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Econometric Modeling and Inference

The goal of this book is to present the main statistical tools of econometrics, focusing

specifically on modern econometric methodology. The authors unify the approach

by using a small number of estimation techniques, mainly generalized method of

moments (GMM) estimation and kernel smoothing. The choice of GMM is ex-

plained by its relevance in structural econometrics and its prominent position in

econometrics overall. The book is in four parts. Part I explains general methods.

Part II studies statistical models that are best suited for microeconomic data. Part III

deals with dynamic models that are designed for macroeconomic and financial ap-

plications. In Part IV the authors synthesize a set of problems that are specific to

statistical methods in structural econometrics, namely identification and overiden-

tification, simultaneity, and unobservability. Many theoretical examples illustrate

the discussion and can be treated as application exercises. Nobel Laureate James J.

Heckman offers a foreword to the work.

Jean-Pierre Florens is Professor of Mathematics at the University of Toulouse I,

where he holds the Chair in Statistics and Econometrics and a senior member of the

Institut Universitaire de France. He is also a member of the IDEI and GREMAQ

research groups. Professor Florens’ research interests include statistics and econo-

metrics methods, applied econometrics, and applied statistics. He is coauthor of

Elements of Bayesian Statistics with Michel Mouchart and Jean-Marie Rolin (1990).

The editor or co-editor of several econometrics and statistics books, he has also

published numerous articles in major econometric journals, such as Econometrica,
Journal of Econometrics, and Econometric Theory.

Vêlayoudom Marimoutou is Professor of Economics at the University of Aix-

Marseille 2 and a member of GREQAM. His research fields include time series

analysis, non-stationary processes, long-range dependence, and applied economet-

rics of exchange rates, finance, macroeconometrics, convergence, and international

trade. His articles have appeared in publications such as the Journal of International
Money and Finance, Oxford Bulletin of Economics and Statistics, and the Journal
of Applied Probability.

Anne Péguin-Feissolle is Research Director of the National Center of Scientific Re-

search (CNRS) and a member of GREQAM. She conducts research on economet-

ric modeling, especially nonlinear econometrics, applications to macroeconomics,

finance, spatial economics, artificial neural network modeling, and long memory

problems. Doctor Peguin-Feissolle’s published research has appeared in Economics
Letters, Economic Modelling, European Economic Review, Applied Economics,

and the Annales d’Economie et de Statistique, among other publications.
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Foreword

Jean-Pierre Florens, Vêlayoudom Marimoutou, and Anne Péguin-Feissolle have
done economics a great service by writing this basic contribution to the teaching
of econometrics. Econometrics is a major research tool for empirical economics.
It unites economics with statistics and extends statistical methods to apply to
economic problems and economic data.

Many introductory econometrics textbooks for graduate students have a cook-
book quality. They summarize existing knowledge useful for particular prob-
lems without laying the foundations for extending existing knowledge. Rules
are given without reasons and general principles. Readers who do not know the
basic principles have trouble adapting existing knowledge to fit their application.

This book provides an introduction to current econometric knowledge that
focuses on teaching the reader foundational statistical principles. It exposits the
basic statistical principles underlying modern econometrics. This keeps alive
and rejuvenates the tradition of Haavelmo (1944), who, in his Nobel Prize–
winning contribution, first synthesized economic statistics with rigorous prob-
ability theory. It surveys a large array of econometric models and gives the reader
the foundations required to adapt and extend those models to fit their applica-
tions. This book is wide ranging in that it covers classical econometric methods
associated with linear regression and modern semiparametric cross-section and
time series methods. It provides the reader with a useful introduction to a power-
ful set of tools and a guide to where to go to read the more advanced literature on a
variety of topics useful in many fields of economics. Rigorous probability foun-
dations are given and problems of inference and estimation are also discussed.

Readers of this book, be they graduate students or professional economists,
will benefit from its depth and range. There is much value in learning modern
empirical methods unified by rigorous statistical principles.

James J. Heckman
Nobel Laureate in Economic Science
Chicago, USA
July 2004
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Preface

The objective of econometrics is to study economic phenomena using statistical
observations. Econometrics formalizes the economic theory in the form of
relationships (models) whose unknown elements are determined by the available
data. Econometrics quantifies and tests economic theories and makes those
theories operational through forecasting or simulation of the impact of political
or economic decisions.

Historically, econometricians studied first the macroeconomic relationships
between large aggregates that describe economic activity at the national level.
They then analyzed individual behaviors of consumers and producers. The do-
main of application later extended to finance, the study of developing countries,
education, game theory, and so on.

The aim of econometric research is to discover regular features within the
set of variables generated by mechanisms that involve economic components.
Hence, it is by nature an applied field, and an econometrics book should provide
reliable information on the values of the essential parameters of the economic
laws. Reaching this goal is difficult: social phenomena contain few universal
laws and each result is limited by the specific conditions in which the phe-
nomenon occurred. Thus, econometrics is essentially a means for the systematic
analysis of economic facts and may then be used for forecasting.

The econometric methodology rests on two elements: first, the economic
theory that allows us to select the variables, to define the relevant magnitudes to
estimate, and to limit the class of models that may be used; second, the statistical
techniques for estimating, testing, and forecasting.

The statistical methods used in econometrics have become more and more
diverse. Econometrics is built on the analysis of linear regression by the least
squares method, but it has developed a larger range of tools for its usage. Because
it poses specific questions, it has required original statistical developments.
Econometrics draws its specificity from the nature of economic data. On one
hand, it is essentially a nonexperimental field that analyzes facts that are unique,
nonreproducible, and where the observation conditions are not controlled

xix
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xx Preface

by the econometrician. It seeks to extract some stable relationships between
variables. On the other hand, econometrics adopts a structural approach based
on economic theory. The observed magnitudes are considered as the equilib-
rium values resulting from the interaction between several phenomena, and the
econometrician strives to recover from the observation of these equilibria the
elementary behavior that generated them. This approach poses an identification
problem and leads the econometrician to take an interest in parameters that are
not natural for a statistician but are relevant for economic theory. Another im-
portant characteristic of econometrics is the unobservability of some important
magnitudes (unobserved heterogeneity of individuals, hidden characteristics
of the business cycle), which, if not taken into account, induce a bias in the
estimation of the structural parameters.

The goal of this book is to present the main statistical tools of econometrics,
while focusing on the specificity of the econometric methodology.

Part I of the book explains general methods. Two chapters describe the basic
cross-sectional and dynamic models (Chapters 1 and 2), while the usual para-
metric statistics and tests are the subject of Chapters 3 and 4. The chosen point
of view now dominating in econometrics is that of the Generalized Method of
Moments (GMM), whereas maximum likelihood is considered only as a spe-
cial case of this method. The choice of GMM is explained by its relevance in
structural econometrics. Chapter 5 on nonparametric methods and Chapter 6
on simulation methods complete this statistical overview.

Parts II and III consider classes of models. Part II studies statistical models
that are best suited for microeconomic data and mainly focuses on the study
of the conditional expectation that is defined from a probabilistic point of view
in Chapter 7. Then, Chapters 8 and 9 examine the estimation by ordinary and
generalized least squares, respectively. Chapter 10 studies the nonparametric
regression and Chapter 11 considers the case of partially observed data from a
parametric and a nonparametric perspective.

Part III deals with dynamic models that are designed for macroeconomic and
financial applications. Chapter 12 examines univariate and multivariate station-
ary linear models and Chapter 13 covers nonstationarity and cointegration. This
part is completed by Chapter 14, on the models involving conditional hetero-
skedasticity, and Chapter 15, on nonlinear dynamic models including switching
regressions.

We tried the difficult exercise of synthesizing in the fourth part a set of prob-
lems specific to the statistical approach in structural econometrics. Thus, three
chapters deal with identification and overidentification (Chapter 16), simultane-
ity (Chapter 17), and unobservability (Chapter 18).

This quick overview shows that we have tried to reach the ambitious objec-
tive of covering almost all the econometric methodology. However, we tried
to unify the approach by choosing a small number of estimation techniques,
mainly GMM and kernel smoothing. This choice led us to sacrifice the Bayesian
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approach, sieves estimator, extreme values, efficiency frontiers, and other meth-
ods. Although the bootstrap is mentioned, its place is certainly insufficient in
regard to the importance of this method.

This book is not an applied econometrics book, as it contains no economic
or even numerical examples. In contrast, many theoretical examples illustrate
our discussion and can be considered as application exercises.

The three authors of this text have taught econometrics at the undergraduate
and graduate levels for many years, mainly at the French universities of Aix-
Marseille, Bordeaux, and Toulouse. Hence, their thanks go first to their students
who helped them improve the presentation of this book.

A special thought goes to Louis-André Gérard-Varet and to Jean-Jacques
Laffont, whose disappearances are still felt with much sorrow; these exceptional
personalities have deeply marked the authors in their scientific approach.

We are also particularly grateful to Marine Carrasco and Josef Perktold;
indeed, they not only translated this book into English but also, by their always
relevant remarks, largely contributed to correct its multiple errors and thus to
improve its quality and readability.

We thank P. C. B. Phillips and E. Ghysels, editors of this series, for encour-
aging the publication of this book.

In addition, this book owes a lot to our professors, coauthors, and friends,
who include F. Aprahamian, O. Armantier, S. Bazen, M. Boutahar, M. Carrasco,
C. Cazals, H. Chevrou, S. Darolles, R. Davidson, C. de Peretti, J. Drèze, F.
Droesbeke, P. Duchemin, G. Dufrenot, F. Fève, P. Fève, D. Fougère, É. Girardin,
C. Gouriéroux, J. Heckman, D. Hendry, M. Ivaldi, J. Johannes, X. Joutard, R.
Joyeux, T. Kamionka, A. Kurpiel, F. Laisney, S. Lardic, H.W. Lai Tong, S.
Larribeau, C. Levevre, M. Lubrano, S. Luchini, E. Malinvaud, S. Marcy, A.
Mathis, C. Maurel, C. Meghir, V. Mignon, M. Mouchart, C. Protopopescu,
J. P. Raoult, É. Renault, J. F. Richard, J. M. Rolin, T. Roncalli, S. Scotto, L.
Simar, A.F.M. Smith, T. Teräsvirta, N. Touzi, S. Van Bellegem, A. Vanhems, J.
Voranger, and P. Werquin.

Of course, it would be totally ungrateful not to thank here, for their per-
manent encouragement and their patient attention, those who might have re-
joiced the most at the completion of this book: Nicole, Clémentine, and Vincent
Florens (without forgetting Julien and Hélène); Cathy, Mathieu, Guilhem, and
Benoı̂t Marimoutou, and Denis, Adrien, and Grégoire Péguin. Finally, we thank
Frédéric Aprahamian, Pierre-Henri Bono, Marie-Hélène Dufour, and Denis
Péguin for their priceless help with typing and putting the French version of
this work into final form. We thank the Région Provence-Alpes-Côte d’Azur
for partly financing the translation of this book.



P1: OBM

CUFX117-FM CUFX117-Florens 0521876407 May 10, 2007 0:0

xxii



P1: OSO/OVY P2: OSO/OVY QC: OSO/OVY T1: OSO

Ecoeok CUFX117-Florens 0521876407 April 22, 2007 13:56

Part I

Statistical Methods

1
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1. Statistical Models

1.1 Introduction

In this chapter, we review the usual statistical terminology that introduces the
fundamental notions of sample, parameters, statistical model, and likelihood
function. Our presentation avoids all technical developments of probability
theory, which are not strictly necessary in this book. For example, σ-fields (or
σ-algebras) are not introduced, nor are measurability conditions. The mathe-
matical rigor of the exposition is necessarily weakened by this choice, but our
aim is to focus the interest of the reader on purely statistical concepts.

It is expected that the reader knows the usual concepts of probability as well
as the most common probability distributions and we refer to various reference
books on this theme in the bibliographic notes.

At the end of this chapter, we emphasize conditional models, whose impor-
tance is fundamental in econometrics, and we introduce important concepts
such as identification and exogeneity.

1.2 Sample, Parameters, and Sampling Probability Distributions

A statistical model is usually defined as a triplet consisting of a sample space,
a parametric space and a family of sampling probability distributions.

We denote by x the realization of a sample. It is always assumed that x is
equal to a finite sequence (xi )i=1,...,n where n is the sample size and xi is the
i th observation. We limit ourselves to the case where xi is a vector of m real
numbers (possibly integers) belonging to a subset X of R

m . Hence, the sample
space is Xn ⊂ R

mn. The index i of the observations may have various meanings:

� i may index a set of individuals (households, firms, areas. . . ) observed at a
given instant. These data are referred to as cross-sectional data.

� i may describe a set of periods. Then, the observations xi form a time series
(multidimensional if m > 1).

3
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4 Econometric Modeling and Inference

� i may belong to a more complex set and be, for instance, equal to a pair
(�, t) where � represents an individual and t an observation time. Then,
the observations xi = x�t are double indexed and are called panel data or
longitudinal data.

As the sample space Xn is always assumed to belong to R
nm , it is associated

with a Borel field, on which some probability will be defined.
The parameter space is denoted as � and an element of this space is usually

denoted θ . The parameters are unknown elements of the statistical problem, the
observations provide information about these elements. Two kinds of statistical
models can be defined depending on the dimension of �:

� If � ⊂ R
k where k is a finite integer, the statistical model is said to be

parametric or a model with vector parameters.
� If � is not finite dimensional but contains a function space, the model is

said to be nonparametric or a model with functional parameters. In some
examples, although � is infinite dimensional, there exists a function λ of θ

which is finite dimensional. Then, the model is called semiparametric.

In the following, a parameter will be an element of �, whether the dimension
of this space is finite or infinite.

The third building block of a statistical model is the family of sampling
probability distributions. They will be denoted Pθ

n and therefore, for all θ ∈ �,

Pθ
n is the probability distribution on the sample space Xn . If the model is

correctly specified, we assume that the available observations (x1, . . . , xn) are
generated by a random process described by one of the sampling probability
distributions.

We summarize these concepts in the following definition.

Definition 1.1 A statistical model Mn is defined by the triplet

Mn = {
Xn, �, Pθ

n

}
where Xn ⊂ R

nm is the sample space of dimension n, � is a parameter space
and Pθ

n is the family of sampling probability distributions. �

We use the notation

x |θ ∼ Pθ
n (1.1)

to summarize “x is distributed according to the distribution Pθ
n if the param-

eter value equals θ”. Equivalently, we say that x follows the distribution Pθ
n

conditionally on θ. Hence, we incorporate the dependence on a parameter in a
probabilistic conditioning (which would necessitate, to be rigorous, regularity
assumptions not examined here).
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Example 1.1 (Unidimensional normal model) Suppose that m = 1 and
x ∈ R

n. Here, the parameter vector is θ = (μ, σ 2) ∈ � = R × (0, +∞).
Moreover,

x |μ, σ 2 ∼ Nn

(
μ1n, σ

2 In

)
where 1n is a vector of R

n whose elements are all equal to 1 and In is the iden-
tity matrix of size n. The notation Nn represents the multidimensional normal
distribution of dimension n, but often we will drop the subscript n. �

Example 1.2 (Binomial model) Let m = 1 and x ∈ R
n with xi ∈ {0, 1} ⊂ R

for all i = 1, . . . , n. The parameter θ is now an element of � = [0, 1]. The
probability of a vector x given θ is then:

Pθ
n ({x}) =

n∏
i=1

θ xi (1 − θ )1−xi .

It follows from this expression that, if k = ∑n
i=1 xi ,

Pθ
n (k) = Ck

nθ k (1 − θ )n−k . �

The aim of statistical inference is essentially the acquisition of knowledge
on the distribution that generates the data or on the parameter θ that character-
izes this distribution. In order to relate these two notions, we suppose that the
statistical model is identified. This property is defined below.

Definition 1.2 The model Mn is identified if, for any pair of (vectorial or
functional) parameters θ1 and θ2 of �, the equality Pθ1

n = Pθ2
n implies θ1 = θ2.

In other words, the model is identified if the sampling probability distributions
define an injective mapping of the elements of �. �

We will spend more time on this concept in the sequel, in particular in Chap-
ter 16. Examples 1.1 and 1.2 define two identified models. The following model
illustrates the lack of identification.

Example 1.3 Suppose m = 1 and x ∈ R
n with θ = (α, β) ∈ R

2 = �. The
sampling probability distributions satisfy

x |θ ∼ Nn ((α + β) 1n, In) .

The model is not identified because θ1 = (α1, β1) and θ2 = (α2, β2) define the
same distribution as long as α1 + β1 = α2 + β2, which does not imply θ1 = θ2.

�

Given a realization x of a sample of size n, the econometrician will try to
estimate θ , that is, to associate with x a value θ̂ (x) (or θ̂n (x)) of θ , or to perform
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hypothesis testing, that is, to answer positively or negatively to the question
whether θ belongs to a given subset of �. The estimation of θ can then serve
to forecast new realizations of the sampling process.

In a stylized way, the statistical model empirically translates an economic
theory by maintaining some assumptions through the choice of the family of
sampling probability distributions. The observations do not lead to reconsider-
ing the choice of the parameter space; instead they permit us to determine the
parameter value. This vision is a bit simplistic because recent procedures have
been developed to reject or validate a model as a whole, to choose between
models, and to determine a model from observations.

The statistical models described here pertain to so-called reduced forms. The
economic theory describes the complex behaviors of agents, the equilibrium
relationship between these behaviors, and the link between relevant economic
measures and the observable measures. It is assumed that this set of relation-
ships is solved in order to describe the law of the data. The last part of this book,
in particular Chapters 16 and 17, will detail the essential elements of this con-
struction, whereas the first parts suppose that this task of statistical translation
of the economic theory has been done.

The vector x is alternatively called data, observations, or sample. The two
last terms refer implicitly to different learning schemes; the first one evokes a
process of passive acquisition of data (macroeconomic data), whereas the sec-
ond one refers to a partial or total control of the data collection procedure (poll,
stratified survey, experiments). Again, these distinctions will not be exploited
until the last part of this book.

Similarly, we will not discuss the choice of random formalization, which is
now standard. The stochastic nature of the way observations are generated can
be interpreted in various manners, either as a measurement error or an error
resulting from missing variables, for instance. Moreover, the economic theory
has recently provided constructions that are random per se (for instance, models
describing the solution of games with imperfect information) and which we will
discuss in the presentation of structural models.

1.3 Independent and Identically Distributed Models

Independent and identically distributed models (i.i.d.) constitute the basic struc-
ture of statistical inference. Basically, they describe the arrival of a sequence of
observations that are generated by the same probability distribution, indepen-
dently from each other. These models do not provide a sufficient tool for the
econometrician who exploits individual observations (and hence generated by
different distributions dependent on the individual characteristics) or time series
(and hence generally dependent from one another), but they play a fundamental
role in the study of statistical procedures.
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Definition 1.3 The model Mn = {Xn, �, Pθ
n } is i.i.d. if

a) The observations x1, . . . , xn are independent in terms of the distribution
Pθ

n for all θ (denoted ⊥⊥n
i=1xi |θ ).

b) The observations x1, . . . , xn have the same distribution denoted Qθ , so
that Pθ

n = [Qθ ]⊗n. �

Example 1.4 The model defined in Example 1.1 is i.i.d. and Qθ is the normal
distribution with mean μ and variance σ 2. This example permits us to define a
new notation:

⊥⊥n
i=1xi |θ

xi |θ ∼ N 
(
μ, σ 2

) ∀i

θ = (
μ, σ 2

)
⎫⎪⎪⎪⎬⎪⎪⎪⎭ ⇐⇒ xi |θ ∼ i.i.N .

(
μ, σ 2

)
.

�

Example 1.5 Example 1.2 is again an i.i.d. model satisfying:

⊥⊥n
i=1xi |θ and xi |θ ∼ B (θ ) ∀i,

where B (θ ) denotes the Bernoulli random variable, which equals 1 and 0 with
probabilities θ and (1 − θ ) respectively. �

Consider now some counterexamples of i.i.d. models.

Example 1.6 Suppose that θ ∈ R
n and xi ∈ R with

⊥⊥n
i=1xi |θ and xi |θ ∼ N (θi , 1) .

The random variables xi are independent but their distributions differ. �

Example 1.7 Suppose that λ = (a, ξ, σ 2) ∈ R
2 × R

+
∗ and that the sample is

i.i.d. conditionally on λ such that

⊥⊥n
i=1xi |λ and xi |λ ∼ N

(
a + ξ, σ 2

)
.

Now, suppose ξ is an unobservable random variable generated by a normal
distribution with mean 0 and variance 1. Then, the parameter of interest is
θ = (a, σ 2). We integrate out ξ to obtain the distribution of the sample condi-
tional on θ . It follows that

x |θ ∼ N (a, V ) with V = σ 2 In + 1n1′
n.
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Then, the observations xi have the same marginal distributions but are not
independent. Moreover, the distribution of x is not modified if one permutes the
order of the xi . In this case, the distribution is said to be exchangeable. �

This example, based on the presence of an unobservable variable, will also
be detailed in the last part of this book.

An important example of an i.i.d. model is provided by the following non-
parametric model.

Example 1.8 The sample x = (x1, . . . , xn), xi ∈ R
m, is i.i.d. and each xi is

generated by an unknown distribution Q. This model is denoted as

⊥⊥n
i=1xi |Q and xi |Q ∼ Q.

Here, the parameter θ is equal to Q. It is a functional parameter belonging to the
family Pm of distributions on R

m. We could modify this example by restricting Q
(for example, Q could have zero mean or could satisfy some symmetry condition
resulting in zero third moment). �

1.4 Dominated Models, Likelihood Function

The statistical model Mn = {Xn, �, Pθ
n } is dominated if the sampling proba-

bility distributions can be characterized by their density functions with respect
to the same dominating measure. In a large number of cases, this dominating
measure is Lebesgue measure on Xn (included in Rnm) and the dominance
property means that there exists a function �(x |θ ) such that

Pθ
n (S) =

∫
S
�(x |θ )dx S ⊂ Xn.

Example 1.9 Return to Example 1.1. The model is dominated and we have

�n (x |θ ) = (2π )− 
n
2 σ−n exp − 1

2σ 2
(x − μ1n)′ (x − μ1n) . �

The definition of dominance by Lebesgue measure is insufficient because it
does not cover in particular the models with discrete sampling space. In such
cases, we usually refer to the dominance by the counting measure. If X is discrete
(for example X = {0, 1}), the counting measure associates all sets of X with
the number of their elements. A probability distribution on X is characterized
by the probability of the points x ; these probabilities can be considered as the
density function with respect to the counting measure.
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Example 1.10 In Example 1.2, we have

Pθ
n ({x}) = �n(x |θ ) =

n∏
i=1

θ xi (1 − θ )1−xi . �

Definition 1.4 A model Mn = {Xn, �, Pθ
n } is said to be dominated if there

exists a measure ν on X (independent of θ ) such that there exists �(x |θ )
satisfying

∀θ ∈ � Pθ
n (S) =

∫
S
�n (x |θ )ν(dx). (1.2)

The function �n of X × � in R+ is called density (function) of the observations
or likelihood function depending on whether it is considered as a function of x
for a fixed θ or as a function of θ for a fixed x. �

The dominance property is actually related to the dimension of the statistical
model. If the family Pθ

n is finite, that is if � is finite in the identified case, the
model is always dominated by the probability 1

n

∑
θ∈� P

θ
n . This property is not

true if � is infinite dimensional: the nonparametric model of Example 1.8 is
not dominated. A parametric model (in the sense of a finite dimensional �) is
not always dominated as shown by the following example.

Example 1.11 Let n = 1, X = [0, 1] and � = [0, 1]. Let

Pθ
1 = δθ

where δθ is the Dirac measure at θ defined by the property

δθ (S) =
∣∣∣∣∣ 1 if θ ∈ S

0 if θ /∈ S.

We also use the notation

δθ (S) = 1I(θ ∈ S),

where the function 1I(.) equals 1 if the condition in parentheses is true and 0
otherwise. This model is not dominated but the proof of this result requires more
advanced measure theory than we wish to use here. �

The dominance property is particularly useful in i.i.d. models. Suppose that
Mn = {Xn, �, Pθ

n } is i.i.d. and that each observation is generated by the prob-
ability distribution, Qθ . If Qθ is dominated and admits a density f (xi |θ ), the
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independence and the identity of distributions imply that Mn is dominated and
that the density of the observations can be written as

�n(x |θ ) =
n∏

i=1

f (xi |θ ). (1.3)

The logarithm of the likelihood function plays an important role, it is also called
log-likelihood and is defined as

Ln(x, θ ) = ln �n(x |θ ). (1.4)

In the i.i.d. case, it satisfies the property:

Ln(x, θ ) =
n∑

i=1

ln f (xi |θ ). (1.5)

Example 1.12 (Multidimensional normal model) Let θ = (μ, ) where
μ ∈ R

m and  is a symmetric positive definite matrix of dimension m × m.
Hence, � = R

m × Cm where Cm is the cone of symmetric positive definite ma-
trices of size m × m. Moreover, X = R

nm and the model is i.i.d. with

xi |θ ∼ Nn(μ, ) xi ∈ R
n.

Therefore, the model is dominated. We have

�n(x |θ ) =
n∏

i=1

(2π )−
m
2 ||− 1

2 exp −1

2
(xi − μ)′−1(xi − μ)

= (2π )−
nm
2 ||− n

2 exp −1

2

n∑
i=1

(xi − μ)′−1(xi − μ). �

1.5 Marginal and Conditional Models

From a statistical model, one can build other models through the usual opera-
tions of probability calculus which are marginalization and conditioning. The
concept of a conditional model is particularly fundamental in econometrics and
allows us to build a first extension of the i.i.d. model which is too restrictive
to model economic phenomena. First, we will derive the conditional model as
a byproduct of the joint model, but in practice the conditional model is often
directly specified and the underlying joint model is not explicitly defined.

Let x = (xi )i=1,...,n be the sample. It is assumed that, for each observation
i , xi can be partitioned into (yi , zi ) with respective dimensions p and q (with
p + q = m). Let us denote y = (yi )i=1,...,n and z = (zi )i=1,...,n . Moreover, the
space X is factorized into Y × Z with yi ∈ Y and zi ∈ Z . This splitting of x
facilitates the presentation, but in some examples, yi and zi are two functions
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of xi defining a bijective (one-to-one and onto) mapping between xi and the
pair (yi , zi ). By a relabelling of xi , one can get back to the current presentation.

Definition 1.5 From the model Mn = {Xn, �, Pθ
n }, one obtains:

� the marginal model on Zn, denotedMnz = {Zn, �, Pθ
nz}, with sample space

Zn, parameter space �, and sampling probability distribution Pθ
nz which is

the marginal probability of Pθ
n on Z.

� the conditional model given Z , denoted Mz
ny = {Y n × Zn, �, Pθ z

ny }, with
sample space Y n × Zn, parameter space �, but which sampling probability
distribution is the conditional distribution of Y n given z ∈ Zn.
In a dominated model (by Lebesgue measure to simplify) with the density
of observations denoted �n(x |θ ), the marginal and conditional models are
dominated and their densities satisfy:{

�n marg(z|θ ) = ∫
�n(y, z|θ )dy

�n cond (y|z, θ ) = �n (y,z|θ )
�n marg(z|θ )

.
(1.6)

�

Example 1.13 Consider an i.i.d. model with sample xi ∈ R
2 that satisfies

xi |θ ∼ i.i.N .

((
η

ζ

)
, 

)
with

θ = (η, ζ, ) and  =
(

σyy σyz

σyz σzz

)
.

Then, θ ∈ � = R
2 × C2. We can decompose this model into a marginal model

of Z which remains i.i.d. and satisfies

⊥⊥n
i=1zi |θ and zi |θ ∼ N (ζ, σzz)

and a conditional model characterized by

yi |zi , θ ∼ N (α + βzi , σ
2)

with

β = σyz

σzz
, α = η − σyz

σzz
ζ and σ 2 = σyy − σ 2

yz

σzz
. �

This example has the property that the parameter θ of the original model can
be decomposed into two functions of θ,

θmarg = (ζ, σzz) and θcond = (α, β, σ 2),
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whose values can be assigned independently from each other because the
mapping

θ → (θmarg, θcond )

from R
2 × C2 into (R × R

+
∗ ) × (R

2×R
+
∗ ) is bijective. Let us introduce, in this

slightly abstract setting, a definition of exogeneity which we will extend later
to dynamic models.

Definition 1.6 The decomposition of a statistical model into a marginal model
and a conditional model operates a cut if the parameter θ can be transformed
in a bijective manner into (θmarg, θcond ) ∈ �m × �c such that:

* θmarg and θcond respectively parametrize the marginal and conditional
models,

* θmarg and θcond are variation free, that is, no restriction links the two
parameters.

In such case, the observations z are said to be exogenous for the parameter
θcond . �

Marginal and conditional models are useful for various reasons.

1. A motivation for marginal models is the incomplete observation of a
phenomenon. One builds a model relative to the generation of xi which
is relevant with respect to the economic theory, but unfortunately only the
function zi of xi is available. Let us illustrate this absence of information
by a few examples.

Example 1.14 Let xi be the unemployment duration of individual i
(measured in days). This duration is observed if it is less than two years
(730 days); beyond this point the only available information is that xi is
greater than 730. Hence, the observations are given by

zi =
∣∣∣∣∣ xi if xi ≤ 730

730 if xi > 730

which can be rewritten as

zi = xi 1I(xi ≤ 730) + 730 1I(xi > 730).

In this case, xi is said to be (right) censored and we denote

δi = 1I (xi ≤ 730)

as the censoring indicator. �
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Example 1.15 The information is further reduced if we observe only
the position of a variable with respect to a threshold. If xi is the will-
ingness to pay price p for a good by individual i and if we only know
whether the individual has bought that good or not, then we observe
only

zi =
∣∣∣∣∣ 1 if xi ≥ p

0 if xi < p

or alternatively

zi = 1I (xi ≥ p) . �

Example 1.16 The temporal discretization enters into this framework.
Let xi be the function xi (t), t ∈ [0, T ], describing in continuous time
the stock market price of share i at time t between 0 and T . However, we
observe this price at times 0, t1, t2, . . . , tr = T (at the end of each day
or month. . . ). In this case, zi is the vector (xi (0), xi (t1), . . . , xi (tr )). �

Example 1.17 In a rationed market, xi may be the vector (Oi , Di ) of
supply and demand of a given good in year i but only zi = min(Oi , Di )
is observable. �

Example 1.18 We often develop individual models describing the ar-
rival process of xit , a set of measures associated with individual i in year
t but, because only the macroeconomic information is available, we ob-
serve only zt = ∑

i xi t . Aggregation problems, which are fundamental
in economics, are therefore marginalization problems from a statistical
point of view. �

Example 1.19 Recent microeconomic models introduce more and
more frequently unobservable individual characteristics. The model is
written in terms of measures xi = (zi , ζi ), but when it comes to its sta-
tistical treatment, only the marginal model on the observable variable
zi is examined and the variable ζi is integrated out. �

2. Another justification of marginal models stems from the possible com-
plexity of the initial joint model. It happens that the generating model of
xi is complex and nonstandard and we look systematically for functions
zi whose marginal models are more standard. The most frequent example
in the econometrics of the past ten years is given by cointegration which
will be treated later on. Intuitively, the modeling starts by the analysis
of a “nonstandard” vector xi , because it is nonstationary, and proceeds
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to extract stationary linear combinations zi , whose distributions have a
certain temporal stability.

3. The conditional modeling obeys a rationale of limited modeling. We
generally consider a large set of variables xi whose generating process
may be complex, and we focus on the distribution of a variable given
the others, assuming that the conditional distribution is sufficiently sta-
ble (across individuals and through time) to be studied statistically. For
example, a model of individual consumption considers besides this vari-
able, household income, prices, as well as socio-demographic charac-
teristics (size of the family, type and localization of the housing, socio-
professional category). These last variables result from mechanisms that
the economist may not wish to explore. Income and prices can be as-
sumed to be generated from mechanisms that are sufficiently indepen-
dent from the consumption choice so that they do not need to be explicitly
introduced. However, it is important to notice that introducing a variable
as a conditioning variable prevents us from analyzing the phenomenon
of simultaneous determination and the interdependence of this variable
on the conditioned variables.

4. Studying and estimating a model of yi conditional on zi enables us to
forecast y j for a given z j (where j belongs to an index set of future
observations) but prevents us from forecasting jointly y j and z j .

5. Let us stress that, for any model and any partition of x into y and z, it is
always mathematically possible to derive the conditional and marginal
models, but it may not be economically meaningful. One needs to ex-
amine the reparameterization of these two models and make sure that
the new parameters are those that the economist wishes to estimate or
whether they allow us to recover the parameters of interest for economic
theory.

6. As the usual practice of econometrics consists in specifying conditional
models, one must wonder whether this approach of not assuming any-
thing on the conditioning variables is sustainable. It can be sustained
only to some extent (for example, study of the conditional properties of
estimators in small samples) but some assumptions on the generating
process of zi are needed to analyze the asymptotic properties of the es-
timators and tests. This will appear clearly in the following chapters. In
fact, the conditional model is a joint model for which the conditional dis-
tribution is subject to precise assumptions (linearity condition, stability
of the variance), whereas the generating process of zi remains vague (zi

i.i.d. for instance, without assuming a specific distribution). We will see
later that when the conditional model is wrong (meaning that the true
data-generating process does not belong to the model), then it is neces-
sary, in order to study its behavior, to explore the generating process of zi .
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7. In old-fashioned econometrics, drawn from the experimental sciences,
the conditioning variables were considered as nonrandom (this required
tedious detours to analyze the asymptotic properties of estimators).
Clearly when the explanatory variable of a dynamic model is a trend
(equal to 1 for the first year, 2 for the second, 3 for the third, etc.), it
is difficult to interpret it as a random variable although these are Dirac
random variables degenerated at one point. Except for this special case,
all conditioning variables are now assumed to be random even if their
distributions are not necessarily simple.

8. The cut assumption defined earlier formalizes the fact that to estimate
the parameters of one of the two models (θmarg or θcond ), the specification
of the auxiliary model is useless because its parameters are not related to
the first ones. We will show in subsequent chapters that the parameters
of the marginal and conditional models can be estimated separately
under the cut assumption.

We complete these remarks by reviewing some useful factorizations of the
likelihood function in i.i.d. models. Consider two ways to decompose the like-
lihood either as

�n(x |θ ) = �n(y, z|θ )

= �n marg(z|θ )�n cond (y|z, θ )
(1.7)

or

�n (x |θ ) =
n∏

i=1

f (xi |θ )

=
n∏

i=1

fmarg (zi |θ )
n∏

i=1

fcond (yi |zi , θ ) .

(1.8)

In the representation (1.7), the factorization operates globally, whereas in
(1.8) the decomposition marginal/conditional is applied to each observation.
This representation (1.8) is not always possible: we can imagine that the gener-
ating process of zi is i.i.d. but that yi depends on all the zi , as in dynamic models,
for instance. The representation (1.8) contains implicitly the assumption that yi

depends only on zi , but not on z j for j different from i . If, moreover, the cut
condition is satisfied, we have

�n(x |θ ) =
n∏

i=1

fmarg(zi |θmarg)
n∏

i=1

fcond (yi |zi , θcond ). (1.9)
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The estimation problems will be introduced systematically in Chapter 3,
but we can already notice that in presence of a cut, Ln(x, θ ) defined in (1.4)
factorizes as

Ln(x, θ ) = Ln marg

(
z, θmarg

) + Ln cond (y, z, θcond ) . (1.10)

The variation free assumption enables us to maximize independently Ln marg

and Ln cond with respect to θmarg and θcond respectively.

Notes

The definitions in this chapter constitute the basis of mathematical statistics and therefore

appear in numerous books. We can recommend to the reader wishing to go into detail

the books by Barra (1981), Dacunha-Castelle and Dufflo (1982 and 1983), DeGroot

(2004), Mood and Graybill (1963), and Raoult (1975). These concepts are also recalled

and extended in the Bayesian framework by Florens, Mouchart, and Rolin (1990); their

presentation in relation with econometrics is detailed in the book by Hendry (1995).

An excellent and concise overview of the principal probability distributions can be

found in the book by Monfort (1980) and a deeper study is presented in the various

volumes of Johnson and Kotz (1970). One can also refer to Devroye (1986).

The decomposition of statistical models into marginal and conditional models has

been initially justified by the study of sufficiency and partial ancillarity properties. In

addition, the concept of exogenous variable goes back to the origins of econometrics (see

the works by the Cowles Commission and in particular the article by Koopmans (1950)).

The relationship between the decompositions of models and exogeneity was most likely

introduced by Florens, Mouchart, and Richard (1979) and was later published in Engle,

Hendry, and Richard (1983) and Florens and Mouchart (1985b).



P1: OSO/OVY P2: OSO/OVY QC: OSO/OVY T1: OSO

Ecoeok CUFX117-Florens 0521876407 April 22, 2007 13:56

2. Sequential Models and Asymptotics

2.1 Introduction

This chapter reviews probability theory and in particular the usual modes of con-
vergence of sequences of random variables and the two foundations for asymp-
totic statistics, namely the law of large numbers and the central limit theorems.
In order to keep the statistics in this book homogeneous, we present these re-
sults in parametric models. The advantage of this presentation will be in the
presentation of the concept of uniform convergence in θ which is indispensable
for the general statistical results in the following chapter.

Our exposition is not restricted to i.i.d. models, which evidently do not cover
the analysis of dynamic models, but is extended to stationary models in which
the temporal dependence between observations decreases fast enough for the
basic results of i.i.d. models to hold: properties of convergence (in probability or
“almost sure”) of sample means to their expectations and

√
n rate of convergence

to the normal distribution.
Recent econometrics is not satisfied with these results but exploits faster

convergence rates to more complex distributions in the case of nonstationary
processes. These results, however, will only be introduced in Part III of the book.

2.2 Sequential Stochastic Models and Asymptotics

In Chapter 1, we considered a statistical model {Xn, �, Pθ
n } for which the

sample size n was fixed. We now move to the case when the sample size n goes
to infinity. A compatibility condition is obviously necessary: if n < n′, then
Pθ

n must be the marginal probability of Xn derived from Pθ
n′ defined on Xn′

.
Under this condition, there exists only one probability Pθ

∞ for X∞ = ∏∞
i=1 Xi

whose marginal probabilities on Xn are Pθ
n .

We already introduced i.i.d. models in Chapter 1. These models assume that
for all θ , the random variables xi are independent and have the same distribu-
tion Qθ .

17
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This assumption will be weakened when we define statistical models that are
more complex but maintain a common set of asymptotic properties.

Definition 2.1 If n ∈ N, then the sequence of models

{Xn, �, Pθ
n }

satisfying the compatibility condition above is called a sequential model and
the model

{X∞, �, Pθ
∞}

is called the asymptotic model. �

Definition 2.2 An asymptotic model is called stationary if, for all θ and for
all n, the probability distribution for x1, . . . , xn is identical to the probability
distribution of x1+τ , . . . , xn+τ for all values of τ . �

In particular, in a stationary model, the distribution of each observation xi

does not depend on i .
We will return to this question more extensively in Chapter 12 where we will

distinguish, for example, between strong stationarity (which we just defined)
and weak stationarity.

The construction of a sequential model is often performed in the following
way:

� First, the distribution of x1 given θ is established or, more generally, the
distribution of a vector x1, . . . , xr of observations called the initial conditions
of the process given θ.

� Second, the distribution of x2 given x1 and θ is established, then x3 given
x2, x1 and θ . More generally, the distribution of xi is established given
x1, . . . , xi−1 and θ .

In the case of dominated models, the density function of observations is
written as:

�n(x1, . . . , xn|θ ) =
n∏

i=1

fi (xi |x1, . . . , xi−1, θ ). (2.1)

This expression simplifies if xi depends on the past only through a finite
number of preceding observations xi−1, . . . , xi−r . The statistical model is then
said to be Markov of order r and we have

�n(x1, . . . , xn|θ ) = f0(x1, . . . , xr |θ )
n∏

i=r+1

fi (xi |xi−r , . . . , xi−1, θ ).

(2.2)
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In this expression, f0 is the density distribution of the initial conditions,
and fi represents the conditional density of xi given the past summarized by
xi−r , . . . , xi−1. We can additionally assume that this conditional probability
does not depend on i , which implies that we can suppress the index i in the
density fi in (2.2). The Markovian model is then homogeneous.

The next question asks under which conditions is such a model stationary.
Let us consider first the case r = 1. One can show easily enough that this model
is stationary if and only if the distributions of x1 and x2 are identical. This comes
down to verifying that f0 satisfies the equation:

f0(x2|θ ) =
∫

f (x2|x1, θ ) f0(x1|θ )dx1 (2.3)

where we assume for simplicity that the dominating measure is Lebesgue mea-
sure. If Equation (2.3) admits a solution f0, then the Markovian model has a
stationary solution. In this case, if the distribution of x1 is given by the density
f0, then the model will be stationary. If the distribution of x1 differs from f0,
then the model is not stationary but becomes stationary as n goes to infinity.

If Equation (2.3) does not admit a solution, then the Markovian model cannot
be made stationary by an appropriate choice of the initial conditions and does
not converge to a stationary solution.

Example 2.1 Suppose

∀i ≥ 2 xi |xi−1, θ ∼ N (βxi−1, σ
2) θ = (β, σ 2)′ ∈ R × R

+
∗ .

The model is, therefore, Markovian of order 1 and homogeneous. If there exists
a f0 such that x1 and x2 have the same distribution for all θ, and if the two first
moments exist, then we must have:

Eθ (x2|θ ) = Eθ (x1|θ ).

But

Eθ (x2) = Eθ
(
Eθ (x2|x1)

) = βEθ (x1) ,

and hence Eθ (x1) = 0 if β �= 1. Furthermore:

Var θ (x2) = Var θ (x1) ;

but

Var θ (x2) = Eθ
(
Var θ (x2|x1)

) + Var θ
(
Eθ (x2|x1)

)
= σ 2 + β2Var θ (x1),

thus

Var θ (x1) = 1

1 − β2
σ 2.
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The last expression, therefore, necessarily assumes |β| < 1. In this case the
initial distribution that assures stationarity is the central normal distribution
with variance σ 2

1−β2 (if (β, σ 2) ∈ (−1, 1) × R
+
∗ ). Otherwise, the Markovian

model cannot be rendered stationary. �

The method of constructing a stochastic process just illustrated is only an
example. Other constructions will be developed more systematically in Part III.

We introduce now the concept of mixing. As an introduction, consider the
following example.

Example 2.2 Suppose (ui )i=1,...,n is a series of random variables distributed
i.i.d. N (0, σ 2) and assume

xi = ui + βui−1.

The parameters of the model for observation xi are θ = (β, σ 2)′. The obser-
vations xi are not independent because xi and xi−1 (or xi+1) are correlated.
Nevertheless, xi and xi+r or xi−r are independent if r ≥ 2. Two observations
sufficiently far apart are therefore independent. �

Definition 2.3 A stationary statistical model is mixing if, for all i, r, and p
and for all square integrable functions ϕ and ψ:

Eθ
(
ϕ(xi , . . . , xi+r )ψ(xi+τ , . . . , xi+τ+p)

)
−→ Eθ (ϕ(xi , . . . , xi+r |θ )) Eθ

(
ψ(xi , . . . , xi+p)

)
when τ → ∞. �

In other words, two sets of observations of length r and p “become indepen-
dent” if the gap τ that separates them tends to infinity.

One can show, for example, that under a regularity condition (Doeblin con-
dition), a stationary Markovian model is mixing. This condition is satisfied,
in particular, in the case when the distribution of (x1, x2) has the same sets of
measure zero as Lebesgue measure.

To analyze asymptotic normality, we need mixing conditions that are more
restrictive. To define these mixing conditions requires that we introduce the
concept of generated σ–algebras. The reader who is not very interested in
the mathematical foundations can skip this more theoretical detour. The basic
objective of these concepts is in that they allow us to apply the law of large
numbers and the central limit theorem to dynamic models; one can simply
suppress these mixing conditions and directly assume that these two theorems
apply.
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Consider a sequence of observations xi . Even though each xi belongs to the
same set X ⊂ R

n , we can distinguish by Xi the set to which the i th observation
belongs; a sequence (xi , . . . ,x j ) ( j > i) , hence, belongs to X ji = Xi × · · · ×
X j . We denote by X 

j
i the σ-algebra of sets that are measurable with respect to

X ji . Consequently, an event of X 
j

i is observed if (xi , . . . , x j ) is observed.
The measure of dependence is then defined as follows

ϕθ
(
X 

j
i ,X 

j ′
i ′

)
= sup

{∣∣Pθ
∞ (E |F) − Pθ

∞ (E)
∣∣, E ∈ X 

j
i , F ∈ X 

j ′
i ′ , Pθ

∞ (F) > 0
}

(2.4)

and we have:

ϕθ
t = sup

i
ϕθ

(
X i

1 ,X∞
i+t

)
. (2.5)

Definition 2.4 A stationary statistical model is ϕ-mixing (or uniformly mix-
ing) if, for all θ, ϕθ

t → 0 when t → ∞. �

As we will see in the following, this concept of uniform mixing implies
that it is possible to use the central limit theorem. Nevertheless, it is much
too restrictive for being applied to many econometric models. Specifically, one
can verify that the model of Example 2.1 (with |β| < 1) does not satisfy this
condition.

Consequently, a different concept has been recently introduced in the litera-
ture, namely near-epoch dependence which we denote by “N.E.D.” We will not
introduce this concept in all its generality but present a version of it in the case
of ARMA processes in Chapter 12.

2.3 Convergence in Probability and Almost Sure Convergence –
Law of Large Numbers

Consider an asymptotic model {X∞, �, Pθ
∞} and a sequence ξn of random

vectors defined on X∞ with values in R
k . In general, ξn will be a function of the

first n observations of the process, x1, . . . xn . Probability theory is especially
interested in functions which are sample averages of the form

ξn = 1

n

n∑
i=1

ϕ(xi ) or ξn = 1

n

s+n∑
i=s+1

ϕ(xi , . . . , xi−s).

Statistical applications use functions that are more complex but most often lead
back to these averages. In general, we consider ξn as a function of x ∈ X∞.
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We will use in this section two modes of convergence:

Definition 2.5 The sequence ξn converges to the random vector ξ in Pθ
∞-

probability if

∀θ ∈ �, ∀ j = 1, . . . , k, ∀ε > 0, ∀α > 0,

∃N s.t. n > N =⇒ Pθ
∞(|ξ jn − ξ j | < α) > 1 − ε

where ξ j and ξ jn are elements of the vectors ξ and ξn. �

We denote this property by ξn → ξ Pθ
∞ -probability.

Definition 2.6 The sequence ξn converges Pθ
∞ almost surely to ξ if

∀θ ∈ �, ∀ j = 1, . . . , k, ∃ B ⊂ X∞ s.t. Pθ
∞(B) = 0, ∀x �= B, ∀ε > 0

∃N s.t. n > N =⇒ |ξ jn(x) − ξ j (x)| < ε. �

We denote this property by ξn → ξ Pθ
∞ -a.s.

These two modes of convergence are studied extensively in any book on
probability theory. Here, we limit ourselves to reviewing some of their main
properties.

1. In each of the previous definitions, coordinate-wise convergence can be
replaced by convergence in norm. We can thus suppress “∀ j” and replace
absolute values by ‖ξn − ξ‖, for example:

sup
j

|ξ jn − ξ j |

or(∑
j

(
ξ jn − ξ j

)p

) 1
p

, p ≥ 1.

2. Almost sure convergence implies convergence in probability, but the
converse is false.

3. If ξn → ξ in one of the previous modes and if g is a continuous mapping
from R

k to R
k , then we also have: g(ξn) → g(ξ ) in the corresponding

mode of convergence.

The previous modes of convergence do not involve the moments of random
vectors. Nevertheless, other modes of convergence are available which are based
on the existence of moments.
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Definition 2.7 Suppose the components of ξn and ξ are integrable to the power
p (that is

∫ |ξ jn|pd Pθ
∞ and

∫ |ξ j |pd Pθ
∞ are finite). We say that ξn converges to

ξ in p−norm if

∀ j, ∀ε > 0, ∃N s.t. n > N ⇒
∫

|ξ jn − ξ j |pd Pθ
∞ < ε. �

This mode of convergence leads us to the following remarks:

1. Convergence in p−norm implies convergence of moments up to order
p, that is:

Eθ

(∏
j

ξ
r j

jn

)
→ Eθ

(∏
j

ξ
r j

j

)

with
∑

j r j ≤ p.
2. Convergence in p−norm implies convergence in p′−norm if p′ < p,

and implies convergence in probability. It does not imply almost sure
convergence.

We will list a number of results that are known under the name of law of
large numbers. We are, first of all, interested in the limit of expressions of the
following form:

ξn = 1

n

n∑
i=1

ϕ(xi ) (2.6)

where ϕ is a random vector defined on X with values in R
k . We distinguish two

types of Laws of Large Numbers: weak laws where convergence in probability is
assured, and strong laws where almost sure convergence is assured. In addition,
we are interested in the case where the xi are i.i.d., or not i.i.d. and either the
assumption of independence or of identical distribution is dropped.

In the i.i.d. case, the weak Law of Large Numbers is of only limited interest
and we will only present the strong Law of Large Numbers

Theorem 2.1 Given an i.i.d. statistical model and an integrable mapping ϕ,
i.e. such that Eθ (ϕ(x)) is finite for all θ , then

1

n

n∑
i=1

ϕ(xi ) → Eθ (ϕ(xi )) Pθ
∞ − a.s.

The converse is true in the following sense: if 1
n

∑n
i=1 ϕ(xi ) converges to a

vector μ(θ ) in R
k , then ϕ is integrable and

Eθ (ϕ) = μ(θ ). �
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We provide a first extension of the strong law of large numbers to the case
when the random variables are independently but not identically distributed.

Theorem 2.2 Given a statistical model for which the observations are inde-

pendent with means μ1, μ2, . . . and variances σ 2
1 , σ 2

2 , . . . . If the series
∑∞

i=1
σ 2

i

i2

converges, then

1

n

n∑
i=1

xi − 1

n

n∑
i=1

μi → 0 Pθ − a.s. ∀θ. �

In econometrics, it is particularly relevant to analyze the law of large numbers
in the case of stationary processes.

Theorem 2.3 Given a stationary statistical model and a random vector ϕ

defined on X1 × X2 × · · · × Xs. Consider the expression:

1

n

n∑
i=1

ϕ(xi+1, . . . xi+s).

1. If ϕ is integrable, then this expression converges Pθ -a.s. to a random
vector ξ (θ ).

2. A stationary statistical model is said to be ergodic if this limit ξ (θ ) is
not random and is equal to Eθ (ϕ) .

3. A mixing stationary statistical model is ergodic. �

When studying statistical problems, notably estimation, we are interested in
the convergence of functions that depend on parameters, for example, sums of
the type 1

n

∑n
i=1 ϕ(xi , θ ).

This sum converges, in general, to Eθ (ϕ(xi , θ )) which is a function of θ .
It is useful that this convergence occurs uniformly in θ . We will analyze this
extension for the case of almost sure convergence, but a comparable analysis
can be done for other modes of convergence.

Definition 2.8 The sequence ξn(x, θ ) converges locally uniformly to ξ (x, θ )
if ∀θ0, ∃ a closed ball Vθ0

centered at θ0 such that ∃B ⊂ X∞ satisfying

Pθ
∞(B) = 0, ∀θ ∈ Vθ0

and such that:

∀x /∈ B, ∀ε > 0, ∀ j = 1, . . . , k

∃N such that n > N =⇒ |ξ jn (x, θ ) − ξ j (x, θ ) | < ε, ∀θ ∈ Vθ0
. �
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Intuitively, in Definition 2.6, the set B and the integer N depend on θ (and
on x and ε) while in definition 2.8, B and N do not depend on θ as long as the
latter remains in a neighborhood of a given value θ0.

Consider now an i.i.d. sample and a sequence of functions 1
n

∑n
i=1 ϕ(xi , θ ).

We know that this expression converges to Eθ (ϕ) according to the strong law
of large numbers. The question whether this convergence is uniform is much
more delicate.

2.4 Convergence in Distribution and Central Limit Theorem

Consider a statistical model and a sequence ξn of random vectors which are
functions of the sample and possibly of parameters. Each of these random
vectors has a distribution function Fn defined by

∀t ∈ R
k Fn(t) = Pθ

n (ξ1n ≤ t1, . . . , ξkn ≤ tk).

If ξ is a random vector of dimension k with distribution function F, we define
convergence in distribution by one of the following equivalent properties.

Definition 2.9 The sequence ξn converges to ξ in distribution (this will
be denoted by ξn → ξ Pθ

∞-distribution or ξn ⇒ ξ ) if one of the following
equivalent conditions is satisfied:

1. Fn(t) → F(t), for all continuity points t of F.
2. ∀B ⊂ R

k with boundary that ∂ B satisfies Pθ
∞(ξ ∈ ∂ B) = 0, we have

Pθ
n (ξn ∈ B) → Pθ

∞(ξ ∈ B). �

The second condition expresses the fact that the probability that ξn belongs
to a set B can be approximated by the distribution of ξ . If the limiting law is
normal (or more generally admits a density with respect to Lebesgue measure),
then the condition that the boundary has probability zero is always satisfied.

In contrast to the previous modes of convergence, the limit cannot be con-
sidered component by component. However, we can return to univariate con-
vergence in the case where the limiting distribution is the normal distribution,
as the following theorem shows.

Theorem 2.4 The sequence ξn of random vectors converges in distribution to
the normal distribution with mean μ and variance  if and only if, for any vector
a in R

k , the linear combination a′ξn = ∑
j a jξ jn converges in distribution to

the normal distribution with mean a′μ and variance a′a. �
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Let us recall some useful properties of convergence in distribution:

1. If the random variables satisfy ξn → ξ in distribution and if ηn → c
in probability (c constant), then ξn + ηn → ξ + c, ξnηn → c ξ and
ξn/ηn → ξ/c (c �= 0) in distribution. This result, obviously, admits a
vectorial extension, which is known as Slutsky’s theorem.

2. Convergence ξn to ξ in probability implies convergence in distribution.
The converse is true if ξ is a constant.

3. If g is a continuous mapping and if ξn → ξ in distribution, then g(ξn) →
g(ξ ) in distribution.

The central limit theorems ensure the asymptotic normality of empirical
means. We will state first the most common theorem that is valid in i.i.d. models.

Theorem 2.5 Given an i.i.d. model {X∞, �, Pθ
∞} and ϕ : X → R

k (or X ×
� → R

k) such that Eθ (ϕ) = μ and Varθ (ϕ) = . Then

√
n

(
1

n

n∑
i=1

ϕ (xi ) − μ

)
→ N (0, ) in Pθ

∞-distribution. �

This theorem is called the Lindeberg-Levy theorem. One can extend this
theorem by keeping independence but dropping the condition of identical dis-
tributions. We then obtain the Lindeberg-Feller theorem or its extensions which
we will not present here. We will present only one central limit theorem that is
useful for mixing stationary models.

Theorem 2.6 Given a stationary model such that the sequence of observations
(xi )i is uniformly mixing and satisfies

∑
t (ϕ

θ
t )

1
2 < ∞. If, moreover, Eθ (xi ) = μ

and Covθ (xi , xi+l) = l , then we have convergence

√
n

(
1

n

n∑
i=1

xi − μ

)
→ N (0, V θ ) in Pθ

∞-distribution

with V θ = ∑+∞
l=−∞ l . �

In the scalar case, l = −l and the expression above is reduced to:

V θ = 0 + 2
∞∑

l=1

l . (2.7)

This equality is false in the vector case where the relationship is l = ′
−l .

One can, moreover, verify that, if xi is uniformly mixing, then any sequence of
random vectors of the form

yi = f (xi , xi−1, . . . , xi−q )
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is uniformly mixing for all finite q. Furthermore, if the condition∑
t

(
ϕθ

t

) 1
2 < ∞

is satisfied for xi , then it is also satisfied for yi . Theorem 2.6 thus applies to yi

for any f . We point out that this result is in general false if q is infinite.

Example 2.3 Let ui be an i.i.d. sequence of random variables, normally dis-
tributed with mean zero and variance σ 2. This sequence is uniformly mixing
because of independence. Let yi = (ui + βui−1)2. This new process is uniformly
mixing and satisfies the conditions of Theorem 2.6. We have then:

√
n

(
1

n

n∑
i=1

yi − λ

)
→ N (0, V )

with

λ = E (yi ) = (
1 + β2

)
σ 2

and

V = Var ( yi ) + 2
∞∑

l=1

Cov ( yi , yi+l)

= Var ( yi ) + 2 Cov ( yi , yi+1)

= 3σ 4
[
2 + 8β2 + 5β4

]
. �

Although the assumptions of Theorem 2.6 are not satisfied in an Autoregres-
sive (AR) or Autoregressive Moving Average (ARMA) process, we will see in
Chapter 12 that the conclusion of this theorem remains valid for this class of
models. Indeed, the theorem can be extended to processes that have the near
epoch dependent (NED) property, which is the case of AR and ARMA.

2.5 Noncausality and Exogeneity in Dynamic Models

Let us partition observations xi ∈ R
m into (yi , zi ) ∈ R

p × R
q . In the same man-

ner as in the static case evoked in Chapter 1, we can decompose the distribution
of xi in marginal and conditional distributions. In the dynamic case, two decom-
positions are overlaid: sequential decomposition (distribution of xi given the
past xi−1, . . . ) and decomposition into marginal distribution of z process and
conditional distribution of the y process given the z process. The interaction of
these two decompositions gives rise to diverse concepts of exogeneity. Before
analyzing those, we will present a related concept, namely noncausality.
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2.5.1 Wiener-Granger Causality

First, we will present the concept of noncausality in an intuitive way by using
terms that have been precisely defined; we will show that several definitions
of noncausality emerge when a precise mathematical meaning is selected to
characterize these notions.

Hence, let us consider a stochastic process yi (scalar or vectorial) and denote
by W j and X j two information sets such that W j ⊂ X j (the information con-
tained in W j is also contained in X j ). We say that X j does not cause yi given
W j (or that the complement of W j in X j does not cause yi ) if the predictions
for yi based on X j and based on W j are identical.

The first way of making this notion more precise concerns the nature of
information sets and the nature of prediction. Suppose, for simplicity, that we
have two processes (zi )i and (wi )i . Still intuitively, X j describes the set of
information contained in the observations of zl , wl , and yl for all l ≤ j . A very
strong concept of prediction is based on conditional distributions. Thus, the
prediction of yi knowing X j will be the conditional distribution of yi given

(z j ,y j , w j , z j−1, y j−1, w j−1, . . .);

the prediction of yi knowing W j will be characterized by the distribution of yi

conditional only on

(y j , w j , y j−1, w j−1, . . .).

In this case, the information set X j is implicitly given by the σ -algebra generated
by the observations of the three processes before j, whereas W j is the σ -algebra
only of the processes y and w, hence,

yi | X j ∼ yi |W j ⇐⇒ yi⊥⊥n
i=1 (z�)�=1,..., j | ( y�, w�)�=1,..., j . (2.8)

This concept can be weakened by defining prediction in terms of conditional
expectations only. The property of noncausality is, in this case, defined by

Eθ
(
yi | X j

) = Eθ
(
yi | W j

)
(2.9)

where X j and W j are σ -algebras as previously defined. This property is weaker
than the preceding one, because, in the second case, it is possible that the
variance of yi conditional on X j depends on W j .

Finally, one can be interested in only linear conditional expectations (denoted
EL), and predict yi by its projection (in the sense of L2) on the closed vector
space generated by z j , y j , w j , z j−1, y j−1, w j−1, . . . (precise definitions of con-
ditional expectation and linear conditional expectation will be given in Chap-
ter 7). In this case, the information sets are closed vector spaces and noncausality
becomes

E L( yi | X j ) = E L( yi | W j ). (2.10)
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Another definition has to be presented that is based on the choice of i and j .
It is obvious that the problem is non-trivial only if i > j , because if i ≤ j , the
preceding properties are always satisfied.

In discrete time, one can be interested in the case where i − j = 1 (for all
i, j) and analyze noncausality that is either instantaneous or one period in the
future. One can also consider arbitrary i and j , which yields noncausality i − j
periods in the future. Possibly, one is interested in noncausality of X j given W j

on (y j+1, y j+2, . . . ,y j+τ ), and one can analyze here the case where τ goes to
infinity. In continuous time, instantaneous noncausality becomes noncausality
at an “infinitesimal” forecast horizon (between t and t + dt).

We can see, therefore, that numerous rigorous definitions of noncausality can
be introduced, and one of the natural questions that arise lies in their relationship
and possibly their equivalence.

Another type of question consists of the transformation of these general con-
cepts into properties that can be expressed as restrictions on parameters, which
in turn can be tested. At this moment, we are required to stay with a stationary
specification in order to guarantee the limiting distribution of estimators and
of tests. As an example, we will present an equivalence result between two
definitions of strong noncausality.

Definition 2.10 We say that (zi )i does not Granger -cause (yi )i if

yi | zi−1
−∞, yi−1

−∞ ∼ yi | yi−1
−∞ where zi−1

−∞ = (zi−1, zi−2, . . .),

or, by using the notation of conditional independence, if

yi⊥⊥n
i=1 zi−1

−∞ | yi−1
−∞. �

This defines an “instantaneous” property, but implies a prediction described
by the entire conditional distribution.

Definition 2.11 We say that (zi )i does not cause (yi )i in the sense of Sims if

yi | z+∞
−∞, yi−1

−∞ ∼ yi | zi
−∞, yi−1

−∞.

This condition written in terms of conditional independence is the following:

yi⊥⊥n
i=1 z+∞

−∞ | (
zi
−∞, yi−1

−∞
)
. �

This also constitutes a condition on the conditional distribution of yi . We
have then:

Theorem 2.7 Under the condition

z−∞ | y+∞
−∞ ∼ z−∞ | y−∞

(
z−∞⊥⊥y+∞

−∞ | y−∞
)
,

the two definitions are equivalent. �
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Proof: We initially restrict the path of the process to the interval between k
and n, and we will reason in terms of densities to keep the presentation simple.
Letting “l” denote the density of a random vector, we can write

l
(
yn

k , zn
k

) = l(yk, zk)
n∏

i=k+1

l
(
yi , zi | yi−1

k , zi−1
k

)
= l(yk)l(zk | yk)

∏
i

l
(
yi | yi−1

k , zi−1
k

) ∏
i

l
(
zi | yi

k, zi−1
k

)
.

Additionally,

l
(
yn

k , zn
k

) = l
(
yn

k

)
l
(
zn

k | yn
k

)
= l( yk)l

(
zk | yn

k

) {∏
i

l
(
yi | yi−1

k

)} {∏
i

l
(
zi | yn

k , zi−1
k

)}
.

So, we see that, if

l(zk | yk) = l
(
zk | yn

k

)
,

we obtain∏
i

l
(
yi

∣∣ yi−1
k , zi−1

k

) =
∏

i

l
(
yi | yi−1

k

)
⇐⇒

∏
i

l
(
zi | yi

k, zi−1
k

) =
∏

i

l
(
zi | yn

k , zi−1
k

)
.

Therefore, as this argument is valid for all n, the two definitions are equivalent
when restricted to k, . . . , n. This result remains valid as we let k go to −∞
and n to +∞. �

2.5.2 Exogeneity

The concept of exogeneity formalizes the idea that the generating mechanism
of the exogenous variables does not contain any relevant information about the
parameters of interest, which only appear in the model conditional on these
exogenous variables. In dynamic models, we can consider the two decomposi-
tions of the likelihood function that we introduced in the proof of Theorem 2.7,
but here we use a different decomposition of the parameters.

We say that the decomposition of xi into (yi , zi ) forms a sequential cut (or
that zi is weakly exogenous) if θ can be partitioned into (θ s

marg, θ
s
cond) where the
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components θ s
marg and θ s

cond are variation free such that

ln

(
zn

0, y
n
0 |θ

) = f0

(
z0

∣∣θ s
marg

)
f0

(
y0

∣∣z0, θ
s
cond

)
(2.11)

×
n∏

i=1

fi

(
zi

∣∣yi−1
0 , zi−1

0 , θ s
marg

)
fi

(
yi

∣∣yi−1
0 , zi

0, θ
s
cond

)
.

Here, zero is taken as the starting point, which can be replaced by −∞ as in
the previous paragraph.

Intuitively, the generating process of zi does not contain any information
about the parameter of interest θ s

cond of the process conditional on the entire
past.

On the other hand, the decomposition of xi in (yi , zi ) forms a global cut if θ
can be partitioned into

(
θ

g
marg, θ

g
cond

)
such that

ln

(
zn

0, y
n
0 |θ

) = f0

(
z0

∣∣θ g
marg

)
f0

(
y0

∣∣z0, θ
g
cond

)
(2.12)

×
n∏

i=1

fi

(
zi

∣∣zi−1
0 , θ g

marg

) n∏
i=1

fi

(
yi

∣∣yi−1
0 , zn

0, θ
g
cond

)
,

hence,

ln

(
zn

0, y
n
0 |θ

) = ln

(
zn

0

∣∣θ g
marg

)
ln

(
yn

0

∣∣zn
0, θ

g
cond

)
. (2.13)

In this case, the decomposition relates to the entire path of the process and, in
particular, zn

0 can be replaced by z∞
0 in the right-hand side of the last equation.

It is valuable that these two concepts merge and that noncausality makes it
possible that we obtain equivalence of these definitions.

Under the assumptions of Theorem 2.7, we have the following result.

Theorem 2.8 If yi does not Granger-cause zi , then the sequential and global
cuts are equivalent with

θ s
marg = θ g

marg and θ s
cond = θ

g
cond.

We say in this case that z is strongly exogenous. �

Proof: Take, for example, the sequential cut and consider Inequality (2.12).
The assumption of noncausality allows us to write

fi

(
zi

∣∣yi−1
0 , zi−1

0 , θ s
marg

) = fi

(
zi

∣∣zi−1
0 , θ s

marg

)
and

fi

(
yi

∣∣yi−1
0 , zi

0, θ
s
cond

) = fi

(
yi

∣∣yi−1
0 , zn

0, θ
s
cond

)
,

which makes it possible to immediately obtain Equation (2.13). �
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Example 2.4 Suppose that, conditionally on the past, xi = (yi , zi ) ∈ R
2 are

generated by the distribution

N

((
ayi−1 + bzi−1

cyi−1 + dzi−1

)
,

(
σyy σyz

σyz σzz

))
.

y does not cause z if c = 0 and zi is weakly exogenous after the decomposition

θ s
cond = (

a, b, σyy.z
)

and θ s
marg = (c, d, σzz)

(with σyy.z = σyy − σ 2
yz

σzz
) if σyz = 0. The equivalence between the two definitions

of exogeneity is immediate if c = 0. �

Notes

Our presentation refers to the construction of stochastic processes and their fundamental

properties which for example are treated by Cox and Miller (1965), Doob (1953), or

Karlin (1950). Statements about the modes of convergence and their properties can be

found in numerous books on probability theory (see for example Foata and Fachs (1996)

or Métivier (1972)) or on statistics (Davidson (1994), Serfling (1980)).

The analysis of the mixing process or NED is, for example, treated in Davidson

(1994), as well as the concept of uniform convergence in relation to equicontinuity (see

also Newey and McFadden (1994) or Andrews (1994)).

The concepts of noncausality were introduced into econometrics by Granger (1969)

and Sims (1972). A rigorous treatment of the equivalence of these concepts is found in

Florens and Mouchart (1982) for the general case, and Florens and Mouchart (1985a)

for the linear case. The extension to the case of continuous time is in Florens and Fougère

(1996). For the dynamic analysis of exogeneity and noncausality, refer to Engle, Hendry,

and Richard (1983) and Florens and Mouchart (1985b), where one will find in particular

a more precise analysis of Theorem 2.8.
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3. Estimation by Maximization and
by the Method of Moments

3.1 Introduction

This chapter presents the main statistical tools that enable us to estimate a vector
of parameters in an econometric model. We chose a rather general style for our
presentation in which the estimator is obtained by either solving a system of
equations or by optimization of a criterion. This presentation has the advantage
that we can cover maximum likelihood, least squares, or traditional methods
based on moments as special cases. This allows us to define a theoretical frame-
work that makes it possible to analyze these statistical methods in the context
of misspecification.

The counterpart of this choice of generality is a high level of “abstraction” in
our presentation. We tried to avoid this by including examples some of which are
extremely elementary. The following chapters will provide many other, more
pertinent examples. We also decided to provide only intuitive proofs while
trying to motivate the essential assumptions that are introduced.

This chapter begins with a review of the notion of an estimator and its prop-
erties. We will then introduce moment conditions and maximization, and the
computation of estimators that are associated with them. Finally, the properties
of these estimators are examined.

3.2 Estimation

Let us consider a statistical model {Xn, �, Pθ
n }. In many examples, the param-

eter space will be, intuitively speaking, very “large” and the statistician can
only hope to estimate a function of θ which, in general, may include functional
parameters. This chapter concentrates on the estimation of a parameter vector
of interest. We will analyze the estimation of some functional parameters in
other chapters.

In this chapter, λ(θ ) will be a mapping from θ to a subset of � in R
k and

represents the parameters of interest.

33
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Several questions then arise naturally:

� How can the functions λ(θ ) be constructed such that the values of the param-
eters can be interpreted in relation to the statistical model but also in relation
to the theory that it represents? The relevant functions λ(θ ) will be those that
make λ depend on θ through probability distribution Pθ

n .
� How can estimators of λ(θ ) be constructed, i.e., mappings λ̂n(x1, . . . , xn),

which summarize the information about the values of λ(θ ) that is contained
in the sample?

� What are the properties of such estimators, and are some estimators preferable
to others?

Besides these problems of estimation, problems of testing arise, whether they
are tests of a particular value of the parameters or, more generally, tests of the
relevance of the selected model. We will consider these tests in Chapter 4.

The most common question with which we will start is that of the properties
of an estimator. Thus, let us suppose that λ(θ ) is given and consider a mapping

λ̂n : Xn → �

which is called an estimator of λ(θ ). Usually, we consider two types of properties
of λ̂n , finite sample properties and asymptotic properties.

Small sample properties involve either sampling moments or the entire prob-
ability distribution of the estimator.

Definition 3.1 The estimator λ̂n is said to be an unbiased estimator of λ(θ )
if the sampling expectation of λ̂n exists and is equal to λ(θ ). In other terms,

Eθ (λ̂n) =
∫

λ̂nd Pθ
n = λ(θ ). (3.1)

If this equality does not hold, then the difference between Eθ (λ̂n) and λ(θ ) is
called the bias of the estimator. �

Let us provide an elementary example.

Example 3.1 Suppose the sample xi (i = 1, . . . , n) is i.i.d. with xi ∈ R and
that xi = μ + ui . The residuals ui are distributed according to an unknown
probability distribution Q with mean zero.

The parameter θ is here the pair (μ, Q) ∈ R × P0 ( P0 = set of probability
distributions with mean zero). Set λ(θ ) = μ and let λ̂n be defined by

λ̂n =
n∑

i=1

ai xi .
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The sampling expectation of λ̂n is then μ
∑n

i=1 ai and the estimator is unbiased
if

∑n
i=1 ai = 1. �

Note that, if the sampling expectation of λ̂n exists and if λ̂n is a biased
estimator of λ(θ ), then there always exists another function μ(θ ) of the sample
such that λ̂n is an unbiased estimator of μ(θ ). It is obviously sufficient to take
μ(θ ) = Eθ (λ̂n). Therefore, an estimator is in general an unbiased estimator of
something, however, this is not necessarily what we are interested in.

To evaluate the precision of an estimator, the sampling variance is often
calculated:

Var θ (λ̂n) =
∫ (

λ̂n − Eθ (λ̂n)
) (

λ̂n − Eθ (λ̂n)
)′

d Pθ
n (3.2)

which, in the case of an unbiased estimator, is equal to:

Var θ (λ̂n) =
∫ (

λ̂n − λ(θ )
) (

λ̂n − λ(θ )
)′

d Pθ
n . (3.3)

In the general case, one calculates the Mean Squared Error (MSE) of the esti-
mator, defined by:

MSE θ (λ̂n) =
∫ (

λ̂n − λ(θ )
) (

λ̂n − λ(θ )
)′

d Pθ
n

=
∫ (

λ̂n − Eθ (λ̂n)
) (

λ̂n − Eθ (λ̂n)
)′

d Pθ
n

+
(

Eθ (λ̂n) − λ(θ )
) (

Eθ (λ̂n) − λ(θ )
)′

.

(3.4)

The mean squared error is thus equal to the variance plus a matrix whose
elements are squares or products of the bias components of the estimator.

Two estimators of the same function are compared according to their MSE.
If λ̂n and μ̂n are two unbiased estimators of λ(θ ), then we say that λ̂n is more
efficient than μ̂n if the variance of the former is smaller than that of the latter.
Recall that a symmetric matrix A is smaller than a symmetric matrix B if B − A
is symmetric positive definite (i.e., ∀x , x ′(B − A)x ≥ 0).

Example 3.2 Let us return to Example 3.1 and assume that the variance of
xi is finite and equal to σ 2 for all i . Then

Var θ (λ̂n) = σ 2
n∑

i=1

a2
i .
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Finding ai such that λ̂n is unbiased and of minimal variance leads to the mini-
mization of 

∑n
i=1 a

2
i subject to the constraint 

∑n
i=1 ai = 1. This is obtained by

setting ai = 1/n for all i . Thus, we have

Var θ (λ̂n) = σ 2

n
. �

Our interest has focused on the first two sampling moments of λ̂n , but it can
be useful to analyze the probability distribution of λ̂n conditional on θ .

This analysis is particularly important whenever the statistical model contains
distributional assumptions.

Example 3.3 Let us continue with Examples 3.1 and 3.2. If we assume that
xi are normally distributed with mean zero, then

λ̂n|θ ∼ N

(
μ

n∑
i=1

ai , σ
2

n∑
i=1

a2
i

)
or, if ai = 1/n,

λ̂n|θ ∼ N

(
μ,

σ 2

n

)
. �

Example 3.4 Consider the model where xi are i.i.d. exponential with param-
eter θ > 0. Recall that the density of the exponential distribution satisfies:

f (xi |θ ) =
∣∣∣∣∣ θe−θxi if xi ≥ 0

0 otherwise.

We set λ(θ ) = θ and study the estimator

λ̂n = n∑n
i=1 xi

.

One can show that the expectation of λ̂n is equal to n
n−1

λ (thus, the bias is
− 1

n−1
λ) and that its sampling distribution is an inverse gamma distribution

with density:

g(u) = (nλ)n� (n)−1 u−(n+1)e− nλ
u 1I (u ≥ 0) . �

Knowing the sampling distribution of an estimator is mainly useful for finding
confidence intervals or exact small sample tests.

Unfortunately, with the exception of a small number of cases, the small sam-
ple properties do not have an analytical representation. This difficulty is the
motivation for the asymptotic analysis, which permits us to use simplifications,
such as linearization and approximation by the normal distribution. The de-
velopment in the use of computers has renewed the interest in finite sample



P1: OSO/OVY P2: OSO/OVY QC: OSO/OVY T1: OSO

Ecoeok CUFX117-Florens 0521876407 April 22, 2007 13:56

Estimation by Maximization and by the Method of Moments 37

properties, which can be analyzed by simulation. This approach will be pre-
sented in Chapter 6.

Let us recall now the main asymptotic properties that are relevant for our
approach. For this, we consider a sequence λ̂n of estimators and an asymptotic
model {X∞, �, Pθ

∞} with respect to which we analyze the behavior of λ̂n .
We emphasize that λ̂n can be considered as a function defined on X∞ which,
however, only depends on the first n observations.

Definition 3.2

1. The sequence λ̂n is a consistent sequence of estimators of λ(θ ) Pθ
∞-a.s.

(Pθ
∞-prob) if

limλ̂n = λ(θ ) Pθ
∞ − a.s.

(
Pθ

∞ − prob
)
.

2. The sequence λ̂n converging in probability is asymptotically normal with
rate of convergence 

√
n if there exists a matrix θ as function of θ such

that
√

n(λ̂n − λ(θ )) → N (0, θ ) Pθ
∞ − distribution. �

Example 3.5 We continue with Example 3.1 and consider now a sample whose
size goes to infinity. Suppose that ai = 1/n for all i and n, and, thus, λ̂n = x̄ ,
is the sample average. An immediate application of the strong law of large
numbers implies that λ̂n → μ Pθ -a.s. and the central limit theorem implies
that

√
n(λ̂n − μ) → N (0, σ 2)

in distribution, if we assume that the variance σ 2 of xi exists. �

The same remark we made earlier with respect to the expectation of an
estimator, applies to its consistency. A sequence of estimators λ̂n may not be
consistent, but in many cases, it may converge towards a limit that is different
from the function of the parameters that we wish to estimate. It can be extremely
interesting to compare the difference between these two functions, and this is
the foundation of numerous tests, in particular of specification tests.

We conclude this section by pointing out two results that will be very useful
later. The first is related to quadratic forms associated with estimators that
are asymptotically normal, and the second, known under the name of Delta
theorem, characterizes the asymptotic distribution of nonlinear transformations
of estimators.

Theorem 3.1 Let λ̂n and ̂n be two estimators that satisfy:

1.
√

n(λ̂n − λ(θ )) → N (0, θ ) in Pθ
∞-distribution

2. ̂n → θ Pθ -prob and ̂n and θ are invertible.
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Then,

√
n ̂

− 1
2

n

(
λ̂n − λ(θ )

)
→ N (0, I )

and

n
(
λ̂n − λ(θ )

)′
̂−1

n

(
λ̂n − λ(θ )

)
→ χ2

k

in distribution where k is the dimension of λ(θ ). �

Proof: Recall that ̂n is symmetric positive definite, and so is ̂−1
n which

can thus be factorized into

̂−1
n = ̂

− 1
2

n ̂
− 1

2
n

(the notation ̂
− 1

2
n is, of course, a convention). We can choose ̂

− 1
2

n such that

̂
− 1

2
n → 

− 1
2

θ

and the first part of the theorem follows from the properties of convergence in
distribution (Section 2.4).

√
n̂

− 1
2

n

(
λ̂n − λ(θ )

)
→ N

(
0, 

− 1
2

θ θ
− 1

2

′

θ

)
= N (0, I ).

Recall, furthermore, that, if ε ∼ N (μ, �), then (ε − μ)′�−1(ε − μ) is dis-
tributed according to a χ2 with degrees of freedom equal to the dimension of
ε. Still using the properties of Section 2.4, we can verify that

n
(
λ̂n − λ(θ )

)′
−1

θ

(
λ̂n − λ(θ )

)
converges in distribution to a χ2

k . This result remains unchanged if we replace

θ by ̂n since(√
n(λ̂n − λ(θ ))

)′ (
̂−1

n − −1
θ

) (√
n(λ̂n − λ(θ ))

)
goes to zero in probability. In fact, the central term goes to zero, and the two
terms on the left and on the right possess a limit in distribution. �

Theorem 3.2 Suppose λ̂n is a consistent estimator and ϕ satisfies:

1.
√

n(λ̂n − λ(θ )) → N (0, θ ) in Pθ
∞ -distribution

2. ϕ : � → � ⊂ R
r is continuously differentiable.

Then ϕ(λ̂n) is a consistent estimator of ϕ(λ(θ )) in the same sense as λ̂n and
√

n(ϕ(λ̂n) − ϕ(λ(θ ))) → N (0, �θ ) Pθ
∞ − distribution
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with

�θ =
(

∂ϕ

∂λ′
∣∣
λ=λ(θ)

)
θ

(
∂ϕ′

∂λ

∣∣
λ=λ(θ )

)
where ∂ϕ

∂λ′ is the r × k matrix of partial derivatives ∂ϕl

∂λ j
(l = 1, . . . , r and j =

1, . . . , k) and ∂ϕ′
∂λ

is the transposed matrix. �

This result follows immediately using a first order expansion of ϕ:

√
n

(
ϕ

(
λ̂n

)
− ϕ (|λ (θ ))

)
� ∂ϕ

∂λ′ λ (θ )

{√(
λ̂n − λ (θ )

)}
.

In the following, we will often use the notation ∂ϕ

∂λ′ (λ(θ )) instead of ∂ϕ

∂λ′ |λ=λ(θ ).

3.3 Moment Conditions and Maximization

In order to simplify the presentation, we will at first assume that the statistical
reference model is i.i.d. The observations xi ∈ X ⊂ R

m are thus independent
with distribution Qθ , θ ∈ �. Our objective is to describe a class of functions
λ(θ ) which can be, at the same time, interpreted and readily estimated.

These functions are in fact functions of Qθ and their dependence on θ is,
therefore, determined by the dependence of Q and θ .

Let us introduce the following elements:

� � ⊂ R
k and λ ∈ �.

� ψ : X × � → R
r is a mapping such that ψ(xi , λ) is Qθ integrable for all

λ ∈ �.

Then, we are interested in the system of equations:

Eθ (ψ(xi , λ)) = 0. (3.5)

This equation system will be called the system of moment equations. This defines
a set of r relations between θ and λ from which the xi obviously disappear when
taking expectations. We are interested in the solution to this system for λ, which
is a vector of dimension k. The value of i does not play a role because the model
is i.i.d. We can assume, in particular, that i = 1 without changing the condition.
It is thus advisable to investigate existence and uniqueness of the solution to
this system. We will always be interested in systems of moment equations such
that, if a solution exists, then it is necessarily unique. Indeed, we want to define
a function λ(θ ) as the solution to this system of equations, and nonuniqueness
does not allow such a definition. Although the system (3.5) will be in general
nonlinear, an intuitive condition for uniqueness is the existence of a sufficient
number of equations, i.e., that r ≥ k. We will reconsider these conditions at
greater length in Chapter 17.
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Two cases will be explicitly analyzed:
1. The number of moment conditions is equal to the dimension of λ and the

system (3.5) is sufficiently regular such that, for all θ ∈ �, it admits a (unique)
solution λ(θ ). We talk therefore of a simple system of moment equations.

Let us consider a function ϕ of X × � in R such that ϕ(xi , λ) is integrable
for all λ and examine the problem

max
λ∈�

Eθ (ϕ(xi , λ)). (3.6)

The case of minimization is obviously equivalent as it suffices to change the
sign. Here again, the existence and uniqueness of the solution to (3.6) are not
guaranteed. In general, one introduces assumptions that satisfy the following
conditions: Eθ (ϕ(xi , λ)) is injective in λ, which implies uniqueness, and the
existence of a maximum is implied, for example, by assuming compactness of
� and continuity of the function ϕ. Assuming differentiability of ϕ with respect
to λ and the possibility to commute integration and differentiation, solving (3.6)
is achieved by solving

Eθ

(
∂

∂λ
ϕ (xi , λ)

)
= 0. (3.7)

This procedure of defining λ(θ ) leads naturally to a simple system of moment
equations. The situation can be a more complicated because the first order
conditions (3.7) characterize only a local maximum while a global maximum is
required. The relationship between these two approaches is simple only when
the system (3.7) admits a unique solution which is the maximum.

2. The number of moment conditions is larger than k and the system, there-
fore, does not necessarily have a solution. We then define �∗, a subset of �,

such that for any θ ∈ �∗ the system Eθ (ψ(xi , λ)) = 0 admits a unique solution
λ(θ ).

It is obviously assumed that �∗ is nonempty, and this system is called system
of generalized moment equations

In this case, we see that the system (3.5) defines a function λ(θ ) provided
that the initial statistical model is restricted to the sub-family of sampling prob-
abilities indexed by �∗. The question naturally arises of empirically verifying
whether θ belongs to �∗ by means of a hypothesis test and furthermore to es-
timate λ(θ ). In practice, the estimation method provides a natural test, that we
will present.

Example 3.6 Suppose the xi are i.i.d. with probability distribution Q and,
thus, in this case θ = Q (see Example 1.8, in Chapter 1) and � is the subset of
probabilities Pm such that the expectation of xi exists. We consider ψ(xi , λ) =
xi − λ and λ(Q) is then the function that relates Q with the expectation E Q(xi ).
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More generally, we can take a vector of functions ψ0(xi ) and limit the pa-
rameter space of the model to the set Q such that ψ0 is integrable. Consider the
function ψ(xi , λ) = ψ0(xi ) − λ. The solution to the system of moment equations
is then

λ(Q) = E Q(ψ0(xi )).

Let us return to ψ (xi ) = xi and define ϕ(xi , λ) = (xi − λ)′(xi − λ) which
constraints Q to admit second order moments. The solution of the minimization
problem

min
λ

E Q
[
(xi − λ)′(xi − λ)

] = 0

is equivalent to solving E Q(xi − λ) = 0 and leads in this case to λ(Q) =
E Q(xi ). �

Example 3.7 Suppose xi ∈ R and the model is i.i.d. with probability distri-
bution Q, satisfying the integrability of xi and x2

i . The generalized system of
moment equations is the following

λ ∈ R and

{
E Q(xi − λ) = 0

E Q((xi − λ)2 − λ2) = 0

The preceding system imposes on the initial model the restriction that the square
of the mean and the variance of xi are equal and defines λ (Q) as the common
value. Therefore, the set �∗ is the set of all probability distributions on R that
satisfy equality of squared mean and variance. It contains for example the
exponential distribution. �

Example 3.8 Let us introduce linear regression in a simple example. Suppose
the xi = (yi , zi ) ∈ R

2 are i.i.d. with probability distribution Q such that second
order moments of xi exist. The following two problems are equivalent:

E Q (( yi − λzi )zi ) = 0

and

min
λ∈R

E Q
(
( yi − λzi )

2
)
.

They yield a solution

λ(Q) = E Q(yi zi )

E Q(z2
i )

which is the coefficient of the linear regression of yi on zi . �
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Example 3.9 The following example is very important and covers an estima-
tion method which is used extremely often, namely maximum likelihood method.
We are interested in a correctly specified model for which the likelihood func-
tion, that is maximized, is correct. Consider the i.i.d. model for the observations
xi and the likelihood function

ln(x |θ ) =
n∏

i=1

f (xi |θ ) θ ∈ � ⊂ R
k .

The dominating measure is the Lebesgue measure for simplicity. We assume
additionally that the model is identified (two different values of θ correspond
to density functions with different probabilities). Set � = � and introduce the
maximization problem

max
λ∈�

Eθ (ln f (xi |λ)) (3.8)

for which, under the usual regularity conditions, the first order conditions can
be written as

Eθ

(
∂

∂λ  
ln f (xi |λ)

)
= 0. (3.9)

The above expression is the expectation of the score of the dominated model.
We can also verify that the solution λ(θ ) of the maximization problem (3.8) is
just λ(θ ) = θ . Indeed, the problem (3.8) is equivalent to

max
λ∈�

{∫
ln f (xi |λ) f (xi |θ )dxi −

∫
ln f (xi |θ ) f (xi |θ )dxi

}
⇔ min

λ∈�

∫
ln

f (xi |θ )

f (xi |λ)
f (xi |θ )dxi .

The quantity in the maximization is the comparison between f (xi |θ ) and f (xi |λ)
called Kullback-Leibler (quantity of ) information. Using Jensen’s inequality we
can immediately verify that∫

ln
f (xi |θ )

f (xi |λ)
f (xi |θ )dxi ≥ 0.

This value is zero if f (xi |θ ) and f (xi |λ) are equal, which, under the iden-
tification assumption, implies that λ and θ are equal. The minimum of the
Kullback-Leibler information is therefore reached at θ .

Therefore, the function λ (θ ) that we estimate with maximum likelihood is the
identity λ (θ ) = θ. �

In stationary models, the moment or maximization conditions can be more
general than presented above and use a sequence xi , . . . , xi+s of observations.
Thus, we can systematically replace xi in the preceding presentation by such
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a sequence; the comments will remain identical. Let us provide an example of
moment conditions in a stationary model.

Example 3.10 Suppose (xi )i=1,...,n are generated by a stationary process
whose first two moments exist. We denote by P the probability distribution of
this process and in this statistical model θ is equal to P. Consider the equations{

E P [(xi − λ1xi−1 − λ2xi−2) xi−1] = 0

E P [(xi − λ1xi−1 − λ2xi−2) xi−2] = 0.

The solution of this system(
λ1 (P)

λ2 (P)

)
=

(
E P

(
x2

i−1

)
E P (xi−1xi−2)

E P (xi−1xi−2) E P
(
x2

i−2

) )−1 (
E P (xi xi−1)

E P (xi xi−2)

)

is interpreted as the coefficient of the linear regression of xi on xi−1 and xi−2

(see Chapter 7). �

Remark to Moments and Conditional Moments

As we explained in Chapter 1, econometrics primarily analyzes conditional
moments explaining the generation of variables yi given some variables zi . In
terms of moments, this viewpoint translates into the consideration of condi-
tional moment equations. The parameter λ is then defined as the solution of the
equation

Eθ
(
ψ̃ (xi , λ)

∣∣ zi

) = 0,

where ψ̃ is a mapping of values in R
r̃ where r̃ is not necessarily larger than k,

the dimension of λ. Indeed, this condition comes down to assuming an infinite
number of moment conditions because we have one condition for each value of
the random variable zi . Insofar as λ is of finite size, we can reduce this infinity
of conditions to a finite number.

Let us suppose for simplicity that r̃ = 1. We can then introduce a sequence
h j , j = 1, . . . , r , of functions of zi (and possibly of λ) by setting

h (zi , λ) = (
h j (zi , λ)

)
j=1,...,r

,

we have obviously

h (zi , λ) Eθ
(
ψ̃ (xi , λ)

∣∣ zi

) = 0,
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thus

Eθ
[
h (zi , λ) Eθ

(
ψ̃ (xi , λ)

∣∣ zi

)] = Eθ
[
h (zi , λ) ψ̃ (xi , λ)

]
= Eθ [ψ (xi , λ)]

= 0

(3.10)

with

ψ (xi , λ) = h (zi , λ) ψ̃ (xi , λ) .

We thus pass from a conditional moment condition to a condition where the
expectation is taken with respect to the joint probability as in (3.5). The di-
mension of the moment condition is thus r which is arbitrary but must be
larger than k for Equation (3.10) to have a unique solution. The functions h are
called instruments, and we can ask what is the optimal choice of these functions
and whether there exists an optimal choice with exactly k functions (r = k).
This question will be studied at the end of this chapter and in Chapters 15
and 17. �

3.4 Estimation by the Method of Moments and Generalized Moments

In the preceding section, we gave various definitions of the function λ(θ ). In
each of these definitions, the value of this function depends on θ through the
sampling probability which is used to calculate an expectation. The general
estimation principle consists in replacing the sampling probability by the em-
pirical probability. The moment condition then becomes a relationship between
the sample and λ whose solution yields the estimator λ̂n .

First, we limit ourselves to i.i.d. samples for which the observations are the
(xi )i=1,...,n with xi ∈ X ⊂ R

m . Recall that the empirical probability distribution
associated with this sample is defined by

Q̂n = 1

n

n∑
i=1

δxi

where δxi is the Dirac measure on xi . This is equivalent to defining Q̂n(S) as
the number of observations that belong to S divided by n; if ϕ is a function
of the sample, then its expectation with respect to the empirical probability
distribution is equal to

Ên(ϕ) =
∫

ϕd Q̂n(S) = 1

n

n∑
i=1

ϕ(xi ). (3.11)

The properties of the empirical probability distribution are treated in more
detail in Chapter 5. We will successively consider estimating λ with a sim-
ple system of moment conditions, and through maximization. Finally, we will
consider the estimation of λ with a generalized system of moment equations.
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Consider the simple system

Eθ (ψ(xi , λ)) = 0.

The estimator λ̂n is defined as the solution to the system

1

n

n∑
i=1

ψ(xi , λ) = 0 (3.12)

obtained through the substitution of the expectation with respect to the sampling
distribution by that of the empirical distribution.

If the maximization of Eθ (ϕ(xi , λ)) (see (3.6)) is the problem that defines
λ(θ ), then we construct the estimator λ̂n by

λ̂n = arg max
λ∈�

1

n

n∑
i=1

ϕ(xi , λ) (3.13)

or by solving

1

n

n∑
i=1

∂

∂λ
ϕ(xi , λ) = 0. (3.14)

In these two cases, the solution λ̂n of the empirical moment equations, or of
the maximization, exists and is unique under regularity conditions that are not
very restrictive in practice. In contrast, if we consider a generalized system of
moment equations, then the system of equations

1

n

n∑
i=1

ψ(xi , λ) = 0 (3.15)

does not admit a solution in general, even if the true distribution that generated
the data satisfies the theoretical equation

Eθ (ψ(xi , λ)) = 0, θ ∈ �∗.

Note in particular that (3.15) is a system that contains more equations than
unknowns.

The generalized method of moments is based on the minimization of a norm
of the left-hand term in (3.15). We take a symmetric positive definite matrix Hn

(possibly a function of the sample), and λ̂n is calculated by

λ̂n = arg min
λ∈�

(
1

n

n∑
i=1

ψ(xi , λ)

)′
Hn

(
1

n

n∑
i=1

ψ(xi , λ)

)
. (3.16)

Studying the asymptotic properties of the estimator will suggest an optimal
choice of the sequence of matrices Hn .
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Remark. This approach can be interpreted as a change in the function of
parameters. Indeed, set

λ̂ (θ ) = arg min Eθ (ψ (xi , λ))′ H Eθ (ψ (xi , λ)) .

This function is, in general, defined for all θ and is identical to the solution
λ (θ ) of (3.5) if θ ∈ �∗. Therefore, the function λ̂ (θ ) extends λ (θ ) outside of
�∗. The estimator λ̂n (3.16) is constructed like an estimator of λ̂ (θ ) obtained
by replacing the expectation with sample averages and H by a matrix Hn. �

Before we consider the asymptotic results derived for this estimator, we
illustrate their implementation in the examples that we previously introduced.

Example 3.11 Continuation of Example 3.6. If ψ(xi , λ) = xi − λ, the esti-
mator λ̂n of λ is then the sample average

x̄ = 1

n

n∑
i=1

xi .

More generally, if ψ(xi , λ) = ψ0(xi ) − λ, the estimator of λ will be the sample
average of ψ0, i.e.,

λ̂n = 1

n

n∑
i=1

ψ0(xi ). �

Example 3.12 Continuation of Example 3.7. Suppose Hn = I2, the unit ma-
trix of dimension 2. The generalized method of moment estimator of λ will then
be the solution to the minimization of(

1

n

n∑
i=1

xi − λ

)2

+
(

1

n

n∑
i=1

(xi − λ)2 − λ2

)2

and satisfies, therefore:

λ̂n = x̄(1 + 2
(

1
n

∑n
i=1 x2

i )
)

1 + 2x̄2
. �

Example 3.13 Using the notation of Example 3.5 we can immediately verify
the maximization of

1

n

n∑
i=1

(xi − λ)′(xi − λ)

leads to the estimator λ̂n = x̄ . �
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Example 3.14 The moment equations of Example 3.8 lead to the estimator

λ̂n =

n∑
i=1

yi zi

n∑
i=1

z2
i

which is the coefficient of the linear regression of yi on zi . �

Example 3.15 The example of maximum likelihood that we started to explain
in Example 3.9 is extremely important. The estimator λ̂n derived from Equa-
tion (3.9) is equal to

λ̂n = arg max
λ∈�

1

n

n∑
i=1

ln f (xi |λ)

and is the maximum likelihood estimator. Under regularity conditions, this
implies that λ̂n satisfies the first order condition

1

n

n∑
i=1

∂ ln f (xi |λ̂n)

∂λ
= 0.

�

Extending the above presentation to stationary processes does not pose any
difficulties. Suppose that the moment condition involves the sequence of ob-
servations xi , . . . , xi+s and can be written as

Eθ (ψ (xi , . . . , xi+s, λ)) = 0. (3.17)

We then replace in this expression the expectation by the sample average

1

n − s 

n−s∑
i=1 

ψ (xi , . . . , xi+s, λ) = 0. (3.18)

If the dimension of ψ is equal to that of λ, we solve (3.17), and if the number of
moment conditions is larger than the dimension of λ, we proceed in an identical
way to the one presented for (3.15).

Example 3.16 Continuation of Example 3.10. We then obtain as an estimator

( 
λ̂1n

λ̂2n 

)
=

⎛⎜⎜⎜⎜⎝ 

n∑
i=3 

x2
i−1

n∑
i=3

xi−1xi−2

n∑
i=3

xi−1xi−2

n∑
i=3

x2
i−2

⎞⎟⎟⎟⎟⎠
−1 ⎛⎜⎜⎜⎜⎝

n∑
i=3

xi xi−1

n∑
i=3

xi xi−2

⎞⎟⎟⎟⎟⎠ . �
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3.5 Asymptotic Properties of Estimators

We will essentially examine two types of results: the almost sure convergence
of λ̂n to λ(θ ) and the asymptotic normality of

√
n(λ̂n − λ(θ )). Precise proofs

of these results are difficult, but we will try, in this section, to outline the main
arguments and assumptions treating simultaneously the various estimators that
we previously presented. We will start by commenting on the main assumptions.

1. The first set of assumptions is fundamental, it is the most “statistical.” We
have to assume that the data generating mechanism satisfies the strong law of
large numbers. We saw in the previous chapter that these conditions are satisfied
if the process is i.i.d. or, more generally, stationary ergodic. In particular, we
then have

1

n

n∑
i=1

ψ(xi , λ) → Eθ (ψ(xi , λ)) Pθ − a.s., (3.19)

1

n

n∑
i=1

ϕ(xi , λ) → Eθ (ϕ(xi , λ)) Pθ − a.s. (3.20)

and (
1

n

n∑
i=1

ψ(xi , λ)

)′
Hn

(
1

n

n∑
i=1

ψ(xi , λ)

)
→ Eθ (ψ(xi , λ))′ H Eθ (ψ(xi , λ)) Pθ − a.s.

(3.21)

by using the notation of (3.12), (3.15), and (3.16).
Convergence (3.21) requires the additional assumption:

Hn → H Pθ − a.s. (3.22)

2. We have to assume additionally that λ̂n and λ(θ ) exist and are unique.
These assumptions are in particular satisfied if � is compact and if ψ (or ϕ)
and its expectation are continuous. The compactness assumption is not very
satisfying (because it is not satisfied in the majority of models) and we prefer
to assume directly the existence and uniqueness of the estimators and of the
functions λ(θ ).

3. Finally, we have to assume that the convergence in (3.19), (3.20), and
(3.21) is sufficiently regular in λ.

The usual assumption, in addition to the continuity of ϕ, ψ , and their ex-
pectation, is the uniformity of convergence in λ as it was defined in Chapter 2.
This uniformity is difficult to verify and sufficient conditions are available in
some cases. The necessary condition of uniformity is a local condition (uniform
in a compact neighborhood) which can be used when � is open. When � is
compact, we can consider global uniformity.
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Under these conditions, the intuitive result is that it is possible to interchange
the solution (or maximization) and the passage to the limit.

We thus obtain in the case of a simple moment equation:

lim λ̂n = lim solution

{
1

n

n∑
i=1

ψ(xi , λ) = 0

}

= solution of

{
lim

1

n

n∑
i=1

ψ(xi , λ) = 0

}
= solution of

{
Eθ (ψ(xi , λ) = 0

}
= λ(θ ) Pθ − a.s

(3.23)

The argument is the same for estimators based on maximization:

lim λ̂n = lim arg max
λ∈�

1

n

n∑
i=1

ϕ(xi , λ)

= arg max
λ∈�

lim
1

n

n∑
i=1

ϕ(x, λ)

= arg max
λ∈�

Eθ (ϕ(xi , λ))

= λ(θ ) Pθ − a.s.

(3.24)

Finally, the same argument applied to a generalized system of moment equa-
tions leads to

lim λ̂n = lim arg min

(
1

n

n∑
i=1

ψ(xi , λ)

)′
Hn

(
1

n

n∑
i=1

ψ(xi , λ)

)
= arg min Eθ (ψ(xi , λ))′ H Eθ (ψ(xi , λ)) Pθ − a.s. (3.25)

If it is furthermore assumed that the condition

Eθ (ψ(xi , λ)) = 0

holds, i.e., that θ ∈ �∗, we then have additionally

lim λ̂n = arg sol{Eθ (ψ(xi , λ) = 0} Pθ − a.s. θ ∈ �∗

= λ(θ ).
(3.26)

Now let us analyze the asymptotic normality of these estimators assuming
that the conditions for almost sure convergence are satisfied. The additional
assumptions are of two types:

4. The data-generating process must satisfy the central limit theorem. We
saw in the previous chapter that this assumption is satisfied for i.i.d. processes
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and requires a mixing condition that is stronger than the one required by the
law of large numbers in the case of stationary processes. Of course we assume
that the necessary moments (for example the variance of ψ) exist.

5. The proof of asymptotic normality is essentially based on linear approxima-
tions and will therefore require the differentiability of the estimation criterions
and their limits. In particular, it requires that λ (θ ) is in the interior of � and
not located on the boundary. We must furthermore assume that it is possible to
interchange expectation and derivatives (conditions for “differentiation under
the summation sign”). Finally, we require conditions that allow us to neglect
the remainder in the linear approximations; these conditions are essentially
conditions of bounds on the derivatives of order higher than 1.

Let us show, under these assumptions, the asymptotic normality of an esti-
mator drawn from a simple set of moment conditions.

Consider the linear approximation

ψ(xi , λ̂n) � ψ (xi , λ(θ )) + ∂ψ

∂λ′ (xi , λ(θ ))
(
λ̂n − λ(θ )

)
. (3.27)

Then, by summation

1

n

n∑
i=1

ψ(xi , λ̂n) � 1

n

n∑
i=1

ψ (xi , λ(θ ))

+
(

1

n

n∑
i=1

∂ψ

∂λ′ (xi , λ(θ ))

) (
λ̂n − λ(θ )

)
. (3.28)

In the following, we use for notational simplicity

∂ψ

∂λ′ (xi , λ(θ )) = ∂ψ

∂λ′ .

Because the left-hand term is zero by the definition of λ̂n , we obtain the ap-
proximation

√
n(λ̂n − λ) � −

(
1

n

n∑
i=1

∂ψ

∂λ′

)−1 (√
n

n

n∑
i=1

ψ (xi , λ(θ ))

)
. (3.29)

By the strong law of large numbers,

1

n

n∑
i=1

∂ψ

∂λ′

converges to

Eθ

(
∂ψ

∂λ′

)
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which is a matrix that is invertible in a neighborhood of λ(θ ) because λ(θ ) is
the unique solution of Eθ (ψ) = 0 and because of

Eθ

(
∂ψ

∂λ′

)
= ∂

∂λ′ Eθ (ψ).

By the central limit theorem, we see that
√

n

n

n∑
i=1

ψ (xi , λ(θ )) → N (0, Vθ ) in Pθ − distribution.

Indeed ψ has zero expectation at λ (θ ) .

If the data-generating process is i.i.d., then

Vθ = Var θ (ψ). (3.30)

In the mixing stationary case, Vθ is given by Theorem 2.6 of Chapter 2 and
satisfies the following expression

Vθ =
+∞∑

j=−∞
Covθ

(
ψ(xi , θ ), ψ(xi+ j , θ )

)
. (3.31)

Multiplying by Eθ ( ∂ψ

∂λ′ )
−1 and using the properties from Section 2.4, we obtain

√
n

(
λ̂n − λ(θ )

)
→ N (0, θ ) in Pθ − distribution

with

θ =
[

Eθ

(
∂ψ

∂λ′

)]−1

Vθ

[
Eθ

(
∂ψ ′

∂λ

)]−1

. (3.32)

This proof naturally extends to the case of maximization estimators using the
relationship

ψ(xi , λ) = ∂ϕ

∂λ
(xi , λ) (3.33)

and

∂ψ

∂λ′ (xi , λ) = ∂2ϕ

∂λ∂λ′ (xi , λ). (3.34)

We summarize the preceding set of results with the following theorem.

Theorem 3.3 Under Assumptions 1 to 5, the estimator λ̂n given as the solution
of 1

n

∑n
i=1 ψ(xi , λ) = 0 (or respectively as the argument of the maximum of

1
n

∑n
i=1 ϕ(xi , λ)) has the following asymptotic properties:

1. λ̂n → λ(θ ) Pθ − a.s. where λ(θ ) is the solution of Eθ (ψ(xi , λ)) = 0
(resp. argument of the maximum of Eθ (ϕ(xi , λ))).
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2.
√

n(λ̂n − λ(θ )) → N (0, θ ) in Pθ -distribution.
with

θ = Eθ

(
∂ψ

∂λ′

)−1

Vθ E
θ

(
∂ψ ′

∂λ

)−1

(
resp. θ = Eθ

(
∂2ϕ

∂λ∂λ′

)−1

Vθ E
θ

(
∂2ϕ′

∂λ∂λ′

)−1
)

.

where Vθ is defined in (3.30) or in (3.31). �

Let us consider the extension of this approach to estimators that are defined
by the generalized method of moments. The solution λ̂n of the minimization
problem (3.16) satisfies the first order conditions(

1

n

n∑
i=1

∂ψ ′

∂λ  
(xi , λ̂n)

)
Hn

(
1

n

n∑
i=1

ψ(xi , λ̂n)

)
= 0.

Using approximation (3.28), we obtain(
1

n

n∑
i=1

∂ψ ′

∂λ
(xi , λ̂n)

)
Hn

[(√
n

n

n∑
i=1

ψ(xi , λ(θ )

)

+
(

1

n

n∑
i=1

∂ψ

∂λ′ (xi , λ(θ ))

)
√

n
(
λ̂n − λ(θ )

)]
� 0.

Note that

1

n

n∑
i=1

∂ψ ′

∂λ
(xi , λ̂n)

has the same limit as

1

n

n∑
i=1

∂ψ ′

∂λ
(xi , λ(θ ))

which is equal to Eθ ( ∂ψ

∂λ
). The assumption Hn → H0 and the central limit

theorem applied to

√
n

n

n∑
i=1

ψ (xi , λ(θ ))

imply the asymptotic normality of

√
n(λ̂n − λ(θ )).
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Theorem 3.4 Under the assumptions of Theorem 3.3, the estimator λ̂n defined
in (3.16) satisfies the following asymptotic properties:

1. λ̂n → λ(θ ) Pθ − as. if θ ∈ �∗.
2.

√
n(λ̂n − λ(θ )) → N (0, θ ) in Pθ -distribution if θ ∈ �∗ with

θ =
(

Eθ

(
∂ψ ′

∂λ

)
H Eθ

(
∂ψ

∂λ′

))−1

Eθ

(
∂ψ ′

∂λ

)

H Vθ H Eθ

(
∂ψ

∂λ′

) (
Eθ

(
∂ψ ′

∂λ

)
H Eθ

(
∂ψ

∂λ′

))−1

.

All expressions are evaluated at λ(θ ). �

We note that, in the case of generalized moments, the matrix Eθ ( ∂ψ ′
∂λ

) is not
invertible (as it is not square), which makes the expression for the asymptotic
variance more complicated than in Theorem 3.3. It can be easily verified that,
if Eθ ( ∂ψ ′

∂λ
) is square and invertible, i.e., the generalized moments are reduced

to simple moments, then the two results are identical.
A possibility to simplify the preceding asymptotic variance becomes imme-

diately apparent, by choosing a suitable sequence Hn in such a way that its limit
H is the inverse of Vθ .

Theorem 3.5 If H = V −1
θ , then the asymptotic variance of λ̂n defined in

Theorem 3.4 simplifies to

θ =
(

Eθ

(
∂ψ ′

∂λ

)
V −1

θ Eθ

(
∂ψ

∂λ′

))−1

and the asymptotic variance of λ̂n derived from this choice of H0 is smaller
than or equal to (in the matrix sense) the asymptotic variance of λ̂n derived
from any H. In this case, we say that the sequence Hn is optimal if it converges
to V −1

θ . �

Proof: It is sufficient to verify that the difference, called K , between the
variances appearing in Theorems 3.4 and 3.5 is positive semidefinite. K is
given by

K = (E ′ H E)−1 E ′ H Vθ H E(E ′ H E)−1 − (
E ′V −1

θ E
)−1

by setting E = Eθ ( ∂ψ

∂λ′ ). Factorizing K and defining D such that V −1
θ = D′ D,

we obtain, after some matrix manipulations:

K = (E ′ H E)−1 E ′ H
[
D−1 D′−1 − E(E ′ D′ DE)−1 E ′] H E(E ′ H E)−1,
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hence,

K = (E ′ H E)−1E ′ H D−1 
[
I − DE(E ′ D′ DE)−1 E ′ D′]D′−1 H E(E ′ H E)−1.

It is apparent that this difference is positive semidefinite if and only if

I − DEθ

(
∂ψ

∂λ

) [
Eθ

(
∂ψ ′

∂λ

)
D′ DEθ

(
∂ψ ′

∂λ

)]−1

Eθ

(
∂ψ ′

∂λ

)
D

is positive semidefinite. This property is obviously satisfied, because this matrix
is an orthogonal projection matrix. �

We illustrate these results starting with the examples that we presented previ-
ously. In particular, we will see that the preceding expressions for the asymptotic
variance often simplifies.

As we will see in example 3.18, the optimal asymptotic matrix depends in
general on unknown characteristics of the sampling process which must be
consistently estimated in order to determine Hn. In particular, H may depend
on λ (θ ), and it is sufficient to replace this vector by a preliminary estimate,
which, for example, can be obtained by generalized method of moments with
a weighting matrix equal to the identity matrix or equal to(

Ir 0
0 0

)
.

Example 3.17 The preceding theorems are not immediately useful to show
that in examples 3.6 and 3.11,

√
n(λ̂n − Eθ (ϕ0)) converges to a centered normal

distribution with variance Varθ (ψ0). This result follows immediately from the
application of the central limit theorem. We can show that in this example

Eθ

(
∂ψ

∂λ′

)−1

= 1. �

Example 3.18 Continuation of Example 1.7 and 3.12. The convergence of
λ̂n is directly obtained since x̄ → λ, 1

n

∑n
i=1 x2

i → 2λ2 and thus λ̂n → λ Pθ −
a.s. (here we simplify notation by writing λ for λ (Q)). We can directly calculate
the asymptotic variance of λ̂n and verify the result with Theorem 3.4. Let us
calculate instead an estimator that corresponds to the optimal choice of H. We
can show that

Var θ (ψ) =
(

λ2 Eθ (x3
i ) − 4λ3

Eθ (x3
i ) − 4λ3 8λ4 − 4λEθ (x3

i ) + Eθ (x4
i )

)
.
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In order to construct a sequence Hn converging to (Varθ (ψ))−1, we can pro-
ceed in the following manner. The theoretical moments Eθ (x3

i ) and Eθ (x4
i ) are

consistently estimated by the empirical moments

1

n

n∑
i=1

x3
i and

1

n

n∑
i=1

x4
i .

The parameter λ appears in the matrix. It is sufficient to have a consistent
estimator λ∗

n of λ available, for example the one constructed with the matrix
Hn = I2, thus

λ∗
n = x̄

(
1 + 2 1

n

∑n
i=1 x2

i

)
1 + 2x̄2

.

Therefore, we proceed in two stages: estimating λ∗
n in a first stage, constructing

Hn by

H−1
n =

(
λ∗2

n
1
n

∑n
i=1 x3

i − 4λ∗3
n

1
n

∑n
i=1 x3

i − 4λ∗3
n 8λ∗4

n − 4λ∗
n

(
1
n

∑n
i=1 x3

i

) + 1
n

∑n
i=1 x4

i

)
and then estimating λ by the minimization of(

1

n

n∑
i=1

xi − λ,
1

n

n∑
i=1

x2
i − 2λ

1

n

n∑
i=1

xi

)
Hn

(
1
n

∑n
i=1 xi − λ

1
n

∑n
i=1 x2

i − 2λ 1
n

∑n
i=1 xi

)
.

We leave the calculation of λ̂n and its asymptotic variance as an exercise. �

Example 3.19 In this example, the asymptotic distribution of the estimator
can be directly calculated, but we use the previous theorems for illustration.
The estimator λ̂n converges to the linear regression coefficient λ(Q) defined in
Example 3.8. Let us calculate the asymptotic variance. We have

ψ(xi , λ) = (yi − λzi )zi and
∂ψ

∂λ
(xi , λ) = −z2

i .

Thus

E Q

(
∂ψ

∂λ

)
= −E Q

(
z2

i

)
.

The calculation of the variance of ψ is more complicated. It only simplifies
under assumptions that we do not wish to introduce in this chapter. Thus, we
conclude this example with the following result

√
n

(
λ̂n − λ(Q)

)
→ N

(
0,

VarQ [(yi − λzi )zi ][
E Q(z2

i )
]2

)
. �

This example is treated in detail in Chapter 8.
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Example 3.20 Here we continue the analysis of maximum likelihood estima-
tor treated as a moment estimator. The arguments presented in Examples 3.9
and 3.15 allow as to conclude that λ̂n converges almost surely to θ (under
appropriate assumptions). We calculate the asymptotic variance matrix using
Theorem 3.3. We have⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

ϕ(xi , λ) = ln f (xi , λ)

∂ϕ(xi , λ)

∂λ
= ∂ ln f (xi , λ)

∂λ

∂2ϕ(xi , λ)

∂λ∂λ′ = ∂2 ln f (xi , λ)

∂λ∂λ′ .

It is known that

−Eθ

(
∂2 ln f (xi , λ)

∂λ∂λ′

)
= Varθ

(
∂ ln f (xi , λ)

∂λ

)
= Jθ ;

the matrix Jθ is called the Fisher information matrix. We then obtain the usual
result

√
n

(
λ̂n − θ

)
→ N

(
0,J −1

θ

)
in Pθ − distribution. �

Example 3.21 Here we treat an important class of examples that generalize
the preceding study of the maximum likelihood estimator under misspecifica-
tion. Consider two i.i.d. models of the same sample (xi )i=1,...,n and different
parameter spaces � and �, both of finite but possibly different dimensions.
These models are dominated and characterized by their likelihood functions

ln (x |θ ) =
n∏

i=1

f (xi |θ ) and qn (x |λ) =
n∏

i=1

g (xi |λ) .

Let λ̂n be the maximum likelihood estimator of the second model defined as
the solution to the program

λ̂n = arg max
λ∈�

1

n

n∑
i=1

ln g(xi , λ)

= solution of

{
1

n

n∑
i=1

∂

∂λ
ln g(xi , λ) = 0

}
.

We assume that the true generating probabilities of the observations belong
to a family defined by the first model, which amounts to the consideration of
the properties of λ̂n relative to the probability distribution Pθ

∞, θ ∈ �. The
estimator λ̂n is associated with the moment conditions

Eθ

(
∂ ln g(xi , λ)

∂λ

)
= 0
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or equivalently with the maximization condition of Eθ (ln g (xi,λ)). In both con-
ditions, the expectation is taken with respect to Pθ

∞ because we have assumed
that the data is generated by the first model.

Define λ(θ ) as the solution to one of the two preceding problems. We can
note a third equivalent form of the definition of λ(θ )

λ(θ ) = arg minλ

∫
ln

f (xi |θ )

g(xi |λ)
f (xi |θ )dxi

= arg minλ

{
Eθ (ln f (xi |θ )) − Eθ (ln g(xi |λ))

}
.

The value λ(θ ) minimizes thus the difference between the true density f (xi |θ )
and a density of the second model g(xi |λ), this difference is measured by the
Kullback-Leibler quantity of information. In this context, this value is called
the pseudo-true value of the parameter of the second model.

Using Theorem 3.3, we can then show that
√

n(λ̂n − λ(θ )) → N (0, θ ) Pθ
∞ − distribution

and that

θ = Eθ

(
∂2 ln g(xi , λ)

∂λ∂λ′

)−1

Varθ

(
∂ ln g(xi , λ)

∂λ

)
Eθ

(
∂2 ln g(xi , λ

∂λ∂λ′

)−1

;

in general, this product of three matrices does not simplify.
Let us consider two specific models in this class of examples. Here

xi = (yi , zi )
′ ∈ R

2, and θ and λ are real.
The first model assumes

xi |θ ∼ N2

((
θ

0

)
, V

)
V =

(
v11 v12

v12 v22

)
,

where V is known. The second model is defined by

xi |λ ∼ N2

((
0
λ

)
, V

)
.

It is easy to verify that after some manipulations

λ̂n = z̄ − v12

v11

ȳ

of which the Pθ -a.s. limit is immediate, because z̄ → 0 and ȳ → θ Pθ
∞-a.s.

Therefore,

λ̂n → −v12

v11

θ.

We leave it to the reader to verify that

λ(θ ) = −v12

v11

θ
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minimizes the Kullback-Leibler information between the two normal densities
defined above. The asymptotic variance of λ̂n can be obtained starting with
Theorem 3.1 or directly by applying the central limit theorem to

√
n

n

n∑
i=1

(
zi − v12

v11

yi + v12

v11

θ

)
. �

Remark: Conditional Moments and Optimal Marginal Moments

Using the notation of expression (3.10), we can then ask ourselves what the
optimal choice of the function h is; in this case, h is often referred to as optimal
instrument. We limit ourselves to the static case (i.i.d. data). For an arbitrary
function h the asymptotic variance of the estimator, obtained with the optimal
choice of the weighting matrix, can be written[

Eθ

(
∂

(
hψ̃

)′

∂λ

)
V θ

(
hψ̃

)−1
Eθ

(
∂

(
hψ̃

)
∂λ′

)]−1

. (3.35)

Note that

Eθ

(
∂

(
hψ̃

)
∂λ′

)
= Eθ

(
∂h

∂λ′ ψ̃
)

+ Eθ

(
h

∂ψ̃

∂λ′

)

= Eθ

(
h

∂ψ̃

∂λ′

)
and that

V θ
(
hψ̃

) = Eθ
(
hV θ

(
ψ̃ |z )

h′)
because

Eθ

(
∂h

∂λ′ ψ̃
)

= Eθ

(
∂h

∂λ′ Eθ
(
ψ̃ |z )) = 0.

The variance matrix can thus be simplified to[
Eθ

(
∂ψ̃

∂λ
h′

)
Eθ

(
hV θ

(
ψ̃ |z )

h′)−1
Eθ

(
h

∂ψ̃

∂λ′

)]−1

. (3.36)

Consider a specific choice of h given by

h0 (z, λ) = Eθ

(
∂ψ̃

∂λ
|z

)
V θ

(
ψ̃ |z )−1

(3.37)



P1: OSO/OVY P2: OSO/OVY QC: OSO/OVY T1: OSO

Ecoeok CUFX117-Florens 0521876407 April 22, 2007 13:56

Estimation by Maximization and by the Method of Moments 59

which is of dimension k and thus does not require the choice of a weighting
matrix. We obtain in this case an asymptotic variance of the estimator equal to{

Eθ

[
Eθ

(
∂ψ̃

∂λ
|z

)
V θ

(
ψ̃ |z )−1 

Eθ

(
∂ψ̃

∂λ′ |z
)]}−1

.

It is fairly simple to show that this matrix is smaller than that given in (3.36),
which shows that the choice of h0 is optimal. This result is little used in practice,
except for this particular case, because the calculation of h requires the knowl-
edge of the distribution conditional on z. One can then use a nonparametric
approach to find h0. �

Remark: Generalized Method of Moments and Efficiency

We showed in Example 3.20 that the asymptotic variance of the parameters
estimated by maximum likelihood method is equal to J−1

θ . We also know that
this variance is minimal, i.e., any consistent, asymptotically normal estimator
has an asymptotic variance larger than or equal to J−1

θ .

In general, an estimator obtained by the generalized method of moments
will thus be less efficient than the maximum likelihood estimator, even if the
weighting matrix H is chosen in an optimal way. This result does not undermine
the interest in this method, which is more robust than maximum likelihood,
because in general it does not assume that the distribution of the data is specified.
Furthermore, recent work shows that, if the number of moments is very large,
then the efficiency of the generalized method of moment estimator can be
arbitrarily close to that of the maximum likelihood estimator. �

Remark. In order to use the asymptotic results of this chapter, it is necessary
to estimate the matrices that appear in the asymptotic variance in Theorems
(3.3), (3.4), and (3.5). These matrices involve expectations and variance which
are replaced by their empirical counterparts; for example, Eθ ( ∂ψ ′

∂λ ) must be
replaced by 1

n

∑n
i=1

∂ψ ′
∂λ (xi , λ̂n). This step is, however, more difficult in the

dynamic case where the variance contains the matrix Vθ defined in (3.31). This
type of problem is treated in Chapter 15, Section 15.2.4. �

Notes

A large part of the content of this chapter again belongs to the statistical foundation and

is studied by numerous authors.

In Serfling (1980), one can find a presentation of the properties of maximum likelihood

and of moment estimation, preceded by an exposition of the fundamental asymptotic

properties of estimators. The generalized method of moments is due to Hansen (1982).

Carrasco and Florens (2000) provide an extension of GMM to a continuum of mo-

ment conditions. The study of the properties of the maximum likelihood estimator in a
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misspecified model possibly started with the work of Huber (1967), and these results

have been used in econometrics following the article by White (1982).

Theoretical complements to our exposition can be found in Newey (1993) and in

Newey and McFadden (1994) or in Rieder (1994) and Van Der Vaart and Wellner

(1996).
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4. Asymptotic Tests

4.1 Introduction

The objective of this chapter is to briefly develop the principal elements of the
theory of asymptotic tests. We will summarize in the briefest possible way, the
“general” theory of testing, before presenting the three main classes of tests,
which are the Wald test, the Rao test, and the test based on the comparison of
minima (the last one is a generalization of the likelihood ratio test introduced by
Neyman and Pearson). In order to quickly outline the procedures to construct
these three types of tests, let us consider the estimation of a function λ of a
parameter obtained through the optimization of a criterion C(λ). A hypothesis
is then a restriction on λ. There exist three possibilities to measure the validity
of the restriction:

� Estimate λ without constraint and measure the difference between this esti-
mator and the set of λ that satisfy the restriction. We then obtain the tests,
called Wald tests.

� Calculate the first order conditions of the optimization problem, i.e.,

∂

∂λ
C(λ) = 0.

We know that, by definition, these conditions are exactly satisfied for the
unrestricted estimator, and we ask whether these are approximately satisfied
by the restricted estimator. The tests constructed in this way are the Rao tests
(or Lagrange multiplier tests).

� Compare the value of the optimization criterion with and without constraint.
The difference thus obtained is a measure of the validity of the restriction
and leads to a generalization of the likelihood ratio tests, which we call tests
of comparison of minima.

These different principles for testing a hypothesis can be applied in various
contexts, and we have chosen to present them in a rather detailed manner in the

61



P1: OSO/OVY P2: OSO/OVY QC: OSO/OVY T1: OSO

Ecoeok CUFX117-Florens 0521876407 April 22, 2007 13:56

62 Econometric Modeling and Inference

framework of generalized method of moments (GMM) estimation. Following
this, we will present them again briefly in the framework of maximum likelihood
estimation (MLE) with a correctly specified model and a finite parameter space.
We end the chapter with the introduction of Wald-type tests but oriented towards
the problem of specification testing. These two types of tests are the Hausman
test and encompassing test.

4.2 Tests and Asymptotic Tests

Consider a statistical model with parametric space � (whose dimension is not
necessarily finite). A so-called null hypothesis (denoted H0) is defined by a
subspace �0 of �. The complement �1 of �0 is called alternative hypothesis
of �0 and is denoted H1. If Xn is the sample space of the model, a hypothesis
test is characterized by a subset Wn of Xn called the critical region. If x belongs
to Wn , �0 is rejected, whereas if x does not lie in Wn , the null hypothesis is
accepted. Denoting the sampling probability distribution by Pθ

n as usual, we
are interested in the function

θ ∈ � → Pθ
n (Wn) ∈ [0, 1] (4.1)

called the power function of the test. If θ is in �0, Pθ
n (Wn) represents the

probability of rejecting the null hypothesis when it is true (type I error), and if θ

is in �1, 1 − Pθ
n (Wn) is the probability of accepting H0 when it is false (type II

error).
The general statistical problem of hypothesis testing is the following. Given

a probability α, we look for tests of significance level (or level) α, that is such
that Pθ

n (Wn) ≤ α for all θ in �0. Among the tests of level α, we look for the
test that minimizes the probability of type II error or maximizes

supθ∈�1
Pθ

n (Wn).

If the retained test satisfies

supθ∈�0
Pθ

n (Wn) = α,

then the test is said to be of size α.
In this chapter, we examine tests associated with GMM estimation, this leads

us to modify the previous general framework in two ways.
First, recall that this method enables us to estimate only functions λ(θ ) taking

their values in a vector space. Hence, we test only the regions �0 of � of the
form

�0 = λ−1(�0)

where �0 is a subset of � ⊂ R
k . Our presentation simplifies by assuming that

�0 can be described in two equivalent manners:
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1. By a set of restrictions. We write then

�0 = {θ : R(λ(θ )) = 0} (4.2)

where R is a function from R
k to R

l satisfying some regularity condi-
tions. Specifically, we assume that R is continuously differentiable and
that the matrix of derivatives ∂ R

∂λ′ (of dimension l × k) has rank l, which
in particular requires l ≤ k.

2. As the image of a parameter with lower dimension. It is assumed that

�0 = {θ : λ(θ ) = λ̃(μ(θ ))}
where μ is a mapping from � to R

k−l and λ̃ is a mapping from R
k−l to

R
k , which is continuously differentiable and has rank k − l.

Our presentation comes to describing �0 as the inverse image of {0} of the
mapping R or as the image space of the mapping λ̃. This construction is always
possible if �0 is an affine subspace of R

k , in this case, R and λ̃ are affine. If �0

has a more complex structure, our construction is, strictly speaking, valid only
locally. However, we limit ourselves to cases where this double characterization
is possible globally.

Example 4.1 Suppose that λ(θ ) = (λ1(θ ), λ2(θ ))′, k = 2, and we wish to test
the hypothesis

λ1(θ ) + λ2(θ ) = 1.

Here, the function R(λ1, λ2) is equal to λ1 + λ2 − 1. Let for example μ(θ ) =
λ1(θ ). Then, we can write

�0 = {
θ : λ(θ ) = (λ1(θ ), 1 − λ1(θ ))′

}
and λ̃(μ) = (μ, 1 − μ)′.

�

We explained in Chapter 3 that the introduction of a system of generalized
moments implies, in general, constraints on the sampling distributions, con-
straints which are satisfied only for the θ that belong to �∗ ⊂ �. Except for
the test presented in Section 4.5, we always assume that the overidentification
constraints are satisfied and we set � = �∗ for convenience. The hypotheses
that we test are in fact subsets of �∗, i.e., they are extra restrictions besides
those that are imposed by the system of moments.

Second, because the method of moments leads to estimators for which only
the asymptotic properties are known, we study only those properties of the tests
that are satisfied when the sample size goes to infinity.
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We look for tests defined by functions τn (x1, . . . , xn) with values in R
+

whose critical regions are of the following form:

Wn,τ0
= {x = (x1, . . . , xn) : τn(x1, . . . , xn) ≥ τ0} ⊂ Xn.

Such a sequence of functions τn is called a test statistic and τ0 is the critical
value of the test.

The choice of the test statistic is determined by two desirable properties.

1. The consistency of the test. The test is consistent if the probability of
type II error goes to zero as n → ∞, in other words, if

∀θ ∈ �1 lim
n→∞ Pθ

n (Wn,τ0
) = 1.

2. The limiting distribution. The statistic τn must have a limiting distri-
bution when n → ∞ and when θ ∈ �0. This allows us to calculate the
asymptotic probability of a Type I error. A particularly desirable situa-
tion is that when the limiting distribution of τn does not depend on θ as
long as θ ∈ �0. Then, the statistic is said to be asymptotically pivotal
under the null hypothesis. This property implies that limn→∞ Pθ

n (Wn,τ0
)

does not depend on θ if θ ∈ �0, and hence we can look for τ0 such that
this limit is equal to a given value α. This value is the asymptotic size
of the test.

The last general question we are addressing concerns the problem of com-
paring different tests. Consider two sequences of test functions τ1n and τ2n that
satisfy the previous properties. We look for the critical values τ10 and τ20 such
that the probabilities of type I errors are equal to each other:

lim
n→∞ Pθ

n {x : τ1n(x) ≥ τ10} = lim
n→∞ Pθ

n {x : τ2n(x) ≥ τ20} = α θ ∈ �0

where α is a given size. We can compare these two tests only under the alternative
because their behaviors are identical under H0, at least asymptotically. We also
cannot compare the limiting probabilities of the critical regions for a fixed point
of �1, because these probabilities will be at the limit equal to one for both tests,
because both tests are consistent.

A first solution is to give up the asymptotic point of view and compare

Pθ
n {x : τ1n(x1, . . . , xn) ≥ τ10}

and

Pθ
n {x : τ2n(x1, . . . , xn) ≥ τ20}

for a fixed n and a value θ in �1. This comparison usually depends on θ and
can not be obtained analytically. It requires a simulation procedure that will be
discussed in Chapter 6. A second solution is to keep the asymptotic point of
view while letting some elements of the problem vary with n. Thus, we need
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to define different types of asymptotic comparisons of tests. We illustrate this
point by an example based on the use of a sequence of local alternatives.

Example 4.2 Let θ be an element of �0 and θn be a sequence of el-
ements of �1 converging to θ with n. Such a sequence always exists if
�0 = {θ : R(λ(θ )) = 0}. Then, we study

lim
n→∞ Pθn

n (W1τ10
) and lim

n→∞ Pθn
n (W2τ20

).

The sequence θn can be chosen so that its rate of convergence implies that
these two limits do not lie at the boundaries of the interval [α, 1]. Then, we can
compare those limits. The better test for the sequence of local alternatives is
the one for which the above limit is larger. �

This type of calculation will be done in special cases later in this chapter.

4.3 Wald Tests

The test procedure referred to as Wald test is one of the most often used in
applied econometrics because it is easy to implement and interpret. It has been
recently subject to some criticisms that we will mention in the last example of
this section.

Consider the vector λ(θ ), which is a function of the parameter θ, and the
null hypothesis H0 : R(λ(θ )) = 0. The test we present requires a consistent and
asymptotically normal estimator λ̂n of λ(θ ). Hence, we assume that

√
n(λ̂n −

λ(θ )) follows asymptotically a centered normal distribution with variance θ .
This estimator may be obtained from the method of moments or GMM but
λ̂n may also come from a completely different approach. Finally, we need to
have a sequence ̂n converging (in probability) to θ . The method of moments
provides such a sequence as seen in Chapter 3.

The estimator λ̂n allows us to obtain an estimator R(λ̂n). By continuity, R(λ̂n)
converges to R(λ(θ )) and, using Theorem 3.2 (Chapter 3), we infer that under
H0,

√
n R(λ̂n) → N (0, �θ ) in Pθ

∞-distribution (4.3)

with

�θ = ∂ R

∂λ′ (λ(θ ))θ

∂ R′

∂λ
(λ(θ )).

The basis of the Wald test is the comparison of R(λ̂n) to 0 in the metric
defined by the asymptotic variance. In other words, we have in the case of an
invertible variance,

n R′(λ̂n)�−1
θ R(λ̂n) → χ2

l en Pθ
∞-distribution. (4.4)
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Moreover, ∂ R
∂λ′ (λ̂n) converges to ∂ R

∂λ′ (λ(θ )) and hence

�̂n = ∂ R

∂λ′ (λ̂n)̂n
∂ R′

∂λ
(λ̂n)

is a consistent (in probability) estimator of �θ .
Therefore, it follows that

n R′(λ̂n)�̂−1
n R(λ̂n) → χ2

l in Pθ
∞-distribution (4.5)

for all θ ∈ �0. Thus, the above expression is asymptotically a pivotal function
under H0. We summarize the previous construction by the following theorem.

Theorem 4.1 Under the usual regularity conditions, the test statistic

Waldn = n R′(λ̂n)�̂−1
n R(λ̂n)

follows asymptotically a chi-square distribution with l degrees of freedom, χ2
l ,

under the null hypothesis. �

In the table of the χ2
l distribution, we look for the value τ0 such that the

probability that a random variable, distributed accordingly, exceeds τ0 equals
the size α. Then, the critical region of the Wald test is given by

Wn,τ0
= {x : n R′(λ̂n)�̂−1

n R(λ̂n) ≥ τ0}. (4.6)

Moreover, if θ ∈ �1, we have

n R′(λ̂n)�̂−1
n R(λ̂n) = n

(
R

(
λ̂n

)
− R (λ(θ ))

)
′ �̂−1

n

(
R(λ̂n) − R (λ(θ ))

)
+ n R (λ(θ ))′ �̂−1

n R (λ(θ ))

+ 2n
(

R
(
λ̂n

)
− R (λ (θ ))′ �̂n R (λ (θ ))

)
.

(4.7)

The first term of the right-hand side converges in distribution to a χ2
l and the

other terms go to infinity. The probability that this expression exceeds any
critical value goes to 1 when n → ∞ and the test is indeed consistent.

We briefly study the power of the Wald test under a sequence of local alterna-
tives. Our presentation is largely intuitive because a rigorous treatment would
require more complex tools than those used in this book.

We limit our presentation to tests of the hypothesis H0 : λ (θ ) = 0 but the
generalization to R (λ (θ )) = 0 is immediate.

Consider a sequence θn of elements of the space � satisfying

λ(θn) = λ(θ ) − 1√
n
δ
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with δ ∈ R
k given and where θ is an element of �0. Hence, we have

λ (θn) = − δ√
n

because λ (θ ) = 0 under H0. We state without proof that, if the parameters are
equal to the sequence θn , then

√
n

(
λ̂n + δ√

n

)
= √

nλ̂n + δ → N (δ, θ ). (4.8)

This result is quite intuitive because it is analogous to that obtained with a
fixed parameter. Note that if a random vector x of dimension p is distributed
according to the distribution N (μ, ), the quadratic form x ′−1x follows by
definition a noncentral χ2

p distribution with noncentrality parameter μ′−1μ.

It follows from (4.8) that

n

(
λ̂n + δ√

n

)′
̂−1

n

(
λ̂n + δ√

n

)
→ χ2

k

(
δ′−1

θ δ
)
.

This result enables us to compare two Wald tests based on two estimators,
λ̂n and λ̂∗

n, both converging to λ(θ ) and asymptotically normal with respective

variances θ and ∗
θ , estimated by ̂n and ̂∗

n . The two Wald statistics

Wald1
n = nλ̂′

n̂
−1
n λ̂n and Wald2

n = nλ̂∗
n̂

∗−1
n λ̂∗

n

are both asymptotically χ2
k under H0 and hence are compared to the same critical

value τ0. The powers of these two tests under the sequence of alternatives
− δ√

n
are the probabilities of the half-line (τ0, +∞) for noncentral χ2

k with

noncentrality parameters

δ′−1
θ δ and δ′∗−1

θ δ.

From the properties of the noncentral χ2, it is easy to verify that the most
powerful test is that with the largest noncentrality parameter. This comparison
depends on δ in general, that is on the sequence of alternative hypotheses.
Hence, some estimators give rise to tests that are more powerful in some specific
directions. However, if λ̂n is better than λ̂∗

n in the sense θ is smaller than ∗
θ

(that is ∗
θ − θ is positive semidefinite), the test based on λ̂n is more powerful

than that based on λ̂∗
n for all δ, and hence for every sequence of local alternatives.

Indeed, the efficiency property of λ̂n is equivalent to

∗−1
θ ≤ −1

θ

and hence to the inequality

δ′∗−1
θ δ ≤ δ′−1

θ δ

for all δ.
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We conclude this section on Wald tests by a remark illustrating the dangers
of this test procedure for some nonlinear hypotheses. We assumed that the rank
of ∂ R

∂λ′ is equal to the number of restrictions l for all values of λ. This assumption
may not be satisfied in two types of situation.

1. The rank of ∂ R
∂λ′ is less than l for all λ. This means that we test a set

of redundant restrictions and we can get back to our rank condition by
reducing the number of restrictions.

2. The rank of ∂ R
∂λ′ is less than l for some λ, which implies that �θ is singular

for some elements of �0. In this case, the previous results do not apply
and the behavior of the test statistic may be very different from that given
in Theorem 4.1. We illustrate this point by the following example.

Example 4.3 Let xi = (yi , zi )
′ , i = 1, . . . n, be an i.i.d. sample generated

by a distribution N
(
(α, β)′ , I2

)
and we wish to test H0 : αβ = 0. Using our

notations,

λ = θ = (α, β)′ and R(λ) = αβ.

Hence, we have

∂ R

∂λ′ = (β, α)

which has rank l = 1 except when α = β = 0. The parameters α and β are
estimated by

α̂n = ȳ and β̂n = z̄

with distribution N
(
(α, β)′ , 1

n I2

)
. Then, the estimator α̂nβ̂n satisfies

√
n

(
α̂nβ̂n − αβ

)
→ N

(
0, α2 + β2

)
.

This result gives indeed a nondegenerate limiting distribution if α2 + β2 �= 0,
i.e. if (α, β) �= (0, 0). Otherwise, this result proves only that

√
nα̂nβ̂n goes to 0 in

probability because the convergence to a degenerate distribution is equivalent
to convergence in probability. In fact, α̂nβ̂n converges in distribution at the rate
n because nα̂nβ̂n is distributed as the product of two independent X 2.

The Wald statistic is equal to

nα̂2
n β̂

2
n

α̂2
n + β̂2

n

.

It follows asymptotically a X 2
1 if α2 + β2 �= 0. However, it has a different lim-

iting distribution if (α, β) = (0, 0). Indeed, in this case, the numerator and
denominator go to zero at the same rate. By multiplying the upper and lower



P1: OSO/OVY P2: OSO/OVY QC: OSO/OVY T1: OSO

Ecoeok CUFX117-Florens 0521876407 April 22, 2007 13:56

Asymptotic Tests 69

terms with n, we can verify that the Wald statistic is distributed as the product
of two independent X 2

1 divided by their sum. A noninformed user could nev-
ertheless compute the test statistic (because α̂2

n + β̂2
n is different from 0 with

probability 1 even if α2 + β2 = 0) and may use a false asymptotic distribution
if he neglects the rank difference in some region of the null hypothesis. �

Finally, we note that the study of some special cases shows that the Wald
statistic may have a finite sample distribution that is very different from the
asymptotic distribution and that, therefore, the true level of the test differs sig-
nificantly from the asymptotic level. This defect can be remedied by calibrating
the test via simulations as we will show in Chapter 6.

4.4 Rao Test

Consider a null hypothesis H0 : λ(θ ) = λ̃(μ(θ )) and an equation of generalized
moments Eθ (ψ(xi , λ)) = 0. In contrast to the Wald test that uses only an un-
restricted estimate of λ, we use here only a restricted estimate of λ under H0.
One way to obtain this estimate is to minimize the expression(

1

n

n∑
i=1

ψ
(
xi , λ̃(μ)

))′
Hn

(
1

n

n∑
i=1

ψ
(
xi , λ̃(μ)

))
(4.9)

with respect to μ, from which we infer that μ̂n converges to μ(θ ). Hence, we
have here a usual GMM problem where the function ψ can be replaced by

ψ0(xi , μ) = ψ(xi , λ̃(μ)).

If Hn converges to

H = [
Var θ

(
ψ(xi , λ̃(μ(θ ))

)]−1

or more generally, in a dynamic model for instance, to a matrix H such that
√

n

n

n∑
i=1

ψ(xi , λ̃(μ(θ )))

converges in distribution to a N (0, H−1)), then
√

n(μ̂n − μ(θ )) is asymptoti-
cally normal with variance[

Eθ

(
∂ψ ′

0

∂μ

)
H Eθ

(
∂ψ0

∂μ′

)]−1

(4.10)

=
[
∂λ̃′

∂μ
Eθ

(
∂ψ ′

∂λ

)
H Eθ

(
∂ψ

∂λ′

)
∂λ̃

∂μ′

]−1

.
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This result follows from the chain rule for differentiating composite functions
which, applied to ψ, yields

∂ψ0

∂μ′ = ∂ψ

∂λ′
∂ ̃λ

∂μ′ .

The basic idea of the Rao test can be presented in the following way. Consider
the unrestricted estimation of λ and write its first order condition:(

1

n

n∑
i=1

∂ψ ′

∂λ  
(xi , λ)

)
Hn

(
1

n

n∑
i=1

ψ(xi , λ)

)
= 0. (4.11)

This condition is satisfied at λ̂n by construction. Hence, we compute the left-
hand term of the above equality at λ̃(μ̂n) and reject the null hypothesis when
this term is significantly different from 0.

To be more precise, we need to know the limiting distribution of(
1

n

n∑
i=1

∂ψ ′

∂λ

(
xi , λ̃(μ̂n)

))
Hn

(√
n

n

n∑
i=1

ψ
(
xi , λ̃(μ̂n)

))
. (4.12)

This limiting distribution and its application to the construction of the test are
treated in the following theorem.

Theorem 4.2 Under the usual regularity assumptions, the expression (4.12)
is asymptotically normal with mean zero and variance:

Eθ

(
∂ψ ′

∂λ

)
H Eθ

(
∂ψ

∂λ′

)

−
{

Eθ

(
∂ψ ′

∂λ

)
H Eθ

(
∂ψ

∂λ′

)
∂λ̃

∂μ′

[
∂λ̃′

∂μ
Eθ

(
∂ψ ′

∂λ

)
H Eθ

(
∂ψ

∂λ′

)
∂λ̃

∂μ′

]−1

× ∂λ̃′

∂μ
Eθ

(
∂ψ ′

∂λ

)
H Eθ

(
∂ψ

∂λ′

)}
This variance is singular and its generalized inverse is the matrix

B =
(

Eθ

(
∂ψ ′

∂λ

)
H Eθ

(
∂ψ

∂λ′

))−1

− ∂λ̃

∂μ′

[
∂λ̃′

∂μ
Eθ

(
∂ψ ′

∂λ

)
H Eθ

(
∂ψ

∂λ′

)
∂λ̃

∂μ′

]−1
∂λ̃′

∂μ
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whose rank is l. The Rao statistic can be written as

RAOn = n

(
1

n

n∑
i=1

ψ
(
xi , λ̃(μ̂n)

))′
Hn

(
1

n

n∑
i=1

∂ψ

∂λ′
(
xi , λ̃(μ̂n)

))
B̂n

×
(

1

n

n∑
i=1

∂ψ ′

∂λ

(
xi , λ̃(μ̂n)

))
Hn

(
1

n

n∑
i=1

ψ
(
xi , λ̃(μ̂n)

))
,

where B̂n is the estimator of B obtained by replacing E( ∂ψ

∂λ′ ) by 1
n 

∂ψ

∂λ′ (xi , λ̃(μ̂n))
and H by Hn. RAOn is asymptotically distributed as a χ2 with l degrees of
freedom under the null hypothesis. �

Proof: The first step of the proof consists in analyzing the limiting distri-

bution of
√

n
n

∑n
i=1 ψ(xi , λ̃(μ̂n)). A series expansion of order one allows us to

write

ψ
(
xi , λ̃(μ̂n)

) � ψ
(
xi , λ̃ (μ(θ ))

) + ∂ψ

∂λ′ .
∂λ̃

∂μ′ (μ̂n − μ(θ )) .

Moreover, using the same outline as in the proof of Theorem 3.3 in Chapter 3,
we have

√
n (μ̂n − μ(θ )) � −

[
∂λ̃′

∂μ
Eθ

(
∂ψ ′

∂λ

)
H Eθ

(
∂ψ

∂λ′

)
∂λ̃

∂μ

]−1

× ∂λ̃′

∂μ
Eθ

(
∂ψ ′

∂λ

)
H

(√
n

n

n∑
i=1

ψ
(
xi , λ̃ (μ(θ ))

))
.

Hence,

√
n

n

n∑
i=1

ψ
(
xi , λ̃(μ̂n)

) � A

√
n

n

n∑
i=1

ψ
(
xi , λ̃ (μ(θ ))

)
with

A = Ir − Eθ

(
∂ψ

∂λ′

)
∂λ̃

∂μ′

[
∂λ̃′

∂μ
Eθ

(
∂ψ ′

∂λ

)
H Eθ

(
∂ψ

∂λ′

)
∂λ̃

∂μ′

]−1

× ∂λ̃′

∂μ
Eθ

(
∂ψ ′

∂λ

)
H.

By the central limit theorem, we obtain

√
n

n

n∑
i=1

ψ
(
xi , λ̃(μ̂n)

) → N (0, AH−1 A′) Pθ
∞-distribution.
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Note that

AH−1 A′ = H−1 − Eθ

(
∂ψ

∂λ′

)
∂λ̃

∂μ′

[
∂λ̃′

∂μ
Eθ

(
∂ψ ′

∂λ

)
H Eθ

(
∂ψ

∂λ′

)
∂λ̃

∂μ′

]−1

× ∂λ̃′

∂μ
Eθ

(
∂ψ ′

∂λ

)
.

It follows that

1

n

n∑
i=1

∂ψ

∂λ
′
(
xi , λ̃(μ̂n)

)′
Hn

(√
n

n

n∑
i=1

ψ
(
xi , λ̃(μ̂n)

))

→ N

(
0, Eθ

(
∂ψ

∂λ
′

)
H AH−1 A

′
H Eθ

(
∂ψ

′

∂λ

))
Pθ

∞-distribution.

The variance of this limiting distribution is equal to the expression in
Theorem 4.2.

To show that the matrix B is the generalized inverse of this variance, one can
verify that B satisfies the conditions characterizing the Moore-Penrose inverse.

B has the same rank as[
Eθ

(
∂ψ ′

∂λ

)
H Eθ

(
∂ψ

∂λ′

)] 1
2

B

[
Eθ

(
∂ψ ′

∂λ

)
H Eθ

(
∂ψ

∂λ′

)] 1
2

which is a symmetric idempotent matrix whose rank is equal to its trace which
is obviously equal to l.

Finally, note that if x ∼ N (0, �) where � is not necessarily invertible,

x ′�+x ∼ χ2
l .

In this expression, �+ is the Moore-Penrose generalized inverse of � and l
is the rank of �. The fact that the asymptotic variance can be replaced by a
consistent estimator is a consequence of Theorem 3.1 in Chapter 3. �

In our presentation, we assumed that the tested hypothesis

R (λ (θ )) = 0

was explicitly solved by λ (θ ) = λ̃ (μ (θ )) . This enabled us to minimize un-
der H0 without using Lagrange multipliers. An alternative construction would
consist in not solving the tested constraint, but in minimizing under constraint
with Lagrange multipliers and in testing the restriction by testing whether the
multipliers are equal to zero. It can be shown that the resulting test is exactly
identical to that following from (4.12).
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4.5 Tests Based on the Comparison of Minima

The last general method we are presenting is the generalization of the likelihood
ratio test to the method of moments. The idea of this method can be explained
in the following manner.

Let �0 be the null hypothesis that can always be represented by the condi-
tion R(λ(θ )) = 0 or by the equality λ(θ ) = λ̃(μ(θ )). The (possibly generalized)
moment condition is

Eθ (ψ(xi , θ )) = 0.

We proceed with two estimations:

� the unrestricted estimation of λ(θ ) by λ̂n, by minimizing on � the usual
expression:(

1

n

n∑
i=1

ψ(xi , λ)

)′
Hn

(
1

n

n∑
i=1

ψ(xi , λ)

)
; (4.13)

� the restricted estimation under the null hypothesis. We find μ̂n by minimizing:(
1

n

n∑
i=1

ψ
(
xi , λ̃(μ)

))′
Hn

(
1

n

n∑
i=1

ψ
(
xi , λ̃(μ)

))
. (4.14)

This last minimization could of course be performed without solving the
constraint and by using the form R(λ) = 0 and Lagrange multipliers.

We consider only the case where Hn is identical in (4.13) and (4.14), and
where this matrix converges to H such that H−1 is the asymptotic variance of

√
n

n

n∑
i=1

ψ (xi , λ (μ (θ ))) .

The matrix H , and hence the sequence Hn , are defined with respect to the null.
Then, the test statistic considered here is equal to the difference of the re-

stricted and unrestricted minima and is defined by

COMPn = n

[(
1

n

n∑
i=1

ψ
(
xi , λ̃(μ̂n)

))′
Hn

(
1

n

n∑
i=1

ψ
(
xi , λ̃(μ̂n)

))

−
(

1

n

n∑
i=1

ψ
(

xi , λ̂n

))′
Hn

(
1

n

n∑
i=1

ψ
(

xi , λ̂n

))] (4.15)

We have the following result.

Theorem 4.3 Under the usual regularity assumptions, the statistic COMPn

converges in distribution under the null to a χ2 distribution with l degrees of
freedom. �
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Proof: In the first step of the proof, we study of the joint asymptotic distri-
bution of the vector:

√
n

n

n∑
i=1

(
ψ(xi , λ̂n)

ψ
(
xi , λ̃(μ̂n)

))
.

This study is of course very similar to that in the proof of Theorem 4.2. From
the approximations

ψ(xi , λ̂n) � ψ
(
xi , λ̃ (μ(θ ))

) + ∂ψ

∂λ′
(
xi , λ̃ (μ(θ ))

) (
λ̂n − λ̃ (μ(θ ))

)
,

ψ
(
xi , λ̃ (μ̂n)

) � ψ
(
xi , λ̃ (μ(θ ))

)
+ ∂ψ

∂λ′
(
xi , λ̃ (μ(θ ))

) ∂λ̃

∂μ′ (μ(θ )) (μ̂n − μ(θ )) ,

and the relations

√
n

(
λ̂n − λ̃ (μ(θ ))

)
� −

[
Eθ

(
∂ψ ′

∂λ

)
H Eθ

(
∂ψ

∂λ′

)]−1

× Eθ

(
∂ψ ′

∂λ

)
H

(√
n

n

n∑
i=1

ψ
(
xi , λ̃ (μ(θ ))

))
,

√
n (μ̂n − μ(θ )) � −

[
∂λ̃′

∂μ
Eθ

(
∂ψ ′

∂λ

)
H Eθ

(
∂ψ

∂λ′

)
∂λ̃

∂μ′

]

× ∂λ̃′

∂μ
Eθ

(
∂ψ ′

∂λ

)
H

(√
n

n

n∑
i=1

ψ
(
xi , λ̃ (μ(θ ))

))
,

it follows that
√

n

n

n∑
i=1

(
ψ(xi , λ̂n)

ψ
(
xi , λ̃(μ̂n)

))
� A

√
n

n

n∑
i=1

ψ
(
xi , λ̃ (μ(θ ))

)
with

A =

⎡⎢⎣ Ir − Eθ
(

∂ψ

∂λ′

) [
Eθ

(
∂ψ ′
∂λ

)
H Eθ

(
∂ψ

∂λ′

)]−1

Eθ
(

∂ψ ′
∂λ

)
H

Ir − Eθ
(

∂ψ

∂λ′

)
∂λ̃
∂μ′

[
∂λ̃′
∂μ

Eθ
(

∂ψ ′
∂λ

)
H Eθ

(
∂ψ

∂λ′

)
∂λ̃
∂μ′

]−1
∂λ̃′
∂μ

Eθ
(

∂ψ ′
∂λ

)
H

⎤⎥⎦ .

The central limit theorem permits us to conclude that

√
n

n

n∑
i=1

(
ψ(xi , λ̂n)

ψ(xi , λ̃(μ̂n))

)
→ N (0, AH−1 A′) Pθ

∞-distribution. (4.16)
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We have the relation

COMPn =
(√

n

n

n∑
i=1

(
ψ(xi , λ̂n)

ψ
(
xi , λ̃(μ̂n)

)))′ (−Hn 0

0 Hn

)

×
(√

n

n

n∑
i=1

(
ψ(xi , λ̂n)

ψ
(
xi , λ̃(μ̂n)

)))
,

which asymptotically becomes

COMPn =
(√

n

n

n∑
i=1

ψ
(
xi , λ̃ (μ(θ ))

))′
B

(√
n

n

n∑
i=1

ψ
(
xi , λ̃ (μ(θ ))

))
(4.17)

with

B = A′
(−H 0

0 H

)
A.

Finally, it can be shown that

B H−1 B = B

and that the rank of B is equal to l, which implies the result. This last part
is based on the following property. If a random vector ξ is (asymptotically)
N (0, �) and if B�B = B, then ξ ′ Bξ is χ2 with degrees of freedom given by
the rank of B. Indeed

x ′ Bx = x ′ B B+ Bx

where B+ is the generalized inverse of B. Let y = Bx . We have y ∼
N (0, B�B), hence y ∼ N (0, B) and thus y B+y ∼ X 2

rank B . Moreover

rankB = rank P B P ′ = tr P B P ′

with � = P ′ P , because P B P ′ is symmetric idempotent. �

Example 4.4 Test for overidentification implied by the generalized moment
conditions.

Now, we revisit the maintained assumption of this chapter, namely that the set
of overidentifying restrictions imposed by the system of generalized moments
is satisfied. We wish to test these restrictions.

Consider a statistical model Mn = {Xn, �, Pθ
n } and a system of moment

conditions

Eθ (ψ(xi , λ)) = 0,

λ ∈ � ⊂ R
k and ψ taking its values in R

r with r > k. As in Chapter 3, we
denote by �∗ the set of θ ∈ � such that the system Eθ (ψ(xi , λ)) = 0 has a
solution, and we wish to test the null hypothesis H0 : �0 = �∗.
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A natural test statistic consists of the minimum of the objective function(
1

n

n∑
i=1

ψ(xi , λ)

)′
Hn

(
1

n

n∑
i=1

ψ(xi , λ)

)
and hence is equal to

HANn = n

(
1

n

n∑
i=1

ψ
(

xi , λ̂n

))′
Hn

(
1

n

n∑
i=1

ψ
(

xi , λ̂n

))
.

This naming reminds us that this test was first introduced by Hansen in 1982.
We always assume that Hn is such that its limit H is the optimal weighting

matrix such that
√

n
n ψ(xi , λ(θ )) converges in distribution to a N (0, H−1).

Under H0, it is clear that HANn converges to a χ2
r−k . This result can be

obtained from the previous proof using only the distribution of
√

n
n ψ(xi , λ̂n).

We leave the details of this proof to the reader. �

4.6 Test Based on Maximum Likelihood Estimation

As a special case of the tests previously introduced, we present asymptotic tests
based on the maximum likelihood estimation of a parametric model. We use the
notations of Chapter 3 (Examples 3.9, 3.15, and 3.20), and restrict ourselves to
the case where the model is well specified.

Consider an i.i.d. model with parameter θ ∈ � ⊂ R
k and likelihood function

ln(x |θ ) =
n∏

i=1

f (xi |θ ).

The estimator λ̂n is obtained by the maximization of the function

Ln(λ) = 1

n
ln ln(x |λ) = 1

n

n∑
i=1

ln f (xi |λ).

We saw that λ̂n converges to θ and that
√

n(λ̂n − θ ) is asymptotically normal
with variance J −1

θ satisfying the equality

Jθ = V ar θ

(
∂

∂θ
ln f (xi |θ )

)
= −Eθ

(
∂2

∂θ∂θ ′ ln f (xi |θ )

)
.

Suppose first that the null hypothesis is the simple hypothesis H0 : θ = θ0.
In other words, �0 is reduced to a singleton {θ0} where θ0 is a given element
of �.

The Wald statistic is given by

Waldn = n
(
λ̂n − θ0

)′
̂−1

n

(
λ̂n − θ0

)
(4.18)
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with

̂n = −1

n

n∑
i=1

∂2

∂θ∂θ ′ ln f (xi |λ̂n).

The Wald statistic measures the distance between λ̂n and the null θ0.
The Rao statistic is based on the fact that the first order conditions must be

approximately satisfied at θ0 under H0. Hence, we calculate

1

n

n∑
i=1

∂

∂θ
ln f (xi |θ0).

Under �0,
√

n

n

n∑
i=1

∂

∂θ
ln f (xi |θ0)

converges in distribution to a N (0,Jθ0 
) and then, we calculate

RAOn = n

(
1

n

n∑
i=1

∂

∂θ
ln f (xi |θ0)

)′
J −1

θ0

(
1

n

n∑
i=1

∂

∂θ
ln f (xi |θ0)

)
.

(4.19)

Note that in this case, this statistic does not require an estimation of the
parameter.

Finally the likelihood ratio statistic is based on the difference between the
likelihood function at its maximum λ̂n and at the value of θ0:

COMPn = 2n
(

L(λ̂n) − L(θ0)
)

. (4.20)

The three statistics (4.18), (4.19), and (4.20) are all asymptotically distributed
as a χ2

1 under H0.
This result is immediate in the first two cases. The last case obtains from a

second order expansion of Ln(λ) and we leave its proof to the reader. In addition,
it constitutes a special case of Theorem 4.3.

These results generalize to a multiple hypothesis in the following manner.
Let �0 ⊂ � defined by the restriction

R(θ ) = 0 (R : R
k → R

l)

or by the condition

θ = θ̃ (μ) (μ ∈ R
k−l and θ̃ : R

k−l → R
k).

The Wald test can be written as

WALDn = n R(λ̂n)′�̂−1
n R(λ̂n) (4.21)
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with

�̂n = ∂ R

∂θ ′ (λ̂n)̂n
∂ R′

∂θ
(λ̂n).

The Rao test is based on the value of the first order conditions at θ̃ (μ̂n) where
μ̂n is given by

μ̂n = arg max
μ

Ln(θ̃ (μ))

that is μ̂n is the restricted MLE. The Rao test takes the form:

RAOn = n

(
1

n

n∑
i=1

∂

∂θ
ln f

(
xi |θ̃ (μ̂n)

))′ (
J −1

θ̃ (μ̂n )
− ∂θ̃ ′

∂μ
(μ̂n)J −1

μ̂n

∂θ̃

∂μ′ (μ̂n)

)

×
(

1

n

n∑
i=1

∂

∂θ
ln f (xi |θ̃ (μ̂n)

)
(4.22)

where Jθ and Jμ are the information matrices of the unrestricted and restricted
models respectively.

Finally, the likelihood ratio test compares the maximum of Ln(λ) for λ ∈ �

and for �0 :

COMPn = 2n
(

Ln(λ̂n) − Ln(θ̃ (μ̂n))
)

= −2n(maxλ∈�0
Ln(λ) − maxλ∈� L(λ)).

(4.23)

Here again, the three test statistics are asymptotically χ2
l under the null. The

proofs of these results are identical to those for the case with GMM estimation.
For instance, for the Rao test, we use Theorem 4.2 with

ψ (xi , λ(θ )) = ∂

∂θ
ln f (xi |θ ),

H = −
[

Eθ

(
∂2

∂θ∂θ
′ ln f (xi |θ̂ (ûn))

)]−1

,

Hn =
[
−1

n

n∑
i=1

(
∂2

∂θ∂θ
′ ln f (xi |θ̂ (ûn))

)]−1

,

θ = λ(θ ) and λ̃ (u) = θ̃ (u) .

4.7 Hausman Tests

The Hausman test was first introduced in econometrics as a specification test,
that is as a test for the validation of a model as a whole. This presentation is a bit
artificial. It is better to present this test as a usual hypothesis test in the general
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framework of Wald tests. The most popular application of the Hausman test is
the test for exogeneity. This test will be introduced in Chapter 17.

Let {Xn, �, Pθ
n } be a statistical model and λ (θ ) ∈ � ⊂ R

k be a function
of the parameter that we partition into λ (θ ) = (μ (θ ) , ρ (θ )) with dimensions
k − l and l respectively. The null hypothesis �0 is ρ (θ ) = 0. The main idea
of the Hausman test is based on the comparison of two estimators of μ (θ ), μ̂n

and μ̃n. The first, μ̂n , does not use the null hypothesis and hence converges to
μ (θ ) for all θ , whereas the second converges to μ (θ ) only if ρ (θ ) = 0. If the
gap between μ̂n and μ̃ is small, ρ (θ ) = 0 is accepted, while if the difference is
large enough, ρ (θ ) = 0 is rejected.

Intuitively, we assume that μ (θ ) is the parameter function of interest while
ρ (θ ) should be interpreted as a nuisance parameter. We test H0 : ρ (θ ) = 0 by
its implication on the estimation of μ (θ ) .

This presentation is formalized in the following manner.

Theorem 4.4 Consider two estimators satisfying

1. μ̂n → μ (θ ) Pθ
∞− prob ∀θ ∈ �.

μ̃n → μ (θ ) Pθ
∞− prob ∀θ ∈ �0 = {θ |ρ (θ ) = 0}

2. ∀θ ∈ �0,
√

n

(
μ̂n − μ (θ )

μ̃n − μ (θ )

)
→ N (0, �θ ) Pθ

∞-distribution

with �θ =
(

Wθ Cθ

C ′
θ Vθ

)
.

Note that we assume here the joint normality of the estimators. More-
over, we assume that there exists an estimator �̂n which converges in
probability to �θ.

3. If θ ∈ �0, then μ̃n is the best consistent asymptotically normal estimator
(i.e., with the smallest asymptotic variance).

Then, we have
√

n (μ̂n − μ̃n) → N (0, Wθ − Vθ ) .

If rank (Wθ − Vθ ) = k − l, the Hausman test statistic takes the form

HAUSn = n (μ̂n − μ̃n)′
(

Ŵn − V̂n

)−1

(μ̂n − μ̃n)

and converges to a χ2
k−l . �

Proof: It is easy to show from Assumptions 1 and 2 that, if θ ∈ �0, then
√

n (μ̂n − μ̃n) → N
(
0, Wθ + Vθ − Cθ − C ′

θ

)
.

The asymptotic variance simplifies under Assumption 3 because it implies in
particular Vθ = Cθ = C ′

θ .
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Indeed, consider the estimator

μ∗
n = A μ̂n + (I − A) μ̃n

where A is an arbitrary matrix. This estimator is consistent and asymptotically
normal. Its variance is equal to

AWθ A
′ + (I − A) Vθ

(
I − A′) + ACθ

(
I − A′) + (I − A) C ′

θ A
′

which by assumption, is greater than V for all A. This implies:

tr
[
A

(
Wθ + Vθ − Cθ − C ′

θ

)
A′] − 2tr

[(
Vθ − C ′

θ

)
A′] ≥ 0 ∀A.

(4.24)

Moreover, we know that this expression reaches its minimum at A = 0 because
in this case, μ∗

n = μ̃n. Minimizing (4.24) with respect to A yields the first order
condition:

2A
(
Wθ + Vθ + Cθ − C ′

θ

) − 2
(
Vθ − Cθ

′) = 0.

This condition must be satisfied for A = 0, which implies Vθ = Cθ
′. �

We simplify the presentation of the theorem by assuming that Wθ − Vθ is
invertible, which implies the invertibility of Ŵn − V̂n , for n sufficiently large.
This is a special case that happens, under the usual regularity assumptions,
only if k − l ≤ l. If k − l is greater than l, it is in general possible to reduce the
dimension of μ (θ ) in order to consider only a vector of dimension l and then use
the previous theorem. A more general presentation would consist in replacing
the inverse by the Moore-Penrose inverse (see Example 4.5). If k − l < l, the
variance is in general invertible but the test is less efficient than a direct Wald
test on ρ̂n. Hence, the best choice that maintains the efficiency and does not
pose an invertibility problem is that of k − l = l.

Example 4.5 We are going to construct a Hausman test in the case of a normal
model and show that the result is, in this special case, identical to a Wald test.
Assume that xi is i.i.d. N (θ, ) and xi = (yi

′, zi
′)′ ∈ R

m−l × R
l . The matrix

 =
(

yy yz

zy zz

)
is invertible and known, and θ is partitioned into θ = (μ′, ρ ′) where μ and ρ

have dimensions m − l and l respectively. Here, k = m.
The null hypothesis is H0 : ρ = 0. We consider the unrestricted MLE

(μ̂n, ρ̂n) = (ȳn, z̄n) =
(

1

n

n∑
i=1

yi ,
1

n

n∑
i=1

zi

)
.
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The “direct” Wald test statistic is equal to n ρ̂ ′
n

∑−1
zz ρ̂n which is distributed as

a χ2
l . The estimator μ̃n is defined as the MLE of the restricted model, that is

μ̃n = arg max −1

2

n∑
i=1

(
yi − μ

zi

)′
−1

(
yi − μ

zi

)
.

An elementary calculation shows that

μ̃n = ȳ − yz
−1
zz z̄.

This estimator satisfies the conditions of Theorem 4.4 and the difference

√
n (μ̂n − μ̃n) = √

nyz
−1
zz z̄

follows an exact normal distribution with mean zero and variance yz
−1
zz yz

under H0. We have indeed

Wθ = yy and Vθ = yz
−1
zz zy .

If yz is square and invertible (that is if m − l = l), then the Hausman test
statistic is equal to

n z̄′ −1
zz zy

(
yz

−1
zz yz

)−1
yz

−1
zz z̄n = n ρ̂ ′

n −1
zz ρ̂n,

i.e., to the Wald statistic (this result holds only in this special case). If m − l > l,
this result generalizes since we can use the Moore-Penrose generalized inverse
of yz

−1
zz yz and set(

yz
−1
zz zy

)+ = zy

(
zyyz

)−1
zz

(
zyyz

)−1
zy

(if zyyz is invertible), and the Hausman test is again equal to the Wald test.
If m − l < l, the Hausman test differs from and is actually less powerful than
the Wald test. �

Example 4.6 This example considers the Hausman test in the context of max-
imum likelihood estimation in an i.i.d. model. We assume that the xi ∈ R

m have
a density f (xi |θ ) and that θ = (μ, ρ) ∈ R

k−l × R
l . The null hypothesis is still

H0 : ρ = 0. Consider the unrestricted MLE of θ (denoted λ̂n in Examples 3.9,
3.15 and 3.20 in Chapter 3) that can be partitioned into (μ̂n, ρ̂n). We partition
the matrix Jθ defined in Example 3.20 in Chapter 3 as

Jθ =
(
Jθ,μμ Jθ,μρ

Jθ,ρμ Jθ,ρρ

)
.
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Using the partitioned inverse formula, we verify that the upper-left block of
J −1

θ is equal to(
Jθ,μμ − Jθ,μρJ −1

θ,μρJθ,ρμ

)−1

= J −1
θ,μμ + J −1

θ,μμJθ,μρ

(
J −1

θ,ρρ − Jθ,ρμJ −1
θ,μμJθ,μρ

)−1

ρ
Jθ,ρμJ −1

θ,μμ

and is just the matrix Wθ in Theorem 4.4. The estimator μ̃n is equal to the MLE
in the restricted model under the null,

μ̃n = arg max
n∑

i=1

ln f (xi | (μ, 0)) ,

and its asymptotic variance matrix Vθ is equal to J −1
μ . The matrix Jμ is equal

to Jθ,μμ by letting ρ = 0. Hence, under H0, the asymptotic variance of the
difference 

√
n ( ̂μn − μ̂n) is equal to

J −1
μ Jθ,μρ

(
J −1

θ,ρρ − Jθ,ρμJ −1
μ Jθ,μρ

)−1

Jθ,ρμJ −1
μ . (4.25)

In practice, we often estimate this variance by estimating J −1
θ in a unre-

stricted model from which we extract the upper left block of this estimator, Ŵn,
and we calculate V̂n by estimating J −1

μ in the restricted model. The variance
(4.25) is then estimated by Ŵn − V̂n. The previous considerations about the
rank apply here: under natural regularity conditions, the matrix (4.25) is full
rank if k − l ≤ l, and has rank l if k − l ≥ l. �

4.8 Encompassing Test

An important application of the previous results is the encompassing test, which
allows us to test one parametric model against another one. This test has also
been referred to as test for nonnested hypotheses.

Consider a model M0 = {Xn, �, Pθ
n }, such that � has finite dimension

k and for which we have an estimator θ̂n consistent in Pθ
∞−probability and

asymptotically normal, i.e.,
√

n(θ̂n − θ ) → N (0, θ ).

Let M1 be another model with sample space Xn and parameter λ ∈ � of
finite dimension l. The specification of the sampling distribution of M1 is not
necessary, but we consider an estimation method of λ leading to an estimator λ̂n .

The test is based on the following principle. If M0 is true (that is if the data
are generated by the distribution Pθ

n for some θ ∈ �), it is assumed that θ̂n → θ

and λ̂n converges to a function λ(θ ) in Pθ
n -probability. Hence, if M0 is true and

if λ (θ ) is continuous, λ(θ̂n) and λ̂n converge both to λ(θ ), and their difference
(λ(θ̂n) − λ̂n) goes to zero. Moreover, under the usual assumptions for which
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the central limit theorem holds,
√

n(λ(θ̂n) − λ̂n) is asymptotically normal with
mean zero and variance Vθ , which implies that

n
(
λ

(
θ̂n

)
− λ̂n

)′
V +

θ

(
λ(θ̂n) − λ̂n

)
follows asymptotically a χ2 distribution with degrees of freedom equal to the
rank of Vθ . Finally, if V̂n is a sequence of matrices with the same rank as Vθ and
converging to Vθ , then the statistic

ENCn = n
(
λ(θ̂n) − λ̂n

)′
V̂ +

n

(
λ(θ̂n) − λ̂n

)
(4.26)

is also a χ2 with degrees of freedom equal to the rank of Vθ . This statistic is
called encompassing statistic. It belongs to the general class of Wald tests in the
sense that it involves estimators without using the criteria by which we obtained
them.

Before explaining the calculation of Vθ , it is suitable to justify the interest
in this test statistic. It measures the ability of model M0 to explain the results
of model M1. More precisely, if model M0 is true, the statistician, who pro-
ceeds in estimating λ in M1, actually does not estimate the parameters of her
model but a function of the parameters of M0. The function λ(θ ) enables us to
give a meaning to the estimation of a model even if it is misspecified. Model
M0 provides an estimator θ̂n , so that the statistician may estimate λ by λ(θ̂n)
without reprocessing the sample. If λ(θ̂n) and λ̂n are close, model M0 is said
to encompass model M1. The notion of encompassing formalizes the idea that
a correct theory should be able to explain the empirical results of erroneous
models.

The exact expression of λ(θ ) and the steps to obtain the limiting distribution
of (4.26) depend on the estimation procedures employed in each model. In
particular, different estimators in M1, which are consistent if M1 is true, may
converge to different values if M1 is incorrectly specified.

We limit ourselves to two models that are estimated by maximum likelihood.
This presentation completes the presentation given by Examples 3.9 and 3.15
in Chapter 3.

Example 4.7 Suppose that M0 is an i.i.d. model with likelihood

n∏
i=1

f (xi |θ )

and that M1 is another i.i.d. model with likelihood

n∏
i=1

g(xi |λ).
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The first step of the analysis consists in deriving the joint distribution of the
MLE θ̂n and λ̂n, assumingM0 is true. We know that θ̂n → θ and that λ̂n → λ(θ )
under M0 where λ(θ ) is the minimum in λ of∫

ln
f (xi |θ )

g (xi |λ)
f (xi |θ )dxi .

We notice immediately that θ̂n and λ̂n are jointly obtained as the solutions to
the system

1

n

n∑
i=1

(
∂
∂θ

ln f (xi |θ )

∂
∂λ

ln g(xi |λ)

)
= 0.

Hence, we can apply the results of Chapter 3 (Theorem 3.3) and infer that

√
n

(
θ̂n − θ

λ̂n − λ(θ )

)
→ N (0, θ )

with

θ =

⎛⎜⎝ Eθ
(

∂2

∂θ∂θ ′ ln f (xi |θ )
)

0

0 E
(

∂2

∂λ∂λ′ ln g(xi |λ(θ ))
)

⎞⎟⎠
−1

×
(

V ar θ
(

∂
∂θ

ln f (xi |θ )
)

Covθ
(

∂
∂θ

ln f (xi |θ ), ∂
∂λ

ln g(xi |λ(θ ))
)

Covθ
(

∂
∂λ

ln g(xi |λ(θ )), ∂
∂θ

ln f (xi |θ )
)

V ar θ
(

∂
∂λ

ln g(xi |λ(θ ))
))

×

⎛⎜⎝ Eθ
(

∂2

∂θ∂θ ′ ln f (xi |θ )
)

0

0 Eθ
(

∂2

∂λ∂λ′ ln g(xi |λ(θ ))
)

⎞⎟⎠
−1

.

Using the notation

θ =
(

θ11 θ12

θ21 θ22

)
,

we have

−1
θ11 = −Eθ

(
∂2

∂θ∂θ ′ ln f (xi |θ )

)
which is equal to the information matrix in M0. Moreover,

θ22 = Eθ
(

∂2

∂λ∂λ′ ln g (x |λ(θ ))
)−1

V ar θ
(

∂
∂θ

ln g (xi |λ(θ ))
)

Eθ
(

∂2

∂λ∂λ′ ln g (x |λ(θ ))
)−1
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and

θ12 = Eθ
(

∂2

∂θ∂θ ′ ln f (xi |θ )
)−1

Covθ
(

∂
∂θ

ln f (xi |θ ), ∂
∂λ

ln g (xi |λ(θ ))
)

Eθ
(

∂2

∂λ∂λ′ ln g (xi |λ(θ ))
)−1

.

Compared to the results of Chapter 3, this calculation establishes the joint
normality of the estimators and makes explicit the asymptotic covariance. Then,
it suffices to transform (θ̂n, λ̂n) into (λ(θ̂n), λ̂n) which remains asymptotically
normal

√
n

(
λ(θ̂n) − λ(θ )

λ̂n − λ(θ )

)
→ N

(
0,

(
∂λ
∂θ ′ θ11

∂λ′
∂θ

∂λ
∂θ ′ θ12

θ21
∂λ′
∂θ

θ22

))

and to infer the asymptotic distribution of λ(θ̂n) − λ̂n:
√

n(λ(θ̂n) − λ̂n) → N (0, �θ )

with

�θ = ∂λ

∂θ ′ θ11

∂λ′

∂θ
+ θ22 − ∂λ

∂θ ′ θ12 − θ21

∂λ′

∂θ
.

It follows that

n(λ(θ̂n) − λ̂n)′�+
θ̂n

(λ(θ̂n) − λ̂n) → χ2
r

with

r = rank (�θ ) .

To obtain a test statistic, we need to choose a consistent sequence of estimators
�̂n with the same rank as �θ , and to replace �+

θ̂n
by �̂+

n in this expression.
In practice, if �θ is singular, we look for a subvector of λ(θ̂n) − λ̂n such that
its asymptotic variance is invertible (if possible with dimension r in order to
preserve the power of the test), and we conduct the test on this subvector. The
practical difficulty with implementing the encompassing test is the calculation
of λ(θ ) and of its derivatives necessary for computing the covariance matrix.
Their expressions are generally impossible to obtain analytically but can be
estimated using the simulation methods that we will present in Chapter 6. �

Example 4.8 Consider the following two models.

In M0, xi = (yi , zi )
′ ∈ R

2 is i.i.d. N

(
θ

0
, 

)
, and

in M1, xi is i.i.d. N

((
o
λ

)
, 

)
where θ and λ ∈ R.
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It is easy to verify that the MLE are

θ̂n = ȳ − σyz

σzz
z̄ and λ̂n = z̄ − σyz

σyy
ȳ

where ȳ and z̄ are the sample means of yi and zi . The estimator λ̂n converges
to

λ (θ ) = −σyz

σyy
θ

under M0. Hence, the encompassing test compares

−σyz

σyy

(
ȳ − σyz

σzz
z̄

)
and z̄ − σyz

σyy
ȳ.

The test statistic is based on (ρ2 − 1)z̄ (where ρ is the correlation coefficient
between yi and zi ) and reduces, in this special case, to the usual test for the
expectation of zi to be zero. �

Notes

Asymptotic tests obviously occupy an important place in the statistical literature. The

likelihood ratio test was presented in the seminal paper by Neyman and Pearson (1928),

while the two other tests were introduced by Wald (1943) and Rao (1948). Pittman

(1949) presented the notion of comparing tests through a sequence of local alternatives

and the concept of relative asymptotic efficiency, Serfling (1980) provides a synthesis

of various points of view in his Chapter 10. For a Bayesian framework, see Lubrano and

Marimoutou (1988). It is impossible to cite all the econometric works on asymptotic

testing and we refer to the synthesis by Gouriéroux and Monfort (1996a) and to the books

by Davidson and McKinnon (1993 and 2004). Note however the interesting criticism

of Wald tests by Dufour (1997) and the article by Davidson and McKinnon (1987) on

implicit hypotheses.

Exogeneity tests were introduced by Durbin (1954) and Wu (1973), and have been

revisited as specification tests by the paper of Hausman (1978), a paper which has been

greatly clarified by Holly (1982) and Holly and Monfort (1986). A comparison of the

different versions of these tests is given in Nakamura and Nakamura (1981).

Tests for nonnested models are based mainly on the work by Cox (1964 and 1962) and

our presentation is close to those of Gouriéroux, Monfort, and Trognon (1983), Mizon

and Richard, (1986), Florens, Richard, and Hendry (1996), and Florens and Mouchart

(1993).
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5. Nonparametric Methods

5.1 Introduction

Nonparametric methods have recently taken a prominent position in econo-
metrics. One of the essential reasons for this phenomenon is the increasingly
frequent use of survey data and administrative data bases in microeconometrics
(analysis of labor market, individual consumption, household saving). These
samples are often very large. Although the microeconomic theory is well ad-
vanced, it does not provide a precise functional form that could be used for
the statistical modeling. It is known that a relationship is decreasing or that
a distribution has a decreasing hazard rate, but the economic theory does not
specify the parametric form of the relationship or distribution.

Nonparametric methods are actually numerous and we will cover only part of
them, we will neglect, for instance, rank analysis to focus mainly on smoothing
techniques. These methods can be considered “descriptive.” However, this anal-
ysis of the observations is essential. Moreover, we will see that nonparametric
methods extend to semiparametric methods that have as a purpose the estimation
of a parameter vector without imposing restrictive specification assumptions.

Note that the treatment of simulated data (see Chapter 6), for which samples
can be made as large as desired, heavily uses nonparametric methods.

We focus our presentation on i.i.d. models. Extensions to dynamic models
are obviously possible and are used, for instance, in financial econometrics.
We will recall first the essential properties of the empirical distribution before
studying the density estimation and introducing semiparametric methods. The
nonparametric regression will be studied in Part II of the book.

5.2 Empirical Distribution and Empirical Distribution Function

The basic model of nonparametric statistics is the i.i.d. model with unknown
probability distribution.

87
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This model has been presented in Example 1.8, and we recall here the no-
tation. The observations x1, . . . , xn are the elements of R

m generated indepen-
dently by the unknown probability distribution Q. Therefore, the parameter of
this statistical model is Q ∈ Pm , the family of all probability distributions on
R

m .
The “natural” estimator of Q is the empirical distribution defined as

Q̂n = 1

n

n∑
i=1

δxi (5.1)

where δxi is the Dirac measure in xi . If E ⊂ R
m , δxi (E) equals 1 if xi ∈ E

and 0 otherwise. Hence, the definition (5.1) means that Q̂n(E) is equal to the
proportion of points in the sample that belongs to E .

It is useful to represent Q by its (cumulative) distribution function F satis-
fying

F : R
m → [0, 1] and F(t) = Q((−∞, t1] × · · · × (−∞, tm])

(5.2)

with t = (t1, . . . , tm) .

The empirical distribution function is obtained by replacing Q by Q̂n so that

F̂n(t) = 1

n

n∑
i=1

1I(xi1 ≤ t1, . . . , xim ≤ tm) (5.3)

where the function 1I(xi1 ≤ t1, . . . , xim ≤ tm), equal to 1 if each component of
xi is less or equal than the corresponding component of t and 0 otherwise, is
the distribution function of the Dirac measure δxi .

The following theorem presents some small sample properties of the estima-
tors Q̂n and F̂n .

Theorem 5.1 If x1, . . . , xn is an i.i.d. sample of probability distribution Q,

we have:

1. ∀E, the sampling distribution of nQ̂n(E) is the binomial distribution
with parameters n and Q(E). In particular:

E Q(Q̂n(E)) = Q(E) and

Var Q(Q̂n(E)) = Q(E)(1 − Q(E))

n
.

2. If E1, . . . , EL is a partition of R
m, the sampling distribution of

nQ̂n(E1), . . . , nQ̂n(EL ) is the multinomial distribution with parame-
ters nQ(E1), . . . , nQ(EL ). In particular,

CovQ(Q̂n(El), Q̂n(E j )) = −1

n
Q (E�) Q

(
E j

)
(l �= j)
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3. If m = 1, n F̂n(t) has a binomial sampling distribution with parameters
n and F(t). Moreover,

CovQ(F̂n(t), F̂n(s)) = 1

n
[F(min(s, t)) − F(s)F(t)] (5.4)

�

Proof: One can consider nQ̂n(E) as the number of times an event xi ∈ E oc-
curred. Because each event has probability Q(E) and the events corresponding
to different i are independent, we have result 1.

The multinomial case is an immediate generalization. For point 3, let E =
(−∞, t]. Formula (5.4) follows from the equalities

CovQ
(

F̂n(t), F̂n(s)
)

= 1

n2

∑
i, j

CovQ(1I(xi ≤ t), 1I(x j ≤ s))

= 1

n2

∑
i

CovQ (1I(xi ≤ t), 1I(xi ≤ s))

= 1

n2

∑
i

{
E Q(1I(xi ≤ t)1I(xi ≤ s))

−E Q(1I(xi ≤ t))E Q(1I(xi ≤ s))
}

= 1

n
[F(min(s, t)) − F(t)F(s)] . �

Now, let us briefly consider the asymptotic properties of the estimator of F (t),
restricting ourselves to the scalar case. The following theorem is the immediate
consequence of the law of large numbers and the central limit theorem.

Theorem 5.2 Under the assumptions of Theorem 5.1 and if m = 1, we have :

1. F̂n(t) → F(t) a.s.
2.

√
n(F̂n(t) − F(t)) → N (0, F(t)(1 − F(t))) in distribution.

3. If t1, . . . , tq ∈ R,

√
n

⎛⎜⎝ F̂n (t1) − F (t1)
...

F̂n

(
tq

) − F
(
tq

)
⎞⎟⎠ → Nq (0, )

where the element ( j, k) of  is equal to F(min(t j , tk)) − F(t j )F(tk).

�
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This theorem can be much improved upon by considering global properties
of convergence. These global properties follow from a functional central limit
theorem that examines the convergence of the function

√
n

(
F̂n − F

)
to a limiting distribution in the space of functions. This study goes beyond
the scope of this book, but we mention some implications of this result to the
maximum of the gap between F̂n and the true distribution F . Let

Dn = sup
t∈R

|F̂n(t) − F(t)|. (5.5)

One can show:

1. Dvoretsky-Kiefer-Wolfowitz Inequality:

∃C > 0, ∀F, Pr(Dn > d) ≤ Ce−2nd2

(5.6)

for all d > 0. Note that here we have the product of n probability distri-
butions equal to Q.

2. Glivenko-Cantelli Theorem:

Dn → 0 a.s. (5.7)

To test the hypothesis F = F0 (a given distribution function), one uses the
statistic Dn with F replaced by F0. Thus, one obtains the Kolmogorov-Smirnov
statistic, and the rejection region of the hypothesis F = F0 is of the form
Dn > d . To find d such that the probability of the rejection region is equal
to a given value, one uses the limiting distribution of Dn , established by
Kolmogorov assuming the continuity of F :

lim
n→∞ Pr(

√
nDn ≤ d) = 1 − 2

∞∑
j=1

(−1) j+1e−2 j2d2

(d > 0) . (5.8)

This expression serves to construct the tables of the Kolmogorov-Smirnov test.
This presentation is extremely summarized and the empirical distribution

analysis can be generalized in multiple directions. For instance, one can analyze
the distribution function for an arbitrary m or for mixing stationary models
instead of i.i.d. One can be interested in the quantile function F−1(t), or consider
alternative distances between F̂n and F, other than Kolmogorov-Smirnov.
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5.3 Density Estimation

In the preceding section, no restrictions were imposed on the probability distri-
bution Q. We will introduce one by assuming that Q admits a density f (with
respect to Lebesgue measure), that is

Q(E) =
∫

E
f (u)du. (5.9)

The aim now is to estimate f or to choose an estimation of Q that has a
density.

It is clear that we need to drop or modify the empirical distribution because
it does not admit a density and hence does not satisfy the assumptions of the
model.

Various strategies are used to construct an estimator of the density. The
simplest method consists in drawing a histogram of the observations, and the
most popular method is the kernel method that we are going to present. Other
methods include the kth nearest neighbor estimator, orthogonal functions, spline
functions, and so on. It is possible to encompass various methods within a more
general framework but for the sake of simplicity, we concentrate our exposition
on the kernel method.

5.3.1 Construction of the Kernel Estimator of the Density

To explain the construction of the estimator, we first consider the case of scalar
observations (m = 1). The density f (t) can be considered as the derivative
(except maybe at a few points) of the distribution function F(t). Hence, we
essentially need to look for a differentiable estimator of F . The empirical dis-
tribution function F̂n is not differentiable, but it can be modified by replacing
the indicator 1I(xi ≤ t) by a differentiable approximation.

If K (t) is a differentiable approximation of 1I(0 ≤ t), then K (t − xi ) is a
differentiable approximation of 1I(xi ≤ t) (by a change of origin) and hence
one obtains a differentiable approximation of F̂n by considering

F̂n(t) = 1

n

n∑
i=1

K (t − xi ). (5.10)

If K is the derivative of K , one builds an estimator of the density by defining:

f̂n(t) = 1

n

n∑
i=1

K (t − xi ). (5.11)

This construction will not provide a consistent estimator of F (or of f ).
Indeed, it follows from the law of large numbers that F̂n(t) converges to
E Q(K (t − xi )) which differs from F(t). To obtain a consistent estimator, the
quality of the approximation of 1I(xi ≤ t) needs to increase with the sample size.
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A way to obtain this result is to replace K by K ( t−xi

hn
) where hn is a real

number dependent on n and going to 0. Different values of n will give rise
different approximations which will be better for higher n. Hence, formulas
(5.10) and (5.11) are modified to obtain

F̂n(t) = 
1

n

n∑
i=1

K

(
t − xi

hn

)
(5.12)

and

f̂n(t) = 1

nhn

n∑
i=1

K

(
t − xi

hn

)
. (5.13)

It remains to define the way to choose K . A method, that is easy to interpret,
consists of choosing K as the distribution function of a given probability dis-
tribution on R; it is convenient to assume that this distribution has mean zero
and is symmetric. Hence, the function K is the density of this distribution and
is called the kernel of the estimator.

We complete this construction with two remarks:

1. Consider two independent real random variables x̃ and ε. The first, x̃ ,
is discrete and is distributed according to the empirical distribution Q̂n .
In other words, x̃ can take the values of the sample x1, . . . , xn with
probability 1

n . The second, ε, is continuous and its density is K (t) . One
can verify that

x̃ + hnε

is a continuous random variable with density given by (5.13). Indeed:

Prob (x̃ + hn ε̃ ≤ t) =
n∑

i=1

Prob (x̃ + hn ε̃ ≤ t |x̃ = xi ) Prob (x̃ = xi )

= 1

n

n∑
i=1

Prob

(
ε ≤ t − xi

hn

)
= 1

n

n∑
i=1

K

(
t − xi

hn

)
.

One recognizes (5.12) and the density (5.13).
Hence, kernel smoothing comes down to computing the density of the

sum (or equivalently the convolution) of a random variable distributed
according to the empirical distribution and an independent error of den-
sity K multiplied by the scalar hn, which goes to zero with n so that
more and more weight is given to the sample.

2. Efficiency may be gained by considering kernels that are not necessarily
positive. The above interpretation is then lost and in small samples, the
estimate of the density may not be nonnegative. This extension is not
considered in this introductory chapter.
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The preceding method can be generalized to the case with several variables
and is summarized in the following definition.

Definition 5.1 Let x1, . . . , xn be an i.i.d. sample of distribution Q in Rm

with density f with respect to Lebesgue measure. Consider K (t) (t ∈ R
m) , a

differentiable distribution function on Rm, and its density

K (t) = ∂ (m) K

∂t1 . . . ∂tm
(t) .

Suppose that K is symmetric (K (−t) = K (t)), unimodal and that the random
vector of density K has a finite mean (zero by symmetry) and variance. The
estimator of kernel K and window hn > 0 of the density f is equal to

f̂n (t) = 1

nhm
n

n∑
i=1

K

(
t − xi

hn

)
(5.14)

where t−xi

hn
is the vector(
t j − xi j

hn

)
j=1,...,m

. �

5.3.2 Small Sample Properties of the Kernel Estimator
and Choices of Window and Kernel

The choices of the window and the kernel in the estimation of the density
are here based on the study of the small sample properties of f̂n . We will
summarize these properties by the computation of the distance between f̂n and
f ; this distance is the mean integrated squared error (MISE). This measure
generalizes the mean squared error to functions and is defined by the value

MISE
(

f̂n

)
= E Q

{∫ (
f̂n (t) − fn (t)

)2

dt

}
. (5.15)

Hence, the MISE is equal to the squared bias and the variance of the estimator.
Note that the MISE is defined only for square integrable f . This calculation is
identical to that developed in Chapter 3 in (3.4).

The estimator f̂n is biased, hence the two terms in the decomposition (5.15)
remain and we have the following approximation for a density on R.

Theorem 5.3 Under the assumptions of the definition 5.1, if xi ∈ R and if f
is twice continuously differentiable, we have the approximation:

MISE
(

f̂n

)
� h4

n

4
σ 4

K

∫ (
d2 f

dt2 
(t)

)2

dt + 1

nhn

∫
K 2 (u) du (5.16)

where σ 2
K is the variance of the random variable with density K . �
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Proof: First consider the bias. We have

E Q
(

f̂n (t)
)

− f (t) =
∫

1

hn
K

(
t − xi

hn

)
f (xi ) dxi − f (t)

=
∫

K (u) ( f (t − hnu) − f (t)) du

by letting u = t−xi

hn
. By a second order approximation, we obtain

f (t − hnu) − f (t) � −hnu
d f (t)

dt
+ h2

nu2

2

d2 f (t)

dt2

which yields, after multiplying by K (u) and integrating,

E Q
(

f̂n (t) − f (t)
)

� h2
n

2

d2 f (t)

dt2
σ 2

K .

By squaring and integrating with respect to t, the first term of the approximation
follows. On the other hand,

Var Q
(

f̂n (t)
)

= 1

n
Var Q

(
1

hn
K

(
t − xi

hn

))
= 1

n

∫
1

h2
n

K 2

(
t − xi

hn

)
f (xi ) dxi

− 1

n

[∫
1

hn
K

(
t − xi

hn

)
f (xi )

]2

.

If n is large and hn is small, the second term is negligible compared to the
first one because of the previous calculation. Hence, we just keep the first term
which can be rewritten as

Var Q
(

f̂n (t)
)

� 1

nhn

∫
K 2 (u) f (t − hnu) du

� 1

nhn

∫
K 2 (u) f (t) du − 1

n

∫
K 2 (u) u

d f (t)

dt
du.

The second term is again negligible because hn is small. By integrating this
expression with respect to t and using

∫
f (t) dt = 1, the second term of the

theorem follows. �

Notice that choosing hn very small reduces the bias but increases the variance.
From the previous result, we can infer the choice of the optimal window, the

window which minimizes the MISE for a given kernel.
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A simple calculation shows that the expression (5.16) is minimal in hn if

hn = Cn− 
1
5 with C = σ

− 
4
5

K

[∫
K 2 (u) du

] 1
5

[∫ (
d2 f

dt2

)2

dt

]− 
1
5

.

(5.17)

This result is not completely satisfying because the constant C depends precisely
on the unknown f . A frequently used method consists in replacing f in the
constant by the normal density. One can verify that∫ (

d2 f

dt2

)2

dt

is roughly equal to 0.212 σ−5 where σ 2 is the variance of xi . If we choose for
K the density of the standard normal, we obtain

C � 1.06σ.

Hence, a popular choice for the window in the estimation of a density on R
consists in using

hn = σ̂nn− 
1
5

where the variance σ 2 of Q is estimated by the empirical variance

σ̂ 2
n = 1

n

n∑
i=1

(xi − x̄)2 .

Again one can use the MISE to select the optimal kernel. We do not detail the
calculation but provide the main outline. If we replace hn by its optimal value
(5.17) in the expression of the MISE (5.16), we obtain an expression which is
a function of K and of f. This function of K is actually proportional to

σ
2/5
K

{∫
K 2 (u) du

}4/5

.

If we focus our attention to kernels K , which are densities with mean zero and
σK = 1, we actually look for a nonnegative function K , which minimizes

∫
K 2

under the constraints∫
K (u) du = 1,

∫
uK (u) du = 0 and

∫
u2 K (u) du = 1.

The solution to this problem is the function

K (u) =
∣∣∣∣∣

3

4
√

5

(
1 − 1

5
t2

)
if − √

5 ≤ t ≤ √
5

0 otherwise.
(5.18)
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This kernel is known as Epanechnikov’s kernel. Other popular kernels are the
density of the standard normal, the triangular density

K (u) =
∣∣∣∣∣ 1 − |u| if |u| < 1

0 otherwise
(5.19)

and rectangular density

K (u) =
∣∣∣∣∣ 1/2 if − 1 ≤ u ≤ 1

0 otherwise.
(5.20)

5.3.3 Asymptotic Properties

The asymptotic properties concern first the convergence of the estimator f̂n

to f . First, we can look at the pointwise convergence of f̂n (t) to f (t) or the
convergence of the MISE to 0 in the case where f is square integrable and
differentiable. The expression of the MISE given by (5.16) in Theorem 5.3
shows that two conditions are necessary to obtain the convergence of the MISE
to 0:

— hn → 0.

— nhn → ∞ in the case xi ∈ R or more generally, nhm
n → ∞ if xi ∈ R

m .

These two conditions imply also the pointwise mean square convergence
(and hence in probability) of f̂n (t) to f (t) .

A stronger convergence requires of course more assumptions. For instance,
it is interesting to consider the convergence of

sup
t

∣∣ f̂n (t) − f (t)
∣∣

to 0 in probability in order to obtain a uniform convergence of f̂n to f.
In the scalar case, the convergence is obtained if f is uniformly continuous

and the condition

nhn → ∞
is replaced by

nhn (ln n)−1 → ∞.

This condition imposes that nhn goes to infinity faster than ln n. Many other
results on convergence appear in the statistical literature. This literature analyzes
also the speed of convergence of f̂n to f . We will not present these results but
nevertheless emphasize that the speed of convergence is slow as soon as m is
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relatively large, which makes the asymptotic results of limited practical interest,
except when the sample size is extremely large.

This effect is even worse when it comes to asymptotic normality. Indeed, it
can be shown that under the assumptions hn → 0 and nhm

n → ∞, if t ∈ R
m,

√
nhm

n

⎛⎜⎜⎜⎝ f̂n (t) − E
(

f̂n (t)
)

[
f (t)

∫
K 2 (u) du

] 1
2

⎞⎟⎟⎟⎠ → N (0, 1) in distribution.

(5.21)

Moreover, for given t1, . . . , tq of Rm, the limiting distributions of f̂n

(
t j

)
, j =

1, . . . , q, normalized as above, are asymptotically independent.
This result is not very interesting because it does not allow us to construct

confidence intervals for f (t) . To do this, it is necessary to be able to replace
E

( 
f̂n(t)

) 
by f (t) in the previous result. This modification is possible if f is

twice differentiable, with bounded and integrable derivatives and if nhm+4
n → 0.

In this case, it is also possible to replace f in the denominator by its estimator
f̂n . We then obtain

√
nhm

n

⎛⎜⎝ f̂n (t) − f (t)[
f̂n (t)

∫ 
K 2 (u) du

] 1
2

⎞⎟⎠ → N (0, 1) , (5.22)

and a 95% confidence interval for f is given by

f̂n (t) ± 1, 96

(
f̂n (t)

∫ 
K 2 (u) du

nhm
n

) 1
2

.

The asymptotic independence for different values of t is maintained.
Simulation studies of the small sample properties of the kernel estimator

show that the exact distribution differs largely from the asymptotic distribution
when the sample size corresponds to that of most econometric data sets. Hence,
we recommend to use these normality results with caution and we prefer results
following from bootstrap for instance (see Chapter 6).

Remark. It follows from result (5.22) that f̂n converges to f with the rate√
nhm

n . Let m = 1 to simplify. If hn is selected using the rule (5.17), the rate
of convergence becomes n

2
5 . This rate improves if it is assumed that f is more

than twice differentiable. However, this rate deteriorates if the dimension m
increases. In the general case, it can be shown that a density which is s times
differentiable in R

m can be estimated at the rate n
s

m+2s .
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5.4 Semiparametric Methods

Semiparametric methods refer to statistical procedures where the sampling
probabilities are indexed by the elements of an infinite dimensional space,
but where the statisticians interest lies in a finite dimensional vector. Using
the notation of Chapter 1, we are interested in a function λ (θ ) ∈ R

k of θ , θ

being infinite dimensional. This presentation already appeared several times in
previous chapters and will be completed by some comments.

In broad outline, two types of sampling models are considered. Their dis-
tinction is based on the presence of overidentification assumptions, that is the
restrictions on the sampling probability space. Let us introduce this distinction
with the following example.

Example 5.1 The observations are (x1, . . . , xn) with xi = (yi , zi ) ∈ R
2. A

first type of model could suppose that the xi are i.i.d. with distribution Q.
Moreover, we constrain Q to be dominated by Lebesgue measure or to be
such that the elements of xi have finite second moments. Hence, such a model
introduces some (weak) constraints on the generation of xi , and we consider that
this model is “weakly overidentified” without giving a rigorous mathematical
meaning to this phrase.

A second type of model could assume that the xi are again i.i.d. with distri-
bution Q, but Q is dominated by Lebesgue measure and its density is elliptic,
that is, it can be written as

f (u, v) = kg
(
(u − α, v − β)′ H (u − α, v − β)

)
where k is a scaling coefficient depending on g and g is a function from R → R

+,
α, β ∈ R, and H is a 2 × 2 positive definite matrix. This model (of which the
normal distribution is a special case) is such that the density of the pair (yi , zi )

depends on the distance between this pair and the point (α, β) according to
the H metric. Its parameters are α, β, H, and g and therefore it belongs to the
class of nonparametric specifications because it has a functional parameter g.
However, it introduces much more structure than the previous one and is really
overidentified. The advantage of this model compared to a fully nonparametric
model lies in the fact that the estimation of a density of two variables is re-
placed by the estimation of a density of one single variable (g) and five scalar
parameters. In addition, it is more flexible than a totally parametric model (as
the normal one) where the function g is completely determined a priori. It is
possible to test the assumption that the density of the pair is elliptic. �

Example 5.2 We observe i.i.d. vectors xi = (yi , z′
i )

′ ∈ R × R
q , and we are

interested in the conditional model describing the generation of yi given zi .
A fully nonparametric approach would consist in estimating the conditional
distribution of yi given zi which is quite difficult in practice if q is large
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(this point is partially considered in Chapter 10). An alternative strategy con-
sists in constraining the conditional distribution, by assuming for instance that
the conditional distribution function satisfies

Pr ( yi ≤ t |zi ) = F (t)R(β,zi ) (5.23)

where F is an unknown distribution function and R is a known positive function
depending on unknown parameters β, for example

R (β, zi ) = eβ ′zi , β ∈ R
q .

Hence, the conditional model is semiparametric in the sense that it depends on
a vector parameter β and on a functional parameter F. However, it is clear that
the specification (5.23) introduces constraints on the conditional distribution,
which are however weaker than those of a fully parametric model. �

Consider a weakly overidentified model, where the xi are i.i.d. with distribu-
tion Q. This assumption can be relaxed by assuming that the xi are stationary
ergodic (see Chapter 2) and Q is still the marginal distribution of any real-
ization. We are interested in the parameter vector λ, a function of Q, denoted
λ = λ (Q). We distinguish two cases depending on whether the function λ is
defined for the empirical distribution, Q̂n, of xi or not. The previous sections
provide examples of both situations. If λ is defined by the moment condition

E Q (ψ (xi , λ)) = 0,

we saw that Q can be replaced by Q̂n , from which we derive the estimator λ̂n of
λ. In contrast, if λ (Q) is the value of the density of Q with respect to Lebesgue
measure at t , this function is not defined at Q̂n.

If the function λ is defined for Q̂n, an estimator is immediately obtained by
replacing Q by Q̂n while, if λ is not defined for Q̂n, it is necessary to first
transform Q̂n into a distribution that belongs to the domain of λ, then take the
value of this transformation. This happens in particular if λ depends on the
density of Q. We are going to illustrate this remark by various examples.

Example 5.3 If xi ∈ R and if F is the distribution function of Q, we define

λ (Q) = F (t0)

where t0 is a given value. Then, the parameter λ is the probability of the event “xi

is less than or equal to t0.” This function is well defined for F̂n and we derive the
usual estimator λ̂n equal to the proportion of observations less than or equal to
t0. This estimator belongs to the class of method of moments estimators because

λ (Q) = E Q (1I (xi ≤ t0)) . �
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Example 5.4 Let xi ∈ R be i.i.d. with dominated distribution Q, and let f be
the density of Q. We are looking for the value of

λ (Q) =
∫

d f  (t)

dt
f (t) dt

equal to the mean of the derivative of the density. This function is not defined
at Q̂n. Therefore, we use a differentiable estimator of the density, for instance,
a kernel estimator. This estimator is used for the calculation of d f

dt , but is
unnecessary for computing the expectation. Hence, λ (Q) is estimated by

λ̂n = 
1

n

n∑
i=1

d f̂n

dt
(xi )

rather than by

λ∗
n =

∫
d f̂n (t)

dt
f̂n (t) dt. �

We conclude this chapter by providing a few guidelines for the estimation
methods for semiparametric models.

As shown by the previous examples, it is appropriate to distinguish problems
where the data distribution depends on two elements, one vectorial and the other
functional, from the problems where the object of interest, λ (Q) , is a function
of the distribution of the observations.

In the first case, at least two approaches are possible. The first one is partic-
ularly interesting but can be used in special cases only.

For the first approach, let x = (xi )i=1,...,n be the sample, λ the parameter
vector, and g the functional parameter. The distribution of x depends on λ and g,
but it is possible in some models to extract some statistic S(xi , . . . , xn), whose
distribution depends only on λ. If this statistic has a dominated distribution,
then λ can be estimated by maximum likelihood using only the statistic S(x)
from the sample.

Example 5.5 We modify slightly example 5.2 to bring it closer to traditional
microeconometric models. Let us describe our model which is a duration model
with so-called proportional hazard. The sample xi = (yi , z′

i )
′ is composed of a

positive number yi representing a duration (of unemployment for instance) and
of zi a vector of conditioning variables. The conditional model is defined by the
independence of the xi and the property

Pr (yi ≥ t |zi ) = S (t)R(β,zi ) (5.24)

where S (t) = 1 − F (t) and F (t) is an unknown distribution function. The
function S is called survival function and is supposed to be differentiable. The
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parameters of this model are S and β and the density of one observation is
written as

f (yi |zi ; S, β) = R (β, zi )
d S

dt
S (t)R(β,zi )−1 . (5.25)

It follows from (5.24) and (5.25) that the hazard function of yi conditional on
zi , defined as the ratio of (5.25) and (5.24) equals R (β, zi ) times the baseline
hazard function (defined as −d S/dt

S(t) ). We retain from the sample only the statistic

C (x1, . . . , xn) = (ri , zi )i=1,...,n

where

ri =
n∑

j=1

1I( y j ≤ yi ) ∈ {1, . . . , n} .

In other words, we keep only the rank of the explained variable (that is its
position in an increasing ordering) and the explanatory variables. To compute
the distribution of C, we introduce a permutation σ of {1, . . . , n} and τ its
inverse permutation. We have

Pr (σ1 = τ1, . . . , σn = τn|z) = Pr( yτ1
< · · · < yτn |z)

=
+∞∫

u=−∞
du1. . . .

∞∫
un−1=un−2

∞∫
un=un−1

n∏
i=1

f (ui |zτi , S, β)dun

which becomes, after elementary manipulations,

n∏
i=1

R
(
β, zτi

)∑
j such that yτ j ≥yτi

R
(
β, zτ j

) =

n∏
i=1

R
(
β, zτi

)
n∏

i=1

n∑
j=1

R
(
β, zτ j

)
1I

(
yτ j ≥ yτi

) .

This probability depends on β only and we estimate this parameter vector
by maximizing the logarithm of this expression. This approach is called the
Cox marginal likelihood method. It is developed and generalized in books on
duration models. �

If the previous approach cannot be used because of the lack of a statistic C(x)
that satisfies the desired properties, one may use the second approach to be
described now. Assume again that λ is a parameter vector and that g is a func-
tional parameter. Moreover, we assume that if λ is known, we have a natural
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nonparametric estimator of g (denoted ĝn (λ)) and that if g is fixed, the distri-
bution of xi is defined by the density f (xi |λ, g). We proceed in the following
manner:

� estimation of λ by λ̂n by maximizing the likelihood function

n∏
i=1

f (xi |λ, ĝn (λ) ) ,

� estimation of g by ĝn(λ̂n).

The main difficulty with this approach is to analyze the asymptotic properties
of this procedure and particularly to measure the impact on λ of the fact that g
is unknown and needs to be estimated.

The last estimation problem we consider is that of a vector function λ = λ (Q)

of a distribution Q generating an i.i.d. sample (xi )i=1,...,n . Of course, one must

choose Q̂n in the domain of λ. If for instance, λ (Q) depends on the density of
Q, we choose an estimator that admits a density (see section 5.2). Under usual
regularity conditions, λ(Q̂n) converges to λ (Q) (this result follows from the
continuity of λ assuming that Q̂n converges to Q). At least two methods may
be used to analyze the asymptotic normality of λ̂n and its rate of convergence.
One can go directly from the convergence properties of Q̂n to those of λ̂n using
the Delta method analogous to that given in Chapter 3, but this type of proof
relies on tools that are more sophisticated than those used in this text. One can
also, on a case-by-case basis, do a direct proof using the Taylor approximation.
Then, one gets expressions termed U statistics.

Notes

We refer the readers to books by Davidson (1994) and Serfling (1980) to complete

our presentation of the properties of the empirical distribution as well as to the book by

Bosq and Lecoutre (1992) that contains a rigorous presentation of various nonparametric

methods, including in particular the density estimation. The book by Silverman (1986)

is an excellent detailed presentation of Section 5.3.

The literature on semiparametric estimation has experienced an explosion in the last

years but untill now was limited to articles, with the exception, in the econometrics

literature, of the books by Stocker (1991) and by Pagan and Ullah (1999). Among the

important articles, we cite Gallant and Nychka (1987).

We mentioned an example of proportional hazard model, for which a useful reference

is Cox and Oakes (1984) for instance.
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6. Simulation Methods

6.1 Introduction

Simulation methods have in common the use of two random samples: the first is
constituted of true observations of the studied phenomenon whereas the second
is artificially generated by a computer. The distribution of the first sample is
unknown and its size is determined by the available databases. The second
sample obeys the will of the statistician, who chooses the generating process
and its size depends on the available computing power and time.

There are many different reasons for using simulated data in statistical in-
ference. We restrict our presentation to three uses of simulated data. The first
one is motivated by numerical problems in an estimation procedure which we
illustrate by providing a method for computing integrals. The other two meth-
ods pertain to the analysis of the small sample properties of estimators. On one
hand, we may look for the small sample properties of an estimator or a test for
a given value of the parameters. On the other hand, we can put forward another
distribution of the estimators by the method called bootstrap which we will try
to justify by various arguments. The three sections about the uses of simulations
are preceded by a brief introduction to techniques for generating random scalars
and vectors.

6.2 Random Number Generators

Consider a probability distribution on R
p characterized by its distribution func-

tion F . We propose to construct algorithms that allow us to generate sequences
of independent vectors with distribution F . This general problem actually en-
compasses two questions of very different nature:

1. How to generate sequences of numbers that are independent and uni-
formly distributed on the interval [0, 1]?

2. How to transform these sequences into i.i.d. vectors with distribution
F?

103
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Here, we discuss only the second question and assume that the first problem
has been solved. Anyone who has used a computer knows that all statistical
softwares contain a command to generate numbers that follow a uniform distri-
bution on [0, 1]. In fact, such sequences of numbers are only “pseudo-random”
and not really random. Indeed, these sequences are reproducible (the programs
permit the specification of a seed that is the starting value of identical sequences)
and periodic. This periodicity is obviously in contradiction with the random and
independent nature of the sequence. However, the algorithms used in practice
generate sequences with extremely large periods which “look like” sequences
of random numbers.

Hence, we assume that we dispose of independent and uniform random num-
bers (u1, u2, . . . ). Various methods allow us to transform these numbers into
realizations from a specific probability distribution. This question has given rise
to important developments and we will only briefly touch on these methods.
First, we present two general methods for generating scalars from a given dis-
tribution, inversion of the distribution function, and rejection. Next, we present
a few results concerning the random vector generation, including a short intro-
duction to the Gibbs sampling method.

6.2.1 Inversion of the Distribution Function

Suppose F is the distribution function of a scalar random variable defining a
bijection between the support of the distribution (possibly R itself ) and the
interval [0, 1] (except in some cases for the extreme points). This bijection is
necessarily strictly increasing. One can verify the following property: if u is
generated according to a uniform distribution on [0, 1], then

x = F−1(u)

is generated according to the distribution with distribution function F . Indeed,

Pr(x ≤ t) = Pr(F−1 (u) ≤ t) = Pr(u ≤ F(t)) = F(t). (6.1)

Hence, if F−1 has an easy-to-handle expression, we obtain a tractable generating
method.

Example 6.1 Generation of the realizations of an exponential distribution.
Suppose that x follows an exponential distribution with parameter λ. Its distri-
bution function is

F(t) = 1 − e−λt (t ≥ 0).

The preceding method implies that, if u is uniformly distributed, then

x = − ln(1 − u)

λ
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is exponentially distributed. This expression can be simplified by noting that if
u is uniformly distributed, so is 1 − u and we can write

x = − ln u

λ
. �

This method is interesting only if F−1 is “simple.” However, we know that
in many cases, F does not have a simple analytical expression (for instance in
the case of a normal distribution) and hence the inversion method of F is not
tractable.

6.2.2 Rejection Method

Suppose F admits a density f , that there exists a probability distribution with
density g such that

∃c ≥ 1 such that ∀y ∈ R cg(y) ≥ f (y),

and that we know an algorithm that allows us to generate y with density g. The
rejection method proceeds in the following manner:

1. We independently draw y with density g and u with the uniform distri-
bution on [0, 1].

2. If u ≤ f ( y)
cg( y)

, we set x = y, otherwise we proceed to a new draw of y
and u.

Then, x is distributed according to F . Indeed, we have

Pr(x ≤ t) = Pr

(
y ≤ t

∣∣∣∣u ≤ f (y)

cg(y)

)

=
Pr

[
( y ≤ t) ∩

(
u ≤ f (y)

cg(y)

)]
Pr

(
u ≤ f ( y)

cg(y)

) .

The denominator is equal to∫
Pr

(
u ≤ f (y)

cg(y)

∣∣∣∣y)
g(y)dy =

∫
f (y)

cg(y)
g(y)dy = 1

c
,

the numerator is given by∫ t

−∞
Pr

(
u ≤ f (y)

cg(y)

∣∣∣∣y)
g( y)dy = 1

c

∫ t

−∞
f (y)dy = 1

c
F(t),

hence the result.
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The rejection method is more efficient if the density g is such that c is close
to 1. In general, g is defined piecewise, in order to realize a good approximation
of f . This is the way realizations of normal random variables are generated.

6.2.3 Random Vector Generators

Generating random vectors poses specific problems only if the components of
these vectors are dependent from each other. Several methods are possible.

In the first method, we generate a vector y ∈ R
p with independent com-

ponents and we transform this vector into a vector x which has the desired
distribution.

Example 6.2 To generate a vector x ∈ R
p from a normal distribution with

mean μ ∈ R
pand variance , we generate y of R

p whose components are
drawn from independent standard normal distributions and we set

x = Ay + μ

where A is a p × p matrix satisfying AA′ = . The matrix A can be chosen to
be lower triangular. �

This method can be extended to the case where y ∈ R
q with q > p as shown

in the following example.

Example 6.3 Let y ∈ R
q have independent components, exponentially dis-

tributed with parameter 1. Define

x j = y j∑q
i=1 yi

j = 1, . . . , q.

The vector x is a simplex vector of R
q . Actually, it is a vector of p = q − 1

random elements, the last element xq satisfying

xq = 1 −
q−1∑
j=1

x j .

We let the reader verify that x is uniformly distributed on the simplex of dimen-
sion q − 1 on R

q . One can also obtain realizations of other distributions on the
simplex by replacing the exponential distribution by other positive distributions
(Gamma, Weibull . . . ) �

In the second method, we decompose the distribution of x into the marginal
distribution of x1, the conditional distribution of x2 given x1, that of x3 given x1

and x2 . . . up to the distribution of x p given x1, . . . , x p−1 and we use algorithms
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for one dimensional distribution in order to perform each of these generations.
This method is particularly useful to simulate dynamic models.

In the third method, we describe the distribution of x by all its conditional
distributions. Suppose to simplify that p = 2 and that we dispose of algorithms
able to generate x1 given x2 and x2 given x1. The method known as Gibbs
sampling is the following. Fix x1 to an arbitrary value and draw x2 given x1.

Then, generate x1 given x2, next x2 given the new value of x1 and iterate this
procedure. After a certain number of draws, the pair (x1, x2) is generated by the
desired distribution. This result is accepted without proof. The implementation
of this method is difficult because it is not known how many iterations are
needed to “forget” the arbitrary starting point and obtain the desired distribution.
Moreover, if we continue the procedure, the successive pairs (x1, x2) are always
generated by the desired distribution but they are not mutually independent.

6.3 Utilization in Calculation Procedures

This section contains two parts. First, we show how simulations can be used to
calculate integrals, then we show how this method is useful in the estimation
by the method of moments when the implementation of this method requires
numerical integrations.

6.3.1 Monte Carlo Integration

Let ϕ be a mapping from R
p to R such that I = ∫

ϕ(ξ )dξ is finite. Note that the
fact that the integral is on R

p is not restrictive because, if we wish to calculate

I =
∫

A
ψ(ξ )dξ,

we set

I =
∫

ϕ(ξ )dξ

with

ϕ(ξ ) = 1I(ξ ∈ A)ψ(ξ ).

In the case where p equals 1, deterministic methods can be used to effi-
ciently calculate I . One can, for instance, approach ϕ by trapezoids or use more
efficient methods for approximation (the gaussian quadrature for example).
These methods theoretically generalize to higher dimensions but become com-
pletely intractable as soon as p exceeds 3 or 4 because they require too many
calculations. The function ϕ itself is often difficult to evaluate and the integral
often depends on a parameter and needs to be computed many times.
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Simulation methods provide an efficient alternative to deterministic methods
as soon as the dimension of the integral is large. The idea of the Monte Carlo
integration is the following.

Let f (ξ ) be a density on R
p satisfying

f (ξ ) = 0 ⇒ ϕ(ξ ) = 0.

Moreover, it is assumed that f can be simulated, that is, we dispose of an
algorithm able to generate an i.i.d. sequence ξ1, . . . ξN with density f . In this
setting, f is called the importance function.

We rewrite I under the form

I =
∫

ϕ(ξ )

f (ξ )
f (ξ )dξ = E

(
ϕ

f

)
, (6.2)

where the expectation is taken with respect to the distribution with density f .
Dividing by f does not pose a problem because f can be zero only if ϕ is zero,
and we can restrict the integral to the domain where ϕ does not vanish. The fact
that I is finite is equivalent to the existence of the expectation of ϕ/ f .

Hence, we proceed to draw a i.i.d. sample ξ1, . . . ξN of size N with density
f , and we estimate I by ÎN satisfying

ÎN = 1

N

N∑
e=1

ϕ(ξe)

f (ξe)
. (6.3)

The justification of this estimator is based on the law of large numbers. Indeed,
ÎN converges to

E

(
ϕ

f

)
= I.

The central limit theorem provides a measure of the approximation.
Suppose that

E

(
ϕ2

f 2

)
=

∫
ϕ2(ξ )

f (ξ )
dξ (6.4)

is finite and let

σ 2 = Var

(
ϕ

f

)
= E

(
ϕ2

f 2

)
− I 2.

Then, we have
√

N ( ÎN − I ) → N (0, σ 2) in distribution (6.5)

and a 95% confidence interval of I takes the form

ÎN ± 1, 96
σ√
N

.
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The construction of this confidence interval requires the knowledge of σ 2 which
is also evaluated by Monte Carlo, using the same generated ξe, through the
formula

σ̂ 2
N = 1

N

N∑
e=1

ϕ2(ξe)

f 2(ξe)
− Î 2

N . (6.6)

This analysis suggests that one should look for the function f which mini-
mizes σ 2 in order to make the numerical result as precise as possible. In practice,
this optimization of the generator f can be done within a given class whose
elements are denoted fα . The optimization of the generator within a given class
often involves integrals that need to be calculated numerically, as shown in the
following example.

Example 6.4 We are looking for f in the class of normal distributions with
fixed variance . Thus, the problem is to find the vector α of expectations
satisfying

min
α∈Rp

∫
ϕ2(ξ )

f (ξ )
dξ.

Differentiating below the integral yields the first order condition∫
ϕ2(ξ )

f 2(ξ )

∂ f

∂α
(ξ )dξ = 0.

Using the properties of normal densities

∂ f

∂α
(ξ ) = −1(ξ − α) f (ξ ),

we obtain the system of equations∫
ξϕ2(ξ )

f (ξ )
dξ = α

∫
ϕ2(ξ )

f (ξ )
dξ.

This suggests that we can first perform a quick evaluation by Monte Carlo of
the left and right integrals of this expression using an arbitrary α, then deduce
a new value for α, and proceed to a more precise evaluation. �

6.3.2 Simulation-Based Method of Moments

We place ourselves into the framework of Section 3.3 and limit ourselves to an
estimation problem using a simple system of moment equations. The sample
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xi (i = 1, . . . , n) is i.i.d. and each xi is generated by Qθ , θ ∈ �. We estimate
a parameter λ by solving

1

n

n∑
i=1

ψ(xi , λ) = 0. (6.7)

The resulting estimator λ̂n converges to the function λ(θ ) of parameters and
its distribution is given by Theorem 3.3 in Chapter 3.

We will show later (see Chapter 18 on unobservable variables) that relevant
economic problems lead to examine this equation in the case where ψ satisfies

ψ(xi , λ) =
∫

Rp

ψ(xi , ξ, λ)dξ.  (6.8)

We intend to estimate this integral by the Monte Carlo method. We will
address two kinds of questions, the first concerning the implementation of this
method and its numerical difficulties, and the second concerning the properties
of the estimator obtained after approximating the integral. Various approaches
are possible.

Approach 1. Choose a generator of the density f and generate a single sample
ξ1, . . . , ξN . Then, ψ(xi , λ) is estimated by

1

N

N∑
e=1

ϕ(xi , ξe, λ)

f (ξe)
.

This approach involve so-called common random numbers. Indeed, the same
sequence ξe is used for all xi and λ.

Approach 2. Choose a generator of the density fxi ,λ, a function of xi and λ,
then generate a sequence of numbers with this generator. More concretely, the
solution of (6.7) uses an algorithm which iterates between different values of λ
to reach the solution. To go from the value λK to the value λK+1, one generates
a sequence ξie, where for each i = 1, . . . , n, ξie (e = 1, . . . , N ) is drawn from
the distribution with density fxi ,λK , and the function

1

n

n∑
i=1

ψ(xi , λK )

is estimated by

1

nN

n∑
i=1

N∑
e=1

ψ(xi , ξie, λK )

fxi ,λK (ξie)
.
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Approach 3. The previous procedure does not contain common random num-
bers because the draws ξie  are different for each i . However, it is possible to
introduce such common numbers in the following manner. Suppose drawing a
number ξie  with density fxi ,λ can be performed by drawing a number εie  from
the density f0 independently of xi and λ, and by transforming it using a function
that depends on xi and λ, denoted r (xi , λ, εie). This is possible if fxi ,λ is for
example the normal density with mean m(xi , λ) and variance σ 2(xi , λ): ξie  is
then equal to

σ (xi , λ)εie  + m(xi , λ)

where εie  is generated by a standard normal. We can use the same generated
sequence of εe for all i and λ and estimate (6.7) by

1

nN

n∑
i=1

N∑
e=1

ψ(xi , r (xi , λ, εe), λ).

This leads us back to the procedure described in the first approach. The εe play
the role of common random numbers.

Not using common random numbers preserves the independence (in the
sense of simulations) between the estimates of ψ(xi , λ) for different values of
xi which may simplify the study of the properties of this procedure. However,
the different estimates of ψ(xi , λ) may be less “regular” in λ and as a result,
implementing the numerical solution of the moment equations may be more
difficult, at least when N is not very large.

In contrast, using common random numbers has a smoothing effect and hence
facilitates the search for a numerical solution of (6.7).

The general theorems concerning the asymptotic behavior of moment esti-
mators apply to the analysis of the properties of the estimator which solves the
problem with approximated moments. As usual, we denote by λ̂n the solution
of (6.7) and by λ∗

nN the solution of the approximated problem. Consider for in-
stance the approach without common random numbers, then λ∗

nN is the solution
of

1

nN

n∑
i=1

N∑
e=1

ψ(xi , ξie, λ)

fxi ,λ(ξie)
= 0. (6.9)

The asymptotic analysis of λ∗
nN can be conducted by keeping n fixed and

letting N go to infinity, or on the contrary, by keeping N fixed and considering
a sample size becoming infinitely large. The first approach is more natural
because, in practice, the statistician does not choose n but controls N . Hence
he can choose N in order to obtain the desired precision. Surprisingly, the
econometrics literature has mainly focused on the second approach by analyzing
the asymptotic properties of λ∗

nN with N fixed and n → ∞.
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Asymptotic analysis when the number of simulations goes to infinity. If
N → ∞ with fixed n, the convergence is analyzed with respect to the distri-
bution used to generate the simulations conditional on (xi )i=1,... ,n and λ. Then,
λ∗

nN converges to λ̂n almost surely. Indeed, under the regularity conditions of
Theorem 3.3 in Chapter 3, we have

1

nN

n∑
i=1

N∑
e=1

ψ(xi , ξie, λ)

fxi ,λ(ξie)

→ 1

n

n∑
i=1

∫
ψ(xi , ξie, λ)

fxi ,λ(ξie)
fxi ,λ(ξie)dξie = 1

n

∑
i

ψ(xi , λ)

(6.10)

which is equal to zero at λ̂n by assumption. Moreover, it follows from the same
theorem that

√
N (λ∗

nN − λ̂n) → N (0, Vλ̂n
) (6.11)

with

Vλ̂n
=

[
Es

(
1

n

∑
i

∂

∂λ′

(
ψ(xi , ξie, λ)

fxi λ (ξie)

) ∣∣∣∣∣
λ=λ̂n

)]−1

Vars

(
1

n

∑
i

ψ(xi , ξie, λ̂n)

fxi λ̂n
(ξie)

)
(6.12)

×
[

Es

(
1

n

∑
i

∂

∂λ

(
ψ ′(xi , ξie, λ)

fxi λ (ξie)

) ∣∣∣∣∣
λ=λ̂n

)]−1

.

In this expression, Es and Vars are the expectation and variance with respect
to the distribution of the simulated data.

Asymptotic analysis when the the sample size goes to infinity. Now con-
sider the case where n → ∞ with fixed N . If λ̂n converges with respect to the
sampling probability distribution to λ(θ ), the solution of

Eθ (ψ(xi , λ)) = 0,

then, it is easy to show that λ∗
nN converges to the solution of

Eθ,s

(
1

N

N∑
e=1

ψ(xi , ξie, λ)

fxi ,λ(ξie)

)
= 0
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where Eθ,s denotes the expectation with respect to the joint distribution of the
sample and the simulations. We have

Eθ,s

(
1

N

N∑
e=1

ψ(xi , ξie, λ)

fxi ,λ(ξi,e)

)
= 1

N

N∑
e=1

∫ {∫
ψ(xi , ξie, λ)

fxi ,λ(ξi,e)
fxi ,λ(ξie)dξie

}
Pθ

n (dxi )

= 1

N

N∑
e=1

Eθ (ψ(xi , λ))

= Eθ (ψ(xi , λ))

= 0

(6.13)

which has the function λ(θ ) as the unique solution by assumption. The sample,
that is considered here, comprises (xi , ξi1, . . . , ξi N )i=1,... ,n . Hence, it becomes
clear that λ∗

nN and λ̂n converge to λ(θ ) even if N is fixed.
The asymptotic variance of λ∗

nN is larger than that of λ̂n , and the difference
of variances depends on a term in 1

N which goes to 0 as N grows. Indeed, recall
that Theorem 3.3 in Chapter 3 implies

√
n(λ̂n − λ(θ )) → N (0, A−1 B A

′−1) in distribution (6.14)

and
√

n(λ∗
nN − λ(θ )) → N (0, A∗−1 B∗ A∗′−1) in distribution, (6.15)

with

A = Eθ

(
∂

∂λ′ ψ (xi , λ (θ ))

)
, (6.16)

A∗ = Eθ,s

(
∂

∂λ′
1

N

N∑
e=1

ψ(xi , ξie, λ (θ ))

fxi ,λ(ξi,e)

)
, (6.17)

B = Varθ (ψ(xi , λ(θ )), (6.18)

B∗ = V θ,s

(
1

N

N∑
e=1

ψ (xi , ξie, λ (θ ))

fxi ,λ(ξie)

)
. (6.19)

We immediately verify (see (6.11)) that A = A∗.
Moreover, we have

B∗ = Varθ Es

(
1

N

N∑
e=1

ψ (xi , ξie, λ (θ ))

fxi ,λ(ξie)

)

+ EθVars

(
1

N

N∑
e=1

ψ (xi , ξie, λ (θ ))

fxi ,λ(ξie)

)
.

(6.20)
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The first term of this sum is equal to B. Using the independence of the simula-
tions, the second term can be rewritten as

1

N 2

N∑
e=1

Eθ Var s
(

ψ̄ (xi , ξie, λ (θ ))

fxi ,λ(ξie)

)
= 1

N 
C (6.21)

where

C = Eθ Var s
(

ψ̄ (xi , ξie, λ (θ ))

fxi ,λ(ξie)

)
.

Finally, we have

A∗−1 B∗ A∗′−1 = A−1 B A
′−1 + 1

N
A−1C A

′−1, (6.22)

which satisfies the claimed property. Replacing the exact moment condition
(6.7) by an approximated condition (6.9) preserves the consistency of the esti-
mator, even if the number of replications N is fixed. However, the variance of the
estimator increases by a matrix multiplied by 1

N , whose importance therefore
decreases with the number of replications.

In the case of common random numbers, the properties of λ∗
nN are of course

different, at least for fixed N . In the case where n is constant and N → ∞, λ∗
nN

converges to λ̂n conditionally on the xi and has an asymptotic normal distribu-
tion. In the case where N is fixed, λ∗

nN does not converge to λ(θ ) any longer but
to the solution of the problem

1

N

N∑
e=1

Eθ (ψ (xi , ξe, λ))

f (ξe)
= 0. (6.23)

We leave to the reader the calculation of the asymptotic variance in this case.
To conclude this section, consider the following example of estimation by

the method of moments.

Example 6.5 Consider a sample xi (i = 1, . . . , n) such that

xi ∼ f (xi |θ )

with θ ∈ R
k . Suppose also that

E (m(xi ) |θ ) = g(θ )

where m is a known function. We wish to estimate θ .
If g were known, we could write for n sufficiently large

1

n

n∑
i=1

m(xi ) = g(θ ).
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It would suffice to solve

1

n

n∑
i=1

ψ(xi , θ ) = 0

with

ψ(xi ) = m(xi ) − g(θ ).

The resulting estimator θ̂n would converge to θ and its distribution would be
given by Theorem 3.3 in Chapter 3, that is

√
n

(
θ̂n − θ

) → N

(
0, Eθ

(
∂g

∂θ ′

)−1

Vθ Eθ

(
∂g′

∂θ

)−1
)

in Pθ − distribution

with Vθ = Varθ (ψ).
Now, we study the case where g is unknown. We are going to estimate g

by simulation. We have a generator H of the distribution characterized by the
density f such that

xi = H (εi , θ )

where εi is generated from a known distribution h0 which is independent of θ

and can be simulated. The simulation method is the following. For each i , we
solve

1

n

n∑
i=1

m(xi ) − 1

N

n∑
i=1

E∑
e=1

m(xe) = 1

n

n∑
i=1

(
m(xi ) − 1

E

E∑
e=1

m(xe)

)
=0

with N = nE, which is equivalent to solving

1

n

n∑
i=1

ψ̄
(
xi , ε

i
e, θ

) = 0

where

ψ̄
(
xi , ε

i
e, θ

) = m(xi ) − 1

E

E∑
e=1

m
(
H

(
εi

e, θ
))

.

Using Theorem 3.3 in Chapter 3, it can be established that the resulting
estimator ̂̂θ has the following properties:̂̂θ → θ Pθ − a.s

and
√

n
(̂
θ̂ − θ

)
→ N (0, θ ) in Pθ − distribution
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with

θ = Eθ

(
∂ψ̄

∂θ ′

)−1

V
(
ψ̄

)
Eθ

(
∂ψ̄ ′

∂θ

)−1

.

It is easy to show that

V
(
ψ̄

) = (1 + ν) Var (m)

with ν = 1/E. In addition,

Eθ

(
∂ψ̄

∂θ ′

)
= −Eθ

(
1

E

E∑
e=1

∂m
(
H

(
εi

e, θ
))

∂θ ′

)

= −
∫

1

E

E∑
e=1

∂m
(
H

(
εi

e, θ
))

∂θ ′ dεi
e

= − ∂

∂θ ′

∫
1

E

E∑
e=1

m
(
H

(
εi

e, θ
))

h0

(
εi

e

)
dεi

e

= − ∂

∂θ ′

∫
g (θ ) h0

(
εi

e

)
dεi

e

= −∂g (θ )

∂θ ′ .

Hence, we conclude

θ = (1 + ν)

(
∂g (θ )

∂θ ′

)−1

Var (m)

(
∂g (θ )′

∂θ

)−1

. �

6.4 Simulations and Small Sample Properties of Estimators and Tests

Consider a statistical model with sample x = (x1, . . . , xn) and sampling prob-
ability distribution Pθ

n , θ ∈ �. We have a function λ(θ ) of Pθ
n and an estimator

λ̂n of λ(θ ). The asymptotic theory provides approximations of the distribution
of λ̂n when n goes to infinity, but the sampling distribution of λ̂n may be very
different from its limiting distribution for a given sample size. In a small num-
ber of simple cases (essentially normal linear models), the distribution of λ̂n

can be described analytically. However, this is in general not possible for more
complex models, and simulation methods can replace analytical methods in the
study of the distribution of the estimator.

The principle is simple and is based on the assumption that for any value θ ,
the distribution Pθ

n can be simulated. Then, we construct an i.i.d. sample xe =
(xe

1, . . . , xe
n), for e = 1, . . . , N , with distribution Pθ

n from which we obtain N
draws of the estimator λ̂e

n = λ̂n(xe). These N draws constitute an i.i.d simulated

sample of size N from the sampling distribution of λ̂n. This simulated sample is
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used to determine the characteristics of this distribution. For example, assuming
N large,

1

N

N∑
e=1

λ̂e
n

is a very good estimator (in the sense of the simulations) of Eθ (λ̂n) and conse-
quently, we estimate the bias in θ of λ̂n by the difference

1

N

N∑
e=1

λ̂e
n − λ(θ ).

If we have two estimators available, we can therefore compare their bias for a
given value of θ .

A simulation study is also useful for hypothesis testing.
As presented in Chapter 4, testing a hypothesis defined by a subset �0 of

� is equivalent to determining a critical region Wn in the sample space. This
critical region usually results from an asymptotic analysis: the maximum over
all θ ∈ �0 of the probabilities of Wn with respect to the asymptotic distribution
of the test statistic is equal to the given size of the test. But is it still true if the
sample size n is finite? To answer this question, we generate a simulated sample
for different values of θ in �0, and if the dimension N is large, the proportion of
simulated observations belonging to Wn estimates the finite sample probability
of the critical region. Then, we can compare the asymptotic size of the test with
its real size in a finite sample. If we generate simulations for values of θ that
do not belong to �0, then the evaluation of the probability of Wn by simulation
provides an estimate of the power of the test for these values of the parameters.

The implementation of a simulation study of the distribution of an estimator or
of the power of a test for a finite sample size poses various questions. According
to which distribution should we simulate? Which simulation size should we use?
How do we treat the simulation results? And how do we summarize results from
many simulations?

The first question concerns the definition of the reference distribution from
which the simulations are drawn. Note, that even if we wish to analyze the
properties of λ̂n as an estimator ofλ (θ ) , it is in principle necessary to completely
fix θ in order to determine Pθ

n and hence to simulate the data. This poses a
delicate problem, especially when θ belongs to a “large” space, for example
in a nonparametric model. Hence, if the xi are i.i.d. with distribution Q, the
simulation requires that we choose this probability even if we are only interested
in the sample mean. In such a case, it is very difficult to study the sensitivity to
the choice of Q. In such a nonparametric context, the bootstrap method, that we
will present in Section 6.5, is an interesting alternative to the present approach.

In the parametric context, it may be worth choosing the statistic, whose
distribution needs to be simulated, so that it does not depend on some of the
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parameters. In that case, the results obtained for a point of the parameter space
are actually valid for a subset.

Example 6.6 Suppose that the xi ∈ R are i.i.d. and generated by a Student
t-distribution of parameters μ, σ 2, and ν (i.e., xi −μ

σ
follows the usual Student

t-distribution with ν degrees of freedom). To analyze the distribution of

x̄ = 1

n

n∑
i=1

xi ,

by simulation, we need to fix μ, σ 2, and ν. In constrast, the statistic x̄
σ̂

with

σ̂ 2 = 1

n − 1

n∑
i=1

(xi − x̄)2

has a distribution that is independent of σ 2. �

The most common approach, called parametric bootstrap, consists in esti-
mating θ by an estimator θ̂n , and then simulating data from the distribution
P θ̂n

n . We can make this distribution less dependent on the initial estimate by
restarting the procedure with values of θ in the neighborhood of θ̂n .

An econometric model is often conditional and specifies only the distribution,
denoted Pθ,z

n in Chapter 1, of y1, . . . , yn conditional on θ and z
1
, . . . , zn . By

nature, this model does not explain the distribution of the zi and those are fixed
in the simulations. By generating data from Pθ,z

n , we obtain information on
the small sample properties of the estimator λ̂n conditional on fixed zi and the
chosen value of the parameters. Which value should we select for the zi ? Without
doubt, they should be the observed values if the model is used to analyze actual
data. Otherwise, we choose exogenous values that look like those that might be
observed in reality and we try to cover all the possible configurations regarding
these exogenous variables. The small sample properties of λ̂n may be extremely
sensitive to the value of θ and those of the zi .

Another approach consists in examining the joint sampling distribution of
λ̂n , that is, the joint distribution of the yi and the zi . If the econometric
model includes only a conditional distribution, we expand this model by add-
ing a marginal distribution (possibly dependent on extra parameters, in which
case, we enlarge θ ). We generate a sequence of simulated data (ze

1, ye
1, . . . ,

ze
n, ye

n)e=1,... ,N with different values of ze
i for each iteration. Therefore, the dis-

tribution of the estimator does not depend any more on a specific value of zi

but on the distribution of these variables.
Second, an important econometric literature emerged in the 1970s and 1980s

that proposed various schemes intended to increase the efficiency of simulations
in order to reduce their dimensions. Various methods such as control variables
and antithetic variables were proposed. This research was motivated by the
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limited computer power and the desire to construct simulation schemes that
could be run within an acceptable time and for a reasonable cost. The amazing
development of computing power reduces the interest in these methods and
in many cases, a brute force simulation can be performed within a very short
time.

Third, the usual statistical tools can obviously be applied to simulated data.
It is even a privileged application because the i.i.d. property of the data and
the sample size are controlled by the experimenter. Moreover, as the number
of replications is large, the nonparametric analysis of the simulated sample is
fully justified and these methods find here particularly important applications.

Suppose for example that we wish to calculate the bias of an estimator λ̂n of
the function λ(θ ). We simulate a sequence xe = (xe

1, . . . , xe
n), e = 1, . . . , N , of

i.i.d. samples with distribution Pθ
n and calculate the sequence λ̂e

n of estimators.
The bias in θ is equal to

bn(θ ) = Eθ (λ̂n) − λ(θ )

and is estimated by

b̂N = 1

N

N∑
e=1

λ̂e
n − λ(θ ).

By the law of large numbers applied to the simulated data, b̂N → bn(θ ) a.s.
when N → ∞. Note that this consistency result assumes the integrability of λ̂e

n
which is not always satisfied. Assuming the existence of the second moment,
we have moreover

√
N (b̂N − bn(θ )) → N

(
0, Varθ (λ̂n)

)
in distribution.

In this expression, the variance of λ̂n is taken with respect to the distribution
Pθ

n , according to which the data were generated. This variance is itself unknown

and is estimated by the empirical variance of λ̂e
n ,

V̂ar
θ
(
λ̂n

)
= 1

N

N∑
e=1

(
λ̂e

n −
(

1

N

N∑
e=1

λ̂e
n

))2

.

Then, a simple calculation provides the precision of the bias estimation as a
function of the number of iterations.

To determine the sampling distribution of λ̂n given the value θ of the param-
eters by simulation, we estimate for example the distribution function of λ̂n . In
the scalar case,

1

N

N∑
e=1

1I
(
λ̂e

n ≤ t
)
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is a consistent estimator of the distribution function and Theorem 5.2 in Chapter
5 enables us to derive its asymptotic distribution. The quantiles of this distri-
bution are estimated with a precision that can be easily calculated by applying
the asymptotic theorems presented in Chapters 2 and 5.

The density of the sampling distribution of λ̂n can be estimated by smoothing
using a kernel estimator

1

Nhk
N

N∑
e=1

K

(
t − λ̂e

n

hN

)
,

whose properties have been presented in Section 5.3.
Fourth, the point we are addressing now concerns the treatment of simulation

results as a function of θ (and possibly explanatory variables). Consider the
following simple case. To measure the bias of an estimator λ̂n of λ(θ), we
draw a set of simulations for different values of θ and different sample sizes
n. The bias is an unknown exact function of θ and of n, of which we observe
realizations b̂N , which have expectation (in the sense of simulations) bn(θ ).
Hence, this is a usual regression problem such as those presented in the second
part of this book. We can use nonparametric techniques to estimate bn(θ ), and
we refer the reader to Chapter 10 where this point will be studied. The use of
regression methods to condense simulation results is known in econometrics
under the name of response surface.

Fifth, one of the recent applications of the simulation methods concerns the
Indirect Inference methods which essentially consists in correcting the proper-
ties of an estimator. Let us consider the following example.

Example 6.7 Let θ̂n be a consistent but biased estimator of θ and let bn (θ )

be its bias function. Thanks to simulations, bn (θ ) is approximated by b̂nN (θ)

and hence we can correct θ̂n by transforming it into θ̂n − b̂nN (θ ). Intuitively,
this new estimator should be better in terms of bias. We refer to econometric
literature for the study of its properties. �

The indirect inference is a method that is more general than this example,
and here again we refer the reader to the Notes at the end of the chapter.

6.5 Bootstrap and Distribution of the Moment Estimators
and of the Density

The bootstrap has become one of the most often used simulation techniques in
statistics and its name evokes the absurd idea of “pulling oneself’s up by one’s
own bootstraps.” For this method, different interpretations have been proposed
and relevant properties have been proven.
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We do not review all the aspects of this method but present its use for the
method of moments and for the nonparametric estimation that we have previ-
ously explained. First, we present the bootstrap distribution of an estimator,
next we present a justification of this distribution.

First, consider an i.i.d. model with sampling distribution Pθ
n and a function

λ(θ ) ∈ R
k defined by the condition Eθ (ψ(xi , λ)) = 0 (see Section 3.3). In the

GMM framework, λ̂n denotes as usual the solution to the problem

min
λ

(
n∑

i=1

ψ(xi , λ)

)′
Hn

(
n∑

i=1

ψ(xi , λ)

)
.

We saw in Chapter 3 that λ̂n can be considered a function of the empirical
distribution

Q̂n = 1

n

n∑
i=1

δxi .

Indeed,

1

n

n∑
i=1

ψ(xi , λ) =
∫

ψd Q̂n,

and hence, λ̂n is the solution to the minimization of(∫
ψd Q̂n

)′
Hn

(∫
ψd Q̂n

)
.

In the simple method of moments, λ̂n is the solution to the equation∫
ψd Q̂n = 0

and in the maximization method, λ̂n is the argument of the maximization of∫
ϕd Q̂n (see formula (3.11)). Hence, in all cases, we can write

λ̂n = L(Q̂n) (6.24)

where L is a mapping that associates a vector of R
k with the distribution Q̂n .

The intuitive idea of bootstrap is to replace Q̂n by a random probability
distribution Qb and to consider the random vector λb = L(Qb). Hence, this
vector has a distribution linked to the choice of Qb and L and, provided that
the distribution of Qb has been suitably chosen, the distribution of λb can be
considered as the distribution of λ̂n , in a sense that we will make precise.
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How should we transform Q̂n to a random probability distribution? The
natural idea is to define Qb by

Qb =
n∑

i=1

wiδxi (6.25)

or alternatively

Qb(S) =
∑

i/xi ∈S

wi , S ⊂ R
n.

Hence, Qb is a weighted sum of Dirac measures at xi with weights wi . We see
that, if wi = 1

n , then we obtain Q̂n . However, we are going to consider random
weights wi distributed independently of the xi . For Qb to be a probability
distribution, the wi must be positive and sum up to 1. Hence, the vector w is a
random vector on the simplex with dimension n − 1 in R

n . In an i.i.d. sample, the
order of the observations does not matter and we wish to maintain this property
by considering only distributions of w that do not change when the indices of
the observations are permuted. Such distributions are called exchangeable. This
property implies in particular that the expectation of wi does not depend on i
and is hence equal to 1

n .
Thus, we have

Eb(Qb) = Q̂n. (6.26)

The notation Eb recalls that the expectation is taken with respect to the distri-
bution of Qb for fixed x1, . . . , xn .

Let us provide two important examples of distributional choices for the
weights w1, . . . , wn .

Example 6.8 Multinomial bootstrap: we make n draws with replacement in
the index set {1, . . . , n} where each index has the same probability 1

n . Then, wi

is set equal to the number of times the index i is drawn divided by n. Hence,
the product nwi is multinomial with parameters n and ( 1

n , . . . , 1
n ). �

Example 6.9 Bayesian bootstrap: the vector (w1, . . . , wn) is uniformly
distributed on the simplex {u ∈ R

n : ui ≥ 0, ui = 1}. The components
(w1, . . . , wn−1) have a density equal to 1 on the simplex and

wn = 1 −
∑
i �=n

wi .

We noticed in Section 6.2 that this property is equivalent to defining

wi = γi∑n
j=1 γ j
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where the γi are i.i.d. exponentially distributed with parameter 1. Of course,
we can generalize this example by considering arbitrary positive i.i.d. random
variables γi and by setting

wi = γi

/ n∑
j=1

γ j . �

Example 6.10 Let us compute the bootstrap distribution of the sample mean.
The moment equation is λ = Eθ (xi ) and the estimator satisfies

λ̂n = 1

n

n∑
i=1

xi =
∫

ud Q̂n.

Replacing Q̂n by Qb yields

λb =
n∑

i=1

wi xi .

Given the sample (xi , . . . xn), λb is random as a transformation of the wi . We
verify that

Eb(λb) =
n∑

i=1

Eb(wi )xi = λ̂n.

Obtaining an analytical expression of the density of λb is difficult but estimating
it through simulation is simple. We draw (wei )e=1,... ,N from the chosen distribu-
tion (multinomial, uniform, and so on) and obtain the realizations (λb

e )e=1,... ,N

of λb. We can then graph the histogram of λb
e or its density by kernel smoothing

as shown in the previous chapter. In this example, xi can be replaced by any
function of the sample. �

Example 6.11 Consider the parameters of the linear regression. If xi =
( yi , zi ) ∈ R

1+k , then the vector β ∈ R
k satisfies

β = Eθ (zi z′
i )

−1 Eθ (zi yi )

and hence

β̂n =
(

n∑
i=1

zi z′
i

)−1 n∑
i=1

zi yi .

Replacing the empirical distribution Q̂n of xi by Qb yields

βb =
(

n∑
i=1

wi zi z′
i

)−1 n∑
i=1

wi zi yi
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and here again, conditionally on the sample (x1, . . . , xn), βb has a distribution
induced by that of the vector of the wi . This transformation is not linear and
we can not conclude for instance that

Eb(βb) = β̂n.

We analyze the distribution of βb using simulation by drawing the wi accord-
ing to the chosen scheme and thus constructing simulated βb whose moments
or density can be obtained using the usual statistical techniques. Note that in
our presentation, the bootstrap is executed on the joint distribution of zi and yi

and not on the residuals. �

Example 6.12 To analyze the bootstrap distribution of the GMM estimator,
we proceed in the following manner. Q̂n is replaced by

Qb =
n∑

i=1

wiδxi

and we proceed by simulation. For e = 1, . . . , N , we draw a vector of weights
we

1, . . . , we
n and solve

λb
ne = arg min

(
n∑

i=1

we
i ψ (xi , λ)

)′
Hn

(
n∑

i=1

we
i ψ (xi,λ)

)
.

The resulting
(
λb

ne

)
e=1,... ,N

provide a sample of size N from the bootstrap dis-

tribution of λ̂n. �

The bootstrap extends naturally to nonparametric estimation as illustrated in
the following example.

Example 6.13 Let xi be i.i.d. with density f and consider the kernel estimator
of f at the value t,

f̂n(t) = 1

nhm
n

n∑
i=1

K

(
t − xi

hn

)
=

∫
1

hn
K

(
t − u

hn

)
Q̂n (du) .

Replacing Q̂n by Qb yields the expression

f b(t) = 1

hm
n

n∑
i=1

wi K

(
t − xi

hn

)
whose distribution conditional on the xi can be easily simulated.
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We verify by linearity that

Eb( f b(t)) = f̂n(t).

This presentation obviously generalizes to a vector t1, . . . , tp in place of t and
to the joint distribution of ( f b(t1), . . . , f b(tp)). �

Second, the justifications of the interest in the bootstrap distribution of a
parameter λ are relatively complex and require statistical tools that go beyond
the scope of this book. We briefly mention only one to conclude this section.

The justification of this distribution relies on the Bayesian statistical analy-
sis. Recall that in a Bayesian model, the sampling probability distribution Pθ

n is
complemented by a prior distribution on θ and the inference focuses on calcu-
lating the posterior distribution of θ . In the case where θ is finite dimensional,
the prior probability distribution is in general defined by its density m (θ ) and
the sampling distribution by the likelihood function l(x |θ ).

Bayes’s theorem allows us to calculate the posterior density of θ which is just
the conditional density of θ given x ,

m(θ |x) = m(θ )l(x |θ )∫
m(θ )l(x |θ )dθ

. (6.27)

The prior density satisfies
∫

m(θ )dθ = 1 but it is possible in some cases to select
a noninformative prior distribution that does not satisfy this condition. If we are
interested in a function λ(θ ), then we derive from the posterior distribution of
θ the posterior distribution of λ(θ ).

This approach applies to a nonparametric i.i.d. model. If the xi are i.i.d. with
distribution Q, we can introduce a prior distribution on Q and calculate the
posterior distribution of Q. The complexity of this model stems from the fact
that we need to consider (prior and posterior) distributions on the family of
distributions Q of R

m . However, we can verify that if no prior information is
available, the posterior distribution of Q can be simply described: we obtain
draws of Q given the sample by generating the distributions

∑n
i=1 wiδxi where

(w1, . . . , wn) is uniform on the simplex. Hence, we see that the Bayesian boot-
strap entails drawing random distributions from the posterior distribution. If,
moreover, λ is a function of Q, then the previously described draws λb become
draws from the posterior distribution of λ. Therefore, the Bayesian bootstrap is
exactly equivalent to the analysis of the posterior distribution of λ derived from
a nonparametric model without prior information.

Notes

The problems posed by the generation of nonuniform random variables is the subject of

the extremely complete book by Devroye (1985) which is also an outstanding source of

information about the principal probability distributions.
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Bayesian econometric papers often provide a good presentation of the Monte Carlo

integration method. Let us cite the pioneer articles by Kloek and van Dijk (1978),

completed by those of Geweke (1988a, 1988b, and 1989) for instance. We can also refer

to the book by Bauwens, Lubrano, and Richard (1999). The analysis of simulation-based

method of moments has been presented by McFadden (1989), Pakes and Pollard (1989),

and Duffie and Singleton (1993). We can refer to Gouriéroux and Monfort (1996b) for

the treatment of simulated maximum likelihood and Richard (1996), Richard and Zhang

(1996 and 2000), and Danielson and Richard (1993) for the asymptotic analysis and the

problems of common random numbers.

The simulation study of the small sample properties of estimators and tests is ex-

tremely common but, to our knowledge, has not generated systematically exposed theo-

ries, except for the work by Hendry (1984), by Davidson and McKinnon (1999a, 1999b,

2002a and 2002b), and by Gouriéroux and Monfort (1996b). For indirect inference,

see Gouriéroux, Monfort, and Renault (1993). For the method of simulated moments

and indirect inference, read also Carrasco and Florens (2002) and Gallant and Tauchen

(2003).

Bootstrap methods have fueled many articles. A rigorous exposition of their properties

can be found in Hall (1992) and in Barbe and Bertail (1994), among others. The Bayesian

interpretation of bootstrap is for instance detailed in Florens and Rolin (1996).
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7. Conditional Expectation

7.1 Introduction

The concept of conditional expectation is fundamental in econometrics because
regression models are statistical models of conditional expectation. We consider
here conditional expectation with respect to a random vector, but it would be
possible to define it more generally with respect to a σ -algebra.

We place ourselves in the Hilbert space L2 of square integrable variables
relative to a reference probability distribution: if z is a real random variable
belonging to this space, then E(z2) < ∞. Recall that L2 is a normed vector space
on R with the norm defined by ‖z‖ = [E(z2)]1/2. If z1 and z2 are two elements of
this space, then we can write their inner product as E(z1z2); these variables are
said to be orthogonal in the sense of L2 if E(z1z2) = 0. Moreover, we say that
a sequence zn in this space converges to a random variable z if ‖zn − z‖ → 0
when n → +∞. This notion of orthogonality and of mean square convergence
(we also say “in the sense of L2” or “in quadratic norm”) will allow us in the
following to use the notions of orthogonal projection and best approximations
in terms of least squares.

The usual demand on rigorousness requires to distinguish carefully bet-
ween equality of random variables and almost sure equality. Here, we will not
make this distinction, the mathematical readers can naturally add the necessary
Pθ − a.s.

In the second section we define the concept of conditional expectation and
enumerate its principal properties, especially as it concerns the notion of best
approximation in the sense of the L2-norm. In the third and last section, we
address linear conditional expectation from which linear regression is derived.

7.2 Conditional Expectation

In Part I of the book, we introduced the sample (x1, . . . , xn) generated accord-
ing to a sequence of sampling probabilities Pθ

n . This space plays the role of

129
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the reference probability space, and we consider random variables defined on
this space. These variables can possibly be components xi of the sequence of
observations or subvectors of xi . The reference Hilbert space is that of random
variables that depend on the sample and are square integrable with respect to
Pθ

∞. Being rigorous, this space depends on θ .

Definition 7.1 Let ỹ be a random variable in L2 and z̃ a random vector of
R

q whose components belong to L2. The conditional expectation of ỹ given z̃,
denoted by Eθ ( ỹ |̃z ), is defined by

Eθ ( ỹ |̃z ) = g(̃z ),

where g is a real function on R
q satisfying g(̃z ) ∈ L2, such that, for all functions

ψ on R
q , satisfying ψ (̃z ) ∈ L2, we have

Eθ [( ỹ − g(̃z )) ψ (̃z )] = 0. (7.1)

�

Sometimes the more rigorous notation Eθ ( ỹ |̃z = ζ ) = g(ζ ) can be found,
which we will not use in order to simplify the writing. We systematically abuse
notation by using the same symbol for both the random variables and their
values (realizations).

The function g(̃z ) always exists and is unique.
We can write the conditional expectation using the density function

f ( x̃ |θ ) = f ( ỹ, z̃|θ ) = fmarg (̃z|θ ) fcond( ỹ |̃z, θ ) (7.2)

where f is the density of x̃ = ( ỹ, z̃ ), fmarg is the marginal density of z̃ and fcond

is the density ỹ conditional on z̃. The conditional expectation Eθ ( ỹ |̃z ) can then
be expressed in the following form

Eθ ( ỹ |̃z ) =
∫

ỹ
f ( ỹ, z̃|θ )

fmarg (̃z|θ )
d ỹ =

∫
ỹ fcond( ỹ |̃z, θ )d ỹ.

We can easily regain expression (7.1)

Eθ ( ỹψ (̃z )) = ∫
ỹψ (̃z ) f ( ỹ, z̃|θ )d ỹd z̃

= ∫ [∫
ỹ

f ( ỹ, z̃|θ )

fm (̃z|θ )
d ỹ

]
ψ (̃z ) fmarg (̃z|θ )d z̃

= ∫
Eθ ( ỹ |̃z )ψ (̃z ) fmarg (̃z|θ )d z̃

= Eθ
(
Eθ ( ỹ |̃z )ψ (̃z )

)
.

More generally, for all functions h( ỹ ) in L2, we have

Eθ (h( ỹ )|̃z ) =
∫

h( ỹ ) fcond( ỹ |̃z )d ỹ. (7.3)
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We will later see that

Eθ (h( ỹ )|̃z ) = Eθ (h( ỹ )) (7.4)

when ỹ and z̃ are independent.
We list now some properties of the conditional expectation and generalize

them to a vector ỹ in R
p. Beforehand, let us denote the conditional expectation

of a vector ỹ given z̃ by the vector of dimension p defined by

Eθ ( ỹ |̃z ) =

⎛⎜⎝ Eθ ( ỹ1 |̃z )
...

Eθ ( ỹp |̃z )

⎞⎟⎠ .

For all random vectors ỹ, ỹ(1), ỹ(2) in R
p, and for all random vectors z̃, z̃(1), z̃(2)

in R
q , we can list, without proof, the following properties.

The following result follows directly from the definition:

Eθ
(
Eθ ( ỹ |̃z )

) = Eθ ( ỹ ) (7.5)

or, more generally,

Eθ
(
Eθ (h( ỹ )|̃z )

) = Eθ (h( ỹ ))

for all functions h;
Linearity. If A, B, and b are constants of appropriate dimension, then

Eθ (Aỹ + b|̃z ) = AEθ ( ỹ |̃z ) + b,

Eθ ( ỹ B + b|̃z ) = Eθ ( ỹ |̃z )B + b,

Eθ ( ỹ(1) + ỹ(2) |̃z ) = Eθ ( ỹ(1) |̃z ) + Eθ ( ỹ(2) |̃z );

Positivity. For all i = 1, . . . , p, if ỹi ≥ 0, then

Eθ ( ỹi |̃z ) ≥ 0;

Inequality. For all i = 1, . . . , p, if ỹ(1)
i ≥ ỹ(2)

i , then

Eθ ( ỹ(1)
i |̃z ) ≥ Eθ (̃y(2)

i |̃z );

If L2(̃z ) is the space of square integrable functions of z̃, then

ỹ ∈ L2(̃z ) ⇔ Eθ ( ỹ |̃z ) = ỹ,

hence

Eθ ( ỹ |̃y) = ỹ;

Theorem on three perpendiculars: if L2(̃z(1)) ⊂ L2(̃z(2)), then

Eθ
(
Eθ ( ỹ |̃z(2))|̃z(1)

) = Eθ
(
Eθ ( ỹ |̃z(1))|̃z(2)

) = Eθ ( ỹ |̃z(1));
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Convexity theorem or Jensen’s inequality: for all convex functions h from
R

p into R

Eθ (h( ỹ)|̃z ) ≥ h(Eθ ( ỹ |̃z )).

The concept of conditional expectation is fundamental as it allows us to
formalize temporal dependence in stochastic processes, as the definition of a
martingale shows.

We temporarily reintroduce indexed notations for the random variables.

Definition 7.2 Let ( yi ) be a sequence of square integrable random variables.
yi is a martingale with respect to a sequence of random variables xi = ( yi , zi )
if and only if

Eθ ( yi+1|xi , xi−1, . . .) = yi ∀i. �

This implies that the expectation is constant in the sense that

Eθ ( yi+1) = Eθ
(
Eθ ( yi+1|xi , xi−1, . . .)

) = Eθ ( yi ) ∀i.

Furthermore, we can also infer that

Eθ ( yi+τ |xi , xi−1, . . .) = yi ∀i, ∀τ ≥ 0.

Thus, the best predictor for yi+τ , given the past by xi , xi−1, . . . , is simply yi .

Example 7.1 Consider a random variable y∗
i defined by y∗

i = ∑i
k=1 yk; we

assume that the yi are independent and that Eθ ( yi ) = 0 for all i . Then

Eθ ( y∗
i+1|yi , yi−1, . . .) = Eθ ( yi+1 + y∗

i |yi , yi−1, . . .) = y∗
i ,

since

Eθ ( y∗
i |yi , yi−1, . . .) = y∗

i

and

Eθ ( yi+1|yi , yi−1, . . .) = 0

since by assumption Eθ ( yi+1) = 0. Hence, yi is a martingale with respect to
the sequence of variables yi . �

A martingale difference is defined by

Eθ ( yi+1|xi , xi−1, . . .) = 0 ∀i.

Let us return to the notation from the beginning of this chapter.
We can equally talk about the conditional expectation of a random matrix,

which allows us to define the variance-covariance matrix of a random vector ỹ
in R

p conditional on z̃ as the following p × p square matrix

Varθ (̃y |̃z ) = Eθ
(
( ỹ − Eθ (̃y |̃z ))( ỹ − Eθ ( ỹ |̃z ))′ |̃z)
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and the conditional covariance between two vectors ỹ(1) and ỹ(2) in Rp1 and
R

p2 , such as

Covθ ( ỹ(1), ỹ(2) |̃z ) = Eθ
(
( ỹ(1) − Eθ ( ỹ(1) |̃z ))( ỹ(2) − Eθ ( ỹ(2) |̃z ))′ |̃z) .

Other properties can also be presented:

Varθ ( ỹ |̃z ) = Covθ ( ỹ, ỹ |̃z )

and

Covθ ( ỹ(1), ỹ(2) |̃z ) = Eθ ( ỹ(1) ỹ(2)′ |̃z ) − Eθ ( ỹ(1) |̃z )Eθ ( ỹ(2)′ |̃z ),

hence

Varθ ( ỹ |̃z ) = Eθ ( ỹ ỹ′ |̃z ) − Eθ ( ỹ |̃z)Eθ ( ỹ′ |̃z )

and

Covθ (Aỹ(1) + b, B ỹ(2) + c|̃z ) = ACovθ ( ỹ(1), ỹ(2) |̃z )B ′

where A, B, b, and c are constants of appropriate dimensions. Hence

Varθ (Aỹ + b|̃z ) = AV ar θ ( ỹ |̃z )A′,

and finally,

Varθ ( ỹ) = V ar θ
(
Eθ ( ỹ |̃z )

) + Eθ
(
V ar θ ( ỹ |̃z )

) 
(7.6)

or more generally

Covθ ( ỹ(1), ỹ(2)) = Covθ
(
Eθ ( ỹ(1) |̃z ), Eθ ( ỹ(2) |̃z )

)
(7.7)

+ Eθ
(
Covθ ( ỹ(1), ỹ(2) |̃z )

)
.

The relationship (7.6) implies in particular that

Varθ ( ỹ) ≥ Varθ (Eθ ( ỹ |̃z )).

Definition 7.1 of the conditional expectation can be interpreted as the orthog-
onality of ỹ − Eθ ( ỹ |̃z ) with all functions of z̃. We can also present a theorem
that characterizes the conditional expectation in terms of orthogonal projec-
tions, i.e., in terms of the best approximation in the sense of the L2-norm.

Theorem 7.1 For all square integrable functions ψ from R
q to R, we have

Eθ ( ỹ − Eθ ( ỹ |̃z ))2 ≤ Eθ ( ỹ − ψ (̃z ))2. (7.8)

We say that Eθ ( ỹ |̃z ) is the best approximation of ỹ in the sense of the L2-norm.
�
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Proof: The proof rests on the expansion of the right-hand term of Inequality
(7.8)

Eθ ( ỹ − ψ (̃z ))2 = Eθ (̃y − Eθ ( ỹ |̃z ) + Eθ (̃y |̃z ) − ψ (̃z ))2

= Eθ ( ỹ − Eθ ( ỹ |̃z ))2

+ 2Eθ (( ỹ − Eθ ( ỹ |̃z ))(Eθ ( ỹ |̃z ) − ψ (̃z ))

+ Eθ (Eθ ( ỹ |̃z ) − ψ (̃z ))2.

The second term is zero, because by Definition 7.1,

Eθ (( ỹ − Eθ ( ỹ |̃z )δ(̃z )) = 0

with δ(̃z ) = Eθ ( ỹ |̃z ) − ψ (̃z ). Furthermore, the last term is always positive or
zero. Hence, Inequality (7.8) follows. �

7.3 Linear Conditional Expectation

We just saw that the conditional expectation Eθ (̃y |̃z ) is the orthogonal projection
of the random variable ỹ on the subspace of square integrable functions of z̃
in the sense of the L2-norm. Now, we focus on the special case in which we
consider only linear functions of z̃. We define the linear conditional expectation
of ỹ by the orthogonal projection of ỹ on the subspace of linear functions
of ̃z, which we will denote by L∗2(̃z ). We have L∗2(̃z ) ⊂ L2(̃z ). We restrict
ourselves, for the moment, to the case p = 1, where p is the dimension of yi .

Definition 7.3 The linear conditional expectation of ỹ given z̃, also called
linear regression of ỹ on z̃, is the random variable denoted E Lθ ( ỹ |̃z ), which is
the orthogonal projection of ỹ on the space L∗2(̃z ) of linear functions of z̃. �

The linear conditional expectation is written as

E Lθ ( ỹ |̃z ) =
q∑

j=1

β j z̃ j = β ′̃z,

with β = (β1, . . . , βq )′ and z̃ = (̃z1, . . . , z̃q )′. In order to find the parameters
β j , we start with the orthogonality condition

Eθ
(
( ỹ − β ′̃z )̃z′) = 0.

From this we obtain, assuming that the matrix Eθ (̃ z̃z′) is invertible,

β = [
Eθ (̃ z̃z′)

]−1
Eθ (̃z ỹ).

Hence,

E Lθ ( ỹ |̃z ) = Eθ ( ỹ̃z′)
[
Eθ (̃ z̃z′)

]−1
z̃. (7.9)
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The plane defined by the equation

ỹ∗ = Eθ ( ỹ̃z′)
[
Eθ (̃ z̃z′)

]−1
z̃ (7.10)

is called linear regression plane of ỹ on z̃1, . . . , z̃q .
Let us consider the linear conditional expectation of ỹ given a vector

(̃z1, . . . , z̃q , 1)′ where 1 is a constant function equal to the scalar 1. Then,
we obtain the affine conditional expectation

E Lθ (̃y |̃z, 1) = β z̃ + c,

where c is a scalar. The resulting regression plane is called the affine regression
plane of ỹ on z̃1, . . . , z̃q . This will be studied more precisely later on, in the
general case where ỹ is a vector.

A different way of calculating the parameters β1, . . . , βq is to find the solution
to the minimization problem

min
λ1,...,λq

Eθ

⎡⎣(
ỹ −

q∑
j=1

λ j z̃ j

)2
⎤⎦ .

The following two examples illustrate two simple cases, when we consider
the projection of a scalar random variable ỹ on a constant and on a scalar random
variable z̃.

Example 7.2 If ỹ is a random variable, we wish to find a constant a which
is the closest possible to ỹ in the sense of the L2-norm. a is the orthogonal
projection of ỹ on the subspace of L2 spanned by the constant 1,

Eθ (( ỹ − a).1) = 0,

hence,

a = Eθ ( ỹ). �

Example 7.3 If ỹ and z̃ are random variables, then the linear conditional
expectation of ỹ given z̃ of the form E Lθ ( ỹ |̃z ) = α̃z (where α is a scalar), is
obtained by the orthogonality condition Eθ (( ỹ − α̃z )̃z) = 0. This leads to

α = Eθ ( ỹ̃z )

Eθ (̃z2)
.

Hence,

E Lθ ( ỹ |̃z ) = Eθ ( ỹ̃z )

Eθ (̃z2)
z̃. �



P1: OSO/OVY P2: OSO/OVY QC: OSO/OVY T1: OSO

Ecoeok CUFX117-Florens 0521876407 April 22, 2007 13:56

136 Econometric Modeling and Inference

In general, Eθ ( ỹ |̃z ) and E Lθ (̃y |̃z ) are not equal, and Eθ ( ỹ |̃z ) is a better
approximation to ỹ, except in special cases, as we will see in Examples 7.5
(where ỹ and z̃ are normally distributed) and 7.6 (where they are independent).

εL = ỹ − E Lθ ( ỹ |̃z )

is called the residual of the linear regression. It is nothing other than the orthog-
onal projection of ỹ on the subspace that is orthogonal to L∗2(̃z ).

These notions can be generalized to the case where ỹ is a vector in R
p.

E Lθ ( ỹ |̃z ) becomes a random vector in R
p for which the i th coordinate, i.e.,

E Lθ ( ỹi |̃z ), is the orthogonal projection of ỹi on L∗2(̃z ). Then,

E Lθ ( ỹ |̃z ) = B z̃

where B is a matrix of dimension p × q which is the solution to the orthogo-
nality condition

Eθ
(
( ỹ − B z̃ )̃z′) = 0,

hence

Eθ ( ỹ̃z′) − B Eθ (̃ z̃z′) = 0.

From this we can derive, assuming that the matrix Eθ (̃ z̃z′) is invertible,

B = Eθ ( ỹ̃z′)
[
Eθ (̃ z̃z′)

]−1

hence,

E Lθ ( ỹ |̃z ) = Eθ ( ỹ̃z′)
[
Eθ (̃ z̃z′)

]−1
z̃. (7.11)

Let us consider now more precisely the case where the vector ỹ is projected
on the subspace of affine functions of z̃. The affine conditional expectation can
be written in the form

E Lθ ( ỹ |̃z, 1) = Ãz + b

The orthogonality conditions are{
Eθ

[
( ỹ − E Lθ ( ỹ |̃z, 1))1

] = 0

Eθ
[
( ỹ − E Lθ ( ỹ |̃z, 1))̃z′] = 0

⇔
{

Eθ ( ỹ) − AEθ (̃z ) − b = 0

Eθ ( ỹ̃z′) − AEθ (̃ z̃z′) − bEθ (̃z′) = 0.



P1: OSO/OVY P2: OSO/OVY QC: OSO/OVY T1: OSO

Ecoeok CUFX117-Florens 0521876407 April 22, 2007 13:56

Conditional Expectation 137

From the first equation, we solve for b = Eθ ( ỹ ) − AEθ (̃z ), then replace b by
this expression in the second equation:

Eθ ( ỹ̃z′) − AEθ (̃ z̃z′) − Eθ ( ỹ )Eθ (̃z′) + AEθ (̃z )Eθ (̃z′) = 0

⇔ A
[
Eθ (̃ z̃z′) − Eθ (̃z )Eθ (̃z′)

] = Eθ ( ỹ̃z′) − Eθ ( ỹ )Eθ (̃z′)
⇔ AVarθ (̃z ) = Covθ ( ỹ, z̃ )

⇔ A = Covθ ( ỹ, z̃ )
(
Varθ (̃z )

)−1
.

Assuming that Varθ (̃z ) is an invertible matrix, we have

b = Eθ ( ỹ ) − Covθ ( ỹ, z̃ )
(
Varθ (̃z )

)−1
Eθ (̃z ).

Therefore, the affine conditional expectation is

E Lθ ( ỹ |̃z, 1) = Eθ ( ỹ ) + Covθ ( ỹ, z̃ )
(
Varθ (̃z)

)−1 (̃
z − Eθ (̃z )

)
. (7.12)

Example 7.4 Let us use expression (7.12) to find the affine conditional ex-
pectation of ỹ given z̃, when ỹ and z̃ are both scalar random variables, and to
introduce the linear regression coefficient. We have

E Lθ ( ỹ |̃z, 1) = Eθ ( ỹ ) + Covθ ( ỹ, z̃ )

Varθ (̃z )

(̃
z − Eθ (̃z )

)
.

Define the linear regression coefficient of the pair ( ỹ, z̃ ) by

ρ = Covθ ( ỹ, z̃ )√
Varθ (̃y )

√
Varθ (̃z )

.

The equation of the affine regression line of ỹ on z̃ can be written

ỹ∗ = Eθ ( ỹ ) + ρ

√
Varθ ( ỹ )√
Varθ (̃z )

(̃
z − Eθ (̃z )

)
or alternatively

ỹ∗ − Eθ ( ỹ )√
Varθ (̃y )

= ρ
z̃ − Eθ (̃z )√

Varθ (̃z )
.

The coefficient ρ is always in the interval [−1, 1]. In addition, we can show
that |ρ| = 1 if and only if ỹ is already a affine function of z̃. Furthermore, if ỹ
and z̃ are independent, then ρ = 0 (but its converse is false) and

E Lθ ( ỹ |̃z ) = Eθ ( ỹ |̃z ) = Eθ ( ỹ )

(which we will see again in Example 7.6). �
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The expression for the affine conditional expectation (7.12) allows us to
quickly show that E Lθ ( ỹ |̃z, 1) = Eθ ( ỹ |̃z ) when ỹ and z̃ are normally dis-
tributed random vectors, as we show in the following example.

Example 7.5 Assume that

x̃ =
(

ỹ
z̃

)
∼ N (m, )

where  is assumed to be invertible; m and  are partitioned in exactly the
same way as the vector x̃

m =
(

m1

m2

)
and  =

(
11 12

21 22

)
.

The marginal distribution of z̃ and the distribution of ỹ conditional on z̃ are{
z̃ ∼ N (m2, 22)

ỹ |̃z ∼ N (m1 + 12
−1
22 (̃z − m2), 11 − 12

−1
22 21).

Thus, it follows that

Eθ ( ỹ |̃z ) = m1 + 12
−1
22 (̃z − m2).

We write now E Lθ ( ỹ |̃z, 1), given by (7.12) in the notation of this example

E Lθ ( ỹ |̃z, 1) = m1 + 12
−1
22 (̃z − m2).

It is, thus, evident that we have in the case of normal variables

E Lθ ( ỹ |̃z, 1) = Eθ ( ỹ |̃z ). �

The various notions of conditional expectation and linear conditional expec-
tation can be illustrated in the following way. Consider a space L2(̃z ), which
represents the space of square integrable functions of z̃ and for which the line
L∗2(̃z, 1) represents the space of affine functions of z̃. Then, Eθ ( ỹ |̃z ) is the or-
thogonal projection of ỹ on L2(̃z ), and E Lθ ( ỹ |̃z, 1) is the orthogonal projection
of ỹ on L∗2(̃z, 1). It also becomes clear that

E Lθ (Eθ ( ỹ |̃z )|̃z, 1) = E Lθ ( ỹ |̃z, 1)

and that Eθ ( ỹ |̃z ) provides a better approximation of ỹ than E Lθ ( ỹ |̃z, 1), in the
sense that

Eθ
(∥∥ỹ − E Lθ ( ỹ |̃z, 1)

∥∥2
)

≥ Eθ
(∥∥ỹ − Eθ ( ỹ |̃z )

∥∥2
)

.

Let us note now some properties of the conditional linear expectation:

E Lθ (Aỹ + b|̃z ) = AE Lθ ( ỹ |̃z ) + b;

E Lθ ( ỹ(1) + ỹ(2) |̃z ) = E Lθ ( ỹ(1) |̃z ) + E Lθ ( ỹ(2) |̃z );
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if ỹi ∈ L∗2(̃z ), then

E Lθ ( ỹi |̃z ) = ỹi ;

finally,

E Lθ (E Lθ ( ỹ |̃z(1))|̃z(2))) = E Lθ (E Lθ ( ỹ |̃z(2))|̃z(1))) = E Lθ ( ỹ |̃z(1))

if L∗2(̃z(1)) ⊂ L∗2(̃z(2)) (theorem on three perpendiculars).
The following example illustrates the consequences of the independence

between ỹ and z̃ on conditional expectation and linear conditional expectation.

Example 7.6 Suppose that ỹ and z̃ are two independent vectors, respectively
in R

p and in R
q . This means that in the case of continuous distributions, we

have

f (̃y, z̃ ) = fmarg( ỹ ) fmarg (̃z )

or

fcond( ỹ |̃z ) = fmarg( ỹ )

(in order to simplify the notation, both marginal densities are denoted by fmarg,
but the systematic use of arguments removes any ambiguity). A first consequence
is that, for all square integrable functions h

Eθ (h( ỹ )|̃z ) = Eθ (h( ỹ )),

since

Eθ (h( ỹ )|̃z ) = ∫
h( ỹ ) fmarg (̃y )d ỹ

= Eθ (h( ỹ )).

As a special case, we obtain Eθ ( ỹ |̃z ) = Eθ ( ỹ ).
Furthermore, we have for all square integrable functions h and ψ

Eθ (h( ỹ )ψ (̃z )) = ∫
h( ỹ )ψ (̃z ) f ( ỹ, z̃ )d ỹd z̃

= ∫
h( ỹ ) fm( ỹ )d ỹ

∫
ψ (̃z ) fmarg (̃z )d z̃

= Eθ (h( ỹ ))Eθ (ψ (̃z )).

This implies that Eθ ( ỹ̃z ) = Eθ (̃y )Eθ (̃z ) and Covθ ( ỹ, z̃ ) = 0, since

Covθ ( ỹ, z̃ ) = Eθ ( ỹ̃z ) − Eθ ( ỹ )Eθ (̃z )

= 0.

The affine conditional expectation E Lθ ( ỹ |̃z, 1), given by (7.12), is therefore
equal to Eθ ( ỹ ). Thus, when ỹ and z̃ are independent, then

E Lθ ( ỹ |̃z, 1) = Eθ ( ỹ |̃z ) = Eθ ( ỹ ). �
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Here, we do not address a different notion of independence, which is the
conditional independence. Let us just mention that ỹ(1) and ỹ(2) are independent
conditional on z̃ if, given any two functions h1 and h2 in R

p,

Eθ
[
h1( ỹ(1))h2( ỹ(2))|̃z] = Eθ

[
h1( ỹ(1))|̃z] Eθ

[
h2( ỹ(2))|̃z] .

Notes

The general concept of conditional expectation with respect to a σ -algebra, as well

as the rigorous proof of the existence of the conditional expectation can be found in

numerous treaties on probability theory, for example Neveu (1965), Métivier (1968), or

Dellacherie and Meyer (1978). We find in those also the precise proofs of the properties

of the conditional expectation. Martingales have been only mentioned in this chapter.

Further details are found in Neveu (1975) and Dellacherie and Meyer (1982).

Linear and affine conditional expectations are a more statistical concept, developed,

for example, by Gouriéroux and Monfort (1996a).

Independence and conditional independence are extensively studied in Florens,

Mouchart, and Rollin (1989).
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8. Univariate Regression

8.1 Introduction

In Chapter 7 we introduced the notions of conditional expectation and of lin-
ear conditional expectation – or linear regression – in terms of orthogonal
projections in the sense of the L2-norm, respectively, on the set of integrable
functions of a random vector z, denoted by L2(z), and on the set of linear func-
tions of z, denoted by L∗2(z). We now apply the concept of regression and of
linear regression to specific models and study the problems of estimation and
testing.

Let us recall some notions that we have seen in the previous chapters. Consider
a statistical model Mn = {Xn, �, Pθ

n } where Xn ⊂ R
nm is the sample space

of dimension n, � is the parameter space, and Pθ
n is the family of sampling

distributions. Let x ∈ Xn be a finite sequence (xi )i=1,... ,n with xi = (yi , zi )
′,

where yi ∈ R, zi ∈ R
q , q = m − 1. In this chapter we will only consider

the case where the dimension p of yi is equal to one. We assume that the
model is i.i.d., i.e. the observations x1, . . . , xn are independent in the sense of
the distribution Pθ

n for all θ and distributed according to the same probability
distribution Qθ : Pθ

n = [Qθ ]⊗n . Furthermore, we also assume that for all i =
1, . . . , n, yi and zi j for j = 1, . . . , q are square integrable random variables,
i.e. they belong to L2(z).

We are interested in the conditional expectation of the form

Eθ (yi |zi ) = g(zi , β),

for all i , where β is a function of θ which, in this chapter, we assume to be finite.
We consider the problem of estimating this parameter vector β, assuming that
g is known. Define the random vector u in R

n by u = (u1, . . . , un)′ with for
all i

ui = yi − Eθ (yi |zi ). (8.1)

We will see in the following its main properties.

141
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This leads to the following model

yi = g(zi , β) + ui i = 1, . . . , n. (8.2)

The choice of g, or more generally the choice of the conditioning or projection
space determines the type of model under study. In this manner, if the space is
restricted to the set L∗2(z), i.e., the space of linear functions of z, then

g(zi , β) = E Lθ (yi |zi ) = β ′zi .

In Section 2, we study the case of a model in which the regression is assumed
to be linear. In Section 3, we analyze models for which the regression is assumed
to belong to a given nonlinear parametric family. In the last section, we consider
misspecification.

8.2 Linear Regression

First, we consider assumptions that allow us to specify what we call linear re-
gression model. Recall that yi ∈ R and zi = (zi1, . . . , ziq )′ for all i = 1, . . . , n
with the property that zi1 = 1, to which we will return in the following.

8.2.1 The Assumptions of the Linear Regression Model

The first assumption is that of linearity.

Assumption A1 For all i = 1, . . . , n,

Eθ (yi |zi ) = E Lθ (yi |zi ) = β ′zi =
q∑

j=1

β j zi j

with β = (β1, . . . , βq )′, additionally Eθ (zi z′
i ) is invertible. �

We can deduce from this assumption the general form of the linear regression
equation, using the expression for the random term ui given by (8.1):

yi = β ′zi + ui i = 1, . . . , n.

Define the n × 1 vectors y and u by y = (y1, . . . , yn)′ and u = (u1, . . . , un)′,
and the n × q matrix Z by

Z = (
zi j

)
i, j

= (z1, . . . , zn)′.

The matrix form of the regression equation is

y = Zβ + u.
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By construction, the term ui possesses various properties. For all i = 1, . . . , n,
we first have

Eθ (ui |zi ) = 0.

Note that the independence of the xi implies that Eθ (ui |zi ) = Eθ (ui |Z ) and
thus

Eθ (u|Z ) = 0.

Next, we have

Eθ (ui zi |zi ) = zi Eθ (ui |zi ) = 0. (8.3)

This second property represents the conditional orthogonality between the ui

and the zi . Also, these properties remain valid in terms of marginal expectations:

Eθ (ui ) = Eθ
[
Eθ (ui |zi )

] = 0

and

Eθ (ui zi ) = 0

for all i = 1, . . . , n, which constitutes the fundamental estimation equation.
The following identification assumption is the assumption on no collinearity.

Assumption A2 Rank(Z ) = q (n > q). �

This can be written in the following equivalent ways Rank(Z ′ Z ) = q,
det(Z ′ Z ) �= 0 or also Z ′ Z invertible. This is the equivalent assumption in terms
of the sample to the distributional assumption that the variance matrix Eθ (zi z′

i )
is invertible, which does not depend on i by assumption.

The third assumption is the one of homoskedasticity.

Assumption A3 Var θ (yi |zi ) = σ 2, for all i = 1, . . . , n. �

We can immediately infer that Var θ (ui |zi ) = σ 2, for all i = 1, . . . , n. Fur-
thermore, for all i and j , with i �= j , we also have

Covθ (ui , u j |Z ) = Eθ (ui u j |Z )

= Eθ
[(

yi − Eθ (yi |zi )
) (

y j − Eθ (y j |z j )
) |Z]

= Eθ
[(

yi − Eθ (yi |Z )
) (

y j − Eθ (y j |Z )
) |Z]

= Eθ (yi y j |Z ) − Eθ
[
yi Eθ (y j |Z )|Z] − Eθ

[
y j Eθ (yi |Z )|Z]

+ Eθ
[
Eθ (yi |Z )Eθ (y j |Z )|Z]

= 0,
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since yi and y j are independent conditionally on Z , hence,

Eθ (ui u j |Z ) =
∣∣∣∣σ 2 if i = j
0 if i �= j.

This property of the error term can be written in terms of marginals

Eθ (ui u j ) = Eθ
[
Eθ (ui u j |Z )

] =
∣∣∣∣σ 2 if i = j
0 if i �= j

.

or

Var θ (u) = Eθ (uu′) = Varθ (u|Z ) = Eθ (uu′|Z ) = σ 2 In.

The forth and last assumption is the assumption of conditional normality.

Assumption A4 yi |zi is normally distributed for all i = 1, . . . , n. �

Assumptions A1, A3, and A4 can by summarized by

yi |zi ∼ i.i.N (β ′zi , σ
2),

for all i = 1, . . . , n, which implies that

ui |zi ∼ i.i.N (0, σ 2)

or, more precisely

ui ∼ i.i.N (0, σ 2).

This last property summarizes the principal basic assumptions of the linear
regression model in a large number of econometric textbooks which specify the
model in this way, starting with the error term and deriving from it specifically
the assumptions of orthogonality, linearity and homoskedasticity. In our case,
the assumptions are specified in terms of random variables, the properties of the
error term are derived from it by construction.

8.2.2 Estimation by Ordinary Least Squares

The estimation problem comes down to estimating the parameter vector β.
We will use here results of Chapter 7 on the notion of best approximation in
the sense of the L2-norm. The estimator that we obtain by this method is the
Ordinary Least Squares (OLS) estimator of β.

The estimator of β is obtained as the solution to the problem of minimizing
the following function with respect to λ

Eθ

⎡⎣(
yi −

q∑
j=1

λ j zi j

)2
⎤⎦ = Eθ

[(
yi − λ′zi

)2
]
, (8.4)
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which leads to the following simple system of moment equations

Eθ
[
zi (yi − λ′zi )

] = 0. (8.5)

Equation (8.4) defines β as the solution to a minimization problem described
in Chapter 3 by setting

φ(xi , λ) = (yi − λ′zi )
2.

The first order conditions (8.5) form a simple moment equation by setting

ψ(xi , λ) = zi (yi − λ′zi ).

Replacing the expectation with respect to the sampling probability distribution
by the one calculated using the empirical distribution translates this to the
minimization of

D(λ1, . . . , λq ) =
n∑

i=1

(
yi −

q∑
j=1

λ j zi j

)2

=
n∑

i=1

(
yi − λ′zi

)2
, (8.6)

with respect to λ1, . . . , λq , or, in terms of matrices to the minimization of

D(λ) = (y − Zλ)′(y − Zλ).

with respect to λ = (λ1, . . . , λq ).
The first order conditions of the minimization problem are

∂ D(λ)

∂λ
= −2Z ′y + 2Z ′ Zλ = 0. (8.7)

This can be rewritten as

Z ′(y − Zλ) = 0

or

n∑
i=1

zi (yi − λ′zi ) = 0,

which is the sample equivalent to (8.5). This allows us to obtain the expres-
sion for the moment estimator β̂n , here also called the ordinary least squares
estimator of β,

β̂n = (Z ′ Z )−1 Z ′y =
[

n∑
i=1

zi z′
i

]−1 n∑
i=1

zi yi . (8.8)

(recall that, according to Assumption A2, Z ′ Z is invertible). Following the logic
of the notation in the first part, this estimator should be denoted by λ̂n . We use,
however, notation β̂n in order to conform to the tradition.
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The second order conditions are satisfied because

∂2 D(λ)

∂λ∂λ′ = Z ′ Z

is a positive semidefinite matrix, thus β̂n is a minimum.
Let us set, for all i = 1, . . . , n,

ŷi = β̂ ′
nzi

and

ûi = yi − ŷi

and define the vectors ŷ and û, both of dimension n × 1, by

ŷ = (̂y1, . . . , ŷn)′ and û = (̂u1, . . . , ûn)′.

Under Assumptions A1, A2, and A3, when σ 2 is unknown, it can be estimated
by

σ̃ 2
n = 1

n

n∑
i=1

(
yi − β̂ ′

nzi

)2
(8.9)

since

σ 2 = Eθ (u2
i ) = Eθ

[
(yi − β ′zi )

2
]
.

However, we prefer a different estimator which, as we will see, is unbiased

σ̂ 2
n = 1

n − q

n∑
i=1

(
yi − β̂ ′

nzi

)2
, (8.10)

which can also be written as

σ̂ 2
n = 1

n − q

n∑
i=1

û2
i = 1

n − q
(y − ŷ)′(y − ŷ) = 1

n − q
û′û.

σ̂ 2
n is also equal to

σ̂ 2
n = 1

n − q
(y − Z β̂n)′(y − Z β̂n)

= 1

n − q
(y′y − y′ Z (Z ′ Z )−1 Z ′y)

= 1

n − q
y′MZ y

where

MZ = I − Z (Z ′ Z )−1 Z ′



P1: OSO/OVY P2: OSO/OVY QC: OSO/OVY T1: OSO

Ecoeok CUFX117-Florens 0521876407 May 5, 2007 19:48

Univariate Regression 147

is idempotent and symmetric and is the projection matrix on the hyperplane
that is orthogonal to the hyperplane spanned by the columns of matrix Z .

Example 8.1 This example is important as it expounds the maximum likeli-
hood method which we studied from a general viewpoint in 3.9, 3.15, and 3.20
in Chapter 3. Under the normality Assumption A3, the conditional density of
yi is

f (yi |zi , β, σ ) = 1

σ
√

2π
exp

{
− (yi − β ′zi )

2

2σ 2

}
.

The maximization problem is

max
λ,ρ

Eθ [ln f (yi |zi , λ, ρ)] .

The MLE of β and σ 2, which we denote by β̃n and σ̃ 2
n , satisfy(

β̃ ′
n, σ̃

2
n

) = arg max
λ,ρ

1

n

n∑
i=1

ln f (yi |zi , λ, ρ)

= arg max
λ,ρ

ln ln(y|Z , λ, ρ)

where ln is the likelihood function given by

ln(y|Z , λ, ρ) =
n∏

i=1

f (yi |zi , λ, ρ)

= 1

ρn(2π )n|2 exp

{
−

n∑
i=1

(yi − λ′zi )
2

2ρ2

}
.

The estimators are then derived from the first order conditions

∂

∂λ
ln ln(y|Z , λ, ρ) = 0

and

∂

∂ρ
ln ln(y|Z , λ, ρ) = 0.

This is equivalent to

∂

∂λ

n∑
i=1

(
yi − λ′zi

)2 = ∂

∂λ
(y − Zλ)′(y − Zλ) = 0 (8.11)

and

σ̃ 2
n = 1

n

n∑
i=1

(
yi − λ′zi

)2
. (8.12)
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We recognize that the first order condition (8.11) are the same as those of the
minimization, (8.7), of the method of moments, thus the MLE of β is just the
OLS estimator β̃n = β̂n (see (8.8)). From the second condition (8.12), we can
derive the expression for σ̃ 2

n :

σ̃ 2
n = 1

n

n∑
i=1

(
yi − β̃ ′

nzi

)2 = n

n − q
σ̂ 2

n . (8.13)

�

8.2.3 Small Sample Properties

Let us first consider the finite sample properties of β̂n . First, β̂n can be written
in the form Ay, with A = (Z ′ Z )−1 Z ′, and is thus linear in y. Furthermore,

β̂n = (Z ′ Z )−1 Z ′(Zβ + u) = β + (Z ′ Z )−1 Z ′u,

hence,

Eθ (β̂n|Z ) = β;

β̂n is, therefore, an unbiased estimator of β. Its conditional variance is

Varθ (β̂n|Z ) = Eθ ((Z ′ Z )−1 Z ′u|Z ) = σ 2(Z ′ Z )−1.

Thus, we arrive at the following theorem, called the Gauss-Markov theorem.

Theorem 8.1 Under Assumptions A1, A2, and A3, the ordinary least squares
estimator β̂n of β has minimal variance in the family of all unbiased linear
estimators of β. �

Proof: Consider a different linear estimator of β, denoted by β̃n , of the form
β̃n = Cy, where C is the following q × n matrix

C = D + (Z ′ Z )−1 Z ′

where D also has dimension q × n. Suppose this new estimator is unbiased. It
follows that

Eθ (β̃n|Z ) = Eθ
[(

D + (Z ′ Z )−1 Z ′) (Zβ + u) |Z] = DZβ + β

which must be equal to β for all β. This implies that DZ = 0. Thus, we have

β̃n = β + (D + (Z ′ Z )−1 Z ′)u.



P1: OSO/OVY P2: OSO/OVY QC: OSO/OVY T1: OSO

Ecoeok CUFX117-Florens 0521876407 May 5, 2007 19:48

Univariate Regression 149

Calculating the variance of β̃n using the constraint DZ = 0 and the fact that
Varθ (u|Z ) = σ 2 In, we obtain

Varθ (β̃n|Z ) = Varθ ((D + (Z ′ Z )−1 Z ′)u|Z )

= σ 2 DD′ + σ 2(Z ′ Z )−1

= σ 2 DD′ + Varθ (β̂n|Z )

≥ Varθ (β̂n|Z )

since D′ D is a positive semidefinite matrix. �

Thus, this theorem shows that in a finite sample, β̂n is the best linear unbiased
estimator (BLUE) of β.

Now, let us consider the properties of σ̂ 2
n . This is also an unbiased estimator.

To prove this, write

û = y − ŷ = MZ y = MZ (Zβ + u) = MZ u

since MZ Z = 0. Thus

σ̂ 2
n = 1

n − q
u′MZ u.

The calculation of its conditional expectation gives

Eθ (̂σ 2
n |Z ) = 1

n − q
Eθ (u′MZ u|Z )

= 1

n − q
Eθ (tr (u′MZ u)|Z )

= 1

n − q
tr

[
MZ Eθ (uu′|Z )

]
= σ 2

n − q
tr MZ ,

hence

Eθ
(
σ̂ 2

n |Z) = σ 2,

Here we used the properties of the trace: if a is a scalar, then tr (a) = a; if
A and B are two matrices of appropriate dimensions, then tr (AB) = tr (B A);
furthermore,

tr (MZ ) = tr (In) − tr (Z (Z ′ Z )−1 Z ′)

= n − tr ((Z ′ Z )−1 Z ′ Z )

= n − q.
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It can also be shown that

Varθ
(
σ̂ 2

n |Z) = 2σ 4

n − q
.

Now, we can note that the maximum likelihood estimator σ̃ 2
n of σ 2 given

(8.13) is biased (nonetheless, it is consistent).
In the following example we are interested in estimating a part of the vector

β. This example is inspired by the idea by Frisch and Waugh in 1933 who noted
that the regression with a detrended variable is the same as introducing the trend
(i.e., time) as an additional variable in the basic regression.

Example 8.2 Consider the regression model

y = Zβ + u

= Z (1)β (1) + Z (2)β (2) + u

where Z = [Z (1), Z (2)] and β =( β(1)

β(2)

) are partitioned in a matching fashion. The
OLS estimator of β (2) follows from the estimator β̂n of β,

β̂n =
(

β̂ (1)
n

β̂ (2)
n

)
= (Z ′ Z )−1 Z ′y =

(
Z (1)′ Z (1) Z (1)′ Z (2)

Z (2)′ Z (1) Z (2)′ Z (2)

)−1 (
Z (1)′y
Z (2)′y

)
by using the inverse formula of partitioned matrices

β̂(2)
n = (

Z (2)′M1 Z (2)
)−1

Z (2)′M1 y

with M1 = I − Z (1)
(
Z (1)′ Z (1)

)−1
Z (1)′. M1 is the matrix of the projection on

the hyperplane that is orthogonal to the one spanned by the columns of Z (1). A
different way of obtaining β̂(2)

n consists in the following three stage procedure:
in the first stage regress y on Z (1) in order to obtain the residuals M1 y; in
the second stage regress each column of Z (2) on Z (1) to obtain the matrix
M1 Z (2) whose columns are the residuals of each regression; the last stage is
the regression of M1 y on M1 Z (2), which corresponds to the model

M1 y = M1 Z (2)β (2)∗ + u∗.

The OLS estimator of β (2)∗ is given by

β̂ (2)∗ = (
Z (2)′M ′

1 M1 Z (2)
)−1

Z (2)′M ′
1 M1 y

= (
Z (2)′M1 Z (2)

)−1
Z (2)′M1 y = β̂ (2)

n

since M1 is an idempotent matrix. �
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8.2.4 Finite Sample Distribution Under the Normality Assumption

Under Assumptions A1, A2, A3, and A4, we immediately obtain

β̂n|Z ∼ N (β, σ 2(Z ′ Z )−1), (8.14)

since β̂n is linear in y. This implies that for all i = 1, . . . , q

β̂in|Z ∼ N
(
βi , σ

2(Z ′ Z )−1
i i

)
,

(where (Z ′ Z )−1
i i is the element in the i th row and i th column of (Z ′ Z )−1) and

β̂in − βi

σ

√
(Z ′ Z )−1

i i

|Z ∼ N (0, 1). (8.15)

Furthermore, we can derive the following equality from the expression for σ̂ 2
n

(n − q)
σ̂ 2

n

σ 2
=

( u

σ

)′
MZ

( u

σ

)
. (8.16)

Since this quantity is an idempotent quadratic form of a vector u
σ

that fol-
lows a standard normal distribution, it is distributed according to a χ2 with
rank(MZ ) = tr (MZ ) = n − q degrees of freedom (recall that the rank of an
idempotent matrix is equal to its trace). Additionally, it is independent of (8.15).
To show this, write

β̂n − β

σ
= (Z ′ Z )−1 Z ′

( u

σ

)
. (8.17)

Thus, this leads to verifying the independence of the expressions given in
(8.17) and in (8.16). We know that a sufficient condition for the independence
between a linear transformation Ax and an idempotent quadratic form x ′ Bx
where x is N (0, I ) is that AB = 0. Consequently, it suffices to show that

(Z ′ Z )−1 Z ′MZ = 0,

which is immediate since Z ′MZ = 0.
In addition, it is well known that if x is distributed N (0, 1) and z follows a χ2

m
distribution and is independent of x , then the ratio x/

√
z/m follows a (Student)

t-distribution with m degrees of freedom. Thus, the variable τn , defined as the
ratio of the independent expressions of (8.15) and (8.16), i.e.,

τn = β̂in − βi

σ̂n

√
(Z ′ Z )−1

i i

,

follows a t-distribution with n − q degrees of freedom (denoted tn−q ).



P1: OSO/OVY P2: OSO/OVY QC: OSO/OVY T1: OSO

Ecoeok CUFX117-Florens 0521876407 May 5, 2007 19:48

152 Econometric Modeling and Inference

These results are summarized in the following theorem.

Theorem 8.2 Under Assumptions A1, A2, A3, and A4, the OLS estimators of
β and σ 2 have the following properties:

(i)

β̂n|Z ∼ N (β, σ 2(Z ′ Z )−1),

(ii)

(n − q)
σ̂ 2

n

σ 2
|Z ∼ (n − q)

σ̂ 2
n

σ 2
∼ χ2

n−q ,

(iii)

β̂n and (n − q)
σ̂ 2

n

σ 2

are mutually independent conditionally on Z ,

(iv)

β̂in − βi

σ̂n

√
(Z ′ Z )−1

i i

|Z ∼ tn−q . �

These statistics can be used to test hypotheses about the parameters of the
regression model.

Example 8.3 Let us consider a simple example of the regression model with
q = 2 and zi = (1, zi2)′

yi |zi ∼ N (β1 + β2zi2, σ
2)

for i = 1, . . . , n. For testing the null hypothesis H0 : β2 = β0
2 against the al-

ternative hypothesis H1 : β2 �= β0
2 , where β0

2 is fixed, the obvious choice of the
test statistic is

τn = β̂2n − β0
2√

V̂ar(β̂2n)

,

by setting

V̂ar(β̂2n) = σ̂ 2
n

1
n∑

i=1

(zi2 − z)2

.

Under H0, τn is distributed according to the t-distribution with n − 2 degrees
of freedom. The test procedure of size α consists in rejecting H0 if and only if

|τn| > t1−α/2(n − 2)
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(this is equivalent to finding a (1 − α) confidence interval for β2 and rejecting
H0 if and only if this interval does not contain β0

2 ).
The hypothesis that is very often tested in empirical applications is the hy-

pothesis that a parameter is zero, for example H0 : β2 = 0. In this case, we use
the ratio

τn = β̂2n√
V̂ar (β̂2n)

,

which is called the t-ratio or t-statistic. �

Sometimes, we have some prior information about the model before we
observe the sample. Suppose that this information can be expressed as linear
restrictions of the form

Rβ = r (8.18)

where r is a J × 1 vector and R is a J × q matrix with rank J ≤ q, where both
r and R are known. The OLS estimation consists in minimizing

n∑
i=1

(
yi − z′

iλ
)2 = (y − Zλ)′(y − Zλ)

with respect to λ under the restriction Rλ − r = 0. The Lagrangian is

S = (y − Zλ)′(y − Zλ) + 2(r ′ − λ′ R′)μ

where μ is the J × 1 vector of Lagrange multipliers. The solution of the system
of equations given by the first order conditions leads to the restricted OLS
estimator of β which we denote by β̂∗

n

∂S
∂λ

= 0

∂S
∂μ

= 0

}
⇐⇒

{
Z ′ Z β̂∗

n = Z ′y − R′μ

Rβ̂∗
n = r.

(8.19)

Knowing that the OLS estimator β̂n of β satisfies Z ′ Z β̂n = Z ′ y, we replace
Z ′ y by Z ′ Z β̂n in the first equation of the system (8.19) :

β̂∗
n = β̂n − (Z ′ Z )−1 R′μ. (8.20)

Premultipling this last equality by R yields

Rβ̂∗
n = r = Rβ̂n − R(Z ′ Z )−1 R′μ,

hence,

μ = [
R(Z ′ Z )−1 R′]−1

(Rβ̂n − r ).

since R(Z ′ Z )−1 R′ is a positive definite matrix of rank J and therefore invertible.
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Next, substitute this expression for μ in (8.20) in order to obtain the expres-
sion for β̂∗

n

β̂∗
n = β̂n + (Z ′ Z )−1 R′ [R(Z ′ Z )−1 R′]−1 

(r − Rβ̂n). (8.21)

Note that, if β̂n satisfies the restriction Rβ = 0, then β̂∗
n = β̂n .

Example 8.4 An example of a standard model with a linear restriction is that
of the Cobb-Douglas function under the assumption of constant returns to scale

ln Yi = β1 + β2 ln Ki + β3 ln Li + ui i = 1, . . . , n

with β2 + β3 = 1 or Rβ = r with R = (0, 1, 1) and r = 0. We must mention
that in simple cases such as this one, it is more convenient to transform it into a
regression model without constraints. Thus by setting β3 = 1 − β2, we regain
the unrestricted model

ln
Yi

Li
= β1 + β2 ln 

Ki

Li
+ ui i = 1, . . . , n. �

Knowing the moments of β̂n , we can derive those of β̂∗
n . First of all, β̂∗

n is an
unbiased estimator of β. Indeed, from (8.21) it follows

Eθ (β̂∗
n |Z ) = β + (Z ′ Z )−1 R′ [R(Z ′ Z )−1 R′]−1 

(r − Rβ) = β

since the constraint is supposed to be satisfied. Furthermore, from (8.21) we
can extract a different expression for β̂∗

n

β̂∗
n = M∗β̂n + (Z ′ Z )−1 R′ [R(Z ′ Z )−1 R′]−1

r

with

M∗ = I − (Z ′ Z )−1 R′ [R(Z ′ Z )−1 R′]−1
R.

Hence

Varθ (β̂∗
n |Z ) = σ 2 M∗(Z ′ Z )−1 M∗′.

Additionally, under the normality assumption, since β̂n is normally distributed
by Theorem 8.2, β̂∗

n is also normally distributed, i.e.,

β̂∗
n |Z ∼ N (β, σ 2 M∗(Z ′ Z )−1 M∗′).

We leave it to the reader to show that β̂∗
n is the best linear unbiased estimator

of β.
Now suppose that before estimating the restricted model, we want to test the

assumption

H0 : Rβ = r against H1 : Rβ �= r,

with R and r known. Two cases are possible.
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– if J = 1 (there is only one linear combination), then

τn = Rβ̂n − r

σ̂n

[
R(Z ′ Z )−1 R′]1/2 

∼ tn−q (8.22)

under H0 since

Varθ (Rβ̂n) = σ 2 R(Z ′ Z )−1 R′.

Thus, the null hypothesis is rejected if the value of this test statistic is greater
than a critical value corresponding to the given significance level.

– if J ≥ 2, then we know according to Theorem 8.2 that under Assumptions
A1, A2, A3, and A4 the OLS estimator β̂n satisfies

β̂n|Z ∼ N (β, σ 2(Z ′ Z )−1).

From this, we infer that

Rβ̂n|Z ∼ N (Rβ, σ 2 R(Z ′ Z )−1 R′)

or

R(β̂n − β)|Z ∼ N (0, σ 2 R(Z ′ Z )−1 R′).

Hence,

(β̂n − β)′ R′ [R(Z ′ Z )−1 R′]−1 
R(β̂n − β)

σ 2 
∼ χ2

J (8.23)

(indeed, if the vector X has distribution N (μ, ) then (X − μ)′−1(X − μ) is
χ2

m distributed where m is the dimension of X ).
Additionally, Theorem 8.2 implies

(n − q)
σ̂ 2

n

σ 2
∼ χ2

n−q . (8.24)

The expressions in (8.23) and in (8.24) are independent since β̂n and σ̂ 2
n are so

(see Theorem 8.2), the ratio of these two expressions divided by their respective
degrees of freedom follows a (Fisher) F-distribution

(β̂n − β)′ R′ [R(Z ′ Z )−1 R′]−1
R(β̂n − β)

J σ̂ 2
n

∼ F(J, n − q);

hence, we conclude that under the null hypothesis

Fc = (Rβ̂n − r )′
[
R(Z ′ Z )−1 R′]−1

(Rβ̂n − r )

J σ̂ 2
n

∼ F(J, n − q). (8.25)

Therefore, we reject the null hypotheses when this statistic is greater than a
critical value for a given significance level which is taken from the table of the
F-distribution with J and n − q degrees of freedom.
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Note that for J = 1, this statistic is obviously equal to

(Rβ̂n − r )2

σ̂ 2
n

[
R(Z ′ Z )−1 R′]−1

which is just the square of the expression given in (8.22) (because indeed
F(1, n − q) = t2

n−q ).

Example 8.5 Let us briefly look at the likelihood ratio testing procedure
under the normality assumption. The test statistic that can be derived from this
procedure is

γR = max ln(y|Z , β, σ )

max ln(y|Z , Rβ = r, σ )
.

It can be shown that this ratio is just the ratio of the expressions that appear in
(8.23) and (8.24), and thus

γR = Fc. �

8.2.5 Analysis of Variance

If we define SST as the total sum of squares, SS R as the residual sum of squares,
and SSE as the explained sum of squares in the following way⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

SST =
n∑

i=1

(yi − y)2 = y′ y − ny2

SS R = û′û =
n∑

i=1

û2
i

SSE =
n∑

i=1

(̂yi − y)2 = β̂ ′
n Z

′ y − ny2 = β̂ ′
n Z

′ ŷ − ny2,

then the following equality holds

SST = SS R + SSE .

This is easily proven:

y′y = (y − ŷ + ŷ)′(y − ŷ + ŷ)

= (̂u + ŷ)′ (̂u + ŷ)

= û′û + ŷ′ ŷ + 2ŷ′û.

Now note that the product ̂y ′ û is zero according to the first order condition of
the minimization (8.7), i.e.,

ŷ′û = β̂ ′
n Z ′û = β̂ ′

n Z ′(y − Z β̂ ′
n) = 0.
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Hence,

y′ y − ny2 = û′û + ŷ′ ŷ − ny2.

Then, we can define the coefficient of determination or the square of the
multiple correlation coefficient as

R2 = SSE

SST
= 1 − SS R

SST
=

n∑
i=1

(̂yi − y)2

n∑
i=1

(yi − y)2

= 1 −

n∑
i=1

û2
i

n∑
i=1

(yi − y)2

.

It measures the part of the variance that is explained by the model and is
between 0 and 1, under the assumption that the matrix Z contains a column
of 1’s. For this and other reasons not listed here, we always assume that this
requirement is satisfied. One of the drawbacks of R2 is that any addition of
some explanatory variable increases this coefficient. Therefore, we introduce

the adjusted R2, denoted by R2
A or R

2
, which takes the number of parameters

into account

R2
A = 1 − 

n − 1

n − q 
(1 − R2) = 1 − σ̂ 2

n

1
n−1

n∑
i=1

(yi − y)2

.

Note that R2
A ≤ R2.

This leads to the table of the analysis of variance which summarizes the
principal quantities that we just defined (Table 1).

Table 1: Analysis of Variance

Source Degrees of Freedom Mean Square

Regression SSE = R2 SST q − 1 SSE/(q − 1)

Residual SS R = (1 − R2)SST n − q SS R/(n − q)

Total SST n − 1 SST/(n − 1)

We propose now to test the hypothesis that all coefficients except the one
of the constant are zero, i.e., H0 : β2 = · · · = βq = 0, against the alternative
hypothesis that at least one of those is different from zero. The test statistic,
denoted FR , is defined as the ratio of SSE/(q − 1). and SS R/(n − q), which
follow χ2 distributions with n − 1 and n − q degrees of freedom respectively.
These terms are independent since they contain terms in β̂n and in σ̂ 2

n which
are independent by Theorem 8.2. Therefore,

FR = SSE/(q − 1)

SS R/(n − q)
= R2/(q − 1)

(1 − R2)/|(n − q)
(8.26)
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follows an F-distribution F(q − 1, n − q) under H0. Thus, if FR is large then
the null hypothesis is rejected.

This expression could have been obtained by starting with the test statistic Fc

given by (8.25). Indeed, H0 can be written as H0 : Rβ = r with R a (q − 1) × q
matrix and r a (q − 1) × 1 vector given by

R = [
0(q−1)×1 Iq−1

]
and r = 0(q−1)×1.

Thus, we have in this case J = q − 1. Let us first consider the vector û∗ defined
by

û∗ = y − Z β̂∗
n

where β̂∗
n is the estimator of the restricted regression model. We can write

û∗ = y − Z β̂n − Z (β̂∗
n − β̂n)

= û − Z (β̂∗
n − β̂n)

hence,

û∗′û∗ = û′û + (β̂∗
n − β̂n)′ Z ′ Z (β̂∗

n − β̂n),

the other terms disappear since Z ′û = 0. Thus,

û∗′û∗ − û′û = (β̂∗
n − β̂n)′ Z ′ Z (β̂∗

n − β̂n)

= (Rβ̂n − r )′
[
R(Z ′ Z )−1 R′]−1

(Rβ̂n − r )

by replacing (β̂∗
n − β̂n) by the expression given by (8.21). According to (8.25),

Fc takes the form

Fc = (̂u∗′û∗ − û′û)/(q − 1)

û′û/(n − q)
.

Dividing numerator and denominator by
∑n

i=1 (yi − y)2 yields

Fc =

⎛⎝ û∗′û∗
n∑

i=1

(yi −y)2
− (1 − R2)

⎞⎠ /
(q − 1)

(1 − R2)/(n − q)
.

Furthermore, û∗ is the residual of the restricted model, i.e. yi = β1 + u∗
i . The

OLS estimator of β1 is β̂∗
1n = y, hence

û∗′û∗ =
n∑

i=1

(yi − y)2 .

Hence, we recover the expression given in (8.26) for Fc.
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8.2.6 Prediction

Consider the linear model under Assumptions A1, A2, A3, and A4. The problem
consists in predicting the endogenous variable beyond the observation period.
Suppose that zn+l are observable for l ≥ 1 and that

Eθ (yn+l |zn+l) = β ′z,

then

yn+l = β ′zn+l + un+l

with

Eθ (un+l |zn+l) = 0

by construction. The unobservable variable yn+l (l ≥ 1) can be predicted by

ŷn+l = β̂ ′
nzn+l l = 1, 2, . . .

The forecast error is defined by

ûn+l = yn+l − ŷn+l l = 1, 2, . . .

and can also be written as

ûn+l = β ′zn+l + un+l − β̂ ′
nzn+l = (

β − β̂n

)′
zn+l + un+l l = 1, 2, . . .

We can show that ŷn+l is an unbiased prediction for yn+l since

Eθ (yn+l − ŷn+l |Z (l)) = Eθ ((β − β̂n)′zn+l |Z (l)) + Eθ (un+l |Z (l))

= 0

where Z (l) = {Z , zn+l}. Thus,

Eθ (̂un+l |Z (l)) = 0.

Additionally, the conditional variance of ûn+l is

Varθ (̂un+l |Z (l)) = Varθ ((β − β̂n)′zn+l + un+l |Z (l))

= σ 2
[
1 + z′

n+l(Z ′ Z )−1zn+l

]
.

Because ûn+l is a linear function of normally distributed random variables, we
have

ûn+l |Z (l) ∼ N (0, σ 2
[
1 + z′

n+l(Z ′ Z )−1zn+l

]
) (8.27)

for l ≥ 1. It is possible to show that ŷn+l is an optimal predictor in the sense
that ûn+l has the smallest variance among all unbiased linear predictors.
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In order to construct a confidence interval for ŷn+l , we use (8.27)

yn+l − ŷn+l

σ
√

1 + z′
n+l(Z ′ Z )−1zn+l

∼ N (0, 1)

and the fact that

(n − q)
σ̂ 2

n

σ 2
∼ χ2

n−q

according to Theorem 8.2. These two expressions are independent and their
ratio follows a Student t-distribution

yn+l − ŷn+l

σ̂n

√
1 + z′

n+l(Z ′ Z )−1zn+l

∼ tn−q

which can be used to construct the confidence intervals.

Remark. Suppose the regression model is estimated with cross-sectional data
(for example of households or of firms), and suppose that we want to predict
the impact of a change in the explanatory variables on the explained variable
for the units of observations that we consider. In this case, we prefer to use the
following predictor

ỹi = β̂ ′
n z̃i + ûi

where z̃i are the new values of the explanatory variables. This result, in which we
use the estimated residuals for individual i, seems to contradict the conclusion
of the previous analysis that the best predictor is β̂ ′

n z̃i . Indeed, this approach
is justified if we consider the residual as partly determined by unobserved
explanatory variables, which remain unchanged when zi is replaced by z̃i . In
this case, the best predictor of ui is not zero but ûi . �

8.2.7 Asymptotic Properties

We study the asymptotic properties of the OLS estimator under Assumptions
A1, A2, and A3. Thus, we do not assume normality. We showed that the estimator
β̂n can be considered as a particular moment estimator, and thus we can use the
set of results of Chapter 3. We will follow this approach in the nonlinear case
in the next section. In the linear case, we can study the asymptotic properties
directly.

Recall that we assumed the xi to be i.i.d. and its components to be square
integrable. We thus have

1

n

n∑
i=1

zi z′
i → Eθ (zi z′

i ) Pθ − a.s.
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and

1

n

n∑
i=1

zi yi → Eθ (zi yi ) Pθ − a.s.

by the law of large numbers. Hence,

β̂n =
(

1

n

n∑
i=1

zi z′
i

)−1 (
1

n

n∑
i=1

zi yi

)
→ β = (

Eθ (zi z′
i )
)−1

Eθ (zi yi ) Pθ − a.s.

The last result depends on two assumptions. On one hand, the invertibility of
1
n

∑n
i=1 zi z′

i (or of Z ′ Z ), which is an identification assumption in finite samples
and guarantees the existence of a unique estimator for a given sample size. This
invertibility requires Assumption A2, i.e.,

Rank(Z ) = q.

On the other hand, the invertibility of Eθ (zi z′
i ), which guarantees asymptotic

uniqueness and which is the identification condition for the problem in the limit.
Note moreover that the invertibility of Eθ (zi z′

i ) implies the invertibility of
1
n

∑n
i=1 zi z′

i for n sufficiently large (the converse is obviously false). The equal-
ity

β = (
Eθ (zi z′

i )
)−1

Eθ (zi yi )

is studied extensively in Chapter 7.
To show asymptotic normality, we start with the equality

√
n(β̂n − β) = √

n

(
1

n

n∑
i=1

zi z′
i

)−1 (
1

n

n∑
i=1

zi ui

)
.

We saw that

1

n

n∑
i=1

zi z′
i → Eθ (zi z′

i ),

moreover, using the central limit theorem, we can verify that

√
n

(
1

n

n∑
i=1

zi ui

)
→ N

(
0, Varθ (zi ui )

)
in Pθ -distribution,

where the vector zi ui is centered. Thus, we conclude that

√
n

(
β̂n − β

) → N
(

0,
[
Eθ (zi z′

i )
]−1

Varθ (zi ui )
[
Eθ (zi z′

i )
]−1

)
in Pθ -distribution.

Now note that

Varθ (zi ui ) = Eθ
(
Varθ (zi ui |zi )

) + Varθ
(
Eθ (zi ui |zi )

)
.
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Moreover, under Assumption A1 and according to (8.3), we have Eθ (ui zi |zi ) =
0, hence

Varθ (zi ui )= Eθ
(
Varθ (zi ui |zi )

)= Eθ
(
zi Varθ (ui |zi )z′

i

) = σ 2 Eθ (zi z′
i ),

since, according to Assumption A3, we have Varθ (ui |zi ) = σ 2 for all i . There-
fore, we obtain

√
n(β̂n − β) → N (0, σ 2 

[
Eθ (zi z′

i )
]−1

) in Pθ -distribution. (8.28)

The theoretical moments Eθ (zi z′
i ) are consistently estimated by the empirical

moments 1
n

∑n
i=1 zi z′

i = Z ′ Z/n. Similarly, σ 2 is consistently estimated by σ̂ 2
n ,

i.e.,

σ̂ 2
n → σ 2 Pθ -a.s.

A natural estimator of θ = σ 2 
[
Eθ (zi z′

i )
]−1

, denoted ̂n , is then

̂n = σ̂ 2
n

[
1

n

n∑
i=1

zi z′
i

]−1

= σ̂ 2
n

[
Z ′ Z

n

]−1

.

Hence,
√

n̂−1/2
n (β̂n − β) → N (0, Iq ).

Intuitively, β̂n follows approximately a normal distribution with mean β and
variance σ̂ 2

n (Z ′ Z )−1. Thus, we find the same distribution as in the finite sample
under the normality Assumption A4 (Theorem 8.2).

According to Theorem 3.2 in Chapter 3, this result extends to all continuous
functions of β: if we have (8.28) and if g is a continuously differentiable function
from R

q to R
J , then

√
n(g(β̂n) − g(β)) → N

(
0,

(
∂g(β)

∂β ′

)
θ

(
∂g(β)′

∂β

)′)
in Pθ -distribution.

The following example illustrates this.

Example 8.6 Consider a log-linear model

Yi = AZβ2

i eui i = 1, . . . , n.

Linearize the model

ln Yi = ln A + β2 ln Zi + ui

where

yi = β1 + β2zi + ui
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with yi = ln Yi , β1 = ln A, and zi = ln Zi . The OLS estimation yields in par-
ticular the estimator β̂1n of β1. This estimator is consistent and

β̂1n → N

⎛⎜⎜⎝β1, σ
2

n∑
i=1

z2
i

n∑
i=1

(zi − z)2

⎞⎟⎟⎠ in Pθ -distribution

or

β̂1n → N

⎛⎜⎜⎝β1, σ
2

⎡⎢⎢⎣1

n
+ z2

n∑
i=1

(zi − z)2

⎤⎥⎥⎦
⎞⎟⎟⎠ in Pθ -distribution.

Let Ân be the estimator of A, given by Ân = eβ̂1n . g is in this case the exponential
function. Then, Ân = g(β̂1n) is a consistent estimator of A = g(β1) and its
asymptotic distribution is given by

Ân → N

⎛⎜⎜⎝A, σ 2e2β1

⎡⎢⎢⎣1

n
+ z2

n∑
i=1

(zi − z)2

⎤⎥⎥⎦
⎞⎟⎟⎠ in Pθ − distribution.

However, note that in small samples and under the assumption that the ln Yi are
normally distributed, the distribution of Ân is not the normal but the log-normal.

�

Next, we relate the asymptotic tests to Chapter 4.
In order to test the null hypothesis H0 : βi = 0 against the alternative hy-

potheses H : βi �= 0, it is sufficient to use the test statistic

τn = β̂in

σ̂n

√
(Z ′ Z )−1

i i

.

This follows a N (0, 1) distribution under H0. Here, (Z ′ Z )−1
i i is the element in

the i th line and i th column of (Z ′ Z )−1.

Example 8.7 We return to the case in which we consider the MLE as a moment
estimator. According to Example 3.20 in Chapter 3, the MLE of β, denoted by
β̂n, satisfies the following result, since it is equal to the OLS estimator

√
n(β̂n − β) → N (0, J−1

θ ) in Pθ -distribution
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where Jθ is the Fisher information matrix

Jθ = −Eθ

[
∂2 ln f (yi |zi , β, σ )

∂β∂β ′

]
= Eθ (zi z′

i );

and we evidently obtain the asymptotic distribution as in (8.28). If the condi-
tional distribution of yi |zi is normal, then this result is of little interest, since
we showed normality in a finite sample. However, this result remains correct
even if the likelihood function is not normal, we are then in a case of consistent
pseudo-maximum likelihood. �

Consider next the test of a set of J linear restrictions represented by the
hypothesis H0 : Rβ = r in the notation of (8.18). We test this hypothesis using
the Wald procedure linking the results to Section 4.3. in Chapter 4. Let

R∗(β) = Rβ − r

and consider the null hypothesis H0 : R∗(β) = 0. Because the OLS estimator
β̂n follows asymptotically a normal distribution given by (8.28), it follows that

√
n

(
R∗(β̂n) − R∗(β)

) → N (0, �θ )

with

�θ = ∂ R∗(β)

∂β ′ σ 2
[
Eθ (zi z′

i )
]−1 ∂ R∗(β)′

∂β

= σ 2 R
[
Eθ (zi z′

i )
]−1

R′.

Under the null hypothesis, we have

n R∗(β̂n)′
[

R
(
Eθ (zi z′

i )
)−1

R′
]−1

R∗(β̂n)

σ 2
→ χ2

J .

A consistent estimator �̂n of �θ is given by

�̂n = σ̂ 2
n R

(
Z ′ Z

n

)−1

R′.

This implies that

n R∗(β̂n)′
[

R
(

Z ′ Z
n

)−1

R′
]−1

R∗(β̂n)

σ̂ 2
n

→ χ2
J
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under H0, or equivalently

(Rβ̂n − r )′
[
R(Z ′ Z )−1 R′]−1

(Rβ̂n − r )

σ̂ 2
n

→ χ2
J (8.29)

which is the large sample equivalent to the small sample statistic (8.25) which
followed a F−distribution. Thus, the F distribution provides a better approxi-
mation in small samples but only under normality of yi . When J = 1, a result
equivalent to (8.29) is

Rβ̂n − r

σ̂n

√
R(Z ′ Z )−1 R′ → N (0, 1)

which is the large sample analogue of the statistic (8.22) which follows a t
distribution under the normality assumption.

8.3 Nonlinear Parametric Regression

Next, we consider the properties of the OLS estimator in a nonlinear parametric
regression model. We still consider an i.i.d. sequence xi = (yi , zi )

′ for i =
1, . . . , n, where yi and the elements zi j of the vector zi in R

k are square
integrable random variables. We are interested in the conditional expectation
of the form

Eθ (yi |zi ) = g(zi , β) i = 1, . . . , n. (8.30)

We assume that g is continuous and belongs to a parametric family of measurable
functions{

g(zi , λ), λ ∈ � ⊂ R
k
} ⊂ L2(zi )

where L2(zi ) is the space of square integrable functions on zi . In this case, the
dimensions of the vectors zi and β are not necessarily the same. Furthermore,
we assume that g is continuous and differentiable in � and that it is identified
in the sense of

∀zi g(zi , λ) = g(zi , λ
∗) ⇒ λ = λ∗.

The model is also assumed to be correctly specified, i.e.,

Eθ (yi |zi ) ∈ {
g(zi , λ), λ ∈ � ⊂ R

k
}
.

We can make several comments on these assumptions. The vector β is the
unique element of � such that Equation (8.30) holds and, therefore, we can write
β = λ(θ ). We obtain β as the unique solution to the following minimization
problem

β = arg min
λ

Eθ
[
(yi − g(zi , λ))2

]
,
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hence,

Eθ
[
(yi − g(zi , β))2

]
< Eθ

[
(yi − g(zi , λ))2

]
∀λ ∈ � with λ �= β. It can be obtained in an equivalent way as the unique
solution of

Eθ

[
(yi − g(zi , λ))

∂g(zi , λ)

∂λ

]
= 0.

Remark. The Assumption (8.30) implies the moment equation

Eθ [(yi − g(zi , λ))h(zi , λ)] = 0

for any arbitrary function h of explanatory variables. As we saw at the end
of Chapter 3 and as we will show in Chapter 15 for the more general case of
nonlinear dynamic models, the choice of

h(zi , λ) = ∂g(zi , λ)

∂λ

is optimal in the case when the residual

ui = yi − g (zi , λ)

is homoskedastic. �

Here, the moment estimator of β can also be called nonlinear least-squares
estimator and is given by

β̂n = arg min
λ

n∑
i=1

(yi − g(zi , λ))2

or as the solution of
n∑

i=1

(yi − g(zi , λ))
∂g(zi , λ)

∂λ
= 0.

β̂n is assumed to exist and to be unique in a finite sample. For the asymptotic
properties it is sufficient to return to the results in Chapter 3. To do this, let

φ(xi , λ) = (yi − g(zi , λ))2.

The derivative of this function with respect toλ is, up to a multiplicative constant,
equal to

ψ(xi , λ) = (yi − g(zi , λ))
∂g(zi , λ)

∂λ
,

which is a k × 1 vector. Following Theorem 3.3 in Chapter 3, we obtain:
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Theorem 8.3 Under the assumptions of Theorem 3.3, the estimator β̂n has
the following asymptotic properties:

1) β̂n → β Pθ − a.s.,
2)

√
n(β̂n − β) → N (0, θ ) in Pθ − distribution

with

θ = σ 2

(
Eθ

[
∂g(zi , β)

∂β

∂g(zi , β)

∂β ′

])−1

where σ 2 = Varθ (yi |zi ) . �

Indeed, Theorem 3.3 implies

θ =
[

Eθ

(
∂ψ

∂β ′

)]−1

Varθ (ψ)

[
Eθ

(
∂ψ ′

∂β

)]−1

.

Here, we have

Eθ

(
∂ψ

∂β ′

)
= Eθ

[
∂

∂β ′

(
(yi − g(zi , β))

∂g(zi , β)

∂β

)]
= Eθ

[
−∂g

∂β

∂g

∂β ′

]
+ Eθ

[
(yi − g(zi , β))

∂2g(zi , β)

∂β∂β ′

]
= −Eθ

[
∂g

∂β

∂g

∂β ′

]
.

The second term is zero because

Eθ

[
(yi − g(zi , β))

∂2g(zi , β)

∂β∂β ′

]
= Eθ

[
Eθ

(
ui

∂2g(zi , β)

∂β∂β ′

∣∣∣∣ zi

)]
= Eθ

[
Eθ (ui |zi )

∂2g(zi , β)

∂β∂β ′

]
= 0

given the properties of ui .
Moreover, the moment conditions imply

Varθ (ψ) = Eθ
[
Varθ (ψ |zi )

] + Varθ
[
Eθ (ψ |zi )

]
= Eθ

[
Varθ (ψ |zi )

]
hence,

Varθ (ψ) = Eθ

[
Varθ ((yi − g(zi , β))

∂g(zi , β)

∂β

∣∣∣∣ zi )

]
= Eθ

[
∂g(zi , β)

∂β
Varθ (yi |zi )

∂g(zi , β)

∂β ′

]
.
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Thus, we have

θ =
[

Eθ

(
∂g

∂β

∂g

∂β ′

)]−1

Eθ

[
∂g(zi , β)

∂β
Varθ (yi |zi )

∂g(zi , β)

∂β ′

]

×
[

Eθ

(
∂g

∂β

∂g

∂β ′

)]−1

. (8.31)

If we assume homoskedasticity, i.e.,

Varθ (yi |zi ) = σ 2 i = 1, . . . , n

then

Varθ (ψ) = σ 2 Eθ

[
∂g(zi , β)

∂β

∂g(zi , β)

∂β ′

]
and the expression for θ is then

θ = σ 2

(
Eθ

[
∂g(zi , β)

∂β

∂g(zi , β)

∂β ′

])−1

. (8.32)

We have

√
n(β̂n − β) → N

(
0, σ 2

(
Eθ

[
∂g(zi , β)

∂β

∂g(zi , β)

∂β ′

])−1
)

in Pθ − distribution,

(8.33)

which can be used for testing and for confidence intervals. Assuming ho-
moskedasticity from now on, the variance matrix in (8.33) can be consistently
estimated by

̂n = σ̂ 2
n

[
1

n

n∑
i=1

∂g(zi , β̂n)

∂β

∂g(zi , β̂n)

∂β ′

]−1

where

σ̂ 2
n = 1

n

n∑
i=1

(yi − g(zi , β̂n))2.

Uniqueness implies the invertibility of

Eθ

[
∂g(zi , β)

∂β

∂g(zi , β)

∂β ′

]
which implies the invertibility of

1

n

n∑
i=1

∂g(zi , β̂n)

∂β

∂g(zi , β̂n)

∂β ′
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for a sufficiently large sample size. Thus, we use the distribution
√

n(β̂n − β) → N (0, ̂n).

To finish, consider the test of J nonlinear restrictions on β of the form

Ho : η(β) = 0

with η(β) = (η1(β), . . . , ηJ (β))′ and J ≤ k. The functions ηi are assumed to
be continuously differentiable and the J × k matrix of first derivatives of ηi ,
i.e.,

� = ∂η(β)

∂β ′ ,

is supposed to have rank J . We know that η(β̂n) is a consistent estimator of
η(β) and that, following Theorem 3.2 in Chapter 3,

√
n(η(β̂n) − η(β)) → N (0, �θ ) in Pθ − distribution

with

�θ = �θ�
′.

Hence,

n(η(β̂n) − η(β))′
[
�̂n̂n�̂

′
n

]−1
(η(β̂n) − η(β)) → χ2

J

in Pθ−distribution, with

�̂n = ∂η(β̂n)

∂β ′

(the estimator �̂n is assumed to have rank J ).
The test statistic for the null hypothesis Ho : η(β) = 0 is then

nη(β̂n)′
[
�̂n̂n�̂

′
n

]−1
η(β̂n)

which is χ2
J distributed under H0.

8.4 Misspecified Regression

We assumed in the previous sections that the unknown regression function
belongs to the parametric family under consideration. Now, we drop this as-
sumption and examine its consequences.

Consider again an i.i.d. sequence of random vectors

xi = (yi , z′
i )

′ ∈ R × R
q

for which the components are square integrable. Assume that

Eθ (yi |zi ) = g(zi )
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and that the parametric model has the form g(zi , λ), λ ∈ R
k , such that the family

{g(z; λ)|λ ∈ � ⊂ R
k} does not necessarily contain g(z). We are using here the

same letter g for two types of functions, the true regression g(z), and the family
of approximations g(z, λ).

In this context, we can address three questions:

1. What are the asymptotic properties of the estimators of the misspecified
model?

2. How can one influence the approximation properties by the estimation
method or by the choice of the approximation?

3. Can we derive asymptotic results for the specification tests?

8.4.1 Properties of the Least Squares Estimators

An econometrician, after choosing a parametric form g(z, λ), estimates λ by

β̂n = arg min
λ

n∑
i=1

(yi − g(zi , λ))2.

Using the general results of Chapter 3, we can verify that

β̂n → arg min
λ

Eθ
[
(yi − g(zi , λ))2

]
which is supposed to exist uniquely and which we denote by β(θ ). In terms of
the estimated function, the function g(z, β̂n) converges to g(z, β(θ )) for all z
if g(z, λ) is continuous in λ. We can refine the relationship between g(z) and
g(z, β(θ )) by noting that

Eθ
[
(yi − g(zi , λ))2

] = Eθ
[
(yi − g(zi ))

2
] + Eθ

[
(g(zi ) − g(zi , λ))2

]
since

Eθ [(yi − g(zi ))(g(zi ) − g(zi , λ))]

= Eθ
[
(g(zi ) − g(zi , λ))(Eθ (yi |zi ) − g(zi ))

]
= 0

and, thus,

β(θ ) = arg min
λ

Eθ
[
(g(zi ) − g(zi , λ))2

]
.

The above shows that g(zi , β(θ )), which attains this minimum, is the best ap-
proximation in the sense of the quadratic norm in L2(z) of g by a function of the
family g(z, λ). This approximation depends fundamentally on the distribution
of the explanatory variables and not only on the conditional distribution.
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Example 8.8 Suppose zi ∈ R (q = 1) and examine a quadratic approxima-
tion

g(z, λ) = λ0 + λ1z + λ2z2.

If the true regression is g(z), then we look for β = (β0, β1, β2) which minimizes

Eθ
[
(g(z) − λ0 − λ1z − λ2z2)2

]
.

Then, elementary calculations yield⎡⎢⎢⎣
β0(θ )

β1(θ )

β2(θ )

⎤⎥⎥⎦ =

⎡⎢⎢⎣
1 Eθ (zi ) Eθ (z2

i )

Eθ (zi ) Eθ (z2
i ) Eθ (z3

i )

Eθ (z2
i ) Eθ (z3

i ) Eθ (z4
i )

⎤⎥⎥⎦
−1 ⎡⎢⎢⎣

Eθ (g(zi ))

Eθ (zi g(zi ))

Eθ (z2
i g(zi ))

⎤⎥⎥⎦ .

Thus, this vector depends on the distribution of the zi . If, for example, the zi

are N (0, σ 2), then⎡⎢⎢⎣
β0(θ )

β1(θ )

β2(θ )

⎤⎥⎥⎦ =

⎡⎢⎢⎣
1 0 σ 2

0 σ 2 0

σ 2 0 3σ 4

⎤⎥⎥⎦
−1 ⎡⎢⎢⎣

Eθ (g(zi ))

Eθ (zi g(zi ))

Eθ (z2
i g(zi ))

⎤⎥⎥⎦ ,

hence ⎡⎢⎢⎣
β0(θ )

β1(θ )

β2(θ )

⎤⎥⎥⎦ = 1

2σ 4

⎡⎢⎢⎣
3σ 4 Eθ (g(zi )) − σ 2 Eθ (z2

i g(zi ))

2σ 2 Eθ (zi g(zi ))

−σ 2 Eθ (g(zi )) + Eθ (z2
i g(zi ))

⎤⎥⎥⎦ .

This example underlines a mistake that we often find in applied econometrics.
This error comes from the following argument. Assuming that the true model is

yi = g(zi ) + ui .

and using a second order Taylor series expansion of g around a point z0, we
obtain

yi = g(z0) + ∂g

∂z
(z0)(zi − z0) + ∂2g

∂z2
(z0)(zi − z0)2 + εi

where εi is a term that combines the approximation error and the residual ui .
Then, the model can be written in the form

g(zi , λ) = λ0 + λ1zi + λ2z2
i ,

but estimating these parameters by least squares does not provide a consistent
estimator of the derivatives of the true function at a given point z0 even if
z0 = Eθ (zi ), which would seem to be the most natural choice. �
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Now, let us consider the limiting distribution of
√

n(β̂n − β(θ )). It follows
from the results in Chapter 3 that this distribution is asymptotically normal
but with a more complex variance because of the misspecification error. Theo-
rem 3.3 in Chapter 3 implies that

√
n(β̂n − β(θ )) → N (0, θ )

with

θ = B−1
θ Aθ B−1

θ ,

Aθ = Varθ

[
∂

∂λ

(
(yi − g(zi , λ))2

)] ∣∣∣
λ=β(θ )

and

Bθ = Eθ

[
∂2

∂λ∂λ′
(
(yi − g(zi , λ))2

)] ∣∣∣
λ=β(θ )

.

The simplifications that we used in the previous section are no longer possible
because Eθ (yi |zi ) �= g(zi , β) (see Equation (8.30)).

8.4.2 Comparing the True Regression with Its Approximation

The following example is purposely very simple in order to illustrate the argu-
ment.

Example 8.9 Consider the case zi ∈ R and Eθ (zi ) = 0. We are interested
in a linear approximation g(zi , λ) = λzi (λ ∈ R). The least squares estimator
converges evidently to

β(θ ) = 1

σ 2
Eθ (zi g(zi ))

where σ 2 = Eθ (z2
i ). We have already seen that β(θ ) is not equal to the derivative

of g(z) at a given point z0 but we may wonder whether the following holds:

β(θ ) = Eθ

(
∂g

∂z
(zi )

)
.

This property means that β̂n consistently estimates the expectation of the deriva-
tive of g where the expectation is with respect to the distribution of the explana-
tory variable. This property is equivalent to

β(θ ) =
∫

∂g

∂z
(z) fm(z)dz = g(z) fm(z)

∣∣+∞
−∞ −

∫
g(z)

∂ fm

∂z
(z)dz, (8.34)
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where fm denotes the density of z. We know that fm goes to 0 at infinity and we
assume this is also the case for g(z) fm(z). The condition (8.34) becomes then

β(θ ) = 1

σ 2

∫
zg(z) fm(z)dz = −

∫
g(z)

∂ fm

∂z
(z)dz.

This condition is satisfied for all functions g if

1

σ 2
z fm(z) + ∂ fm

∂z
(z) = 0. (8.35)

It can be shown without difficulty that (8.35) is satisfied if and only if fm is the
density of the centered normal distribution with variance σ 2. �

This example shows a good compatibility between linear approximation,
least squares, and normality of the explanatory variables. This result can be
generalized: in a polynomial approximation, the expectation (with respect to
the distribution of the explanatory variables) of the partial derivatives of the
regression are consistently estimated if and only if the explanatory variables
are normally distributed.

This result can be extended in the following way. Consider the following
moment conditions

Eθ

[
(yi − g(zi , λ))

∂α f̃m(zi )

fm(zi )

]
= 0 (8.36)

in which fm is the marginal density of zi , f̃m is another density (possibly
the same) in the space of explanatory variables and ∂α f̃m denotes the partial
derivative of f̃m (α is a vector of integers α1, . . . , αq and the derivative is taken
α1 times with respect to the first component of zi , α2 times with respect to the
second, and so on). The condition (8.36) is equivalent to∫

(yi − g(zi , λ))∂α f̃m(zi )dzi = 0

⇔
∫

(g(zi ) − g(zi , λ))∂α f̃m(zi )dzi = 0

⇔ (−1)α1+ ··· +αm

∫
(∂αg(zi ) − ∂αg(zi , λ)) f̃m(zi )dzi = 0

⇔ Ẽθ (∂αg(zi )) = Ẽθ (∂αg(zi , λ)). (8.37)

The second to last equivalence is obtained by partial integration assuming that
the terms evaluated at +∞ and −∞ cancel. Thus we see that the moment
condition (8.36) are equivalent to the fact the partial derivatives of g and its
approximation are equal in the sense of the density f̃m . The moment condition
(8.37) allows us to estimate the parameter λ. We consider a set of k conditions
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of equality of the derivatives by choosing k values of α (α1, . . . , αk). Then, we
obtain a system of moment conditions which leads to the estimation of β as the
solution of

n∑
i=1

(yi − g(zi , λ))
∂α j

f̃m(zi )

fm(zi )
= 0 ∀ j = 1, . . . , k.

This system assumes that fm is known. In practice, fm is estimated. We can
use either a nonparametric regression or a parametric regression if we know a
parametric family that includes fm . We do not provide the detailed results for
this case.

8.4.3 Specification Tests

These specification tests are inspired by the idea that the solutions to two min-
imization problems, one of which corresponds to the least squares approxima-
tion, are the same when the model is correctly specified. These tests rely on
the asymptotic distribution of the difference between the estimators which are
the outcome of the minimization problems. This is illustrated in the following
example.

Example 8.10 Suppose that Eθ (yi |zi ) = g(zi ) where zi ∈ R for simplicity.
Consider the solutions to two simple systems of moment equations, the first
deriving from the OLS, the second corresponding to the weighted least squares

Eθ ((yi − λzi )zi ) = 0

and

Eθ
(
(yi − ρzi )z3

i

) = 0.

Here, we take z3
i as an example, but any function of zi that is different from the

identity function, would play the same role. The solutions are respectively given
by

λ(θ ) = Eθ (zi yi )

Eθ
(
z2

i

)
and

ρ(θ ) = Eθ
(
z3

i yi

)
Eθ

(
z4

i

) .

If there is no problem of misspecification, i.e., we are in the case where g(zi ) =
βzi , then the solutions λ(θ ) and ρ(θ ) are both equal to the parameter of the
true regression

λ(θ ) = ρ(θ ) = β.
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In contrast, if g(zi ) �= βzi , then λ(θ ) �= ρ(θ ).
Consider the null hypothesis H0 that is implicitly defined by the family{

g(zi ) :
Eθ (zi g(zi ))

Eθ
(
z2

i

) = Eθ
(
z3

i g(zi )
)

Eθ
(
z4

i

) }
.

If g belongs to this family, then λ(θ ) = ρ(θ ) = β.
The moment estimators of λ(θ ) and ρ(θ ) under H0 are

λ̂n =

n∑
i=1

zi yi

n∑
i=1

z2
i

=

n∑
i=1

zi (g(zi ) + ui )

n∑
i=1

z2
i

= β +

n∑
i=1

zi ui

n∑
i=1

z2
i

and

ρ̂n =

n∑
i=1

z3
i yi

n∑
i=1

z4
i

=

n∑
i=1

z3
i (g(zi ) + ui )

n∑
i=1

z4
i

= β +

n∑
i=1

z3
i ui

n∑
i=1

z4
i

.

Then

√
n

(̂
λn − ρ̂n

) = √
n

((
n∑

i=1

z2
i

)−1 n∑
i=1

zi ui −
(

n∑
i=1

z4
i

)−1 n∑
i=1

z3
i ui

)

→ 1√
n

((
Eθ

(
z2

i

))−1
n∑

i=1

zi ui − (
Eθ

(
z4

i

))−1
n∑

i=1

z3
i ui

)
Pθ − a.s.

→ 1√
n

n∑
i=1

((
Eθ

(
z2

i

))−1 zi − (
Eθ

(
z4

i

))−1 z3
i

)
ui Pθ − a.s.

The central limit theorem implies that, under H0,

√
n

(̂
λn − ρ̂n

) → N (0, κ(θ ))

with

κ(θ ) = Eθ

([((
Eθ

(
z2

i

))−1
zi − (

Eθ
(
z4

i

))−1
z3

i

)
ui

]2
)

= Eθ
(
z2

i u2
i

)[
Eθ

(
z2

i

)]2
+ Eθ

(
z6

i u2
i

)[
Eθ

(
z4

i

)]2
− 2

Eθ
(
z4

i u2
i

)
Eθ

(
z2

i

)
Eθ

(
z4

i

) .
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κ(θ ) can be estimated by

κ̂n =
1
n

n∑
i=1

z2
i û2

i[
1
n

n∑
i=1

z2
i

]2
+

1
n

n∑
i=1

z6
i û2

i[
1
n

n∑
i=1

z4
i

]2
− 2

1
n

n∑
i=1

z4
i û2

i(
1
n

n∑
i=1

z2
i

) (
1
n

n∑
i=1

z4
i

)
where ûi = yi − λ̂nzi or ûi = yi − ρ̂nzi . Let Eθ (ui |zi ) = σ 2, then κ(θ ) and
κ̂n can be rewritten as

κ(θ ) = σ 2

(
Eθ

(
z6

i

)[
Eθ

(
z4

i

)]2
− 1

Eθ
(
z2

i

))
and

κ̂n = σ̂ 2
n

⎛⎜⎜⎜⎝
1
n

n∑
i=1

z6
i[

1
n

n∑
i=1

z4
i

]2
− 1

1
n

n∑
i=1

z2
i

⎞⎟⎟⎟⎠
where σ̂ 2

n = 1
n

∑n
i=1(yi − λ̂nzi )

2 or σ̂ 2
n = 1

n

∑n
i=1(yi − ρ̂nzi )

2.
If the statistic

√
n(̂λn − ρ̂n) is larger than the critical value of a normal dis-

tribution N (0, κ̂n), then the null hypothesis of correct specification is rejected.
Note that if the true specification is g(zi ) = βz2

i and if the zi are normally
distributed, then the solutions are

λ(θ ) = β
Eθ

(
z3

i

)
Eθ

(
z2

i

) = 0

and

ρ(θ ) = β
Eθ

(
z5

i

)
Eθ

(
z4

i

) = 0.

We can see that the idea for the specification test based on the asymptotic
distribution of the difference between the estimators λ̂n and ρ̂n is no longer
valid. This illustrates the importance of the distribution of the explanatory
variables in misspecified models.

An alternative way to construct the specification test is based on the system
of moment equations

Eθ (ψ(xi , δ)) = 0

with

ψ(xi , δ) =
[

(yi − λzi )zi

(yi − ρzi )z3
i

]
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and δ = (λ, ρ)′. Theorem 3.3 in Chapter 3 implies that

√
n

(
λ̂n − λ(θ )
ρ̂n − ρ(θ )

)
→ N (0, θ )

with

θ = B−1
θ Aθ B−1

θ , Aθ = Varθ (ψ) and Bθ = Eθ

(
∂ψ

∂δ′

)
.

A quick calculation shows that, under the null hypothesis, where λ(θ ) = ρ(θ ) =
β,

Aθ =
(

Eθ
(
u2

i z2
i

)
Eθ

(
u2

i z4
i

)
Eθ

(
u2

i z4
i

)
Eθ

(
u2

i z6
i

)
)

and

Bθ =
(

Eθ
(
z2

i

)
0

0 Eθ
(
z4

i

))
,

from which we infer that

√
n

(̂
λn − ρ̂n

) = √
n

(
1

−1

)′ ( λ̂n − λ(θ )

ρ̂n − ρ(θ )

)
→ N

(
0,

(
1

−1

)′
θ

(
1

−1

))
with (

1
−1

)′
θ

(
1

−1

)
= κ(θ )

where κ(θ ) is as defined above. �

Notes

The presentation of the regression model in terms of expectation that was outlined in

the introduction is, in the linear case, identical to that of Spanos (1986), who calls it

linear regression model in contrast to the linear Gaussian model, defined by the usual

equation y = Xβ + u. For the latter the exogenous variables seem deterministic. Indeed,

the linear regression model is based on general probabilistic arguments and the linear

Gaussian model is just a special case. A rather general introduction of the regression

model is provided by the same author (1986, Chapter 17).

Concerning Section 8.2 on the linear regression model, a more rigorous proof of the

equivalence of OLS and the method of moments can be found in Gouriéroux and Mon-

fort (1996a). The restricted regression model has been studied by numerous authors, in

particular Gouriéroux and Monfort (1996a, Volume 2), Greene (1990), Spanos (1986),

Judge, Griffiths, Hill, Lutkepohl, and Lee (1985), and Judge, Hill, Griffiths, Lutkepohl,

and Lee (1988). To show that β̂∗
n is BLUE, see particularly Judge, Hill, Griffiths, Lutke-

pohl, and Lee (1988). For prediction refer to Spanos (1986), Greene (1990), and Judge,
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Hill, Griffiths, Lutkepohl, and Lee (1988). The example on the log-linear model is taken

from Greene (1990). For the proof of the almost sure convergence of σ̂ 2
n to σ 2, see

Monfort (1982). For a comparison of the Wald, Rao, and LR test procedures for the case

when the null hypothesis can be expressed in the form Rβ = r , see Judge, Griffiths,

Hill, Lutkepohl, and Lee (1985) and Spanos (1986).

For the nonlinear parametric regression, we point to Bierens (1994), Gouriéroux and

Monfort (1996a, Volume 1), Greene (1990, Chapter 11), Spanos (1986); for the test of

linear restrictions to Bierens (1994).

For the last part concerning misspecified models, see White (1980), Florens, Ivaldi

and Larribeau (1996), Gallant and White (1988), and White (1994).
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9. Generalized Least Squares Method,
Heteroskedasticity, and Multivariate
Regression

9.1 Introduction

We saw that the linear regression model can be written in matrix form as

y = Zβ + u,

and we imposed the assumptions

Eθ (u|Z ) = 0

and

Varθ (u|Z ) = Varθ (u) = σ 2 In.

The first assumption means that Zβ is the expectation of y conditional on Z and
thus cannot be altered without fundamentally changing the nature of the model.
In many economic applications, the second assumption needs to be weakened
and can be generalized in two ways, first in an i.i.d. setting, making the condi-
tional variance of the ui depend on the conditioning variables zi (heteroskedas-
ticity), and secondly in a non-i.i.d. setting, by not assuming that the covariance
between residuals is zero. This can be written in a general framework as

Varθ (u|Z ) = �

where � is a matrix that depends in general on Z and on unknown parameters
ρ. In this model, the parameters of interest are β and ρ.

By distinguishing the case where � is known up to a multiplicative factor
from the general case where � is a function of unknown parameters, the usual
treatment of this class of models is the following.

First, if � = σ 2V , where σ 2 is unknown and V is a given symmetric positive
definite matrix, then we can verify that the unbiased linear estimator with the
smallest variance solves the following problem

min
β

( y − Zβ)′V −1( y − Zβ)

179
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and is given by

β̂n = (Z ′V −1 Z )−1 Z ′V −1 y. (9.1)

This estimator is called the generalized least squares (GLS) estimator.
This immediate extension of the Gauss-Markov theorem (known as Aitken

theorem) shows in particular that the variance of β conditional on Z is
σ 2(Z ′V −1 Z )−1 and is the smallest among all unbiased linear estimators. A
simple interpretation of this estimator is obtained by realizing that V −1 can be
factored in V −1 = P ′ P where P is invertible and that the model

y∗ = Z∗β + u∗

with y∗ = Py, Z∗ = P Z , and u∗ = Pu satisfies the optimality conditions of
the linear regression model (see Chapter 8), since in particular

Varθ (u∗|Z ) = σ 2 PV P ′ = σ 2 In.

Thus we can use the usual formula

β̂n =
(
Z∗′ Z∗)−1 

Z∗′ y∗

and we recover the estimator (9.1).
Finally, the estimator σ 2 is obtained by

σ̂ 2
n = 1

n − q 
( y − Z β̂n)′V −1( y − Z β̂n).

If we assume moreover that

y|Z ∼ N (Zβ, σ 2V ),

then we can easily verify that β̂n is the MLE of β, and that n−q
n σ̂ 2

n is equal to
the MLE of σ 2.

Second, if � is unknown and depends on a parameter vector ρ, then the
approach consists of two stages:

� obtain a preliminary estimate ρ̂n of ρ and thus an estimator �̂n of �, by
replacing ρ by ρ̂n ,

� estimate β using formula (9.1) in which V is replaced by �̂n

β̂n = (
Z ′�̂−1

n Z
)−1

Z ′�̂−1
n y.

Thus, we obtain the feasible generalized least squares estimator. This esti-
mator obviously loses the small sample properties of the GLS estimator when
V is known and is studied in general from an asymptotic view point.

This chapter is essentially devoted to this study, but we concentrate on the
case of heteroskedasticity and on the extension of the GLS estimators to the
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multivariate case. Both problems stay within the i.i.d. setting, the interdepen-
dence of observations follows more naturally from dynamic modeling and is,
therefore, relegated to Part III of this book.

In the following section, we present an extension of the method of moments,
before analyzing the heteroskedasticity and multivariate regression models,
which will be the object of the last two sections.

9.2 Allowing for Nuisance Parameters in Moment Estimation

Consider a model
{

Xn, �, Pθ
n

}
and a function ψ defined on X × � × R

(�⊂R
k , R⊂R

l) with values in Rk . The function ψ(xi , λ, ρ) is assumed to
be square integrable for all λ and ρ, and we consider equation

Eθ (ψ(xi , λ, ρ)) = 0. (9.2)

This has the following interpretation: if ρ is fixed at a particular value that will
depend in general on θ , ρ(θ ), then the system (9.2) defines a function λ(θ ) of
the parameters of interest, and the function ρ(θ ) defines a function of nuisance
parameters. The estimation of the latter is not a priority for the statistician but
their treatment is necessary to analyze the parameters of interest. Note that, in
the specific situation that we examine, the system (9.2) contains more unknowns
than equations and, therefore, cannot be used by itself to estimate ρ(θ ) and λ(θ ).

We analyze then this problem for two situations.
The first case is defined by the assumption that the value of ρ is known. This

value depends in general on θ and we then assume that ρ is equal to ρ(θ ). Here,
λ can be analyzed using the same methods as in Chapter 3. We have a simple
system of moment equations which, under the usual regularity conditions, leads
to the estimator λ̃n (ρ(θ )), given as the solution of

1

n

n∑
i=1

ψ(xi , λ, ρ(θ )) = 0. (9.3)

We emphasize that λ̃n (ρ(θ )) obviously depends on the particular fixed value of
ρ(θ ). We then have, following Theorem 3.3 of Chapter 3

λ̃n (ρ(θ )) → λ(θ ) Pθ − a.s., (9.4)

where λ(θ ) is the solution of Eθ (ψ(xi , λ, ρ(θ ))) = 0 and

√
n

(
λ̃n (ρ(θ )) − λ(θ )

) → N (0, θ ) in Pθ -distribution (9.5)

with

θ =
[

Eθ

(
∂ψ

∂λ′

)]−1

Varθ (ψ)

[
Eθ

(
∂ψ ′

∂λ

)]−1

. (9.6)
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A second more relevant case is the one in which ρ(θ ) is unknown but we have
an estimator ρ̂n available which converges to ρ(θ ). We then solve the system

1

n

n∑
i=1

ψ(xi , λ, ρ̂n) = 0, (9.7)

from which we obtain the estimator λ̂n. It is then natural to ask whether λ̂n pre-
serves the same asymptotic properties as λ̃n (ρ(θ )), and in particular whether the
asymptotic variance of the estimator is the same when ρ(θ ) is known and when
ρ(θ ) is estimated. The answer is in general negative, but the following theorem
provides a simple criterion for which both asymptotic distributions are equal.

Theorem 9.1 Suppose that ρ̂n converges a.s. to ρ(θ ) and that 
√

n(ρ̂n − ρ(θ))
has a limiting distribution. If the usual regularity conditions are satisfied, then
λ̂n converges a.s. to λ(θ ). If moreover the condition

Eθ

(
∂ψ

∂ρ ′ (xi , λ, ρ)

∣∣∣∣
λ(θ ) and ρ(θ )

)
= 0 (9.8)

is satisfied, then the asymptotic distribution of
√

n(λ̂n − λ(θ )) is the same as
in (9.5) and (9.6). �

Proof:
1) First, write the expansion

ψ(xi , λ, ρ̂n) � ψ(xi , λ, ρ(θ )) + ∂ψ

∂ρ ′ (xi , λ, ρ(θ ))(ρ̂n − ρ(θ )),

which is intuitively justified by the convergence of ρ̂n to ρ(θ ). Then we have

1

n

n∑
i=1

ψ(xi , λ, ρ̂n) � 1

n

n∑
i=1

ψ(xi , λ, ρ(θ ))

+
(

1

n

n∑
i=1

∂ψ

∂ρ ′ (xi , λ, ρ(θ ))

)
(ρ̂n − ρ(θ )).

The third term of this equality goes to zero and we see intuitively that the
solutions to the problems

1

n

n∑
i=1

ψ(xi , λ, ρ̂n) = 0

and

1

n

n∑
i=1

ψ(xi , λ, ρ(θ )) = 0

are arbitrarily close and converge therefore to the same limit λ(θ ).
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2) The following expansion

ψ(xi , λ̂n, ρ̂n) � ψ(xi , λ(θ ), ρ(θ )) + ∂ψ

∂λ′ (xi , λ(θ ), ρ(θ ))(̂λn − λ(θ ))

+ ∂ψ

∂ρ ′ (xi , λ(θ ), ρ(θ ))(ρ̂n − ρ(θ )),

yields

√
n

n

n∑
i=1

ψ(xi , λ(θ ), ρ(θ )) +
(

1

n

n∑
i=1

∂ψ

∂λ′ (xi , λ(θ ), ρ(θ ))

) (√
n(̂λn − λ(θ ))

)
+

(
1

n

n∑
i=1

∂ψ

∂ρ ′ (xi , λ(θ ), ρ(θ ))

) (√
n(ρ̂n − ρ(θ ))

) � 0.

We know that

1

n

n∑
i=1

∂ψ

∂ρ ′ (xi , λ(θ ), ρ(θ ))

converges a.s. to

Eθ

(
∂ψ

∂ρ ′ (xi , λ(θ ), ρ(θ ))

)
which is assumed to be zero and that

√
n(ρ̂n − ρ(θ )) has a limiting distribution.

Therefore, the product of these two expressions goes to zero, from which the
result follows. �

This result leads to several remarks:
1) The condition

Eθ

(
∂ψ

∂ρ ′ (xi , λ(θ ), ρ(θ ))

)
= 0

is not necessary. We can indeed obtain the same result with
√

n(ρ̂n − ρ(θ )) → 0
and any Eθ ( ∂ψ

∂ρ ′ (xi , λ(θ ), ρ(θ ))). This case occurs in particular if ρ̂n converges
to ρ(θ ) with a rate faster than

√
n (for example, n(ρ̂n − ρ(θ )) has a limiting

distribution as the one that we obtain in some nonstationary models or in extreme
value estimation).

2) We can write an easily verifiable assumption that implies the condition

Eθ

(
∂ψ

∂ρ ′ (xi , λ(θ ), ρ(θ ))

)
= 0.

Consider the asymptotic problem

Eθ (ψ(xi , λ, ρ)) = 0 (9.9)



P1: OSO/OVY P2: OSO/OVY QC: OSO/OVY T1: OSO

Ecoeok CUFX117-Florens 0521876407 April 22, 2007 13:56

184 Econometric Modeling and Inference

and assume that Eθ (ψ(xi , λ, ρ)) does not depend on ρ. This indicates that the
problem (9.9) can be solved for λ(θ ) independently of ρ (although ψ (xi , λ, ρ)

depends on ρ) and that the estimator λ̃n (ρ(θ )) converges to λ(θ ) for any fixed
value of ρ(θ ). If Eθ (ψ(xi , λ, ρ)) does not depend on ρ, its derivative with
respect to ρ is zero; hence, by interchanging expectation and derivatives, we
obtain Condition (9.8).

Let us return now to the general case and briefly analyze the limiting distri-
bution of

√
n(̂λn − λ(θ )) without the simplifying assumption (9.8). A simple

way to examine this question is by obtaining an estimator of ρ; this estimation
is in general derived from an extra moment equation

Eθ (ψ(xi , λ, ρ)) = 0 (9.10)

where ψ has values in Rl . We are therefore in a setting with a simple system of
moment equations by stacking (9.2) and (9.10), and we calculate the estimators
for λ̂n and ρ̂n by jointly solving

1

n

n∑
i=1

(
ψ(xi , λ, ρ)

ψ(xi , λ, ρ)

)
= 0. (9.11)

Thus, we are confronted with the usual system of moment conditions and the
results of Chapter 3 apply.

To conclude these general considerations that are illustrated in the remainder
of this chapter, we note that the following sequential approach can be applied
to the case where Equation (9.10) is available and where Eθ (ψ(xi , λ, ρ)) does
not depend on ρ:

� fix ρ at an arbitrary value ρ0 and use (9.3) to calculate λ̃n(ρ0) which converges
to λ(θ ) for all ρ0,

� replace λ by λ̃n(ρ0) in 1
n

∑n
i=1 ψ(xi , λ, ρ) = 0, and then obtain a consistent

and asymptotically normal estimator of ρ(θ ),
� return to equation 1

n

∑n
i=1 ψ(xi , λ, ρ) = 0 and replace ρ by the previously

obtained estimator.

We leave it to the reader to verify that this procedure leads to a consistent and
asymptotically normal estimator λ̂n of λ(θ ) with the same asymptotic variance
as (9.6). This three-stage procedure suffices to guarantee asymptotic efficiency
without solving system (9.11). If we iterate on this procedure, then we evidently
converge to the solution of (9.11).

9.3 Heteroskedasticity

In Chapter 8, the conditional distribution could be analyzed using only its
conditional expectation. In heteroskedastic models, two moments are relevant,
the conditional mean and the conditional variance.



P1: OSO/OVY P2: OSO/OVY QC: OSO/OVY T1: OSO

Ecoeok CUFX117-Florens 0521876407 April 22, 2007 13:56

Generalized Least Squares Method 185

Consider a finite sequence (xi )i=1,...,n with xi = ( yi , zi ) where yi∈R
p, zi∈R

q

and p + q = m. In the current section, we consider the case where p = 1,
leaving the multivariate case to the next section. The xi are i.i.d. with the same
distribution Qθ . Moreover, the conditional moments can be written in the form

Eθ ( yi |zi ) = g(zi , β) ∈ {
g(zi , λ), λ∈�⊂R

k
} ⊂L2(zi ) (9.12)

and

Varθ ( yi |zi ) = σ 2(zi , γ ) ∈ {
σ 2(zi , ρ), ρ∈R⊂R

l
} ⊂L2(zi ) (9.13)

where σ 2 is a positive scalar valued function. Thus the model is assumed to
be well specified. If g(zi , β) = β ′zi , then this forms a linear heteroskedastic
model. Additionally, we assume that g and σ 2 are continuous and differentiable
functions on � and R respectively, and that they are identified in the sense that

∀zi g(zi , λ) = g(zi , λ
∗) ⇒ λ = λ∗

and

∀zi σ 2(zi , ρ) = σ 2(zi , ρ
∗) ⇒ ρ = ρ∗.

Note that not all elements of the vector zi need to appear in each equation,
but the model is considered conditional on all these elements.

9.3.1 Estimation

We are interested in two possible cases, one when γ is known and the other
when it has to be estimated.

The Case When γ is Known

First, consider the case when γ is known. The GLS estimator is the solution to
the following problem

min
λ∈�

Eθ (φ(xi , λ)) (9.14)

with

φ(xi , λ) = (yi − g(zi , λ))2

σ 2(zi , γ )
, (9.15)

which is equivalent to the simple system of moment equations given by

Eθ (ψ(xi , λ)) = 0 (9.16)

with

ψ(xi , λ) = (yi − g(zi , λ))

σ 2(zi , γ )

∂g(zi , λ)

∂λ
.
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An alternative way to obtain (9.16) is to look at the conditional moment
condition

E (yi − g (zi , λ) |zi ) = 0

and to transform this condition into marginal moments using the optimal in-
struments given in Formula (3.37),

h (zi , λ, γ ) =
∂g (zi , λ)

∂λ

σ 2 (zi , γ )
.

The moment estimator, β̂n , is obtained as the solution to

1

n

n∑
i=1

(yi − g(zi , λ))

σ 2(zi , γ )

∂g(zi , λ)

∂λ
= 0. (9.17)

The estimator β̂n is a function of the known vector γ , β̂n = β̂n(γ ). Intuitively,
the denominator σ 2(zi , γ ) in (9.15) introduces a heteroskedasticity correction
since

Varθ

(
yi − g(zi , λ)

σ (zi , γ )

∣∣∣∣ zi

)
= 1.

To obtain the asymptotic properties, it is sufficient to apply here the results
of the previous section, given by (9.4), (9.5), and (9.6), which were obtained
for the case when the value of ρ is assumed to be known:

β̂n → β Pθ − a.s.,

where β is the solution of (9.16) and

√
n

(
β̂n − β

) → N (0, θ ) in Pθ -distribution

with

θ =
[

Eθ

(
∂ψ

∂λ′

)]−1

Varθ (ψ)

[
Eθ

(
∂ψ ′

∂λ

)]−1

.

Note that here

∂ψ

∂λ′ = 1

σ 2(zi , γ )

[
−∂g(zi , λ)

∂λ

∂g(zi , λ)

∂λ′ + (yi − g(zi , λ))
∂2g(zi , λ)

∂λ∂λ′

]
,

hence

Eθ

(
∂ψ

∂λ′

)
= −Eθ

(
1

σ 2(zi , γ )

∂g(zi , λ)

∂λ

∂g(zi , λ)

∂λ′

)



P1: OSO/OVY P2: OSO/OVY QC: OSO/OVY T1: OSO

Ecoeok CUFX117-Florens 0521876407 April 22, 2007 13:56

Generalized Least Squares Method 187

because

Eθ

(
(yi − g(zi , λ))

σ 2(zi , γ )

∂2g(zi , λ)

∂λ∂λ′

)
= Eθ

(
Eθ ((yi − g(zi , λ)) |zi )

σ 2(zi , γ )

∂2g(zi , λ)

∂λ∂λ′

)
= 0

since

Eθ ((yi − g(zi , λ)) |zi ) = 0

following (9.12). Moreover, we can write

Varθ (ψ) = Eθ (Varθ (ψ |zi )) + Varθ (Eθ (ψ |zi )) = Eθ (Varθ (ψ |zi ))

since Eθ (ψ |zi ) = 0. Thus

Varθ (ψ) = Eθ

[
Varθ

(
(yi − g(zi , λ))

σ 2(zi , γ )

∂g(zi , λ)

∂λ

∣∣∣∣ zi

)]
= Eθ

[
1

σ 4(zi , γ )

∂g(zi , λ)

∂λ
Varθ ((yi − g(zi , λ)) |zi )

∂g(zi , λ)

∂λ′

]
= Eθ

(
1

σ 2(zi , γ )

∂g(zi , λ)

∂λ

∂g(zi , λ)

∂λ′

)
.

Finally, the matrix θ is given by

θ =
[

Eθ

(
1

σ 2(zi , γ )

∂g(zi , β)

∂λ

∂g(zi , β)

∂λ′

)]−1

(9.18)

and can be consistently estimated by

̂n =
[

1

n

n∑
i=1

1

σ 2(zi , γ )

∂g(zi , β̂n)

∂λ

∂g(zi , β̂n)

∂λ′

]−1

.

The uniqueness assumption implies the invertibility of

Eθ

(
1

σ 2(zi , γ )

∂g(zi , λ)

∂λ

∂g(zi , λ)

∂λ′

)
which in turn implies the invertibility of

1

n

n∑
i=1

1

σ 2(zi , γ )

∂g(zi , β̂n)

∂λ

∂g(zi , β̂n)

∂λ′

for a sufficiently large sample size. Thus, we use the distribution N (0, ̂n) as
the approximated distribution of

√
n(β̂n − β).

The following example illustrates these asymptotic results for the case of
linear conditional expectation.
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Example 9.1 Suppose that

Eθ ( yi |zi ) = β ′zi

and

Varθ ( yi |zi ) = σ 2(zi , γ )

where γ is a known parameter vector. In this case, we have

g(zi , λ) = λ′zi and
∂g(zi , λ)

∂λ
= zi .

According to (9.17), the GLS estimator of β is obtained as the solution of

1

n

n∑
i=1

zi
yi − z′

iλ

σ 2(zi , γ )
= 0, (9.19)

hence

β̂n =
[

n∑
i=1

zi z′
i

σ 2(zi , γ )

]−1 [
n∑

i=1

zi yi

σ 2(zi , γ )

]
= (Z ′�−1 Z )−1 Z ′�−1 y,

(9.20)

by defining the n × q matrix Z = (z1, . . . , zn)′ and the n × n matrix � whose
(i, i) elements are equal to σ 2(zi , γ ). We also have, according to (9.18),

θ =
[

Eθ

(
zi z′

i

σ 2(zi , γ )

)]−1

,

which is naturally estimated by

̂n =
[

1

n

n∑
i=1

zi z′
i

σ 2(zi , γ )

]−1

= n(Z ′�−1 Z )−1.

We thus use the distribution N (0, n(Z ′�−1 Z )−1) as the approximated distri-
bution of

√
n(β̂n − β). The estimator β̂n could equally be obtained by starting

with the regression model

yi = β ′zi + ui

where, by construction,

Eθ (ui |zi ) = 0 and Varθ (ui |zi ) = σ 2(zi , γ ),

and by correcting this model to take account of the heteroskedasticity:

yi

σ (zi , γ )
= β ′ zi

σ (zi , γ )
+ ui

σ (zi , γ )
. (9.21)
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The error term ui

σ (zi ,γ )
satisfies the basic conditions of univariate regression

model of the preceding chapter. The application of the OLS method is based on
the following minimization:

min
λ

1

n

n∑
i=1

(
yi

σ (zi , γ )
− λ′ zi

σ (zi , γ )

)2

with respect to λ which leads to Condition (9.19). This explains why the esti-
mator β̂n is also called a weighted least squares estimator, the weights appear
in an obvious way in (9.21). �

The following example looks at the small sample properties of the GLS esti-
mator in the case of a linear model and describes the MLE under the normality
assumption.

Example 9.2 Consider a heteroskedastic model with a linear conditional ex-
pectation in the form

Eθ ( yi |zi ) = β ′zi ,

and a conditional variance that is more general than in the previous example

Varθ ( yi |zi ) = σ 2(zi , γ ) = σ 2
0 v(zi , γ ),

where σ 2
0 is an unknown scalar parameter and v(zi , γ ) is a function with strictly

positive values depending on a known parameter vector γ . The GLS estimator
of β is given by (9.20), written as:

β̂n =
[

n∑
i=1

zi z′
i

v(zi , γ )

]−1 [
n∑

i=1

zi yi

v(zi , γ )

]
= (Z ′V −1 Z )−1 Z ′V −1 y,

(9.22)

where V is a n × n matrix whose (i, i) elements are equal to v(zi , γ ). Knowing
that

Eθ

(
(yi − β ′zi )

2

v(zi , γ )

)
= Eθ

⎛⎝ Eθ
(

(yi − β ′zi )
2 |zi

)
v(zi , γ )

⎞⎠ = σ 2
0 ,

σ 2
0 is naturally estimated by

σ̃ 2
0n = 1

n

n∑
i=1

(
yi − β̂ ′

nzi

)2

v(zi , γ )
= 1

n
( y − Z β̂n)′V −1( y − Z β̂n) (9.23)

or by the unbiased estimator

σ̂ 2
0n = n

n − q
σ̃ 2

0n. (9.24)
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β̂n is linear with respect to yi , and a quick calculation shows that

Eθ (β̂n|Z ) = β and Varθ (β̂n|Z ) = σ 2
0 (Z ′V −1 Z )−1.

To prove the Aitken theorem, according to which β̂n is the best linear unbiased
estimator, take any other linear unbiased estimator β̃n = Cy  of β. Let

C = D + (Z ′V −1 Z )−1 Z ′V −1,

then

β̃n =
(
D + (Z ′V −1 Z )−1 Z ′V −1

) 
y,

where

Eθ (β̃n|Z ) = DZβ + β = β

only if DZ = 0. We can quickly show that the conditional variance of this new
estimator is

Varθ (β̃n|Z ) = σ 2
0 DV D′ + Varθ (β̂n|Z )

where

Varθ (β̃n|Z ) ≥ Varθ (β̂n|Z )

since DV D′ is a positive semidefinite matrix. Thus the Aitken theorem is proven.
If we assume now conditional normality in the finite sample, i.e.,

y|Z ∼ N
(
Zβ, σ 2

0 V
)
, (9.25)

then we can immediately infer that

β̂n|Z ∼ N
(
β, σ 2

0 (Z ′V −1 Z )−1
)
.

Under the normality assumption (9.25), the MLEs of β and σ 2
0 are obtained by

maximizing the likelihood function

l
(

y|Z , β, σ 2
0 , V

) = 1

σ n
0 (2π )n/2

1

|V |1/2
exp

{
− 1

2σ 2
0

( y − Zβ)′V −1( y − Zβ)

}
.

One can easily show that the first order conditions of the maximization lead to
the estimators β̂n and σ̃ 2

0n given respectively by (9.22) and (9.23). �

The following example shows that the OLS estimator of β, denoted by β̂∗
n ,

remains unbiased but does not attain minimal variance any more.

Example 9.3 Continuing with the framework of the previous example, the
OLS estimator of β is

β̂∗
n = (Z ′ Z )−1 Z ′y.
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We can infer that this estimator is also unbiased and that its variance is given
by

Varθ (β̂∗
n |Z ) = σ 2

0 (Z ′ Z )−1 Z ′V −1 Z (Z ′ Z )−1.

According to the Aitken theorem, the estimator does not have minimal variance.
This can be confirmed by considering the difference between the variances of
β̂n and β̂∗

n :

Varθ (β̂∗
n |Z ) − Varθ (β̂n|Z )

= σ 2
0 (Z ′ Z )−1 Z ′V −1 Z (Z ′ Z )−1 − σ 2

0 (Z ′V −1 Z )−1

= σ 2
0 AV −1 A′

where

A = (Z ′ Z )−1 Z ′ − (Z ′V −1 Z )−1 Z ′V −1

is a positive semidefinite matrix. �

In the general case, in which the conditional expectation is not necessarily
linear, the OLS estimator is still consistent and has the limiting distribution

√
n

(
β̂∗

n − β
) → N (0, ∗

θ )

with

∗
θ =

[
Eθ

(
∂ψ∗

∂λ′

)]−1

Varθ (ψ∗)

[
Eθ

(
∂ψ∗′

∂λ

)]−1

where

ψ∗(xi , λ) = (yi − g(zi , λ))
∂g(zi , λ)

∂λ
.

Here, we have

Eθ

(
∂ψ∗′

∂λ

)
= Eθ

(
−∂g(zi , λ)

∂λ

∂g(zi , λ)

∂λ′

)
and

Varθ (ψ∗) = Eθ
(
Varθ (ψ∗|zi )

) + Varθ
(
Eθ (ψ∗|zi )

)
= Eθ

(
Varθ (ψ∗|zi )

)
= Eθ

(
∂g(zi , λ)

∂λ
σ 2(xi , γ )

∂g(zi , λ)

∂λ′

)
,
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hence

∗
θ =

[
Eθ

(
∂g(zi , β)

∂λ

∂g(zi , β)

∂λ′

)]−1

Eθ

(
∂g(zi , β)

∂λ
σ 2(xi , γ )

∂g(zi , β)

∂λ′

)

×
[

Eθ

(
∂g(zi , β)

∂λ

∂g(zi , β)

∂λ′

)]−1

,

which can be estimated in the linear case, using the notation of Example 9.1,
by

̂∗
n =

[
Z ′ Z

]−1
(

1

n 
Z ′�Z

) [
Z ′ Z

]−1 
.

It can be shown that ∗
θ is still larger than or equal to the asymptotic variance

of the GLS estimator given by (9.18).

The Case When γ is Unknown

Next we examine the case when γ is unknown. Suppose we have an estimator γ̂n

available which converges to γ such that
√

n(γ̂n − γ ) has a limiting distribution.
In accordance with (9.7) of Section 9.2, we solve the system

1

n

n∑
i=1

(yi − g(zi , λ))

σ 2(zi , γ̂n)

∂g(zi , λ)

∂λ
= 0

to find the estimator β̂n of β. According to Theorem 9.1, β̂n converges a.s. to β.
Furthermore, one can show that the Condition (9.8) of Theorem 9.1 is satisfied

Eθ

(
∂ψ

∂ρ ′ (xi , λ, ρ)

∣∣∣∣
λ(θ ) and ρ(θ )

)
= 0.

Indeed

∂ψ

∂ρ ′ (xi , λ, ρ) = −2
(yi − g(zi , λ))

σ 3(zi , γ̂n)

∂g(zi , λ)

∂λ

∂σ (zi , ρ)

∂ρ ′ ,

which implies

Eθ

(
∂ψ

∂ρ ′ (xi , λ, ρ)

)
= −2Eθ

[
1

σ 3(zi , γ̂n)

∂g(zi , λ)

∂λ

∂σ (zi , ρ)

∂ρ ′

× Eθ ((yi − g(zi , λ)) |zi )

]
= 0

according to (9.12). By Theorem 9.1, the distribution of
√

n(β̂n − β) is then
identical to the one in the case when γ is known, i.e.,

√
n

(
β̂n − β

) → N (0, θ )
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with

θ =
[

Eθ

(
1

σ 2(zi , γ )

∂g(zi , λ)

∂λ

∂g(zi , λ)

∂λ′

)]−1

which is consistently estimated by

̂n =
[

1

n

n∑
i=1

1

σ 2(zi , γ̂n)

∂g(zi , β̂n)

∂λ

∂g(zi , β̂n)

∂λ′

]−1

.

In the linear case illustrated by Examples 9.1 and 9.2, we obtain

̂n =
[

1

n 
Z ′�̂−1

n Z

]−1

and ̂n = σ̂ 2
0n

[
1

n 
Z ′V̂ −1

n Z

]−1

where �̂n and V̂n are diagonal matrices whose (i, i) elements are σ 2(zi , γ̂n) and
v(zi , γ̂n), respectively, and σ̂ 2

0n is given by (9.24).
Hence, we see that the estimation of the parameter vector of interest β rests

on the prior estimation of γ , γ̂n . To obtain such an estimator, which converges to
γ and possesses a limiting distribution, the natural approach is the following:

� find an estimator of β by the method of moments, denoted β̃n , without taking
heteroskedasticity into account,

� find the estimator γ̂n of γ which is the solution to

min
ρ

1

n

n∑
i=1

[
( yi − g(zi , β̃n))2 − σ 2(zi , ρ)

]2 
; (9.26)

which intuitively leads back to the least squares method for a regression
model of the form

û2
i = σ 2(zi , ρ) + ηi i = 1, . . . , n,

where ûi are the estimated residuals defined by ûi = yi − g(zi , β̃n). The
following example illustrates this approach for a simple case.

Example 9.4 Assume that the conditional expectation is linear and the vari-
ance can be written in the form

σ 2(zi , ρ) = (ρ ′zi )
2,

then the natural procedure consists in the OLS estimation of the model

yi = β ′zi + ui i = 1, . . . , n,

keeping the estimated residuals ûi , i = 1, . . . , n, then estimating the model

û2
i = (ρ ′zi )

2 + ηi i = 1, . . . , n,
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by least squares which yields an estimator γ̂n of ρ, and finally setting

σ 2(zi , γ̂n) = (γ̂ ′
nzi )

2. �

Before we turn to the main tests for homoskedasticity, some words must be
said about the specification of the conditional variance σ 2(zi , γ ). First, we only
considered the case when this function depends on the zi ; in the chapter on
conditional heteroskedasticity, we extend this specification since it depends in
a dynamic way on past yi and on the zi , which leads to different types of ARCH
models. Moreover, the specification of σ 2(zi , γ ) can sometimes be dictated by
the formulation of the model, as the following example shows. In other cases,
it can take on various forms, such as γ ′zi , (γ ′zi )

2 or γ0 exp (γ ′zi ).

Example 9.5 Consider the homoskedastic i.i.d. case where

Eθ ( yik |zik) = β ′zik,

and

Varθ ( yik |zik) = σ 2
0 ,

and suppose that only the following means are observed for all i = 1, . . . , n:⎧⎪⎪⎪⎨⎪⎪⎪⎩
yi = 1

ni

ni∑
k=1

yik

zi = 1
ni

ni∑
k=1

zik

(the ni are not all equal). The regression model under study is based on the
following moments

Eθ (yi |zi ) = β ′zi ,

and

Varθ (yi |zi ) = σ 2
0 /ni ,

then the regression equation becomes

yi = β ′zi + ui i = 1, . . . , n,

where ui = 1
ni

∑ni
k=1 uik . In this case, using the notation of the previous exam-

ples for the linear case, we have

� = σ 2
0 V = σ 2

0

⎡⎢⎢⎢⎣
1/n1 0 . . . 0
0 1/n2 . . . 0
...

...
...

0 0 . . . 1/nn

⎤⎥⎥⎥⎦ . �
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In the following example, we see how the maximum likelihood method can
be used to obtain estimators for β and ρ.

Example 9.6 Consider the heteroskedastic i.i.d. case which was treated in
Example 9.2:

Eθ ( yi |zi ) = β ′zi ,

and a conditional variance that is more general than in the previous example:

Varθ ( yi |zi ) = σ 2(zi , γ ) = σ 2
0 v(zi , γ ),

where σ 2
0 is an unknown scalar parameter and v(zi , γ ) is a function with strictly

positive values depending on a parameter vector γ which we now assume to be
unknown. Assume conditional normality, i.e.,

yi |zi ∼ N (β ′zi , σ
2
0 v(zi , γ )).

Denote by V = V (γ ) the n × n diagonal matrix whose (i, i) element is v(zi , γ ),
and let y = ( y1, . . . , yn)′ and Z = (z1, . . . , zn)′, then the log-likelihood func-
tion is

n∑
i=1

ln l
(

yi |zi , β, σ 2
0 , γ

) = −n

2
ln σ 2

0 − 
1

2 
ln |V |

− 1

2σ 2
0

( y − Zβ)′V −1( y − Zβ).

(9.27)

Conditional on γ , the maximization of this function with respect to β and σ 2
0

yields

β̃n(γ ) = (Z ′V −1 Z )−1 Z ′V −1 y

and

σ̃ 2
0n(γ ) = 1

n

(
y − Z β̃n(γ )

)′
V −1

(
y − Z β̃n(γ )

)
.

By substituting these two expressions in (9.27), we obtain the concentrated
log-likelihood function, denoted L(γ ),

L(γ ) = −n ln
{(

y − Z β̃n(γ )
)′

V −1
(

y − Z β̃n(γ )
)} − ln |V | .

The MLE γ̃n of γ is the value of γ that maximizes L(γ ). Let Ṽn = V (γ̃n), then
the MLE of β and σ 2

0 are

β̃n = β̃n(γ̃n) = (
Z ′Ṽ −1

n Z
)−1

Z ′Ṽ −1
n y

and

σ̃ 2
0n = σ̃ 2

0n(γ̃n) = 1

n

(
y − Z β̃n

)′
Ṽ −1

n

(
y − Z β̃n

)
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and have the same form as the moment estimators. β̃n is asymptotically efficient
and we can obtain the asymptotic distribution of σ̃ 2

0n and γ̃n,

√
n

⎛⎜⎝
⎡⎢⎣ β̃n

σ̃ 2
0n

γ̃n

⎤⎥⎦ −
⎡⎣β

σ 2
0

γ

⎤⎦
⎞⎟⎠ → N (0, J−1

n )

with

Jn =

⎡⎢⎢⎣
σ−2

0 (Z ′V −1 Z )−1 0 0

0 nσ−4
0 /2 σ−2

0 (vecV −1)′ A/2

0 σ−2
0 A′(vecV −1)/2 A′(V −1 ⊗ V −1)A/2

⎤⎥⎥⎦
and

A = ∂vecV

∂γ

(vec(.) is the operator that stacks the columns of a matrix). �

Simple hypothesis tests can be derived from the asymptotic distribution of√
n(β̂n − β) as previously seen, whether γ is known or estimated, as the fol-

lowing example illustrates.

Example 9.7 Continuation of Example 9.2. To test a set of J linear restric-
tions, represented by the hypothesis H0 : Rβ = r , we use the statistic

Fc = (Rβ̂n − r )′
[
R(Z ′V −1 Z )−1 R′]−1

(Rβ̂n − r )

σ̂ 2
0n

which follows a χ2 distribution with J degrees of freedom under H0. If γ

is estimated by γ̂n, the same formula remains valid when replacing V by
V̂ = V (γ̂n). �

9.3.2 Tests for Homoskedasticity

Tests for homoskedasticity can be considered as conditional moment tests,
which differ from each other by the moments that are used, by the treatment of
nuisance parameters and by the specific form of heteroskedasticity. We provide
two examples, the first is the test of Breusch, Pagan, and Godfrey, the second,
for which the form of the heteroskedasticity is not specified, is White’s test.

Example 9.8 Consider the model given by its conditional moments

Eθ ( yi |zi ) = g(zi , β),
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and

Varθ ( yi |zi ) = σ 2(zi , γ ) = h(γ ′z∗
i ),

where h is an arbitrary function, z∗
i is a vector in R

l which contains known
transformations of the zi and for which the first element is 1. Denote h(γ1) = σ 2

0 .
The test of Breusch, Pagan, and Godfrey applies the Rao procedure to the specific
test where the null hypothesis is the hypothesis of homoskedasticity

H0 : γ2 = · · · = γl = 0 or H0 : γ ∗ = 0

with γ ∗ = (γ2, . . . , γl)
′. Under the conditional normality assumption, the Rao

statistic can be estimated by (see Chapter 4):

R̂AOn = n

(
1

n

n∑
i=1

∂ ln f (xi |̂λn)

∂λ

)′
Ĵ−1

n

(
1

n

n∑
i=1

∂ ln f (xi |̂λn)

∂λ

)
where λ̂n is the parameter vector estimated under

H0 : λ̂n = (β̂n, γ̂1n, 0),∑n
i=1 ln f (xi |λ) is the log-likelihood

n∑
i=1

ln f (xi |λ) = − n

2
ln(2π ) − 1

2

n∑
i=1

ln
(
h(γ ′z∗

i )
)

− 1

2

n∑
i=1

(yi − g(zi , β))2

h(γ ′z∗
i )

and

Ĵ−1
n = −1

n

n∑
i=1

∂2 ln f (xi |̂λn)

∂λ∂λ′ .

Given that the information matrix J is block diagonal (in the sense that

Eθ ( ∂2 ln f (xi |λ)
∂β∂γ ′ ) = 0), the statistic can be written in the simpler form

R̂AOn = 1

2

(
n∑

i=1

z∗
i li

)′ ( n∑
i=1

z∗
i z∗′

i

) (
n∑

i=1

z∗
i li

)
where

li =
(
yi − g(zi , β̂n)

)2

σ̂ 2
0n

− 1

and

σ̂ 2
0n = h(γ̂1n) = 1

n

n∑
i=1

(
yi − g(zi , β̂n)

)2
.
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This can also be written as

R̂AOn = 
1

2
l ′ Z (Z ′ Z )−1 Z ′l

with Z = (zi , . . . , zn)′ and l = (l1, . . . , ln)′. One can show that R̂AOn is asymp-
totically χ2 distributed with (l − 1) degrees of freedom. In practice, the stages
for the test are the following: estimate β by β̂n and h(γ1) by σ̂ 2

0n, for example
by least squares estimation of the model

yi = g(zi , β) + ui ;

then calculate li , for all i ; next estimate the auxiliary regression

li = δ′z∗
i + ηi ;

and finally calculate R̂AOn. This statistic can be approximated in an asymptot-
ically equivalent way by n R2

u, where R2
u is the noncentered R2 of the auxiliary

regression. �

Example 9.9 This example outlines White’s test which does not specify a
particular form for the heteroskedasticity. Consider the following model, using
the notation of Example 9.1,

Eθ ( yi |zi ) = β ′zi ,

and

Varθ ( yi |zi ) = σ 2(zi , γ ),

and continue to denote by � the n × n diagonal matrix whose (i, i) elements
are equal to σ 2(zi , γ ). White proposes not to use an estimator of σ 2(zi , γ ) for
all i , but instead an estimator of the matrix product (Z ′�Z ) given by

Ŵn = 1

n

n∑
i=1

û2
i zi z

′
i

where ûi = ( yi − β̂∗′
n zi ) and β̂∗

n is the OLS estimator of β. He shows that
Ŵn asymptotically approaches (Z ′�Z ). Furthermore, he suggests that the dif-
ference between the variance of the OLS estimator under the assumption of
heteroskedasticity and the assumption of homoskedasticity (characterized by
Varθ ( yi |zi ) = σ 2

0 for all i ), i.e.,

(Z ′ Z )−1 Z ′�Z (Z ′ Z )−1 − σ 2
0 (Z ′ Z )−1

or the simpler difference

Z ′�Z − σ 2
0 (Z ′ Z ) =

n∑
i=1

(
Eθ

(
( yi − β ′zi )

2
) − σ 2

0

)
zi z

′
i ,
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can serve as the base for a test for homoskedasticity. Hence, we are interested
in the statistic

1

n

n∑
i=1

(̂
u2

i − σ̂ 2
0

)
zi z

′
i .

Based on this idea, the final form of White’s test statistic is

τc =
(

1

n

n∑
i=1

(̂
u2

i − σ̂ 2
0

)
ξi

)′
D̂−1

n

(
1

n

n∑
i=1

(̂
u2

i − σ̂ 2
0

)
ξi

)

with ξi = (ξ1i , . . . , ξsi )
′, ξ j i = zki zli , k ≥ l, l, k = 2, . . . , s, s = q(q − 1)/2,

D̂n = 1

n

n∑
i=1

(̂
u2

i − σ̂ 2
0

)2 (
ξi − ξ n

) (
ξi − ξ n

)′

and

ξ n = 1

n

n∑
i=1

ξi .

Under the hypothesis of homoskedasticity, the statistic τc is χ2 distributed with
s degrees of freedom. One can show that this is asymptotically equivalent to

τ ′
c = n R2

in the auxiliary regression

û2
i = α0 + α1ξ1i + · · · + αsξsi + εi .

τ ′
c is also χ2 distributed with s degrees of freedom under the hypothesis of

homoskedasticity. �

9.4 Multivariate Regression

We generalize the models of heteroskedasticity of the preceding section to the
multivariate case, yi is now a vector. We consider the finite sequence (xi )i=1,...,n

with xi = ( yi , zi ), yi∈R
p, zi∈R

q and p + q = m. The xi are still i.i.d. with the
same distribution Qθ . The conditional moments are

Eθ ( yi |zi ) = g(zi , β) =

⎡⎢⎣ g1(zi , β)
...

gp(zi , β)

⎤⎥⎦ (9.28)
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and

Varθ ( yi |zi ) = V (zi , γ ) =

⎡⎢⎣ σ11(zi , γ ) . . . σ1p(zi , γ )
... 

...
σp1(zi , γ ) . . . σpp(zi , γ )

⎤⎥⎦ (9.29)

with, for all j = 1, . . . , p,

g j (zi , β) ∈ {
g j (zi , λ), λ∈�⊂R

k
} ⊂L2(zi )

and, for all j, s = 1, . . . , p,

σ js(zi , γ ) ∈ {
σ js(zi , ρ), ρ∈R⊂R

l
} ⊂L2(zi ).

The matrix V is also assumed to be symmetric positive definite for all zi and all
γ . The functions g j and σ js  are assumed to be continuous, differentiable, and
identified on � and R. It is important to note that we are only interested in the
case where the correlations are contemporaneous and not intertemporal, since
we are placing ourselves in an i.i.d. setting.

Two cases are possible, depending on whether γ is known or not.

� When γ is know, then we are interested in the problem

min
λ∈�

Eθ (φ(xi , λ)) (9.30)

with

φ(xi , λ) = (yi − g(zi , λ))′ V (zi , γ )−1 (yi − g(zi , λ)) . (9.31)

Intuitively, we can note that this formulation allows for the introduction of a
heteroskedasticity correction.

Example 9.10 Consider the case where V (zi , γ ) = V (γ ) i.e., is composed of
constants. Since V (γ ) is symmetric positive definite, so is its inverse which can
be written as V (γ )−1 = P ′ P, hence we can infer from (9.29) that

Varθ (Pyi |zi ) = PV (γ )P ′ = I.

(9.31) becomes then

φ(xi , λ) = [P (yi − g(zi , λ))]′ [P (yi − g(zi , λ))] ,

which shows that the minimization problem (9.30) corresponds to a minimiza-
tion problem in a homoskedastic multivariate model. �

Another remark concerning (9.30) and (9.31) is that, in the case where p = 1,
we get back the representation (9.14) and (9.15) of the preceding univariate
section.
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The problem (9.30) results in a simple system of moment equations given by

Eθ (ψ(xi , λ)) = 0 (9.32)

with

ψ(xi , λ) = ∂g(zi , λ)′

∂λ
V (zi , γ )−1 (yi − g(zi , λ)) . (9.33)

The moment estimator β̂n is thus obtained as the solution to

1

n

n∑
i=1

∂g(zi , λ)′

∂λ
V (zi , γ )−1 (yi − g(zi , λ)) = 0. (9.34)

The asymptotic properties of β̂n derive from (9.4), (9.5), and (9.6) of
Section 9.2, i.e.,

β̂n → β Pθ − a.s., (9.35)

where β is the solution of (9.32) and

√
n

(
β̂n − β

) → N (0, θ ) in Pθ -distribution (9.36)

with

θ =
[

Eθ

(
∂ψ

∂λ′

)]−1

Varθ (ψ)

[
Eθ

(
∂ψ ′

∂λ

)]−1

.

Here we have

Eθ

(
∂ψ

∂λ′

)
= Eθ

(
∂2g(zi , λ)

∂λ∂λ′ V (zi , γ )−1 (yi − g(zi , λ))

)
− Eθ

(
∂g(zi , λ)′

∂λ
V (zi , γ )−1 ∂g(zi , λ)

∂λ′

)
= − Eθ

(
∂g(zi , λ)′

∂λ
V (zi , γ )−1 ∂g(zi , λ)

∂λ′

)
since

Eθ

(
∂2g(zi , λ)

∂λ∂λ′ V (zi , γ )−1 (yi − g(zi , λ))

)
= Eθ

(
∂2g(zi , λ)

∂λ∂λ′ V (zi , γ )−1 Eθ [(yi − g(zi , λ)) |zi ]

)
= 0

according to (9.28). Moreover, it also follows from (9.28) that

Varθ (ψ) = Eθ
(
Varθ (ψ |zi )

) + Varθ
(
Eθ (ψ |zi )

) = Eθ
(
Varθ (ψ |zi )

)
,
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hence

Varθ (ψ) = Eθ

[
Varθ

(
∂g(zi , λ)′

∂λ
V (zi , γ )−1 (yi − g(zi , λ)) |zi

)]
= Eθ

[
∂g(zi , λ)′

∂λ
V (zi , γ )−1Varθ(( yi −g(zi , λ))|zi ) V(zi , γ )−1 ∂g(zi , λ)

∂λ′

]
= Eθ

[
∂g(zi , λ)′

∂λ
V (zi , γ )−1 ∂g(zi , λ)

∂λ′

]
according to the definition of the conditional variance (9.29). Hence, we obtain
the expression for θ

θ =
(

Eθ

[
∂g(zi , β)′

∂λ
V (zi , γ )−1 ∂g(zi , β)

∂λ′

])−1

(9.37)

which is naturally estimated by

̂n =
(

1

n

n∑
i=1

∂g(zi , β̂n)′

∂λ
V (zi , γ )−1 ∂g(zi , β̂n)

∂λ′

)−1

. (9.38)

The uniqueness of β implies the invertibility of the matrix which is inverted
in (9.37), which implies, for sufficiently large samples, that using the inverse in
(9.38) is possible.

� When γ is unknown, we assume that we have an estimator γ̂n available
which converges to γ and is such that

√
n(γ̂n − γ ) possesses a limiting distri-

bution. This leads us to solving the system (9.7) of Section 9.2, which in this
case can be written as

1

n

n∑
i=1

∂g(zi , λ)′

∂λ
V (zi , γ̂n)−1 (yi − g(zi , λ)) = 0.

According to the first part of Theorem 9.1 of Section 9.2, γ̂n converges a.s. to
γ . The second part of the theorem implies that, if Condition (9.8) holds, then
the asymptotic distribution of

√
n(β̂n − β) is equal to (9.36) with θ given by

(9.37). Let us verify that Condition (9.8) is satisfied:

Eθ

(
∂ψ

∂ρ ′ (xi , λ, ρ)

)
= Eθ

(
∂g(zi , λ)′

∂λ

∂
(
V (zi , γ )−1

)
∂ρ ′ (yi − g(zi , λ))

)

= Eθ

(
∂g(zi , λ)′

∂λ

∂
(
V (zi , γ )−1

)
∂ρ ′ Eθ [(yi − g(zi , λ)) |zi ]

)
= 0.
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Thus from Theorem 9.1 of Section 9.2 it follows that

√
n

(
β̂n − β

) → N (0, θ ) in Pθ -distribution (9.39)

with

θ =
(

Eθ

[
∂g(zi , β)′

∂λ
V (zi , γ )−1 ∂g(zi , β)

∂λ′

])−1

which is naturally estimated by

̂n =
(

1

n

n∑
i=1

∂g(zi , β̂n)′

∂λ
V (zi , γ̂n)−1 ∂g(zi , β̂n)

∂λ′

)−1

.

In the following example we look at the case of a linear conditional expecta-
tion.

Example 9.11 Write the conditional expectation in the form

Eθ ( yi |zi ) = z∗′
i β

where z∗
i is a k × p matrix formed from the elements of the vector zi and β is

a k × 1 vector. In this case

∂g(zi , λ)′

∂λ
= z∗

i .

Suppose in addition, that γ is estimated by γ̂n. Therefore, β̂n is, according to
(9.34), the solution of

1

n

n∑
i=1

z∗
i V (zi , γ̂n)−1 

(
yi − z∗′

i λ
) = 0,

hence

β̂n =
[

n∑
i=1

z∗
i V (zi , γ̂n)−1z∗′

i

]−1 [
n∑

i=1 

z∗
i V (zi , γ̂n)−1 yi

]

which is the multivariate generalization of (9.22). (9.36), (9.37), and (9.38),
implying that

√
n

(
β̂n − β

) → N (0, θ ) in Pθ -distribution

with

θ = (
Eθ

[
z∗

i V (zi , γ )−1z∗′
i

])−1
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which is naturally estimated by

̂n =
(

1

n

n∑
i=1

z∗
i V (zi , γ̂n)−1z∗′

i

)−1

. �

We consider now in more detail the relationship between the preceding ap-
proach and the traditional way of studying a particular case of a multivariate
model, which is the one of seemingly unrelated regressions (SUR).

Example 9.12 Consider the case where the conditional moments are written
in the form:

Eθ ( yi |zi ) = zi
∗′
β (9.40)

and

Varθ ( yi |zi ) = V (γ ) =

⎡⎢⎣ σ11(γ ) . . . σ1p(γ )
... 

...
σp1(γ ) . . . σpp(γ )

⎤⎥⎦ ,

zi
∗ is a q × p matrix formed from the elements of the vector zi , β is q × 1

vector and V (γ ) is a p × p matrix which we will denote in the following by V .
Define the ui , for all i = 1, . . . , n, as the p × 1 vector

ui = yi − Eθ ( yi |zi ) = yi − zi
∗′
β

for which by assumption Eθ (ui |zi ) = 0 and Varθ (ui |zi ) = V (γ ). Thus the model
becomes

yi = zi
∗′
β + ui i = 1, . . . , n. (9.41)

Let us define now more precisely the variables and parameters which enter in
the expectation of each element of the vector yi . To do this, suppose that q ( j)

elements of the vector zi enter the expression for the conditional expectation of
yi j , for i = 1, . . . , n and j = 1, . . . , p:

Eθ ( yi j |zi ) = z( j)
i1 β

( j)
1 + z( j)

i2 β
( j)
2 + · · · + z( j)

iq ( j)β
( j)

q ( j)

(with
∑n

j=1 q
( j) = q), and partition the vectors zi and β in (9.40) in the follow-

ing manner

zi =
(

z(1)′
i , z(2)′

i , . . . , z(p)′
i

)′

and

β = (
β (1)′, β (2)′, . . . , β(p)′)′
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where z( j)
i and β ( j) are q ( j) × 1 vectors composed from the z( j)

is and the β
( j)
s (for

all s = 1, . . . , q ( j)) respectively. Define for j = 1, . . . , p, the n × 1 vectors y( j)

and u( j) and the n × q ( j) matrix Z ( j) by

y( j) =

⎡⎢⎣ y1 j
...

ynj

⎤⎥⎦ , u( j) =

⎡⎢⎣ u1 j
...

unj

⎤⎥⎦ and Z ( j) =

⎡⎢⎢⎣
z( j)′

1
...

z( j)′
n

⎤⎥⎥⎦ . (9.42)

The model (9.41) can then be written as

y( j) = Z ( j)β ( j) + u( j) j = 1, . . . , p (9.43)

or equivalently

y = Zβ + u (9.44)

where the np × 1 vectors y and u, the q × 1 vector β, and the np × q matrix
Z are defined by

y =

⎡⎢⎣ y(1)

...

y(p)

⎤⎥⎦ , u =

⎡⎢⎣ u(1)

...

u(p)

⎤⎥⎦ , β =

⎡⎢⎣ β (1)

...

β (p)

⎤⎥⎦ and Z =

⎡⎢⎣ Z (1) . . . 0
...

...

0 . . . Z (p)

⎤⎥⎦ .

We find here again the vector β as it appeared in (9.40) and (9.41). Consider
now the second order moments corresponding to this new notation

Covθ (u( j)
k , u( j ′)

k ′ ) =
∣∣∣∣∣σ j j ′ if k = k ′

0 otherwise.

for j, j ′ = 1, . . . , p. Let V be the p × p matrix of the σi j . We have by construc-
tion

Eθ (u|Z ) = 0 (9.45)

and

Varθ (u|Z ) =

⎡⎢⎣ σ11 In . . . σ1p In

...
...

σp1 In . . . σpp In

⎤⎥⎦ = V ⊗ In (9.46)

(where ⊗ represents the Kronecker product). The model consisting of Equa-
tions (9.44) and Assumptions (9.45) and (9.46) is commonly called a system
of seemingly unrelated equations, since the p equations of the system are only
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related through the contemporaneous covariances σi j . Consider now the mo-
ment estimator β̂n. The conditional expectation (9.40) can be rewritten as

Eθ ( yi |zi ) = β ′zi =

⎡⎢⎣ β (1)′z(1)
i

...

β (p)′z(p)
i

⎤⎥⎦ ,

hence

∂g(zi , λ)′

∂λ
=

⎡⎢⎣ z(1)
i . . . 0

...
...

0 . . . z(p)
i

⎤⎥⎦
which is of dimension q × p. The moment equations (9.34) are now

1

n

n∑
i=1

⎡⎢⎣ z(1)
i . . . 0

...
...

0 . . . z(p)
i

⎤⎥⎦
⎡⎢⎣ σ 11 . . . σ 1p

...
...

σ p1 . . . σ pp

⎤⎥⎦
⎡⎢⎣ y(1)

i − β (1)′z(1)
i

...

y(p)
i − β (p)′z(p)

i

⎤⎥⎦ = 0,

by setting V −1 = (σ i j ). Hence,

β̂n =

⎡⎢⎣ β̂
(1)
n
...

β̂
(M)
n

⎤⎥⎦

=

⎡⎢⎣ σ 11 Z (1)′ Z (1) . . . σ 1M Z (1)′ Z (M)

...
...

σ 1M Z (M)′ Z (1) . . . σ M M Z (M)′ Z (M)

⎤⎥⎦
−1

⎡⎢⎢⎢⎢⎢⎣
M∑

i=1

σ 1i Z (1)′ y(i)

...
M∑

i=1

σ Mi Z (M)′ y(i)

⎤⎥⎥⎥⎥⎥⎦ .

A quick calculation shows that β̂n can be written as

β̂n = [
Z ′(V −1 ⊗ In)Z

]−1
Z ′(V −1 ⊗ In)y (9.47)

which is the expression one usually finds in econometrics textbooks. In ac-
cordance with the properties proven for the general case, β̂n converges to β

and

√
n

(
β̂n − β

) → N (0, θ ) in Pθ -distribution
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with

θ =

⎛⎜⎝Eθ

⎡⎢⎣
⎡⎢⎣ z(1)

i . . . 0
...

...

0 . . . z(p)
i

⎤⎥⎦
⎡⎢⎣ σ 11 . . . σ 1p

...
...

σ p1 . . . σ pp

⎤⎥⎦
⎡⎢⎣ z(1)′

i . . . 0
...

...

0 . . . z(p)′
i

⎤⎥⎦
⎤⎥⎦

⎞⎟⎠
−1

or

θ =

⎛⎜⎜⎝Eθ

⎡⎢⎢⎣
σ 11z(1)

i z(1)′
i . . . σ 1pz(1)

i z(p)′
i

...
...

σ p1z(p)
i z(1)′

i . . . σ ppz(p)
i z(p)′

i

⎤⎥⎥⎦
⎞⎟⎟⎠

−1

which can be estimated by

̂n =

⎛⎜⎜⎝1

n

n∑
i=1

⎡⎢⎢⎣
σ 11z(1)

i z(1)′
i . . . σ 1pz(1)

i z(p)′
i

...
...

σ p1z(p)
i z(1)′

i . . . σ ppz(p)
i z(p)′

i

⎤⎥⎥⎦
⎞⎟⎟⎠

−1

= V −1 ⊗ In

(9.48)

When V is unknown and needs to be estimated by V̂n, then the formulas (9.47)
and (9.48) apply with V replaced by V̂n. We are compelled to two remarks.
First, if the equations are not related, i.e., if σi j = 0 for all i and j , i �= j , then
estimating by the method of moments is the same as estimating each equation
separately and independently by OLS. Finally if the matrices of the explanatory
variables are all the same, i.e., if Z (i) = Z (0) for all i , then

Z =

⎡⎢⎣ Z (0) . . . 0
...

...
0 . . . Z (0)

⎤⎥⎦ = I ⊗ Z (0).

We then have

β̂n = [
(I ⊗ Z (0))′(V −1 ⊗ In)(I ⊗ Z (0))

]−1
(I ⊗ Z (0))′(V −1 ⊗ In)y

= I ⊗ (Z (0)′ Z (0))−1 Z (0)′y

=

⎡⎢⎣ (Z (0)′ Z (0))−1 Z (0)′ . . . 0
...

...
0 . . . (Z (0)′ Z (0))−1 Z (0)′

⎤⎥⎦
⎡⎢⎣ y(1)

...
y(M)

⎤⎥⎦ .

Hence, for all i = 1, . . . , M

β̂(i)
n = (Z (0)′ Z (0))−1 Z (0)′y(i).

Therefore, the method of moments is here again the same as OLS applied equa-
tion by equation. �
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When the parameter vector γ is unknown, it is necessary to find an estimator
γ̂n of γ . This estimator will depend on the formulation of the model; the fol-
lowing example illustrates this point for the setting of the model introduced in
the previous example.

Example 9.13 Consider the notation of the previous example. When the ma-
trix V is unknown, then the moment estimator of β is obtained by replacing V
by a consistent estimator V̂n

β̂n = [
Z ′(V̂ −1

n ⊗ In)Z
]−1

Z ′(V̂ −1
n ⊗ In)y. (9.49)

This estimator is called Zellner’s seemingly unrelated regression estimator. The
matrix V̂n may be obtained by separately estimating each equation of the system
(9.43) or (9.44) by OLS for obtaining the vector of the estimated residuals
û(i)O L S for all i = 1, . . . , p and by setting

σ̂i jn = û(i)O L S′û( j)O L S

n
(9.50)

for all i, j = 1, . . . , p. Other choices can be made for the denominator (for
example

√
(n − q (i))(n − q ( j)) or n − max(q (i), q ( j))). The various estimators

of V that result from these choices can be compared in small samples by Monte-
Carlo experiments. However, their asymptotic properties are identical. Indeed,
the general results for the method of moments remain valid and show that β̂n

in (9.49) has the same asymptotic properties as β̂n given by (9.47). A different
procedure for estimating β and V is the iterated application of the feasible
GLS. The σ̂i jn are calculated according to (9.50), then β̂n according to (9.49);
afterward, at each iteration new estimators for σi j and β are calculated. �

When the number of observations differs from one equation to the next, this
has implications for the estimation of the parameters, as the following example
illustrates. We limit ourselves to a system of two equations.

Example 9.14 Consider the following system[
y(1)

y(2)

]
=

[
Z (1) 0

0 Z (2)

] [
β (1)

β (2)

]
+

[
u(1)

u(2)

]
,

where we have n observations in the first equation and n + s observations in
the second. This can also be written as

y = Zβ + u
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where y and u are (2n + s) × 1 vectors, Z is a (2n + s) × (k(1) + k(2)) matrix,
andβ is a (k(1) + k(2)) × 1 vector. Suppose that the ( y(1)′

i , y(2)′
i )′ have expectation

zero and variance

V =
[

σ11 σ12

σ12 σ22

]
,

then

Eθ (uu′|Z ) = � =

⎡⎢⎢⎣
σ11 In σ12 In 0

σ12 In σ22 In 0

0 0 σ22 Is

⎤⎥⎥⎦ �= V ⊗ I.

The estimator of β is

β̂n = (Z ′�−1 Z )−1 Z ′�−1 y

and is thus different from

(Z ′(V −1 ⊗ In)Z )−1 Z ′(V −1 ⊗ In)y.

Let

y(2) =
[

y(2)∗

y(2)0

]
and Z (2) =

[
Z (2)∗

Z (2)0

]

where y(2)∗ and Z (2)∗ contain n observations, and y(2)0 and Z (2)0 contain s
observations. Furthermore, let V −1 = (σ i j ). Then β̂n is

β̂n =
⎡⎣ σ 11 Z (1)′ Z (1) σ 12 Z (1)′ Z (2)∗

σ 12 Z (2)∗′
Z (1) σ 22 Z (2)∗′

Z (2)∗ + 1
σ22

Z (2)0′
Z (2)0

⎤⎦−1

×
[

σ 11 Z (1)′ y(1) + σ 12 Z (1)′ y(2)∗

σ 12 Z (2)∗′
y(1) + σ 22 Z (2)∗′

y(2)∗ + 1
σ22

Z (2)0′
y(2)0

]
.

When V is unknown, then its elements can be estimated in various ways, for
example ⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

σ̂11n = 1

n

(
y(1) − Z (1)β̂

(1)MC O
n

)′ (
y(1) − Z (1)β̂

(1)MC O
n

)
σ̂12n = 1

n

(
y(1) − Z (1)β̂

(1)MC O
n

)′ (
y(2)∗ − Z (2)∗β̂ (2)MC O

n

)
σ̂22n = 1

s

(
y(2) − Z (2)β̂

(2)MC O
n

)′ (
y(2) − Z (2)β̂

(2)MC O
n

)
.
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Sometimes the problem arises that V̂n is not invertible, therefore other estimator
have been suggested in the literature. �

The following example illustrates the maximum likelihood method applied
to a multivariate regression model.

Example 9.15 Suppose the conditional moments are given by

Eθ ( yi |zi ) = g(zi , β)

and

Varθ ( yi |zi ) = V

where V is a symmetric positive definite p × p matrix of unknown scalar pa-
rameters σi j . Using Example 9.11 which has linear expectations, we can write
the model as follows, after regrouping the terms

y( j) = G( j)(Z ( j), β) + u( j) j = 1, . . . , p

where y( j) and Z ( j) are given by (9.42),

u( j) = y( j) − Eθ ( y( j)|Z ( j)),

G( j)(Z ( j), β) =
(

g1 j (z
( j)
1 , β), . . . , gnj (z

( j)
n , β)

)′
,

and

Varθ (u|Z ) = V ⊗ In

with

u =
(

u(1)′ , . . . , u(p)′
)′

.

Assuming the normality assumption holds, we have

y( j)|Z ∼ N (G( j)(Z ( j), β), V ),

the log-likelihood is

ln l( y|Z , β, V ) = −np

2
ln(2π ) − 1

2
ln |V ⊗ In|

−1

2
( y − G(Z , β))′(V −1 ⊗ In)( y − G(Z , β))

where

G(Z , β) = (
G(1)(Z (1), β), . . . , G(p)(Z (p), β)

)′
.

By the properties of Kronecker product, we have that ln |V ⊗ In| = n ln |V | and

( y − G(Z , β))′(V −1 ⊗ In)( y − G(Z , β)) = tr
(
SV −1

)
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where S is a p × p matrix whose (i, j) element is u(i)′u( j). The function to
maximize then becomes

ln l( y |Z , β, V ) = −np

2
ln(2π ) − n

2
ln |V | − 1

2
tr

(
SV −1

)
.

It is possible to obtain a concentrated likelihood function for β. In order to do
this, we differentiate the above function with respect to V −1. Knowing that

∂ ln
∣∣V −1

∣∣
∂V −1

= V and
∂tr

(
SV −1

)
∂V −1

= S,

taking the derivative of the function with respect to V −1 yields

∂ ln l( y|Z , β, V )

∂V −1 
= 

n

2 
V − 

1

2 
S.

Thus, we obtain as an estimator of V :

V̂n = S/n.

The concentrated likelihood function is

ln l( y|Z , β, V̂n) = −n

2
ln |S|

and the estimator of β is obtained by

β̂n = arg min
β

|S|

= arg min
β

∣∣∣∣∣∣∣
u(1)′u(1) . . .  u(1)′u(p)

... 
...

u(p)′u(1) . . .  u(p)′u(p)

∣∣∣∣∣∣∣ .
Then, we take the expression for S in β̂n as the estimator of V . Hypothesis tests,
when V is unknown, are based on the asymptotic approximated distribution:

√
n(β̂n − β) ∼ N

(
0,

[
∂G(Z , β̂n)′

∂β
(V̂ −1

n ⊗ In)
∂G(Z , β̂n)

∂β ′

]−1
)

. �

To illustrate the testing possibilities, we consider the following example.

Example 9.16 Along the same lines as Example 9.12 concerning the SUR
models, consider the hypothesis test H0 : Rβ = r. This test can be used, for
example, to test the equality of parameter vectors across equations of the
system when the dimensions of these vectors are the same. The test statistic
that can be used is

Fc = (Rβ̂n − r )′
[
R(Z ′(V −1 ⊗ In)Z )−1 R′]−1

(Rβ̂n − r )
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if V is known, or by replacing it by V̂n if it is unknown. Under the null
hypothesis, this statistic is χ2 distributed with J degrees of freedom where J
is the number of rows of R. We can also note that some authors have proposed
goodness-of-fit measures, for example

R∗2 = 1 − ( y − Z β̂n)′(V −1 ⊗ In)( y − Z β̂n)

y′(V −1 ⊗ Dn)y

where Dn = In − j j ′/n, j = (1, . . . , 1)′. R∗2 is between 0 and 1 and is related
to the F-statistic through

F = R∗2

1 − R∗2

pn − q

k − p

which is used to test the null hypothesis that all coefficients of the system of
equations, except for the constants, are zero. �

Notes

For a traditional presentation of the GLS method refer, for example, to Judge, Griffiths,

Hill, Lütkepohl, and Lee (1985), Judge, Hill, Griffiths, Lütkepohl, and Lee (1988),

Greene (1990). See also Davidson and MacKinnon (1993, Chapter 9). For prediction

see Judge, Hill, Griffiths, Lütkepohl, and Lee (1988).

Concerning the heteroskedastic model and the tests for homoskedasticity, we refer

also to Breusch and Pagan (1979), White (1980), Goldfeld and Quandt (1965), besides

the mentioned textbooks.

Multivariate regression has been studied by numerous authors, for example Zellner

(1962) and Davidson and MacKinnon (1993, Chapter 9). For the case when the numbers

of observations differ across equations, see particularly Judge, Griffiths, Hill, Lütkepohl,

and Lee (1985) and Judge, Hill, Griffiths, Lütkepohl, and Lee (1988); for other estimators

of , see Judge, Griffiths, Hill, Lütkepohl, and Lee (1985). For multivariate models with

first order autoregressive error consult Judge, Griffiths, Hill, Lütkepohl, and Lee (1985).

Finally, for nonlinear system of equations see Gallant (1987, Chapter 5).
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10. Nonparametric Estimation
of the Regression

10.1 Introduction

In contrast to other fields, the economic theory rarely specifies functional forms
but usually specifies only a list of relevant variables to explain a phenomenon.
The specification of the form of the relationship largely results from the em-
pirical study which yields a “good” model which “works well.” A first level
of the analysis consists in writing a (linear, loglinear, nonlinear, . . . ) model
and in estimating it without taking the approximating nature of the model into
account. This approach was explained in Chapters 7, 8, and 9. A second ap-
proach consists in specifying a parametric model whose incorrect specification
is explicit. This leads for instance to correct the expression for the variances or
to choose robust methods to the misspecification. This methodology was the
topic of Chapter 9.

Finally, it is possible to free oneself of all specification constraints by adopting
a nonparametric approach to the estimation of the regression, an approach in
which the data itself chooses the form of the function of interest.

Various estimation methods of the nonparametric regression have been devel-
oped and are now commonly employed. We will present here the kernel method
(corresponding to what we presented in Chapter 5). This method is simple but is
dominated in some cases by other approaches (local polynomial, Fourier series
expansion, wavelets . . . ). For these methods, we refer to specialized books and
to articles (Härdle (1990), Fan and Gijbels (1992), and so on).

Nonparametric methods are very appealing but nevertheless pose some prob-
lems. They require in practice a large number of observations and are usable
only for a relatively small number of explanatory variables. Moreover, the result
is sensitive to the choice of the smoothing parameter and to a lesser extent of
the kernel. They pose a problem for the presentation of the results which cannot
be summarized in a compact formula but can be well described only through
graphics. Finally, a nonparametric analysis does not allow for an extrapolation
outside the domain of the observations, but from our point of view this is an

213
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advantage. To remedy some of these difficulties, semiparametric methods have
been developed, whose aim it is to estimate only some characteristics of the
regression or to constrain the regression function to satisfy some assumptions.
The dimension of the problem is hence reduced and the presentation of the
results is facilitated. It is also possible to introduce structural assumptions on
the model (growth or monotonicity, concavity, heterogeneity, . . . ).

We first consider the standard kernel estimation of the regression, then we
discuss some of the estimation problems of specific characteristics of the re-
gression or of the estimation under constraint. We quickly discuss these points
and refer to the profuse literature about these questions. The estimation of other
relationships besides the regression will not be treated here (see section 17.5.4
for the nonparametric treatment of endogeneity).

10.2 Estimation of the Regression Function by Kernel

Consider a sample xi = (yi , zi ) ∈ R × R
q , i.i.d. with distribution Q and as in

Chapter 7, we set

g(z) = E ( ̃y|z̃ = z)

where ( ̃y, z̃) is a random vector with realizations (yi , zi ). The distribution Q is
assumed to be dominated by Lebesgue measure and hence

g (z) =
∫

y
f (y, z)

fmarg (z)
dy =

∫
y fcond (y|z) dy (10.1)

∀z such that fmarg (z) �= 0.
In this section, we construct an estimator of g by the kernel method. Various

presentations of this construction are possible and we adopt the following ap-
proach. Consider the first expression in (10.1) and replace f and fmarg by their
expressions taken from Chapter 5 (Formula (5.14)):

f̂n ( y, z) = 1

nh1+q
n

n∑
i=1

K

(
y − yi

hn
,

z − zi

hn

)
(10.2)

and

f̂marg n (z) = 1

nhq
n

n∑
i=1

K

(
z − zi

hn

)
. (10.3)

Moreover, we suppose that K can be written as the product of two independent
kernels, also denoted K by abuse of notation. Hence,

f̂n ( y, z) = 1

nh1+q
n

n∑
i=1

K

(
y − yi

hn

)
K

(
z − zi

hn

)
.
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Replacing in (10.1) f and fmarg by their estimators yields

ĝn (z) =

1

nh1+q
n

n∑
i=1

[∫
yK

(
y − yi

hn

)
dy

]
K

(
z − zi

hn

)
1

nhq
n

n∑
i=1

K

(
z − zi

hn

) . (10.4)

If K has mean zero,∫
y

1

hn
K

(
y − yi

hn

)
dy = yi

and then we obtain

ĝn (z) =

n∑
i=1

yi K

(
z − zi

hn

)
n∑

i=1

K

(
z − zi

hn

) . (10.5)

Note that this expression can be rewritten as

ĝn (z) =
n∑

i=1

yiαn (z − zi ) with αn (z − zi ) =
K

(
z − zi

hn

)
n∑

i=1

K

(
z − zi

hn

)
(10.6)

where the αn are positive and sum up to 1 if K is a density. Thus, the value of
ĝn (z) is a weighted sum of yi , where the weights measure the distance between
z and the zi .

For example, if K is the density of the uniform distribution on the cube
[−1, 1]q , ĝn (z) is equal to the weighted sum of yi such that zi belongs to a
cube centered on z with half length of the side equal to hn .

In addition, note that the bandwidths hn are specific to each component of
the vector z and that z−zi

hn
actually denotes(

z1 − zi1

h1n
, . . . ,

zq−ziq

hqn

)
.

The choice of the smoothing kernel has little impact on the estimation of g. In
practice, we consider almost always independent kernels that are the densities
of symmetric probability distributions. Then, we have

1

hq
n

K

(
z − zi

hn

)
=

q∏
j=1

1

h jn
K

(
z j − zi j

h jn

)
. (10.7)
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The essential difficulties with this approach result from the problem of di-
mensionality and the choice of the bandwidth. Indeed, this method can be imple-
mented only for vectors of explanatory variables whose dimension is “small.”
This is the consequence of two phenomena:

� the larger q , the slower the rate of convergence of the estimator;
� the regression function is correctly estimated only if we observe many points

that fill in the support of the distribution of zi . Hence, in high dimension, one
needs a large number of observations to be able to recover the support.

In addition, the choice of the bandwidth is very important and determines
the properties of the resulting estimators.

The properties of the estimator ĝn can be analyzed in the same way as the den-
sity estimator. Three points are important: the calculation of the mean integrated
squared error, the study of convergence, and asymptotic normality.

10.2.1 Calculation of the Asymptotic Mean Integrated Squared Error

The calculation of the asymptotic mean integrated squared error (AMISE)
proceeds in the following manner.

The first step consists in linearizing the distance ĝn (z) − g (z):

ĝn (z) − g (z) =
∫

y f̂n (y, z) dy

f̂marg n (z)
−

∫
y f (y, z) dy

fmarg (z)
,

hence

ĝn (z) − g (z) � 1

fmarg (z)

[∫
y f̂n (y, z) dy −

∫
y f (y, z) dy

]

− g (z)

fmarg (z)

[
f̂marg n (z) − fmarg (z)

]
.

(10.8)

This linearization is obtained from the first order Taylor expansion of the
ratio u

v
:

u

v
− u0

v0

� 1

vo
(u − u0) − uo

v2
o

(v − vo) .

The bias E (̂gn (z) − g (z)) is therefore equal to

E (̂gn (z) − g (z)) = 1

fmarg (z)

(
1

nhq
n

n∑
i=1

E (yi − g (z)) K

(
z − zi

hn

))
,
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or alternatively

E (̂gn (z) − g (z)) = 1

fmarg (z)

1

hq
n

E

(
(yi − g (z)) K

(
z − zi

hn

))
= 1

fmarg (z)

1

hq
n

∫
(g (zi ) − g (z)) K

(
z − zi

hn

)
fmarg (zi ) dzi ,

which, after applying a change of variables u = z−zi

hn
, becomes:

1

fmarg (z)

∫
(g (z − hnu) − g (z)) K (u) fmarg (z − hnu) du.

A double Taylor expansion yields

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

g (z − hnu) fmarg (z − hnu) � g (z) fmarg (z) − hn
∂

(
g fmarg

)
∂z′ u

+ 1

2
h2

nu′ ∂
2
(
g fmarg

)
∂z∂z′ u

fmarg (z − hnu) � fmarg (z) − hn
∂ fmarg

∂z′ u + 1

2
h2

nu′ ∂
′ fmarg

∂z∂z′ u

and using
∫

uK (u) du = 0, we obtain

E (̂gn (z) − g (z)) � 1

fmarg (z)

h2
n

2

∫
u′

(
∂2

(
g fmarg

)
∂z∂z′ − ∂2 fmarg

∂z∂z′

)
uK (u) du

� 1

fmarg (z)

h2
n

2
tr

{[
∂2g

∂z∂z′ + 2
∂ fmarg

∂z

∂g

∂z′

]
VK

}

where VK = ∫
uu′K (u) du. Now, we derive the variance of ĝn (z) − g (z).

Applying the preceding linearization, we have

Var (̂gn (z) − g (z))

= 1

f 2
marg (z)

1

nh2q
n

Var

[
(yi − g (z)) K

(
z − zi

hn

)]
. (10.9)
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Using the same argument as for the calculation of the AMISE of the density
(Chapter 5), we verify that the above variance reduces to the expectation of the
square because the square of the expectation is negligible. Then, we have

Var (̂gn (z) − g (z))

= 1

nhq
n

1

f 2
marg (z)

∫
(yi − g (z))2 1

hq
n

K 2

(
z − zi

hn

)
f (yi , zi ) dyi dzi

=
∫

K 2 (u) du

nhq
n f 2

marg (z)

∫
(yi − g (z))2 1

hq
n

K ∗
(

z − zi

hn

)
f (yi , zi ) dyi dzi

with K ∗ = K∫
K 2 . By Bochner’s theorem, we obtain

Var (̂gn (z) − g (z))

= 1

nhq
n

∫
K 2 (u) du

f 2
marg (z)

∫
(yi − g (z))2 f (yi , z) dyi dz

= 1

nhq
n

∫
K 2 (u) du

fmarg (z)
Var (ỹ|z̃ = z) .

In summary, the asymptotic mean squared error is the sum of the squared
bias and the variance, i.e.,

h4
n

4

[
1

fmarg (z)
tr

{(
∂2g

∂z∂z′ + 2
∂g

∂z

∂ f

∂z′

)
VK

}]2

+ 1

nhq
n

∫
K 2 (u) du

fmarg (z)
Var (ỹ|z̃ = z)

(10.10)

This proof is intuitive because it neglects the rests of the Taylor expansions and
does not list the set of regularity assumptions (see Hardle (1990), Pagan and
Ullah (1999) and Bosq and Lecoutre (1992) for a detailed presentation).

AMISE is obtained by integrating (10.10) with respect to z

AMISE = h4
n

4

∫ [
1

fmarg (z)
tr

{(
∂2g

∂z∂z′ + 2
∂g

∂z

∂ f

∂z′

)
VK

}]2

dz

+ 1

nhq
n

∫ ∫
K 2 (u) du

fmarg (z)
Var (ỹ|z̃ = z) dz

hence is of the form

AMISE = ah4
n + b

nhq
n
. (10.11)
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Remark. As for the density estimation, we see that the bias and variance
evolve in opposite directions with respect to hn: decreasing hn reduces the bias
term ah4

n but increases the variance b/nhq
n . �

Remark. In practice, the bandwidths will be very often different for each
variable. The preceding expression is then transformed in the following manner.
In the variance term, hq

n becomes
∏q

j=1 h jn while the squared bias term becomes

1

4

∫
1

fmarg (z)
tr H

{
∂2g

∂z∂z′ + 2
∂g

∂z

∂ f

∂z′ H VK

}2

where H is the diagonal matrix of bandwidths

H =

⎛⎜⎝ h1n 0
. . .

0 hqn

⎞⎟⎠ .

If moreover h jn = C j hn, Expression (10.10) becomes

h4
n

4

[
1

fmarg (z)
tr

{
C

(
∂2g

∂z∂z′ + 2
∂g

∂z

∂ f

∂z′

)
C VK

}]2

+ 1

nhq
n

∫
K 2 (u) du Var (ỹ|z̃ = z)

q∏
j=1

C j fmarg (z)

(10.12)

where C is the diagonal matrix of the C j ( j = 1, . . . , q). �

In addition, the same argument as for the density can be used to determine the
bandwidth and kernel. We can use Expression (10.10) of the asymptotic mean
squared error to derive the best bandwidth at fixed z. By an obvious calculation,
this minimization gives

h∗
n (z) =

⎛⎜⎜⎝ qVar (ỹ|z̃ = z̃)

n fmarg (z) tr

{(
∂2g

∂z∂z′ + 2
∂g

∂z

∂ f

∂z′

)
VK

}
⎞⎟⎟⎠

1
q+4

= c(z)n− 1
q+4 .

Of course, this calculation requires the knowledge of g and f . We can proceed
by estimating f and g first with some initial value of the bandwidth and then
using these estimates to improve the choice of the bandwidth. This procedure is
rather delicate because it requires estimating derivatives (which convergeslowly
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and hence need a large sample) and the conditional variance. This plug-in
method has also been extended to the choice of a specific bandwidth for each
explanatory variable.

After replacing the bandwidth by its optimal value, we can seek the optimal
kernel which is again the Epanechnikov kernel (considering product kernels for
each explanatory variable) as in the case of the density estimation.

An alternative approach for selecting the optimal bandwidth consists of the
so-called cross-validation method. For each i = 1, . . . , n, we estimate the func-
tion g by (10.4) excluding the observation i :

ĝ(i)
n (z) =

∑
j �=i

y j K

(
z − z j

hn

)
∑
j �=i

K

(
z − z j

hn

) . (10.13)

Then, the sum of squared errors:

n∑
i=1

(
yi − ĝ(i)

n (zi )
)2

.

This expression does not depend on hn and can be numerically minimized
with respect to hn (or the vector of h jn) over a given interval.

Remark. The calculation of AMISE relies on two assumptions: the fact that∫
uK (u) du = 0 but

∫
uu′K (u) du �= 0

and the twice differentiability of the density of the observations (and hence
of the regression). The distance between ĝ and g measured by AMISE can be
reduced by assuming a differentiability at a higher order or by choosing K such
that (in the scalar case)∫

u j K (u) du = 0 for j < r.

In this case, the smallest r in this formula is called the order of the kernel K . Let
us remark that if K is a density of probability measure (K nonnegative), then
r is equal to 2. The bias term is then equal to (up to a multiplicative constant)

h2 min(s,r )
n

where s is the order of differentiability and r is the order of the kernel. The
drawback of higher-order kernels with order greater than 2 is that they are no
longer densities and the estimated densities may be negative at least in small
samples. �
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Remark. If hn is proportional to its optimal values, i.e.,

hn = cn− 1
q+4 ,

AMISE takes the form

AMISE = ac4n− 4
q+4 + b

ncn− q
q+4

= αn− 4
q+4 .

In the general case (see preceding remark), AMISE is proportional to

n− 2 min(s,r )
q+2 min(s,r ) . �

10.2.2 Convergence of AMISE and Asymptotic Normality

The convergence of ĝn to g is the most delicate point because various types of
convergence may be considered. From the preceding calculation , we see that if
hn → 0 and nhq

n → ∞, then AMISE(z) given by (10.11) goes to 0 and therefore
ĝn (z) converges to g (z) in mean square and hence in probability. Convergence
of stronger types (almost sure and uniform in z or in L p norm) can be found but
they require extra assumptions on the kernel and on the asymptotic behavior
of the bandwidths. We refer to Härdle (1990) or Bosq and Lecoutre (1992) for
these results.

Remark. If hn is proportional to the optimal choice, we see that hn → 0 and
that nhq

n → ∞, which guarantee the convergence. Moreover, we can show that
the convergence of AMISE to 0 is the fastest if we choose hn proportional to

n− 1
q+4 . In this case, the rate of convergence of AMISE to 0 is n− 4

q+4 . �

The asymptotic normality requires also extra regularity assumptions and a
“good” behavior of hn when n → ∞. Intuitively, this study is based on the
following arguments. Using the previous linearization, we have

ĝn (z) − E (̂gn (z))

= 1

nhq
n

{
n∑

i=1

1

fmarg (z)
(yi − g (z)) K

(
z − zi

hn

)
− 1

fmarg (z)
E

[
(yi − g (z)) K

(
z − zi

hn

)]}
.

(10.14)

Suppose hn does not depend on n . Then, the central limit theorem gives
√

n (̂gn (z) − E (̂gn (z)))

→ N

(
0, Var

(
1

hq
n

(yi − g (z))

fmarg (z)

)
K

(
z − zi

hn

))
in distribution.
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Using the same calculation as for the variance term in AMISE, we verify that
the variance is of the form

1

hq
n

Var (ỹ|z̃ = z)

∫
K 2

fmarg (z)
.

We then eliminate the term in hq
n by multiplying the above expression by√

hq
n . Hence, we get√

nhq
n (̂gn (z) − E (̂gn (z)))

→ N

⎛⎜⎜⎝0,

Var (ỹ|z̃ = z)

∫
K 2

fmarg (z)

⎞⎟⎟⎠ in distribution.

Moreover, if

nhq
n (E (̂gn (z)) − g (z))2 → 0,

we have √
nhq

n (̂gn (z) − g (z))

→ N

⎛⎜⎜⎝0,

Var (ỹ|z̃ = z)

∫
K 2

fmarg (z)

⎞⎟⎟⎠ in distribution.

We saw that the squared bias is proportional to h4
n and hence the conditions for

the asymptotic normality of ĝn − g are

nhq
n → ∞ and nhq+4

n → 0.

In particular, if

hnj = C j n
α,

these conditions require

− 1

q
< α < − 1

q + 4
.

Remark. If hn is equal to the optimal choice, the rate of convergence
√

nhq
n

becomes√
nn− q

q+4 =
√

n
4

q+4 .
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This is the optimal nonparametric rate of convergence with dimension q that
can be compared with the usual parametric rate, namely

√
n. We verify that

indeed the gap between these two rates grows as q increases. On the other hand,
we note that if

hn = cn− 1
q+4 ,

then the property nhq+4
n → 0 is not satisfied, which implies that√

nhq
n (̂gn (z) − E (̂gn (z)))

converges to a noncentered normal distribution. �

Moreover, we can verify that the distribution of the vector√
nhq

n (̂gn (z1) − g (z1) , . . . , ĝn (zk) − g (zk))

is asymptotically normal and that the asymptotic covariances are equal to zero.
To apply this result in practice, we need to estimate the density and the condi-

tional variance. The density is estimated by kernel, and similarly the conditional
variance is nonparametrically estimated by applying the equality

Var (ỹ|z̃ = z) = E
(
ỹ2|z̃ = z

) + g (z)2 .

The first term is estimated by Formula (10.5) after replacing yi by y2
i and we

use the estimate of g (z) for the second term.

10.3 Estimating a Transformation of the Regression Function

Instead of estimating the regression function, we can analyze a transformation
of this function. The choice of this transformation is motivated by the economic
analysis that defines parameters of interest. Obviously, many transformations
may be considered, but we focus on a specific class characterized by the relation

λ =
∫

g (z) w (z) dz. (10.15)

In this formula, g (z) = E (ỹ|z̃ = z) , and w (z) is a weighting function that is
either scalar or vectorial and satisfies w (z) = 0 if fmarg(z) = 0, which is natural
because g (z) is defined only if fmarg(z) > 0. The parameter of interest λ is also
scalar or vectorial. This class of transformation is justified by the properties of
the resulting estimator of λ and also by its relevance regarding many applied
econometric problems which are special cases of this analysis.

Before getting into the details, we note that this transformation does not in-
troduce overidentification conditions on the distribution of the variables (except
for the implicit integrability condition in the definition of λ).
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We illustrate the relevance of (10.15) by two examples.

Example 10.1 Estimating the mean derivatives of the regression. We saw in
Chapter 8 that the parametric estimation of a misspecified regression does not
allow us to consistently estimate the derivatives of this function at a point.
However in many econometric problems, the derivatives are the parameters of
interest (if the variables are transformed by taking their logarithm, these deriva-
tives can be interpreted as elasticities). We do not study here the nonparametric
estimation of the derivatives of the regression at a point. This estimation is
possible but its rate of the convergence is very slow and hence it requires a
very large sample. Nevertheless, it suffices in many applications to estimate the
mean of the derivatives of the regression, i.e.,

λ =
∫

∂αg (z) ν (z) dz (10.16)

where α is a multi index of differentiation and ∂α is the differentiation defined by
this multi-index (see Chapter 8). The function ν (z) is a density on the explana-
tory variables that may be equal to fm (z), the density of the actually observed
explanatory variables. If for example z contains only one variable and if α = 1,

we integrate by parts

λ = g (z) ν (z)

∣∣∣∣ +∞

−∞
−

∫
g (z)

dν

dz
(z) dz.

If ν is such that the first term vanishes at +∞ and −∞, we have

λ = −
∫

g (z)
dν

dz
(z) dz.

In the general case, we assume that integration by parts yields the following
expression for λ

λ = (−1)|α|
∫

g (z) ∂αν (z) dz (10.17)

with

|α| =
q∑

j=1

α j .

The equality between (10.16) and (10.17) is satisfied if for instance ν (z) has a
compact support and is sufficiently differentiable. The equality (10.17) shows
then that the estimation of mean derivatives is a special case of (10.15) with

w (z) = (−1)|α| ∂αν (z) . �

Example 10.2 Test for subadditivity. In order to illustrate this example, sup-
pose that the function C is the cost function which associates an expected cost
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with the quantities of various products z. The economic theory is interested in
the subadditivity of C, i.e., the property

C

(
p∑

j=1

z j

)
≤

p∑
j=1

C
(
z j

)
(10.18)

which means intuitively that the cost of a firm producing
∑p

j=1 z j is lower than
the cost of several firms producing each z j . The property (10.18) must be true
for every p and every sequence (z1, . . . , z p). It is easy to show that this property
is equivalent to the following property. Let ϕ be the density of (z1, . . . , z p), ϕ̃

the density of the sum z1 + · · · + z p and ϕ j the density of z j . Then, (10.18) is
equivalent to the fact that for each ϕ, we have∫

C (u) ϕ̃(u)du ≤
p∑

j=1

∫
C

(
z j

)
ϕ j

(
z j

)
dz j . (10.19)

Indeed, subadditivity implies∫
C (u) ϕ̃ (u) du =

∫
C

(
z1 + · · · + z p

)
ϕ̃

(
z1, . . . , z p

)
dz1 . . . dz p

≤
∫ (

p∑
j=1

C
(
z j

))
ϕ

(
z1, . . . , z p

)
dz1 . . . dz p

=
p∑

j=1

∫
C

(
z j

)
ϕ j

(
z j

)
dz j ;

the converse is obtained by considering the distributions on (z1, . . . , z p) con-
centrated at a point. Now, we discuss testing subadditivity. The writing (10.19)
suggests to look at λ defined in (10.15) with

w (z) = ϕ̃ (z) −
p∑

j=1

ϕ j (z)

and to test the sign of this parameter. �

The estimation of λ defined in (10.15) can be done in two ways.
The first consists in estimating g by (10.5) then calculating λ̂n by

λ̂n =
∫ n∑

i=1

yi K

( z − zi

hn

)
n∑

i=1

K

( z − zi

hn

) w (z) dz



P1: OSO/OVY P2: OSO/OVY QC: OSO/OVY T1: OSO

Ecoeok CUFX117-Florens 0521876407 April 22, 2007 13:56

226 Econometric Modeling and Inference

or equivalently

λ̂n =
n∑

i=1

yi

∫ K

(
z − zi

hn

)
n∑

i=1

K

(
z − zi

hn

)w (z) dz. (10.20)

The second approach avoids estimating g and is based on the following
remark:

λ =
∫

g (z)
w (z)

fmarg(z)
fmarg (z) dz = E

(
g(z)

w

fmarg

)
and also

λ = E

(
E (ỹ|z̃ = z)

w (z)

fmarg (z)

)
= E

(
y

w (z)

fmarg (z)

)
.

If fmarg (z) were known, λ could be estimated by

1

n

n∑
i=1

yi
w (zi )

fmarg (zi )
.

This assumption is rarely satisfied. But we can replace fmarg by a parametric or
nonparametric estimate. In the latter case,

λ̂n = 1

n

n∑
i=1

yiw (zi )

1

nhq
n

n∑
j=1

K

(
zi − z j

hn

) . (10.21)

We implicitly assumed that w was given. In practice, w may be partially or
fully unknown (because it is for instance a function of fmarg) and hence w must
be replaced by an estimate in (10.20) and (10.21).

Remark. A trimming procedure is sometimes introduced which consists in
eliminating the data that are at the boundaries of the support of the distribution
of the explanatory variables. In our presentation, trimming can be included in
the function w under the form of a multiplicative indicator function. �

The main asymptotic result is the “fast” rate of convergence of λ̂n to λ.

Indeed, we have

√
n

(
λ̂n − λ

)
→ N (0, V )

under some regularity assumptions and provided that the bandwidths have an
appropriate asymptotic behavior. We show this result for the first estimator we
proposed in (10.20).
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We have

√
n

(
λ̂n − λ

)
= √

n

{∫
y

f̂n (y, z)

f̂marg n (z)
w (z) dydz

−
∫

y
f (y, z)

fmarg (z)
w (z) dydz

}
.

Using a Taylor expansion

f̂n

f̂marg n

− f

fmarg
� 1

fmarg

{(
f̂n − f

)
− f

fmarg

(
f̂marg n − fmarg

)}
,

we obtain

√
n

(
λ̂n − λ

)
�

√
n

n

n∑
i=1

1

h1+q
n

∫ 1

fmarg (z)
(y − g (z))

w (z) K

(
y − yi

hn
,

z − zi

hn

)
dydz.

Assuming hn is well behaved, we can replace in the previous sum the term∫
u (y, z)

1

h1+q
n

K

(
y − yi

hn
,

z − zi

hn

)
dydz

by simply u (yi , zi ) with

u (y, z) = 1

fmarg (z)
(y − g (z)) w (z) .

Hence,

√
n

(
λ̂n − λ

)
�

√
n

n

n∑
i=1

1

fmarg (zi )
(yi − g (zi )) w (zi ) , (10.22)

therefore

√
n

(
λ̂n − λ

)
→ N

(
0, Var

(
(y − g (zi )) w (zi )

fmarg (zi )

))
.

The derivation is more complex if w is unknown and depends on f for
example. Consider for simplicity the case where we are interested in the partial
derivative with respect to the variable z j .

λ =
∫

∂g (z)

∂z j
fmarg (z) dz = −

∫
y

f (y, z)

fmarg (z)

∂ fmarg (z)

∂z j
dz (10.23)

λ̂n = −
∫

y
f̂n (y, z)

f̂marg n (z)

∂ f̂marg n (z)

∂z j
dz. (10.24)
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As before, we use the approximation

∂ f̂marg n

∂z j
f̂n

f̂marg n

−
∂ fmarg

∂z j
f

fmarg
� f

fn

(
∂ f̂marg n

∂z j
− ∂ fmarg

∂z j

)
+

∂ fmarg

∂z j

fmarg

(
f̂n − f

)

−
∂ fmarg

∂z j
f

f 2
marg

(
f̂marg n − fmarg

)
(10.25)

and repeating the previous argument, we have

√
n

(
λ̂n − λ

)
→ N

⎛⎜⎜⎝0, Var

⎡⎢⎢⎣(yi − g (zi ))

∂ fmarg (zi )

∂z j

fmarg (zi )
+ ∂

∂z j
g (zi )

⎤⎥⎥⎦
⎞⎟⎟⎠ .

(10.26)

10.4 Restrictions on the Regression Function

To limit the dimensionality problems or to impose some restrictions originating
from the economic theory, we often suppose that the conditional expectation
g (z), which is a function of q variables, actually depends on functions of a
smaller number of variables and possibly on some parameters. In fact, two
points of view are possible: either we assume that g is really restricted to this
specific form, or we look for the best approximation of g by an element that
satisfies the restrictions under consideration. We illustrate this approach by a
few examples.

10.4.1 Index Models

The index model is characterized by a function of explanatory variables z of the
form ψ (λ′z) where ψ is a function of R → R and λ′z is a linear combination
of z j ( j = 1, . . . , q) . We can assume that E (ỹ|z̃ = z) is effectively of the form
ψ (λ′z) or that we seek the best approximation of E (ỹ|z̃ = z) by a function of
this form. This model poses an identification problem. If ψ∗ is defined by

ψ∗ (u) = ψ (ku)

and

λ∗ = 1

k
λ,

we have

ψ
(
λ′z

) = ψ∗
(
λ′

∗z
)
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for each z and hence the pair (ψ, λ) is not identified. We solve this question by
normalizing λ, for instance by setting λ1 = 1.

If we assume that the model is exact (E (ỹ|z̃ = z) = ψ (λ′z)) , then this re-
striction introduces an overidentification constraint (see Chapter 16) which man-
ifests itself for example in the fact that a standard nonparametric estimator of
the regression does not satisfy this constraint. Hence, we need to define ψ and
λ in such a way that they are associated with a large class of estimators. As
always, denote

g (z) = E (ỹ|z̃ = z) .

A first estimator is based on the following remark:

∂

∂z j
g (z) = λ j

∂

∂u
ψ (u)

( ∂ψ

∂u being the derivative of ψ (u) : R → R and u = λ′z). Hence,

E

(
∂

∂z j
g (z)

)
= λ j E

(
∂

∂u
ψ (u)

)
for each j = 1, . . . , q (the expectation is taken here with respect to the distri-
bution of the vector z̃). It follows that

λ j =
E

(
∂

∂z j
g (z)

)
E

(
∂

∂z1

g (z)

) (10.27)

provided λ1 = 1. This property is the basis for an estimator of λ j . If ĝn is an
estimator of the function g (obtained for instance by kernel), we estimate λ j by

λ̂ jn =

n∑
i=1

∂

∂z j
ĝn (zi )

n∑
i=1

∂

∂z1

ĝn (zi )

. (10.28)

Once the λ j are estimated, we perform a nonparametric regression of ỹ on λ̂′
nz:

ψ̂n (u) =

∑
i

yi K

(
u − λ̂′

nzi

hn

)
∑

i

K

(
u − λ̂′

nzi

hn

) . (10.29)
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A second approach originates from the idea of the best approximation of the
conditional expectation by an index model, i.e., minimizing

E (g(z) − ψ
(
λ′z

)
)2

with respect to ψ and λ. We know (see Chapter 3) that this problem is also
equivalent to the system

E
(
ỹ|λ′ z̃ = u

) = ψ (u)

and

E

[(
y − ψ

(
λ′z

)) ∂

∂u
ψ (u) z j

]
= 0 ∀ j = 1, . . . , q.

In other words, ψ is the regression of ỹ on λ′ z̃ and λ minimizes the expectation
of the squared distance between y and ψ (λ′z). The function ψ can be estimated
for instance by

ψ̂λn (u) =

n∑
i=1

yi K

(
u − λ′zi

hn

)
n∑

i=1

K

(
u − λ′zi

hn

) .

Replacing ψ by its estimator, we solve

λ̂n = arg min
n∑

�=1

⎛⎜⎜⎜⎜⎝y� −

n∑
i=1

yi K

(
λ′z − λ′zi

hn

)
n∑

i=1

K

(
λ′z − λ′zi

hn

)
⎞⎟⎟⎟⎟⎠

2

.

We obtain ψ̂n after replacing λ by λ̂n in ψ̂λn .
The main asymptotic result is that, under some appropriate assumptions on

the behavior of the bandwidths, λ̂n converges at the
√

n rate, i.e.,

√
n

(
λ̂n − λ

)
→ N (0, v) ;

ψ̂n is consistent with the usual rate for the regression on a single variable and its
asymptotic distribution is identical to that of the regression ỹ on λ′ z̃. In the case
of an estimation using a ratio of derivatives (10.27), we infer v from Formula
(10.26).

The model we presented here is a single-index model, which can be gen-
eralized to multiple indices ψ(λ′

1z, λ′
2z, . . .) (their number must stay small in

comparison to q for the model to have an interest).
An important application of index models is the semiparametric study of

discrete choice models which will be presented in Chapter 11.



P1: OSO/OVY P2: OSO/OVY QC: OSO/OVY T1: OSO

Ecoeok CUFX117-Florens 0521876407 April 22, 2007 13:56

Nonparametric Estimation of the Regression 231

10.4.2 Additive Models

Assume that z is partitioned into (z1, z2) with respective dimensions q1 and
q2 (with q1 + q2 = q). An additive model is described by two functions ψ1

and ψ2 of R
q1 and R

q2 to R such that g (z) is equal to ψ1 (z1) + ψ2 (z2) . This
assumption can be interpreted in two ways: we may assume that g is exactly
equal to ψ1 + ψ2 or we can look for the best approximation of g by ψ1 + ψ2.
This model poses an identification problem: if ψ∗

1 = ψ1 + c and ψ∗
2 = ψ2 − c,

we get obviously ψ1 + ψ2 = ψ∗
1 + ψ∗

2 and we cannot empirically discriminate
between these two pairs. To solve this difficulty, it suffices (besides some regu-
larity assumptions not described here) that one of the functions is constrained
(for example E (ψ2 (z2)) = 0 or ψ2 (0) = 0). This additive specification, if con-
sidered as exact, introduces an overidentification condition that manifests itself
by the fact that even if the assumption is satisfied, a usual estimator of g cannot
be decomposed into ψ1 + ψ2. As in the preceding example, we must link ψ1

and ψ2 to standard estimators. Several methods are possible.
First note that under the assumption that the model is well specified, i.e.,

g = ψ1 + ψ2,

∂

∂z2

g (z) = ∂ψ2

∂z2

(z2) . (10.30)

If g is arbitrary, ∂g
∂z1

still depends on z1, which is eliminated by integration

E

{∫ (
∂

∂z2

g (z)

)
w (z1) dz1

}
= ∂ψ2

∂z2

(z2) . (10.31)

Formula (10.31) can be used for estimation. We estimate g by an unrestricted
ĝn, and ψ̂1n is a primitive function of∫ [

∂

∂z2

ĝn (z1, z2)

]
w (z1) dz1.

We apply the same to ψ2 and we determine the integration constants by the
conditions

E (g) = E (ψ1) + E (ψ2) and E (ψ2) = 0.

A more elegant approach consists in looking for the best approximation of g
by ψ1 + ψ2, i.e., in minimizing

E (g (z) − ψ1 (z1) − ψ2 (z2))2

or alternatively

E (y − ψ1 (z1) − ψ2 (z2))2 .
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This problem yields the conditions

E (y|z̃1 = z1) = ψ1 (z1) + E (ψ2 (z2) |z̃1 = z1) (10.32)

and

E (y|z̃2 = z2) = E (ψ1 (z1) |z̃2 = z2) + ψ2 (z2) . (10.33)

(To find the first order conditions in ψ1, we used

∂
∂α

E
(
y − (

ψ1 (z1) + αψ̃1 (z1) − ψ2 (z2)
))2 |

α=0
= 0 ∀ψ̃1

⇐⇒ E
[
(y − ψ1(z1) − ψ2 (z2))ψ̃1 (z1)

] = 0 ∀ψ̃1

⇐⇒ E
[
[E (y|z̃1 = z1) − ψ1 (z1) − E (ψ2 (z2) |z̃1 = z1)] ψ̃1 (z1)

] = 0 ∀ψ̃1

⇐⇒ E (y|z̃1 = z1) − ψ1 (z1) − E (ψ2 (z2) |z̃1 = z1) = 0.

We proceeded the same way for ψ2).
We can replace the conditional expectations by their estimators and solve the

system in ψ1 and ψ2. We obtain∑
yi K

(
z1−z1i

hn

)
∑

K
(

z1−z1i

hn

) = ψ1 (z1) +
∑

ψ2 (z2i ) K
(

z1−z1i

hn

)
∑

K
(

z1−z1i

hn

) (10.34)

and ∑
yi K

(
z2−z2i

hn

)
∑

K
(

z2−z2i

hn

) =
∑

ψ1 (z1i ) K
(

z2−z2i

hn

)
∑

K
(

z2−z2i

hn

) + ψ2 (z2) . (10.35)

By considering these equations for z1 = z1� (� = 1, . . . , n) and z2 = z2�

(� = 1, . . . , n), we obtain the system{
A1y

¯
= ψ

1
+ A1ψ2

A2y
¯

= A2ψ1
+ ψ

2

⇐⇒
(

I A1

A2 I

) (
ψ

1

ψ
2

)
=

(
A1 y

A2 y

)
(10.36)

where

A1 =
⎛⎝ K

(
z1�−z1i

hn

)
K

(
z1�−z1i

hn

)
⎞⎠

�,i=1,...,n

, A2 =
⎛⎝ K

(
z2�−z2i

hn

)
K

(
z2�−z2i

hn

)
⎞⎠

�,i=1,...,n

,

y
¯

=

⎛⎜⎝ y1

...
yn

⎞⎟⎠ , ψ
1

=

⎛⎜⎝ψ1 (z11)
...

ψ1 (z1n)

⎞⎟⎠ and ψ
2

=

⎛⎜⎝ψ2 (z21)
...

ψ2 (z2n)

⎞⎟⎠ .

This system has rank equal to 2n − 1 because the rows of A1 (or A2) sum
up to 1. We solve it by imposing a specific value (for instance ψ2 (z21) = 0).
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Transferring this value in the right-hand side of (10.36), we obtain a system of
2n equations with 2n − 1 unknowns that we solve by least squares:

Bx = b =⇒ x = (
B ′ B

)−1
Bb.

The knowledge of ψ1 (z1i ) and ψ2 (z2i ) allows us to estimate ψ1 and ψ2 for all
points through (10.34) and (10.35). We can also replace the constraintψ2 (z21) =
0 by the constraint

∑n
i=1 ψ2 (z2i ) = 0.

This procedure can be easily implemented. It yields consistent estimators
of ψ1 and ψ2 with the rates

√
nh

q
1

n and
√

nh
q

2
n , i.e. the rates for regressions

with q1 and q2 explanatory variables. Moreover, it can be shown that, under
the normalization condition E (ψ2) = 0, ψ̂1n has the same distribution as the
conditional expectation of y − ψ2 (z2) given z̃1 = z1. Likewise, ψ̃2n has the
same distribution as the conditional expectation of y − ψ1 (z1) given z̃2 = z2.

Remark. The constraint E (ψ2) = 0 (which leads to
∑n

i=1 ψ2 (z2i ) = 0 in
the estimation) yields a simple limiting distribution because it maintains the
asymptotic independence of the estimators for different values of the explana-
tory variables. In contrast, the constraint ψ (z21) = 0 implies that the variance of
ψ̂2 (z21) is zero and that the ψ̂2 (z2) are asymptotically dependent across values
of z2. �

Notes

Regarding the nonparametric regression, we refer the reader to the books by Bosq

(1996), Tsybakov (2004), Wand and Jones (1995), and Fan and Gijbels (1996). The

semiparametric methods are treated in various books, such as those by Pagan and Ullah

(1999), Horowitz (1998), and Stocker (1991); see also Carrasco, Florens, and Renault

(2004) and Newey and McFadden (1994).
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11. Discrete Variables and Partially
Observed Models

11.1 Introduction

In econometric models, it is usually assumed that the dependent variable may
take any value in R or R

p. In this chapter, we study some types of models that
do not fit in this setting:

� models with discrete dependent variables, called qualitative response mod-
els, where the endogenous variable can take only two values (dichotomous,
binomial, or binary response models) or a limited number of values (poly-
chotomous, multinomial, or multiple choice models);

� partially observed models (or limited dependent variable models) where the
observations of the dependent variable are reduced to a single value after some
threshold; we consider here censored models or sample selection models.
Those latter models are characterized by a truncation process depending on
a latent variable that is different from that describing the observed data.

It is obvious that writing the conditional expectation under the form

Eθ ( yi |zi ) = λ′zi

is not suitable, since it is impossible to restrict λ′zi to take only some discrete
values or to belong to a specific interval for all values of zi . These models are
treated in this chapter under the form of index models

Eθ ( yi |zi ) = ϕ (zi ) = ψ(ω(zi )) (11.1)

with ϕ : R
q → R and ψ : R → R; the function ω is called index function and

can take any value on the real line; ω is a linear index function if it can be
written as

ω(zi ) = λ′zi

234



P1: OSO/OVY P2: OSO/OVY QC: OSO/OVY T1: OSO

Ecoeok CUFX117-Florens 0521876407 April 22, 2007 14:6

Discrete Variables and Partially Observed Models 235

and hence depends on zi through a linear combination of the elements of zi . ψ ,
called transformation function, has the following properties

ψ(−∞) = 0, ψ(+∞) = 1, and
∂ψ(x)

∂x
> 0.

Thus, ψ projects the real line on the interval [0, 1] and may be, for instance,
the cumulative distribution function of some probability distributions.

In Section 2, we study various types of discrete dependent variable models
and partially observed models. In Section 3, we address the problems regarding
estimation and tests.

11.2 Various Types of Models

11.2.1 Dichotomous Models

Dichotomous models are characterized by the fact that the endogenous variable
yi may take only two values, 0 or 1. The following example, about utility
maximization, illustrates the motivations for this type of model.

Example 11.1 It is assumed that there are only two choices for the endogenous
variable, yi = 0 or yi = 1. The utility of agent i who chooses alternative yi = j
is

Ũi j = Ui j (zi ) + ui j j = 0, 1

where zi is an observable vector of characteristics. The agent chooses alterna-
tive j if her utility is greater for j . So, the choice is as follows

yi =
∣∣∣∣∣ 1 if Ũi1 > Ũi0

0 otherwise.

Now

Ũi1 − Ũi0 = ω(zi ) − εi

with ω(zi ) = Ui1(zi ) − Ui0(zi ) and εi = ui0 − ui1. Then,

yi = 1I(εi < ω(zi )).

Hence, the conditional expectation of yi is

Eθ ( yi |zi ) = Pr( yi = 1|zi )

= Pr(εi < ω(zi ))

= F(ω(zi ))

= ψ(ω(zi )).

Here ψ is simply F, the cumulative distribution function of εi . �
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Another motivation for this model is illustrated by the more general example
given below in which the notion of latent variable appears.

Example 11.2 Suppose that the binary choice depends on a latent variable
y∗

i :

y∗
i = ω(zi ) − εi

in the following manner

yi =
∣∣∣∣∣ 1 if y∗

i > 0

0 otherwise.

or alternatively

yi = 1I( y∗
i > 0) = 1I(εi < ω(zi )).

This example encompasses the preceding example by setting

y∗
i = Ũi1 − Ũi0.

Similarly, ψ is equal to F, the distribution function of εi and

Eθ ( yi |zi ) = F(ω(zi )) = ψ(ω(zi )). �

More generally, the binary choice model can be written as an index model
which we assume to have a linear index

Eθ ( yi |zi ) = ψ(ω(zi )) = ψ
(
λ′zi

)
. (11.2)

The function ψ has the properties of a cumulative distribution function. Two
cases arise. If ψ is unknown, we estimate the model nonparametrically (see
Chapter 10). If ψ is known, we use traditional methods.

In the latter case, the choice of ψ determines the two main types of dichoto-
mous models studied in the literature. The first is the probit model; the function
ψ is simply 	, the distribution function of the standard normal

FN (x) ≡
x∫

−∞

1√
2π

e−u2/2du. (11.3)

The second is the logit model, where ψ is the logistic function

FL (x) ≡ ex

1 + ex
, (11.4)

hence

Eθ ( yi |zi ) = eλ′zi

1 + eλ′zi
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and

ln

(
Eθ ( yi |zi )

1 − Eθ ( yi |zi )

)
= λ′zi .

Probit and logit models give rather similar results. When we compare the
curves of the two distribution functions FN (x) and FL (x

√
3/π ) (that of the

logistic being normalized by the inverse of its standard deviation), we observe
that they are almost identical, except in the tails.

11.2.2 Multiple Choice Models

We distinguish between models of ordered and unordered multiple choice.

Models of Unordered Multiple Choice

The models of unordered multiple choice are a simple generalization of the
binary choice models. Indeed suppose that we have J + 1 possible alternatives,
each characterized by its own utility:

Ũi j = Ui j (zi ) + ui j j = 0, . . . , J

where zi is an observable vector of characteristics. The alternative j is chosen
if Ũi j ≥ Ũil for all l = 0, . . . , J with l 	= j , or equivalently if

Ui j + ui j ≥ Uil + uil , ∀l = 0, . . . , J, l 	= j.

Assume that yi j represents the choice of alternative j , that is

yi j =
∣∣∣∣∣ 1 if j is chosen

0 otherwise

or equivalently

yi j = 1I(Ui j + ui j ≥ Uil + uil , ∀l = 0, . . . , J, l 	= j).

The probability that alternative j is chosen is equal to

Eθ ( yi j |zi ) = Pr
(
Ui j + ui j ≥ Uil + uil , ∀l = 0, . . . , J, l 	= j

)
= Pr

(
ui j − uil ≥ Uil − Ui j , ∀l = 0, . . . , J, l 	= j

)
= Fj

(
Ui0 − Ui j , . . . , Ui j−1 − Ui j , Ui j+1 − Ui j , . . . , Ui J − Ui j

)
= ψ

(
Ui0 − Ui j , . . . , Ui j−1 − Ui j , Ui j+1 − Ui j , . . . , Ui J − Ui j

)
where Fj , the distribution function of (ui j − ui0, . . . , ui j − ui j−1, ui j − ui j+1,
. . . , ui j − ui J ), is assumed to be exchangeable, i.e., Fj = ψ for all j . Assume
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moreover that Uil − Ui j is a linear function of zi of the form λ′
jl zi ; we obtain a

multiple linear index model:

Eθ ( yi j |zi ) = ψ
(
λ′

j0zi , . . . , λ
′
j j−1zi , λ

′
j j+1zi , . . . , λ

′
j J zi

)
.

Models of Ordered Multiple Choice

The models of ordered multiple choice are based on discrete responses which
are ordered, for instance the choice of financial assets with different returns.
Consider a continuous latent variable defined by

y∗
i = ω(zi ) + εi

with various thresholds, c0 = −∞, c1, . . . , cJ , cJ+1 = +∞, such that the ob-
served variable yi is defined by

yi =

∣∣∣∣∣∣∣∣∣∣∣∣

0 if y∗
i ≤ c1

1 if c1 < y∗
i ≤ c2

...

J if cJ < y∗
i

(11.5)

or equivalently

yi = j if c j < ω(zi ) + εi ≤ c j+1.

If we define a discrete variable di j by

di j = 1 if yi = j,

then the expectation of di j is

Eθ
(
di j |zi

) = Pr( yi = j |zi )

= Pr(c j − ω(zi ) < εi ≤ c j+1 − ω(zi ))

and depends on the distribution of εi . It follows that

Eθ (yi |zi ) =
J∑

j=0

j Eθ
(
di j |zi

)
=

J∑
j=0

j Pr
(
c j − ω(zi ) < εi < c j+1 − ω(zi )

)
= ψ (ω (zi )) .

The distribution function of εi may be the logistic function (ordered logit
model) or the distribution of a standard normal (ordered probit model).
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Moreover, if the index function is linear

ω (zi ) = λ′zi ,

then

Eθ ( yi |zi ) = ψ
(
λ′zi

)
.

11.2.3 Censored Models

These models, also called tobit models, are characterized by the fact that the
endogenous variable takes a single value starting from some threshold. For
instance, the demand for a specific good is censored because it is studied from
the sales which can not exceed the production capacity of the firm. Another
example consists of the unemployment durations which are censored because
some individuals have not exited unemployment yet and hence are not accounted
for. Thus, in this type of models, observations cannot be considered as the
realization of a continuous random variable, but rather as of a mixture of discrete
and continuous variables.

Consider a very simple model with latent variable

y∗
i = λ′zi + εi (11.6)

and assume that the endogenous variable yi is observed only if y∗
i is positive

yi =
∣∣∣∣∣ y∗

i if y∗
i > 0

0 otherwise
(11.7)

which can be written as

yi = max
(
y∗

i , 0
) = max

(
λ′zi + εi , 0

)
or

yi = (
λ′zi + εi

)
1I(εi > −λ′zi ).

Several types of censoring exist:
We have a left-censored model (also called truncated model) by a constant δ

(say) if

yi =
∣∣∣∣∣ y∗

i if y∗
i > δ

δ otherwise

or equivalently

yi = max
(
y∗

i , δ
) = max

(
λ′zi + εi , δ

)
.
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It suffices to set

y∗
i − δ = −δ + λ′zi + εi = λ̃′̃zi + εi

with

λ̃ =
(

−δ

λ

)
and z̃i =

(
1

zi

)

to obtain the representation (11.6) and (11.7).
A right-censored model is such that

yi =
∣∣∣∣∣ y∗

i if y∗
i < δ

δ otherwise

or equivalently

yi = min
(
y∗

i , δ
) = min

(
λ′zi + εi , δ

)
.

It suffices to write

−yi = max
(−y∗

i , −δ
) = max

(−λ′zi − εi , −δ
)

to obtain again the above representation.
To return to the formulation (11.6) and (11.7), there are two possibilities.

1. First, we can consider only positive data, i.e., those for which yi > 0. In
this case, we have

Eθ ( yi |zi , yi > 0) = λ′zi + Eθ (εi |εi ≥ −λ′zi )

= ψ(λ′zi ).

2. The second possibility consists in considering all the data. In this case,
we have

Eθ ( yi |zi ) = Eθ
(
y∗

i |zi , y∗
i > 0

)
Pr

(
y∗

i > 0
)

= [
λ′zi + Eθ (εi |εi > −λ′zi )

]
(1 − F(−λ′zi ))

= ψ(λ′zi ),

where F is the distribution function of εi .

The following examples illustrate results derived from these two possibili-
ties when normality is assumed. Each example starts with a review of some
properties of the normal distribution.
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Example 11.3 We consider here only positive data. If f is the density function
of a random variable x and a a constant, called truncation threshold, then the
density and expectation of the truncated distribution are given by

f (x |x > a) = f (x)

Pr(x > a)

and

Eθ (x |x > a) =
+∞∫
a

x f (x |x > a)dx .

Note that
∫ +∞

a f (x |x > a)dx = 1 and hence the denominator Pr(x > a) rep-
resents the normalization factor. Assume that x follows a normal distribution
N (μ, σ 2) and denote by FN and fN , respectively, the distribution function and
the density of a standard normal. We can write

Pr(x > a) = 1 − Pr(x < a) = 1 − Pr

(
x − μ

σ
<

a − μ

σ

)
(11.8)

hence

Pr(x > a) = 1 − FN (α) (11.9)

where α = a−μ

σ
. Thus

f (x |x > a) = f (x)

1 − FN (α)
=

1
σ

fN ( x−μ

σ
)

1 − FN (α)
. (11.10)

It can also be shown that

Eθ (x |x > a) = μ + σλ(α) (11.11)

and that

Varθ (x |x > a) = σ 2(1 − η(α))

with

λ(α) = fN (α)

1 − FN (α)
and η(α) = λ(α)(λ(α) − α).

If the truncation is given by x < a, then λ(α) = − fN (α)
FN (α)

. Now assume that the
censored regression model takes the form

yi = λ′zi + εi
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where εi ∼ N (0, σ 2), or alternatively yi |zi ∼ N (λ′zi , σ
2), and that the data

are observed if yi > a. Then,

Eθ ( yi |zi , yi > a) = λ′zi + σ
fN (α)

1 − FN (α)

with α = 
a−λ′zi

σ
(it suffices to set x = yi and μ = λ′zi in the preceding expres-

sions). Similarly, it can be shown that

Varθ ( yi |zi , yi > a) = σ 2

[
1 − fN (α)

1 − FN (α)

(
fN (α)

1 − FN (α) 
− α

)]
.

�

Example 11.4 We now take all data into account. We study first the censored
normal distribution. Let x∗ ∼ N (μ, σ 2) and define x as

x =
∣∣∣∣∣ x∗ if x∗ > 0

0 otherwise.

The censoring point is here assumed to be zero. Recall again that FN and fN

are the distribution function and the density of the standard normal. We have

Pr(x = 0) = Pr(x∗ ≤ 0) = Pr

(
x∗ − μ

σ
≤ −μ

σ

)
= FN

(
−μ

σ

)
= 1 − FN

(μ

σ

)
.

Moreover, if x∗ > 0, x has the same density as x∗. The total probability is thus
equal to 1 because we report on the censoring point, here 0, the probability of
the censored region. We have

Eθ (x) = 0 Pr(x = 0) + Eθ (x∗|x∗ > 0) Pr(x∗ > 0).

From (11.11),

Eθ (x∗|x∗ > 0) = μ + σλ(α)

with

α = −μ

σ
and λ(α) = fN

(−μ

σ

)
1 − FN

(−μ

σ

) .

It follows from the symmetry of the normal density that

fN

(
−μ

σ

)
= fN

(μ

σ

)
and 1 − FN

(
−μ

σ

)
= FN

(μ

σ

)
,
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hence

λ(α) = fN

(
μ

σ

)
FN

(
μ

σ

) .

Therefore

Eθ (x∗|x∗ > 0) = μ + σ
fN

(
μ

σ

)
FN

(
μ

σ

) .

Moreover

Pr(x∗ > 0) = FN

(μ

σ

)
.

Hence, we can write

Eθ (x) =
[
μ + σ

fN

(
μ

σ

)
FN

(
μ

σ

)]
FN

(μ

σ

)
= μFN

(μ

σ

)
+ σ fN

(μ

σ

)
.

(11.12)

Consider now a censored normal model defined by

yi =
∣∣∣∣∣λ

′zi + εi if εi > −λ′zi

0 otherwise.

with εi ∼ N (0, σ 2). Then, by setting x = yi and μ = λ′zi in (11.12), we obtain

Eθ ( yi |zi ) = λ′zi FN

(
λ′zi

σ

)
+ σ fN

(
λ′zi

σ

)
. �

11.2.4 Disequilibrium Models

These models have been developed to take into account that, in some markets,
the traded quantity is not equal at the same time to the supply and the demand,
or in other words, that some sellers and buyers are not able to exchange at the
market price.

Consider thus the following model⎧⎪⎪⎨⎪⎪⎩
yD

t = zD′
t λD + z∗

t λ
∗D + uD

t

yS
t = zS′

t λS + z∗
t λ

∗S + uS
t

yt = min
(
yD

t , yS
t

)
,

(11.13)
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where yD
t and yS

t are the demand and supply which are unobservable variables,
z∗

t is the price, zD
t and zS

t are vectors of exogenous variables, and yt is the traded
quantity which is observed. This model is completed by a mechanism of price
adjustment which may take the following simple form

�z∗
t = λs 

(
yD

t − yS
t

)
(11.14)

with λs ≥ 0, or may be characterized by different adjustment speeds depending
on whether there is excess supply or excess demand

�z∗
t =

∣∣∣∣∣λ
�
1

(
yD

t − yS
t

)
if yD

t − yS
t ≥ 0

λ�
2

(
yD

t − yS
t

)
if yD

t − yS
t < 0

(11.15)

with λ�
1 and λ�

2 ≥ 0; �z∗
t is defined by z∗

t+1 − z∗
t or z∗

t − z∗
t−1. Given (11.13)

and (11.15), we can write:

yt =
∣∣∣∣∣∣

yS
t = yD

t − 1
λ�

1

�z∗
t = zD′

t λD + z∗
t λ

∗D − 1
λ�

1

�z∗
t + uD

t if �z∗
t ≥ 0

yD
t = yS

t + 1
λ�

2

�z∗
t = zS′

t λS + z∗
t λ

∗S + 1
λ�

2

�z∗
t + uS

t if �z∗
t < 0

or

yt =
∣∣∣∣∣∣
zD′

t λD + z∗
t λ

∗D − 1
λ�

1

Dt + uD
t if �z∗

t ≥ 0

zS′
t λS + z∗

t λ
∗S + 1

λ�
2

St + uS
t if �z∗

t < 0
(11.16)

with

Dt =
∣∣∣∣∣�z∗

t if�z∗
t ≥ 0

0 otherwise
and St =

∣∣∣∣∣�z∗
t if �z∗

t < 0

0 otherwise.

11.2.5 Sample Selection Models

These models, also called models with incidental truncation or generalized tobit
models, involve a truncation process based on a latent variable different from
the variable that describes the observed data. For instance, the desired number of
work hours of an individual which may depend on the wage and characteristics
of the household, is observed only if the individual actually works, i.e., receives
a wage greater than her reservation wage.

Consider a latent variable defined by

y(0)∗
i = λ(0)′z(0)

i + εi . (11.17)

Suppose in addition that the observation of the endogenous variable yi depends
on another latent variable

y(1)∗
i = δ(z(1)

i ) + νi (11.18)
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in the following way

yi =
∣∣∣∣∣ y(0)∗

i if y(1)∗
i > 0

0 otherwise.
(11.19)

If we return to the example mentioned above, y(0)∗
i is the desired numbers of

work hours and y(1)∗
i represents the difference between the wage and reservation

wage. Thus

yi =
∣∣∣∣∣λ(0)′z(0)

i + εi if νi > −δ(z(1)
i )

0 otherwise.

Define the discrete variable di by

di =
∣∣∣∣∣ 1 if νi > −δ(z(1)

i )

0 otherwise.

So

yi = y(0)∗
i di

=
(
λ(0)′z(0)

i + εi

)
1

(
νi > −δ(z(1)

i )
)

.

Hence, the regression for positive responses is

Eθ
(

yi |z(0)
i , z(1)

i , yi > 0
)

= λ(0)′z(0)
i + Eθ

(
εi |νi > −δ(z(1)

i )
)

.

The index model can be written as⎧⎪⎨⎪⎩
Eθ ( yi |zi ) = G(0)

(
λ(0)′z(0)

i , δ(z(1)
i )

)
Eθ (di |zi ) = G(1)

(
δ(z(1)

i )
)

.

where zi = (z(0)′
i , z(1)′

i )′ and G(0) and G(1) are some functions of λ(0)′z(0)
i ,

δ(z(1)
i ), and δ(z(1)

i ) respectively.
We illustrate this type of model by an example where the pair (εi , νi ) follows

a bivariate normal distribution.

Example 11.5 Consider first a bivariate distribution with truncation on one
coordinate. If y and z follow such a distribution, the truncated density is written
as

f ( y, z|z > a) = f ( y, z)

Pr(z > a)
.
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Assume that[
y

z

]
∼ N

([
μy

μz

]
,

[
σ 2

y ρσyσz

ρσyσz σ 2
z

])
,

we state the following results

Eθ ( y|z > a) = μy + ρσyλ(αz) (11.20)

and

Varθ ( y|z > a) = σ 2
y (1 − ρ2η(αz))

with

αz = a − μz

σz
, λ(αz) = fN (αz)

1 − FN (αz)

and

η(αz) = λ(αz)(λ(αz) − αz)

(if the truncation is given by z < a, then λ(αz) = − fN (αz )
FN (αz )

). Now, consider the
sample selection model

yi =
∣∣∣∣∣λ(0)′z(0)

i + εi if νi > −λ(1)′z(1)
i

0 otherwise.

with [
εi

νi

]
∼ N

([
0

0

]
,

[
σ 2

ε ρσεσν

ρσεσν σ 2
ν

])
.

Then, we have

Eθ
(

yi |z(0)
i , z(1)

i , yi > 0
)

= λ(0)′z(0)
i + Eθ

(
εi |νi > −λ(1)′z(1)

i

)
= λ(0)′z(0)

i + ρσελ(αν)

with

αν = λ(1)′z(1)
i

σν

, λ(αν) =
fN

(
λ(1)′z(1)

i

σν

)
1 − FN

(
λ(1)′z(1)

i

σν

)
(it suffices to set a = 0 and μz = λ(1)′z(1)

i in (11.20)). �
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Other types of sample selection models have been proposed in the literature
such as the one described in the example below, where each individual can be
in one of two possible states of which only one is observed.

Example 11.6 This example is a first introduction to the models with coun-
terfactuals that are studied more deeply in Section 18.6 in Chapter 18. Denote
by y(1)

i and y(0)
i the two possible outcomes for individual i . For instance, if we

study the effect of a medical treatment, y(1)
i and y(0)

i represent two alternative
treatment effects, depending on whether the individual is treated or not; but of
course we observe one outcome only. This example has been introduced in med-
ical treatment effect models, but it can be extensively applied in econometrics
for the evaluation of public policy ( for example, employment policy, education
policy, and so on). In other words, we observe yi defined by

yi = di y(1)
i + (1 − di ) y(0)

i

with

di =
∣∣∣∣∣ 1 if i is treated

0 otherwise.

Let d∗
i be the latent variable defined by a linear index in zi :

d∗
i = λ′zi − ηdi ;

then di can be written as

di =
∣∣∣∣∣ 1 if d∗

i ≥ 0

0 otherwise.

Define the equation of potential income if i participates in the treatment

y(1)∗
i = wiλ1 − η

(1)
i .

We observe y(1)
i defined by

y(1)
i =

∣∣∣∣∣ 1 if y(1)∗
i ≥ 0

0 otherwise.

The income equation if i does not participate in the treatment is

y(0)∗
i = wiλ0 − η

(0)
i .

and we observe y(0)
i defined by

y(0)
i =

∣∣∣∣∣ 1 if y(0)∗
i ≥ 0

0 otherwise.
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Assume that ηdi , η
(1)
i , and η

(0)
i are continuous with respect to Lebesgue measure

and that (ηdi , η
(1)
i , η

(0)
i ) are independent of (zi , wi ).

Consider the treatment effect on individual i:

�i = y(1)
i − y(0)

i

which obviously is not observable.
We can study three different effects:

� The average treatment effect (ATE):

�AT E (zi , wi ) = Eθ (�i |zi )

= Eθ
(

y(1)
i |zi

)
− Eθ

(
y(0)

i |zi

)
= Pr

(
y(1)∗

i ≥ 0
)

− Pr
(

y(0)∗
i ≥ 0

)
= Pr

(
wiλ1 ≥ η

(1)
i

)
− Pr

(
wiλ0 ≥ η

(0)
i

)
= F

η
(1)
i

(wiλ1) − F
η

(0)
i

(wiλ0) .

� The expected treatment effect on the treated individual (TT):

�T T (zi , wi ) = Eθ (�i |zi , wi , di = 1)

= 1

Fηd (xiλd )

[
F

ηd ,η
(1)
i

(xiλd , wiλ1)

− F
ηd ,η

(0)
i

(xiλd , wiλ0)
]
.

� The local parameter defined by local instrumental variables:

�L I V (zi , wi ) = ∂ Eθ (yi |wi , Pr(wi ) )

∂wi
. �

11.3 Estimation

Various estimation methods may be used. First, we study the nonparametric
estimation of models represented by index models without any assumption on
the index function. Second we study the semiparametric estimation assuming
some form of the index functions. Finally, we discuss the maximum likelihood
estimation.

11.3.1 Nonparametric Estimation

The models seen in Section 2 can be written as index models

Eθ ( yi |zi ) = ψ
(
λ′zi

) = ϕ (zi ) ,



P1: OSO/OVY P2: OSO/OVY QC: OSO/OVY T1: OSO

Ecoeok CUFX117-Florens 0521876407 April 22, 2007 14:6

Discrete Variables and Partially Observed Models 249

where ψ is a function from R to R and λ′zi is a linear combination of elements
of zi . We assume that ψ is differentiable and that zi has a continuous density
f . In addition, to solve the problem of non idenfication of the pair (ψ, λ), we
normalize λ by setting λ1 = 1, in accordance with Section 10.4.1 of Chapter 10
regarding index models. Moreover, we will use some of its other results here.

From the normalization constraint and from the equality

E

[
∂ϕ (z)

∂z j

]
= λ j E

[
∂ψ (u)

∂u

]
,

for all j = 1, . . . q , it follows that

λ j =
E

[
∂ϕ(z)
∂z j

]
E

[
∂ϕ(z)
∂z1

] .

Using this result, the estimation proceeds by the following steps:

1. Estimate ϕ by the kernel estimator ϕ̂n .
2. Estimate λ j by

λ̂ jn =

n∑
i=1

∂ϕ̂n (zi )
∂z j

n∑
i=1

∂ϕ̂n (zi )
∂z1

.

3. Nonparametrically regress y on λ̂′
nz where λ̂n is the vector of λ̂′

jn , which
yields

ψ̂n (u) =

n∑
i=1

yi K
(

u−̂λ′
n zi

hn

)
n∑

i=1

K
(

u−̂λ′
n zi

hn

) .

Another estimation procedure also described in Section 10.4.1 of Chapter 10
is based on the minimization of E[(ϕ (z) − ψ (λ′z))2] with respect to ψ and λ.
It is described as follows:

1. Find an estimation of ψ

ψ̂λn (u) =

n∑
i=1

yi K
(

u−λ′zi

hn

)
n∑

i=1

K
(

u−λ′zi

hn

) . (11.21)
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2. Estimate λ by

λ̂n = arg min
n∑

l=1

⎛⎜⎜⎝yl −

n∑
i=1

K
(

λ′z−λ′zi

hn

)
yi

n∑
i=1

K
(

λ′z−λ′zi

hn

)
⎞⎟⎟⎠ .

3. An estimator ψ̂n is obtained by replacing λ by λ̂n in (11.21).

It can be shown that these estimators of λ are consistent with
√

n rate and
asymptotically normal and that tests can be implemented. Thus, to test the null
hypothesis H0 : Rλ = r0, the Wald statistic

W = (
Rλ̂n − r0

)′ (
R�̂λn R′)−1 (

Rλ̂n − r0

)
follows asymptotically a χ2, where λ̂n and �̂λn are respectively consistent esti-
mators of λ and the asymptotic covariance matrix �λ.

11.3.2 Semiparametric Estimation by Maximum Likelihood

In some cases, such as the binary choice models, the index model

Eθ (yi |zi ) = ψ
(
λ′zi

)
is such that the function ψ has the properties of a distribution function. When ψ

is known, traditional estimation methods such as maximum likelihood should
be used. On the contrary, when ψ is unknown, we turn to specific nonparametric
methods which exploit the property that ψ is a distribution function.

We apply this idea to dichotomous models in the following example.

Example 11.7 Return to the binary choice model (11.2) that takes the form
of a linear index model

Eθ ( yi |zi ) = ψ
(
λ′zi

) = Pr( yi = 1|zi )

where ψ has all the properties of a distribution function. If ψ were known, λ

could be estimated by maximizing the log-likelihood

L(λ) =
n∑

i=1

[
yi ln ψ

(
λ′zi

) + (1 − yi ) ln
(
1 − ψ

(
λ′zi

))]
.



P1: OSO/OVY P2: OSO/OVY QC: OSO/OVY T1: OSO

Ecoeok CUFX117-Florens 0521876407 April 22, 2007 14:6

Discrete Variables and Partially Observed Models 251

Since ψ is unknown, we replace ψ by a nonparametric estimator ψ̂ni :

ψ̂ni =
1

nhn

∑
j 	=i

y j Jnj K
(

z−λ′z j

hn

)
1

nhn

∑
j 	=i

Jnj K
(

z−λ′z j

hn

)
with

Jnj =
∣∣∣∣∣ 1 if z j ∈ Anz

0 otherwise.

where

Anz = {
zi

∣∣ ∥∥zi − z∗
i

∥∥ < 2hn, z∗
i ∈ Az

}
,

Az = {
zi

∣∣ψ(λ′zi ) ≥ η, λ ∈ B
}
,

and B is the compact set of all possible λs. Hence, we maximize

n∑
i=1

[
yi ln ψ̂ni

(
λ′zi

) + (1 − yi ) ln
(
1 − ψ̂ni

(
λ′zi

))]
which yields the estimator λ̂n of λ. It can be shown that this estimator is con-
sistent and asymptotically normal. �

11.3.3 Maximum Likelihood Estimation

Models with discrete variables and partially observed models are usually esti-
mated by the maximum likelihood method. We return to some models presented
in the first section of this chapter and use their traditional presentation, i.e., not
in the form of a nonparametric index model.

Dichotomous Models

Consider the traditional representation of dichotomous models, where the vari-
able yi is assumed to take two values (yi = 0 or 1) so that{

Pr( yi = 1) = ψ(λ′zi )

Pr( yi = 0) = 1 − ψ(λ′zi )

hence

Eθ ( yi |zi ) = 0
[
1 − ψ(λ′zi )

] + 1
[
ψ(λ′zi )

] = ψ(λ′zi ).
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Assuming that the yi are mutually independent, the likelihood function is

Ln( y1, . . . , yn) =
∏
yi =1

[
ψ(λ′zi )

] ∏
yi =0

[
1 − ψ(λ′zi )

]
=

n∏
i=1

[
ψ(λ′zi )

]yi
[
1 − ψ(λ′zi )

]1−yi
.

Thus, the log-likelihood is given by

ln Ln =
∑
yi =1

ln ψ(λ′zi ) +
∑
yi =0

ln
(
1 − ψ(λ′zi )

)
(11.22)

or equivalently

ln Ln =
n∑

i=1

[
yi ln ψ(λ′zi ) + (1 − yi ) ln

(
1 − ψ(λ′zi )

)]
. (11.23)

It can be shown that the global maximum of ln Ln is unique because this
function is concave, whether the model is probit or logit. Indeed, in the latter
case, i.e., when ψ(x) is given by (11.4), it is easy to show that for all x

∂2 ln ψ(x)

∂x2
= − ex

(1 + ex )2
< 0.

Therefore ln ψ(x) is concave and ln (1 − ψ(x)) is also concave since

ln (1 − ψ(x)) = ln
e−x

1 + e−x
= −x + ln

1

1 + e−x
= −x + ln ψ(x).

It follows that ln Ln given by (11.22) is concave.
Under the usual conditions, the maximum likelihood estimator λ̂n of λ is

consistent and asymptotically normal

λ̂n ∼ N

(
λ,

[
−Eθ

(
∂2 ln Ln

∂λ∂λ′

)]−1
)

.

In the context of a logit model, the asymptotic variance matrix is[
−Eθ

(
∂2 ln Ln

∂λ∂λ′

)]−1

=
[

n∑
i=1

ψ(λ′zi )
(
1 − ψ(λ′zi )

)
zi z

′
i

]−1

.

Multiple Choice Models

a) Models of Unordered Multiple Choice Suppose that individual i must
choose among J + 1 possible alternatives labelled j = 0, 1, . . . , J . The utility
of alternative j is

Ui j = λ′
j zi + ε j .
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Individual i chooses j if Ui j > Uil , ∀l 	= j . Let

Pr( yi = j) = eλ′
j zi

1 +
J∑

k=1

eλ′
k zi

, j = 1, 2, . . . , J

and

Pr( yi = 0) = 1

1 +
J∑

k=1

eλ′
k zi

(we use here the normalization λ0 = 0 to guarantee the identification of the
λ j ). This model is called multinomial logit model. Using the notation, for
j = 1, . . . , J + 1,

di j =
∣∣∣∣∣ 1 if alternative j is chosen

0 otherwise,

the log-likelihood is written as

ln Ln =
n∑

i=1

J∑
j=0

di j ln Pr( yi = j).

There are other types of models such as the conditional logit model.

b) Models of Ordered Multiple Choice Assume that a latent variable is defined
by

y∗
i = λ′zi + εi

and that the observed variable is given by (11.5). If moreover the εi are normally
distributed, then we have⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

Pr( yi = 0) = 	 (c1 − λ′zi )

Pr( yi = 1) = 	 (c2 − λ′zi ) − 	 (c1 − λ′zi )

...

Pr( yi = J ) = 1 − 	 (cJ − λ′zi ) .

Thus, the log-likelihood is

ln Ln =
J∑

j=0

j ln Pr( yi = j).
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Tobit Models

Consider the tobit model defined by (11.6) and (11.7) and assume that the
residuals are normally distributed. The log-likelihood is

ln Ln =
∑
yi =0

ln FN

(
−λ′zi

σ

)
− 1

2

∑
yi >0

[
ln 2πσ 2 + (yi − λ′zi )

2

σ 2

]

=
∑
yi =0

ln FN

(
−λ′zi

σ

)
− n1

2
ln 2πσ 2 − 1

2σ 2

∑
yi >0

(
yi − λ′zi

)2
,

(11.24)

where n1 is the number of positive yi . This log-likelihood has a nonstandard
form because we have a mixture of a discrete and a continuous distribution,
but it can be maximized using a usual iterative method for obtaining the MLE.
Usually, a reparametrized version of (11.24) is studied with γ = λ

σ
and δ = 

1
σ ,

i.e.,

ln Ln =
∑
yi =0

ln FN

(−γ ′zi

) − 
n1

2
ln 2π + n1 ln δ − 

1

2

∑
yi >0

(
δyi − γ ′zi

)2
.

Disequilibrium Model

Return to the disequilibrium model represented by Equation (11.16). Consider
for instance the case where the price variation is defined by

�z∗
t = z∗

t+1 − z∗
t .

Two cases are possible. If yS
t > yD

t , then �z∗
t < 0 from (11.15), and �z∗

t =
λ�

2 (yt − yS
t ) (since yt = yD

t ). In this case, assuming the normality of the resid-
uals uD

t and uS
t in (11.13), we can write

�z∗
t |yt ∼ N

(
λ�

2

(
yt − zS′

t λS − z∗
t λ

∗S
)
, λ�2

2 σ 2
S

)
and

yt ∼ N
(
zD′

t λD + z∗
t λ

∗D, σ 2
D

)
.

Similarly, in the case where yS
t ≤ yD

t , we have

�z∗
t |yt ∼ N

(
λ�

1

(−yt + zD′
t λD + z∗

t λ
∗D

)
, λ�2

1 σ 2
D

)
and

yt ∼ N
(
zS′

t λS + z∗
t λ

∗S, σ 2
S

)
.
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Denote by S1 the set of the n1 observations such that �z∗
t < 0, and by S2 the

set of the n2 other observations (n1 + n2 = n). The log-likelihood is

ln Ln = −n ln (2πσSσD) − n1 ln λ�
2 − n2 ln λ�

1

− 1

2σ 2
D

∑
S1

(
yt − zD′

t λD − z∗
t λ

)2

− 1

2σ 2
S

∑
S2

(
yt − zS′

t λS + z∗
t λ

∗S
)2

− 1

2λ�2
2 σ 2

S

∑
S1

(
�z∗

t − λ�
2

(
yt − zS′

t λS − z∗
t λ

∗S
))2

− 1

2λ�2
1 σ 2

D

∑
S2

(
�z∗

t + λ�
1

(
yt − zD′

t λD − z∗
t λ

∗D
))2

.

Sample Selection Models

Return to Equations (11.17), (11.18), and (11.19):

yi =
∣∣∣∣∣ y(0)∗

i if y(1)∗
i > 0

0 otherwise

with

y(0)∗
i = λ(0)′z(0)

i + εi

and

y(1)∗
i = λ(1)′z(1)

i + νi .

Moreover, assume that(
εi

νi

)
∼ N

((
0

0

)
,

(
σ 2

0 ρσ0σ1

ρσ0σ1 σ 2
1

))
.

The likelihood function is given by

Ln =
∏
yi =0

FN

(
−λ(1)′z(1)

i

σ1

) ∏
yi 	=0

1

σ0

fN

(
yi − λ(0)′z(0)

i

σ0

)

×
∏
yi 	=0

FN

(
1√

1 − ρ2

(
λ(1)′

σ1

z(1)
i + ρ

σ0

(
yi − λ(0)′z(0)

i

)))
.
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Since the pair (λ(1), σ1) is not identified, we make the change of parameters

δ0 = 1

σ0

, c0 = λ(0)

σ0

and c1 = λ(1)

σ1

,

hence

Ln =
∏
yi =0

FN

(
−c′

1z(1)
i

) ∏
yi 	=0

δ0 fN

(
δ0 yi − c′

0z(0)
i

)

×
∏
yi 	=0

FN

(
1√

1 − ρ2

(
c′

1z(1)
i + ρ

(
δ0 yi − c′

0z(0)
i

)))
.

This likelihood can be maximized by the usual methods. But notice that it is
also possible to use a two-stage estimation procedure:

1. Consider the probit model associated with the preceding model

wi =
∣∣∣∣∣ 1 if y(1)∗

i > 0

0 otherwise;

then

Pr(wi = 1) = Pr
(

y(1)∗
i > 0

)
= FN

(
λ(1)′

σ1

z(1)
i

)
= FN

(
c′

1z(1)
i

)
.

Hence, it is possible to estimate c1 by ĉ1n .
2. Now, look at the positive yi

Eθ (yi |yi > 0) = λ(0)′z(0)
i + ρσ0

fN

(
λ(1)′
σ1

z(1)
i

)
FN

(
λ(1)′
σ1

z(1)
i

)
therefore

Eθ (yi |yi > 0) = λ(0)′z(0)
i + ρσ0

fN

(
c′

1z(1)
i

)
FN

(
c′

1z(1)
i

) .

Let

δ̂in =
fN

(̂
c′

1nz(1)
i

)
FN

(̂
c′

1nz(1)
i

) .

Regressing the positive observations of yi on z(0)
i and δ̂in leads to asymp-

totically unbiased estimators of λ(0) and ρσ0, but they are not efficient.
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Indeed, it can be shown that the errors in the regression are hetero-
skedastic.

3. Finally, for estimating σ0, consider the estimated residuals of the former
regression

η̂i = yi − λ̂(0)′z(0)
i − ρ̂σ0δ̂in.

Since

Varθ ( yi |yi 	= 0) = Varθ
(

y(0)
i |y(1)∗

i > 0
)

= σ 2
0 + (ρσ0)2

⎡⎢⎣−c′
1z(1)

i

fN

(
c′

1z(1)
i

)
FN

(
c′

1z(1)
i

) −
⎛⎝ fN

(
c′

1z(1)
i

)
FN

(
c′

1z(1)
i

)
⎞⎠2

⎤⎥⎦ ,

we can estimate σ 2
0 by

σ̂ 2
0 = 1

n1

∑
yi 	=0

η̂2
i + (ρ̂σ0)2

n1

∑
yi 	=0

[̂
δin ĉ′

1nz(1)
i + δ̂2

in

]
where n1 is the number of yi different from zero. Thus we obtain con-
sistent and asymptotically normal estimators.

Notes

The book by Stocker (1991) outlines the treatment of index models. For various examples

of models, we refer to Greene (1999).

Example 11.6 of Paragraph 11.2.5. is drawn from Aakvik, Heckman, and Vytlacil

(1998) (see also Heckman, Ichimura, Smith, and Todd (1998) and Heckman and Vytlacil

(2005)).

Regarding the nonparametric estimation by maximum likelihood that exploits the

property of the index function as distribution function, this idea has been developed

by Klein and Spady (1993) in the setting of dichotomous models and is illustrated in

Example 11.7; it is treated in Horowitz (1998) and has been extended to single-index

models by Ai (1997).

The treatment by maximum likelihood of the models studied in this chapter can be

found in various books, such as those by Gouriéroux (1989), Fomby, Hill, and Johnson

(1984), and Greene (1999). For the disequilibrium models, we also refer to the articles

by Fair and Jaffee (1972), Amemiya (1974a), Gouriéroux, Laffont, and Monfort (1980),

and Laffont and Garcia (1977).
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12. Stationary Dynamic Models

12.1 Introduction

This chapter is dedicated to the study of linear dynamic models, more precisely
to the study of the temporal evolution of one or several variables. It is orga-
nized in the following way. The first part provides the definitions of stochastic
processes in discrete time. Next, we study models that have a particular repre-
sentation, namely the univariate ARMA(p, q) models. In the last part we extend
these models to the multivariate setting.

Generally speaking, a stochastic process is a family of random variables on a
common probability space indexed by the elements of an ordered set T which is
the time index set. The random variable indexed by an element i ∈ T describes
the state of the process at time i . The stochastic processes considered here are
defined in the following way.

Definition 12.1 A stochastic process is a family of random variables
{xi , i ∈ T } where the time index set T is a subset of the real line R. �

We could denote by T the set of all parameters, but to avoid the confusion
with the parameters in a statistical sense, we call it the time index set. It is often
called the domain of the definition of the stochastic process {xi , i ∈ T }. If T
is an interval of the real line, then the process is said to be a continuous-time
process. Most often, T may be N

∗, Z or R
+ = [0, +∞). Let {xi , i ∈ T } be a

scalar-valued random process and {i1, . . . , in} ⊂ T where i1 < i2 < · · · < in ,
then

Fi1,...,in (x1, . . . , xn) = Pr
{

xi1
≤ x1, . . . , xin ≤ xn

}
is the marginal distribution function for finite dimension of the process
{xi , i ∈ T }, which constitutes one of the characteristics of the scalar random

261
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process. The probability distribution of the process is given by the family of
functions F satisfying

Fi1,...,ik (x1, . . . , xk) = Fi1,...,ik ,...,in (x1, . . . , xk, ∞, . . . ,∞).

In a statistical model, we do not consider a single distribution but a family of
distributions indexed by parameters θ ∈ �.

12.2 Second Order Processes

Definition 12.2 A scalar random process {xi , i ∈ T } is said to be second
order if, for all i ∈ T , xi ∈ L2 or xi is square integrable for all values of θ ∈ �.

�

In general, the L2 space depends on θ. The second order processes are often
called “Hilbert processes.” We often assume in the following that

Eθ (xi ) = 0 ∀i ∈ T .

Definition 12.3 The covariance function Cθ
x (i, j) of the process is the second

cross-moment, i.e.,

Cθ
x (i, j) = Covθ (xi , x j ) = Eθ

[(
xi − Eθ (xi )

) (
x j − Eθ (x j )

)]
,

(12.1)

and in particular

Cθ
x (i, i) = Varθ (xi ). �

To simplify the notation, and when it is without ambiguity, we suppress the
index x and denote the covariance by Cθ (i, j). Dividing the terms in (12.1) by
(Cθ (i, i) × Cθ ( j, j))

1
2 , we obtain the autocorrelation function ρθ (i, j). More-

over, from (12.1), we conclude

Cθ (i, j) = Cθ ( j, i). (12.2)

The covariance function of a second order process always has finite values.
This comes from the Schwarz inequality:∣∣Cθ (i, j)

∣∣2 ≤ Cθ (i, i)Cθ ( j, j), (12.3)

Cθ (i, i) and Cθ ( j, j) are finite by assumption since xi and x j are in L2. The
covariance function has a certain number of properties which we describe next.

1. The matrix Cθ (i, j)i, j∈I is symmetric positive semidefinite for a finite
set I of time periods

2. For all symmetric positive semidefinite functions Cθ (i, j) on T × T ,
there exists a second order process {xi , i ∈ T } for which the covariance
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function is precisely Cθ (i, j). This process is obviously not unique. When
we are interested in the analysis of processes in L2, we concentrate on the
estimation of the covariance function, and we do not distinguish among
processes which have the same covariance function.

3. If C1 and C2 are two covariance functions with a common time index
set T , then linear combinations with strictly positive coefficients, as well
as products of two covariance functions are again covariance functions.
Moreover, if (Cn)n∈N is a sequence of covariance functions and C =
limn→∞ Cn then C is also a covariance function.

To a large part, the models and methods of time series analysis are constructed
starting with the notion of stationarity. Let

{xi , i ∈ T } (12.4)

be a second order process. The stochastic process is said to be weakly stationary
if, for all i, j and τ :

Eθ (xi ) = Eθ (xi+τ ) (12.5)

and

Eθ (xi+τ x j+τ ) = Eθ (xi x j ).

In this case, Eθ (xi ) is clearly a constant which we denote by μ, and the covari-
ance function Cθ (i, j) is a function of i − j , i.e.

μ = Eθ (xi ) and Eθ (xi xi+τ ) = Cθ (i, i + τ ) = Cθ (τ ). (12.6)

The terms second order stationarity, covariance stationarity, and weak station-
arity are used exchangeably. The same letter is used to refer to the covariance
function of a stationary process which only depends on the difference τ , i.e.,
Cθ (τ ). From (12.6), we conclude that Cθ (−τ ) = Cθ (τ ). In the following we
assume without loss of generality that

μ = Eθ (xi ) = 0

and

Cθ (i, i) = Varθ (xi ) = Cθ (0).

If the process xi is not centered, then we take the difference from its mean.
The concept of stationarity is important since the majority of the statistical

results requires more than the notion of stationarity in the weak sense. The
definitions have been provided in Chapter 1. In the following, we consider
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only processes that are stationary ergodic when we are interested in asymptotic
properties.

Definition 12.4 The process {ui , i ∈ T } is said to be a weak white noise of
mean zero and variance σ 2, where

{ui } ∼ W N
(
0, σ 2

)
, (12.7)

if and only if {ui } has mean zero and covariance function

Cθ
u (τ ) =

∣∣∣∣∣ σ 2 if τ = 0

0 if τ 	= 0.

Moreover, if the random variables ui are i.i.d., or

{ui } ∼ i.i.d.(0, σ 2), (12.8)

then we have a strong white noise. �

12.3 Gaussian Processes

Definition 12.5 The stochastic process {xi , i ∈ T } is a Gaussian process if
and only if, for each {i1,. . . ,in} ⊂ T , n = 1, 2, . . . ,

{xi1
, . . . , xin }

is jointly Gaussian. �

Note that a Gaussian process is evidently a second order process. Recall that
if {x1, . . . , xn} is a sequence of jointly normal random variables, then these
random variables are mutually independent if and only if the covariance matrix
of the system is diagonal.

Whatever are the covariance function Cθ (i, j) and the vector μi = Eθ (xi ),
we can always find a Gaussian process for which the former are the second and
first order moments. Thus, the analysis in L2 essentially comes down to the
analysis of Gaussian processes.

Theorem 12.1 A scalar Gaussian process {xi ; i ≥ 0} with mean zero and
covariance function Cθ (i, j) is stationary if and only if

Cθ (i, j) = Cθ (0, i − j) = Cθ (i − j) ∀i, j, 0 ≤ i ≤ j. (12.9)
�

Corollary 12.1 For a Gaussian process, weak and strong stationarity are
equivalent. �
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12.4 Spectral Representation and Autocovariance
Generating Function

Let Cθ (τ ) be the covariance function of a stationary process. This function
is symmetric positive definite. The form of symmetric positive semidefinite
functions on Z or R is given by the following theorem.

Theorem 12.2 (Herglotz) Let Cθ (τ ) be a symmetric positive semidefinite
functions from Z to R. There exists a bounded measure Mθ on [−π, π ) such
that, for all τ ∈ Z,

Cθ (τ ) =
π∫

−π

eiτλ Mθ (dλ) . �

Note that here “i” is evidently the imaginary number satisfying i2 = −1.

Definition 12.6 In the previous statement, the measure Mθ is the spectral
measure of x. If Mθ has a density mθ with respect to Lebesgue measure, then
this density is the spectral density of x:

Cθ (τ ) =
π∫

−π

eiτλ mθ (λ) (dλ) . �

Theorem 12.3 Let x be a stationary, centered sequence. The following two
conditions are equivalent:

1. x has a spectral density mθ .

2. There exists a weak white noise (ui ) and a sequence (cn) satisfying

∞∑
p=−∞

c2
n−p < ∞

such that

xi =
∞∑

p=−∞
cn−pu p.

In this case, the function mθ can be written as

mθ (λ) = 1

2π

∞∑
τ=−∞

Cθ (τ )e−iλτ = 1

2π

∞∑
τ=−∞

Cθ (τ ) cos λτ, ∀λ ∈ R.

�
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The convergence of the sequence used in part 2 of the theorem is assured by
Theorem 12.4 of the following section. We note that Cθ (τ ) and the functions
mθ contain the same information.

Example 12.1 We return to Example 1 in Chapter 1:

∀i, i ≥ 2, xi = β xi−1 + ui , and |β| < 1.

ui is a Gaussian white noise (0, σ 2). The spectral density function is symmetric
and thus we only need to consider it on [0, π ] . It satisfies:

mθ (λ) = 2σ 2

1 + β2 − 2β cos 2πλ
, λ ∈ [−π, π ].

The spectral density is increasing if and only if β > 0, and it admits an inflection
point at

λ = 1

2π
arccos

{
−(1 + β2) +

√
(1 + β2) + 32β2

4β

}
.

Moreover, for this λ,

mθ (λ) = 2σ 2

{
1 + β2 + 1 + β2 −

√
(1 + β2) + 32β2

2

}−1

.

This inflection point is the closer to high frequencies (respectively low frequen-
cies), the closer β is to −1 (respectively to +1). �

Example 12.2 Consider now a process that satisfies

xi = ui − βui−1,

where

ui ∼ W N (0, σ 2) and |β| < 1.

The spectral density is

mθ (λ) = 2σ 2(1 + β2 − 2β cos 2πλ),

mθ (λ) is strictly increasing (respectively decreasing) if 0 < β < 1 (respec-
tively −1 < β < 0). The inflection point occurs at a constant point:

λ = 0.25 ∀ β

and the corresponding value of the spectral density is

m(0.25) = 2σ 2(1 + β2). �
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12.5 Filtering and Forecasting

12.5.1 Filters

Let {xi , i ∈ T } ⊂ L2 be a weakly stationary process with Eθ (xi ) = 0 which
admits a spectral density mθ (λ). Suppose that the input process xi (treated
as function of time) enters a device and is transformed in such a way that a
new process {yi ; i ∈ T } is obtained. The transformation 	 : R

Z → R
Z that

associates {yi }i∈Z with {xi }i∈Z is called a filter:

yi = 	i

[
xi+ j , j∈Z

]
.

	 is described by the sequence of 	i : R
Z → R, i ∈ Z. If a linear combination

of input functions is associated with the same linear combination of output
functions

yi = 	i

[
xi+ j , j∈Z

]
(12.10)

then the filter is said to be linear. We can express yi in the following way

yi =
∞∑

j=−∞
ϕi j xi+ j .

If a time shift in the input process corresponds to the same time shift at the
output, then the transformation is said to be time invariant and

yi =
∞∑

j=−∞
ϕ j xi+ j .

More generally, the time invariant filter 	i does not depend on i .
If yi is represented by

yi =
∞∑
j=0

ϕi j xi− j ,

i.e., it does not depend on future values of x , then 	 is a realizable linear filter.
Finally, the filter is realizable and time invariant if

yi =
∞∑
j=0

ϕ j xi− j .

If the process xi at the input of the filter 	 admits a spectral representation

Cθ
x (τ ) =

∫
eiλτ Mθ (dλ) ,
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then the process yi admits a spectral representation

Cθ
y (τ ) =

∫
eiλτϕ(λ)Mθ (dλ)

where

ϕ(·) ∈ L2.

It is said that the process Cθ
y (τ ) is obtained from Cθ

x (τ ) by linear transformation.
If x is a stationary process with values in R and if ϕ : R

k+r+1 → R is an
arbitrary measurable function, then the process yi = ϕ(xi−k, . . . , xi+r ) is also
stationary. Starting with a stationary Gaussian process x , one can then construct
an infinity of stationary processes, which in general will not be Gaussian. This
extends to function ϕ of R

Z → R. The transformation y = ϕ(x) is an example
of a nonlinear filter. In contrast, in the absence of time invariance, weak sta-
tionarity is in general not preserved by a filter ϕ(.) of the above type unless ϕ is
linear.

Let {xi , i ∈ T } be a stationary process. Let L : (xi )i∈T −→ (xi−1)i∈T be the
lag operator, such that

L xi = xi−1, ∀ i ∈ T and L j xi = xi− j . (12.11)

Evidently, Lx1 = x0. If T = N, then Lx0 is not defined and L j xi only exists
for j ≤ i . If T = Z, then Lxi is defined for all i .

Let α(L) be a polynomial of degree p in the lag operator L:

α(L) = α0 + α1L + · · · + αp L p

characterized by (α0, α1, . . . , αp). Thus, we have

α(L)xi = (
α0 + α1L + · · · + αp L p

)
xi

= α0xi + α1xi−1 + · · · + αpxi−p.

Theorem 12.4 If {xi , i ∈ T = Z} is weakly stationary, then α(L)xi is also
weakly stationary:⎧⎪⎪⎨⎪⎪⎩

yi = α(L)xi = α0xi + α1xi−1 + · · · + αpxi−p = ∑p
l=0 αl xi−l ,

Eθ ( yi ) = μ
∑p

l=0 αl , since Eθ (xi ) = μ,

Cθ
y (i, j) = ∑p

l,r=0 αlαr Eθ
(
xi × x j

) = Cθ
y (i − j) = Cθ

y (τ ) . �

The set of polynomials forms a ring. We have

deg (P(L) + Q(L)) = max(deg P(L), deg Q(L))

and

deg (P(L)Q(L)) = deg P(L) + deg Q(L),
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but there is no inverse operation since P(L)−1 is not a polynomial. The series
S(L) = P(L)−1 is then introduced. These series pose a convergence problem,
the criteria for convergence are established in Theorem 12.5. The union of these
series and the set of polynomials constitutes a field.

Example 12.3 We show that the inverse of (1 − αL) is necessarily an infinite
series:

(1 − αL)−1
(
β0 + β1L + β2L2 + · · · + βq Lq

) = 1.

Identifying the parameters yields

1 × β0 = 1 ⇒ β0 = 1

−α + β1 = 0 ⇒ β1 = α

β2 − α2 = 0 ⇒ β2 = α2

β3 − α3 = 0 ⇒ β3 = α3.

By induction, we obtain βp+1 = α p+1, and hence the result

1

1 − αL
=

∞∑
m=0

αm Lm .

Under the condition |α| < 1, the series
∑∞

m=0 αm Lm applied to a stationary
process converges. �

Theorem 12.5 If {xi , i ∈ T } is a weakly stationary process, there exists a ϕ j

such that
∑ ∣∣ϕ j

∣∣ < ∞, then:

∞∑
j=−∞

ϕ j xi+ j

converges in L2 to yi , and yi is a weakly stationary process. �

Proof: Using the Cauchy criterion applied to the
∣∣ϕ j

∣∣, it is necessary to show
that lim

n,m

∑m
j=n ϕ j xi+ j converges in L2.∥∥∥∥∥ m∑
j=n

ϕ j xi+ j

∥∥∥∥∥ ≤
m∑

j=n

∣∣ϕ j

∣∣ ∥∥xi+ j

∥∥ = σ (0)
m∑

j=n

∣∣ϕ j

∣∣ .
Now, since by assumption

∑ ∣∣ϕ j

∣∣ < ∞,
∑m

j=n

∣∣ϕ j

∣∣ converges to zero. �

This theorem is also valid if xi is a vector and ϕ j are matrices. In that case,
| ϕ j | represents the norm of ϕ j , i.e., the sum of the absolute values of all
components of ϕ j .
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Corollary 12.2 If 	 (L) = α (L)−1 and if the roots of α (L) are outside the
unit circle, then

∑ ∣∣ϕ j

∣∣ < ∞, α (L)−1 xi defines a second order stationary
process. �

Proof: α (L)−1 = ∑
ϕ j L j converges if

∑ ∣∣ϕ j

∣∣ < ∞. To show this, consider

α (L) = α0

p∏
l=1

(
1 − 1

zl
L

)

α (L)−1 = α−1
0

∏ (
1 − 1

zl
L

)−1

∣∣∣∣ 1

zl

∣∣∣∣ < 1 ⇒ |zl | > 1.

Note that (1 − 1
zl

L)
−1

applied to a stationary process is stationary (see Ex-
ample 12.3). The result follows from successive applications of (1 − 1

zl
L)

−1
,

l = 1, . . . , p to processes that are stationary. �

12.5.2 Linear Forecasting – General Remarks

Let {xi ; i ∈ T } ⊂ L2 be a second order stationary centered stochastic process.
We denote by H x the vector subspace spanned by {xi ; i ∈ T }. For any i ∈ T ,
H x

i is the closed subspace spanned by the random variables xs , s ≤ i and s ∈ T .
The subspace H x

i represents the past and the present (in a linear sense) of the
stochastic process. For all i1 ≤ i2:

H x
i1

⊆ H x
i2
.

Note that

H x
−∞ =

⋂
i∈T

H x
i ,

H x
−∞ represents the past at the infinite horizon.

Definition 12.7 If H x
−∞ = H x

i or, equivalently, if H x
i is the same for all i ∈ T ,

then the stochastic process xi is said to be deterministic. If on the other hand,
H x

−∞ is strictly included in H x
i , then the process is said to be nondeterministic.

Finally, if H x
−∞ = {0}, then xi is said to be purely random. �

To make this definition more explicit, we return to the problem of linear
prediction. Indeed the optimal linear forecast (or prediction) given the past of
x at time i, is obtained by orthogonal projection on H x

i (see Chapter 7). The
problem is to find a predictor for xi+τ at τ periods in the future and this for all
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τ > 0, given the realizations of xs for s ≤ i . The best linear predictor of xi+τ

is the orthogonal projection on H x
i of xi which we denote by

x̂i+τ |i = H x
i xi+τ = E L(xi+τ | xi , xi−1, . . .) = H x

i (H x
i+u xi+τ )

with i ≤ i + u ≤ i + τ , i.e., x̂i+τ |i is the projection of x̂i+τ |i+u on H x
i . The

difference xi+τ − x̂i+τ |i is called the forecast error, which by definition satisfies
the orthogonality condition

(xi+τ − x̂i+τ |i ) ⊥ H x
i . (12.12)

The L2−norm given by

δi (τ ) = ∥∥xi+τ − x̂i+τ |i
∥∥ (12.13)

is called the norm of the linear prediction error. It is independent of i if the
process is weakly stationary.

Theorem 12.6 If {xi , i ∈ T } is a weakly stationary process, then for all τ1, τ2

with 0 < τ1 ≤ τ2:

δ(τ1) ≤ δ(τ2) and δ(τ ) = 0 for τ ≤ 0. (12.14)
�

Proof: Since

xi+τ2− x̂i+τ2|i = xi+τ2− x̂i+τ2|i+τ1
+ x̂i+τ2|i+τ1

− x̂i+τ2|i .

thus: ∥∥xi+τ2
− x̂i+τ2|i

∥∥ = ∥∥xi+τ2
− x̂i+τ2|i+τ1

∥∥ + ∥∥x̂i+τ2|i+τ1
− x̂i+τ2|i

∥∥
because

xi+τ2− x̂i+τ2|i+τ1
⊥ x̂i+τ2|i+τ1

− x̂i+τ2|i

and thus

δ(τ2)2 ≥ δ(τ1)2. �

If the process {xi ; i ∈ T } is deterministic, then

xi+τ ∈ H x
i = H x

−∞, ∀i , τ ∈ Z ⇒ xi ∈ H x
i ⇒ xi = H x

−∞xi ,

which implies that

xi+τ = H x
i xi+τ = x̂i+τ |i .

Conversely, suppose the equality

xi+τ = x̂i+τ |i ∈ H x
τ , ∀τ ≤ τ0.
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holds for all i ∈ T . This implies that

H x
i+τ ⊂ H x

i , ∀i ∈ T and τ > 0.

As a consequence H x
i+τ = H x

i .
The computation of the projection on a infinite dimensional vector space

is in general complex. We state the following theorem which allows us to
approximate this projection on finite dimensional spaces.

Theorem 12.7 The projection of x j , j ≥ i, on H x
i is the limit in the sense of

L2 of the projection of x j on the vector space spanned by {xi , xi−1, . . . , xi−τ }
when τ −→ +∞. �

Theorem 12.8 The stochastic process xi is purely random if and only if
δ2(τ ) → Cθ (0) when τ → +∞. �

Proof: δ(τ ) → Cθ (0) when τ → +∞ since∥∥xi+τ − x̂i+τ |i
∥∥ = ∥∥xi − x̂i | i−τ

∥∥ . (12.15)

Thus ∥∥xi − x̂i | i−τ

∥∥2 → ‖xi‖2 = Cθ (0). �

12.5.3 Wold Decomposition

Let {xi ; i ∈ T } ⊂ L2 be a weakly stationary process. The Wold decomposition
shows that such a process can be represented as the sum of two orthogonal
weakly stationary processes, one purely random and the other purely determin-
istic.

Theorem 12.9 (of Wold) Let {xi ; i ∈ T } be a centered second order weakly
stationary process. It can be rewritten in the following way:

xi = x1i + x2i (12.16)

where {x1i ; i ∈ T } is a second order purely random process and {x2i ; i ∈ T }
is a purely deterministic process. Moreover,

x1i ⊥ x2 j ∀i, j ∈ T (12.17)

and x1i then becomes

x1i =
∞∑

k=0

αk ui−k .
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{ui , i ∈ T } is a sequence of uncorrelated random variables with

Eθ (ui ) = 0, Eθ (u2
i ) = σ 2, α0 = 1, H x1−∞ = H uk−∞, ∀ i

and {αk}∞1 is a sequence of numbers such that

∞∑
k=1

|αk |2 < ∞. �

For the proof, see Brockwell and Davis (1987, Theorem 5.7.1).
The sequence {ui }∞−∞ is often called the sequence of innovations for the

process {xi }∞−∞, for the reason that the ui+1 provide the “new information” that
is necessary to obtain H x

−∞. Indeed,

ui+1 = xi+1 − x̂i+1|i .

Corollary 12.3 A weakly stationary process {xi , i ∈ T } is purely random if
and only if it can be represented by

xi =
∞∑

k=0

γkui−k (12.18)

where {ui , i ∈ T } is a weak white noise and

∞∑
k=0

|γk |2 < ∞. �

The process (12.18) is called an infinite moving average process and admits
a spectral density. This theorem is popular in econometrics.

12.6 Stationary ARMA Processes

12.6.1 Introduction

In this section, we introduce an important class of time series {xi , i ∈ T } using
weak white noise and linear difference equations with constant coefficients.
This additional structure defines a parametric family of stationary processes,
namely the Autoregressive Moving Average (ARMA) processes. This class of
models is very useful to describe the dynamics of time series. For every co-
variance function C(.) such that limτ→∞ C(τ ) = 0, and for all integers k > 0,
it is possible to find an ARMA process with covariance function Cθ (τ ) = C(τ ),
τ = 0, 1, . . . , k. The linear structure of the ARMA processes leads to a very
simple theory of forecasting which we will see later.
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Regarding the presentation of random processes in discrete time, two points
of views can be adopted:

� The most widespread approach starts with a difference (or recurrence) equa-
tion and introduces a noise process that satisfies a set of properties. For
example, suppose

xi = αxi−1 + ui + βui−1

where ui is a noise process. A very large number of processes can generally
be the solution to this equation, and we can ask if we can characterize a
unique solution by adding other properties such as stationarity. We analyze
in particular this solution.

� The second point of view that we adopt does not construct the process xi

but takes it as given and assumes typically that it satisfies stationarity (in
levels, in differences, in deviations from a time trend). Next, representation
assumptions are introduced in the form of stochastic difference equations for
which we want to estimate the parameters and which we can use, for example,
for forecasting.

12.6.2 Invertible ARMA Processes

Definition 12.8 (ARMA (p, q) processes) Let {xi , i ∈ T } be a stationary
stochastic process (respectively weakly stationary). We say that {xi , i ∈ T } is
a strong (resp. weak) ARMA (p, q) process if there exists a strong (resp. weak)
white noise {ui , i ∈ T } and real numbers α1, . . . , αp, β1, . . . , βq such that

xi − α1xi−1 − · · · − αp xi−p = ui +β1ui−1+ · · · +βqui−q . (12.19)

�

The weak white noise is justified in terms of the representation of the process
in L2, but the asymptotic theory is easier to develop in the setting of strong
ARMA(p, q) processes.

We can rewrite (12.19) more compactly by using the linear transformation
that is given by the lag operator

α(L) xi = β(L) ui , i ∈ T (12.20)

where α(L) and β(L) are polynomials in the lag operator of degrees p and q,
i.e.,

α(z) = 1 − α1z − · · · − αp z p (12.21)

and

β(z) = 1 + β1z + · · · + βq zq . (12.22)
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We can note that in general the linear spaces H x and H u do not coincide. In the
sequel, we provide regularity conditions on the model that assure the equality
of theses two spaces.

Two particular cases are commonly used, those where either q or p is equal
to zero.

If α(z) = 1, then

xi = β(L) ui (12.23)

and the process is called Moving Average of order q (M A(q)). Recall that β0 = 1
and β j = 0 for all j > q. The moments of the process satisfy

Eθ (xi ) =
q∑

j=0

β j Eθ (ui− j ) = 0

and ∀τ ≥ 0

Cθ (τ ) =

∣∣∣∣∣∣∣
σ 2

q−τ∑
j=0

β jβ j+τ if τ ≤ q,

0 if τ > q.

If β(z) = 1, then

α(L) xi = ui (12.24)

and the process is called Autoregressive of order p (AR(p)).
Consider the AR(1) process

xi = ui + α1 xi−1 = (1 − α1L)−1 ui . (12.25)

Iterating (12.25), we obtain

xi = ui + α1ui−1 + α2
1 xi−2

= · · ·
= ui + α1ui−1 + · · · + αk

1 ui−k + αk+1
1 xi−k−1.

Thus, if |α1| < 1,

xi =
∞∑
j=0

α
j
1 ui− j (12.26)

is well defined, converges, is stationary and is the solution of Equation (12.25).
Theorem 12.4 implies

Eθ (xi ) =
∞∑
j=0

α
j
1 Eθ

(
ui− j

) = 0
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and

Cθ (τ ) = lim
n→∞ Eθ

[(
n∑

j=0

α 
j
1 ui+τ− j

) (
n∑

k=0

αk
1ui−τ

)]

= σ 2α
|τ |
1

∞∑
j=0

α
2 j
1

= σ 2α
|τ |
1

(1 − α2
1)

.

In the case where |α1| > 1, the series (12.26) does not converge in L2. However,
we can rewrite (12.25) in the following way

xi = −α−1
1 ui+1 + α−1

1 xi+1. (12.27)

Iterating (12.27), we obtain

xi = −α−1
1 ui+1 − α−2

1 ui+2 + α−2
1 xi+2

= · · ·
= −α−1

1 ui+1 − · · · − α−k−1
1 ui+k+1 + α−k−1

1 xi+k+1

which shows that

xi = −
∞∑
j=1

α
− j
1 ui+ j . (12.28)

(12.28) is well defined and is the unique stationary solution of (12.25). In this
case, Equation (12.25) does not define the distribution of xi given the past;
in particular the ui are not the innovations of the process, and the conditional
expectation of xi given the past is not α1xi−1. Solution (12.28) is a forward
solution conditioning on the future. The case where α1 = 1 will be examined
later on.

Definition 12.9 A stationary process admits a canonical ARMA(p, q) repre-
sentation if it satisfies Definition 12.8 and

� αp 	= 0, βq 	= 0,
� the polynomials α(z) and β(z) have their roots outside the unit circle,
� α(z) and β(z) do not have any roots in common. �

If {xi , i ∈ T } is a stationary process with a canonical ARMA(p, q) represen-
tation

α(L) xi = β(L) ui , i ∈ T
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then, using Theorem 12.4 it follows that:

1. {xi , i ∈ T } admits an M A(∞) representation

xi = β(L)

α(L)
ui =

∞∑
j=0

ψ j L j ui =
∞∑
j=0

ψ j ui− j , ψ0 = 1.

2. {xi , i ∈ T } admits a AR(∞) representation

α(L)

β(L)
xi =

∞∑
j=0

π j L j xi =
∞∑
j=0

π j xi− j , π0 = 1.

This property is called invertibility.
3. {xi , i ∈ T } admits an innovation process {ui , i ∈ T }.
In the following, we only consider ARMA(p, q) processes in their canonical

form.
The first property that we can state is H u = H x . We have u j ∈ H x

i , and in
particular H x

i = H u
i , and x j ∈ H u

i for j ≤ i.
The canonical ARMA(p, q) process is purely random as we show with the

decomposition of the M A (∞) process.

12.6.3 Computing the Covariance Function of an ARMA(p, q) Process

The autocorrelation function provides information about the intertemporal de-
pendence.

Theorem 12.10 The autocovariance function of a process {xi , i ∈ T } that has
a ARMA(p, q) representation is such that

Cθ (τ ) +
p∑

j=1

α j C
θ (τ − j) = 0, ∀τ ≥ q + 1. �

Proof: Let

xi +
p∑

j=1

α j xi− j = ui +
q∑

j=1

β j ui− j .

Multiplying each side by xi−τ , τ ≥ q + 1, and taking expectation, we obtain

Cθ (τ ) +
p∑

j=1

α j C
θ (τ − j) = Covθ

(
xi−τ , ui +

q∑
j=1

β j ui− j

)
= 0.

Thus, the sequence of covariances satisfies a recurrence equation of order p
from q + 1 on. This relationship does not yet enable us to determine all values
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C(τ ), since we still need initial conditions. These first values of the autocovari-
ance function can be determined through the expansion of the infinite moving
average:

Cθ (τ ) +
p∑

j=1

α j C
θ (τ − j) = Covθ

(
ui +

q∑
j=1

β j ui− j ,

∞∑
j=0

uτ− j−h

)
.

By using this relationship, the recurrence equation and the fact that Cθ (τ ) =
Cθ (−τ ), we can obtain all values of the autocovariance function. �

Example 12.4 ARMA(1, 1) model. Consider the representation

xi + α1xi−1 = ui − β1ui−1, |α1| < 1, |β1| < 1.

For α1 = β1, we have xi = ui . For α1 	= β1,

Cθ
x (τ ) = α1Cθ

x (τ − 1) + Cθ
ux (τ ) − β1Cθ

ux (τ − 1).

Suppose τ = 1, then

Cθ
x (1) = α1Cθ

x (0) + Cθ
ux (1) − β1Cθ

ux (0)

= α1Cθ
x (0) − β1Cθ

ux (0).

For τ = 0,

Cθ
x (0) = α1Cθ

x (−1) + Cθ
u (0) − β1Cθ

ux (−1)

and

Cθ
ux (1) = α1Cθ

ux (0) − β1Cθ
u (0),

hence the autocorrelation function

ρ (0) = 1

ρ (1) = (1 − α1β1) (α1 − β1)

1 + α2
1 − 2α1β1

...

ρ (τ ) = α1ρ (τ − 1) . �

12.6.4 The Autocovariance Generating Function

If {xi , i ∈ T } is a stationary process with autocovariance function Cθ
x (.), then

the autocovariance generating function is defined by

Gθ
x (z) =

∞∑
τ=−∞

Cθ
x (τ ) zτ (12.29)
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if the series converges for all z. In this case the autocovariance generating
function is easy to calculate, the autocovariance at lag τ is determined by
identifying the coefficient of zτ or z−τ . Clearly, {xi } is white noise if and only
if the autocovariance generating function G(z) is constant for all z. If

xi =
∞∑

j=−∞
ψ j ui− j , {ui } ∼ W N (0, σ 2) (12.30)

and if
∞∑

j=−∞

∣∣ψ j

∣∣ z j < ∞, (12.31)

then the autocovariance generating function takes on a very simple form. It is
easily seen that

Cθ
x (τ ) = Cθ

x (xi+τ , xi ) = σ 2
∞∑

j=−∞
ψ jψ j+|τ |

and that

Gθ
x (z) = σ 2

∞∑
τ=−∞

∞∑
j=−∞

ψ jψ j+|τ |zτ

= σ 2

[ ∞∑
j=−∞

ψ2
j +

∞∑
τ=1

∞∑
j=−∞

ψ jψ j+τ

(
zτ + z−τ

)]

= σ 2

( ∞∑
j=−∞

ψ j z j

) ( ∞∑
h=−∞

ψτ z−τ

)
.

Defining

ψ (z) =
∞∑

j=−∞
ψ j z j ,

we can write

Gθ
x (z) = σ 2ψ (z) ψ

(
z−1

)
.

Example 12.5 Consider the following M A(2) process

xi = ui + θ1ui−1 + θ2ui−2

with the usual assumption on the ui . Then

Gθ
x (z) = σ 2(1 + θ1z + θ2z2)(1 + θ1z−1 + θ2z−2)

= σ 2[(1 + θ2
1 + θ2

2 ) + (θ1 + θ1θ2)(z + z−1) + θ2(z2 + z−2)]
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hence

Cθ
x (0) = σ 2(1 + θ2

1 + θ2
2 )

Cθ
x (±1) = σ 2(θ1 + θ1θ2) = σ 2θ1(1 + θ2)

Cθ
x (±2) = σ 2θ2

...

Cθ
x (τ ) = 0 for |τ | > 2. �

12.6.5 The Partial Autocorrelation Function

Like the autocorrelation function, the partial autocorrelation function (pacf)
contains important information about the serial dependence of the stationary
process. Like the autocorrelation function, it only depends on the second order
properties of the process.

Theorem 12.11 (Frisch and Waugh) The partial autocorrelation function
κθ (τ ) of a stationary process is defined by

κθ (1) = corr θ (x2, x1) = ρθ (1)

and

κθ (τ ) = corr θ
(
xi − H x

i−1,τ−1xi , xi−τ − H x
i−1,τ−1xi−τ

)
where H x

i−1,τ is the history of length τ up to i − 1, i.e., the finite dimensional
vector space spanned by {xi−1, . . . , xi−1−τ }. Since the process is stationary,
we can write it for τ + 1 obtaining

κθ (τ ) = corr θ
(
xτ+1 − H x

τ,τ−1xτ+1, x1 − H x
τ,τ−1x1

)
where

H x
τ,τ−1xτ+1 and H x

τ,τ−1x1

are the projections of xi+τ and xi on the subspace spanned by {xi+1, . . . , xi+τ } .

The partial autocorrelation κθ (τ ), τ ≥ 2, is thus the correlation between two
residuals that are obtained after regressing xτ+1 and x1 on the intermediate
observations x2, . . . , xτ . �
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Considering the theorem of Frisch and Waugh, we can provide an equivalent
definition of the partial autocorrelation function.

Let {xi , i ∈ T } be a stationary process with covariance function C(.) such
that C(τ ) → 0 when τ → ∞. Suppose that the ψτ j , j = 1, . . . , τ , and τ =
1, 2, . . . , are the coefficients in the following representation

xτ+1 =
k∑

j=1

ψτ j xτ+1− j .

Then, from the equations

〈
xτ+1 − H x

i,τ xτ+1, x j

〉 = 0, j = τ, . . . , 1,

we obtain

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ρ(0) ρ(1) ρ(2) · · · ρ(τ − 1)

ρ(1) ρ(0) · · · ρ(τ − 2)

ρ(2) ρ(0) · · ·
...

...
...

...

ρ(τ − 1) ρ(τ − 2) · · · ρ(0)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

φτ1

φτ2

φτ3

...

φττ

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ρ(1)

ρ(2)

ρ(3)

...

ρ(τ )

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, τ ≥ 1

(12.32)

with ρ(0) always equal to 1.

Definition 12.10 The partial autocorrelation κθ (τ ) of {xi } at lag τ is

κθ (τ ) = φττ , τ ≥ 1

where φττ is uniquely determined by (12.32). �

In general, the φττ , τ ≥ 1 are obtained as the ratio of two determinants, the
determinant in the numerator has the same elements as the determinant in the
denominator, except that the last column is replaced by the ρ (τ ) .
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Example 12.6 For τ = 1, 2, 3 . . . , we have

φ11 = ρ(1)

φ22 =

∣∣∣∣∣ 1 ρ(1)

ρ(1) ρ(2)

∣∣∣∣∣∣∣∣∣∣ 1 ρ(1)

ρ(1) 1

∣∣∣∣∣
= ρ(2) − ρ(1)2

1 − ρ(1)2

φ22 =

∣∣∣∣∣∣∣
1 ρ(1) ρ(1)

ρ(1) 1 ρ(2)

ρ(2) ρ(1) ρ(3)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
1 ρ(1) ρ(2)

ρ(1) 1 ρ(1)

ρ(2) ρ(1) 1

∣∣∣∣∣∣∣
. �

For an autoregressive process of order p, the φττ are non-zero for τ ≤ p and
zero for τ > p, and for a moving average process of order q, the autocorrelation
function goes to zero with an exponential decay rate.

12.7 Spectral Representation of an ARMA(p,q) Process

Theorem 12.12 Let {xi ; i ∈ T } be a centered stationary process such that

xi =
∞∑
j=0

ψ j ui− j where
∞∑
j=0

∣∣ψ j

∣∣ < ∞,

and | ψ j | represents the norm of ψ j .
Then

{xi ; i ∈ T }
is stationary with spectral distribution function

Fx (λ) =
∣∣∣∣∣ ∞∑

j=0

ψ j e−i jλ

∣∣∣∣∣
2

Fu (λ) , −π ≤ λ ≤ π.

where Fu (λ) is the spectral distribution function of {ui ; i ∈ T } (here “i” is
evidently the imaginary number satisfying i2 = −1). �

Applying this theorem, we can determine the spectral density of any
ARMA (p, q) process.
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Theorem 12.13 Let {xi ; i ∈ T } be an ARMA(p, q) process satisfying

α (L) xi = β (L) ui , ui ∼ W N
(
0, σ 2

)
.

Then, the spectral density of {xi ; i ∈ T } is

fx (λ) = σ 2
∣∣β (

e−iλ
)∣∣2

2π
∣∣α (

e−iλ
)∣∣2

, −π ≤ λ ≤ π,

where || represents the modulus of a complex number. �

Example 12.7 (the ARMA(1, 1) process) The spectral density of the
ARMA(1, 1) process defined by

(1 − αL)xi = (1 − βL)ui , ui ∼ W N (0, σ 2) and |β| < 1, |α| < 1,

is

fx (λ) = 2σ 2
u

1 + α2 − 2β cos 2πλ

1 + β2 − 2α cos 2πλ
.

If β < α (respectively α < β), then the spectral density is decreasing (respec-
tively increasing). �

Since the spectral density of an ARMA process is a ratio of trigonometric
polynomials, it is a rational function of e−iλ.

Theorem 12.14 A stationary process {xi , i ∈ T } is an ARMA process that
admits a spectral density if and only if {xi , i ∈ T } has a rational spectrum. �

12.8 Estimation of ARMA Models

Modeling a stationary time series by an ARMA(p, q) requires the resolution of
numerous interdependent problems. This includes the choice of p and q, and
the estimation of the remaining parameters, i.e., the coefficients{

αi , β j , i = 1, . . . , p, j = 1, . . . , q
}

and the variance σ 2, for given values of p and q.
This part is essentially dedicated to the estimation of the parameters α =

(α1, . . . , αp)′, β = (β1, . . . , βq )′ and σ 2 for fixed values of p and q.

12.8.1 Estimation by the Yule-Walker Method

Let {xi }i∈T be a centered strong AR(p) process that thus satisfies

xi − α1xi−1 − · · · − αpxi−p = ui with ui ∼ i.i.d.(0, σ 2). (12.33)
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Multiplying (12.33) by xi− j ( j = 0, . . . , p) and taking the expectation leads
to the Yule-Walker equation

�θ
pα = Cθ

p (12.34)

where �θ
p is the variance-covariance matrix (Cθ (i − j))i, j=1,...,p of p realiza-

tions of the process xi and Cθ
p = (Cθ (1), . . . , Cθ (p))′. This is Theorem 12.10

in matrix notation. The intuitive idea for estimation by Yule-Walker consists in
replacing C(τ ) by its empirical estimator

Ĉ(τ ) = 1

n

n∑
i=1

xi−τ xi , 0 ≤ τ ≤ p. (12.35)

It is assumed that the process is observed between −p + 1 and n. We then
compute the estimators �̂pn and Ĉ pn of �p and of C p. Replacing �p and C p in
(12.34) by these estimators, we obtain the estimator

α̂n = �̂−1
pn Ĉ pn (12.36)

where we assumed the invertibility of the matrix �p (which implies the invert-
ibility of �̂pn for n sufficiently large).

This estimator can also be considered as moment estimator. Indeed, let

ψ(xi , . . . , xi−p, λ)

=

⎛⎜⎝ xi−1

...
xi−p

⎞⎟⎠ (xi − λ1xi−1 − · · · − λpxi−p) =

⎛⎜⎝ xi−1

...
xi−p

⎞⎟⎠ ui

and consider the equation

Eθ (ψ(xi , . . . , xi−p, λ)) = 0 (12.37)

with λ = (λ1, . . . , λp)′. The specification assumption for the process xi (AR(p)
with coefficients α) implies that the solution λ(θ ) of this equation is the vector
α. This moment condition can be understood in the following way: the AR(p)
assumption means that

xi −
p∑

j=1

α j xi− j

is orthogonal to the elements of the process H x
i−1 and thus orthogonal to

xi−1, . . . , xi−p. It follows that

Eθ

([
xi −

∑
j

α j xi− j

]
.xi−l

)
= 0, for all l = 1, . . . , p,
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which implies (12.37). With a finite sample, this condition becomes

1

n

n∑
i=1

ψ(xi , . . . , xi−p, λ) = 0

for which the solution λ̂n is clearly equal to the estimator α̂n that we previously
introduced. Thus we have:

Theorem 12.15 The estimator α̂n is consistent (in almost sure sense) and
satisfies

√
n(̂αn − α) → N (0, σ 2�−1

p )

where σ 2 = Var(ui ). �

Proof: The argument for consistency is based on Theorem 3 in Chapter 2
noting that a strong stationary AR(p) process is ergodic and therefore satisfies
the strong law of large numbers. We also note, that under the assumption of
correct specification α is the unique solution to the asymptotic moment condi-
tion. The normality result rests on the application of the central limit theorem
for AR(p) processes. This possibility derives from the fact that these processes
satisfy near epoch dependence (NED) (see Chapter 1). Indeed, they can be
represented in M A form which implies NED. To use Theorem 3 in Chapter 2,
we have to calculate the asymptotic variance of

√
n

n

n∑
i=1

ψ(xi , . . . , xi−p, α),

that is
∞∑

j=−∞
Covθ

(
ψ(xi , . . . , xi−p, α), ψ(xi+ j , . . . , xi+ j−p, α)

)
.

Even though there is temporal dependence, the covariances are zero for j 	= 0.

Indeed, for j > 0:

Covθ (ψ(xi , . . . , xi−p, α), ψ(xi+ j , . . . , xi+ j−p, α))

= Eθ

⎡⎢⎢⎢⎣ui ui+ j

⎛⎜⎜⎜⎝
xi−1

...

xi−p

⎞⎟⎟⎟⎠ (
xi−1 · · · xi−p

)
⎤⎥⎥⎥⎦

= Eθ

⎡⎢⎢⎢⎣ui

⎛⎜⎜⎜⎝
xi−1

...

xi−p

⎞⎟⎟⎟⎠(
xi−1 · · · xi−p

)
Eθ

(
ui+ j | xi+ j−1, xi+ j−2, . . .

)
⎤⎥⎥⎥⎦ .
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This last conditional expectation is zero, since by assumption the ui+ j is the
innovation in xi+ j , and thus the covariance is zero. The same argument can be
applied to the case when j < 0. For j = 0, we have

Varθ
(
ψ(xi , . . . , xi−p, α)

)
= Eθ

⎡⎢⎣u2
i

⎛⎜⎝ xi−1

...
xi−p

⎞⎟⎠ (
xi−1 · · · xi−p

)⎤⎥⎦ = σ 2�p.

Moreover,

Eθ

(
∂ψ

∂λ′

)
= −�−1

p ,

hence the result. �

The empirical estimator of �p is consistent because of ergodicity. σ 2 is
estimated by

σ̂ 2
n = 1

n

∑ (
xi −

p∑
j=1

α̂ jn xi− j

)2

= Ĉn(0)
[
1 − ρ̂n(p)R̂−1

pn ρ̂n(p)
]

where

R̂pn = Ĉ−1
n (0)�̂pn

and

ρ̂n(p) = Ĉn(p)/Ĉn(0).

Consistency of σ̂ 2
n can be easily verified. The asymptotic variance of α̂n

can thus be estimated by σ̂ 2
n �̂−1

pn . This result is the same as the usual vari-
ance of the least squares estimator of the coefficients α (minimization of∑n

i=1(xi − ∑p
j=1 α j xi+ j )

2).
There also exist other methods based on the minimization of the sum of

squared residuals and on the maximization of the likelihood function. We apply
MLE in the multivariate setting in the following section.

12.8.2 Box-Jenkins Method

A process {xi }, i ≥ 0, is said to admit an ARMA representation if it satisfies an
equation of the type

α(L)xi = β(L)ui , i ∈ T
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with

α(L) = α0 + α1L + · · · + αp L p, α0 = Id , αp 	= 0

β(L) = β0 + β1L + · · · + βp L p, β0 = Id , βp 	= 0

where the variables x−1, . . . , x−p, u−1, . . . , u−p are assumed to be uncorrelated
with u0, . . . , ui and where the process {ui }, i ≥ 0, is a white noise with vari-
ance �.

Among all nonstationary processes that admit an ARMA representation, the
most important are Autoregressive Integrated Moving Average ARIMA. The
ARIMA(p, d, q) processes form a class of models that can represent nonsta-
tionary processes or difference stationary processes. This class of models has
been extensively used by Box and Jenkins because the nature of the nonstation-
arity (whether deterministic or random) is not taken into account, stationarity
is achieved through application of the difference operator.

Definition 12.11 A process {xi }, i ≥ 0, admits an ARIMA representation if it
satisfies a difference equation of the following type

α(L)xi = β(L)ui , i ∈ T

and

� α(z) has all roots outside the unit circle
� β(z) has all roots outside the unit circle, except for some which are on the

unit circle. �

Such processes are used in the following case. Consider the first difference
operator

�xi = xi − xi−1

and suppose that the autoregressive polynomial can be written as

α(L) = ϕ(L)�d

where the polynomial ϕ(L) is such that ϕ(L) has only roots outside the unit
circle. The model becomes

ϕ(L)�d xi = β(L)ui , i ≥ 0

If the degree of ϕ(L) is p and the degree of β(L) is q, then the process admits
an ARIMA(p, d, q) representation.

Theorem 12.16 If {xi , i ∈ T } is an ARIMA(p, d, q) process, then the function
μ = Eθ (xi ) is the solution to the recurrence equation α(L)Eθ (xi ) = 0, i ≥ 0,

with initial values Eθ (x−τ ), τ = 1, . . . , p + d. �



P1: OSO/OVY P2: OSO/OVY QC: OSO/OVY T1: OSO

Ecoeok CUFX117-Florens 0521876407 April 22, 2007 14:6

288 Econometric Modeling and Inference

Since α(L) = (1 − L)dϕ(L), the characteristic polynomial of the difference
equation that is satisfied by μ is (1 − z)d z pϕ(z−1), for which the d roots are
equal to 1 and the remaining roots have moduli smaller than 1. Consequently,
μ is asymptotically equivalent to a polynomial in i of degree d − 1.

Note that we can, of course, put xi also in a moving average and in an auto-
regressive form.

Forecasting with the Box-Jenkins Method

Box and Jenkins (1970) proposed a general approach to forecasting univariate
time series. This approach considers ARI M A process in the form

ϕ(L)�d xi = μ + β(L)ui

under the usual assumption on the lag polynomials and the noise. The regression
coefficients depend on the parameters of the model, that need to be estimated.
Box and Jenkins distinguish two types of parameters:

� the integer parameters (p, d, q), where p and q represent the order of the lag
polynomials and d is the degree of differentiation that is necessary to make
the process stationary,

� the parameters ϕi and β j of the lag polynomials and the variance of the noise.

The Box-Jenkins approach is outlined in the following way:

� An identification stage when we look for plausible values of p, d, and q using
the autocorrelation and the partial autocorrelation function. In this phase, M
models with possible (pi , di , qi ) are retained.

� For each of these models, we estimate the remaining parameters ϕi , β j , and
σ 2. At the end of this estimation stage, we have several models which we
need to validate.

� In the validation stage, we are interested in a number of specification tests
on the parameters and the distributions. This stage refers to validation since
a number of models will be naturally eliminated.

� The remaining models have in general very similar statistical properties. We
will keep one of these models using information criteria with the underlying
idea of minimizing the forecast error.

� We then proceed to the forecasting stage, using the theoretical formula for
forecasting but replacing the unknown parameters by their estimates.

This approach is summarized in Figure 12.1.
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Identification (acf, pacf)

↓
Estimation (OLS, MLE)

↓
Control and diagnostic
(analysis of residuals)

↓
Is the model acceptable?

↓
↙ ↘

if no if yes

↓ ↓
Return to the Use the model

first stage for forecasting

Figure 12.1. Box-Jenkins approach flow chart

12.9 Multivariate Processes

So far we only considered univariate processes, that is the evolution over time
of a single random variable. In practice, we generally have simultaneously
observations available for several variables, and the interest lies in studying
how they evolve over time and especially how and with which lag they interact
with each other. We therefore generalize the preceding results for stochastic
real scalar processes and extend them to the case of stochastic vector processes.
As in the univariate case, we restrict ourselves to time series that admit a linear
representation as a function of a white noise.

12.9.1 Some Definitions and General Observations

Definition 12.12 (Stochastic vector process) A stochastic real vector pro-
cess xi = (x1i , . . . , xmi )

′ in discrete time is a family of real random variables
{xi ; i ∈ T }. As in the univariate case, we consider in the following T ⊆ Z. �

This process has m components x j , j = 1, . . . , m, each of which constitutes
a stochastic process in the sense of Definition 12.2. In the following, we assume
that these components are weakly stationary.
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Definition 12.13 (Weak stationarity) A vector process with m components
(xi ; i ∈ T ) is said to be weakly stationary if:

(i) Eθ
(‖xi‖2

)
< ∞, ∀i ∈ Z, where ‖xi‖2 = xi x ′

i .

(ii) Eθ (xi ) = μ, ∀i ∈ Z with μ ∈ R
m .

(iii) ∀i, τ ∈ Z

Cθ (i, j) = �θ (i, j) = Eθ
[(

xi − Eθ (xi )
) (

x j − Eθ
(
x j

))′]
= �θ (i + τ, j + τ ) = Cθ (0, i − j)

and we set

�θ (τ ) = [
Covθ

(
xg,i , x j,i+τ

)]
i≤g≤m, j≤g≤m

where �θ (τ ) is a real m × m matrix. �

If xi is a stationary vector process with m components, then each of the m
components is also stationary. The converse is obviously not true, stationar-
ity of each of the m components implies that for j = 1, . . . , m, Eθ (x ji ), and
Covθ (x ji , x ji+τ ) are independent of i for any τ , but it does not imply that the
covariances between two distinct components g and j , Covθ (xgi , x ji+τ ), for
g 	= j with g = 1, . . . m and j = 1, . . . , m, are independent of i .

Analogously to the scalar case, a white noise is defined by:

Definition 12.14 (Vectorial white noise) A stationary vector process
{ui ; i ∈ T } is called a vectorial weak white noise process with variance-
covariance matrix � (denoted by ui ∼ W N (0, �)) if:

(i) Eθ (ui ) = 0

(ii) �θ (τ ) =
∣∣∣∣∣� if τ = 0

0 if τ 	= 0

where � is a real symmetric positive definite m × m matrix.

If ui is i.i.d., the white noise is said to be a strong white noise. �

Definition 12.15 (Multivariate ARMA(p, q) process) Similarly to the uni-
variate case, a centered stationary vector process with m components
{xi , i ∈ T } is a ARMA(p, q) process if it is the solution of

xi − α1xi−1 − · · · − αpxi−p = ui + β1ui−1 + · · · + βqui−q (12.38)

where the αi and βi are now square matrices of dimension m and ui ∼
i.i.d. (0, �). �
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Definition 12.16 (Canonical multivariate ARMA(p, q)) The centered sta-
tionary vector process {xi , i ∈ T } is a canonical multivariate ARMA(p, q) pro-
cess if it is the solution of (12.38) and if

(i) det α (z) 	= 0 for all z ∈ C such that |z| < 1,

(ii) det β(z) 	= 0 for all z ∈ C such that |z| < 1,

(iii) α(z) and β(z) do not have any roots in common,
(iv) αp 	= 0 and βq 	= 0. �

Depending on whether ui is a weak white noise or is i.i.d., the canonical
representation is either weak or strong. As in the univariate case, (12.38) can
be rewritten in the compact form

α(L)xi = β(L)ui (12.39)

where α and β are matrix polynomials of the lag operator L with highest degrees
p and q .

As in the univariate case, if the polynomials det α(z) and det β(z) have roots
with modulus larger than 1 then we can write it as

xi =
+∞∑
j=0

ψ j ui− j with ψ0 = I,
+∞∑
j=1

∥∥ψ j

∥∥ < ∞ (M A(∞) form)

(12.40)

and

ui =
+∞∑
j=0

π j xi− j with π0 = I,
+∞∑
j=1

∥∥π j

∥∥ < ∞ (AR (∞) form)

(12.41)

where the ψ j and the π j are square matrices of dimension m.
Also as in the scalar case, we note that ui is the residual of the linear re-

gression of xi on the past values xi−1, xi−2. . . The linear regression of xi is the
projection of the components of xi on the closed vector subspace spanned by
the components of x j , j ≤ i − 1. The vector ui is the vector of innovations
of the process xi at date i. Indeed, the closed subspaces of L2 spanned by the
coordinates of {u j } j≤i and {x j } j≤i are identical, and the coordinates of ui+1

are orthogonal to these subspaces. In the following, except for forecasting, we
assume the the vector ARMA process is in its canonical form.

If q = 0, then the process reduces to a vector autoregressive process of order p
(denoted AR(p)). Similarly, if p = 0, we have a vector moving average process
of order q (denoted M A(q)). Although the form of a multivariate ARMA model
closely resembles the form of a univariate ARMA model, the multivariate models
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have a complex structure. Indeed the equation for each component xgi , g =
1, . . . , m, does not include only the lags of xgi (as well as of u ji ), but also the
lagged values of other components x ji , j = 1, . . . , m, with j 	= g.

The representation corresponding to the identification condition β0 = I ,
α0 = I , and unrestricted � is called the reduced form. If we substitute a con-
straint � = Im on the variance covariance matrix �, then we obtain a represen-
tation with white noise and orthonormal components. We obtain this by writing
ζt = η−1ui where η is a nonsingular matrix that satisfies ηη′ = �. Then, we
rewrite (12.39) in terms of the new white noise process ζt . However the preced-
ing equation does not determine η in a unique way, unless a condition that η is
a lower triangular matrix is imposed. The matrix η is the factor in the Cholesky
decomposition of �. Thus, an alternative to the reduced form is the condition
� = Im and α0 is a lower triangular matrix. This representation is sometimes
called structural form. To find a representation in the form of dynamic simul-
taneous equations, it is necessary to impose restrictions on α (L) , β (L) , and
�. We treat this question in more detail in Part 4 of this book.

12.9.2 Underlying Univariate Representation of a Multivariate Process

From a multivariate model, it is possible to extract the univariate models cor-
responding to each variable.

Theorem 12.17 Consider a canonical vector ARMA model

α (L) xi = β (L) ui , ui ∼ i.i.d. (0, �) . (12.42)

This model can be rewritten in the form

det α (L) xi = β◦ (L) ui (12.43)

with β◦ (L) = α∗ (L) β(L), where α∗ (L) is the adjoint matrix of α (L) (trans-
posed matrix of cofactors). The univariate processes are given by the represen-
tation

det α (L) xi = β̃ (L) ζt with ζt ∼ W N (0, �0) (12.44)

where β̃ (L) is a diagonal matrix of lag polynomials, ζt is the vector of univariate
innovations and �0 is a positive diagonal matrix. �

Proof: Since α (L) xi = β (L) ui is assumed to be canonical and thus in-
vertible, we can write it in the form

xi = α (L)−1 β (L) ui

with α (L)−1 = α∗(L)
det α(L)

; by setting β◦ (L) = α∗ (L) β(L), we obtain (12.43).
Starting with the representation (12.43), each element of β◦ (L) ui is a sum

of moving average processes. We can represent this sum by a moving average
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process and do this for each element of β◦ (L) ui , thus the representation
(12.44). �

The gth equation of (12.44) is given by

det α (L) xgi = β̃i (L) ζgi (12.45)

where β̃ (L) is the gth row of β̃ (L).
It can be seen that each univariate representation has an ARMA form. This

is true even if (12.42) is restricted to be a vector autoregressive process
(α (L) = Im). In contrast, if (12.42) is a moving average process, then the prob-
lem requires only the orthogonalization of the white noise vector to obtain the
univariate representations (which are then also moving average processes).

The parameters and order of the lag polynomial of the autoregressive part
of each univariate representation are in general the same, with the possible
exception of common factors in det α (L) and θ̃g (L).

β̃ (L) is determined with the following procedure.
Denote by βg , g = 1, . . . , m, the gth component of the vector α∗ (L) β (L) ui

(part of the right side of (12.43)). This component βg is the sum of moving
averages:

βg =
m∑

j=1

β
j
g (L) u ji

where β
j
g is the j th moving average, j = 1, . . . , m, of the gth row of

φ∗ (L) θ (L) ui .
To find the finite moving average process that represents this sum, we compute

the covariance generating function Gg (z) of β j .
This function is the sum of the covariance generating functions of the β

j
g ,

j = 1, . . . , m, and all the cross-covariance generating functions ofβ
j
gβ

j
k , j, k =

1, . . . , m, j 	= k. This can be written in the form

Gg (z) =
m∑

j=1

β
j
g (z) β

j
g

(
z−1

)
σ 2

j j

+
m−1∑
j=1

m∑
k= j+1

[
β

j
g (z) β

j
k

(
z−1

) + β
j
k (z) β

j
g

(
z−1

)]
σ 2

jk .

Once we know the covariance generating function Gg(z) of �g , we can deter-
mine a moving average process, which is an element of the class of processes
that has Gg(z) as covariance generating function, by means of the innovation
algorithm for example.
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12.9.3 Covariance Function

The Yule-Walker equations for a VAR(p) process are obtained by post-
multiplying xi by xi−τ and taking expectations. For τ = 0, and taking into
account that Cθ (τ ) = Cθ (−τ )′, we have

Cθ (0) = α1Cθ (−1) + · · · + αpCθ (−p) + �u

(12.46)

= α1Cθ (1)′ + · · · + αpCθ (p)′ + �u

and for τ > 0

Cθ (τ ) = α1Cθ (τ − 1) + · · · + αpCθ (τ − p). (12.47)

These equations can be obtained by recursively computing the Cθ (τ ) for τ ≥ p
if α1, . . . , αp and Cθ (τ − 1), . . . , Cθ (0) are known.

Example 12.8 Consider the VAR(1) representation of the process {xi , i ∈ T }:
xi = αxi−1 + ui , ui ∼ W N (0, �).

Thus, we have for τ = 0

Cθ (0) = αCθ (−1) + � = αCθ (1)′ + �

and for τ > 0

Cθ (τ ) = αCθ (τ − 1). (12.48)

These are the Yule-Walker equations. If α and Cθ (0) are known, then we can
recursively calculate Cθ (τ ) using (12.48). �

In general, the covariances depend on the measurement units of the variables
in the system and are sometimes difficult to interpret. The correlation functions
are more practical.

12.10 Interpretation of a VAR(p) Model Under Its M A(∞ ) Form

12.10.1 Propagation of a Shock on a Component

We are interested in a process with white noise with orthonormal components,
as this allows us to analyze the way in which a shock on a variable in the model
propagates over time. Consider a representation of the form (12.39) that satisfies
� = Im and β0 is lower triangular. Its MA(∞) form is written as

xi =
+∞∑
j=0

ψ j ui− j with ui ∼ i.i.d. (0, Im) (12.49)
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where ψ j = (ψ
gk
j )g,k=1,...,r are square matrices of dimension m.

The ug
i , g = 1, . . . , m, are orthogonal to each other, and the gth component

of xi becomes

xgi =
+∞∑
j=0

m∑
k=0

ψ
gk
j ui− j . (12.50)

A unit shock on uk
0, i.e., on xk0, propagates to the component xg as shown in

(12.50) and changes xgi by ψ
gk
j . The sequence of the ψ

gk
j represents the impulse

response of xg to a unit shock on xk0. The amount of change in xi at period n
is measured by

∑n
j=0 ψ

gk
j .

Generally, the response of the variable j to a unit shock in variable k is
usually shown graphically in order to obtain a visual impression of the dynamic
relationships in the system. If the variables have different scales, it is sometimes
useful to consider innovations equal to one standard deviation instead of a unit
shock. An innovation in the variable k has no effect on the other variables if the
former variable does not Granger cause the set of remaining variables.

A cumulative shock after several periods can be determined by summing the
matrices of the MA coefficients. These are the cumulative response functions
or long-term effects.

12.10.2 Variance Decomposition of the Forecast Error

The MA representation

xi =
∞∑
j=0

π j P P−1ui− j =
τ−1∑
g=0

βgui+τ−g with �u = Im

provides another way of interpreting a VAR(p) model. Consider the optimal
forecast error at horizon τ :

xi+τ − x̂i (τ ) =
τ−1∑
i=0

βgui+τ−g.

Denoting the mj th element of βi by βmj,i , the forecast error for the τ periods
ahead forecast of the j th component of xi is

x j,i+τ − x̂ j,i (τ ) =
τ−1∑
i=0

(β j1,gu1,i+τ−g + · · · · · · · · · · · · + β jr,gur,i+τ−g)

=
r∑

k=1

(β jk,0uk,i+τ + · · · · · · · · · · · · + β jk,τ−1uk,i+1).
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Thus, it is possible that the forecast error of the j th component also consists of
innovations in other components of xi . Since the uk,i are uncorrelated and have
unit variance, the mean squared error of x̂ j,i (τ ) is

Eθ
(
(x j,i+τ − x̂ j,i (τ ))2

) =
r∑

k=1

(β2
jk,0 + · · · · · · · · · · · · + β2

jk,τ−1).

Moreover,

β2
jk,0 + · · · + β2

jk,τ−1 (12.51)

is sometimes interpreted as the contribution of the innovations in the variable k
to the variance of the forecast error for the t periods ahead forecast of variable
j . Dividing (12.51) by the MSE of x̂ j,i (τ ), we obtain the proportional mea-
sure of this contribution to the forecast error. In this way, the variance of the
forecast error is decomposed into its components that are accounted for by the
innovations of the different variables of the system.

12.11 Estimation of VAR(p) Models

The results of the preceding section for the univariate case can be extended to
the multivariate case. There are principally two estimation methods: the direct
methods of the Yule-Walker type and maximum likelihood method. In this part,
we present the maximum likelihood method. From a statistical viewpoint, the
MLE can yield the best results. This is true in particular for short observation
sequences or for models that are close to nonstationarity. The use of MLE
became more attractive as computing power has increased. The criterion of the
log-likelihood is also more appropriate than the one of least squares. It protects
against instabilities in the log terms that converge to infinity when the parameters
approach the boundaries of the stability region. Several estimators have been
proposed that are asymptotically efficient and are based on the maximization
of an approximated (multivariate) log-likelihood function. These estimators are
equivalent to the MLE if the latter exists. The approximate log-likelihood can
be maximized using the Newton-Raphson algorithm. If the initial estimator is
appropriately chosen, then the resulting estimator is asymptotically efficient. A
large number of algorithms exist for maximizing the likelihood using the exact
computation of first derivatives of the log-likelihood. These algorithms use the
iterative technique of Fisher to construct the estimator and are quite simple to
implement.

Let {xi } be a stochastic process of dimension m. The dynamics of the {xi } is
generated by a VAR(p) of the form

xi = μ + α1xi−1 + α2xi−2 + · · · + αpxi−p + εi with

εi ∼ i.i.d. (0, �) .
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We assume that each of the m variables is observed for (n + p) periods. As
in the scalar case, the simplest approach is to condition on the first p observa-
tions, denoted by (x−p+1, x−p+2, . . . , x0), and to construct the estimation for
the last n observations (x1, x2, . . . , xn). The objective therefore is to construct
the conditional likelihood

fxn ,xn−1,...,x1|x0,x−1,...,x−p+1

(
xn, xn−1, . . . , x1 | x0, x−1, . . . , x−p+1 ; θ

)
,

which then is maximized with respect to the parameter vector of interest
θ = (μ, α1, α2, . . . , αp, �)′. The VAR(p) are generally estimated based on the
conditional likelihood function instead of the unconditional. Conditioning on
the values of x at i − 1, the value of x at period i is equal to

μ + α1xi−1 + α2xi−2 + · · · + αpxi−p

plus a random variable distributed N (0, �) . Thus, we have

xi | xi−1, xi−2, . . . , x−p+1

∼ N
(
μ + α1xi−1 + α2xi−2 + · · · + αpxi−p, �

)
We can rewrite this in a more compact way as

yi =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

1

xi−1

xi−2

...

xi−p

⎞⎟⎟⎟⎟⎟⎟⎟⎠
where yi has dimension (mp + 1) × 1. Let � be the m × (mp + 1) matrix
given by

� = [
α1 α2 . . . αp

]
;

then the conditional mean is equal to �′yi . The j th row of �′ contains the
parameters of the j th equation of VAR(p). Using this notation, we can rewrite
the model in the following way

xi | xi−1, xi−2, . . . , x−p+1 ∼ N
(
�′yi , �

)
.

The conditional density of the i th observation is then

fxi ,xi−1,...,x1|x0,x−1,...,x−p+1

(
xi | xi−1, xi−2, . . . , x1, x0, x−1, . . . , x−p+1 ; θ

)
= (2π )−

n
2

∣∣�−1
∣∣ 1

2 exp

[(
−1

2

) (
xi − �′yi

)′
�−1

(
xi − �′yi

)]
.
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The joint density of the observations in periods 1 to i , conditional on x0, x−1, . . . ,

x−p+1 satisfies

fxi ,xi−1,...,x1|x0,x−1,...,x−p+1

(
xi , xi−1, . . . , x1 | x0, x−1, . . . , x−p+1 ; θ

)
= fxi−1,...,x1|x0,...,x−p+1

(
xi−1, . . . , x1 | x0, x−1, . . . , x−p+1 ; θ

)
× fxi |xi−1,xi−2,...,x−p+1

(
xi | xi−1, xi−2, . . . , x−p+1 ; θ

)
.

Applying this recursively, the likelihood for the entire sample conditional on
the initial condition is the product of the individual conditional densities:

fxi ,xi−1,...,x1|x0,x−1,...,x−p+1

(
xi , xi−1, . . . , x1 | x0, x−1, . . . , x−p+1 ; θ

)
=

n∏
i=1

fxi |xi−1,xi−2,...,x−p+1

(
xi | xi−1, xi−2, . . . , x−p+1 ; θ

)
,

hence, we obtain the log-likelihood function

L (θ ) =
n∑

t=1

log fxi |xi−1,xi−2,...,x−p+1

(
xi | xi−1, xi−2, . . . , x−p+1 ; θ

)
= − im

2
log (2π ) + n

2
log

∣∣�−1
∣∣ (12.52)

− 1

2

n∑
i=1

[(
xi − �′yi

)
�−1

(
xi − �′yi

)]
.

12.11.1 Maximum Likelihood Estimation of �

We first consider the estimation of �. The estimator is given by

�̂′ =
[

n∑
i=1

xi y′
i

] [
n∑

i=1

yi y′
i

]−1

, (12.53)

where �̂′ has m × (mp + 1) dimension, the gth row of �̂′ is

π̂ ′ =
[

n∑
i=1

xgi y′
i

] [
n∑

i=1

yi y′
i

]−1

,

which has dimension 1 × (mp + 1) and which is the coefficient vector estimated
by a least squares regression of x ji on yi . Thus, the MLE of the coefficients
of the gth equation of a VAR are obtained by least squares regression of xgi on
a constant and on the p lags of the variables of the system. To verify (12.53),
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we rewrite the sum that appears in the log-likelihood function as

n∑
i=1

[(
xi − �′ yi

)′
�−1 

(
xi − �′ yi

)]
(12.54)

=
n∑

i=1

[(
xi − �̂′ yi + �̂′ yi − �′ yi

)′
�−1 

(
xi − �̂′ yi + �̂′ yi − �′ yi

)]
=

n∑
i=1

[[̂
εi +

(
�̂ − �

)′ 
yi

]′
�−1

[̂
εi +

(
�̂ − �

)′ 
yi

]]
with

ε̂i = xi − �̂′ yi .

We can expand (12.54) in the following way

n∑
i=1

[(
xi − �′ yi

)
�−1 

(
xi − �′ yi

)]
=

n∑
i=1

ε̂′
i�

−1ε̂i + 2
n∑

i=1

ε̂′
i�

−1 
(
�̂ − �

)′ 
yi (12.55)

+
n∑

i=1

y′
i

(
�̂ − �

)
�−1 

(
�̂ − �

)′ 
yi .

Consider the terms in the middle of (12.55). Since it is a scalar, it remains
unchanged, when taking the trace:

n∑
i=1

ε̂′
i�

−1 
(
�̂ − �

)′ 
yi = trace

[
n∑

i=1

ε̂′
i�

−1 
(
�̂ − �

)′ 
yi

]

= trace

[
n∑

i=1

�−1 
(
�̂ − �

)′ 
yi ε̂

′
i

]
(12.56)

= trace

[
�−1 

(
�̂ − �

)′ n∑
i=1

yi ε̂
′
i

]
.

Note that
∑n

i=1 yi ε̂
′
gi = 0, ∀g, by construction and thus 

∑n
i=1 yi ε̂

′
i = 0. Thus,

(12.56) is zero and (12.55) becomes

n∑
i=1

[(
xi − �′yi

)
�−1

(
xi − �′yi

)]
(12.57)

=
n∑

i=1

ε̂′
i�

−1ε̂i +
n∑

i=1

y′
i

(
�̂ − �

)
�−1

(
�̂ − �

)′
yi .
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Since � is positive definite, �−1 is also positive definite. If we define the n × 1
vector y∗

i = (�̂ − �)′yi , then the last term in (12.57) becomes

n∑
i=1

y′
i

(
�̂ − �

)
�−1

(
�̂ − �

)′
yi =

n∑
i=1

y∗′
i �−1 y∗

i .

This is positive for all sequences {y∗
i }n

i=1 other than y∗
i = 0 for each i. Thus,

the smallest value of (12.57) is attained at y∗
i = 0, or at � = �̂. Since (12.57)

is minimized for � = �̂, (12.52) is maximized by setting � = �̂, which es-
tablishes that the OLS regression yields the MLE of the coefficients of the
multivariate autoregressive model.

12.11.2 Maximum Likelihood Estimation of �

After estimating �̂, the log-likelihood (12.52) is

L
(
�̂, �

)=− im

2
log (2π ) + n

2
log

∣∣�−1
∣∣− 1

2

n∑
i=1

ε̂′
i�

−1ε̂i . (12.58)

Our objective is to find a symmetric positive definite matrix such that this
function is maximized. First, we maximize (12.58) treating � (of dimension
n × n) as unrestricted. To do this, we differentiate (12.58) with respect to the
elements of �−1:

∂L
(
�̂, �

)
∂�−1

= n

2

∂ log
∣∣�−1

∣∣
∂�−1

− 1

2

n∑
i=1

∂ε̂′
i�

−1ε̂i

∂�−1

(12.59)

= n

2
�′ − 1

2

n∑
i=1

ε̂i ε̂
′
i .

The likelihood is maximized if this derivative is zero, i.e., at

�̂ = 1

n

n∑
i=1

ε̂i ε̂
′
i . (12.60)

The ( j, j) element of �̂ is given by

σ̂ 2
j = 1

n

n∑
i=1

ε̂2
j i ;

the ( j, l) element of �̂ is given by

σ̂ jl = 1

n

n∑
i=1

ε̂ j i ε̂li .
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Thus, it follows that

L
(
�̂, �̂

) = − im

2
log (2π ) + n

2
log

∣∣�̂−1
∣∣ − 1

2

n∑
i=1

ε̂′
i �̂

−1ε̂i (12.61)

with �̂ determined by (12.60). The last term in (12.61) is

1

2

n∑
i=1

ε̂′
i �̂

−1ε̂i = 
1

2
trace

[
n∑

i=1

ε̂′
i �̂

−1ε̂i

]

= 1

2
trace

[
�̂−1 

(
n�̂

)] = 1

2
trace (nIm)

= nm

2
.

Substituting this into (12.61), we obtain

L
(
�̂, �̂

) = − im

2
log (2π ) + n

2
log

∣∣�̂−1
∣∣ − nm

2
.

12.11.3 Asymptotic Distribution of �̂ and of �̂

The MLE of �̂ and of �̂ are consistent even if the true innovations are not
Gaussian.

Proposition 12.1 Let

xi = μ + α1xi−1 + α2xi−2 + · · · + αpxi−p + εi

where εi ∼ i.i.d. (0, �) and

E (εliεmiεniεoi ) < ∞, ∀ l, m, n, o

and where the roots of∣∣Im − α1z − α2z − · · · − αpz p
∣∣ = 0

are outside the unit circle. Let k = mp + 1 and let y′
i be the 1 × k vector

y′
i = (

1, x ′
i−1, x ′

i−2, . . . , x ′
i−p

)
.

Let π̂n = vec
(
�̂n

)
be the mk × 1 vector of coefficients obtained by least

squares regression of each element of xi on yi for a sample of size n:

π̂n =

⎛⎜⎜⎜⎜⎝
π̂1,n

π̂2,n

...

π̂r,n

⎞⎟⎟⎟⎟⎠
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where

π̂g,n =
[

n∑
i=1

yi y′
i

]−1 [
n∑

i=1

yi x ji

]
and let π be the corresponding (mk + 1) vector of coefficients. Finally, let

�̂n = 1

n

n∑
i=1

ε̂i ε̂
′
i

where

ε̂′
i = (̂ε1i , ε̂2i , . . . , ε̂mi )

ε̂gi = xgi − y′
i π̂g,n.

Then
(a)

1

n

n∑
i=1

yi y′
i

p→ Q

where

Q = E
(
yi y′

i

)
(b)

π̂n
p→ π

(c)

�̂
p→ �

(d)
√

n (π̂n − π̂ )
L→ N

(
0,

(
� ⊗ Q−1

))
. �

Proposition 12.2 Let

xi = μ + α1xi−1 + α2xi−2 + · · · + αpxi−p + εi

where εi ∼ i.i.d. (0, �) and where the roots of∣∣Ir − α1z − α2z − · · · − αpz p
∣∣ = 0

are outside the unit circle. Let π̂n, �̂n and Q be as defined in the previous
proposition. Then[ √

n (π̂n − π̂ )
√

n
[
vech

(
�̂n

) − vech (�)
]]

L→ N

[(
0

0

)
,

((
� ⊗ Q−1

)
0

0 �22

)]
�
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Notes

The book by Box and Jenkins (1976) provides the outline for our treatment of stationary

ergodic processes, notably for the ARIMA models. For the multivariate case, we direct the

reader to Hamilton (1994), Reinsel (1993), and Lütkepohl (1993). For a more statistical

approach, we refer to the work by Brockwell and Davis (1987). Information criteria are

developed by Akaike (1970, 1974) and Schwartz (1978). The criteria for identification

for multivariate models have been studied by Hannan (1970), and the extraction of the

univariate series are described in Zellner and Palm (1974). The asymptotic study of

the multivariate models has been the object of an important literature and a number

of algorithms have been proposed. We cite Akaike (1973), Nicholls (1976), and Pham

(1975) to mention only a few. The analysis of dynamic multipliers and of impulse

response functions has been proposed by Sims (1980).
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13. Nonstationary Processes
and Cointegration

13.1 Introduction

In Chapter 12, we focused on a class of processes in which stationarity, in-
vertibility, and ergodicity were essential conditions. Ergodicity, ϕ-mixing, and
α-mixing are three types of asymptotic independence, implying that two re-
alizations of a time-series become almost independent from each other when
the time elapsed between them increases. As we saw in Chapter 1, a process
{xi , i ∈ T } is said to be mixing if∣∣F(x1, . . . , xn, xh+1, . . . , xh+p) − F(x1, . . . , xn)F(xh+1, . . . , xh+p)

∣∣ → 0

when h → ∞, i.e., the joint distribution function of two subsets of realizations
of {xi , i ∈ T } converges to the product of the distribution function of each
subset when the distance between the two subsets increases.

The independence between random variables is only an approximation of
reality. We know that performing inference as if the variables were independent,
when they are (even weakly) correlated, may have non-negligible effects.

The representations of the ARMA(p, q) type and the stationary homoge-
neous Markov models (whose spectrums are regular and correlations decrease
exponentially fast) allow us to obtain more reliable results than those obtained
under the assumption of independence. A stationary series with mean Eθ (xi )

independent of i and with bounded variance does not vary systematically in
time. It tends to return to its mean, and its fluctuations around this mean have
a constant amplitude. In constrast, a nonstationary series has moments that
vary in time and we can not refer to them without specifying a time period.
The simplest example of a nonstationary process is the random walk without
drift,

xi = xi−1 + ui , with ui ∼ i.i.d (0, σ 2
u )

304
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with a fixed initial condition, x0 = 0, so that

xi =
n∑

i=1

ui .

The variance of xi is nσ 2 and goes to infinity when n −→ ∞, although the mean
is constant and equal to zero. Whereas a stationary process tends to return to
its mean value and fluctuates around it, a nonstationary process has moments
that are different for different time points.

Now consider the stochastic process {xi , i ∈ T } such that

Eθ [xi | Xi−1] = xi−1, ∀ i ∈ T,

where Xi−1 represents the information available at time i − 1. Define the process

{yi = xi − xi−1 = (1 − L)xi = � xi , i ∈ T } .

The stochastic process {yi , i ∈ T } is made stationary by the difference operator
�. A process is said to be integrated of order d (or I (d)) if the process �d xi is
stationary and if �d ′

xi is nonstationary for d ′ < d. If d = 1 and if ui is a white
noise, the resulting process is called random walk; this is the simplest example
of an integrated process of order one. Note that if xi is stationary, then so is
�d xi for values of d ∈ N. Hence, the stationarity of �d xi alone is not sufficient
to guarantee that xi is integrated of order d (I (d)).

Example 13.1 Consider an AR(1) process

xi = α0 + α1xi−1 + ui ,

with ui ∼ i.i.d(0, σ 2
u ), x0 = 0, |α1| < 1 and i = 1, . . . , n; {xi } is not stationary

because

Eθ (xi ) = α0(1 − αi
1) (1 − α1)−1

is not constant over time, although the process is asymptotically stationary. This
is a nonstationary series that is not integrated in the sense above. Similarly,
consider the following process

xi = α0 + α1xi−1 + γ i ι + ui ,

with ui ∼ i.i.d(0, σ 2
u ), x0 = 0, |α1| < 1 and i = 1, . . . , n. It is clear that

Eθ (xi ) is not constant over time. �

The chapter is organized in the following manner. First, we analyze the
asymptotic properties of the OLS estimators in the context of processes with
stochastic trend. Second, we present tests for unit root. Finally, we discuss the
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transformation of these nonstationary processes and the search for common
components in long-term equilibria.

13.2 Asymptotic Properties of Least Squares
Estimators of I(1) Processes

Before analyzing the statistical inference of univariate processes with a unit root,
we should stress that the convergence criteria and the asymptotic distributions
of the estimated coefficients of I (1) processes differ from those of stationary
processes. Denote by W (t), 1 ≥ t ≥ 0, the standard Wiener process (to be de-
fined later). The asymptotic distributions of I (1) processes can be described as
functions of W (.) . We examine various cases using examples.

We provide a more precise definition of integrated processes than the one
given in the introduction in order to use the representations of these processes.
First, we limit the class of stationary processes that we use by defining a I (0)

process.

Definition 13.1 A I (0) process is a process {ui , i ∈ T } that satisfies

ui = B(L)εi

with

B(L) =
∞∑
j=0

B j L j ; B(1) 	= 0

where εi is a weak white noise with variance σ 2
ε and

∑∞
j=1 j

∣∣B j

∣∣ is a conver-
gent sequence (where | B j | is the norm of B j ). �

Note in particular that the process is centered. This restriction in the definition
of I (0) is not very strong. It supposes that the process is a priori centered, purely
random, and weakly stationary. The above representation follows then from
Wold theorem. The only extra assumption concerns the stronger condition of
convergence of the series. Now we can define:

1. A process {xi , i ∈ T } is I (1) if �xi is I (0). Note that the restriction
B(1) 	= 0 prevents xi to be I (0). Indeed, if xi were I (0),

xi = B(L)(1 − L)εi = B∗(L)εi

with

B∗(L) = B(L)(1 − L).

�xi is not I (0) because B∗(1) = 0. Hence, the class I (1) is composed
of nonstationary processes that are stationary in first differences. This
result provides an informative interpretation of I (0) and I (1) models in
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terms of the properties of the long-run forecasts of these series. If xi

is integrated of order 1, its long-run forecast is a martingale, whereas
if ui is integrated of order zero, its long-run forecast tends toward its
unconditional mean. In this sense, if xi is integrated of order 1, then xi

has a stochastic trend. Beveridge and Nelson formally established the
equivalence between the order of integration of a series and the existence
of a stochastic trend.

2. A process {xi , i ∈ T } is I (2) if �xi is I (1) and �2xi is I (0). By the
same argument, I (2) comprises only nonstationary processes whose
first-difference is also nonstationary. This construction can be iterated
for d ≥ 2, but I (d) processes used in practice belong to I (1) or I (2).

We focus in our presentation on a more detailed description of I (1).
Let {xi , i ∈ T } be a I (1) process. Of course, we can write

xi = x0 +
i∑

j=1

u j (13.1)

where u j = x j − x j−1 is I (0). From this representation, we obtain the following
lemma.

Lemma 13.1 (Beveridge-Nelson decomposition) Let xi be a I (1) process
(i.e., �xi = ui ∼ I (0), ui = B(L)εi and

∑
j
∣∣B j

∣∣ < ∞, εi is a weak white
noise). Then

xi = B(1)
n∑

i=1

εi + B∗(L)εi + ũ0

with

B∗(L) =
∑

B∗
j L j ,

B∗
j = − ∑∞

l= j+1 Bl and B∗(L)εi is stationary. ũ0 defined by

ũ0 = x0 − B∗(L)ε0

is a random vector. �

Proof: First we examine the equation

B(L) − B(1) = B∗(L)(1 − L).

We can infer that

(−B1 − B2 − · · · ) + B1L + B2L2 + · · ·
= B∗

0 + (
B∗

1 − B∗
0

)
L + (

B∗
2 − B∗

1

)
L2 + · · ·
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hence

B∗
0 = −B1 − B2 − · · ·

B∗
1 = −B2 − B1 − · · ·

and in general

B∗
j = −

∞∑
p= j+1

Bp.

Let us verify that B∗(L) applied to a white noise defines indeed a stationary
process. We know that it suffices that

∑∞
i=0

∣∣B∗
i

∣∣ < ∞. Now

∞∑
j=0

∣∣B∗
i

∣∣ =
∞∑
j=0

∣∣∣∣∣ ∞∑
p= j+1

Bp

∣∣∣∣∣ ≤
∞∑
j=0

∞∑
p= j+1

∣∣Bp

∣∣
=

∞∑
j=0

j
∣∣B j

∣∣ < ∞ by assumption.

Finally, we have

xi = x0 +
i∑

j=1

u j = x0 + B(L)
i∑

j=1

ε j

= B(1)
i∑

j=1

ε j + (B(L) − B(1))
i∑

j=1

ε j + x0

= B(1)
i∑

j=1

ε j + B∗(L)(1 − L)
i∑

j=1

ε j + x0

= B(1)
i∑

j=1

ε j + B∗(L)(εi − ε0) + x0

= B(1)
i∑

j=1

ε j + B∗(L)εi + x0 − B∗(L)ε0. �

These results can be clarified by three comments:

1. Consider the scalar process {xi } that admits an ARM A representation

α (L) xi = β (L) εi .
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In Chapter 12, we used to assume that all the roots of the equation
α (z) = 0 lay strictly outside the unit circle. Suppose now that 1 is a root
of order d of this equation. We can write

α (L) xi = (1 − L)d α∗ (L) xi = β(L)εi .

Assuming that all roots of α∗ (L) have their modulus greater than one,
we have

�d xi = β (L)

α∗ (L)
εi

and we see clearly that xi is a I (d) process. This remark explains the
terminology \unit roots” and \integrated” processes.

2. The lemma shows that any I (1) process can be written as the sum of
a random walk B(1)

∑i
j=0 εi and a stationary component. The random

walk term can be interpreted as the long-run forecast of ui . As B∗(L) is
summable, the long-run forecast ui+k|i for a very large k is B(1)

∑i
s=1 εs .

This justifies the fact that I (d) processes are often referred to as pro-
cesses with stochastic trend, by opposition to deterministic trend, i.e.,
processes that can be written under the form xi = f (i) + ηi , where f (i)
is a function of time and ηi is a stationary component.

3. If xi satisfies

xi = xi−1 + μ + ui ,

we have

xi = μi + x0 +
i∑

j=1

u j

and we can apply Beveridge-Nelson decomposition to the sum of the
two last terms. The process xi is I(1) with drift.

If ui is stationary, has sufficiently many moments, and is weakly dependent,
then n−1

∑n
i=1 u2

i converges in probability and the normalized sums such as
n− 1

2

∑n
i=1 ui satisfy the central limit theorem. By nature, the central limit the-

orem does not apply to most statistics that we will study in this chapter. For
example, the unit root test statistic depends on components that do not satisfy
the standard asymptotics and hence its distribution under the null hypothesis
does not have a standard distribution.

Consider the process

xi = ρxi−1 + ui

which, under H0 : ρ = 1, generates the following random walk process:

xi = ui + ui−1 + · · · + u0 with u0 = 0 and ui ∼ i.i.d.
(
0, σ 2

)
.
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Then

x2
i = (xi−1 + ui )

2 = x2
i−1 + u2

i + 2xi−1ui ,

which implies

xi−1ui = 1

2

(
x2

i − x2
i−1 − u2

i

)
,

hence
n∑

i=1

xi−1ui = 1

2

(
x2

n − x2
0

) − 1

2

n∑
i=1

u2
i ;

it follows that for x0 = 0

1

n

n∑
i=1

xi−1ui =
(

1

2

) (
1

n

)
x2

n −
(

1

2

) (
1

n

) n∑
i=1

u2
i .

Dividing each term by σ 2 yields(
1

nσ 2

) n∑
i=1

xi−1ui =
(

1

2

) (
xn

σ
√

n

)2

−
(

1

2σ 2

) (
1

n

) n∑
i=1

u2
i

= 1

2

⎡⎣(√
n

n

n∑
i=1

ui

σ

)2

− 1

σ 2

1

n

n∑
i=1

u2
i

⎤⎦ .

By the central limit theorem,
√

n

n

n∑
i=1

ui

σ

is distributed as a N (0, 1) when n → ∞. Hence, ( xn

σ
√

n
)2 converges in dis-

tribution to a χ2 with one degree of freedom (χ2
1 ).

∑n
i=1 u2

i is the sum of n i.i.d.
random variables, each with mean σ 2 and, by the law of large numbers,

1

n

n∑
i=1

u2
i → σ 2.

In this chapter, we use the notation “→” instead of “→ in Pθ -distribution.”
Then, we have

1

(nσ 2)

n∑
i=1

xi−1ui → 1

2
(X − 1)

with X ∼ χ2
1 . The OLS estimator of ρ satisfies

ρ̂ − 1 =
∑n

i=1 xi−1ui∑n
i=1 x2

i−1

.
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Consider the denominator of

n (ρ̂ − 1) =
1
n

∑n
i=1 xi−1ui

1
n2

∑n
i=1 x2

i−1

.

We will show later that xi−1 ∼ N
(
0, σ 2 (i − 1)

)
and hence

E
(
x2

i−1

) = σ 2 (i − 1) .

Consider now

E

[
n∑

i=1

x2
i−1

]
= σ 2

n∑
i=1

(i − 1) = σ 2 (n − 1)
n

2
.

In order to construct a random variable which has a limiting distribution, we
see that

∑n
i=1 x2

i−1 must be divided by n2.
In summary, if the true process is a random walk, the difference between the

OLS estimator of ρ and its true value, namely (ρ̂n − 1) , must be multiplied
by n instead of

√
n to obtain a variable with a useful asymptotic distribution.

Moreover, this distribution is not the usual normal distribution, but the ratio
of two distributions, where the numerator is a χ2

1 and the denominator is a
nonstandard distribution.

We saw above that the asymptotic results derived from nonstationary pro-
cesses do not follow directly from the central limit theorem. However, we can
obtain these results from its functional generalization. The mathematical tools
necessary for a rigorous presentation are relatively difficult, thus we adopt here
an exposition that is very intuitive and not too technical.

Let (ei )i=1,...,n be a sequence of i.i.d. centered random variables with variance
σ 2. Denote, for all t ∈ [0, 1] ,

Sn(t) =

∣∣∣∣∣∣∣∣
0 if 0 ≤ t < 1

n

e1+···+ei

σ
√

n
if i

n ≤ t < i+1
n

e1+···+en

σ
√

n
if t = 1.

This function from [0, 1] to R is a step function and is random because it depends
on ei . It is actually the path of a random process in continuous time. Consider
another random function W (t) (t ∈ [0, 1] and W (t) ∈ R), called Wiener process
(or Brownian motion). This random process is characterized by the following
properties: W (0) = 0 and for all t1, . . . , tk , the differences Wt j − Wt j−1

are
independent and normally distributed with mean zero and variance |t j − t j−1|.

In contrast to Sn(t), W (t) is a continuous function and in particular, W (t) ∼
N (0, t). W (t) is the continuous time generalization of the random walk. An
important theorem of probability calculus states that the random function Sn(t)
converges in distribution to W (t). This theorem is a form of Donsker’s theorem
and is called functional central limit theorem. We do not verify this result.
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Note for instance that if t is fixed to a specific value t0, we have

Sn(t0) = 1

σ
√

n

[nt0]∑
i=1

ei � √
t0

1

σ
√

[nt0]

[nt0]∑
i=1

ei

→ N (0, t0)

and on the other hand

W (t0) ∼ N (0, t0)

because, as n → ∞, [nt0] → nt0 and [nt0] is the integer part of nt0, i.e., the
largest integer smaller than or equal to nt0. However, the theorem is much
stronger than this because it actually states that for all transformations ϕ of Sn ,
we have

E (ϕ (Sn)) → E (ϕ (W ))

(ϕ must satisfy some regularity assumptions).
Finally, it can be shown that if H is a (continuous) transformation of Sn , H (Sn)

converges in distribution to H (W ) (Continuous mapping theorem, invariance
principle, or Measure preserving theorem).

As an example, we can take for H the \sup” function. Then, we have

sup
t

Sn(t) → sup
t

W (t).

The distribution of supt W (t) is known and gives the asymptotic distribution of
the largest of the normalized partial sums(

e1

σ
√

n
,

e1 + e2

σ
√

n
, . . .

)
.

Hence, we have the limiting distribution of maxi<n Si (with appropriate nor-
malization) if we know the distribution of supt W (t). A technique to determine
the latter distribution is to calculate the limiting distribution of maxi<n Si in
each special case.

Example 13.2 (Unit root process) Let

xi = xi−1 + ui , ui ∼ i.i.d.
(
0, σ 2

)
.

We are looking for the distribution of
∑n

i=1 xi appropriately multiplied by a
term of the form nα . Note that∫ 1

0

Sn(t)dt =
n∑

i=1

1

n

(
u1 + · · · + ui

σ
√

n

)
= 1

σn
3
2

n∑
i=1

xi .
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By the functional central limit theorem and continuous mapping theorem, we
have ∫ 1

0

Sn(t)dt →
∫ 1

0

W (t)dt

and hence

n− 3
2

n∑
i=1

xi → σ

∫ 1

0

W (t)dt.

The expression
∫ 1

0
W (t)dt represents a scalar random variable that can be

shown to be distributed as a N (0, 1
3
). However, we can directly show this result

in the following manner

n− 3
2

n∑
i=1

xi−1 = n− 3
2 [u1 + (u1 + u2) + (u1 + u2 + u3) + · · ·

+ (u1 + u2 + · · · + un−1)]

= n− 3
2 [(n − 1) u1 + (n − 2) u2 + (n − 3) u3 + · · ·

+ [n − (n − 1)] ui−1]

= n− 3
2

n∑
i=1

(n − i) ui

= n− 1
2

n∑
i=1

ui − n− 3
2

n∑
i=1

iui

=
n∑

i=1

(
n− 1

2 − n− 3
2 i

)
ui . (13.2)

We have here a weighted sum of random variables but where the weights are not
equal to the usual value 1√

n
. Hence, we need to use an extension of the central

limit theorem (Lindeberg theorem). A necessary condition for the asymptotic
normality is that the variance of the sum converges, i.e.,

σ 2
n∑

i=1

(
n− 1

2 − n− 3
2 i

)2

= σ 2

(
n−1n + n−3

n∑
i=1

i2 − 2n−2
n∑

i=1

i

)

→ σ 2

[
1 + 1

3
− 2

1

2

]
= σ 2

3
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because

1

nν+1

n∑
i=1

iν → 1

ν + 1
.

It follows that n−3/2
∑n

i=1 xi−1 is asymptotically normal with mean zero and
variance equal to σ 2

3
. The integral σ

∫ 1

0
W (t) dt describes a random vari-

able with distribution N (0, σ 2

3
). Hence, if xi is a random walk without drift,

n−1
∑n

i=1 xi diverges but n−3/2
∑n

i=1 xi−1 converges to a random variable
whose distribution can be described as the integral of a Brownian motion
with variance σ 2. It follows from (13.2) that the asymptotic distribution of
n−3/2

∑n
i=1 iui as a function of a Brownian motion is

n−3/2
n∑

i=1

iui = n−1/2
n∑

i=1

ui − n−3/2
n∑

i=1

xi−1

→ σ W (1) − σ

∫ 1

0

W (t) dt �

Example 13.3 The same argument can be used to describe the asymptotic
distribution of the sum of the square of a random walk. The statistic Sn (t)
defined by

Sn(t) = n [Xn (t)]2

is described by

Xn (t) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0 for 0 ≤ t < 1
n

x2
1/n for 1

n ≤ t < 2
n

x2
2/n for 2

n ≤ t < 3
n

...

x2
n/n for t = 1

.

and ∫ 1

0

Sn(t)dt = x2
1

n2
+ x2

2

n2
+ · · · + x2

n−1

n2
;

hence

n−2
n∑

i=1

x2
i−1 → σ 2

∫ 1

0

[W (t)]2 dt.



P1: OSO/OVY P2: OSO/OVY QC: OSO/OVY T1: OSO

Ecoeok CUFX117-Florens 0521876407 April 22, 2007 14:6

Nonstationary Processes and Cointegration 315

Two useful results are

n−5/2
n∑

i=1

i xi−1 = n−3/2
n∑

i=1

(
i

n

)
xi−1

→ σ

∫ 1

0

tW (t)dt

for t = i
n and

n−3
n∑

i=1

i x2
i−1 = n−2

n∑
i=1

i

n
x2

i−1 → σ 2

∫ 1

0

t [W (t)]2 dt. �

We summarize the previous results and some others that can be proven in a
similar way in the following proposition.

Proposition 13.3 Suppose that xi follows a random walk without drift

xi = xi−1 + ui where x0 = 0 and {ui } ∼ i.i.d.
(
0, σ 2

)
.

Then

n− 1
2

n∑
i=1

ui → σ W (1) ∼ N
(
0, σ 2

)
,

n−1
n∑

i=1

xi−1ui →
(

1

2

)
σ 2

{
[W (1)]2 − 1

}
,

n− 3
2

n∑
i=1

iui → σ W (1) − σ

∫ 1

0

W (t) dt,

n− 3
2

n∑
i=1

xi−1 → σ

∫ 1

0

W (t) dt,

n−2
n∑

i=1

x2
i−1 → σ 2

∫ 1

0

[W (t)]2 dt,

n− 5
2

n∑
i=1

i xi−1 → σ

∫ 1

0

tW (t) dt,

n−3
n∑

i=1

i x2
i−1 → σ 2

∫ 1

0

t [W (t)]2 dt,

n−(ν+1)
n∑

i=1

iν → 1

ν + 1
for ν = 0, 1, . . . �
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The asymptotic distributions of the proposition are all written as functions
of a standard Brownian motion denoted W (t). The proposition can be rewritten
similarly in the multivariate case by setting B(1) 	= 0 (see Hamilton (1994)).
We now use the results of this proposition in the following examples, in order
to calculate the asymptotic distributions in simple regressions involving unit
roots.

Example 13.4 (Random walk with drift) Consider the model

xi = α + ρxi−1 + ui , i = 1, . . . , n

in which the true values are α = 0 and ρ = 1. The OLS estimators of (α, ρ)′

are [
α̂n

ρ̂n

]
=

[
n

∑
xi−1∑

xi−1

∑
x2

i−1

]−1 [ ∑
xi∑

xi−1xi

]
or [

α̂n − 0

ρ̂n − 1

]
=

[
n

∑
xi−1∑

xi−1

∑
x2

i−1

]−1 [ ∑
ui∑

xi−1ui

]
.

α̂n and ρ̂n have different rates of convergence. To describe their limiting distri-
butions, we consider(

n
1
2 0

0 n

) [
α̂n

ρ̂n − 1

]
=

⎧⎨⎩
(

n
1
2 0

0 n

)−1(
n

∑
xi−1∑

xi−1

∑
x2

i−1

) (
n

1
2 0

0 n

)−1
⎫⎬⎭

−1

×
⎧⎨⎩

(
n

1
2 0

0 n

)−1 ( ∑
ui∑

xi−1ui

)⎫⎬⎭
hence (

n
1
2 α̂n

n (ρ̂n − 1)

)
=

[
1 n− 3

2

∑
xi−1

n− 3
2

∑
xi−1 n−2

∑
x2

i−1

]−1 [
n− 1

2

∑
ui

n−1
∑

xi−1ui

]
.

Note that[
1 n− 3

2

∑
xi−1

n− 3
2

∑
xi−1 n−2

∑
x2

i−1

]
→

[
1 σ

∫
W (t)dt

σ
∫

W (t)dt σ 2
∫

[W (t)]2 dt

]

=
[

1 0

0 σ

] [
1

∫
W (t)dt∫

W (t)dt
∫

[W (t)]2 dt

] [
1 0

0 σ

]
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where the integral sign denotes an integration from 0 to 1 with respect to t .
Similarly,[

n− 1
2

∑
ui

n−1
∑

xi−1ui

]
→

[
σ W (1)

1
2
σ 2

{
[W (1)]2 − 1

}]

= σ

[
1 0

0 σ

]
×

[
W (1)

1
2

{
[W (1)]2 − 1

}]
.

Hence, we have[
n

1
2 α̂n

n (ρ̂n − 1)

]
→ σ

[
1 0

0 σ

]−1 [
1

∫
W (t)dt∫

W (t)dt
∫

[W (t)]2 dt

]−1

×
[

1 0

0 σ

]−1 [
1 0

0 σ

] [
W (1)

1
2

{
[W (1)]2 − 1

}]

=
[

σ 0

0 1

] [
1

∫
W (t)dt∫

W (t)dt
∫

[W (t)]2 dt

]−1 [
W (1)

1
2

{
[W (1)]2 − 1

}]
.

Moreover[
1

∫
W (t)dt∫

W (t)dt
∫

[W (t)]2 dt

]−1

= 1∫
[W (t)]2 dt − [∫

W (t)dt
]2

[∫
[W (t)]2 dt − ∫

W (t)dt

− ∫
W (t)dt 1

]

hence

n (ρ̂n − 1) →
1
2

{
[W (1)]2 − 1

} − W (1)
∫

W (t)dt∫
[W (t)]2 dt − [∫

W (t)dt
]2

.

Dickey and Fuller (1981) proposed an alternative test based on the Student’s
t-statistic under the null hypothesis of a unit root

tn = ρ̂n − 1

σ̂ρ̂n

with

σ̂ 2
ρ̂n

= s2
n

[
0 1

] [
n

∑
xi−1∑

xi−1

∑
x2

i−1

]−1 [
0

1

]
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and

s2
n = (n − 2)−1

n∑
i=1

(xi − α̂n − ρ̂n xi−1)2 .

Hence

n2σ̂ 2
ρ̂n

= s2
n

[
0 n

] [
n

∑
xi−1∑

xi−1

∑
x2

i−1

]−1 [
0

n

]

= s2
n

[
0 1

] [
n

1
2 0

0 n

] [
n

∑
xi−1∑

xi−1

∑
x2

i−1

]−1 [
n

1
2 0

0 n

] [
0

1

]
.

From [
n

1
2 0

0 n

] [
n

∑
xi−1∑

xi−1

∑
x2

i−1

]−1 [
n

1
2 0

0 n

]

=
⎧⎨⎩

[
n

1
2 0

0 n

]−1 [
n

∑
xi−1∑

xi−1

∑
x2

i−1

] [
n

1
2 0

0 n

]−1
⎫⎬⎭

−1

=
[

1 n− 3
2

∑
xi−1

n− 3
2

∑
xi−1 n−2

∑
x2

i−1

]−1

→
[

1 0

0 σ

]−1 [
1

∫
W (t)dt∫

W (t)dt
∫

[W (t)]2 dt

]−1 [
1 0

0 σ

]−1

,

it follows that

n2σ̂ρ̂n → s2
n

[
0 σ−1

] [
1

∫
W (t)dt∫

W (t)dt
∫

[W (t)]2 dt

]−1 [
0

σ−1

]
.

It is easy to show that s2
n → σ 2, therefore

n2σ̂ 2
ρ̂n

→ [
0 1

] [
1

∫
W (t)dt∫

W (t)dt
∫

[W (t)]2 dt

]−1 [
0

1

]

= 1∫
[W (t)]2 dt − [∫

W (t)dt
]2

.
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In summary, we have

tn = n (ρ̂n − 1){
n2σ̂ 2

ρ̂n

} 1
2

→ n (ρ̂n − 1) ×
{∫

[W (t)]2 dt −
[∫

W (t)dt

]2
} 1

2

→
1
2

{
[W (1)]2 − 1

} − W (1)
∫

W (t)dt{∫
[W (t)]2 dt − [∫

W (t)dt
]2

} 1
2

.

This distribution, sometimes called Dickey-Fuller distribution, has been tab-
ulated by Dickey and Fuller. Tables can be constructed using simulations of
functions of a Wiener process. In stationary models, n1/2 times the estima-
tion error converges in distribution to a random variable and this variable
follows a normal distribution with mean zero. In random walk models, the
last expression reveals that n (instead of

√
n) times the estimation error con-

verges in distribution to a random variable and that this one has a nonstandard
distribution. �

Example 13.5 (continued) Consider the process

xi = α + xi−1 + ui

= x0 + αi + (u1 + u2 + · · · + ui )

= x0 + αi + ξi

where α is not restricted to be zero, ξi = u1 + u2 + · · · + ui , i = 1, . . . , n and
ξ0 = 0. Consider

n∑
i=1

xi−1 =
n∑

i=1

[x0 + α (i − 1) + ξi−1] .

The first term nx0 is constant if divided by n. The second term
∑

α (i − 1) must
be divided by n2 in order to converge

n−2
n∑

i=1

α (i − 1) → α

2
.

The third term converges if divided by n
3
2

n− 3
2

n∑
i=1

ξi−1 → σ

∫ 1

0

W (t)dt.

Hence in
n∑

i=1

xi−1 =
n∑

i=1

x0 +
n∑

i=1

α (i − 1) +
n∑

i=1

ξi−1,
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the deterministic trend α (i − 1) dominates the other two components:

n−2
n∑

i=1

xi−1 = n−1x0 + n−2
n∑

i=1

α (i − 1) + n− 1
2

{
n− 3

2

n∑
i=1

ξi−1

}

→ 0 + α

2
+ 0.

Similarly, we have

n∑
i=1

x2
i−1 =

n∑
i=1

[x0 + α (i − 1) + ξi−1]2

=
n∑

i=1

x2
0 +

n∑
i=1

α2 (i − 1)2 +
n∑

i=1

ξ 2
i−1 +

n∑
i=1

2x0α (i − 1)

+
n∑

i=1

2x0ξi−1 +
n∑

i=1

2α (i − 1) ξi−1.

When dividing by n3, the only term that does not vanish asymptotically is
α2 (i − 1)2:

n−3
n∑

i=1

x2
i−1 → α2

3
.

Finally, we observe that

n∑
i=1

xi−1ui =
n∑

i=1

[x0 + α (i − 1) + ξi−1] ui

= x0

n∑
i=1

ui +
n∑

i=1

α (i − 1) ui +
n∑

i=1

ξi−1ui

hence

n− 3
2

n∑
i=1

xi−1ui → n− 3
2

n∑
i=1

α (i − 1) ui ;

Sims, Stock, and Watson (1990) propose to use the scaling matrix:[
n

1
2 0

0 n
3
2

] (
α̂n − α

ρ̂n − 1

)
=

{[
n− 1

2 0

0 n− 3
2

] [
n

∑
xi−1∑

xi−1

∑
x2

i−1

] [
n− 1

2 0

0 n− 3
2

]}−1

×
{(

n− 1
2 0

0 n− 3
2

) ( ∑
ui∑

xi−1ui

)}
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or [
n

1
2 (̂αn − α)

n
3
2 (ρ̂n − 1)

]
=

[
1 n−2

∑
xi−1

n−2
∑

xi−1 n−3
∑

x2
i−1

]−1 [
n− 1

2

∑
ui

n− 3
2

∑
xi−1ui

]
.

Now [
1 n−2

∑
xi−1

n−2
∑

xi−1 n−3
∑

x2
i−1

]
→

[
1 α

2

α
2

α2

3

]

and [
n− 1

2

∑
ui

n− 3
2

∑
xi−1ui

]
→

[
n− 1

2

∑
ui

n− 3
2

∑
α (i − 1) ui

]

→ N

[(
0

0

)
, σ 2

(
1 α

2

α
2

α2

3

)
= σ 2 Q

]
.

with Q =
[

1 α
2

α
2

α2

3

]
, hence

[
n

1
2 (̂αn − α)

n
3
2 (ρ̂n − 1)

]
→ N

[
0, Q−1σ 2 Q Q−1

] = N
[
0, σ 2 Q−1

]
.

The main conclusion we draw from this example is that the asymptotic distribu-
tions of the OLS of α and ρ drastically differ whether there is a drift or not. For
α 	= 0, their distributions are normal, whereas for α = 0, their distributions
are some functions of a Wiener process. �

Example 13.6 (random walk with drift and purely determinist component)
Consider the process generated by

xi = α + ρxi−1 + δi + ui

= (1 − ρ) α + ρ [xi−1 − α (i − 1)] + (δ + ρα) i + ui

= α∗ + ρ∗ξi−1 + δ∗i + ui

for i = 1, . . . , n, with

α∗ = (1 − ρ) α, ρ∗ = ρ, δ∗ = δ + ρα and ξi = xi − αi.
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The OLS estimators of α∗, ρ∗, and δ∗ are

⎡⎢⎢⎣
α̂∗

n

ρ̂∗
n

δ̂∗
n

⎤⎥⎥⎦ =

⎡⎢⎢⎣
n

∑
ξi−1

∑
i∑

ξi−1

∑
ξ 2

i−1

∑
iξi−1∑

i
∑

iξi−1

∑
i2

⎤⎥⎥⎦
−1 ⎡⎢⎢⎣

∑
xi∑

ξi−1xi∑
i xi

⎤⎥⎥⎦ .

Under the null hypothesis H0 : ρ = 1 and δ = 0, that is

α = α0, ρ = 1 and δ = 0, α∗ = 0, ρ∗ = 1 and δ∗ = α0,

we have

⎡⎢⎢⎣
α̂∗

n

ρ̂∗
n − 1

δ̂∗
n − α0

⎤⎥⎥⎦ =

⎡⎢⎢⎣
n

∑
ξi−1

∑
i∑

ξi−1

∑
ξ 2

i−1

∑
iξi−1∑

i
∑

iξi−1

∑
i2

⎤⎥⎥⎦
−1 ⎡⎢⎢⎣

∑
ui∑

ξi−1ui∑
iui

⎤⎥⎥⎦ .

As before, we use the scaling matrix

⎛⎝ n
1
2 0 0

0 n 0

0 0 n
3
2

⎞⎠,

⎡⎢⎢⎣
n

1
5 0 0

0 n 0

0 0 n
3
2

⎤⎥⎥⎦
⎡⎢⎢⎣

α̂∗
n

ρ̂∗
n − 1

δ̂∗
n − α0

⎤⎥⎥⎦

=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
⎡⎢⎢⎣

n− 1
2 0 0

0 n−1 0

0 0 n− 3
2

⎤⎥⎥⎦
⎡⎢⎢⎣

n
∑

ξi−1

∑
i∑

ξi−1

∑
ξ 2

i−1

∑
iξi−1∑

i
∑

iξi−1

∑
i2

⎤⎥⎥⎦
⎡⎢⎢⎢⎣

n− 1
2 0 0

0 n−1 0

0 0 n− 3
2

⎤⎥⎥⎥⎦
⎫⎪⎪⎪⎬⎪⎪⎪⎭

−1

×

⎧⎪⎪⎪⎨⎪⎪⎪⎩
⎡⎢⎢⎢⎣

n− 1
2 0 0

0 n−1 0

0 0 n− 3
2

⎤⎥⎥⎥⎦
⎡⎢⎢⎣

∑
ui∑

ξi−1ui∑
iui

⎤⎥⎥⎦
⎫⎪⎪⎪⎬⎪⎪⎪⎭ ,
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or

⎡⎢⎢⎣
n

1
2 α̂∗

n

n
(
ρ̂∗

n − 1
)

n
3
2

(̂
δ∗

n − α0

)
⎤⎥⎥⎦=

⎡⎢⎢⎣
1 n− 3

2

∑
ξi−1 n−2

∑
i

n− 3
2

∑
ξi−1 n−2

∑
ξ 2

i−1 n− 5
2

∑
iξi

n−2
∑

i n− 5
2

∑
iξi n−3

∑
i2

⎤⎥⎥⎦
−1 ⎡⎢⎢⎣

n− 1
2

∑
ui

n−1
∑

ξi−1ui

n− 3
2

∑
iui

⎤⎥⎥⎦
It follows from Proposition 13.1 that the asymptotic distribution is

⎡⎢⎢⎣
n

1
2 α̂∗

n

n
(
ρ̂∗

n − 1
)

n
3
2

(̂
δ∗

n − α0

)
⎤⎥⎥⎦ →

⎡⎢⎢⎣
1 σ

∫
W (t)dt 1

2

σ
∫

W (t)dt σ 2
∫

[W (t)]2 dt σ
∫

tW (t)dt

1
2

σ
∫

tW (t)dt 1
3

⎤⎥⎥⎦
−1

×
[

σ W (1) 1
2
σ 2

{
[W (1)]2 − 1

}
σ W (1) − ∫

W (t)dt

]

= σ

⎡⎢⎢⎣
1 0 0

0 σ 0

0 0 1

⎤⎥⎥⎦
−1 ⎡⎢⎢⎣

1
∫

W (t)dt 1
2∫

W (t)dt
∫

[W (t)]2 dt
∫

tW (t)dt

1
2

∫
tW (t)dt 1

3

⎤⎥⎥⎦

×

⎡⎢⎢⎣
1 0 0

0 σ 0

0 0 1

⎤⎥⎥⎦
−1 ⎡⎢⎢⎣

1 0 0

0 σ 0

0 0 1

⎤⎥⎥⎦
⎡⎢⎢⎣

W (1)

1
2

{
[W (1)]2 − 1

}
W (1) − ∫

W (t)dt

⎤⎥⎥⎦

=

⎡⎢⎢⎣
σ 0 0

0 1 0

0 0 σ

⎤⎥⎥⎦
⎡⎢⎢⎣

1
∫

W (t)dt 1
2∫

W (t)dt
∫

[W (t)]2 dt
∫

tW (t)dt

1
2

∫
tW (t)dt 1

3

⎤⎥⎥⎦

×

⎡⎢⎢⎣
W (1)

1
2

{
[W (1)]2 − 1

}
W (1) − ∫

W (t)dt

⎤⎥⎥⎦ .
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Regarding the asymptotic distribution of σ̂ 2
ρ̂n

:

n2σ̂ 2
ρ̂n

= n2s2
n

[
0 1 0

] ⎡⎢⎣ n
∑

ξi−1

∑
i∑

ξi−1

∑
ξ 2

i−1

∑
iξi−1∑

i
∑

iξi−1

∑
i2

⎤⎥⎦
−1 ⎡⎢⎣ 0

1

0

⎤⎥⎦

= s2
n

[
0 1 0

] ⎡⎢⎢⎣
n

1
2 0 0

0 n 0

0 0 n
3
2

⎤⎥⎥⎦
⎡⎢⎢⎣

n
∑

ξi−1

∑
i∑

ξi−1

∑
ξ 2

i−1

∑
iξi−1∑

i
∑

iξi−1

∑
i2

⎤⎥⎥⎦
−1

×

⎡⎢⎢⎣
n

1
2 0 0

0 n 0

0 0 n
3
2

⎤⎥⎥⎦
⎡⎢⎢⎣

0

1

0

⎤⎥⎥⎦

= s2
n

[
0 1 0

] ⎡⎢⎢⎣
1 n− 3

2

∑
ξi−1 n−2

∑
i

n− 3
2

∑
ξi−1 n−2

∑
ξ 2

i−1 n− 5
2

∑
iξi−1

n−2
∑

i n− 5
2

∑
iξi−1 n−3

∑
i2

⎤⎥⎥⎦
⎡⎢⎢⎣

0

1

0

⎤⎥⎥⎦

→ σ 2
[

0 1 0
] ⎡⎢⎣ 1 0 0

0 σ 0

0 0 1

⎤⎥⎦
−1

×

⎡⎢⎣ 1
∫

W (t)dt 1
2∫

W (t)dt
∫

[W (t)]2 dt
∫

tW (t)dt
1
2

∫
tW (t)dt 1

3

⎤⎥⎦
−1 ⎡⎢⎣ 1 0 0

0 σ 0

0 0 1

⎤⎥⎦
−1 ⎡⎢⎣ 0

1

0

⎤⎥⎦

= [
0 1 0

] ⎡⎢⎣ 1
∫

W (t)dt 1
2∫

W (t)dt
∫

[W (t)]2 dt
∫

tW (t)dt
1
2

∫
tW (t)dt 1

3

⎤⎥⎦
−1 ⎡⎢⎣ 0

1

0

⎤⎥⎦ ≡ Q

hence

tn = n (ρ̂n − 1)(
n2σ̂ 2

ρ̂n

) 1
2

→ n (ρ̂n − 1)√
Q

.

Here and in the previous examples, the test statistics have been presented in the
absence of autocorrelation of the residuals. These results can be generalized
to the case where the residuals are serially correlated. Two approaches are
possible: the first approach due to Phillips and Perron estimates the regression
the same way as explained above but modify the test statistics in order to take
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into account the correlation of the residuals and the potential heteroskedasticity.
The second approach proposed by Dickey and Fuller consists in adding lags of
xi as explanatory variables in the regression. �

13.3 Analysis of Cointegration and Error Correction Mechanism

The intuitive idea of the study of cointegration is to find out whether some linear
transformations of a vector nonstationary process are stationary in the sense
of their marginal distributions. The starting point of this construction is a I (1)

vector process xi . We do not consider here the case where xi is integrated to a
higher order.

Definition 13.2 Let (xi ), xi ∈ R
m be a process with fixed initial conditions x0

and xi is a I(1) process with drift (i.e. �xi − E (�xi ) ∼ I (0)). We call cointe-
grating vector any vector C ∈ R

m such that C ′xi is I (0). More generally, a m × r
matrix C is called cointegrating matrix if C ′xi ∼ I (0) (as vectors of Rr ). �

In general, we consider only full rank matrices, which eliminates vectors that
can be expressed as linear combinations of other vectors.

Example 13.7 Let the model

yi = αzi−1 + ui

zi = zi−1 + vi

where (ui , vi ) is a weak white noise and the initial conditions are (z0, y0) =
(0, 0). Then yi and zi are nonstationary. We verify that xi = (yi , zi )

′ is I (1):

yi − yi−1 = α (zi−1 − zi−2) + ui − ui−1

= αvi−1 + ui − ui−1

and

zi − zi−1 = vi ;

ui − ui−1 and vi are stationary, which means that �yi et �zi are stationary
and satisfy the conditions of Definition 13.1. Moreover

yi − αzi = ui − αvi

is also stationary and a cointegrating vector is c = (
1
−α ). Note that αzi 	=

E ( yi | zi ) , it is not a regression. �

More generally, if c1, . . . , cr are linearly independent cointegrating vectors,
then C ′xi is stationary where C = (c1, . . . , cr ) is of dimension m × r and xi is
of dimension m × 1.
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Note that since we restrict ourselves to full rank matrices C, we can not
have r = m, because the stationarity of C ′xi would be equivalent to that of xi ,
which is excluded by assumption. Moreover, note that C is not unique. If C is
a cointegrating matrix, so is C F (where F is a r × r invertible matrix) because
F ′C ′xi is stationary. If we wish to uniquely identify C, we can always write

C =
(

Ir

−�

)
.

This representation will be discussed later. It is not necessary for the develop-
ments that follow.

13.3.1 Cointegration and M A Representation

Let (xi ) be the process satisfying

�xi − μ ∼ I (0) with μ = E (�xi )

and

�xi − μ = ui = B(L)εi .

Then, we have the following proposition.

Theorem 13.1 C is a cointegrating matrix if and only if C ′μ = 0 and
C ′ B(1) = 0. �

Proof: Beveridge-Nelson decomposition implies that

xi = μi + B(1)
i∑

j=1

ε j + B∗ (L) εi + ũ0

and

C ′xi = C ′μi + C ′ B(1)
i∑

j=1

ε j + C ′ B∗ (L) εi + C ′ũ0.

The last two terms of this decomposition are stationary and C ′xi is stationary
if and only if the first two terms vanish, i.e. if C ′μ = 0 and C ′ B(1) = 0. �

Hence, the multiplication by C ′ eliminates the deterministic trend μi and the
stochastic trend B(1)

∑i
j=1 ε j .

Remark. If there exists a (full rank) cointegrating matrix C then the determi-
nant of B(1) equals zero and hence B(L) is noninvertible, which prevents the
existence of an AR representation in differences (because B(L)−1ui = εi does
not make sense). �
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The previous remark does not prevent xi from admitting a VAR representation
in levels; cointegration is investigated very often in this setting.

13.3.2 Cointegration in a VAR Model in Levels

Suppose that xi still satisfies

�xi − μ = ui = B(L)εi (13.3)

and moreover that xi admits a VAR representation in levels of the form

A (L) xi = ν + ηi (13.4)

where ν is a constant and ηi is a weak white noise that is the innovation of the
process. We first investigate the relationship between (13.3) and (13.4). Note
that the noises ηi and εi are necessarily equal to each other. Indeed, from the
definition of VAR in levels, we have

ηi = xi − E L(xi | past)

and from the Wold representation of ui in B(L)εi :

εi = �xi − E L(�xi | past).

Now we note that

εi = xi − xi−1 − E L(xi − xi−1 | past)

= xi − xi−1 − E L(xi | past) + xi−1 = ηi .

Moreover

(1 − L) xi = μ + B(L)εi

(1 − L) A(L)xi = A(1)μ + A(L)B(L)εi

(1 − L) (ν + εi ) = A(1)μ + A(L)B(L)εi

(1 − L) εi = A(1)μ + A(L)B(L)εi ,

which implies, by taking the expectation on both sides, that

A(1)μ = 0.

Moreover,

(1 − L) = A(L)B(L)

and hence

A(1)B(1) = 0.
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Theorem 13.2 C is the cointegrating matrix of the process xi that admits the
VAR representation (13.3) and (13.4) if and only if A(1) = DC ′ where D is a
full rank m × r matrix. �

Proof: Assume first that A(1) = DC ′. Then, we have DC ′μ = 0 and
DC ′ B(1) = 0, which implies C ′μ = 0 and C ′ B(1) = 0 and hence the fact that
C is a cointegrating matrix (Theorem 13.1).

Conversely, we go back to the double representation

A(L)xi = ν + εi

(1 − L) xi = μ + B(L)εi .

Using the same argument as in Beveridge and Nelson, we have

A(L) = A(1) + A∗(L)(1 − L).

Hence

A(1)xi + A∗(L)(1 − L)xi = ν + εi

A(1)xi = −A∗(1)μ − A∗(L)B(L)εi + ν + εi .

A∗ is a polynomial matrix (and not an infinite series) and hence A∗(L)B(L)εi

is a stationary process for all A(L); therefore, A(1)xi is stationary. The rank of
A(1) is consequently equal to the maximum number of cointegrating relations
(that is r ) and A(1) can be written as A(1) = D∗C ′

∗ (where D∗ is of dimension
m × r and C∗ of dimension r × m), with C∗ cointegrating matrix. �

Remark. The fact that D is full rank means that we consider the maximum
number of cointegrating relations. �

Remark. This decomposition is not valid if we consider only matrices not
including all of cointegrating vectors. �

Return to the VAR representation:

A (L) xi = ν + εi .

Note that

A(L) = A0 + A(L)L .

Using Beveridge-Nelson decomposition, we can write

A(L) = A(1) + A
∗
(L) (1 − L) .

Then xi satisfies

A0xi + A(1)xi−1 + A
∗
(L)�xi−1 = ν + εi .
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This representation is that of an error correction model. Subtracting and adding
A0xi−1 in the left-hand side of this equation yields

A0�xi + A(1)�xi−1 + (
A(1) + A0

)
xi−1 = ν + εi .

By setting

A0�xi + A(1)�xi−1 = Ã(L)�xi

and noticing that A(1) + A0 = A(1) and Ã(L) = A0 + A
∗
(L)L , we infer

Ã(L)�xi + A(1)xi−1 = ν + εi .

Under the assumption of cointegration, A(1) = DC ′ and

Ã(L)�xi + Dzi−1 = ν + εi

C ′xi = zi .

Hence, we decomposed the dynamics of xi into a long-run equation C ′xi = zi

where the residuals zi are stationary, and a short-run relationship that associates
the variations of xi with the lagged residuals of the long-run equation and an
innovation.

13.3.3 Triangular Representation

Let xi be the process satisfying

�xi = μ + ui

(xi ∈ R
m , ui is a centered stationary process) and admitting a m × r cointegrat-

ing matrix C . We partition xi as (xi1, xi2) (where xi1 ∈ R
r and xi2 ∈ R

m−r )
and use the notation

C ′xi = C ′
1xi1 + C ′

2xi2

with

C =
(

C1 : r × r

C2 : m − r × m − r

)
.

Then, we have{
C ′

1xi1 + C ′
2xi2 = zi

�xi2 = μ2 + ui2

(13.5)
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with μ = (
μ1

μ2

)
and ui =

( ui1

ui2

)
. The process

( zi

ui1

)
is centered and stationary. In

particular, if C = ( I
−�

)
, we obtain a triangular representation{

xi1 = �′xi2 + zi

�xi2 = μ2 + ui2

(13.6)

Conversely, if the process xi is characterized by (13.6), it is easy to show that
xi ∼ I (1) (with drift). Indeed

�xi1 = − C ′
1C ′

2μ2 − C−1′
1 ui2 + �zi = μ1 + ui1

�xi2 = μ2 + ui2

with

μ1 = −C ′
1C ′

2μ2 and ui1 = −C−1′
1 ui2 + �zi .

Moreover, C is a cointegrating matrix by definition. Hence, any I (1) process,
characterized by r cointegrating relations, admits a representation (13.6). This
writing should not lead to a wrong interpretation. The relation

�xi2 = μ2 + ui2

is the description of the marginal process that generates xi2
, but the relation

C ′
1xi1 + C ′

2xi2 = zi

(where xi1 = �′xi2 + zi ) is not a representation of the process that generates
xi1 conditionally on xi2.

13.3.4 Estimation of a Cointegrating Vector

First, we analyze the problem of estimating a unique cointegrating vector of
a model in its triangular form. We choose the normalization C = ( 1

−γ

)
. Consider

xi1 = α + γ ′xi2 + zi

�xi2 = μ2 + ui2,

where xi1 ∈ R and xi2 ∈ R
q . Note that we relax here the mean zero condition of

the cointegrated vector by including a constant α in the cointegrating relation.
In the general case,

( zi

ui2

)
is stationary and zi and ui2 are correlated. To underline

the different problems, we examine our model step by step. We assume first that
zi and ui2 are uncorrelated white noise, second that zi and ui2 are arbitrary
stationary but still not correlated. Finally, we examine the general case.

1. Suppose that
( zi

ui2

)
is a white noise with

Var(zi ) = σ 2 and Var(ui ) = �.
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The OLS estimators are given by(
α̂n

γ̂n

)
=

[
n

∑
x ′

i2∑
xi2

∑
xi2x ′

i2

]−1 (∑
xi1∑
xi1xi2

)
,

which implies that(
α̂n − α

γ̂n − γ

)
=

[
n

∑
x ′

i2∑
xi2

∑
xi2x ′

i2

]−1 (∑
zi∑
xi2zi

)
.

Does(√
n (̂αn − α)

n (γ̂n − γ )

)
converge to a limiting distribution? Consider m independent Brownian
motions grouped into(

W1

W2

)
, W1 ∈ R, W2 ∈ R

q .

We have

n− 1
2

∑
zi → N

(
0, σ 2

) = σ W1(1).

As � = P P ′, we have

n−2
∑

xi2x ′
i2 → P

∫
W2(s)W ′

2(s)ds P ′,

n− 3
2

∑
xi2 → P

∫
W2(s)ds

and

n−1
∑

xi2zi → σ P

∫
W2dW1.

Since ui ⊥ zi , we obtain(√
n (̂αn − α)

n (γ̂n − γ )

)
→

[
1

∫
W ′

2 P ′

P
∫

W2 P
∫

W2W ′
2 P ′

]−1 (
σ W1(1)

σ P
∫

W2dW1

)
.

This distribution has mean zero.
2.

( zi

ui2

) = B(L)ηi is a centered stationary process where ηi is a white noise.
The zi and ui2 are mutually independent and

B(L) =
(

B11(L) 0

0 B22(L)

)
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hence(
zi

ui2

)
=

(
B11(L) 0

0 B22(L)

) (
η1i

η2i

)
.

The OLS estimators are(√
n (̂αn − α)

n (γ̂n − γ )

)
=

[
1 n− 3

2

∑
x ′

i2

n− 3
2

∑
xi2 n−2

∑
xi2x ′

i2

]−1 (
n− 1

2

∑
zi

n−1
∑

xi2zi

)
.

Setting Var(ui ) = � = P P ′, we get

Var(ηi ) =
(

σ 2 0

0 �

)
=

(
σ 2 0

0 P P ′

)
.

Let{
λ = σ B11(1)

! = B22(1)P

and let W1 and W2 be independent Brownian motions belonging to R

and R
q respectively. Then(√
n (̂αn − α)

n (γ̂n − γ )

)
→

[
1

∫
W ′

2!
′

!
∫

W2 !
∫

W2W ′
2!

′

]−1 (
λW1(1)

λ!
∫

W2dW1

)
.

This distribution has mean zero. Let us verify this for α:

√
n

n

∑
zi → N

[
0,

∞∑
j=−∞

cov
(
εi , εi+ j

)]
∞∑

j=−∞
E

(
εiεi+ j

) =
∞∑

j=−∞

∞∑
l=0

∞∑
k=0

blbk E
[
ηi−lηi+ j−k

]
.

Now

E
[
ηi−lηi+ j−k

] =
∣∣∣∣∣σ 2 if i − l = i + j − k or k = j + l

0 otherwise.

Hence

∞∑
j=−∞

E
(
εiεi+ j

) = σ 2
∑
l,k

blbk = σ 2
(∑

bl

)2

= σ 2 (B11(1))2 .

The result follows.
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3. Let
( zi

ui2

) = B(L)ηi be an arbitrary centered stationary process with zi

and ui2 not mutually independent. We have(√
n (̂αn − α)

n (γ̂n − γ )

)
=

[
1 n− 3

2

∑
x ′

i2

n− 3
2

∑
xi2 n−2

∑
xi2x ′

i2

]−1 (
n− 1

2

∑
zi

n−1
∑

xi2zi

)
.

There exist (W1, W2) ∈ R × R
q , standard Brownian motions (indepen-

dent, with unit variance) and such that[
1 n− 3

2

∑
x ′

i2

n− 3
2

∑
xi2 n−2

∑
xi2x ′

i2

]
→

(
1

∫
W ′

2 P ′λ

λ
∫

W2 P !
∫

W2W ′
2!

′

)

with

1√
n

∑
zi → N (0, b(1)2).

(by the central limit theorem) and

1

n

∑
xi2zi → 1

n

∑
�xi2zi + 1

n

∑
xi2−1zi

( 1√
n

∑
zi

n−1
∑

xi2zi

)
→

(
λ1W1(1)

λ!
∫

W2dW1 + ∑∞
ν=0 cov(ui2, zi+ν)

)
.

As a consequence(
α̂n

γ̂n

)
→

(
α

γ

)
in probability,

which implies that the OLS estimators are consistent in spite of the lack of
exogeneity. But there is an asymptotic bias because

( √
n(̂αn − α)

n(γ̂n − γ )

)
converges to a

distribution whose mean is nonzero. It is possible to correct for this bias but we
prefer other estimators in order to avoid this bias problem.

Consider the system{
yi = α + γ ′zi + εi

�zi = ui

with
(

εi

ui

)
stationary and centered, where E (εi | zi , ui ) is a linear function of

ui ; hence

E( yi | zi , ui ) = α + γ ′zi + E (εi | zi , ui ) = α + γ ′zi + πui .
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The system becomes⎧⎪⎨⎪⎩
yi = α + γ ′zi + πui + εi

εi = πui + εi

�zi = ui

with
(

εi

ui

)
centered stationary. The correlation between εi and ui is of course

zero by definition. The model becomes

yi = α + γ ′zi + π�zi + εi .

The OLS estimators of this model⎛⎜⎝
√

n (̂αn − α)

n (γ̂n − γ )
√

n (π̂n − π )

⎞⎟⎠
converge to a distribution that we can derive in a similar fashion as before.

Example 13.8 Consider the system{
yi = α + γ ′zi + εi

�zi = ui

with
(

εi

ui

)
centered stationary. If

εi = ε̂i + εi ,

where ε̂i is the projection of εi on the trajectory of u, then

yi = α + γ ′zi + ε̂i + εi .

We impose the extra assumption that the projection of εi on the trajectory of
u ∈ ui−p, . . . , ui+p is linear. Then

ε̂i =
p∑

l=−p

πlui−l ,

and

yi = α + γ ′zi +
p∑

l=−p

πlui−l + εi .

The OLS estimators are⎛⎜⎝
√

n (̂αn − α)
√

n (π̂n − π )

n (γ̂n − γ )

⎞⎟⎠=

⎡⎢⎢⎣
1 n−1

∑
w′

i n− 3
2

∑
z′

i

n−1
∑

wi n−1
∑

wiw
′
i n− 3

2

∑
wi z′

i

n− 3
2

∑
zi n− 3

2

∑
ziw

′
i n−2

∑
zi z′

i

⎤⎥⎥⎦
−1⎛⎜⎜⎝

n− 1
2

∑
εi

n− 1
2

∑
wiεi

n−1
∑

ziεi

⎞⎟⎟⎠
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in the equation

yi = α + π ′wi + γ ′zi + εi

where

wi =

⎡⎢⎢⎣
ui−p

...

ui+p

⎤⎥⎥⎦ , π =

⎡⎢⎢⎣
π−p

...

π+p

⎤⎥⎥⎦ ;

ui−p, . . . , ui+p have dimension q × 1 and wi and π have dimension 2pq × 1.
We can show that⎛⎜⎝

√
n (̂αn − α)

√
n (π̂n − π )

n (γ̂n − γ )

⎞⎟⎠→

⎛⎜⎝1 0
∫

W ′
2!

′

0 � 0

!
∫

W2 0 !
∫

W2W ′
2!

′

⎞⎟⎠
−1⎛⎜⎜⎝

σ W1(1)

σ
∑− 1

2 W1(1)

1
2
σ [!

∫
W2dW1]

⎞⎟⎟⎠ .

with
∑ = V ar (wi ) and (W1, W2) ∈ R × R

q are independent standard
Brownian motions. �

13.3.5 Maximum Likelihood Estimation of an Error Correction Model
Admitting a Cointegrating Relation

Let xi be a I (1) vector of R
m admitting a VAR representation in levels

A(L)xi = ν + εi , εi is a white noise.

We saw that this model can be rewritten as

Ã (L) �xi + A (1) xi−1 = ν + εi

and assuming that C is a cointegrating matrix is equivalent to imposing the
restriction A(1) = DC ′. Under this condition, we have

�xi = −DC ′xi−1 − Ã1�xi−1 − · · · − Ã p−1�xi−p+1 + ν + εi .

(13.7)

We assume that the εi are independent normal with variance �. We wish to
estimate D, C , Ã1, . . . , Ã p−1, and ν by maximum likelihood. The previous
equation can be written as

Y = ZC D′ + W� + E (13.8)
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with

Y = (
yi j

)
i, j

, yi j = xi j − xi−1 j , xi =

⎛⎜⎜⎝
xi1

...

xim

⎞⎟⎟⎠ ,

Z = (
zi j

)
i, j

, zi j = −xi−1, j ,

W =

⎛⎜⎜⎜⎝
...

...
...

−�x ′
i−1 · · · −�x ′

i−p+1 · · · 1

...
...

...

⎞⎟⎟⎟⎠ ,

and

� =

⎛⎜⎜⎜⎜⎜⎜⎝
Ã′

1

...

Ã′
p

ν ′

⎞⎟⎟⎟⎟⎟⎟⎠ , (13.9)

where Y , Z , W, and � have dimensions n × m, n × m, n × (pm + 1) , and
(pm + 1) × m respectively.

Remarks.

1. The model (13.8) is a restricted multivariate normal regression model.
2. We impose no restrictions on the Ã j and ν.
3. The matrix D is not constrained.
4. The matrix W may possibly contain a trend (which changes the asymp-

totic properties but not the calculation of the estimators). �

The density of the observations (conditional on x−p−1, . . . , x0) takes the form

|�|− n
2 exp −1

2
tr�−1

(
Y − ZC D′ − W�

)′ (
Y − ZC D′ − W�

)
(13.10)

Using the usual least squares formulas, we can verify that the maximum with
respect to � is reached for

�̂ = (
W ′W

)−1
W ′ (Y − ZC D′) .
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Replacing � by �̂ in (13.10), we obtain

|�|− n
2 exp −1

2
tr�−1

(
Y − ZC D′)′

MW

(
Y − ZC D′)

with

MW = I − W (W ′W )−1W ′.

Similarly, the maximization of this expression with respect to D′ leads to

D̂′ = (
C ′ Z ′MW ZC

)−1
C ′ Z ′MW Y.

After substituting D̂′ for D′, the likelihood becomes

|�|− n
2 exp −1

2
tr�−1Y ′

(
MW − MW ZC

(
C ′ Z ′MW ZC

)−1
C ′ Z ′MW

)
Y.

The estimator of � is equal to

�̂ = 1

n

[
Y ′

(
MW − MW ZC

(
C ′ Z ′MW ZC

)−1
C ′ Z ′MW

)
Y

]
.

Replacing � by �̂, we see that the maximization of the likelihood is equivalent
to the minimization of∣∣∣Y ′MW Y − Y ′MW ZC

(
C ′ Z ′MW ZC

)−1
C ′ Z ′MW Y

∣∣∣ .
Using the formula∣∣∣∣∣ A11 A12

A21 A22

∣∣∣∣∣ = |A11|
∣∣A22 − A21 A−1

11 A12

∣∣ = |A22|
∣∣A11 − A12 A−1

22 A21

∣∣ ,
we get ∣∣∣Y ′MW Y − Y ′MW ZC

(
C ′ Z ′MW ZC

)−1
C ′ Z ′MW Y

∣∣∣
=

∣∣Y ′MW Y
∣∣ ∣∣∣C ′ Z ′MW ZC − C ′ Z ′MW Y (Y ′MW Y )−1 Y ′MW ZC

∣∣∣
|C ′ Z ′MW ZC | .

Hence, C is obtained by minimizing∣∣C ′ QC
∣∣

|C ′ RC |
with

Q = Z ′MW Z

and

R = Z ′MW Z − Z ′MW Y
(
Y ′MW Y

)
Y ′MW Z .
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This is identical to finding the r largest roots of the determinant equation∣∣∣Z ′MW

(
Y ′MW Y

)−1
Y ′MW Z − λZ ′MW Z

∣∣∣ = 0

or finding the r largest eigenvalues that are the solutions of∣∣∣(Z ′MW Z
)−1

Z ′MW Y
(
Y ′MW Y

)−1
Y ′MW Z − λI

∣∣∣ = 0. (13.11)

If the λi are the canonical correlations obtained by solving the equation (13.11),
then (1 − λi ) are the eigenvalues of(

I − (
Z ′MW Z

)−1
Z ′MW Y

(
Y ′MW Y

)−1
Y ′MW Z

)
.

As the determinant of a matrix is equal to the product of its eigenvalues, we
have

r∏
i=1

(1 − λi ) =
∣∣∣I − (

Z ′MW Z
)−1

Z ′MW Y
(
Y ′MW Y

)−1
Y ′MW Z

∣∣∣
=

∣∣∣Z ′MW Z − Z ′MW Y (Y ′MW Y )−1
∣∣∣

|Z ′MW Z |

=

∣∣∣Y ′MW Y − Z ′MW Y (Z ′MW Z )−1 Y ′MW Z
∣∣∣

|Y ′MW Y | ,

hence, the likelihood is proportional to

L(.) = ∣∣Y ′MW Y
∣∣ r∏

i=1

(1 − λi ) (13.12)

and

log L(.) = −nm

2
log 2π− nm

2
− n

2
log

∣∣Y ′MW Y
∣∣− n

2

r∑
i=1

log (1 − λi ),

where the λi are the roots of Equation (13.11).

13.3.6 Cointegration Test Based on the Canonical
Correlations: Johansen’s Test

To determine the number of cointegrating vectors, Johansen suggests two tests:
the trace test and the maximum eigenvalue test. The number r of cointegrat-
ing relations in the system is determined from the likelihood ratio (LR) test.
The trace test tests the null hypothesis that there are at most r cointegrating
vectors. The maximum eigenvalue test tests the hypothesis that there are r
cointegrating vectors against the alternative that there are r + 1 of them. We
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use the fact that, if there exist r cointegrating vectors, then the m − r smallest
eigenvalues of Equation (13.11) are zero. The r vectors corresponding to the
nonzero eigenvalues are chosen as cointegrating vectors. This way of imposing
m − r restrictions yields an optimal and asymptotically efficient estimator of
the cointegrating vectors.

Trace Test

Result (13.12) shows that the maximum likelihood is given by

−2 ln Lmax ∝ n
m∑

i=1

ln (1 − λi )

where the λi are the solutions of (13.11). The LR test of the null hypothesis \at
most r cointegrating vectors” is

λtrace = −n
m−r∑
i=1

ln
(
1 − λ̂i

)
where λ̂1, . . . , λ̂m−r are the m − r smallest eigenvalues of Equation (13.11).
The asymptotic distribution is given by the trace of the stochastic matrix∫ 1

0

(dW ) W ′
(∫ 1

0

W W ′dr

)−1 ∫ 1

0

W (dW )′ (13.13)

where W is a Brownian motion of dimension m − r . In the case where there is
a constant or a trend in the VAR model, we use, instead of (13.13),∫ 1

0

(dW ) W̃ ′
(∫ 1

0

W̃ W̃ ′dr

)−1 ∫ 1

0

W̃ (dW )′ (13.14)

where W̃ is the demeaned or detrended Brownian motion.

Maximum Eigenvalue Test

To test the null hypothesis of r cointegrating vectors against the alternative
hypothesis that there exist r + 1 cointegrating vectors, the LR test statistic is:

λmax = −n ln
(
1 − λ̂r+1

)
.

The asymptotic distribution of this statistic is given by the largest eigenvalue of
the stochastic matrix (13.13) or (13.14), according to the different specifications
of the VAR model.

Detailed tables for the critical values are given by Osterwald and Lenum
(1992).
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Notes

The literature concerning unit root tests and cointegration models is large. Let us recall

the synthesis by Phillips and Xiao (1998), the books by Hamilton (1994) and by Johansen

(1995). White (1958) stressed that the convergence criteria for the estimators of I (1)

processes were special. Donsker’s theorem, the functional central limit theorem, and the

invariance principal can be found in Billingsley (1968).

A large number of tests have been developed in the literature. We cite in particular

Choi (1999), Ahn and Choi (1999), Elliott, Rothenberg, and Stock (1992), Schmidt

and Phillips (1992), Kiatkowsky, Phillips, Schmidt, and Shen (1992), who develop a

Lagrange multiplier test, and Ahn (1993) in the deterministic cases. Levin, Lin, and Chu

(2002), Quah (1994), Breitung (2002), Pesaran and Shin (1996) consider panel data,

Toda and McKenzie (1999) take into account missing data.

We did not discuss long-memory processes. For this, we refer to the seminal paper by

Granger and Joyeux ( 1980) and to the books by Beran (1994) and by Samorodnisky and

Taqqu (1995) for α-stable processes. Important developments of cointegrated models

are made in the context of panel data and models with structural breaks. Regarding panel

data, we refer to the synthesis by Baltagi (2001) and for models with breaks to Johansen,

Mosconi, and Nielsen (2000). For nonparametric and nonlinear cointegration models,

we refer to the work of Bierens (1997).
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14. Models for Conditional Variance

14.1 Introduction

For a long time, heteroskedasticity rested on a specification of the variance as
a function of observable exogenous variables. But this formulation appeared to
be too restrictive, especially for financial problems, and it became necessary to
introduce an endogenous dynamics in the determination of the variance.

Hence, this chapter will address the AutoRegressive Conditional Het-
eroskedastic (ARCH) models that have experienced an important development
over the past 20 years after the original article by Engle in 1982. We will not
provide a complete theoretical exposition of these models, but often proceed
with examples to point out their fundamental characteristics.

After a review of different types of ARCH models, we will tackle their estima-
tion by the generalized method of moments. Then, we will see some applications
of Rao procedure to testing for the null hypothesis of homoskedasticity. We will
finish with a few specific aspects of this type of modeling.

14.2 Various Types of ARCH Models

First, we introduce a simplified notation for the conditional mean and condi-
tional variance{

Eθ ( yi |ηi−1) ≡ Eθ
i−1( yi )

Varθ ( yi |ηi−1) ≡ Varθ
i−1( yi )

(14.1)

where θ represents the vector of all unknown parameters. The conditioning is
done with respect to ηi−1 which includes simultaneously the past of the variable
yi (this past may have a finite or infinite horizon) and the past, present, and future
path of a vector zi of explanatory variables:

ηi−1 = {
yi−1, yi−2, . . . , z+∞

−∞
}
. (14.2)

341
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We study processes for which the conditional moments take the form{
Eθ

i−1( yi ) ≡ mi (ηi−1, λ)

Varθ
i−1( yi ) ≡ hi (ηi−1, λ)

(14.3)

where mi and hi are arbitrary functions of unknown parameters and of ηi−1,
that may be linear, piecewise linear, or nonlinear. For the sake of simplicity,
these functions are sometimes denoted mi (λ) and hi (λ) or simply mi and hi .

We exit the framework of the linear space H ( y), the subspace of L2 generated
by yτ , τ ≤ i , and we consider the space L2 of all measurable functions of ηi .

The following representation is sometimes used that strengthens the preced-
ing assumptions

yi = mi +
√

hi ui (14.4)

where the ui are i.i.d. with mean zero and variance 1, not necessarily normal.
Assumptions (14.1) define the errors ui as the innovations of a model of the
following type⎧⎪⎪⎨⎪⎪⎩

ui = yi − mi

Eθ
i−1(ui ) = 0

Varθ
i−1(ui ) = hi .

(14.5)

We provide examples that illustrate some of the adopted specifications for
ARCH-type models where the conditional variance, also called volatility in the
financial literature, may take various forms.

Example 14.1 Consider one of the simplest models, namely the AR(1) model
with ARCH(1) errors:

Eθ
i−1( yi ) = mi = β1 + β2 yi−1

and

Varθ
i−1( yi ) = α0 + α1 [yi−1 − mi−1]2

= α0 + α1 [yi−1 − (β1 + β2 yi−2)]2

with α0 > 0 and α1 ≥ 0 to insure the positivity of the conditional variance, and
|β2| < 1 using the canonical representation of the AR(1) process. Expanding
the expression of the conditional variance yields a quadratic form that depends
on the lags of the endogenous variable

Varθ
i−1( yi ) = ξ1 y2

i−1 + ξ2 y2
i−2 + ξ3 yi−1 yi−2 + ξ4 yi−1 + ξ5 yi−2 + ξ6
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with the following restrictions

ξ2 = ξ1β
2
2 ,

ξ3 = −2ξ1β2,

ξ4 = −2ξ1β1,

ξ5 = 2ξ1β1β2,

the other parameters, i.e., β1, β2, ξ1, and ξ6, being not restricted. This can be
rewritten as

Varθ
i−1( yi ) =

[
yi−1

yi−2

]′
A

[
yi−1

yi−2

]
+ B ′

[
yi−1

yi−2

]
+ ξ6

with

A = ξ1

[
1 −β2

−β2 β2
2

]
and B = 2ξ1β1

[−1

β2

]
.

Note here that a popular way to write this model is⎧⎪⎪⎨⎪⎪⎩
ui = yi − β1 − β2 yi−1

Eθ
i−1(ui ) = 0

Varθ
i−1(ui ) = α0 + α1u2

i−1. �

The endogenous dynamics that determine the variance in this AR(1)-
ARCH(1) model involve some restrictions on the parameters. This generalizes
to higher-order model, as the following example shows.

Example 14.2 Consider the ARCH(q) model with an even simpler specifica-
tion of the conditional expectation

Eθ
i−1( yi ) = mi = 0

and

Varθ
i−1( yi ) = α0 +

q∑
r=1

αr ( yi−r − mi−r )2 = α0 +
q∑

r=1

αr y2
i−r .

This model has a simple dynamic based on the squared lags of the endogenous
variable where the only restriction on the parameters is the nonnegativity of the
coefficients (α0 > 0 and αr ≥ 0, for all r ≥ 1). If we introduce a more complex
specification of the conditional expectation in the form of an AR(m)

Eθ
i−1( yi ) = β0 + β1 yi−1 + · · · + βm yi−m

= β0 + (β1L + · · · + βm Lm) yi

= β0 + 	(L)yi
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then the conditional variance can be expressed as

Varθ
i−1( yi ) =

q+m∑
k=1

ξk y2
i−k +

q+m∑
k=1

q+m∑
r=1,r 	=k

γkr yi−k yi−r +
q+m∑
k=1

δk yi−k + ν0

with restrictions on the coefficients ξk , γkr , and δk for k, r = 1, . . . , q + m.

Indeed, there are (q + m)(q + m + 1) coefficients in this last equation, that
depend on q + m + 2 coefficients αi and β j for i = 0, . . . , q and j =
0, . . . , m. �

Example 14.3 In order to have a more flexible structure of the lags and fewer
parameters than in ARCH(q) model, an autoregressive moving average dynam-
ics of the variance has been introduced which gave rise to the Generalized
ARCH or GARCH(p,q) model of the form

Eθ
i−1( yi ) = mi = β ′zi

and

Varθ
i−1( yi ) = hi

= α0 +
q∑

r=1

αr

[
yi−r − β ′zi−r

]2 +
p∑

k=1

δkhi−k

with p ≥ 0, q > 0, α0 > 0, αr ≥ 0 for r = 1, . . . , q, and δk ≥ 0 for k =
1, . . . , p. We took here a very general form for the conditional expectation
where zi is a l × 1 vector that may contain lags of the endogenous variable and
β is a l × 1 vector of parameters. �

Example 14.4 The ARCH in mean (ARCH-M) models allow the conditional
expectation to depend on the conditional variance:

Eθ
i−1( yi ) = mi = β ′zi + δVarθ

i−1( yi )

and

Varθ
i−1( yi ) = α0 +

q∑
r=1

αr [yi−r − mi−r ]2

or, by setting Varθ
i−1( yi ) = hi ,

Eθ
i−1( yi ) = β ′zi + δhi

and

Varθ
i−1( yi ) = α0 +

q∑
r=1

αr

[
yi−i − β ′zi−r − δhi−r

]2
. �
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Example 14.5 In the Exponential GARCH model, also called EGARCH(p,q),
the conditional variance responds in an asymmetric manner to the residuals
depending on their signs:

ln hi = α0 +
q∑

r=1

αr g(ζi−r ) +
p∑

j=1

δ j ln hi− j

with

g(ζi ) = ρζi + γ (|ζi | − E |ζi |)
and

ζi = yi − mi√
hi

.

Hence ζi is conditionally standardized, i.e., Eθ
i−1(ζi ) = 0 and V θ

i−1(ζi ) = 1.
g(ζi ) is an i.i.d. sequence of random variables with mean zero and finite constant
variance. The asymmetric effect is obvious: if ζi > 0, g(ζi ) has a slope ρ + γ ,
and if ζi < 0, the slope is ρ − γ . �

Example 14.6 The Nonlinear ARCH or NARCH(q) is characterized by a gen-
eral functional form of the conditional variance:

Varθ
i−1( yi ) = hi =

[
α0

(
σ 2

)δ +
q∑

r=1

αr ( yi−r − mi−r )δ

]1/δ

with σ 2 > 0, α0 > 0, αi ≥ 0 for i = 1, . . . , q, δ > 0, and
∑q

r=0 αr = 1. The
interest of this specification is that it allows us to test the null hypothesis of
linearity against a variety of nonlinear alternatives. The estimate of δ gives an
idea of the degree of nonlinearity. Hence, if δ = 1, we get back the ARCH(q)
model. If δ = 0, we get a logarithmic form that is used by some authors

ln hi = α0 ln σ 2 +
q∑

r=1

αr ln ( yi−r − mi−r )2 . �

ARCH models can be extended to the multivariate case. The large number of
parameters they contain, coming partly from the conditional variance matrix,
requires the introduction of some restrictions. We exhibit two of these models
in the following examples.

Example 14.7 The multivariate GARCH model with constant conditional
correlations can be written as{

Eθ
i−1( yi ) = mi

Varθ
i−1(ui ) = Hi
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where yi is a N × 1 vector with N × 1 expectation mi and N × N conditional
variance-covariance matrix Hi that is almost surely positive definite for all
i . The fundamental assumption in this type of model is that the conditional
correlations ρk ji , given by ρk ji = hkji/

√
hkki h j ji , are constant over time and

equal to ρk j , for j = 1, . . . , N and k = j + 1, . . . , N . Hence, the elements of
Hi are: ⎧⎪⎨⎪⎩

hkki = ωk +
q∑

r=1

αkr u2
k,i−r +

p∑
r=1

δk j hkk,i−r k = 1, . . . , N

hkji = ρk j

(
hkki h j ji

)1/2
k, j = 1, . . . , N , and k 	= j.

with ui = yi − mi . Thus, the conditional variances and covariances of the
bivariate GARCH(1,1) model are⎧⎪⎪⎨⎪⎪⎩

h11i = ω1 + α11u2
1,i−1 + δ11h11,i−1

h22i = ω2 + α22u2
2,i−1 + δ22h22,i−1

h12i = ρ
√

h11i h22i �

Example 14.8 The diagonal ARCH model permits to simplify the multivariate
case by assuming that some matrices are diagonal. Thus, the bivariate diagonal
GARCH(1,1) model with variance-covariance matrix Hi is characterized by

vechHi =

⎡⎢⎣ h11i

h12i

h22i

⎤⎥⎦ =

⎡⎢⎣γ11

γ12

γ22

⎤⎥⎦ +

⎡⎢⎣α11 0 0

0 α22 0

0 0 α33

⎤⎥⎦
⎡⎢⎣ u2

1,i−1

u1,i−1u2,i−1

u2
2,i−1

⎤⎥⎦

+

⎡⎢⎣ ξ11 0 0

0 ξ22 0

0 0 ξ33

⎤⎥⎦
⎡⎢⎣ h11i−1

h12i−1

h22i−1

⎤⎥⎦
where vech is the operator that stacks the columns of the lower part of
a symmetric matrix. Each element of Hi (variance or covariance) depends
only on its past values and cross products of the innovations that correspond
to it. �

14.3 Estimation Method

We study in detail the application of GMM to ARCH-type models. The quasi-
maximum likelihood method appears only as an example.
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First, we introduce some notation. In what follows, the data-generating pro-
cess is assumed to be strongly stationary and the moments computed with
respect to the true distribution are still indexed by θ. To simplify, we set:{

Eθ
i−1( yi ) = mi (λ)

Varθ
i−1( yi ) = hi (λ)

(14.6)

where θ is the vector of all parameters, including those of the distribution of
yi , and λ is the vector of the parameters of interest, those that appear in the
conditional mean and variance.

Example 14.9 For an ARCH(1) model defined by{
Eθ

i−1( yi ) = β ′zi

Varθ
i−1( yi ) = α0 + α1

(
yi−1 − Eθ

i−1( yi )
)2

,

the vector of the parameters of interest is λ = (β ′, α0, α1)′. �

In this chapter, we sometimes consider the process

ui (λ) = yi − mi (λ) (14.7)

which is such that

Eθ
i−1(ui (λ)) = 0 and Varθ

i−1(ui (λ)) = hi (λ).

To simplify the formulas, we do not always specify the arguments in the various
functions.

Here, it is assumed that the process is mixing and ergodic, which has been
proven for ARCH and GARCH models. Consider the general specification of
ARCH models represented by the conditional moments (14.6). From these two
moments, we infer orthogonality conditions that are the basis for the use of
GMM. From (14.6) and

Varθ
i−1( yi ) = Eθ

i−1( y2
i ) − [

Eθ
i−1( yi )

]2 = Eθ
i−1( y2

i ) − mi (λ)2,

we have {
Eθ

i−1( yi ) = mi (λ)

Eθ
i−1( y2

i ) = hi (λ) + mi (λ)2.
(14.8)

We apply here the method for transforming conditional moments into un-
conditional moments that has been studied in Chapter 3 and that is also used
in other chapters. Let wi be a r × 2 matrix of functions of ηi−1; assume that
r ≥ k, where k is the dimension of the vector λ, which insures that there are
sufficiently many moment equations.
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Set

ρ( yi , λ) =
[

yi − mi (λ)

y2
i − hi (λ) − mi (λ)2

]
. (14.9)

The orthogonality conditions can be written as

Eθ (wiρ( yi , λ)) = 0 (14.10)

or to return to the notation of Chapter 3, as

Eθ (ψ( yi , λ)) = 0 (14.11)

with

ψ( yi , λ) = wiρ( yi , λ);

hence ψ( yi , λ) is of dimension r × 1. The GMM estimator of λ, denoted λ̂n , is
given by

λ̂n = arg min
λ

(
1

n

n∑
i=1

ψ( yi , λ)

)′
Hn

(
1

n

n∑
i=1

ψ( yi , λ)

)
(14.12)

where the r × r matrix Hn may depend on the sample and is supposed to satisfy
Hn → H Pθ−a.s.

It follows from Theorem 3.4 in Chapter 3 about the asymptotic properties
of GMM estimator that λ̂n → λ Pθ−a.s. (where λ is the solution to (14.10))
and that

√
n

(̂
λn − λ

) → N (0, �θ ) in Pθ distribution,

with

�θ =
[

Eθ

(
∂ψ ′

∂λ

)
H Eθ

(
∂ψ

∂λ′

)]−1

Eθ

(
∂ψ ′

∂λ

)
H Vθ H

(14.13)

×Eθ

(
∂ψ

∂λ′

) [
Eθ

(
∂ψ ′

∂λ

)
H Eθ

(
∂ψ

∂λ′

)]−1

,

(the various expressions are calculated at λ) and Vθ is given by (3.31). Note that
Vθ simplifies to Vθ = Varθ (wiρi ) since Covθ

(
wiρi , wi+ jρi+ j

) = 0, ∀ j 	= 0
(see above Formula (14.20)).

Using the fact that

∂ψ

∂λ′ = wi
∂ρ

∂λ′ ,
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we can write �θ in the form

�θ =
[

Eθ

(
∂ρ ′

∂λ
w′

i

)
H Eθ

(
wi

∂ρ

∂λ′

)]−1

Eθ

(
∂ρ ′

∂λ
w′

i

)
H Vθ H

×Eθ

(
wi

∂ρ

∂λ′

) [
Eθ

(
∂ρ ′

∂λ
w′

i

)
H Eθ

(
wi

∂ρ

∂λ′

)]−1

.

(14.14)

Hence, when r > k, the expression of �θ is complicated because Eθ (wi
∂ρ

∂λ′ )
is of dimension r × k and hence is not square. We consider two cases.

The first one is where H = V −1
θ . This corresponds to the optimal choice of

Hn . Then, we can apply the result of Theorem 3.5 in Chapter 3 to obtain

�θ =
[

Eθ

(
∂ρ ′

∂λ
w′

i

)
V −1

θ Eθ

(
wi

∂ρ

∂λ′

)]−1

. (14.15)

The second case is where r = k. Eθ (wi
∂ρ

∂λ′ ) is here square and invertible. We
use the results of Theorem 3.3 in Chapter 3, corresponding to a simple system
of moment equations (the matrix H disappears by simplification) and we obtain

�θ =
[

Eθ

(
wi

∂ρ

∂λ′

)]−1

Vθ

[
Eθ

(
∂ρ ′

∂λ
w′

i

)]−1

. (14.16)

Note that this formula is equivalent to (14.14) when H = V −1
θ and the restriction

r = k holds.
These results can be summarized in the following theorem, which follows

from Theorems 3.3, 3.4, and 3.5 in Chapter 3, assuming their general assump-
tions are satisfied. The process is assumed to be stationary and ergodic, and to
satisfy the conditions for the application of the central limit theorem.

Theorem 14.1 Under general assumptions and assuming that Hn → H
Pθ − a.s., the GMM estimator λ̂n of λ, the solution to the minimization of(

1

n

n∑
i=1

wiρ( yi , λ)

)′
Hn

(
1

n

n∑
i=1

wiρ( yi , λ)

)
,

satisfies the following asymptotic properties:

1) λ̂n → λ Pθ − a.s. (where λ is the solution to (14.10)),
2)

√
n

(̂
λn − λ

) → N (0, �θ ) in Pθ -distribution with

a) in the general case

�θ =
[

Eθ

(
∂ρ ′

∂λ
w′

i

)
H Eθ

(
wi

∂ρ

∂λ′

)]−1

Eθ

(
∂ρ ′

∂λ
w′

i

)
H Vθ H

×Eθ

(
wi

∂ρ

∂λ′

) [
Eθ

(
∂ρ ′

∂λ
w′

i

)
H Eθ

(
wi

∂ρ

∂λ′

)]−1

,

(14.17)
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b) if H = V −1
θ ,

�θ =
[

Eθ

(
∂ρ ′

∂λ
w′

i

)
V −1

θ Eθ

(
wi

∂ρ

∂λ′

)]−1

(14.18)

(̂λn is then the optimal GMM estimator),
c) if r = k,

�θ =
[

Eθ

(
wi

∂ρ

∂λ′

)]−1

Vθ

[
Eθ

(
∂ρ ′

∂λ
w′

i

)]−1

(14.19)

(̂λn is then an estimator of the simple method of moments). �

Now, we study in more detail the case where r = k. Formula (14.19) shows
that the asymptotic variance �θ depends on the variables wi . We look for the
optimal variable, also referred to as optimal instrument, w∗

i that minimizes �θ .
We know that

Eθ

(
wi

∂ρ

∂λ′

)
= Eθ

[
Eθ

i−1

(
wi

∂ρ

∂λ′

)]
= Eθ

[
wi Eθ

i−1

(
∂ρ

∂λ′

)]
.

In addition,

Vθ = Varθ (ψ)

= Varθ (wiρ( yi , λ))

= Eθ
(
wiρ( yi , λ)ρ( yi , λ)′w′

i

) − Eθ (wiρ( yi , λ)) Eθ
(
ρ( yi , λ)′w′

i

)
= Eθ

(
wiρ( yi , λ)ρ( yi , λ)′w′

i

)
in consequence of the moment conditions (14.10). Hence

Vθ = Eθ
(
wiρρ ′w′

i

) = Eθ
[
wi Eθ

i−1

(
ρρ ′) w′

i

]
= Eθ

[
wi

(
Varθ

i−1 (ρ)
)
w′

i

]
(14.20)

since Eθ
i−1 (ρ) = 0. �θ can be rewritten as

�θ =
[
Eθ

[
wi Eθ

i−1

(
∂ρ

∂λ′

)]]−1

×Eθ
[
wi

(
Varθ

i−1 (ρ)
)
w′

i

] [
Eθ

[
Eθ

i−1

(
∂ρ ′

∂λ

)
w′

i

]]−1

.

(14.21)

Let us set

w∗
i =

(
Eθ

i−1

(
∂ρ ′

∂λ

)) (
Varθ

i−1 (ρ)
)−1

. (14.22)
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For this particular value of wi , �θ takes the form

�∗
θ =

[
Eθ

[(
Eθ

i−1

(
∂ρ ′

∂λ

)) (
Varθ

i−1 (ρ)
)−1

(
Eθ

i−1

(
∂ρ

∂λ′

))]]−1

.

(14.23)

The optimality of this choice for w∗
i follows from the results seen in Chapter 3,

namely that the difference �θ − �∗
θ (where �θ is given by (14.19)) is a positive

semidefinite matrix and hence w∗
i is asymptotically optimal.

Let us examine more precisely the terms that compose w∗
i in (14.22). The

first term is the transpose of

Eθ
i−1

(
∂ρ

∂λ′

)
=

[ − ∂mi (λ)
∂λ′

− ∂hi (λ)
∂λ′ − 2mi (λ) ∂mi (λ)

∂λ′

]
. (14.24)

The second term of (14.22) is the inverse of

Varθ
i−1 (ρ) =

[
Varθ

i−1 ( yi ) Covθ
i−1

(
yi , y2

i

)
Covθ

i−1

(
yi , y2

i

)
Varθ

i−1

(
y2

i

) ]
. (14.25)

Consider the elements of this matrix. Given the general specification of the
conditional moments given in (14.6), the first term is

Varθ
i−1 ( yi ) = hi (λ). (14.26)

According to (14.8), the second diagonal element can be rewritten as

Varθ
i−1

(
y2

i

)= Eθ
i−1

(
y4

i

) − [
Eθ

i−1

(
y2

i

)]2 = Eθ
i−1

(
y4

i

) − (
hi + m2

i

)2
.

(14.27)

From the definition of the conditionally standardized process, ζi , we can write

yi = h1/2
i ζi + mi ,

we have

Eθ
i−1

(
y4

i

)= Eθ
i−1

(
h2

i ζ
4
i + 4h3/2

i ζ 3
i mi + 6hiζ

2
i m2

i + 4h1/2
i ζi m3

i + m4
i

)
=h2

i M4i + 4h3/2
i mi M3i + 6hi m2

i + m4
i ,

where M3i and M4i are given by{
M3i = Eθ

i−1

(
ζ 3

i

)
M4i = Eθ

i−1

(
ζ 4

i

)
,

hence

Varθ
i−1

(
y2

i

) = h2
i M4i + 4h3/2

i mi M3i + 4hi m
2
i − h2

i . (14.28)
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Finally, regarding the off-diagonal terms, we have

Covθ
i−1

(
yi , y2

i

) = Covθ
i−1

(
h1/2

i ζi + mi , hiζ
2
i + 2h1/2

i ζi mi + m2
i

)
= h3/2

i Covθ
i−1

(
ζi , ζ

2
i

) + 2hi mi Varθ
i−1 (ζi )

= h3/2
i M3i + 2hi mi

since Varθ
i−1 (ζi ) = 1 and Covθ

i−1

(
ζi , ζ

2
i

) = Eθ
i−1

(
ζ 3

i

) = M3i . Then, the matrix

Varθ
i−1 (ρ) can be written as

Varθ
i−1 (ρ) =

[
hi h3/2

i M3i + 2hi mi

h3/2
i M3i + 2hi mi h2

i M4i + 4h3/2
i mi M3i + 4hi m2

i − h2
i

]
.

(14.29)

In empirical applications, one needs to replace the terms in the definition of
w∗

i in (14.22) with consistent estimators.
In the following example, we detail the method based on the maximization

of the log likelihood assuming conditional normality. Thus, we do as if the
conditionally standardized process ζi follows a normal distribution. Using the
results of Chapter 3, we will show that, even if the normality assumption does not
hold (i.e., the true distribution is not conditionally normal), the estimator – then
called quasi-maximum likelihood estimator – is consistent and asymptotically
normal.

Example 14.10 Consider the log-likelihood

ln l( y|λ) = 1

n

n∑
i=1

ln f ( yi |λ) (14.30)

with

ln f ( yi |λ) = − 1
2

ln hi (λ) − 1
2
ζi (λ)2

= − 1
2

ln 2π − 1
2

ln hi (λ) − 1
2

( yi −mi (λ))2

hi (λ)
.

(14.31)

The quasi-maximum likelihood estimator of λ, denoted λ̂n, is defined as

λ̂n = arg max
λ

1

n

n∑
i=1

ln f ( yi |λ).

To return to the notation of Chapter 3, we set

φ( yi , λ) = ln f ( yi |λ)
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and

ψ( yi , λ) = ∂φ( yi , λ)

∂λ
= ∂ ln f ( yi |λ)

∂λ
.

The theoretical moment condition is written as

Eθ (ψ( yi , λ)) = Eθ

(
∂ ln f ( yi |λ)

∂λ

)
= 0. (14.32)

This is a moment condition corresponding to a misspecified model with normal
distribution, and we assume that (14.32) has as unique solution the vector λ
which we wish to estimate. The estimator λ̂n is hence the solution to

1

n

n∑
i=1

ψ( yi , λ) = 
1

n

n∑
i=1

∂φ( yi , λ)

∂λ
= 1

n

n∑
i=1

∂ ln f ( yi |λ)

∂λ
= 0.

From Theorem 3.3 in Chapter 3, λ̂n has the following properties:

λ̂n→λ Pθ − a.s.

(where λ is the solution to (14.32)) and

√
n

(̂
λn − λ

) → N (0, �θ ) in Pθ -distribution

with ⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
�θ = J−1

θ Iθ J−1
θ

Iθ = Varθ
(

∂ ln f ( yi |λ)
∂λ

)
Jθ = Eθ

(
∂2 ln f ( yi |λ)

∂λ∂λ′

)
.

Iθ can be rewritten as

Iθ = Eθ

(
∂ ln f ( yi |λ)

∂λ

∂ ln f ( yi |λ)

∂λ′

)
−

[
Eθ

(
∂ ln f ( yi |λ)

∂λ

)]2

= Eθ

(
∂ ln f ( yi |λ)

∂λ

∂ ln f ( yi |λ)

∂λ′

)
given the moment condition (14.32). It follows from (14.31) that

∂ ln f ( yi |λ)

∂λ
= − 1

2hi

∂hi

∂λ
+ ( yi − mi )

hi

∂mi

∂λ
+ 1

2

( yi − mi )
2

h2
i

∂hi

∂λ
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and

∂2 ln f ( yi |λ)

∂λ∂λ′ = 1

2h2
i

∂hi

∂λ

∂hi

∂λ′ − 1

2hi

∂2hi

∂λ∂λ′ − 1

hi

∂mi

∂λ

∂mi

∂λ′

− ( yi − mi )

h2
i

∂mi

∂λ

∂hi

∂λ′ +
( yi − mi )

hi

∂2mi

∂λ∂λ′ −
( yi − mi )

h2
i

∂hi

∂λ

∂mi

∂λ′

− ( yi − mi )
2

h3
i

∂hi

∂λ

∂hi

∂λ′ + ( yi − mi )
2

2h2
i

∂2hi

∂λ∂λ′ .

In these expressions, we use the term

ζi = ( yi − mi )/h1/2
i

whose moments are

Eθ
i−1(ζi ) = 0, Eθ

i−1(ζ 2
i ) = 1, Eθ

i−1(ζ 3
i ) = M3i and Eθ

i−1(ζ 4
i ) = M4i .

Then, we can write

∂ ln f ( yi |λ)

∂λ
= − 1

2hi

∂hi

∂λ
+ 1

h1/2
i

ζi
∂mi

∂λ
+ 1

2hi
ζ 2

i

∂hi

∂λ

and

∂2 ln f ( yi |λ)

∂λ∂λ′ = 1

2h2
i

∂hi

∂λ

∂hi

∂λ′ − 1

2hi

∂2hi

∂λ∂λ′ − 1

hi

∂mi

∂λ

∂mi

∂λ′

− ζi

h3/2
i

∂mi

∂λ

∂hi

∂λ′ + ζi

h1/2
i

∂2mi

∂λ∂λ′ − ζi

h3/2
i

∂hi

∂λ

∂mi

∂λ′

− ζ 2
i

h2
i

∂hi

∂λ

∂hi

∂λ′ + ζ 2
i

2hi

∂2hi

∂λ∂λ′ .

Consequently, using the expressions of the conditional moments of ζi , we can
write Iθ and Jθ as

Iθ = Eθ

[
1

4h2
i

∂hi

∂λ

∂hi

∂λ′ (M4i − 1) + 1

hi

∂mi

∂λ

∂mi

∂λ′

+ 1

2h3/2
i

(
∂hi

∂λ

∂mi

∂λ′ + ∂mi

∂λ

∂hi

∂λ′

)
M3i

]
and

Jθ = Eθ

[
− 1

2h2
i

∂hi

∂λ

∂hi

∂λ′ − 1

hi

∂mi

∂λ

∂mi

∂λ′

]
.

In the empirical applications, Iθ and Jθ need to be approximated by replacing
λ by λ̂n and the expectations by their sample counterparts.
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An important case is that of the conditional normality. Indeed, when the model
is actually conditionally normal, then M3i = 0 and M4i = 3, which implies that
Jθ = −Iθ , hence

√
n

(̂
λn − λ

) −→ N
(
0, I−1

θ

)
in Pθ -distribution

with

Iθ = Eθ

[
1

2h2
i

∂hi

∂λ

∂hi

∂λ′ + 1

hi

∂mi

∂λ

∂mi

∂λ′

]
. (14.33)

�

The example below shows that the estimators of the mean and the variance
are asymptotically independent from each other, which justifies a two-stage
estimation method that we will outline later.

Example 14.11 Consider an ARCH(q) model given by{
Eθ

i−1( yi ) = β ′zi = mi (β)

Varθ
i−1( yi ) = α0+ α1( yi−1 − β ′zi−1)2 + · · · + αq ( yi−q − β ′zi−q )2 = hi (β, α)

where zi and β are l × 1 vectors. Assume that ui = yi − β ′zi is conditionally
distributed as a N (0, hi ). Thus, there are two types of parameters:β that appears
in both the mean and variance and α that appears only in the variance. The
derivatives of mi and hi with respect to β and α are

∂mi

∂β
= zi and

∂mi

∂α
= 0,

∂hi

∂β
= −2

q∑
j=1

α j zi− j ui− j and
∂hi

∂α
=

⎛⎜⎜⎜⎜⎜⎝
1

u2
i−1

...

u2
i−q

⎞⎟⎟⎟⎟⎟⎠ .

The asymptotic covariance matrix of the vector λ̂n = (β̂ ′
n, α̂

′
n)′ is given, under

the conditional normality assumption (see preceding example), by

�θ = I −1
θ

with

Iθ =
[

I ββ

θ I βα

θ

I αβ

θ I αα
θ

]

= Eθ

⎡⎣ 1

2h2
i

( ∂hi

∂β

∂hi

∂α

) ( ∂hi

∂β

∂hi

∂α

)′

+ 1

hi

(
∂mi

∂β

0

) (
∂mi

∂β

0

)′⎤⎦ .
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Now, we consider successively the submatrices that make up Iθ . First,

I ββ

θ = Eθ

[
1

2h2
i

∂hi

∂β

∂hi

∂β ′ + 1

hi

∂mi

∂β

∂mi

∂β ′

]

= Eθ

[
2

h2
i

(
q∑

j=1

α j zi− j ui− j

) (
q∑

j=1

α j z′
i− j ui− j

)
+ 1

hi
zi z′

i

]
,

then

I αα
θ = Eθ

[
1

2h2
i

∂hi

∂α

∂hi

∂α′

]

= Eθ

⎡⎢⎢⎢⎢⎢⎣
1

2h2
i

⎛⎜⎜⎜⎜⎜⎝
1

u2
i−1

...

u2
i−q

⎞⎟⎟⎟⎟⎟⎠
(

1, u2
i−1, . . . , u2

i−q

)
⎤⎥⎥⎥⎥⎥⎦ ,

and finally

I βα

θ = Eθ

[
1

2h2
i

∂hi

∂β

∂hi

∂α′

]

= Eθ

[
− 1

h2
i

(
q∑

j=1

α j zi− j ui− j

) (
1, u2

i−1, . . . , u2
i−q

)]
= 0

because the third moments are zero. Hence, the estimators β̂n and α̂n are asymp-
totically uncorrelated when u admits a conditionally normal ARCH representa-
tion (i.e., the true underlying distribution is normal). However, they are corre-
lated in the general case. In practice, the asymptotic covariances are calculated
by replacing Eθ by a sample mean and the parameters α j and β by their esti-
mators. �

In the case of a regression model with ARCH error, since the information
matrix is block diagonal, β and α can be separately estimated and one of
them can be replaced by its estimator in order to estimate the other parameter.
This takes us to the two-stage method presented in the following example of a
ARCH(q) model.

Example 14.12 Return to the notation of the preceding example. The two-
stage procedure is the following:

∗ The OLS estimation of the model

yi = β ′zi + ui
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allows us to obtain a consistent estimator of β, denoted β̃n. From this, we can
extract the estimated residuals ũi .

∗ Consider the model associated with the conditional second moment where
the ui are replaced by ũi :

ũ2
i = α0 + α1ũ2

i−1 + · · · + αq ũ2
i−q + ηi .

The OLS estimators, denoted α̃0n, α̃1n, . . . , α̃qn, are consistent estimators of
the corresponding parameters.

∗ We now take the heteroskedasticity into account. We approximate the
volatility hi by

h̃i = α̃0n + α̃1nũ2
i−1 + · · · + α̃qnũ2

i−q .

Then, we estimate the regression model

yi√
h̃i

= β1

zi1√
h̃i

+ · · · + βl
zil√
h̃i

+ ui√
h̃i

.

We obtain GLS-type estimators β∗
n .

∗ Under the assumption of conditional normality, the term ηi is conditionally
heteroskedastic with conditional variance

Varθ
i−1(ηi ) = 2h2

i .

Then, we estimate by OLS the model

ũ2
i

h̃i

= α0

1

h̃i

+ α1

ũ2
i−1

h̃i

+ · · · + αq

ũ2
i−q

h̃i

+ ηi

h̃i

,

and call α∗
0n, α∗

1n, . . . , α∗
qn the resulting GLS estimators. �

This approach is simpler (there is no problem of numerical maximization)
but less efficient than the maximization of the likelihood function. To finish, it is
worth noting that a two-stage procedure can also be used in the normal GARCH
model because the asymptotic variance-covariance matrix is also diagonal.

14.4 Tests for Conditional Homoskedasticity

We present two tests for conditional homoskedasticity that both derive from the
Rao procedure. The application of the Rao procedure to test for homoskedas-
ticity in a ARCH(q) model leads to the so-called Engle test. The theoretical
presentation of this test is provided in Example 14.14 that deals with the gen-
eral case. The first example describes its practical implementation. It is based
on the idea that the autocorrelation of the squared residuals estimated by OLS
indicates the presence of an ARCH effect.
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Example 14.13 We return to the notation of the preceding example. The ho-
moskedasticity assumption can be expressed as

H0 : α1 = · · · = αq = 0 .

The steps of the Engle test are the following. First, regress yi on zi : yi = β ′zi +
ui , calculate the estimated residuals ûi , then estimate the following regression

û2
i = α0 + α1û2

i−1 + · · · + αq û2
i−q + ηi .

and calculate

n0 R2

(R2 is the centered coefficient of determination and n0 the number of observa-
tions in this auxiliary regression). This statistic follows asymptotically a chi-
squared distribution with q degrees of freedom under the null hypothesis. �

This test is the locally asymptotically most powerful test, as are the Wald and
Likelihood ratio tests. A more general exposition of the application of the Rao
test is given in the example that follows.

Example 14.14 We start from a more general representation of a conditionally
heteroskedastic model where the conditional mean and variance are given by{

Eθ
i−1( yi ) = mi (β)

Varθ
i−1( yi ) = hi (β, α0, α

1)

and we assume that

hi (β, α0, 0) = h(α0)

where λ = (β ′, α0, α
1′)′, α0 is scalar and α1 is a r × 1 vector. This immediately

applies to ARCH(q) models. For a GARCH model, α1 contains the parameters
associated with the squared lagged residuals and lagged conditional variances.
Assume moreover that yi follows conditionally a normal distribution. We use the
results of Chapter 4 on the asymptotic tests and more particularly the part
devoted to the tests based on the maximum likelihood estimation. The null
hypothesis of homoskedasticity is written as H0 : α1 = 0. We partition the
vector λ as

λ = (λ′
1, λ

′
2)′ with λ1 = (β ′, α0)′ and λ2 = α1;

and partition the information matrix Iθ (drawn from (14.33)) in the correspond-
ing way:

Iθ = Eθ

(
1

2h2
i

∂hi

∂λ

∂hi

∂λ′ + 1

hi

∂mi

∂λ

∂mi

∂λ′

)
=

(
I 11
θ I 12

θ

I 21
θ I 22

θ

)
.
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The restricted MLE of λ under the null hypothesis is λ̂n = (̂λ′
1n, λ̂

′
2n)′ =

(β̂ ′
n, α̂0n, 0)′. Then, the Rao statistic is given by

RAOn = n

(
1

n

n∑
i=1

∂ ln f ( yi |β̂n, α̂0n, 0)

∂α1

)′(
Î 22
θ − Î 21

θ

(
Î 11
θ

)−1
Î 12
θ

)−1

×
(

1

n
d

n∑
i=1

∂ ln f ( yi |β̂n, α̂0n, 0)

∂α1

)
where the submatrices Î 11

θ , Î 12
θ , Î 21

θ , and Î 22
θ are evaluated at λ̂n. Under H0,

this statistic follows asymptotically a chi-squared distribution with degrees of
freedom equal to the dimension of α1. Given that at the point (β, α0, 0), we have

∂hi

∂β
= 0,

and

∂mi

∂α0

= 0 and
∂mi

∂α1
= 0,

Iθ takes the form

Iθ = Eθ

⎡⎢⎢⎣ 1

2h2
i

⎛⎜⎝ 0

∂hi

∂α0

∂hi

∂α1

⎞⎟⎠
⎛⎜⎝ 0

∂hi

∂α0

∂hi

∂α1

⎞⎟⎠
′

+ 1

hi

⎛⎜⎝
∂mi

∂β

0

0

⎞⎟⎠
⎛⎜⎝

∂mi

∂β

0

0

⎞⎟⎠
′⎤⎥⎥⎦

at (β, α0, 0). Hence, the submatrices can be written as

I 11
θ = Eθ

⎛⎝ 1
hi

∂mi

∂β

∂mi

∂β ′ 0

0 1
2h2

i

(
∂hi

∂α0

)2

⎞⎠ ,

I 12
θ = I 21′

θ = Eθ

(
0

1
2h2

i

∂hi

∂α0

∂hi

∂α1′

)
,

I 22
θ = Eθ

(
1

2h2
i

∂hi

∂α1

∂hi

∂α1′

)
.

Thus, at (β, α0, 0), we have

I 22
θ − I 21

θ

(
I 11
θ

)−1
I 12
θ

= Eθ

(
1

2h2
i

∂hi

∂α1

∂hi

∂α1′

)
− Eθ

(
1

2h2
i

∂hi

∂α1

∂hi

∂α0

)
×

[
Eθ

(
1

2h2
i

(
∂hi

∂α0

)2
)]−1

Eθ

(
1

2h2
i

∂hi

∂α0

∂hi

∂α1′

)
.
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Setting

hi (β̂n, α̂0n, 0) = ĥ0 and
∂hi (β̂n, α̂0n, 0)

∂α1
= li ,

we can write the matrix that appears in the Rao statistic as

Î 22
θ − Î 21

θ

(
Î 11
θ

)−1
Î 12
θ = 1

2n

1

ĥ2
0

[
n∑

i=1

li l
′
i − 1

n

(
n∑

i=1

li

) (
n∑

i=1

li

)′]
.

In addition, since

ln f ( yi |λ) = −1

2
ln 2π − 1

2
ln hi − 1

2

( yi − mi )
2

hi
,

we can write

1

n

n∑
i=1

∂ ln f ( yi |λ)

∂α1
= 1

n

n∑
i=1

(
− 1

2hi
+ 1

2

( yi − mi )
2

h2
i

)
∂hi

∂α1
,

hence

1

n

n∑
i=1

∂ ln f ( yi |β̂n, α̂0n, 0)

∂α1
= 1

2n

1

ĥ2
0

n∑
i=1

((
yi − mi (β̂n)

)2 − ĥ0

)
li .

Setting û0
i = yi − mi (β̂n), the Rao statistic is then written as

RAOn = 1

2̂h
2

0

(
n∑

i=1

[̂
u02

i − ĥ0

]
li

)′ ( n∑
i=1

li l ′i − 1

n

(
n∑

i=1

li

) (
n∑

i=1

li

)′)−1

×
(

n∑
i=1

[̂
u02

i − ĥ0

]
li

)
.

This Rao test can be computed using the following simple approach. Consider
an approximated model obtained from an expansion where the unknown pa-
rameters are replaced by the restricted estimators

û2
i � h (̂α0) + ∂hi

∂α1
(β̂, α̂0, 0)α1 + ηi

with Eθ
i−1(ηi ) = 0, Varθ

i−1(ηi ) = 2h2(̂α0). The Rao statistic of H0 : α1 = 0, the
null hypothesis of conditional homoskedasticity, is then

RAOn = n0 R2

where R2 is the coefficient of multiple correlation in the approximated ho-
moskedastic model and n0 the number of observations. Under H0, this statistic
follows asymptotically a chi-squared with degrees of freedom equal to the di-
mension of the vector α1. �
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The simple Engle test for an ARCH(q) model immediately follows from this
more general presentation.

Other methods are sometimes used to identify q in the equation of the con-
ditional variance in a ARCH(q) model, such as the likelihood ratio test or an
information criterion like that of Akaike or that of Schwarz. The drawback
of these methods is that they require a large number of maximizations of the
likelihood function, corresponding to different values of q.

Once the presence of conditional heteroskedasticity has been established, it is
natural to search for the specification of the functional form. For example, one
may wonder whether the simplest ARCH specification is sufficient or whether it
is better to look for a broader formulation. The Rao procedure can also be used
to test specific forms of the heteroskedasticity against each other, for instance
to test an ARCH model against a NARCH alternative.

14.5 Some Specificities of ARCH-Type Models

14.5.1 Stationarity

It is important to note that the statistical theory that we presented above requires
the process to be strongly stationary, ergodic, and mixing. In the literature, the
study of the conditions for weak and strong (also called strict) stationarity have
traditionally focused on GARCH models. We know that strong stationarity im-
plies weak stationarity provided the second moments exist, which is not always
the case for GARCH models. We simply provide the main results regarding
the weak stationarity of GARCH(p,q) models and the strong stationarity of
GARCH(1,1).

In a conditionally normal GARCH(p,q) model with conditional variance

Varθ
i−1( yi ) = hi = α0 +

q∑
j=1

α j u
2
i− j +

p∑
r=1

ξr hi−r ,

with ui = yi − Eθ
i−1( yi ), αq 	= 0 and ξp 	= 0, we have the following result:

the process ui is weakly stationary as long as the roots of the characteristic
polynomial

1 −
max{p,q}∑

r=1

(αr + ξr )zr

are outside the unit circle, which is equivalent to

max{p,q}∑
r=1

(αr + ξr ) < 1.
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For some values of the parameters, strong stationarity does not imply weak
stationarity because the second moments do not exist. This has been shown in
the case of a conditionally normal GARCH(1,1) of the form{

Eθ
i−1( yi ) = 0

Varθ
i−1( yi ) = α0 + α1u2

i−1 + ξhi−1

where α0 > 0, α1 ≥ 0, ξ ≥ 0, and α1 and ξ may take any values including
those for which α1 + ξ ≥ 1. Let ζi be the standardized normal process defined
by ζi h

1/2
i = yi . It can be shown that the parameter space can be partitioned in

three regions:

� Region 1 ((α1 + ξ ) < 1): yi is strongly stationary and its second moment
exists,

� Region 2 (1 ≤ (α1 + ξ ) and E log(α1ζ
2 + ξ ) < 0): yi is strongly but not

weakly stationary because its second moment does not exist,
� Region 3 (E log(α1ζ

2 + ξ ) ≥ 0): this is an explosive region (not strongly
stationary and the second moment does not exist).

The IGARCH(1,1) process, characterized by α1 + ξ = 1, corresponds to the
border between regions 1 and 2 and hence are strongly stationary with marginal
distributions that have thick tails.

Hence, one of the noteworthy properties of GARCH processes is that they
may be strongly stationary without being weakly stationary, given that the weak
stationary demands that the mean, variance, and autocovariances be finite and
time invariant, while the strong stationarity does not require finite moments.

14.5.2 Leptokurticity

Recall that for an arbitrary series ui , the kurtosis is defined by

K = Eθ (u4
i )[

Eθ (u2
i )

]2

and measures the thickness of the tails of the distribution. For a normal distri-
bution, K = 3. It has been established that the marginal distributions of ARCH
and GARCH processes with conditionally normal errors are leptokurtic (i.e.,
K > 3) and hence have thicker tails than the normal distribution.

Example 14.15 Consider a ARCH-type process that is conditionally normal.
The conditional kurtosis is equal to 3:

Ki = Eθ
i−1(u4

i )[
Eθ

i−1(u2
i )

]2
= 3.
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The second and forth moments, Eθ
i−1(u2

i ) and Eθ
i−1(u4

i ), are linked by

Eθ
i−1(u4

i ) = 3
[
Eθ

i−1(u2
i )

]2
.

Let us write the kurtosis of the unconditional distribution using the law of
iterated expectations:

K = Eθ (u4
i )[

Eθ (u2
i )

]2
= Eθ

(
3Eθ

i−1(u2
i )

)2[
Eθ

(
Eθ

i−1(u2
i )

)]2
=

3Eθ
[(

Eθ
i−1(u2

i )
)2

]
[
Eθ

(
Eθ

i−1(u2
i )

)]2
≥ 3

since

Eθ
([

Eθ
i−1(u2

i )
]2

)
≥ [

Eθ
(
Eθ

i−1(u2
i )

)]2
.

Hence, the marginal distribution of ui has thicker tails than the normal distri-
bution. It can also be shown that

K = 3 + 3
Varθ (hi )[
Eθ (u2

i )
]2

.

Thus, the kurtosis depends on the conditional heteroskedasticity represented by
hi . In particular, if Varθ (hi ) = 0, i.e., the conditional variance is constant (case
of conditional homoskedasticity), we have K = 3. �

In the case of a conditional distribution that is a Student’s t distribution with
ν degrees of freedom, ν > 4, the kurtosis is equal to

K = 3(ν − 2)(ν − 4)−1 = 3 + 6

ν − 4
≥ 3.

This is an example of leptokurtic conditional distribution.

14.5.3 Various Conditional Distributions

Notice that, besides the normal, other distributions have been used, such as the
Student’s t distribution and the Generalized Error Distribution (GED) which we
see in the two examples that follow.

Example 14.16 Consider the model{
Eθ

i−1( yi ) = mi

Varθ
i−1( yi ) = hi



P1: OSO/OVY P2: OSO/OVY QC: OSO/OVY T1: OSO

Ecoeok CUFX117-Florens 0521876407 April 22, 2007 14:6

364 Econometric Modeling and Inference

where ui = yi − mi follows conditionally a Student’s t distribution. Its density
is of the form:

f (ui , λ)= 1√
π

�

(
ν + 1

2

)
�

(ν

2

)−1

((ν−2) hi )
−1/2

(
1 + u2

i h−1
i (ν − 2)−1

)− ν+1
2

with ν > 2 (� represents the usual gamma function). Recall that if 1/ν −→ 0,
then the t distribution converges to a normal distribution with variance hi , and
if 1/ν > 0, the t distribution has thicker tails than the corresponding normal
distribution. To estimate this model, it suffices to write the log-likelihood func-
tion and to maximize it by numerical procedures such as that of Berndt, Hall,
Hall, and Hausman. �

Example 14.17 The density of a GED random variable, normalized to have
mean zero and unit variance is

f (ζ ) = ν exp
(− 1

2
|ζ/λ|ν)

λ2(1+1/ν)�(1/ν)
, −∞ < ζ < ∞ , 0 < ν ≤ ∞

where �(.) is the gamma function and

λ = [
2−2/ν�(1/ν)/�(3/ν)

]1/2
.

This distribution is symmetric around zero. The parameter ν determines the
thickness of the tails:

� If ν = 2, ζ has a standard normal distribution. To show this, we recall a
few properties of the gamma function: �(α + 1) = α�(α), �(1) = 1, and
�(1/2) = √

π . Hence, �(3/2) = 1
2

√
π and λ = 1. Then, we can write the

density of ζas

f (ζ ) = 2 exp
(− 1

2
ζ 2

)
2(1+1/2)

√
π

= 1√
2π

exp

(
−1

2
ζ 2

)
,

from which it follows that ζ ∼ N (0, 1).
� If ν < 2, the distribution of ζ has thicker tails than the normal, i.e., is lep-

tokurtic.
� If ν > 2, the distribution has thinner tails than the normal, i.e., is platikurtic.

Moreover, if ν = 1, ζ follows a double exponential distribution.
The log-likelihood is given by

ln l( y|λ) =
n∑

i=1

ln

[
ν exp

(− 1
2
|ζi/λ|ν)

λ2(1+1/ν)�(1/ν)

]

= n log
ν

λ
− n(1 + 1/ν) ln 2 − n ln �(1/ν) − 1

2

n∑
i=1

|ζi/λ|ν .
�
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Notes

For a general study of ARCH models, refer to the book by Gourieroux and Jasiak (2001)

and to various articles, among them those of Bera and Higgins (1993), of Bollerslev,

Chou, and Kroner (1992) and of Bollerslev, Engle, and Nelson (1994); see also Pagan

(1996). Regarding the models presented in the examples, see in particular Engle (1982

and 1983) for the ARCH model, Bollerslev (1986) and Engle and Bollerslev (1986) for

the GARCH model (refer to Nelson and Cao (1992) for the positivity restrictions), En-

gle, Lilien, and Robins (1987) for the ARCH-M model, Nelson (1991) for the EGARCH

model, Bera and Higgins (1992) for the NARCH model (for other types of models, see

for example Dufrenot, Marimoutou, and Péguin-Feissolle (2004)). As for the multivari-

ate models presented in the examples, the multivariate GARCH model with constant

conditional correlations is studied by Bollerslev (1990), Baillie and Bollerslev (1990),

Bera and Higgins (1993), Baillie and Myers (1991), Bera, Garcia, and Roh (1997), Kro-

ner and Claessens (1991), Kroner and Sultan (1991). On the other hand, the diagonal

ARCH model has been presented by Bollerslev, Engle, and Wooldridge (1988), Bera

and Higgins (1993).

Regarding the estimation methods, the mixing and ergodicity properties have been

proven in the context of some ARCH and GARCH models, see for instance Carrasco and

Chen (2002) for GARCH(p,q) models. The quasi-maximum likelihood and maximum

likelihood methods are described in Engle (1982), Bollerslev (1986), Engle and Bollerlev

(1986), and Hamilton (1994). The two-stage approach has been initiated by the article

of Engle (1982). In addition, Bollerslev (1986) proved that the information matrix is

block-diagonal in a normal GARCH model. To simplify some positivity and stationarity

conditions, some reparametrizations have been considered, see Engle (1982), Hsieh

(1989a), and Diebold and Pauly (1988). In the empirical applications, the optimization

method usually employed is that of Berndt, Hall, Hall, and Hausman (1974).

Regarding the application of the Rao test, Engle (1982) presents the test for ho-

moskedasticity in an ARCH model (see Péguin-Feissolle (1999) and Caulet and Péguin-

Feissolle (2000) for a test based on artificial neural-networks). One can also read Engle,

Hendry, and Trumble (1985). Bera and Higgins (1993) make some remarks on the Rao

test (see also Demos and Sentana (1998), Lee and King (1991), Engle and Gonzales-

Rivera (1991), Bera and Ng (1991), Gallant, Hsieh, and Tauchen (1991), Higgins and

Bera (1992)).

Hsieh (1989a) is a good reference for the use of the likelihood ratio test and the Akaike

and Schwarz information criteria to determine the order q in ARCH-type models. The

test of an ARCH model against a NARCH model is described in Higgins and Bera

(1992).

Now, we turn to the specificities of ARCH models. For more details on the stationarity,

read Nelson (1990 and 1991), Bougerol and Picard (1992). About the kurtosis, see Engle

and Bollerslev (1986)), Hsieh (1989a). Regarding the various conditional distributions

used in ARCH models besides the normal, we mention: the Student t distribution which is

the most popular (Engle and Bollerslev (1986), Bollerslev (1987), Baillie and Bollerslev

(1989), Baillie and Osterberg (1993), to cite only a few), the GED (Nelson (1991)), a

normal-Poisson mixture (Jorion (1988)), a normal-log-normal mixture (Hsieh (1989a),

Tauchen and Pitts (1983)), or the Gram-Charlier distribution (Lee and Tse (1991)).
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15. Nonlinear Dynamic Models

15.1 Introduction

The past 15 years have witnessed important developments in the modelling of
nonlinear time series. This modelling opens the path to a variety of different
models. It poses multiple difficulties, both from a theoretical point of view rela-
tive to the basic properties of the models and the estimators, and from an empir-
ical point of view, for instance in the choice of the specification of nonlinearity.

The theoretical basis that is necessary to prove consistency and asymptotic
normality of the moment estimators has been treated in Chapter 2, including for
the non i.i.d. case. Indeed, Chapter 2 introduced tools that allow us to apply the
law of large numbers and the central limit theorem to dynamic models. In par-
ticular, we have seen the concept of statistical models that are uniformly mixing
stationary and the concept of near epoch dependence (NED). This enabled us
to state Theorem 2.6 in Chapter 2, which is nothing but a central limit theorem
for stationary mixing processes. We will return to some of these concepts again
in this chapter.

Here, we are not attempting to provide a general and comprehensive presen-
tation of nonlinear dynamic models because each model has characteristics and
properties that result in complexity and difficulties that are specific to those.
Moreover, the study of these models is expanding fast. Therefore, we will settle
for the presentation of some examples only. In particular, we will not introduce
bilinear models, which nevertheless constitute an important class of nonlinear
dynamic models. We divide models into two groups, each corresponding to a
specific section of this chapter:

� the first group (Section 2) contains models where the conditional expectation
of yi can be written as a continuously differentiable function g of endogenous
lagged variables and a set of exogenous variables;

� the second group (Section 3) corresponds to the case where the function g is
not smooth. We will provide some examples.

366
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Section 4 describes the problems relating to the testing in nonlinear dynamic
models. We will discuss the case in which some parameters are not identified
under the null hypothesis, as happens sometimes in this type of model.

15.2 Case Where the Conditional Expectation Is
Continuously Differentiable

15.2.1 Definitions

In this section, we consider nonlinear dynamic models, for which the conditional
expectation takes the following form:

Eθ
(
yi

∣∣yi−1
−∞, z+∞

−∞
) = g

(
yi−1
−∞, z+∞

−∞, λ(θ )
) 

(15.1)

with

z+∞
−∞ = (. . . , zi+1, zi , zi−1, . . . ) and yi−1

−∞ = ( yi−1, yi−2, . . . ) ,

or alternatively, using the notation wi = ( yi−1
−∞, z+∞

−∞),

Eθ ( yi |wi ) = g (wi , λ(θ )) ; (15.2)

λ(θ ) is a mapping from � to ! ⊂ R
k and g is a function, which is assumed to

be continuously differentiable with respect to wi and λ, and is identified in the
following sense:

∀wi g (wi , λ1) = g (wi , λ2) ⇒ λ1 = λ2.

Assumption (15.1) means that the model is correctly specified and that the
inference problem we are interested in is indeed a parametric problem, i.e., g
is known and belongs to a parametric family of functions. In practice, g will
depend only on a finite number of elements of the past ys and of the zs.

Moreover, we assume that

Eθ

(
∂g(wi , λ)

∂λ

∂g(wi , λ)

∂λ′

)
is nonsingular. In this chapter, we restrict ourselves to univariate models, that
is yi ∈ R.

These models generalize the stationary nonlinear regression models of
Chapter 8. We will also treat the optimality of the instruments and take into
account the central limit theorems in a dynamic setting.
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15.2.2 Conditional Moments and Marginal Moments in the Homoskedastic
Case: Optimal Instruments

The results of this section specialize the content of the final remark of Sec-
tion 3.5 to the regression model, while extending it to the dynamic case.

Consider ψ , a mapping from X × ! to Rr , such that

ψ( yi , wi , λ(θ )) = ( yi − g(wi , λ(θ )) h(wi ) (15.3)

where h denotes a r × 1 vector of instruments with r ≥ k, k is the dimension
of λ. We are interested in a system of moment equations:

Eθ (ψ( yi , wi , λ)) = 0, (15.4)

which is a set of r equations relating θ and λ; λ is the solution of (15.4). Indeed,
since λ(θ ) satisfies (15.2) and thus

Eθ (ui | wi ) = 0 with ui = yi − g (wi , λ(θ )) ,

we have

Eθ (ψ( yi , wi , λ(θ ))) = Eθ
(
Eθ (ψ( yi , wi , λ(θ ))| wi )

)
= Eθ

(
Eθ ( ( yi − g(wi , λ(θ ))| wi ) h(wi )

)
= Eθ

(
Eθ (ui | wi ) h(wi )

)
= 0.

The instrumental variable h must be chosen so that the solution is unique in
order to make (15.1) equivalent to (15.4).

Recall that if r = k, we have a simple system of moment equations, whereas
we have a generalized system if the number of moment conditions is greater
than k. We are going to show that

h(wi ) = ∂g(wi , λ)

∂λ
(15.5)

is the optimal function of wi , which transforms the conditional moment condi-
tion into a marginal moment condition. In part of the econometrics literature,
this function is called the optimal instrument by analogy to the theory of instru-
mental variables developed in the simultaneous equations models (see Chapter
17). This optimality result has been mentioned in Section 3.5, but we are going
to prove it here for a special case.

First, we show that the solution to Equation (15.4) is unique. The uniqueness
of λ(θ ) comes from the nonsingularity of

Eθ

(
∂ψ( yi , wi , λ(θ ))

∂λ′

)
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(see Chapter 16 for more details about local identification) because

Eθ

(
∂ψ( yi , wi , λ(θ ))

∂λ′

)
= Eθ

(
ui

∂2g

∂λ∂λ′ − ∂g

∂λ

∂g

∂λ′

)
= Eθ

(
Eθ (ui | wi )

∂2g

∂λ∂λ′

)
− Eθ

(
∂g

∂λ

∂g

∂λ′

)
= −Eθ

(
∂g

∂λ

∂g

∂λ′

)
,

and this last matrix is invertible by assumption.
To prove that (15.5) is the optimal instrument, consider first the case where

h(wi ) is an arbitrary instrumental function of dimension r ≥ k. The estimator
obtained by the generalized method of moments, denoted λ̂n , satisfies

λ̂n = arg min
λ∈!

(
1

n

n∑
i=1

ψ( yi , wi , λ)

)′
Hn

(
1

n

n∑
i=1

ψ( yi , wi , λ)

)
(15.6)

where Hn → H Pθ − a.s., Hn and H are symmetric, positive definite matrices.
We assume that xi is stationary, ergodic, and mixing so that the central limit
theorem holds (provided the process satisfies near epoch dependence (NED))
and that we can use the results of Chapter 3. Hence, Theorem 3.4 in Chapter 3
implies, assuming all its conditions are satisfied, that λ̂n satisfies the following
two properties:

λ̂n → λ(θ ) Pθ − a.s.

and
√

n
(̂
λn − λ(θ )

) → N (0, �θ ) in Pθ -distribution (15.7)

with

�θ =
[

Eθ

(
∂ψ ′

∂λ

)
H Eθ

(
∂ψ

∂λ′

)]−1

Eθ

(
∂ψ ′

∂λ

)
H Vθ

× H Eθ

(
∂ψ

∂λ′

) [
Eθ

(
∂ψ ′

∂λ

)
H Eθ

(
∂ψ

∂λ′

)]−1

where Vθ is the asymptotic variance matrix of

√
n

(
1

n

n∑
i=1

ψ( yi , wi , λ)

)
.

The optimal choice of H consists in taking

H = V −1
θ ,
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as shown in Theorem 3.5 in Chapter 3. Therefore, the asymptotic variance of
the optimal estimator of λ is:

�θ =
[

Eθ

(
∂ψ ′

∂λ

)
V −1

θ Eθ

(
∂ψ

∂λ′

)]−1

. (15.8)

From (15.3), we have

∂ψ ′

∂λ
= −∂g

∂λ
h′(wi ). (15.9)

Moreover, as we are in a dynamic setting, the matrix Vθ takes the form:

Vθ =
+∞∑

j=−∞
Covθ

(
ψ( yi , wi , λ), ψ( yi+ j , wi+ j , λ)

)
=

+∞∑
j=−∞

Covθ
(
ui h(wi ), ui+ j h(wi+ j )

)
with ui = yi − g(wi , λ). From (15.4), it follows that for each i

Eθ (ψ( yi , wi , λ(θ ))) = Eθ (ui h(wi )) = 0,

and Vθ can be rewritten as

Vθ =
+∞∑

j=−∞
Eθ

(
h(wi )h(wi+ j )

′ui ui+ j

)
.

When j is positive, we obtain

Eθ
[
h(wi )h(wi+ j )

′ui ui+ j

] = Eθ
[
h(wi )h(wi+ j )

′ui Eθ
(

ui+ j

∣∣ wi+ j

)]
= 0.

Indeed, we can take the product h(wi )h(wi+ j )
′ui out of the conditional expec-

tation because, as

wi+ j = (
yi+ j−1
−∞ , z+∞

−∞
)
,

this product belongs to the space spanned by wi+ j . Moreover, we use the fact
that

Eθ
(

ui+ j

∣∣ wi+ j

) = 0.

When j is negative, it suffices to permute the roles of i and j to obtain the same
result.

Therefore,

Vθ = Eθ
(
h(wi )h(wi )

′u2
i

)
= Eθ

(
h(wi )h(wi )

′Eθ
(

u2
i

∣∣ wi

))
,

(15.10)
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hence, using the homoskedasticity assumption Eθ (u2
i |wi ) = σ 2,

Vθ = σ 2 Eθ
(
h(wi )h(wi )

′) . (15.11)

It follows from (15.8), (15.9), and (15.11) that

�θ = σ 2

[
Eθ

(
∂g

∂λ
h′(wi )

) [
Eθ (h(wi )h(wi )

′)
]−1

× Eθ

(
h(wi )

∂g

∂λ′

)−1
]

.

(15.12)

Now consider the case where

h(wi ) = ∂g(wi , λ)

∂λ
,

for which r = k. Here, we can use the simple method of moments where the
estimator is defined as the solution to the system of equations

1

n

n∑
i=1

ψ( yi , wi , λ) = 0. (15.13)

For this choice of instruments, Vθ becomes

Vθ = σ 2 Eθ

(
∂g(wi , λ)

∂λ

∂g(wi , λ)

∂λ′

)
(15.14)

and from Theorem 3.5 in Chapter 3, we obtain the following expression of the
variance matrix of the estimator of λ:

�∗
θ =

[
Eθ

(
∂ψ

∂λ′

)]−1

Vθ

[
Eθ

(
∂ψ ′

∂λ

)]−1

, (15.15)

and therefore

�∗
θ = σ 2

[
Eθ

(
∂g(wi , λ)

∂λ

∂g(wi , λ)

∂λ′

)]−1

(15.16)

because

Eθ

(
∂ψ ′

∂λ

)
= −Eθ

(
∂g(wi , λ)

∂λ

∂g(wi , λ)

∂λ′

)
.

To show that

h(wi ) = ∂g(wi , λ)

∂λ
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is the optimal instrument, it suffices to prove that �θ ≥ �∗
θ , or alternatively

�∗−1
θ ≥ �−1

θ , where �θ and �∗
θ are respectively defined in (15.12) and (15.16).

To prove this, let us define

A = ∂g(wi , λ)

∂λ
, B = h(wi )

and

R = A − Eθ (AB ′)Eθ (B B ′)−1 B. (15.17)

Then, the difference �∗−1
θ − �−1

θ can be rewritten as

�∗−1
θ − �−1

θ = Eθ (AA′) −Eθ (AB ′)Eθ (B B ′)−1 Eθ (B A′) = Eθ (R R′).

As the matrix Eθ (R R′) is symmetric and positive semidefinite, we deduce that
�∗−1

θ ≥ �−1
θ .

It is worth noting that the fact that λ(θ ) is the solution of (15.4) is equivalent
to

λ(θ ) = arg min
λ

Eθ
(
( yi − g (wi , λ))2

)
. (15.18)

The estimation method used here, is the simple method of moments or the
least-squares method, the estimator λ̂n is defined as the solution of the system

1

n

n∑
i=1

ψ( yi , wi , λ(θ )) = 1

n

n∑
i=1

( yi − g (wi , λ(θ )))
∂g(wi , λ)

∂λ
= 0,

(15.19)

and has the following asymptotic distribution

√
n

(̂
λn − λ

)→ N

(
0, σ 2

[
Eθ

(
∂g(wi , λ)

∂λ

∂g(wi , λ)

∂λ′

)]−1
)

in Pθ -distribution.

It is noticeable in dynamic models that the asymptotic results are of the same
nature as those obtained in the i.i.d. setting.

15.2.3 Heteroskedasticity

This section provides the dynamic generalization of Chapter 9. If the model
is heteroskedastic, that is Eθ (u2

i |wi ) is not equal to a constant σ 2, then it is
possible to show that the optimal instrument consists of

h(wi ) = 1

Eθ
(

u2
i

∣∣ wi

) ∂g(wi , λ)

∂λ
; (15.20)
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indeed, Vθ is in this case

Vθ = Eθ
[
h(wi )h(wi )

′u2
i

]
= Eθ

[
h(wi )h(wi )

′Eθ
(

u2
i

∣∣ wi

)]
.

We have, for an arbitrary instrument h(wi ) of dimension r × 1 and from (15.8),
(15.9), and (15.10), the following expression of the asymptotic variance of the
estimator:

�θ =
[
Eθ

(
∂g

∂λ
h′(wi )

) [
Eθ

(
h(wi )h(wi )

′Eθ
(

u2
i

∣∣ wi

))]−1
Eθ

(
h(wi )

∂g

∂λ′

)]−1

.

When h is given by (15.20), this asymptotic variance becomes

�∗
θ =

[
Eθ

(
1

Eθ
(

u2
i

∣∣ wi

) ∂g(wi , λ)

∂λ

∂g(wi , λ)

∂λ′

)]−1

.

We can show again that �θ ≥ �∗
θ . The proof is identical to that used in the

homoskedastic case, letting

A = 1√
Eθ

(
u2

i

∣∣ wi

) ∂g(wi , λ)

∂λ
and B =

√
Eθ

(
u2

i

∣∣ wi

)
h(wi ),

and taking for R the same matrix as before (that is the matrix (15.17)).

15.2.4 Modifying of the Set of Conditioning Variables:
Kernel Estimation of the Asymptotic Variance

An alternative way to define a nonlinear dynamic model would be to write the
conditional expectation in the form

Eθ ( yi |yi−1, . . . , yi−τ , zi+s, . . . , zi−t )

= g ( yi−1, . . . , yi−τ , zi+s, . . . , zi−t , λ(θ )) (15.21)

instead of using (15.1), or alternatively, denoting w∗
i = ( yi−1, . . . , yi−τ ,

zi+s, . . . , zi−t ), a vector of R
r∗

, with r∗ = τ + s + t + 1,

Eθ
(

yi

∣∣w∗
i

) = g
(
w∗

i , λ(θ )
)
.

We do not assume that

Eθ ( yi |yi−1, . . . , yi−τ , zi+s, . . . , zi−t )

in (15.21) is equal to

Eθ
(

yi

∣∣yi−1
−∞, z+∞

−∞
)
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in (15.1). Apart from this important exception, the assumptions are the same as
before, that is, we maintain identification, correct specification, homoskedas-
ticity, differentiability of g, and also invertibility of

Eθ

(
∂g(wi , λ)

∂λ

∂g(wi , λ)

∂λ′

)
.

The results regarding consistency and asymptotic normality are the same as
before, the only difference stems from the calculation of the matrix Vθ , for
which we can no longer do the simplifications leading to formula (15.10). This
matrix Vθ is

Vθ =
+∞∑

j=−∞
Eθ

(
ψ( yi , w

∗
i , λ)ψ( yi+ j , w

∗
i+ j , λ)

)′
. (15.22)

As this is an infinite sum and the available sample is finite, we need to use some
approximation: the idea consists in estimating the expectation by the weighted
sample mean and in truncating the infinite sum. There are several methods
based on this principle, which allow us to obtain a consistent estimator of Vθ ,
denoted V̂n. They usually consist in setting

V̂n =
l(n)∑

m=−l(n)

ωm V̂ ∗
nm = ω0V̂ ∗

n0 +
l(n)∑
m=1

ωm

(
V̂ ∗

nm + V̂ ∗′
nm

)
with, for m = 0, 1, . . . , l(n) (where l(n) depends on n),

V̂ ∗
nm = 1

n

n∑
i=m+1

ψ( yi , wi , λ̂n)ψ( yi−m, wi−m, λ̂n)′. (15.23)

Regarding the weights or kernels ωm , it is possible to choose

ωm =
∣∣∣∣∣ 1 − 6m2 + 6 |m|3 if 0 ≤ m ≤ 0.5l(n)

2 (1 − |m|)3 if 0.5l(n) ≤ m ≤ 1

and

l(n) = O(n1/5)

(that is l(n) is selected to be the closest integer to n1/5); ωm is called Parzen
kernel. Another possibility consists in defining ωm as

ωm = 1 − m

l(n) + 1
,

then ωm is called Bartlett kernel (the number of autocovariances l(n) is again
determined as a function of n).

With regard to the estimation, the partial derivatives of g do not constitute
the optimal instruments any more.
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Now, we consider an example of a nonlinear dynamic model where the condi-
tional expectation is continuously differentiable and where we use the preceding
results. This is the Smooth Threshold Autoregressive (STAR) model, which has
the property that the transition between two distinct regimes is smooth.

Example 15.1 A quite general form of the STAR models corresponds to

Eθ
(

yi

∣∣yi−1
−∞

) = Eθ
(

yi

∣∣yi−1, . . . , yi−p

) = Eθ ( yi |wi) = g(wi , λ)

(15.24)

where

g(wi , λ) = α0 + α′wi + (β0 + β ′wi )F ( yi−d ) , (15.25)

with wi = ( yi−1, . . . , yi−p)′, α = (α1, . . . , αp)′ and β = (β1, . . . , βp)′; α0

and β0 are scalar parameters. F is a continuous function, which is either
even or odd. Indeed it may be odd and monotone increasing with F(−∞) = 0
and F(+∞) = 1, such as the cumulative distribution function of a N (μ, σ 2)
variable. Likewise, F may be even with F(±∞) = 0 and F(0) = 1, as the prob-
ability density function of a N (μ, σ 2) variable. The parameter d is a positive
integer. Exogenous variables may also appear in wi .

Two special types of STAR models are frequently encountered in the litera-
ture: the Logistic STAR (LSTAR) where the transition function F is logistic

F( yi−d ) = [1 + exp {−γ ( yi−d − c)}]−1 (γ > 0), (15.26)

and the Exponential STAR (ESTAR) where the function F is exponential, that
is

F( yi−d ) = 1 − exp
[−γ ( yi−d − c)2

]
(γ > 0). (15.27)

γ is called transition parameter and c threshold parameter.
We know a number of results about STAR models. In particular, when the

following condition holds

sup
0≤θ≤1

(
p∑

j=1

∣∣α j + θβ j

∣∣) < 1

(or, in the special case where p = d = 1, if α1 < 1, α1 + β1 < 1 and
α1 (α1 + β1) < 1), one can show that the process {yi } is stationary ergodic
and that its distribution admits a finite moment of order k if the following extra
condition is satisfied: Eθ (|ui |k) < ∞ with ui = yi − g(wi , λ).

Regarding the estimation, suppose the process yi , whose conditional expec-
tation is defined by

Eθ ( yi |wi ) = g(wi , λ)
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where g is given by (15.25), is stationary and mixing such that we can use the
results of Chapter 3 mentioned above. The moment estimator λ̂n is obtained by
the simple method of moments as the solution of (15.13) with

ψ( yi , wi , λ) = ( yi − g(wi , λ))
∂g(wi , λ)

∂λ
. (15.28)

Therefore, it satisfies consistency and asymptotic normality and the variance
matrix in the optimal case is given by �∗

θ (see (15.15)) with

Vθ =
+∞∑

j=−∞
Eθ

(
ψ( yi , wi , λ)ψ( yi+ j , wi+ j , λ)′

)
.

Notice that the terms of this infinite sum equal zero for j 	= 0. Indeed, in the
case where j > 0, we have

Eθ
(
ψ( yi , wi , λ)ψ( yi+ j , wi+ j , λ)′

)
= Eθ

(
ui

∂g(wi , λ)

∂λ

∂g(wi+ j , λ)

∂λ′ ui+ j

)
= Eθ

(
ui

∂g

∂λ

∂g

∂λ′ Eθ
(

ui+ j

∣∣ wi+ j

))
= 0,

because, given that ui+ j is the innovation of yi+ j , the conditional expectation
Eθ (ui+ j |wi+ j ) is zero. The same is true for j < 0. Consequently, Vθ becomes

Vθ = Varθ (ψ( yi , wi , λ)) ,

hence,

Vθ = σ 2 Eθ

(
∂g(wi , λ)

∂λ

∂g(wi , λ)

∂λ′

)
,

assuming here, for simplicity, that the distribution of yi |wi is homoskedastic,
with constant variance σ 2. Therefore, the variance matrix of the optimal esti-
mator of λ is given by

�∗
θ = σ 2

[
Eθ

(
∂g(wi , λ)

∂λ

∂g(wi , λ)

∂λ′

)]−1

and can be estimated consistently. �

15.3 Case Where the Conditional Expectation Is Not Continuously
Differentiable: Regime-Switching Models

Another large category of nonlinear dynamic models is represented by models
where the function g is not continuously differentiable. The basic idea behind
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these regime-switching models is that there exist different regimes, such that
the transition from one regime to the next depends on time, on an endogenous
variable, or occurs with some probability.

The probabilistic and statistical properties of some models, where the func-
tion g is not continuously differentiable, have been studied in the literature, such
as ergodicity and existence of moments. Numerous questions remain open and
depend on the class of models under consideration, the study of stationarity is
one of them.

When the switching parameters are known, the function g is differentiable
in the parameters and we can return to the models studied in the previous
paragraph. In the case where they are unknown, the difficulty of these models
stems from the estimation of the break parameters. First, we provide a few
examples of these models, setting aside the estimation problems for the next
subsection.

15.3.1 Presentation of a Few Examples

The first example looks at a structural change model.

Example 15.2 Consider the following model:

yi = λ0 + λ11i≥nπ + ui (15.29)

where ui is i.i.N (0, σ 2) and n is the size of the sample; nπ is the timing of the
break (π ∈ (0, 1)). It is implicitly assumed that there exists a continuous time
process between 0 and 1, which is observed at a countable number of points,
so that the numbers of points before and after the breakpoint increase in the
same manner. Hence, we observe nπ points before and n − nπ points after the
breakpoint. �

The second example is that of a threshold model.

Example 15.3 Consider the following model:

yi = λ0 + λ11yi−d≤c + ui (15.30)

where ui is i.i.N (0, σ 2); d and σ are given, and the threshold c is unknown.
The conditional distribution of y0 given y−d is

N (λ0 + λ11y−d≤c, σ
2).

We denote the corresponding conditional density by fc( y0|y−d ). We are looking
for the marginal density fm such that

fm( y0) =
∫

fm( y−d ) fc( y0 |y−d )dy−d .
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Thus,

fm( y0) =
∫

yi−d≤c

fm( y−d ) fc( y0 |y−d )dy−d

+
∫

yi−d>c

fm( y−d ) fc( y0 |y−d )dy−d .

We derive the stationary density

fm( yi ) = 	
(

c−λ0

σ

)
1 − 	

(
c−λ0−λ1

σ

) + 	
(

c−λ0

σ

) 1

σ
√

2π
exp − ( yi − λ0 − λ1)2

2σ 2

+ 1 − 	
(

c−λ0−λ1

σ

)
1 − 	

(
c−λ0−λ1

σ

) + 	
(

c−λ0

σ

) 1

σ
√

2π
exp − ( yi − λ0)2

2σ 2

where 	 is the cumulative distribution function of the standard normal. The
expectation and the variance of yi are given by

Eθ ( yi ) = λ0 + δλ1

and

Varθ ( yi ) = σ 2 + δ(1 − δ)λ2
1

with

δ = Pr( yi ≤ c) = 	
(

c−λ0

σ

)
1 − 	

(
c−λ0−λ1

σ

) + 	
(

c−λ0

σ

) . (15.31)

One can also show that, when the parameter d is equal to 1, {1yi−d≤c} is a
Markov chain and when d is greater than 1, {yi } is φ-mixing because the data
is generated by independent series, which are specific Markov processes. �

We finish by providing a general example of threshold model.

Example 15.4 A general form of threshold model corresponds to

g(wi , λ) =
l∑

j=1

[(
λ

( j)
0 + λ

( j)
1 yi−1 + · · · + λ( j)

p yi−p

)
1wi ∈R( j)

]
,

where wi = ( yi−1, . . . , yi−p) and R( j), for j = 1, . . . , l, are specific subsets
that define a partition of R

p in disjoint sets. This model, which in the literature,
is called the Threshold Autoregressive (TAR) model, can be considered as a
\piecewise” linear approximation of a more general nonlinear model. When
R( j) depends on lagged values of the endogenous variable yi , then we have
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Self-Exciting Threshold Autoregressive (SETAR) models. A simple example
corresponding to the case where p = 1 and l = 2 is

yi =
∣∣∣∣∣λ

(1)
0 + λ

(1)
1 yi−1 + u(1)

i if yi−1 < c

λ
(2)
0 + λ

(2)
1 yi−1 + u(2)

i if yi−1 ≥ c

where the constant c is called the threshold, {u(1)
i } and {u(2)

i } are white noise
processes. A somewhat more general case takes p = 1 and l as arbitrary:

yi = λ
( j)
0 + λ

( j)
1 yi−1 + u( j)

i if yi−1 ∈ R( j) j = 1, . . . , l

where R( j) define a partition of the real line: (−∞, r1], (r1, r2] , . . . ,

(rl−1, +∞), with R(1) = (−∞, r1], R( j) = (
r j−1, r j

]
for j = 2, . . . , l − 1 and

R(l) = (rl−1, +∞). Lagged exogenous variables can be included among the
regressors, the resulting model is called Open-Loop Self-Exciting Threshold
Autoregressive (SETARSO) model:

yi = α( j)
o +

p∑
k=1

α
( j)
k yi−k +

m∑
k=1

β
( j)
k z( j)

i−k + u( j)
i

if yi−d ∈ R( j), j = 1, . . . , l. �

15.3.2 Problem of Estimation

When the break parameters are known, the estimation of regime-switching mod-
els by the method of moments proceeds as outlined in the previous subsection.
In the opposite case, the complexity of the estimation comes from the various
switching and delay parameters, which have to be estimated. Let us examine
now the two possible cases.

First, consider two examples where the switching parameters are known.

Example 15.5 Consider the previously introduced Example 15.2, namely the
structural change model described by (15.29), and suppose that the timing of
the break nπ is known. The maximum likelihood estimators of λ0 and λ1 are:

λ̂0n = 1

nπ

∑
i<nπ

yi

and

λ̂1n = 1

n(1 − π )

∑
i≥nπ

yi − 1

nπ

∑
i<nπ

yi (15.32)
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and have the asymptotic distribution:

√
n

(
λ̂0n − λ0

λ̂1n − λ1

)
→ N

((
0

0

)
, σ 2

(
1/π −1/π

−1/π 1/ (π (1 − π ))

))
.

(15.33)

This last result can be easily proven. It suffices to apply the least squares method
to this model. The explanatory variable matrix is given by

Z =
(

Z1

Z2

)
with Z1 =

(
1 · · ·  1

0 · · ·  0

)′
and Z2 =

(
1 · · ·  1

1 · · ·  1

)′
,

where Z1 and Z2 have respectively the dimensions nπ × 2 and (n − nπ ) × 2;
then, the asymptotic variance of

√
n

(
λ̂0n − λ0

λ̂1n − λ1

)
takes the form

nσ 2 
(
Z ′ Z

)−1 = nσ 2

(
n n(1 − π )

n(1 − π ) n(1 − π )

)−1

,

and the result follows. �

Consider the threshold model introduced in Example 15.3.

Example 15.6 Let us resume model (15.30) and suppose that the threshold
parameter c is known. The maximum likelihood parameters of λ0 and λ1 are

λ̂0n =

n∑
i=1

yi 1yi−d>c

n∑
i=1

1yi−d>c

and

λ̂1n =

n∑
i=1

yi 1yi−d≤c

n∑
i=1

1yi−d≤c

−

n∑
i=1

yi 1yi−d>c

n∑
i=1

1yi−d>c

and have the asymptotic distribution

√
n

(
λ̂0n − λ0

λ̂1n − λ1

)
→ N

((
0

0

)
, σ 2

(
1/(1 − δ) −1/(1 − δ)

−1/(1 − δ) 1/ (δ(1 − δ))

))
.

where δ is given by (15.31). �
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Let us examine now an example where the switching parameters are unknown.
In this case, we usually obtain nonstandard distributions as in the next example.

Example 15.7 Consider the following example:

Yt = λ(t − π )1t≥π + σ W (t) t ∈ [0, 1]

where W (t) is a Brownian motion, σ a positive scalar and π the break param-
eter. Using the mapping that associates with each t the element i = nt (so that
i ∈ [0, n]) and the fact that

W

(
i + 1

n

)
− W

(
i

n

)
∼ i.i.N

(
0,

1

n

)
,

one can write

Y i+1
n

− Y i
n

= λ

(
i + 1

n
− π

)
1 i+1

n ≥π − λ

(
i

n
− π

)
1 i

n ≥π + σ√
n

ui

with ui ∼ i.i.N (0, 1). Disregarding the intermediate case where i
n < π < i+1

n ,
two cases are possible⎧⎨⎩ Y i+1

n
− Y i

n
= λ

n + σ√
n

ui if i
n ≥ π

Y i+1
n

− Y i
n

= σ√
n

ui otherwise.

Let

yi = √
n

(
y i+1

n
− Y i

n

)
,

so that we consider the following model:

yi = λ√
n

1 i
n ≥π + σui . (15.34)

Now, suppose that λ is known and focus on the estimation of π . Let π̂n be the
least squares estimator of π . We can write

π̂n = arg min
π

n∑
i=1

(
yi − λ√

n
1 i

n ≥π

)2

.

Denote π0 the true value of the break parameter π . Replacing yi by

λ√
n

1 i
n ≥π0

+ σui ,

we obtain

π̂n = arg min
π

n∑
i=1

(
λ√
n

1 i
n ≥π0

+ σui − λ√
n

1 i
n ≥π

)2

,
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hence, ignoring the terms independent of π ,

π̂n = arg min
π

[
−2

λσ√
n

n∑
i=1

ui 1 i
n ≥π + λ2

n

n∑
i=1

(
1 i

n ≥π − 21 i
n ≥π1 i

n ≥π0

)]
.

(15.35)

Because

ui = √
n

(
W

(
i + 1

n

)
− W

(
i

n

))
,

the first term in bracket can be rewritten as

−2
λσ√

n

n∑
i=1

ui 1 i

n
≥π

= −2λσ

n∑
i≥nπ

(
W

(
i + 1

n

)
− W

(
i

n

))
= −2λσ (W (1) − W (π )) .

The second term is equal to

λ2

n

n∑
i=1

(
1 i

n ≥π − 21 i
n ≥π1 i

n ≥π0

)
=

∣∣∣∣∣λ
2 (−1 + π ) if π ≥ π0

λ2 (−1 − π + 2π0) otherwise
.

Expression (15.35) becomes, ignoring the terms independent of π ,

π̂n = arg min
π

[−2λσ (W (1) − W (π )) + λ2
(
π1π≥π0

− π1π<π0

)]
or alternatively, changing the signs, adding terms in π0, and replacing W (1)

by W (π0), which does not alter the optimization result with respect to π ,

π̂n = arg max
π

[
λσ (W (π0) − W (π )) − 1

2
λ2 |π − π0|

]
. (15.36)

Now, let v = λ2 (π − π0), hence the estimator of v is

v̂n = λ2 (π̂n − π0) .

We can replace (15.36) by an equivalent expression in v

v̂n = arg max
v

[
λσ

(
W (π0) − W

( v

λ2
+ π0

))
− 1

2
|v|

]
, (15.37)

which becomes

v̂n = arg max
v

[
λσ W s

( v

λ2

)
− 1

2
|v|

]
(15.38)
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where W s is the symmetric Brownian motion on R such that

W s(−u) = W s(u)

for all u > 0. Hence, the least squares estimator of v follows the distribution
(conditional on π0):

v̂n = arg max
v

[
σ W s (v) − 1

2
|v|

]
. (15.39)

Note that, because π ∈ [0, 1], the maximization space for v is precisely[−λ2π0, λ
2 (1 − π0)

]
.

Note also that the distribution is exact in the case of normal residuals. �

15.4 Linearity Test

Before studying a nonlinear model, which is in general complex to estimate and
to analyze, it is necessary to perform linearity tests. In a large number of cases,
the problem of nonidentification of some parameters under the null hypothesis
arises.

15.4.1 All Parameters Are Identified Under H0

Before addressing the problem of nonidentification of a subset of parameters
under the null hypothesis, we start by presenting an example of a nonlinear
model in which this type of problem does not arise.

Example 15.8 Consider the following model

Eθ ( yi |wi ) = φ′wi + b(π, wi )

where wi = (1, yi−1, . . . , yi−p)′, φ = (φ0, φ1, . . . , φl)
′ with l = p + k, and

π = (π1, . . . , πm)′. Some exogenous variables may be included in wi . The
function b is twice continuously differentiable with respect to π , and such that

b(0, wi ) = 0.

The null hypothesis that we are testing is the linearity hypothesis H0 : π = 0.
The most popular test is that of Rao because it does not require the estimation
of the model under the alternative.

To simplify the calculations, we suppose that the innovations are normally
distributed and homoskedastic of variance σ 2, such that the log-density function
of each yi takes the following form

ln f ( yi |θ ) = −1

2
ln 2π − ln σ − 1

2σ 2

(
yi − φ′wi − b(π, wi )

)2
.
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where θ ′ = (φ′, σ, π ′). The first derivatives are given by

∂ ln f

∂φ
= 1

σ 2

(
yi − φ′wi − b(π, wi )

)
wi ,

∂ ln f

∂σ
= − 1

σ
+ 1

σ 3

(
yi − φ′wi − h(π, wi )

)2
,

∂ ln f

∂π
= 1

σ 2

(
yi − φ′wi − b(π, wi )

) ∂b(π, wi )

∂π
.

The second derivatives are the following

∂2 ln f

∂φ∂φ′ = − 1

σ 2
wiw

′
i ,

∂2 ln f

∂φ∂σ
= − 2

σ 3

(
yi − φ′wi − b(π, wi )

)
wi ,

∂2 ln f

∂φ∂π ′ = − 1

σ 2
wi

∂b(π, wi )

∂π ′ ,

∂2 ln f

∂σ 2
= 1

σ 2
− 3

σ 4

(
yi − φ′wi − b(π, wi )

)2
,

∂2 ln f

∂σ∂π ′ = − 2

σ 3

(
yi − φ′wi − b(π, wi )

) ∂b(π, wi )

∂π ′ ,

∂2 ln f

∂π∂π ′ = 1

σ 2

[
−∂b(π, wi )

∂π

∂b(π, wi )

∂π ′

+ (
yi − φ′wi − b(π, wi )

) ∂2b(π, wi )

∂π∂π ′

]
.

From Section 4.4 in Chapter 4, the Rao statistic is

RAOn = n

(
1

n

∑
i

∂ ln f ( yi |θ̃ (μ̂n))

∂θ

)′(
J−1

θ̃ (μ̂n )
− ∂θ̃ (μ̂n)

∂μ′ J−1
μ̂n

∂θ̃ (μ̂n)′

∂μ

)

×
(

1

n

∑
i

∂ ln f ( yi |θ̃ (μ̂n))

∂θ

)

where μ′ = (φ′, σ ) and θ̃ (μ) = (φ′, σ, 0), Jθ and Jμ are the information ma-
trices of the unrestricted and restricted models, respectively. μ̂n = (φ̂′

n, σ̂n) is
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the maximum likelihood estimator of μ of the restricted model. This leads to

1

n

∑
i

∂ ln f ( yi |θ̃ (μ̂n))

∂θ

=

⎡⎢⎢⎢⎣
0

0

1
n

∑
i

∂ ln f ( yi |θ̃ (μ̂n ))
∂π

⎤⎥⎥⎥⎦ =

⎡⎢⎢⎢⎣
0

0

1
nσ̂ 2

n

∑
i

(
yi − φ̂′

nwi

)
∂̂b
∂π

⎤⎥⎥⎥⎦
where ∂̂b

∂π is the vector ∂b(π,wi )
∂π

valued at θ̃ (μ̂n) and σ̂ 2
n is the maximum likelihood

estimator of σ 2.
From (15.4) and (15.28), we have

Eθ
(( 

yi − φ′wi − b(π, wi )
)
wi

) = 0,

Eθ

((
yi − φ′wi − b(π, wi )

) ∂b(π, wi )

∂π

)
= 0.

Moreover,

Eθ

(
∂2 ln f

∂π∂π ′

)
= − 1

σ 2
Eθ

(
∂b(π, wi )

∂π

∂b(π, wi )

∂π ′

)
and

Eθ

(
∂2 ln f

∂σ 2

)
= − 2

σ 2

since

Eθ
((

yi − φ′wi − b(π, wi )
)2

)
= σ 2.

From this, we can infer Jθ and similarly, Jμ:

Jθ = 1

σ 2

⎡⎢⎢⎢⎢⎣
Eθ

(
wiw

′
i

)
0 Eθ

(
wi

∂b(π,wi )
∂π ′

)
0 2 0

Eθ
(

∂b(π,wi )
∂π

w′
i

)
0 Eθ

(
∂b(π,wi )

∂π

∂b(π,wi )
∂π ′

)
⎤⎥⎥⎥⎥⎦ ,

Jμ = 1

σ 2

[
Eθ

(
wiw

′
i

)
0

0 2

]
.
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Given that ∂θ̃ (μ)
∂μ′ =

⎡⎣ 1 0
0 1
0 0

⎤⎦, we have

J−1
θ − ∂θ̃ (μ)

∂μ′ J−1
μ

∂θ̃ (μ)′

∂μ

= σ 2

⎛⎜⎜⎜⎜⎝
⎡⎢⎢⎢⎢⎣

Eθ
(
wiw

′
i

)
0 Eθ

(
wi

∂b(π,wi )
∂π ′

)
0 2 0

Eθ
(

∂b(π,wi )
∂π

w′
i

)
0 Eθ

(
∂b(π,wi )

∂π

∂b(π,wi )
∂π ′

)
⎤⎥⎥⎥⎥⎦

−1

−

⎡⎢⎢⎣
[
Eθ

(
wiw

′
i

)]−1
0 0

0 1/2 0

0 0 0

⎤⎥⎥⎦
⎞⎟⎟⎠ .

Hence,

RAOn = n

(
1

nσ̂ 2
n

∑
i

(
yi − φ̂′

nwi

) ∂̂b

∂π

)′ (
σ 2

[
Eθ

(
∂b(π, wi )

∂π

∂b(π, wi )

∂π ′

)

− Eθ

(
∂b(π, wi )

∂π
w′

i

) [
Eθ

(
wiw

′
i

)]−1
Eθ

(
wi

∂b(π, wi )

∂π ′

)]−1
)

×
(

1

nσ̂ 2
n

∑
i

(
yi − φ̂′

nwi

) ∂̂b

∂π

)

where the middle term is the (3,3) element of the inverse of the partitioned
matrix

J−1
θ − ∂θ̃ (μ)

∂μ′ J−1
μ

∂θ̃ (μ)′

∂μ

valued at μ̂n. This statistic is asymptotically distributed according to a χ2
m

where m is the dimension of the vector π . It is estimated by R̂AOn where all the
parameters come from the restricted model:

R̂AOn = 1

σ̂ 2
n

(∑
i

(
yi − φ̂′

nwi

) ∂̂b

∂π

)′ [∑
i

∂̂b

∂π

∂̂b

∂π ′ −
(∑

i

∂̂b

∂π
w′

i

)

×
[∑

i

wiw
′
i

]−1(∑
i

wi
∂̂b

∂π ′

)⎤⎦−1(∑
i

(
yi − φ̂′

nwi

) ∂̂b

∂π

)
.
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The test can be obtained in three steps:
1. Estimate φ by φ̂n in the regression

yi = φ′wi + εi , i = 1, . . . , n,

and compute the residual sum of squares∑
i

ε̂2
i =

∑
i

(
yi − φ̂′

nwi

)2
.

2. Estimate the model

ε̂i = δ′zi + ηi , i = 1, . . . , n,

with z′
i = (w′

i ,
∂̂b
∂π ′ ) and compute∑

i

η̂2
i =

∑
i

(̂
εi − δ̂′

nzi

)2
.

Note here that∑
i

η̂2
i = ∑

i
ε̂2

i −
(∑

i
ε̂i zi

)′ [∑
i

zi z′
i

]−1 (∑
i

ε̂i zi

)

= ∑
i

ε̂2
i −

⎛⎝ 0∑
i

ε̂i
∂̂b
∂π

⎞⎠′
⎡⎢⎢⎣

∑
i

wiw
′
i

∑
i

wi
∂̂b
∂π

′

∑
i

∂̂b
∂π

w′
i

∑
i

∂̂b
∂π

∂̂b
∂π

′

⎤⎥⎥⎦
−1⎛⎝ 0∑

i
ε̂i

∂̂b
∂π

⎞⎠

= ∑
i

ε̂2
i −

(∑
i

ε̂i
∂̂b
∂π

)′ (∑
i

∂̂b
∂π

∂̂b
∂π ′ −

(∑
i

∂̂b
∂π

w′
i

) [∑
i

wiw
′
i

]−1

×
(∑

i
wi

∂̂b
∂π ′

))−1 (∑
i

ε̂i
∂̂b
∂π

)
since

∑
i ε̂iwi = 0.

3. Finally, compute

R̂AOn =
∑

i
ε̂2

i − ∑
i

η̂2
i∑

i
ε̂2

i /n

(recall that σ̂ 2
n = ∑

i
ε̂2

i /n). �

15.4.2 The Problem of the Nonidentification of Some Parameters Under H0

In the following section, we consider examples in which some parameters are
not identified under the null hypothesis. This implies in particular that the
information matrix calculated under H0 is singular. The procedure usually used,
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namely the Davies procedure, consists in letting the test statistic depend on the
nonidentified parameters and in using the maximum of this function to construct
the critical region of the test. The asymptotic distribution is usually not a χ2

(since the maximum of a set of dependent χ2 is not itself a χ2), but must be
determined on a case-by-case basis, as we will see below.

Example 15.9 We return to the previous example where

Eθ ( yi |wi ) = φ′wi + b(π, wi )

with the same notation and assumptions, except that here the function b can be
written as a product

b(π, wi ) = b1(π1, wi )π
′
2wi

with

b1(0, wi ) = 0 and π ′ = (π ′
1, π

′
2).

The linearity hypothesis can be written as H0 : π1 = 0; under this hypothesis,
π2 is not identified in the sense that its elements can take any values. Another
linearity hypothesis that can be considered is H0 : π2 = 0, but it leads again to
a problem of nonidentification, here of the vector π1. STAR type models enter
in this framework, because, from (15.24) and (15.25), they satisfy:

Eθ ( yi |wi ) = α0 + α′wi + (β0 + β ′wi )F ( yi−d )

where F is very often a logistic or exponential function (see (15.26) or (15.27)).
The Davies procedure consists in considering the test statistic for the null

hypothesis H0 : π1 = 0 assuming π2 fixed, namely RAOn(π2), and in study-
ing finally supπ2

RAOn(π2). In other words, the critical region, to which this
procedure leads, is simply the union of the critical regions corresponding to the
possible values of π2:

R =
{

x

∣∣∣∣sup
π2

RAOn(π2) > α

}
= {x | ∃π2 RAOn(π2) > α }
= ⋃

π2

R(π2)

where

R(π2) = {x/RAOn(π2) > α}
is the critical region for a given π2. In this general example, the statistic
RAOn(π2) has the advantage of following asymptotically a χ2 with degree of
freedom the dimension of π1.
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It is worth noting that in STAR type models, most of the frequently used
linearity tests rely on a Taylor expansion of the nonlinear function and a
reparametrization, and not on Davies procedure. �

Now, we study two examples where the Davies procedure leads to statistics
that follow nonstandard distributions. These are two examples that we have seen
in Section 3, the structural change model and the threshold model.

Example 15.10 Consider the structural change model presented in Ex-
ample 15.2 and continued in Example 15.5

yi = λ0 + λ11i>nπ + ui

where ui is i.i.N (0, σ 2) and n is the sample size. For a breakpoint π , there
are nπ observed points before and n − nπ observed points after. When nπ

is unknown, the tests of the null hypothesis H0 : λ1 = 0 and their asymptotic
distributions are the following

sup
π∈�

WALDn(π ), sup
π∈�

RAOn(π ), sup
π∈�

COMPn(π )

→ sup
π∈�

B B2
π

π (1 − π )

(15.40)

where WALDn, RAOn, and COMPn correspond respectively to the Wald, Rao,
and Likelihood ratio test. � is a subset of (0, 1) (it is sometimes recommended
to take it equal to [0.15, 0.85]), B Bπ = W (π ) − πW (1) is a Brownian bridge
and W (.) is a Brownian motion on [0, 1] , restricted to �. We are going to
sketch the proof, which leads to result (15.40) in the case of the Wald test. From
(15.32) and (15.33), it follows that

WALDn(π ) = n
π (1 − π )

σ 2
λ̂2

1n

= n
π (1 − π )

σ 2

[
1

n(1 − π )

∑
i>nπ

yi − 1

nπ

∑
i<nπ

yi

]2

.

Using the fact that λ1 = 0 under the null hypothesis, we have∑
i>nπ

yi =
∑
i>nπ

(λ0 + ui ) = n(1 − π )λ0 +
∑
i>nπ

ui

and ∑
i<nπ

yi =
∑
i<nπ

(λ0 + ui ) = nπλ0 +
∑
i<nπ

ui = nπλ0 +
∑

i

ui −
∑
i>nπ

ui .
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The statistic can be rewritten as

WALDn(π ) = π (1 − π )

nσ 2

[(
1

(1 − π )
+ 1

π

) ∑
i>nπ

ui − 1

π

∑
i

ui

]2

= 1

nπ (1 − π ) σ 2

[∑
i>nπ

ui − (1 − π )
∑

i

ui

]2

= 1

nπ (1 − π )

[∑
i>nπ

εi − (1 − π )
∑

i

εi

]2

with εi = ui

σ
∼ N (0, 1). After expansion, we obtain

WALDn(π ) = 1

nπ (1 − π )

⎡⎣(∑
i>nπ

εi

)2

− 2 (1 − π )
∑
i>nπ

εi

∑
i

εi

+ (1 − π )2

(∑
i

εi

)2
⎤⎦

or, furthermore,

WALDn(π ) = 1

π (1 − π )

⎡⎣(√
n

n

∑
i>nπ

εi

)2

− 2 (1 − π )

(√
n

n

∑
i>nπ

εi

)(√
n

n

∑
i

εi

)

+ (1 − π )2

(√
n

n

∑
i

εi

)2
]

.

Next we will use two convergence results, that we state here without proof. The
first is the following weak convergence of a process√

n

n

∑
i>nπ

εi → W (1) − W (π )

and the second is the convergence

sup
π

hn(π ) → sup
π

h(π )

when the functional convergence hn → h holds. These results hold under some
assumptions, which we assume to be satisfied. We have

WALDn(π ) → 1

π (1 − π )

[
(W (1) − W (π ))2 − 2 (1 − π ) (W (1)

− W (π ))W (1) + (1 − π )2 W (1)2
]

→ 1

π (1 − π )

[
(W (π ) − πW (1))2

]
,
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hence it follows

sup
π

WALDn(π ) → sup
π

(W (π ) − πW (1))2

π (1 − π )
,

which leads to expression (15.40). �

Example 15.11 In the threshold model of Example 15.3, the parameter c is
not identified under the null hypothesis H0 : λ1 = 0. One can show that

sup
c∈R

WALDn(c), sup
c∈R

RAOn(c), sup
c∈R

COMPn(c)

→ sup
δ∈�

B B2
δ

δ(1−δ)

where

δ(c) = Eθ (1yi−d≤c)

and � ⊂ (0, 1) is the image of R by δ. It is sometimes suggested to take R =
[c1, c2] where c1 and c2 are respectively the 15th and 85th percentiles of the
empirical distribution of {yi }. �

Notes

Some authors have investigated the theoretical problems that arise in nonlinear dynamic

models, such as Gallant (1987, Chapter 7), Gallant and White (1988), Hall (1993),

Priestley (1991), and Tong (1990).

In Section 2, regarding the estimation of nonlinear dynamic models by generalized

method of moments, we named two possible choices for estimating the asymptotic

covariance matrix, the first based on Parzen weights is given in Gallant (1987), and the

second can be found in Newey and West (1987a and 1987b); see also Ogaki (1993).

The example is taken from Tauchen (1986), see also for instance Hansen and Singleton

(1982), Hansen (1982), and Hall (1993).

The LSTAR and ESTAR models are studied in Luukkonen (1990), Luukkonen,

Saikkonen, and Teräsvirta (1988a and 1988b), Luukkonen and Teräsvirta (1991),

Teräsvirta (1994), Teräsvirta and Anderson (1992). For their asymptotic properties, see

Chan and Tong (1986) (for a Bayesian analysis of these models, see Péguin-Feissolle

(1994) and for multiple regimes, see Dufrenot, Mignon, and Péguin-Feissolle (2004)).

Threshold models have been introduced by Tong (see for instance Tong (1990)).

Regarding more specifically EAR models, see Laurance and Lewis (1980 and 1985).

The examples relating to the models where the function g is not smooth, namely the

structural change model, and the threshold model are taken from Carrasco (1995 and

2002).
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Regarding linearity tests, we refer to Granger and Teräsvirta (1993) and numerous

articles by Teräsvirta (especially Teräsvirta (1994)) for everything about this type of tests

in the class of STR model. Davies procedure was treated in Davies (1977 and 1987).

The examples of specific nonsmooth models are again borrowed from Carrasco (1995)

(see also Andrews (1993), Garcia (1998), and Chan (1990)).
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16. Identification and Overidentification
in Structural Modeling

16.1 Introduction

In the previous chapters, we presented a set of statistical methods that were
initially general and then specific to particular classes of statistical models.
These methods and models have been chosen because they were suited to treat
economic data but they belonged essentially to mathematical statistics. It is
sufficient to look at some textbooks for the application of statistics in scientific
areas other than economics (physics, biology, sociology, psychology and so on)
to find an important part of the tools presented here, sometimes with a dif-
ferent relative importance or a different terminology, but fundamentally simi-
lar regarding the modes of thought and the results. The recent development in
econometrics attests of the increasing diversity of the methods it uses. Formerly
centered around a small number of models, econometrics has seized more and
more statistical techniques; there are few statistical methods that have not found
a use in the treatment of economic data.

Does the econometric method coincide with statistics? Most econometri-
cians would answer no to this question. Most likely, the econometricians would
consider that the autonomy of their field results from the approach of struc-
tural modeling. In broad outline, we mean by structural modeling a specifica-
tion of the statistical model starting from theoretical relations that describe the
phenomenon under study. These relations result from the “micro” or “macro”
economic analysis and are essentially the mathematical expression of behav-
ioral rules of agents or groups of agents involved in the examined phenomenon.
Structural modeling associates a statistical model with the economic model that
it describes, and it allows us to validate or reject the economic model or some
of the theoretical assumptions embedded in it.

The relationship between theoretical model and statistical model is obviously
not specific to econometrics, it can be found in all scientific approaches in any
field. It presents some characteristics specific to econometrics, whose main
features we consider in the last chapters of this book.

395
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16.2 Structural Model and Reduced Form

It is extremely difficult to provide a general mathematical definition of structural
models. We describe their main elements. The models are about observed units
denoted i , that may be as before individuals (households, firms, . . . ), periods
(months, quarters, days), or an intersection of the two.

For each i , a vector of variables denoted x∗
i is defined. These variables are of a

diverse nature: they represent measures relevant in economics (individual con-
sumption of a good, price of a production factor, willingness to pay for a phone
connection, gross domestic product) or error variables that reflect the inexact-
ness of the model (residuals). The variables may be directly observable (from
surveys, national income accounting, . . .), partially observed (the willingness
to pay for an apartment is greater than the actual price paid by a household, but
is not directly observable), or completely unobservable (residuals, unobserved
heterogeneity such as the ability to perform a job, the efficiency of a company).

These various variables are related through equations. The first group of
equations reflect the behavior of economic agents and are most often based on
an optimization criterion (utility maximization, cost minimization). In general,
optimization is represented by the first order conditions and a set of restrictions.
Besides these autonomous behavioral equations of each actor of an economic
phenomenon, there are equations that make all the different behaviors compat-
ible (equilibrium condition, rationality condition). These equations explain the
essence of the nature of the economic analysis that deals with rational behaviors
and their interdependence.

This system of structural equations is built in order to be solved. The variables
are split into two categories, the endogenous variables on one hand and the
exogenous variables and residuals on the other hand. The aim of the structural
model is to explain the interaction between the variables, and the determination
of the endogenous variables by the exogenous variables and the residuals. We
met this terminology before, but here we will try to make it more precise.

The structural equations are related to the economic choices of the agents.
In practice, a structural model cannot analyze all the decisions of an economic
agent (for the obvious reason of dimension) but considers some of them as
given (the decision to work by a woman is in some models analyzed taking
the matrimonial status and the number of children as given, but other models
choose to explain simultaneously the fertility decision and the search for a job).

Therefore, a structural model is always partially reduced; progress has been
made in econometrics in endogenizing variables (i.e., in explaining their gen-
eration) that were previously exogenous (i.e., considered as given).

Finally, a structural model contains parameters that may be vectors (elastic-
ities for instance) or functions (the probability distribution of residuals or of
heterogeneity). The econometricians does not know the values of these param-
eters. The goal is to estimate them or to test some hypotheses about them.
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It is usually assumed that the parameters are known by the economic agents
who are able (at least implicitly) to calculate the solution to the optimization
problems. Other models assume that the economic agents accumulate infor-
mation on the parameters over time; hence, there is a learning process by the
economic agents and the econometrician observes this (with sometimes a rela-
tionship between these two mechanisms).

The parameters that we consider here are also structural, in the sense that
they are “independent.” This intuitively means that a change in one of them
occurs without affecting the set of parameters, e.g., the price elasticity of the
supply of the firms can stay constant while the elasticity of household demand
varies, which obviously affects the market equilibrium.

The parameters are by definition fixed in the model. Some authors use the
term “random parameters,” but we will treat these “random parameters” as
unobservable variables whose distributions themselves depend on fixed param-
eters. We find another confusion among authors who compute a sequence of
successive estimates of the parameters that grows with the sample size and
interpret them as random parameters. Of course, the estimates vary but the
underlying parameters themselves are constant.

The fact that the model depends only on parameters (possibly functionals)
that are fixed across individuals or periods is a necessary restriction of the sta-
tistical method and is its limitation. For example, an econometric model may
be used for forecasting only if its parameters are constant. However, those ob-
viously vary in particular under the effect of economic policies, which make
it difficult to use econometric models to forecast their effect. This argument
returned often in the econometrics literature – mainly Anglo-Saxon – under
the name of Lucas critique. We do not discuss its relevance here, but we note
that the more structural a model is, the more accurately we can simulate the
impact of an economic policy by modifying (arbitrarily, i.e., by using a non-
statistical argument) one or several of the parameters. The structural form is
useful for manipulations of some parameters, because these parameters are eas-
ily interpretable as behavioral parameters and they may change independently
from each other. However, structural modeling with parameters kept constant
is useless for forecasting.

Computing a reduced form of a structural model consists in performing two
types of tasks:

� Solve a part or all of the equations of the model to express a subset of variables
as functions of the others. The second subset contains the residuals that are
by nature random. This way, we construct a conditional probability of the
endogenous variables (those that were unknown and with respect to which the
model has been solved) given the other (exogenous or conditioning) variables.
Thus, we obtain a usual conditional statistical model. Various ways to solve
the model may reflect diverse interests: in a dynamic model, we solve the
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endogenous variables at time t as a function of past variables and exogenous
variables, or we can express the endogenous variable as a function of the path
of the exogenous variables only. This latter form of the model is sometimes
called final form while the previous one is called reduced form.

� Use marginalization to determine the probability distribution of the observ-
able endogenous variables conditional on the observable exogenous variables.
For instance, we can first calculate the reduced form conditional on the ob-
servable and unobservable exogenous variables, then eliminate the latter ones
by integration, and thus obtain what is called the solved form. Integrating out
the unobservables allows us to take the partial observation scheme of the en-
dogenous variables (censoring, truncation, selection of observed individuals,
and so on) into account.

We provide some notation to formalize the previous concepts: the variables x∗
i

are partitioned into
(

y∗
i , z∗

i , ui

)
where y∗

i is the vector of endogenous variables,
z∗

i is the vector of the exogenous variables and ui the vector of the residuals. In
turn, y∗

i is partitioned into ( yi , ηi ) and z∗
i into (zi , ζi ), respectively represent-

ing the observable and unobservable elements of these vectors. The system of
structural equations must allow us to calculate y∗

i as a function of (zi , ζi ) and
ui , and the model must specify the probability distribution of ui in order to
infer the conditional distribution of y∗

i as a function of z∗
i . To eliminate ζi , we

need to know additionally its probability distribution (conditional on the zi ). In
contrast, the distribution of zi does not play a central role in the model and is
in general little constrained.

The parameters of the structural model (possibly including functional pa-
rameters) are denoted by θ. The various conditional models that we consider
depend on different functions of θ .

16.3 Identification: The Example of Simultaneous Equations

16.3.1 General Definitions

In the presentation of general statistical methods and in the analysis of the esti-
mation of specific econometric models, the identification assumption has been
introduced, more or less explicitly. This assumption may have appeared as a
technical regularity condition, only necessary for the mathematical rigor of the
exposition. In the context of structural modeling, that is when the economet-
ric model formalizes an economic phenomenon, the identification condition
is more than a simple technical assumption, but covers a more fundamental
aspect that is intuitively the adequacy of a theoretical model for an observed
process. The economic theory of the phenomenon under study defines the rele-
vant parameters, whereas the observation scheme characterizes the data gener-
ating process (DGP). Hence, it is important that these relevant parameters are
correctly determined by the DGP, i.e., that they are an injective function of the
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DGP. In the statistical analysis, we learn only about the DGP and we can recover
the parameters of the theoretical model only if they are uniquely determined by
the DGP. Our viewpoint is the viewpoint of the “classical” statistician, in the
sense that only the observed data brings information. The Bayesian analysis,
in which the observations are complemented by a prior information, would of
course be different.

In this section, we consider only the distributions of observable variables,
possibly conditional on other observable variables. Indeed, these are the distri-
butions that the observations will allow us to learn about. On the other hand,
the parameters θ may be defined in a system containing unobservable variables
that are eliminated by integration.

We recall the notions of identification that we previously introduced, but our
goal in this chapter is mainly to illustrate them using examples of models.

1. In Chapter 1 (Definition 1.2), we introduced the notion of identification
of a model {Xn, �, Pθ

n } as the property:

Pθ1
n = Pθ2

n ⇒ θ1 = θ2.

2. In Chapter 3, we introduced the notion of identification of a function λ (θ )

of parameters defined by a moment condition (3.5): λ (θ ) is identified if
the solution of the equation

Eθ (ψ (xi , λ)) = 0

is unique (when it exists).
3. A special case of the second definition meets the first definition. If the

model (which we assume to be i.i.d. to simplify) is dominated and cor-
rectly specified, we can use as moment condition the equation that sets
the expectation of the score equal to zero:

Eθ

(
∂

∂λ′ ln f (xi |λ)

)
= 0,

which admits λ (θ ) = θ as a solution. The uniqueness of this solution is
then equivalent to the property: the probability distributions with densi-
ties f (.|θ1) and f (.|θ2) are identical (which is equivalent to Pθ1

n = Pθ2
n )

if and only if θ1 = θ2.

We focus on the second point whose generality we have just demonstrated
and provide the following definition.

Definition 16.1 Let {Xn, �, Pθ
n } be a statistical model and consider a set of

moment conditions:

Eθ (ψ (xi , λ)) = 0. (16.1)

1. Two functions λ1 (θ ) and λ2 (θ ) are equivalent if they both satisfy Equa-
tion (16.1).
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2. The function λ (θ ) is identified if all functions equivalent to λ (θ ) are
equal to λ (θ ). Otherwise, the function is underidentified.

3. The function λ (θ ) is locally identified at θ0 if all functions equivalent to
λ (θ ) coincide with λ (θ ) in a neighborhood of θ0. The function λ (θ ) is
locally identified if it is locally identified for all values of θ0. �

To simplify this presentation, we defined only a concept of unconditional
identification. Generally, we could examine a condition

Eθ
(
ψ̃ (xi , λ) |zi

) = 0.

In this case, λ1 and λ2 are equivalent if these two functions of parameters satisfy
this equation for all values of zi . However, we decided to examine here only
cases where the conditional moment conditions can be transformed into joint
conditions (see Chapter 3) and the useful concepts are then those defined in
Section 3.5.

The concept of local identification is of interest for two reasons.

1. Local identification is sufficient to ensure the asymptotic properties of
the estimator λ̂n. We do not develop here the argument that is a bit
technical. We simply note that if the sample size is sufficiently large, we
can limit the parametric space to a neighborhood of the true value and
settle for local identification.

2. The second argument in favor of a local study of identification rests on
the possibility to transform the uniqueness condition of the solution to
the equation Eθ (ψ (xi , λ)) = 0 into a rank condition of a matrix. Here
again, passing rapidly over the regularity conditions (differentiability,
permutation of the expectation, and differentiation), we can state the
following sufficient condition for local identification. Let θ0 ∈ � and
λ (θ0) be the solution to

Eθ0 (ψ (xi , λ (θ0))) = 0.

If the matrix

Eθ

(
∂

∂λ′ ψ (xi , λ)

)
evaluated at the point (θ0, λ (θ0)) has rank k (where k is the dimension
of λ), then there exists a function λ (θ ) satisfying

Eθ (ψ (xi , λ (θ ))) = 0

in a neighborhood of θ0 and this function is unique. This theorem follows
from the implicit function theorem (see for instance Schwartz (1992),
Chapter 4, Section 8). The implicit function theorem applies strictly
speaking to the case when r (the dimension of ψ) is equal to k, and in
this case implies both existence and local uniqueness. Only uniqueness
is obtained if r ≥ k .
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To conclude these general considerations on identification, let us examine
the relationship between the asymptotic rank condition and the finite sample
rank condition.

Suppose

Eθ

(
∂

∂λ′ ψ (xi , λ (θ ))

)
(16.2)

has rank k for all θ.  As the set of full rank matrices is open, we infer that

1

n

n∑
i=1

∂

∂λ′ ψ (xi , λ (θ )) ,

which converges almost surely to (16.2), has also rank k for n sufficiently large.
For example, if r = k, the estimator λ̂n , which is the solution to

1

n

n∑
i=1

ψ (xi , λ) = 0,

is therefore locally unique; in this case, note that the invertibility of (16.2) and
that of its estimator

1

n

n∑
i=1

∂

∂λ′ ψ
(

xi , λ̂n

)
are used in the study of the asymptotic properties.

This result is useful mostly for its opposite implication. In practice, it is
sometimes difficult to verify the assumptions that imply identification because
they often involve conditions on the DGP (for example, rank conditions on the
moment matrix, or as we will see in the next section, conditions that some of
(obviously unknown) parameters are equal to zero). Hence, it is common to use
a numerical procedure to solve the equation

1

n

n∑
i=1

ψ (xi , λ) = 0

without being positive on identification. The fact that some numerical difficul-
ties arise when solving, indicative of the multiplicity of solutions, allows us
to question the identification of the function λ (θ ) . The existence of numerical
problems is more often caused by a modeling and identification problem than
by a failure of the algorithm or of the computer.

16.3.2 Linear i.i.d. Simultaneous Equations Models

The simultaneous equations models have constituted the heart of econometrics
from the 1950s to the 1970s. They define a class of problems that are specific
to econometrics and apparently do not have an equivalent in other domains of
statistics. They result from the structural approach of modeling and illustrate
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perfectly the essential questions raised by this approach. The simplest case
is that of a linear i.i.d. model for which we summarize here the identification
conditions. Another specific problem of these models, namely endogeneity, will
be examined in the following chapter. The linear i.i.d. simultaneous equation
models can obviously be generalized in two directions, nonlinear models and
dynamic models. The latter ones are considered in the next section.

The role of simultaneous equation models in theoretical research in econo-
metrics has declined considerably, as can be seen from the importance of this
topic in recent books and scientific conferences. However, it remains true that
many applied econometrics problems must be modeled by simultaneous equa-
tions systems. Hence, their empirical and pedagogical importance remains.

The traditional construction of linear i.i.d. simultaneous equations models is
the following. The observations xi ∈ R

m are split into yi , zi with dimensions p
and q . The goal of the model is to build the conditional distribution of yi given
zi or, at least, to characterize some moment conditions. We assume that we can
write

Byi + Czi = ui i = 1, . . . , n (16.3)

where B is an invertible p × p matrix, C is a p × q matrix and ui is a random
vector with dimension p. We also specify a distribution of ui conditional on zi

or assumptions regarding some conditional moments of ui given zi . It is also
necessary to complete these assumptions with some minimal characterization
of the distribution of zi .

For instance, we can assume:

Assumption A1 The joint process (zi , ui ) is i.i.d. conditionally on the param-
eters θ , with square integrable components, and satisfies

Eθ (ui |zi ) = 0. (16.4)

�

Then, Equation (16.3) implies that

yi = �zi + vi i = 1, . . . , n (16.5)

with

� = −B−1C and vi = B−1ui

and it follows from A1 and (16.5) that the xi = ( yi , zi ) are i.i.d. and satisfy

Eθ ( yi |zi ) = �zi . (16.6)

This equation defines the reduced form of the model.
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Assumption A1 can be strengthened by a homoskedasticity assumption:

Assumption A2

Varθ (ui |zi ) = � �

or by a distributional assumption:

Assumption A3

ui |zi ∼ Np (0, �) . (16.7)

�

Actually, the matrices B and C in Equation (16.3) have a specific structure,
some of their elements are assumed to be zero, other equal to 1, or more generally
their elements are linked by relations. We express these restrictions by assuming
that B and C can be written as some functions of a vector λ of R

k . Then, Equation
(16.3) is rewritten as

Bλyi + Cλzi = ui . (16.8)

Equation (16.8) is called structural form of the simultaneous equations model.
It is i.i.d. because the distribution of (zi , ui ) (and hence that of xi ) is i.i.d., it
is linear because the equation system is linear in yi . The usual terminology
refers to zi as exogenous variables and to yi as endogenous variables. The
vector ui is the vector of structural residuals. This terminology (in particular
the distinction between endogenous and exogenous) is a special case of the
more general terminology studied in the first part.

Example 16.1 A special case of (16.8) is the following{
yi1 + λ1 yi2 + λ2zi1 + λ3 = ui1

yi1 + λ4 yi2 + λ5zi2 + λ6 = ui2.
(16.9)

Hence, λ ∈ R
6 and

B =
(

1 λ1

1 λ4

)
, C =

(
λ2 0 λ3

0 λ5 λ6

)
,

yi = ( yi1, yi2)′ and zi = (zi1, zi2, 1)′ .

The study of a market in equilibrium provides an illustration for this system.
yi1 and yi2 are the equilibrium prices and quantities in this market for observa-
tion i, zi1 and zi2 are two exogenous variables that respectively characterize the
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supply and demand equations. Hence, the two equations are behavioral equa-
tions of economic agents and can describe individual behavior, the behavior of
the representative agent or of an aggregation of agents. These relationships are
structural, but include already a preliminary phase of computation: utility max-
imization under budget constraints by the consumers and, for example, profit
maximization under technological constraints by the producers. The solving of
these optimization problems does not mix both sides of the market (supply and
demand) while the reduced form

⎧⎪⎪⎨⎪⎪⎩
yi1 = − λ2λ4

λ4 − λ1

zi1 + λ5

λ4 − λ1

zi2 + λ6 − λ3λ4

λ4 − λ1

+ λ4ui1 − ui2

λ4 − λ1

yi2 = λ1λ2

λ4 − λ1

zi1 + λ5

λ4 − λ1

zi2 + λ3λ4 − λ6

λ4 − λ1

+ ui2 − λ4ui1

λ4 − λ1

shows how the two behavioral equations determine the equilibrium. Note that
the coefficients of the exogenous variables in the reduced form combine the
supply and demand parameters. �

Now, we study the identification of the unknown elements of matrices B and
C, i.e., the functions λ (θ ) on which they depend. The model we consider is
defined by Assumption A1 and by the structural equation (16.3). The parameter
θ, on which the generating process of ui and zi depends, actually plays no role
in our presentation: we could adopt a semiparametric viewpoint and assume
that (zi , ui ) is generated by some totally unconstrained distribution Q, except
for the existence of moments and Assumption A1. Indeed, our interest focuses
on the function λ (θ ) defined by the relation

Eθ
(
(Bλyi + Cλzi ) z′

i

) = 0 (16.10)

that follows from (16.4) (we examined in other chapters in more detail the
passage from conditional moment conditions to unconditional equations).

We examine here only the uniqueness of the solution of this system of equa-
tions (and not the existence problems). Let us introduce the following assump-
tion that eliminates a possible collinearity between explanatory variables.

Assumption A4 The rank of Eθ
(
zi z′

i

)
is equal to q. �

Then, the following is true.

Theorem 16.1 Under A1and A4, λ1 (θ ) andλ2 (θ ) are equivalent if and only if

�λ1(θ ) = �λ2(θ ).
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In other words, two structural parameters are equivalent if they determine the
same coefficients for the explanatory variables in the reduced form model. �

This result is immediate by noticing that, under the invertibility conditions
of Bλ and Eθ (zi z′

i ), Equation (16.10) is equivalent to

Eθ
( 

yi z
′
i

)
Eθ

(
zi z

′
i

)−1 = �λ(θ ). (16.11)

We complete this result with three comments. First, we note that the obser-
vations identify the reduced form of the model, i.e., the relationship between
explained and explanatory variables. The statistical learning occurs only with
this relationship, while getting back to the structural parameters requires spe-
cific assumptions on the matrices B and C . Second, Equation (16.11) underlines
the nature of simultaneous equations model: it is just a linear regression model
for which the regression coefficient matrix

Eθ ( yi zi ′ ) Eθ
(
zi z

′
i

)−1

is constrained by the structural form to depend on the function λ (θ ) of the
parameters. Finally, it follows from the identification condition that some as-
sumptions restricting the matrices B and C are necessary for this condition to
be satisfied.

The econometrics literature provides a set of results that allow us to verify
the identification condition in cases with specific matrices Bλ and Cλ. We do
not provide a comprehensive list of these theorems, but we show two cases.

Example 16.2 Consider the system⎧⎪⎪⎨⎪⎪⎩
yi1 + α′yi2 + β ′zi1 = ui1

yi2 − �2zi = ui2

yi3 − �3zi = ui3

(16.12)

with

yi = ( yi1, yi2, yi3)′ , yi1 ∈ R, yi2 ∈ R
p2 , yi3 ∈ R

p3 ,

ui = (ui1, ui2, ui3)′ , ui1 ∈ R, ui2 ∈ R
p2 , ui3 ∈ R

p3

and

zi = (zi1, zi2)′ ∈ R
q and zi2 ∈ R

q2

(where 1 + p2 + p3 = p and q1 + q2 = q). The parameters are λ = (α, β,

�2, �3) where α and β are vectors with dimensions p2 and q1 respectively
and �2 and �3 are matrices with dimensions p2 × q and p3 × q.

This model is special in the sense that only one equation mixes the explained
variables. The only assumption implied by the two other relations is the linearity
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of the conditional expectations of yi2 and yi3 given zi . It can be built starting
from a more general simultaneous equations model by solving p − 1 equations
and keeping only one structural equation. Moreover, we assume that the matri-
ces �2 and �3 are not constrained. This model can also be obtained directly
by specifying a structural equation and adding to it some relations between
explained and explanatory variables.

We maintain the general assumptions A1 and A4 but we need to introduce an
additional assumption to guarantee identification. Consider the coefficients of
the linear regression of yi2 on zi :

�2 = Eθ
(

yi2z′
i

)
Eθ

(
zi z

′
i

)−1
. (16.13)

We split �2 into (�21, �22) of dimensions p2 × q1 and p2 × q2. Then, we have
the following result: the parameters of Model (16.12) are identified if and only
if the rank of �22 is equal to p2.

Indeed, the matrix � of the reduced form of (16.12) takes the form:

� =

⎛⎜⎜⎝
−α′�21 − β ′ −α′�22

�21 �22

�31 �32

⎞⎟⎟⎠ ;

and here

λ = (α, β, �21, �22, �31, �32) .

Consider two values λ1 and λ2 of λ such that �λ1 = �λ2 ; hence we have

�1
21 = �2

21, �1
22 = �2

22, �1
31 = �2

31, �1
32 = �2

32,

α1′�1
21 + β1′ = α2′�2

21 + β2′ and α1′�1
22 = α2′�2

22.

The rank condition of �1
22 (= �2

22) implies that

α1 = α2 and hence β1 = β2.

This condition is called the “rank condition” for identification. Note that this
condition requires in particular q2 ≥ p2. This condition, necessary only, is
called order condition for identification. In many cases, it is easy to verify that
this condition does not hold and hence the model is not identified. The proof
of this result is left to the reader whom we refer to the literature summarized
at the end of this chapter. Note also that the third equation plays no role in
identification. �

The following classical example in the literature on simultaneous equations
models leaves the framework of Theorem 16.1, but shows how identification
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can result from an additional moment equation introducing an assumption on
the conditional variance.

Example 16.3 Consider the system{
yi1 + λ1 yi2 + λ2zi = ui1

yi1 + λ3 yi2 = ui2

where yi = ( yi1, yi2) ∈ R
2 and zi ∈ R. Assumptions A1 and A4 are not enough

to conclude that the vector λ = (λ1, λ2, λ3)′ is identified. We add the condition:

Varθ (ui |zi ) =
(

σ 2
1 0

0 σ 2
2

)
. (16.14)

Condition (16.14) contains at the same time a homoskedasticity assumption
and an assumption of non correlation of the structural residuals. We can verify
that the five conditions:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

Eθ (( yi1 + λ1 yi2 + λ2zi ) zi ) = 0

Eθ (( yi1 + λ3 yi2) zi ) = 0

Eθ (( yi1 + λ1 yi2 + λ2zi ) ( yi1 + λ3 yi2)) = 0

Eθ
(
( yi1 + λ1 yi2 + λ2zi )

2
) = σ 2

1

Eθ
(
( yi1 + λ3 yi2)2

) = σ 2
2

define a system whose solution is unique. It is clear that the third condition is
implied by the zero conditional covariance and zero conditional expectation
of ui .

Note that here the parameters of interest include the coefficients of the equa-
tions of interest as well as the variances of the residuals. We leave again to the
care of the reader to verify identification in this example. �

16.3.3 Linear Dynamic Simultaneous Equations Models

We extend the previous models to the dynamic case and link it to the models
presented in Chapters 12 and 13.

Let (xi )i=1,...,n with xi ∈ R
m be a sequence of observations generated by a

stochastic process. We maintain the decomposition of xi as ( yi , zi ) . The model
specifies a set of equations:

B0 yi + B1 yi−1 + · · · + Br yi−r + C0zi + · · · + Cr zi−r = ui (16.15)

where the B j are invertible p × p matrices and the C j are p × q. We can also
write

B(L)yi + C(L)zi = ui
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with {
B(L) = B0 + B1L + · · · + Br Lr

C(L) = C0 + C1L + · · · + Cr Lr .

Note that these equations contain only a finite number of lags. This simpli-
fying assumption limits our approach to vector autoregressive (VAR) models,
which is the most common case in applied econometrics. The matrices B(L)
and C(L) are not completely unknown and depend on parameters λ.

These equations differ from the usual VAR model by the fact that B0 is in
general different from the identity matrix. We do not list as many equations as
variables but only as endogenous variables yi .

Equation (16.15) is well defined only if the process of the residuals is re-
stricted, which is obtained by the following assumption.

Assumption A1 Conditionally on the parameters θ of the model, the compo-
nents of the observations are square integrable and satisfy

Eθ
(
ui

∣∣yi−1
−∞, zi

−∞
) = 0 (16.16)

where yi−1
−∞ represents the observations yi−1, yi−2, . . . (back to 0 or −∞

depending on the type of process) and zi
−∞ is the path of the process z

up to i. �

Condition (16.16) is necessary to build the sequential distribution of yi con-
ditionally on the realization of zi using some assumptions on the distribution
of ui . This is an exogeneity assumption that corresponds to the concept of
sequential cut developed in Chapter 2.

We generalize Assumptions A2 and A3 of the preceding section.

Assumption A2

Varθ
(
ui

∣∣yi−1
−∞, zi

−∞
) = �. �

Assumption A3

ui

∣∣yi−1
−∞, zi

−∞ ∼ N (0, �) . �

Note that the condition on the numbers of lags being identical for y and z is
not restrictive because some matrices may be zero.

Equations (16.15) represent behavioral equations of economic agents and
define (under A1) the structural form of the model.
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The reduced form of the model can be written as:

yi = − B−1
0 B1 yi−1 − · · · − B−1

0 Br yi−r

− B−1
0 C0zi − · · · − B−1

0 Cr zi−r + B−1
0 ui

hence,

yi = !1 yi−1 + · · · + !r yi−r + �0zi + · · · + �r zi−r + vi ,

or

(I − !1L − · · · − !r Lr ) yi = (�0 + �1L + · · · + �r Lr ) zi + vi .

This model can be considered as a VAR on yi whose instantaneous matrix is
I and contains explanatory variables.

This model allows us, under A3, to derive the distribution of yi conditionally
on the past of y and z and on zi :

yi

∣∣yi−1
−∞, zi

−∞ ∼ N

(
r∑

j=1

! j yi− j +
r∑

j=0

� j zi− j , �

)
.

It is also possible to express the distribution of yi as a function of the past
of z and the residuals by eliminating the lagged ys. In a stationary model, this
operation comes to calculate the M A (∞) form of the model:

yi = −B(L)−1C(L)zi + B(L)−1ui

which supposes the usual conditions on the roots of |B(z)| = 0.
In a nonstationary model, solving in the lagged ys can not be done all the

way back to −∞ and must stop at the initial conditions.
The identification of a dynamic simultaneous equations model can be exam-

ined as in the i.i.d. case by treating the lagged endogenous variables as if they
were exogenous variables. Indeed, if wi is the vector of yi−1, . . . , yi−r , zi , . . . ,
zi−r , we infer from (16.16) the moment equation:

Eθ
(
[Bλ(L)yi + Cλ(L)zi ] w′

i

) = 0

which is analogous to Formula (16.10). Thus, we can verify that two functions
λ1(θ ) and λ2(θ ) are equivalent if

∀ j = 1, . . . , r B−1
0,λ1(θ ) B j,λ1(θ ) = B−1

0,λ2(θ ) B j,λ2(θ )

and

∀ j = 0, . . . , r B−1
0,λ1(θ )C j,λ1(θ ) = B−1

0,λ2(θ )C j,λ2(θ ).

We stress that this analysis can be realized even if the model does not include
zi , which then allows us to examine a structural VAR (i.e., VAR for which the
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matrix of instantaneous variables is not equal to I ). These models are not neces-
sarily identified and require some restrictions on the lag structure to guarantee
identification.

Remarks. Cointegration analysis has replaced in the mind of many econo-
metricians the modeling by dynamic simultaneous equations model. Both ap-
proaches treat the nonstationarity of economic series in different ways. Although
this is not strictly necessary, the simultaneous models are conditional models
in which implicitly the nonstationarity is limited to the marginal distribution
of exogenous variables. In addition, the model is usually assumed to be con-
ditionally stationary. In contrast, the cointegration analysis concerns the joint
distribution of all variables and searches for transformations that are marginally
stationary. We could imagine an intermediate case where we would condition
on nonstationary exogenous variables while maintaining the nonstationarity of
the vector of the yi in the model conditional on exogenous variables. Then, we
could search for conditional cointegrating vectors. In general, these would not
be marginal cointegrating vectors as the following example shows. �

Example 16.4 Suppose that zi follows a random walk

zi − zi−1 ∼ N
(
0, σ 2

)
and that the process yi conditional on the path of the (zi )i satisfies

yi

∣∣yi−1
−∞, z+∞

−∞ ∼ N
(
βzi , γ z2

i

)
(with γ > 0).

Without making this concept very precise, we state that the distribution of yi is
conditionally stationary given the process z in the sense that

∀n, s y1, . . . , yn |z1 = ζ1, . . . , zn = ζn

∼ y1+s, . . . , yn+s |z1+s = ζ1, . . . , zn+s = ζn.

The transformation yi − βzi defines a cointegrating vector conditionally on z,
but its marginal distribution is not stationary since

Var ( yi − βzi ) = E
(
Var

(
yi − βzi

∣∣z+∞
−∞

)) = γ E
(
z2

i

) = γ
(
tσ 2

)
. �

16.4 Models from Game Theory

A good example of structural modeling and of the resulting identification prob-
lem is provided by the econometric formalization of individual behaviors in
the setting of a game. We know the importance that game theory has taken in
microeconomic theory, in industrial organization, in contract theory, and so on
and it is natural that this modeling gives rise to econometric models to confront
the theory with the observations.
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We simplify our presentation by limiting ourselves to the following model.
We observe L matches between N opposing players. Player j during match l
receives the signal ξ jl and transforms this signal to an action x jl using a strategy
function ϕθ , that depends on parameters θ ; all agents have the same strategy
function. This function, as a function of ξ jl and of θ , is also known by the
econometrician. We focus on a parametric specification for which θ ∈ � ⊂ R

k

and the signals ξil are i.i.d. with density f (.|θ ). We do not discuss of the choice
of the function ϕ that follows from an equilibrium condition, for example the
Nash equilibrium. This equilibrium condition makes ϕ depend on the signal
but also on the distribution that generated the signal.

An example of this structure is given by a first price auction model with
private values. An object is auctioned and each player attributes a value ξ jl to
this object. Then, he proposes a price x jl . The object is assigned to the player
who bids the highest price. A player will bid a price lower than his private value
and the difference between bid and value depends on the number of players
and the position of ξ jl in the support of the distribution with density f (.|θ ) (a
player with a “high” value bids a price that is further away from his value than
a player with a “low” value). This game admits a symmetric Nash equilibrium
described by the function

x = ξ −
∫ ξ

ξ
F (u|θ )N−1 du

F (ξ |θ )N−1
= ϕθ (ξ )

where ξ is the lower bound of the domain of values and F is the distribution
function associated with the density f . We see in particular that this function
is complicated and nonlinear. This model could of course be generalized by
considering very different objects for each auction, a varying number of par-
ticipants, and so on.

The density of the signals is simple to calculate. If i = (l, j) and n = L N ,

it is written as
n∏

i=1

f (ξi |θ ) .

Moreover, we assume that the parameters θ would be identified if the ξi were
observed, which implies the invertibility of the matrix

Eθ

[
∂2

∂θ∂θ ′ ln f (ξi |θ )

]
.

The likelihood function differs from the above expression and is

n∏
i=1

g (xi |θ ) =
n∏

i=1

dϕ−1
θ

dx
(xi ) f

(
ϕ−1

θ (xi ) |θ)
(16.17)

if ϕθ is invertible and smooth.
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In this writing, we ignore the difficulties that would arise if the distribution
of ξ had a compact support, which would imply that the distribution of x had a
support dependent on the parameters.

The first order condition associated with the maximization of the likelihood
is given by

Eθ

[
∂

∂θ
ln [g (xi |θ )]

]
= 0. (16.18)

The local identification condition of the model becomes the invertibility of
the matrix

Eθ

[
∂2

∂θ∂θ ′ ln g (xi |θ )

]
in a neighborhood of the true value of the parameters. Notice that this invert-
ibility is not at all implied by that of

Eθ

[
∂2

∂θ∂θ ′ ln f (ξi |θ )

]
,

as illustrated on the following example.

Example 16.5 Let ξi ∈ R, i.i.d. N (θ, 1) , and ϕθ (ξi ) = ξi − θ . It follows that
xi is i.i.d. N (0, 1) and θ is not identified in the observable model. The function
g does not depend on θ any longer and the expectation of the second derivative
is zero and hence singular. �

Computing the maximum likelihood estimator of this model is delicate be-
cause of the presence of the Jacobian of the transformation and possibly support
conditions. It is simpler to estimate using the method of moments in the fol-
lowing manner. Set

h (ξi , θ ) = ∂

∂θ
ln f (ξi |θ ) .

The true value θ is the unique solution to

Eθ (h (ξi , λ)) = 0
(
λ ∈ � ⊂ R

k
)
.

We can note that

Eθ
(
h

(
ϕ−1

λ (xi ) , λ
)) = 0,

which suggests a moment condition that is easy to compute. From an initial
value of θ , denoted θ (0), we calculate

ξ
(0)
i = ϕ−1

θ (0) (xi )
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and we estimate θ by θ (1) the solution to

n∑
i=1

h
(
ξ

(0)
i , λ

)
= 0.

This value of θ (1) allows us to revise the ξi as

ξ
(1)
i = ϕ−1

θ (1) (xi )

and we iterate this procedure until it converges, which yields an estimator that
is the solution of

n∑
i=1

h
(
ϕ−1

λ (xi ) , λ
) = 0. (16.19)

The problem is then to verify the identification condition, i.e., the uniqueness
of the solution to (16.19). Using the implicit function theorem, the local iden-
tification condition can be written as

Eθ ∂

∂λ′
(
h

(
ϕ−1

λ (xi ) , λ
)) |λ=θ invertible.

Using the chain rule for the differentiation of composite functions, this matrix
becomes

Eθ

(
∂h

∂ξ

(
ϕ−1

λ (xi ) , λ
) ∂ϕ−1

λ (xi )

∂λ′ + ∂h

∂λ′
(
ϕ−1

λ (xi ) , λ
))

.

Noticing that the differentiation of the identity

ϕλ

(
ϕ−1

λ (xi )
) = xi

with respect to λ gives[
∂ϕλ

∂ξ

(
ϕ−1

λ (xi )
) ∂ϕ−1

λ

∂λ

]
+ ∂ϕλ

∂λ
= 0,

we infer the local identification condition: the parameters are identified if the
matrix

Eθ

[
∂h

∂λ
(ξi , λ)

]
λ=θ

− Eθ

[
∂h

∂ξ
(ξ, λ)

(
∂ϕλ

∂ξ
(ξ, λ)

)−1
∂ϕλ

∂λ

]
λ=0

is invertible. We leave to the reader to verify this condition in a first price auction
model with private values for usual parametric distributions. The interest of
this expression is that it depends on the given initial elements of the problem
(h and ϕθ ) and does not require the derivation of the distribution of xi or of ϕ−1

θ .
This analysis can be extended to the case where ϕ is not completely known

but depends on extra parameters and exogenous variables.
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16.5 Overidentification

The term overidentification has appeared several times in previous chapters and
here again, we return to this notion in the context of our discussion on structural
modeling.

The term overidentification is ill-chosen. If one defines it precisely, one actu-
ally obtains the notion of hypothesis, in the sense of a restriction to a parameter
space. This identity between overidentification and hypothesis explains why the
term overidentification is associated with the idea of a test of overidentification.

Intuitively, the notion of overidentification appears in econometrics in the
following manner. We consider a structural model from which we infer the re-
duced form, i.e., the class of distributions of the observable explained variables
conditionally on the observable explanatory variables. In many cases, the re-
duced form can be nested within a different, more general, conditional statistical
model and the family of sampling distributions of the reduced form is a subfam-
ily of the class of sampling distributions in this other model. This other model
is often simple and easy to estimate, whereas the reduced form has a much
more complex structure. It is said then that the structural model overidentifies
the reduced form by restricting its family of sampling distributions.

Example 16.6 The estimation of the cost function provides a good example of
overidentification without needing to specify completely the structural model.
In such a model, the explained variables are the total cost Ci of firm i and the
quantities of production factors, Q1i , . . . , Q pi if the model analyzes p inputs.
The explanatory variables are the vector of production quantities Yi and the
vector of the prices of the production factors P1i , . . . , Ppi . A “natural” model
consists of a multivariate regression model:(

Ci

Qi

)
= g

(
Yi

Pi

)
+ ui =

(
gC (Yi , Pi )

gQ (Yi , Pi )

)
+

(
uCi

uQi

)
where g is the conditional expectation function. We can also limit ourselves to a
parametric specification by assuming that g is indexed by a vector β of unknown
parameters. We could choose for instance a quadratic form, after transforming
the variables in logarithm, which defines a functional form commonly called
translog model.

Note that this model has a redundancy, in the sense that an accounting equa-
tion links the explained variables (Ci = ∑p

j=1 Pji Q ji ), therefore the variance
matrix of ui is necessarily singular. In general, this problem is eliminated by
suppressing the equation of one input quantity.

The structural modeling of the firm involves a production function that re-
lates Yi and Qi and supposes that for given Yi and Pi , the firm chooses the
combination of inputs Qi minimizing total cost. This assumption (combined
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with an appropriate specification of the stochastic components of the model)
implies that the function gQ is equal to the vector of partial derivatives of gC

with respect to Pi (Shepard’s lemma). This constraint gives rise to restrictions
on β which can be interpreted as the overidentification hypothesis. Consider
the simple case with two factors and without production level. For instance, the
unrestricted model may be written as{

Ci = β1 + β2 Pi + β3 P2
i + uCi

Qi = β4 + β5 Pi + β6 P2
i + uQi

and the overidentification hypothesis is expressed by the restrictions β6 = 0,

β5 = 2β3, and β4 = β2. Hence, the economic hypotheses regarding the firm
behavior are tested by jointly testing these three equalities. �

The previous example shows that the overidentifying restrictions are part of
the reduced form, which itself is further constrained by the “maintained” as-
sumptions, i.e., not reconsidered. In the model, the quadratic form of regressions
constitutes a maintained assumption.

In Chapters 5 and 10, we saw some overidentified semiparametric cases of
the simple i.i.d. model with unknown distribution. We provide an additional
example of nonparametric overidentification.

Example 16.7 For a set of households constituted only by couples, we observe
for i = 1, . . . , n, the vector ( yi , Z M

i , Z F
i )i=1,...,n where yi is the total consump-

tion by the household of a given good (for example a food product such as sugar
or meat) and Z M

i and Z F
i are the characteristics of the man and the woman

(age, diploma, social demographic category, . . . ). The consumed quantities by
each partner are not observed but they are assumed to satisfy the following
relations:{

yM
i = m

(
Z M

i

) + uM
i

yF
i = m

(
Z F

i

) + uF
i

with

E
(
uM

i |Z M
i

) = E
(
uM

i |Z M
i , Z F

i

)
= E

(
uF

i |Z F
i

) = E
(
uF

i |Z M
i , Z F

i

) = 0.

The essential assumption is that the consumed quantities do not depend on the
sex of the consumer except through the individual characteristics.

Thus, we obtain a model of the household

yi = m
(
Z M

i

) + m
(
Z F

i

) + ui
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with

yi = yM
i + yF

i and ui = uM
i + uF

i ,

which can also be expressed by the relation:

E
(

yi |Z M
i , Z F

i

) = m
(
Z M

i

) + m
(
Z F

i

)
.

The model defined by this equation is therefore a model of conditional expec-
tation for which the structural assumptions restrict

E
(

yi |Z M
i , Z F

i

)
to take a specific form. Instead of being an arbitrary function of Z H

i and Z F
i , this

conditional expectation is defined as the sum of the same function m evaluated
at Z H

i and Z F
i . �

As we remarked before, it is difficult to formally define overidentification.
This property is defined with respect to a “simple” reference model Pθ , θ ∈ �,
which can be for example, a linear regression model or a general nonparametric
model. This model is simple in the sense that there exists a “natural” estima-
tor such as the least squares estimator, the empirical distribution or a kernel
smoothing. On the other hand, the structural model leads to a reduced form
characterized by the same family Pθ , but with a restriction θ ∈ �∗ where �∗

is a subset of �. In general, the “natural” estimator does not belong to �∗ and
hence cannot be used to estimate the structural form. We need to rely on a more
complex estimation procedure to satisfy the restrictions of the structural form.

However, the interest of an overidentified model is that it allows us to test the
structural form by testing the hypothesis θ ∈ �∗, for example by comparing the
“natural” estimator and the restricted estimator.

Remarks. The overidentifying restriction plays an important role only if �∗

has an empty interior in the sense of a topology for which the natural estimator
converges to the true value. Suppose for instance that the reference model is an
i.i.d. model with xi ∈ R and that the overidentifying restriction is expressed by
μ = Eθ (xi ) > 0. The natural estimator xn of μ is not necessarily positive but if
the true value μ0 is positive, the almost sure convergence of xn to μ0 guarantees
that any sequence xn becomes positive for a finite sample size with probability
1; the size of the finite sample depends generally on the data sequence. In
contrast, if the model is i.i.d. with

xi = (xi1, xi2) ∈ R
2

and

μ = (μ1, μ2) = Eθ (xi ),

an overidentifying restriction such that μ1 = μ2 is never satisfied by x1n and
x2n for all n even if x1n and x2n converge to equal values. �
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16.5.1 Overidentification in Simultaneous Equations Models

Consider a static simultaneous equations model for which the reduced form is
the multivariate regression equation (16.5). The model is overidentified with
respect to the regression model if the set of matrices �λ = −B−1

λ Cλ is a strict
subset of the set of p × q matrices. The following example illustrates this
situation.

Example 16.8 Return to Example 16.2. Let �0 be an arbitrary p × q matrix.
The question of overidentification is that of the existence of α such that⎛⎜⎜⎝

−α′�21 − β ′ −α′�22

�21 �22

�31 �32

⎞⎟⎟⎠ = �0.

This equality holds if there exists α such that

−α′�0
22 = �0

12,

which is always satisfied only if �0
22 is invertible. If q2 > p2, there are more

equations than unknowns and an α satisfying this relation does not always exist.
Thus in this case, the model is in general overidentified. �

Example 16.9 Consider the system{
yi1 + λ1 yi2 + λ2zi1 + λ3zi2 + λ4 = ui1

yi1 + λ5 yi2 + λ6zi1 + λ7 = ui2.

The matrix �λ of the reduced form is written as

�λ = − 1

λ5 − λ1

(
λ2λ5 − λ6 λ3λ5 λ4λ5 − λ7

−λ1λ2 + λ6 −λ1λ3 −λ1λ4 + λ7

)
and this matrix is restricted by a proportionality relation. �

Example 16.10 The assumption of the existence of cointegration introduces
overidentifying restrictions that appear in the error correction model. Let xi

be a I (1) process that satisfies a VAR(p) in levels A(L)xi = εi . We verified in
Chapter 13 that this assumption implies the relation

A∗(L)�xi + A(1)xi−1 = εi

where A∗(L) is a matrix of degree p − 1. This model is a multivariate dynamic
linear regression model. Assuming the existence of cointegration leads to

A(1) = DC ′

and hence to an overidentifying restriction. �



P1: OSO/OVY P2: OSO/OVY QC: OSO/OVY T1: OSO

Ecoeok CUFX117-Florens 0521876407 April 22, 2007 14:6

418 Econometric Modeling and Inference

16.5.2 Overidentification and Moment Conditions

The problem of overidentification has already been mentioned in Chapter 3 and
we recall it here in a slightly special case.

Let x1, . . . , xn be an i.i.d. sample. θ is here the probability distribution Q of
each observation. We consider the moment condition

E Q (ψ (xi , λ)) = 0. (16.20)

The dimension r of ψ is strictly greater than k, the dimension of λ; the model
is in general overidentified in the sense that the set of Q such that a solution
to (16.20) exists is a strict subset of the set of probability distributions of xi .
This overidentification prevents us from replacing Q with its natural estimator,
namely the empirical distribution

Q̂n = 
1

n

n∑
i=1

δxi

because

E Q̂n (ψ (xi , λ)) = 
1

n

n∑
i=1

(ψ (xi , λ)) = 0

has in general no solution.
Then, there are three possible solutions to handle this problem.

� The usual statistical approach would eliminate some moment conditions and
keep only the necessary number to estimate λ. This is not the adopted ap-
proach in structural econometrics because the economic theory of the phe-
nomenon under study is useful only beyond this minimal number of condi-
tions. Moreover, we wish to test these economic hypotheses, which necessi-
tate treating an overidentified model.

� The approach of the generalized method of moments consists of eliminating
the overidentification by modifying the definition of the parameter λ. As we
saw in Chapter 3, this parameter is defined as the value of λ that minimizes

E Q (ψ (xi , λ))′ H E Q (ψ (xi , λ)) .

This new function λ(Q) coincides with the solution to (16.20) if Q belongs
to the family of probability distributions such that (16.20) admits a solution.
But λ(Q) is defined for a much larger family that comprises in particular the
empirical distribution. Hansen’s test for overidentifying restrictions, intro-
duced in the Example 4.4 in Chapter 4, provides a test of overidentification.

� A third approach that is closer to that of the usual parametric econometrics
consists in keeping the overidentifying restriction and to estimate Q by an
estimator Q∗

n satisfying the existence of a solution to the equation

E Q∗
n (ψ (xi , λ)) = 0.
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The solution to this problem can be found by estimating Q by a weighted
sum

∑n
i=1 αiδxi with weights that are different from 1

n . We do not develop
this approach here (see for instance Kitamura and Stutzer (1997)).

16.5.3 Overidentification and Nonparametric Models

In a general manner, a nonparametric structural model is characterized by an
i.i.d. sample whose observations are generated by a distribution Q and whose
parameter of interest is a function associated with Q. Overidentification follows
from the fact that this function does not exist for some distributions Q. Consider
the example of an additive regression model. Using the notation of Chapter 10
(section 10.4.2), this model is characterized by

E Q ( y |̃z1 = z1, z̃2 = z2) = ψ1 (z1) + ψ2 (z2). (16.21)

We wish to estimate the pair of functions ψ1 and ψ2. The overidentifying restric-
tion comes from the fact that if Q is arbitrary, then the expectation of y given z̃1

and z̃2 does not take an additive form. In Chapter 10, we adopted an approach
of overidentification that is of the same type as that adopted by GMM, i.e., we
extend the definition of ψ1 and ψ2 for a much larger class of distributions Q.
We extend the definition of ψ1 and ψ2 by considering the solution to

min
ψ1,ψ2

E Q ( y − ψ1 (z1) − ψ2 (z2))2 .

This minimization yields a conditional expectation if the overidentifying restric-
tion is satisfied, but allows us to define ψ1 and ψ2 even outside this restriction
(see Subsection 10.4.2).

The same approach can be adopted regarding index models for which the
overidentifying restriction

E Q ( y |z ) = ψ
(
λ′z

)
is satisfied only for a subfamily of distributions. However, we extend the defi-
nition of ψ and of λ to a set of distributions (with very weak restrictions on the
existence of moments) by defining ψ and λ as the arguments of the minimization
of E Q ( y − ψ (λ′z))2.

The question raised by the elimination of the overidentifying restriction by
extending the definition of parameters is that of the nonuniqueness of such
extension and hence the choice of the optimal extension. This question, which
has been solved in the case of GMM for minimizations of quadratic forms,
remains largely open in nonparametric problems.

Notes

The questions of identification in simultaneous equations models were addressed in

the founding work by the Cowles Commission. Preliminary contributions quoted by

Malinvaud (1980) are those of Working (1925) and Working (1927) that solve a paradox
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raised by Moore (1914). The essential findings on simultaneous equations are due to

Koopmans (1949) and were later extended by Fisher (1959, 1961a, and 1961b). The

study of identification and overidentification in the method of moments is presented in

the seminal paper by Hansen (1982). Game theoretic models are studied in the articles by

Paarsch (1992), Laffont and Vuong (1993), Laffont, Ossard, and Vuong (1995), Florens,

Protopopescu, and Richard (2002), and Sbai (2003). Identification and overidentification

in nonparametric econometrics are examined in various papers, of which Florens (2003)

provides a synthesis.
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17. Simultaneity

17.1 Introduction

The notion of simultaneity is essential in econometrics and although familiar to
every econometrician it is not easy to give it a simple mathematical definition.
In a very stylized way, simultaneity between two variables, x1 and x2, exists
if we cannot recursively decompose the features represented by them into the
features represented by x1 and the features represented by x2 given x1. This
might seem surprising since we can always decompose the joint distribution of
x1 and x2 into its marginal and its conditional distribution. To say there exists
simultaneity or that x1 is not exogenous means the conditional model does
not allow us to identify and thus to estimate the parameters of interest. The
notion of simultaneity thus comes back to the question of parameterization,
i.e., of structural modeling of the features we are interested in. The notion of
exogeneity defined by a cut as it was presented in Chapter 1 contains another
element, namely that there is no loss of information in considering only the
conditional model. In summary, a cut means that the conditional model identifies
and efficiently estimates the parameters of interest. We note that the essential
element in this concept is identification rather than efficiency. The most classical
example of simultaneity is the study of a market in equilibrium. The structural
model specifies a supply function

Qs = ϕs(P, zs) + us

where Qs is the quantity supplied, P is the price, zs is a vector of explanatory
variables, ϕs is the supply function, and us is a residual. In the same way, the
demand function is

Qd = ϕd (P, zd ) + ud .

The equilibrium condition is Qs = Qd (= Q), which reduces the model to
two explained variables, quantity and price. The functions ϕs and ϕd or their
parameters are the objects of interest in the system. We already examined the

421
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identification of such a system that requires, for example in the linear case, that
the explanatory variables in the two equations satisfy some conditions.

The problem of simultaneity between P and Q is of a different nature. We
can obviously decompose the joint probability distribution of P and Q into the
marginal distribution of P and the distribution of Q given P , but this conditional
distribution is neither the distribution of the supply nor the one of the demand,
and although this decomposition is well defined from a probabilistic view point
and can be estimated, it does not have any economic content.

This inadequacy between conditional distribution and economic meaning
characterizes the situation when simultaneity is present.

17.2 Simultaneity and Simultaneous Equations

We will concentrate in our discussion to the following example, which is in fact
a special case of the model that we examined in the previous chapter (Equa-
tion (16.12)). Let the model be given by{

yi1 + αyi2 + β ′zi1 = ui1

yi2 + γ ′zi = ui2.
(17.1)

The two explained variables are

( yi1, yi2) ∈ R
2

and the explanatory variables are

zi = (zi1, zi2) ∈ R
q1+q2 = R

q .

This example can be examined without distributional assumptions under as-
sumptions A1, A2, and A4 of Section 16.3.2 or with the assumption of normal-
ity A3. The rank identification condition given in Example 16.2 is in the current
case not very restrictive: the coefficient of one of the variables in the vector zi2

in the second equation has to be non zero, or equivalently, the second equation
has to contain one variable that is not present in the first equation.

The concept of simultaneity or of endogeneity can be explained intuitively
for this example by the following remark: a quick analysis of these equations
might lead us to consider them as one equation (the second) that explains yi2

by zi and one equation (the first) that explains yi1 by yi2 and zi1. One would
treat these two equations separately and estimate them by least squares method.
However, because of the dependence between ui1 and ui2, this approach leads
to a transformation of the first equation, which is reflected in particular in
the inconsistency of the least squares estimators of α and β. The variable yi2

is endogenous in the first equation, and neglecting this property introduces a
simultaneity bias. We will clarify this intuition by examining this problem under
different but essentially equivalent angles.
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First, it is easy to show that the least squares estimators are not consistent.
We can verify this directly by simplifying the problem to the case when β = 0
and when zi2, now denoted zi , is scalar. The model becomes{

yi1 + αyi2 = ui1

yi2 + γ ′zi = ui2.
(17.2)

In this case the estimator of α satisfies

α̂n = −
1
n

n∑
i=1

yi1 yi2

1
n

n∑
i=1

y2
i2

. (17.3)

The denominator is equal to

1

n

n∑
i=1

(−γ ′zi + ui2

)2 = γ 2 1

n

n∑
i=1

z2
i − 2γ

n

n∑
i=1

zi ui2 + 1

n

n∑
i=1

u2
i2

which converges almost surely to

γ 2 Eθ
(
z2

i

) + σ22,

where σ22 = Varθ (ui2) . The covariance between zi and ui2 is indeed zero be-
cause of A1 (Equation (16.4)). The numerator is equal to

1

n

n∑
i=1

(−γ zi + ui2) (αγ zi − αui2 + ui1)

which converges almost surely to

−αγ 2 Eθ
(
z2

i

) − ασ22 + σ12

and thus

α̂n → α − σ12

γ 2 Eθ
(
z2

i

) + σ22

(17.4)

with σ12 = Covθ (ui1, ui2). Thus, the estimator converges to a value different
from α except in the case when the structural residuals are independent.

This result generalizes to a system of simultaneous equations. If we consider
a system of equations of the type (16.8), then the least squares estimators do
not converge in general to the corresponding values in the matrices Bλ and Cλ.
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Second, a different perspective of the endogeneity bias is obtained when
considering the moment equations. In the preceding special case, the estimation
of the system by least squares leads us back to the empirical moment equations⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

1
n

n∑
i=1

( yi1 + ayi2) yi2 = 0

1
n

n∑
i=1

( yi1 + cyi2) zi = 0

(17.5)

for which the solution converges to the solution of the asymptotic problem{
Eθ (ui1 yi2) = Eθ [( yi1 + ayi2) yi2] = 0

Eθ (ui2zi ) = Eθ [( yi1 + czi ) zi ] = 0.
(17.6)

System (17.6) has a solution

a = α − σ12

γ 2 Eθ (zi ) + σ22

and c = γ

which is different from the moment conditions given in A1 that defines the
simultaneous equations model, i.e.,

Eθ (ui |zi ) = 0. (17.7)

Multiplying this by zi and taking expectations with respect to zi , it follows that

Eθ (ui zi ) = 0 (17.8)

or equivalently{
Eθ [( yi1 + αyi2) zi ] = 0

Eθ [( yi2 + γ zi ) zi ] = 0.
(17.9)

We need to emphasize that the moment conditions that specify the orthogonality
of the structural residuals and the exogenous variables do not define the same
parameters as the moment equations that define the regression equations in the
least square estimation (of yi2 on zi and of yi1 on yi2).

What Model (17.7) tells us is that the relation between yi1 and yi2 which
interests the econometrician is not the regression line but a different line char-
acterized by (17.9).

Note that the system (17.9) determines a consistent estimator of α. Replacing
the theoretical expectation by the sample means, we obtain the estimator

α̂n = −
∑

yi1zi∑
yi2zi
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for which we can easily verify that it converges almost surely to α. This estimator
is a special case of instrumental variables estimators which we study more
extensively later in this chapter.

A third perspective on the endogeneity bias can be obtained by means of the
concept of exogeneity as introduced in Chapter 2. To simplify the presentation,
we assume that assumption A3 holds, that means we consider a parametric
model under normality.

Model (17.2) admits a reduced form{
yi1 = αγ zi + ui1 − αui2

yi2 = −γ zi + ui2

(17.10)

from which we derive the sampling probabilities of an observation(
yi1

yi2

) ∣∣∣∣∣zi ∼ N

((
αγ zi

−γ zi

)
,

(
σ11 − 2ασ12 + α2σ22 σ12 − ασ22

σ12 − ασ22 σ22

))
.

The yi are independent conditionally on the zi . This distribution can be decom-
posed into a marginal distribution of yi2 and the conditional distribution of yi1

given yi2, both distributions remain conditional on zi :

yi2|zi ∼ N (−γ zi , σ22)

yi1|yi2, zi ∼ N
(
ρyi2 + γ (α + ρ) zi , τ

2
)

with

ρ = σ12 − ασ22

σ22

and τ 2 = σ11 − σ 2
12

σ22

.

Considering the parameter vector (α, γ, σ11, σ12, σ22), we can verify that the
functions of these parameters that enter the marginal and the conditional model
are variation free. The problem appears in the fact that the parameter of interest
α is not identified by the conditional model (which only identifies ρ, γ (α + ρ)

and τ 2 and from which we cannot recover α). This shows that for the parame-
terization of interest, yi2 is not an exogenous variable. Evidently, the exogeneity
condition holds if σ12 = 0 since then −α = ρ and the conditional model
becomes

yi1|yi2,zi ∼ N
(−αyi2, τ

2
)

(17.11)

which shows in particular that −α is the coefficient of the regression line.

17.3 Endogeneity, Exogeneity, and Dynamic Models

Exogeneity presents itself in a different way in a nonstationary process
with one or more cointegrating relationships. This cointegration introduces
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overidentifying restrictions which modify the exogeneity conditions. We make
this point using the following example.

Consider a vector xi that is partitioned into yi , zi and wi , which, for simplicity,
are assumed to be scalars. Suppose that xi is specified as a VAR(1) in levels:⎛⎜⎜⎝

yi

zi

wi

⎞⎟⎟⎠ =

⎛⎜⎜⎝
a1 a2 a3

b1 b2 b3

c1 c2 c3

⎞⎟⎟⎠
⎛⎜⎜⎝

yi−1

zi−1

wi−1

⎞⎟⎟⎠ +

⎛⎜⎜⎝
ε1i

ε2i

ε3i

⎞⎟⎟⎠ . (17.12)

Suppose εi is an innovation of the process and that εi ∼ N (0, �) with

� =

⎛⎜⎜⎝
σyy σyz σyw

σyz σzz σzw

σyw σzw σww

⎞⎟⎟⎠ . (17.13)

The vector xi is nonstationary, integrated of order 1 and admits by assumption
a cointegrating relation

yi + βzi + γwi = ui (17.14)

where ui is a stationary process. Thus we can equivalently express this process
as ⎛⎜⎜⎝

�yi

�zi

�wi

⎞⎟⎟⎠ =

⎛⎜⎜⎝
α1

α2

α3

⎞⎟⎟⎠ (
1 β γ

) ⎛⎜⎜⎝
yi−1

zi−1

wi−1

⎞⎟⎟⎠ +

⎛⎜⎜⎝
ε1i

ε2i

ε3i

⎞⎟⎟⎠ . (17.15)

We study the weak exogeneity of �wi , which essentially means to study the
decomposition of the above process into the marginal distribution of �wi con-
ditional on the past and the conditional distribution of �yi and �zi conditional
on �wi and on the past. Since the process (17.12) is Markov of order 1, the
past enters here only through xi−1.

We have

�wi |xi−1 ∼ N (α3 ( yi−1 + βzi−1 + γwi−1) , σww) (17.16)

and(
�yi

�zi

)∣∣∣∣∣ �wi , xi−1 ∼ N

((
π0�wi + π1 yi−1 + π2zi−1 + π3wi−1

λ0�wi + λ1 yi−1 + λ2zi−1 + λ3wi−1

)
, �

)
(17.17)
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with

π0 = σyw/σww λ0 = σzw/σww

π1 = α1 − α3π0 λ1 = α2 − α3λ0

π2 = α1β − α3βπ0 λ2 = α2β − α3βλ0

π3 = α1γ − α3γπ0 λ3 = α2γ − α3γ λ0

and � is the usual conditional variance-covariance matrix.
Recall that the concept of exogeneity rests on two considerations: can we

identify (and estimate) the parameters of interest in the conditional model? If
we can, do we lose information if we consider only the marginal model? Also
recall that the answer to the last question is negative if the parameters of the
conditional and of the marginal models are variation free.

It is clear in this example that the parameters of (17.16) and of (17.17) are not
variation free, however, in contrast to the static model of the preceding section,
the conditional model (17.17) identifies the parameters of the cointegrating
relationship. Indeed, we have

β = π2

π1

= λ2

λ1

and γ = π3

π1

= λ3

λ1

,

which moreover introduce overidentifying restrictions on the conditional model.
Therefore, from the point of view of inference about the cointegrating vector,
conditioning on �wi does not prevent the estimation. However, the parameters
α1, α2, and α3 are not identified by the conditional model and the relationship
between the parameters of (17.16) and (17.17) implies that in general the esti-
mation of β and γ is less efficient if only (17.17) is used than if the full system
is used. We emphasize that the identification of β and γ using the conditional
model (which can be generalized by conditioning on �wi and on �zi ) does
not come from the nonstationarity but from the restrictions that are imposed by
equation (17.15).

The restriction α3 = 0 eliminates the parameters from the marginal model
and implies the identification of α1 and α2 in the conditional model. Strictly
speaking, it assures the weak exogeneity of �wi . In our case, this condition
is the same as a non-causality condition as far as it eliminates the past of the
process of y and z from the process w.

The question of exogeneity can here be posed also in other terms. The gen-
eral principle in the analysis in terms of cointegration is in considering all
variables as endogenous and thereby eliminating all assumptions of exogeneity.
This principle is sometimes difficult to apply either because of the dimension-
ality of the vector of variables or because we are interested for example in
a “small” sector of the economy for which the macroeconomic variables are
“exogenous.”
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The general principle is then the following: we regress the relevant variables
on the exogenous variables and analyze cointegration for the residuals (see
Johansen (1995)). The question arises under which assumptions this approach
is legitimate. Under the condition

γ = − σyw

σww

− β
σzw

σww

, (17.18)

the model conditional on w can be rewritten in the following way(
�yi − σyw

σww
�wi

�zi − σzw
σww

�wi

)
=

(
α1 − α3

σyw

σww

α2 − α3
σzw
σww

) [(
yi−1 − σyw

σww

wi−1

)

+ β

(
zi−1 − σzw

σww

wi−1

)]
+

(
η1i

η2i

)
where (

η1i

η2i

)
∼ N (0, �) .

Thus we see that the residuals

yi − σyw

σww

wi and zi − σzw

σww

wi

form a cointegrating relation that identifies the same coefficients β and γ as in
the preceding model

Condition (17.18) is rewritten as

σyw + βσzw + γ σww = 0

and is interpreted as orthogonality between ui (the structural residual of the
cointegration equation) and wi . This condition is identical to the classical con-
dition of exogeneity. If, moreover, α3 = 0, then the conditional model contains
all information about β and γ and identifies α1 and α2.

17.4 Simultaneity and Selection Bias

Another example is provided by the problem of selection bias or, equivalently,
the endogenous selection of observations. We limit our presentation to a sim-
plistic example in order to focus the discussion on the essential aspects.

Consider a sample of individuals indexed by i = 1, . . . , n. Each individual
has a characteristic xi , and we assume that the xi are independently drawn from
the same distribution and has expectation μ. This expectation is the parameter
of interest to the statistician. However, not all individuals are observed, which
is expressed by the variable di with value equal to 1 if individual i is observed
and 0 otherwise. This Bernoulli random variable is not necessarily independent
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of the value of xi , which implies in particular that the probability of the event
di = 1 (i is observed) conditionally on xi effectively depends on xi . For example
in the case of an income survey, we can assume that the probability of obtaining
a response from an individual depends on his income level. As in the previous
example, we illustrate the role that the dependence between di and xi plays by
considering the consistency of the parameters, the different moment equations
and the absence of exogeneity of di in a parametric specification.

Thus, we assume that the (di , xi ) are i.i.d. and that

Pr (di = 1|xi ) = p(xi )

and E (xi ) = μ.

1. Again, it is trivial but important to note that the natural estimator of μ

which neglects the selection mechanism is not consistent. This estimator
is equal to the sample mean of the xi for the individuals that are observed
and can be written as

μ̂n =

n∑
i=1

di xi

n∑
i=1

di

. (17.19)

Dividing both the numerator and the denominator by n and using the
strong law of large numbers, we obtain

μ̂n → Eθ (di xi )

Eθ (di )
= Eθ

(
xi Eθ (di |xi )

)
Eθ (Eθ (di |xi ))

= Eθ (p (xi ) xi )

Eθ (p (xi ))
. (17.20)

This limit is in general different from μ. It is however equal to μ if p(xi )
is constant, which means that the distribution of di (fully characterized
by p (xi )) conditional on xi does not depend on xi and that therefore di

and xi are independent.
2. The underlying moment conditions of the estimator (17.19) can be writ-

ten as

Eθ (xi |di = 1) = ν (17.21)

and defines the parameter ν. Indeed, the basic definition of conditional
probabilities implies

Eθ (xi |di = 1) = Eθ (xi di )

Eθ (di )

which yields the estimator μ̂n after replacing the theoretical expectations
by their sample counterparts. Thus, μ̂n is an estimator of ν and not of μ.
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Not taking the selection mechanism into account essentially means
that we are conditioning on di = 1 (or that we are using the moment con-
dition Eθ (xi di − νdi ) = 0) which does not define the same parameter
as the original moment condition Eθ (xi − μ) = 0.

3. To show the absence of exogeneity of di in the sense of the definition
in Chapter 1, we use a particular case of the preceding approach by
introducing a parametric specification.

Consider the i.i.d. vector (xi , ξi ) with distribution(
xi

ξi

)
∼ N

((
μ

α

)
,

(
σxx σxξ

σxξ σξξ

))
(17.22)

and set di = 1I (ξi ≥ 0). This model assigns to each i two variables xi and
ξi which in general are not independent. The variable ξi is not observable,
or only its sign is observable; additionally, xi is only observed if ξi is
positive.

As an example, we can define ξi to be the willingness to pay for
a phone connection (net of the connection cost). If ξi is positive then
the individual will be connected, and not otherwise. The variable xi is
then the spending on telephone communications. Thus we only observe
whether an individual is connected, and if yes, the phone expenses. The
parameter of interest is then the expectation of the expenses μ, evaluated
with respect to the marginal distribution, i.e., not conditional on being
connected. This measures a “latent” average expense of an individual
whether she is connected or not. This choice of the parameter of interest
might seem strange since it appears more natural to estimate the mean
expense only of those individuals who are connected, i.e., ν in our Equa-
tion (17.21). The two parameters μ and ν describe different aspects of
the data generating process, for each we can justify our interest in it.
We can verify in particular that if the model of the demand is derived
from utility maximization by the consumer, then it is easier to map the
parameter μ to the parameters of the utility function than it is for the
parameter ν.

From Model (17.22), we can derive the following marginal and con-
ditional probabilities

di ∼ Bernoulli

(
	

(
α

σξξ

))
,

and

xi |di = 1 ∼ xi |ξi ≥ 0,
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which is i.i.d. with density g,

g (u|θ ) = 1

	

(
α

σξξ

) ∫
ξ≥0

(2π )−1 |�|−1/2

× exp

[
−

(
u − μ

ξ − α

)′
�−1

(
u − μ

ξ − α

)]
dξ

where 	 denotes the standard normal distribution function.
The marginal model is parameterized by α

σξξ
. To show that exogene-

ity is not satisfied for the parameter μ, we have to show that μ is not
identified by the conditional model. Here, we do not provide a proof, but
instead only verify that μ is not identified by the first two moments of
the conditional distribution. Indeed, we have

E [xi |ξi ≥ 0] = μ + σxξ

σξξ

ϕ

(
α

σξξ

)
	

(
α

σξξ

) and V (xi |ξi ≥ 0) = σ

where ϕ is the density of a standard normal distribution. From the
marginal model we can learn the value of α

σξξ
, but the expectation and

the variance of xi conditional on ξi ≥ 0 does not enable us to recover μ

even if we know α
σξξ

.

17.5 Instrumental Variables Estimation

17.5.1 Introduction

We extensively studied conditional expectation and statistical regression models
in the Part II of this book. The conditional expectation is a function associated
with the probability distribution of a vector: if x̃ = ( ỹ, z̃ ) ∈ R × R

q is a ran-
dom vector, then the conditional expectation of ỹ given z̃ is the function g ( z̃ )

introduced in Definition 7.1. This function satisfies the equation

Eθ (( ỹ − g ( z̃ )) | z̃ ) = 0. (17.23)

The concept of instrumental variable can be introduced in a very general
way as follows. We suppose that the random vector x̃ can be partitioned into
( ỹ, z̃, w̃) ∈ R × R

k × R
r , and we are interested in the function gw̃ ( z̃ ) of z̃,

called instrumental variables regression of ỹ on z̃ given w̃, which satisfies

Eθ (( ỹ − gw̃ ( z̃ )) |w̃) = 0. (17.24)
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Then w̃ is called instrumental variable. We see that this concept extends (17.23),
since gw̃ ( z̃ ) = g ( z̃ ) if w̃ = z̃.

Remarks. The notion of instrument is used here in its original historical
meaning and not as a means to transform conditional moment equations into
marginals (function h in Section 3.3).

Equation (17.24) is an integral equation of the function gw̃ and we do not
discuss here the existence and uniqueness of a solution to it. It is necessary
to study this for the non-parametric estimation of gw̃ ( z̃ ), but we first confine
ourselves to the parametric case. Suppose we search for gw̃ in the family of
gw̃ ( z̃|λ) (λ ∈ ! ⊂ R

k). In this case, Equation (17.24) becomes a conditional
moment equation we can easily transform into a usual moment equation by
writing

Eθ (w̃ ( ỹ − gw̃ ( z̃|λ))) = 0. (17.25)

We attached an index w to the function gw to emphasize that its definition
depends on the choice of the instruments w̃ and evidently changes if w̃ is
modified. More generally, w̃ can be replaced by a vector of function of w̃, this
poses a problem of optimality which we will discuss later.

Equation (17.25) is implied by (17.24). Thus we face a problem that appears
as a special case of the general methodology presented in the first part. Note,
that the vectors z̃ and w̃ can have, in general, common elements.

Equation (17.25) introduces an overidentifying assumption as soon as r > k,
unless some moment conditions are redundant. We have to assume that λ is
identified, i.e., that the solution λ̃ (θ ) to Equation (17.25) is unique.

Example 17.1 We examine the case where gw ( z̃|λ) is linear and thus can be
written as z̃′λ (k = q).

– If r = k and if Eθ (w̃z̃′) has full rank, then the solution to (17.25) is

λ̃ (θ ) = Eθ
(
w̃z̃′)−1

Eθ (w̃ ỹ) .

– If w̃ = z̃, then we recover the coefficients of the linear regression of ỹ
on z̃.

– If w̃ is arbitrary, then λ̃ (θ ) is the solution to

Eθ (w̃ ỹ) = Eθ
(
w̃z̃′) λ.

Uniqueness of the solution requires k ≥ r (and rank[Eθ (w̃z̃′)] = k) and, if
k > r , this equation restricts the DGP to satisfy that the vector of cross-moments
of w̃ and ỹ lies in the space spanned by the columns of the cross-moments of w̃

and z̃. �
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Example 17.2 Consider the case where z̃ is included in w̃, which we then
write as w̃ = ( z̃, z̃∗). Condition (17.24) implies that

gw ( z̃|λ (θ )) = Eθ ( ỹ |̃z, z̃∗) .

The function gw is the conditional expectation but it is subject to an overidenti-
fying restriction: the expectation of ỹ conditional on z̃ and z̃∗ only depends on
z̃. �

Example 17.3 Given a linear simultaneous equations model as defined in
Chapter 16, consider one particular equation of this model written as

y1 + α′ y2 + β ′z1 = u1

(see Example 16.2). The set of exogenous variables in the model forms the
vector z = (z1, z2). We saw that the simultaneous equations model is defined
by the property Eθ (u|z) = 0, and thus our structural equation satisfies

Eθ
[
z
(

y1 + α′ y2 + β ′z1

)] = 0.

Therefore, we are in the setting of linear instrumental variables where, in this
case, z becomes ( y2, z2) ∈ R

p2+q2 . The identification condition r ≥ q is q1 +
q2 ≥ p2 + q1, i.e. q2 ≥ p2, which is the rank condition for identification that
we examined in Example 16.2. �

Example 17.4 Consider a linear dynamic equation of the form

y2i + αy1i + βy2,i−1 + γ y1,i−1 + δzi + μzi−1 = ui

which is taken from a dynamic simultaneous equations model. The model is
completed with two assumptions:

� the process z is exogenous and thus

Eθ (ui zi ) = 0,

� the residuals ui are innovations with respect to the set of variables, i.e.,

Eθ
(
ui y1,i− j

) = Eθ
(
ui y2,i− j

) = Eθ
(
ui zi− j

) = 0 ∀ j ≥ 1.

Thus, we can define a vector w̃ of instruments consisting of the variables
(y1, y2, z) lagged up to an arbitrary order k and the current value of zi . �

17.5.2 Estimation

We analyze the estimation problem in a general manner (with nonlinear func-
tions and dynamic observations), but we show that, with an appropriate as-
sumption on the residuals, we are able to obtain simple results in spite of this
generality
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Suppose the observations xi = ( yi , zi , wi ), i = 1, . . . , n, are generated by a
stationary ergodic process and satisfy the central limit theorem for all θ ∈ �

which indexes the sampling probability. The parameter of interest λ̃ (θ ) is the
unique solution to the equation

Eθ [wi ( yi − gw (zi |λ))] = 0. (17.26)

Note that wi and zi , which are vectors of dimension r and q respectively, may
contain the same variable with various lags. For example, gw (zi |λ) can be of
the form αpi + βpi−1 + γ Ri−1 + δ where pi and pi−1 are two observations
of a price at i and i − 1 and Ri−1 is the income at i − 1. In this case, zi =
(pi , pi−1, Ri−1) .

Similarly, wi may contain one or several variables and their lagged values.
In contrast, yi remains scalar in our analysis.

By assumption, the solution λ̃ (θ ) to (17.26) is unique. A local condition for
uniqueness is given by

rank

[
Eθ

(
wi

∂

∂λ′ gw (zi |λ)

∣∣∣∣
λ=̃λ(θ )

)]
= k

which, for a linear model
(
gw (zi |λ) = z′

iλ
)
, becomes

rank
[
Eθ

(
wi z

′
i

)] = k.

Furthermore, we assume that θ belongs to �∗, the set of values of θ such that
(17.26) admits a solution.

We proceed to the estimation by GMM using immediately the context of an
optimal weighting matrix. To determine the latter, we consider the variance of
the limiting distribution of

√
n

n

n∑
i=1

wi ui

(with ui = y − gw (zi |λ)), which is equal to

V θ =
+∞∑

j=−∞
Covθ

(
wi ui , wi− j ui− j

) =
+∞∑

j=−∞
Eθ

(
wiw

′
i− j ui ui− j

)
.

We make the following assumptions

Eθ
(
ui ui− j | (wl)l∈N

) =
∣∣∣∣∣σ

2 if j = 0

0 otherwise.
(17.27)

This assumption requires homoskedasticity if j = 0 and no correlation if j 	= 0.
It is conditional on the entire path of the instrumental variables. In particular,
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if the ui are a difference martingale conditional on wl , then the following
orthogonality property holds

Eθ
(
ui ui− j | (wl)l∈N

)
= Eθ

[
Eθ

(
ui− j Eθ

(
ui |ui−1, ui−2, . . . , (wl)l∈N

) | (wl)l∈N

)] = 0

since

Eθ
(
ui |ui−1, ui−2, . . . , (wl)l∈N

) = 0.

It is then clear that the asymptotic variance of

√
n

n

n∑
i=1

wi ui

is equal to

σ 2 Eθ
(
wiw

′
i

)
.

As the weighting matrix is defined only up to a multiplicative constant, we can
use, in a finite sample,

Hn =
[

n∑
i=1

wiw
′
i

]−1

as weighting matrix which, after multiplying it by n, converges to[
Eθ

(
wiw

′
i

)]−1
.

This matrix is assumed to be invertible.
The estimation then solves

min
λ∈!

( y − gw (z|λ))′ W ′ (W ′W
)−1

W ( y − gw (z|λ))

with

y =

⎛⎜⎜⎝
y1

...

yn

⎞⎟⎟⎠, gw (z|λ) =

⎛⎜⎜⎝
g (zi |λ)

...

g (zn|λ)

⎞⎟⎟⎠, W =

⎛⎜⎜⎝
w′

1

...

w′
n

⎞⎟⎟⎠
where W has dimension n × r .

Thus, the estimator λ̂n has to satisfy the first order conditions

∂

∂λ
gw (z|λ)′ W ′ (W ′W

)−1
W ( y − gw (z|λ)) = 0. (17.28)
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In a linear context, gw (z|λ) = Zλ, with

Z =

⎛⎜⎜⎝
z′

1

...

z′
n

⎞⎟⎟⎠ ,

the estimator is equal to

λ̂n =
(

Z ′W
(
W ′W

)−1 
W ′ Z

)−1

Z ′W
(
W ′W

)−1 
W ′ y. (17.29)

Remarks. This estimator is called the two-stage least squares estimator. It
can be obtained in three equivalent ways:

1. By the method we just described.
2. By regressing y on Ẑ where

Ẑ = W (W ′W )−1W ′ y

is the matrix that is computed in the regression of Z on W . This decom-
position justifies the name two-stage least squares.

3. By regressing y on Z and on

V̂ = Z − Ẑ = [
I − W (W ′W )−1W ′] Z

and keeping only the coefficients of Z . The intuition behind this result is
the following. In the setting with normal distributions, using an argument
in terms of linear conditional expectations, we can write in matrix form{

y = Zλ + u

Z = Wπ + V 
(17.30)

and u is factorized as

u = V μ + ε

where ε is independent of V (conditional on W ). The first equation then
becomes

y = Zλ + V μ + ε

and thus Zλ + V μ is the regression of y on Z and V . So, we first
estimate V (by Z − Ẑ = Z − W π̂ ) and then regress linearly y on Z
and V̂ . It can be easily verified that this procedure leads once again to
(17.29). This method illustrates the so-called control function approach
which we will present more generally later on. Its equivalence to the
instrumental variable method is only true in a linear setting. �
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We can apply the following general results to the generalized moment con-
dition defined in (17.26). λ̂n converges almost surely to λ̃ (θ ), i.e., is consistent,
and we have

√
n

(̂
λn − λ̃ (θ )

) → N (0, �θ ) (17.31)

with

�θ = σ 2

[
Eθ

(
∂

∂λ
gw

(
zi |λ̃ (θ )

)
w′

i

) [
Eθ

(
wiw

′
i

)]−1

× Eθ

(
wi

∂

∂λ′ gw (zi ) λ̃ (θ )

)]
.

(17.32)

In the linear case, this matrix simplifies to

�θ = σ 2
[

Eθ
(
ziw

′
i

) [
Eθ

(
wiw

′
i

)]−1
Eθ

(
wi z

′
i

)]−1

. (17.33)

This matrix is estimated by replacing the expectations by the corresponding
sample means, λ̃ (θ ) by λ̂n and σ 2 by the following consistent estimator

σ̂ 2
n = 1

n

n∑
i=1

(
yi − gw

(
zi |λ̂n

))2

. (17.34)

If Assumption (17.27) does not hold, then we first need to estimate V, which
requires:

� to first calculate a consistent estimator of λ in gw (zi |λ) in order to derive a
first estimator of the ui ,

� to estimate Eθ (wiw
′
i− j ui ui− j ) for some j by their empirical averages,

� to estimate the sum by using truncation and possibly a regularization proce-
dure through filtering (see Section 15.2.4).

Thus, λ is estimated by minimizing

( y − gw (z|λ))′ W V̂ −1W ( y − gw (z|λ))

where V̂ is the estimator V that we previously obtained. The asymptotic prop-
erties remain the same as those studied in Chapter 3.

17.5.3 Optimal Instruments

The expression for the optimal instruments follows from the remark in Sec-
tion 3.5 and its dynamic extension analyzed in Chapter 15 (see 15.2.2 and
15.2.3). The condition

Eθ [( yi − gw (zi |λ)) |wi ] = 0
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implies

Eθ [( yi − gw (zi |λ)) h(wi )] = 0

for every function h. In the static case, we can conclude from Chapter 3 that
the optimal choice of h is

h(wi ) = Eθ

[
∂

∂λ
( yi − gw (zi |λ)) |wi

]
Var (ui |wi )−1

where ui = yi − gw (zi |λ). Thus, we have

h(wi ) = Eθ

[
∂

∂λ
gw (zi |λ) |wi

]
Var (ui |wi )−1 .

If the model is homoskedastic (Var (ui |wi ) = σ 2), then we can choose

h(wi ) = Eθ

[
∂

∂λ
gw (zi |λ) |wi

]
,

since h is defined only up to a multiplicative constant.
If, additionally, gw is linear, then the choice of h simplifies to

h(wi ) = Eθ [zi |wi ] .

Even in this simple case with homoskedastic residuals and linearity, the optimal
moments require either the specification of Eθ [zi |wi ] or a nonparametric esti-
mation (which can be performed by kernel estimation). The system simplifies
even more if Eθ [zi |wi ] is assumed to be linear. Then we have

Eθ [zi |wi ] = Eθ
[
wiw

′
i

]−1
Eθ

[
wi z

′
i

]
zi

and we can easily verify that the optimal choice of h leads to two-stage least
squares.

The argument in the dynamic case is identical. The only change consists in
replacing the variance of ui by

+∞∑
j=−∞

E
(
ui ui+ j |wi

)
,

which only reduces to E(u2
i |wi ) = V (ui |wi ) if the sequence of ui is a martingale

difference conditional on wi (see Chapter 15).
In practice, the optimal instruments can only be calculated in two-stages. For

example, if gw is not linear, then a preliminary estimate of λ is necessary in order
to calculate Eθ [gw(zi |λ)|wi ], and it is the same for estimating the conditional
variance of the residuals in the heteroskedastic case.
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17.5.4 Nonparametric Approach and Endogenous Variables

We briefly explain two nonparametric approaches for simultaneity, the general-
ization of the instrumental variables method and the control function method.
In the following, x̃ = ( ỹ, z̃, w̃) and the sample is i.i.d. with distribution Q.

Nonparametric Instrumental Variables

For simplicity, we assume that z̃ and w̃ do not have any elements in common.
We are looking for a function gw (z) that satisfies

ỹ = gw ( z̃ ) + ũ with E Q (̃u |w̃ ) = 0 (17.35)

(here we generalize Equation (17.24)), which comes down to finding the func-
tion gw that solves∫

gw (z) f (z |w ) dz =
∫

y f ( y |w ) dy, (17.36)

where f denotes the marginal or conditional densities of ( ỹ, z̃, w̃). For the
solution to this equation to be unique, and thus for gw to be identified by
(17.35), we need to assume that the joint distribution of z̃ and w̃ satisfies

∀ integrable φ , E Q (φ ( z̃ ) |w̃ ) = 0 ⇒ φ = 0. (17.37)

Indeed, two solutions g1
w and g2

w of (17.36) satisfy necessarily

E Q
[
g1

w ( z̃ ) − g2
w ( z̃ ) |w̃ ] = 0

which implies g1
w = g2

w under (17.37).
Condition (17.37) is a condition of “strong” dependence between z̃ and w̃

which generalizes the condition of linear dependence previously introduced
(E Q (w̃z̃′) has rank equal to the dimension of z̃ ). We can show that, if z̃ and w̃

are jointly normal, then Assumption (17.37) is equivalent to the fact that the
rank of the covariance matrix between z̃ and w̃ is equal to the dimension of z̃.

Furthermore, Equation (17.36) does not always admit a solution. Assuming
that (17.36) holds restricts the class of distributions Q (or of densities f ) and
imposes an overidentifying restriction on the model. To solve this problem, we
look for the gw that minimizes

E Q
[(

E Q (gw ( z̃ ) |w̃ ) − E Q ( ỹ |w̃ )
)2

]
. (17.38)

This problem admits a solution under weaker conditions than (17.36). We can
moreover show that the minimization of (17.38) leads to the search for a gw

that satisfies

E Q
[

E Q (gw ( z̃ ) |w̃ )
∣∣ z̃

] = E Q
[

E Q ( ỹ |w̃ )
∣∣ z̃

]
. (17.39)
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Then we look for g̃ by solving (17.39) after we have replaced the conditional
expectations by their kernel estimators, which yields

1∑n
j=1 Kn(z−z j )

n∑
j=1

∑n
i=1 gw(zi )Kn(w j −wi )∑n

i=1 Kn(w j −wi )
Kn

(
z − z j

)
= 

1∑n
j=1 Kn(z−z j )

n∑
j=1

∑n
i=1 yi Kn(w j −wi )∑n

i=1 Kn(w j −wi ) 
Kn

(
z − z j

) 
(17.40)

Equation (17.40) has as solution gw (zi ) = yi and gw (z) is indeterminate
for z /∈ {z1, . . . , zn}. This solution is not a consistent estimator of gw and we have
to “regularize” the problem. We present here a classical solution to this type of
problem, namely the Tikhonov regularization or the nonparametric extension
of ridge regression method.

Equation (17.40) is replaced by

αngw(z) + 
1∑n

j=1 Kn(z−z j )

n∑
j=1

∑n
i=1 gw(zi )Kn(w j −wi )∑n

i=1 Kn(w j −wi )
Kn

(
z − z j

)
= 1∑n

j=1 Kn(z−z j )

n∑
j=1

∑n
i=1 yi Kn(w j −wi )∑n

i=1 Kn(w j −wi )
Kn

(
z − z j

) (17.41)

where αn is a positive scalar that depends on n and goes to 0 as n → ∞. Then,
Equation (17.41) is solved in two steps. First, we replace z by z1, . . . , zn and
obtain a linear system of n equations in n unknown gw(zi ) which we solve.
Then, we use (17.41) to calculate gw(z) for each point.

This method yields a consistent estimator of gw if αn goes to 0 at an appro-
priate rate. Establishing asymptotic normality is a complex problem.

Control Function Method

Another approach can be used to nonparametrically treat a structural relation.
Consider the following generalization of (17.1){

ỹ = hw ( z̃ ) + ũ

z̃ = m (w̃) + ṽ
(17.42)

where

E (̃v |w̃ ) = 0, m(w) = E ( z̃ |w̃ = w)

and ũ and ṽ are not mutually independent. Instead of assuming as previously
that

E Q (̃u |w̃) = 0,
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we now assume that

E Q (̃u |w̃, ṽ ) = E Q (̃u |̃v ) . (17.43)

This assumption is not equivalent to Assumption (17.35), and in general gw and
hw are not identical. We can nevertheless note that, if w̃ is independent of the
pair (̃u, ṽ ), then Equations (17.35) and (17.43) hold and thus gw = hw.

The estimation of hw is based on the following calculation:

E Q ( ỹ |̃z, w̃) = hw ( z̃ ) + E Q (̃u |̃z, w̃) . (17.44)

However, the information contained in z̃ and w̃ is the same as the one contained
in ṽ and w̃, consequently

E Q ( ỹ |̃z, w̃) = hw ( z̃ ) + E Q (̃u |̃v, w̃)

or

E Q ( ỹ |̃z, w̃) = hw ( z̃ ) + E Q (̃u |̃v ) . (17.45)

Denote

r (v) = E Q (̃u |̃v = v ) .

Then we have

E Q ( ỹ |̃z, w̃) = hw ( z̃ ) + r ( ṽ ), (17.46)

the function r (̃v) is called the control function.
We then proceed to a generalization of the least squares estimation:

� First, we estimate m(w), for example by kernel smoothing, and the residuals
vi by v̂i ;

� Then, we nonparametrically regress ỹ on z̃ and ṽ, imposing an additive
structure (17.46), and thus we use the method of Chapter 10.

In this approach, r is normalized by E Q (r ( ṽ )) = 0 assuming that E Q ( ũ ) =
0. This approach itself also poses an identification problem which we can explain
in the following way. Let (h1

w, r1) and (h2
w, r2) be two solutions to (17.46).

By setting

hw = h1
w − h2

w and r = r1 − r2,
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we obtain the following equality

hw(z) + r (z − m(w)) = 0. (17.47)

The function m is perfectly identified since it is defined as a conditional expec-
tation.

To establish identification, we need to show that (17.47) implies hw = 0.
Taking the derivative of (17.47) with respect to w, we obtain

∂m ′

∂w

∂r

∂v  
(r − m(w)) = 0. (17.48)

Thus, it is necessary that the rank of ∂m ′
∂w

is equal to the dimension of z for it to
be true that (17.48) implies ∂r

∂v
= 0, i.e., r is constant. Furthermore, E Q (r ) = 0

then implies that r and, therefore, hw are zero.
The identification condition is here weaker than in the instrumental variables

approach since it only affects the dependence between w and the conditional
expectation of z given w and not the entire conditional distribution.

17.5.5 Test of Exogeneity

The study of the tests of exogeneity provides a more precise meaning to this
notion than we discussed several times so far. Recall that a variable is exogenous
if the model conditional on this variable allows us to identify and estimate the
parameter of interest. We are here more specifically interested in the relation
between two variables (or vectors) ỹ and z̃. We say that z̃ is exogenous if the
structural relation of interest between ỹ and z̃ is the conditional expectation of ỹ
given z̃. Given that the conditional expectation is an element of the conditional
distribution, this definition does not contradict the general notion.

The question then is to define the relation of interest. This definition, at least
in a parametric setting, is in general incorporated in a moment equation. Here,
we are essentially interested in a definition of the structural relation through
instrumental variables.

Consider the linear homoskedastic case with independent sampling. Let
x̃ = ( ỹ, z̃, w̃) be a random vector in R × R

p × R
k and consider the linear equa-

tion

ỹ = λ′̃z + ũ. (17.49)

To take account of the overidentification, we characterize λ̃ (θ ) by

λ̃ (θ ) = arg min E
(
w̃

(
ỹ − λ′̃z

))′
E

(
w̃w̃′)−1

E
(
w̃

(
ỹ − λ′̃z

))
.

(17.50)

This definition of λ̃ (θ ) immediately leads to the two-stage least squares esti-
mator given in (17.29) in the case of i.i.d. sampling.
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Suppose furthermore that the regression of ỹ on z̃ is linear and thus define a
parameter

λ∗ (θ ) = E
(

z̃ z̃′)−1 
E

(
z̃′ ỹ

)
. (17.51)

The hypothesis of exogeneity is then the equality

λ̃ (θ ) = λ∗ (θ ) . (17.52)

This hypothesis can be immediately tested by the Hausman test procedure.
Indeed, we have two estimators of λ available, the one derived from Definition
(17.50), denoted by λ̂n (see (17.29)), and the OLS estimator̂̂λn = (Z ′ Z )−1 Z ′y.

We know that under the null hypothesis (17.52), ̂̂λn is the best consistent and
asymptotically normal estimator, and that λ̂n is a consistent and asymptotically
normal estimator of λ̃ (θ ).

We can without difficulty show the joint normality of these two estimators
and we conclude that

√
n

(̂̂
λn − λ̂n

)
(17.53)

→ N

(
0, σ 2

{(
E ( z̃w̃′) E (w̃w̃′)−1 E (w̃z̃′)

)−1

− E ( z̃̃z′)−1

})
.

Denote the above variance by �. Then, this implies that

√
n

(̂̂
λn − λ̂n

)′
�+

(̂̂
λn − λ̂n

)
is distributed according to a χ2 with the degrees of freedom equal to the rank
of V . One can verify that this rank is equal to the number of components of z̃
which are not in w̃. Intuitively, we can note that λ̃ (θ ) = λ∗ (θ ) if and only if

E
(

z̃
(
ỹ − λ̃ (θ )′ z̃

)) = 0,

i.e., if z̃ is orthogonal to the structural residuals ũ. This condition is true for the
z̃ that belong to w̃ but it constitutes a hypothesis for the other components of z̃
that can be tested. The problem is thus to test that a number of moments is equal
to zero, where the number of moments is equal to the number of components
of z̃ that do not belong to w̃, which forms the dimension of the null hypothesis.

In the linear case, in practice, the Hausman test is identical to a usual test (the
Student t test) whether the coefficients of V̂ (defined by the estimation of V in
the model (17.30)) in the regression of y on z and V̂ are zero (see the previous
remark).

This approach generalizes to the nonlinear case (still maintaining ho-
moskedasticity). By comparing the instrumental variable estimate of λ defined
by (17.25) and the least squares estimate of λ (arg min

∑n
i=1 ( yi − g(zi , λ))2),
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we test the equality of the structural parameters λ̃ (θ ) and the approximation of
the regression of ỹ on z̃ within the family g (·, λ) .

Finally, we can construct a nonparametric test of exogeneity for which we
provide the principle without giving details on the procedure nor on the prop-
erties. The idea still is to test

gw(z) = E ( ỹ |̃z = z ) (17.54)

where gw is defined by

E ( ỹ − gw( z̃ ) |w̃ ) = 0

(see Section 17.5.4). Assuming the above equation defines a unique gw, the
Equality (17.54) is equivalent to

E (̃y − E (̃y |̃z ) |w̃ ) = 0. (17.55)

Thus, it suffices to verify that the regression residuals (reduced form residuals)
satisfy the condition on the structural residuals,

ũ = ỹ − gw( z̃ ).

In practice, the properties of the test are improved by testing the following
equation which is implied by (17.55)

E [E ( ỹ − E ( ỹ |̃z ) |w̃ ) |̃z ] = 0. (17.56)

We test this by comparing the value of∫
E [E ( ỹ − E ( ỹ |̃z ) |w̃ ) |̃z ]2 π (z)dz

to zero, where π is a weighting function. The conditional expectations are then
replaced by their estimates, for example using kernel smoothing (see Chap-
ter 10).

Notes

The nonconvergence of the least squares estimators to the structural parameters of a

model with endogenous variables has been remarked upon since the beginning of econo-

metrics. The use of instrumental variables is due to Frisch (1934 and 1938) and continued

by Riersol (1941 and 1945) within the Cowles Commission. The instrumental variables

approach has been developed by Sargan (1958), while Basmann (1957) and Theil (1953)

constructed independently the two-stage least squares estimation. The theory of opti-

mal instruments was initiated by Amemiya (1974b), Berndt, Hall, Hall, and Hausman

(1974), and generalized by Hansen (1985). The nonparametric approach to endogeneity

is recent and has been developed in connection to the theory of inverse problems. The

instrumental variable approach is presented by Florens (2003), Darolles, Florens, and
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Renault (2002), and Newey and Powell (2003) (see also Carrasco, Florens, and Renault

(2003)). The control function approach is put forward by Newey, Powell, and Vella

(1999). The test of exogeneity is a particular case of the Hausmann test (see the bib-

liographical notes in Chapter 4). The study of selection bias is linked to the work of

Heckman (see Heckman (1979) and Heckman and Robb (1985)) among a long series of

contributions. The use of instrumental variables in this context is in particular treated in

Heckman (1997).
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18. Models with Unobservable Variables

18.1 Introduction

The structural modeling in econometrics leads often to specify a model that is
relevant in terms of economic theory but includes one or several variables for
which no observation is available. This nonobservability may come from the
specific data bases used by the econometrician. In a model of individual job
search, the job offers received by the individual are often not observed although
some data bases record them. Other variables are unobservable by nature (such
as ability, taste, risk aversion) and at best we have some variables available that
are related or are close to the relevant unobservable value.

The unobservable variable may be either an explained or an explanatory
variable. This distinction is actually not that important because, in all cases,
the model will have to specify the distribution of the unobservable variable
which hence becomes explained if it originally were explanatory. Therefore, we
focus our presentation on the case of unobservable conditioning variables in the
structural model.

A structural econometric model with unobservable variables is in general
built in the following manner. The relevant variables for the i th observation
are grouped in x∗

i , itself partitioned into observables xi and unobservables
ζi . The structural model specifies a set of assumptions on the distribution of
xi conditional on ζi (conditional distribution or conditional moments). More
generally, xi can itself be partitioned into the explained variables yi and the
explanatory variables zi . The modeling is formalized by the specification of the
conditional distribution of ( yi )i given (zi )i and (ζi )i , or by a set of assumptions
regarding the conditional moments of ( yi )i given (zi )i and (ζi )i . The structural
model needs always to be completed by assumptions on the distribution of ζi

(or ζi given (zi )i , in the case of a specification conditional on zi ).
The reduced form is obtained by eliminating the unobservable variables in

this model and by calculating the marginal distribution of xi or some of its
moments, or by calculating the conditional distribution of yi given zi or some
of its moments.

446
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For simplicity, consider the case in which x∗
i is assumed to be i.i.d. and the

conditional model of yi given zi and ζi is described by a density with parameter
β denoted f ( yi |zi , ζi , β). The density of ζi given zi is of the form g(ζi |zi , γ ).
Then, the generating process of ( yi , zi ) is necessarily i.i.d. and the conditional
distribution of yi given zi and the parameters λ = (β, γ ) has the density∫

f ( yi |zi,ζi,β)g(ζi |zi,γ )dζi . (18.1)

If the structural model consists just in specifying the condition

Eθ
( 
ψ̄ ( yi , zi , ζi , β) |zi , ζi

) = 0 (18.2)

and if ζi remains i.i.d. with density g(ζi , |zi , γ ), then the model is in its reduced
form characterized by the conditions

Eθ (ψ ( yi , zi , β, γ ) |zi ) = 0 (18.3)

with

ψ ( yi , zi , β, γ ) =
∫

ψ̄ ( yi , zi , ζi , β) g (ζi |zi , γ ) dζi , (18.4)

which is a classical moment condition that combines the parameters of the mo-
ment condition (18.2) and the parameters of the distribution of the unobservable
variables.

We notice that, except under very special conditions on ψ̄ (linearity in ζi for
example), the specification of g is necessary to calculate ψ .

The models with unobservable variables are very diverse in the literature but
all raise essentially the following three questions:

1. The first type of problem consists in comparing the structural and the
reduced model. The motivation for this comparison is essentially to ex-
amine the distortion between the “naive” message of the data expressed
by the reduced form and the contributions of observations toward the
validation of economic theory which is made possible by the structural
form.

2. The second problem is an identification problem. In general, the struc-
tural model is identified in the sense that its parameters would be iden-
tified if the (ζi )i were observed. But their unobservability may destroy
this identification. Another identification problem arises regarding the
distribution of ζi or some of its characteristics.

3. The third problem concerns estimation. It does not pose theoretical dif-
ficulties but often requires complicated numerical computations. Thus,
econometricians proposed methods that were simpler to implement but
specific to particular models.
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Our goal is not to provide the most general presentation; instead, we focus on
examples of classes of models with unobservable variables. These examples are
presented in Section 2, whereas the following three sections examine succes-
sively the three problems we just mentioned.

Remarks

In practice, the distribution of ζi given zi and γ is often specified as indepen-
dent of zi . This assumption is quite natural to the extent that ζi represents all
what describes the heterogeneity of the individuals and is not included in zi .
Imagine for example that the complete description of the characteristics of an
individual constitutes a normal vector (zi , z∗

i ) where only zi is observed; it is
then possible to transform this vector into a normal vector (zi , ζi ) where zi and
ζi are independent.

Various distributions of the heterogeneity are of interest. The density
g (ζi |zi , γ ) can be considered as a prior distribution of the heterogeneity given
the exogenous variables and the parameters. The observation of yi for individual
i allows us to calculate the posterior distribution (conditional on the parameters)

g(ζi |yi , zi,β, γ ) = g(ζi |zi,γ ) f ( yi |zi,ζi,β)∫
g(ζi |zi,γ ) f ( yi |zi,ζi,β)dζi

using Bayes theorem. Conditionally on β and γ , the i.i.d. property implies that
the posterior distribution of the individual heterogeneity depends only on the
observables of this individual. However, the parameters are usually estimated
by β̂ and γ̂ , and the econometrician uses

g(ζi |yi , zi,β̂, γ̂ )

which depends on all observations through β̂ and γ̂ . This expression should be
considered as an estimator of the density. �

18.2 Examples of Models with Unobservable Variables

We illustrate the importance of econometric models containing unobservable
variables by presenting four classes of models.

18.2.1 Random-Effects Models and Random-Coefficient Models

The two classes of models we are going to present in this example are mainly
used to model panel data. By panel data, we mean an observation scheme
that generates data with a double index representing an individual dimension
and a temporal dimension. For each individual i = 1, . . . , n and each period
t = 1, . . . , T , we observe a vector xit . However, modeling deals with a larger
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vector x∗
i t  = (xit , ζi ), where ζi is an unobservable component of individual i

that is different across individuals by constant over time. We limit ourselves
to this case which could be generalized by introducing also an unobservable
temporal component ηt , identical across individuals but varying over time.

We partition xit  into yit  ∈ R
p and zi t  ∈ R

q . The models we examine are
about the conditional expectation of yit  given zi t  and ζi , and we focus on two
specifications:

Eθ ( yit |zi t , ζi ) = z′
i tβ + ζi (18.5)

and

Eθ ( yit |zi t , ζi ) = z′
i tβ (ζi ). (18.6)

Assumption (18.5) introduces a vector of parameters β and an error term ζi

of dimension p. This defines a random-effects model (ζi is an individual effect
which, in this case, is considered as the realization of a random phenomenon),
in contrast to a fixed-effects model for which individuals differ from one another
by an individual specific constant term in the affine regression of yit  on zi t . In
the random-effects model, we can define uit  by the relation

yit  = z′
i tβ + ζi + uit , (18.7)

which we can interpret by saying that yit  differs from a linear combination of
the zi t  by two errors ζi and uit , the first one being independent of time.

The second model (18.6) is referred to as random-coefficient model. It spec-
ifies that the regression of yit  on zi t  and ζi is not linear and that the relationship
between yit  and zi t  involves parameters which are specific to each individual
and are functions of an unobservable variable ζi . A special case of Model (18.6)
is that where ζi has the same dimension as zi t so that

Eθ ( yit |zi t , ζi ) = zi tζi . (18.8)

If the distribution of ζi is such that the expectation of ζi is independent of i
and equal to a vector β, we can write

Eθ ( yit |zi t , ζi ) = zi tβ + zi tεi (18.9)

where εi = ζi − β, which underlines the difference between specifications
(18.5) and (18.6).

In a random-effects model, specification (18.5) is completed by some assump-
tions on ζi . They are usually assumed to be i.i.d. with mean zero (conditionally
on zi t ), in which case the conditional moment condition (18.5) becomes

Eθ ( yit |zi t ) = z′
i tβ (18.10)

and we are back to a model with linear conditional expectation which is a
function of observables.
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The relevance of the random-effects model is not limited to the specification
of the conditional expectation but follows from the decomposition of the con-
ditional variance. Consider the vector yi of the scalar yit  (t = 1, . . . , T ) and
the matrix zi (T × q) of the zi t . Assume that yi is homoskedastic conditionally
on zi and ζi :

Varθ ( yi |zi , ζi ) = σ 2 IT . (18.11)

Moreover, assume that conditionally on zi t , ζi has mean zero and variance τ 2.

Then, we can show that

Varθ ( yi |zi ) = σ 2 IT + τ 21T 1
′
T

=

⎛⎜⎜⎜⎜⎜⎜⎝

σ 2 + τ 2 τ 2 τ 2

τ 2 . . . 
...

...
. . .

. . . τ 2

τ 2 · · · τ 2 σ 2 + τ 2

⎞⎟⎟⎟⎟⎟⎟⎠ .
(18.12)

This result follows from

Varθ ( yi |zi ) = Varθ
(
Eθ ( yi |zi , ζi ) |zi

) + Eθ
(
Varθ ( yi |zi , ζi ) |zi

)
= Varθ (ziβ + ζi 1T |zi ) + σ 2 IT .

(18.13)

The random-coefficient model presents the same characteristics. Consider spec-
ification (18.6) complemented by the assumption

Varθ ( yi |zi , ζi ) = σ 2 IT , (18.14)

from which we infer

Varθ ( yi |zi ) = σ 2 IT + zi�z′
i , (18.15)

provided ζi has a variance matrix � conditional on zi .

18.2.2 Duration Models with Unobserved Heterogeneity

A duration model is a statistical model in which the explained variable represents
the duration of stay in a state. In demography, the most important duration is the
human life duration, but we can also analyze the duration separating the birth of
two children, the age of getting married (seen as the time spent since birth) or
multiple durations separating the main events that structure a biography. In the
reliability theory, analysts are interested in the duration between the commis-
sioning of equipment and the first breakdown of the equipment or the duration
necessary for the repair. Insurance companies model the time separating two
disasters of the same nature. In finance, one may examine the time between two
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transactions on the same asset. Labor econometrics has popularized the use of
duration models among economists by analyzing the unemployment duration,
the duration of work periods or the retirement age. Duration models are the
simpler versions of more complex models, such as queueing models or tran-
sition models with multiple states. These specifications use counting or point
processes and go beyond the scope of our presentation.

The simplest duration model is (as usual) an i.i.d. model where the obser-
vations are given by the series (τi )i=1,... ,n of nonnegative numbers generated
by the same probability distribution Q with support in R

+ = [0, +∞). Our
usual notation xi is hence replaced by τi to underline the nature of the observa-
tions. We denote by F the distribution function of Q, and we assume that F is
differentiable with derivative f, the density of Q.

In duration analysis, it is customary to characterize Q by its survival function

S (t) = 1 − F (t) = Q (τi ≥ t)

and its hazard function h defined by

h (t) = f (t)

S (t)
= lim

δ↓0

1

δ
Q (τi ∈ [t, t + δ]| τi ≥ t). (18.16)

The hazard function is the derivative with respect to δ evaluated at δ = 0 of the
probability that the duration lies between t and t + δ, given that it is greater
than t.

The term

H (t) =
∫ t

0

h (u) du, (18.17)

is called cumulative or integrated hazard. It is easy to verify that

H (t) = − ln S (t) (18.18)

with

S (t) = e−H (t) and f (t) = h (t) e−H (t). (18.19)

The simplest duration model is an exponential model characterized by a
constant hazard function h (t) = λ, and thus satisfies

H (t) = λt, S (t) = e−λt and f (t) = λe−λt . (18.20)

In general, a duration model involves explanatory variables that capture the
difference among individuals. In unemployment duration models, these are for
example gender, the age at the beginning of the period, skills, existence and
level of unemployment benefits, matrimonial status, and so on. Some variables
are fixed during the period of stay in the state while others vary. To simplify, we
neglect this second type of variables that depend on time (in practice, we often
convert these variables to fixed variables by retaining only their values at the
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end of the period of which we study the duration, but this simplification actually
results from a complex study and is subject to some specific assumptions).

We denote by zi the explanatory variables observed for individual i. We need
to model the distribution of τi given zi while keeping the independence across
individuals. We already mentioned (Example 5.2 in Chapter 5) proportional
hazard models for which the conditional survival function takes the form

S (t |α)r (β,zi ) ,

where S is the baseline survival function depending on α (α is one or several
parameters, but in a semiparametric approach, S could be itself the parameter)
and r is a positive function depending on an unknown β. A simple calculation
shows that the conditional hazard function can be written as

r (β, zi ) h (t |α)

where

h (t |α) = f (t |α)

S (t |α)

is the baseline hazard function, which justifies the term proportional hazard.
We denote by f (τi |zi , λ) the density of observation τi conditional on zi and

some possibly functional parameters λ. The survival function is S (.|zi , λ) and
the hazard function h (.|zi , λ) .

No matter how large the vector of explanatory variables zi is, it can not
include all individual characteristics.

Some of them are unobservable by nature, such as the intensity of the job
search, the skills in passing selection tests or more generally the so-called
employability, in the unemployment duration model. We show below how the
conditional model is modified if a relevant variable has not been included.
Hence, we replace in the previous specification zi by the pair (zi , ζi ), where zi

remains the vector of observable explanatory variables and ζi is a real variable
representing unobservable heterogeneity.

We complete the model by specifying the generating mechanism of the ζi . To
maintain the independence across individuals, we assume that the ζi are inde-
pendently distributed with density g (ζi |zi , γ ) depending on zi and a parameter
γ of finite or infinite dimension. The joint density of τi and ζi given zi and
(γ, λ) is equal to

g (ζi |zi , γ ) f (τi |zi , ζi , λ)

and the density of τi given only the observable variables zi is written as

f (τi |zi , γ, λ) =
∫

f̄ (τi |zi , ζi , λ) g (ζi |zi , γ ) dζi . (18.21)
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Then, the conditional likelihood of the observables is

n∏
i=1

f (τi |zi , γ, λ) .

This construction can be simplified by assuming that ζi and zi are mutually
independent, which eliminates zi in the density g.

18.2.3 Errors-in-Variables Models

Several justifications lead to the statistic structure referred to as errors-in-
variables models.

Under its simplest form, this model is written as(
yi1

yi2

)
|zi , ζi ∼ IN

((
β ′zi + γ ζi

ζi

)
, �

)
, (18.22)

with unobservable ζi , or equivalently{
yi1 = β ′zi + γ ζi + ui1

yi2 = ζi + ui2

and

(
ui1

ui2

)
|zi , ζi ∼ I N (0, �) .

(18.23)

Hence, this bivariate model is conditional on observable explanatory variables
zi and an unobservable variable ζi .

We can consider that yi2 is an observation of ζi with “error” ui2. This model
can then be interpreted as a linear regression model made of the first equation
in which the explanatory variable ζi is measured up to an additive error.

We can also consider this model as a special case of the more general class
described by

yi = Bλzi + Cλζi + ui ui |zi , ζi ∼ i.i.N . (0, �) (18.24)

where yi is a vector of Rp, zi of Rq and ζi of Rl ; Bλ and Cλ are matrices
that depend on λ. In this representation, yi appears as a vector whose expecta-
tion depends linearly on observables and a vector of unobservable components
(sometimes called factors).

Here, we limit ourselves to conditionally independent models (the vector
ui has no dynamic behavior) but an extension of this model to time series is
possible.

Specification (18.24) allows us to write the conditional likelihood function:

l ( y|z, ζ, λ, �) = (2π )−
n
2 |�|− n

2

× exp −1

2

n∑
i=1

( yi − Bλzi − Cλζi )
′ �−1 ( yi −Bλzi − Cλζi ) .
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Here again, we need to complete the model by a distribution of ζ = (ζi )i=1,... ,n

conditional on the z. The independence of the observations is preserved if the ζi

are themselves conditionally independent vectors. For instance, we can assume
that ζi are independently normally distributed with mean �wi and variance
�, where wi is a vector of observable explanatory variables and � and � are
two matrices of parameters. To make the construction consistent, we need to
assume that the joint vector ( yi , ζi ) is conditioned on zi and wi (possibly having
common elements) even if only zi appears in the distribution of yi and only
wi appears in that of ζi . More formally, the joint model of observables and
unobservables is{

ζi |wi , zi ∼ i.i.N . (�wi , �)

yi |ζi , wi , zi ∼ i.i.N . (Bλzi + Cλζi , �) ,
(18.25)

from which we infer the marginal model of observable explanatory variables

yi |wi , zi ∼ i.i.N .
(
Bλzi + Cλ�wi , � + Cλ�C ′

λ

)
. (18.26)

The specification of the distribution of the ζi may be used to introduce tem-
poral dependence. Consider Model (18.22) and suppose ζi is first order Markov

ζi |ζ1, . . . , ζi−1, wi , zi ∼ N
(
ρζi−1, τ

2
)
. (18.27)

By completing this specification by a distribution for ζ1, we obtain the distribu-
tion for the vector (ζi )i=1,... ,n conditional on zi . If the process generating ζi is
stationary, the joint process ( yi , ζi ) is also stationary and thus also the marginal
process yi remains stationary. In Example (18.22), yi is moreover normally
distributed, and the only problem is to compute its first and second moments.
A general method to perform this evaluation rests on the Kalman filter.

18.2.4 Partially Observed Markov Models and State Space Models

A motivation to construct models that contain an unobservable (hidden) Markov
component is the study of regime changes in dynamic models. Suppose the
observations are indexed by the time period i = 1, . . . , n and we are interested
in a linear relation of the type

yi = α + βzi + ui ,

but in which we wish to build in the variability of one of the parameters, β for
example. Several specifications are possible.

� The structural change models suppose that β is constant only within groups
of successive observations. To simplify, we assume that only two groups of
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data can be distinguished corresponding to i ≤ i0 and i > i0. Then, we have
the model

yi = α + βzi + γ zi 1I(i > i0) + ui (18.28)

where the coefficient of zi is β for the first group of observations and β + γ

for the second group. The estimation of this model does not pose any specific
problem if i0 is known. In this case, α, β, and γ can be estimated by least
squares. As we saw in Chapter 15, the asymptotic theory when i0 is estimated
is more delicate because one needs to assume that the numbers of observations
before and after i0 go to infinity.

� The threshold models assume that β varies according to the previous value
of y. For example, we have

yi = α + βzi + γ zi 1I(|yi−1 − y0| > ε) + ui . (18.29)

Hence, the coefficient of zi is β if yi−1 does not deviate too much from the
level y0, but is equal to β + γ if yi−1 deviates from y0 by more than ε. Even
if ui is a white noise, this model generates a nonlinear dynamic of yi .

� We focus on a third type of model with multiple regimes defined by a dynamic
latent variable:

yi = α + βzi + γ ziζi + ui (18.30)

where ζi is a Markov chain with two states 0 and 1 and transition probabilities
defined by{

Prob (ζi = 1|ζi−1 = 1) = p

Prob (ζi = 0|ζi−1 = 0) = q.

Hence, the coefficient of zi is β for the observations corresponding to zero
ζi and β + γ otherwise. This model is an example of the so-called Markov-
switching model or hidden Markov model.
The variable ζi is not observable and our goal is to describe the distribution of
( y1, . . . , yn) given (z1, . . . , zn). This model resembles a random-coefficient
model but here the coefficients may take only two values and the regime
change is dynamic by nature.

More generally, a model is said to be a hidden Markov model if it contains
an unobservable Markov variable that, most often, drives the dynamic of the
phenomenon. The previous errors-in-variables model is a special case of the
hidden Markov model.

� An important class of partially observed Markov models is constituted by
the linear state space model that can be described in the following manner.
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We have an observation equation characterizing the relationship between yi ,
zi , and ζi that takes the form

yi = Bzi + Cζi + ui (18.31)

with yi ∈ R
p, zi ∈ R

q , ζi ∈ R
l , B : p × q, C : p × l and E (ui |zi , ζi ) = 0.

In addition, the state equation describes the Markov dynamic of ζi :

ζi = Fζi−1 + εi (18.32)

where εi is independent of ζi−1, ζi−2 . . . We often assume the normality and
homoskedasticity of ui and ζi as well as their independence.
This model is the simple version of the state space model that has experienced
numerous generalizations (seasonality, nonlinearity, dependence, and so on).

18.3 Comparison Between Structural Model and Reduced Form

As previously defined, a structural model describes the generation of the obser-
vations ( yi )i conditionally on observations (zi )i and a vector of unobservable
variables (ζi )i . The structural feature means that the parameters are directly in-
terpretable based on the economic theory that the statistical model formalizes.
The reduced form associated with this model is obtained by integration with
respect to the probability distribution of the unobservable variables and then
becomes a model of the ( yi )i conditional on the (zi )i .

This model no longer reflects the underlying economic theory and its param-
eters mix the elements of the initial structural model and the generating process
of ζi . However, it presents an interest to perform predictions. Indeed, knowing
the distribution of the ( yi )i conditional on the (zi )i and (ζi ) is useless for predic-
tion, because ζi is unknown and the aim of prediction is to determine yi using
only zi . This remark is relevant if we are concerned with the prediction of new
units (out-of-sample forecast). However, consider an observed individual i for
which we wish to predict the endogenous variable y∗

i conditional on a change
of zi into z∗

i (in-sample prediction); then, the observed yi becomes y∗
i that we

predict. This prediction is done using the distribution of y∗
i given z∗

i , yi and zi

and their parameters. Hence, we need to calculate

f
(

y∗
i |z∗

i , yi , zi

) =
∫

f̄
(

y∗
i |z∗

i , ζi , γ, β
)

g (ζi |yi , zi , β, γ ) dζi

(see the remark at the end of the introduction of this chapter) and thus we use
the structural specification.

However, the relevant features of the structural model can be fundamentally
modified as a result of integrating the unobservables. An econometrician that
would model directly the distribution of the ( yi ) conditional on the (zi ) could
exhibit phenomena that only result from the omission of the variables (ζi )i .
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We talk then of heterogeneity bias or of spurious properties. An important
theoretical and applied literature focuses on the study of these phenomena. To
take a naive example, we can observe a correlation between variables (and hence
conclude that there is causality between them) while this correlation comes from
the fact that both variables are related to a third variable and that conditionally
on this third variable, the two observed variables are independent from each
other.

We can provide a different (but not contradictory) interpretation of the rele-
vance of modeling with unobservable variables. The econometrician can ana-
lyze the relationship between the ( yi )i and the (zi )i and provide a complex con-
ditional model. Then, one tries to represent this complex model as the marginal
model of a simpler model that includes more variables, some of them unobserv-
able. The unobservable variable is then an artificial object built by the statistician
and allowing an easy description of the model. If the observations are given by
the grades of a student in diverse subjects, it is interesting to show that their
correlations can be completely explained by the fact that they all depend on the
same variable: conditionally to this variable, the grades become uncorrelated.
This approach is obviously very popular in statistics (for example, all meth-
ods of factor analysis) but the “structural” interpretation essentially dominates
econometrics.

We do not attempt a general theory of the relationships between the structural
model and its reduced form, but illustrate the difference between their properties
using three examples taken from those presented in the preceding section.

18.3.1 Duration Models with Heterogeneity and Spurious Dependence
on the Duration

The main difference between a duration model with unobservable variables and
its reduced form lies in the hazard function. More precisely, integrating out
heterogeneity leads to the modification of the relationship between the hazard
and the time spent in the state. In order to emphasize this change, we recall
the relationship between the density in a structural model and the density of τi

conditional on zi

f̄ (t |zi ) =
∫

f (t |zi , ζ ) g (ζ |zi ) dζ (18.33)

(to simplify the notation, we do not display the parameters). In an identical
manner, the survival functions in both models satisfy

S̄ (τi |zi ) =
∫

S (τi |zi , ζ ) g (ζ |zi ) dζ. (18.34)
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The relationship between hazard functions is not as simple:

h̄ (t |zi ) = f (t |zi )

S̄ (t |zi )
=

∫
f (t |zi , ζ )

S (t |zi , ζ )

S (t |zi , ζ )

S̄ (t |zi )
g (ζ |zi ) dζ

=
∫

h (t |zi , ζ ) g (ζ |τi ≥ t, zi ) dζ

(18.35)

where, using Bayes theorem,

g (ζ |τi ≥ t, zi ) = g (ζ |zi ) S (t |ζ, zi )

S (t |zi )
. (18.36)

We examine the difference between the functions h (t |zi , ζi ) and h̄ (t |zi ).
Recall that the hazard function describes the “probability” that the duration is
in the interval [t, t + dt] given that it is greater than t. The dependence of the
function h on t then represents “wear” and “aging” phenomena. In the models
regarding the unemployment duration, a decreasing h means that the probability
to find a job diminishes with the length of the unemployment period.

The main result claims, intuitively speaking, that going from h to h̄ “pulls”
the function toward the horizontal axis. This phenomenon is illustrated in the
following case. Suppose that h (t |zi , ζi ) is constant in t and equal to h0 (zi , ζi ).
In other words, if we know all the characteristics of individual i, observable or
not, the distribution of the duration is exponential. Of course, different indi-
viduals have different hazard rates h0. Calculate the hazard conditional on the
observable variables

h̄ (t |zi ) =
∫

h0 (zi , ζ ) g (ζ |τi ≥ t, zi ) dζ.

Then, we can show that

d

dt
h̄ (t |zi ) ≤ 0.

To simplify the calculation, we suppress the exogenous variables and assume
that h0 (zi , ζ ) = ζ > 0. Then, we have τ |ζ ∼ Exp(ζ ), or

h(t) =
∫

ζe−ζ t g (ζ ) dζ∫
e−ζ t g (ζ ) dζ

.

The condition d
dt h̄ (t) ≤ 0 is equivalent to

−
[∫

ζ 2e−ζ t g (ζ ) dζ

] [∫
e−ζ t g (ζ ) dζ

]
+

[∫
ζe−ζ t g (ζ ) dζ

]2

≤ 0.

Setting

g (ζ ) = e−ζ t g (ζ )∫
e−ζ t g (ζ ) dζ

,
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notice that g is a density and that the above expression becomes

−
[∫

ζ 2g (ζ ) dζ

]
+

[∫
ζ g (ζ ) dζ

]2

≤ 0,

which is always satisfied by Jensen’s inequality.
This result can be intuitively interpreted in the following manner: the indi-

viduals for which h0 (zi , ζi ) is the highest have the shortest duration of stay
in the state and hence exit first. If we ignore the conditioning characteristics
ζi , we get the impression of observing a decreasing hazard function. Hence,
a statistician, who neglects heterogeneity, would conclude that there is a neg-
ative dependence between the hazard and the duration, whereas he observes
individuals with constant but different hazards.

18.3.2 Errors-in-Variables Model and Transformation of the Coefficients
of the Linear Regression

Consider the errors-in-variables model in the form given in (18.22) or in (18.23).
To simplify the argument, we limit our presentation to models without observ-
able conditioning variable zi , i.e., we set β = 0. The model takes the form(

yi1

yi2

)
|ζi ∼ N

[(
γ ζi

ζi

)
, �

]
with � =

(
σ11 σ12

σ12 σ22

)
.

Assume that ζi is i.i.d. N (0, v). Then, the reduced form satisfies:(
yi1

yi2

)
∼ N

[(
0

0

)
,

(
σ11 + γ 

2v σ12 + γ v

σ12 + γ v σ22 + v

)]
. (18.37)

To obtain this result, it suffices to note that the integration of ζi preserves the
normality and to calculate the moments.

The econometrician, who neglects the observation error in the variable yi2,

will then confuse yi2 for ζi , and will think that he is estimating γ when calcu-
lating the coefficient of the linear regression of yi1 with respect to yi2. From
(18.37), we easily verify that this coefficient is actually equal to

σ12 + γ v

σ22 + v
,

which differs from γ , even if σ12 = 0.

Hence, not taking the unobservable variable into account modifies the co-
efficients of the linear regression which then lose their structural meaning.
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18.3.3 Markov Models with Unobservable Variables and Spurious
Dynamics of the Model

The hidden Markov model is often Markov conditionally on an unobservable
component but its dynamics is more complex after integrating out this compo-
nent. In particular, the Markov property disappears in general. To illustrate the
transformation of the dynamics, consider the state space model characterized
by (18.31) and (18.32). It follows from the first equation that

yi − Fyi−1 = Bzi − F Bzi−1 + Cζi − FCζi−1 + ui − Fui−1.

(18.38)

Suppose that F and C are such that FC = C F (which is true, for example, in
the scalar case or if C = I ). Using the second equation, we infer that

yi − Fyi−1 = Bzi − F Bzi−1 + Cεi + ui − Fui−1. (18.39)

The noise Cεi + ui − Fui−1 follows an M A(1), as we can show by calculating
its second moments. It admits a representation εi − !εi . Hence, we have

(1 − F L) yi = Bzi − F Bzi−1 + (1 − !) εi , (18.40)

which characterizes a vector ARMA(1, 1) conditional on the path of zi . This
process is not Markov and its dynamics is complex. However, the permutation
assumption makes it relatively tractable.

In general, the process after integrating out ζi possesses a longer dynamics
than conditional on the ζi . Another example of this situation is provided by the
stochastic volatility models that are models where the variance is random and
unobservable. For example, consider the equation

xi = σiεi (18.41)

where εi is i.i.d. N (0, 1). Conditional on σi > 0, xi is therefore i.i.d. N (0, σ 2
i ).

Assume now that ln σi is random and generated by an AR(1)

ln σi = ρ ln σi−1 + ωi . (18.42)

Hence, the joint process (xi , σi ) is jointly Markov, but the marginal process of
the xi is no longer Markov. Indeed, we can verify that

E
(
x2

i x2
i−k

) 	= 0 ∀k.

Notice that in this special case, it is necessary to consider cross-moments of the
squared of xi since

E (xi xi−k) = 0 ∀k.
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These examples illustrate one of the advantages of using unobservable vari-
ables. Indeed, they allow us to model long dynamics of the observable variables
in a simpler way and in particular using only a small number of parameters.

18.4 Identification Problems

An important identification problem raised by the presence of unobserv-
able variables is the following. From the parameters (possibly functionals) of
the reduced model that described the generation of y = ( yi )i given z = (zi )i

we wish to determine the parameters of the structural model characterized by
the distribution of the ( yi )i conditional on the (zi , ζi )i and the parameters of
the distribution of (ζi )i . This problem is known in statistics as the mixture
identification.

We limit ourselves to a structural model with likelihood function

f ( yi |zi , ζi , β) .

The density of the unobservables is denoted by g (ζi |zi , γ ) and hence depends
on unknown elements γ (if ζi is i.i.d., γ could be the distribution of ζi ). Then,
the conditional distribution of y given z is given by

f ( yi |zi , β, γ ) =
∫

f ( yi |zi , ζi , β) g (ζi |zi , γ ) dζi . (18.43)

To establish the identification of the model, one needs to verify that two different
pairs (β, γ ) and (β∗, γ ∗) define two different conditional distributions.

There is no general answer to this question and it is easy to construct models
that are not identified. The errors-in-variables model (18.37) is obviously not
identified, because two vectors of parameters

(σ11, σ22, σ12, γ, v) and
(
σ ∗

12, σ
∗
22, σ

∗
12, γ

∗, v∗)
are equivalent if⎧⎪⎨⎪⎩

σ11 + γ 2v = σ ∗
11 + γ ∗2v∗

σ12 + γ v = σ ∗
12 + γ ∗v∗

σ22 + v = σ ∗
22 + v∗,

which does not imply their equality.
Another example of nonidentification is the following. Consider a duration

τ generated by an exponential distribution of parameter λζ where ζ is an un-
observable heterogeneity, itself exponential with parameter γ . We have

f (t |ζ, λ) = λζe−λζ t 1I(t ≥ 0)

and

g (ζ |γ ) = γ e−γ ζ 1I(ζ ≥ 0).
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Therefore,

f (t |λ, γ ) =
⎧⎨⎩

∞∫
0

λγ ζe−(λt+γ )ζ dζ

⎫⎬⎭ 1I(t ≥ 0)

= λγ

(λt + γ )2
1I(t ≥ 0),

thus, only the ratio λ/γ is identified. Identification can be obtained by setting
γ = 1 or by introducing exogenous variables in the model. We can also use
this example to illustrate the point made in Section 18.3.1. Indeed, it is easy to
verify that the hazard function associated with the density f (t |λ, γ ) is equal to

h (t |λ, γ ) = λ

λt + γ

which is decreasing in t , while the hazard conditional on the unobservables is
constant.

18.5 Estimation of Models with Unobservable Variables

There are many methods for estimating models with unobservable variables,
usually built to deal with a specific model. Hence, it would be difficult and sim-
plistic to summarize them all. In broad outline, we can group these methods into
two categories.

1. In a set of models, it is possible to isolate a statistic t( y) such that the
distribution of t( y) given z and the unobservables ζ does not depend on
ζ but allows us to identify the parameters of interest to the model. The
two elements are obviously contradictory: the “simpler” t( y) is, the less
likely it is to depend on ζ and to identify the parameters of interest.

2. A second class of methods considers the set of observations y and es-
timates the parameters from the likelihood or moment conditions that
then take the form of integrals. The evaluation of these integrals raises
two problems: first the dependence on the parameters, problem that can
be simplified by using recursive methods (EM algorithm, Kalman filter)
and second the actual computation of the integral that can be treated
using simulation techniques.

We illustrate these different approaches by examples.

18.5.1 Estimation Using a Statistic Independent of the Unobservables

The general principle of these methods is to estimate the parameters of interest
without integrating out the unobservable variables. The advantage is to avoid
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complicated calculations and to allow us to be robust with respect to the distri-
bution of the unobservables. These methods are not always applicable and are
in general only possible if several observations related to the same realization
of the unobservable variable are available. This is the case in the linear panel
model with random individual effect defined by Model (18.5), i.e.,

yit  = z′
i tβ + ζi + uit . (18.44)

One can estimate β (except for the constant term if the model contains one)
by replacing the variables by their difference with their time average. Indeed,
Equation (18.44) implies

yit − yi = (zi t − zi )
′ β + uit − ui (18.45)

where

yi = 1

T

T∑
t=1

yit , zi = 1

T

T∑
t=1

zi t , ui = 1

T

T∑
t=1

uit .

Equation (18.45) identifies the elements of the vector β except for the constant
that vanishes. Then, Equation (18.45) is estimated by generalized least-squares.
We note that for vi t = uit − ui , we have⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

v11

...
v1T

...
vn1

...
vnT

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

[
IN ⊗

(
IT − JT

T

)]
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

u11

...
u1T

...
un1

...
unT

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
where JT is the T × T matrix of ones and IT − JT

T transforms a vector of T
components into their demeaned counterparts. Denote

W = IN ⊗
(

IT − JT

T

)
and let v and u be the vectors of the vi t and the uit , then it follows that

Var (v) = W (Var (u)) W ′ = σ 2W W ′ = σ 2W,

assuming that the uit are homoskedastic and independent (i.e., the error term is
not dynamic). Moreover, W is idempotent and symmetric (W = W W = W W ′).
The matrix W is not invertible and we denote by W + its generalized inverse.
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Denoting by y the vector of the yit and by Z the matrix whose columns are the
explanatory variables, the GLS estimator of β is

β̂ = (
Z ′W + Z

)−1
Z ′W +y. (18.46)

This estimator is called within estimator.

18.5.2 Maximum Likelihood Estimation: EM Algorithm and Kalman Filter

The objective function to maximize is

ln l ( y|z, β, γ ) = ln

∫
l ( y|z, ζ, β) g (ζ |z, γ ) dζ (18.47)

where g is the density of the unobservables conditional on the exogenous vari-
ables.

1. A first method consists in numerically evaluating the integral. For this,
we refer to Section 6.3.

2. A second method called EM algorithm (E for expectation and M for
maximization) rests on the following calculations. Define g by

l ( y|z, ζ, β) g (ζ |z, γ ) = l ( y|z, β, γ ) g (ζ |y, z, β, γ ) . (18.48)

Hence, g is the joint posterior distribution of the unobservables, i.e.,
after observing the y and conditional on the exogenous variables and the
parameters. We see that if θ = (β, γ ),

∂

∂θ
ln l ( y|z, θ ) = 0

⇔
∫ [

∂

∂θ
ln

{
l ( y|z, ζ, β) g (ζ |z, γ )

}]
g (ζ |y, z, β, γ ) dζ = 0.

(18.49)

Indeed

∂

∂θ
ln

{
l ( y|z, ζ, β) g (ζ |z, γ )

}
= ∂

∂θ
ln l ( y|z, ζ, β) + ∂

∂θ
ln g (ζ |y, z, β, γ )

and hence∫ [
∂

∂θ
ln

{
l ( y|z, ζ, β) g (ζ |z, γ )

}]
g (ζ |y, z, β, γ ) dζ

= ∂

∂θ
ln l ( y|z, ζ, β)

∫
g (ζ |y, z, β, γ ) dζ

+
∫

∂

∂θ
ln g (ζ |y, z, β, γ ) g (ζ |y, z, β, γ ) dζ
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and∫
g (ζ |y, z, β, γ ) dζ = 1

and∫
∂

∂θ
ln g (ζ |y, z, β, γ ) g (ζ |y, z, β, γ ) dζ

= ∂

∂θ

∫
g (ζ |y, z, β, γ ) dζ = 0.

Condition (18.49) can be implemented as the limit of an algorithm that
alternates the following steps:
� Fixing β and γ equal to some values β0 and γ0, we maximize∫ {

ln l ( y |z, ζ, β ) g (ζ |z, γ )
}

g (ζ |y, z, β0, γ0 ) dζ,

which is equivalent to maximizing∫ {
ln l ( y |z, ζ, β )

}
g (ζ |y, z, β0, γ0 ) dζ

in β and∫
{ln g (ζ |z, γ )} g (ζ |y, z, β0, γ0 ) dζ

in γ .
� We replace β0 and γ0 by the values that we previously obtained.

Under appropriate regularity assumptions, this algorithm converges
to the MLE based on the observable data.

3. A third method for computing the likelihood of observable variables
adapted to dynamic models is the Kalman filter. Consider the model
defined by Equations (18.31) and (18.32) where we assume that the
vectors are normally distributed and the two residuals are innovations.
Our goal is to maximize the likelihood of yi factorized as the product
of the conditional likelihood given the past (18.47). The distribution
of yi conditional on Hi = ( yi−1, yi−2, . . . , zi , zi−1, . . . ) is normal with
expectation and variance respectively equal to

Bzi + C E (ζi |Hi ) and � + CVar (ζi |Hi ) C ′.

For a fixed value of the parameters, the Kalman filter provides a sequen-
tial algorithm to compute E (ζi |Hi ) and Var (ζi |Hi ). We proceed in the
following manner. Given that the joint distribution of the set of variables
is normal, we use the general formula

E (a|b, c) = E (a|c) + Cov (a, b|c) Var (b|c)−1 (b − E (b|c)) .
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Here, a = ζi , b = yi−1, c = Hi−1 (hence (b, c) = Hi ). Thus,

E (ζi |Hi ) = E (ζi |Hi−1) + Cov (ζi , yi−1|Hi−1)

× Var ( yi−1|Hi−1)−1 ( yi−1 − E ( yi−1|Hi−1)) .

For simplicity, the exogenous variables have been eliminated from the
calculation, the path of the z is included in Hi and yi−1 is replaced by

yi−1 − Bzi−1.

Moreover, we have

E (ζi |Hi−1) = F E (ζi−1|Hi−1) ,

E ( yi−1|Hi−1) = C E (ζi−1|Hi−1) ,

Var ( yi−1|Hi−1) = CVar (ζi−1|Hi−1) C ′ + �

and

Cov (ζi , yi−1|Hi−1) = FVar (ζi−1|Hi−1) C ′.

These results obviously use the properties of the residuals of Equations
(18.31) and (18.32). Hence

E (ζi |Hi ) = F E (ζi−1|Hi−1) + FVar (ζi−1|Hi−1) C ′

× [
CVar (ζi−1|Hi−1) C ′ + �

]−1
(18.50)

× ( yi−1 − C E (ζi−1|Hi−1)) .

In addition, we know that

Var (a|b, c) = Var (a|c) − Cov (a, b|c) Var (b|c)−1 Cov (b, a|c) ,

and hence

Var (ζi |Hi ) = Var (ζi |Hi−1) − Cov (ζi , yi−1|Hi−1)

× Var ( yi−1|Hi−1)−1 Cov ( yi−1, ζi |Hi−1) .

Moreover

Var (ζi |Hi−1) = FVar (ζi−1|Hi−1) F ′ + Q

where Q = Var(εi ), hence

Var ( yi−1|Hi−1) = Var (Cζi−1 + ui−1|Hi−1)

= CVar (ζi−1|Hi−1) C ′ + �
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and

Cov (ζi , yi−1|Hi−1) = Cov (Fζi−1 + εi , Cζi−1 + ui−1|Hi−1)

= FVar (ζi−1|Hi−1) C ′.

Thus

Var (ζi |Hi ) = FVar (ζi−1|Hi−1) F ′ + Q − FVar (ζi−1|Hi−1) C ′

× [
CVar (ζi−1|Hi−1) C ′ + �

]−1 
CVar (ζi−1|Hi−1) F ′.

(18.51)

Formulas (18.50) and (18.51) provide a recursive algorithm to compute
E (ζi |Hi ) and Var (ζi |Hi ). This algorithm is initialized by

E (ζ1|H1) = E (ζ1) and Var (ζ1|H1) = Var (ζ1) .

These initial conditions may be considered to be known or generated by
the stationary distribution of ζi if this assumption is acceptable.

This calculation method also applies to nonlinear models. Consider,
for example, the Markov-switching model described by (18.30). Our
goal is to maximize

E (ln l ( y|z, β, γ )) .

Using the argument of the EM algorithm, we know that this objective is
attained by solving

E

[
∂

∂θ

{
ln l ( y|z, ζ, β) g (ζ |z, γ )

} |y, z, β, γ

]
= 0.

For a given initial value of β and γ (β0 and γ 0), we estimate β by
maximizing

E
[
ln l ( y|z, ζ, β) |y, z, β0, γ 0

]
and γ by maximizing

E
[
ln g (ζ |z, γ ) |y, z, β0, γ 0

]
which yields a value

(
β1, γ 1

)
. This algorithm is iterated until it con-

verges.
Consider the first maximization. If yi is normal with variance σ 2

conditional on zi and ζi , then we have

ln l ( y|z, ζ, β) =
n∑

i=1

( yi − (α + βzi + γ ziζi ))
2
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(assuming, for simplicity, that σ 2 is known), and thus

E
[
ln l ( y|z, ζ, β) |y, z, β0, γ 0

]
=

∑
ζ

{
n∑

i=1

( yi − (α + βzi + γ ziζi ))
2

}
g

(
ζ |y, z, γ 0, β0

)
.

In our case, g (ζ |z, γ ) represents the joint probability of a sequence
ζ1, . . . , ζn given the complete path y1, . . . , yn , z1, . . . , zn for the parameter
values β0 and γ 0. The first order condition is

∑
ζ

⎧⎪⎨⎪⎩
n∑

i=1

( yi − (α + βzi + γ ziζi ))

⎛⎜⎝ 1

zi

ziζi

⎞⎟⎠
⎫⎪⎬⎪⎭ g

(
ζ |y, z, γ 0, β0

) = 0.

We can factorize g(ζ |y, z, γ 0, β0) into

g
(
ζi |y, z, γ 0, β0

)
g

(
ζ−i |ζi , y, z, γ 0, β0

)
where ζ−i represents the components of the vector ζ different from i .
We know that∑

ζ−i

g
(
ζ−i |ζi , y, z, γ 0, β0

) = 1

and, thus, the first order condition leads back to

n∑
i=1

( yi − (α + βzi ))

⎛⎜⎝ 1

zi

0

⎞⎟⎠ g
(
ζi = 0|y, z, γ 0, β0

)

+
n∑

i=1

( yi − (α + (β + γ ) zi ))

⎛⎜⎝ 1

zi

zi

⎞⎟⎠ g
(
ζi = 1|y, z, γ 0, β0

) = 0

with

g
(
ζi = 0|y, z, γ 0, β0

) + g
(
ζi = 1|y, z, γ 0, β0

) = 1.

If α = 0 and δ = β + γ , we can show that β and δ are solutions of⎧⎪⎪⎪⎨⎪⎪⎪⎩
n∑

i=1

( yi − βzi ) zi g0 = 0

n∑
i=1

( yi − δzi ) zi g1 = 0.
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To implement this method, we have to be able to calculate

g (ζi = 1|y, z, γ, β) = E (ζi |y, z, γ, β)

for all parameter values. To do this, an algorithm of the Kalman filter
type is used.

18.5.3 Estimation by Integrated Moments

Consider the i.i.d. model presented in the introduction that satisfies the moment
condition (18.2). We transform it into a marginal moment condition:

Eθ (ρ ( yi , zi , ζi , λ)) = 0, (18.52)

where λ = (β, γ ) and θ is the true value of these parameters. Condition (18.52)
is derived from (18.2) by multiplying ψ̄ by an appropriately chosen function of
zi and ζi , and possibly of the parameters.

Condition (18.52) can be rewritten as

Eθ

(∫
ρ ( yi , zi , ζi , λ) g (ζi |yi , zi , λ) dζi

)
= 0, (18.53)

which immediately gives rise to a generalization of the EM algorithm. Suppose
the number of moment conditions is equal to the dimension of λ. Fixing λ at
λ0, we solve

n∑
i=1

∫
ρ ( yi , zi , ζi , λ) g (ζi |yi , zi , λ0) dζi = 0 (18.54)

and we replace λ0 by the value just obtained until the procedure converges.
If the number of moment conditions is larger than the dimension of λ, then
solving (18.54) is replaced by minimizing the usual quadratic form in λ and the
iterative procedure between λ and λ0 remains the same.

This procedure assumes that it is feasible to analytically calculate the integral
of the form (18.53). If this is not possible, then the integral can be replaced by
a Monte-Carlo approximation analogous to that presented in Section 6.3.1 of
Chapter 6. If it is easy to simulate data from the density g (ζi |yi , zi , λ), then
we can use this distribution as importance function and solve the following
expression for λ:

1

n

n∑
i=1

1

N

N∑
e=1

ρ ( yi , zi , ζie, λ) = 0, (18.55)

where the ζie are i.i.d. with density g (ζi |yi , zi , λ0). Even though it is natural,
the choice of g as importance function is not necessary, we can choose other
distributions in order to simplify the simulation. In this case, we solve

1

n

n∑
i=1

1

N

N∑
e=1

ρ ( yi , zi , ζie, λ) g (ζie|yi , zi , λ0)

fyi ,zi ,λ0
(ζie)

= 0 (18.56)
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where the ζie are an i.i.d. sample of fyi ,zi ,λ0
(see Section 6.3.2 for a discussion of

the choice of the importance function). In the case where the number of moment
conditions is larger than the dimension of λ, Equations (18.55) or (18.56) are
replaced by minimizations. In both cases of the procedure, λ0 is replaced by the
computed value of λ.

18.6 Counterfactuals and Treatment Effects

The econometrics literature has recently been enriched by the inclusion of
models with treatment effects coming from medical experiments. These models
found a natural application in the empirical analysis of the effectiveness of public
policies. The central idea of these models is the description of the effects on
an individual of all possible levels of a treatment, even if, for each individual,
only one particular treatment level is observed. The important part of the effect
is therefore unobservable (the counterfactuals), which justifies the inclusion of
these models in this chapter, even if a first presentation appeared in Chapter 11.

The models with treatment effects have a range that is much larger than the
analysis of public policies. They allow us to better understand the structural
approach, in particular a discussion of causality that is more satisfying than the
viewpoint adopted in time-series analysis.

We define a model with treatment effect by the following three steps.

1. The distribution of the counterfactuals. We consider three variables (for
simplicity, we suppress the index i for an individual):
� d ∈ D, a nonrandom index describing the level of the treatment. In

a simple case, d ∈ { 0, 1} (nontreated, treated (see 11.2.5)), but d can
also describe the dosage of the treatment, the number of years of
schooling, and so on.

� a random vector z̃ representing the observable characteristics of the
individual,

� a sequence ( ỹd )d∈D of random variables representing the outcome of
the treatment (= counterfactual) for all values of d; indeed, if d is a
continuous index, then ( ỹd )d∈D is a random process indexed by d, the
random variable ỹd may be discrete (finding an employment or not)
or continuous (the level of the salary).

The model of counterfactuals specify the distribution of the process
( ỹd )d given z̃, as a function of (possibly functional) parameters. Thus it
specifies for example the distribution of the salary levels for all levels
of education. This concerns the joint distribution of the (̃yd )d and not
the distribution conditional on d. Thus in the case where d ∈ {0, 1}, we
specify the joint distribution of (̃y0, ỹ1) conditional on z̃.

In many models, we are principally only interested in the expectation

E (̃yd |̃z = z) = ϕd (z)
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which is then the average level of the effect of treatment d for an indi-
vidual with characteristics z. The parameter of interest is in the discrete
case

ϕ1 (z) − ϕ0 (z)

and in the continuous case

∂

∂d
ϕd (z) .

This parameter is called the Average Treatment Effect (ATE). It obviously
poses identification problems, but it exactly measures the treatment effect
independently of all selection problems.

2. The second element of the model is the mechanism that assigns the treat-
ment level. We define a random variable d̃ which is generated condition-
ally on z. In fact, the model specifies the joint distribution of

(
(̃yd )d , d̃

)
given z̃. We will see that, in practice, identification requires exclusion
restrictions on the exogenous variables.

If D = {0, 1}, and thus d̃ is a binary random variable, then the distri-
bution is characterized by

Pr
(
d̃ = 1|z) = p(z).

This value is called the propensity score. More generally, we denote
by p(z) the conditional expectation of d̃ given z. The model of the
counterfactuals and the assignment (or selection) model can be jointly
written as{

ỹd = ϕd (z) + ũd

d̃ = p(z) + ṽ.

In this new model, we can consider expressions such as

E
(
ỹd1

|d̃ = d2, z̃ = z
)

from which we derive in particular, if d is continuous:

∂

∂d1

E
(
ỹd1

|d̃ = d2, z̃ = z
)

d1=d2=d
,

which is called the marginal effect of the treatment on the treated (TT).
In the discrete case, we consider

E
(
ỹ1 − ỹ0|d̃ = 0, z̃ = z

)
and

E
(
ỹ1 − ỹ0|d̃ = 1, z̃ = z

)
.
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The dependence of the process of the counterfactuals ỹd and the assign-
ment of the treatment d̃ is the source of the selection bias (if the treatment
is allocated to the individuals for which one thinks it will be the most
effective). An assignment is a randomization if

(̃yd )d ⊥⊥d̃ |̃z,
i.e., the choice of the treatment is independent of the latent results (con-
ditionally on z̃). This property is realized in particular if d̃ is generated by
a random draw of the treated and the nontreated groups in the case where
D = {0, 1}. In practice, this assumption rarely holds in econometrics, it
is rarely true even in clinical trials because it assumes that the patient
ignores whether he is treated or not, which is impossible in cases with
serious illnesses.

3. The third level of the model is made up of the observation equations.
For an individual, we observe ỹd only at the level d̃ = d, i.e., ỹd̃ . This
approach is identical to the one where a random process is observed only
at a random time. Denoting the random variable ỹd̃ by ỹ, we then have
the model{

ỹ = ϕd̃ (z) + ũd

d̃ = p(z) + ṽ

for the realization z̃ = z.
This model poses problems of identification and of estimation. It is

clearly not identified (the parameter of interest ∂ϕ

∂d is not identified by
the observation model) without specific assumptions, notably the ex-
clusion restrictions on the exogenous variables in the equation of the
counterfactuals and the assignment equation.

The simple case that eliminates the selection bias is the case of ran-
domization. In this case, we can show that

ϕd (z) = E
(
ỹd̃ |d̃ = d, z̃ = z

)
.

In the discrete case, ϕ1 (z) is the expectation for the treated individu-
als conditional on z and ϕ0 (z) is the conditional expectation for the
nontreated individuals given z. These two functions can be estimated
nonparametrically, and we are interested in

ϕ1 (z) − ϕ0 (z)

obtained by imposing the same value of z in both functions. This tech-
nique is called matching. The usual practice of matching consists of
comparing the observed result y1i of a treated (d̃ = 1) individual i with
a nonparametric estimate ϕ0 (zi ) of the regression of the nontreated
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on z evaluated at the point zi which describes the characteristics of
individual i .

A classical problem is the one of the dimensionality of z. In order to
treat this difficulty, we construct models where the dependence of the out-
come on z is entirely described by the probability p(z) of being treated:

E
(

yd̃ |z
) = E

(
yd̃ |p(z)

)
.

Thus, we first estimate (parametrically) p(z) and then regress (nonpara-
metrically) y0 and y1 on p(z).

Even though often employed, this method of matching is not satis-
factory in the presence of a selection bias, in this case the model has
an identification problem. Consider the discrete example d ∈ {0, 1}, the
observed model is the following, after replacing the random variables
by their realizations and setting ε0 = u0 and ε1 = u1 − u0:

d = p(z) + v

y = (1 − d) ϕ0 (z) + dϕ1 (z) + dε1 + ε0.

Indeed, the model of the counterfactuals can be written as

y0 = ϕ0 (z) + u0 and y1 = ϕ1 (z) + u1.

If y is the observed value ( y = y0 if d = 0 and y = y1 if d = 1), then

y = (1 − d) y0 + dy1

= (1 − d) ϕ0 + dϕ1 + d (u1 − u0) + u0.

The model generating d is identified (p(z) is identified). The data iden-
tifies

E ( y|d, z) = (1 − d) ϕ0 (z) + dϕ1 (z) + dr1 (d, z) + r0 (d, z)

where r1 (d, z) = E (ε1|d, z) and r0 (d, z) = E (ε0|d, z). Knowing
E ( y|d, z) does not allow us to identify for example ϕ1 (z) − ϕ0 (z),
even with exclusion restrictions in ϕ0 and ϕ1. Several assumptions can
be made that imply identification.

An extension of the assumption of instrumental variables. Suppose
z = (z∗, w) such that

ϕ0 (z) = ϕ0 (z∗) and ϕ1 (z) = ϕ1 (z∗) ;

suppose moreover that

E (ε0|z) = 0 and E (dε1|z) = 0.

Then

E ( y|z) = [
ϕ0 (z∗) − ϕ1 (z∗)

]
E (d|z) + ϕ0 (z) . (18.57)
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Under regularity conditions of the same nature as those considered in
18.5.4, this equation has at least one solution in ϕ0 (z∗) and ϕ1 (z∗).
We consider an example for identification: if w1 is a continuous com-
ponent of w, and let (ϕ0, ϕ1) and (ψ0, ψ1) be two parameter values,
then{[

ϕ0 (z∗) − ψ0 (z∗)
] − [

ϕ1 (z∗) − ψ1 (z∗)
]} 

E (d|z)

+ [
ϕ0 (z∗) − ψ0 (z∗)

] = 0.

Taking derivatives with respect to w and assuming

∂

∂w
E (d|z) 	= 0,

then we obtain the equality

[ϕ0 − ψ0] − [ϕ1 − ψ1] = 0,

where ϕ0 − ψ0 = ϕ1 − ψ1 and thus, it follows from (18.57) that ϕ0 = ψ0

and ϕ1 = ψ1. This approach allows us to nonparametrically estimate
ϕ0 and ϕ1 replacing E ( y|z) and E (d|z) in (18.57) by their kernel esti-
mates and by solving the equation thus obtained. To get around the
overidentification problem, we derive from (18.57) the equation

E (E ( y|z) |d, z∗) = {
ϕ0 (z∗) − ϕ1 (z∗)

}
E (E (d|z) |d, z∗) + ϕ1 (z∗) ,

which admits a unique solution in ϕ0 and ϕ1 after replacing the condi-
tional expectations by their kernel estimates. In practice, setting d = 0
and d = 1 yields two equations that we solve in ϕ0 and ϕ1 (see Florens
and Malavolti (2003) for the properties).

A different approach rests on the assumption of control functions.
Suppose{

r1 (d, z) = r∗
1 (d − p(z), z∗)

r0 (d, z) = r∗
0 (d − p(z), z∗) ;

then we can show that, under quite general regularity conditions, the
equation

E ( y|d, z) = (1 − d) ϕ0 (z∗) + dϕ1 (z∗) + dr∗
1 (d − p(z), z∗)

+ r∗
0 (d − p(z), z∗)

admits at most one solution, up to normalization. The model that gen-
erates y given d and z is thus an extension of the additive model for
which the estimation is treated in Florens et al. (2003). This approach
generalizes to the case where d is continuous (see Florens et al. (2003)).
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We emphasize again the relevance of the treatment effects models to the
model builder by raising two important questions.

We say that d does not cause the outcome variable (in expectation) if

∂ϕ

∂d
(z) = 0.

This definition makes sense since d is not a random variable but deterministic
and can be controlled by the experimenter. The definition of noncausality in
terms of control (see Pearl (2000)) can thus also be used in an econometric
context.

Macroeconomic modeling regularly runs up against the status of political
and economic variables for which one would like to assume exogeneity, to the
extent that they are deterministic, but that are endogenous because they depend
on the view of the economy that the decision makers have. In the context of
the treatment effects models, the political and economic variables are naturally
the (deterministic) treatment index for which only one particular realization
is observed. This viewpoint requires a dynamic extension of the models of
treatment effects (see Florens and Heckman (2001)). This extension provides
specifically a relation between Granger causality and the one previously defined.

Notes

The modeling of unobservable variables, that are intended to describe individual unob-

served heterogeneity in microeconometrics or latent dynamics in macroeconometrics

and finance, is a major element of modern econometrics. An exhaustive bibliography is

therefore impossible to achieve. Nevertheless, we provide some references on some of

the topics of this chapter:

� the analysis of panel data is presented in a detailed manner in the collective book

edited by Matyas and Sevestre (2004) and in Sevestre (2002),
� heterogeneity in duration models is presented for example in Lancaster (1990) and

Heckman and Singer (1984), for identification see in particular Elbers and Ridder

(1982),
� the presentation of the errors-in-variables models is very complete in Malinvaud

(1980), one important reference concerning the identification is Reiersol (1950a and

1950b),
� for hidden Markov models, see Hamilton (1989),
� the EM algorithm has been introduced by Dempster, Laird, and Rubin (1977) and has

been the subject of many articles since then,
� the model of treatment effects (counterfactuals) generalizes the analysis of the Roy

model presented by Heckman and Honoré (1990), the study of noncausality in these

models is inspired by the recent work in Florens and Heckman (2001).
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MAQ, Université des Sciences Sociales, Toulouse.

[117] Florens J.F., Hendry D., Richard J.F. (1996). Encompassing and specificity.

Econometric Theory, 12, 620–656.

[118] Florens J.P., Ivaldi M., Larribeau S. (1996). Sobolev estimation of approximate

regressions. Econometric Theory, 12, 753–772.



P1: OSO/OVY P2: OSO/OVY QC: OSO/OVY T1: OSO

Ecobibloeok CUFX117-Florens 0521876407 April 22, 2007 14:9

Bibliography 483

[119] Florens J.P., Larribeau S. (1996). Derivative consistent estimation of a misspec-

ified regression. Working paper, GREMAQ, Université des Sciences Sociales,
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[223] Mood A.M., Graybill F.A. (1963). Introduction to the theory of statistics.

McGraw-Hill, New York.

[224] Moore H.L. (1914). Economic cycles: their law and cause. MacMillan, New

York.



P1: OSO/OVY P2: OSO/OVY QC: OSO/OVY T1: OSO

Ecobibloeok CUFX117-Florens 0521876407 April 22, 2007 14:9

488 Bibliography

[225] Nakamura M., Nakamura A. (1981). On the relationships among several spec-

ification error tests presented by Durbin, Wu and Hausman, Econometrica, 49,

1583–1588.

[226] Nelson D.B. (1990). Stationnarity and persistence in the GARCH(1,1) model.

Econometric Theory, 6, 318–334.

[227] Nelson D.B. (1991). Conditional heteroscedasticity in asset returns: a new ap-

proach. Econometrica, 59, 347–370.

[228] Nelson D.B., Cao C.Q. (1992). Inequality constraints in the univariate GARCH

model. Journal of Business and Economic Statistics, 10, 229–235.

[229] Neveu J. (1965). Mathematical foundations of the calculus of probability. Holden-

Day.

[230] Neveu J. (1975). Discrete-parameter martingales. North Holland, Amsterdam.

[231] Newey W.K. (1993). Efficient estimation of models with conditional moment

restrictions. In G.S. Maddala, C.R. Rao and H.D. Vinod (Eds.). Handbook of
Statistics, Vol. 11, Elsevier Science Publishers, Amsterdam.

[232] Newey W.K., McFadden D. (1994). Large sample estimation and hypothesis

testing. In R.F. Engle and D.L. McFadden (Eds.). Handbook of Econometrics,

Vol. 4 (pp. 2111–2245), North Holland, Amsterdam.

[233] Newey W.K., Powell J. (2003). Instrumental variables for nonparametric models.

Econometrica, 71, 1565–1578.

[234] Newey W.K., Powell J., Vella F. (1999). Nonparametric estimation of triangular

simultaneous equations models. Econometrica, 67, 565–604.

[235] Newey W.K., West K.D. (1987a). A simple, positive semi-definite, heteroskedas-

ticity and autocorrelation consistent covariance matrix. Econometrica, 55, 703–

708.

[236] Newey W.K., West K.D. (1987b). Hypothesis testing with efficient method of

moments estimators. International Economic Review, 28, 777–787.

[237] Neyman J., Pearson E.S. (1928). On the use and interpretation of certain test

criteria for purposes of statistical inference. Biometrika, 20A, 175–240, 263–

2954.

[238] Nicholls D. (1976). The efficient estimation of vector linear time series models.

Biometrika, 63, 381–390.

[239] Ogaki M. (1993). Generalized method of moments: econometric applications. In

G.S. Maddala, C.R. Rao and H.D. Vinod (Eds.). Handbook of Statistics, Vol. 11,

Elsevier Science, Amsterdam.

[240] Osterwald-Lenum M. (1992). A note on quantiles of the asymptotic distribution

of the maximum likelihood cointegration rank test statistics. Oxford Bulletin of
Economics and Statistics, 54, 461–472.

[241] Paarsch H.J. (1992). Deciding between the common and private value paradigms

in empirical models of auctions. Journal of Econometrics, 51, 191–215.

[242] Pagan A. (1996). The econometrics of financial markets. Journal of Empirical
Finance, 3, 15–102.

[243] Pagan A., Ullah A. (1999). Nonparametric econometrics. Cambridge University

Press, New York.

[244] Pakes A., Pollard D. (1989). Simulation and the asymptotics of optimization

estimators. Econometrica, 57, 1027–1058.



P1: OSO/OVY P2: OSO/OVY QC: OSO/OVY T1: OSO

Ecobibloeok CUFX117-Florens 0521876407 April 22, 2007 14:9

Bibliography 489

[245] Pearl J. (2000). Causality: models, reasoning, and inference. Cambridge Uni-

versity Press, New York.

[246] Peguin-Feissolle A. (1994). Bayesian estimation and forecasting in nonlinear

models: application to an LSTAR model. Economics Letters, 46, 187–194.

[247] Peguin-Feissolle A. (1999). A comparison of the power of some tests for con-

ditional heteroscedasticity. Economics Letters, 63, 1, 5–17.

[248] Perron P. (1988). Trends and random walks in macroeconomic time series: further

evidence from a new approach. Journal of Economics Dynamics and Control, 12,

297–332.

[249] Perron P. (1989). The great crash, the oil price and the unit root hypothesis.

Econometrica, 57, 1361–1402.

[250] Perron P. (1990). Testing the unit root in a time series with a changing mean.

Journal of Business and Economics Statistics. Vol. 8(2), 153–162.

[251] Pesaran M.H., Smith R. (1995). Estimating long run relationships from dynamic

heterogeneous panels. Journal of Econometrics, 68, 79–113.

[252] Pesaran M.H., Shin Y., Smith R. (1999). Pooled mean group estimation of

dynamic heterogeneous panels. Journal of American Statistical Association, 94,

621–634.

[253] Pham-Dinh T. (1975). Estimation et tests dans les modèles paramétriques des
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