analysis we assume that the points in each group have a mul-
tivariate normal distribution (with possibly different means), the marginal distribution
of each of the two populations, when viewed along the direction that maximizes the
differentiation between groups, is univariate normal. This is shown in Figure 17–3.

The point C on the discriminant scale is the cutting score. When a data point gets
a score smaller than C, we classify that point as belonging to population 1; and when a
data point receives a score greater than C, we classify that point as belonging to popu-
lation 2. This assumes, of course, that we do not know which population the point really
belongs to and we use the discriminant function to classify the point based on the values
the point has with respect to the independent variables. In our bank loan example,
we use the variables family income, assets, job stability, and other variables to estimate
a discriminant function that will maximize the differences (i.e., the multivariate dis-
tance) between the two groups: the repay group and the default group. Then, when
new applicants arrive, we find their score on our discriminant scale and classify the
applicants as to whether we believe they are going to repay or default. Errors will, of
course, occur. Someone we classify as a defaulter may (if given the loan) actually repay
it, and someone we classify in the repay group may not.

Look at Figure 17–3. There is an area under the univariate normal projection
of group 1 to the right of C. This is the probability of erroneously classifying an

Multivariate Analysis 17-5

FIGURE 17–3 The Discriminant Function
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observation in population 1 as belonging to population 2. Similarly, the area under the
right-hand normal curve to the left of the cutting score C is the probability of misclas-
sifying a point that belongs to population 2 as being from population 1.

When the population means of the two groups are equal, there is no discrimination
between the groups based on the values of the independent variables considered in the
analysis. In such a case, the univariate normal distributions of the discriminant scores
will be identical (the two curves will overlap). The reason the curves overlap is due to
the model assumptions. In discriminant analysis, we assume that the populations under
study have multivariate normal distributions with equal variance-covariance matrices
and possibly different means.

Evaluating the Performance of the Model
We test the accuracy of our discriminant function by evaluating its success rate when
the function is applied to cases with known group memberships. It is best to withhold
some of our data when we carry out the estimation phase of the analysis, and then
use the withheld observations in testing the accuracy of the predictions based on our
estimated discriminant function. If we try to evaluate the success rate of our discrim-
inant function based only on observations used in the estimation phase, then we run
the risk of overestimating the success rate. Still, we will use our estimation data in esti-
mating the success rate because withholding many observations for use solely in
assessing our classification success rate is seldom efficient. A classification summary
table will be produced by the computer. This table will show us how many cases were
correctly classified and will also report the percentage of correctly classified cases in
each group. This will give us the hit rate or hitting probabilities.

We assume that the cost of making one kind of error (classifying an element as
belonging to population 1 when the element actually belongs to population 2) is
equal to the cost of making the other kind of error (classifying an element as belong-
ing to population 2 when the element actually belongs to population 1). When the
costs are unequal, an adjustment to the procedure may be made.

The procedure may also be adjusted for prior probabilities of group membership.
That is, when assigning an element to one of the two groups, we may account not only
for its discriminant score, but also for its prior probability of belonging to the particular
population, based on the relative size of the population compared with the other popu-
lations under study. In the bank loan example, suppose that defaulting on the loan is a
very rare event, with a priori probability 0.001. We may wish to adjust our discriminant
criterion to account for this fact, appropriately reducing our rate of classifying people
as belonging to the default category. Such adjustments are based on the use of Bayes’
theorem. We demonstrate discriminant analysis with the example we used at the begin-
ning of this section, the bank loan example, which we will call Example 17–1.

17-6 Chapter 17

The bank we have been discussing has data on 32 loan applicants. Data are available
on each applicant’s total family assets, total family income, total debt outstanding,
family size, number of years with present employer for household head, and a quali-
tative variable that equals 1 if the applicant has repaid the loan and 0 if he or she has
not repaid the loan. Data are presented in Table 17–1. The bank will use the data to
estimate a discriminant function. The bank intends to use this function in classifying
future loan applicants.

E X A M P L E  1 7 – 1

The data, a random sample of 32 cases, are analyzed using the SPSS program
DISCRIMINANT. The output of the analysis is given in the following figures. We
use a stepwise procedure similar to stepwise multiple regression. At each stage, the
computer chooses a variable to enter the discriminant function. The criterion for
entering the equation may be specified by the user. Here we choose the Wilks lambda

S o l u t i o n
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criterion. The variable to enter is the variable that best fits the entry requirements in
terms of the associated Wilks lambda value. Variables may enter and leave the equa-
tion at each step in the same way that they are processed in stepwise regression. The
reason for this is that multicollinearity may exist. Therefore, we need to allow variables
to leave the equation once other variables are in the equation. Figure 17–4 shows the
variables that enter and leave the equation at each stage of the discriminant analysis.

We see that the procedure chose total family assets, total debt, and family size as the
three most discriminating variables between the repay and the default groups. The
summary table in Figure 17–4 shows that all three variables are significant, the largest
p value being 0.0153. The three variables have some discriminating power. Figure 17–5
shows the estimated discriminant function coefficients. The results in the figure give
us the following estimated discriminant function:

Multivariate Analysis 17-7

TABLE 17–1 Data of Example 17–1 (assets, income, and debt, in thousands of dollars)

Number of
Years with

Assets Income Debt Family Size Present Employer Repay/Default

98 35 12 4 4 1
65 44 5 3 1 1
22 50 0 2 7 1
78 60 34 5 5 1
50 31 4 2 2 1
21 30 5 3 7 1
42 32 21 4 11 1
20 41 10 2 3 1
33 25 0 3 6 1
57 32 8 2 5 1
8 23 12 2 1 0
0 15 10 4 2 0

12 18 7 3 4 0
7 21 19 4 2 0

15 14 28 2 1 0
30 27 50 4 4 0
29 18 30 3 6 0
9 22 10 4 5 0

12 25 39 5 3 0
23 30 65 3 1 0
34 45 21 2 5 0
21 12 28 3 2 1
10 17 0 2 3 1
57 39 13 5 8 0
60 40 10 3 2 1
78 60 8 3 5 1
45 33 9 4 7 0
9 18 9 3 5 1

12 23 10 4 4 1
55 36 12 2 5 1
67 33 35 2 4 1
42 45 12 3 8 0

D = �0.995 �0.0352 ASSETS � 0.0429 DEBT 
�  0.483 FAMILY SIZE (17–6)
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-------------- VARIABLES NOT IN THE ANALYSIS AFTER STEP   1 --------------

VARIABLE  TOLERANCE  F TO REMOVE   WILKS’ LAMBDA

ASSETS    1.0000000     6.6152

                      MINIMUM

VARIABLE  TOLERANCE  TOLERANCE  F TO ENTER    WILKS’ LAMBDA

INCOME    0.5784563  0.5784563  0.90821E-02      0.81908

DEBT      0.9706667  0.9706667   6.0662          0.67759

FAMSIZE   0.9492947  0.9492947   3.9269          0.72162

JOB       0.9631433  0.9631483   0.47688E-06     0.81933

F STATISTICS AND SIGNIFICANCES BETWEEN PAIRS OF GROUPS AFTER STEP   1

EACH F STATISTIC HAS   1 AND       30.0 DEGREES OF FREEDOM.

                 GROUP        0

   GROUP

       1                 6.6152

                         0.0153

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 

AT STEP 2, DEBT       WAS INCLUDED IN THE ANALYSIS.

                             DEGREES OF FREEDOM   SIGNIF.  BETWEEN GROUPS

WILKS’ LAMBDA    0.67759        2   1      30.0

EQUIVALENT F     6.89923            2      29.0   0.0035

---------------- VARIABLES IN THE ANALYSIS AFTER STEP   2 -----------------

-------------------------- D I S C R I M I N A N T  A N A L Y S I S

ON GROUPS DEFINED BY REPAY

ANALYSIS NUMBER       1

STEPWISE VARIABLE SELECTION

SELECTION RULE:  MINIMIZE WILKS’ LAMBDA

    MAXIMUM NUMBER OF STEPS. . . . . . . . . .      10

    MINIMUM TOLERANCE LEVEL. . . . . . . . . . 0.00100

    MINIMUM F TO ENTER . . . . . . . . . . . .  1.0000

    MAXIMUM F TO REMOVE. . . . . . . . . . . .  1.0000

CANONICAL DISCRIMINANT FUNCTIONS

    MAXIMUM NUMBER OF FUNCTIONS. . . . . . . . . .  1

    MINIMUM CUMULATIVE PERCENT OF VARIANCE . . 100.00

    MAXIMUM SIGNIFICANCE OF WILKS’ LAMBDA. . . 1.0000

PRIOR PROBABILITY FOR EACH GROUP IS 0.50000

-------------- VARIABLES NOT IN THE ANALYSIS AFTER STEP   0 --------------

                      MINIMUM

VARIABLE  TOLERANCE  TOLERANCE  F TO ENTER    WILKS’ LAMBDA

ASSETS    1.0000000  1.0000000    6.6152          0.81933

INCOME    1.0000000  1.0000000    3.0672          0.90724

DEBT      1.0000000  1.0000000    5.2263          0.85164

FAMSIZE   1.0000000  1.0000000    2.5292          0.92225

JOB       1.0000000  1.0000000    0.24457         0.99191

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 

AT STEP   1, ASSETS   WAS INCLUDED IN THE ANALYSIS.

                                DEGREES OF FREEDOM  SIGNIF.  BETWEEN GROUPS

WILKS’ LAMBDA        0.81933    1     1       30.0

EQUIVALENT F         6.61516          1       30.0   0.0153

FIGURE 17–4 SPSS-Produced Stepwise Discriminant Analysis for Example 17–1

17-8 Chapter 17
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FIGURE 17–5
SPSS-Produced Estimates of
the Discriminant Function
Coefficients for Example 17–1

UNSTANDARDIZED CANONICAL

DISCRIMINANT FUNCTION

COEFFICIENTS

FUNC 1

ASSETS -0.3522450E-01

DEBT 0.4291038E-01

FAMSIZE 0.4882695

(CONSTANT) -0.9950070

VARIABLE  TOLERANCE  F TO REMOVE   WILKS’ LAMBDA

ASSETS    0.9706667    7.4487          0.85164

DEBT      0.9706667    6.0662          0.81933

-------------- VARIABLES NOT IN THE ANALYSIS AFTER STEP   2 --------------

                      MINIMUM

VARIABLE  TOLERANCE  TOLERANCE  F TO ENTER    WILKS’ LAMBDA

INCOME    0.5728383  0.5568120  0.17524E-01      0.67717

FAMSIZE   0.9323959  0.9308959  2.2214           0.62779

JOB       0.9105435  0.9105435  0.27914          0.67091

F STATISTICS AND SIGNIFICANCES BETWEEN PAIRS OF GROUPS AFTER STEP   2

EACH F STATISTIC HAS   2 AND       29.0 DEGREES OF FREEDOM.

                   GROUP        0

     GROUP

         1                 6.8992

                           0.0035

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

AT STEP   3, FAMSIZE WAS INCLUDED IN  THE ANALYSIS.

                                DEGREES OF FREEDOM   SIGNIF.  BETWEEN GROUPS

WILKS’ LAMBDA        0.62779       3     1    30.0

EQUIVALENT F         5.53369             3    28.0    0.0041

FIGURE 17–4 (Continued)

---------------- VARIABLES IN THE ANALYSIS AFTER STEP   3 ----------------- 

VARIABLE  TOLERANCE  F TO REMOVE   WILKS’ LAMBDA

ASSETS    0.9308959    8.4282          0.81676

DEBT      0.9533874    4.1849          0.72162

FAMSIZE   0.9323959    2.2214          0.67759

-------------- VARIABLES NOT IN THE ANALYSIS AFTER STEP   3 --------------

                      MINIMUM

VARIABLE  TOLERANCE  TOLERANCE  F TO ENTER    WILKS’ LAMBDA

INCOME    0.5725772  0.5410775  0.24098E-01      0.62723

JOB       0.8333526  0.8333526  0.86952E-02      0.62759

F STATISTICS AND SIGNIFICANCES BETWEEN PAIRS OF GROUPS AFTER STEP  3

EACH F STATISTIC HAS   3 AND       28.0 DEGREES OF FREEDOM.

                 GROUP        0

   GROUP

       1                 5.5337

                         0.0041

F LEVEL OR TOLERANCE OR VIN INSUFFICIENT FOR FURTHER COMPUTATION

                                    SUMMARY TABLE

          ACTION      VARS  WILKS’

STEP ENTERED REMOVED   IN   LAMBDA    SIG.    LABEL

  1  ASSETS             1   .81933   .0153

  2  DEBT               2   .67759   .0035

  3  FAMSIZE            3   .62779   .0041

The cutting score is zero. Discriminant scores greater than zero (i.e., positive scores)
indicate a predicted membership in the default group (population 0), while negative
scores imply predicted membership in the repay group (population 1). This can be seen
by looking at the predicted group membership chart, Figure 17–6. The figure shows all
cases used in the analysis. Since we have no holdout sample for testing the effectiveness

Multivariate Analysis 17-9
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of prediction of group membership, the results are for the estimation sample only. For
each case, the table gives the actual group to which the data point (person, in our example)
belongs. A double asterisk (**) next to the actual group indicates that the point was incor-
rectly classified. The next column, under the heading “Highest Probability: Group,” gives
the predicted group membership (0 or 1) for every element in our sample.

In a sense, the hit ratio, the overall percentage of cases that were correctly classi-
fied by the discriminant function, is similar to the R2 statistic in multiple regression.
The hit ratio is a measure of how well the discriminant function discriminates
between groups. When this measure is 100%, the discrimination is very good; when
it is small, the discrimination is poor. How small is “small”? Let us consider this prob-
lem logically. Suppose that our data set contains 100 observations: 50 in each of the
two groups. Now, if we arbitrarily assign all 100 observations to one of the groups, we
have a 50% prediction accuracy! We should expect the discriminant function to give
us better than 50% correct classification ratio; otherwise we can do as well without it.
Similarly, suppose that one group has 75 observations and the other 25. In this case,

17-10 Chapter 17

FIGURE 17–6 Predicted Group Membership Chart for Example 17–1

CASE MIS ACTUAL HIGHEST PROBABILITY 2ND HIGHEST DISCRIMINANT

SEGNUM VAL SEL GROUP GROUP P(D/G) P(G/D) GROUP P (G/D) SCORES...

1 1 1 0.1798 0.9587 0 0.0413 �1.9990

2 1 1 0.3357 0.9293 0 0.0707 �1.6202

3 1 1 0.8840 0.7939 0 0.2061 �0.8034

4 1 ** 0 0.4761 0.5146 1 0.4854 0.1328

5 1 1 0.3368 0.9291 0 0.0709 �1.6181

6 1 1 0.5571 0.5614 0 0.4386 �0.0704

7 1 ** 0 0.6272 0.5986 1 0.4014 0.3598

8 1 1 0.7236 0.6452 0 0.3548 �0.3039

9 1 1 0.9600 0.7693 0 0.2307 �0.7076

10 1 1 0.3004 0.9362 0 0.0638 �1.6930

11 0 0 0.5217 0.5415 1 0.4585 0.2047

12 0 0 0.6018 0.8714 1 0.1286 1.3672

13 0 0 0.6080 0.5887 1 0.4113 0.3325

14 0 0 0.5083 0.8932 1 0.1068 1.5068

15 0 0 0.8409 0.6959 1 0.3041 0.6447

16 0 0 0.2374 0.9481 1 0.0519 2.0269

17 0 0 0.9007 0.7195 1 0.2805 0.7206

18 0 0 0.8377 0.8080 1 0.1920 1.0502

19 0 0 0.0677 0.9797 1 0.0203 2.6721

20 0 0 0.1122 0.9712 1 0.0288 2.4338

21 0 ** 1 0.7395 0.6524 0 0.3476 �0.3250

22 1 ** 0 0.9432 0.7749 1 0.2251 0.9166

23 1 1 0.7819 0.6711 0 0.3289 �0.3807

24 0 ** 1 0.5294 0.5459 0 0.4541 �0.0286

25 1 1 0.5673 0.8796 0 0.1204 �1.2296

26 1 1 0.1964 0.9557 0 0.0443 �1.9494

27 0 ** 1 0.6916 0.6302 0 0.3698 �0.2608

28 1 ** 0 0.7479 0.6562 1 0.3438 0.5240

29 1 ** 0 0.9211 0.7822 1 0.2178 0.9445

30 1 1 0.4276 0.9107 0 0.0893 �1.4509

31 1 1 0.8188 0.8136 0 0.1864 �0.8866

32 0 ** 1 0.8825 0.7124 0 0.2876 �0.5097
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In our example, the discriminant function passes both of these tests. The pro-
portions of people in each of the two groups are 14�32 = 0.4375, and 18�32 =
0.5625. From Figure 17–7, we know that the hit ratio of the discriminant function
is 0.7188 (71.88%). This figure is much higher than that we could obtain by arbi-
trary assignment (56.25%). The proportional chance criterion, equation 17–7, gives
us C = (0.4375)2 � (0.5625)2 = 0.5078. The hit ratio is clearly larger than this crite-
rion as well. While the hit ratio is better than expected under arbitrary classifica-
tion, it is not great. We would probably like to have a greater hit ratio if we were
to classify loan applicants in a meaningful way. In this case, over 28% may be
expected to be incorrectly classified. We must also keep in mind two facts: (1) Our
sample size was relatively small, and therefore our inference may be subject to large
errors; and (2) our hit ratio is overestimated because it is based on the estimation
data. To get a better idea, we would need to use the discriminant function in classi-
fying cases not used in the estimation and see how well the function performs with
this data set.

Figure 17–8 shows the locations of the data points in the two groups in relation to
their discriminant scores. It is a map of the locations of the two groups along the
direction of greatest differentiation between the groups (the direction of the discrimi-
nant function). Note the overlap of the two groups in the middle of the graph and the
separation on the two sides. (Group 0 is denoted by 1s and group 1 by 2s.)

Discriminant Analysis with More Than Two Groups
Discriminant analysis is extendable to more than two groups. When we carry out an
analysis with more than two groups, however, we have more than one discriminant
function. The first discriminant function is the function that discriminates best among

Multivariate Analysis 17-11

FIGURE 17–7 Summary Table of Classification Results for Example 17–1

The proportional chance criterion is

C � p2 � (1 � p)2 (17–7)

where p is the proportion of observations in one of the two groups (given as
a decimal quantity).

CLASSIFICATION RESULTS -

NO. OF PREDICTED GROUP MEMBERSHIP

ACTUAL GROUP CASES 0 1

GROUP 0 14 10 4

71.4% 28.6%

GROUP 1 18 5 13

27.8% 72.2%

PERCENT OF ‘GROUPED’ CASES CORRECTLY CLASSIFIED: 71.88%

we get 75% correct classification if we assign all our observations to the large group.
Here the discriminant function should give us better than 75% correct classification
if it is to be useful.

Another criterion for evaluating the success of the discriminant function is the
proportional chance criterion.
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the r groups. The second discriminant function is a function that has zero correlation
with the first and has second-best discriminating power among the r groups, and so
on. With r groups, there are r � 1 discriminant functions. Thus, with three groups, for
example, there are two discriminant functions.

For Example 17–1, suppose that the bank distinguishes three categories: people
who repay the loan (group 1), people who default (group 0), and people who have
some difficulties and are several months late with payments, but do not default
(group 2). The bank has data on a random sample of 46 people, each person falling
into one of the three categories. Figure 17–9 shows the classification probabilities and
the predicted groups for the new analysis. The classification is based on scores on
both discriminant functions. The discriminant scores of each person on each of
the two discriminant functions are also shown. Again, double asterisks denote a mis-
classified case. Figure 17–10 gives the estimated coefficients of the two discriminant
functions.

Figure 17–11 gives the classification summary. We see that 86.7% of the group 0
cases were correctly classified by the two discriminant functions, 78.6% of group 1
were correctly classified, and 82.4% of group 2 were correctly classified. The overall
percentage of correctly classified cases is 82.61%, which is fairly high.

Figure 17–12 is a scatter plot of the data in the three groups. The figure also shows
the three group means. The following figure, Figure 17–13, is especially useful. This
is a territorial map of the three groups as determined by the pair of estimated dis-
criminant functions. The map shows the boundaries of the plane formed by looking
at the pair of scores: (discriminant function 1 score, discriminant function 2 score).
Any new point may be classified as belonging to one of the groups depending on
where its pair of computed scores makes it fall on the map. For example, a point
with the scores 2 on function 1 and �4 on function 2 falls in the territory of group 0

17-12 Chapter 17

FIGURE 17–8 A Map of the Location of the Two Groups for Example 17–1

SYMBOLS USED IN PLOTS
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FIGURE 17–9 Predicted Group Membership Chart for Three Groups (extended Example 17–1)

CASE MIS ACTUAL HIGHEST PROBABILITY 2ND HIGHEST DISCRIMINANT

SEGNUM VAL SEL GROUP GROUP P(D/G) P(G/D) GROUP P(G/D) SCORES...

1 1 1 0.6966 0.9781 2 0.0198 -2.3023 -0.4206

2 1 1 0.3304 0.9854 2 0.0142 -2.8760 -0.1267

3 1 1 0.9252 0.8584 2 0.1060 -1.2282 -0.3592

4 1 1 0.5982 0.9936 2 0.0040 -2.3031 -1.2574

5 1** 0 0.6971 0.8513 1 0.1098 0.6072 -1.3190

6 1 1 0.8917 0.8293 2 0.1226 -1.1074 -0.3643

7 1** 0 0.2512 0.5769 1 0.4032 -0.0298 -1.8240

8 1 1 0.7886 0.9855 2 0.0083 -1.9517 -1.1657

9 0 0 0.3132 0.4869 1 0.4675 -0.1210 -1.3934

10 0 0 0.4604 0.9951 2 0.0032 2.1534 -1.7015

11 0 0 0.5333 0.9572 1 0.0348 1.0323 -1.9002

12 0 0 0.8044 0.9762 2 0.0204 1.9347 -0.9280

13 0 0 0.6697 0.8395 1 0.1217 0.5641 -1.3381

14 0 0 0.2209 0.7170 2 0.2815 2.2185 0.6586

15 0 0 0.6520 0.9900 2 0.0075 2.0176 -1.3735

16 0 0 0.0848 0.9458 2 0.0541 3.2112 0.3004

17 0** 2 0.2951 0.7983 0 0.1995 1.6393 1.4480

18 1** 0 0.1217 0.6092 1 0.3843 -0.0234 -2.3885

19 0 0 0.6545 0.6144 2 0.3130 0.7054 -0.0932

20 1 1 0.7386 0.9606 2 0.0362 -2.1369 -0.2312

21 1 1 0.0613 0.9498 2 0.0501 -3.2772 0.8831

22 0 0 0.6667 0.6961 1 0.1797 0.3857 -0.7874

23 1 1 0.7659 0.8561 2 0.1320 -1.6001 0.0635

24 0** 1 0.5040 0.4938 2 0.3454 -0.4694 -0.0770

25 2** 1 0.9715 0.8941 2 0.0731 -1.2811 -0.5314

26 2 2 0.6241 0.5767 0 0.2936 0.2503 0.2971

27 2 2 0.9608 0.9420 0 0.0353 0.1808 1.5221

28 2 2 0.9594 0.9183 0 0.0589 0.3557 1.3629

29 2** 0 0.2982 0.5458 2 0.4492 1.6705 0.6994

30 2** 1 0.9627 0.9160 2 0.0462 -1.2538 -0.8067

31 2 2 0.0400 0.9923 0 0.0076 1.7304 3.1894

32 2 2 0.9426 0.9077 1 0.0620 -0.2467 1.3298

33 2 2 0.7863 0.7575 0 0.2075 0.6256 0.8154

34 2 2 0.3220 0.9927 0 0.0060 0.6198 2.6635

35 2 2 0.9093 0.8322 1 0.1113 -0.2519 0.9826

36 2 2 0.5387 0.5528 0 0.4147 0.8843 0.4770

37 2 2 0.7285 0.9752 1 0.0160 -0.1655 2.0088

38 2 2 0.7446 0.9662 1 0.0248 -0.3220 1.9034

39 0 0 0.6216 0.9039 1 0.0770 0.7409 -1.6165

40 2 2 0.9461 0.8737 1 0.0823 -0.2246 1.1434

41 1 1 0.7824 0.9250 2 0.0690 -1.8845 -0.0819

42 0 0 0.3184 0.9647 1 0.0319 1.0456 -2.3016

43 1 1 0.7266 0.7304 0 0.1409 -0.6875 -0.6183

44 2 2 0.8738 0.9561 1 0.0278 -0.1642 1.7082

45 0 0 0.6271 0.9864 2 0.0121 2.2294 -1.0154

46 2 2 0.2616 0.9813 1 0.0175 -0.8946 2.5641
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CLASSIFICATION RESULTS

NO. OF PREDICTED GROUP MEMBERSHIP

ACTUAL GROUP CASES 0 1 2

GROUP 0 15 13 1 1

86.7% 6.7% 6.7%

GROUP 1 14 3 11 0

21.4% 78.6% 0.0%

GROUP 2 17 1 2 14

5.9% 11.8% 82.4%

PERCENT OF ’GROUPED’ CASES CORRECTLY CLASSIFIED: 82.61%

FIGURE 17–11 Summary Table of Classification Results (extended Example 17–1)

FIGURE 17–12 Scatter Plot of the Data (extended Example 17–1)

                   ALL—GROUPS SCATTERPLOT — * INDICATES A GROUP CENTROID
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N     OUT      —6.0      —4.0      —2.0         0       2.0       4.0       6.0        OUT
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N OUT X                                                                                  X

I      |                                                                                 |

C      |                                                                                 |

A      |                                                                                 |

L      |                                                                                 |

       |                                                                                 |

D  4.0 +                                                                                 +
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I      |                                                                                 |
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I      |                                      3 3                                        |

N      |                                      3* 3        1                              |

A      |                        2             3                                          |
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     0 +                             2  22   1      1                                    +

       |                              22  2                                              |

F      |                                 *3 2     1     *                                |

U      |                                2                    11                          |

N      |                              2       1    1         1                           |

C      |                                         2  1         1                          |

T —2.0 +                                             1                                   +

I      |                                         2   1                                   |

O      |                                                                                 |

N      |                                                                                 |

       |                                                                                 |

2      |                                                                                 |

   OUT X                                                                                 X

O       X---------+---------+---------+---------+---------+---------+---------+---------X

      OUT      —6.0      —4.0      —2.0         0       2.0       4.0       6.0        OUT

FIGURE 17–10 Estimated Coefficients of the Two Discriminant Functions (extended 
Example 17–1)

UNSTANDARDIZED CANONICAL DISCRIMINANT FUNCTION COEFFICIENTS

FUNC 1 FUNC 2

ASSETS –0.4103059E–01 –0.5688170E–03

INCOME –0.4325325E–01 –0.6726829E–01

DEBT 0.3644035E–01 0.4154356E–01

FAMSIZE 0.7471749 0.1772388

JOB 0.1787231 –0.4592559E–01

(CONSTANT) –0.9083139 –3.743060
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FIGURE 17–13 Territorial Map (extended Example 17–1)

          TERRITORIAL MAP * INDICATES A  GROUP CENTROID

                          CANONICAL DISCRIMINANT FUNCTION 1

     —8.0      —6.0      —4.0      —2.0         0       2.0       4.0       6.0      8.0

        +---------+---------+---------+---------+---------+---------+---------+--------+
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O      |                                                                                |
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L      |    222333                                                                      |

       |      222333                                                                    |
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I      |          222333                                                            3333|
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I      |                 222333                                           33331111      |
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I      |                    222333                                  33331111            |
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A      |                         222333                      33331111                   |

N      |                           222333       *          33331111                     |
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       |                               222333        33331111                           |

F      |                                 222333   33331111                              |

U    O +          +         +         +    2223333331111  +         +         +         +

N      |                                     22231111                                   |

C      |                                   *   221   *                                  |

T      |                                       211                                      |

I      |                                       21                                       |

0      |                                       21                                       |

N —2.0 +          +         +         +        21         +         +         +         +

       |                                       21                                       |

2      |                                       21                                       |

       |                                       21                                       |

       |                                       21                                       |

       |                                       21                                       |

  —4.0 +          +         +         +       221         +         +         +         +

       |                                      211                                       |

       |                                      21                                        |

       |                                      21                                        |

       |                                      21                                        |

       |                                      21                                        |

  —6.0 +          +         +         +       21          +         +         +         +

       |                                      21                                        |

       |                                      21                                        |

       |                                      21                                        |

       |                                      21                                        |

       |                                      21                                        |

  —8.0 +                                     221                                        +

        +---------+---------+---------+---------+---------+---------+---------+--------+

     —8.0      —6.0      —4.0      —2.0         0       2.0       4.0       6.0      8.0

SYMBOLS USED IN TERRITORIAL MAP

SYMBOL  GROUP LABEL

-----  -----  --------------

  1       0

  2       1

  3       2

  *           GROUP CENTROIDS

(this group is denoted by 1 in the plot, as indicated). A group territory is marked by its
symbol on the inside of its boundaries with other groups. Group means are also
shown, denoted by asterisks.

Many more statistics relevant to discriminant analysis may be computed and
reported by computer packages. These are beyond the scope of our discussion, but
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P R O B L E M S

17–1. What are the purposes of discriminant analysis?
17–2. Suppose that a discriminant analysis is carried out on a data set consisting of
two groups. The larger group constitutes 125 observations and the smaller one 89. The
relative sizes of the two groups are believed to reflect their relative sizes within the pop-
ulation. If the classification summary table indicates that the overall percentage of cor-
rect classification is 57%, would you use the results of this analysis? Why or why not?
17–3. Refer to the results in Figure 17–5 and to equation 17–6. Suppose that a loan
applicant has assets of $23,000, debt of $12,000, and a family with three members.
How should you classify this person, if you are to use the results of the discriminant
analysis? (Remember that debt and assets values are listed without the “000” digits in
the program.)
17–4. For problem 17–3, suppose an applicant has $54,000 in assets, $10,000 of
debt, and a family of four. How would you classify this applicant? In this problem
and the preceding one, be careful to interpret the sign of the score correctly.
17–5. Why should you use a holdout data set and try to use the discriminant func-
tion for classifying its members? How would you go about doing this?
17–6. A mail-order firm wants to be able to classify people as prospective buyers
versus nonbuyers based on some of the people’s demographics provided on mailing
lists. Prior experience indicates that only 8% of those who receive a brochure end up
buying from the company. Use two criteria to determine the minimum overall pre-
diction success rate you would expect from a discriminant function in this case.
17–7. In the situation of problem 17–6, how would you account for the prior knowl-
edge that 8% of the population of those who receive a brochure actually buy?
17–8. Use the territorial map shown in Figure 17–13 to predict group membership
for a point with a score of �3 on discriminant function 1 and a score of 0 on dis-
criminant function 2. What about a point with a score of 2 on function 1 and 4 on
function 2?
17–9. Use the information in Figure 17–10 and the territorial map in Figure 17–13 to
classify a person with assets of $50,000, income of $37,500, debt of $23,000, family
size of 2, and 3 years’ employment at the current job.
17–10. What are the advantages of a stepwise routine for selection of variables to be
included in the discriminant function(s)?
17–11. A discriminant function is estimated, and the p -value based on Wilks’ lambda
is found to be 0.239. Would you use this function? Explain.
17–12. What is the meaning of P (G | D), and how is it computed when prior infor-
mation is specified?
17–13. In trying to classify members of a population into one of six groups, how
many discriminant functions are possible? Will all these functions necessarily be
found significant? Explain.
17–14. A discriminant analysis was carried out to determine whether a firm
belongs to one of three classes: build, hold, or pull back. The results, reported in
an article in the Journal of Marketing Research, include the following territorial map.
How would you classify a firm that received a score of 0 on both discriminant
functions?

explanations of these statistics may be found in books on multivariate analysis. This
section should give you the basic ideas of discriminant analysis so that you may build
on the knowledge acquired here.
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Discriminant Territorial Map

Canonical discriminant function 2
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17–4 Principal Components and Factor Analysis
In this section, we discuss two related methods for decomposing the information
content in a set of variables into information about an inherent set of latent compo-
nents. The first method is called principal component analysis. Our aim with this
method is to decompose the variation in a multivariate data set into a set of compo-
nents such that the first component accounts for as much of the variation in the data
as possible, the second component accounts for the second largest portion of the
variation, and so on. In addition, each component in this method of analysis is
orthogonal to the others; that is, each component is uncorrelated with the others: as a
direction in space, each component is at right angles to the others.

In factor analysis, which is the second method for decomposing the information
in a set of variables, our approach to the decomposition is different. We are not
always interested in the orthogonality of the components (in this context, called factors);
neither do we care whether the proportion of the variance accounted for by the
factors decreases as each factor is extracted. Instead, we look for meaningful factors
in terms of the particular application at hand. The factors we seek are the underly-
ing, latent dimensions of the problem. The factors summarize the larger set of original
variables.

For example, consider the results of a test consisting of answers to many ques-
tions administered to a sample of students. If we apply principal-components analy-
sis, we will decompose the answers to the questions into scores on a (usually smaller)
set of components that account for successively smaller portions of the variation in
the student answers and that are independent of each other. If we apply factor analy-
sis, on the other hand, we seek to group the question variables into a smaller set of
meaningful factors. One factor, consisting of responses to several questions, may be a
measure of raw intelligence; another factor may be a measure of verbal ability and
will consist of another set of questions; and so on.

We start by discussing principal components and then present a detailed
description of the techniques of factor analysis. There are two kinds of factor analysis.
One is called R-factor analysis, and this is the method we will describe. Another is
called Q-factor analysis. Q-factor analysis is a technique where we group the respon-
dents, people or data elements, into sets with certain meanings rather than group
the variables.
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Principal Components
Figure 17–14 shows a data set in two dimensions. Each point in the ellipsoid cluster
has two components: X and Y. If we look at the direction of the data cluster, how-
ever, we see that it is not oriented along either of the two axes X and Y. In fact, the
data are oriented in space at a certain angle to the X axis. Look at the two principal axes
of the ellipse of data, and you will notice that one contains much variation along its
direction. The other axis, at 90° to the first, represents less variation of the data along
its direction. We choose that direction in space about which the data are most variable
(the principal axis of the ellipse) and call it the first principal component. The second
principal component is at 90° to the first—it is orthogonal to the first. These axes are
shown in Figure 17–14. Note that all we really have to do is to rotate the original X and
Y axes until we find a direction in space where the principal axis of the elliptical cluster
of data lies along this direction. Since this is the larger axis, it represents the largest
variation in the data; the data vary most along the direction we labeled first component.
The second component captures the second-largest variation in the data.

With three variables, there are three directions in space. We find that rotation of
the axes of the three variables X, Y, and Z such that the first component is the direc-
tion in which the ellipsoid of data is widest. The second component is the direction
with the second-largest proportion of variance, and the third component is the direc-
tion with the third-largest variation. All three components are at 90° to one another.
Such rotations, which preserve the orthogonality (90° angle) of the axes, are called
rigid rotations. With more variables, the procedure is the same (except that we can no
longer graph it). The successive reduction in the variation in the data with the extraction
of each component is shown schematically in Figure 17–15.

The Extraction of the Components
The fundamental theorem of principal components  is a remarkable mathematical theo-
rem that allows us to find the components. The theorem says that if we have any set of
k variables X1, X2, . . . , Xk , where the variance-covariance matrix of these variables,
denoted , is invertible (an algebraic condition you need not worry about), we can always
transform the original variables to a set of k uncorrelated variables Y1, Y2, . . . , Yk by an
appropriate rotation. Note that we do not require a normal-distribution assumption.

Can you think of one very good use of principal-component analysis as a pre-
liminary stage for an important statistical technique? Remember the ever-present
problem of multicollinearity in multiple regression analysis? There the fact that k
“independent” variables turned out to be dependent on one another caused many

g
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FIGURE 17–14 Principal Components of a Bivariate Data Set
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problems. One solution to the problem of multicollinearity is to transform the original
k variables, which are correlated with one another, into a new set of k uncorrelated
variables. These uncorrelated variables are the principal components of the data set.
Then we can run the regression on the new set, the principal components, and avoid
the multicollinearity altogether. We still have to consider, however, the contribution
of each original variable to the dependent variable in the regression.

Equation 17–8 is the equation of the first principal component, which is a linear
combination of the original k variables X1, X2, . . . , Xk.

Multivariate Analysis 17-19

FIGURE 17–15 Reduction in the Variance in a Data Set with Successive Extraction 
of Components

Total variance

After first
component

After second
component

After third
component

Remaining variance after successive
extraction of three components

Y1 � a11X1 � a12X2 � · · · � a1k Xk (17–8)

Y2 � a21X1 � a22X2 � · · · � a2k Xk (17–9)

Similarly, the second principal component is given by

and so on. The aij are constants, like regression coefficients. The linear combinations
are formed by the rotation of the axes.

If we use k new independent variables Y1, Y2, . . . , Yk , then we have accounted for
all the variance in the observations. In that case, all we have done is to transform the
original variables to linear combinations that are uncorrelated with one another
(orthogonal) and that account for all the variance in the observations, the first com-
ponent accounting for the largest portion, the second for less, and so on. When we
use k new variables, however, there is no economy in the number of new variables. If,
on the other hand, we want to reduce the number of original variables to a smaller
set where each new variable has some meaning—each new variable represents a hidden
factor—we need to use factor analysis. Factor analysis (the R-factor kind), also called
common-factor analysis, is one of the most commonly used multivariate methods, and
we devote the rest of this section to a description of this important method. In factor
analysis, we assume a multivariate normal distribution.

Factor Analysis
In factor analysis, we assume that each of the variables we have is made up of a linear
combination of common factors (hidden factors that affect the variable and possibly
affect other variables) and a specific component unique to the variable.
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The k original Xi variables written as linear combinations of a smaller set of 
m common factors and a unique component for each variable are

X1 = b11F1 + b12F2 + · · · + b1mFm + U1

X2 = b21F1 + b22F2 + · · · + b2mFm + U2

·

·

·

Xk = bk1F1 + bk2F2 + · · · + bkmFm + Uk (17–10)

The Fj , j = 1, . . . , m, are the common factors. Each Ui, i = 1, . . . , k, is the
unique component of variable Xi. The coefficients bij are called factor loadings.

The total variance in the data in factor analysis is composed of the common-factor
component, called the communality, and the specific part, due to each variable alone.

The Extraction of Factors
The factors are extracted according to the communality. We determine the number
of factors in an analysis based on the percentage of the variation explained by each
factor. Sometimes prior considerations lead to the determination of the number of
factors. One rule of thumb in determining the number of factors to be extracted con-
siders the total variance explained by the factor. In computer output, the total vari-
ance explained by a factor is listed as the eigenvalue. (Eigenvalues are roots of
determinant equations and are fundamental to much of multivariate analysis. Since
understanding them requires some familiarity with linear algebra, we will not say
much about eigenvalues, except that they are used as measures of the variance
explained by factors.) The rule just mentioned says that a factor with an eigenvalue
less than 1.00 should not be used because it accounts for less than the variation
explained by a single variable. This rule is conservative in the sense that we probably
want to summarize the variables with a set of factors smaller than indicated by this
rule. Another, less conservative, rule says that the factors should account for a rela-
tively large portion of the variation in the variables: 80%, 70%, 65%, or any relatively
high percentage of the variance. The consideration in setting the percentage is similar
to our evaluation of R2 in regression. There really is no absolute rule.

We start the factor analysis by computing a correlation matrix of all the variables.
This diagonal matrix has 1s on the diagonal because the correlation of each variable
with itself is equal to 1.00. The correlation in row i and column j of this matrix is the
correlation between variables Xi and Xj. The correlation matrix is then used by the
computer in extracting the factors and producing the factor matrix. The factor matrix
is a matrix showing the factor loadings—the sample correlations between each factor
and each variable. These are the coefficients bij in equation 17–10. Principal-component
analysis is often used in the preliminary factor extraction procedure, although other
methods are useful as well.

The Rotation of Factors
Once the factors are extracted, the next stage of the analysis begins. In this stage, the
factors are rotated. The purpose of the rotation is to find the best distribution of the
factor loadings in terms of the meaning of the factors. If you think of our hypothetical
example of scores of students on an examination, it could be that the initial factors
derived (these could be just the principal components) explain proportions of the
variation in scores, but not in any meaningful way. The rotation may then lead us to
find a factor that accounts for intelligence, a factor that accounts for verbal ability, a
third factor that accounts for artistic talent, and so on. The rotation is an integral part
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of factor analysis and helps us derive factors that are as meaningful as possible.
Usually, each of the initially derived factors will tend to be correlated with many of
the variables. The purpose of the rotation is to identify each factor with only some of the
variables—different variables with each factor—so that each factor may be interpreted
in a meaningful way. Each factor will then be associated with one hidden attribute:
intelligence, verbal ability, or artistic talent.

There are two classes of rotation methods. One is orthogonal, or rigid, rotation.
Here the axes maintain their orthogonality; that is, they maintain an angle of 90°
between every two of them. This means that the factors, once they are rotated, will
maintain the quality of being uncorrelated with each other. This may be useful if we
believe that the inherent, hidden dimensions in our problem are independent of one
another (here this would mean that we believe intelligence is independent of verbal
ability and that both are independent of artistic talent). The rigid rotation is also simpler
to carry out than nonrigid rotation. A nonrigid rotation is called an oblique rotation.
In an oblique rotation, we allow the factors to have some correlations among them.
We break the initial 90° angles between pairs of axes (pairs of factors), and we seek the
best association between factors and variables that are included in them, regardless of
whether the factors are orthogonal to one another (i.e., at 90° to one another).

Figure 17–16 shows the two possible kinds of rotation. The dots on the graph in
each part of the figure correspond to variables, and the axes correspond to factors. In
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FIGURE 17–16 An Orthogonal Factor Rotation and an Oblique Factor Rotation
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the first example, orthogonal rotation, look at the projections of the seven points
(seven variables) along the two axes. These are the factor loadings. When we rotate
the axes (the factors), maintaining their 90° angle, we find a better fit of the variables
with the factors. The top four variables load highly on the shifted vertical axis, while
the bottom three variables load highly on the shifted horizontal axis. In the lower fig-
ure, we see that an oblique rotation provides a better association of the factors with
the variables in this different situation.

There are several algorithms for orthogonal rotation. The most commonly used
algorithm is called VARIMAX. The VARIMAX rotation aims at finding a solution
where a variable loads highly on one particular factor and loads as lowly as possible
on other factors. The algorithm maximizes the sum of the variances of the loadings
in the factor matrix; hence the name VARIMAX. When we use this method, our
final solution will have factors with loadings that are high on some variables and low
on others. This simplifies the interpretation of the factors. Two other methods are
QUARTIMAX and EQUIMAX. Since they are less commonly used, we will not
discuss them. Let us look at an example.

17-22 Chapter 17

An analysis of the responses of 1,076 randomly sampled people to a survey about job
satisfaction was carried out. The questionnaire contained 14 questions related to satis-
faction on the job. The responses to the questions were analyzed using factor analysis
with VARIMAX rotation of factors. The results, the four factors extracted and their
loadings with respect to each of the original 14 variables, are shown in Table 17–2.

E X A M P L E  1 7 – 2

The highest-loading variables are chosen for each factor. Thus, the first factor has
loadings of 0.87, 0.88, 0.92, and 0.65 on the questions relabeled as 1, 2, 3, and 4,
respectively. After looking at the questions, the analysts named this factor satisfaction
with information. After looking at the highest-loading variables on the next factor, fac-
tor 2, the analysts named this factor satisfaction with variety. The two remaining factors

S o l u t i o n

TABLE 17–2 Factor Analysis of Satisfaction Items

Factor Loadingsa

1 2 3 4
Satisfaction with Information
1. I am satisfied with the information I receive from my superior about my

job performance 0.87 0.19 0.13 0.22
2. I receive enough information from my supervisor about my job performance 0.88 0.14 0.15 0.13
3. I receive enough feedback from my supervisor on how well I’m doing 0.92 0.09 0.11 0.12
4. There is enough opportunity in my job to find out how I am doing 0.65 0.29 0.31 0.15

Satisfaction with Variety
5. I am satisfied with the variety of activities my job offers 0.13 0.82 0.07 0.17
6. I am satisfied with the freedom I have to do what I want on my job 0.17 0.59 0.45 0.14
7. I am satisfied with the opportunities my job provides me to interact 

with others 0.18 0.48 0.32 0.22
8. There is enough variety in my job 0.11 0.75 0.02 0.12
9. I have enough freedom to do what I want in my job 0.17 0.62 0.46 0.12

10. My job has enough opportunity for independent thought and action 0.20 0.62 0.47 0.06

Satisfaction with Closure
11. I am satisfied with the opportunities my job gives me to complete tasks

from beginning to end 0.17 0.21 0.76 0.11
12. My job has enough opportunity to complete the work I start 0.12 0.10 0.71 0.12

Satisfaction with Pay
13. I am satisfied with the pay I receive for my job 0.17 0.14 0.05 0.51
14. I am satisfied with the security my job provides me 0.10 0.11 0.15 0.66

aVarimax rotation. R2 for each of the four factors is 41.0, 13.5, 8.5, and 7.8, respectively.
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were named in a similar way. The key to identifying and interpreting the factors is
to look for the variables with highest loadings on each factor and to find a common
meaning: a summary name for all the variables loading high on that factor. The
VARIMAX rotation is especially useful for such interpretations because it will make
each factor have some variables with high loadings and the rest of the variables with
low loadings. The factor is then identified with the high-loading variables.

The factor loadings are the standardized regression coefficients in a multiple regres-
sion equation of each original variable as dependent, and with the factors as inde-
pendent variables. When the factors are uncorrelated, as is the case when we use an
orthogonal rotation, the total proportion of the variance explained for each variable is
equal to the sum of the proportions of the variance explained by all the factors. The
proportion of the variance of each variable that is explained by the common factors is
the communality. For each variable we therefore have

Multivariate Analysis 17-23

Communality = % variance explained = (17–11)a
j

b2
ij

where bij are the coefficients from the appropriate equation for the variable in question
from equation 17–11. In this example, we have for the variable “I am satisfied with the
information I receive from my superior about my job performance” (variable 1):

Communality = (0.87)2 + (0.19)2 + (0.13)2 + (0.22)2 = 0.8583, or 85.83%

(See the loadings of this variable on the four factors in Table 17–2.) This means that
85.83% of the variation in values of variable 1 is explained by the four factors. We may
similarly compute the communality of all other variables. Variable 1 is assigned to
factor 1, as indicated in the table. That factor accounts for (0.87)2 = 0.7569, or 75.69%
of the variation in this variable. Variable 5, for example, is assigned to factor 2, and
factor 2 accounts for (0.82)2 = 0.6724, or 67.24% of the variation in variable 5.

17–15. What is the main purpose of factor analysis?
17–16. What are the differences between factor analysis and principal-components
analysis?
17–17. What are the two kinds of factor analysis, and why is one of them more com-
monly used than the other?
17–18. What are the two kinds of factor rotation? What is the aim of rotating the
factors? What is achieved by each of the two kinds of rotation?
17–19. What is achieved by the VARIMAX rotation, and what are two other rotation
methods?

In the following problems, we present tables of results of factor analyses in differ-
ent contexts reported in the marketing research literature. Give a brief interpretation
of the findings in each problem.

P R O B L E M S

Finally, we mention a use of factor analysis as a preliminary stage for other forms
of analysis. We can assign factor scores to each of the respondents (each member of
our data set) and then conduct whatever analysis we are interested in, using the factor
scores instead of scores on the original variables. This is meaningful when the factors
summarize the information in a way that can be interpreted easily.
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Rotated Factor Loadings

Factor 1 Factor 2 Factor 3
(Scale 3) (Scale 2) (Scale 1)

1. Argument evaluation
a. Supplier’s argument 0.31 0.38 0.76
b. User’s argument 0.15 0.35 0.85

2. Who-must-yield
a. Who must give in 0.15 0.85 0.29
b. Who has best case 0.18 0.78 0.37

3. Overall supplier evaluation
a. Overall impression 0.90 0.18 0.26
b. Buy from in future 0.94 0.14 0.12

17–22. Name the factors; consider the signs of the loadings.

Factor 1 Factor 2 Factor 3 Factor 4

Importance 1 0.59

Importance 2 0.56

Importance 3 0.62

Importance 4 0.74

Pleasure 1 �0.73

Pleasure 2 �0.68

Pleasure 3 �0.82

Pleasure 4 �0.67

Pleasure 5 �0.58

Sign 1 0.78

Sign 2 0.94

Sign 3 0.73

Sign 4 0.77

17–21.
Pattern Matrix

Factor 1 Factor 2 Factor 3 Factor 4
Price Retailing/Selling Advertising Product

Price item 1 0.37964 �0.11218 0.21009 �0.16767
Price item 2 0.34560 �0.11200 0.18910 �0.09073
Price item 3 0.60497 0.07133 �0.04858 0.03024
Price item 6 0.81856 0.03963 �0.01044 0.01738
Price item 7 0.74661 0.03967 0.00884 �0.06703

Retailing/selling item 1 0.07910 0.74098 �0.02888 0.07095
Retailing/selling item 2 �0.13690 0.58813 0.15950 �0.14141
Retailing/selling item 3 0.01484 0.74749 �0.02151 0.02269
Retailing/selling item 6 �0.05868 0.56753 0.10925 �0.13337
Retailing/selling item 7 0.07788 0.69284 �0.02320 �0.00457

Advertising item 2 �0.03460 �0.03414 0.65854 �0.01691
Advertising item 3 �0.06838 0.01973 0.71499 �0.06951
Advertising item 4 0.01481 �0.00748 0.57196 �0.03100
Advertising item 5 0.20779 0.13434 0.38402 0.12561
Advertising item 7 0.00921 0.11200 0.64330 �0.02534

Product item 2 0.24372 0.16809 �0.05254 �0.33600
Product item 3 �0.00370 0.02951 �0.00013 �0.61145
Product item 5 �0.03193 0.00631 0.04031 �0.78286
Product item 6 0.02346 0.01814 0.09122 �0.73298
Product item 7 0.03854 0.08088 �0.05244 �0.33921

≥

¥

¥

¥

¥

≥

≥

≥
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Factor 1 Factor 2 Factor 3 Factor 4

Risk importance 1 0.62

Risk importance 2 0.74

Risk importance 3 0.74

Risk probability 1 0.76

Risk probability 2 0.64

Risk probability 3 0.50

Omitted loadings are inferior to 0.25.

17–23. Identify each of the variables with one factor only. Also find the communal-
ity of each variable.

Factor 1 Factor 2
Market Penetration Project Quality

Business Policy Issues Issues

Pricing policies 0.331 0.626

Record and reporting procedures 0.136 0.242

Advertising copy and expenditures 0.468 0.101

Selection of sources of operating supplies 0.214 0.126

Customer service and complaints �0.152 0.792

Market forecasting and performance standards 0.459 0.669

Warranty decisions 0.438 0.528

Personnel staffing and training 0.162 0.193

Product delivery scheduling 0.020 0.782

Construction/installation procedures 0.237 0.724

Subcontracting agreements �0.015 0.112

Number of dealerships 0.899 0.138

Location of dealerships 0.926 0.122

Trade areas 0.885 0.033

Size of building projects 0.206 0.436

Building design capabilities �0.047 0.076

Sales promotion materials 0.286 0.096

Financial resources 0.029 0.427

Builder reputation 0.076 0.166

Offering competitors’ lines 0.213 0.111

Variance explained 3.528 3.479

Percentage of total variance 17.64 17.39

Reliability (coefficient �) 0.94 0.83

17–24. Name the factors.

Factor 1 Factor 2

Developing end-user preferences �0.04 0.88

Product quality and technical leadership 0.19 0.65

Sales promotion programs and promotional aids �0.11 0.86

Pricing policy 0.78 �0.03

Return-goods policy 0.79 �0.04

Product availability (delivery and reliability) 0.63 0.26

Cooperativeness and technical competence of its personnel 0.59 0.45

17–25. Telephone interviewing is widely used in random sampling, in which the
telephone numbers are randomly selected. Under what conditions is this methodology
flawed, and why?

Multivariate Analysis 17-25
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17–5 Using the Computer
Using MINITAB for Discriminant and Principal Component Analysis
When you have a sample with known groups, you can use the MINITAB discriminant
analysis tool to classify observations into two or more groups. The two available options
in MINITAB are linear and quadratic discriminant analysis. With linear discriminant
analysis all groups are assumed to have the same variance-covariance matrices and
possibly different means. In order to start, choose Stat � Multivariate � Discriminant
Analysis from the menu bar. When the corresponding dialog box appears, you need
to choose the column containing the group codes in the Groups edit box. You can
define up to 20 groups. The column(s) containing the measurement variables or pre-
dictors are entered in the Predictors dialog box. Then you can choose to perform lin-
ear discriminant analysis or quadratic discriminant analysis. Check the Use cross
validation box to perform the discrimination using cross-validation. The cross-validation
routine works by removing each observation at a time, recalculating the classification
function using the remaining data, and then classifying the omitted observation. In
the Linear discriminant function edit box enter storage columns for the coefficients
from the linear discriminant function. MINITAB uses one column for each group.
The constant is stored at the top of each column. By clicking on the Options button
you can specify prior probabilities, predict group membership for new observations,
and control the display of the Session window output. 

As an example we used the data set of Example 17–1 to run a discriminant
analysis using MINITAB. Figure 17–17 shows the MINITAB Discriminant Analysis
dialog box, corresponding Session commands, and final results. As we can see, the
Repay/Default column was defined as the column that contains the group codes. All
other variables were entered as predictors. The linear discriminant analysis correctly
identified 23 of 32 applicants, as shown in the Summary of classification table in the
Session window. To identify new applicants as members of a particular group, you
can compute the linear discriminant function associated with Repay or Default and
then choose the group for which the discriminant function value is higher. The coef-
ficients of the discriminant functions are seen in the Linear Discriminant Function for
Groups table.

MINITAB is also used for principal component analysis. For this purpose, you
need to set up your worksheet so that each row contains measurements on a single
item. There must be two or more numeric columns, each of which represents a dif-
ferent response variable. To perform principal component analysis, start by choosing
Stat � Multivariate � Principal Components from the menu bar. When the corre-
sponding dialog box appears, enter the columns containing the variables to be
included in the analysis in the Variables edit box. The Number of components to
compute edit box will contain the number of principal components to be extracted.
If you do not specify the number of components and m variables are selected, then
m principal components will be extracted. Click the Correlation box if you wish to
calculate the principal components using the correlation. This case usually happens
when the variables are measured by different scales and you want to standardize vari-
ables. If you don’t wish to standardize variables, choose the Covariance edit box. By
clicking on the Graphs button, you can set to display plots for judging the impor-
tance of the different principal components and for examining the scores of the first
two principal components. The Storage button enables you to store the coefficients
and scores. 

Another MINITAB tool that enables you to summarize the data covariance
structure in a few dimensions of data is factor analysis. For this purpose, you can
have three types of input data: columns of raw data, a matrix of correlations or
covariances, or columns containing factor loadings. If you set your worksheet to
contain the raw data, then each row represents the measurements on a single item.

17-26 Chapter 17
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There must be two or more numeric columns, with each column representing a dif-
ferent response variable. To perform factor analysis with raw data, choose Stat �

Multivariate � Factor Analysis from the menu bar. Enter the columns containing the
variables you want to use in the analysis in the Variables edit box. Then you need to
specify the number of factors to extract. As a Method of Extraction, choose Principal
components to use the principal components method of factor extraction. Type of
Rotation in the next section controls orthogonal rotations. If you want to use a stored
correlation or covariance matrix, or the loadings from a previous analysis instead of
the raw data, click Options. The corresponding dialog box allows you to specify the
matrix type and source, and the loadings to use for the initial extraction. The Graphs
button enables you to display a plot and score and loading plots for the first two factors.
The Storage and Results buttons have the same functionality as before.

17–6 Summary and Review of Terms
There is a large body of statistical techniques called multivariate methods. These
methods are useful in analyzing data in situations that involve several variables.
The data and parameters are vectors. In this chapter, we discussed some of these

Multivariate Analysis 17-27
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17-28 Chapter 17

A D D I T I O N A L  P R O B L E M S

17–26. What are the uses of the multivariate normal distribution? Why is it needed?

17–27. How many discriminant functions may be found significant in classifying an
observation into one of four groups?

17–28. Is it possible that only one discriminant function will be found significant in
discriminating among three groups? Explain.

17–29. What is a hit ratio? Will a hit ratio of 67% be sufficient when one group has
100 observations, another group has 200 observations, and the ratio of these groups
is believed to reflect their ratio in the population? Explain.

17–30. What is achieved by principal-components analysis? How can it be used
as a preliminary stage in factor analysis? What important stages must follow it,
and why?

17–31. In a factor analysis of 17 variables, a solution is found consisting of 17 factors.
Comment on the analysis.

17–32. When is an oblique rotation superior to an orthogonal one, and why?

17–33. What is a communality, and what does it indicate?

17–34. What is the communality of variable 9 listed in Table 17–2?

17–35. Name a statistical method of analysis for which principal components may
be a first stage. Explain.

17–36. What are factor loadings, and what do they measure?

17–37. A television producer wants to predict the success of new television programs.
A program is considered successful if it survives its first season. Data on production
costs, number of sponsors, and the total amount spent on promoting the program are
available. A random sample of programs is selected, and the data are presented in the
following table. Production costs are in millions of dollars, and promotions in hundreds
of thousands of dollars; S denotes success and F failure.

Success/Failure Production Cost Number of Sponsors Promotions

S 2.5 1 2.1

F 1.1 1 3.7

S 2.0 1 2.8

F 2.5 1 1.8

F 2.5 1 1.0

S 3.7 2 5.5

S 3.6 3 5.0

methods. We began by describing the multivariate normal distribution. We then
discussed discriminant analysis, a method of classifying members of a population
into one of two (or more) groups. The analysis entailed the postulation and estima-
tion of one or more discriminant functions. We then discussed factor analysis, a
statistical technique for reducing the dimensionality of a problem by summarizing
a set of variables as a smaller set of inherent, latent common factors. We also discussed
a related technique often used as a first stage in factor analysis: principal-components
analysis. We discussed the concept of independence in several dimensions: the
concept of orthogonality of factors or variables. We discussed rotations used in factor
analysis: orthogonal rotations, which maintain the noncorrelation of the factors,
and oblique rotations, which do not.
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The following article is reprinted in its entirety by
permission from Forbes (April 1, 1991). Discuss
the statistical method alluded to in this article.

Could you reproduce (or improve upon) Professor
Platt’s results? Explain.

Is a former $40 stock now trading at $2.50 a
bargain? Or an invitation to get wiped out? Depends.

CASE 22 Predicting Company Failure

Success/Failure Production Cost Number of Sponsors Promotions

S 2.7 1 4.1

S 1.9 1 6.9

F 1.3 1 1.5

S 2.6 2 2.0

S 3.5 3 3.8

F 1.9 1 1.0

S 6.8 1 2.1

S 5.0 1 1.9

S 4.6 3 4.1

S 3.0 2 3.9

S 2.5 3 7.0

S 1.8 2 6.6

F 2.0 2 1.1

S 3.5 3 3.8

S 1.8 3 8.1

S 5.6 1 4.2

F 1.5 2 3.0

S 4.4 4 5.0

Conduct a discriminant analysis, and state your conclusions.

17–38. A factor analysis was conducted with 24 variables. The VARIMAX rotation
was used, and the results were two factors. Comment on the analysis.

17–39. Suppose a major real estate development corporation has hired you to
research the features of housing for which people will pay the most in making
a home purchasing decision. Where would you start? Perhaps you would start
with demographic data from the Department of Housing and Urban Develop-
ment, www.huduser.org. From the Data Available area, locate and examine the
American Housing Survey. Read the most recent Survey Quick Facts. Based on
this information, design a principal-components demographic analysis for deter-
mining the purchase price of a new house. Would you be able to conduct the
analysis entirely from data and other information available at the Hud User site?
Why or why not?

Multivariate Analysis 17-29
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17-30 Chapter 17

How Cheap?
Harlan Platt, an associate professor of
finance at Northeastern University, has
written Why Companies Fail, a study
that should be of considerable interest
to bargain-hunting investors. 

Platt’s study can be useful in help-
ing determine whether a stock that has
fallen sharply in price is a bargain or a
prospective piece of wallpaper.

Platt developed a mathematical
model that predicts the probability of
bankruptcy from certain ratios on a
company’s balance sheet.

Here’s the thesis: Some compa-
nies trading very cheaply still have
large sales, considerable brand recog-
nition and a chance at recovery, or at
least takeover at a premium. Their
stocks could double or triple despite
losses and weak balance sheets. Other
borderline companies will land in
bankruptcy court and leave common
shareholders with nothing.

Even though it more than tripled
from its October low, Unisys, with $10
billion in sales, is not a Wall Street
favorite: At a recent 51⁄2 its market capi-
talization is only $890 million. Will
Unisys fail? Almost certainly not within
the next 12 months, according to Platt.

For the list below, we found cheap
stocks with low price-to-sales ratios.
Then we eliminated all but the ones
Platt says are highly unlikely to fail

within a year. Platt put cheap stocks
such as Gaylord Container, Masco
Industries and Kinder-Care Learning
Centers in the danger zone.

Among low-priced stocks, Unisys
and Navistar, however, make the safety
grade. So does Wang Laboratories.
Says Platt, “They are still selling over
$2 billion worth of computers and
their $575 million in bank debt is now
down to almost nothing.”

Platt, who furnishes his probabili-
ties to Prospect Street Investment
Management Co., a Boston fund man-
ager, refuses to disclose his propri-
etary formula. But among the ratios
he considers are total debt to total
assets, cash flow to sales, short-term
debt to total debt, and fixed assets to
total assets.

“Companies with large fixed assets
are more likely to have trouble because
these assets are less liquid,” Platt says.
But norms for a company’s industry
are also important. An unusually high
level of such current assets as inven-
tory and receivables may itself be a
sign of weakness.

The low-priced stocks on the list
may or may not rise sharply in the
near future, but they are not likely to
disappear into insolvency.

—STEVE KICHEN

Steve Kichen, “How Cheap?” Forbes, April 1, 1991. Reprinted by permission of Forbes
Magazine © Forbes, Inc. 2004.
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Big Companies with Little Prices

These 10 companies are in poor financial shape, but not so poor, according to calculations by finance professor Harlan Platt, that they
are likely to go bankrupt within the next year. Thus, these stocks are plausible bets for rebounds.

Earnings per Share 
Total Total 

Recent Latest 12 1991 Assets Debt/Total Sales Cash Flow/ Price/
Company/Industry Price Months Estimated ($mil) Assets ($mil) Sales Sales
Highland Superstores/
consumer electronics stores 21/8 $�0.89 NA $320 57% $892 �1.6% 0.04

Businessland/computer stores 21/2 �1.65 $�1.02 616 72 1,306 �2.0 0.06

Jamesway/discount stores 31/2 �0.06 0.18 435 61 909 1.6 0.06

Merisel/computer equipment 
wholesaler 31/8 0.03 0.33 432 73 1,192 0.4 0.06

Unisys/computers 51/2 �3.45 �0.56 10,484 65 10,111 3.1 0.09

National Convenience Stores/
convenience stores 51/8 �0.43 0.21 406 65 1,067 2.0 0.11

TW Holdings/restaurants 47/16 �0.61 �0.43 3,531 79 3,682 3.9 0.13

Varity/farm and construction 
equipment 23/4 0.35 0.32 3,177 61 3,472 6.4 0.20

Wang Laboratories CIB/
minicomputers 33/8 4.04 �0.29 1,750 72 2,369 �20.1 0.24

Navistar International/trucks 41/8 �0.24 �0.08 3,795 60 3,810 �0.6 0.27

NA: Not available.
From “Big Companies with Little Prices,” Forbes, April 1, 1991; Harlan Platt, Northeastern University; Institutional Brokers Estimate System (a service of
Lynch, Jones & Ryan), via Lotus One Source; Forbes. Reprinted by permission of Forbes Magazine © Forbes, Inc. 1991.
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FIGURE 1 Blank Excel Spreadsheet with Parts Labeled

INTRODUCTION TO EXCEL BASICS

Knowing the fundamentals of Microsoft Excel will make you more confident in
using spreadsheet templates. When you start the Excel program, it opens a blank
spreadsheet. Figure 1 shows a blank spreadsheet with some of its parts identified.
The title bar shows that Excel has opened a workbook named Book1. In Excel ter-
minology, a workbook consists of many worksheets, or simply sheets. The figure
shows three sheets with the tabs Sheet1, Sheet2, and Sheet3. Sheet1 is currently
active. A sheet consists of many rows and columns. Rows are numbered 1, 2, 3, . . . ,
and columns are labeled A, B, C, . . . , Z, AA, AB, … A sheet may have thousands of
rows and hundreds of columns. You can use the scrollbars to navigate to desired
columns and rows.

In the figure, Column B and Row 4 are highlighted. The cell at the intersection of
column B and row 4 is called cell B4. To select a cell, click on that cell with the mouse
pointer. The cell is highlighted with heavy borders and the name of the selected cell
appears in the Name box.

After you select a cell you can enter into it a text, a number, or a formula.
Whatever entry you make will appear on the formula bar. You can also edit the
entries in the formula bar as you would edit any text.

We shall walk through detailed instructions to create an invoice. If you wish, you
can take a peek at the final invoice in Figure 5. We will then turn it into a template,
which is shown in Figure 6. In what follows, the steps are shown as bullet points.
Perform these steps on your computer as you read.

• Launch the Excel program. You can do this by double-clicking on the Excel
icon. If you don’t see the icon, you have to locate Excel in Program Files and
launch it.

• Select cell B4 and enter the text “Description.” Press Enter.

1
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2 Introduction to Excel Basics

We need a wider column for description. You can increase or decrease the width of
a column by dragging, with the mouse pointer, the line between two column labels.

• Take the mouse pointer to the short line segment between the column labels B
and C. Notice how the pointer changes its shape when it is on this line segment.
It becomes a vertical line with two short arrows to the left and to the right, as
seen in Figure 2. Drag the mouse to the right to widen column B to 20.00
points. (You would drag it to the left to reduce the width.)

• With cell B4 still selected, click on the Bold icon to get boldface fonts. (When
you place the mouse pointer on any icon or a drop-down box, the pop-up tool
tip shows its name. This should help you to identify every icon.)

• Click the Center icon to center the text inside the cell.
• Similarly enter the text “Qty” in cell C4, make it boldface, and center it.
• Reduce the width of column C to 4.00 points.
• Enter “Price” in cell D4, make it boldface, and center it.
• Enter “Invoice” in cell A1. Make it bold. Using the Font Size drop-down box,

increase the font size to 14. Using the Font Color drop-down box, change the
color to Blue.

• Reduce the width of column A to 2.00 points.
• See Figure 3. Make the entries shown in the figure under the Description, Qty,

and Price columns. Notice how texts automatically align to the left side of the
cell and numbers to the right side.

1 Excel Formulas
Consider cell E5. It should be the product of the quantity in cell C5 and the price in
cell D5. If you do this multiplication yourself and enter the result in cell E5, you are
probably not having much fun. You want the spreadsheet to do it for you. So, you are
going to give a precise instruction to the spreadsheet.

• Enter the formula =C5*D5 in cell E5. The * is the multiplication symbol in
Excel formulas. Notice the = sign at the beginning of the formula. All Excel

FIGURE 2 Widening Column B
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formulas must start with the = sign. Notice how the spreadsheet evaluates the
formula and displays the result of the formula in the cell and not the formula
itself. The formula appears in the formula bar.

Copying Formulas
Consider cell E6. It should have the formula =C6*D6. But this is similar to the
formula you entered in cell E5. In such cases, copying the formula from one cell
into another is easier. You can use the Copy and Paste icons to do this. But there is an
easier way, which helps you copy the formula into cells E6, E7, and E8 in one stroke.

• Select cell E5, if it is not already selected. The heavy border that outlines the
cell has a dot at the bottom right corner. This dot is called the fill handle.
Drag the fill handle down to fill cells E6, E7, and E8. When you fill cells in this
manner, Excel will change the cell references in the formulas in a very intuitive
way. For instance, click on cell E6 and look at the formula bar. It shows =C6*D6
although the original formula in cell E5 was =C5*D5. In other words, Excel
has changed the 5s into 6s because the formula was copied downward. (If the
filling was toward the right, instead of downward, Excel would have changed
the C to D and D to E. It would not have changed the 5s.) Similarly, the
formulas in cells E7 and E8 are also different. These are the formulas needed
in those cells, and thus the changes that Excel made in the formulas saved you
some work.

More items can be added to the invoice. Let us assume that 10 items is the most
allowable and leave enough space for up to 10 items. We shall get the total amount in
row 15.

• Enter “Total” in cell D15.

2 Excel Functions
To get the total amount in cell E15, it appears you need to enter the formula

=E5+E6+E7+E8+E9+E10+E11+E12+E13+E14

This formula is tedious, and it would get more tedious if there are more cells to add.
Indeed, we often have to add hundreds of cells. So we find a shortcut. The function
SUM available in Excel can be used to add a range of cells with a very compact formula.

Introduction to Excel Basics 3

FIGURE 3 The Entries
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4 Introduction to Excel Basics

A range of cells is any rectangular array of cells. The range A1:C4, for instance,
contains 4 rows and 3 columns of cells. Note the use of the : symbol in the reference
to a range.

Excel contains numerous powerful functions that can compute complex quanti-
ties. Click on the Paste function icon. In the dialog box that appears, you can see a
long list of Excel functions available. Close the dialog box.

• Enter the formula =SUM(E5:E14) in cell E15. Note that the argument of a
function is entered in parentheses, as you would in algebra.

We shall next compute sales tax at 6%.

• Enter 6% in cell C16.
• Enter “Sales Tax” in cell D16.
• Enter the formula =C16*E15 in cell E16.

Finally, we compute the total amount due.

• Enter “Total due” in cell D17.
• Enter the formula =E15+E16 in cell E17.

Your spreadsheet should now look like the one in Figure 4. The dollar figure in cell
E8 has only one decimal place and those in cells E16 and E17 have four. Also, the
dollar sign is missing everywhere in the Price and Amount columns. To fix this,

• Drag the mouse from the center of cell D5 to the center of cell D14. You have
selected the range D5:D14. Click on the $ icon. This formats all the prices as
dollar values with two decimal places for cents.

• Select the range E5:E17 similarly, and click the $ icon. The dollar values now
appear properly.

FIGURE 4 Showing Tax and Total Due
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1Actually, we should check that both Qty and Price are available. It can be done using the AND function. For
simplicity, we shall check only the Price entry.

We realize that although no items appear in rows 9 though 14, some items may be
entered there in the future and therefore we need formulas in the range E9:E14.

• Select cell E8. Drag the fill handle downward to cell E14. The formulas are
copied.

But the range E9:E14 contains the distracting display of “$ � ” for zero dollars. One
way to get rid of this distraction is to instruct the computer to display the amount only
when there is an entry in the Price column.1 This can be done using the IF function.
The IF function displays one of two specified results depending on whether a speci-
fied condition is true or false. For instance, the formula =IF(A1=5,10,20) would
display 10 if cell A1 contains 5, and 20 if cell A1 contains anything else.

• Click on cell E5. Change the formula to =IF(D5<>””,C5*D5,””). The
symbol <> means “not equal to.” The symbol ”” contains nothing in quotes,
and signifies an empty text. The formula as a whole tells the spreadsheet to
display the amount only if cell D5 is not empty.

• Using the fill handle, copy the formula in cell E5 downward to cell E14. This
updates all the formulas.

Next we shall add borders.

• Select the range B4:E14. Click the down arrow of the Borders drop-down box,
and select the All Borders icon.

• Select the range E15:E17 and click on the Borders icon. Note that the All
Borders option stays selected and therefore you need not select it again. Just
click on the Borders icon.

Now that we have borders for the rows and columns, we don’t need the gridlines of
the spreadsheet.

• On the Page Layout tab, in the Sheet Options group, uncheck the View box
under Gridlines.

You now have the complete invoice, and it should look like the one in Figure 5.

3 The Need for Templates
If you need to create another invoice, you wouldn’t want to go through all these steps
all over again. You would use a copy of this spreadsheet. But what if your friends or
co-workers wanted to create an invoice? A copy of your spreadsheet would be unfa-
miliar to them. In particular, they would not know that some important formulas had
been used in column E. The solution is to turn your spreadsheet into a template. A
well-designed template with necessary notes and instructions included in the tem-
plate itself is usable by anyone.

Also, the rigamarole of the steps can get extremely tedious for more complex
problems. An average statistical problem you see in this textbook is more complex
than creating an invoice. It would require complicated formulas and maybe some
charts. Therefore, for every technique in this book, a template has been provided

Introduction to Excel Basics 5
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6 Introduction to Excel Basics

rather than detailed steps for solving the problem. The templates can also help the
user to conduct sensitivity and decision analyses using Goal Seek and Solver facilities.

Creating the Template
We shall see how to turn the Invoice spreadsheet into a template.

In any template, the user will input some data. For an invoice, the user needs to
enter Description, Qty, and Price of each item. The user also may want to change the
sales tax rate. Accordingly, we should leave the range B5:D14 and cell C16 unlocked
and shaded in green. The rest of the spreadsheet should be locked, especially the for-
mulas in column E.

• Select the range B5:D14.
• With the Control (Ctrl) key pressed, click on cell C16. Using the Control key in

this manner you can select multiple ranges at once.
• On the Home tab, in the Cells group, select Format and then choose Format Cells.
• Click the Protection tab and uncheck the Locked box.
• Using the Fill color drop-down box, shade the ranges in green.
• Select cell E17. Make the font bold and red. Any result is shown in bold red

font in the templates.

The user may want a title for the invoice. So we provide an area at the top for a title.

• Select the range C1:E1. Click the Merge and Center icon. Merging turns three
cells into one cell. 

• Use the Format cells command under the Format menu to unlock the cell and
shade it green. Enter “Title.”

• Enter “Enter the data in green shaded cells” in cell A3 and color the font
magenta. Instructions are in the magenta font in the templates.

FIGURE 5 The Final Invoice
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Now you are ready to protect the sheet so that locked cells cannot be altered.

• Click the Protect Sheet in the Changes group on the Review tab. In the dialog
box that appears, click the OK button. Avoid using any password, since the
user may want to unprotect the sheet for some reason. All the templates in this
textbook are protected without password.

Your template should look like the one in Figure 6. Save the template as
MyInvoice.xls. You can share this template with your friends.

Limitations of the Template
Some limitations of the template are:

1. The template can accommodate up to 10 items only. 

2. The user may enter a text where a number is expected. If the text “Two” is
entered as quantity, the template will not calculate the amount. At times a
number may be too large for Excel to handle. In general, the user may input
something unacceptable in some cell, which can make the template produce
error messages rather than results.

3. The user may accidentally enter, say, a negative number for quantity. The
template will accept negative values and will calculate some result. Unaware
of the accidental error, the user may report a wrong total amount due. An
undetected accidental error is a serious problem common to all types of
computer applications.

4. If there are additional items such as shipping and handling charges, the user
may not know what to do.

Introduction to Excel Basics 7

FIGURE 6 The Template
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8 Introduction to Excel Basics

With some patience and effort, fixing or alleviating these limitations is possible.
But some limitations will always be found.

Exercise
Consider a restaurant check for a meal, to which you want to add your tip. Create a
template that calculates the tip amount as a user-defined percentage of the check
amount. The template should also compute the total amount including the tip. When
you are finished, look up the template Tip Amount.xls and compare.
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WORKING WITH TEMPLATES

1 The Idea of Templates
The idea of templates can be traced back to the Greek mathematician Heron of
Alexandria, who lived 2,000 years ago. Heron wrote several books, including a
few meant for mechanical engineers. In these books, he presented solutions to prac-
tical engineering problems in such an illustrative manner that readers could solve
similar problems simply by substituting their data in clearly designated places in his
calculations.1 In effect, his solutions were templates that others could use to solve
similar problems with ease and confidence.

Heron’s templates helped engineers by removing the tedium required to find the
right formulas and the right sequence of calculations to solve a given problem. But
the tedium of hand calculations endured. Over the years, abacuses, slide rules,
electromechanical calculators, and electronic calculators lessened it. But even elec-
tronic calculators have a lot of buttons to be pressed, each presenting the chance for
error. With the advent of computers and spreadsheets, even that tedium has been
overcome.

A spreadsheet template is a specially designed workbook that carries out a
particular computation on any data, requiring little or no effort beyond entering the
data in designated places. Spreadsheet templates completely remove the tedium of
computation and thus enable the user to concentrate on other aspects of the problem,
such as sensitivity analysis or decision analysis. Sensitivity analysis refers to the
examination of how the solution changes when the data change. Decision analysis
refers to the evaluation of the available alternatives of a decision problem in order to
find the best alternative. Sensitivity analyses are useful when we are not sure about
the exact value of the data, and decision analyses are useful when we have many
decision alternatives. In most practical problems, there will be uncertainty about the
data; and in all decision problems, there will be two or more decision alternatives.
The templates can therefore be very useful to students who wish to become practical
problem solvers and decision makers.

Another kind of tedium is the task of drawing charts and graphs. Here too spread-
sheet templates can completely remove the tedium by automatically drawing necessary
charts and graphs.

The templates provided with this book are designed to solve statistical problems
using the techniques discussed in the book and can be used to conduct sensitivity
analyses and decision analyses. To conduct these analyses, one can use powerful
features of Excel—the Data|Table command, the Goal Seek command, and the Solver
macro are explained in this chapter. Many of the templates contain charts and graphs
that are automatically created.

The Dangers of Templates and How to Avoid Them
As with any other powerful tool, there are some dangers with templates. The worst
danger is the black box issue: the use of a template by someone who does not know
the concepts behind what the template does. This can result in continued ignorance
about those concepts as well as the application of the template to a problem to
which it should not be applied. Clearly, students should learn the concepts behind a
template before using it, so this textbook explains all the concepts before presenting
the templates. Additionally, to avoid the misuse of templates, wherever possible, the
necessary conditions for using a template are displayed on the template itself.

1Morris Klein, Mathematics in Western Culture (New York: Oxford University Press, 1953), pp. 62–63.

1
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Another danger is that a template may contain errors that the user is unaware of.
In the case of hand calculations, there is a good chance that the same error will not
be made twice. But an error in a template is going to recur every time it is used and
with every user. Thus template errors are quite serious. The templates provided with
this book have been tested for errors over a period of several years. Many errors
were indeed found, often by students, and have been corrected. But there is no guar-
antee that the templates are error-free. If you find an error, please communicate it to
the authors or the publisher. That would be a very good service to a lot of people.

A step that has been taken to minimize the dangers is the avoidance of macros.
No macros have been used in any of the templates. The user can view the formula in
any cell by clicking on that cell and looking at the formula bar. By viewing all the for-
mulas, the user can get a good understanding of the calculations performed by the
template. An added advantage is that one can detect and correct mistakes or make
modifications more easily in formulas than in macros.

Conventions Employed in the Templates
Figure 1 is a sample template that computes the power of a hypothesis test (from
Chapter 7). The first thing to note is the name of the workbook and the name of the
sheet where you can locate this template. These details are given in square brackets
immediately following the caption. This particular template is in the workbook named
“Testing Population Mean.xls” and within that workbook this template is on the sheet
named “Power.” If you wish, you may open the template right now and look at it.

Several conventions have been employed to facilitate proper use of the templates.
On the Student CD, the areas designated for data entry are generally shaded in green.

2 Working with Templates

FIGURE 1 A Sample Template
[Testing Population Mean.xls; Sheet: Power]
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In Figure 1, the cell H62 and the range D6:D93 appear shaded in green, and there-
fore are meant for data entry. The range G1:I1, also shaded in green, can be used
for entering a title for the problem solved on the template.

Important results appear in red fonts; in the present case the values in the cells H7
and H8 are results and they appear in red (on the computer screen). Intermediate
results appear in black. In the present case, there is no such result.

Instructions and necessary assumptions for the use of a template appear in magenta. On
this template, the assumptions appear in the range B2:E4.4 The user should make
sure that the assumptions are satisfied before using the template. To avoid crowding of
the template with all kinds of instructions, some instructions are placed in comments
behind cells. A red marker at the upper right corner of a cell indicates the presence of
a comment behind that cell. Placing the pointer on that cell will pop up the comment.
Cell D7 in the figure has a comment. Such comments are usually instructions that
pertain to the content of that cell.

A template may have a drop-down box, in which the user will need to make a
selection. There is a drop-down box in the figure in the location of cell C6. Drop-down
boxes are used when the choice has to be one of a few possibilities. In the present
case, the choices are the symbols =, < =, and > =. In the figure > = has been chosen.
The user makes the choice based on the problem to be solved.

A template may have a chart embedded in it. The charts are very useful for visu-
alizing how one variable changes with respect to another. In the present example, the
chart depicts how the power of the test changes with the actual population mean µ.
An advantage with templates is that such charts are automatically created, and they
are automatically updated when data change.

2 Working with Templates
If you need an introduction to Excel basics, read the “Introduction to Excel Basics.2”

Protecting and Unprotecting a Sheet
The computations in a template are carried out by formulas already entered into
many of its cells. To protect these formulas from accidental erasure, all the cells except
the (blue-shaded) data cells are “locked.” The user can change the contents of only the
unlocked data cells. If for some reason, such as having to correct an error, you want to
change the contents of a locked cell, you must first unprotect the sheet. To unprotect a
sheet, use the Unprotect Sheet command under the Changes group on the Review
tab. Once you have made the necessary changes, make it a habit to reprotect the sheet
using the Protect Sheet command under the Changes group on the Review tab. When
protecting a sheet in this manner, you will be asked for a password. It is better not to use
any password. Just leave the password area blank. If you use a password, you will need it
to unprotect the sheet. If you forget the password, you cannot unprotect the sheet.

Entering Data into the Templates
A good habit to get into is to erase all old data before entering new data into a template.
To erase the old data, select the range containing the data and press the Delete key on
the keyboard. Do not type a space to remove data. The computer will treat the space char-
acter as data and will try to make sense out of it rather than ignore it. This can give rise
to error messages or, worse, erroneous results. Always use the Delete key to delete any
data. Also make sure that you erase only the old data and nothing else.

Working with Templates 3

2H6 refers to the cell at the intersection of Row 6 and Column H.
3Range D6:D9 refers to the rectangular area from cell D6 to cell D9.
4Range B2:E4 refers to the rectangular area with cell B2 at top left and cell E4 at bottom right.
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At times your new data may already appear on another spreadsheet. If so, copy
that data using the Copy command on the Home tab. Select the area where you want
it pasted and use the Paste Special command. In the dialog box that appears (see
Figure 2), select Values under Paste and None under Operation and then click the
OK button. This will avoid any unwanted formulas or formats in the copied data get-
ting pasted into the template. Sometimes the copied data may be in a row, but you
may want to paste it into a column, or vice versa. In this case, the data need to be
transposed. When you are in the Paste Special dialog box, additionally, select the
Transpose box under Operation.

3 The Autocalculate Command
The bar at the bottom of a spreadsheet screen image is known as the status bar.
In the status bar there is an area, known as the Autocalculate area, that can be
used to quickly calculate certain statistics such as the sum or the average of several
numbers. Figure 3 shows a spreadsheet in which a range of cells has been selected by
dragging the mouse over them. In the Autocalculate area, the average of the numbers
in the selected range appears. If the numbers you want to add are not in a single range,
use the CTRL�click method to select more than one range of cells.

4 Working with Templates

FIGURE 2 Dialog Box of Paste Special Command

FIGURE 3 The Autocalculate Area in the Status Bar
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4 The Data|Table Command
When a situation calls for comparing many alternatives at once, a tabulation of the
results makes the comparison easy. Many of the templates have built-in comparison
tables. In others, an exercise may ask you to create one yourself. On the Data tab, in
the Data Tools group, click What-If Analysis, and then click Data Table to create such
tables.

In Figure 4, sales figures of a company have been calculated for years 2004 to
2008 using an annual growth rate of 2%, starting with 316 in year 2004. [In cell C5,
the formula =B5*(1+$C$2) has been entered and copied to the right.] Suppose we
are not sure about the growth rate and believe it may be anywhere between 2% and
7%. Suppose further we are interested in knowing what the sales figures would be in
the years 2007 and 2008 at different growth rates. In other words, we want to input
many different values for the growth rate in cell C2 and see its effect on cells E5 and
F5. It is best seen as a table shown in the range D8:F13. To create this table,

• Enter the growth rates 2%, 3%, etc., in the range D8:D13.
• Enter the formula =E5 in cell E8 and =F5 in cell F8.
• Select the range D8:F13.
• On the Data tab, in the Data Tools group, click What-If Analysis, and then click

Data Table.
• In the dialog box that appears, in the Column Input Cell box, type C2 and

press Enter. (We use the Column Input Cell rather than Row Input Cell
because the input values are in a column, in the range D8:D13.)

• The desired table now appears in the range D8:F13. It is worth noting here that
this table is “live,” meaning that if any of the input values in the range D8:D13
are changed, the table is immediately updated. Also, the input values could
have been calculated using formulas or could have been a part of another table
to the left.

In general, the effect of changing the value in one cell on the values of one or more
other cells can be tabulated using the Data Table command of What-If Analysis.
At times, we may want to tabulate the effect of changing two cells. In this case we
can tabulate the effect on only one other cell. In the previous example, suppose that

Working with Templates 5
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FIGURE 5 Creating a Two-Dimensional Table
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2% 342 344 346 349 351
3% 356 358 360 362 365

Growth 4% 370 372 374 377 379
Rate 5% 384 387 389 391 394

6% 399 401 404 407 409
7% 414 417 419 422 425

in addition to the growth rate we are not sure about the starting sales figure of 316 in
year 2004, and we believe it could be anywhere between 316 and 324. Suppose fur-
ther that we are interested only in the sales figure for year 2008. A table varying both
the growth rate and 2004 sales has been calculated in Figure 5.

To create the table in Figure 5,

• Enter the input values for growth rate in the range B9:B14.
• Enter the input values for 2004 sales in the range C8:G8.
• Enter the formula =F5 in cell B8. (This is because we are tabulating what

happens to cell F5.)
• Select the range B8:G14.
• On the Data tab, in the Data Tools group, click What-If Analysis, and then click

Data Table.
• In the dialog box that appears enter B5 in the Row Input Cell box and C2 in

the Column Input Cell box and press Enter.

The table appears in the range B8:G14. This table is “live” in that when any of the input
values is changed the table updates automatically. The appearance of 342 in cell B8
is distracting. It can be hidden by either changing the text color to white or formatting
the cell with ;;. Suitable borders also improve the appearance of the table.

5 The Goal Seek Command
The Goal Seek command can be used to change a numerical value in any cell, called
the changing cell, to make the numerical value in another cell, called the target
cell, reach a “goal.” Clearly, the value in the target cell must depend on the value in
the changing cell for this scheme to work. In the previous example, suppose we are
interested in finding the growth rate that would attain the goal of a sales value of 400
in year 2008. (We assume the sales in 2004 to be 316.) One way to do it is to manu-
ally change the growth rate in cell C2 up or down until we see 400 in cell F5. But that
would be tedious, so we automate it using the Goal Seek command as follows:

• Select What-If Analysis in the Data Tools group on the Data tab. Then select
the Goal Seek command. A dialog box appears.

• In the Set Cell box enter F5.
• In the To Value box enter 400.

6 Working with Templates
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Minimize 4x � 100�x
Subject to x 
 � 0

x � � 100

• In the By Changing Cell box enter C2.
• Click OK.

The computer makes numerous trials and stops when the value in cell F5 equals 400
accurate to several decimal places. The value in cell C2 is the desired growth rate,
and it shows up as 6.07%.

6 The Solver Macro
The Solver tool is a giant leap forward from the Goal Seek command. It can be used
to make the value of a target cell equal a predetermined value or, more commonly,
reach its maximum or minimum possible value, by changing the values in many other
changing cells. In addition, some constraints can be imposed on the values of select-
ed cells, called constrained cells, such as restricting a constrained cell’s value to be,
say, between 10 and 20. Note that the Solver can accommodate many changing cells
and many constrained cells, and is thus a very powerful tool.

Solver Installation
Since the Solver macro is very large, it will not be installed during the installation of
Excel or Office software unless you specifically ask for it to be installed. Before you
can use the Solver, you therefore have to determine if it has been installed in your
computer and “added in.” If it hasn’t been, then you need to install it and add it in.

To check if it has already been installed and added in, click on the Data tab (and
make sure the menu is opened out fully). If the command “Solver . . .” appears in the
menu, you have nothing more to do. If the command does not appear in the menu,
then the Solver has not been installed or perhaps has been installed but not added
in. Click on the Microsoft Office button, and then click Excel Options. Then click
Add-ins. In the Manage box, select Excel Add-ins, click Go. Then in the Add-ins
Available box, select the Solver Add-ins check box. Click OK. If Solver is not listed in
the Add-ins Available box, click Browse to locate it.

If the file is present, open it. This action will add in the Solver and after that the
“Solver . . .” command will appear under the Tools menu. If the Solver.xla file is not
available, it means the Solver has not been installed in the computer. You have to get the
original Excel or Office CD, go through the setup process, and install the Solver files.
Find the Solver.xla file (c:\Program files\Microsoft Office\office\library\Solver\
Solver.xla) and open it. After that, the “Solver . . .” command will appear under the
Tools menu. If you are using Excel in your workplace and the Solver is not installed,
then you may have to seek the help of your Information Systems department to
install it.

In all the templates that use the Solver, the necessary settings for the Solver have already
been entered. The user merely needs to press Solve in the Solver dialog box (see Fig-
ure 7), and when the problem is solved, the user needs to click Keep Solver Solution
in a message box that appears.

Just to make you a little more comfortable with the use of the Solver, let’s consider
an example. A production manager finds that the cost of manufacturing 100 units of
a product in batches of x units at a time is 4x � 100�x. She wants to find the most eco-
nomic batch size. (This is a typical economic batch size problem, famous in produc-
tion planning.) In solving this problem, we note that there is a constraint, namely,
x must be between 0 and 100. Mathematically, we can express the problem as

Working with Templates 7
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We set up the problem as shown in Figure 6:

• In cell C3 the formula =4*C2+100/C2 has been entered. The batch size in
cell C2 can be manually changed and corresponding cost can be read off from
cell C3. A batch size of 20, for instance, yields a cost of 85; a batch size of 2
yields a cost of 58. To find the batch quantity that has the least cost, we use the
Solver as follows.

• Under the Analysis group on the Data tab, select the Solver… command.
• In the Solver dialog box, enter C3 in the Set Cell box.
• Click Minimum (because we want to minimize the cost).
• Enter C2 in the Changing Cells box.
• Click Add to add a constraint.
• In the dialog box that appears, click the left-hand-side box and enter C2.
• In the middle drop down box, select >=.
• Click the right-hand-side box, enter 0, and click Add. (We click on the Add

button because we have one more constraint to add.)
• In the new dialog box that appears click the left-hand-side box and enter C2.
• In the middle drop down box, select <=.
• Click the right-hand-side box, enter 100, and click OK. (The Solver dialog box

should reappear as in Figure 7.)
• Click Solve.

The Solver carries out a sophisticated computation process internally and finds
the solution, if one exists. When the solution is found, the Solver Results dialog box

8 Working with Templates

FIGURE 6 Solver Application
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FIGURE 7 The Solver Dialog Box
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appears (see Figure 8). It asks if you want to keep the solution or retain the origi-
nal values for batch quantity and cost. Select Keep Solver Solution and click OK.
The solution is a batch size of 5, which has the least cost of 40. The full solution
appears on the spreadsheet.

Some comments about the Solver are appropriate here. First, it is a very powerful
tool. A great variety of problems can be modeled on a spreadsheet and solved using
this tool.

Second, not all problems may be solvable, particularly when the constraints are
so restrictive that no feasible solution can be reached. In this case, some constraints
must be removed or relaxed. Another possibility is that the solution may diverge to
positive or negative infinity. In this case, the Solver will flash a message about diver-
gence and abort the calculation.

Third, a problem may have more than one solution. In this case, the Solver will
find only one of them and stop.

Fourth, the problem may be too large for the Solver. Although the manuals claim
that a problem with 200 variables and 200 constraints can be solved, restricting the
problem size to not more than 50 variables and 50 constraints may be safer.

Last, entering the constraints has some syntax rules and some shortcuts. A con-
straint line may read A1:A20 <= B1:B20. This is a shortcut for A1 �� B1; B1 ��
B2; and so on. In effect, 20 constraints have been entered in one line. Also, A1:A20
<= 100 would imply A1 �� 100; A2 �� 100; and so on. One of the syntax rules is
that the left-hand side of a constraint, as entered into the Solver, cannot be a number
but must be a reference to a cell or a range of cells. For instance, C2 �� 100 cannot
be entered as 100 
� C2, although they mean the same thing.

For further details about the Solver tool, you may consult online help or the Excel
manual.

Working with Templates 9

FIGURE 8 Solver Solution Dialog Box

E X A M P L E  1The annual sales revenue in dollars from a product varies with its price in dollars, p ,
according to the formula 

a. Find the annual sales revenue when the price is $50.00.
b. Find the price that would maximize the annual sales revenue. What is the

maximized revenue?

Annual sales revenue � 47,565 + 37,172p � 398.6p 2
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The spreadsheet setup is shown in Figure 9. The formula in cell C3 appears in the
formula bar at the top of the figure.

a. Entering a value of $50.00 in cell C2 gives the annual sales revenue as
$909,665.00.

b. The Solver parameters are set up as shown in the figure. When the Solve
button is pressed, we find that the price that would maximize revenue is
$46.63. The maximized revenue at this price is $914,196.70.

10 Working with Templates

FIGURE 9 Example 1

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

Price

Revenue

$ 50.00

$ 909,665.00

A B D E F GC

C3 = =47565+37172*C2-398.6*C2^2

S o l u t i o n

7 Some Formatting Tips
If you find a cell filled with ########, you know that the cell is not wide enough
to display its contents. To see the contents, you should unprotect the sheet and widen
the column. (Reprotecting the sheet after that is a good habit.)

Excel displays very large numbers and very small numbers in scientific format.
For example, the number 1,234,500,000 will be displayed as 1.2345E+09. The
“E�09” at the end means that the decimal point needs to be moved 9 places to the
right. In the case of very small numbers Excel once again uses the scientific format.
For example, the number 0.0000012345 will be displayed as 1.2345E-06 where
the “E�06” signifies that the decimal point is to be moved 6 places to the left.

If you do not wish to see the numbers in scientific format, widening the column
might help. In the case of very small numbers you may format the cell, using the
Format Cells command in the Cells group on the Home tab to display the number in
decimal form with any desired number of decimal places. For all probability values
that appear in the templates, four decimal places are recommended.

Many templates contain graphs. The axes of the graphs are set to rescale auto-
matically when the plotted values change. Yet, at times, the scale on an axis may have
to be adjusted. To adjust the scale, you have to first unprotect the sheet. Then
double-click on the axis and format the scale as needed. (Once again, reprotect the
sheet when you are done.)
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8 Saving the Templates
All the templates discussed in this textbook are available on the CD. They are stored in
the folder named Templates. It is recommended that you save these templates in your
computer’s hard drive in a suitably named folder, say, c:\Stat Templates.

Working with Templates 11

R E V I E W  A C T I V I T I E S

1. While working with a template, you find that a cell displays ######## instead
of a numerical result. What should you do to see the result?
2. While working with a template a probability value in a cell appears as
4.839E�04. What should you do to see it as a number with four decimal places?
3. The scale on the axis of a chart in a template starts at 0 and ends at 100. What
should you do to make it start at 50 and end at 90?
4. You want to copy a row of data from a spreadsheet into a column in the data area
of a template. How should this be done?
5. Why are the nondata cells in a template locked? How can they be unlocked?
Mention a possible reason for unlocking them.
6. How can you detect if a cell has a comment attached to it? How can you view
the comment?
7. Suppose an error has been found in the formula contained in a particular cell of
a template, and a corrected formula has been announced. Give a step-by-step
description of how to incorporate the correction on the template.
8. How many target cells, changing cells, and constrained cells can be there when
the Solver is used?
9. How many target cells, changing cells, and constrained cells can be there when
the Goal Seek command is used?
10. What is the “black box” issue in the use of templates? How will you, as a stu-
dent, avoid it?
11. Find the average of the numbers 78, 109, 44, 38, 50, 11, 136, 203, 117, and 34
using the AutoCalculate feature of Excel.
12. A company had sales of $154,000 in the year 2005. The annual sales are expect-
ed to grow at a rate of 4.6% every year.

a. What is the projected sales total for the year 2008?
b. If the annual growth rate is 5%, what is the projected sales total for the

year 2008?
c. At what rate should the sales grow if the projected sales figure for the year

2008 is to be $200,000?
13. The productivity of an automobile assembly-line worker who works x hours
per week, measured in dollars per day, is given by the formula 

1248.62 + 64.14x – 0.92x 2

a. What is the productivity of a worker who works 40 hours per week?
b. Use the Solver to find the number of hours per week that yields the max-

imum productivity.
14. For a meal at a restaurant your check is $43.80. Use the Tip Amount.xls tem-
plate to answer the following questions.

a. You wish to give a 15% tip. What is the total amount you pay? What is the
tip amount?

b. If you paid $50.00, what percentage of the check amount did you give as a tip?
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Books on Data Analysis 
(Chapter 1):

Chambers, J. M.; W. S. Cleveland;
B. Kleiner; and P. A. Tukey.
Graphical Methods for Data
Analysis. Boston: Duxbury Press,
1983. An interesting approach
to graphical techniques and
EDA using computer-intensive
methods. The book requires no
mathematical training.

Tukey, J. W. Exploratory Data
Analysis. Reading, Mass.:
Addison-Wesley Publishing,
1977. This is the original EDA
book. Some material in our
Chapter 1 is based on this text.

Books Primarily about
Probability and Random
Variables (Chapters 2, 3, and 4):

Chung, K. L. Probability Theory with
Stochastic Processes. New York:
Springer-Verlag, 1979. This is a
lucidly written book. The
approach to the theory of
probability is similar to the one
used in our text.

Feller, William. An Introduction to
Probability Theory and Its
Applications. Vol. 1, 3rd ed.;
vol. 2, 2nd ed. New York: John
Wiley & Sons, 1968, 1971.
This is a classic textbook in
probability theory. Volume 1
should be understandable to a
reader of our text. Volume 2,
which deals with continuous
probability models, is more
difficult and requires
considerable mathematical
ability.

Loève, Michel. Probability Theory.
New York: Springer-Verlag,
1994. This is a mathematically
demanding classic text in

probability (an understanding of
mathematical analysis is
required).

Ross, Sheldon M. A First Course in
Probability. 3rd ed. New York:
Macmillan, 1988. An intuitive
introduction to probability that
requires a knowledge of calculus.

Ross, Sheldon M. Introduction to
Probability Models. 4th ed. New
York: Academic Press, 1989. A
very intuitive introduction to
probability theory that is
consistent with the development
in our text.

Statistical Theory and Sampling
(Chapters 5, 6, 7, and 8):

Cochran, William G. Sampling
Techniques. 3rd ed. New York:
John Wiley & Sons, 1977. This is
a classic text on sampling
methodology.

Cox, D. R., and D. V. Hinkley.
Theoretical Statistics. London:
Chapman and Hall, 1974. A
thorough discussion of the
theory of statistics.

Fisher, Sir Ronald A. The Design of
Experiments. 7th ed. Edinburgh:
Oliver and Boyd, 1960. A classic
treatise on statistical inference.

Fisher, Sir Ronald A. Statistical
Methods for Research Workers.
Edinburgh: Oliver and Boyd,
1941.

Hogg, R. V., and A. T. Craig.
Introduction to Mathematical
Statistics. 4th ed. New York:
Macmillan, 1978. A good
introduction to mathematical
statistics that requires an
understanding of calculus.

Kendall, M. G., and A. Stuart. The
Advanced Theory of Statistics.
Vol. 1, 2nd ed.; vols. 2, 3.
London: Charles W. Griffin,
1963, 1961, 1966.

Mood, A. M.; F. A. Graybill; 
and D. C. Boes. Introduction 
to the Theory of Statistics. 3rd ed. 
New York: McGraw-Hill, 
1974.

Rao, C. R. Linear Statistical
Inference and Its Applications.
2nd ed. New York: John Wiley
& Sons, 1973. This is a classic
book on statistical inference
that provides in-depth coverage
of topics ranging from
probability to analysis of
variance, regression analysis,
and multivariate methods. This
book contains theoretical
results that are the basis of
statistical inference. The book
requires advanced
mathematical ability.

Books Primarily about
Experimental Design, Analysis
of Variance, Regression Analysis,
and Econometrics (Chapters 9,
10, and 11):

Chatterjee, S., and B. Price.
Regression Analysis by Example.
2nd ed. New York: John Wiley
& Sons, 1991.

Cochran, W. G., and G. M. Cox.
Experimental Designs. 2nd ed.
New York: John Wiley & Sons,
1957.

Cook, R. Dennis, and Weisberg, S.
Applied  Regression Including
Computing and Graphics. New
York: John Wiley & Sons, 1999.
A good introduction to
regression analysis.
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Draper, N. R., and H. Smith. Applied
Regression Analysis. 3rd ed. New
York: John Wiley & Sons, 1998.
A thorough text on regression
analysis that requires an
understanding of matrix algebra.

Johnston, J. Econometric Methods. 4th
ed. New York: McGraw-Hill,
2001. A good, comprehensive
introduction to econometric
models and regression analysis
at a somewhat higher level than
that of our text.

Judge, G. R.; C. Hill; W. Griffiths;
H. Lutkepohl; and T. Lee.
Introduction to the Theory and
Practice of Econometrics. 2nd ed.
New York: John Wiley & Sons,
1985.

Kutner, M. H., et al. Applied Linear
Regression Models. 4th ed. New
York: McGraw-Hill/Irwin, 2004.
A good introduction to
regression analysis.

Kutner, M. H., et al. Applied Linear
Statistical Models. 5th ed.
New York: McGraw-Hill/Irwin,
2005. A good introduction to
regression and analysis of
variance that requires no
advanced mathematics.

Montgomery, D. C., and E. A.
Peck. Introduction to Linear
Regression Analysis. 2nd ed. New
York: John Wiley & Sons, 1992.
A very readable book on
regression analysis that is
recommended for further
reading after our Chapter 11.

Scheffé, H. The Analysis of Variance.
New York: John Wiley & Sons,
1959. This is a classic text on
analysis of variance that requires
advanced mathematical ability.

Seber, G. A. F., and Alan J. Lee.
Linear Regression Analysis. 2nd ed.

New York: John Wiley & Sons,
2003. An advanced book on
regression analysis. Some of the
results in this book are used in
our Chapter 11.

Snedecor, George W., and William
G. Cochran. Statistical Methods.
7th ed. Ames: Iowa State
University Press, 1980. This
well-known book is an excellent
introduction to analysis of
variance and experimental
design, as well as regression
analysis. The book is very
readable and requires no
advanced mathematics.

Books on Forecasting 
(Chapter 12):

Abraham, B., and J. Ledolter.
Statistical Methods for Forecasting.
New York: John Wiley & Sons,
1983. This is an excellent book
on forecasting methods.

Armstrong, S. Long-Range
Forecasting. 2nd ed. New York:
John Wiley & Sons, 1985.

Granger, C. W. J., and P. Newbold.
Forecasting Economic Time Series.
2nd ed. New York: Academic
Press, 1986. A good introduction
to forecasting models.

Books on Quality Control
(Chapter 13):

Duncan, A. J. Quality Control and
Industrial Statistics. 5th ed. New
York: McGraw-Hill/Irwin, 1986.

Gitlow, H.; A. Oppenheim; and
R. Oppenheim. Quality
Management. 3rd ed. New York:
McGraw-Hill/Irwin, 2005.

Ott, E. R., and E. G. Schilling.
Process Quality Control. 2nd ed.
New York: McGraw-Hill, 1990.

Ryan, T. P. Statistical Methods for
Quality Improvement. New York:

John Wiley & Sons, 1989. Much
of the material in our Chapter
13 is inspired by the approach in
this book.

Books on Nonparametric
Methods (Chapter 14):

Conover, W. J. Practical
Nonparametric Statistics. 2nd ed.
New York: John Wiley & Sons,
1980. This is an excellent,
readable textbook covering a
wide range of nonparametric
methods. Much of the material
in our Chapter 14 is based on
results in this book.

Hollander, M., and D. A. Wolfe.
Nonparametric Statistical Methods.
New York: John Wiley & Sons,
1973.

Siegel, S. Nonparametric Statistics for
the Behavioral Sciences. 2nd ed.
New York: McGraw-Hill, 1988.

Books on Subjective Probability,
Bayesian Statistics, and Decision
Analysis (Chapter 15 and
Chapter 2):

Berger, James O. Statistical Decision
Theory and Bayesian Analysis. 2nd
ed. New York: Springer-Verlag,
1985. A comprehensive book on
Bayesian methods at an
advanced level.

de Finetti, Bruno. Probability,
Induction, and Statistics. New
York: John Wiley & Sons, 1972.
This excellent book on subjective
probability and the Bayesian
philosophy is the source of the
de Finetti game in our Chapter
15. The book is readable at about
the level of our text.

de Finetti, Bruno. Theory of
Probability. Vols. 1 and 2. New
York: John Wiley & Sons, 1974,
1975. An excellent introduction
to subjective probability and the
Bayesian approach by one of its
pioneers.
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DeGroot, M. H. Optimal Statistical
Decisions. New York: McGraw-
Hill, 1970.

Good, I. J. Good Thinking: The
Foundations of Probability and Its
Applications. Minneapolis:
University of Minnesota Press,
1983.

Jeffreys, Sir Harold. Theory of
Probability. 3rd rev. ed.
London: Oxford University
Press, 1983. First published
in 1939, this book truly
came before its time. The
book explains the Bayesian
philosophy of science and its
application in probability

and statistics. It is readable
and thought-provoking and
is highly recommended for
anyone with an interest in the
ideas underlying Bayesian
inference.
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743

Chapter 1

1–1. 1. quantitative/ratio
2. qualitative/nominal
3. quantitative/ratio
4. qualitative/nominal
5. quantitative/ratio
6. quantitative/interval
7. quantitative/ratio
8. quantitative/ratio
9. quantitative/ratio

10. quantitative/ratio
11. quantitative/ordinal

1–3. Weakest to strongest: 
nominal, ordinal,
interval, ratio.

1–5. Ordinal
1–7. Nonrandom sample;

frame is random
sample

1–11. Ordinal
1–13. LQ � 121

MQ � 128
UQ � 133.5
10th percentile � 114.8
15th percentile � 118.1
65th percentile � 131.1
IQR � 12.5

1–15. Formula (template)
Median � �0.15
(�0.15)
20th percentile �
�0.7 (�0.7)
30th percentile �
�0.64 (�0.56)
60th percentile �
0.16 (0.14)
90th percentile �
1.52 (0.88)

1–17. Median � 51
LQ � 31.5
UQ � 162.75
IQR � 131.25
45th percentile � 42.2

1–19. mean � 126.64
median � 128
modes � 128, 134, 136

1–21. mean � 66.955
median � 70
mode � 45

1–23. mean � 199.875
median � 51
mode � none

1–25. mean � 21.75
median � 13
mode � 12

1–27. mean � 18.34
median � 19.1

1–29. Variance, standard
deviation

1–31. range � 27
var � 57.74
s.d. � 7.5986

1–33. range � 60
var � 321.38
s.d. � 17.927

1–35. range � 1186
var � 110,287.45
s.d. � 332.096

1–37. Chebyshev holds; data
not mound-shaped,
empirical rule does not
apply

1–39. Chebyshev holds; data
not mound-shaped,
empirical rule does not
apply

1–45. mean � 13.33
median � 12.5

1–47. 5 | 5688
6 | 0123677789
7 | 0222333455667889
8 | 224

1–49. Stem-and-leaf is
similar to a histogram
but it retains the
individual data points;
box plot is useful in
identifying outliers
and the shape of the
distribution of
the data.

1–51. Data are concentrated
about the median; 
2 outliers

1–53. � � 127
� � 11.45
�2� 131.04
Mode � 127

Suspected outliers:
101, 157

1–55. Can use stem-and-leaf
or box plots to identify
outliers; outliers need
to be evaluated
instead of just
eliminated.

1–57.
Mine A: Mine B:
3 | 2457 2 | 3489
4 | 12355689 3 | 24578
5 | 123 4 | 034789
6 | 0 5 | 0129
—out values—
7 | 36
8 | 5
1–59. LW � �0.3

LH � 0.275
median � 0.6
UH � 1.15
UW � 1.6

1–63. mean � 504.688
s.d. � 94.547

1–65. range � 346
90th percentile � 632.7
LQ � 419.25
MQ � 501.5
UQ � 585.75

1–67. 1 | 2456789
2 | 02355
3 | 24
4 | 01

1–69. 1 | 012
—out values—
1 | 9
2 | 1222334556677889
3 | 02457
—out values—
6 | 2

1–71. mean � 8.067
median � 9
mode � 10

1–73. mean � 33.271
s.d. � 16.945
var � 287.15
LQ � 25.41
MQ � 26.71
UQ � 35
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1–75. 1. 3.5
2. Right skewed
3. d
4. Nothing will be

affected
1–77. mean � 186.7

median � 56.2
s.d. � 355.6
outliers: 1459, 707.1,
481.9

1–79. mean � 1720.2
median � 930
s.d. � 1409.85
var � 1987680.96

1–81. mean � 17.587
var � 0.2172
s.d. � 0.466

1–83. mean � 37.17
median � 34
s.d. � 13.12758
var � 172.33

1–85. a. VARP � 3.5 �
offset2

b. VARP � 3.5
1–89. mean � 5.148

median � 5.35
s.d. � 0.6021
var � 0.3625

Chapter 2

2–1. Objective and
subjective

2–3. The sample space is
the set of all possible
outcomes of an
experiment.

2–5. G � F: the baby is
either a girl, or is 
over 5 pounds (of
either sex). G � F: the
baby is a girl over 
5 pounds.

2–7. 0.417
2–9. S � B: purchase stock

or bonds, or both.
S � B: purchase stock
and bonds.

2–11. 0.12
2–13. a. 0.1667

b. 0.0556
c. 0.3889

2–15. 0.85 is a typical
“very likely”
probability.

2–17. The team is very likely
to win.

2–19. a. Mutually exclusive
b. 0.035
c. 0.985,complements

2–21. 0.49
2–23. 0.7909
2–25. 0.500
2–27. 0.34
2–29. 0.60
2–31. a. 0.1002

b. 0.2065
c. 0.59
d. 0.144
e. 0.451
f. 0.571
g. 0.168
h. 0.454
i. 0.569

2–33. a. 0.484
b. 0.455
c. 0.138
d. 0.199
e. 0.285
f. 0.634
g. 0.801

2–35. 0.333
2–37. 0.8143
2–39. 0.72675
2–41. 0.99055
2–43. 0.9989
2–45. not independent
2–47. 0.3686
2–49. 0.00048
2–51. 0.0039, 0.684
2–53. 362,880
2–55. 120
2–57. 0.00275
2–59. 0.0000924
2–61. 0.86
2–63. 0.78
2–65. 0.9944
2–67. 0.2857
2–69. 0.8824
2–71. 0.0248
2–73. 0.6
2–75. 0.20
2–77. 0.60
2–79. not independent
2–81. 0.388
2–83. 0.59049, 0.40951
2–85. 0.132, not random
2–87. 0.6667
2–89. a. 0.255

b. 0.8235

2–91. 0.5987
2–93. 0.5825
2–95. Practically speaking,

the probabilities
involved vary only
slightly, and their 
role in the outcome 
of the game should 
be more or less
unnoticeable when
averaged over a span
of games.

2–97. 1�2
2–99. 0.767

2–101. a. 0.202
b. 1.00
c. 0.0

2–103. P (Pass) � 0.0002;
P (Success) � 0.00014

2–105. P (A|def) � 0.3838
P (B|good) � 0.3817

Chapter 3

3–1. a. � P (x) � 1.0
b. x F(x)

0 0.3

1 0.5

2 0.7

3 0.8

4 0.9

5 1.0

c. 0.3
3–3. a. � P (x) � 1.0

b. x F(x)

0 0.10

10 0.30

20 0.65

30 0.85

40 0.95

50 1.00

c. 0.35
3–5. x P(x) F(x)

2 1/36 1/36

3 2/36 3/36

4 3/36 6/36

5 4/36 10/36

6 5/36 15/36

7 6/36 21/36

8 5/36 26/36

9 4/36 30/36

10 3/36 33/36

11 2/36 35/36

12 1/36 36/36

Most likely sum is 7
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3–7. a. 0.30
b. x F(x)
400 0.05

600 0.10

800 0.20

1000 0.30

1200 0.60

1500 0.80

1700 1.00

c. 0.30
d. 0.70

3–9. a. � P (x) � 1.0
b. 0.50
c. x F(x)

9 0.05

10 0.20

11 0.50

12 0.70

13 0.85

14 0.95

15 1.00

3–11. E (X ) � 1.8
E (X 2) � 6
V (X ) � 2.76
SD(X ) � 1.661

3–13. E (X ) � 21.5
E (X 2) � 625
V (X ) � 162.75

3–15. E(sum of 2 dice) � 7
x P(x) xP(x)

2 1/36 2/36
3 2/36 6/36
4 3/36 12/36
5 4/36 20/36
6 5/36 30/36
7 6/36 42/36
8 5/36 40/36
9 4/36 36/36

10 3/36 30/36
11 2/36 22/36
12 1/36 12/36

252/36 � 7

3–17. mean � 1230
var � 137100
s.d. � 370.27

3–19. Three standard
deviations
8�9 � 1 � 1�32 k � 3

3–21. a. 2000
b. Yes P (X 
 0) � .6
c. E (X ) � �800
d. good measure of 

risk is the standard
deviation
E (X 2) � 2,800,000

V (X ) � 2,160,000
SD(X ) � 1,469.69

3–23. $868.5 million
3–25. Penalty � X 2

E (X 2) � 12.39
3–27. Variance is a measure

of the spread or
uncertainty of the
random variable.

3–29. V (Cost) � V (aX � b) �
a2V (X ) � 68,687,500
SD(Cost) � 8,287.79

3–31. 3.11
3–33. X is binomial if sales

calls are independent.
3–35. X is not binomial

because members of the
same family are related
and not independent of
each other.

3–37. a. slightly skewed;
becomes more
symmetric as n
increases.

b. Symmetric if p �
0.5. Left-skewed if
p 
 0.5; right-
skewed if p � 0.5

3–39. a. 0.8889
b. 11
c. 0.55

3–41. a. 0.9981
b. 0.889, 0.935
c. 4, 5
d. increase the reliability

of each engine
3–43. a. mean � 6.25, 

var � 6.77083
b. 61.80%
c. 11
d. p � 0.7272

3–45. a. mean � 2.857, 
var � 5.306

b. 82.15%
c. 7
d. p � 0.5269

3–47. a. 0.5000
b. Add 4 more

women or remove
3 men.

3–49. a. 0.8430
b. 6
c. � � 1.972

3–51. a. MTBF � 5.74 days
b. P (x 	 1) � 0.1599

c. 0.1599
d. 0.4185

3–55. As s or p increases
skewness decreases.

3–57. a. 0.7807
b. 0.2858

3–59. a. 0.7627
b. 0.2373

3–61. a. 0.2119
b. 0.2716
c. 0.1762

3–63. a. P (x � 5) � 0.2061
b. P (x � 4) � 0.2252
c. P (x � 3) � 0.2501
d. P (x � 2) � 0.2903
e. P (x � 1) � 0.3006

3–65. P (x � 2) � 0.5134
3–67. a. � P (x) � 1.0

b. x F(x)

0 .05

1 .10

2 .20

3 .35

4 .55

5 .70

6 .85

7 .95

8 1.00

c. P (3 	 x 	 7) � 0.65
d. P (X 	 5) � 0.70
e. E (X ) � 4.25
f. E (X 2) � 22.25

V (X ) � 4.1875
SD(X ) � 2.0463

g. [0.1574, 8.3426] vs
P (1 	 X 	 8)
� 0.95

3–69. a. � P (x) � 1.0
b. x F(x)

0 .10

1 .30

2 .60

3 .75

4 .90

5 .95

6 1.00

c. 0.35, 0.40, 0.10
d. 0.20
e. 0.0225
f. E (X ) � 2.4

SD(X ) � 1.562
3–71. a. E (X ) � 17.56875 

profit � $31.875
b. SD(X ) � 0.3149

a measure of risk
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c. the assumption 
of stationary and 
independence of 
the stock prices

3–73. a. Yes.
b. 0.7716

3–75. a. The distribution is
binomial if the cars
are independent of
each other.

b. x P(x)
0 .5987

1 .3151

2 .0746

3 .0105

4 .0010

5 .0001

c. 0.0861
d. 1⁄2 a car

3–77. N/n � 10
3–79. b. 1.00

c. 0.75
3–81. 0.9945
3–83. a. 11.229

b. 20�20 : �1.02
G.B.: �0.33
M.C.: �1.48

3–85. 0.133; 10
3–87. 0.3935
3–89. P (X � 5) � 0.0489
3–91. 0.9999; 0.0064; 0.6242
3–93. i) MTBF � 103.86 hrs

ii) 49.9 hrs
iii) Because it is right

skewed

Chapter 4

4–1. 0.6826; 0.95; 0.9802
4–3. 0.1805
4–5. 0.0215
4–7. 0.9901
4–9. a very small number,

close to 0
4–11. 0.9544
4–13. Not likely, 

P � 0.00003
4–15. z � 0.48
4–17. z � 1.175
4–19. z � �1.96
4–21. 0.0164
4–23. 0.927
4–25. 0.003
4–27. 0.8609; 0.2107; 

0.6306

4–29. 0.0931
4–31. 0.2525
4–33. 0.8644
4–35. 0.3759; 0.0135; 0.8766
4–37. 0.0344
4–39. 15.67
4–41. 76.35; 99.65
4–43. �46.15
4–45. 832.6; 435.5
4–47. [18,130.2; 35,887.8]
4–49. 74.84
4–51. 1.54
4–53. 0.99998
4–55. 0.3804
4–57. 0.1068
4–59. 0.7642
4–61. 0.1587; 0.9772
4–63. 791,580
4–65. [7.02, 8.98]
4–67. 1555.52, [1372.64,

3223.36]
4–69. 8.856 kW
4–71. more than 0.26%
4–73. u � 64.31, s.d. 

� 5.49
4–75. 6015.6
4–77. 0.0000
4–79. a. N(248, 5.38522)

b. 0.6448
c. 0.0687

4–81. a. 0.0873
b. 0.4148
c. 16,764.55
d. 0.0051

4–83. i) Yes
ii) Mean � $7133;

Std. dev � $177.29
iii) 0.7734

Chapter 5

5–1. Parameters are
numerical measures
of populations.
Sample statistics are
numerical measures of
samples. An estimator
is a sample statistic
used for estimating
a population
parameter.

5–3. 5�12 � 0.41667
5–5. mean � 4.368

s.d. � 0.3486

5–11. The probability
distribution of a
sample statistic; useful
in determining the
accuracy of estimation
results.

5–13. E ( ) � 125
SE( ) � 8.944

5–15. When the population
distribution is
unknown.

5–17. Binomial. Cannot use
normal approximation
since np � 1.2

5–19. 0.075
5–21. 1.000
5–23. 0.2308
5–25. 0.000
5–27. 0.0497
5–29. 0.0190
5–31. A consistent estimator

means as n → � the
probability of getting
close to the parameter
increases. A generous
budget affords a large
sample size, making
this probability high.

5–33. Advantage: uses all
information in the
data. Disadvantage:
may be too sensitive
to the influence of
outliers.

5–37. a. mean � 43.667,
SSD � 358,
MSD � 44.75

b. use Means: 40.75,
49.667, 40.5

c. SSD � 195.917,
MSD � 32.6528

d. SSD � 719,
MSD � 89.875

5–39. Yes, we can solve the
equation for the one
unknown amount.

5–41. E ( ) � 1065
V ( ) � 2500

5–43. E ( ) � 53
SE( ) � 0.5

5–45. E ( p̂ ) � 0.2
SE( p̂ ) � 0.04216

5–47. 1.000

X
X
X
X

X
X
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5–49. 0.9544
5–51. a. 8128.08

b. 0.012
5–55. The sample median is

unbiased. The sample
mean is more efficient
and is sufficient. Must
assume normality for
using the sample
median to estimate �;
it is more resistant to
outliers.

5–57. 0.000
5–59. 1.000
5–61. 0.9503
5–63. No minimum (n � 1 is

enough for normality).
5–65. This estimator is

consistent, and is more
efficient than X

_
,

because �2/n2 � �2/n
5–67. Relative minimum

sample sizes:
na � nb � nd � ne � nc

5–69. Use a computer
simulation, draw
repeated samples,
determine the
empirical distribution.

5–71. P (Z � �5) �
0.0000003 Not
probable

5–73. 0.923
5–75. 0.1999
5–77. 0.0171

Chapter 6

6–5. [86,978.12, 92,368.12]
6–7. [31.098, 32.902] m.p.g.
6–9. [9.045, 9.555] percent

6–11. a. [1513.91, 1886.09]
b. fly the route

6–13. 95% C.I.: [136.99,
156.51]
90% C.I.: [138.56,
154.94]
99% C.I.: [133.93,
159.57]

6–15. [17.4, 22.6] percent
6–17. 8.393
6–19. 95% C.I.: [15,684.37,

17,375.63]
99% C.I.: [15,418.6,
17,641.4]

6–21. [27.93, 33.19] thousand
miles

6–23. [72.599, 89.881]
6–25. [4.92368, 12.06382]
6–27. [2.344, 2.856] days
6–29. [627478.6, 666521.4]
6–31. [15.86, 17.14] dollars
6–33. [5.44, 7.96] years
6–35. [55.85, 67.48] containers
6–37. [9.764, 10.380]
6–39. [10.76, 12.16]
6–41. [0.4658, 0.7695]
6–43. [0.3430, 0.4570]
6–45. [0.0078, 0.0122]
6–47. [0.0375, 0.2702]
6–49. [0.5357, 0.6228]
6–51. [0.1937, 0.2625]
6–53. [61.11, 197.04]
6–55. [19.25, 74.92]
6–57. [1268.03, 1676.68]
6–59. 271
6–61. 39
6–63. 131
6–65. 865
6–67. [21.507, 25.493]
6–69. [0.6211, 0.7989]
6–71. [35.81417, 52.18583]
6–73. [1.0841, 1.3159]
6–75. [0.6974, 0.7746]
6–77. did benefit
6–79. [7.021, 8.341]
6–81. [0.508, 0.692]
6–83. [0.902, 0.918]
6–85. [0.5695, 0.6304]
6–87. 75% C.I.: [7.76, 8.24]
6–89. 95% CI: [0.9859,

0.9981]
99% CI: [0.9837,
1.0003]

6–95. [5.147, 6.853]

Chapter 7

7–1. H0: p � 0.8
H1: p 
 0.8

7–3. H0: � 	 12
H1: � 
 12

7–5. H0: � 	 $3.75
H1: � 
 $3.75

7–11. a. left-tailed H1:
� � 10

b. right-tailed H1:
p 
 0.5

c. left-tailed H1:
� � 100

d. right-tailed H1:
� 
 20

e. two-tailed H1:
p 
 0.22

f. right-tailed H1:
� 
 50

g. two-tailed H1:
�2 
 140

7–13. a. to the left tail
b. to the right tail
c. either to the left or

to the right tail
7–15. a. p-value will

decrease
b. p-value increases
c. p-value decreases

7–17. z � 1.936,
Do not reject H0
(p-value � 0.0528)

7–19. z � 1.7678, Reject H0
7–21. t(15) � 1.55, Do not

reject H0 (p-value

 0.10)

7–23. z � �3.269, Reject H0
(p-value � 0.0011)

7–25. t(24) � 2.25, Do not
reject H0 at � � 0.01,
reject at � � 0.05

7–27. z � 6.5385, Reject H0
7–29. z � 1.539, Do not

reject H0 (p-value �
0.1238)

7–31. z � 1.622, Do not
reject H0 (p-value �
0.1048)

7–33. t(23) � 2.939, 
Reject H0

7–35. z � 16.0, Reject H0
7–37. z � �20, Reject H0
7–39. z � �1.304, Do not

reject H0 (p-value �
0.0962)

7–41. z � 9.643, Reject H0
7–43. z � �3.2332, 

Reject H0
7–45. standing start: z �

2.7368, Reject H0
braking: z � 1.8333,
Reject H0

7–47. power � 0.9092
7–49. z � 10.30, Reject H0
7–51. z � �2.711, Reject H0
7–53. z � �2.3570, 

Reject H0
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7–55. z � 4.249, Reject H0
(p-value � 0.00001)

7–65. z � �4.86, Reject H0,
power � 0.5214

7–67. �2
(24) � 26.923, Do not

reject H0 (p-value 

0.10)

7–69. t(20) � 1.06, Do not
reject H0 at � � 0.10
(p-value � 0.15)

7–71. t � �5.4867, 
Reject H0

7–73. z � 2.53, Reject H0
(p-value � 0.0057)

7–75. Do not reject H0 at
0.05 level of
significance

7–77. Do not reject H0 at
0.05 level of
significance

7–79. t � 1.1899, Do not
reject H0

7–81. Reject H0, p-value �
0.0188

7–83. b. power � 0.4968
c. No.

7–85. b. power � 0.6779
c. Yes.

7–87. 1. 54
7–89. z � �3.2275, Reject H0

Chapter 8

8–1. t(24) � 3.11, Reject H0
(p-value � 0.01)

8–3. t � 4.4907, Reject H0
8–5. t(14) � 1.469, Cannot

reject H0
8–7. Power � P(Z 
 1.55) �

0.0606
8–9. t � �2.1025, 

Reject H0
8–11. t � �11.101, Reject H0
8–13. z � 4.24, Reject H0
8–15. a. One-tailed: H0:

�1 � �2 	 0
b. z � 1.53
c. At � � .05, Do not

reject H0
d. 0.063
e. t (19) � 0.846, Do not

reject H0
8–17. [2.416, 2.664] percent
8–19. t(26) � �1.132, Do not

reject H0 ( p-value 

0.10)

8–21. t � �1.676, Do not
reject H0

8–23. t(13) � 1.164, Strongly
reject H0 ( p-value 

0.10)

8–25. z � 2.785, Reject H0
(p-value � 0.0026)

8–27. t � 0.7175, Do not
reject H0

8–29. z � 2.835, Reject H0
( p-value � 0.0023)

8–31. z � �0.228, Do not
reject H0

8–33. [0.0419, 0.0781]
8–35. z � 1.601, Do not

reject H0 at � � .05
(p-value � 0.0547)

8–37. z � 2.6112, Reject H0
8–39. z � 5.33, Strongly

reject H0 (p-value is
very small)

8–41. F � 1.1025, Do not
reject H0

8–43. F(27,20) � 1.838, At � �
0.10, cannot reject H0
[0.652, 4.837]

8–45. F(24,24) � 1.538, Do not
reject H0

8–47. Independent random
sampling from the
populations and
normal population
distributions

8–49. [�3235.97, 1321.97]
8–51. [�0.465, 9.737]
8–53. [0.0989, 0.3411]
8–55. z � 1.447, Do not

reject H0 (p-value �
0.1478)

8–57. t(22) � 2.719, Reject
H0 (0.01 � p-value
� 0.02)

8–59. z � �1.7503, Do not 
reject H0

8–61. t(26) � 2.479, Reject H0
(p-value � 0.02)

8–63. t(29) � 1.08, Do not
reject H0

8–65. Since s � s , Do not
reject H0

8–67. t(15) � �0.9751, Do not
reject H0

8–69. [0.0366, 0.1474]
8–71. t � �1.5048, Do not

reject H0

2
2

2
1

8–73. t � 14.2414, 
Reject H0

8–75. Do not reject H0
8–77. [�0.1264, 0.5264]
8–79. 1. t � 2.1356, 

Reject H0
2. F � 5.11, 

Reject H0

Chapter 9

9–1. H0: All 4 means are
equal
H1: All 4 are different;
or 2 equal, 2 different;
or 3 equal, 1 different;
or 2 equal, other 2
equal but different
from first 2.

9–3. Series of paired
t tests are dependent
on each other. No
control over the
probability of a type
I error.

9–5. F(3,176) � 12.53,
Reject H0

9–7. The sum of all the
deviations from a
mean is equal to 0.

9–11. Both MSTR and
MSE are sample
statistics given to
natural variation
about their own
means.

9–19. Source SS df
Between 187.696 3

Within 152.413 28

Total 340.108 31

MS F
62.565 11.494

5.4433

p-value � 0.000,
Reject H0

9–21. Source df SS
Treatment 2 91.043

Error 38 140.529

Total 40 231.571

MS F
45.521 12.31

3.698

Critical point F(2,38)
for � � 0.01 is 3.24,
Reject H0
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9–23. Performances of the
four different portfolios
are significantly
different.

9–25. T � 4.738. The mean
for squares is
significantly greater
than those for circles
and for triangles;
circles and triangles
show no significant
difference.

9–27. UK � UAE, UK-
OMAN, MEX-OMAN

9–29. df factor � 2
df error � 154
df total � 156

9–31. No; the 3 prototypes
were not randomly
chosen from a
population.

9–33. Fly all 3 planes on 
the same route every
time.

9–35. Otherwise not a
random sample from 
a population of
treatments, and
inference is thus not
valid for the entire
“population.”

9–37. If the locations and the
artists are chosen
randomly, we have a
random-effects model.

9–41. Since there are inter-
actions, there are
differences in
emotions averaged
over all levels of
advertisements.

9–43. Source df SS
Network 145 2

Newstime 160 2

Interaction 240 4

Error 6200 441

Total 6745 449

MS F
72.5 5.16

80 5.69

60 4.27

14.06

All are significant at
� � 0.01. There are

interactions. There are
Network main effects
averaged over
Newstime levels.
There are Newstime
main effects averaged
over Network
levels.

9–45. a. Explained is
treatment � Factor
A � Factor B �
(AB )

b. a � 3
c. b � 2
d. N � 150
e. n � 25 There are

no exercise-price
main effects.

g. There are time-of-
expiration main
effects at 0.05 but
not at 0.01.

h. There are no
interactions.

i. Some evidence for
time-of-expiration
main effects; no
evidence for
exercise-price
main effects or
interaction effects.

j. For time-of-
expiration main
effects, 0.01 �
p-value � 0.05. For
the other two tests,
the p-values are very
high.

k. Could use a t test
for time-of-
expiration effects:
t2

(144) � F(1,144)
9–47. Advantages: reduced

experimental errors
and great economy of
sample size.
Disadvantages:
restrictive, because it
requires that number
of treatments �
number of rows �
number of columns.

9–49. Could use a
randomized blocking
design.

9–51. Yes; have people of
the same occupation/
age/demographics use
sweaters of the 3 kinds
under study. Each
group of 3 people is a
block.

9–53. Group the executives
into blocks according
to some choice of
common
characteristics such as
age, sex, or years
employed at current
firm; these blocks
would then form a
third variable beyond
Location and Type to
use in a 3-way
ANOVA.

9–55. F(2,198) � 25.84,
Reject H0 (p-value
very small)

9–57. F(7,152) � 14.67,
Reject H0 (p-value
very small)

9–59. Source SS df
Software 77,645 2
Computer 54,521 3
Interaction 88,699 6
Error 434,557 708
Total 655,422 719

MS F
38,822.5 63.25
18,173.667 29.60
14,783.167 24.09

613.78

Both main effects and
the interactions are
highly significant.

9–61. Source SS df
Pet 22,245 3
Location 34,551 3
Interaction 31,778 9
Error 554,398 144
Total 642,972 159

MS F

7,415 1.93
11,517 2.99
3,530.89 0.92
3,849.99

No interactions; no pet
main effects. There are
location main effects at
� � 0.05
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9–63. b. F(2,58) � 11.47,
Reject H0

9–65. F(2,98) � 0.14958, 
Do not reject H0

9–67. Rents are equal on
average; no evidence
of differences among
the four cities.

Chapter 10

10–1. A set of mathematical
formulas and assump-
tions that describe some
real-world situation.

10–3. 1. a straight-line
relationship
between X and Y

2. the values of X are
fixed

3. the regression errors,
�, are identically
normally distributed
random variables,
uncorrelated with
each other through
time.

10–5. It is the population
regression line.

10–7. 1. It captures the
randomness in the
process.

2. It makes the result
(Y ) a random
variable.

3. It captures the
effects on Y of
other unknown
components not
accounted by the
regression model.

10–9. The line is the best
unbiased linear
estimator of the true
regression line. Least-
squares line is
obtained by
minimizing the sum of
the squared deviations
of the data points
about the line.

10–11. b0 � 6.38,  
b1 � 10.12

10–13. b0 � �3.057, 
b1 � 0.187

10–15. b0 � 16.096; 
b1 � 0.9681

10–17. b0 � 39.6717, 
b1 � 0.06129

10–19. [1.1158, 1.3949]
10–21. s(b0) � 2.897, 

s(b1) � 0.873
10–23. s(b0) � 0.971

s(b1) � 0.016 Estimate
of error variance is
MSE � 0.991

10–25. s2 gives information
about the variation of
the data points about
the computed
regression line.

10–27. r � 0.9890
10–29. t (5) � 0.601, Do not

reject H0
10–31. t(8) � 5.11, Reject H0
10–35. z � 1.297, Do not

reject H0
10–37. t(16) � 1.0727, Do not

reject H0
10–39. t (11) � 11.69, Strongly

reject H0
10–41. t (58) � 5.90, Reject H0
10–43. t (211) � 0.0565, Do not

reject H0
10–45. 9% of the variation in

customer satisfaction
can be explained by
the changes in a
customer’s materialism
measurement.

10–47. r 2 � 0.9781
10–49. r 2 � 0.067
10– 51. U.K. model explains

31.7% of the variation;
next best models:
Germany, Canada,
Japan, then United
States.

10–53. r 2 � 0.835
10–57. F(1,11) � 129.525

t (11) � 11.381 t2 � F
(11.381)2 � 129.525

10–59. F(1,17) � 85.90, Very
strongly reject H0

10–61. F(1,20) � 0.3845,
Do not reject H0

10–63. a. Heteroscedasticity
b. No apparent

inadequacy

c. Data display
curvature, not a
linear relationship

10–65. a. no serious
inadequacy

b. Yes. A deviation
from the normal-
distribution
assumption is
apparent.

10–69. 6551.35
P.I.: [5854.4, 7248.3]

10–71. [5605.75, 7496.95]
10–73. [36.573, 77.387]
10–75. [�157990, 477990]
10–77. a. Y � 2.779337X �

0.284157. When 
X � 10, Y � 27.5092

b. Y � 2.741537X.
When X � 10,
Y � 27.41537

c. Y � 2.825566X �
1.12783. When 
X � 10,
Y � 27.12783

d. Y � 2X � 4.236.
When X � 10,
Y � 24.236

10–79. Reject the null. 19% 
of the variation in job
performance can be
explained by
neuroticism.

10–81. Mean � 13.4%;
s.d. � 5.3563%

10–83. b0 � 62.292; 
b1 � �1.8374

10–85. b0 � �2311;
b1 � 5.2031

10–87. b0 � 713.95; 
b1 � �0.0239

Chapter 11

11–5. 8 equations
11–7. b0 � �1.134

b1 � 0.048
b2 � 10.897

11–11. n � 13
11–21. R2 � 0.9174, a good

regression, 2

� 0.8983
11–23. 2 � 0.8907. Do not

include the new
variable.

R

R
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11–25. a. Assume n � 50;
Regression is:
Return � 0.484 �
0.030 (Siz rnk) �
0.017 (Prc rnk)

b. R2 � 0.130. 13% 
of the variation is
due to the two
independent
variables

c. Adjusted R2 is quite
low; try regressing
on size alone.

11–27. F � 168.153, adj. 
R2 � 0.7282, 
Reject H0

11–29. firm size: z � 12.00
(significant)
firm profitability: z �
�5.533 (significant)
fixed-asset ratio: 
z � �0.08
growth opportunities: 
z � �0.72
nondebt tax shield: 
z � 4.29 (significant)

11–31. �2 � [3.052, 8.148]
�3 � [�3.135, 23.835]
�4 � [�1.842, 8.742]
�5 � [�4.995, �3.505]

11–33. Yes
11–35. Lend seems

insignificant because 
of collinearity with M1
or price.

11–37. Autocorrelation of the
regression errors.

11–39. b0 � 0.578053
b1 � 0.155178
b2 � �0.04974
R2 � 0.355968
F � 1.934515
Regression is not
statistically significant.

11–41. a. Residuals appear
to be normally
distributed.

b. Residuals are not
normally distributed.

11–47. Creates a bias. There is
no reason to force the
regression surface to
go through the origin.

11–51. 363.78

11–53. 0.341. 0.085
11–55. The estimators are the

same although their
standard errors are
different.

11–59. Two-way ANOVA
11–61. Early investment is not

statistically significant
(or may be collinear
with another variable).
Rerun the regression
without it. The dummy
variables are both
significant. Investment
is significant.

11–63. The STEPWISE
routine chooses Price
and M1 *Price as the
best set of explanatory
variables. Exports �
�1.39 � 0.0229 Price
� 0.00248M1 *Price.
t statistics: �2.36, 4.57,
9.08, respectively. 
R2 � 0.822

11–65. After * Bankdep: 
z � �11.3714
After * Bankdep *
ROA: z � 2.7193
After * ROA: 
z � �3.00
Bankdep * ROA: 
z � �3.9178
All interactions
significant.
adj. R2 � 0.53

11–67. Quadratic regression
(should get a negative
estimated x 2 coefficient)

11–69. Linearizing a model;
finding a more
parsimonious model
than is possible without
a transformation;
stabilizing the variance.

11–71. The transformation 
log Y

11–73. A logarithmic model
11–77. No
11–79. Taking reciprocals of

both sides of the
equation.

11–81. No. They minimize
the sum of the squared

deviations relevant to
the estimated,
transformed model.

11–83. Earn Prod Prom
Prod .867
Prom .882 .638
Book .547 .402 .319

Multicollinearity does
not seem to be serious.

11–85. Sample correlation is
0.740

11–89. Not true. Predictions
may be good when
carried out within the
same region of the
multicollinearity as
used in the estimation
procedure.

11–91. X2 and X3 are
probably collinear.

11–93. Drop some of the other
variables one at a time
and see what happens
to the suspected sign of
the estimate.

11–97. 1. The test checks only
for first-order
autocorrelation.

2. The test may not 
be conclusive.

3. The usual
limitations of a
statistical test owing
to the two possible
types of errors.

11–99. DW � 2.13 At the
0.10 level, no evidence
of a first-order
autocorrelation.

11–103. F (r,n–(k�1)) � 0.0275,
Cannot reject H0

11–105. The STEPWISE
procedure selects all
three variables. 
R2 � 0.9667

11–107. Because a variable
may lose explanatory
power and become
insignificant once
other variables are
added to the model.

11–109. No. There may be
several different “best”
models.
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11–111. Transforms a nonlinear
model to a linear
model.

11–113. Predictor Coef
Constant �36.49

Sincerity 0.0983

Excitement 1.9859

Ruggedness 0.5071

Sophistication �0.3664

Only Excitement is
significant. R2 � 0.946,
adj. R2 � 0.918

Chapter 12

12–3. 2005: 198.182
2006: 210.748

12–5. No, because of the
seasonality.

12–11. debt � 8728083
12–13. forecast � 0.33587
12–15. 6.2068 using

trend � season
12–17. The w � 0.8 forecasts

follow the raw data
much more closely.

12–19. forecast � 6037828
12–23. Year Old CPI New CPI

1950 72.1 24.9

1951 77.8 26.9

1952 79.5 27.5

1953 80.1 27.7

12–25. A simple price index
reflects changes in a
single price variable of
time, relative to a
single base time.

12–27. a. 1988
b. Divide each index

number by 163�100
c. It fell, from 145% of

the 1988 output
down to 133% of
that output.

12–29. Sales � 4.23987 �
0.03870 Month.
Forecast for July 1997
(month #19) � 3.5046

12–33. forecast � 6.73
12–35. 7.9

Chapter 13

13–3. 1. Natural, random
variation

2. variation due to
assignable causes

13–9. a. 77.62%
b. Omissions, Quantity

Entry, Part Numbers
(90.70%)

13–15. Random sampling, so
that the observations
are independent.

13–17. Process is in control.
13–21. Process is in control.
13–23. Process is in control.
13–25. Process is out of

control (9th sample).
13–27. All points are well

within the p chart
limits; process is in
control.

13–29. All points are well
within the p chart
limits; process is in
control.

13–31. The tenth sample
barely exceeds the
UCL � 8.953;
otherwise in 
control.

13–33. All points within 
c chart limits; process
is in control.

13–37. The 20th observation
far exceeds the UCL
� 8.92�100; the last
nine observations are
all on one side of the
center line �
3.45�100

13–39. Last group’s mean is
below the LCL � 2.136

13–41. X-bar chart shows the
process is out of 
control.

Chapter 14

14–1. T � 3, p-value �
0.2266 Accept H0.

14–3. z � 1.46 Cannot
reject H0.

14–5. T � 9 Cannot reject
H0 (p-value � .593).

14–7. z � 2.145 Reject H0.
14–9. z � �3.756

Reject H0.
14–11. z � �3.756

Reject H0.
14–13. U � 3.5 Reject H0.
14–17. U � 12 Reject H0.

P

14–21. H0 : �1 � �2
H1 : �1 
 �2
p-value � 0.117

14–23. Sign Test
14–25. Wilcoxon Signed-

Rank Test
14–27. H0 : �1 � �2

H1 : �1 
 �2
p-value � 0.1120

14–29. p-value � 0.001
Reject H0.

14–31. H � 8.97, 
p-value � 0.0120

14–33. H � 29.61
Reject H0.
CKW � 11.68

14–35. H � 12.37, 
p-value � 0.002

14–39. The three managers
are not equally
effective.

14–41. No, the 4 baking
processes are not
equally good.

14–43. n � 9, rs � 0.9289
Reject H0.

14–45. �2 � 0.586 Do not
reject H0.

14–47. �2 � 12.193 Reject H0.
14–49. �2 � 6.94 Do not

reject H0 at � � 0.05
14–51. �2 � 50.991 Reject H0.
14–53. �2 � 109.56 Reject H0.
14–55. �2 � 16.15 Reject H0.
14–57. �2 � 24.36 Reject H0.
14–59. �2 � 94.394 Reject H0.
14–61. � � � 32.5

� � � 72.5
2-tailed p-value 
 0.10

14–63. �0.125. Do not 
reject H0

14–67. �2 � 51.6836 
Reject H0.

Chapter 15

15–1. 0.02531, 0.46544,
0.27247, 0.17691,
0.05262, 0.00697,
0.00028. Credible set
is [0.2, 0.4].

15–3. 0.0126, 0.5829,
0.3658, 0.0384,
0.0003, 0.0000

15–5. 0.1129, 0.2407, 0.2275,
0.2909, 0.0751, 0.0529
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15–7. 0.0633, 0.2216,
0.2928, 0.2364,
0.1286, 0.0465,
0.0099, 0.0009, 0.0000

15–9. 0.0071, 0.0638, 0.3001,
0.3962, 0.1929, 0.0399

15–11. Normal with mean
9,207.3 and standard
deviation 61.58

15–13. Normal with mean
95.95 and standard
deviation 0.312

15–15. [5892.15, 6553.12]
15–17. Governor: D (largest

s.d.) ARCO expert: C
(smallest s.d.) Most
embarrassed: C

15–23. Expected payoff �
$10.55 million. Buy
the ad.

15–25. Expected payoff �
$405 million. Develop
the drug.

15–27. Optimal decision is
long—change if
possible. Expected
profit is $698,000

15–29. Optimal decision is
invest in wheat futures.
Expected value is
$3,040

15–33. Expected payoff �
$11.19 million. Do the
test.

15–35. Sell watches, no
testing: expected
payoff � $20,000
Sell watches, with
testing: expected
payoff � $127,200
No change in in-flight
sales: expected 
payoff � $700,000
Do not change their
in-flight sales.

15–37. Test and follow the
test’s recommendation.
E (payoff) � $587,000

15–39. A utility function is a
value-of-money
function of an
individual.

15–47. EVPI � $290,000.
Buy information if it 
is perfect.

15–49. 0.01142, 0.30043,
0.35004, 0.27066,
0.05561, 0.01184

15–51. 0.0026, 0.3844,
0.4589, 0.1480, 
0.0060, 0.0001

15–55. [25649.75, 27416.22]
15–61. 1,400 � 3,000: a risk

taker
15–63. Merge; E (payoff) �

$2.45 million
15–65. EVPI � $1.125 million
15–67. Hire candidate A

On the CD

Chapter 16

16–1. a. st � 33.48%
b. S.D. � 0.823%
c. [31.87, 35.09]

16–3. a. st � $40.01
b. S.D. � 0.6854
c. [38.88, 41.14]
d. Data has many zero

values
16–5. $35,604.5 C.I. �

[30,969.19, 40,239.87]
16–9. a–c. All no. Clusters

need to be
randomly
chosen.

d. Consider the
companies as
strata, ships as
clusters.
Randomly draw
clusters from the
strata.

16–11. Arrange elements in 
a circle, randomly
choose a number
from 1 to 28, and then
add 28 to element
number until you
have a sample of 30
sales.

16–13. If k is a multiple of 7,
we would sample on
the same day for
different weeks and
bias the results due
to weekly sales 
cycles.

16–17. Yes, with each vehicle
a cluster.

x

x

16–19. OK unless a
nonnegligible
fraction of the
businesses in the
community are
unlisted in the Yellow
Pages.

16–21. [0.055, 0.091]
16–25. Sample about 109

children, 744 young
adults, 147 older
people.

16–27. Regression and ratio
estimators

16–29. No; benefits are not
substantial when the
number of strata is
much greater than 6.
Combine some.

Chapter 17

17–1. Statistically classifying
elements into one of
several groups.

17–3. Classify as default.
17–7. Used the information

in a Bayesian
formulation of a
discriminant function,
using P (G ), P (D|G ),
leading to P (G|D )

17–9. Group 3
17–11. The discriminant

function is not
statistically significant
and should not be 
used.

17–13. 5 functions; some
may not be 
significant

17–19. VARIMAX maximizes
the sum of the
variances of the
loadings in the factor
matrix. Other rotation
methods are
QUARTIMAX and
EQUIMAX.

17–21. Factor 1 is price 
items, factor 2 is
retailing/selling, factor
3 is advertising, and
factor 4 is negative (or
opposite) of product
ratings.

Answers to Most Odd-Numbered Problems 753



Aczel−Sounderpandian: 
Complete Business 
Statistics, Seventh Edition

Back Matter Appendix B: Answers to 
Most Odd−Numbered 
Problems

834 © The McGraw−Hill 
Companies, 2009

17–23. Pricing policies:
associate with factor 2;
communality � 0.501.
Record and reporting
procedures: associate
with factor 2;
commonality � 0.077

17–27. 3 functions
17–31. Not a worthwhile

result since the

dimensionality
has not been 
reduced.

17–33. Communality of a
variable

17–37. Wilks’ � � 0.412
F (3,21) � 9.987 
( p-value � 0.000)
Production cost 
p-value � 0.009.

Number of sponsors 
p-value � 0.066 (n.s.).
Promotions p-value �
0.004. Discriminant
function coefficients:
production cost �
0.945, promotions �
0.996. 84% correct
prediction.

754 Appendix B



Aczel−Sounderpandian: 
Complete Business 
Statistics, Seventh Edition

Back Matter Appendix C: Statistical 
Tables

835© The McGraw−Hill 
Companies, 2009

755

TABLE 1 Cumulative Binomial Distribution

F(x) � P(X � x) � pi(1 � p)n�I Example: if p � 0.10, n � 5, and x � 2, then F(x) � 0.991
p

n x .01 .05 .10 .20 .30 .40 .50 .60 .70 .80 .90 .95 .99
5 0 .951 .774 .590 .328 .168 .078 .031 .010 .002 .000 .000 .000 .000

1 .999 .977 .919 .737 .528 .337 .187 .087 .031 .007 .000 .000 .000

2 1.000 .999 .991 .942 .837 .683 .500 .317 .163 .058 .009 .001 .000

3 1.000 1.000 1.000 .993 .969 .913 .813 .663 .472 .263 .081 .023 .001

4 1.000 1.000 1.000 1.000 .998 .990 .969 .922 .832 .672 .410 .226 .049

6 0 .941 .735 .531 .262 .118 .047 .016 .004 .001 .000 .000 .000 .000

1 .999 .967 .886 .655 .420 .233 .109 .041 .011 .002 .000 .000 .000

2 1.000 .998 .984 .901 .744 .544 .344 .179 .070 .017 .001 .000 .000

3 1.000 1.000 .999 .983 .930 .821 .656 .456 .256 .099 .016 .002 .000

4 1.000 1.000 1.000 .998 .989 .959 .891 .767 .580 .345 .114 .033 .001

5 1.000 1.000 1.000 1.000 .999 .996 .984 .953 .882 .738 .469 .265 .059

7 0 .932 .698 .478 .210 .082 .028 .008 .002 .000 .000 .000 .000 .000

1 .998 .956 .850 .577 .329 .159 .063 .019 .004 .000 .000 .000 .000

2 1.000 .996 .974 .852 .647 .420 .227 .096 .029 .005 .000 .000 .000

3 1.000 1.000 .997 .967 .874 .710 .500 .290 .126 .033 .003 .000 .000

4 1.000 1.000 1.000 .995 .971 .904 .773 .580 .353 .148 .026 .004 .000

5 1.000 1.000 1.000 1.000 .996 .981 .937 .841 .671 .423 .150 .044 .002

6 1.000 1.000 1.000 1.000 1.000 .998 .992 .972 .918 .790 .522 .302 .068

8 0 .923 .663 .430 .168 .058 .017 .004 .001 .000 .000 .000 .000 .000

1 .997 .943 .813 .503 .255 .106 .035 .009 .001 .000 .000 .000 .000

2 1.000 .994 .962 .797 .552 .315 .145 .050 .011 .001 .000 .000 .000

3 1.000 1.000 .995 .944 .806 .594 .363 .174 .058 .010 .000 .000 .000

4 1.000 1.000 1.000 .990 .942 .826 .637 .406 .194 .056 .005 .000 .000

5 1.000 1.000 1.000 .999 .989 .950 .855 .685 .448 .203 .038 .006 .000

6 1.000 1.000 1.000 1.000 .999 .991 .965 .894 .745 .497 .187 .057 .003

7 1.000 1.000 1.000 1.000 1.000 .999 .996 .983 .942 .832 .570 .337 .077

9 0 .914 .630 .387 .134 .040 .010 .002 .000 .000 .000 .000 .000 .000

1 .997 .929 .775 .436 .196 .071 .020 .004 .000 .000 .000 .000 .000

2 1.000 .992 .947 .738 .463 .232 .090 .025 .004 .000 .000 .000 .000

3 1.000 .999 .992 .914 .730 .483 .254 .099 .025 .003 .000 .000 .000

4 1.000 1.000 .999 .980 .901 .733 .500 .267 .099 .020 .001 .000 .000

5 1.000 1.000 1.000 .997 .975 .901 .746 .517 .270 .086 .008 .001 .000

6 1.000 1.000 1.000 1.000 .996 .975 .910 .768 .537 .262 .053 .008 .000

7 1.000 1.000 1.000 1.000 1.000 .996 .980 .929 .804 .564 .225 .071 .003

8 1.000 1.000 1.000 1.000 1.000 1.000 .998 .990 .960 .866 .613 .370 .086

10 0 .904 .599 .349 .107 .028 .006 .001 .000 .000 .000 .000 .000 .000

1 .996 .914 .736 .376 .149 .046 .011 .002 .000 .000 .000 .000 .000

2 1.000 .988 .930 .678 .383 .167 .055 .012 .002 .000 .000 .000 .000

3 1.000 .999 .987 .879 .650 .382 .172 .055 .011 .001 .000 .000 .000

4 1.000 1.000 .998 .967 .850 .633 .377 .166 .047 .006 .000 .000 .000

5 1.000 1.000 1.000 .994 .953 .834 .623 .367 .150 .033 .002 .000 .000

6 1.000 1.000 1.000 .999 .989 .945 .828 .618 .350 .121 .013 .001 .000

a
i�0
1ni 2
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TABLE 1 (continued) Cumulative Binomial Distribution

p

n x .01 .05 .10 .20 .30 .40 .50 .60 .70 .80 .90 .95 .99
7 1.000 1.000 1.000 1.000 .998 .988 .945 .833 .617 .322 .070 .012 .000

8 1.000 1.000 1.000 1.000 1.000 .998 .989 .954 .851 .624 .264 .086 .004

9 1.000 1.000 1.000 1.000 1.000 1.000 .999 .994 .972 .893 .651 .401 .096

15 0 .860 .463 .206 .035 .005 .000 .000 .000 .000 .000 .000 .000 .000

1 .990 .829 .549 .167 .035 .005 .000 .000 .000 .000 .000 .000 .000

2 1.000 .964 .816 .398 .127 .027 .004 .000 .000 .000 .000 .000 .000

3 1.000 .995 .944 .648 .297 .091 .018 .002 .000 .000 .000 .000 .000
4 1.000 .999 .987 .836 .515 .217 .059 .009 .001 .000 .000 .000 .000
5 1.000 1.000 .998 .939 .722 .403 .151 .034 .004 .000 .000 .000 .000
6 1.000 1.000 1.000 .982 .869 .610 .304 .095 .015 .001 .000 .000 .000
7 1.000 1.000 1.000 .996 .950 .787 .500 .213 .050 .004 .000 .000 .000
8 1.000 1.000 1.000 .999 .985 .905 .696 .390 .131 .018 .000 .000 .000
9 1.000 1.000 1.000 1.000 .996 .966 .849 .597 .278 .061 .002 .000 .000

10 1.000 1.000 1.000 1.000 .999 .991 .941 .783 .485 .164 .013 .001 .000
11 1.000 1.000 1.000 1.000 1.000 .998 .982 .909 .703 .352 .056 .005 .000
12 1.000 1.000 1.000 1.000 1.000 1.000 .996 .973 .873 .602 .184 .036 .000

13 1.000 1.000 1.000 1.000 1.000 1.000 1.000 .995 .965 .833 .451 .171 .010

14 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 .995 .965 .794 .537 .140

20 0 .818 .358 .122 .012 .001 .000 .000 .000 .000 .000 .000 .000 .000

1 .983 .736 .392 .069 .008 .001 .000 .000 .000 .000 .000 .000 .000

2 .999 .925 .677 .206 .035 .004 .000 .000 .000 .000 .000 .000 .000

3 1.000 .984 .867 .411 .107 .016 .001 .000 .000 .000 .000 .000 .000

4 1.000 .997 .957 .630 .238 .051 .006 .000 .000 .000 .000 .000 .000

5 1.000 1.000 .989 .804 .416 .126 .021 .002 .000 .000 .000 .000 .000

6 1.000 1.000 .998 .913 .608 .250 .058 .006 .000 .000 .000 .000 .000

7 1.000 1.000 1.000 .968 .772 .416 .132 .021 .001 .000 .000 .000 .000

8 1.000 1.000 1.000 .990 .887 .596 .252 .057 .005 .000 .000 .000 .000

9 1.000 1.000 1.000 .997 .952 .755 .412 .128 .017 .001 .000 .000 .000

10 1.000 1.000 1.000 .999 .983 .872 .588 .245 .048 .003 .000 .000 .000

11 1.000 1.000 1.000 1.000 .995 .943 .748 .404 .113 .010 .000 .000 .000

12 1.000 1.000 1.000 1.000 .999 .979 .868 .584 .228 .032 .000 .000 .000

13 1.000 1.000 1.000 1.000 1.000 .994 .942 .750 .392 .087 .002 .000 .000

14 1.000 1.000 1.000 1.000 1.000 .998 .979 .874 .584 .196 .011 .000 .000

15 1.000 1.000 1.000 1.000 1.000 1.000 .994 .949 .762 .370 .043 .003 .000

16 1.000 1.000 1.000 1.000 1.000 1.000 .999 .984 .893 .589 .133 .016 .000

17 1.000 1.000 1.000 1.000 1.000 1.000 1.000 .996 .965 .794 .323 .075 .001

18 1.000 1.000 1.000 1.000 1.000 1.000 1.000 .999 .992 .931 .608 .264 .017

19 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 .999 .988 .878 .642 .182

25 0 .778 .277 .072 .004 .000 .000 .000 .000 .000 .000 .000 .000 .000

1 .974 .642 .271 .027 .002 .000 .000 .000 .000 .000 .000 .000 .000

2 .998 .873 .537 .098 .009 .000 .000 .000 .000 .000 .000 .000 .000

3 1.000 .966 .764 .234 .033 .002 .000 .000 .000 .000 .000 .000 .000

4 1.000 .993 .902 .421 .090 .009 .000 .000 .000 .000 .000 .000 .000

5 1.000 .999 .967 .617 .193 .029 .002 .000 .000 .000 .000 .000 .000

6 1.000 1.000 .991 .780 .341 .074 .007 .000 .000 .000 .000 .000 .000

7 1.000 1.000 .998 .891 .512 .154 .022 .001 .000 .000 .000 .000 .000

8 1.000 1.000 1.000 .953 .677 .274 .054 .004 .000 .000 .000 .000 .000

9 1.000 1.000 1.000 .983 .811 .425 .115 .013 .000 .000 .000 .000 .000

10 1.000 1.000 1.000 .994 .902 .586 .212 .034 .002 .000 .000 .000 .000

11 1.000 1.000 1.000 .998 .956 .732 .345 .078 .006 .000 .000 .000 .000
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TABLE 1 (concluded) Cumulative Binomial Distribution

p

n x .01 .05 .10 .20 .30 .40 .50 .60 .70 .80 .90 .95 .99
12 1.000 1.000 1.000 1.000 .983 .846 .500 .154 .017 .000 .000 .000 .000

13 1.000 1.000 1.000 1.000 .994 .922 .655 .268 .044 .002 .000 .000 .000

14 1.000 1.000 1.000 1.000 .998 .966 .788 .414 .098 .006 .000 .000 .000

15 1.000 1.000 1.000 1.000 1.000 .987 .885 .575 .189 .017 .000 .000 .000

16 1.000 1.000 1.000 1.000 1.000 .996 .946 .726 .323 .047 .000 .000 .000

17 1.000 1.000 1.000 1.000 1.000 .999 .978 .846 .488 .109 .002 .000 .000

18 1.000 1.000 1.000 1.000 1.000 1.000 .993 .926 .659 .220 .009 .000 .000

19 1.000 1.000 1.000 1.000 1.000 1.000 .998 .971 .807 .383 .033 .001 .000

20 1.000 1.000 1.000 1.000 1.000 1.000 1.000 .991 .910 .579 .098 .007 .000

21 1.000 1.000 1.000 1.000 1.000 1.000 1.000 .998 .967 .766 .236 .034 .000

22 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 .991 .902 .463 .127 .002

23 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 .998 .973 .729 .358 .026

24 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 .996 .928 .723 .222
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TABLE 2 Areas of the Standard Normal Distribution

The table areas are probabilities that the standard normal random variable is between 0 and z.

Second Decimal Place in z

z 0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09

0.0 0.0000 0.0040 0.0080 0.0120 0.0160 0.0199 0.0239 0.0279 0.0319 0.0359

0.1 0.0398 0.0438 0.0478 0.0517 0.0557 0.0596 0.0636 0.0675 0.0714 0.0753

0.2 0.0793 0.0832 0.0871 0.0910 0.0948 0.0987 0.1026 0.1064 0.1103 0.1141

0.3 0.1179 0.1217 0.1255 0.1293 0.1331 0.1368 0.1406 0.1443 0.1480 0.1517

0.4 0.1554 0.1591 0.1628 0.1664 0.1700 0.1736 0.1772 0.1808 0.1844 0.1879

0.5 0.1915 0.1950 0.1985 0.2019 0.2054 0.2088 0.2123 0.2157 0.2190 0.2224

0.6 0.2257 0.2291 0.2324 0.2357 0.2389 0.2422 0.2454 0.2486 0.2517 0.2549

0.7 0.2580 0.2611 0.2642 0.2673 0.2704 0.2734 0.2764 0.2794 0.2823 0.2852

0.8 0.2881 0.2910 0.2939 0.2967 0.2995 0.3023 0.3051 0.3078 0.3106 0.3133

0.9 0.3159 0.3186 0.3212 0.3238 0.3264 0.3289 0.3315 0.3340 0.3365 0.3389

1.0 0.3413 0.3438 0.3461 0.3485 0.3508 0.3531 0.3554 0.3577 0.3599 0.3621

1.1 0.3643 0.3665 0.3686 0.3708 0.3729 0.3749 0.3770 0.3790 0.3810 0.3830

1.2 0.3849 0.3869 0.3888 0.3907 0.3925 0.3944 0.3962 0.3980 0.3997 0.4015

1.3 0.4032 0.4049 0.4066 0.4082 0.4099 0.4115 0.4131 0.4147 0.4162 0.4177

1.4 0.4192 0.4207 0.4222 0.4236 0.4251 0.4265 0.4279 0.4292 0.4306 0.4319

1.5 0.4332 0.4345 0.4357 0.4370 0.4382 0.4394 0.4406 0.4418 0.4429 0.4441

1.6 0.4452 0.4463 0.4474 0.4484 0.4495 0.4505 0.4515 0.4525 0.4535 0.4545

1.7 0.4554 0.4564 0.4573 0.4582 0.4591 0.4599 0.4608 0.4616 0.4625 0.4633

1.8 0.4641 0.4649 0.4656 0.4664 0.4671 0.4678 0.4686 0.4693 0.4699 0.4706

1.9 0.4713 0.4719 0.4726 0.4732 0.4738 0.4744 0.4750 0.4756 0.4761 0.4767

2.0 0.4772 0.4778 0.4783 0.4788 0.4793 0.4798 0.4803 0.4808 0.4812 0.4817

2.1 0.4821 0.4826 0.4830 0.4834 0.4838 0.4842 0.4846 0.4850 0.4854 0.4857

2.2 0.4861 0.4864 0.4868 0.4871 0.4875 0.4878 0.4881 0.4884 0.4887 0.4890

2.3 0.4893 0.4896 0.4898 0.4901 0.4904 0.4906 0.4909 0.4911 0.4913 0.4916

2.4 0.4918 0.4920 0.4922 0.4925 0.4927 0.4929 0.4931 0.4932 0.4934 0.4936

2.5 0.4938 0.4940 0.4941 0.4943 0.4945 0.4946 0.4948 0.4949 0.4951 0.4952

2.6 0.4953 0.4955 0.4956 0.4957 0.4959 0.4960 0.4961 0.4962 0.4963 0.4964

2.7 0.4965 0.4966 0.4967 0.4968 0.4969 0.4970 0.4971 0.4972 0.4973 0.4974

2.8 0.4974 0.4975 0.4976 0.4977 0.4977 0.4978 0.4979 0.4979 0.4980 0.4981

2.9 0.4981 0.4982 0.4982 0.4983 0.4984 0.4984 0.4985 0.4985 0.4986 0.4986

3.0 0.4987 0.4987 0.4987 0.4988 0.4988 0.4989 0.4989 0.4989 0.4990 0.4990

3.1 0.4990 0.4991 0.4991 0.4991 0.4992 0.4992 0.4992 0.4992 0.4993 0.4993

3.2 0.4993 0.4993 0.4994 0.4994 0.4994 0.4994 0.4994 0.4995 0.4995 0.4995

3.3 0.4995 0.4995 0.4995 0.4996 0.4996 0.4996 0.4996 0.4996 0.4996 0.4997

3.4 0.4997 0.4997 0.4997 0.4997 0.4997 0.4997 0.4997 0.4997 0.4997 0.4998

3.5 0.4998

4.0 0.49997

4.5 0.499997

5.0 0.4999997

6.0 0.49999999
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TABLE 3 Critical Values of the t Distribution

Degrees of
Freedom t.100 t.050 t.025 t.010 t.005

1 3.078 6.314 12.706 31.821 63.657

2 1.886 2.920 4.303 6.965 9.925

3 1.638 2.353 3.182 4.541 5.841

4 1.533 2.132 2.776 3.747 4.604

5 1.476 2.015 2.571 3.365 4.032

6 1.440 1.943 2.447 3.143 3.707

7 1.415 1.895 2.365 2.998 3.499

8 1.397 1.860 2.306 2.896 3.355

9 1.383 1.833 2.262 2.821 3.250

10 1.372 1.812 2.228 2.764 3.169

11 1.363 1.796 2.201 2.718 3.106

12 1.356 1.782 2.179 2.681 3.055

13 1.350 1.771 2.160 2.650 3.012

14 1.345 1.761 2.145 2.624 2.977

15 1.341 1.753 2.131 2.602 2.947

16 1.337 1.746 2.120 2.583 2.921

17 1.333 1.740 2.110 2.567 2.898

18 1.330 1.734 2.101 2.552 2.878

19 1.328 1.729 2.093 2.539 2.861

20 1.325 1.725 2.086 2.528 2.845

21 1.323 1.721 2.080 2.518 2.831

22 1.321 1.717 2.074 2.508 2.819

23 1.319 1.714 2.069 2.500 2.807

24 1.318 1.711 2.064 2.492 2.797

25 1.316 1.708 2.060 2.485 2.787

26 1.315 1.706 2.056 2.479 2.779

27 1.314 1.703 2.052 2.473 2.771

28 1.313 1.701 2.048 2.467 2.763

29 1.311 1.699 2.045 2.462 2.756

30 1.310 1.697 2.042 2.457 2.750

40 1.303 1.684 2.021 2.423 2.704

60 1.296 1.671 2.000 2.390 2.660

120 1.289 1.658 1.980 2.358 2.617

� 1.282 1.645 1.960 2.326 2.576

Source: M. Merrington, “Table of Percentage Points of the t-Distribution,” Biometrika 32 (1941), p. 300.
Reproduced by permission of the Biometrika trustees.
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TABLE 4 Critical Values of the Chi-Square Distribution

Degrees of 
Freedom 
2

.995 
2
.990 
2

.975 
2
.950 
2

.900

1 0.0000393 0.0001571 0.0009821 0.0039321 0.0157908

2 0.0100251 0.0201007 0.0506356 0.102587 0.210720

3 0.0717212 0.114832 0.215795 0.351846 0.584375

4 0.206990 0.297110 0.484419 0.710721 1.063623

5 0.411740 0.554300 0.831211 1.145476 1.61031

6 0.675727 0.872085 1.237347 1.63539 2.20413

7 0.989265 1.239043 1.68987 2.16735 2.83311

8 1.344419 1.646482 2.17973 2.73264 3.48954

9 1.734926 2.087912 2.70039 3.32511 4.16816

10 2.15585 2.55821 3.24697 3.94030 4.86518

11 2.60321 3.05347 3.81575 4.57481 5.57779

12 3.07382 3.57056 4.40379 5.22603 6.30380

13 3.56503 4.10691 5.00874 5.89186 7.04150

14 4.07468 4.66043 5.62872 6.57063 7.78953

15 4.60094 5.22935 6.26214 7.26094 8.54675

16 5.14224 5.81221 6.90766 7.96164 9.31223

17 5.69724 6.40776 7.56418 8.67176 10.0852

18 6.26481 7.01491 8.23075 9.39046 10.8649

19 6.84398 7.63273 8.90655 10.1170 11.6509

20 7.43386 8.26040 9.59083 10.8508 12.4426

21 8.03366 8.89720 10.28293 11.5913 13.2396

22 8.64272 9.54249 10.9823 12.3380 14.0415

23 9.26042 10.19567 11.6885 13.0905 14.8479

24 9.88623 10.8564 12.4011 13.8484 15.6587

25 10.5197 11.5240 13.1197 14.6114 16.4734

26 11.1603 12.1981 13.8439 15.3791 17.2919

27 11.8076 12.8786 14.5733 16.1513 18.1138

28 12.4613 13.5648 15.3079 16.9279 18.9392

29 13.1211 14.2565 16.0471 17.7083 19.7677

30 13.7867 14.9535 16.7908 18.4926 20.5992

40 20.7065 22.1643 24.4331 26.5093 29.0505

50 27.9907 29.7067 32.3574 34.7642 37.6886

60 35.5346 37.4848 40.4817 43.1879 46.4589

70 43.2752 45.4418 48.7576 51.7393 55.3290

80 51.1720 53.5400 57.1532 60.3915 64.2778

90 59.1963 61.7541 65.6466 69.1260 73.2912

100 67.3276 70.0648 74.2219 77.9295 82.3581
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TABLE 4 (concluded) Critical Values of the Chi-Square Distribution

Degrees of
Freedom 
2

.100 
2
.050 
2

.025 
2
.010 
2

.005

1 2.70554 3.84146 5.02389 6.63490 7.87944

2 4.60517 5.99147 7.37776 9.21034 10.5966

3 6.25139 7.81473 9.34840 11.3449 12.8381

4 7.77944 9.48773 11.1433 13.2767 14.8602

5 9.23635 11.0705 12.8325 15.0863 16.7496

6 10.6446 12.5916 14.4494 16.8119 18.5476

7 12.0170 14.0671 16.0128 18.4753 20.2777

8 13.3616 15.5073 17.5346 20.0902 21.9550

9 14.6837 16.9190 19.0228 21.6660 23.5893

10 15.9871 18.3070 20.4831 23.2093 25.1882

11 17.2750 19.6751 21.9200 24.7250 26.7569

12 18.5494 21.0261 23.3367 26.2170 28.2995

13 19.8119 22.3621 24.7356 27.6883 29.8194

14 21.0642 23.6848 26.1190 29.1413 31.3193

15 22.3072 24.9958 27.4884 30.5779 32.8013

16 23.5418 26.2962 28.8454 31.9999 34.2672

17 24.7690 27.5871 30.1910 33.4087 35.7185

18 25.9894 28.8693 31.5264 34.8053 37.1564

19 27.2036 30.1435 32.8523 36.1908 38.5822

20 28.4120 31.4104 34.1696 37.5662 39.9968

21 29.6151 32.6705 35.4789 38.9321 41.4010

22 30.8133 33.9244 36.7807 40.2894 42.7956

23 32.0069 35.1725 38.0757 41.6384 44.1813

24 33.1963 36.4151 39.3641 42.9798 45.5585

25 34.3816 37.6525 40.6465 44.3141 46.9278

26 35.5631 38.8852 41.9232 45.6417 48.2899

27 36.7412 40.1133 43.1944 46.9630 49.6449

28 37.9159 41.3372 44.4607 48.2782 50.9933

29 39.0875 42.5569 45.7222 49.5879 52.3356

30 40.2560 43.7729 46.9792 50.8922 53.6720

40 51.8050 55.7585 59.3417 63.6907 66.7659

50 63.1671 67.5048 71.4202 76.1539 79.4900

60 74.3970 79.0819 83.2976 88.3794 91.9517

70 85.5271 90.5312 95.0231 100.425 104.215

80 96.5782 101.879 106.629 112.329 116.321

90 107.565 113.145 118.136 124.116 128.299

100 118.498 124.342 129.561 135.807 140.169

Source: C. M. Thompson, “Tables of the Percentage Points of the �2-Distribution,” Biometrika 32 (1941), 
pp. 188–89. Reproduced by permission of the Biometrika Trustees.
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TABLE 5 Critical Values of the F Distribution for � � 0.10

Denominator
Degrees of 

Freedom (k2) 1 2 3 4 5 6 7 8 9

1 39.86 49.50 53.59 55.83 57.24 58.20 58.91 59.44 59.86

2 8.53 9.00 9.16 9.24 9.29 9.33 9.35 9.37 9.38

3 5.54 5.46 5.39 5.34 5.31 5.28 5.27 5.25 5.24

4 4.54 4.32 4.19 4.11 4.05 4.01 3.98 3.95 3.94

5 4.06 3.78 3.62 3.52 3.45 3.40 3.37 3.34 3.32

6 3.78 3.46 3.29 3.18 3.11 3.05 3.01 2.98 2.96

7 3.59 3.26 3.07 2.96 2.88 2.83 2.78 2.75 2.72

8 3.46 3.11 2.92 2.81 2.73 2.67 2.62 2.59 2.56

9 3.36 3.01 2.81 2.69 2.61 2.55 2.51 2.47 2.44

10 3.29 2.92 2.73 2.61 2.52 2.46 2.41 2.38 2.35

11 3.23 2.86 2.66 2.54 2.45 2.39 2.34 2.30 2.27

12 3.18 2.81 2.61 2.48 2.39 2.33 2.28 2.24 2.21

13 3.14 2.76 2.56 2.43 2.35 2.28 2.23 2.20 2.16

14 3.10 2.73 2.52 2.39 2.31 2.24 2.19 2.15 2.12

15 3.07 2.70 2.49 2.36 2.27 2.21 2.16 2.12 2.09

16 3.05 2.67 2.46 2.33 2.24 2.18 2.13 2.09 2.06

17 3.03 2.64 2.44 2.31 2.22 2.15 2.10 2.06 2.03

18 3.01 2.62 2.42 2.29 2.20 2.13 2.08 2.04 2.00

19 2.99 2.61 2.40 2.27 2.18 2.11 2.06 2.02 1.98

20 2.97 2.59 2.38 2.25 2.16 2.09 2.04 2.00 1.96

21 2.96 2.57 2.36 2.23 2.14 2.08 2.02 1.98 1.95

22 2.95 2.56 2.35 2.22 2.13 2.06 2.01 1.97 1.93

23 2.94 2.55 2.34 2.21 2.11 2.05 1.99 1.95 1.92

24 2.93 2.54 2.33 2.19 2.10 2.04 1.98 1.94 1.91

25 2.92 2.53 2.32 2.18 2.09 2.02 1.97 1.93 1.89

26 2.91 2.52 2.31 2.17 2.08 2.01 1.96 1.92 1.88

27 2.90 2.51 2.30 2.17 2.07 2.00 1.95 1.91 1.87

28 2.89 2.50 2.29 2.16 2.06 2.00 1.94 1.90 1.87

29 2.89 2.50 2.28 2.15 2.06 1.99 1.93 1.89 1.86

30 2.88 2.49 2.28 2.14 2.05 1.98 1.93 1.88 1.85

40 2.84 2.44 2.23 2.09 2.00 1.93 1.87 1.83 1.79

60 2.79 2.39 2.18 2.04 1.95 1.87 1.82 1.77 1.74

120 2.75 2.35 2.13 1.99 1.90 1.82 1.77 1.72 1.68

� 2.71 2.30 2.08 1.94 1.85 1.77 1.72 1.67 1.63

Numerator Degrees of Freedom (k1)
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TABLE 5 (continued) Critical Values of the F Distribution for � � 0.10

Denominator
Degrees of 

Freedom (k2) 10 12 15 20 24 30 40 60 120 �

1 60.19 60.71 61.22 61.74 62.00 62.26 62.53 62.79 63.06 63.33

2 9.39 9.41 9.42 9.44 9.45 9.46 9.47 9.47 9.48 9.49

3 5.23 5.22 5.20 5.18 5.18 5.17 5.16 5.15 5.14 5.13

4 3.92 3.90 3.87 3.84 3.83 3.82 3.80 3.79 3.78 3.76

5 3.30 3.27 3.24 3.21 3.19 3.17 3.16 3.14 3.12 3.10

6 2.94 2.90 2.87 2.84 2.82 2.80 2.78 2.76 2.74 2.72

7 2.70 2.67 2.63 2.59 2.58 2.56 2.54 2.51 2.49 2.47

8 2.54 2.50 2.46 2.42 2.40 2.38 2.36 2.34 2.32 2.29

9 2.42 2.38 2.34 2.30 2.28 2.25 2.23 2.21 2.18 2.16

10 2.32 2.28 2.24 2.20 2.18 2.16 2.13 2.11 2.08 2.06

11 2.25 2.21 2.17 2.12 2.10 2.08 2.05 2.03 2.00 1.97

12 2.19 2.15 2.10 2.06 2.04 2.01 1.99 1.96 1.93 1.90

13 2.14 2.10 2.05 2.01 1.98 1.96 1.93 1.90 1.88 1.85

14 2.10 2.05 2.01 1.96 1.94 1.91 1.89 1.86 1.83 1.80

15 2.06 2.02 1.97 1.92 1.90 1.87 1.85 1.82 1.79 1.76

16 2.03 1.99 1.94 1.89 1.87 1.84 1.81 1.78 1.75 1.72

17 2.00 1.96 1.91 1.86 1.84 1.81 1.78 1.75 1.72 1.69

18 1.98 1.93 1.89 1.84 1.81 1.78 1.75 1.72 1.69 1.66

19 1.96 1.91 1.86 1.81 1.79 1.76 1.73 1.70 1.67 1.63

20 1.94 1.89 1.84 1.79 1.77 1.74 1.71 1.68 1.64 1.61

21 1.92 1.87 1.83 1.78 1.75 1.72 1.69 1.66 1.62 1.59

22 1.90 1.86 1.81 1.76 1.73 1.70 1.67 1.64 1.60 1.57

23 1.89 1.84 1.80 1.74 1.72 1.69 1.66 1.62 1.59 1.55

24 1.88 1.83 1.78 1.73 1.70 1.67 1.64 1.61 1.57 1.53

25 1.87 1.82 1.77 1.72 1.69 1.66 1.63 1.59 1.56 1.52

26 1.86 1.81 1.76 1.71 1.68 1.65 1.61 1.58 1.54 1.50

27 1.85 1.80 1.75 1.70 1.67 1.64 1.60 1.57 1.53 1.49

28 1.84 1.79 1.74 1.69 1.66 1.63 1.59 1.56 1.52 1.48

29 1.83 1.78 1.73 1.68 1.65 1.62 1.58 1.55 1.51 1.47

30 1.82 1.77 1.72 1.67 1.64 1.61 1.57 1.54 1.50 1.46

40 1.76 1.71 1.66 1.61 1.57 1.54 1.51 1.47 1.42 1.38

60 1.71 1.66 1.60 1.54 1.51 1.48 1.44 1.40 1.35 1.29

120 1.65 1.60 1.55 1.48 1.45 1.41 1.37 1.32 1.26 1.19

� 1.60 1.55 1.49 1.42 1.38 1.34 1.30 1.24 1.17 1.00

Numerator Degrees of Freedom (k1)
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TABLE 5 (continued) Critical Values of the F Distribution for � � 0.05

Denominator
Degrees of 

Freedom (k2) 1 2 3 4 5 6 7 8 9
1 161.4 199.5 215.7 224.6 230.2 234.0 236.8 238.9 240.5

2 18.51 19.00 19.16 19.25 19.30 19.33 19.35 19.37 19.38

3 10.13 9.55 9.28 9.12 9.01 8.94 8.89 8.85 8.81

4 7.71 6.94 6.59 6.39 6.26 6.16 6.09 6.04 6.00

5 6.61 5.79 5.41 5.19 5.05 4.95 4.88 4.82 4.77

6 5.99 5.14 4.76 4.53 4.39 4.28 4.21 4.15 4.10

7 5.59 4.74 4.35 4.12 3.97 3.87 3.79 3.73 3.68

8 5.32 4.46 4.07 3.84 3.69 3.58 3.50 3.44 3.39

9 5.12 4.26 3.86 3.63 3.48 3.37 3.29 3.23 3.18

10 4.96 4.10 3.71 3.48 3.33 3.22 3.14 3.07 3.02

11 4.84 3.98 3.59 3.36 3.20 3.09 3.01 2.95 2.90

12 4.75 3.89 3.49 3.26 3.11 3.00 2.91 2.85 2.80

13 4.67 3.81 3.41 3.18 3.03 2.92 2.83 2.77 2.71

14 4.60 3.74 3.34 3.11 2.96 2.85 2.76 2.70 2.65

15 4.54 3.68 3.29 3.06 2.90 2.79 2.71 2.64 2.59

16 4.49 3.63 3.24 3.01 2.85 2.74 2.66 2.59 2.54

17 4.45 3.59 3.20 2.96 2.81 2.70 2.61 2.55 2.49

18 4.41 3.55 3.16 2.93 2.77 2.66 2.58 2.51 2.46

19 4.38 3.52 3.13 2.90 2.74 2.63 2.54 2.48 2.42

20 4.35 3.49 3.10 2.87 2.71 2.60 2.51 2.45 2.39

21 4.32 3.47 3.07 2.84 2.68 2.57 2.49 2.42 2.37

22 4.30 3.44 3.05 2.82 2.66 2.55 2.46 2.40 2.34

23 4.28 3.42 3.03 2.80 2.64 2.53 2.44 2.37 2.32

24 4.26 3.40 3.01 2.78 2.62 2.51 2.42 2.36 2.30

25 4.24 3.39 2.99 2.76 2.60 2.49 2.40 2.34 2.28

26 4.23 3.37 2.98 2.74 2.59 2.47 2.39 2.32 2.27

27 4.21 3.35 2.96 2.73 2.57 2.46 2.37 2.31 2.25

28 4.20 3.34 2.95 2.71 2.56 2.45 2.36 2.29 2.24

29 4.18 3.33 2.93 2.70 2.55 2.43 2.35 2.28 2.22

30 4.17 3.32 2.92 2.69 2.53 2.42 2.33 2.27 2.21

40 4.08 3.23 2.84 2.61 2.45 2.34 2.25 2.18 2.12

60 4.00 3.15 2.76 2.53 2.37 2.25 2.17 2.10 2.04

120 3.92 3.07 2.68 2.45 2.29 2.17 2.09 2.02 1.96

� 3.84 3.00 2.60 2.37 2.21 2.10 2.01 1.94 1.88

Numerator Degrees of Freedom (k1)
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TABLE 5 (continued) Critical Values of the F Distribution for � � 0.05

Denominator
Degrees of 

Freedom (k2) 10 12 15 20 24 30 40 60 120 �

1 241.9 243.9 245.9 248.0 249.1 250.1 251.1 252.2 253.3 254.3

2 19.40 19.41 19.43 19.45 19.45 19.46 19.47 19.48 19.49 19.50

3 8.79 8.74 8.70 8.66 8.64 8.62 8.59 8.57 8.55 8.53

4 5.96 5.91 5.86 5.80 5.77 5.75 5.72 5.69 5.66 5.63

5 4.74 4.68 4.62 4.56 4.53 4.50 4.46 4.43 4.40 4.36

6 4.06 4.00 3.94 3.87 3.84 3.81 3.77 3.74 3.70 3.67

7 3.64 3.57 3.51 3.44 3.41 3.38 3.34 3.30 3.27 3.23

8 3.35 3.28 3.22 3.15 3.12 3.08 3.04 3.01 2.97 2.93

9 3.14 3.07 3.01 2.94 2.90 2.86 2.83 2.79 2.75 2.71

10 2.98 2.91 2.85 2.77 2.74 2.70 2.66 2.62 2.58 2.54

11 2.85 2.79 2.72 2.65 2.61 2.57 2.53 2.49 2.45 2.40

12 2.75 2.69 2.62 2.54 2.51 2.47 2.43 2.38 2.34 2.30

13 2.67 2.60 2.53 2.46 2.42 2.38 2.34 2.30 2.25 2.21

14 2.60 2.53 2.46 2.39 2.35 2.31 2.27 2.22 2.18 2.13

15 2.54 2.48 2.40 2.33 2.29 2.25 2.20 2.16 2.11 2.07

16 2.49 2.42 2.35 2.28 2.24 2.19 2.15 2.11 2.06 2.01

17 2.45 2.38 2.31 2.23 2.19 2.15 2.10 2.06 2.01 1.96

18 2.41 2.34 2.27 2.19 2.15 2.11 2.06 2.02 1.97 1.92

19 2.38 2.31 2.23 2.16 2.11 2.07 2.03 1.98 1.93 1.88

20 2.35 2.28 2.20 2.12 2.08 2.04 1.99 1.95 1.90 1.84

21 2.32 2.25 2.18 2.10 2.05 2.01 1.96 1.92 1.87 1.81

22 2.30 2.23 2.15 2.07 2.03 1.98 1.94 1.89 1.84 1.78

23 2.27 2.20 2.13 2.05 2.01 1.96 1.91 1.86 1.81 1.76

24 2.25 2.18 2.11 2.03 1.98 1.94 1.89 1.84 1.79 1.73

25 2.24 2.16 2.09 2.01 1.96 1.92 1.87 1.82 1.77 1.71

26 2.22 2.15 2.07 1.99 1.95 1.90 1.85 1.80 1.75 1.69

27 2.20 2.13 2.06 1.97 1.93 1.88 1.84 1.79 1.73 1.67

28 2.19 2.12 2.04 1.96 1.91 1.87 1.82 1.77 1.71 1.65

29 2.18 2.10 2.03 1.94 1.90 1.85 1.81 1.75 1.70 1.64

30 2.16 2.09 2.01 1.93 1.89 1.84 1.79 1.74 1.68 1.62

40 2.08 2.00 1.92 1.84 1.79 1.74 1.69 1.64 1.58 1.51

60 1.99 1.92 1.84 1.75 1.70 1.65 1.59 1.53 1.47 1.39

120 1.91 1.83 1.75 1.66 1.61 1.55 1.50 1.43 1.35 1.25

� 1.83 1.75 1.67 1.57 1.52 1.46 1.39 1.32 1.22 1.00

Numerator Degrees of Freedom (k1)
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TABLE 5 (continued) Critical Values of the F Distribution for � � 0.025

Denominator
Degrees of 

Freedom (k2) 1 2 3 4 5 6 7 8 9
1 647.8 799.5 864.2 899.6 921.8 937.1 948.2 956.7 963.3

2 38.51 39.00 39.17 39.25 39.30 39.33 39.36 39.37 39.39

3 17.44 16.04 15.44 15.10 14.88 14.73 14.62 14.54 14.47

4 12.22 10.65 9.98 9.60 9.36 9.20 9.07 8.98 8.90

5 10.01 8.43 7.76 7.39 7.15 6.98 6.85 6.76 6.68

6 8.81 7.26 6.60 6.23 5.99 5.82 5.70 5.60 5.52

7 8.07 6.54 5.89 5.52 5.29 5.12 4.99 4.90 4.82

8 7.57 6.06 5.42 5.05 4.82 4.65 4.53 4.43 4.36

9 7.21 5.71 5.08 4.72 4.48 4.32 4.20 4.10 4.03

10 6.94 5.46 4.83 4.47 4.24 4.07 3.95 3.85 3.78

11 6.72 5.26 4.63 4.28 4.04 3.88 3.76 3.66 3.59

12 6.55 5.10 4.47 4.12 3.89 3.73 3.61 3.51 3.44

13 6.41 4.97 4.35 4.00 3.77 3.60 3.48 3.39 3.31

14 6.30 4.86 4.24 3.89 3.66 3.50 3.38 3.29 3.21

15 6.20 4.77 4.15 3.80 3.58 3.41 3.29 3.20 3.12

16 6.12 4.69 4.08 3.73 3.50 3.34 3.22 3.12 3.05

17 6.04 4.62 4.01 3.66 3.44 3.28 3.16 3.06 2.98

18 5.98 4.56 3.95 3.61 3.38 3.22 3.10 3.01 2.93

19 5.92 4.51 3.90 3.56 3.33 3.17 3.05 2.96 2.88

20 5.87 4.46 3.86 3.51 3.29 3.13 3.01 2.91 2.84

21 5.83 4.42 3.82 3.48 3.25 3.09 2.97 2.87 2.80

22 5.79 4.38 3.78 3.44 3.22 3.05 2.93 2.84 2.76

23 5.75 4.35 3.75 3.41 3.18 3.02 2.90 2.81 2.73

24 5.72 4.32 3.72 3.38 3.15 2.99 2.87 2.78 2.70

25 5.69 4.29 3.69 3.35 3.13 2.97 2.85 2.75 2.68

26 5.66 4.27 3.67 3.33 3.10 2.94 2.82 2.73 2.65

27 5.63 4.24 3.65 3.31 3.08 2.92 2.80 2.71 2.63

28 5.61 4.22 3.63 3.29 3.06 2.90 2.78 2.69 2.61

29 5.59 4.20 3.61 3.27 3.04 2.88 2.76 2.67 2.59

30 5.57 4.18 3.59 3.25 3.03 2.87 2.75 2.65 2.57

40 5.42 4.05 3.46 3.13 2.90 2.74 2.62 2.53 2.45

60 5.29 3.93 3.34 3.01 2.79 2.63 2.51 2.41 2.33

120 5.15 3.80 3.23 2.89 2.67 2.52 2.39 2.30 2.22

� 5.02 3.69 3.12 2.79 2.57 2.41 2.29 2.19 2.11
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TABLE 5 (continued) Critical Values of the F Distribution for � � 0.025

Denominator
Degrees of 

Freedom (k2) 10 12 15 20 24 30 40 60 120 �

1 968.6 976.7 984.9 993.1 997.2 1001 1006 1010 1014 1018

2 39.40 39.41 39.43 39.45 39.46 39.46 39.47 39.48 39.49 39.50

3 14.42 14.34 14.25 14.17 14.12 14.08 14.04 13.99 13.95 13.90

4 8.84 8.75 8.66 8.56 8.51 8.46 8.41 8.36 8.31 8.26

5 6.62 6.52 6.43 6.33 6.28 6.23 6.18 6.12 6.07 6.02

6 5.46 5.37 5.27 5.17 5.12 5.07 5.01 4.96 4.90 4.85

7 4.76 4.67 4.57 4.47 4.42 4.36 4.31 4.25 4.20 4.14

8 4.30 4.20 4.10 4.00 3.95 3.89 3.84 3.78 3.73 3.67

9 3.96 3.87 3.77 3.67 3.61 3.56 3.51 3.45 3.39 3.33

10 3.72 3.62 3.52 3.42 3.37 3.31 3.26 3.20 3.14 3.08

11 3.53 3.43 3.33 3.23 3.17 3.12 3.06 3.00 2.94 2.88

12 3.37 3.28 3.18 3.07 3.02 2.96 2.91 2.85 2.79 2.72

13 3.25 3.15 3.05 2.95 2.89 2.84 2.78 2.72 2.66 2.60

14 3.15 3.05 2.95 2.84 2.79 2.73 2.67 2.61 2.55 2.49

15 3.06 2.96 2.86 2.76 2.70 2.64 2.59 2.52 2.46 2.40

16 2.99 2.89 2.79 2.68 2.63 2.57 2.51 2.45 2.38 2.32

17 2.92 2.82 2.72 2.62 2.56 2.50 2.44 2.38 2.32 2.25

18 2.87 2.77 2.67 2.56 2.50 2.44 2.38 2.32 2.26 2.19

19 2.82 2.72 2.62 2.51 2.45 2.39 2.33 2.27 2.20 2.13

20 2.77 2.68 2.57 2.46 2.41 2.35 2.29 2.22 2.16 2.09

21 2.73 2.64 2.53 2.42 2.37 2.31 2.25 2.18 2.11 2.04

22 2.70 2.60 2.50 2.39 2.33 2.27 2.21 2.14 2.08 2.00

23 2.67 2.57 2.47 2.36 2.30 2.24 2.18 2.11 2.04 1.97

24 2.64 2.54 2.44 2.33 2.27 2.21 2.15 2.08 2.01 1.94

25 2.61 2.51 2.41 2.30 2.24 2.18 2.12 2.05 1.98 1.91

26 2.59 2.49 2.39 2.28 2.22 2.16 2.09 2.03 1.95 1.88

27 2.57 2.47 2.36 2.25 2.19 2.13 2.07 2.00 1.93 1.85

28 2.55 2.45 2.34 2.23 2.17 2.11 2.05 1.98 1.91 1.83

29 2.53 2.43 2.32 2.21 2.15 2.09 2.03 1.96 1.89 1.81

30 2.51 2.41 2.31 2.20 2.14 2.07 2.01 1.94 1.87 1.79

40 2.39 2.29 2.18 2.07 2.01 1.94 1.88 1.80 1.72 1.64

60 2.27 2.17 2.06 1.94 1.88 1.82 1.74 1.67 1.58 1.48

120 2.16 2.05 1.94 1.82 1.76 1.69 1.61 1.53 1.43 1.31

� 2.05 1.94 1.83 1.71 1.64 1.57 1.48 1.39 1.27 1.00

Numerator Degrees of Freedom (k1)
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TABLE 5 (continued) Critical Values of the F Distribution for � � 0.01

Denominator
Degrees of 

Freedom (k2) 1 2 3 4 5 6 7 8 9
1 4,052 4,999.5 5,403 5,625 5,764 5,859 5,928 5,982 6,022

2 98.50 99.00 99.17 99.25 99.30 99.33 99.36 99.37 99.39

3 34.12 30.82 29.46 28.71 28.24 27.91 27.67 27.49 27.35

4 21.20 18.00 16.69 15.98 15.52 15.21 14.98 14.80 14.66

5 16.26 13.27 12.06 11.39 10.97 10.67 10.46 10.29 10.16

6 13.75 10.92 9.78 9.15 8.75 8.47 8.26 8.10 7.98

7 12.25 9.55 8.45 7.85 7.46 7.19 6.99 6.84 6.72

8 11.26 8.65 7.59 7.01 6.63 6.37 6.18 6.03 5.91

9 10.56 8.02 6.99 6.42 6.06 5.80 5.61 5.47 5.35

10 10.04 7.56 6.55 5.99 5.64 5.39 5.20 5.06 4.94

11 9.65 7.21 6.22 5.67 5.32 5.07 4.89 4.74 4.63

12 9.33 6.93 5.95 5.41 5.06 4.82 4.64 4.50 4.39

13 9.07 6.70 5.74 5.21 4.86 4.62 4.44 4.30 4.19

14 8.86 6.51 5.56 5.04 4.69 4.46 4.28 4.14 4.03

15 8.68 6.36 5.42 4.89 4.56 4.32 4.14 4.00 3.89

16 8.53 6.23 5.29 4.77 4.44 4.20 4.03 3.89 3.78

17 8.40 6.11 5.18 4.67 4.34 4.10 3.93 3.79 3.68

18 8.29 6.01 5.09 4.58 4.25 4.01 3.84 3.71 3.60

19 8.18 5.93 5.01 4.50 4.17 3.94 3.77 3.63 3.52

20 8.10 5.85 4.94 4.43 4.10 3.87 3.70 3.56 3.46

21 8.02 5.78 4.87 4.37 4.04 3.81 3.64 3.51 3.40

22 7.95 5.72 4.82 4.31 3.99 3.76 3.59 3.45 3.35

23 7.88 5.66 4.76 4.26 3.94 3.71 3.54 3.41 3.30

24 7.82 5.61 4.72 4.22 3.90 3.67 3.50 3.36 3.26

25 7.77 5.57 4.68 4.18 3.85 3.63 3.46 3.32 3.22

26 7.72 5.53 4.64 4.14 3.82 3.59 3.42 3.29 3.18

27 7.68 5.49 4.60 4.11 3.78 3.56 3.39 3.26 3.15

28 7.64 5.45 4.57 4.07 3.75 3.53 3.36 3.23 3.12

29 7.60 5.42 4.54 4.04 3.73 3.50 3.33 3.20 3.09

30 7.56 5.39 4.51 4.02 3.70 3.47 3.30 3.17 3.07

40 7.31 5.18 4.31 3.83 3.51 3.29 3.12 2.99 2.89

60 7.08 4.98 4.13 3.65 3.34 3.12 2.95 2.82 2.72

120 6.85 4.79 3.95 3.48 3.17 2.96 2.79 2.66 2.56

� 6.63 4.61 3.78 3.32 3.02 2.80 2.64 2.51 2.41
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TABLE 5 (continued) Critical Values of the F Distribution for � � 0.01

Denominator
Degrees of 

Freedom (k2) 10 12 15 20 24 30 40 60 120 �

1 6,056 6,106 6,157 6,209 6,235 6,261 6,287 6,313 6,339 6,366

2 99.40 99.42 99.43 99.45 99.46 99.47 99.47 99.48 99.49 99.50

3 27.23 27.05 26.87 26.69 26.60 26.50 26.41 26.32 26.22 26.13

4 14.55 14.37 14.20 14.02 13.93 13.84 13.75 13.65 13.56 13.46

5 10.05 9.89 9.72 9.55 9.47 9.38 9.29 9.20 9.11 9.02

6 7.87 7.72 7.56 7.40 7.31 7.23 7.14 7.06 6.97 6.88

7 6.62 6.47 6.31 6.16 6.07 5.99 5.91 5.82 5.74 5.65

8 5.81 5.67 5.52 5.36 5.28 5.20 5.12 5.03 4.95 4.86

9 5.26 5.11 4.96 4.81 4.73 4.65 4.57 4.48 4.40 4.31

10 4.85 4.71 4.56 4.41 4.33 4.25 4.17 4.08 4.00 3.91

11 4.54 4.40 4.25 4.10 4.02 3.94 3.86 3.78 3.69 3.60

12 4.30 4.16 4.01 3.86 3.78 3.70 3.62 3.54 3.45 3.36

13 4.10 3.96 3.82 3.66 3.59 3.51 3.43 3.34 3.25 3.17

14 3.94 3.80 3.66 3.51 3.43 3.35 3.27 3.18 3.09 3.00

15 3.80 3.67 3.52 3.37 3.29 3.21 3.13 3.05 2.96 2.87

16 3.69 3.55 3.41 3.26 3.18 3.10 3.02 2.93 2.84 2.75

17 3.59 3.46 3.31 3.16 3.08 3.00 2.92 2.83 2.75 2.65

18 3.51 3.37 3.23 3.08 3.00 2.92 2.84 2.75 2.66 2.57

19 3.43 3.30 3.15 3.00 2.92 2.84 2.76 2.67 2.58 2.49

20 3.37 3.23 3.09 2.94 2.86 2.78 2.69 2.61 2.52 2.42

21 3.31 3.17 3.03 2.88 2.80 2.72 2.64 2.55 2.46 2.36

22 3.26 3.12 2.98 2.83 2.75 2.67 2.58 2.50 2.40 2.31

23 3.21 3.07 2.93 2.78 2.70 2.62 2.54 2.45 2.35 2.26

24 3.17 3.03 2.89 2.74 2.66 2.58 2.49 2.40 2.31 2.21

25 3.13 2.99 2.85 2.70 2.62 2.54 2.45 2.36 2.27 2.17

26 3.09 2.96 2.81 2.66 2.58 2.50 2.42 2.33 2.23 2.13

27 3.06 2.93 2.78 2.63 2.55 2.47 2.38 2.29 2.20 2.10

28 3.03 2.90 2.75 2.60 2.52 2.44 2.35 2.26 2.17 2.06

29 3.00 2.87 2.73 2.57 2.49 2.41 2.33 2.23 2.14 2.03

30 2.98 2.84 2.70 2.55 2.47 2.39 2.30 2.21 2.11 2.01

40 2.80 2.66 2.52 2.37 2.29 2.20 2.11 2.02 1.92 1.80

60 2.63 2.50 2.35 2.20 2.12 2.03 1.94 1.84 1.73 1.60

120 2.47 2.34 2.19 2.03 1.95 1.86 1.76 1.66 1.53 1.38

� 2.32 2.18 2.04 1.88 1.79 1.70 1.59 1.47 1.32 1.00

Source: M. Merrington and C. M. Thompson, “Tables of Percentage Points of the Inverted Beta (F )-Distribution,” Biometrika 33 (1943), pp. 73–88.
Reproduced by permission of the Biometrika Trustees.
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TABLE 7 Critical Values of the Durbin-Watson Test Statistic for � � 0.05

k � 1 k � 2 k � 3 k � 4 k � 5

n dL dU dL dU dL dU dL dU dL dU

15 1.08 1.36 0.95 1.54 0.82 1.75 0.69 1.97 0.56 2.21

16 1.10 1.37 0.98 1.54 0.86 1.73 0.74 1.93 0.62 2.15

17 1.13 1.38 1.02 1.54 0.90 1.71 0.78 1.90 0.67 2.10

18 1.16 1.39 1.05 1.53 0.93 1.69 0.82 1.87 0.71 2.06

19 1.18 1.40 1.08 1.53 0.97 1.68 0.86 1.85 0.75 2.02

20 1.20 1.41 1.10 1.54 1.00 1.68 0.90 1.83 0.79 1.99

21 1.22 1.42 1.13 1.54 1.03 1.67 0.93 1.81 0.83 1.96

22 1.24 1.43 1.15 1.54 1.05 1.66 0.96 1.80 0.86 1.94

23 1.26 1.44 1.17 1.54 1.08 1.66 0.99 1.79 0.90 1.92

24 1.27 1.45 1.19 1.55 1.10 1.66 1.01 1.78 0.93 1.90

25 1.29 1.45 1.21 1.55 1.12 1.66 1.04 1.77 0.95 1.89

26 1.30 1.46 1.22 1.55 1.14 1.65 1.06 1.76 0.98 1.88

27 1.32 1.47 1.24 1.56 1.16 1.65 1.08 1.76 1.01 1.86

28 1.33 1.48 1.26 1.56 1.18 1.65 1.10 1.75 1.03 1.85

29 1.34 1.48 1.27 1.56 1.20 1.65 1.12 1.74 1.05 1.84

30 1.35 1.49 1.28 1.57 1.21 1.65 1.14 1.74 1.07 1.83

31 1.36 1.50 1.30 1.57 1.23 1.65 1.16 1.74 1.09 1.83

32 1.37 1.50 1.31 1.57 1.24 1.65 1.18 1.73 1.11 1.82

33 1.38 1.51 1.32 1.58 1.26 1.65 1.19 1.73 1.13 1.81

34 1.39 1.51 1.33 1.58 1.27 1.65 1.21 1.73 1.15 1.81

35 1.40 1.52 1.34 1.58 1.28 1.65 1.22 1.73 1.16 1.80

36 1.41 1.52 1.35 1.59 1.29 1.65 1.24 1.73 1.18 1.80

37 1.42 1.53 1.36 1.59 1.31 1.66 1.25 1.72 1.19 1.80

38 1.43 1.54 1.37 1.59 1.32 1.66 1.26 1.72 1.21 1.79

39 1.43 1.54 1.38 1.60 1.33 1.66 1.27 1.72 1.22 1.79

40 1.44 1.54 1.39 1.60 1.34 1.66 1.29 1.72 1.23 1.79

45 1.48 1.57 1.43 1.62 1.38 1.67 1.34 1.72 1.29 1.78

50 1.50 1.59 1.46 1.63 1.42 1.67 1.38 1.72 1.34 1.77

55 1.53 1.60 1.49 1.64 1.45 1.68 1.41 1.72 1.38 1.77

60 1.55 1.62 1.51 1.65 1.48 1.69 1.44 1.73 1.41 1.77

65 1.57 1.63 1.54 1.66 1.50 1.70 1.47 1.73 1.44 1.77

70 1.58 1.64 1.55 1.67 1.52 1.70 1.49 1.74 1.46 1.77

75 1.60 1.65 1.57 1.68 1.54 1.71 1.51 1.74 1.49 1.77

80 1.61 1.66 1.59 1.69 1.56 1.72 1.53 1.74 1.51 1.77

85 1.62 1.67 1.60 1.70 1.57 1.72 1.55 1.75 1.52 1.77

90 1.63 1.68 1.61 1.70 1.59 1.73 1.57 1.75 1.54 1.78

95 1.64 1.69 1.62 1.71 1.60 1.73 1.58 1.75 1.56 1.78

100 1.65 1.69 1.63 1.72 1.61 1.74 1.59 1.76 1.57 1.78

776 Appendix C



Aczel−Sounderpandian: 
Complete Business 
Statistics, Seventh Edition

Back Matter Appendix C: Statistical 
Tables

857© The McGraw−Hill 
Companies, 2009

TABLE 7 (concluded) Critical Values of the Durbin-Watson Test Statistic for � � 0.01

k � 1 k � 2 k � 3 k � 4 k � 5

n dL dU dL dU dL dU dL dU dL dU

15 0.81 1.07 0.70 1.25 0.59 1.46 0.49 1.70 0.39 1.96

16 0.84 1.09 0.74 1.25 0.63 1.44 0.53 1.66 0.44 1.90

17 0.87 1.10 0.77 1.25 0.67 1.43 0.57 1.63 0.48 1.85

18 0.90 1.12 0.80 1.26 0.71 1.42 0.61 1.60 0.52 1.80

19 0.93 1.13 0.83 1.26 0.74 1.41 0.65 1.58 0.56 1.77

20 0.95 1.15 0.86 1.27 0.77 1.41 0.68 1.57 0.60 1.74

21 0.97 1.16 0.89 1.27 0.80 1.41 0.72 1.55 0.63 1.71

22 1.00 1.17 0.91 1.28 0.83 1.40 0.75 1.54 0.66 1.69

23 1.02 1.19 0.94 1.29 0.86 1.40 0.77 1.53 0.70 1.67

24 1.05 1.20 0.96 1.30 0.88 1.41 0.80 1.53 0.72 1.66

25 1.05 1.21 0.98 1.30 0.90 1.41 0.83 1.52 0.75 1.65

26 1.07 1.22 1.00 1.31 0.93 1.41 0.85 1.52 0.78 1.64

27 1.09 1.23 1.02 1.32 0.95 1.41 0.88 1.51 0.81 1.63

28 1.10 1.24 1.04 1.32 0.97 1.41 0.90 1.51 0.83 1.62

29 1.12 1.25 1.05 1.33 0.99 1.42 0.92 1.51 0.85 1.61

30 1.13 1.26 1.07 1.34 1.01 1.42 0.94 1.51 0.88 1.61

31 1.15 1.27 1.08 1.34 1.02 1.42 0.96 1.51 0.90 1.60

32 1.16 1.28 1.10 1.35 1.04 1.43 0.98 1.51 0.92 1.60

33 1.17 1.29 1.11 1.36 1.05 1.43 1.00 1.51 0.94 1.59

34 1.18 1.30 1.13 1.36 1.07 1.43 1.01 1.51 0.95 1.59

35 1.19 1.31 1.14 1.37 1.08 1.44 1.03 1.51 0.97 1.59

36 1.21 1.32 1.15 1.38 1.10 1.44 1.04 1.51 0.99 1.59

37 1.22 1.32 1.16 1.38 1.11 1.45 1.06 1.51 1.00 1.59

38 1.23 1.33 1.18 1.39 1.12 1.45 1.07 1.52 1.02 1.58

39 1.24 1.34 1.19 1.39 1.14 1.45 1.09 1.52 1.03 1.58

40 1.25 1.34 1.20 1.40 1.15 1.46 1.10 1.52 1.05 1.58

45 1.29 1.38 1.24 1.42 1.20 1.48 1.16 1.53 1.11 1.58

50 1.32 1.40 1.28 1.45 1.24 1.49 1.20 1.54 1.16 1.59

55 1.36 1.43 1.32 1.47 1.28 1.51 1.25 1.55 1.21 1.59

60 1.38 1.45 1.35 1.48 1.32 1.52 1.28 1.56 1.25 1.60

65 1.41 1.47 1.38 1.50 1.35 1.53 1.31 1.57 1.28 1.61

70 1.43 1.49 1.40 1.52 1.37 1.55 1.34 1.58 1.31 1.61

75 1.45 1.50 1.42 1.53 1.39 1.56 1.37 1.59 1.34 1.62

80 1.47 1.52 1.44 1.54 1.42 1.57 1.39 1.60 1.36 1.62

85 1.48 1.53 1.46 1.55 1.43 1.58 1.41 1.60 1.39 1.63

90 1.50 1.54 1.47 1.56 1.45 1.59 1.43 1.61 1.41 1.64

95 1.51 1.55 1.49 1.57 1.47 1.60 1.45 1.62 1.42 1.64

100 1.52 1.56 1.50 1.58 1.48 1.60 1.46 1.63 1.44 1.65

Source: J. Durbin and G. S. Watson, “Testing for Serial Correlation in Least Squares Regression, II,” Biometrika 38
(1951), pp. 159–78. Reproduced by permission of the Biometrika Trustees.
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TABLE 8 Cumulative Distribution Function: F(r) for the Total Number of Runs R in Samples of
Sizes n1 and n2

Number of Runs, r

(n1, n2) 2 3 4 5 6 7 8 9 10
(2, 3) 0.200 0.500 0.900 1.000

(2, 4) 0.133 0.400 0.800 1.000

(2, 5) 0.095 0.333 0.714 1.000

(2, 6) 0.071 0.286 0.643 1.000

(2, 7) 0.056 0.250 0.583 1.000

(2, 8) 0.044 0.222 0.533 1.000

(2, 9) 0.036 0.200 0.491 1.000

(2, 10) 0.030 0.182 0.455 1.000

(3, 3) 0.100 0.300 0.700 0.900 1.000

(3, 4) 0.057 0.200 0.543 0.800 0.971 1.000

(3, 5) 0.036 0.143 0.429 0.714 0.929 1.000

(3, 6) 0.024 0.107 0.345 0.643 0.881 1.000

(3, 7) 0.017 0.083 0.283 0.583 0.833 1.000

(3, 8) 0.012 0.067 0.236 0.533 0.788 1.000

(3, 9) 0.009 0.055 0.200 0.491 0.745 1.000

(3, 10) 0.007 0.045 0.171 0.455 0.706 1.000

(4, 4) 0.029 0.114 0.371 0.629 0.886 0.971 1.000

(4, 5) 0.016 0.071 0.262 0.500 0.786 0.929 0.992 1.000

(4, 6) 0.010 0.048 0.190 0.405 0.690 0.881 0.976 1.000

(4, 7) 0.006 0.033 0.142 0.333 0.606 0.833 0.954 1.000

(4, 8) 0.004 0.024 0.109 0.279 0.533 0.788 0.929 1.000

(4, 9) 0.003 0.018 0.085 0.236 0.471 0.745 0.902 1.000

(4, 10) 0.002 0.014 0.068 0.203 0.419 0.706 0.874 1.000

(5, 5) 0.008 0.040 0.167 0.357 0.643 0.833 0.960 0.992 1.000

(5, 6) 0.004 0.024 0.110 0.262 0.522 0.738 0.911 0.976 0.998

(5, 7) 0.003 0.015 0.076 0.197 0.424 0.652 0.854 0.955 0.992

(5, 8) 0.002 0.010 0.054 0.152 0.347 0.576 0.793 0.929 0.984

(5, 9) 0.001 0.007 0.039 0.119 0.287 0.510 0.734 0.902 0.972

(5, 10) 0.001 0.005 0.029 0.095 0.239 0.455 0.678 0.874 0.958

(6, 6) 0.002 0.013 0.067 0.175 0.392 0.608 0.825 0.933 0.987

(6, 7) 0.001 0.008 0.043 0.121 0.296 0.500 0.733 0.879 0.966

(6, 8) 0.001 0.005 0.028 0.086 0.226 0.413 0.646 0.821 0.937

(6, 9) 0.000 0.003 0.019 0.063 0.175 0.343 0.566 0.762 0.902

(6, 10) 0.000 0.002 0.013 0.047 0.137 0.288 0.497 0.706 0.864

(7, 7) 0.001 0.004 0.025 0.078 0.209 0.383 0.617 0.791 0.922

(7, 8) 0.000 0.002 0.015 0.051 0.149 0.296 0.514 0.704 0.867

(7, 9) 0.000 0.001 0.010 0.035 0.108 0.231 0.427 0.622 0.806

(7, 10) 0.000 0.001 0.006 0.024 0.080 0.182 0.355 0.549 0.743

(8, 8) 0.000 0.001 0.009 0.032 0.100 0.214 0.405 0.595 0.786

(8, 9) 0.000 0.001 0.005 0.020 0.069 0.157 0.319 0.500 0.702

(8, 10) 0.000 0.000 0.003 0.013 0.048 0.117 0.251 0.419 0.621

(9, 9) 0.000 0.000 0.003 0.012 0.044 0.109 0.238 0.399 0.601

(9, 10) 0.000 0.000 0.002 0.008 0.029 0.077 0.179 0.319 0.510

(10, 10) 0.000 0.000 0.001 0.004 0.019 0.051 0.128 0.242 0.414
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TABLE 8 (concluded) Cumulative Distribution Function: F(r) for the Total Number of Runs R in
Samples of Sizes n1 and n2

Number of Runs, r

(n1, n2) 11 12 13 14 15 16 17 18 19 20
(2, 3)

(2, 4)

(2, 5)

(2, 6)

(2, 7)

(2, 8)

(2, 9)

(2, 10)

(3, 3)

(3, 4)

(3, 5)

(3, 6)

(3, 7)

(3, 8)

(3, 9)

(3, 10)

(4, 4)

(4, 5)

(4, 6)

(4, 7)

(4, 8)

(4, 9)

(4, 10)

(5, 5)

(5, 6) 1.000

(5, 7) 1.000

(5, 8) 1.000

(5, 9) 1.000

(5, 10) 1.000

(6, 6) 0.998 1.000

(6, 7) 0.992 0.999 1.000

(6, 8) 0.984 0.998 1.000

(6, 9) 0.972 0.994 1.000

(6, 10) 0.958 0.990 1.000

(7, 7) 0.975 0.996 0.999 1.000

(7, 8) 0.949 0.988 0.998 1.000 1.000

(7, 9) 0.916 0.975 0.994 0.999 1.000

(7, 10) 0.879 0.957 0.990 0.998 1.000

(8, 8) 0.900 0.968 0.991 0.999 1.000 1.000

(8, 9) 0.843 0.939 0.980 0.996 0.999 1.000 1.000

(8, 10) 0.782 0.903 0.964 0.990 0.998 1.000 1.000

(9, 9) 0.762 0.891 0.956 0.988 0.997 1.000 1.000 1.000

(9, 10) 0.681 0.834 0.923 0.974 0.992 0.999 1.000 1.000 1.000

(10, 10) 0.586 0.758 0.872 0.949 0.981 0.996 0.999 1.000 1.000 1.000

Source: Reproduced from F. Swed and C. Eisenhart, “Tables for Testing Randomness of Grouping in a Sequence of
Alternatives,” Annals of Mathematical Statistics 14 (1943) by permission of the authors and of the Editor, Annals of
Mathematical Statistics.
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TABLE 9 Cumulative Distribution Function of the Mann-Whitney U Statistic: F(u) for n1 � n2
and 3 � n2 � 10

n2 � 3
n1

u 1 2 3
0 0.25 0.10 0.05

1 0.50 0.20 0.10

2 0.40 0.20

3 0.60 0.35

4 0.50

n2 � 4
n1

u 1 2 3 4

0 0.2000 0.0667 0.0286 0.0143

1 0.4000 0.1333 0.0571 0.0286

2 0.6000 0.2667 0.1143 0.0571

3 0.4000 0.2000 0.1000

4 0.6000 0.3143 0.1714

5 0.4286 0.2429

6 0.5714 0.3429

7 0.4429

8 0.5571

n2 � 5
n1

u 1 2 3 4 5

0 0.1667 0.0476 0.0179 0.0079 0.0040

1 0.3333 0.0952 0.0357 0.0159 0.0079

2 0.5000 0.1905 0.0714 0.0317 0.0159

3 0.2857 0.1250 0.0556 0.0278

4 0.4286 0.1964 0.0952 0.0476

5 0.5714 0.2857 0.1429 0.0754

6 0.3929 0.2063 0.1111

7 0.5000 0.2778 0.1548

8 0.3651 0.2103

9 0.4524 0.2738

10 0.5476 0.3452

11 0.4206

12 0.5000
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TABLE 9 (continued) Cumulative Distribution Function of the Mann-Whitney U Statistic: F(u)
for n1 � n2 and 3 � n2 � 10

n2 � 6
n1

u 1 2 3 4 5 6
0 0.1429 0.0357 0.0119 0.0048 0.0022 0.0011

1 0.2857 0.0714 0.0238 0.0095 0.0043 0.0022

2 0.4286 0.1429 0.0476 0.0190 0.0087 0.0043

3 0.5714 0.2143 0.0833 0.0333 0.0152 0.0076

4 0.3214 0.1310 0.0571 0.0260 0.0130

5 0.4286 0.1905 0.0857 0.0411 0.0206

6 0.5714 0.2738 0.1286 0.0628 0.0325

7 0.3571 0.1762 0.0887 0.0465

8 0.4524 0.2381 0.1234 0.0660

9 0.5476 0.3048 0.1645 0.0898

10 0.3810 0.2143 0.1201

11 0.4571 0.2684 0.1548

12 0.5429 0.3312 0.1970

13 0.3961 0.2424

14 0.4654 0.2944

15 0.5346 0.3496

16 0.4091

17 0.4686

18 0.5314

n2 � 7
n1

u 1 2 3 4 5 6 7

0 0.1250 0.0278 0.0083 0.0030 0.0013 0.0006 0.0003

1 0.2500 0.0556 0.0167 0.0061 0.0025 0.0012 0.0006

2 0.3750 0.1111 0.0333 0.0121 0.0051 0.0023 0.0012

3 0.5000 0.1667 0.0583 0.0212 0.0088 0.0041 0.0020

4 0.2500 0.0917 0.0364 0.0152 0.0070 0.0035

5 0.3333 0.1333 0.0545 0.0240 0.0111 0.0055

6 0.4444 0.1917 0.0818 0.0366 0.0175 0.0087

7 0.5556 0.2583 0.1152 0.0530 0.0256 0.0131

8 0.3333 0.1576 0.0745 0.0367 0.0189

9 0.4167 0.2061 0.1010 0.0507 0.0265

10 0.5000 0.2636 0.1338 0.0688 0.0364

11 0.3242 0.1717 0.0903 0.0487

12 0.3939 0.2159 0.1171 0.0641

13 0.4636 0.2652 0.1474 0.0825

14 0.5364 0.3194 0.1830 0.1043

15 0.3775 0.2226 0.1297

16 0.4381 0.2669 0.1588

17 0.5000 0.3141 0.1914

18 0.3654 0.2279

19 0.4178 0.2675

20 0.4726 0.3100

21 0.5274 0.3552

22 0.4024

23 0.4508

24 0.5000
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TABLE 9 (continued) Cumulative Distribution Function of the Mann-Whitney U Statistic: F(u)
for n1 � n2 and 3 � n2 � 10

n2 � 8
n1

u 1 2 3 4 5 6 7 8
0 0.1111 0.0222 0.0061 0.0020 0.0008 0.0003 0.0002 0.0001

1 0.2222 0.0444 0.0121 0.0040 0.0016 0.0007 0.0003 0.0002

2 0.3333 0.0889 0.0242 0.0081 0.0031 0.0013 0.0006 0.0003

3 0.4444 0.1333 0.0424 0.0141 0.0054 0.0023 0.0011 0.0005

4 0.5556 0.2000 0.0667 0.0242 0.0093 0.0040 0.0019 0.0009

5 0.2667 0.0970 0.0364 0.0148 0.0063 0.0030 0.0015

6 0.3556 0.1394 0.0545 0.0225 0.0100 0.0047 0.0023

7 0.4444 0.1879 0.0768 0.0326 0.0147 0.0070 0.0035

8 0.5556 0.2485 0.1071 0.0466 0.0213 0.0103 0.0052

9 0.3152 0.1414 0.0637 0.0296 0.0145 0.0074

10 0.3879 0.1838 0.0855 0.0406 0.0200 0.0103

11 0.4606 0.2303 0.1111 0.0539 0.0270 0.0141

12 0.5394 0.2848 0.1422 0.0709 0.0361 0.0190

13 0.3414 0.1772 0.0906 0.0469 0.0249

14 0.4040 0.2176 0.1142 0.0603 0.0325

15 0.4667 0.2618 0.1412 0.0760 0.0415

16 0.5333 0.3108 0.1725 0.0946 0.0524

17 0.3621 0.2068 0.1159 0.0652

18 0.4165 0.2454 0.1405 0.0803

19 0.4716 0.2864 0.1678 0.0974

20 0.5284 0.3310 0.1984 0.1172

21 0.3773 0.2317 0.1393

22 0.4259 0.2679 0.1641

23 0.4749 0.3063 0.1911

24 0.5251 0.3472 0.2209

25 0.3894 0.2527

26 0.4333 0.2869

27 0.4775 0.3227

28 0.5225 0.3605

29 0.3992

30 0.4392

31 0.4796

32 0.5204
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TABLE 9 (continued) Cumulative Distribution Function of the Mann-Whitney U Statistic: F(u)
for n1 � n2 and 3 � n2 � 10

n2 � 9
n1

u 1 2 3 4 5 6 7 8 9
0 0.1000 0.0182 0.0045 0.0014 0.0005 0.0002 0.0001 0.0000 0.0000

1 0.2000 0.0364 0.0091 0.0028 0.0010 0.0004 0.0002 0.0001 0.0000

2 0.3000 0.0727 0.0182 0.0056 0.0020 0.0008 0.0003 0.0002 0.0001

3 0.4000 0.1091 0.0318 0.0098 0.0035 0.0014 0.0006 0.0003 0.0001

4 0.5000 0.1636 0.0500 0.0168 0.0060 0.0024 0.0010 0.0005 0.0002

5 0.2182 0.0727 0.0252 0.0095 0.0038 0.0017 0.0008 0.0004

6 0.2909 0.1045 0.0378 0.0145 0.0060 0.0026 0.0012 0.0006

7 0.3636 0.1409 0.0531 0.0210 0.0088 0.0039 0.0019 0.0009

8 0.4545 0.1864 0.0741 0.0300 0.0128 0.0058 0.0028 0.0014

9 0.5455 0.2409 0.0993 0.0415 0.0180 0.0082 0.0039 0.0020

10 0.3000 0.1301 0.0599 0.0248 0.0115 0.0056 0.0028

11 0.3636 0.1650 0.0734 0.0332 0.0156 0.0076 0.0039

12 0.4318 0.2070 0.0949 0.0440 0.0209 0.0103 0.0053

13 0.5000 0.2517 0.1199 0.0567 0.0274 0.0137 0.0071

14 0.3021 0.1489 0.0723 0.0356 0.0180 0.0094

15 0.3552 0.1818 0.0905 0.0454 0.0232 0.0122

16 0.4126 0.2188 0.1119 0.0571 0.0296 0.0157

17 0.4699 0.2592 0.1361 0.0708 0.0372 0.0200

18 0.5301 0.3032 0.1638 0.0869 0.0464 0.0252

19 0.3497 0.1924 0.1052 0.0570 0.0313

20 0.3986 0.2280 0.1261 0.0694 0.0385

21 0.4491 0.2643 0.1496 0.0836 0.0470

22 0.5000 0.3035 0.1755 0.0998 0.0567

23 0.3445 0.2039 0.1179 0.0680

24 0.3878 0.2349 0.1383 0.0807

25 0.4320 0.2680 0.1606 0.0951

26 0.4773 0.3032 0.1852 0.1112

27 0.5227 0.3403 0.2117 0.1290

28 0.3788 0.2404 0.1487

29 0.4185 0.2707 0.1701

30 0.4591 0.3029 0.1933

31 0.5000 0.3365 0.2181

32 0.3715 0.2447

33 0.4074 0.2729

34 0.4442 0.3024

35 0.4813 0.3332

36 0.5187 0.3652

37 0.3981

38 0.4317

39 0.4657

40 0.5000
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TABLE 9 (concluded) Cumulative Distribution Function of the Mann-Whitney U Statistic: F(u)
for n1 � n2 and 3 � n2 � 10

n2 � 10
n1

u 1 2 3 4 5 6 7 8 9 10
0 0.0909 0.0152 0.0035 0.0010 0.0003 0.0001 0.0001 0.0000 0.0000 0.0000

1 0.1818 0.0303 0.0070 0.0020 0.0007 0.0002 0.0001 0.0000 0.0000 0.0000

2 0.2727 0.0606 0.0140 0.0040 0.0013 0.0005 0.0002 0.0001 0.0000 0.0000

3 0.3636 0.0909 0.0245 0.0070 0.0023 0.0009 0.0004 0.0002 0.0001 0.0000

4 0.4545 0.1364 0.0385 0.0120 0.0040 0.0015 0.0006 0.0003 0.0001 0.0001

5 0.5455 0.1818 0.0559 0.0180 0.0063 0.0024 0.0010 0.0004 0.0002 0.0001

6 0.2424 0.0804 0.0270 0.0097 0.0037 0.0015 0.0007 0.0003 0.0002

7 0.3030 0.1084 0.0380 0.0140 0.0055 0.0023 0.0010 0.0005 0.0002

8 0.3788 0.1434 0.0529 0.0200 0.0080 0.0034 0.0015 0.0007 0.0004

9 0.4545 0.1853 0.0709 0.0276 0.0112 0.0048 0.0022 0.0011 0.0005

10 0.5455 0.2343 0.0939 0.0376 0.0156 0.0068 0.0031 0.0015 0.0008

11 0.2867 0.1199 0.0496 0.0210 0.0093 0.0043 0.0021 0.0010

12 0.3462 0.1518 0.0646 0.0280 0.0125 0.0058 0.0028 0.0014

13 0.4056 0.1868 0.0823 0.0363 0.0165 0.0078 0.0038 0.0019

14 0.4685 0.2268 0.1032 0.0467 0.0215 0.0103 0.0051 0.0026

15 0.5315 0.2697 0.1272 0.0589 0.0277 0.0133 0.0066 0.0034

16 0.3177 0.1548 0.0736 0.0351 0.0171 0.0086 0.0045

17 0.3666 0.1855 0.0903 0.0439 0.0217 0.0110 0.0057

18 0.4196 0.2198 0.1099 0.0544 0.0273 0.0140 0.0073

19 0.4725 0.2567 0.1317 0.0665 0.0338 0.0175 0.0093

20 0.5275 0.2970 0.1566 0.0806 0.0416 0.0217 0.0116

21 0.3393 0.1838 0.0966 0.0506 0.0267 0.0144

22 0.3839 0.2139 0.1148 0.0610 0.0326 0.0177

23 0.4296 0.2461 0.1349 0.0729 0.0394 0.0216

24 0.4765 0.2811 0.1574 0.0864 0.0474 0.0262

25 0.5235 0.3177 0.1819 0.1015 0.0564 0.0315

26 0.3564 0.2087 0.1185 0.0667 0.0376

27 0.3962 0.2374 0.1371 0.0782 0.0446

28 0.4374 0.2681 0.1577 0.0912 0.0526

29 0.4789 0.3004 0.1800 0.1055 0.0615

30 0.5211 0.3345 0.2041 0.1214 0.0716

31 0.3698 0.2299 0.1388 0.0827

32 0.4063 0.2574 0.1577 0.0952

33 0.4434 0.2863 0.1781 0.1088

34 0.4811 0.3167 0.2001 0.1237

35 0.5189 0.3482 0.2235 0.1399

36 0.3809 0.2483 0.1575

37 0.4143 0.2745 0.1763

38 0.4484 0.3019 0.1965

39 0.4827 0.3304 0.2179

40 0.5173 0.3598 0.2406

41 0.3901 0.2644

42 0.4211 0.2894

43 0.4524 0.3153

44 0.4841 0.3421

45 0.5159 0.3697

46 0.3980

47 0.4267

48 0.4559

49 0.4853

50 0.5147
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TABLE 10 Critical Values of the Wilcoxon T Statistic

One-Tailed Two-Tailed n � 5 n � 6 n � 7 n � 8 n � 9 n � 10
P � 0.05 P � 0.10 1 2 4 6 8 11

P � 0.025 P � 0.05 1 2 4 6 8

P � 0.01 P � 0.02 0 2 3 5

P � 0.005 P � 0.01 0 2 3

One-Tailed Two-Tailed n � 11 n � 12 n � 13 n � 14 n � 15 n � 16
P � 0.05 P � 0.10 14 17 21 26 30 36

P � 0.025 P � 0.05 11 14 17 21 25 30

P � 0.01 P � 0.02 7 10 13 16 20 24

P � 0.005 P � 0.01 5 7 10 13 16 19

One-Tailed Two-Tailed n � 17 n � 18 n � 19 n � 20 n � 21 n � 22

P � 0.05 P � 0.10 41 47 54 60 68 75

P � 0.025 P � 0.05 35 40 46 52 59 66

P � 0.01 P � 0.02 28 33 38 43 49 56

P � 0.005 P � 0.01 23 28 32 37 43 49

One-Tailed Two-Tailed n � 23 n � 24 n � 25 n � 26 n � 27 n � 28

P � 0.05 P � 0.10 83 92 101 110 120 130

P � 0.025 P � 0.05 73 81 90 98 107 117

P � 0.01 P � 0.02 62 69 77 85 93 102

P � 0.005 P � 0.01 55 68 68 76 84 92

One-Tailed Two-Tailed n � 29 n � 30 n � 31 n � 32 n � 33 n � 34

P � 0.05 P � 0.10 141 152 163 175 188 201

P � 0.025 P � 0.05 127 137 148 159 171 183

P � 0.01 P � 0.02 111 120 130 141 151 162

P � 0.005 P � 0.01 100 109 118 128 138 149

One-Tailed Two-Tailed n � 35 n � 36 n � 37 n � 38 n � 39

P � 0.05 P � 0.10 214 228 242 256 271

P � 0.025 P � 0.05 195 208 222 235 250

P � 0.01 P � 0.02 174 186 198 211 224

P � 0.005 P � 0.01 160 171 183 195 208

One-Tailed Two-Tailed n � 40 n � 41 n � 42 n � 43 n � 44 n � 45

P � 0.05 P � 0.10 287 303 319 336 353 371

P � 0.025 P � 0.05 264 279 295 311 327 344

P � 0.01 P � 0.02 238 252 267 281 297 313

P � 0.005 P � 0.01 221 234 248 262 277 292

One-Tailed Two-Tailed n � 46 n � 47 n � 48 n � 49 n � 50
P � 0.05 P � 0.10 389 408 427 446 466

P � 0.025 P � 0.05 361 379 397 415 434

P � 0.01 P � 0.02 329 345 362 380 398

P � 0.005 P � 0.01 307 323 339 356 373

Source: Reproduced from F. Wilcoxon and R. A. Wilcox, Some Rapid Approximate Statistical Procedures (1964), p. 28,
with the permission of American Cyanamid Company.

Statistical Tables 785



Aczel−Sounderpandian: 
Complete Business 
Statistics, Seventh Edition

Back Matter Appendix C: Statistical 
Tables

866 © The McGraw−Hill 
Companies, 2009

TABLE 11 Critical Values of Spearman’s Rank Correlation Coefficient

n � � 0.05 � � 0.025 � � 0.01 � � 0.005
5 0.900 — — —

6 0.829 0.886 0.943 —

7 0.714 0.786 0.893 —

8 0.643 0.738 0.833 0.881

9 0.600 0.683 0.783 0.833

10 0.564 0.648 0.745 0.794

11 0.523 0.623 0.736 0.818

12 0.497 0.591 0.703 0.780

13 0.475 0.566 0.673 0.745

14 0.457 0.545 0.646 0.716

15 0.441 0.525 0.623 0.689

16 0.425 0.507 0.601 0.666

17 0.412 0.490 0.582 0.645

18 0.399 0.476 0.564 0.625

19 0.388 0.462 0.549 0.608

20 0.377 0.450 0.534 0.591

21 0.368 0.438 0.521 0.576

22 0.359 0.428 0.508 0.562

23 0.351 0.418 0.496 0.549

24 0.343 0.409 0.485 0.537

25 0.336 0.400 0.475 0.526

26 0.329 0.392 0.465 0.515

27 0.323 0.385 0.456 0.505

28 0.317 0.377 0.448 0.496

29 0.311 0.370 0.440 0.487

30 0.305 0.364 0.432 0.478

Source: Reproduced by permission from E. G. Olds, “Distribution of Sums of Squares of Rank Differences for Small
Samples,” Annals of Mathematical Statistics 9 (1938).
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TABLE 12 Poisson Probability Distribution

This table gives values of

P(x) �

�

x .005 .01 .02 .03 .04 .05 .06 .07 .08 .09
0 .9950 .9900 .9802 .9704 .9608 .9512 .9418 .9324 .9231 .9139

1 .0050 .0099 .0192 .0291 .0384 .0476 .0565 .0653 .0738 .0823

2 .0000 .0000 .0002 .0004 .0008 .0012 .0017 .0023 .0030 .0037

3 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0001 .0001 .0001

�

x 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

0 .9048 .8187 .7408 .6703 .6065 .5488 .4966 .4493 .4066 .3679

1 .0905 .1637 .2222 .2681 .3033 .3293 .3476 .3595 .3659 .3679

2 .0045 .0164 .0333 .0536 .0758 .0988 .1217 .1438 .1647 .1839

3 .0002 .0011 .0033 .0072 .0126 .0198 .0284 .0383 .0494 .0613

4 .0000 .0001 .0002 .0007 .0016 .0030 .0050 .0077 .0111 .0153

5 .0000 .0000 .0000 .0001 .0002 .0004 .0007 .0012 .0020 .0031

6 .0000 .0000 .0000 .0000 .0000 .0000 .0001 .0002 .0003 .0005

7 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0001

�

x 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0

0 .3329 .3012 .2725 .2466 .2231 .2019 .1827 .1653 .1496 .1353

1 .3662 .3614 .3543 .3452 .3347 .3230 .3106 .2975 .2842 .2707

2 .2014 .2169 .2303 .2417 .2510 .2584 .2640 .2678 .2700 .2707

3 .0738 .0867 .0998 .1128 .1255 .1378 .1496 .1607 .1710 .1804

4 .0203 .0260 .0324 .0395 .0471 .0551 .0636 .0723 .0812 .0902

5 .0045 .0062 .0084 .0111 .0141 .0176 .0216 .0260 .0309 .0361

6 .0008 .0012 .0018 .0026 .0035 .0047 .0061 .0078 .0098 .0120

7 .0001 .0002 .0003 .0005 .0008 .0011 .0015 .0020 .0027 .0034

8 .0000 .0000 .0001 .0001 .0001 .0002 .0003 .0005 .0006 .0009

9 .0000 .0000 .0000 .0000 .0000 .0000 .0001 .0001 .0001 .0002

�

x 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 3.0
0 .1225 .1108 .1003 .0907 .0821 .0743 .0672 .0608 .0550 .0498

1 .2572 .2438 .2306 .2177 .2052 .1931 .1815 .1703 .1596 .1494

2 .2700 .2681 .2652 .2613 .2565 .2510 .2450 .2384 .2314 .2240

3 .1890 .1966 .2033 .2090 .2138 .2176 .2205 .2225 .2237 .2240

4 .0992 .1082 .1169 .1254 .1336 .1414 .1488 .1557 .1622 .1680

5 .0417 .0476 .0538 .0602 .0668 .0735 .0804 .0872 .0940 .1008

6 .0146 .0174 .0206 .0241 .0278 .0319 .0362 .0407 .0455 .0504

7 .0044 .0055 .0068 .0083 .0099 .0118 .0139 .0163 .0188 .0216

8 .0011 .0015 .0019 .0025 .0031 .0038 .0047 .0057 .0068 .0081

9 .0003 .0004 .0005 .0007 .0009 .0011 .0014 .0018 .0022 .0027

10 .0001 .0001 .0001 .0002 .0002 .0003 .0004 .0005 .0006 .0008

11 .0000 .0000 .0000 .0000 .0000 .0001 .0001 .0001 .0002 .0002

12 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0001

mxe-m

x!
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TABLE 12 (continued) Poisson Probability Distribution

�

x 3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8 3.9 4.0
0 .0450 .0408 .0369 .0334 .0302 .0273 .0247 .0224 .0202 .0183
1 .1397 .1304 .1217 .1135 .1057 .0984 .0915 .0850 .0789 .0733
2 .2165 .2087 .2008 .1929 .1850 .1771 .1692 .1615 .1539 .1465
3 .2237 .2226 .2209 .2186 .2158 .2125 .2087 .2046 .2001 .1954
4 .1734 .1781 .1823 .1858 .1888 .1912 .1931 .1944 .1951 .1954

5 .1075 .1140 .1203 .1264 .1322 .1377 .1429 .1477 .1522 .1563
6 .0555 .0608 .0662 .0716 .0771 .0826 .0881 .0936 .0989 .1042
7 .0246 .0278 .0312 .0348 .0385 .0425 .0466 .0508 .0551 .0595
8 .0095 .0111 .0129 .0148 .0169 .0191 .0215 .0241 .0269 .0298
9 .0033 .0040 .0047 .0056 .0066 .0076 .0089 .0102 .0116 .0132

10 .0010 .0013 .0016 .0019 .0023 .0028 .0033 .0039 .0045 .0053
11 .0003 .0004 .0005 .0006 .0007 .0009 .0011 .0013 .0016 .0019
12 .0001 .0001 .0001 .0002 .0002 .0003 .0003 .0004 .0005 .0006
13 .0000 .0000 .0000 .0000 .0001 .0001 .0001 .0001 .0002 .0002
14 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0001

�

x 4.1 4.2 4.3 4.4 4.5 4.6 4.7 4.8 4.9 5.0
0 .0166 .0150 .0136 .0123 .0111 .0101 .0091 .0082 .0074 .0067
1 .0679 .0630 .0583 .0540 .0500 .0462 .0427 .0395 .0365 .0337
2 .1393 .1323 .1254 .1188 .1125 .1063 .1005 .0948 .0894 .0842
3 .1904 .1852 .1798 .1743 .1687 .1631 .1574 .1517 .1460 .1404
4 .1951 .1944 .1933 .1917 .1898 .1875 .1849 .1820 .1789 .1755

5 .1600 .1633 .1662 .1687 .1708 .1725 .1738 .1747 .1753 .1755
6 .1093 .1143 .1191 .1237 .1281 .1323 .1362 .1398 .1432 .1462
7 .0640 .0686 .0732 .0778 .0824 .0869 .0914 .0959 .1002 .1044
8 .0328 .0360 .0393 .0428 .0463 .0500 .0537 .0575 .0614 .0653
9 .0150 .0168 .0188 .0209 .0232 .0255 .0280 .0307 .0334 .0363

10 .0061 .0071 .0081 .0092 .0104 .0118 .0132 .0147 .0164 .0181
11 .0023 .0027 .0032 .0037 .0043 .0049 .0056 .0064 .0073 .0082
12 .0008 .0009 .0011 .0014 .0016 .0019 .0022 .0026 .0030 .0034
13 .0002 .0003 .0004 .0005 .0006 .0007 .0008 .0009 .0011 .0013
14 .0001 .0001 .0001 .0001 .0002 .0002 .0003 .0003 .0004 .0005
15 .0000 .0000 .0000 .0000 .0001 .0001 .0001 .0001 .0001 .0002

�

x 5.1 5.2 5.3 5.4 5.5 5.6 5.7 5.8 5.9 6.0
0 .0061 .0055 .0050 .0045 .0041 .0037 .0033 .0030 .0027 .0025
1 .0311 .0287 .0265 .0244 .0225 .0207 .0191 .0176 .0162 .0149
2 .0793 .0746 .0701 .0659 .0618 .0580 .0544 .0509 .0477 .0446
3 .1348 .1293 .1239 .1185 .1133 .1082 .1033 .0985 .0938 .0892
4 .1719 .1681 .1641 .1600 .1558 .1515 .1472 .1428 .1383 .1339

5 .1753 .1748 .1740 .1728 .1714 .1697 .1678 .1656 .1632 .1606
6 .1490 .1515 .1537 .1555 .1571 .1584 .1594 .1601 .1605 .1606
7 .1086 .1125 .1163 .1200 .1234 .1267 .1298 .1326 .1353 .1377
8 .0692 .0731 .0771 .0810 .0849 .0887 .0925 .0962 .0998 .1033
9 .0392 .0423 .0454 .0486 .0519 .0552 .0586 .0620 .0654 .0688

10 .0200 .0220 .0241 .0262 .0285 .0309 .0334 .0359 .0386 .0413
11 .0093 .0104 .0116 .0129 .0143 .0157 .0173 .0190 .0207 .0225
12 .0039 .0045 .0051 .0058 .0065 .0073 .0082 .0092 .0102 .0113
13 .0015 .0018 .0021 .0024 .0028 .0032 .0036 .0041 .0046 .0052
14 .0006 .0007 .0008 .0009 .0011 .0013 .0015 .0017 .0019 .0022

15 .0002 .0002 .0003 .0003 .0004 .0005 .0006 .0007 .0008 .0009
16 .0001 .0001 .0001 .0001 .0001 .0002 .0002 .0002 .0003 .0003
17 .0000 .0000 .0000 .0000 .0000 .0001 .0001 .0001 .0001 .0001
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TABLE 12 (concluded) Poisson Probability Distribution

�

x 6.1 6.2 6.3 6.4 6.5 6.6 6.7 6.8 6.9 7.0
0 .0022 .0020 .0019 .0017 .0015 .0014 .0012 .0011 .0010 .0009

1 .0137 .0126 .0116 .0106 .0098 .0090 .0082 .0076 .0070 .0064

2 .0417 .0390 .0364 .0340 .0318 .0296 .0276 .0258 .0240 .0223

3 .0848 .0806 .0765 .0726 .0688 .0652 .0617 .0584 .0552 .0521

4 .1294 .1249 .1205 .1162 .1118 .1076 .1034 .0992 .0952 .0912

5 .1579 .1549 .1519 .1487 .1454 .1420 .1385 .1349 .1314 .1277

6 .1605 .1601 .1595 .1586 .1575 .1562 .1546 .1529 .1511 .1490

7 .1399 .1418 .1435 .1450 .1462 .1472 .1480 .1486 .1489 .1490

8 .1066 .1099 .1130 .1160 .1188 .1215 .1240 .1263 .1284 .1304

9 .0723 .0757 .0791 .0825 .0858 .0891 .0923 .0954 .0985 .1014

10 .0441 .0469 .0498 .0528 .0558 .0588 .0618 .0649 .0679 .0710

11 .0245 .0265 .0285 .0307 .0330 .0353 .0377 .0401 .0426 .0452

12 .0124 .0137 .0150 .0164 .0179 .0194 .0210 .0227 .0245 .0264

13 .0058 .0065 .0073 .0081 .0089 .0098 .0108 .0119 .0130 .0142

14 .0025 .0029 .0033 .0037 .0041 .0046 .0052 .0058 .0064 .0071

15 .0010 .0012 .0014 .0016 .0018 .0020 .0023 .0026 .0029 .0033

16 .0004 .0005 .0005 .0006 .0007 .0008 .0010 .0011 .0013 .0014

17 .0001 .0002 .0002 .0002 .0003 .0003 .0004 .0004 .0005 .0006

18 .0000 .0001 .0001 .0001 .0001 .0001 .0001 .0002 .0002 .0002

19 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0001 .0001 .0001

�

x 7.1 7.2 7.3 7.4 7.5 7.6 7.7 7.8 7.9 8.0

0 .0008 .0007 .0007 .0006 .0006 .0005 .0005 .0004 .0004 .0003

1 .0059 .0054 .0049 .0045 .0041 .0038 .0035 .0032 .0029 .0027

2 .0208 .0194 .0180 .0167 .0156 .0145 .0134 .0125 .0116 .0107

3 .0492 .0464 .0438 .0413 .0389 .0366 .0345 .0324 .0305 .0286

4 .0874 .0836 .0799 .0764 .0729 .0696 .0663 .0632 .0602 .0573

5 .1241 .1204 .1167 .1130 .1094 .1057 .1021 .0986 .0951 .0916

6 .1468 .1445 .1420 .1394 .1367 .1339 .1311 .1282 .1252 .1221

7 .1489 .1486 .1481 .1474 .1465 .1454 .1442 .1428 .1413 .1396

8 .1321 .1337 .1351 .1363 .1373 .1382 .1388 .1392 .1395 .1396

9 .1042 .1070 .1096 .1121 .1144 .1167 .1187 .1207 .1224 .1241

10 .0740 .0770 .0800 .0829 .0858 .0887 .0914 .0941 .0967 .0993

11 .0478 .0504 .0531 .0558 .0585 .0613 .0640 .0667 .0695 .0722

12 .0283 .0303 .0323 .0344 .0366 .0388 .0411 .0434 .0457 .0481

13 .0154 .0168 .0181 .0196 .0211 .0227 .0243 .0260 .0278 .0296

14 .0078 .0086 .0095 .0104 .0113 .0123 .0134 .0145 .0157 .0169

15 .0037 .0041 .0046 .0051 .0057 .0062 .0069 .0075 .0083 .0090

16 .0016 .0019 .0021 .0024 .0026 .0030 .0033 .0037 .0041 .0045

17 .0007 .0008 .0009 .0010 .0012 .0013 .0015 .0017 .0019 .0021

18 .0003 .0003 .0004 .0004 .0005 .0006 .0006 .0007 .0008 .0009

19 .0001 .0001 .0001 .0002 .0002 .0002 .0003 .0003 .0003 .0004

20 .0000 .0000 .0001 .0001 .0001 .0001 .0001 .0001 .0001 .0002

21 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0001 .0001
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TABLE 13 Control Chart Constants

For Chart
For Estimating For (Standard For R Chart For s Chart

Sigma Chart Given) For R Chart (Standard Given) (Standard Given)

n c4 d2 A2 A3 A D3 D4 D1 D2 B3 B4 B5 B6

2 0.7979 1.128 1.880 2.659 2.121 0 3.267 0 3.686 0 3.267 0 2.606

3 0.8862 1.693 1.023 1.954 1.732 0 2.575 0 4.358 0 2.568 0 2.276

4 0.9213 2.059 0.729 1.628 1.500 0 2.282 0 4.698 0 2.266 0 2.088

5 0.9400 2.326 0.577 1.427 1.342 0 2.115 0 4.918 0 2.089 0 1.964

6 0.9515 2.534 0.483 1.287 1.225 0 2.004 0 5.078 0.030 1.970 0.029 1.874

7 0.9594 2.704 0.419 1.182 1.134 0.076 1.924 0.205 5.203 0.118 1.882 0.113 1.806

8 0.9650 2.847 0.373 1.099 1.061 0.136 1.864 0.387 5.307 0.185 1.815 0.179 1.751

9 0.9693 2.970 0.337 1.032 1.000 0.184 1.816 0.546 5.394 0.239 1.761 0.232 1.707

10 0.9727 3.078 0.308 0.975 0.949 0.223 1.777 0.687 5.469 0.284 1.716 0.276 1.669

15 0.9823 3.472 0.223 0.789 0.775 0.348 1.652 1.207 5.737 0.428 1.572 0.421 1.544

20 0.9869 3.735 0.180 0.680 0.671 0.414 1.586 1.548 5.922 0.510 1.490 0.504 1.470

25 0.9896 3.931 0.153 0.606 0.600 0.459 1.541 1.804 6.058 0.565 1.435 0.559 1.420

Source: T. P. Ryan, Statistical Methods for Quality Improvement © 1989 New York: John Wiley & Sons. This material is used by permission of John Wiley &
Sons, Inc.

X

X
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TABLE 14 Random Numbers

1559 9068 9290 8303 8508 8954 1051 6677 6415 0342
5550 6245 7313 0117 7652 5069 6354 7668 1096 5780
4735 6214 8037 1385 1882 0828 2957 0530 9210 0177
5333 1313 3063 1134 8676 6241 9960 5304 1582 6198
8495 2956 1121 8484 2920 7934 0670 5263 0968 0069
1947 3353 1197 7363 9003 9313 3434 4261 0066 2714
4785 6325 1868 5020 9100 0823 7379 7391 1250 5501
9972 9163 5833 0100 5758 3696 6496 6297 5653 7782
0472 4629 2007 4464 3312 8728 1193 2497 4219 5339
4727 6994 1175 5622 2341 8562 5192 1471 7206 2027
3658 3226 5981 9025 1080 1437 6721 7331 0792 5383
6906 9758 0244 0259 4609 1269 5957 7556 1975 7898
3793 6916 0132 8873 8987 4975 4814 2098 6683 0901
3376 5966 1614 4025 0721 1537 6695 6090 8083 5450
6126 0224 7169 3596 1593 5097 7286 2686 1796 1150
0466 7566 1320 8777 8470 5448 9575 4669 1402 3905
9908 9832 8185 8835 0384 3699 1272 1181 8627 1968
7594 3636 1224 6808 1184 3404 6752 4391 2016 6167
5715 9301 5847 3524 0077 6674 8061 5438 6508 9673
7932 4739 4567 6797 4540 8488 3639 9777 1621 7244
6311 2025 5250 6099 6718 7539 9681 3204 9637 1091
0476 1624 3470 1600 0675 3261 7749 4195 2660 2150
5317 3903 6098 9438 3482 5505 5167 9993 8191 8488
7474 8876 1918 9828 2061 6664 0391 9170 2776 4025
7460 6800 1987 2758 0737 6880 1500 5763 2061 9373
1002 1494 9972 3877 6104 4006 0477 0669 8557 0513
5449 6891 9047 6297 1075 7762 8091 7153 8881 3367
9453 0809 7151 9982 0411 1120 6129 5090 2053 7570
0471 2725 7588 6573 0546 0110 6132 1224 3124 6563
5469 2668 1996 2249 3857 6637 8010 1701 3141 6147
2782 9603 1877 4159 9809 2570 4544 0544 2660 6737
3129 7217 5020 3788 0853 9465 2186 3945 1696 2286
7092 9885 3714 8557 7804 9524 6228 7774 6674 2775
9566 0501 8352 1062 0634 2401 0379 1697 7153 6208
5863 7000 1714 9276 7218 6922 1032 4838 1954 1680
5881 9151 2321 3147 6755 2510 5759 6947 7102 0097
6416 9939 9569 0439 1705 4680 9881 7071 9596 8758
9568 3012 6316 9065 0710 2158 1639 9149 4848 8634
0452 9538 5730 1893 1186 9245 6558 9562 8534 9321
8762 5920 8989 4777 2169 7073 7082 9495 1594 8600
0194 0270 7601 0342 3897 4133 7650 9228 5558 3597
3306 5478 2797 1605 4996 0023 9780 9429 3937 7573
7198 3079 2171 6972 0928 6599 9328 0597 5948 5753
8350 4846 1309 0612 4584 4988 4642 4430 9481 9048
7449 4279 4224 1018 2496 2091 9750 6086 1955 9860
6126 5399 0852 5491 6557 4946 9918 1541 7894 1843
1851 7940 9908 3860 1536 8011 4314 7269 7047 0382
7698 4218 2726 5130 3132 1722 8592 9662 4795 7718
0810 0118 4979 0458 1059 5739 7919 4557 0245 4861
6647 7149 1409 6809 3313 0082 9024 7477 7320 5822
3867 7111 5549 9439 3427 9793 3071 6651 4267 8099
1172 7278 7527 2492 6211 9457 5120 4903 1023 5745
6701 1668 5067 0413 7961 7825 9261 8572 0634 1140
8244 0620 8736 2649 1429 6253 4181 8120 6500 8127
8009 4031 7884 2215 2382 1931 1252 8088 2490 9122
1947 8315 9755 7187 4074 4743 6669 6060 2319 0635
9562 4821 8050 0106 2782 4665 9436 4973 4879 8900
0729 9026 9631 8096 8906 5713 3212 8854 3435 4206
6904 2569 3251 0079 8838 8738 8503 6333 0952 1641

Source: T. P. Ryan, Statistical Methods for Quality Improvement © 1989 New York: John Wiley & Sons. This material is
used by permission of John Wiley & Sons, Inc.
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Adjusted multiple coefficient of

determination, 479
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confidence intervals, 372–373
defined, 349
degrees of freedom, 361–362
error deviation, 357
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main principle of, 355
mean squares, 362–363
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multiple regression, 475, 480
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quality control and, 602
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393–395
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total deviation of data point, 359
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ANOVA; see Analysis of variance (ANOVA)
ANOVA table, 364–369
ANOVA test statistic, 351–354, 364
Arithmetic mean, 10
Asimov, Eric, 219
Auto Parts Sales Forecasts (case), 592–593
Autocorrelation, 539
Average, 10; see also Mean
Averaging out and folding back, 707

B
Backward elimination, 545–546
Bailey, Jeff, 669n
Baker-Said, Stephanie, 626n
Balanced design, 376
Baland, J. M., 482n
Banner, Katie, 317n
Bar charts, 25, 38

probability bar chart, 92–93
Barbaro, Michael, 284n
Barenghi, C., 731n
Barr, Susan Learner, 254n
Barrionuevo, Alexei, 185n
Base period, 584
Basic outcome, 54
Bayes, Thomas, 73
Bayes’ Theorem, 73–74, 689

additional information and, 714–716
continuous probability distributions,

695–700
determining the payoff, 716
determining the probabilities, 716–719
discrete probability models, 688–693
extended Bayes’ Theorem, 77–79
normal probability model, 701–702

Bayesian analysis, 687–688
Bayesian statistics, 687–699

advantages of approach, 691
classical approaches vs., 688

computer usage for, 731–733
subjective probabilities, evaluation of,

701–702
template for, 692–693

Bearden, William O., 377n
Beaver, William H., 443n
Bell-shaped normal curve, 147
Berdahl, Robert M., 51
Berenson, Alex, 713n
Bernoulli, Jakob, 112
Bernoulli distribution, 112
Bernoulli process, 113
Bernoulli random variable, 112
Bernoulli trial, 112
Bertrand, Marianne, 519n
Best, R., 731n
Best linear unbiased estimators (BLUE),

415, 472
B computation of, 269–271
B and power of test, 264, 289
Between-treatments deviation, 360
Bias, 181, 201–203

nonresponse bias, 5–6, 181
Bigda, Caroline, 25n
Billett, Matthew T., 512n
Binary variable, 504
BINOMDIST function, 133
Binomial distribution, 71, 115

MINITAB for, 134–135
negative binomial distribution, 118–120
normal approximation of, 169–170
population proportions, 276
template for, 115–116

Binomial distribution formulas, 114–115
Binomial distribution template, 115–116
Binomial probability formula, 114
Binomial random variable, 93, 113–116

conditions for, 113–114
Binomial successes, 184
Biscourp, Pierre, 493n
Block, 393, 653
Blocking, 308
Blocking designs, 379, 393–397

randomized complete block design,
393–395

repeated-measures design, 395
BLUE (best linear unbiased estimators), 

415, 472
Bonferroni method, 376
Box-and-whisker plot, 31
Box plots, 31–33, 38

elements of, 31–32
uses of, 33

Brav, James C., 481n
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Briley, Donnel A., 370n
Brooks, Rick, 284n
Bruno, Mark, 645n
Bukey, David, 318n
Burros, Marian, 644n
Bush, Jason, 227n
Business cycle, 566, 621

C
c chart, 614–615
Caesar, William K., 569n
Callbacks, 189
Capability of any process, 598
Capital Asset Pricing Model (CAPM), 458
Carey, John, 316n
Carlson, Jay P., 377n
Carter, Erin, 632n
Cases

Acceptable Pins, 177–178
Acceptance Sampling of Pins, 216
Auto Parts Sales Forecasts, 592–593
Checking Out Checkout, 406
Concepts Testing, 145
Firm Leverage and Shareholder 

Rights, 466–467
Job Applications, 89
Multicurrency Decision, 177–178
NASDAQ Volatility, 48
New Drug Development, 736–737
Nine Nations of North America, 684–685
Pizzas “R” Us, 735
Presidential Polling, 254–255
Privacy Problem, 255
Quality Control and Improvement at

Nashua Corporation, 618–619
Rating Wines, 406
Return on Capital for Four Different

Sectors, 556–558
Risk and Return, 467
Tiresome Tires I, 301
Tiresome Tires II, 346

Casey, Susan, 345n
Cassidy, Michael, 652n
Categorical variable, 4
Causality, 433
Center of mass, 103
Centerline, 599, 606, 608–609, 612, 614
Central limit theorem, 194–198, 220

effects of, 195
history of, 198
population standard deviation and, 198
sample size and, 194

Central tendency; see Measures of central
tendency

Centrality of observations, 10, 102
Chance node, 705
Chance occurrences, 703–704
Chance outcome, 715
Chart Wizard, 37

Charts; see Methods of displaying data
Chatzky, Jean, 171, 254n, 297n, 644n
Chebyshev’s theorem, 24, 108–109
Checking Out Checkout (case), 406
Chi-square analysis with fixed marginal

totals, 675
Chi-square distribution, 239, 249, 330

mean of, 239
values and probabilities of, 240

Chi-square random variable, 331
Chi-square statistic, 662
Chi-square test for equality of proportions,

675–678
Chi-square test for goodness of fit, 661–668

chi-square statistic, 662
degrees of freedom, 665–666
multinominal distribution, 662–663
rule for use of, 665
steps in analysis, 661
template for, 664, 668
unequal probabilities, 664–666

CHIINV function, 249
Christen, Markus, 377n, 481n, 555n
Classes, 20
Classical approach, 687–688
Classical probability, 52
Cluster, 188
Cluster sampling, 188
Coefficient of determination (r 2), 439–442
Collinearity, 531–532; see also

Multicollinearity
Combinations, 71, 81
Combinatorial concepts, 70–72
Comparison of two populations, 303–341

computer templates for, 338–340
difference (population-means/independent

random samples), 310–322
equality of two population variances,

333–337
F distribution, 330–333
large-sample test (two population

proportions), 324–328
paired-observation comparisons, 304–308

Complement, 53–54
rule of complements, 58

Completely randomized design, 352, 379
Computational formula for the variance

of a random variable, 105
Computers; see also Excel; Templates

bar charts, 38
Bayesian statistics/decision analysis,

731–733
box plots, 38
confidence interval estimation, 248–250
decision analysis, 731–733
for descriptive statistics and plots, 35–40
in forecasting and time series, 588–591
histograms, 36–37
hypothesis testing, 298–300
multiple regression using Solver, 548–551

normal distribution, 171–172
one-way ANOVA, 398
paired-difference test, 338–340
percentile/percentile rank computation, 36
pie charts, 37
probability, 80–82
for quality control, 616–617
sampling distributions, 209–213
scatter plots, 38–39
for standard distributions, 133–134
time plots, 38
two-way ANOVA, 398–399

Concepts Testing (case), 145
Concomitant variables, 509
Conditional probability, 61–63, 74,

688, 715
Confidence, 219
Confidence coefficient, 223
CONFIDENCE function, 248
Confidence intervals, 167, 219–250, 303

Bayesian approach, 220n
classical/frequentist interpretation, 220n
defined, 219
80% confidence interval, 224
Excel functions for, 248–250
expected value of Y for given X, 457
half-width, determining optimal, 245–246
important property of, 224
individual population means, 372
MININTAB for, 249–250
95% confidence interval, 221–223
paired-observation comparisons, 307–308
population mean (known standard

deviation), 220–226
population means, difference between,

316, 321
population proportion (large sample),

235–237
population proportions, difference

between, 327
population variance, 239–242
regression parameters, 426–428
sample-size determination, 243–245
t distribution, 228–233
templates, 225–226, 242

Confidence level, 223, 263
Conlin, Michelle, 288n
Consistency, 203
Consumer price index (CPI), 561, 583,

585–587
Contingency table, 62, 669–670
Contingency table analysis, 669–672

chi-square test for independence, 669–672
chi-square test statistic for 

independence, 670
degrees of freedom, chi-square statistic, 670
expected count in cell, 671
hypothesis test for independence, 670
template, 672–673
Yates correction, 672
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Continuity correction, 169–170
Continuous probability distributions, Bayes’

theorem and, 695–700
Continuous random variable, 95–96, 126–128
Control chart, 598–601, 606

centerline, 599, 606, 608–609, 612, 614
lower control limit (LCL), 599, 606,

608–609, 612, 614
out of control, 599
for process mean, 606
for process proportion, 612
upper control limit (UCL), 599, 606,

608–609, 612, 614
Control treatment (placebo), 350
Cook, R. Dennis, 514n
Cordoba, Jose de, 329
Correlation, 429–433, 531
Correlation analysis, 429
Correlation coefficient, 429
Correlation matrix, 533–534
Counts of data points, 21
Covariance, 430
CPI (Consumer price index), 561, 583,

585–587
Creamer, Matthew, 364n
Credible sets, 689, 698–699
Creswell, Julie, 100n
Crockett, Roger O., 84n
Cross-product terms, 517–519
Cross-tabs, 669
Cumulative distribution function, 96–98
Cumulative frequency plots (ogives), 25, 27
Cumulative probability function, 97
Curved trends, 562
Curvilinear relationship, 413, 447–448
Cveykus, Renee, 632n
Cycle, 566
Cyclical behavior, 566–569
Cyclical variation, 566

D
Darwin, Charles, 409
Dash, Eric, 252n
Data, 3, 5

grouped data, 20–22
Data collection, 5
Data set, 5, 102
Data smoothing, 570
de Fermat, Pierre, 52
de Finetti, Bruno, 52n
de Mère, Chevalier, 52
de Moivre, Abraham, 52, 148, 198
Decision, 182, 704, 706
Decision analysis, 688, 702–705

actions, 703
additional information, 704
chance occurrences, 703–704
decision, 704
decision tree, 705–712

elements of, 703
final outcomes, 704
overview of, 702–705
payoff table, 706–709
probabilities, 704
utility, 725–728
value of information, 728–731

Decision node, 705
Decision tree, 705–712
Deflators, 585
DeGraw, Irv, 481n
Degree of linear association, 429–431
Degrees of freedom (df), 198, 205–208

ANOVA and, 361–362, 383–384, 389
chi-square statistic, 670
chi-square tests, 665–666
sum-of-squares for error (SSE), 362
sum-of-squares total (SST) and, 362
sum-of-squares for treatment (SSTR), 362

Degrees of freedom of the denominator, 330
Degrees of freedom of the numerator, 330
Demers, Elizabeth, 465n
Deming, W. Edwards, 596–597
Deming Award, 596
Deming’s 14 Points, 597–598
Dependent indicator variable, regression

with, 528–529
Dependent variable, 409
Descriptive graphs, 25
Descriptive statistics, 3–40, 181n

computer use for, 35–39
exploratory data analysis, 29–33
grouped data and histogram, 20–22
mean-standard deviation relations, 24–25
measures of central tendency, 10–14
measures of variability, 10–14
methods of displaying data, 25–29
MINITAB for, 39–40
percentiles and quartiles, 8–9, 36
random variable, 91–94
skewness and kurtosis, 22–23, 33
templates for random variables, 109–110

Deseasonalizing a time series, 572–573
df; see Degrees of freedom (df)
Diffuse priors, 698
Discrete probability models, 688–689
Discrete random variable, 95–96

Bayes’ theorem for, 689
cumulative distribution function of, 97
expected values of, 102–107
probability distribution of, 96
variance of, 104–105

Disjoint sets, 54
Dispersion, 14–15, 106; see also Measures

of variability
Displaying data; see Methods of 

displaying data
Distribution of the data, 9
Distribution-free methods, 682; see also

Nonparametric tests

Distributions; see also Normal distribution;
Probability distribution

Bernoulli distribution, 112
cumulative distribution function, 96–98
exponential distribution, 130–133
geometric distribution, 120–121
hypergeometric distribution, 121–124
kurtosis of, 22–23
Poisson distribution, 124–126
sampling distributions, 190–200
skewness of, 22–23
uniform distribution, 129–130

Dobyns, L., 601n
Dow Jones Industrial Average, 582–583
Dummy variable, 503, 507, 568
Dummy variable regression technique, 568
Durbin-Watson test, 445, 539–541
Durbin-Watson test statistic, 540

E
Eccles, Robert G., 577n
EDA (Exploratory data analysis), 29–33
Efficiency, 201, 203, 733
80% confidence interval, 224
Elementary event, 54
Elements of a set, 53
Elliot, Stuart, 324n
Empirical rule, 24–25, 163n
Empty set, 53
Enumerative data, 661
Epstein, Edward, 68n
Error deviation, 357, 359
Error probability, 223
Estimated regression relationship, 472
Estimators, 183–184, 201

consistency of, 201, 203
efficiency of, 201, 203
of population parameter, 184–185
properties of, 201–204, 414
sufficiency of, 201, 203
as unbiased, 201–203

Event, 55, 688
EVPI (expected value of perfect

information), 728
Excel; see also Solver Macro

ANOVA and, 398–399
Bayesian revision of probabilities, 80–81
descriptive statistics and plots, 25–40
F-test, 340
in forecasting and time series, 588–591
graphs, 27
histograms, 36–37
LINEST function, 461–462
normal distribution, 171–172
one-sample hypothesis testing, 298–299
paired-difference test, 338–340
percentile/percentile rank computation, 36
probabilities, 80–82
Random Number Generation analysis, 211
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Excel; see also Solver Macro—Cont.
regression, 458–459, 462–463
Sampling analysis tool, 210
sampling distributions and, 209–213
standard distributions and, 133–134
t-test, 340

Excel Analysis Toolpack, 35
Expected net gain from sampling, 730
Expected payoff, 707, 711–712
Expected value of a discrete random

variable, 102–103
Expected value of a function of a random

variable, 103–104
Expected value of a linear composite, 107
Expected value of a linear function of a

random variable, 104
Expected value of perfect information

(EVPI), 728
Expected value of sample mean, 192
Expected value of the sum of random

variables, 107
Experiment, 54
Experimental design, 379, 602
Experimental units, 308, 380
Explained deviation, 439–440
Explained variation, 361, 440
Exploratory data analysis (EDA), 29–33

box plots, 31–33
stem-and-leaf displays, 30–31

EXPONDIST function, 134
Exponential distribution, 130–133

common examples of, 130–131
remarkable property of, 131
template for, 131–132, 134

Exponential model, 524
Exponential smoothing methods, 577–582

model for, 579
template for, 581–582
weighting factor (w), 578–580

Extended Bayes’ Theorem, 77
Extra sum of squares, 543
Extrapolation, 498

F
F distribution, 330–333, 351, 444

degrees of freedom of the denominator,
330, 351

degrees of freedom of the numerator, 
330, 351

equality of two population variances,
333–334

templates for, 336–337
F ratio, two-way ANOVA, 384
F statistic, 363–364
F test, 314, 340

multiple regression model, 473–476
partial F tests, 542–544
of regression model, 443–444, 448

Factor, 378

Factorial, 70, 81
Fair games, 103
Fairley, W., 257n
Farley, Amy, 99n
Farzad, R., 43n
Fass, Allison, 234n, 288n
Feller, W., 70, 198, 626
Ferry, John, 29n, 69n
Fialka, John J., 251n
50th percentile, 9
Final outcomes, 704
Firm Leverage and Shareholder Rights

(case), 466–467
First quartile, 9
Fisher, Anne, 252n
Fisher, Sir Ronald A., 330, 349
Fixed-effects vs. random-effects models, 379
Flight simulators, 30
Fong, Eric A., 465n
Forbes, Malcolm, 3
Forbes, Steve, 701n
Forecasting

Excel/MINITAB in, 588–591
exponential smoothing methods, 577–582
index numbers, 582–587
multiplicative series, 576–577
ratio-to-moving-average method, 569–576
seasonality and cyclical behavior, 566–569
trend analysis, 561–564

Forward selection, 545
Frame, 8, 186
Frequency, 20
Frequency distribution, 183
Frequency polygon, 25–27
Frequentist approach, 687
Friedman test, 396, 645

data layout for, 653
null and alternative hypotheses of, 653
template, 655–656
test statistic, 654

Fulcrum, 11
Full model (F test), 542–543

G
Gagnepain, Philippe, 582n
Galilei, Galileo, 52
Galton, Sir Francis, 409
Gambling models, 52
Ganguly, Ananda, 393n
Garbaix, Xavier, 481n
Gauss, Carl Friedrich, 148
Gauss-Markov theorem, 415
Gaussian distribution, 148
Generalized least squares (GLS), 541
Geometric distribution, 120–121

formulas for, 120
template for, 121

Geometric progression, 120
Gleason, Kimberly C., 466n, 491n

GLS (Generalized least squares), 541
Goal seek command, 116, 123, 166
Goldstein, Matthew, 639n
Gomez, Paulo, 565n
Good, I. J., 51
Goodness-of-fit test, 662

for multinomial distribution, 663–664
Goodstein, Laurie, 6n
Gossett, W. D., 229
Grand mean, 355, 359, 378, 383, 599
Graphs; see Methods of displaying data
Gray, Patricia B., 253n
Green, Heather, 239n
Grouped data, 20–22
Grover, Ronald, 225n
Gruley, Bryan, 144n

H
Hall, Kenji, 238n
Hammand, S., 26
Hansell, Saul, 288n
Hardesty, David M., 377n
Harris, Elizabeth, 201n, 280n
Harris, Marlys, 280n, 285n
HDP (highest-posterior-density), 698
Hellmich, Nancy, 69n
Helm, Burt, 87n, 189n, 679n
Herbold, Joshua, 393n
Heteroscedasticity, 446, 494, 502, 527
Highest-posterior-density (HPD), 698
Hinges (of box plot), 31–32
Histogram, 20–22, 25, 36–37, 126–127, 449
Holson, Laura M., 309n
Homogeneity, tests of, 675
Hovanesian, Marader, 44n
HSD (honestly significant differences) test, 373
Huddleston, Patricia, 465n
Hui, Jerome Kueh Swee, 403n
Hypergeometric distribution, 121–124

formulas for, 122–123
problem solving with template, 

123–124, 134
schematic for, 122

HYPGEOMDIST function, 134
Hypothesis, 257
Hypothesis testing, 257–300, 303

alternative hypothesis, 257–258, 353–354
ANOVA, 350–354
association between two variables, 658
B and power of test, 264
common types of, 272
computing B, 269
concepts of, 260–265
confidence level, 263–264
evidence gathering, 260
Excel/MINITAB for, 298–300
for independence, 670
individual regression slope parameters, 484
Kruskal-Wallis test, 646
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left-tailed test, 267–270
linear relationship between X and Y, 435
median test, 677
null hypothesis, 257–258, 353–354
one-tailed and two-tailed tests, 267–269
operating characteristic (OC) curve,

292–293
optimal significance level, 263–264
p-value, 261–262, 273
p-value computation, 265–267
paired-observations two-sample test, 639
population means, 272–273, 289–290
population proportions, 276–278, 294–295
population variance, 278–279
power curve, 291–292, 296
power of the test, 264
pretest decisions, 289–296
regression relationship, 434–438, 474
required sample size (manual calculation),

290–291, 295
right-tailed test, 268, 271
sample size, 264–265, 295
significance level, 262–263
t tables, 273
templates, 274–275
test statistic, 272
two-tailed test, 267, 269, 271
two-way ANOVA, 382–383, 386
type I/II errors, 260–261, 263–264

I
Ihlwan, Moon, 238n
Independence of events, 66–68, 669; 

see also Contingency table analysis
conditions for, 66
product rules for, 66–68

Independent events, 68
Independent variable, 409
Index, 582
Index numbers, 582–587

changing base period of index, 584
Consumer Price Index (CPI), 561, 583,

585–587
as deflators, 585
template, 587

Indicator variable, 503–504, 506
Indifference, 727
Inferential statistics, 52, 181
Influential observation, 498
Information, 3

expected net gain from sampling, 730
expected value of perfect information

(EVPI), 728
qualitative vs. quantitative, 3
value of, 728–731

Initial run, 604
Inner fence, 32
Interaction effects, 381–382, 510
Interarrival time, 131

Intercept, 418, 420
Interquartile range (IQR), 9, 14–15, 32
Intersection, 53–54
Intersection rule, 67
Interval estimate, 184
Interval scale, 4
Intrinsically linear models, 521
Introduction to Probability Theory and Its

Applications (Feller), 626
Inverse transformation, 157, 162–165
Irregular components models, 591

J
Jiraporn, Pornsit, 466n, 491n
Jo, Hoje, 492n
Job Applications (case), 89
Johar, Gita Venkataramani, 391n
Johnson, George, 687, 687n
Johnston, J., 535n
Joint confidence intervals, 427
Joint density, 695
Joint hypothesis, 350
Joint probability, 59
Joint probability table, 79–80
Joint test, 350
Joos, Philip, 465n
Josephy, N. H., 88n
Juran, J. M., 601

K
k-variable multiple regression model,

469–473
Kacperczyk, Marcin, 371n
Kang, Jun-Koo, 674n
Kendall’s tau, 659
Keynes, John Maynard, 3
Kim, Yongtae, 492n
Kimball’s inequality, 388
King, Tao-Hsien Dolly, 512n
Kirkland, R., 29n
Knapp, Volker, 235n, 283n
Knox, Noelle, 343n
Kondratieff definition, 621
Kramarz, Francis, 493n
Kranhold, Kathryn, 251n
Krishnamurthy, Arvind, 481n
Kroll, Lovisa, 234n, 288n
Kruskal-Wallis test, 351, 378, 645–651

further analysis, 650–651
template for, 648–649
test statistic, 646

Kurtosis, 22–23
Kwon, Young Sun, 371n

L
Lack of fit, 498–499
Lamey, Lien, 414n

Large sample confidence intervals for
population proportion, 324

Large-sample properties, 628
Lav, Kong Cheen, 555n
Law of total probability, 73–75
LCL (lower control limit), 599, 606,

608–609, 612, 614
Least-squares estimates, 471–472, 497
Lee, Alan J., 514n
Lee, Hyun-Joo, 465n
Lee, Louise, 679n
Lee, Yeonho, 565n
Left-skewed distribution, 22
Left-tailed test, 267–270, 622
Lehman, Paula, 679n
Leptokurtic distribution, 23
Lerner, Josh, 555n
Lettav, Martin, 465n
Level of significance, 262–264
Li, Peter Ping, 713n
Likelihood function, 688–689
Linear composite, 107–110

expected value of, 107
LINEST function, 461–462, 550–551
Literary Digest presidential poll, 181–183
Lo, May Chiun, 403n
Location of observations, 10, 102
Logarithmic model, 525
Logarithmic transformation, 521–523, 528
Logistic function, 528–529
Logistic regression model, 528
Loss, 704
Loss function, 603
Lower control limit (LCL), 599, 606,

608–609, 612, 614
Lower quartile, 9

M
Malkiel, Burton G., 201n
Mann-Whitney U test, 314, 633–638

computational procedure, 634
MINITAB for, 637–638
null and alternative hypothesis for, 633
U statistic, 634

Manual recalculation, 502–503
Marcial, Gene G., 216n
Margin of error, 221
Marginal probabilities, 80
Marketing research, 6
Martin, Mitchell, 161n
Martinez, Valeria, 577n
Mauer, David, 512n
Mean, 10–13, 102

defined, 10
extreme observations and, 12
grand mean, 355
population mean, 11, 15, 183, 372
sample mean, 10, 191, 193, 355
standard deviation and, 24–25
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Mean square error (MSE), 362–363
multiple regression, 477–478
simple linear regression, 424

Mean square treatment (MSTR), 
362–363

Mean time between failures (MTBF), 130
Measurements, 4

scales of, 4
Measures of central tendency, 10–14

mean, 10–13
median, 9–13
mode, 10–13

Measures of variability, 14–19, 102
interquartile range, 9, 14–15
range, 15
standard deviation, 15
variance, 15

Median, 9–12
Median test, 677–678
Mehring, James, 323n
Method of least squares, 415
Methods of displaying data, 25–29

bar charts, 25
cautionary note to, 27–28
exploratory data analysis (EDA), 

29–33
frequency polygons, 25–27
histogram, 20–22, 25, 36–37
ogives, 25–27
pie charts, 25, 37
time plots, 28

Middle quartile, 9
MINITAB

ANOVA and, 400–402
comparison of two samples, 340–341
confidence interval estimation, 

249–250
for descriptive statistics/plots, 39–40
for factorial, combination, and

permutation, 81
in forecasting and time series, 589–591
Mann-Whitney test, 637
multicollinearity, 533
multiple regression, 551–554
nonparametric tests, 680–681
normal distribution, 172
one-sample hypothesis testing, 

299–300
for quality control, 616–617
regression analysis, 498
sampling distributions, 212–213
simple linear regression analysis, 

463–464
standard distributions, 134–135
stepwise regression, 547–548

Missing variables test, 446
Mode, 10–13, 22
Montgomery, D., 502n
Moskin, Julia, 43n
Mosteller, F., 257n

Mound-shaped distribution, 24
Moving average, 569
MSE; see Mean square error (MSE)
MSTR (mean square treatment), 362–363
MTBF (mean time between failures), 130
Mukhopadhyay, Anirban, 391n
Multicollinearity, 483–484, 531–537

causes of, 515, 532–533
detecting existence of, 533–536
effects of, 536
solutions to problem, 537

Multicollinearity set, 532
Multicurrency Decision (case), 177–178
Multifactor ANOVA models, 378–379
Multinomial distribution, 662

goodness-of-fit test for, 663
Multiple coefficient of determination (R2), 478
Multiple correlation coefficient, 478
Multiple regression, 409, 469–554

adjusted multiple coefficient of
determination, 479

ANOVA table for, 475, 480
assumptions for model, 469
cross-product terms, 517–519
decomposition of total deviation, 474
dependent indicator variable and, 

528–529
Durbin-Watson test, 539–541
estimated regression relationship, 

472–473
F test, 473–476
how good is the regression, 477–480
influential observation, 498
k-variable model, 469–473
lack of fit and other problems, 

498–499
least-squares regression surface, 472
LINEST function for, 550–551
mean square error (MSE), 477
measures of performance of, 480
MINITAB and, 551–552
multicollinearity, 483–484, 531–537
multiple coefficient of determination 

R2, 478–479
multiple correlation coefficient, 478
nonlinear models and transformations,

521–529
normal equations, two independent

variables, 470
normal probability plot, 496
other variables, 517–519
outliers and influential observations,

496–498
partial F test, 542–544
polynomial regression, 513–519
prediction and, 500–503
qualitative independent variables, 

503–511
qualitative/quantitative variables

interactions, 510–511

residual autocorrelation, 539–541
residual plots, 494
significance of individual regression

parameters, 482–491
Solver, 548–551
standard error of estimate, 478
standardized residuals, 494–497
template for, 472, 487, 490, 496, 

502, 516
validity of model, 494–499
variable selection methods, 545–547

Multiplicative model, 521, 568
Multiplicative series, forecast of, 576–577
Multistage cluster sampling, 188
Murphy, Dean E., 51n
Mutually exclusive events, 59, 68–69
Mutually independent, 107

N
N factorial (n!), 70
NASDAQ Volatility (case), 48
Negative binomial distribution, 118–120

problem solving with template, 
119–120, 134

Negative correlation, 430
Negative skewness, 22
NEGBINOMDIST function, 134
Nelson, Lloyd S., 605n, 619n
Nelson, Melissa, 652n
Net regression coefficients, 471
New Drug Development (case), 736–737
Newquiest, Scott C., 577n
Newton, Sir Isaac, 595
Nine Nations of North America (case),

684–685
95% confidence interval, 221–223
Nominal scale, 4
Noninformative, 687
Nonlinear models, 513, 521–529
Nonparametric tests, 314, 621–682

chi-square test, 661–662
chi-square test for equality of proportions,

675–677
contingency table analysis, 669–673
defined, 621
Friedman test, 653–656
Kruskal-Wallis test, 351, 645–651
Mann-Whitney U test, 633–638
median test, 677–678
MINITAB for, 680–681
paired-observations two-sample test,

639–640
runs test, 626–629
sign test, 621–625
Spearman rank correlation coefficient,

657–660
summary of, 682
Wald-Wolfowitz test, 630–631
Wilcoxon signed-rank test, 639–643
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Nonresponse, 188–189
Nonresponse bias, 5–6, 181
Normal approximation of binomial

distributions, 169–170
template, 171–172

Normal distribution, 147–172; see also
Standard normal distribution

absolute kurtosis of, 23
Excel functions for, 171–172
inverse transformation, 162–165
MINITAB for, 172
normal approximation of binomial

distributions, 169–170
probability density function, 147
properties of, 148–150
sampling and, 192, 198
standard normal distribution, 

151–155
template for, 166–169
testing population proportions, 276
transformation of normal random

variables, 156–160
Normal equations, 417
Normal prior distribution, 701–702
Normal probability model, 696, 702
Normal probability plot, 448–450, 496
Normal random variables

inverse transformation, 162–165
inverse transformation of Z to X, 157
obtaining values, given 

a probability, 165
transformation of X to Z, 156, 160
transformation of, 156–160
using the normal transformation, 157

Normal sampling distribution, 
192–193

NORMDIST function, 171
NORMSINV function, 249
Null hypothesis, 257, 353–354

Chi-square test for equality 
of proportions, 675

of Friedman test, 653
Mann-Whitney U test, 633
multinomial distribution, 663

O
Objective probability, 52
OC (Operating characteristic curve), 292
Odds, 58
Ogives, 25–27
1 standard deviation, 24
One-factor ANOVA model, 378

Excel/MINITAB for, 398, 401
multifactor models vs., 378–379

One-tailed test, 267–268
One-variable polynomial regression 

model, 514
Operating characteristic curve (OC curve),

292–293

Optimal decision, 733
Optimal sample size, 301
Optimal value, 602
Ordinal scale, 4
Ordinary least squares (OLS) estimation

method, 494
Out of control process, 599
Outcomes, 54
Outer fence, 32
Outliers, 12, 33, 496–498

P
p chart, 611–612

template for, 612–613
p-value, 261–262, 273, 319, 321

computation of, 265–267
definition of, 262
test statistic, 266

Paired-observation comparisons, 
304–308

advantage of, 304
confidence intervals, 307–308
Excel for, 338–340
template for, 306–308
test statistic for, 305

Paired-observation t test, 304–306
Paired-observations two-sample 

test, 639
Palmeri, Christopher, 344n
Parameters, 184, 682
Pareto diagrams, 601

template for, 603
Park, Myung Seok, 492n
Parsimonious model, 410
Partial F statistic, 543
Partial F tests, 542–544
Partition, 73–74
Pascal, Blaise, 52
Passy, Charles, 253n
Payoff, 704, 716
Payoff table/matrix, 706–709
Pearson product-moment correlation

coefficient, 430, 658
Peck, F., 502n
Peecher, Mark E., 393n
People v. Collins, 257
Percentile, 8–9, 36
Percentile rank computation, 36
Pereira, Pedro, 582n
Permutations, 71, 81
Personal probability, 53
Peters, Ruth, 144n
Phav, Ian, 555n
Pie chart, 25, 37
Pissaeides, Christopher A., 476n
Pizzas “R” Us (case), 735
Platykurtic distribution, 23
Point estimate, 184
Point predictions, 454–455

Poisson distribution, 124–126, 614
formulas for, 124–125
problem solving with template, 

125–126, 134
Poisson formula, 124–125
POISSON function, 134
Polynomial regression, 513–519
Pooling, 676
Population, 5, 181, 191, 349

defined, 5, 183
sampling from the, 5, 67, 181

Population correlation coefficient, 
429–430

Population intercept, 411
Population mean, 11, 15, 183

cases not covered by Z or t, 314
confidence interval, 372
confidence interval (known standard

deviation), 220–225
difference using independent random

samples, 316
hypothesis tests of, 272, 289–290
population mean differences, 316
templates, 245, 275, 291
test statistic is t, 272, 313–314
test statistic is Z, 272, 311–312

Population parameter, 183–184
comparison of; see Comparison of 

two populations
point estimate of, 184
sample statistics as estimators of, 

182–186
Population proportion, 184

binomial distribution/normal 
distribution, 277

confidence intervals, 327
hypothesis test of, 276–278, 294
large-sample confidence intervals, 

235–227
large-sample test, two population

proportions, 324
manual calculation of sample size, 295
template for, 237, 294, 296, 328
test statistic for, 325

Population regression line, 413
Population simple linear regression 

model, 412
Population slope, 411
Population standard deviation, 16, 198
Population variance, 15

confidence intervals for, 239–241
F distribution and, 330–337
hypothesis test of, 278
statistical test for equality of, 333–336
template for, 242, 278

Positive skewness, 22
Posterior density, 696
Posterior (postsampling) information, 687
Posterior probability, 76, 688
Posterior probability distribution, 689
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Power curve, 291–292, 296
Power of the test, 264
Prediction, 457

multiple regression and, 500–503
point predictions, 454–455
prediction intervals, 455–457, 501
simple linear regression, 454–457
of a variable, 411

Prediction intervals, 455–457, 501
Predictive probabilities, 717
Presidential Polling (case), 254–255
Pretest decisions, 289–296
Prior information, 687
Prior probabilities, 76, 688, 716
Prior probability density, 695
Prior probability distribution, 689, 

698–699
Privacy Problem (case), 255
Probability, 51–84, 257

basic definitions for, 55–56
Bayes’ theorem, 75–79
classical probability, 52
combinatorial concepts, 70–72
computer use for, 80–82
conditional probability, 61–63
decision analysis, 704, 716–719
defined, 51, 57
independence of events, 66–68
interpretation of, 58
intersection rule, 67
joint probability, 59
joint probability table, 79–80
law of total probability, 73–75
marginal probabilities, 80
mutually exclusive events, 59
objective, 52
personal probability, 53
posterior probability, 76
prior probabilities, 76
probability of event A, 55
range of values, 57–58
relative-frequency probability, 52
rule of complements, 58
rule of unions, 58–59
rules for, 57–59
standard normal distribution, 

151–153
subjective, 52
unequal/multinomial probabilities,

664–665
union rule, 67

Probability bar chart, 92–93
Probability density function, 

127–128, 147
Probability distribution, 91, 94–95, 190; 

see also Normal distribution
cumulative distribution function, 

96–98
discrete random variable, 96
mean as center of mass of, 103

Probability theory, 51–52
Process capability, 598
Process capability index, 176
Product rules, 66
Product rules for independent events, 

67–68
P th percentile, 8

Q
Qualitative independent variables, 

503–511
Qualitative information, 3
Qualitative variable, 4, 503

defined, 4
quantitative variable interactions, 

510–511
Quality control, 595
Quality control and improvement, 

595–617
acceptance sampling, 602
analysis of variance, 602
c chart, 614–615
control charts, 598–601
Deming’s 14 points, 597–598
experimental design, 602
history of, 596
p chart, 611–613
Pareto diagrams, 601, 603
process capability, 598
R chart, 608
s chart, 608–610
Six Sigma, 602
statistics and quality, 596–597
Taguchi methods, 602–603
x-bar chart, 604–607
x chart, 615

Quality Control and Improvement
at Nashua Corporation (case), 
618–619

Quantitative information, 3
Quantitative variable, 4, 503, 507

defined, 4
qualitative variable interactions, 

510–511
Quartiles, 8–9

R
R chart, 608–610
Ramayah, T., 403n
Ramsey, Frank, 52n
Random-effects model, 379
Random Number Generation 

(Excel), 211
Random number table, 186–187
Random sample, 5, 181, 311

Excel and, 211
obtaining a, 186–187
single random sample, 5

Random sampling, 67
Random variables, 91–94, 186

Bayesian statistics, 689
Bernoulli random variable, 112
binomial random variable, 93, 

113–114
Chebyshev’s theorem, 108–109
Chi-square random variable, 331
continuous, 95–96, 126–128
cumulative distribution function, 

96–98, 128
defined, 91–92
discrete random variable, 95–96
expected values of, 102–107
exponential distribution, 130–133
geometric distribution, 120–121
hypergeometric distribution, 

121–124
linear composites of random 

variables, 107–108
negative binomial distribution, 

118–120
Poisson distribution, 124–126
standard deviation of, 106
sum and linear composites of, 

107–110
templates for, 109–110
uniform distribution, 129–130
variance of, 104–106

Randomize/randomization, 6
Randomized complete block design, 379,

393–395
repeated-measures design, 393
template for, 396–397

Range, 15
Range of values, 57–58
Rank sum test, 633
Rating Wines (case), 406
Ratio scale, 4
Ratio to moving average, 570
Ratio-to-moving-average method, 

569–576
deseasonalizing data, 572–573
quarterly/monthly data, 571
template for, 574
Trend � Season forecasting, 

574–576
Reciprocal model, 527–528
Reciprocal transformation, 528
Reduced model (F test), 543
Regnier, Pat, 735n
Regression, 409
Regression analysis; see Multiple

regression; Simple linear 
regression

Regression deviation, 439
Regression line, 415, 424
Relative frequency, 21
Relative-frequency polygon, 26
Relative-frequency probability, 52
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Relative kurtosis, 23
Repeated-measures design, 380, 395
Residual analysis, 445–450
Residual autocorrelation, 539–541
Residual plots, 494
Residuals, 378, 411

histogram of, 449
standardized residuals, 494–497

Response surface, 469
Restricted randomization, 393
Return on Capital for Four Different

Sectors (cases), 555–558
Reward, 704
Rhee, Youngseop, 565n
Richtel, Matt, 142n
Ridge regression, 537
Right-skewed distribution, 22–23
Right-tailed test, 268, 271, 622
Rises, Jens, 569n
Risk, 18
Risk-aversion, 726
Risk-neutral, 726
Risk and Return (case), 467
Risk taker, 726
Roberts, Dexter, 166
Rose, Stuart, 695n
Rule of complements, 58
Rule of unions, 58–59
Run, 627
Runs test, 626–631

large-sample properties, 628–629
test statistic, 628
two-tailed hypothesis test, 628
Wald-Wolfwitz test, 630–631

Ryan, Patricia A., 481n
Ryan, T. P., 614n

S
s chart, 608–610
Sample, 5

small vs. large samples, 194, 232
Sample correlation coefficient, 

430–431
Sample mean, 10, 191, 193, 355, 378

expected value of, 192
standard deviation of, 192
standardized sampling distribution

of, 198
Sample proportion, 184–185, 198
Sample-size determination, 

243–245, 248
hypothesis test, 264–265, 294
manual calculation of, 290–291, 295
template for, 290

Sample space, 54–55, 92
Sample standard deviation, 16
Sample statistic, 184

as estimator of population parameters,
183–186

Sample variance, 15, 17, 205
Sampling analysis tool (Excel), 210
Sampling distribution, 183, 190–200

defined, 190
MINITAB for generating, 212–213
normal sampling distribution, 

192–193
sample proportion and, 198
template for, 209–210

Sampling error, 221
Sampling from the population, 5, 181
Sampling methods, 187–189

cluster sampling, 188
multistage cluster sampling, 188
other methods, 187–188
single-stage cluster sampling, 188
stratified sampling, 187
systematic sampling, 188
two-stage cluster sampling, 188

Sampling with replacement, 114
Sampling and sampling distributions,

181–213
central limit theorem, 194–198
degrees of freedom, 205–207
estimators and their properties, 

201–204
expected net gain from, 730
Literary Digest sampling error, 181–183
nonresponse, 188–189
obtaining a random sample, 186–187
as population parameters estimators,

183–186
small vs. large samples, 194
standardized sampling distribution of

sample mean, 198
template, 209–213
uses of, 182
with/without replacement, 114

Sarvary, Miklos, 377n, 481n, 555n
Scales of measurement, 4

interval scale, 4
nominal scale, 4
ordinal scale, 4
ratio scale, 4

Scatter plots, 38–39, 409
Schank, Thorsten, 438n
Schatz, Ronald, 577n
Scheffé method, 376
Schnabel, Claus, 438n
Schoar, Antoinette, 519n, 555n
Schoenfeld, Bruce, 235n
Schwartz, Nelson D., 282n
Sciolino, Elaine, 70n
Seasonal variation, 566
Seasonality, 566–569

multiplicative model, 568
regression model with dummy variables

for, 568
Seber, George A. F., 514n
Seitz, Thomas, 569n

Semi-infinite intervals, 151
Set, 53
75th percentile, 9
Shah, Jagar, 238n
Shakespeare, Catherine, 443n
Shewhart, Walter, 598
Shrum, J. L., 370n
Sialm, Clemens, 371n
Sigma squared, 15
Sign test, 621–625

possible hypotheses for, 622
template for, 623
test statistic, 623

Significance level, 262–264
Sikora, Martin, 651n
Silverman, Rachel Emma, 238n
Simple exponential smoothing, 577
Simple index number, 583
Simple linear regression, 409, 411–414

analysis-of-variance table, 443–444
coefficient of determination, 439
conditional mean of Y, 412
confidence intervals for regression

parameters, 426–428
correlation, 429–433
curvilinear relationship between Y and X,

413, 447–448
distributional assumptions of errors, 413
error variance, 424–428
estimation: method of least squares,

414–422
Excel Solver for, 458–460, 463
F test of, 443–444
goodness of fit, 438–442
heteroscedasticity, 446
how good is the regression, 438–442
hypothesis tests about, 434–437
linear relationship between X and Y, 435
mean square error (MSE), 424–425
MINITAB for, 463–464
missing variables test, 446
model assumptions, 412
model building, 410–411
model inadequacies, 445–450
model parameters, 412
normal equations, 417
normal probability plot, 448–450
population regression line, 413
population simple linear regression 

model, 412
residual analysis, 445–450
slope and intercept, 418, 427
Solver method for, 458–460
standard error of estimate, 424–428
steps in, 411
sum of squares for error (SSE), 

415–417, 425
t test, 435, 444
template for, 421–422
use for prediction, 454–457
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Single mode, 702
Single random sample, 5
Single-stage cluster sampling, 188
Single variable, 583
Six Sigma, 602
Skedevold, Gretchen, 565n
Skewness, 22–23, 33, 702
Slope, 418, 420, 435
Smith, Bill, 602
Smith, Craig S., 322n
Soliman, Mark T., 443n
Solver Macro, 247

multiple regression and, 548–545
regression, 458–460

Sorkin, Andrew Ross, 142n
Spearman rank correlation coefficient,

657–660
hypothesis test for association, 659
large-sample test statistic for 

association, 658
template for, 659–660

Spread, 102
Standard deviation, 15, 102

defined, 16
mean and, 24–25
population standard deviation, 

16, 198
of random variable, 106
of sample mean, 192
sample standard deviation, 16

Standard error, 192, 198
Standard error of estimate, 

425–426
Standard normal distribution, 

151–155
finding probabilities of, 151–153
finding values of Z given a probability,

153–155
importance of, 156
table area, 151

Standard normal probabilities 
(table), 152

Standard normal random variable Z, 151
Standard normal test statistic, 628
State of nature, 706
Statista, 3
Statistic, 184
Statistical analysis, information from, 3
Statistical control, 600
Statistical inference, 5–6, 28, 

182–183, 658
business applications of, 6–7

Statistical model, 378
checking for inadequacies in, 445
for control of a variable, 411
as parsimonious, 410
for prediction of a variable, 411
steps in building, 411
to explain variable relationships, 411

Statistical process control (SPC), 599
Statistical test for randomness, 627
Statistics

derivation of word, 3
quality and, 596–603
as science of inference, 5–6, 28, 181
use of, 6–7, 147, 181, 219, 257, 303, 349,

409, 595
Stellin, Susan, 227n
Stem-and-leaf displays, 30–31
Stepwise regression, 546–547
Stigler, S., 595n
Stokes, Martha, 621n
Stone, Brad, 60n, 287n
Story, Louise, 342n
Straight-line relationship, 409
Strata, 187
Stratified sampling, 187
Studentized range distribution, 373
Student’s distribution/Student’s t

distribution, 228, 249
Subjective probabilities, 52, 688

evaluation of, 701–702
normal prior distribution, 701–702

Subsets, 53
Sufficiency, 203
Sum-of-squares principle, 358–362
Sum-of-squares total (SST), 360–362,

383–384
Sum of squares for error (SSE), 

360–362, 384
Sum of squares for error (SSE)

(in regression), 416–417, 425, 
440–441, 475

Sum of squares for regression (SSR),
440–441, 475

Sum of squares for treatment (SSTR),
360–362, 384

Surveys, 6
Symmetric data set/population, 13
Symmetric distribution, 22–23, 702

with two modes, 22–23
Systematic component, 411
Systematic sampling, 188

T
t distribution, 228–233, 305, 314
t table, 273
t test statistic, 272–273, 313–314, 

319–320, 340
Table area, 151–152
Taguchi, Genichi, 602
Taguchi methods, 602
Tahmincioglu, Eva, 189n
Tails of the distribution, 151
Tallying principle, 30
Tang, Huarong, 443n
TDIST function, 298

Templates, 36
bar charts, 38
Bayesian revision-binomial probabilities,

692–693
Bayesian revision-normal mean, 699
binomial distribution, 169–170
binomial probabilities, 115–116
box plot, 38
c chart, 615
chi-square tests, 664, 668, 673
confidence intervals, 225–226
control chart, 610, 612–613, 615
for data (basic statistics), 36
decision analysis, 731–733
exponential distribution, 131–132
exponential smoothing, 581–582
F-distribution, 336
Friedman test, 655–656
geometric distribution, 121
half-width, determining optimal, 

245–246
histograms and related charts, 36–37
hypergeometric distribution, 123–124
hypothesis testing, population means,

274–275, 290–293
hypothesis testing, population proportion,

277, 294, 296
index numbers, 587
Kruskal-Wallis test, 648–649
manual recalculation, 502–503
minimum sample size, 248
multiple regression, 472, 487, 490, 496,

502, 518, 544
negative binomial distribution, 

119–120
normal approximation of binomial

distribution, 169–170
normal distribution, 166–169
operating characteristic (OC) curves,

292–293
optimal half-width, 245–247
paired-observation comparisons, 

306–308
Pareto diagrams, 603
partial F test, 544
percentile/percentile rank 

computation, 36
pie chart, 37
Poisson distribution, 125–126
population mean differences, 312, 314
population mean estimates, 

optimizing of, 245
population proportion, 237, 277
population proportion estimates,

optimizing of, 247
population variances, 242, 278–279
power curve, 292, 296
problem solving with, 167–169
random variables, 109–110
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randomized block design ANOVA,
396–397

residuals, histogram of, 449
runs test, 629–630
sample size, 290, 294
sampling distribution of sample 

mean, 209
sampling distribution of sample

proportion, 210
scatter plot, 38
sign test, 623
simple regression, 421–422, 459
single-factor ANOVA, 377
Solver, 247, 459
Spearman’s rank correlation coefficient,

659–660
t-distribution, 229
t test difference in means, 319–320
testing population mean, 291
time plot, 38
Trend � Season forecasting, 574–576
trend analysis, 563–564
Tukey method, 376
two-way ANOVA, 388
uniform distribution, 130
Wilcoxon signed-rank test, 643
x-bar chart, 606–607
Z-test, 312

Test statistic
ANOVA, 351–354, 364
association, large-sample test, 658
chi-square test for independence, 670
Durbin-Watson test, 540
Friedman test, 654
hypothesis test, 266, 272, 276
individual regression slope 

parameters, 485
Kruskal-Wallis test, 646
linear relationship between X and Y, 435
Mann-Whitney U test, 634
paired-observation t test, 305
population proportions, 325
runs test, 628
sign test, 623
test statistic is t, 272, 313–314
test statistic is Z, 272, 311–312
Tukey pairwise-comparison, 375
two normally distributed populations/

equality of variances, 332
two population means/independent

random samples, 310–316
Tests of homogeneity, 675
Theory of probability, 51–52
Thesis, 257
Thesmar, David, 519n
Third quartile, 9
“30 rule” (sample size), 194
Thornton, Emily, 285n
3 standard deviations, 24

Three-factor ANOVA, 379, 389–390
Time plots, 29–30, 38
Time series

Excel/MINITAB in, 588–591
exponential smoothing methods, 588–582

TINV function, 249
Tiresome Tires I (case), 301
Tiresome Tires II (case), 346
Tolerance limits, 595, 599
Tosi, Henry L., 465n
Total deviation of a data point, 369, 439
Total quality management (TQM), 597
Total sum of squares (SST), 440, 475
Transformation of normal random variables,

156–157
of X to Z, 156
inverse transformation of Z to X, 157
summary of, 160
use of, 157–160

Transformations of data, 514, 521
logarithmic transformation, 521–527
to linearize the logistic function, 529
variance-stabilizing transformations,

527–528
Treatment deviation, 357, 359
Treatments, 349
Tree diagram, 71, 79
Trend, 561
Trend analysis, 561–564

curved trends, 562
template for, 563–564
trend � Season forecasting, 574–576

Trial of the Pyx, 595
Tse, Yinman, 577n
Tucker, M., 26
Tukey, John W., 29
Tukey pairwise-comparison test, 373–376

conducting the tests, 375
studentized range distribution, 373
template for, 376, 401
test statistic for, 375
Tukey criterion, 373
two-way ANOVA, 388–389
unequal sample sizes/alternative

procedures, 376
Turra, Melissa, 652n
25th percentile, 9
2 standard deviations, 162–163, 702
Two-stage cluster sampling, 188
Two-tailed tests, 267, 269, 271, 435,

622, 628
Two-way ANOVA, 380–391

extension to three factors, 389–391
F ratios and, 384–385
factor B main-effects test, 381
hypothesis tests in, 382–383
Kimball’s inequality, 388
model of, 381–382
one observation per cell, 389–391

overall significance level, 388
sums of squares, degrees of freedom, 

and mean squares, 383–384
template for, 388, 398–399, 402
test for AB interactions, 383
Tukey method for, 388–389
two-way ANOVA table, 384–385

Type I and Type II errors, 289, 310, 350
hypothesis testing, 260–261
instances of, 261
optimal significance level and, 263–264
significance level, 262

U
Unbalanced designs, 376
Unbiased estimator, 201
Uncertainty, 196
Uncorrelated variables, 435
Unexplained deviation (error), 439–440
Unexplained variation, 361, 440
Uniform distribution, 129–130

formulas, 129
problem solving with template, 130

Union, 53–54
rule of unions, 67

Union rule, 67
Universal set, 53
Universe, 5
Updegrave, Walter, 323n, 638n
Upper control limit (UCL), 599, 606,

608–609, 612, 614
Upper quartile, 9
Useen, Jerry, 45n
Utility, 725–728

method of assessing, 727
Utility function, 725–727, 731
Utility scale, 725

V
Value at risk, 132–133
Value of information, 728–731
Variability; see Measures of variability
Variable selection methods, 545–547

all possible regressions, 545
backward elimination, 545–546
forward selection, 545
stepwise regression, 546

Variance, 15, 102; see also Analysis of
variance (ANOVA)

defined, 15
of discrete random variable, 104–105
of linear composite, 108
of a linear function of a random variable,

106–107
population variance, 15
quality control, 599
sample variance, 15, 17, 205
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Variance inflation factor (VIF), 535
Variance-stabilizing transformations,

527–528
Vella, Matt, 734n
Venn diagram, 53–54
Vigneron, Olivier, 481n
Vining, G. G., 502n
Virtual reality, 30
Volatility, 18, 658n

W
Wachter, Jessica A., 465n
Wagner, Joachim, 438n
Wain, Daniel, 604n
Wald-Wolfowitz test, 630–631
Wallendorf, Melanie, 437n, 442n
Wang, Jeff, 437n, 442n
Weak test, 631, 678

Weighted average, 102
Weighted least squares (WLS), 494
Weighting factor, 578
Weintraub, Arlene, 281n
Weisberg, Sanford, 514n
Whiskers, 32
Wilcoxon rank sum test, 633
Wilcoxon signed-rank test, 639–643

decision rule, 640
large-sample version, 640
paired-observations two-sample test,

639–640
template for, 643
test for mean/median of single 

population, 642
Within-treatment deviation, 360
Wolff, Edward N., 422n
Wongsunwai, Wan, 555n
Wyer, Robrt S., Jr., 370n

X
x-bar chart, 604–607

template for, 606–607
x chart, 615
Xia, Yihong, 443n

Y
Yates correction, 672

Z
z distribution, 232, 315
z standard deviations, 163
Z test statistic, 272, 311–312
z value, 163
Zero skewness, 22
Zheng, Lu, 371n
ZTEST function, 298
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