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PREFACE

Q

1. THE FIFTH EDITION OF ECONOMETRIC
ANALYSIS

Econometric Analysis is intended for a one-year graduate course in econometrics for
social scientists. The prerequisites for this course should include calculus, mathematical
statistics, and an introduction to econometrics at the level of, say, Gujarati’s Basic Econo-
metrics (McGraw-Hill, 1995) or Wooldridge’s Introductory Econometrics: A Modern
Approach [South-Western (2000)]. Self-contained (for our purposes) summaries of the
matrix algebra, mathematical statistics, and statistical theory used later in the book are
given in Appendices A through D. Appendix E contains a description of numerical
methods that will be useful to practicing econometricians. The formal presentation of
econometrics begins with discussion of a fundamental pillar, the linear multiple regres-
sion model, in Chapters 2 through 8. Chapters 9 through 15 present familiar extensions
of the single linear equation model, including nonlinear regression, panel data models,
the generalized regression model, and systems of equations. The linear model is usually
not the sole technique used in most of the contemporary literature. In view of this, the
(expanding) second half of this book is devoted to topics that will extend the linear
regression model in many directions. Chapters 16 through 18 present the techniques
and underlying theory of estimation in econometrics, including GMM and maximum
likelihood estimation methods and simulation based techniques. We end in the last four
chapters, 19 through 22, with discussions of current topics in applied econometrics, in-
cluding time-series analysis and the analysis of discrete choice and limited dependent
variable models.

This book has two objectives. The first is to introduce students to applied econo-
metrics, including basic techniques in regression analysis and some of the rich variety
of models that are used when the linear model proves inadequate or inappropriate.
The second is to present students with sufficient theoretical background that they will
recognize new variants of the models learned about here as merely natural extensions
that fit within a common body of principles. Thus, I have spent what might seem to be
a large amount of effort explaining the mechanics of GMM estimation, nonlinear least
squares, and maximum likelihood estimation and GARCH models. To meet the second
objective, this book also contains a fair amount of theoretical material, such as that on
maximum likelihood estimation and on asymptotic results for regression models. Mod-
ern software has made complicated modeling very easy to do, and an understanding of
the underlying theory is important.

I had several purposes in undertaking this revision. As in the past, readers continue
to send me interesting ideas for my “next edition.” It is impossible to use them all, of

xxvii
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course. Because the five volumes of the Handbook of Econometrics and two of the
Handbook of Applied Econometrics already run to over 4,000 pages, it is also unneces-
sary. Nonetheless, this revision is appropriate for several reasons. First, there are new
and interesting developments in the field, particularly in the areas of microeconometrics
(panel data, models for discrete choice) and, of course, in time series, which continues
its rapid development. Second, I have taken the opportunity to continue fine-tuning the
text as the experience and shared wisdom of my readers accumulates in my files. For this
revision, that adjustment has entailed a substantial rearrangement of the material—the
main purpose of that was to allow me to add the new material in a more compact and
orderly way than I could have with the table of contents in the 4th edition. The litera-
ture in econometrics has continued to evolve, and my third objective is to grow with it.
This purpose is inherently difficult to accomplish in a textbook. Most of the literature is
written by professionals for other professionals, and this textbook is written for students
who are in the early stages of their training. But I do hope to provide a bridge to that
literature, both theoretical and applied.

This book is a broad survey of the field of econometrics. This field grows con-
tinually, and such an effort becomes increasingly difficult. (A partial list of journals
devoted at least in part, if not completely, to econometrics now includes the Journal
of Applied Econometrics, Journal of Econometrics, Econometric Theory, Econometric
Reviews, Journal of Business and Economic Statistics, Empirical Economics, and Econo-
metrica.) Still, my view has always been that the serious student of the field must start
somewhere, and one can successfully seek that objective in a single textbook. This text
attempts to survey, at an entry level, enough of the fields in econometrics that a student
can comfortably move from here to practice or more advanced study in one or more
specialized areas. At the same time, I have tried to present the material in sufficient
generality that the reader is also able to appreciate the important common foundation
of all these fields and to use the tools that they all employ.

There are now quite a few recently published texts in econometrics. Several have
gathered in compact, elegant treatises, the increasingly advanced and advancing theo-
retical background of econometrics. Others, such as this book, focus more attention on
applications of econometrics. One feature that distinguishes this work from its prede-
cessors is its greater emphasis on nonlinear models. [Davidson and MacKinnon (1993)
is a noteworthy, but more advanced, exception.] Computer software now in wide use
has made estimation of nonlinear models as routine as estimation of linear ones, and the
recent literature reflects that progression. My purpose is to provide a textbook treat-
ment that is in line with current practice. The book concludes with four lengthy chapters
on time-series analysis, discrete choice models and limited dependent variable models.
These nonlinear models are now the staples of the applied econometrics literature. This
book also contains a fair amount of material that will extend beyond many first courses
in econometrics, including, perhaps, the aforementioned chapters on limited dependent
variables, the section in Chapter 22 on duration models, and some of the discussions
of time series and panel data models. Once again, I have included these in the hope of
providing a bridge to the professional literature in these areas.

I have had one overriding purpose that has motivated all five editions of this work.
For the vast majority of readers of books such as this, whose ambition is to use, not
develop econometrics, I believe that it is simply not sufficient to recite the theory of
estimation, hypothesis testing and econometric analysis. Understanding the often subtle
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background theory is extremely important. But, at the end of the day, my purpose in
writing this work, and for my continuing efforts to update it in this now fifth edition,
is to show readers how to do econometric analysis. I unabashedly accept the unflatter-
ing assessment of a correspondent who once likened this book to a “user’s guide to
econometrics.”

2. SOFTWARE AND DATA

There are many computer programs that are widely used for the computations described
in this book. All were written by econometricians or statisticians, and in general, all
are regularly updated to incorporate new developments in applied econometrics. A
sampling of the most widely used packages and Internet home pages where you can
find information about them are:

E-Views www.eviews.com (QMS, Irvine, Calif.)
Gauss www.aptech.com (Aptech Systems, Kent, Wash.)
LIMDEP www.limdep.com (Econometric Software, Plainview, N.Y.)
RATS www.estima.com (Estima, Evanston, Ill.)
SAS www.sas.com (SAS, Cary, N.C.)
Shazam shazam.econ.ubc.ca (Ken White, UBC, Vancouver, B.C.)
Stata www.stata.com (Stata, College Station, Tex.)
TSP www.tspintl.com (TSP International, Stanford, Calif.)

Programs vary in size, complexity, cost, the amount of programming required of the user,
and so on. Journals such as The American Statistician, The Journal of Applied Econo-
metrics, and The Journal of Economic Surveys regularly publish reviews of individual
packages and comparative surveys of packages, usually with reference to particular
functionality such as panel data analysis or forecasting.

With only a few exceptions, the computations described in this book can be carried
out with any of these packages. We hesitate to link this text to any of them in partic-
ular. We have placed for general access a customized version of LIMDEP, which was
also written by the author, on the website for this text, http://www.stern.nyu.edu/
∼wgreene/Text/econometricanalysis.htm. LIMDEP programs used for many of
the computations are posted on the sites as well.

The data sets used in the examples are also on the website. Throughout the text,
these data sets are referred to “TableFn.m,” for example Table F4.1. The F refers to
Appendix F at the back of the text, which contains descriptions of the data sets. The
actual data are posted on the website with the other supplementary materials for the
text. (The data sets are also replicated in the system format of most of the commonly
used econometrics computer programs, including in addition to LIMDEP, SAS, TSP,
SPSS, E-Views, and Stata, so that you can easily import them into whatever program
you might be using.)

I should also note, there are now thousands of interesting websites containing soft-
ware, data sets, papers, and commentary on econometrics. It would be hopeless to
attempt any kind of a survey here. But, I do note one which is particularly agree-
ably structured and well targeted for readers of this book, the data archive for the



Greene-50240 gree50240˙FM July 10, 2002 12:51

xxx Preface

Journal of Applied Econometrics. This journal publishes many papers that are precisely
at the right level for readers of this text. They have archived all the nonconfidential
data sets used in their publications since 1994. This useful archive can be found at
http://qed.econ.queensu.ca/jae/.
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1

INTRODUCTION

Q
1.1 ECONOMETRICS

In the first issue of Econometrica, the Econometric Society stated that

its main object shall be to promote studies that aim at a unification of the
theoretical-quantitative and the empirical-quantitative approach to economic
problems and that are penetrated by constructive and rigorous thinking similar
to that which has come to dominate the natural sciences.

But there are several aspects of the quantitative approach to economics, and
no single one of these aspects taken by itself, should be confounded with econo-
metrics. Thus, econometrics is by no means the same as economic statistics. Nor
is it identical with what we call general economic theory, although a consider-
able portion of this theory has a definitely quantitative character. Nor should
econometrics be taken as synonomous [sic] with the application of mathematics
to economics. Experience has shown that each of these three viewpoints, that
of statistics, economic theory, and mathematics, is a necessary, but not by itself
a sufficient, condition for a real understanding of the quantitative relations in
modern economic life. It is the unification of all three that is powerful. And it
is this unification that constitutes econometrics.

Frisch (1933) and his society responded to an unprecedented accumulation of statisti-
cal information. They saw a need to establish a body of principles that could organize
what would otherwise become a bewildering mass of data. Neither the pillars nor the
objectives of econometrics have changed in the years since this editorial appeared.
Econometrics is the field of economics that concerns itself with the application of math-
ematical statistics and the tools of statistical inference to the empirical measurement of
relationships postulated by economic theory.

1.2 ECONOMETRIC MODELING

Econometric analysis will usually begin with a statement of a theoretical proposition.
Consider, for example, a canonical application:

Example 1.1 Keynes’s Consumption Function
From Keynes’s (1936) General Theory of Employment, Interest and Money:

We shall therefore define what we shall call the propensity to consume as the func-
tional relationship f between X , a given level of income and C, the expenditure on
consumption out of the level of income, so that C = f ( X ) .

The amount that the community spends on consumption depends (i) partly on
the amount of its income, (ii) partly on other objective attendant circumstances, and

1
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(iii) partly on the subjective needs and the psychological propensities and habits of
the individuals composing it. The fundamental psychological law upon which we are
entitled to depend with great confidence, both a priori from our knowledge of human
nature and from the detailed facts of experience, is that men are disposed, as a rule
and on the average, to increase their consumption as their income increases, but not
by as much as the increase in their income.1 That is, . . . dC/dX is positive and less
than unity.

But, apart from short period changes in the level of income, it is also obvious that
a higher absolute level of income will tend as a rule to widen the gap between income
and consumption. . . . These reasons will lead, as a rule, to a greater proportion of
income being saved as real income increases.

The theory asserts a relationship between consumption and income, C = f ( X ) , and claims
in the third paragraph that the marginal propensity to consume (MPC), dC/dX , is between
0 and 1. The final paragraph asserts that the average propensity to consume (APC), C/X ,
falls as income rises, or d(C/X )/dX = (MPC − APC)/X < 0. It follows that MPC < APC.
The most common formulation of the consumption function is a linear relationship, C =
α + βX , that satisfies Keynes’s “laws” if β lies between zero and one and if α is greater
than zero.

These theoretical propositions provide the basis for an econometric study. Given an ap-
propriate data set, we could investigate whether the theory appears to be consistent with
the observed “facts.” For example, we could see whether the linear specification appears to
be a satisfactory description of the relationship between consumption and income, and, if
so, whether α is positive and β is between zero and one. Some issues that might be stud-
ied are (1) whether this relationship is stable through time or whether the parameters of the
relationship change from one generation to the next (a change in the average propensity to
save, 1—APC, might represent a fundamental change in the behavior of consumers in the
economy); (2) whether there are systematic differences in the relationship across different
countries, and, if so, what explains these differences; and (3) whether there are other factors
that would improve the ability of the model to explain the relationship between consumption
and income. For example, Figure 1.1 presents aggregate consumption and personal income
in constant dollars for the U.S. for the 10 years of 1970–1979. (See Appendix Table F1.1.)
Apparently, at least superficially, the data (the facts) are consistent with the theory. The rela-
tionship appears to be linear, albeit only approximately, the intercept of a line that lies close
to most of the points is positive and the slope is less than one, although not by much.

Economic theories such as Keynes’s are typically crisp and unambiguous. Models
of demand, production, and aggregate consumption all specify precise, deterministic
relationships. Dependent and independent variables are identified, a functional form is
specified, and in most cases, at least a qualitative statement is made about the directions
of effects that occur when independent variables in the model change. Of course, the
model is only a simplification of reality. It will include the salient features of the rela-
tionship of interest, but will leave unaccounted for influences that might well be present
but are regarded as unimportant. No model could hope to encompass the myriad essen-
tially random aspects of economic life. It is thus also necessary to incorporate stochastic
elements. As a consequence, observations on a dependent variable will display varia-
tion attributable not only to differences in variables that are explicitly accounted for,
but also to the randomness of human behavior and the interaction of countless minor
influences that are not. It is understood that the introduction of a random “disturbance”
into a deterministic model is not intended merely to paper over its inadequacies. It is

1Modern economists are rarely this confident about their theories. More contemporary applications generally
begin from first principles and behavioral axioms, rather than simple observation.
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FIGURE 1.1 Consumption Data, 1970–1979.

essential to examine the results of the study, in a sort of postmortem, to ensure that the
allegedly random, unexplained factor is truly unexplainable. If it is not, the model is, in
fact, inadequate. The stochastic element endows the model with its statistical proper-
ties. Observations on the variable(s) under study are thus taken to be the outcomes of
a random process. With a sufficiently detailed stochastic structure and adequate data,
the analysis will become a matter of deducing the properties of a probability distri-
bution. The tools and methods of mathematical statistics will provide the operating
principles.

A model (or theory) can never truly be confirmed unless it is made so broad as to
include every possibility. But it may be subjected to ever more rigorous scrutiny and,
in the face of contradictory evidence, refuted. A deterministic theory will be invali-
dated by a single contradictory observation. The introduction of stochastic elements
into the model changes it from an exact statement to a probabilistic description about
expected outcomes and carries with it an important implication. Only a preponder-
ance of contradictory evidence can convincingly invalidate the probabilistic model, and
what constitutes a “preponderance of evidence” is a matter of interpretation. Thus, the
probabilistic model is less precise but at the same time, more robust.2

The process of econometric analysis departs from the specification of a theoreti-
cal relationship. We initially proceed on the optimistic assumption that we can obtain
precise measurements on all the variables in a correctly specified model. If the ideal
conditions are met at every step, the subsequent analysis will probably be routine.
Unfortunately, they rarely are. Some of the difficulties one can expect to encounter are
the following:

2See Keuzenkamp and Magnus (1995) for a lengthy symposium on testing in econometrics.
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• The data may be badly measured or may correspond only vaguely to the variables
in the model. “The interest rate” is one example.

• Some of the variables may be inherently unmeasurable. “Expectations” are a case
in point.

• The theory may make only a rough guess as to the correct functional form, if it
makes any at all, and we may be forced to choose from an embarrassingly long
menu of possibilities.

• The assumed stochastic properties of the random terms in the model may be
demonstrably violated, which may call into question the methods of estimation
and inference procedures we have used.

• Some relevant variables may be missing from the model.

The ensuing steps of the analysis consist of coping with these problems and attempting
to cull whatever information is likely to be present in such obviously imperfect data.
The methodology is that of mathematical statistics and economic theory. The product
is an econometric model.

1.3 DATA AND METHODOLOGY

The connection between underlying behavioral models and the modern practice of
econometrics is increasingly strong. Practitioners rely heavily on the theoretical tools
of microeconomics including utility maximization, profit maximization, and market
equilibrium. Macroeconomic model builders rely on the interactions between economic
agents and policy makers. The analyses are directed at subtle, difficult questions that
often require intricate, complicated formulations. A few applications:

• What are the likely effects on labor supply behavior of proposed negative income
taxes? [Ashenfelter and Heckman (1974).]

• Does a monetary policy regime that is strongly oriented toward controlling
inflation impose a real cost in terms of lost output on the U.S. economy?
[Cecchetti and Rich (2001).]

• Did 2001’s largest federal tax cut in U.S. history contribute to or dampen the
concurrent recession? Or was it irrelevant? (Still to be analyzed.)

• Does attending an elite college bring an expected payoff in lifetime expected
income sufficient to justify the higher tuition? [Krueger and Dale (2001) and
Krueger (2002).]

• Does a voluntary training program produce tangible benefits? Can these benefits
be accurately measured? [Angrist (2001).]

Each of these analyses would depart from a formal model of the process underlying the
observed data.

The field of econometrics is large and rapidly growing. In one dimension, we
can distinguish between theoretical and applied econometrics. Theorists develop new
techniques and analyze the consequences of applying particular methods when the as-
sumptions that justify them are not met. Applied econometricians are the users of these
techniques and the analysts of data (real world and simulated). Of course, the distinction
is far from clean; practitioners routinely develop new analytical tools for the purposes of
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the study that they are involved in. This book contains a heavy dose of theory, but it is di-
rected toward applied econometrics. I have attempted to survey techniques, admittedly
some quite elaborate and intricate, that have seen wide use “in the field.”

Another loose distinction can be made between microeconometrics and macro-
econometrics. The former is characterized largely by its analysis of cross section and
panel data and by its focus on individual consumers, firms, and micro-level decision mak-
ers. Macroeconometrics is generally involved in the analysis of time series data, usually
of broad aggregates such as price levels, the money supply, exchange rates, output, and
so on. Once again, the boundaries are not sharp. The very large field of financial econo-
metrics is concerned with long-time series data and occasionally vast panel data sets,
but with a very focused orientation toward models of individual behavior. The analysis
of market returns and exchange rate behavior is neither macro- nor microeconometric
in nature, or perhaps it is some of both. Another application that we will examine in
this text concerns spending patterns of municipalities, which, again, rests somewhere
between the two fields.

Applied econometric methods will be used for estimation of important quantities,
analysis of economic outcomes, markets or individual behavior, testing theories, and for
forecasting. The last of these is an art and science in itself, and (fortunately) the subject
of a vast library of sources. Though we will briefly discuss some aspects of forecasting,
our interest in this text will be on estimation and analysis of models. The presentation,
where there is a distinction to be made, will contain a blend of microeconometric and
macroeconometric techniques and applications. The first 18 chapters of the book are
largely devoted to results that form the platform of both areas. Chapters 19 and 20 focus
on time series modeling while Chapters 21 and 22 are devoted to methods more suited
to cross sections and panels, and used more frequently in microeconometrics. Save for
some brief applications, we will not be spending much time on financial econometrics.
For those with an interest in this field, I would recommend the celebrated work by
Campbell, Lo, and Mackinlay (1997). It is also necessary to distinguish between time
series analysis (which is not our focus) and methods that primarily use time series data.
The former is, like forecasting, a growth industry served by its own literature in many
fields. While we will employ some of the techniques of time series analysis, we will spend
relatively little time developing first principles.

The techniques used in econometrics have been employed in a widening variety
of fields, including political methodology, sociology [see, e.g., Long (1997)], health eco-
nomics, medical research (how do we handle attrition from medical treatment studies?)
environmental economics, transportation engineering, and numerous others. Practi-
tioners in these fields and many more are all heavy users of the techniques described in
this text.

1.4 PLAN OF THE BOOK

The remainder of this book is organized into five parts:

1. Chapters 2 through 9 present the classical linear and nonlinear regression models.
We will discuss specification, estimation, and statistical inference.

2. Chapters 10 through 15 describe the generalized regression model, panel data
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applications, and systems of equations.
3. Chapters 16 through 18 present general results on different methods of estimation

including maximum likelihood, GMM, and simulation methods. Various
estimation frameworks, including non- and semiparametric and Bayesian
estimation are presented in Chapters 16 and 18.

4. Chapters 19 through 22 present topics in applied econometrics. Chapters 19 and 20
are devoted to topics in time series modeling while Chapters 21 and 22 are about
microeconometrics, discrete choice modeling, and limited dependent variables.

5. Appendices A through D present background material on tools used in
econometrics including matrix algebra, probability and distribution theory,
estimation, and asymptotic distribution theory. Appendix E presents results on
computation. Appendices A through D are chapter-length surveys of the tools
used in econometrics. Since it is assumed that the reader has some previous
training in each of these topics, these summaries are included primarily for those
who desire a refresher or a convenient reference. We do not anticipate that these
appendices can substitute for a course in any of these subjects. The intent of these
chapters is to provide a reasonably concise summary of the results, nearly all of
which are explicitly used elsewhere in the book.

The data sets used in the numerical examples are described in Appendix F. The actual
data sets and other supplementary materials can be downloaded from the website for
the text,

www.prenhall.com/greene
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THE CLASSICAL MULTIPLE
LINEAR REGRESSION

MODEL

Q
2.1 INTRODUCTION

An econometric study begins with a set of propositions about some aspect of the
economy. The theory specifies a set of precise, deterministic relationships among vari-
ables. Familiar examples are demand equations, production functions, and macroeco-
nomic models. The empirical investigation provides estimates of unknown parameters
in the model, such as elasticities or the effects of monetary policy, and usually attempts to
measure the validity of the theory against the behavior of observable data. Once suitably
constructed, the model might then be used for prediction or analysis of behavior. This
book will develop a large number of models and techniques used in this framework.

The linear regression model is the single most useful tool in the econometrician’s
kit. Though to an increasing degree in the contemporary literature, it is often only
the departure point for the full analysis, it remains the device used to begin almost all
empirical research. This chapter will develop the model. The next several chapters will
discuss more elaborate specifications and complications that arise in the application of
techniques that are based on the simple models presented here.

2.2 THE LINEAR REGRESSION MODEL

The multiple linear regression model is used to study the relationship between a depen-
dent variable and one or more independent variables. The generic form of the linear
regression model is

y = f (x1, x2, . . . , xK) + ε

= x1β1 + x2β2 + · · · + xKβK + ε
(2-1)

where y is the dependent or explained variable and x1, . . . , xK are the independent
or explanatory variables. One’s theory will specify f (x1, x2, . . . , xK). This function is
commonly called the population regression equation of y on x1, . . . , xK. In this set-
ting, y is the regressand and xk, k= 1, . . . , K, are the regressors or covariates. The
underlying theory will specify the dependent and independent variables in the model.
It is not always obvious which is appropriately defined as each of these—for exam-
ple, a demand equation, quantity = β1 + price × β2 + income × β3 + ε, and an inverse
demand equation, price = γ1 + quantity × γ2 + income × γ3 + u are equally valid rep-
resentations of a market. For modeling purposes, it will often prove useful to think in
terms of “autonomous variation.” One can conceive of movement of the independent

7
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variables outside the relationships defined by the model while movement of the depen-
dent variable is considered in response to some independent or exogenous stimulus.1

The term ε is a random disturbance, so named because it “disturbs” an otherwise
stable relationship. The disturbance arises for several reasons, primarily because we
cannot hope to capture every influence on an economic variable in a model, no matter
how elaborate. The net effect, which can be positive or negative, of these omitted factors
is captured in the disturbance. There are many other contributors to the disturbance
in an empirical model. Probably the most significant is errors of measurement. It is
easy to theorize about the relationships among precisely defined variables; it is quite
another to obtain accurate measures of these variables. For example, the difficulty of
obtaining reasonable measures of profits, interest rates, capital stocks, or, worse yet,
flows of services from capital stocks is a recurrent theme in the empirical literature.
At the extreme, there may be no observable counterpart to the theoretical variable.
The literature on the permanent income model of consumption [e.g., Friedman (1957)]
provides an interesting example.

We assume that each observation in a sample (yi , xi1, xi2, . . . , xi K), i = 1, . . . , n, is
generated by an underlying process described by

yi = xi1β1 + xi2β2 + · · · + xi KβK + εi .

The observed value of yi is the sum of two parts, a deterministic part and the random
part, εi . Our objective is to estimate the unknown parameters of the model, use the
data to study the validity of the theoretical propositions, and perhaps use the model to
predict the variable y. How we proceed from here depends crucially on what we assume
about the stochastic process that has led to our observations of the data in hand.

Example 2.1 Keynes’s Consumption Function
Example 1.1 discussed a model of consumption proposed by Keynes and his General Theory
(1936). The theory that consumption, C, and income, X , are related certainly seems consistent
with the observed “facts” in Figures 1.1 and 2.1. (These data are in Data Table F2.1.) Of
course, the linear function is only approximate. Even ignoring the anomalous wartime years,
consumption and income cannot be connected by any simple deterministic relationship.
The linear model, C = α + βX , is intended only to represent the salient features of this part
of the economy. It is hopeless to attempt to capture every influence in the relationship. The
next step is to incorporate the inherent randomness in its real world counterpart. Thus, we
write C = f ( X, ε) , where ε is a stochastic element. It is important not to view ε as a catchall
for the inadequacies of the model. The model including ε appears adequate for the data
not including the war years, but for 1942–1945, something systematic clearly seems to be
missing. Consumption in these years could not rise to rates historically consistent with these
levels of income because of wartime rationing. A model meant to describe consumption in
this period would have to accommodate this influence.

It remains to establish how the stochastic element will be incorporated in the equation.
The most frequent approach is to assume that it is additive. Thus, we recast the equation
in stochastic terms: C = α + βX + ε. This equation is an empirical counterpart to Keynes’s
theoretical model. But, what of those anomalous years of rationing? If we were to ignore
our intuition and attempt to “fit” a line to all these data—the next chapter will discuss
at length how we should do that—we might arrive at the dotted line in the figure as our best
guess. This line, however, is obviously being distorted by the rationing. A more appropriate

1By this definition, it would seem that in our demand relationship, only income would be an independent
variable while both price and quantity would be dependent. That makes sense—in a market, price and quantity
are determined at the same time, and do change only when something outside the market changes. We will
return to this specific case in Chapter 15.
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FIGURE 2.1 Consumption Data, 1940–1950.

specification for these data that accommodates both the stochastic nature of the data and
the special circumstances of the years 1942–1945 might be one that shifts straight down
in the war years, C = α + βX + dwaryearsδw + ε, where the new variable, dwaryears equals one in
1942–1945 and zero in other years and �w < ∅.

One of the most useful aspects of the multiple regression model is its ability to identify
the independent effects of a set of variables on a dependent variable. Example 2.2
describes a common application.

Example 2.2 Earnings and Education
A number of recent studies have analyzed the relationship between earnings and educa-
tion. We would expect, on average, higher levels of education to be associated with higher
incomes. The simple regression model

earnings = β1 + β2 education + ε,

however, neglects the fact that most people have higher incomes when they are older than
when they are young, regardless of their education. Thus, β2 will overstate the marginal
impact of education. If age and education are positively correlated, then the regression model
will associate all the observed increases in income with increases in education. A better
specification would account for the effect of age, as in

earnings = β1 + β2 education + β3 age + ε.

It is often observed that income tends to rise less rapidly in the later earning years than in
the early ones. To accommodate this possibility, we might extend the model to

earnings = β1 + β2 education + β3 age + β4 age2 + ε.

We would expect β3 to be positive and β4 to be negative.
The crucial feature of this model is that it allows us to carry out a conceptual experiment

that might not be observed in the actual data. In the example, we might like to (and could)
compare the earnings of two individuals of the same age with different amounts of “education”
even if the data set does not actually contain two such individuals. How education should be

wgreene
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measured in this setting is a difficult problem. The study of the earnings of twins by Ashenfelter
and Krueger (1994), which uses precisely this specification of the earnings equation, presents
an interesting approach. We will examine this study in some detail in Section 5.6.4.

A large literature has been devoted to an intriguing question on this subject. Education
is not truly “independent” in this setting. Highly motivated individuals will choose to pursue
more education (for example, by going to college or graduate school) than others. By the
same token, highly motivated individuals may do things that, on average, lead them to have
higher incomes. If so, does a positive β2 that suggests an association between income and
education really measure the effect of education on income, or does it reflect the effect of
some underlying effect on both variables that we have not included in our regression model?
We will revisit the issue in Section 22.4.

2.3 ASSUMPTIONS OF THE CLASSICAL LINEAR
REGRESSION MODEL

The classical linear regression model consists of a set of assumptions about how a data
set will be produced by an underlying “data-generating process.” The theory will specify
a deterministic relationship between the dependent variable and the independent vari-
ables. The assumptions that describe the form of the model and relationships among its
parts and imply appropriate estimation and inference procedures are listed in Table 2.1.

2.3.1 LINEARITY OF THE REGRESSION MODEL

Let the column vector xk be the n observations on variable xk, k = 1, . . . , K, and as-
semble these data in an n × K data matrix X. In most contexts, the first column of X is
assumed to be a column of 1s so that β1 is the constant term in the model. Let y be the
n observations, y1, . . . , yn, and let ε be the column vector containing the n disturbances.

TABLE 2.1 Assumptions of the Classical Linear Regression Model

A1. Linearity: yi = xi1β1 + xi2β2 + · · · + xi KβK + εi . The model specifies a linear relationship
between y and x1, . . . , xK.

A2. Full rank: There is no exact linear relationship among any of the independent variables
in the model. This assumption will be necessary for estimation of the parameters of the
model.
A3. Exogeneity of the independent variables: E [εi | xj1, xj2, . . . , xj K] = 0. This states that
the expected value of the disturbance at observation i in the sample is not a function of the
independent variables observed at any observation, including this one. This means that the
independent variables will not carry useful information for prediction of εi .
A4. Homoscedasticity and nonautocorrelation: Each disturbance, εi has the same finite
variance, σ 2 and is uncorrelated with every other disturbance, ε j . This assumption limits the
generality of the model, and we will want to examine how to relax it in the chapters to
follow.
A5. Exogenously generated data: The data in (xj1, xj2, . . . , xj K) may be any mixture of
constants and random variables. The process generating the data operates outside the
assumptions of the model—that is, independently of the process that generates εi . Note that
this extends A3. Analysis is done conditionally on the observed X.
A6. Normal distribution: The disturbances are normally distributed. Once again, this is a
convenience that we will dispense with after some analysis of its implications.

wgreene
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The model in (2-1) as it applies to all n observations can now be written

y = x1β1 + · · · + xKβK + ε, (2-2)

or in the form of Assumption 1,

ASSUMPTION: y = Xβ + ε. (2-3)

A NOTATIONAL CONVENTION.
Henceforth, to avoid a possibly confusing and cumbersome notation, we will use a
boldface x to denote a column or a row of X. Which applies will be clear from the
context. In (2-2), xk is the kth column of X. Subscripts j and k will be used to denote
columns (variables). It will often be convenient to refer to a single observation in (2-3),
which we would write

yi = x′
i β + εi . (2-4)

Subscripts i and t will generally be used to denote rows (observations) of X. In (2-4), xi

is a column vector that is the transpose of the ith 1 × K row of X.

Our primary interest is in estimation and inference about the parameter vector β.
Note that the simple regression model in Example 2.1 is a special case in which X has
only two columns, the first of which is a column of 1s. The assumption of linearity of the
regression model includes the additive disturbance. For the regression to be linear in
the sense described here, it must be of the form in (2-1) either in the original variables
or after some suitable transformation. For example, the model

y = Axβeε

is linear (after taking logs on both sides of the equation), whereas

y = Axβ + ε

is not. The observed dependent variable is thus the sum of two components, a deter-
ministic element α + βx and a random variable ε. It is worth emphasizing that neither
of the two parts is directly observed because α and β are unknown.

The linearity assumption is not so narrow as it might first appear. In the regression
context, linearity refers to the manner in which the parameters and the disturbance enter
the equation, not necessarily to the relationship among the variables. For example, the
equations y = α +βx + ε, y = α +β cos(x)+ ε, y = α +β/x + ε, and y = α +β ln x + ε

are all linear in some function of x by the definition we have used here. In the examples,
only x has been transformed, but y could have been as well, as in y = Axβeε, which is a
linear relationship in the logs of x and y; ln y = α + β ln x + ε. The variety of functions
is unlimited. This aspect of the model is used in a number of commonly used functional
forms. For example, the loglinear model is

ln y = β1 + β2 ln X2 + β3 ln X3 + · · · + βK ln XK + ε.

This equation is also known as the constant elasticity form as in this equation, the
elasticity of y with respect to changes in x is ∂ ln y/∂ ln xk = βk, which does not vary

wgreene
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with xk. The log linear form is often used in models of demand and production. Different
values of β produce widely varying functions.

Example 2.3 The U.S. Gasoline Market
Data on the U.S. gasoline market for the years 1960—1995 are given in Table F2.2 in
Appendix F. We will use these data to obtain, among other things, estimates of the income,
own price, and cross-price elasticities of demand in this market. These data also present an
interesting question on the issue of holding “all other things constant,” that was suggested
in Example 2.2. In particular, consider a somewhat abbreviated model of per capita gasoline
consumption:

ln(G/pop) = β1 + β2 ln income + β3 ln priceG + β4 ln Pnewcars + β5 ln Pusedcars + ε.

This model will provide estimates of the income and price elasticities of demand for gasoline
and an estimate of the elasticity of demand with respect to the prices of new and used cars.
What should we expect for the sign of β4? Cars and gasoline are complementary goods, so if
the prices of new cars rise, ceteris paribus, gasoline consumption should fall. Or should it? If
the prices of new cars rise, then consumers will buy fewer of them; they will keep their used
cars longer and buy fewer new cars. If older cars use more gasoline than newer ones, then
the rise in the prices of new cars would lead to higher gasoline consumption than otherwise,
not lower. We can use the multiple regression model and the gasoline data to attempt to
answer the question.

A semilog model is often used to model growth rates:

ln yt = x′
tβ + δt + εt .

In this model, the autonomous (at least not explained by the model itself) proportional,
per period growth rate is d ln y/dt = δ. Other variations of the general form

f (yt ) = g(x′
tβ + εt )

will allow a tremendous variety of functional forms, all of which fit into our definition
of a linear model.

The linear regression model is sometimes interpreted as an approximation to some
unknown, underlying function. (See Section A.8.1 for discussion.) By this interpretation,
however, the linear model, even with quadratic terms, is fairly limited in that such
an approximation is likely to be useful only over a small range of variation of the
independent variables. The translog model discussed in Example 2.4, in contrast, has
proved far more effective as an approximating function.

Example 2.4 The Translog Model
Modern studies of demand and production are usually done in the context of a flexible func-
tional form. Flexible functional forms are used in econometrics because they allow analysts
to model second-order effects such as elasticities of substitution, which are functions of the
second derivatives of production, cost, or utility functions. The linear model restricts these to
equal zero, whereas the log linear model (e.g., the Cobb–Douglas model) restricts the inter-
esting elasticities to the uninteresting values of –1 or +1. The most popular flexible functional
form is the translog model, which is often interpreted as a second-order approximation to
an unknown functional form. [See Berndt and Christensen (1973).] One way to derive it is
as follows. We first write y = g( x1, . . . , xK ) . Then, ln y = ln g( . . .) = f ( . . .) . Since by a trivial
transformation xk = exp( ln xk) , we interpret the function as a function of the logarithms of
the x’s. Thus, ln y = f ( ln x1, . . . , ln xK ) .

wgreene
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Now, expand this function in a second-order Taylor series around the point x = [1, 1, . . . , 1]′

so that at the expansion point, the log of each variable is a convenient zero. Then

ln y = f (0) +
K∑

k=1

[∂ f ( ·)/∂ ln xk]| ln x=0 ln xk

+ 1
2

K∑
k=1

K∑
l=1

[∂2 f ( ·)/∂ ln xk∂ ln xl ]| ln x=0 ln xk ln xl + ε.

The disturbance in this model is assumed to embody the familiar factors and the error of
approximation to the unknown function. Since the function and its derivatives evaluated at
the fixed value 0 are constants, we interpret them as the coefficients and write

ln y = β0 +
K∑

k=1

βk ln xk + 1
2

K∑
k=1

K∑
l=1

γkl ln xk ln xl + ε.

This model is linear by our definition but can, in fact, mimic an impressive amount of curvature
when it is used to approximate another function. An interesting feature of this formulation is
that the log linear model is a special case, γkl = 0. Also, there is an interesting test of the
underlying theory possible because if the underlying function were assumed to be continuous
and twice continuously differentiable, then by Young’s theorem it must be true that γkl = γl k.
We will see in Chapter 14 how this feature is studied in practice.

Despite its great flexibility, the linear model does not include all the situations we
encounter in practice. For a simple example, there is no transformation that will reduce
y = α + 1/(β1 + β2x) + ε to linearity. The methods we consider in this chapter are not
appropriate for estimating the parameters of such a model. Relatively straightforward
techniques have been developed for nonlinear models such as this, however. We shall
treat them in detail in Chapter 9.

2.3.2 FULL RANK

Assumption 2 is that there are no exact linear relationships among the variables.

ASSUMPTION: X is an n × K matrix with rank K. (2-5)

Hence, X has full column rank; the columns of X are linearly independent and there
are at least K observations. [See (A-42) and the surrounding text.] This assumption is
known as an identification condition. To see the need for this assumption, consider an
example.

Example 2.5 Short Rank
Suppose that a cross-section model specifies

C = β1 + β2 nonlabor income + β3 salary + β4 total income + ε,

where total income is exactly equal to salary plus nonlabor income. Clearly, there is an exact
linear dependency in the model. Now let

β ′
2 = β2 + a,

β ′
3 = β3 + a,

and

β ′
4 = β4 − a,

wgreene
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where a is any number. Then the exact same value appears on the right-hand side of C if
we substitute β ′

2, β ′
3, and β ′

4 for β2, β3, and β4. Obviously, there is no way to estimate the
parameters of this model.

If there are fewer than K observations, then X cannot have full rank. Hence, we make
the (redundant) assumption that n is at least as large as K.

In a two-variable linear model with a constant term, the full rank assumption means
that there must be variation in the regressor x. If there is no variation in x, then all our
observations will lie on a vertical line. This situation does not invalidate the other
assumptions of the model; presumably, it is a flaw in the data set. The possibility that
this suggests is that we could have drawn a sample in which there was variation in x,
but in this instance, we did not. Thus, the model still applies, but we cannot learn about
it from the data set in hand.

2.3.3 REGRESSION

The disturbance is assumed to have conditional expected value zero at every observa-
tion, which we write as

E [εi | X] = 0. (2-6)

For the full set of observations, we write Assumption 3 as:

ASSUMPTION: E [ε | X] =




E [ε1 | X]
E [ε2 | X]

...

E [εn | X]


 = 0. (2-7)

There is a subtle point in this discussion that the observant reader might have noted.
In (2-7), the left-hand side states, in principle, that the mean of each εi conditioned on
all observations xi is zero. This conditional mean assumption states, in words, that no
observations on x convey information about the expected value of the disturbance.
It is conceivable—for example, in a time-series setting—that although xi might pro-
vide no information about E [εi |·], x j at some other observation, such as in the next
time period, might. Our assumption at this point is that there is no information about
E [εi | ·] contained in any observation x j . Later, when we extend the model, we will
study the implications of dropping this assumption. [See Woolridge (1995).] We will
also assume that the disturbances convey no information about each other. That is,
E [εi | ε1, . . . , εi–1, εi+1, . . . , εn] = 0. In sum, at this point, we have assumed that the
disturbances are purely random draws from some population.

The zero conditional mean implies that the unconditional mean is also zero, since

E [εi ] = Ex[E [εi | X]] = Ex[0] = 0.

Since, for each εi , Cov[E [εi | X], X] = Cov[εi , X], Assumption 3 implies that Cov[εi , X]=
0 for all i . (Exercise: Is the converse true?)

In most cases, the zero mean assumption is not restrictive. Consider a two-variable
model and suppose that the mean of ε is µ 
= 0. Then α + βx + ε is the same as
(α + µ) + βx + (ε – µ). Letting α′ = α + µ and ε′ = ε–µ produces the original model.
For an application, see the discussion of frontier production functions in Section 17.6.3.
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But, if the original model does not contain a constant term, then assuming E [εi ] = 0
could be substantive. If E [εi ] can be expressed as a linear function of xi , then, as before, a
transformation of the model will produce disturbances with zero means. But, if not, then
the nonzero mean of the disturbances will be a substantive part of the model structure.
This does suggest that there is a potential problem in models without constant terms. As
a general rule, regression models should not be specified without constant terms unless
this is specifically dictated by the underlying theory.2 Arguably, if we have reason to
specify that the mean of the disturbance is something other than zero, we should build it
into the systematic part of the regression, leaving in the disturbance only the unknown
part of ε. Assumption 3 also implies that

E [y | X] = Xβ. (2-8)

Assumptions 1 and 3 comprise the linear regression model. The regression of y on X is
the conditional mean, E [y | X], so that without Assumption 3, Xβ is not the conditional
mean function.

The remaining assumptions will more completely specify the characteristics of the
disturbances in the model and state the conditions under which the sample observations
on x are obtained.

2.3.4 SPHERICAL DISTURBANCES

The fourth assumption concerns the variances and covariances of the disturbances:

Var[εi | X] = σ 2, for all i = 1, . . . , n,

and

Cov[εi , ε j | X] = 0, for all i 
= j.

Constant variance is labeled homoscedasticity. Consider a model that describes the prof-
its of firms in an industry as a function of, say, size. Even accounting for size, measured in
dollar terms, the profits of large firms will exhibit greater variation than those of smaller
firms. The homoscedasticity assumption would be inappropriate here. Also, survey data
on household expenditure patterns often display marked heteroscedasticity, even after
accounting for income and household size.

Uncorrelatedness across observations is labeled generically nonautocorrelation. In
Figure 2.1, there is some suggestion that the disturbances might not be truly independent
across observations. Although the number of observations is limited, it does appear
that, on average, each disturbance tends to be followed by one with the same sign. This
“inertia” is precisely what is meant by autocorrelation, and it is assumed away at this
point. Methods of handling autocorrelation in economic data occupy a large proportion
of the literature and will be treated at length in Chapter 12. Note that nonautocorrelation
does not imply that observations yi and yj are uncorrelated. The assumption is that
deviations of observations from their expected values are uncorrelated.

2Models that describe first differences of variables might well be specified without constants. Consider yt – yt–1.
If there is a constant term α on the right-hand side of the equation, then yt is a function of αt , which is an
explosive regressor. Models with linear time trends merit special treatment in the time-series literature. We
will return to this issue in Chapter 19.
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The two assumptions imply that

E [εε′ | X] =




E [ε1ε1 | X] E [ε1ε2 | X] · · · E [ε1εn | X]
E [ε2ε1 | X] E [ε2ε2 | X] · · · E [ε2εn | X]

...
...

...
...

E [εnε1 | X] E [εnε2 | X] · · · E [εnεn | X]




=




σ 2 0 · · · 0
0 σ 2 · · · 0

...

0 0 · · · σ 2


 ,

which we summarize in Assumption 4:

ASSUMPTION: E [εε′ | X] = σ 2I. (2-9)

By using the variance decomposition formula in (B-70), we find

Var[ε] = E [Var[ε | X]] + Var[E [ε | X]] = σ 2I.

Once again, we should emphasize that this assumption describes the information about
the variances and covariances among the disturbances that is provided by the indepen-
dent variables. For the present, we assume that there is none. We will also drop this
assumption later when we enrich the regression model. We are also assuming that the
disturbances themselves provide no information about the variances and covariances.
Although a minor issue at this point, it will become crucial in our treatment of time-
series applications. Models such as Var[εt | εt–1] = σ 2 + αε2

t−1—a “GARCH” model (see
Section 11.8)—do not violate our conditional variance assumption, but do assume that
Var[εt | εt–1] 
= Var[εt ].

Disturbances that meet the twin assumptions of homoscedasticity and nonautocor-
relation are sometimes called spherical disturbances.3

2.3.5 DATA GENERATING PROCESS FOR THE REGRESSORS

It is common to assume that xi is nonstochastic, as it would be in an experimental
situation. Here the analyst chooses the values of the regressors and then observes yi .
This process might apply, for example, in an agricultural experiment in which yi is yield
and xi is fertilizer concentration and water applied. The assumption of nonstochastic
regressors at this point would be a mathematical convenience. With it, we could use the
results of elementary statistics to obtain our results by treating the vector xi simply as a
known constant in the probability distribution of yi . With this simplification, Assump-
tions A3 and A4 would be made unconditional and the counterparts would now simply
state that the probability distribution of εi involves none of the constants in X.

Social scientists are almost never able to analyze experimental data, and relatively
few of their models are built around nonrandom regressors. Clearly, for example, in

3The term will describe the multivariate normal distribution; see (B-95). If � = σ 2I in the multivariate normal
density, then the equation f (x) = c is the formula for a “ball” centered at µ with radius σ in n-dimensional
space. The name spherical is used whether or not the normal distribution is assumed; sometimes the “spherical
normal” distribution is assumed explicitly.
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any model of the macroeconomy, it would be difficult to defend such an asymmetric
treatment of aggregate data. Realistically, we have to allow the data on xi to be random
the same as yi so an alternative formulation is to assume that xi is a random vector and
our formal assumption concerns the nature of the random process that produces xi . If xi

is taken to be a random vector, then Assumptions 1 through 4 become a statement about
the joint distribution of yi and xi . The precise nature of the regressor and how we view
the sampling process will be a major determinant of our derivation of the statistical
properties of our estimators and test statistics. In the end, the crucial assumption is
Assumption 3, the uncorrelatedness of X and ε. Now, we do note that this alternative
is not completely satisfactory either, since X may well contain nonstochastic elements,
including a constant, a time trend, and dummy variables that mark specific episodes
in time. This makes for an ambiguous conclusion, but there is a straightforward and
economically useful way out of it. We will assume that X can be a mixture of constants
and random variables, but the important assumption is that the ultimate source of the
data in X is unrelated (statistically and economically) to the source of ε.

ASSUMPTION: X may be fixed or random, but it is generated by a
mechanism that is unrelated to ε.

(2-10)

2.3.6 NORMALITY

It is convenient to assume that the disturbances are normally distributed, with zero mean
and constant variance. That is, we add normality of the distribution to Assumptions 3
and 4.

ASSUMPTION: ε | X ∼ N[0, σ 2I]. (2-11)

In view of our description of the source of ε, the conditions of the central limit the-
orem will generally apply, at least approximately, and the normality assumption will be
reasonable in most settings. A useful implication of Assumption 6 is that it implies that
observations on εi are statistically independent as well as uncorrelated. [See the third
point in Section B.8, (B-97) and (B-99).] Normality is often viewed as an unnecessary and
possibly inappropriate addition to the regression model. Except in those cases in which
some alternative distribution is explicitly assumed, as in the stochastic frontier model
discussed in Section 17.6.3, the normality assumption is probably quite reasonable.

Normality is not necessary to obtain many of the results we use in multiple regression
analysis, although it will enable us to obtain several exact statistical results. It does prove
useful in constructing test statistics, as shown in Section 4.7. Later, it will be possible
to relax this assumption and retain most of the statistical results we obtain here. (See
Sections 5.3, 5.4 and 6.4.)

2.4 SUMMARY AND CONCLUSIONS

This chapter has framed the linear regression model, the basic platform for model build-
ing in econometrics. The assumptions of the classical regression model are summarized
in Figure 2.2, which shows the two-variable case.
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E(y|x)

x0 x1 x2

� � �x

N(� � �x2, �2)

E(y|x � x2)

x

E(y|x � x1)

E(y|x � x0)

FIGURE 2.2 The Classical Regression Model.
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3

LEAST SQUARES

Q
3.1 INTRODUCTION

Chapter 2 defined the linear regression model as a set of characteristics of the population
that underlies an observed sample of data. There are a number of different approaches
to estimation of the parameters of the model. For a variety of practical and theoretical
reasons that we will explore as we progress through the next several chapters, the
method of least squares has long been the most popular. Moreover, in most cases in
which some other estimation method is found to be preferable, least squares remains
the benchmark approach, and often, the preferred method ultimately amounts to a
modification of least squares. In this chapter, we begin the analysis of this important set
of results by presenting a useful set of algebraic tools.

3.2 LEAST SQUARES REGRESSION

The unknown parameters of the stochastic relation yi = x′
iβ + εi are the objects of

estimation. It is necessary to distinguish between population quantities, such as β and εi ,
and sample estimates of them, denoted b and ei . The population regression is E [yi | xi ] =
x′

iβ, whereas our estimate of E [yi | xi ] is denoted

ŷi = x′
i b.

The disturbance associated with the ith data point is

εi = yi − x′
iβ.

For any value of b, we shall estimate εi with the residual

ei = yi − x′
i b.

From the definitions,

yi = x′
iβ + εi = x′

i b + ei .

These equations are summarized for the two variable regression in Figure 3.1.
The population quantity β is a vector of unknown parameters of the probability

distribution of yi whose values we hope to estimate with our sample data, (yi , xi ), i =
1, . . . , n. This is a problem of statistical inference. It is instructive, however, to begin by
considering the purely algebraic problem of choosing a vector b so that the fitted line
x′

i b is close to the data points. The measure of closeness constitutes a fitting criterion.

19
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y

�

e

a � bx

E(y) � � � �x

x

� � �x

ŷ � a � bx

FIGURE 3.1 Population and Sample Regression.

Although numerous candidates have been suggested, the one used most frequently is
least squares.1

3.2.1 THE LEAST SQUARES COEFFICIENT VECTOR

The least squares coefficient vector minimizes the sum of squared residuals:
n∑

i=1

e2
i0 =

n∑
i=1

(yi − x′
i b0)

2, (3-1)

where b0 denotes the choice for the coefficient vector. In matrix terms, minimizing the
sum of squares in (3-1) requires us to choose b0 to

Minimizeb0 S(b0) = e′
0e0 = (y − Xb0)

′(y − Xb0). (3-2)

Expanding this gives

e′
0e0 = y′y − b′

0X′y − y′Xb0 + b′
0X′Xb0 (3-3)

or

S(b0) = y′y − 2y′Xb0 + b0X′Xb0.

The necessary condition for a minimum is

∂S(b0)

∂b0
= −2X′y + 2X′Xb0 = 0. (3-4)

1We shall have to establish that the practical approach of fitting the line as closely as possible to the data by
least squares leads to estimates with good statistical properties. This makes intuitive sense and is, indeed, the
case. We shall return to the statistical issues in Chapters 4 and 5.
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Let b be the solution. Then b satisfies the least squares normal equations,

X′Xb = X′y. (3-5)

If the inverse of X′X exists, which follows from the full rank assumption (Assumption
A2 in Section 2.3), then the solution is

b = (X′X)−1X′y. (3-6)

For this solution to minimize the sum of squares,

∂2S(b)

∂b ∂b′ = 2X′X

must be a positive definite matrix. Let q = c′X′Xc for some arbitrary nonzero vector c.
Then

q = v′v =
n∑

i=1

v2
i , where v = Xc.

Unless every element of v is zero, q is positive. But if v could be zero, then v would be a
linear combination of the columns of X that equals 0, which contradicts the assumption
that X has full rank. Since c is arbitrary, q is positive for every nonzero c, which estab-
lishes that 2X′X is positive definite. Therefore, if X has full rank, then the least squares
solution b is unique and minimizes the sum of squared residuals.

3.2.2 APPLICATION: AN INVESTMENT EQUATION

To illustrate the computations in a multiple regression, we consider an example based
on the macroeconomic data in Data Table F3.1. To estimate an investment equation,
we first convert the investment and GNP series in Table F3.1 to real terms by dividing
them by the CPI, and then scale the two series so that they are measured in trillions of
dollars. The other variables in the regression are a time trend (1, 2, . . .), an interest rate,
and the rate of inflation computed as the percentage change in the CPI. These produce
the data matrices listed in Table 3.1. Consider first a regression of real investment on a
constant, the time trend, and real GNP, which correspond to x1, x2, and x3. (For reasons
to be discussed in Chapter 20, this is probably not a well specified equation for these
macroeconomic variables. It will suffice for a simple numerical example, however.)
Inserting the specific variables of the example, we have

b1n + b2	i Ti + b3	i Gi = 	i Yi ,

b1	i Ti + b2	i T2
i + b3	i Ti Gi = 	i Ti Yi ,

b1	i Gi + b2	i Ti Gi + b3	i G2
i = 	i Gi Yi .

A solution can be obtained by first dividing the first equation by n and rearranging it to
obtain

b1 = Ȳ − b2T̄ − b3Ḡ

= 0.20333 − b2 × 8 − b3 × 1.2873. (3-7)
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TABLE 3.1 Data Matrices

Real Real Interest Inflation
Investment Constant Trend GNP Rate Rate

(Y) (1) (T) (G) (R) (P)

0.161 1 1 1.058 5.16 4.40
0.172 1 2 1.088 5.87 5.15
0.158 1 3 1.086 5.95 5.37
0.173 1 4 1.122 4.88 4.99
0.195 1 5 1.186 4.50 4.16
0.217 1 6 1.254 6.44 5.75
0.199 1 7 1.246 7.83 8.82

y = 0.163 X = 1 8 1.232 6.25 9.31
0.195 1 9 1.298 5.50 5.21
0.231 1 10 1.370 5.46 5.83
0.257 1 11 1.439 7.46 7.40
0.259 1 12 1.479 10.28 8.64
0.225 1 13 1.474 11.77 9.31
0.241 1 14 1.503 13.42 9.44
0.204 1 15 1.475 11.02 5.99

Note: Subsequent results are based on these values. Slightly different results are obtained if the raw data in
Table F3.1 are input to the computer program and transformed internally.

Insert this solution in the second and third equations, and rearrange terms again to yield
a set of two equations:

b2	i (Ti − T̄ )2 + b3	i (Ti − T̄ )(Gi − Ḡ ) = 	i (Ti − T̄ )(Yi − Ȳ ),

b2	i (Ti − T̄ )(Gi − Ḡ ) + b3	i (Gi − Ḡ )2 = 	i (Gi − Ḡ )(Yi − Ȳ ).
(3-8)

This result shows the nature of the solution for the slopes, which can be computed
from the sums of squares and cross products of the deviations of the variables. Letting
lowercase letters indicate variables measured as deviations from the sample means, we
find that the least squares solutions for b2 and b3 are

b2 = 	i ti yi	i g2
i − 	i gi yi	i ti gi

	i t2
i 	i g2

i − (	i gi ti )2
= 1.6040(0.359609) − 0.066196(9.82)

280(0.359609) − (9.82)2
= −0.0171984,

b3 = 	i gi yi	i t2
i − 	i ti yi	i ti gi

	i t2
i 	i g2

i − (	i gi ti )2
= 0.066196(280) − 1.6040(9.82)

280(0.359609) − (9.82)2
= 0.653723.

With these solutions in hand, the intercept can now be computed using (3-7); b1 =
− 0.500639.

Suppose that we just regressed investment on the constant and GNP, omitting the
time trend. At least some of the correlation we observe in the data will be explainable
because both investment and real GNP have an obvious time trend. Consider how this
shows up in the regression computation. Denoting by “byx” the slope in the simple,
bivariate regression of variable y on a constant and the variable x, we find that the slope
in this reduced regression would be

byg = 	i gi yi

	i g2
i

= 0.184078. (3-9)
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Now divide both the numerator and denominator in the expression for b3 by 	i t2
i 	i g2

i .
By manipulating it a bit and using the definition of the sample correlation between G
and T, r2

gt = (	i gi ti )2/(	i g2
i 	i t2

i ), and defining byt and btg likewise, we obtain

byg·t = byg

1 − r2
gt

− byt btg

1 − r2
gt

= 0.653723. (3-10)

(The notation “byg·t ” used on the left-hand side is interpreted to mean the slope in
the regression of y on g “in the presence of t .”) The slope in the multiple regression
differs from that in the simple regression by including a correction that accounts for the
influence of the additional variable t on both Y and G. For a striking example of this
effect, in the simple regression of real investment on a time trend, byt = 1.604/280 =
0.0057286, a positive number that reflects the upward trend apparent in the data. But, in
the multiple regression, after we account for the influence of GNP on real investment,
the slope on the time trend is −0.0171984, indicating instead a downward trend. The
general result for a three-variable regression in which x1 is a constant term is

by2·3 = by2 − by3b32

1 − r2
23

. (3-11)

It is clear from this expression that the magnitudes of by2·3 and by2 can be quite different.
They need not even have the same sign.

As a final observation, note what becomes of byg·t in (3-10) if r2
gt equals zero. The first

term becomes byg , whereas the second becomes zero. (If G and T are not correlated,
then the slope in the regression of G on T, btg , is zero.) Therefore, we conclude the
following.

THEOREM 3.1 Orthogonal Regression
If the variables in a multiple regression are not correlated (i.e., are orthogonal),
then the multiple regression slopes are the same as the slopes in the individual
simple regressions.

In practice, you will never actually compute a multiple regression by hand or with a
calculator. For a regression with more than three variables, the tools of matrix algebra
are indispensable (as is a computer). Consider, for example, an enlarged model of
investment that includes—in addition to the constant, time trend, and GNP—an interest
rate and the rate of inflation. Least squares requires the simultaneous solution of five
normal equations. Letting X and y denote the full data matrices shown previously, the
normal equations in (3-5) are




15.000 120.00 19.310 111.79 99.770
120.000 1240.0 164.30 1035.9 875.60

19.310 164.30 25.218 148.98 131.22
111.79 1035.9 148.98 953.86 799.02

99.770 875.60 131.22 799.02 716.67







b1

b2

b3

b4

b5




=




3.0500
26.004

3.9926
23.521
20.732




.
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The solution is

b = (X′X)−1X′y = (−0.50907, −0.01658, 0.67038, −0.002326, −0.00009401)′.

3.2.3 ALGEBRAIC ASPECTS OF THE LEAST SQUARES SOLUTION

The normal equations are

X′Xb − X′y = −X′(y − Xb) = −X′e = 0. (3-12)

Hence, for every column xk of X, x′
ke = 0. If the first column of X is a column of 1s,

then there are three implications.

1. The least squares residuals sum to zero. This implication follows from x′
1e = i′e =

	i ei = 0.
2. The regression hyperplane passes through the point of means of the data. The first

normal equation implies that ȳ = x̄′b.
3. The mean of the fitted values from the regression equals the mean of the actual

values. This implication follows from point 1 because the fitted values are just
ŷ = Xb.

It is important to note that none of these results need hold if the regression does not
contain a constant term.

3.2.4 PROJECTION

The vector of least squares residuals is

e = y − Xb. (3-13)

Inserting the result in (3-6) for b gives

e = y − X(X′X)−1X′y = (I − X(X′X)−1X′)y = My. (3-14)

The n × n matrix M defined in (3-14) is fundamental in regression analysis. You can
easily show that M is both symmetric (M = M′) and idempotent (M = M2). In view of
(3-13), we can interpret M as a matrix that produces the vector of least squares residuals
in the regression of y on X when it premultiplies any vector y. (It will be convenient
later on to refer to this matrix as a “residual maker.”) It follows that

MX = 0. (3-15)

One way to interpret this result is that if X is regressed on X, a perfect fit will result and
the residuals will be zero.

Finally, (3-13) implies that y = Xb + e, which is the sample analog to (2-3). (See
Figure 3.1 as well.) The least squares results partition y into two parts, the fitted values
ŷ = Xb and the residuals e. [See Section A.3.7, especially (A-54).] Since MX = 0, these
two parts are orthogonal. Now, given (3-13),

ŷ = y − e = (I − M)y = X(X′X)−1X′y = Py. (3-16)

The matrix P, which is also symmetric and idempotent, is a projection matrix. It is the
matrix formed from X such that when a vector y is premultiplied by P, the result is
the fitted values in the least squares regression of y on X. This is also the projection of
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the vector y into the column space of X. (See Sections A3.5 and A3.7.) By multiplying
it out, you will find that, like M, P is symmetric and idempotent. Given the earlier results,
it also follows that M and P are orthogonal;

PM = MP = 0.

Finally, as might be expected from (3-15)

PX = X.

As a consequence of (3-15) and (3-16), we can see that least squares partitions the
vector y into two orthogonal parts,

y = Py + My = projection + residual.

The result is illustrated in Figure 3.2 for the two variable case. The gray shaded plane is
the column space of X. The projection and residual are the orthogonal dotted rays. We
can also see the Pythagorean theorem at work in the sums of squares,

y′y = y′P′Py + y′M′My

= ŷ′ŷ + e′e

In manipulating equations involving least squares results, the following equivalent
expressions for the sum of squared residuals are often useful:

e′e = y′M′My = y′My = y′e = e′y,

e′e = y′y − b′X′Xb = y′y − b′X′y = y′y − y′Xb.

FIGURE 3.2 Projection of y into the column space of X.

y

ŷ

x1

x2

e
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3.3 PARTITIONED REGRESSION AND PARTIAL
REGRESSION

It is common to specify a multiple regression model when, in fact, interest centers on
only one or a subset of the full set of variables. Consider the earnings equation discussed
in Example 2.2. Although we are primarily interested in the association of earnings and
education, age is, of necessity, included in the model. The question we consider here is
what computations are involved in obtaining, in isolation, the coefficients of a subset of
the variables in a multiple regression (for example, the coefficient of education in the
aforementioned regression).

Suppose that the regression involves two sets of variables X1 and X2. Thus,

y = Xβ + ε = X1β1 + X2β2 + ε.

What is the algebraic solution for b2? The normal equations are

(1)

(2)

[
X′

1X1 X′
1X2

X′
2X1 X′

2X2

][
b1

b2

]
=

[
X′

1y
X′

2y

]
. (3-17)

A solution can be obtained by using the partitioned inverse matrix of (A-74). Alterna-
tively, (1) and (2) in (3-17) can be manipulated directly to solve for b2. We first solve
(1) for b1:

b1 = (X′
1X1)

−1X′
1y − (X′

1X1)
−1X′

1X2b2 = (X′
1X1)

−1X′
1(y − X2b2). (3-18)

This solution states that b1 is the set of coefficients in the regression of y on X1, minus
a correction vector. We digress briefly to examine an important result embedded in
(3-18). Suppose that X′

1X2 = 0. Then, b1 = (X′
1X1)

−1X′
1y, which is simply the coefficient

vector in the regression of y on X1. The general result, which we have just proved is the
following theorem.

THEOREM 3.2 Orthogonal Partitioned Regression
In the multiple linear least squares regression of y on two sets of variables X1 and
X2, if the two sets of variables are orthogonal, then the separate coefficient vectors
can be obtained by separate regressions of y on X1 alone and y on X2 alone.

Note that Theorem 3.2 encompasses Theorem 3.1.
Now, inserting (3-18) in equation (2) of (3-17) produces

X′
2X1(X′

1X1)
−1X′

1y − X′
2X1(X′

1X1)
−1X′

1X2b2 + X′
2X2b2 = X′

2y.

After collecting terms, the solution is

b2 = [
X′

2(I − X1(X′
1X1)

−1X′
1)X2

]−1[X′
2(I − X1(X′

1X1)
−1X′

1)y
]

= (X′
2M1X2)

−1(X′
2M1y). (3-19)

The matrix appearing in the parentheses inside each set of square brackets is the “resid-
ual maker” defined in (3-14), in this case defined for a regression on the columns of X1.
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Thus, M1X2 is a matrix of residuals; each column of M1X2 is a vector of residuals in the
regression of the corresponding column of X2 on the variables in X1. By exploiting the
fact that M1, like M, is idempotent, we can rewrite (3-19) as

b2 = (X∗′
2 X∗

2)
−1X∗′

2 y∗, (3-20)

where

X∗
2 = M1X2 and y∗ = M1y.

This result is fundamental in regression analysis.

THEOREM 3.3 Frisch–Waugh Theorem
In the linear least squares regression of vector y on two sets of variables, X1 and
X2, the subvector b2 is the set of coefficients obtained when the residuals from a
regression of y on X1 alone are regressed on the set of residuals obtained when
each column of X2 is regressed on X1.

This process is commonly called partialing out or netting out the effect of X1.
For this reason, the coefficients in a multiple regression are often called the partial
regression coefficients. The application of this theorem to the computation of a single
coefficient as suggested at the beginning of this section is detailed in the following:
Consider the regression of y on a set of variables X and an additional variable z. Denote
the coefficients b and c.

COROLLARY 3.3.1 Individual Regression Coefficients
The coefficient on z in a multiple regression of y on W = [X, z] is computed as
c = (z′Mz)−1(z′My) = (z∗′z∗)−1z∗′y∗ where z∗ and y∗ are the residual vectors from
least squares regressions of z and y on X; z∗ = Mz and y∗ = My where M is
defined in (3-14).

In terms of Example 2.2, we could obtain the coefficient on education in the multiple
regression by first regressing earnings and education on age (or age and age squared)
and then using the residuals from these regressions in a simple regression. In a classic
application of this latter observation, Frisch and Waugh (1933) (who are credited with
the result) noted that in a time-series setting, the same results were obtained whether
a regression was fitted with a time-trend variable or the data were first “detrended” by
netting out the effect of time, as noted earlier, and using just the detrended data in a
simple regression.2

2Recall our earlier investment example.
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As an application of these results, consider the case in which X1 is i, a column of
1s in the first column of X. The solution for b2 in this case will then be the slopes in a
regression with a constant term. The coefficient in a regression of any variable z on i is
[i′i]−1i′z = z̄, the fitted values are iz̄, and the residuals are zi − z̄. When we apply this to
our previous results, we find the following.

COROLLARY 3.3.2 Regression with a Constant Term
The slopes in a multiple regression that contains a constant term are obtained
by transforming the data to deviations from their means and then regressing the
variable y in deviation form on the explanatory variables, also in deviation form.

[We used this result in (3-8).] Having obtained the coefficients on X2, how can we
recover the coefficients on X1 (the constant term)? One way is to repeat the exercise
while reversing the roles of X1 and X2. But there is an easier way. We have already
solved for b2. Therefore, we can use (3-18) in a solution for b1. If X1 is just a column of
1s, then the first of these produces the familiar result

b1 = ȳ − x̄2b2 − · · · − x̄KbK (3-21)

[which is used in (3-7).]

3.4 PARTIAL REGRESSION AND PARTIAL
CORRELATION COEFFICIENTS

The use of multiple regression involves a conceptual experiment that we might not be
able to carry out in practice, the ceteris paribus analysis familiar in economics. To pursue
Example 2.2, a regression equation relating earnings to age and education enables
us to do the conceptual experiment of comparing the earnings of two individuals of
the same age with different education levels, even if the sample contains no such pair
of individuals. It is this characteristic of the regression that is implied by the term
partial regression coefficients. The way we obtain this result, as we have seen, is first
to regress income and education on age and then to compute the residuals from this
regression. By construction, age will not have any power in explaining variation in these
residuals. Therefore, any correlation between income and education after this “purging”
is independent of (or after removing the effect of) age.

The same principle can be applied to the correlation between two variables. To
continue our example, to what extent can we assert that this correlation reflects a direct
relationship rather than that both income and education tend, on average, to rise as
individuals become older? To find out, we would use a partial correlation coefficient,
which is computed along the same lines as the partial regression coefficient. In the con-
text of our example, the partial correlation coefficient between income and education,
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controlling for the effect of age, is obtained as follows:

1. y∗ = the residuals in a regression of income on a constant and age.
2. z∗ = the residuals in a regression of education on a constant and age.
3. The partial correlation r∗

yz is the simple correlation between y∗ and z∗.

This calculation might seem to require a formidable amount of computation. There
is, however, a convenient shortcut. Once the multiple regression is computed, the t ratio
in (4-13) and (4-14) for testing the hypothesis that the coefficient equals zero (e.g., the
last column of Table 4.2) can be used to compute

r∗2
yz = t2

z

t2
z + degrees of freedom

. (3-22)

The proof of this less than perfectly intuitive result will be useful to illustrate some
results on partitioned regression and to put into context two very useful results from
least squares algebra. As in Corollary 3.3.1, let W denote the n × (K + 1) regressor
matrix [X, z] and let M = I − X(X′X)−1X′. We assume that there is a constant term in
X, so that the vectors of residuals y∗ = My and z∗ = Mz will have zero sample means.
The squared partial correlation is

r∗2
yz = (z′

∗y∗)2

(z′∗z∗)(y′∗y∗)
.

Let c and u denote the coefficient on z and the vector of residuals in the multiple
regression of y on W. The squared t ratio in (3-22) is

t2
z = c2

[
u′u

n − (K + 1)

]
(W′W)−1

K+1,K+1

,

where (W′W)−1
K+1,K+1 is the (K + 1) (last) diagonal element of (W′W)−1. The partitioned

inverse formula in (A-74) can be applied to the matrix [X, z]′[X, z]. This matrix appears
in (3-17), with X1 = X and X2 = z. The result is the inverse matrix that appears in (3-19)
and (3-20), which implies the first important result.

THEOREM 3.4 Diagonal Elements of the Inverse
of a Moment Matrix

If W = [X, z], then the last diagonal element of (W′W)−1 is (z′Mz)−1 = (z′
∗z∗)−1,

where z∗ = Mz and M = I − X(X′X)−1X′.

(Note that this result generalizes the development in Section A.2.8 where X is only
the constant term.) If we now use Corollary 3.3.1 and Theorem 3.4 for c, after some
manipulation, we obtain

t2
z

t2
z + [n − (K + 1)]

= (z′
∗y∗)2

(z′∗y∗)2 + (u′u)(z′∗z∗)
= r∗2

yz

r∗2
yz + (u′u)/(y′∗y∗)

,
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where

u = y − Xd − zc

is the vector of residuals when y is regressed on X and z. Note that unless X′z = 0,

d will not equal b = (X′X)−1X′y. (See Section 8.2.1.) Moreover, unless c = 0, u will not
equal e = y − Xb. Now we have shown in Corollary 3.3.1 that c = (z′

∗z∗)−1(z′
∗y∗). We

also have, from (3-18), that the coefficients on X in the regression of y on W = [X, z]
are

d = (X′X)−1X′(y − zc) = b − (X′X)−1X′zc.

So, inserting this expression for d in that for u gives

u = y − Xb + X(X′X)−1X′zc − zc = e − Mzc = e − z∗c.

Now

u′u = e′e + c2(z′
∗z∗) − 2cz′

∗e.

But e = My = y∗ and z′
∗e = z′

∗y∗ = c(z′
∗z∗). Inserting this in u′u gives our second useful

result.

THEOREM 3.5 Change in the Sum of Squares When a Variable Is
Added to a Regression

If e′e is the sum of squared residuals when y is regressed on X and u′u is the sum
of squared residuals when y is regressed on X and z, then

u′u = e′e − c2(z′
∗z∗) ≤ e′e, (3-23)

where c is the coefficient on z in the long regression and z∗ =
[I − X(X′X)−1X′]z is the vector of residuals when z is regressed on X.

Returning to our derivation, we note that e′e = y′
∗y∗ and c2(z′

∗z∗) = (z′
∗y∗)2/(z′

∗z∗).
Therefore, (u′u)/(y′

∗y∗) = 1 − r∗2
yz , and we have our result.

Example 3.1 Partial Correlations
For the data the application in Section 3.2.2, the simple correlations between investment and
the regressors r yk and the partial correlations r ∗

yk between investment and the four regressors
(given the other variables) are listed in Table 3.2. As is clear from the table, there is no
necessary relation between the simple and partial correlation coefficients. One thing worth

TABLE 3.2 Correlations of Investment with Other Variables

Simple Partial
Correlation Correlation

Time 0.7496 −0.9360
GNP 0.8632 0.9680
Interest 0.5871 −0.5167
Inflation 0.4777 −0.0221
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noting is the signs of the coefficients. The signs of the partial correlation coefficients are the
same as the signs of the respective regression coefficients, three of which are negative. All
the simple correlation coefficients are positive because of the latent “effect” of time.

3.5 GOODNESS OF FIT AND THE ANALYSIS
OF VARIANCE

The original fitting criterion, the sum of squared residuals, suggests a measure of the
fit of the regression line to the data. However, as can easily be verified, the sum of
squared residuals can be scaled arbitrarily just by multiplying all the values of y by the
desired scale factor. Since the fitted values of the regression are based on the values
of x, we might ask instead whether variation in x is a good predictor of variation in y.
Figure 3.3 shows three possible cases for a simple linear regression model. The measure
of fit described here embodies both the fitting criterion and the covariation of y and x.

Variation of the dependent variable is defined in terms of deviations from its mean,
(yi − ȳ). The total variation in y is the sum of squared deviations:

SST =
n∑

i=1

(yi − ȳ)2.

FIGURE 3.3 Sample Data.
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(xi, yi)

yi � ŷi ei

yi

ŷi � ȳ

x

y

ȳ

ŷi

yi � ȳ

xi � x̄

x̄ xi

b(xi � x̄)

FIGURE 3.4 Decomposition of yi .

In terms of the regression equation, we may write the full set of observations as

y = Xb + e = ŷ + e. (3-24)

For an individual observation, we have

yi = ŷi + ei = x′
i b + ei .

If the regression contains a constant term, then the residuals will sum to zero and the
mean of the predicted values of yi will equal the mean of the actual values. Subtracting
ȳ from both sides and using this result and result 2 in Section 3.2.3 gives

yi − ȳ = ŷi − ȳ + ei = (xi − x̄)′b + ei .

Figure 3.4 illustrates the computation for the two-variable regression. Intuitively, the
regression would appear to fit well if the deviations of y from its mean are more largely
accounted for by deviations of x from its mean than by the residuals. Since both terms in
this decomposition sum to zero, to quantify this fit, we use the sums of squares instead.
For the full set of observations, we have

M0y = M0Xb + M0e,

where M0 is the n × n idempotent matrix that transforms observations into deviations
from sample means. (See Section A.2.8.) The column of M0X corresponding to the
constant term is zero, and, since the residuals already have mean zero, M0e = e. Then,
since e′M0X = e′X = 0, the total sum of squares is

y′M0y = b′X′M0Xb + e′e.

Write this as total sum of squares = regression sum of squares + error sum of squares,
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or

SST = SSR + SSE. (3-25)

(Note that this is precisely the partitioning that appears at the end of Section 3.2.4.)
We can now obtain a measure of how well the regression line fits the data by

using the

coefficient of determination:
SSR
SST

= b′X′M0Xb
y′M0y

= 1 − e′e
y′M0y

. (3-26)

The coefficient of determination is denoted R2. As we have shown, it must be between
0 and 1, and it measures the proportion of the total variation in y that is accounted for
by variation in the regressors. It equals zero if the regression is a horizontal line, that
is, if all the elements of b except the constant term are zero. In this case, the predicted
values of y are always ȳ, so deviations of x from its mean do not translate into different
predictions for y. As such, x has no explanatory power. The other extreme, R2 = 1,
occurs if the values of x and y all lie in the same hyperplane (on a straight line for a
two variable regression) so that the residuals are all zero. If all the values of yi lie on a
vertical line, then R2 has no meaning and cannot be computed.

Regression analysis is often used for forecasting. In this case, we are interested in
how well the regression model predicts movements in the dependent variable. With this
in mind, an equivalent way to compute R2 is also useful. First

b′X′M0Xb = ŷ′M0ŷ,

but ŷ = Xb, y = ŷ + e, M0e = e, and X′e = 0, so ŷ′M0ŷ = ŷ′M0y. Multiply R2 =
ŷ′M0ŷ/y′M0y = ŷ′M0y/y′M0y by 1 = ŷ′M0y/ŷ′M0ŷ to obtain

R2 = [	i (yi − ȳ)(ŷi − ˆ̄y)]2

[	i (yi − ȳ)2][	i (ŷi − ˆ̄y)2]
, (3-27)

which is the squared correlation between the observed values of y and the predictions
produced by the estimated regression equation.

Example 3.2 Fit of a Consumption Function
The data plotted in Figure 2.1 are listed in Appendix Table F2.1. For these data, where y is
C and x is X , we have ȳ = 273.2727, x̄ = 323.2727, Syy = 12,618.182, Sxx = 12,300.182,
Sxy = 8,423.182, so SST = 12,618.182, b = 8,423.182/12,300.182 = 0.6848014, SSR =
b2Sxx = 5,768.2068, and SSE = SST−SSR = 6,849.975. Then R2 = b2Sxx/SST = 0.457135.
As can be seen in Figure 2.1, this is a moderate fit, although it is not particularly good
for aggregate time-series data. On the other hand, it is clear that not accounting for the
anomalous wartime data has degraded the fit of the model. This value is the R2 for the model
indicated by the dotted line in the figure. By simply omitting the years 1942–1945 from the
sample and doing these computations with the remaining seven observations—the heavy
solid line—we obtain an R2 of 0.93697. Alternatively, by creating a variable WAR which equals
1 in the years 1942–1945 and zero otherwise and including this in the model, which produces
the model shown by the two solid lines, the R2 rises to 0.94639.

We can summarize the calculation of R2 in an analysis of variance table, which
might appear as shown in Table 3.3.

Example 3.3 Analysis of Variance for an Investment Equation
The analysis of variance table for the investment equation of Section 3.2.2 is given in
Table 3.4.



Greene-50240 book June 3, 2002 9:52

34 CHAPTER 3 ✦ Least Squares

TABLE 3.3 Analysis of Variance

Source Degrees of Freedom Mean Square

Regression b′X′y − nȳ2 K − 1 (assuming a constant term)

Residual e′e n − K s2

Total y′y − nȳ2 n − 1 Syy/(n − 1) = s2
y

Coefficient of R2 = 1 − e′e/(y′y − nȳ2)
determination

TABLE 3.4 Analysis of Variance for the Investment Equation

Source Degrees of Freedom Mean Square

Regression 0.0159025 4 0.003976
Residual 0.0004508 10 0.00004508
Total 0.016353 14 0.0011681

R2 = 0.0159025/0.016353 = 0.97245.

3.5.1 THE ADJUSTED R-SQUARED AND A MEASURE OF FIT

There are some problems with the use of R2 in analyzing goodness of fit. The first
concerns the number of degrees of freedom used up in estimating the parameters.
R2 will never decrease when another variable is added to a regression equation. Equa-
tion (3-23) provides a convenient means for us to establish this result. Once again, we
are comparing a regression of y on X with sum of squared residuals e′e to a regression of
y on X and an additional variable z, which produces sum of squared residuals u′u. Recall
the vectors of residuals z∗ = Mz and y∗ = My = e, which implies that e′e = (y′

∗y∗). Let
c be the coefficient on z in the longer regression. Then c = (z′

∗z∗)−1(z′
∗y∗), and inserting

this in (3-23) produces

u′u = e′e − (z′
∗y∗)2

(z′∗z∗)
= e′e

(
1 − r∗2

yz

)
, (3-28)

where r∗
yz is the partial correlation between y and z, controlling for X. Now divide

through both sides of the equality by y′M0y. From (3-26), u′u/y′M0y is (1 − R2
Xz) for the

regression on X and z and e′e/y′M0y is (1 − R2
X). Rearranging the result produces the

following:

THEOREM 3.6 Change in R2 When a Variable Is Added
to a Regression

Let R2
Xz be the coefficient of determination in the regression of y on X and an

additional variable z, let R2
X be the same for the regression of y on X alone, and

let r∗
yz be the partial correlation between y and z, controlling for X. Then

R2
Xz = R2

X + (
1 − R2

X

)
r∗2

yz . (3-29)
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Thus, the R2 in the longer regression cannot be smaller. It is tempting to exploit
this result by just adding variables to the model; R2 will continue to rise to its limit
of 1.3 The adjusted R2 (for degrees of freedom), which incorporates a penalty for these
results is computed as follows:

R̄2 = 1 − e′e/(n − K)

y′M0y/(n − 1)
.4 (3-30)

For computational purposes, the connection between R2 and R̄2 is

R̄2 = 1 − n − 1
n − K

(1 − R2).

The adjusted R2 may decline when a variable is added to the set of independent variables.
Indeed, R̄2 may even be negative. To consider an admittedly extreme case, suppose that
x and y have a sample correlation of zero. Then the adjusted R2 will equal −1/(n − 2).
(Thus, the name “adjusted R-squared” is a bit misleading—as can be seen in (3-30),
R̄2 is not actually computed as the square of any quantity.) Whether R̄2 rises or falls
depends on whether the contribution of the new variable to the fit of the regression
more than offsets the correction for the loss of an additional degree of freedom. The
general result (the proof of which is left as an exercise) is as follows.

THEOREM 3.7 Change in R̄2 When a Variable Is Added
to a Regression

In a multiple regression, R̄2 will fall (rise) when the variable x is deleted from the
regression if the t ratio associated with this variable is greater (less) than 1.

We have shown that R2 will never fall when a variable is added to the regression.
We now consider this result more generally. The change in the residual sum of squares
when a set of variables X2 is added to the regression is

e′
1,2e1,2 = e′

1e1 − b′
2X′

2M1X2b2,

where we use subscript 1 to indicate the regression based on X1 alone and 1,2 to indicate
the use of both X1 and X2. The coefficient vector b2 is the coefficients on X2 in the
multiple regression of y on X1 and X2. [See (3-19) and (3-20) for definitions of b2 and
M1.] Therefore,

R2
1,2 = 1 − e′

1e1 − b′
2X′

2M1X2b2

y′M0y
= R2

1 + b′
2X′

2M1X2b2

y′M0y
,

3This result comes at a cost, however. The parameter estimates become progressively less precise as we do
so. We will pursue this result in Chapter 4.
4This measure is sometimes advocated on the basis of the unbiasedness of the two quantities in the fraction.
Since the ratio is not an unbiased estimator of any population quantity, it is difficult to justify the adjustment
on this basis.
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which is greater than R2
1 unless b2 equals zero. (M1X2 could not be zero unless X2 was a

linear function of X1, in which case the regression on X1 and X2 could not be computed.)
This equation can be manipulated a bit further to obtain

R2
1,2 = R2

1 + y′M1y
y′M0y

b′
2X′

2M1X2b2

y′M1y
.

But y′M1y = e′
1e1, so the first term in the product is 1 − R2

1 . The second is the multiple
correlation in the regression of M1y on M1X2, or the partial correlation (after the effect
of X1 is removed) in the regression of y on X2. Collecting terms, we have

R2
1,2 = R2

1 + (
1 − R2

1

)
r2

y2·1.

[This is the multivariate counterpart to (3-29).]
Therefore, it is possible to push R2 as high as desired just by adding regressors.

This possibility motivates the use of the adjusted R-squared in (3-30), instead of R2

as a method of choosing among alternative models. Since R̄2 incorporates a penalty
for reducing the degrees of freedom while still revealing an improvement in fit, one
possibility is to choose the specification that maximizes R̄2. It has been suggested that the
adjusted R-squared does not penalize the loss of degrees of freedom heavily enough.5

Some alternatives that have been proposed for comparing models (which we index
by j) are

R̃
2
j = 1 − n + Kj

n − Kj

(
1 − R2

j

)
,

which minimizes Amemiya’s (1985) prediction criterion,

PCj = e′
j e j

n − Kj

(
1 + Kj

n

)
= s2

j

(
1 + Kj

n

)

and the Akaike and Bayesian information criteria which are given in (8-18) and (8-19).

3.5.2 R-SQUARED AND THE CONSTANT TERM IN THE MODEL

A second difficulty with R2 concerns the constant term in the model. The proof that
0 ≤ R2 ≤ 1 requires X to contain a column of 1s. If not, then (1) M0e �= e and
(2) e′M0X �= 0, and the term 2e′M0Xb in y′M0y = (M0Xb + M0e)′(M0Xb + M0e)

in the preceding expansion will not drop out. Consequently, when we compute

R2 = 1 − e′e
y′M0y

,

the result is unpredictable. It will never be higher and can be far lower than the same
figure computed for the regression with a constant term included. It can even be negative.
Computer packages differ in their computation of R2. An alternative computation,

R2 = b′X′y
y′M0y

,

is equally problematic. Again, this calculation will differ from the one obtained with the
constant term included; this time, R2 may be larger than 1. Some computer packages

5See, for example, Amemiya (1985, pp. 50–51).
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bypass these difficulties by reporting a third “R2,” the squared sample correlation be-
tween the actual values of y and the fitted values from the regression. This approach
could be deceptive. If the regression contains a constant term, then, as we have seen,
all three computations give the same answer. Even if not, this last one will still produce
a value between zero and one. But, it is not a proportion of variation explained. On
the other hand, for the purpose of comparing models, this squared correlation might
well be a useful descriptive device. It is important for users of computer packages to be
aware of how the reported R2 is computed. Indeed, some packages will give a warning
in the results when a regression is fit without a constant or by some technique other
than linear least squares.

3.5.3 COMPARING MODELS

The value of R2 we obtained for the consumption function in Example 3.2 seems high
in an absolute sense. Is it? Unfortunately, there is no absolute basis for comparison.
In fact, in using aggregate time-series data, coefficients of determination this high are
routine. In terms of the values one normally encounters in cross sections, an R2 of 0.5
is relatively high. Coefficients of determination in cross sections of individual data as
high as 0.2 are sometimes noteworthy. The point of this discussion is that whether a
regression line provides a good fit to a body of data depends on the setting.

Little can be said about the relative quality of fits of regression lines in different
contexts or in different data sets even if supposedly generated by the same data gener-
ating mechanism. One must be careful, however, even in a single context, to be sure to
use the same basis for comparison for competing models. Usually, this concern is about
how the dependent variable is computed. For example, a perennial question concerns
whether a linear or loglinear model fits the data better. Unfortunately, the question
cannot be answered with a direct comparison. An R2 for the linear regression model is
different from an R2 for the loglinear model. Variation in y is different from variation
in ln y. The latter R2 will typically be larger, but this does not imply that the loglinear
model is a better fit in some absolute sense.

It is worth emphasizing that R2 is a measure of linear association between x and y.
For example, the third panel of Figure 3.3 shows data that might arise from the model

yi = α + β(xi − γ )2 + εi .

(The constant γ allows x to be distributed about some value other than zero.) The
relationship between y and x in this model is nonlinear, and a linear regression would
find no fit.

A final word of caution is in order. The interpretation of R2 as a proportion of
variation explained is dependent on the use of least squares to compute the fitted
values. It is always correct to write

yi − ȳ = (ŷi − ȳ) + ei

regardless of how ŷi is computed. Thus, one might use ŷi = exp(l̂nyi ) from a loglinear
model in computing the sum of squares on the two sides, however, the cross-product
term vanishes only if least squares is used to compute the fitted values and if the model
contains a constant term. Thus, in in the suggested example, it would still be unclear
whether the linear or loglinear model fits better; the cross-product term has been ignored
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in computing R2 for the loglinear model. Only in the case of least squares applied to
a linear equation with a constant term can R2 be interpreted as the proportion of
variation in y explained by variation in x. An analogous computation can be done
without computing deviations from means if the regression does not contain a constant
term. Other purely algebraic artifacts will crop up in regressions without a constant,
however. For example, the value of R2 will change when the same constant is added
to each observation on y, but it is obvious that nothing fundamental has changed in
the regression relationship. One should be wary (even skeptical) in the calculation and
interpretation of fit measures for regressions without constant terms.

3.6 SUMMARY AND CONCLUSIONS

This chapter has described the purely algebraic exercise of fitting a line (hyperplane) to
a set of points using the method of least squares. We considered the primary problem
first, using a data set of n observations on K variables. We then examined several aspects
of the solution, including the nature of the projection and residual maker matrices and
several useful algebraic results relating to the computation of the residuals and their
sum of squares. We also examined the difference between gross or simple regression
and correlation and multiple regression by defining “partial regression coefficients” and
“partial correlation coefficients.” The Frisch-Waugh Theorem (3.3) is a fundamentally
useful tool in regression analysis which enables us to obtain in closed form the expression
for a subvector of a vector of regression coefficients. We examined several aspects of
the partitioned regression, including how the fit of the regression model changes when
variables are added to it or removed from it. Finally, we took a closer look at the
conventional measure of how well the fitted regression line predicts or “fits” the data.

Key Terms and Concepts

• Adjusted R-squared
• Analysis of variance
• Bivariate regression
• Coefficient of determination
• Disturbance
• Fitting criterion
• Frisch-Waugh theorem
• Goodness of fit
• Least squares
• Least squares normal

equations

• Moment matrix
• Multiple correlation
• Multiple regression
• Netting out
• Normal equations
• Orthogonal regression
• Partial correlation

coefficient
• Partial regression coefficient
• Partialing out
• Partitioned regression

• Prediction criterion
• Population quantity
• Population regression
• Projection
• Projection matrix
• Residual
• Residual maker
• Total variation

Exercises

1. The Two Variable Regression. For the regression model y = α + βx + ε,

a. Show that the least squares normal equations imply 	i ei = 0 and 	i xi ei = 0.
b. Show that the solution for the constant term is a = ȳ − bx̄.
c. Show that the solution for b is b = [

∑n
i=1(xi − x̄)(yi − ȳ)]/[

∑n
i=1(xi − x̄)2].
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d. Prove that these two values uniquely minimize the sum of squares by showing
that the diagonal elements of the second derivatives matrix of the sum of squares
with respect to the parameters are both positive and that the determinant is
4n[(

∑n
i=1 x2

i ) − nx̄2] = 4n[
∑n

i=1(xi − x̄)2], which is positive unless all values of
x are the same.

2. Change in the sum of squares. Suppose that b is the least squares coefficient vector
in the regression of y on X and that c is any other K × 1 vector. Prove that the
difference in the two sums of squared residuals is

(y − Xc)′(y − Xc) − (y − Xb)′(y − Xb) = (c − b)′X′X(c − b).

Prove that this difference is positive.
3. Linear Transformations of the data. Consider the least squares regression of y on

K variables (with a constant) X. Consider an alternative set of regressors Z = XP,
where P is a nonsingular matrix. Thus, each column of Z is a mixture of some of the
columns of X. Prove that the residual vectors in the regressions of y on X and y on
Z are identical. What relevance does this have to the question of changing the fit of
a regression by changing the units of measurement of the independent variables?

4. Partial Frisch and Waugh. In the least squares regression of y on a constant and X,
to compute the regression coefficients on X, we can first transform y to deviations
from the mean ȳ and, likewise, transform each column of X to deviations from the
respective column mean; second, regress the transformed y on the transformed X
without a constant. Do we get the same result if we only transform y? What if we
only transform X?

5. Residual makers. What is the result of the matrix product M1M where M1 is defined
in (3-19) and M is defined in (3-14)?

6. Adding an observation. A data set consists of n observations on Xn and yn. The
least squares estimator based on these n observations is bn = (X′

nXn)
−1X′

nyn.
Another observation, xs and ys , becomes available. Prove that the least squares
estimator computed using this additional observation is

bn,s = bn + 1
1 + x′

s(X′
nXn)−1xs

(X′
nXn)

−1xs(ys − x′
sbn).

Note that the last term is es , the residual from the prediction of ys using the coeffi-
cients based on Xn and bn. Conclude that the new data change the results of least
squares only if the new observation on y cannot be perfectly predicted using the
information already in hand.

7. Deleting an observation. A common strategy for handling a case in which an obser-
vation is missing data for one or more variables is to fill those missing variables with
0s and add a variable to the model that takes the value 1 for that one observation
and 0 for all other observations. Show that this ‘strategy’ is equivalent to discard-
ing the observation as regards the computation of b but it does have an effect on
R2. Consider the special case in which X contains only a constant and one variable.
Show that replacing missing values of x with the mean of the complete observations
has the same effect as adding the new variable.

8. Demand system estimation. Let Y denote total expenditure on consumer durables,
nondurables, and services and Ed, En, and Es are the expenditures on the three
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categories. As defined, Y = Ed + En + Es . Now, consider the expenditure system

Ed = αd + βdY + γdd Pd + γdn Pn + γds Ps + εd,

En = αn + βnY + γnd Pd + γnn Pn + γns Ps + εn,

Es = αs + βsY + γsd Pd + γsn Pn + γss Ps + εs .

Prove that if all equations are estimated by ordinary least squares, then the sum
of the expenditure coefficients will be 1 and the four other column sums in the
preceding model will be zero.

9. Change in adjusted R2. Prove that the adjusted R2 in (3-30) rises (falls) when
variable xk is deleted from the regression if the square of the t ratio on xk in the
multiple regression is less (greater) than 1.

10. Regression without a constant. Suppose that you estimate a multiple regression
first with then without a constant. Whether the R2 is higher in the second case than
the first will depend in part on how it is computed. Using the (relatively) standard
method R2 = 1 − (e′e/y′M0y), which regression will have a higher R2?

11. Three variables, N, D, and Y, all have zero means and unit variances. A fourth
variable is C = N + D. In the regression of C on Y, the slope is 0.8. In the regression
of C on N, the slope is 0.5. In the regression of D on Y, the slope is 0.4. What is the
sum of squared residuals in the regression of C on D? There are 21 observations
and all moments are computed using 1/(n − 1) as the divisor.

12. Using the matrices of sums of squares and cross products immediately preceding
Section 3.2.3, compute the coefficients in the multiple regression of real investment
on a constant, real GNP and the interest rate. Compute R2.

13. In the December, 1969, American Economic Review (pp. 886–896), Nathaniel Leff
reports the following least squares regression results for a cross section study of the
effect of age composition on savings in 74 countries in 1964:

ln S/Y = 7.3439 + 0.1596 ln Y/N + 0.0254 ln G − 1.3520 ln D1 − 0.3990 ln D2

ln S/N = 8.7851 + 1.1486 ln Y/N + 0.0265 ln G − 1.3438 ln D1 − 0.3966 ln D2

where S/Y = domestic savings ratio, S/N = per capita savings, Y/N = per capita
income, D1 = percentage of the population under 15, D2 = percentage of the popu-
lation over 64, and G = growth rate of per capita income. Are these results correct?
Explain.
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4

FINITE-SAMPLE PROPERTIES
OF THE LEAST SQUARES

ESTIMATOR

Q
4.1 INTRODUCTION

Chapter 3 treated fitting the linear regression to the data as a purely algebraic exercise.
We will now examine the least squares estimator from a statistical viewpoint. This
chapter will consider exact, finite-sample results such as unbiased estimation and the
precise distributions of certain test statistics. Some of these results require fairly strong
assumptions, such as nonstochastic regressors or normally distributed disturbances. In
the next chapter, we will turn to the properties of the least squares estimator in more
general cases. In these settings, we rely on approximations that do not hold as exact
results but which do improve as the sample size increases.

There are other candidates for estimating β. In a two-variable case, for example, we
might use the intercept, a, and slope, b, of the line between the points with the largest
and smallest values of x. Alternatively, we might find the a and b that minimize the sum
of absolute values of the residuals. The question of which estimator to choose is usually
based on the statistical properties of the candidates, such as unbiasedness, efficiency,
and precision. These, in turn, frequently depend on the particular distribution that we
assume produced the data. However, a number of desirable properties can be obtained
for the least squares estimator even without specifying a particular distribution for the
disturbances in the regression.

In this chapter, we will examine in detail the least squares as an estimator of the
model parameters of the classical model (defined in the following Table 4.1). We begin
in Section 4.2 by returning to the question raised but not answered in Footnote 1, Chap-
ter 3, that is, why least squares? We will then analyze the estimator in detail. We take
Assumption A1, linearity of the model as given, though in Section 4.2, we will consider
briefly the possibility of a different predictor for y. Assumption A2, the identification
condition that the data matrix have full rank is considered in Section 4.9 where data
complications that arise in practice are discussed. The near failure of this assumption
is a recurrent problem in “real world” data. Section 4.3 is concerned with unbiased
estimation. Assumption A3, that the disturbances and the independent variables are
uncorrelated, is a pivotal result in this discussion. Assumption A4, homoscedasticity and
nonautocorrelation of the disturbances, in contrast to A3, only has relevance to whether
least squares is an optimal use of the data. As noted, there are alternative estimators
available, but with Assumption A4, the least squares estimator is usually going to be
preferable. Sections 4.4 and 4.5 present several statistical results for the least squares
estimator that depend crucially on this assumption. The assumption that the data in X
are nonstochastic, known constants, has some implications for how certain derivations

41
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TABLE 4.1 Assumptions of the Classical Linear Regression Model

A1. Linearity: yi = xi1β1 + xi2β2 + · · · + βKxi K + εi .

A2. Full rank: The n × K sample data matrix, X has full column rank.
A3. Exogeneity of the independent variables: E [εi | xj1, xj2, . . . , xj K] = 0, i, j = 1, . . . , n.
There is no correlation between the disturbances and the independent variables.
A4. Homoscedasticity and nonautocorrelation: Each disturbance, εi has the same finite
variance, σ 2 and is uncorrelated with every other disturbance, ε j .
A5. Exogenously generated data (xi1, xi2, . . . , xi K) i = 1, . . . , n.
A6. Normal distribution: The disturbances are normally distributed.

proceed, but in practical terms, is a minor consideration. Indeed, nearly all that we do
with the regression model departs from this assumption fairly quickly. It serves only as
a useful departure point. The issue is considered in Section 4.5. Finally, the normality
of the disturbances assumed in A6 is crucial in obtaining the sampling distributions of
several useful statistics that are used in the analysis of the linear model. We note that
in the course of our analysis of the linear model as we proceed through Chapter 9, all
six of these assumptions will be discarded.

4.2 MOTIVATING LEAST SQUARES

Ease of computation is one reason that least squares is so popular. However, there are
several other justifications for this technique. First, least squares is a natural approach
to estimation, which makes explicit use of the structure of the model as laid out in the
assumptions. Second, even if the true model is not a linear regression, the regression
line fit by least squares is an optimal linear predictor for the dependent variable. Thus, it
enjoys a sort of robustness that other estimators do not. Finally, under the very specific
assumptions of the classical model, by one reasonable criterion, least squares will be
the most efficient use of the data. We will consider each of these in turn.

4.2.1 THE POPULATION ORTHOGONALITY CONDITIONS

Let x denote the vector of independent variables in the population regression model and
for the moment, based on assumption A5, the data may be stochastic or nonstochastic.
Assumption A3 states that the disturbances in the population are stochastically or-
thogonal to the independent variables in the model; that is, E [ε | x] = 0. It follows that
Cov[x, ε] = 0. Since (by the law of iterated expectations—Theorem B.1) Ex{E [ε | x]} =
E [ε] = 0, we may write this as

Ex Eε[xε] = Ex Ey[x(y − x′β)] = 0

or

Ex Ey[xy] = Ex[xx′]β. (4-1)

(The right-hand side is not a function of y so the expectation is taken only over x.) Now,
recall the least squares normal equations, X′y = X′Xb. Divide this by n and write it as
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a summation to obtain (
1
n

n∑
i=1

xi yi

)
=

(
1
n

n∑
i=1

xi x′
i

)
b. (4-2)

Equation (4-1) is a population relationship. Equation (4-2) is a sample analog. Assuming
the conditions underlying the laws of large numbers presented in Appendix D are met,
the sums on the left hand and right hand sides of (4-2) are estimators of their counterparts
in (4-1). Thus, by using least squares, we are mimicking in the sample the relationship in
the population. We’ll return to this approach to estimation in Chapters 10 and 18 under
the subject of GMM estimation.

4.2.2 MINIMUM MEAN SQUARED ERROR PREDICTOR

As an alternative approach, consider the problem of finding an optimal linear predictor
for y. Once again, ignore Assumption A6 and, in addition, drop Assumption A1 that
the conditional mean function, E [y | x] is linear. For the criterion, we will use the mean
squared error rule, so we seek the minimum mean squared error linear predictor of y,
which we’ll denote x′γ . The expected squared error of this predictor is

MSE = Ey Ex [y − x′γ ]2.

This can be written as

MSE = Ey,x
{

y − E [y | x]
}2 + Ey,x

{
E [y | x] − x′γ

}2
.

We seek the γ that minimizes this expectation. The first term is not a function of γ , so
only the second term needs to be minimized. Note that this term is not a function of y,
so the outer expectation is actually superfluous. But, we will need it shortly, so we will
carry it for the present. The necessary condition is

∂ Ey Ex
{

[E(y | x) − x′γ ]2
}

∂γ
= Ey Ex

{
∂[E(y | x) − x′γ ]2

∂γ

}

= −2Ey Ex
{

x[E(y | x) − x′γ ]
} = 0.

Note that we have interchanged the operations of expectation and differentiation in
the middle step, since the range of integration is not a function of γ . Finally, we have
the equivalent condition

Ey Ex[xE(y | x)] = Ey Ex[xx′]γ .

The left hand side of this result is Ex Ey[xE(y | x)] = Cov[x,E(y | x)] +E [x]Ex[E(y | x)] =
Cov[x, y] + E [x]E [y] = Ex Ey[xy]. (We have used theorem B.2.) Therefore, the neces-
sary condition for finding the minimum MSE predictor is

Ex Ey[xy] = Ex Ey[xx′]γ . (4-3)

This is the same as (4-1), which takes us to the least squares condition once again.
Assuming that these expectations exist, they would be estimated by the sums in
(4-2), which means that regardless of the form of the conditional mean, least squares
is an estimator of the coefficients of the minimum expected mean squared error lin-
ear predictor. We have yet to establish the conditions necessary for the if part of the
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theorem, but this is an opportune time to make it explicit:

THEOREM 4.1 Minimum Mean Squared Error Predictor
If the data generating mechanism generating (xi , yi )i=1,...,n is such that the law of
large numbers applies to the estimators in (4-2) of the matrices in (4-1), then the
minimum expected squared error linear predictor of yi is estimated by the least
squares regression line.

4.2.3 MINIMUM VARIANCE LINEAR UNBIASED ESTIMATION

Finally, consider the problem of finding a linear unbiased estimator. If we seek the one
which has smallest variance, we will be led once again to least squares. This proposition
will be proved in Section 4.4.

The preceding does not assert that no other competing estimator would ever be
preferable to least squares. We have restricted attention to linear estimators. The result
immediately above precludes what might be an acceptably biased estimator. And, of
course, the assumptions of the model might themselves not be valid. Although A5 and
A6 are ultimately of minor consequence, the failure of any of the first four assumptions
would make least squares much less attractive than we have suggested here.

4.3 UNBIASED ESTIMATION

The least squares estimator is unbiased in every sample. To show this, write

b = (X′X)−1X′y = (X′X)−1X′(Xβ + ε) = β + (X′X)−1X′ε. (4-4)

Now, take expectations, iterating over X;

E [b | X] = β + E [(X′X)−1X′ε | X].

By Assumption A3, the second term is 0, so

E [b | X] = β.

Therefore,

E [b] = EX
{

E [b | X]
} = EX[β] = β.

The interpretation of this result is that for any particular set of observations, X, the least
squares estimator has expectation β. Therefore, when we average this over the possible
values of X we find the unconditional mean is β as well.

Example 4.1 The Sampling Distribution of a Least Squares Estimator
The following sampling experiment, which can be replicated in any computer program that
provides a random number generator and a means of drawing a random sample of observa-
tions from a master data set, shows the nature of a sampling distribution and the implication of
unbiasedness. We drew two samples of 10,000 random draws on wi and xi from the standard
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FIGURE 4.1 Histogram for Sampled Least Squares Regression
Slopes.

normal distribution (mean zero, variance 1). We then generated a set of εis equal to 0.5wi and
yi = 0.5 + 0.5xi + εi . We take this to be our population. We then drew 500 random samples
of 100 observations from this population, and with each one, computed the least squares
slope (using at replication r, br = [

∑100
j =1( x j r − x̄r ) yj r ]/[

∑100
j =1( x j r − x̄r ) 2]) . The histogram in

Figure 4.1 shows the result of the experiment. Note that the distribution of slopes has a
mean roughly equal to the “true value” of 0.5, and it has a substantial variance, reflecting the
fact that the regression slope, like any other statistic computed from the sample, is a random
variable. The concept of unbiasedness relates to the central tendency of this distribution of
values obtained in repeated sampling from the population.

4.4 THE VARIANCE OF THE LEAST SQUARES
ESTIMATOR AND THE GAUSS MARKOV
THEOREM

If the regressors can be treated as nonstochastic, as they would be in an experimental
situation in which the analyst chooses the values in X, then the sampling variance
of the least squares estimator can be derived by treating X as a matrix of constants.
Alternatively, we can allow X to be stochastic, do the analysis conditionally on the
observed X, then consider averaging over X as we did in the preceding section. Using
(4-4) again, we have

b = (X′X)−1X′(Xβ + ε) = β + (X′X)−1X′ε. (4-5)

Since we can write b = β + Aε, where A is (X′X)−1X′, b is a linear function of the
disturbances, which by the definition we will use makes it a linear estimator. As we have
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seen, the expected value of the second term in (4-5) is 0. Therefore, regardless of the
distribution of ε, under our other assumptions, b is a linear, unbiased estimator of β. The
covariance matrix of the least squares slope estimator is

Var[b | X] = E [(b − β)(b − β)′ | X]

= E [(X′X)−1X′εε′X(X′X)−1 | X]

= (X′X)−1X′ E [εε′ | X]X(X′X)−1

= (X′X)−1X′(σ 2I)X(X′X)−1

= σ 2(X′X)−1.

Example 4.2 Sampling Variance in the Two-Variable Regression Model
Suppose that X contains only a constant term (column of 1s) and a single regressor x. The
lower right element of σ 2(X′X)−1 is

Var [b | x] = Var [b− β | x] = σ 2

∑n
i =1 ( xi − x̄) 2

.

Note, in particular, the denominator of the variance of b. The greater the variation in x, the
smaller this variance. For example, consider the problem of estimating the slopes of the two
regressions in Figure 4.2. A more precise result will be obtained for the data in the right-hand
panel of the figure.

We will now obtain a general result for the class of linear unbiased estimators of β.
Let b0 = Cy be another linear unbiased estimator of β, where C is a K × n matrix. If b0

is unbiased, then

E [Cy | X] = E [(CXβ + Cε) | X] = β,

which implies that CX = I. There are many candidates. For example, consider using just
the first K (or, any K) linearly independent rows of X. Then C = [X−1

0 : 0], where X−1
0

FIGURE 4.2 Effect of Increased Variation in x Given the Same Conditional and Overall
Variation in y.

xx

y y
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is the transpose of the matrix formed from the K rows of X. The covariance matrix of
b0 can be found by replacing (X′X)−1X′ with C in (4-5); the result is Var[b0 | X] = σ 2CC′.
Now let D = C − (X′X)−1X′ so Dy = b0 − b. Then,

Var[b0 | X] = σ 2[(D + (X′X)−1X′)(D + (X′X)−1X′)′].

We know that CX = I = DX + (X′X)−1(X′X), so DX must equal 0. Therefore,

Var[b0 | X] = σ 2(X′X)−1 + σ 2DD′ = Var[b | X] + σ 2DD′.

Since a quadratic form in DD′ is q′DD′q = z′z ≥ 0, the conditional covariance matrix
of b0 equals that of b plus a nonnegative definite matrix. Therefore, every quadratic
form in Var[b0 | X] is larger than the corresponding quadratic form in Var[b | X], which
implies a very important property of the least squares coefficient vector.

THEOREM 4.2 Gauss–Markov Theorem
In the classical linear regression model with regressor matrix X, the least squares
estimator b is the minimum variance linear unbiased estimator of β. For any
vector of constants w, the minimum variance linear unbiased estimator of w′β in
the classical regression model is w′b, where b is the least squares estimator.

The proof of the second statement follows from the previous derivation, since the
variance of w′b is a quadratic form in Var[b | X], and likewise for any b0, and proves
that each individual slope estimator bk is the best linear unbiased estimator of βk. (Let
w be all zeros except for a one in the kth position.) The theorem is much broader than
this, however, since the result also applies to every other linear combination of the ele-
ments of β.

4.5 THE IMPLICATIONS OF STOCHASTIC
REGRESSORS

The preceding analysis is done conditionally on the observed data. A convenient method
of obtaining the unconditional statistical properties of b is to obtain the desired results
conditioned on X first, then find the unconditional result by “averaging” (e.g., by in-
tegrating over) the conditional distributions. The crux of the argument is that if we
can establish unbiasedness conditionally on an arbitrary X, then we can average over
X’s to obtain an unconditional result. We have already used this approach to show
the unconditional unbiasedness of b in Section 4.3, so we now turn to the conditional
variance.

The conditional variance of b is

Var[b | X] = σ 2(X′X)−1.
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For the exact variance, we use the decomposition of variance of (B-70):

Var[b] = EX[Var[b | X]] + VarX[E [b | X]].

The second term is zero since E [b | X] = β for all X, so

Var[b] = EX[σ 2(X′X)−1] = σ 2 EX[(X′X)−1].

Our earlier conclusion is altered slightly. We must replace (X′X)−1 with its expected
value to get the appropriate covariance matrix, which brings a subtle change in the
interpretation of these results. The unconditional variance of b can only be described
in terms of the average behavior of X, so to proceed further, it would be necessary to
make some assumptions about the variances and covariances of the regressors. We will
return to this subject in Chapter 5.

We showed in Section 4.4 that

Var[b | X] ≤ Var[b0 | X]

for any b0 �= b and for the specific X in our sample. But if this inequality holds for every
particular X, then it must hold for

Var[b] = EX[Var[b | X]].

That is, if it holds for every particular X, then it must hold over the average value(s)
of X.

The conclusion, therefore, is that the important results we have obtained thus far for
the least squares estimator, unbiasedness, and the Gauss-Markov theorem hold whether
or not we regard X as stochastic.

THEOREM 4.3 Gauss–Markov Theorem (Concluded)
In the classical linear regression model, the least squares estimator b is the
minimum variance linear unbiased estimator of β whether X is stochastic or
nonstochastic, so long as the other assumptions of the model continue to hold.

4.6 ESTIMATING THE VARIANCE
OF THE LEAST SQUARES ESTIMATOR

If we wish to test hypotheses about β or to form confidence intervals, then we will require
a sample estimate of the covariance matrix Var[b | X] = σ 2(X′X)−1. The population
parameter σ 2 remains to be estimated. Since σ 2 is the expected value of ε2

i and ei is an
estimate of εi , by analogy,

σ̂ 2 = 1
n

n∑
i=1

e2
i
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would seem to be a natural estimator. But the least squares residuals are imperfect
estimates of their population counterparts; ei = yi −x′

i b = εi −x′
i (b−β). The estimator

is distorted (as might be expected) because β is not observed directly. The expected
square on the right-hand side involves a second term that might not have expected
value zero.

The least squares residuals are

e = My = M[Xβ + ε] = Mε,

as MX = 0. [See (3-15).] An estimator of σ 2 will be based on the sum of squared residuals:

e′e = ε′Mε. (4-6)

The expected value of this quadratic form is

E [e′e | X] = E [ε′Mε | X].

The scalar ε′Mε is a 1 × 1 matrix, so it is equal to its trace. By using the result on cyclic
permutations (A-94),

E [tr(ε′Mε) | X] = E [tr(Mεε′) | X].

Since M is a function of X, the result is

tr
(
ME [εε′ | X]

) = tr(Mσ 2I) = σ 2tr(M).

The trace of M is

tr[In − X(X′X)−1X′] = tr(In) − tr[(X′X)−1X′X] = tr(In) − tr(IK) = n − K.

Therefore,

E [e′e | X] = (n − K)σ 2,

so the natural estimator is biased toward zero, although the bias becomes smaller as the
sample size increases. An unbiased estimator of σ 2 is

s2 = e′e
n − K

. (4-7)

The estimator is unbiased unconditionally as well, since E [s2] = EX
{

E [s2 | X]
} =

EX[σ 2] = σ 2. The standard error of the regression is s, the square root of s2. With s2,
we can then compute

Est. Var[b | X] = s2(X′X)−1.

Henceforth, we shall use the notation Est. Var[·] to indicate a sample estimate of the
sampling variance of an estimator. The square root of the kth diagonal element of
this matrix,

{
[s2(X′X)−1]kk

}1/2, is the standard error of the estimator bk, which is often
denoted simply “the standard error of bk.”
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4.7 THE NORMALITY ASSUMPTION AND
BASIC STATISTICAL INFERENCE

To this point, our specification and analysis of the regression model is semiparametric
(see Section 16.3). We have not used Assumption A6 (see Table 4.1), normality of ε,
in any of our results. The assumption is useful for constructing statistics for testing
hypotheses. In (4-5), b is a linear function of the disturbance vector ε. If we assume that
ε has a multivariate normal distribution, then we may use the results of Section B.10.2
and the mean vector and covariance matrix derived earlier to state that

b | X ∼ N[β, σ 2(X′X)−1]. (4-8)

This specifies a multivariate normal distribution, so each element of b | X is normally
distributed:

bk | X ∼ N
[
βk, σ

2(X′X)−1
kk

]
. (4-9)

The distribution of b is conditioned on X. The normal distribution of b in a finite sample is
a consequence of our specific assumption of normally distributed disturbances. Without
this assumption, and without some alternative specific assumption about the distribution
of ε, we will not be able to make any definite statement about the exact distribution
of b, conditional or otherwise. In an interesting result that we will explore at length
in Chapter 5, we will be able to obtain an approximate normal distribution for b, with
or without assuming normally distributed disturbances and whether the regressors are
stochastic or not.

4.7.1 TESTING A HYPOTHESIS ABOUT A COEFFICIENT

Let Skk be the kth diagonal element of (X′X)−1. Then, assuming normality,

zk = bk − βk√
σ 2Skk

(4-10)

has a standard normal distribution. If σ 2 were known, then statistical inference about
βk could be based on zk. By using s2 instead of σ 2, we can derive a statistic to use in
place of zk in (4-10). The quantity

(n − K)s2

σ 2
= e′e

σ 2
=

( ε

σ

)′
M

( ε

σ

)
(4-11)

is an idempotent quadratic form in a standard normal vector (ε/σ). Therefore, it has a
chi-squared distribution with rank (M) = trace(M) = n − K degrees of freedom.1 The
chi-squared variable in (4-11) is independent of the standard normal variable in (4-10).
To prove this, it suffices to show that

b − β

σ
= (X′X)−1X′

( ε

σ

)
(4-12)

is independent of (n − K)s2/σ 2. In Section B.11.7 (Theorem B.12), we found that a suf-
ficient condition for the independence of a linear form Lx and an idempotent quadratic

1This fact is proved in Section B.10.3.



Greene-50240 book June 3, 2002 9:57

CHAPTER 4 ✦ Finite-Sample Properties of the Least Squares Estimator 51

form x′Ax in a standard normal vector x is that LA = 0. Letting ε/σ be the x, we find
that the requirement here would be that (X′X)−1X′M = 0. It does, as seen in (3-15). The
general result is central in the derivation of many test statistics in regression analysis.

THEOREM 4.4 Independence of b and s2

If ε is normally distributed, then the least squares coefficient estimator b is sta-
tistically independent of the residual vector e and therefore, all functions of e,

including s2.

Therefore, the ratio

tk = (bk − βk)/
√

σ 2Skk
√

[(n − K)s2/σ 2]/(n − K)
= bk − βk√

s2Skk
(4-13)

has a t distribution with (n − K) degrees of freedom.2 We can use tk to test hypotheses
or form confidence intervals about the individual elements of β.

A common test is whether a parameter βk is significantly different from zero. The
appropriate test statistic

t = bk

sbk

(4-14)

is presented as standard output with the other results by most computer programs. The
test is done in the usual way. This statistic is usually labeled the t ratio for the estimator
bk. If | bk |/sbk > tα/2, where tα/2 is the 100(1 − α/2) percent critical value from the t
distribution with (n − K) degrees of freedom, then the hypothesis is rejected and the
coefficient is said to be “statistically significant.” The value of 1.96, which would apply
for the 5 percent significance level in a large sample, is often used as a benchmark value
when a table of critical values is not immediately available. The t ratio for the test of
the hypothesis that a coefficient equals zero is a standard part of the regression output
of most computer programs.

Example 4.3 Earnings Equation
Appendix Table F4.1 contains 753 observations used in Mroz’s (1987) study of labor supply
behavior of married women. We will use these data at several points below. Of the 753 indi-
viduals in the sample, 428 were participants in the formal labor market. For these individuals,
we will fit a semilog earnings equation of the form suggested in Example 2.2;

ln earnings = β1 + β2 age + β3 age2 + β4 education + β5 kids + ε,

where earnings is hourly wage times hours worked, education is measured in years of school-
ing and kids is a binary variable which equals one if there are children under 18 in the house-
hold. (See the data description in Appendix F for details.) Regression results are shown in
Table 4.2. There are 428 observations and 5 parameters, so the t statistics have 423 degrees

2See (B-36) in Section B.4.2. It is the ratio of a standard normal variable to the square root of a chi-squared
variable divided by its degrees of freedom.
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TABLE 4.2 Regression Results for an Earnings Equation

Sum of squared residuals: 599.4582
Standard error of the regression: 1.19044

R2 based on 428 observations 0.040995

Variable Coefficient Standard Error t Ratio

Constant 3.24009 1.7674 1.833
Age 0.20056 0.08386 2.392
Age2 −0.0023147 0.00098688 −2.345
Education 0.067472 0.025248 2.672
Kids −0.35119 0.14753 −2.380

Estimated Covariance Matrix for b (e − n = times 10−n)

Constant Age Age2 Education Kids

3.12381
−0.14409 0.0070325

0.0016617 −8.23237e−5 9.73928e−7
−0.0092609 5.08549e−5 −4.96761e−7 0.00063729

0.026749 −0.0026412 3.84102e−5 −5.46193e−5 0.021766

of freedom. For 95 percent significance levels, the standard normal value of 1.96 is appropri-
ate when the degrees of freedom are this large. By this measure, all variables are statistically
significant and signs are consistent with expectations. It will be interesting to investigate
whether the effect of Kids is on the wage or hours, or both. We interpret the schooling vari-
able to imply that an additional year of schooling is associated with a 6.7 percent increase in
earnings. The quadratic age profile suggests that for a given education level and family size,
earnings rise to the peak at −b2/(2b3) which is about 43 years of age, at which they begin
to decline. Some points to note: (1) Our selection of only those individuals who had posi-
tive hours worked is not an innocent sample selection mechanism. Since individuals chose
whether or not to be in the labor force, it is likely (almost certain) that earnings potential was
a significant factor, along with some other aspects we will consider in Chapter 22. (2) The
earnings equation is a mixture of a labor supply equation—hours worked by the individual,
and a labor demand outcome—the wage is, presumably, an accepted offer. As such, it is
unclear what the precise nature of this equation is. Presumably, it is a hash of the equations
of an elaborate structural equation system.

4.7.2 CONFIDENCE INTERVALS FOR PARAMETERS

A confidence interval for βk would be based on (4-13). We could say that

Prob(bk − tα/2sbk ≤ βk ≤ bk + tα/2sbk) = 1 − α,

where 1 − α is the desired level of confidence and tα/2 is the appropriate critical value
from the t distribution with (n − K) degrees of freedom.

Example 4.4 Confidence Interval for the Income Elasticity
of Demand for Gasoline

Using the gasoline market data discussed in Example 2.3, we estimated following demand
equation using the 36 observations. Estimated standard errors, computed as shown above,
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are given in parentheses below the least squares estimates.

ln(G/pop) = −7.737 − 0.05910 ln PG + 1.3733 ln income

(0.6749) (0.03248) (0.075628)

−0.12680 ln Pnc − 0.11871 ln Puc + e.

(0.12699) (0.081337)

To form a confidence interval for the income elasticity, we need the critical value from the
t distribution with n − K = 36 − 5 degrees of freedom. The 95 percent critical value is
2.040. Therefore, a 95 percent confidence interval for βI is 1.3733 ± 2.040(0.075628) , or
[1.2191, 1.5276].

We are interested in whether the demand for gasoline is income inelastic. The hypothesis
to be tested is that βI is less than 1. For a one-sided test, we adjust the critical region and
use the tα critical point from the distribution. Values of the sample estimate that are greatly
inconsistent with the hypothesis cast doubt upon it. Consider testing the hypothesis

H0 : βI < 1 versus H1 : βI ≥ 1.

The appropriate test statistic is

t = 1.3733 − 1
0.075628

= 4.936.

The critical value from the t distribution with 31 degrees of freedom is 2.04, which is far less
than 4.936. We conclude that the data are not consistent with the hypothesis that the income
elasticity is less than 1, so we reject the hypothesis.

4.7.3 CONFIDENCE INTERVAL FOR A LINEAR COMBINATION
OF COEFFICIENTS: THE OAXACA DECOMPOSITION

With normally distributed disturbances, the least squares coefficient estimator, b, is
normally distributed with mean β and covariance matrix σ 2(X′X)−1. In Example 4.4,
we showed how to use this result to form a confidence interval for one of the elements
of β. By extending those results, we can show how to form a confidence interval for a
linear function of the parameters. Oaxaca’s (1973) decomposition provides a frequently
used application.

Let w denote a K × 1 vector of known constants. Then, the linear combination
c = w′b is normally distributed with mean γ = w′β and variance σ 2

c = w′[σ 2(X′X)−1]w,
which we estimate with s2

c = w′[s2(X′X)−1]w. With these in hand, we can use the earlier
results to form a confidence interval for γ :

Prob[c − tα/2sc ≤ γ ≤ c + tα/2sc] = 1 − α.

This general result can be used, for example, for the sum of the coefficients or for a
difference.

Consider, then, Oaxaca’s application. In a study of labor supply, separate wage
regressions are fit for samples of nm men and n f women. The underlying regression
models are

ln wagem,i = x′
m,iβm + εm,i , i = 1, . . . , nm

and

ln wage f, j = x′
f, jβf + εf, j , j = 1, . . . , n f .
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The regressor vectors include sociodemographic variables, such as age, and human cap-
ital variables, such as education and experience. We are interested in comparing these
two regressions, particularly to see if they suggest wage discrimination. Oaxaca sug-
gested a comparison of the regression functions. For any two vectors of characteristics,

E [ln wagem,i ] − E [ln wage f, j ] = x′
m,iβm − x′

f, jβf

= x′
m,iβm − x′

m,iβf + x′
m,iβf − x′

f, jβf

= x′
m,i (βm − βf ) + (xm,i − x f, j )

′βf .

The second term in this decomposition is identified with differences in human capital
that would explain wage differences naturally, assuming that labor markets respond
to these differences in ways that we would expect. The first term shows the differential
in log wages that is attributable to differences unexplainable by human capital; holding
these factors constant at xm makes the first term attributable to other factors. Oaxaca
suggested that this decomposition be computed at the means of the two regressor vec-
tors, x̄m and x̄ f , and the least squares coefficient vectors, bm and b f . If the regressions
contain constant terms, then this process will be equivalent to analyzing ln ym − ln yf .

We are interested in forming a confidence interval for the first term, which will
require two applications of our result. We will treat the two vectors of sample means as
known vectors. Assuming that we have two independent sets of observations, our two
estimators, bm and b f , are independent with means βm and β f and covariance matrices
σ 2

m(X′
mXm)−1 and σ 2

f (X
′
f X f )

−1. The covariance matrix of the difference is the sum of
these two matrices. We are forming a confidence interval for x̄′

m d where d = bm − b f .
The estimated covariance matrix is

Est. Var[d] = s2
m(X′

mXm)−1 + s2
f (X

′
f X f )

−1.

Now, we can apply the result above. We can also form a confidence interval for the
second term; just define w = x̄m − x̄ f and apply the earlier result to w′b f .

4.7.4 TESTING THE SIGNIFICANCE OF THE REGRESSION

A question that is usually of interest is whether the regression equation as a whole is
significant. This test is a joint test of the hypotheses that all the coefficients except the
constant term are zero. If all the slopes are zero, then the multiple correlation coefficient
is zero as well, so we can base a test of this hypothesis on the value of R2. The central
result needed to carry out the test is the distribution of the statistic

F [K − 1, n − K] = R2/(K − 1)

(1 − R2)/(n − K)
. (4-15)

If the hypothesis that β2 = 0 (the part of β not including the constant) is true and the
disturbances are normally distributed, then this statistic has an F distribution with K−1
and n − K degrees of freedom.3 Large values of F give evidence against the validity of
the hypothesis. Note that a large F is induced by a large value of R2.

The logic of the test is that the F statistic is a measure of the loss of fit (namely, all
of R2) that results when we impose the restriction that all the slopes are zero. If F is
large, then the hypothesis is rejected.

3The proof of the distributional result appears in Section 6.3.1. The F statistic given above is the special case
in which R = [0 | IK−1].
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Example 4.5 F Test for the Earnings Equation
The F ratio for testing the hypothesis that the four slopes in the earnings equation are all
zero is

F [4, 423] = 0.040995/4
(1 − 0.040995)/(428 − 5)

= 4.521,

which is far larger than the 95 percent critical value of 2.37. We conclude that the data are
inconsistent with the hypothesis that all the slopes in the earnings equation are zero.

We might have expected the preceding result, given the substantial t ratios presented
earlier. But this case need not always be true. Examples can be constructed in which the
individual coefficients are statistically significant, while jointly they are not. This case can be
regarded as pathological, but the opposite one, in which none of the coefficients is signifi-
cantly different from zero while R2 is highly significant, is relatively common. The problem is
that the interaction among the variables may serve to obscure their individual contribution
to the fit of the regression, whereas their joint effect may still be significant. We will return to
this point in Section 4.9.1 in our discussion of multicollinearity.

4.7.5 MARGINAL DISTRIBUTIONS OF THE TEST STATISTICS

We now consider the relation between the sample test statistics and the data in X. First,
consider the conventional t statistic in (4-14) for testing H0 : βk = β0

k ,

t | X =
(
bk − β0

k

)
[
s2(X′X)−1

kk

]1/2 .

Conditional on X, if βk = β0
k (i.e., under H0), then t | X has a t distribution with (n − K)

degrees of freedom. What interests us, however, is the marginal, that is, the uncon-
ditional, distribution of t . As we saw, b is only normally distributed conditionally on
X; the marginal distribution may not be normal because it depends on X (through
the conditional variance). Similarly, because of the presence of X, the denominator
of the t statistic is not the square root of a chi-squared variable divided by its de-
grees of freedom, again, except conditional on this X. But, because the distributions
of

{
(bk − βk)/[σ 2(X′X)−1

kk ]1/2
} | X and [(n − K)s2/σ 2] | X are still independent N[0, 1]

and χ2[n − K], respectively, which do not involve X, we have the surprising result that,
regardless of the distribution of X, or even of whether X is stochastic or nonstochastic,
the marginal distributions of t is still t , even though the marginal distribution of bk may
be nonnormal. This intriguing result follows because f (t | X) is not a function of X. The
same reasoning can be used to deduce that the usual F ratio used for testing linear
restrictions is valid whether X is stochastic or not. This result is very powerful. The
implication is that if the disturbances are normally distributed, then we may carry out
tests and construct confidence intervals for the parameters without making any changes
in our procedures, regardless of whether the regressors are stochastic, nonstochastic, or
some mix of the two.

4.8 FINITE-SAMPLE PROPERTIES
OF LEAST SQUARES

A summary of the results we have obtained for the least squares estimator appears
in Table 4.3. For constructing confidence intervals and testing hypotheses, we derived
some additional results that depended explicitly on the normality assumption. Only
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TABLE 4.3 Finite Sample Properties of Least Squares

General results:
FS1. E [b | X] = E [b] = β. Least squares is unbiased.
FS2. Var [b | X] = σ 2(X′X)−1; Var[b] = σ 2 E [(X′X)−1].
FS3. Gauss−Markov theorem: The MVLUE of w′β is w′b.
FS4. E [s2 | X] = E [s2] = σ 2.
FS5. Cov[b, e | X] = E [(b − β)e′ | X] = E [(X′X)−1X′εε′M | X] = 0 as X′(σ 2I)M = 0.

Results that follow from Assumption A6, normally distributed disturbances:
FS6. b and e are statistically independent. It follows that b and s2 are uncorrelated and
statistically independent.
FS7. The exact distribution of b | X, is N[β, σ 2(X′X)−1].
FS8. (n − K)s2/σ 2 ∼ χ2[n − K]. s2 has mean σ 2 and variance 2σ 4/(n − K).
Test Statistics based on results FS6 through FS8:
FS9. t[n − K] = (bk − βk)/[s2(X′X)−1

kk ]1/2 ∼ t[n − K] independently of X.
FS10. The test statistic for testing the null hypothesis that all slopes in the model are zero,
F [K − 1, n − K] = [R2/(K − 1)]/[(1 − R2)/(n − K)] has an F distribution with K − 1 and n − K
degrees of freedom when the null hypothesis is true.

FS7 depends on whether X is stochastic or not. If so, then the marginal distribution of
b depends on that of X. Note the distinction between the properties of b established
using A1 through A4 and the additional inference results obtained with the further
assumption of normality of the disturbances. The primary result in the first set is the
Gauss–Markov theorem, which holds regardless of the distribution of the disturbances.
The important additional results brought by the normality assumption are FS9 and FS10.

4.9 DATA PROBLEMS

In this section, we consider three practical problems that arise in the setting of regression
analysis, multicollinearity, missing observations and outliers.

4.9.1 MULTICOLLINEARITY

The Gauss–Markov theorem states that among all linear unbiased estimators, the least
squares estimator has the smallest variance. Although this result is useful, it does not
assure us that the least squares estimator has a small variance in any absolute sense.
Consider, for example, a model that contains two explanatory variables and a constant.
For either slope coefficient,

Var[bk] = σ 2
(
1 − r2

12

) ∑n
i=1(xik − x̄k)2

= σ 2
(
1 − r2

12

)
Skk

, k = 1, 2. (4-16)

If the two variables are perfectly correlated, then the variance is infinite. The case of
an exact linear relationship among the regressors is a serious failure of the assumptions
of the model, not of the data. The more common case is one in which the variables
are highly, but not perfectly, correlated. In this instance, the regression model retains
all its assumed properties, although potentially severe statistical problems arise. The
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problem faced by applied researchers when regressors are highly, although not perfectly,
correlated include the following symptoms:

• Small changes in the data produce wide swings in the parameter estimates.
• Coefficients may have very high standard errors and low significance levels even

though they are jointly significant and the R2 for the regression is quite high.
• Coefficients may have the “wrong” sign or implausible magnitudes.

For convenience, define the data matrix, X, to contain a constant and K − 1 other
variables measured in deviations from their means. Let xk denote the kth variable, and
let X(k) denote all the other variables (including the constant term). Then, in the inverse
matrix, (X′X)−1, the kth diagonal element is

(
x′

kM(k)xk
)−1 = [

x′
kxk − x′

kX(k)

(
X′

(k)X(k)

)−1X′
(k)xk

]−1

=
[

x′
kxk

(
1 − x′

kX(k)

(
X′

(k)X(k)

)−1X′
(k)xk

x′
kxk

)]−1

= 1(
1 − R2

k.

)
Skk

,

(4-17)

where R2
k. is the R2 in the regression of xk on all the other variables. In the multiple

regression model, the variance of the kth least squares coefficient estimator is σ 2 times
this ratio. It then follows that the more highly correlated a variable is with the other
variables in the model (collectively), the greater its variance will be. In the most extreme
case, in which xk can be written as a linear combination of the other variables so that
R2

k. = 1, the variance becomes infinite. The result

Var[bk] = σ 2
(
1 − R2

k.

) ∑n
i=1(xik − x̄k)2

, (4-18)

shows the three ingredients of the precision of the kth least squares coefficient estimator:

• Other things being equal, the greater the correlation of xk with the other
variables, the higher the variance will be, due to multicollinearity.

• Other things being equal, the greater the variation in xk, the lower the variance
will be. This result is shown in Figure 4.2.

• Other things being equal, the better the overall fit of the regression, the lower the
variance will be. This result would follow from a lower value of σ 2. We have yet to
develop this implication, but it can be suggested by Figure 4.2 by imagining the
identical figure in the right panel but with all the points moved closer to the
regression line.

Since nonexperimental data will never be orthogonal (R2
k. = 0), to some extent

multicollinearity will always be present. When is multicollinearity a problem? That is,
when are the variances of our estimates so adversely affected by this intercorrelation that
we should be “concerned?” Some computer packages report a variance inflation factor
(VIF), 1/(1 − R2

k.), for each coefficient in a regression as a diagnostic statistic. As can
be seen, the VIF for a variable shows the increase in Var[bk] that can be attributable to
the fact that this variable is not orthogonal to the other variables in the model. Another
measure that is specifically directed at X is the condition number of X′X, which is the
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TABLE 4.4 Longley Results: Dependent Variable is Employment

1947–1961 Variance Inflation 1947–1962

Constant 1,459,415 1,169,087
Year −721.756 251.839 −576.464
GNP deflator −181.123 75.6716 −19.7681
GNP 0.0910678 132.467 0.0643940
Armed Forces −0.0749370 1.55319 −0.0101453

square root ratio of the largest characteristic root of X′X (after scaling each column so
that it has unit length) to the smallest. Values in excess of 20 are suggested as indicative
of a problem [Belsley, Kuh, and Welsch (1980)]. (The condition number for the Longley
data of Example 4.6 is over 15,000!)

Example 4.6 Multicollinearity in the Longley Data
The data in Table F4.2 were assembled by J. Longley (1967) for the purpose of assessing the
accuracy of least squares computations by computer programs. (These data are still widely
used for that purpose.) The Longley data are notorious for severe multicollinearity. Note, for
example, the last year of the data set. The last observation does not appear to be unusual.
But, the results in Table 4.4 show the dramatic effect of dropping this single observation from
a regression of employment on a constant and the other variables. The last coefficient rises
by 600 percent, and the third rises by 800 percent.

Several strategies have been proposed for finding and coping with multicollinear-
ity.4 Under the view that a multicollinearity “problem” arises because of a shortage of
information, one suggestion is to obtain more data. One might argue that if analysts had
such additional information available at the outset, they ought to have used it before
reaching this juncture. More information need not mean more observations, however.
The obvious practical remedy (and surely the most frequently used) is to drop variables
suspected of causing the problem from the regression—that is, to impose on the regres-
sion an assumption, possibly erroneous, that the “problem” variable does not appear in
the model. In doing so, one encounters the problems of specification that we will discuss
in Section 8.2. If the variable that is dropped actually belongs in the model (in the sense
that its coefficient, βk, is not zero), then estimates of the remaining coefficients will be
biased, possibly severely so. On the other hand, overfitting—that is, trying to estimate a
model that is too large—is a common error, and dropping variables from an excessively
specified model might have some virtue. Several other practical approaches have also
been suggested. The ridge regression estimator is br = [X′X + rD]−1X′y, where D is a
diagonal matrix. This biased estimator has a covariance matrix unambiguously smaller
than that of b. The tradeoff of some bias for smaller variance may be worth making
(see Judge et al., 1985), but, nonetheless, economists are generally averse to biased
estimators, so this approach has seen little practical use. Another approach sometimes
used [see, e.g., Gurmu, Rilstone, and Stern (1999)] is to use a small number, say L, of
principal components constructed from the K original variables. [See Johnson and
Wichern (1999).] The problem here is that if the original model in the form y = Xβ + ε

were correct, then it is unclear what one is estimating when one regresses y on some

4See Hill and Adkins (2001) for a description of the standard set of tools for diagnosing collinearity.
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small set of linear combinations of the columns of X. Algebraically, it is simple; at least
for the principal components case, in which we regress y on Z = XCL to obtain d, it
follows that E [d] = δ = CLC′

Lβ. In an economic context, if β has an interpretation, then
it is unlikely that δ will. (How do we interpret the price elasticity plus minus twice the
income elasticity?)

Using diagnostic tools to detect multicollinearity could be viewed as an attempt
to distinguish a bad model from bad data. But, in fact, the problem only stems from
a prior opinion with which the data seem to be in conflict. A finding that suggests
multicollinearity is adversely affecting the estimates seems to suggest that but for this
effect, all the coefficients would be statistically significant and of the right sign. Of course,
this situation need not be the case. If the data suggest that a variable is unimportant in
a model, then, the theory notwithstanding, the researcher ultimately has to decide how
strong the commitment is to that theory. Suggested “remedies” for multicollinearity
might well amount to attempts to force the theory on the data.

4.9.2 MISSING OBSERVATIONS

It is fairly common for a data set to have gaps, for a variety of reasons. Perhaps the
most common occurrence of this problem is in survey data, in which it often happens
that respondents simply fail to answer the questions. In a time series, the data may
be missing because they do not exist at the frequency we wish to observe them; for
example, the model may specify monthly relationships, but some variables are observed
only quarterly.

There are two possible cases to consider, depending on why the data are missing.
One is that the data are simply unavailable, for reasons unknown to the analyst and
unrelated to the completeness of the other observations in the sample. If this is the case,
then the complete observations in the sample constitute a usable data set, and the only
issue is what possibly helpful information could be salvaged from the incomplete obser-
vations. Griliches (1986) calls this the ignorable case in that, for purposes of estimation,
if we are not concerned with efficiency, then we may simply ignore the problem. A
second case, which has attracted a great deal of attention in the econometrics literature,
is that in which the gaps in the data set are not benign but are systematically related
to the phenomenon being modeled. This case happens most often in surveys when the
data are “self-selected” or “self-reported.”5 For example, if a survey were designed to
study expenditure patterns and if high-income individuals tended to withhold infor-
mation about their income, then the gaps in the data set would represent more than
just missing information. In this case, the complete observations would be qualitatively
different. We treat this second case in Chapter 22, so we shall defer our discussion until
later.

In general, not much is known about the properties of estimators based on using
predicted values to fill missing values of y. Those results we do have are largely from
simulation studies based on a particular data set or pattern of missing data. The results
of these Monte Carlo studies are usually difficult to generalize. The overall conclusion

5The vast surveys of Americans’ opinions about sex by Ann Landers (1984, passim) and Shere Hite (1987)
constitute two celebrated studies that were surely tainted by a heavy dose of self-selection bias. The latter was
pilloried in numerous publications for purporting to represent the population at large instead of the opinions
of those strongly enough inclined to respond to the survey. The first was presented with much greater modesty.
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seems to be that in a single-equation regression context, filling in missing values of y
leads to biases in the estimator which are difficult to quantify.

For the case of missing data in the regressors, it helps to consider the simple regres-
sion and multiple regression cases separately. In the first case, X has two columns the
column of 1s for the constant and a column with some blanks where the missing data
would be if we had them. Several schemes have been suggested for filling the blanks.
The zero-order method of replacing each missing x with x̄ results in no changes and is
equivalent to dropping the incomplete data. (See Exercise 7 in Chapter 3.) However,
the R2 will be lower. An alternative, modified zero-order regression is to fill the sec-
ond column of X with zeros and add a variable that takes the value one for missing
observations and zero for complete ones.6 We leave it as an exercise to show that this
is algebraically identical to simply filling the gaps with x̄ Last, there is the possibility of
computing fitted values for the missing x’s by a regression of x on y in the complete
data. The sampling properties of the resulting estimator are largely unknown, but what
evidence there is suggests that this is not a beneficial way to proceed.7

4.9.3 REGRESSION DIAGNOSTICS AND
INFLUENTIAL DATA POINTS

Even in the absence of multicollinearity or other data problems, it is worthwhile to
examine one’s data closely for two reasons. First, the identification of outliers in the
data is useful, particularly in relatively small cross sections in which the identity and
perhaps even the ultimate source of the data point may be known. Second, it may be
possible to ascertain which, if any, particular observations are especially influential in
the results obtained. As such, the identification of these data points may call for further
study. It is worth emphasizing, though, that there is a certain danger in singling out
particular observations for scrutiny or even elimination from the sample on the basis of
statistical results that are based on those data. At the extreme, this step may invalidate
the usual inference procedures.

Of particular importance in this analysis is the projection matrix or hat matrix:

P = X(X′X)−1X′. (4-19)

This matrix appeared earlier as the matrix that projects any n×1 vector into the column
space of X. For any vector y, Py is the set of fitted values in the least squares regression
of y on X. The least squares residuals are

e = My = Mε = (I − P)ε,

so the covariance matrix for the least squares residual vector is

E [ee′] = σ 2M = σ 2(I − P).

To identify which residuals are significantly large, we first standardize them by dividing

6See Maddala (1977a, p. 202).
7Afifi and Elashoff (1966, 1967) and Haitovsky (1968). Griliches (1986) considers a number of other
possibilities.
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FIGURE 4.3 Standardized Residuals for the Longley Data.

by the appropriate standard deviations. Thus, we would use

êi = ei

[s2(1 − pii )]1/2
= ei

(s2mii )1/2
, (4-20)

where ei is the ith least squares residual, s2 = e′e/(n−K), pii is the ith diagonal element
of P and mii is the ith diagonal element of M. It is easy to show (we leave it as an exercise)
that ei/mii = yi − x′

i b(i) where b(i) is the least squares slope vector computed with-
out this observation, so the standardization is a natural way to investigate whether the
particular observation differs substantially from what should be expected given the
model specification. Dividing by s2, or better, s(i)2 scales the observations so that
the value 2.0 [suggested by Belsley, et al. (1980)] provides an appropriate benchmark.
Figure 4.3 illustrates for the Longley data of the previous example. Apparently, 1956
was an unusual year according to this “model.” (What to do with outliers is a question.
Discarding an observation in the middle of a time series is probably a bad idea, though
we may hope to learn something about the data in this way. For a cross section, one may
be able to single out observations that do not conform to the model with this technique.)

4.10 SUMMARY AND CONCLUSIONS

This chapter has examined a set of properties of the least squares estimator that will
apply in all samples, including unbiasedness and efficiency among unbiased estimators.
The assumption of normality of the disturbances produces the distributions of some
useful test statistics which are useful for a statistical assessment of the validity of the
regression model. The finite sample results obtained in this chapter are listed in Table 4.3.
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We also considered some practical problems that arise when data are less than perfect
for the estimation and analysis of the regression model, including multicollinearity and
missing observations.

The formal assumptions of the classical model are pivotal in the results of this
chapter. All of them are likely to be violated in more general settings than the one
considered here. For example, in most cases examined later in the book, the estimator
has a possible bias, but that bias diminishes with increasing sample sizes. Also, we are
going to be interested in hypothesis tests of the type considered here, but at the same
time, the assumption of normality is narrow, so it will be necessary to extend the model
to allow nonnormal disturbances. These and other ‘large sample’ extensions of the linear
model will be considered in Chapter 5.

Key Terms and Concepts
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• Condition number
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• Estimator
• Gauss-Markov Theorem
• Hat matrix
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• Linear unbiased estimator
• Mean squared error
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Exercises

1. Suppose that you have two independent unbiased estimators of the same parameter
θ , say θ̂1 and θ̂2, with different variances v1 and v2. What linear combination θ̂ =
c1θ̂1 + c2θ̂2 is the minimum variance unbiased estimator of θ?

2. Consider the simple regression yi = βxi + εi where E [ε | x] = 0 and E [ε2 | x] = σ 2

a. What is the minimum mean squared error linear estimator of β? [Hint: Let the
estimator be [β̂ = c′y]. Choose c to minimize Var[β̂] + [E(β̂ − β)]2. The answer
is a function of the unknown parameters.]

b. For the estimator in part a, show that ratio of the mean squared error of β̂ to
that of the ordinary least squares estimator b is

MSE [β̂]
MSE [b]

= τ 2

(1 + τ 2)
, where τ 2 = β2

[σ 2/x′x]
.

Note that τ is the square of the population analog to the “t ratio” for testing
the hypothesis that β = 0, which is given in (4-14). How do you interpret the
behavior of this ratio as τ → ∞?

3. Suppose that the classical regression model applies but that the true value of the
constant is zero. Compare the variance of the least squares slope estimator com-
puted without a constant term with that of the estimator computed with an unnec-
essary constant term.
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4. Suppose that the regression model is yi = α + βxi + εi , where the disturbances εi

have f (εi ) = (1/λ) exp(−λεi ), εi ≥ 0. This model is rather peculiar in that all the
disturbances are assumed to be positive. Note that the disturbances have E [εi | xi ] =
λ and Var[εi | xi ] = λ2. Show that the least squares slope is unbiased but that the
intercept is biased.

5. Prove that the least squares intercept estimator in the classical regression model is
the minimum variance linear unbiased estimator.

6. As a profit maximizing monopolist, you face the demand curve Q = α +β P + ε. In
the past, you have set the following prices and sold the accompanying quantities:

Q 3 3 7 6 10 15 16 13 9 15 9 15 12 18 21

P 18 16 17 12 15 15 4 13 11 6 8 10 7 7 7

Suppose that your marginal cost is 10. Based on the least squares regression, com-
pute a 95 percent confidence interval for the expected value of the profit maximizing
output.

7. The following sample moments for x = [1, x1, x2, x3] were computed from 100 ob-
servations produced using a random number generator:

X′X =




100 123 96 109
123 252 125 189

96 125 167 146
109 189 146 168


, X′y =




460
810
615
712


, y′y = 3924.

The true model underlying these data is y = x1 + x2 + x3 + ε.
a. Compute the simple correlations among the regressors.
b. Compute the ordinary least squares coefficients in the regression of y on a con-

stant x1, x2, and x3.
c. Compute the ordinary least squares coefficients in the regression of y on a con-

stant x1 and x2, on a constant x1 and x3, and on a constant x2 and x3.
d. Compute the variance inflation factor associated with each variable.
e. The regressors are obviously collinear. Which is the problem variable?

8. Consider the multiple regression of y on K variables X and an additional variable z.
Prove that under the assumptions A1 through A6 of the classical regression model,
the true variance of the least squares estimator of the slopes on X is larger when z
is included in the regression than when it is not. Does the same hold for the sample
estimate of this covariance matrix? Why or why not? Assume that X and z are
nonstochastic and that the coefficient on z is nonzero.

9. For the classical normal regression model y = Xβ + ε with no constant term and
K regressors, assuming that the true value of β is zero, what is the exact expected
value of F[K, n − K] = (R2/K)/[(1 − R2)/(n − K)]?

10. Prove that E [b′b] = β ′β + σ 2 ∑K
k=1(1/λk) where b is the ordinary least squares

estimator and λk is a characteristic root of X′X.
11. Data on U.S. gasoline consumption for the years 1960 to 1995 are given in

Table F2.2.
a. Compute the multiple regression of per capita consumption of gasoline, G/pop,

on all the other explanatory variables, including the time trend, and report all
results. Do the signs of the estimates agree with your expectations?
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b. Test the hypothesis that at least in regard to demand for gasoline, consumers do
not differentiate between changes in the prices of new and used cars.

c. Estimate the own price elasticity of demand, the income elasticity, and the cross-
price elasticity with respect to changes in the price of public transportation.

d. Reestimate the regression in logarithms so that the coefficients are direct esti-
mates of the elasticities. (Do not use the log of the time trend.) How do your
estimates compare with the results in the previous question? Which specification
do you prefer?

e. Notice that the price indices for the automobile market are normalized to 1967,
whereas the aggregate price indices are anchored at 1982. Does this discrepancy
affect the results? How? If you were to renormalize the indices so that they were
all 1.000 in 1982, then how would your results change?
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5

LARGE-SAMPLE PROPERTIES
OF THE LEAST SQUARES

AND INSTRUMENTAL
VARIABLES ESTIMATORS

Q
5.1 INTRODUCTION

The discussion thus far has concerned finite-sample properties of the least squares
estimator. We derived its exact mean and variance and the precise distribution of the
estimator and several test statistics under the assumptions of normally distributed dis-
turbances and independent observations. These results are independent of the sample
size. But the classical regression model with normally distributed disturbances and inde-
pendent observations is a special case that does not include many of the most common
applications, such as panel data and most time series models. This chapter will generalize
the classical regression model by relaxing these two important assumptions.1

The linear model is one of relatively few settings in which any definite statements
can be made about the exact finite sample properties of any estimator. In most cases,
the only known properties of the estimators are those that apply to large samples.
We can only approximate finite-sample behavior by using what we know about large-
sample properties. This chapter will examine the asymptotic properties of the parameter
estimators in the classical regression model. In addition to the least squares estimator,
this chapter will also introduce an alternative technique, the method of instrumental
variables. In this case, only the large sample properties are known.

5.2 ASYMPTOTIC PROPERTIES
OF THE LEAST SQUARES ESTIMATOR

Using only assumptions A1 through A4 of the classical model (as listed in Table 4.1),
we have established that the least squares estimators of the unknown parameters, β and
σ 2, have the exact, finite-sample properties listed in Table 4.3. For this basic model, it
is straightforward to derive the large-sample properties of the least squares estimator.
The normality assumption, A6, becomes inessential at this point, and will be discarded
save for brief discussions of maximum likelihood estimation in Chapters 10 and 17. This
section will consider various forms of Assumption A5, the data generating mechanism.

1Most of this discussion will use our earlier results on asymptotic distributions. It may be helpful to review
Appendix D before proceeding.

65
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5.2.1 CONSISTENCY OF THE LEAST SQUARES ESTIMATOR OF β

To begin, we leave the data generating mechanism for X unspecified—X may be any
mixture of constants and random variables generated independently of the process
that generates ε. We do make two crucial assumptions. The first is a modification of
Assumption A5 in Table 4.1;

A5a. (xi , εI) i = 1, . . . , n is a sequence of independent observations.

The second concerns the behavior of the data in large samples;

plim
n→∞

X′X
n

= Q, a positive definite matrix. (5-1)

[We will return to (5-1) shortly.] The least squares estimator may be written

b = β +
(

X′X
n

)−1(X′ε
n

)
. (5-2)

If Q−1 exists, then

plim b = β + Q−1plim
(

X′ε
n

)

because the inverse is a continuous function of the original matrix. (We have invoked
Theorem D.14.) We require the probability limit of the last term. Let

1
n

X′ε = 1
n

n∑
i=1

xiεi = 1
n

n∑
i=1

wi = w̄. (5-3)

Then

plim b = β + Q−1 plim w̄.

From the exogeneity Assumption A3, we have E [wi ] = Ex[E [wi | xi ]] = Ex[xi E [εi | xi ]]
= 0, so the exact expectation is E [w̄] = 0. For any element in xi that is nonstochastic,
the zero expectations follow from the marginal distribution of εi . We now consider the
variance. By (B-70), Var[w̄] = E [Var[w̄ | X]] + Var[E[w̄ | X]]. The second term is zero
because E [εi | xi ] = 0. To obtain the first, we use E [εε′ | X] = σ 2I, so

Var[w̄ | X] = E [w̄w̄′ | X] = 1
n

X′ E [εε′ | X]X
1
n

=
(

σ 2

n

)(
X′X

n

)
.

Therefore,

Var[w̄] =
(

σ 2

n

)
E

(
X′X

n

)
.

The variance will collapse to zero if the expectation in parentheses is (or converges to)
a constant matrix, so that the leading scalar will dominate the product as n increases.
Assumption (5-1) should be sufficient. (Theoretically, the expectation could diverge
while the probability limit does not, but this case would not be relevant for practical
purposes.) It then follows that

lim
n→∞ Var[w̄] = 0 · Q = 0.
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Since the mean of w̄ is identically zero and its variance converges to zero, w̄ converges
in mean square to zero, so plim w̄ = 0. Therefore,

plim
X′ε

n
= 0, (5-4)

so

plim b = β + Q−1 · 0 = β. (5-5)

This result establishes that under Assumptions A1–A4 and the additional assumption
(5-1), b is a consistent estimator of β in the classical regression model.

Time-series settings that involve time trends, polynomial time series, and trending
variables often pose cases in which the preceding assumptions are too restrictive. A
somewhat weaker set of assumptions about X that is broad enough to include most of
these is the Grenander conditions listed in Table 5.1.2 The conditions ensure that the
data matrix is “well behaved” in large samples. The assumptions are very weak and is
likely to be satisfied by almost any data set encountered in practice.3

5.2.2 ASYMPTOTIC NORMALITY OF THE LEAST SQUARES
ESTIMATOR

To derive the asymptotic distribution of the least squares estimator, we shall use the
results of Section D.3. We will make use of some basic central limit theorems, so in
addition to Assumption A3 (uncorrelatedness), we will assume that the observations
are independent. It follows from (5-2) that

√
n(b − β) =

(
X′X

n

)−1( 1√
n

)
X′ε. (5-6)

Since the inverse matrix is a continuous function of the original matrix, plim(X′X/n)−1 =
Q−1. Therefore, if the limiting distribution of the random vector in (5-6) exists, then that
limiting distribution is the same as that of

[
plim

(
X′X

n

)−1
](

1√
n

)
X′ε = Q−1

(
1√
n

)
X′ε. (5-7)

Thus, we must establish the limiting distribution of
(

1√
n

)
X′ε = √

n
(
w̄ − E [w̄]

)
, (5-8)

where E [w̄] = 0. [See (5-3).] We can use the multivariate Lindberg–Feller version of
the central limit theorem (D.19.A) to obtain the limiting distribution of

√
nw̄.4 Using

that formulation, w̄ is the average of n independent random vectors wi = xiεi , with
means 0 and variances

Var[xiεi ] = σ 2 E [xi x′
i ] = σ 2Qi . (5-9)

2Judge et al. (1985, p. 162).
3White (2001) continues this line of analysis.
4Note that the Lindberg–Levy variant does not apply because Var[wi ] is not necessarily constant.
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TABLE 5.1 Grenander Conditions for Well Behaved Data

G1. For each column of X, xk, if d2
nk = x′

kxk, then limn→∞ d2
nk = +∞. Hence, xk does not

degenerate to a sequence of zeros. Sums of squares will continue to grow as the sample size
increases. No variable will degenerate to a sequence of zeros.
G2. Limn→∞x2

ik/d2
nk = 0 for all i = 1, . . . , n. This condition implies that no single observation

will ever dominate x′
kxk, and as n → ∞, individual observations will become less important.

G3. Let Rn be the sample correlation matrix of the columns of X, excluding the constant term
if there is one. Then limn→∞ Rn = C, a positive definite matrix. This condition implies that the
full rank condition will always be met. We have already assumed that X has full rank in a finite
sample, so this assumption ensures that the condition will never be violated.

The variance of
√

nw̄ is

σ 2Q̄n = σ 2
(

1
n

)
[Q1 + Q2 + · · · + Qn]. (5-10)

As long as the sum is not dominated by any particular term and the regressors are well
behaved, which in this case means that (5-1) holds,

lim
n→∞ σ 2Q̄n = σ 2Q. (5-11)

Therefore, we may apply the Lindberg–Feller central limit theorem to the vector
√

n w̄,

as we did in Section D.3 for the univariate case
√

nx̄. We now have the elements we
need for a formal result. If [xiεi ], i = 1, . . . , n are independent vectors distributed with
mean 0 and variance σ 2Qi < ∞, and if (5-1) holds, then

(
1√
n

)
X′ε d−→ N[0, σ 2Q]. (5-12)

It then follows that

Q−1
(

1√
n

)
X′ε d−→ N[Q−10, Q−1(σ 2Q)Q−1]. (5-13)

Combining terms,
√

n(b − β)
d−→ N[0, σ 2Q−1]. (5-14)

Using the technique of Section D.3, we obtain the asymptotic distribution of b:

THEOREM 5.1 Asymptotic Distribution of b with Independent
Observations

If {εi } are independently distributed with mean zero and finite variance σ 2 and xik

is such that the Grenander conditions are met, then

b
a∼ N

[
β,

σ 2

n
Q−1

]
. (5-15)

In practice, it is necessary to estimate (1/n)Q−1 with (X′X)−1 and σ 2 with e′e/(n − K).
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If ε is normally distributed, then Result FS7 in (Table 4.3, Section 4.8) holds in every
sample, so it holds asymptotically as well. The important implication of this derivation
is that if the regressors are well behaved and observations are independent, then the
asymptotic normality of the least squares estimator does not depend on normality of
the disturbances; it is a consequence of the central limit theorem. We will consider other
more general cases in the sections to follow.

5.2.3 CONSISTENCY OF s2 AND THE ESTIMATOR OF Asy. Var[b]

To complete the derivation of the asymptotic properties of b, we will require an estimator
of Asy. Var[b] = (σ 2/n)Q−1.5 With (5-1), it is sufficient to restrict attention to s2, so the
purpose here is to assess the consistency of s2 as an estimator of σ 2. Expanding

s2 = 1
n − K

ε′Mε

produces

s2 = 1
n − K

[ε′ε − ε′X(X′X)−1X′ε] = n
n − k

[
ε′ε
n

−
(

ε′X
n

)(
X′X

n

)−1(X′ε
n

)]
.

The leading constant clearly converges to 1. We can apply (5-1), (5-4) (twice), and the
product rule for probability limits (Theorem D.14) to assert that the second term in the
brackets converges to 0. That leaves

ε2 = 1
n

n∑
i=1

ε2
i .

This is a narrow case in which the random variables ε2
i are independent with the same

finite mean σ 2, so not much is required to get the mean to converge almost surely to
σ 2 = E [ε2

i ]. By the Markov Theorem (D.8), what is needed is for E [| ε2
i |1+δ] to be finite,

so the minimal assumption thus far is that εi have finite moments up to slightly greater
than 2. Indeed, if we further assume that every εi has the same distribution, then by
the Khinchine Theorem (D.5) or the Corollary to D8, finite moments (of εi ) up to 2 is
sufficient. Mean square convergence would require E [ε4

i ] = φε < ∞. Then the terms
in the sum are independent, with mean σ 2 and variance φε − σ 4. So, under fairly weak
condition, the first term in brackets converges in probability to σ 2, which gives our
result,

plim s2 = σ 2,

and, by the product rule,

plim s2(X′X/n)−1 = σ 2Q−1.

The appropriate estimator of the asymptotic covariance matrix of b is

Est.Asy. Var[b] = s2(X′X)−1.

5See McCallum (1973) for some useful commentary on deriving the asymptotic covariance matrix of the least
squares estimator.
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5.2.4 ASYMPTOTIC DISTRIBUTION OF A FUNCTION OF b:
THE DELTA METHOD

We can extend Theorem D.22 to functions of the least squares estimator. Let f(b) be a
set of J continuous, linear or nonlinear and continuously differentiable functions of the
least squares estimator, and let

C(b) = ∂f(b)

∂b′ ,

where C is the J × K matrix whose jth row is the vector of derivatives of the jth function
with respect to b′. By the Slutsky Theorem (D.12),

plim f(b) = f(β)

and

plim C(b) = ∂f(β)

∂β ′ = �.

Using our usual linear Taylor series approach, we expand this set of functions in the
approximation

f(b) = f(β) + � × (b − β) + higher-order terms.

The higher-order terms become negligible in large samples if plim b = β. Then, the
asymptotic distribution of the function on the left-hand side is the same as that on
the right. Thus, the mean of the asymptotic distribution is plim f(b) = f(β), and the
asymptotic covariance matrix is

{
�[Asy. Var(b − β)]�′}, which gives us the following

theorem:

THEOREM 5.2 Asymptotic Distribution of a Function of b
If f(b) is a set of continuous and continuously differentiable functions of b
such that � = ∂f(β)/∂β ′ and if Theorem 5.1 holds, then

f(b)
a∼ N

[
f(β), �

(
σ 2

n
Q−1

)
�′

]
. (5-16)

In practice, the estimator of the asymptotic covariance matrix would be

Est.Asy. Var[f(b)] = C[s2(X′X)−1]C′.

If any of the functions are nonlinear, then the property of unbiasedness that holds
for b may not carry over to f(b). Nonetheless, it follows from (5-4) that f(b) is a consistent
estimator of f(β), and the asymptotic covariance matrix is readily available.

5.2.5 ASYMPTOTIC EFFICIENCY

We have not established any large-sample counterpart to the Gauss-Markov theorem.
That is, it remains to establish whether the large-sample properties of the least squares
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estimator are optimal by any measure. The Gauss-Markov Theorem establishes finite
sample conditions under which least squares is optimal. The requirements that the
estimator be linear and unbiased limit the theorem’s generality, however. One of the
main purposes of the analysis in this chapter is to broaden the class of estimators in
the classical model to those which might be biased, but which are consistent. Ultimately,
we shall also be interested in nonlinear estimators. These cases extend beyond the reach
of the Gauss Markov Theorem. To make any progress in this direction, we will require
an alternative estimation criterion.

DEFINITION 5.1 Asymptotic Efficiency
An estimator is asymptotically efficient if it is consistent, asymptotically normally
distributed, and has an asymptotic covariance matrix that is not larger than the
asymptotic covariance matrix of any other consistent, asymptotically normally
distributed estimator.

In Chapter 17, we will show that if the disturbances are normally distributed, then
the least squares estimator is also the maximum likelihood estimator. Maximum likeli-
hood estimators are asymptotically efficient among consistent and asymptotically nor-
mally distributed estimators. This gives us a partial result, albeit a somewhat narrow one
since to claim it, we must assume normally distributed disturbances. If some other distri-
bution is specified for ε and it emerges that b is not the maximum likelihood estimator,
then least squares may not be efficient.

Example 5.1 The Gamma Regression Model
Greene (1980a) considers estimation in a regression model with an asymmetrically distributed
disturbance,

y = (α − σ
√

P) + x′β − (ε − σ
√

P) = α∗ + x′β + ε∗,

where ε has the gamma distribution in Section B.4.5 [see (B-39)] and σ = √
P/λ is the

standard deviation of the disturbance. In this model, the covariance matrix of the least squares
estimator of the slope coefficients (not including the constant term) is,

Asy. Var[b | X] = σ 2(X′M0X)−1,

whereas for the maximum likelihood estimator (which is not the least squares estimator),

Asy. Var[β̂ML ] ≈ [1 − (2/P) ]σ 2(X′M0X)−1.6

But for the asymmetry parameter, this result would be the same as for the least squares
estimator. We conclude that the estimator that accounts for the asymmetric disturbance
distribution is more efficient asymptotically.

6The Matrix M0 produces data in the form of deviations from sample means. (See Section A.2.8.) In Greene’s
model, P must be greater than 2.
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5.3 MORE GENERAL CASES

The asymptotic properties of the estimators in the classical regression model were
established in Section 5.2 under the following assumptions:

A1. Linearity: yi = xi1β1 + xi2β2 + · · · + xi KβK + εi .

A2. Full rank: The n × K sample data matrix, X has full column rank.
A3. Exogeneity of the independent variables: E [εi | xj1, xj2, . . . , xj K] = 0,

i, j = 1, . . . , n.
A4. Homoscedasticity and nonautocorrelation.
A5. Data generating mechanism-independent observations.

The following are the crucial results needed: For consistency of b, we need (5-1) and
(5-4),

plim(1/n)X′X = plim Q̄n = Q, a positive definite matrix,

plim(1/n)X′ε = plim w̄n = E [w̄n] = 0.

(For consistency of s2, we added a fairly weak assumption about the moments of the
disturbances.) To establish asymptotic normality, we will require consistency and (5-12)
which is

√
n w̄n

d−→ N[0, σ 2Q].

With these in place, the desired characteristics are then established by the methods of
Section 5.2. To analyze other cases, we can merely focus on these three results. It is not
necessary to reestablish the consistency or asymptotic normality themselves, since they
follow as a consequence.

5.3.1 HETEROGENEITY IN THE DISTRIBUTIONS OF xi

Exceptions to the assumptions made above are likely to arise in two settings. In a panel
data set, the sample will consist of multiple observations on each of many observational
units. For example, a study might consist of a set of observations made at different
points in time on a large number of families. In this case, the xs will surely be correlated
across observations, at least within observational units. They might even be the same
for all the observations on a single family. They are also likely to be a mixture of random
variables, such as family income, and nonstochastic regressors, such as a fixed “family
effect” represented by a dummy variable. The second case would be a time-series model
in which lagged values of the dependent variable appear on the right-hand side of the
model.

The panel data set could be treated as follows. Assume for the moment that the
data consist of a fixed number of observations, say T, on a set of N families, so that the
total number of rows in X is n = NT. The matrix

Q̄n = 1
n

n∑
i=1

Qi
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in which n is all the observations in the sample, could be viewed as

Q̄n = 1
N

∑
i

1
T

∑
observations
for family i

Qi j = 1
N

N∑
i=1

Q̄i ,

where Q̄i = average Qi j for family i. We might then view the set of observations on the
ith unit as if they were a single observation and apply our convergence arguments to the
number of families increasing without bound. The point is that the conditions that are
needed to establish convergence will apply with respect to the number of observational
units. The number of observations taken for each observation unit might be fixed and
could be quite small.

5.3.2 DEPENDENT OBSERVATIONS

The second difficult case arises when there are lagged dependent variables among the
variables on the right-hand side or, more generally, in time series settings in which the
observations are no longer independent or even uncorrelated. Suppose that the model
may be written

yt = z′
tθ + γ1 yt−1 + · · · + γpyt−p + εt . (5-17)

(Since this model is a time-series setting, we use t instead of i to index the observations.)
We continue to assume that the disturbances are uncorrelated across observations.
Since yt−1 is dependent on yt−2 and so on, it is clear that although the disturbances are
uncorrelated across observations, the regressor vectors, including the lagged ys, surely
are not. Also, although Cov[xt , εs] = 0 if s ≥ t

(
xt = [zt , yt−1, . . . , yt−p]

)
, Cov[xt , εs] �= 0

if s < t . Every observation yt is determined by the entire history of the disturbances.
Therefore, we have lost the crucial assumption E [ε | X] = 0; E [εt | future xs] is not
equal to 0. The conditions needed for the finite-sample results we had earlier no longer
hold. Without Assumption A3, E [ε | X] = 0, our earlier proof of unbiasedness dissolves,
and without unbiasedness, the Gauss–Markov theorem no longer applies. We are left
with only asymptotic results for this case.

This case is considerably more general than the ones we have considered thus far.
The theorems we invoked previously do not apply when the observations in the sums are
correlated. To establish counterparts to the limiting normal distribution of (1/

√
n)X′ε

and convergence of (1/n)X′X to a finite positive definite matrix, it is necessary to
make additional assumptions about the regressors. For the disturbances, we replace
Assumption A3 following.

AD3. E [εt | xt−s] = 0, for all s ≥ 0.

This assumption states that the disturbance in the period “t” is an innovation; it is
new information that enters the process. Thus, it is not correlated with any of the
history. It is not uncorrelated with future data, however, since εt will be a part of xt+r .
Assumptions A1, A2, and A4 are retained (at least for the present). We will also replace
Assumption A5 and result (5-1) with two assumptions about the right-hand variables.
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First,

plim
1

T − s

T∑
t=s+1

xt x′
t−s = Q(s), a finite matrix, s ≥ 0, (5-18)

and Q(0) is nonsingular if T ≥ K. [Note that Q = Q(0).] This matrix is the sums of
cross products of the elements of xt with lagged values of xt . Second, we assume that
the roots of the polynomial

1 − γ1z − γ2z2 − · · · − γPzp = 0 (5-19)

are all outside the unit circle. (See Section 20.2 for further details.) Heuristically, these
assumptions imply that the dependence between values of the xs at different points in
time varies only with how far apart in time they are, not specifically with the points in
time at which observations are made, and that the correlation between observations
made at different points in time fades sufficiently rapidly that sample moments such
as Q(s) above will converge in probability to a population counterpart.7 Formally, we
obtain these results with

AD5. The series on xt is stationary and ergodic.

This assumption also implies that Q(s) becomes a matrix of zeros as s (the separation
in time) becomes large. These conditions are sufficient to produce (1/n)X′ε → 0 and
the consistency of b. Further results are needed to establish the asymptotic normality
of the estimator, however.8

In sum, the important properties of consistency and asymptotic normality of the
least squares estimator are preserved under the different assumptions of stochastic
regressors, provided that additional assumptions are made. In most cases, these as-
sumptions are quite benign, so we conclude that the two asymptotic properties of least
squares considered here, consistency and asymptotic normality, are quite robust to dif-
ferent specifications of the regressors.

5.4 INSTRUMENTAL VARIABLE AND TWO STAGE
LEAST SQUARES ESTIMATION

The assumption that xi and εi are uncorrelated has been crucial in the development thus
far. But, there are any number of applications in economics in which this assumption is
untenable. Examples include models that contain variables that are measured with error
and most dynamic models involving expectations. Without this assumption, none of the

7We will examine some cases in later chapters in which this does not occur. To consider a simple example,
suppose that x contains a constant. Then the assumption requires sample means to converge to popula-
tion parameters. Suppose that all observations are correlated. Then the variance of x̄ is Var[(1/T)�t xt ] =
(1/T2)�t�sCov[xt , xs ]. Since none of the T2 terms is assumed to be zero, there is no assurance that the
double sum converges to zero as T → ∞. But if the correlations diminish sufficiently with distance in time,
then the sum may converge to zero.
8These appear in Mann and Wald (1943), Billingsley (1979) and Dhrymes (1998).
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proofs of consistency given above will hold up, so least squares loses its attractiveness
as an estimator. There is an alternative method of estimation called the method of
instrumental variables (IV). The least squares estimator is a special case, but the IV
method is far more general. The method of instrumental variables is developed around
the following general extension of the estimation strategy in the classical regression
model: Suppose that in the classical model yi = x′

iβ + εi , the K variables xi may be
correlated with εi . Suppose as well that there exists a set of L variables zi , where L is at
least as large as K, such that zi is correlated with xi but not with εi . We cannot estimate
β consistently by using the familiar least squares estimator. But we can construct a
consistent estimator of β by using the assumed relationships among zi , xi , and εi .

Example 5.2 Models in Which Least Squares is Inconsistent
The following models will appear at various points in this book. In general, least squares will
not be a suitable estimator.

Dynamic Panel Data Model In Example 13.6 and Section 18.5, we will examine a model for
municipal expenditure of the form Si t = f ( Si t−1, . . .) + εi t . The disturbances are assumed to
be freely correlated across periods, so both Si ,t−1 and εi ,t are correlated with εi ,t−1. It follows
that they are correlated with each other, which means that this model, even with a linear
specification, does not satisfy the assumptions of the classical model. The regressors and
disturbances are correlated.

Dynamic Regression In Chapters 19 and 20, we will examine a variety of time series models
which are of the form yt = f ( yt−1, . . .) +εt in which εt is (auto-) correlated with its past values.
This case is essentially the same as the one we just considered. Since the disturbances
are autocorrelated, it follows that the dynamic regression implies correlation between the
disturbance and a right hand side variable. Once again, least squares will be inconsistent.

Consumption Function We (and many other authors) have used a macroeconomic version
of the consumption function at various points to illustrate least squares estimation of the
classical regression model. But, by construction, the model violates the assumptions of
the classical regression model. The national income data are assembled around some ba-
sic accounting identities, including “Y = C + investment + government spending + net
exports.” Therefore, although the precise relationship between consumption C, and income
Y, C = f (Y, ε) , is ambiguous and is a suitable candidate for modeling, it is clear that con-
sumption (and therefore ε) is one of the main determinants of Y . The model Ct = α +βYt + εt
does not fit our assumptions for the classical model if Cov[Yt , εt ] �= 0. But it is reasonable to
assume (at least for now) that εt is uncorrelated with past values of C and Y . Therefore, in
this model, we might consider Yt−1 and Ct−1 as suitable instrumental variables.

Measurement Error In Section 5.6, we will examine an application in which an earnings equa-
tion yi ,t = f (Educationi ,t , . . .) +εi ,t is specified for sibling pairs (twins) t = 1, 2 for n individuals.
Since education is a variable that is measured with error, it will emerge (in a way that will be es-
tablished below) that this is, once again, a case in which the disturbance and an independent
variable are correlated.

None of these models can be consistently estimated by least squares—the method of
instrumental variables is the standard approach.

We will now construct an estimator for β in this extended model. We will maintain
assumption A5 (independent observations with finite moments), though this is only for
convenience. These results can all be extended to cases with dependent observations.
This will preserve the important result that plim(X′X/n) = Qxx. (We use the subscript
to differentiate this result from the results given below.) The basic assumptions of the
regression model have changed, however. First, A3 (no correlation between x and ε) is,
under our new assumptions,

AI3. E [εi | xi ] = ηi .
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We interpret Assumption AI3 to mean that the regressors now provide information
about the expectations of the disturbances. The important implication of AI3 is that the
disturbances and the regressors are now correlated. Assumption AI3 implies that

E [xiεi ] = γ

for some nonzero γ . If the data are “well behaved,” then we can apply Theorem D.5
(Khinchine’s theorem) to assert that

plim(1/n)X′ε = γ .

Notice that the original model results if ηi = 0. Finally, we must characterize the instru-
mental variables. We assume the following:

AI7. [xi , zi , εi ], i = 1, . . . , n, are an i.i.d. sequence of random variables.
AI8a. E [x2

ik] = Qxx,kk < ∞, a finite constant, k = 1, . . . , K.
AI8b. E [z2

il] = Qzz,ll < ∞, a finite constant, l = 1, . . . , L.
AI8c. E [zil xik] = Qzx,lk < ∞, a finite constant, l = 1, . . . , L, k = 1, . . . , K.
AI9. E [εi | zi ] = 0.

In later work in time series models, it will be important to relax assumption AI7. Finite
means of zl follows from AI8b. Using the same analysis as in the preceding section, we
have

plim(1/n)Z′Z = Qzz, a finite, positive definite (assumed) matrix,

plim(1/n)Z′X = Qzx, a finite, L× K matrix with rank K (assumed),

plim(1/n)Z′ε = 0.

In our statement of the classical regression model, we have assumed thus far the special
case of ηi = 0; γ = 0 follows. There is no need to dispense with Assumption AI7—it
may well continue to be true—but in this special case, it becomes irrelevant.

For this more general model, we lose most of the useful results we had for least
squares. The estimator b is no longer unbiased;

E [b | X] = β + (X′X)−1X′η �= β,

so the Gauss–Markov theorem no longer holds. It is also inconsistent;

plim b = β + plim
(

X′X
n

)−1

plim
(

X′ε
n

)
= β + Q−1

xx γ �= β.

(The asymptotic distribution is considered in the exercises.)
We now turn to the instrumental variable estimator. Since E [ziεi ] = 0 and all terms

have finite variances, we can state that

plim
(

Z′y
n

)
=

[
plim

(
Z′X

n

)]
β + plim

(
Z′ε
n

)
=

[
plim

(
Z′X

n

)]
β.
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Suppose that Z has the same number of variables as X. For example, suppose in our
consumption function that xt = [1, Yt ] when zt = [1, Yt−1]. We have assumed that the
rank of Z′X is K, so now Z′X is a square matrix. It follows that

[
plim

(
Z′X

n

)]−1

plim
(

Z′y
n

)
= β,

which leads us to the instrumental variable estimator,

bIV = (Z′X)−1Z′y.

We have already proved that bIV is consistent. We now turn to the asymptotic distribu-
tion. We will use the same method as in the previous section. First,

√
n(bIV − β) =

(
Z′X

n

)−1 1√
n

Z′ε,

which has the same limiting distribution as Q−1
zx [(1/

√
n)Z′ε]. Our analysis of (1/

√
n)Z′ε

is the same as that of (1/
√

n)X′ε in the previous section, so it follows that
(

1√
n

Z′ε
)

d−→ N
[
0, σ 2Qzz

]

and
(

Z′X
n

)−1( 1√
n

Z′ε
)

d−→ N
[
0, σ 2Q−1

zx QzzQ−1
xz

]
.

This step completes the derivation for the next theorem.

THEOREM 5.3 Asymptotic Distribution of the Instrumental
Variables Estimator

If Assumptions A1, A2, AI3, A4, AS5, AS5a, AI7, AI8a–c and AI9 all hold
for [yi , xi , zi , εi ], where z is a valid set of L = K instrumental variables, then the
asymptotic distribution of the instrumental variables estimator bIV = (Z′X)−1Z′y
is

bIV
a∼ N

[
β,

σ 2

n
Q−1

zx QzzQ−1
xz

]
. (5-20)

where Qzx = plim(Z′X/n) and Qzz = plim(Z′Z/n).

To estimate the asymptotic covariance matrix, we will require an estimator of σ 2.
The natural estimator is

σ̂ 2 = 1
n

n∑
i=1

(yi − x′
i bIV)2.



Greene-50240 book June 3, 2002 9:59

78 CHAPTER 5 ✦ Large-Sample Properties

A correction for degrees of freedom, as in the development in the previous section,
is superfluous, as all results here are asymptotic, and σ̂ 2 would not be unbiased in any
event. (Nonetheless, it is standard practice in most software to make the degrees of
freedom correction.) Write the vector of residuals as

y − XbIV = y − X(Z′X)−1Z′y.

Substitute y = Xβ + ε and collect terms to obtain ε̂ = [I − X(Z′X)−1Z′]ε. Now,

σ̂ 2 = ε̂′ε̂
n

= ε′ε
n

+
(

ε′Z
n

)(
X′Z

n

)−1(X′X
n

)(
Z′X

n

)−1(Z′ε
n

)
− 2

(
ε′X

n

)(
Z′X

n

)−1(Z′ε
n

)
.

We found earlier that we could (after a bit of manipulation) apply the product result for
probability limits to obtain the probability limit of an expression such as this. Without
repeating the derivation, we find that σ̂ 2 is a consistent estimator of σ 2, by virtue of
the first term. The second and third product terms converge to zero. To complete the
derivation, then, we will estimate Asy. Var[bIV] with

Est.Asy. Var[bIV] = 1
n

{(
ε̂′ε̂
n

)(
Z′X

n

)−1(Z′Z
n

)(
X′Z

n

)−1
}

= σ̂ 2(Z′X)−1(Z′Z)(X′Z)−1.

(5-21)

There is a remaining detail. If Z contains more variables than X, then much of
the preceding is unusable, because Z′X will be L × K with rank K < L and will thus
not have an inverse. The crucial result in all the preceding is plim(Z′ε/n) = 0. That is,
every column of Z is asymptotically uncorrelated with ε. That also means that every
linear combination of the columns of Z is also uncorrelated with ε, which suggests that
one approach would be to choose K linear combinations of the columns of Z. Which
to choose? One obvious possibility is simply to choose K variables among the L in Z.
But intuition correctly suggests that throwing away the information contained in the
remaining L− K columns is inefficient. A better choice is the projection of the columns
of X in the column space of Z:

X̂ = Z(Z′Z)−1Z′X.

We will return shortly to the virtues of this choice. With this choice of instrumental
variables, X̂ for Z, we have

bIV = (X̂′X)−1X̂′y

= [X′Z(Z′Z)−1Z′X]−1X′Z(Z′Z)−1Z′y.
(5-22)

By substituting X̂ in the expression for Est.Asy. Var[bIV] and multiplying it out, we see
that the expression is unchanged. The proofs of consistency and asymptotic normality
for this estimator are exactly the same as before, because our proof was generic for any
valid set of instruments, and X̂ qualifies.
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There are two reasons for using this estimator—one practical, one theoretical. If
any column of X also appears in Z, then that column of X is reproduced exactly in
X̂. This is easy to show. In the expression for X̂, if the kth column in X is one of the
columns in Z, say the lth, then the kth column in (Z′Z)−1Z′X will be the lth column of
an L × L identity matrix. This result means that the kth column in X̂ = Z(Z′Z)−1Z′X
will be the lth column in Z, which is the kth column in X. This result is important and
useful. Consider what is probably the typical application. Suppose that the regression
contains K variables, only one of which, say the kth, is correlated with the disturbances.
We have one or more instrumental variables in hand, as well as the other K−1 variables
that certainly qualify as instrumental variables in their own right. Then what we would
use is Z = [X(k), z1, z2, . . .], where we indicate omission of the kth variable by (k) in
the subscript. Another useful interpretation of X̂ is that each column is the set of fitted
values when the corresponding column of X is regressed on all the columns of Z, which
is obvious from the definition. It also makes clear why each xk that appears in Z is
perfectly replicated. Every xk provides a perfect predictor for itself, without any help
from the remaining variables in Z. In the example, then, every column of X except the
one that is omitted from X(k) is replicated exactly, whereas the one that is omitted is
replaced in X̂ by the predicted values in the regression of this variable on all the zs.

Of all the different linear combinations of Z that we might choose, X̂ is the most
efficient in the sense that the asymptotic covariance matrix of an IV estimator based on
a linear combination ZF is smaller when F = (Z′Z)−1Z′X than with any other F that
uses all L columns of Z; a fortiori, this result eliminates linear combinations obtained
by dropping any columns of Z. This important result was proved in a seminal paper by
Brundy and Jorgenson (1971).

We close this section with some practical considerations in the use of the instru-
mental variables estimator. By just multiplying out the matrices in the expression, you
can show that

bIV = (X̂′X)−1X̂′y

= (X′(I − Mz)X)−1X′(I − Mz)y

= (X̂′X̂)−1X̂′y

since I − Mz is idempotent. Thus, when (and only when) X̂ is the set of instruments,
the IV estimator is computed by least squares regression of y on X̂. This conclusion
suggests (only logically; one need not actually do this in two steps), that bIV can be
computed in two steps, first by computing X̂, then by the least squares regression. For
this reason, this is called the two-stage least squares (2SLS) estimator. We will revisit this
form of estimator at great length at several points below, particularly in our discussion
of simultaneous equations models, under the rubric of “two-stage least squares.” One
should be careful of this approach, however, in the computation of the asymptotic
covariance matrix; σ̂ 2 should not be based on X̂. The estimator

s2
IV = (y − X̂bIV)′(y − X̂bIV)

n

is inconsistent for σ 2, with or without a correction for degrees of freedom.
An obvious question is where one is likely to find a suitable set of instrumental

variables. In many time-series settings, lagged values of the variables in the model
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provide natural candidates. In other cases, the answer is less than obvious. The asymp-
totic variance matrix of the IV estimator can be rather large if Z is not highly correlated
with X; the elements of (Z′X)−1 grow large. Unfortunately, there usually is not much
choice in the selection of instrumental variables. The choice of Z is often ad hoc.9 There
is a bit of a dilemma in this result. It would seem to suggest that the best choices of
instruments are variables that are highly correlated with X. But the more highly corre-
lated a variable is with the problematic columns of X, the less defensible the claim that
these same variables are uncorrelated with the disturbances.

5.5 HAUSMAN’S SPECIFICATION TEST AND
AN APPLICATION TO INSTRUMENTAL
VARIABLE ESTIMATION

It might not be obvious that the regressors in the model are correlated with the dis-
turbances or that the regressors are measured with error. If not, there would be some
benefit to using the least squares estimator rather than the IV estimator. Consider a
comparison of the two covariance matrices under the hypothesis that both are consistent,
that is, assuming plim(1/n)X′ε = 0. The difference between the asymptotic covariance
matrices of the two estimators is

Asy. Var[bIV] − Asy. Var[bLS] = σ 2

n
plim

(
X′Z(Z′Z)−1Z′X

n

)−1

− σ 2

n
plim

(
X′X

n

)−1

= σ 2

n
plim n

[
(X′Z(Z′Z)−1Z′X)−1 − (X′X)−1].

To compare the two matrices in the brackets, we can compare their inverses. The in-
verse of the first is X′Z(Z′Z)−1Z′X = X′(I − MZ)X = X′X − X′MZX. Since MZ is a
nonnegative definite matrix, it follows that X′MZX is also. So, X′Z(Z′Z)−1Z′X equals
X′X minus a nonnegative definite matrix. Since X′Z(Z′Z)−1Z′X is smaller, in the matrix
sense, than X′X, its inverse is larger. Under the hypothesis, the asymptotic covariance
matrix of the LS estimator is never larger than that of the IV estimator, and it will
actually be smaller unless all the columns of X are perfectly predicted by regressions on
Z. Thus, we have established that if plim(1/n)X′ε = 0—that is, if LS is consistent—then
it is a preferred estimator. (Of course, we knew that from all our earlier results on the
virtues of least squares.)

Our interest in the difference between these two estimators goes beyond the ques-
tion of efficiency. The null hypothesis of interest will usually be specifically whether
plim(1/n)X′ε = 0. Seeking the covariance between X and ε through (1/n)X′e is fruit-
less, of course, since the normal equations produce (1/n)X′e = 0. In a seminal paper,
Hausman (1978) suggested an alternative testing strategy. [Earlier work by Wu (1973)
and Durbin (1954) produced what turns out to be the same test.] The logic of Hausman’s
approach is as follows. Under the null hypothesis, we have two consistent estimators of

9Results on “optimal instruments” appear in White (2001) and Hansen (1982). In the other direction, there
is a contemporary literature on “weak” instruments, such as Staiger and Stock (1997).
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β, bLS and bIV. Under the alternative hypothesis, only one of these, bIV, is consistent.
The suggestion, then, is to examine d = bIV−bLS. Under the null hypothesis, plim d = 0,
whereas under the alternative, plim d �= 0. Using a strategy we have used at various
points before, we might test this hypothesis with a Wald statistic,

H = d′{Est.Asy. Var[d]
}−1d.

The asymptotic covariance matrix we need for the test is

Asy. Var[bIV − bLS] = Asy. Var[bIV] + Asy. Var[bLS]

− Asy. Cov[bIV, bLS] − Asy. Cov[bLS, bIV].

At this point, the test is straightforward, save for the considerable complication that
we do not have an expression for the covariance term. Hausman gives a fundamental
result that allows us to proceed. Paraphrased slightly,

the covariance between an efficient estimator, bE, of a parameter vector, β, and its
difference from an inefficient estimator, bI , of the same parameter vector, bE−bI ,
is zero.

For our case, bE is bLS and bI is bIV. By Hausman’s result we have

Cov[bE, bE − bI ] = Var[bE] − Cov[bE, bI ] = 0

or

Cov[bE, bI ] = Var[bE],

so,

Asy.Var[bIV − bLS] = Asy. Var[bIV] − Asy. Var[bLS].

Inserting this useful result into our Wald statistic and reverting to our empirical estimates
of these quantities, we have

H = (bIV − bLS)
′{Est.Asy. Var[bIV] − Est.Asy. Var[bLS]

}−1
(bIV − bLS).

Under the null hypothesis, we are using two different, but consistent, estimators of σ 2.
If we use s2 as the common estimator, then the statistic will be

H = d′[(X̂′X̂)−1 − (X′X)−1]−1d
s2

. (5-23)

It is tempting to invoke our results for the full rank quadratic form in a normal
vector and conclude the degrees of freedom for this chi-squared statistic is K. But that
method will usually be incorrect, and worse yet, unless X and Z have no variables in
common, the rank of the matrix in this statistic is less than K, and the ordinary inverse
will not even exist. In most cases, at least some of the variables in X will also appear
in Z. (In almost any application, X and Z will both contain the constant term.) That
is, some of the variables in X are known to be uncorrelated with the disturbances. For
example, the usual case will involve a single variable that is thought to be problematic
or that is measured with error. In this case, our hypothesis, plim(1/n)X′ε = 0, does not
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really involve all K variables, since a subset of the elements in this vector, say K0, are
known to be zero. As such, the quadratic form in the Wald test is being used to test only
K∗ = K − K0 hypotheses. It is easy (and useful) to show that, in fact, H is a rank K∗

quadratic form. Since Z(Z′Z)−1Z′ is an idempotent matrix, (X̂′X̂) = X̂′X. Using this
result and expanding d, we find

d = (X̂′X̂)−1X̂′y − (X′X)−1X′y

= (X̂′X̂)−1[X̂′y − (X̂′X̂)(X′X)−1X′y]

= (X̂′X̂)−1X̂′(y − X(X′X)−1X′y)

= (X̂′X̂)−1X̂′e,

where e is the vector of least squares residuals. Recall that K0 of the columns in X̂ are
the original variables in X. Suppose that these variables are the first K0. Thus, the first
K0 rows of X̂′e are the same as the first K0 rows of X′e, which are, of course 0. (This
statement does not mean that the first K0 elements of d are zero.) So, we can write d as

d = (X̂′X̂)−1
[

0
X̂∗′e

]
= (X̂′X̂)−1

[
0
q∗

]
.

Finally, denote the entire matrix in H by W. (Since that ordinary inverse may not exist,
this matrix will have to be a generalized inverse; see Section A.7.12.) Then, denoting
the whole matrix product by P, we obtain

H = [0′ q∗′](X̂′X̂)−1W(X̂′X̂)−1
[

0
q∗

]
= [0′ q∗′]P

[
0
q∗

]
= q∗′P∗∗q∗,

where P∗∗ is the lower right K∗ × K∗ submatrix of P. We now have the end result.
Algebraically, H is actually a quadratic form in a K∗ vector, so K∗ is the degrees of
freedom for the test.

Since the preceding Wald test requires a generalized inverse [see Hausman and
Taylor (1981)], it is going to be a bit cumbersome. In fact, one need not actually
approach the test in this form, and it can be carried out with any regression program.
The alternative approach devised by Wu (1973) is simpler. An F statistic with K∗ and
n− K − K∗ degrees of freedom can be used to test the joint significance of the elements
of γ in the augmented regression

y = Xβ + X̂∗γ + ε∗, (5-24)

where X̂∗ are the fitted values in regressions of the variables in X∗ on Z. This result is
equivalent to the Hausman test for this model. [Algebraic derivations of this result can
be found in the articles and in Davidson and MacKinnon (1993).]

Although most of the results above are specific to this test of correlation between
some of the columns of X and the disturbances, ε, the Hausman test is general. To
reiterate, when we have a situation in which we have a pair of estimators, θ̂ E and θ̂ I ,
such that under H0: θ̂ E and θ̂ I are both consistent and θ̂ E is efficient relative to θ̂ I , while
under H1: θ̂ I remains consistent while θ̂ E is inconsistent, then we can form a test of the
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hypothesis by referring the “Hausman statistic,”

H = (θ̂ I − θ̂ E)′
{

Est.Asy. Var[θ̂ I ] − Est.Asy. Var[θ̂ E]
}−1

(θ̂ I − θ̂ E)
d−→ χ2[J ],

to the appropriate critical value for the chi-squared distribution. The appropriate
degrees of freedom for the test, J, will depend on the context. Moreover, some sort
of generalized inverse matrix may be needed for the matrix, although in at least one
common case, the random effects regression model (see Chapter 13), the appropriate
approach is to extract some rows and columns from the matrix instead. The short rank
issue is not general. Many applications can be handled directly in this form with a full
rank quadratic form. Moreover, the Wu approach is specific to this application. The
other applications that we will consider, fixed and random effects for panel data and the
independence from irrelevant alternatives test for the multinomial logit model, do not
lend themselves to the regression approach and are typically handled using the Wald
statistic and the full rank quadratic form. As a final note, observe that the short rank
of the matrix in the Wald statistic is an algebraic result. The failure of the matrix in the
Wald statistic to be positive definite, however, is sometimes a finite sample problem that
is not part of the model structure. In such a case, forcing a solution by using a general-
ized inverse may be misleading. Hausman suggests that in this instance, the appropriate
conclusion might be simply to take the result as zero and, by implication, not reject the
null hypothesis.

Example 5.3 Hausman Test for a Consumption Function
Quarterly data for 1950.1 to 2000.4 on a number of macroeconomic variables appear in
Table F5.1. A consumption function of the form Ct = α + βYt + εt is estimated using the 204
observations on aggregate U.S. consumption and disposable personal income. In Exam-
ple 5.2, this model is suggested as a candidate for the possibility of bias due to correlation
between Yt and εt . Consider instrumental variables estimation using Yt−1 and Ct−1 as the
instruments for Yt , and, of course, the constant term is its own instrument. One observation
is lost because of the lagged values, so the results are based on 203 quarterly observations.
The Hausman statistic can be computed in two ways:

1. Use the Wald statistic in (5-23) with the Moore–Penrose generalized inverse. The
common s2 is the one computed by least squares under the null hypothesis of no
correlation. With this computation, H = 22.111. There is K ∗ = 1 degree of freedom. The
95 percent critical value from the chi-squared table is 3.84. Therefore, we reject the null
hypothesis of no correlation between Yt and εt .

2. Using the Wu statistic based on (5-24), we regress Ct on a constant, Yt , and the
predicted value in a regression of Yt on a constant, Yt−1 and Ct−1. The t ratio on the
prediction is 4.945, so the F statistic with 1 and 201 degrees of freedom is 24.453. The
critical value for this F distribution is 4.15, so, again, the null hypothesis is rejected.

5.6 MEASUREMENT ERROR

Thus far, it has been assumed (at least implicitly) that the data used to estimate the
parameters of our models are true measurements on their theoretical counterparts. In
practice, this situation happens only in the best of circumstances. All sorts of measure-
ment problems creep into the data that must be used in our analyses. Even carefully
constructed survey data do not always conform exactly to the variables the analysts
have in mind for their regressions. Aggregate statistics such as GDP are only estimates
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of their theoretical counterparts, and some variables, such as depreciation, the services
of capital, and “the interest rate,” do not even exist in an agreed-upon theory. At worst,
there may be no physical measure corresponding to the variable in our model; intelli-
gence, education, and permanent income are but a few examples. Nonetheless, they all
have appeared in very precisely defined regression models.

5.6.1 LEAST SQUARES ATTENUATION

In this section, we examine some of the received results on regression analysis with badly
measured data. The general assessment of the problem is not particularly optimistic.
The biases introduced by measurement error can be rather severe. There are almost no
known finite-sample results for the models of measurement error; nearly all the results
that have been developed are asymptotic.10 The following presentation will use a few
simple asymptotic results for the classical regression model.

The simplest case to analyze is that of a regression model with a single regressor and
no constant term. Although this case is admittedly unrealistic, it illustrates the essential
concepts, and we shall generalize it presently. Assume that the model

y∗ = βx∗ + ε (5-25)

conforms to all the assumptions of the classical normal regression model. If data on y∗

and x∗ were available, then β would be estimable by least squares. Suppose, however,
that the observed data are only imperfectly measured versions of y∗ and x∗. In the
context of an example, suppose that y∗ is ln(output/labor) and x∗ is ln(capital/labor).
Neither factor input can be measured with precision, so the observed y and x contain
errors of measurement. We assume that

y = y∗ + v with v ∼ N
[
0, σ 2

v

]
, (5-26a)

x = x∗ + u with u ∼ N
[
0, σ 2

u

]
. (5-26b)

Assume, as well, that u and v are independent of each other and of y∗ and x∗. (As we
shall see, adding these restrictions is not sufficient to rescue a bad situation.)

As a first step, insert (5-26a) into (5-25), assuming for the moment that only y∗ is
measured with error:

y = βx∗ + ε + v = βx∗ + ε′.

This result conforms to the assumptions of the classical regression model. As long as the
regressor is measured properly, measurement error on the dependent variable can be
absorbed in the disturbance of the regression and ignored. To save some cumbersome
notation, therefore, we shall henceforth assume that the measurement error problems
concern only the independent variables in the model.

Consider, then, the regression of y on the observed x. By substituting (5-26b) into
(5-25), we obtain

y = βx + [ε − βu] = βx + w. (5-27)

10See, for example, Imbens and Hyslop (2001).
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Since x equals x∗ + u, the regressor in (5-27) is correlated with the disturbance:

Cov[x, w] = Cov[x∗ + u, ε − βu] = −βσ 2
u . (5-28)

This result violates one of the central assumptions of the classical model, so we can
expect the least squares estimator

b = (1/n)
∑n

i=1 xi yi

(1/n)
∑n

i=1 x2
i

to be inconsistent. To find the probability limits, insert (5-25) and (5-26b) and use the
Slutsky theorem:

plim b = plim(1/n)
∑n

i=1(x∗
i + ui )(βx∗

i + εi )

plim(1/n)
∑n

i=1(x∗
i + ui )2

.

Since x∗, ε, and u are mutually independent, this equation reduces to

plim b = βQ∗

Q∗ + σ 2
u

= β

1 + σ 2
u /Q∗ , (5-29)

where Q∗ = plim(1/n)
∑

i x∗2
i . As long asσ 2

u is positive, b is inconsistent, with a persistent
bias toward zero. Clearly, the greater the variability in the measurement error, the worse
the bias. The effect of biasing the coefficient toward zero is called attenuation.

In a multiple regression model, matters only get worse. Suppose, to begin, we assume
that y = X∗β + ε and X = X∗ + U, allowing every observation on every variable to be
measured with error. The extension of the earlier result is

plim
(

X′X
n

)
= Q∗ + 	uu, and plim

(
X′y
n

)
= Q∗β.

Hence,

plim b = [Q∗ + 	uu]−1Q∗β = β − [Q∗ + 	uu]−1	uuβ. (5-30)

This probability limit is a mixture of all the parameters in the model. In the same fashion
as before, bringing in outside information could lead to identification. The amount of
information necessary is extremely large, however, and this approach is not particularly
promising.

It is common for only a single variable to be measured with error. One might
speculate that the problems would be isolated to the single coefficient. Unfortunately,
this situation is not the case. For a single bad variable—assume that it is the first—the
matrix 	uu is of the form

	uu =




σ 2
u 0 · · · 0

0 0 · · · 0
...

0 0 · · · 0


 .

It can be shown that for this special case,

plim b1 = β1

1 + σ 2
u q∗11

(5-31a)
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(note the similarity of this result to the earlier one), and, for k �= 1,

plim bk = βk − β1

[
σ 2

u q∗k1

1 + σ 2
u q∗11

]
, (5-31b)

where q∗k1 is the (k, 1)th element in (Q∗)−1.11 This result depends on several unknowns
and cannot be estimated. The coefficient on the badly measured variable is still biased
toward zero. The other coefficients are all biased as well, although in unknown direc-
tions. A badly measured variable contaminates all the least squares estimates.12 If more
than one variable is measured with error, there is very little that can be said.13 Although
expressions can be derived for the biases in a few of these cases, they generally depend
on numerous parameters whose signs and magnitudes are unknown and, presumably,
unknowable.

5.6.2 INSTRUMENTAL VARIABLES ESTIMATION

An alternative set of results for estimation in this model (and numerous others) is built
around the method of instrumental variables. Consider once again the errors in variables
model in (5-25) and (5-26a,b). The parameters, β, σ 2

ε , q∗, and σ 2
u are not identified in

terms of the moments of x and y. Suppose, however, that there exists a variable z such
that z is correlated with x∗ but not with u. For example, in surveys of families, income
is notoriously badly reported, partly deliberately and partly because respondents often
neglect some minor sources. Suppose, however, that one could determine the total
amount of checks written by the head(s) of the household. It is quite likely that this z
would be highly correlated with income, but perhaps not significantly correlated with
the errors of measurement. If Cov[x∗, z] is not zero, then the parameters of the model
become estimable, as

plim
(1/n)

∑
i yi zi

(1/n)
∑

i xi zi
= β Cov[x∗, z]

Cov[x∗, z]
= β. (5-32)

In a multiple regression framework, if only a single variable is measured with error,
then the preceding can be applied to that variable and the remaining variables can serve
as their own instruments. If more than one variable is measured with error, then the
first preceding proposal will be cumbersome at best, whereas the second can be applied
to each.

For the general case, y = X∗β + ε, X = X∗ + U, suppose that there exists a matrix
of variables Z that is not correlated with the disturbances or the measurement error but
is correlated with regressors, X. Then the instrumental variables estimator based on Z,
bIV = (Z′X)−1Z′y, is consistent and asymptotically normally distributed with asymptotic
covariance matrix that is estimated with

Est.Asy. Var[bIV] = σ̂ 2[Z′X]−1[Z′Z][X′Z]−1. (5-33)

For more general cases, Theorem 5.3 and the results in Section 5.4 apply.

11Use (A-66) to invert [Q∗ + 	uu] = [Q∗ + (σue1)(σue1)
′], where e1 is the first column of a K × K identity

matrix. The remaining results are then straightforward.
12This point is important to remember when the presence of measurement error is suspected.
13Some firm analytic results have been obtained by Levi (1973), Theil (1961), Klepper and Leamer (1983),
Garber and Klepper (1980), and Griliches (1986) and Cragg (1997).
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5.6.3 PROXY VARIABLES

In some situations, a variable in a model simply has no observable counterpart. Edu-
cation, intelligence, ability, and like factors are perhaps the most common examples.
In this instance, unless there is some observable indicator for the variable, the model
will have to be treated in the framework of missing variables. Usually, however, such an
indicator can be obtained; for the factors just given, years of schooling and test scores
of various sorts are familiar examples. The usual treatment of such variables is in the
measurement error framework. If, for example,

income = β1 + β2 education + ε

and

years of schooling = education + u,

then the model of Section 5.6.1 applies. The only difference here is that the true variable
in the model is “latent.” No amount of improvement in reporting or measurement would
bring the proxy closer to the variable for which it is proxying.

The preceding is a pessimistic assessment, perhaps more so than necessary. Consider
a structural model,

Earnings = β1 + β2 Experience + β3 Industry + β4 Ability + ε

Ability is unobserved, but suppose that an indicator, say IQ is. If we suppose that IQ is
related to Ability through a relationship such as

IQ = α1 + α2 Ability + v

then we may solve the second equation for Ability and insert it in the first to obtain the
reduced form equation

Earnings = (β1 − α1/α2) + β2 Experience + β3 Industry + (β4/α2)IQ + (ε − v/α2).

This equation is intrinsically linear and can be estimated by least squares. We do not
have a consistent estimator of β1 or β4, but we do have one of the coefficients of interest.
This would appear to “solve” the problem. We should note the essential ingredients;
we require that the indicator, IQ, not be related to the other variables in the model, and
we also require that v not be correlated with any of the variables. In this instance, some
of the parameters of the structural model are identified in terms of observable data.
Note, though, that IQ is not a proxy variable, it is an indicator of the latent variable,
Ability. This form of modeling has figured prominently in the education and educational
psychology literature. Consider, in the preceding small model how one might proceed
with not just a single indicator, but say with a battery of test scores, all of which are
indicators of the same latent ability variable.

It is to be emphasized that a proxy variable is not an instrument (or the reverse).
Thus, in the instrumental variables framework, it is implied that we do not regress y on
Z to obtain the estimates. To take an extreme example, suppose that the full model was

y = X∗β + ε,

X = X∗ + U,

Z = X∗ + W.
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That is, we happen to have two badly measured estimates of X∗. The parameters of this
model can be estimated without difficulty if W is uncorrelated with U and X∗, but not
by regressing y on Z. The instrumental variables technique is called for.

When the model contains a variable such as education or ability, the question that
naturally arises is, If interest centers on the other coefficients in the model, why not
just discard the problem variable?14 This method produces the familiar problem of an
omitted variable, compounded by the least squares estimator in the full model being
inconsistent anyway. Which estimator is worse? McCallum (1972) and Wickens (1972)
show that the asymptotic bias (actually, degree of inconsistency) is worse if the proxy
is omitted, even if it is a bad one (has a high proportion of measurement error). This
proposition neglects, however, the precision of the estimates. Aigner (1974) analyzed
this aspect of the problem and found, as might be expected, that it could go either way.
He concluded, however, that “there is evidence to broadly support use of the proxy.”

5.6.4 APPLICATION: INCOME AND EDUCATION AND
A STUDY OF TWINS

The traditional model used in labor economics to study the effect of education on
income is an equation of the form

yi = β1 + β2 agei + β3 age2
i + β4 educationi + x′

iβ5 + εi ,

where yi is typically a wage or yearly income (perhaps in log form) and xi contains other
variables, such as an indicator for sex, region of the country, and industry. The literature
contains discussion of many possible problems in estimation of such an equation by
least squares using measured data. Two of them are of interest here:

1. Although “education” is the variable that appears in the equation, the data
available to researchers usually include only “years of schooling.” This variable is
a proxy for education, so an equation fit in this form will be tainted by this
problem of measurement error. Perhaps surprisingly so, researchers also find that
reported data on years of schooling are themselves subject to error, so there is a
second source of measurement error. For the present, we will not consider the first
(much more difficult) problem.

2. Other variables, such as “ability”—we denote these µi —will also affect income
and are surely correlated with education. If the earnings equation is estimated in
the form shown above, then the estimates will be further biased by the absence of
this “omitted variable.” For reasons we will explore in Chapter 22, this bias has
been called the selectivity effect in recent studies.

Simple cross-section studies will be considerably hampered by these problems. But, in
a recent study, Ashenfelter and Krueger (1994) analyzed a data set that allowed them,
with a few simple assumptions, to ameliorate these problems.

Annual “twins festivals” are held at many places in the United States. The largest
is held in Twinsburg, Ohio. The authors interviewed about 500 individuals over the
age of 18 at the August 1991 festival. Using pairs of twins as their observations enabled
them to modify their model as follows: Let (yi j , Ai j ) denote the earnings and age for

14This discussion applies to the measurement error and latent variable problems equally.
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twin j, j = 1, 2, for pair i . For the education variable, only self-reported “schooling”
data, Si j , are available. The authors approached the measurement problem in the
schooling variable, Si j , by asking each twin how much schooling they had and how
much schooling their sibling had. Denote schooling reported by sibling m of sibling j
by Si j (m). So, the self-reported years of schooling of twin 1 is Si1(1). When asked how
much schooling twin 1 has, twin 2 reports Si1(2). The measurement error model for the
schooling variable is

Si j (m) = Si j + ui j (m), j, m = 1, 2, where Si j = “true” schooling for twin jof pair i.

We assume that the two sources of measurement error, ui j (m), are uncorrelated and
have zero means. Now, consider a simple bivariate model such as the one in (5-25):

yi j = βSi j + εi j .

As we saw earlier, a least squares estimate ofβ using the reported data will be attenuated:

plim b = β × Var[Si j ]
Var[Si j ] + Var[ui j ( j)]

= βq.

(Since there is no natural distinction between twin 1 and twin 2, the assumption that
the variances of the two measurement errors are equal is innocuous.) The factor q is
sometimes called the reliability ratio. In this simple model, if the reliability ratio were
known, then β could be consistently estimated. In fact, this construction of this model
allows just that. Since the two measurement errors are uncorrelated,

Corr[Si1(1), Si1(2)] = Corr[Si2(2), Si2(1)]

= Var[Si1]{{
Var[Si1] + Var[ui1(1)]

} × {
Var[Si1] + Var[ui1(2)]

}}1/2 = q.

In words, the correlation between the two reported education attainments measures
the reliability ratio. The authors obtained values of 0.920 and 0.877 for 298 pairs of
identical twins and 0.869 and 0.951 for 92 pairs of fraternal twins, thus providing a quick
assessment of the extent of measurement error in their schooling data.

Since the earnings equation is a multiple regression, this result is useful for an
overall assessment of the problem, but the numerical values are not sufficient to undo
the overall biases in the least squares regression coefficients. An instrumental variables
estimator was used for that purpose. The estimating equation for yi j = ln Wagei j with
the least squares (LS) and instrumental variable (IV) estimates is as follows:

yi j = β1 + β2 agei + β3 age2
i + β4Si j ( j) + β5Sim(m) + β6 sexi + β7 racei + εi j

LS (0.088) (−0.087) (0.084) (0.204) (−0.410)

IV (0.088) (−0.087) (0.116) (0.037) (0.206) (−0.428)

In the equation, Si j ( j) is the person’s report of his or her own years of schooling and
Sim(m) is the sibling’s report of the sibling’s own years of schooling. The problem vari-
able is schooling. To obtain consistent estimates, the method of instrumental variables
was used, using each sibling’s report of the other sibling’s years of schooling as a pair
of instrumental variables. The estimates reported by the authors are shown below the
equation. (The constant term was not reported, and for reasons not given, the sec-
ond schooling variable was not included in the equation when estimated by LS.) This
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preliminary set of results is presented to give a comparison to other results in the litera-
ture. The age, schooling, and gender effects are comparable with other received results,
whereas the effect of race is vastly different, −40 percent here compared with a typical
value of +9 percent in other studies. The effect of using the instrumental variable es-
timator on the estimates of β4 is of particular interest. Recall that the reliability ratio
was estimated at about 0.9, which suggests that the IV estimate would be roughly 11
percent higher (1/0.9). Since this result is a multiple regression, that estimate is only a
crude guide. The estimated effect shown above is closer to 38 percent.

The authors also used a different estimation approach. Recall the issue of selection
bias caused by unmeasured effects. The authors reformulated their model as

yi j = β1 + β2 agei + β3 age2
i + β4Si j ( j) + β6 sexi + β7 racei + µi + εi j

Unmeasured latent effects, such as “ability,” are contained in µi . Since µi is not ob-
servable but is, it is assumed, correlated with other variables in the equation, the least
squares regression of yi j on the other variables produces a biased set of coefficient
estimates. The difference between the two earnings equations is

yi1 − yi2 = β4[Si1(1) − Si2(2)] + εi1 − εi2.

This equation removes the latent effect but, it turns out, worsens the measurement
error problem. As before, β4 can be estimated by instrumental variables. There are two
instrumental variables available, Si2(1) and Si1(2). (It is not clear in the paper whether
the authors used the two separately or the difference of the two.) The least squares
estimate is 0.092, which is comparable to the earlier estimate. The instrumental variable
estimate is 0.167, which is nearly 82 percent higher. The two reported standard errors
are 0.024 and 0.043, respectively. With these figures, it is possible to carry out Hausman’s
test;

H = (0.167 − 0.092)2

0.0432 − 0.0242
= 4.418.

The 95 percent critical value from the chi-squared distribution with one degree of free-
dom is 3.84, so the hypothesis that the LS estimator is consistent would be rejected.
(The square root of H, 2.102, would be treated as a value from the standard normal dis-
tribution, from which the critical value would be 1.96. The authors reported a t statistic
for this regression of 1.97. The source of the difference is unclear.)

5.7 SUMMARY AND CONCLUSIONS

This chapter has completed the description begun in Chapter 4 by obtaining the large
sample properties of the least squares estimator. The main result is that in large samples,
the estimator behaves according to a normal distribution and converges in probability to
the true coefficient vector. We examined several data types, with one of the end results
being that consistency and asymptotic normality would persist under a variety of broad
assumptions about the data. We then considered a class of estimators, the instrumental
variable estimators, which will retain the important large sample properties we found
earlier, consistency and asymptotic normality, in cases in which the least squares estima-
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tor is inconsistent. Two common applications include dynamic models, including panel
data models, and models of measurement error.

Key Terms and Concepts

• Asymptotic distribution
• Asymptotic efficiency
• Asymptotic normality
• Asymptotic covariance

matrix
• Asymptotic properties
• Attenuation
• Consistency
• Dynamic regression
• Efficient scale
• Ergodic

• Finite sample properties
• Grenander conditions
• Hausman’s specification test
• Identification
• Indicator
• Instrumental variable
• Lindberg–Feller central

limit theorem
• Maximum likelihood

estimator
• Mean square convergence

• Measurement error
• Panel data
• Probability limit
• Reduced form equation
• Reliability ratio
• Specification test
• Stationary process
• Stochastic regressors
• Structural model
• Two stage least squares

Exercises

1. For the classical normal regression model y = Xβ + ε with no constant term and
K regressors, what is plim F[K, n − K] = plim R2/K

(1−R2)/(n−K)
, assuming that the true

value of β is zero?
2. Let ei be the ith residual in the ordinary least squares regression of y on X in the

classical regression model, and let εi be the corresponding true disturbance. Prove
that plim(ei − εi ) = 0.

3. For the simple regression model yi = µ + εi , εi ∼ N[0, σ 2], prove that the sam-
ple mean is consistent and asymptotically normally distributed. Now consider the
alternative estimator µ̂ = ∑

i wi yi , wi = i
(n(n+1)/2)

= i∑
i i . Note that

∑
i wi = 1.

Prove that this is a consistent estimator of µ and obtain its asymptotic variance.
[Hint:

∑
i i2 = n(n + 1)(2n + 1)/6.]

4. In the discussion of the instrumental variables estimator we showed that the least
squares estimator b is biased and inconsistent. Nonetheless, b does estimate some-
thing: plim b = θ = β + Q−1γ . Derive the asymptotic covariance matrix of b, and
show that b is asymptotically normally distributed.

5. For the model in (5-25) and (5-26), prove that when only x∗ is measured with error,
the squared correlation between y and x is less than that between y∗ and x∗. (Note
the assumption that y∗ = y.) Does the same hold true if y∗ is also measured with
error?

6. Christensen and Greene (1976) estimated a generalized Cobb–Douglas cost func-
tion of the form

ln(C/Pf ) = α + β ln Q + γ (ln2 Q)/2 + δk ln(Pk/Pf ) + δl ln(Pl/Pf ) + ε.

Pk, Pl and Pf indicate unit prices of capital, labor, and fuel, respectively, Q is
output and C is total cost. The purpose of the generalization was to produce a
U-shaped average total cost curve. (See Example 7.3 for discussion of Nerlove’s
(1963) predecessor to this study.) We are interested in the output at which the cost
curve reaches its minimum. That is the point at which (∂ ln C/∂ ln Q) | Q=Q∗ = 1
or Q∗ = exp[(1 − β)/γ ]. The estimated regression model using the Christensen
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and Greene 1970 data are as follows, where estimated standard errors are given in
parentheses:

ln(C/Pf ) = −7.294 + 0.39091 ln Q + 0.062413(ln2 Q)/2

(0.34427) (0.036988) (0.0051548)

+ 0.07479 ln(Pk/Pf ) + 0.2608 ln(Pl/Pf ) + e.

(0.061645) (0.068109)

The estimated asymptotic covariance of the estimators of β and γ is −0.000187067,
R2 = 0.991538 and e′e = 2.443509. Using the estimates given above, compute the
estimate of this efficient scale. Compute an estimate of the asymptotic standard
error for this estimate, then form a confidence interval for the estimated efficient
scale. The data for this study are given in Table F5.2. Examine the raw data and
determine where in the sample the efficient scale lies. That is, how many firms in
the sample have reached this scale, and is this scale large in relation to the sizes of
firms in the sample?

7. The consumption function used in Example 5.3 is a very simple specification. One
might wonder if the meager specification of the model could help explain the finding
in the Hausman test. The data set used for the example are given in Table F5.1. Use
these data to carry out the test in a more elaborate specification

ct = β1 + β2 yt + β3it + β4ct−1 + εt

where ct is the log of real consumption, yt is the log of real disposable income, and
it is the interest rate (90-day T bill rate).

8. Suppose we change the assumptions of the model to AS5: (xi , ε) are an independent
and identically distributed sequence of random vectors such that xi has a finite
mean vector, µx, finite positive definite covariance matrix 	xx and finite fourth
moments E [xj xkxl xm] = φ jklm for all variables. How does the proof of consistency
and asymptotic normality of b change? Are these assumptions weaker or stronger
than the ones made in Section 5.2?

9. Now, assume only finite second moments of x; E [x2
i ] is finite. Is this sufficient to

establish consistency of b? (Hint: the Cauchy–Schwartz inequality (Theorem D.13),
E [|xy|] ≤ {

E [x2]
}1/2{

E [y2]
}1/2 will be helpful.) Is this assumption sufficient to

establish asymptotic normality?

William Greene
"and" should not be italic
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INFERENCE AND
PREDICTION

Q
6.1 INTRODUCTION

The linear regression model is used for three major functions: estimation, which was
the subject of the previous three chapters (and most of the rest of this book), hypothesis
testing, and prediction or forecasting. In this chapter, we will examine some applications
of hypothesis tests using the classical model. The basic statistical theory was developed
in Chapters 4, 5, and Appendix C, so the methods discussed here will use tools that
are already familiar. After the theory is developed in Sections 6.2–6.4, we will examine
some applications in Sections 6.4 and 6.5. We will be primarily concerned with linear
restrictions in this chapter, and will turn to nonlinear restrictions near the end of the
chapter, in Section 6.5. Section 6.6 discusses the third major use of the regression model,
prediction.

6.2 RESTRICTIONS AND NESTED MODELS

One common approach to testing a hypothesis is to formulate a statistical model that
contains the hypothesis as a restriction on its parameters. A theory is said to have
testable implications if it implies some testable restrictions on the model. Consider, for
example, a simple model of investment, It , suggested by Section 3.3.2,

ln It = β1 + β2it + β3�pt + β4 ln Yt + β5t + εt , (6-1)

which states that investors are sensitive to nominal interest rates, it , the rate of inflation,
�pt , (the log of) real output, ln Yt , and other factors which trend upward through time,
embodied in the time trend, t. An alternative theory states that “investors care about
real interest rates.” The alternative model is

ln It = β1 + β2(it − �pt ) + β3�pt + β4 ln Yt + β5t + εt . (6-2)

Although this new model does embody the theory, the equation still contains both
nominal interest and inflation. The theory has no testable implication for our model.
But, consider the stronger hypothesis, “investors care only about real interest rates.”
The resulting equation,

ln It = β1 + β2(it − �pt ) + β4 ln Yt + β5t + εt , (6-3)

is now restricted; in the context of the first model, the implication is that β2 + β3 = 0.
The stronger statement implies something specific about the parameters in the equation
that may or may not be supported by the empirical evidence.

93
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The description of testable implications in the preceding paragraph suggests (cor-
rectly) that testable restrictions will imply that only some of the possible models con-
tained in the original specification will be “valid;” that is, consistent with the theory. In
the example given earlier, equation (6-1) specifies a model in which there are five unre-
stricted parameters (β1, β2, β3, β4, β5). But, equation (6-3) shows that only some values
are consistent with the theory, that is, those for which β3 = −β2. This subset of values
is contained within the unrestricted set. In this way, the models are said to be nested.
Consider a different hypothesis, “investors do not care about inflation.” In this case, the
smaller set of coefficients is (β1, β2, 0, β4, β5). Once again, the restrictions imply a valid
parameter space that is “smaller” (has fewer dimensions) than the unrestricted one.
The general result is that the hypothesis specified by the restricted model is contained
within the unrestricted model.

Now, consider an alternative pair of models: Model0: “Investors care only about
inflation;” Model1: “Investors care only about the nominal interest rate.” In this case,
the two parameter vectors are (β1, 0, β3, β4, β5) by Model0 and (β1, β2, 0, β4, β5) by
Model1. In this case, the two specifications are both subsets of the unrestricted model,
but neither model is obtained as a restriction on the other. They have the same number of
parameters; they just contain different variables. These two models are nonnested. We
are concerned only with nested models in this chapter. Nonnested models are considered
in Section 8.3.

Beginning with the linear regression model

y = Xβ + ε,

we consider a set of linear restrictions of the form

r11β1 + r12β2 + · · · + r1KβK = q1

r21β1 + r22β2 + · · · + r2KβK = q2

...

rJ1β1 + rJ2β2 + · · · + rJ KβK = qJ .

These can be combined into the single equation

Rβ = q.

Each row of R is the coefficients in one of the restrictions. The matrix R has K columns to
be conformable with β, J rows for a total of J restrictions, and full row rank, so J must be
less than or equal to K. The rows of R must be linearly independent. Although it does not
violate the condition, the case of J = K must also be ruled out.1 The restriction Rβ = q
imposes J restrictions on K otherwise free parameters. Hence, with the restrictions
imposed, there are, in principle, only K − J free parameters remaining. One way to
view this situation is to partition R into two groups of columns, one with J and one
with K − J , so that the first set are linearly independent. (There are many ways to do
so; any one will do for the present.) Then, with β likewise partitioned and its elements

1If the K slopes satisfy J = K restriction, then R is square and nonsingular andβ = R−1q. There is no estimation
or inference problem.
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reordered in whatever way is needed, we may write

Rβ = R1β1 + R2β2 = q.

If the J columns of R1 are independent, then

β1 = R−1
1 [q − R2β2]. (6-4)

The implication is that althoughβ2 is free to vary, onceβ2 is determined,β1 is determined
by (6-4). Thus, only the K− J elements of β2 are free parameters in the restricted model.

6.3 TWO APPROACHES TO TESTING HYPOTHESES

Hypothesis testing of the sort suggested above can be approached from two viewpoints.
First, having computed a set of parameter estimates, we can ask whether the estimates
come reasonably close to satisfying the restrictions implied by the hypothesis. More
formally, we can ascertain whether the failure of the estimates to satisfy the restrictions
is simply the result of sampling error or is instead systematic. An alternative approach
might proceed as follows. Suppose that we impose the restrictions implied by the theory.
Since unrestricted least squares is, by definition, “least squares,” this imposition must
lead to a loss of fit. We can then ascertain whether this loss of fit results merely from
sampling error or whether it is so large as to cast doubt on the validity of the restrictions.
We will consider these two approaches in turn, then show that (as one might hope) within
the framework of the linear regression model, the two approaches are equivalent.

AN IMPORTANT ASSUMPTION
To develop the test statistics in this section, we will assume normally distributed distur-
bances. As we saw in Chapter 4, with this assumption, we will be able to obtain the exact
distributions of the test statistics. In the next section, we will consider the implications
of relaxing this assumption and develop an alternative set of results that allows us to
proceed without it.

6.3.1 THE F STATISTIC AND THE LEAST SQUARES DISCREPANCY

We now consider testing a set of J linear restrictions stated in the null hypothesis,

H0 : Rβ − q = 0

against the alternative hypothesis,

H1 : Rβ − q �= 0.

Each row of R is the coefficients in a linear restriction on the coefficient vector. Typically,
R will have only a few rows and numerous zeros in each row. Some examples would be
as follows:

1. One of the coefficients is zero, β j = 0

R = [0 0 · · · 1 0 · · · 0] and q = 0.
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2. Two of the coefficients are equal, βk = β j ,

R = [0 0 1 · · · −1 · · · 0] and q = 0.

3. A set of the coefficients sum to one, β2 + β3 + β4 = 1,

R = [0 1 1 1 0 · · ·] and q = 1.

4. A subset of the coefficients are all zero, β1 = 0, β2 = 0, and β3 = 0,

R =



1 0 0 0 · · · 0
0 1 0 0 · · · 0
0 0 1 0 · · · 0


 = [I : 0] and q =




0
0
0


 .

5. Several linear restrictions, β2 + β3 = 1, β4 + β6 = 0 and β5 + β6 = 0,

R =



0 1 1 0 0 0
0 0 0 1 0 1
0 0 0 0 1 1


 and q =




1
0
0


 .

6. All the coefficients in the model except the constant term are zero. [See (4-15) and
Section 4.7.4.]

R = [0 : IK−1] and q = 0.

Given the least squares estimator b, our interest centers on the discrepancy vector
Rb − q = m. It is unlikely that m will be exactly 0. The statistical question is whether
the deviation of m from 0 can be attributed to sampling error or whether it is significant.
Since b is normally distributed [see (4-8)] and m is a linear function of b, m is also
normally distributed. If the null hypothesis is true, then Rβ − q = 0 and m has mean
vector

E [m | X] = RE[b | X] − q = Rβ − q = 0.

and covariance matrix

Var[m | X] = Var[Rb − q | X] = R
{

Var[b | X]
}

R′ = σ 2R(X′X)−1R′.

We can base a test of H0 on the Wald criterion:

W = m′{Var[m | X]
}−1m.

= (Rb − q)′[σ 2R(X′X)−1R′]−1(Rb − q) (6-5)

= (Rb − q)′[R(X′X)−1R′]−1(Rb − q)

σ 2

∼ χ2[J ].

The statistic W has a chi-squared distribution with J degrees of freedom if the hypothesis
is correct.2 Intuitively, the larger m is—that is, the worse the failure of least squares
to satisfy the restrictions—the larger the chi-squared statistic. Therefore, a large chi-
squared value will weigh against the hypothesis.

2This calculation is an application of the “full rank quadratic form” of Section B.10.5.
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The chi-squared statistic in (6-5) is not usable because of the unknown σ 2. By using
s2 instead of σ 2 and dividing the result by J, we obtain a usable F statistic with J and n−K
degrees of freedom. Making the substitution in (6-5), dividing by J, and multiplying and
dividing by n − K, we obtain

F = W
J

σ 2

s2

=
(

(Rb − q)′[R(X′X)−1R′]−1(Rb − q)

σ 2

)(
1
J

)(
σ 2

s2

)(
(n − K)

(n − K)

)
(6-6)

= (Rb − q)′[σ 2R(X′X)−1R′]−1(Rb − q)/J
[(n − K)s2/σ 2]/(n − K)

.

If Rβ = q, that is, if the null hypothesis is true, then Rb − q = Rb − Rβ = R(b − β) =
R(X′X)−1X′ε. [See (4-4).] Let C = [R(X′X−1 R′] since

R(b − β)

σ
= R(X′X)−1X′

(
ε

σ

)
= D

(
ε

σ

)
,

the numerator of F equals [(ε/σ)′T(ε/σ)]/J where T = D′C−1D. The numerator is
W/J from (6-5) and is distributed as 1/J times a chi-squared[J ], as we showed earlier.
We found in (4-6) that s2 = e′e/(n − K) = ε′Mε/(n − K) where M is an idempotent
matrix. Therefore, the denominator of F equals [(ε/σ)′M(ε/σ)]/(n − K). This statistic
is distributed as 1/(n − K) times a chi-squared[n − K]. [See (4-11).] Therefore, the F
statistic is the ratio of two chi-squared variables each divided by its degrees of freedom.
Since M(ε/σ) and T(ε/σ) are both normally distributed and their covariance TM is 0,
the vectors of the quadratic forms are independent. The numerator and denominator
of F are functions of independent random vectors and are therefore independent. This
completes the proof of the F distribution. [See (B-35).] Canceling the two appearances
of σ 2 in (6-6) leaves the F statistic for testing a linear hypothesis:

F[J, n − K] = (Rb − q)′
{

R[s2(X′X)−1]R′}−1
(Rb − q)

J
.

For testing one linear restriction of the form

H0 : r1β1 + r2β2 + · · · + rKβK = r′β = q,

(usually, some of the rs will be zero.) the F statistic is

F[1, n − K] = (� j r j bj − q)2

� j�kr jrk Est. Cov[bj , bk]
. (6-7)

If the hypothesis is that the jth coefficient is equal to a particular value, then R has a
single row with a 1 in the jth position, R(X′X)−1R′ is the jth diagonal element of the
inverse matrix, and Rb − q is (bj − q). The F statistic is then

F[1, n − K] = (bj − q)2

Est. Var[bj ]
.

Consider an alternative approach. The sample estimate of r′β is

r1b1 + r2b2 + · · · + rKbK = r′b = q̂.

wgreene
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If q̂ differs significantly from q, then we conclude that the sample data are not consistent
with the hypothesis. It is natural to base the test on

t = q̂ − q
se(q̂)

. (6-8)

We require an estimate of the standard error of q̂. Since q̂ is a linear function of b and we
have an estimate of the covariance matrix of b, s2(X′X)−1, we can estimate the variance
of q̂ with

Est. Var[q̂ | X] = r′[s2(X′X)−1]r.

The denominator of t is the square root of this quantity. In words, t is the distance in
standard error units between the hypothesized function of the true coefficients and the
same function of our estimates of them. If the hypothesis is true, then our estimates
should reflect that, at least within the range of sampling variability. Thus, if the absolute
value of the preceding t ratio is larger than the appropriate critical value, then doubt is
cast on the hypothesis.

There is a useful relationship between the statistics in (6-7) and (6-8). We can write
the square of the t statistic as

t2 = (q̂ − q)2

Var(q̂ − q | X)
= (r′b − q)

{
r′[s2(X′X)−1]r

}−1
(r′b − q)

1
.

It follows, therefore, that for testing a single restriction, the t statistic is the square root
of the F statistic that would be used to test that hypothesis.

Example 6.1 Restricted Investment Equation
Section 6.2 suggested a theory about the behavior of investors: that they care only about real
interest rates. If investors were only interested in the real rate of interest, then equal increases
in interest rates and the rate of inflation would have no independent effect on investment.
The null hypothesis is

H0 : β2 + β3 = 0.

Estimates of the parameters of equations (6-1) and (6-3) using 1950.1 to 2000.4 quarterly data
on real investment, real gdp, an interest rate (the 90-day T-bill rate) and inflation measured
by the change in the log of the CPI (see Appendix Table F5.1) are given in Table 6.1. (One
observation is lost in computing the change in the CPI.)

TABLE 6.1 Estimated Investment Equations (Estimated standard errors in
parentheses)

β1 β2 β3 β4 β5

Model (6-1) −9.135 −0.00860 0.00331 1.930 −0.00566
(1.366) (0.00319) (0.00234) (0.183) (0.00149)

s = 0.08618, R2 = 0.979753, e′e = 1.47052,
Est. Cov[b2, b3] = −3.718e − 6

Model (6-3) −7.907 −0.00443 0.00443 1.764 −0.00440
(1.201) (0.00227) (0.00227) (0.161) (0.00133)

s = 0.8670, R2 = 0.979405, e′e = 1.49578
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To form the appropriate test statistic, we require the standard error of q̂ = b2 + b3,
which is

se( q̂) = [0.003192 + 0.002342 + 2(−3.718 × 10−6) ]1/2 = 0.002866.

The t ratio for the test is therefore

t = −0.00860 + 0.00331
0.002866

= −1.845.

Using the 95 percent critical value from t [203-5] = 1.96 (the standard normal value), we
conclude that the sum of the two coefficients is not significantly different from zero, so the
hypothesis should not be rejected.

There will usually be more than one way to formulate a restriction in a regression model.
One convenient way to parameterize a constraint is to set it up in such a way that the standard
test statistics produced by the regression can be used without further computation to test the
hypothesis. In the preceding example, we could write the regression model as specified in
(6-2). Then an equivalent way to test H0 would be to fit the investment equation with both the
real interest rate and the rate of inflation as regressors and to test our theory by simply testing
the hypothesis that β3 equals zero, using the standard t statistic that is routinely computed.
When the regression is computed this way, b3 = −0.00529 and the estimated standard error
is 0.00287, resulting in a t ratio of −1.844(!). (Exercise: Suppose that the nominal interest
rate, rather than the rate of inflation, were included as the extra regressor. What do you think
the coefficient and its standard error would be?)

Finally, consider a test of the joint hypothesis

β2 + β3 = 0 (investors consider the real interest rate),

β4 = 1 (the marginal propensity to invest equals 1),

β5 = 0 (there is no time trend).

Then,

R =
[

0 1 1 0 0
0 0 0 1 0
0 0 0 0 1

]
, q =

[
0
1
0

]
and Rb − q =

[−0.0053
0.9302

−0.0057

]
.

Inserting these values in F yields F = 109.84. The 5 percent critical value for F [3, 199] from the
table is 2.60. We conclude, therefore, that these data are not consistent with the hypothesis.
The result gives no indication as to which of the restrictions is most influential in the rejection
of the hypothesis. If the three restrictions are tested one at a time, the t statistics in (6-8)
are −1.844, 5.076, and −3.803. Based on the individual test statistics, therefore, we would
expect both the second and third hypotheses to be rejected.

6.3.2 THE RESTRICTED LEAST SQUARES ESTIMATOR

A different approach to hypothesis testing focuses on the fit of the regression. Recall
that the least squares vector b was chosen to minimize the sum of squared deviations,
e′e. Since R2 equals 1 − e′e/y′M0y and y′M0y is a constant that does not involve b, it
follows that b is chosen to maximize R2. One might ask whether choosing some other
value for the slopes of the regression leads to a significant loss of fit. For example, in the
investment equation in Example 6.1, one might be interested in whether assuming the
hypothesis (that investors care only about real interest rates) leads to a substantially
worse fit than leaving the model unrestricted. To develop the test statistic, we first
examine the computation of the least squares estimator subject to a set of restrictions.
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Suppose that we explicitly impose the restrictions of the general linear hypothesis
in the regression. The restricted least squares estimator is obtained as the solution to

Minimizeb0 S(b0) = (y − Xb0)
′(y − Xb0) subject to Rb0 = q. (6-9)

A Lagrangean function for this problem can be written

L∗(b0, λ) = (y − Xb0)
′(y − Xb0) + 2λ′(Rb0 − q).3 (6-10)

The solutions b∗ and λ∗ will satisfy the necessary conditions

∂L∗

∂b∗
= −2X′(y − Xb∗) + 2R′λ∗ = 0

∂L∗

∂λ∗
= 2(Rb∗ − q) = 0.

(6-11)

Dividing through by 2 and expanding terms produces the partitioned matrix equation
[

X′X R′
R 0

][
b∗
λ∗

]
=

[
X′y
q

]
(6-12)

or

Ad∗ = v.

Assuming that the partitioned matrix in brackets is nonsingular, the restricted least
squares estimator is the upper part of the solution

d∗ = A−1v. (6-13)

If, in addition, X′X is nonsingular, then explicit solutions for b∗ and λ∗ may be obtained
by using the formula for the partitioned inverse (A-74),4

b∗ = b − (X′X)−1R′[R(X′X)−1R′]−1(Rb − q)

= b − Cm

and (6-14)

λ∗ = [R(X′X)−1R′]−1(Rb − q).

Greene and Seaks (1991) show that the covariance matrix for b∗ is simply σ 2 times
the upper left block of A−1. Once again, in the usual case in which X′X is nonsingular,
an explicit formulation may be obtained:

Var[b∗ | X] = σ 2(X′X)−1 − σ 2(X′X)−1R′[R(X′X)−1R′]−1R(X′X)−1. (6-15)

Thus,

Var[b∗ | X] = Var[b | X]—a nonnegative definite matrix.

3Since λ is not restricted, we can formulate the constraints in terms of 2λ. Why this scaling is convenient will
be clear shortly.
4The general solution given for d∗ may be usable even if X′X is singular. Suppose, for example, that X′X is
4 × 4 with rank 3. Then X′X is singular. But if there is a parametric restriction on β, then the 5 × 5 matrix
in brackets may still have rank 5. This formulation and a number of related results are given in Greene and
Seaks (1991).
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One way to interpret this reduction in variance is as the value of the information con-
tained in the restrictions.

Note that the explicit solution for λ∗ involves the discrepancy vector Rb − q. If the
unrestricted least squares estimator satisfies the restriction, the Lagrangean multipliers
will equal zero and b∗ will equal b. Of course, this is unlikely. The constrained solution
b∗ is equal to the unconstrained solution b plus a term that accounts for the failure of
the unrestricted solution to satisfy the constraints.

6.3.3 THE LOSS OF FIT FROM RESTRICTED LEAST SQUARES

To develop a test based on the restricted least squares estimator, we consider a single
coefficient first, then turn to the general case of J linear restrictions. Consider the change
in the fit of a multiple regression when a variable z is added to a model that already
contains K − 1 variables, x. We showed in Section 3.5 (Theorem 3.6), (3-29) that the
effect on the fit would be given by

R2
Xz = R2

X + (
1 − R2

X

)
r∗2

yz, (6-16)

where R2
Xz is the new R2 after z is added, R2

X is the original R2 and r∗
yz is the partial

correlation between y and z, controlling for x. So, as we knew, the fit improves (or, at
the least, does not deteriorate). In deriving the partial correlation coefficient between
y and z in (3-23) we obtained the convenient result

r∗2
yz = t2

z

t2
z + (n − K)

, (6-17)

where t2
z is the square of the t ratio for testing the hypothesis that the coefficient on z is

zero in the multiple regression of y on X and z. If we solve (6-16) for r∗2
yz and (6-17) for

t2
z and then insert the first solution in the second, then we obtain the result

t2
z =

(
R2

Xz − R2
X

)
/1(

1 − R2
Xz

)
/(n − K)

. (6-18)

We saw at the end of Section 6.3.1 that for a single restriction, such as βz = 0,

F[1, n − K] = t2[n − K],

which gives us our result. That is, in (6-18), we see that the squared t statistic (i.e., the
F statistic) is computed using the change in the R2. By interpreting the preceding as
the result of removing z from the regression, we see that we have proved a result for the
case of testing whether a single slope is zero. But the preceding result is general. The test
statistic for a single linear restriction is the square of the t ratio in (6-8). By this construc-
tion, we see that for a single restriction, F is a measure of the loss of fit that results from
imposing that restriction. To obtain this result, we will proceed to the general case of
J linear restrictions, which will include one restriction as a special case.

The fit of the restricted least squares coefficients cannot be better than that of the
unrestricted solution. Let e∗ equal y − Xb∗. Then, using a familiar device,

e∗ = y − Xb − X(b∗ − b) = e − X(b∗ − b).

The new sum of squared deviations is

e′
∗e∗ = e′e + (b∗ − b)′X′X(b∗ − b) ≥ e′e.
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(The middle term in the expression involves X′e, which is zero.) The loss of fit is

e′
∗e∗ − e′e = (Rb − q)′[R(X′X)−1R′]−1(Rb − q). (6-19)

This expression appears in the numerator of the F statistic in (6-7). Inserting the
remaining parts, we obtain

F[J, n − K] = (e′
∗e∗ − e′e)/J

e′e/(n − K)
. (6-20)

Finally, by dividing both numerator and denominator of F by �i (yi − ȳ)2, we obtain the
general result:

F[J, n − K] = (R2 − R2
∗)/J

(1 − R2)/(n − K)
. (6-21)

This form has some intuitive appeal in that the difference in the fits of the two models is
directly incorporated in the test statistic. As an example of this approach, consider the
earlier joint test that all of the slopes in the model are zero. This is the overall F ratio
discussed in Section 4.7.4 (4-15), where R2

∗ = 0.

For imposing a set of exclusion restrictions such as βk = 0 for one or more coeffi-
cients, the obvious approach is simply to omit the variables from the regression and base
the test on the sums of squared residuals for the restricted and unrestricted regressions.
The F statistic for testing the hypothesis that a subset, say β2, of the coefficients are
all zero is constructed using R = (0 : I), q = 0, and J = K2 = the number of elements in
β2. The matrix R(X′X)−1R′ is the K2 × K2 lower right block of the full inverse matrix.
Using our earlier results for partitioned inverses and the results of Section 3.3, we have

R(X′X)−1R′ = (X′
2M1X2)

−1

and

Rb − q = b2.

Inserting these in (6-19) gives the loss of fit that results when we drop a subset of the
variables from the regression:

e′
∗e∗ − e′e = b′

2X′
2M1X2b2.

The procedure for computing the appropriate F statistic amounts simply to comparing
the sums of squared deviations from the “short” and “long” regressions, which we saw
earlier.

Example 6.2 Production Function
The data in Appendix Table F6.1 have been used in several studies of production functions.5

Least squares regression of log output (value added) on a constant and the logs of labor and
capital produce the estimates of a Cobb–Douglas production function shown in Table 6.2.
We will construct several hypothesis tests based on these results. A generalization of the

5The data are statewide observations on SIC 33, the primary metals industry. They were originally constructed
by Hildebrand and Liu (1957) and have subsequently been used by a number of authors, notably Aigner,
Lovell, and Schmidt (1977). The 28th data point used in the original study is incomplete; we have used only
the remaining 27.
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TABLE 6.2 Estimated Production Functions

Translog Cobb–Douglas

Sum of squared residuals 0.67993 0.85163
Standard error of regression 0.17994 0.18840
R-squared 0.95486 0.94346
Adjusted R-squared 0.94411 0.93875
Number of observations 27 27

Standard Standard
Variable Coefficient Error t Ratio Coefficient Error t Ratio

Constant 0.944196 2.911 0.324 1.171 0.3268 3.583
ln L 3.61363 1.548 2.334 0.6030 0.1260 4.787
ln K −1.89311 1.016 −1.863 0.3757 0.0853 4.402
1
2 ln2 L −0.96406 0.7074 −1.363
1
2 ln2 K 0.08529 0.2926 0.291
ln L× ln K 0.31239 0.4389 0.712

Estimated Covariance Matrix for Translog (Cobb–Douglas) Coefficient Estimates

Constant ln L ln K 1
2 ln2 L 1

2 ln2 K ln L ln K

Constant 8.472
(0.1068)

lnL −2.388 2.397
(−0.01984) (0.01586)

lnK −0.3313 −1.231 1.033
(0.00189) (−.00961) (0.00728)

1
2 ln2 L −0.08760 −0.6658 0.5231 0.5004
1
2 ln2 K 0.2332 0.03477 0.02637 0.1467 0.08562
lnL lnK 0.3635 0.1831 −0.2255 −0.2880 −0.1160 0.1927

Cobb–Douglas model is the translog model,6 which is

ln Y = β1 + β2 ln L + β3 ln K + β4

(
1
2 ln2 L

) + β5

(
1
2 ln2 K

) + β6 ln L ln K + ε.

As we shall analyze further in Chapter 14, this model differs from the Cobb–Douglas model
in that it relaxes the Cobb–Douglas’s assumption of a unitary elasticity of substitution. The
Cobb–Douglas model is obtained by the restriction β4 = β5 = β6 = 0. The results for the
two regressions are given in Table 6.2. The F statistic for the hypothesis of a Cobb–Douglas
model is

F [3, 21] = (0.85163 − 0.67993)/3
0.67993/21

= 1.768.

The critical value from the F table is 3.07, so we would not reject the hypothesis that a
Cobb–Douglas model is appropriate.

The hypothesis of constant returns to scale is often tested in studies of production. This
hypothesis is equivalent to a restriction that the two coefficients of the Cobb–Douglas pro-
duction function sum to 1. For the preceding data,

F [1, 24] = (0.6030 + 0.3757 − 1)2

0.01586 + 0.00728 − 2(0.00961)
= 0.1157,

6Berndt and Christensen (1973). See Example 2.5 for discussion.



Greene-50240 book June 3, 2002 10:1

104 CHAPTER 6 ✦ Inference and Prediction

which is substantially less than the critical value given earlier. We would not reject the hypoth-
esis; the data are consistent with the hypothesis of constant returns to scale. The equivalent
test for the translog model would be β2 + β3 = 1 and β4 + β5 + 2β6 = 0. The F statistic with
2 and 21 degrees of freedom is 1.8891, which is less than the critical value of 3.49. Once
again, the hypothesis is not rejected.

In most cases encountered in practice, it is possible to incorporate the restrictions of
a hypothesis directly on the regression and estimate a restricted model.7 For example, to
impose the constraint β2 = 1 on the Cobb–Douglas model, we would write

ln Y = β1 + 1.0 ln L + β3 ln K + ε

or

ln Y − ln L = β1 + β3 ln K + ε.

Thus, the restricted model is estimated by regressing ln Y − ln L on a constant and ln K.
Some care is needed if this regression is to be used to compute an F statistic. If the F statis-
tic is computed using the sum of squared residuals [see (6-20)], then no problem will arise.
If (6-21) is used instead, however, then it may be necessary to account for the restricted
regression having a different dependent variable from the unrestricted one. In the preced-
ing regression, the dependent variable in the unrestricted regression is ln Y , whereas in the
restricted regression, it is ln Y − ln L. The R2 from the restricted regression is only 0.26979,
which would imply an F statistic of 285.96, whereas the correct value is 9.375. If we compute
the appropriate R2

∗ using the correct denominator, however, then its value is 0.94339 and the
correct F value results.

Note that the coefficient on ln K is negative in the translog model. We might conclude that
the estimated output elasticity with respect to capital now has the wrong sign. This conclusion
would be incorrect, however; in the translog model, the capital elasticity of output is

∂ ln Y
∂ ln K

= β3 + β5 ln K + β6 ln L .

If we insert the coefficient estimates and the mean values for ln K and ln L (not the logs of
the means) of 7.44592 and 5.7637, respectively, then the result is 0.5425, which is quite in
line with our expectations and is fairly close to the value of 0.3757 obtained for the Cobb–
Douglas model. The estimated standard error for this linear combination of the least squares
estimates is computed as the square root of

Est. Var[b3 + b5 ln K + b6 ln L ] = w′(Est. Var[b])w,

where

w = (0, 0, 1, 0, ln K , ln L ) ′

and b is the full 6×1 least squares coefficient vector. This value is 0.1122, which is reasonably
close to the earlier estimate of 0.0853.

6.4 NONNORMAL DISTURBANCES
AND LARGE SAMPLE TESTS

The distributions of the F, t, and chi-squared statistics that we used in the previous section
rely on the assumption of normally distributed disturbances. Without this assumption,

7This case is not true when the restrictions are nonlinear. We consider this issue in Chapter 9.
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the exact distributions of these statistics depend on the data and the parameters and
are not F, t, and chi-squared. At least at first blush, it would seem that we need either
a new set of critical values for the tests or perhaps a new set of test statistics. In this
section, we will examine results that will generalize the familiar procedures. These
large-sample results suggest that although the usual t and F statistics are still usable,
in the more general case without the special assumption of normality, they are viewed
as approximations whose quality improves as the sample size increases. By using the
results of Section D.3 (on asymptotic distributions) and some large-sample results for
the least squares estimator, we can construct a set of usable inference procedures based
on already familiar computations.

Assuming the data are well behaved, the asymptotic distribution of the least squares
coefficient estimator, b, is given by

b
a∼ N

[
β,

σ 2

n
Q−1

]
where Q = plim

(
X′X

n

)
. (6-22)

The interpretation is that, absent normality of ε, as the sample size, n, grows, the normal
distribution becomes an increasingly better approximation to the true, though at this
point unknown, distribution of b. As n increases, the distribution of

√
n(b−β) converges

exactly to a normal distribution, which is how we obtain the finite sample approximation
above. This result is based on the central limit theorem and does not require normally
distributed disturbances. The second result we will need concerns the estimator of σ 2:

plim s2 = σ 2, where s2 = e′e/(n − K).

With these in place, we can obtain some large-sample results for our test statistics that
suggest how to proceed in a finite sample with nonnormal disturbances.

The sample statistic for testing the hypothesis that one of the coefficients, βk equals
a particular value, β0

k is

tk =
√

n
(
bk − β0

k

)
√

s2
(
X′X/n

)−1
kk

.

(Note that two occurrences of
√

n cancel to produce our familiar result.) Under the
null hypothesis, with normally distributed disturbances, tk is exactly distributed as t with
n − K degrees of freedom. [See Theorem 4.4 and (4-13).] The exact distribution of this
statistic is unknown, however, if ε is not normally distributed. From the results above,
we find that the denominator of tk converges to

√
σ 2Q−1

kk . Hence, if tk has a limiting
distribution, then it is the same as that of the statistic that has this latter quantity in the
denominator. That is, the large-sample distribution of tk is the same as that of

τk =
√

n
(
bk − β0

k

)
√

σ 2Q−1
kk

.

But τk = (
bk−E [bk]

)
/
(
Asy. Var[bk]

)1/2 from the asymptotic normal distribution (under
the hypothesis βk = β0

k), so it follows that τk has a standard normal asymptotic distri-
bution, and this result is the large-sample distribution of our t statistic. Thus, as a large-
sample approximation, we will use the standard normal distribution to approximate
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the true distribution of the test statistic tk and use the critical values from the standard
normal distribution for testing hypotheses.

The result in the preceding paragraph is valid only in large samples. For moderately
sized samples, it provides only a suggestion that the t distribution may be a reasonable
approximation. The appropriate critical values only converge to those from the standard
normal, and generally from above, although we cannot be sure of this. In the interest
of conservatism—that is, in controlling the probability of a type I error—one should
generally use the critical value from the t distribution even in the absence of normality.
Consider, for example, using the standard normal critical value of 1.96 for a two-tailed
test of a hypothesis based on 25 degrees of freedom. The nominal size of this test is
0.05. The actual size of the test, however, is the true, but unknown, probability that
|tk| > 1.96, which is 0.0612 if the t[25] distribution is correct, and some other value if
the disturbances are not normally distributed. The end result is that the standard t-test
retains a large sample validity. Little can be said about the true size of a test based on
the t distribution unless one makes some other equally narrow assumption about ε, but
the t distribution is generally used as a reliable approximation.

We will use the same approach to analyze the F statistic for testing a set of J
linear restrictions. Step 1 will be to show that with normally distributed disturbances,
JF converges to a chi-squared variable as the sample size increases. We will then show
that this result is actually independent of the normality of the disturbances; it relies on
the central limit theorem. Finally, we consider, as above, the appropriate critical values
to use for this test statistic, which only has large sample validity.

The F statistic for testing the validity of J linear restrictions, Rβ − q = 0, is given in
(6-6). With normally distributed disturbances and under the null hypothesis, the exact
distribution of this statistic is F[J, n − K]. To see how F behaves more generally, divide
the numerator and denominator in (6-6) by σ 2 and rearrange the fraction slightly, so

F = (Rb − q)′
{

R[σ 2(X′X)−1]R′}−1
(Rb − q)

J (s2/σ 2)
. (6-23)

Since plim s2 = σ 2, and plim(X′X/n) = Q, the denominator of F converges to J and
the bracketed term in the numerator will behave the same as (σ 2/n)RQ−1R′. Hence,
regardless of what this distribution is, if F has a limiting distribution, then it is the same
as the limiting distribution of

W∗ = 1
J

(Rb − q)′[R(σ 2/n)Q−1R′]−1(Rb − q)

= 1
J

(Rb − q)′
{

Asy. Var[Rb − q]
}−1

(Rb − q).

This expression is (1/J ) times a Wald statistic, based on the asymptotic distribution. The
large-sample distribution of W∗ will be that of (1/J ) times a chi-squared with J degrees
of freedom. It follows that with normally distributed disturbances, JF converges to a chi-
squared variate with J degrees of freedom. The proof is instructive. [See White (2001,
9. 76).]



Greene-50240 book June 3, 2002 10:1

CHAPTER 6 ✦ Inference and Prediction 107

THEOREM 6.1 Limiting Distribution of the Wald Statistic
If

√
n(b − β)

d−→ N[0, σ 2Q−1] and if H0 : Rβ − q = 0 is true, then

W = (Rb − q)′{Rs2(X′X)−1R′}−1(Rb − q) = JF
d−→ χ2[J].

Proof: Since R is a matrix of constants and Rβ = q,
√

nR(b − β) = √
n(Rb − q)

d−→ N[0, R(σ 2Q−1)R′]. (1)

For convenience, write this equation as

z
d−→ N[0, P]. (2)

In Section A.6.11, we define the inverse square root of a positive definite matrix
P as another matrix, say T such that T2 = P−1, and denote T as P−1/2. Let T be
the inverse square root of P. Then, by the same reasoning as in (1) and (2),

if z
d−→ N[0, P], then P−1/2z

d−→ N[0, P−1/2PP−1/2] = N[0, I]. (3)

We now invoke Theorem D.21 for the limiting distribution of a function of a
random variable. The sum of squares of uncorrelated (i.e., independent) standard
normal variables is distributed as chi-squared. Thus, the limiting distribution of

(P−1/2z)′(P−1/2z) = z′P−1z
d−→ χ2(J ). (4)

Reassembling the parts from before, we have shown that the limiting distribution
of

n(Rb − q)′[R(σ 2Q−1)R′]−1(Rb − q) (5)

is chi-squared, with J degrees of freedom. Note the similarity of this result to the
results of Section B.11.6. Finally, if

plim s2
(

1
n

X′X
)−1

= σ 2Q−1, (6)

then the statistic obtained by replacing σ 2Q−1 by s2(X′X/n)−1 in (5) has the same
limiting distribution. The ns cancel, and we are left with the same Wald statistic
we looked at before. This step completes the proof.

The appropriate critical values for the F test of the restrictions Rβ − q = 0 con-
verge from above to 1/J times those for a chi-squared test based on the Wald statistic
(see the Appendix tables). For example, for testing J = 5 restrictions, the critical value
from the chi-squared table (Appendix Table G.4) for 95 percent significance is 11.07. The
critical values from the F table (Appendix Table G.5) are 3.33 = 16.65/5 for n − K = 10,
2.60 = 13.00/5 for n − K = 25, 2.40 = 12.00/5 for n − K = 50, 2.31 = 11.55/5 for n − K =
100, and 2.214 = 11.07/5 for large n − K. Thus, with normally distributed disturbances,
as n gets large, the F test can be carried out by referring JF to the critical values from
the chi-squared table.
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The crucial result for our purposes here is that the distribution of the Wald statistic is
built up from the distribution of b, which is asymptotically normal even without normally
distributed disturbances. The implication is that an appropriate large sample test statistic
is chi-squared = JF. Once again, this implication relies on the central limit theorem, not
on normally distributed disturbances. Now, what is the appropriate approach for a small
or moderately sized sample? As we saw earlier, the critical values for the F distribution
converge from above to (1/J ) times those for the preceding chi-squared distribution.
As before, one cannot say that this will always be true in every case for every possible
configuration of the data and parameters. Without some special configuration of the
data and parameters, however, one, can expect it to occur generally. The implication is
that absent some additional firm characterization of the model, the F statistic, with the
critical values from the F table, remains a conservative approach that becomes more
accurate as the sample size increases.

Exercise 7 at the end of this chapter suggests another approach to testing that has
validity in large samples, a Lagrange multiplier test. The vector of Lagrange multipliers
in (6-14) is [R(X′X)−1R′]−1(Rb − q), that is, a multiple of the least squares discrepancy
vector. In principle, a test of the hypothesis that λ equals zero should be equivalent to
a test of the null hypothesis. Since the leading matrix has full rank, this can only equal
zero if the discrepancy equals zero. A Wald test of the hypothesis that λ = 0 is indeed
a valid way to proceed. The large sample distribution of the Wald statistic would be
chi-squared with J degrees of freedom. (The procedure is considered in Exercise 7.) For
a set of exclusion restrictions, β2 = 0, there is a simple way to carry out this test. The
chi-squared statistic, in this case with K2 degrees of freedom can be computed as nR2 in
the regression of e∗ (the residuals in the short regression) on the full set of independent
variables.

6.5 TESTING NONLINEAR RESTRICTIONS

The preceding discussion has relied heavily on the linearity of the regression model.
When we analyze nonlinear functions of the parameters and nonlinear regression
models, most of these exact distributional results no longer hold.

The general problem is that of testing a hypothesis that involves a nonlinear function
of the regression coefficients:

H0 : c(β) = q.

We shall look first at the case of a single restriction. The more general one, in which
c(β) = q is a set of restrictions, is a simple extension. The counterpart to the test statistic
we used earlier would be

z = c(β̂) − q
estimated standard error

(6-24)

or its square, which in the preceding were distributed as t[n − K] and F[1, n − K],
respectively. The discrepancy in the numerator presents no difficulty. Obtaining an
estimate of the sampling variance of c(β̂) − q, however, involves the variance of a
nonlinear function of β̂.

wgreene
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The results we need for this computation are presented in Sections B.10.3 and D.3.1.
A linear Taylor series approximation to c(β̂) around the true parameter vector β is

c(β̂) ≈ c(β) +
(

∂c(β)

∂β

)′
(β̂ − β). (6-25)

We must rely on consistency rather than unbiasedness here, since, in general, the ex-
pected value of a nonlinear function is not equal to the function of the expected value.
If plim β̂ = β, then we are justified in using c(β̂) as an estimate of c(β). (The rele-
vant result is the Slutsky theorem.) Assuming that our use of this approximation is
appropriate, the variance of the nonlinear function is approximately equal to the vari-
ance of the right-hand side, which is, then,

Var[c(β̂)] ≈
(

∂c(β)

∂β

)′
Var[β̂]

(
∂c(β)

∂β

)
. (6-26)

The derivatives in the expression for the variance are functions of the unknown param-
eters. Since these are being estimated, we use our sample estimates in computing the
derivatives. To estimate the variance of the estimator, we can use s2(X′X)−1. Finally, we
rely on Theorem D.2.2 in Section D.3.1 and use the standard normal distribution instead
of the t distribution for the test statistic. Using g(β̂) to estimate g(β) = ∂c(β)/∂β, we
can now test a hypothesis in the same fashion we did earlier.

Example 6.3 A Long-Run Marginal Propensity to Consume
A consumption function that has different short- and long-run marginal propensities to con-
sume can be written in the form

ln Ct = α + β ln Yt + γ ln Ct−1 + εt ,

which is a distributed lag model. In this model, the short-run marginal propensity to consume
(MPC) (elasticity, since the variables are in logs) is β, and the long-run MPC is δ = β/(1 − γ ) .
Consider testing the hypothesis that δ = 1.

Quarterly data on aggregate U.S. consumption and disposable personal income for the
years 1950 to 2000 are given in Appendix Table F5.1. The estimated equation based on these
data is

ln Ct = 0.003142 + 0.07495 ln Yt + 0.9246 ln Ct−1 + et , R2 = 0.999712, s = 0.00874

(0.01055) (0.02873) (0.02859)

Estimated standard errors are shown in parentheses. We will also require Est.Asy. Cov[b, c] =
−0.0003298. The estimate of the long-run MPC is d = b/(1 − c) = 0.07495/(1 − 0.9246) =
0.99403. To compute the estimated variance of d, we will require

gb = ∂d
∂b

= 1
1 − c

= 13.2626, gc = ∂d
∂c

= b
(1 − c) 2

= 13.1834.

The estimated asymptotic variance of d is

Est.Asy. Var[d] = g2
b Est.Asy. Var[b] + g2

c Est.Asy. Var[c] + 2gbgcEst.Asy. Cov[b, c]

= 13.26262 × 0.028732 + 13.18342 × 0.028592

+ 2(13.2626) (13.1834) (−0.0003298) = 0.17192.
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The square root is 0.41464. To test the hypothesis that the long-run MPC is greater than or
equal to 1, we would use

z = 0.99403 − 1
0.41464

= −0.0144.

Because we are using a large sample approximation, we refer to a standard normal table
instead of the t distribution. The hypothesis that γ = 1 is not rejected.

You may have noticed that we could have tested this hypothesis with a linear restriction
instead; if δ = 1, then β = 1−γ , or β +γ = 1. The estimate is q = b+c−1 = −0.00045. The
estimated standard error of this linear function is [0.028732 + 0.028592 − 2(0.0003298) ]1/2 =
0.03136. The t ratio for this test is −0.01435 which is the same as before. Since the sample
used here is fairly large, this is to be expected. However, there is nothing in the computations
that assures this outcome. In a smaller sample, we might have obtained a different answer.
For example, using the last 11 years of the data, the t statistics for the two hypotheses are
7.652 and 5.681. The Wald test is not invariant to how the hypothesis is formulated. In a
borderline case, we could have reached a different conclusion. This lack of invariance does
not occur with the likelihood ratio or Lagrange multiplier tests discussed in Chapter 17. On
the other hand, both of these tests require an assumption of normality, whereas the Wald
statistic does not. This illustrates one of the trade-offs between a more detailed specification
and the power of the test procedures that are implied.

The generalization to more than one function of the parameters proceeds along
similar lines. Let c(β̂) be a set of J functions of the estimated parameter vector and let
the J × K matrix of derivatives of c(β̂) be

Ĝ = ∂c(β̂)

∂β̂
′ . (6-27)

The estimate of the asymptotic covariance matrix of these functions is

Est.Asy. Var[ĉ] = Ĝ
{

Est.Asy. Var[β̂]
}

Ĝ′. (6-28)

The jth row of G is K derivatives of c j with respect to the K elements of β̂. For example,
the covariance matrix for estimates of the short- and long-run marginal propensities to
consume would be obtained using

G =
[

0 1 0
0 1/(1 − γ ) β/(1 − γ )2

]
.

The statistic for testing the J hypotheses c(β) = q is

W = (ĉ − q)′
{

Est. Asy. Var[ĉ]
}−1

(ĉ − q). (6-29)

In large samples, W has a chi-squared distribution with degrees of freedom equal to the
number of restrictions. Note that for a single restriction, this value is the square of the
statistic in (6-24).
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6.6 PREDICTION

After the estimation of parameters, a common use of regression is for prediction.8

Suppose that we wish to predict the value of y0 associated with a regressor vector x0.
This value would be

y0 = x0′β + ε0.

It follows from the Gauss–Markov theorem that

ŷ0 = x0′b (6-30)

is the minimum variance linear unbiased estimator of E [y0|x0]. The forecast error is

e0 = y0 − ŷ0 = (β − b)′x0 + ε0.

The prediction variance to be applied to this estimate is

Var[e0|X, x0] = σ 2 + Var[(β − b)′x0|X, x0] = σ 2 + x0′[σ 2(X′X)−1]x0. (6-31)

If the regression contains a constant term, then an equivalent expression is

Var[e0] = σ 2


1 + 1

n
+

K−1∑
j=1

K−1∑
k=1

(
x0

j − x̄ j
)(

x0
k − x̄k

)
(Z′M0Z) jk




where Z is the K − 1 columns of X not including the constant. This result shows that
the width of the interval depends on the distance of the elements of x0 from the center
of the data. Intuitively, this idea makes sense; the farther the forecasted point is from
the center of our experience, the greater is the degree of uncertainty.

The prediction variance can be estimated by using s2 in place of σ 2. A confidence
interval for y0 would be formed using a

prediction interval = ŷ0 ± tλ/2 se(e0).

Figure 6.1 shows the effect for the bivariate case. Note that the prediction variance
is composed of three parts. The second and third become progressively smaller as we
accumulate more data (i.e., as n increases). But the first term σ 2 is constant, which
implies that no matter how much data we have, we can never predict perfectly.

Example 6.4 Prediction for Investment
Suppose that we wish to “predict” the first quarter 2001 value of real investment. The
average rate (secondary market) for the 90 day T-bill was 4.48% (down from 6.03 at
the end of 2000); real GDP was 9316.8; the CPI U was 528.0 and the time trend would equal
204. (We dropped one observation to compute the rate of inflation. Data were
obtained from www.economagic.com.) The rate of inflation on a yearly basis would be

8It is necessary at this point to make a largely semantic distinction between “prediction” and “forecasting.” We
will use the term “prediction” to mean using the regression model to compute fitted values of the dependent
variable, either within the sample or for observations outside the sample. The same set of results will apply
to cross sections, time series, or panels. These are the methods considered in this section. It is helpful at this
point to reserve the term “forecasting” for usage of the time series models discussed in Chapter 20. One of
the distinguishing features of the models in that setting will be the explicit role of “time” and the presence of
lagged variables and disturbances in the equations and correlation of variables with past values.
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FIGURE 6.1 Prediction Intervals.

100% × 4 × ln(528.0/521.1) = 5.26%. The data vector for predicting ln I2001.1 would be
x0 = [1, 4.48, 5.26, 9.1396, 204]′. Using the regression results in Example 6.1,

x0′b = [1, 4.48, 5.26, 9.1396, 204] × [−9.1345, −0.008601, 0.003308, 1.9302, −0.005659]′

= 7.3312.

The estimated variance of this prediction is

s2[1 + x0′(X′X)−1x0] = 0.0076912. (6-32)

The square root, 0.087699, gives the prediction standard deviation. Using this value, we
obtain the prediction interval:

7.3312 ± 1.96(0.087699) = 〈7.1593, 7.5031〉.
The yearly rate of real investment in the first quarter of 2001 was 1721. The log is 7.4507, so
our forecast interval contains the actual value.

We have forecasted the log of real investment with our regression model. If it is desired to
forecast the level, the natural estimator would be Î = exp( ln I ) . Assuming that the estimator,
itself, is at least asymptotically normally distributed, this should systematically underestimate
the level by a factor of exp( σ̂ 2/2) based on the mean of the lognormal distribution. [See
Wooldridge (2000, p. 203) and Section B.4.4.] It remains to determine what to use for σ̂ 2. In
(6-32), the second part of the expression will vanish in large samples, leaving (as Wooldridge
suggests) s2 = 0.007427.9 Using this scaling, we obtain a prediction of 1532.9, which is
still 11 percent below the actual value. Evidently, this model based on an extremely long
time series does not do a very good job of predicting at the end of the sample period. One
might surmise various reasons, including some related to the model specification that we will
address in Chapter 20, but as a first guess, it seems optimistic to apply an equation this simple
to more than 50 years of data while expecting the underlying structure to be unchanging

9Wooldridge suggests an alternative not necessarily based on an assumption of normality. Use as the scale
factor the single coefficient in a within sample regression of yi on the exponents of the fitted logs.
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through the entire period. To investigate this possibility, we redid all the preceding calculations
using only the data from 1990 to 2000 for the estimation. The prediction for the level of
investment in 2001.1 is now 1885.2 (using the suggested scaling), which is an overestimate
of 9.54 percent. But, this is more easily explained. The first quarter of 2001 began the first
recession in the U.S. economy in nearly 10 years, and one of the early symptoms of a
recession is a rapid decline in business investment.

All the preceding assumes that x0 is either known with certainty, ex post, or fore-
casted perfectly. If x0 must, itself, be forecasted (an ex ante forecast), then the formula
for the forecast variance in (6-31) would have to be modified to include the variation
in x0, which greatly complicates the computation. Most authors view it as simply in-
tractable. Beginning with Feldstein (1971), derivation of firm analytical results for the
correct forecast variance for this case remain to be derived except for simple special
cases. The one qualitative result that seems certain is that (6-31) will understate the
true variance. McCullough (1996) presents an alternative approach to computing ap-
propriate forecast standard errors based on the method of bootstrapping. (See the end
of Section 16.3.2.)

Various measures have been proposed for assessing the predictive accuracy of fore-
casting models.10 Most of these measures are designed to evaluate ex post forecasts,
that is, forecasts for which the independent variables do not themselves have to be fore-
casted. Two measures that are based on the residuals from the forecasts are the root
mean squared error

RMSE =
√

1
n0

∑
i

(yi − ŷi )
2

and the mean absolute error

MAE = 1
n0

∑
i

|yi − ŷi |,

where n0 is the number of periods being forecasted. (Note that both of these as well as
the measures below, are backward looking in that they are computed using the observed
data on the independent variable.) These statistics have an obvious scaling problem—
multiplying values of the dependent variable by any scalar multiplies the measure by that
scalar as well. Several measures that are scale free are based on the Theil U statistic:11

U =
√

(1/n0)
∑

i (yi − ŷi )
2

(1/n0)
∑

i y2
i

.

This measure is related to R2 but is not bounded by zero and one. Large values indicate
a poor forecasting performance. An alternative is to compute the measure in terms of
the changes in y:

U� =
√

(1/n0)
∑

i (�yi − �ŷi )
2

(1/n0)
∑

i (�yi )2
,

10See Theil (1961) and Fair (1984).
11Theil (1961).
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where�yi = yi −yi−1 and�ŷi = ŷi −yi−1, or, in percentage changes,�yi = (yi −yi−1)/yi−1

and�ŷi = (ŷi−yi−1)/yi−1.These measures will reflect the model’s ability to track turning
points in the data.

6.7 SUMMARY AND CONCLUSIONS

This chapter has focused on two uses of the linear regression model, hypothesis testing
and basic prediction. The central result for testing hypotheses is the F statistic. The F
ratio can be produced in two equivalent ways; first, by measuring the extent to which
the unrestricted least squares estimate differs from what a hypothesis would predict
and second, by measuring the loss of fit that results from assuming that a hypothesis is
correct. We then extended the F statistic to more general settings by examining its large
sample properties, which allow us to discard the assumption of normally distributed
disturbances and by extending it to nonlinear restrictions.

Key Terms and Concepts

• Alternative hypothesis
• Distributed lag
• Discrepancy vector
• Exclusion restrictions
• Ex post forecast
• Lagrange multiplier test
• Limiting distribution
• Linear restrictions

• Nested models
• Nonlinear restriction
• Nonnested models
• Noninvariance of Wald test
• Nonnormality
• Null hypothesis
• Parameter space
• Prediction interval

• Prediction variance
• Restricted least squares
• Root mean squared error
• Testable implications
• Theil U statistic
• Wald criterion

Exercises

1. A multiple regression of y on a constant x1 and x2 produces the following results:
ŷ = 4 + 0.4x1 + 0.9x2, R2 = 8/60, e′e = 520, n = 29,

X′X =



29 0 0
0 50 10
0 10 80


 .

Test the hypothesis that the two slopes sum to 1.
2. Using the results in Exercise 1, test the hypothesis that the slope on x1 is 0 by running

the restricted regression and comparing the two sums of squared deviations.
3. The regression model to be analyzed is y = X1β1 + X2β2 + ε, where X1 and X2

have K1 and K2 columns, respectively. The restriction is β2 = 0.
a. Using (6-14), prove that the restricted estimator is simply [b1∗, 0], where b1∗ is

the least squares coefficient vector in the regression of y on X1.
b. Prove that if the restriction is β2 = β0

2 for a nonzero β0
2, then the restricted

estimator of β1 is b1∗ = (X′
1X1)

−1X′
1(y − X2β

0
2).

4. The expression for the restricted coefficient vector in (6-14) may be written in the
form b∗ = [I − CR]b + w, where w does not involve b. What is C? Show that the
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covariance matrix of the restricted least squares estimator is

σ 2(X′X)−1 − σ 2(X′X)−1R′[R(X′X)−1R′]−1R(X′X)−1

and that this matrix may be written as

Var[b | X]
{

[Var(b | X)]−1 − R′[Var(Rb) | X]−1R
}

Var[b | X].

5. Prove the result that the restricted least squares estimator never has a larger
covariance matrix than the unrestricted least squares estimator.

6. Prove the result that the R2 associated with a restricted least squares estimator
is never larger than that associated with the unrestricted least squares estimator.
Conclude that imposing restrictions never improves the fit of the regression.

7. The Lagrange multiplier test of the hypothesis Rβ − q = 0 is equivalent to a Wald
test of the hypothesis that λ = 0, where λ is defined in (6-14). Prove that

χ2 = λ′{Est. Var[λ]
}−1

λ = (n − K)

[
e′

∗e∗
e′e

− 1
]

.

Note that the fraction in brackets is the ratio of two estimators of σ 2. By virtue
of (6-19) and the preceding discussion, we know that this ratio is greater than 1.
Finally, prove that the Lagrange multiplier statistic is equivalent to JF, where J is
the number of restrictions being tested and F is the conventional F statistic given
in (6-6).

8. Use the Lagrange multiplier test to test the hypothesis in Exercise 1.
9. Using the data and model of Example 2.3, carry out a test of the hypothesis that

the three aggregate price indices are not significant determinants of the demand
for gasoline.

10. The full model of Example 2.3 may be written in logarithmic terms as

ln G/pop = α + βp ln Pg + βy ln Y + γnc ln Pnc + γuc ln Puc + γpt ln Ppt

+ β year + δd ln Pd + δn ln Pn + δs ln Ps + ε.

Consider the hypothesis that the microelasticities are a constant proportion of the
elasticity with respect to their corresponding aggregate. Thus, for some positive θ

(presumably between 0 and 1), γnc = θδd, γuc = θδd, γpt = θδs .
The first two imply the simple linear restriction γnc = γuc. By taking ratios, the

first (or second) and third imply the nonlinear restriction

γnc

γpt
= δd

δs
or γncδs − γptδd = 0.

a. Describe in detail how you would test the validity of the restriction.
b. Using the gasoline market data in Table F2.2 , test the restrictions separately and

jointly.
11. Prove that under the hypothesis that Rβ = q, the estimator

s2
∗ = (y − Xb∗)′(y − Xb∗)

n − K + J
,

where J is the number of restrictions, is unbiased for σ 2.
12. Show that in the multiple regression of y on a constant, x1 and x2 while imposing

the restriction β1 +β2 = 1 leads to the regression of y−x1 on a constant and x2 −x1.

wgreene
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7

FUNCTIONAL FORM AND
STRUCTURAL CHANGE

Q
7.1 INTRODUCTION

In this chapter, we are concerned with the functional form of the regression model. Many
different types of functions are “linear” by the definition considered in Section 2.3.1. By
using different transformations of the dependent and independent variables, dummy
variables and different arrangements of functions of variables, a wide variety of models
can be constructed that are all estimable by linear least squares. Section 7.2 considers
using binary variables to accommodate nonlinearities in the model. Section 7.3 broadens
the class of models that are linear in the parameters. Sections 7.4 and 7.5 then examine
the issue of specifying and testing for change in the underlying model that generates the
data, under the heading of structural change.

7.2 USING BINARY VARIABLES

One of the most useful devices in regression analysis is the binary, or dummy variable.
A dummy variable takes the value one for some observations to indicate the pres-
ence of an effect or membership in a group and zero for the remaining observations.
Binary variables are a convenient means of building discrete shifts of the function into
a regression model.

7.2.1 BINARY VARIABLES IN REGRESSION

Dummy variables are usually used in regression equations that also contain other quan-
titative variables. In the earnings equation in Example 4.3, we included a variable Kids
to indicate whether there were children in the household under the assumption that for
many married women, this fact is a significant consideration in labor supply behavior.
The results shown in Example 7.1 appear to be consistent with this hypothesis.

Example 7.1 Dummy Variable in an Earnings Equation
Table 7.1 following reproduces the estimated earnings equation in Example 4.3. The variable
Kids is a dummy variable, which equals one if there are children under 18 in the household
and zero otherwise. Since this is a semilog equation, the value of −.35 for the coefficient
is an extremely large effect, that suggests that all other things equal, the earnings of women
with children are nearly a third less than those without. This is a large difference, but one that
would certainly merit closer scrutiny. Whether this effect results from different labor market
effects which affect wages and not hours, or the reverse, remains to be seen. Second, having
chosen a nonrandomly selected sample of those with only positive earnings to begin with, it
is unclear whether the sampling mechanism has, itself, induced a bias in this coefficient.

116
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TABLE 7.1 Estimated Earnings Equation

ln earnings = β1 + β2 age + β3 age2 + β4 education + β5 kids + ε
Sum of squared residuals: 599.4582
Standard error of the regression: 1.19044

R2 based on 428 observations 0.040995

Variable Coefficient Standard Error t Ratio

Constant 3.24009 1.7674 1.833
Age 0.20056 0.08386 2.392
Age2 −0.0023147 0.00098688 −2.345
Education 0.067472 0.025248 2.672
Kids −0.35119 0.14753 −2.380

In recent applications, researchers in many fields have studied the effects of treat-
ment on some kind of response. Examples include the effect of college on, lifetime
income, sex differences in labor supply behavior as in Example 7.1, and in salary struc-
tures in industries, and in pre- versus postregime shifts in macroeconomic models, to
name but a few. These examples can all be formulated in regression models involving a
single dummy variable:

yi = x′
iβ + δdi + εi .

One of the important issues in policy analysis concerns measurement of such treatment
effects when the dummy variable results from an individual participation decision. For
example, in studies of the effect of job training programs on post-training earnings,
the “treatment dummy” might be measuring the latent motivation and initiative of the
participants rather than the effect of the program, itself. We will revisit this subject in
Section 22.4.

It is common for researchers to include a dummy variable in a regression to account
for something that applies only to a single observation. For example, in time-series
analyses, an occasional study includes a dummy variable that is one only in a single
unusual year, such as the year of a major strike or a major policy event. (See, for
example, the application to the German money demand function in Section 20.6.5.) It
is easy to show (we consider this in the exercises) the very useful implication of this:

A dummy variable that takes the value one only for one observation has the effect of
deleting that observation from computation of the least squares slopes and variance
estimator (but not R-squared).

7.2.2 SEVERAL CATEGORIES

When there are several categories, a set of binary variables is necessary. Correcting
for seasonal factors in macroeconomic data is a common application. We could write a
consumption function for quarterly data as

Ct = β1 + β2xt + δ1 Dt1 + δ2 Dt2 + δ3 Dt3 + εt ,
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where xt is disposable income. Note that only three of the four quarterly dummy vari-
ables are included in the model. If the fourth were included, then the four dummy
variables would sum to one at every observation, which would reproduce the constant
term—a case of perfect multicollinearity. This is known as the dummy variable trap.
Thus, to avoid the dummy variable trap, we drop the dummy variable for the fourth
quarter. (Depending on the application, it might be preferable to have four separate
dummy variables and drop the overall constant.)1 Any of the four quarters (or 12
months) can be used as the base period.

The preceding is a means of deseasonalizing the data. Consider the alternative
formulation:

Ct = βxt + δ1 Dt1 + δ2 Dt2 + δ3 Dt3 + δ4 Dt4 + εt . (7-1)

Using the results from Chapter 3 on partitioned regression, we know that the preceding
multiple regression is equivalent to first regressing C and x on the four dummy variables
and then using the residuals from these regressions in the subsequent regression of
deseasonalized consumption on deseasonalized income. Clearly, deseasonalizing in this
fashion prior to computing the simple regression of consumption on income produces
the same coefficient on income (and the same vector of residuals) as including the set
of dummy variables in the regression.

7.2.3 SEVERAL GROUPINGS

The case in which several sets of dummy variables are needed is much the same as
those we have already considered, with one important exception. Consider a model of
statewide per capita expenditure on education y as a function of statewide per capita
income x. Suppose that we have observations on all n = 50 states for T = 10 years. A
regression model that allows the expected expenditure to change over time as well as
across states would be

yit = α + βxit + δi + θt + εi t . (7-2)

As before, it is necessary to drop one of the variables in each set of dummy variables to
avoid the dummy variable trap. For our example, if a total of 50 state dummies and 10
time dummies is retained, a problem of “perfect multicollinearity” remains; the sums
of the 50 state dummies and the 10 time dummies are the same, that is, 1. One of the
variables in each of the sets (or the overall constant term and one of the variables in
one of the sets) must be omitted.

Example 7.2 Analysis of Covariance
The data in Appendix Table F7.1 were used in a study of efficiency in production of airline
services in Greene (1997b). The airline industry has been a favorite subject of study [e.g.,
Schmidt and Sickles (1984); Sickles, Good, and Johnson (1986)], partly because of interest in
this rapidly changing market in a period of deregulation and partly because of an abundance
of large, high-quality data sets collected by the (no longer existent) Civil Aeronautics Board.
The original data set consisted of 25 firms observed yearly for 15 years (1970 to 1984), a
“balanced panel.” Several of the firms merged during this period and several others experi-
enced strikes, which reduced the number of complete observations substantially. Omitting
these and others because of missing data on some of the variables left a group of 10 full

1See Suits (1984) and Greene and Seaks (1991).
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FIGURE 7.1 Estimated Year Dummy Variable Coefficients.

observations, from which we have selected six for the examples to follow. We will fit a cost
equation of the form

ln Ci ,t = β1 + β2 ln Qi ,t + β3 ln2 Qi ,t + β4 ln Pfuel i,t + β5 Loadfactori ,t

+
14∑

t=1

θt Di ,t +
5∑

i =1

δi Fi ,t + εi ,t .

The dummy variables are Di ,t which is the year variable and Fi ,t which is the firm variable. We
have dropped the last one in each group. The estimated model for the full specification is

ln Ci ,t = 13.56 + .8866 ln Qi ,t + 0.01261 ln2 Qi ,t + 0.1281 ln Pf i ,t − 0.8855 LFi ,t

+ time effects + firm effects.

The year effects display a revealing pattern, as shown in Figure 7.1. This was a period of
rapidly rising fuel prices, so the cost effects are to be expected. Since one year dummy
variable is dropped, the effect shown is relative to this base year (1984).

We are interested in whether the firm effects, the time effects, both, or neither are sta-
tistically significant. Table 7.2 presents the sums of squares from the four regressions. The
F statistic for the hypothesis that there are no firm specific effects is 65.94, which is highly
significant. The statistic for the time effects is only 2.61, which is larger than the critical value

TABLE 7.2 F tests for Firm and Year Effects

Model Sum of Squares Parameters F Deg.Fr.

Full Model 0.17257 24 —
Time Effects 1.03470 19 65.94 [5, 66]
Firm Effects 0.26815 10 2.61 [14, 66]
No Effects 1.27492 5 22.19 [19, 66]
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of 1.84, but perhaps less so than Figure 7.1 might have suggested. In the absence of the
year specific dummy variables, the year specific effects are probably largely absorbed by the
price of fuel.

7.2.4 THRESHOLD EFFECTS AND CATEGORICAL VARIABLES

In most applications, we use dummy variables to account for purely qualitative factors,
such as membership in a group, or to represent a particular time period. There are cases,
however, in which the dummy variable(s) represents levels of some underlying factor
that might have been measured directly if this were possible. For example, education
is a case in which we typically observe certain thresholds rather than, say, years of
education. Suppose, for example, that our interest is in a regression of the form

income = β1 + β2 age + effect of education + ε.

The data on education might consist of the highest level of education attained, such
as high school (HS), undergraduate (B), master’s (M), or Ph.D. (P). An obviously
unsatisfactory way to proceed is to use a variable E that is 0 for the first group, 1 for the
second, 2 for the third, and 3 for the fourth. That is, income = β1 + β2 age + β3E + ε.
The difficulty with this approach is that it assumes that the increment in income at each
threshold is the same; β3 is the difference between income with a Ph.D. and a master’s
and between a master’s and a bachelor’s degree. This is unlikely and unduly restricts
the regression. A more flexible model would use three (or four) binary variables, one
for each level of education. Thus, we would write

income = β1 + β2 age + δB B + δM M + δP P + ε.

The correspondence between the coefficients and income for a given age is

High school : E [income | age, HS] = β1 + β2 age,

Bachelor’s : E [income | age, B] = β1 + β2 age + δB,

Masters : E [income | age, M] = β1 + β2 age + δM,

Ph.D. : E [income | age, P] = β1 + β2 age + δP.

The differences between, say, δP and δM and between δM and δB are of interest. Obvi-
ously, these are simple to compute. An alternative way to formulate the equation that
reveals these differences directly is to redefine the dummy variables to be 1 if the indi-
vidual has the degree, rather than whether the degree is the highest degree obtained.
Thus, for someone with a Ph.D., all three binary variables are 1, and so on. By defining
the variables in this fashion, the regression is now

High school : E [income | age, HS] = β1 + β2 age,

Bachelor’s : E [income | age, B] = β1 + β2 age + δB,

Masters : E [income | age, M] = β1 + β2 age + δB + δM,

Ph.D. : E [income | age, P] = β1 + β2 age + δB + δM + δP.

Instead of the difference between a Ph.D. and the base case, in this model δP is the
marginal value of the Ph.D. How equations with dummy variables are formulated is a
matter of convenience. All the results can be obtained from a basic equation.
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7.2.5 SPLINE REGRESSION

If one is examining income data for a large cross section of individuals of varying ages
in a population, then certain patterns with regard to some age thresholds will be clearly
evident. In particular, throughout the range of values of age, income will be rising, but the
slope might change at some distinct milestones, for example, at age 18, when the typical
individual graduates from high school, and at age 22, when he or she graduates from
college. The time profile of income for the typical individual in this population might
appear as in Figure 7.2. Based on the discussion in the preceding paragraph, we could
fit such a regression model just by dividing the sample into three subsamples. However,
this would neglect the continuity of the proposed function. The result would appear
more like the dotted figure than the continuous function we had in mind. Restricted
regression and what is known as a spline function can be used to achieve the desired
effect.2

The function we wish to estimate is

E [income | age] = α0 + β0 age if age < 18,

α1 + β1 age if age ≥ 18 and age < 22,

α2 + β2 age if age ≥ 22.

The threshold values, 18 and 22, are called knots. Let

d1 = 1 if age ≥ t∗
1 ,

d2 = 1 if age ≥ t∗
2 ,

2An important reference on this subject is Poirier (1974). An often-cited application appears in Garber and
Poirier (1974).
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where t∗
1 = 18 and t∗

2 = 22. To combine all three equations, we use

income = β1 + β2 age + γ1d1 + δ1d1 age + γ2d2 + δ2d2 age + ε. (7-3)

This relationship is the dashed function in Figure 7.2. The slopes in the three segments
are β2, β2 + δ1, and β2 + δ1 + δ2. To make the function piecewise continuous, we require
that the segments join at the knots—that is,

β1 + β2t∗
1 = (β1 + γ1) + (β2 + δ1)t∗

1

and

(β1 + γ1) + (β2 + δ1)t∗
2 = (β1 + γ1 + γ2) + (β2 + δ1 + δ2)t∗

2 .

These are linear restrictions on the coefficients. Collecting terms, the first one is

γ1 + δ1t∗
1 = 0 or γ1 = −δ1t∗

1 .

Doing likewise for the second and inserting these in (7-3), we obtain

income = β1 + β2 age + δ1d1 (age − t∗
1 ) + δ2d2 (age − t∗

2 ) + ε.

Constrained least squares estimates are obtainable by multiple regression, using a con-
stant and the variables

x1 = age,

x2 = age − 18 if age ≥ 18 and 0 otherwise,

and
x3 = age − 22 if age ≥ 22 and 0 otherwise.

We can test the hypothesis that the slope of the function is constant with the joint test
of the two restrictions δ1 = 0 and δ2 = 0.

7.3 NONLINEARITY IN THE VARIABLES

It is useful at this point to write the linear regression model in a very general form: Let
z = z1, z2, . . . , zL be a set of L independent variables; let f1, f2, . . . , fK be K linearly
independent functions of z; let g(y) be an observable function of y; and retain the usual
assumptions about the disturbance. The linear regression model is

g(y) = β1 f1(z) + β2 f2(z) + · · · + βK fK(z) + ε

= β1x1 + β2x2 + · · · + βKxK + ε

= x′β + ε.

(7-4)

By using logarithms, exponentials, reciprocals, transcendental functions, polynomials,
products, ratios, and so on, this “linear” model can be tailored to any number of
situations.

7.3.1 FUNCTIONAL FORMS

A commonly used form of regression model is the loglinear model,

ln y = ln α +
∑

k

βk ln Xk + ε = β1 +
∑

k

βkxk + ε.
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In this model, the coefficients are elasticities:
(

∂y
∂xk

)(
xk

y

)
= ∂ ln y

∂ ln xk
= βk. (7-5)

In the loglinear equation, measured changes are in proportional or percentage terms;
βk measures the percentage change in y associated with a one percent change in xk.
This removes the units of measurement of the variables from consideration in using
the regression model. An alternative approach sometimes taken is to measure the vari-
ables and associated changes in standard deviation units. If the data are “standardized”
before estimation using x∗

ik = (xik − x̄k)/sk and likewise for y, then the least squares
regression coefficients measure changes in standard deviation units rather than natural
or percentage terms. (Note that the constant term disappears from this regression.) It is
not necessary actually to transform the data to produce these results; multiplying each
least squares coefficient bk in the original regression by sy/sk produces the same result.

A hybrid of the linear and loglinear models is the semilog equation

ln y = β1 + β2x + ε. (7-6)

We used this form in the investment equation in Section 6.2,

ln It = β1 + β2 (it − �pt ) + β3�pt + β4 ln Yt + β5t + εt ,

where the log of investment is modeled in the levels of the real interest rate, the
price level, and a time trend. In a semilog equation with a time trend such as this
one, d ln I/dt = β5 is the average rate of growth of I. The estimated value of −.005 in
Table 6.1 suggests that over the full estimation period, after accounting for all other
factors, the average rate of growth of investment was −.5 percent per year.

The coefficients in the semilog model are partial- or semi-elasticities; in (7-6), β2 is
∂ ln y/∂x. This is a natural form for models with dummy variables such as the earnings
equation in Example 7.1. The coefficient on Kids of −.35 suggests that all else equal,
earnings are approximately 35 percent less when there are children in the household.

The quadratic earnings equation in Example 7.1 shows another use of nonlineari-
ties in the variables. Using the results in Example 7.1, we find that for a woman with
12 years of schooling and children in the household, the age-earnings profile appears as
in Figure 7.3. This figure suggests an important question in this framework. It is tempting
to conclude that Figure 7.3 shows the earnings trajectory of a person at different ages,
but that is not what the data provide. The model is based on a cross section, and what it
displays is the earnings of different people of different ages. How this profile relates to
the expected earnings path of one individual is a different, and complicated question.

Another useful formulation of the regression model is one with interaction terms.
For example, a model relating braking distance D to speed S and road wetness W might
be

D = β1 + β2S + β3W + β4SW + ε.

In this model,

∂ E [D | S, W]
∂S

= β2 + β4W
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which implies that the marginal effect of higher speed on braking distance is increased
when the road is wetter (assuming that β4 is positive). If it is desired to form confidence
intervals or test hypotheses about these marginal effects, then the necessary standard
error is computed from

Var
(

∂ Ê [D | S, W]
∂S

)
= Var[β̂2] + W2 Var[β̂4] + 2W Cov[β̂2, β̂4],

and similarly for ∂ E [D | S, W]/∂W. A value must be inserted for W. The sample mean
is a natural choice, but for some purposes, a specific value, such as an extreme value of
W in this example, might be preferred.

7.3.2 IDENTIFYING NONLINEARITY

If the functional form is not known a priori, then there are a few approaches that may
help at least to identify any nonlinearity and provide some information about it from the
sample. For example, if the suspected nonlinearity is with respect to a single regressor in
the equation, then fitting a quadratic or cubic polynomial rather than a linear function
may capture some of the nonlinearity. By choosing several ranges for the regressor in
question and allowing the slope of the function to be different in each range, a piecewise
linear approximation to the nonlinear function can be fit.

Example 7.3 Functional Form for a Nonlinear Cost Function
In a celebrated study of economies of scale in the U.S. electric power industry, Nerlove (1963)
analyzed the production costs of 145 American electric generating companies. This study
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produced several innovations in microeconometrics. It was among the first major applications
of statistical cost analysis. The theoretical development in Nerlove’s study was the first to
show how the fundamental theory of duality between production and cost functions could be
used to frame an econometric model. Finally, Nerlove employed several useful techniques
to sharpen his basic model.

The focus of the paper was economies of scale, typically modeled as a characteristic of
the production function. He chose a Cobb–Douglas function to model output as a function
of capital, K, labor, L, and fuel, F;

Q = α0 K αK LαL F αF eεi

where Q is output and εi embodies the unmeasured differences across firms. The economies
of scale parameter is r = αK + αL + αF . The value one indicates constant returns to scale. In
this study, Nerlove investigated the widely accepted assumption that producers in this indus-
try enjoyed substantial economies of scale. The production model is loglinear, so assuming
that other conditions of the classical regression model are met, the four parameters could be
estimated by least squares. However, he argued that the three factors could not be treated
as exogenous variables. For a firm that optimizes by choosing its factors of production, the
demand for fuel would be F ∗ = F ∗( Q, PK , PL , PF ) and likewise for labor and capital, so
certainly the assumptions of the classical model are violated.

In the regulatory framework in place at the time, state commissions set rates and firms
met the demand forthcoming at the regulated prices. Thus, it was argued that output (as well
as the factor prices) could be viewed as exogenous to the firm and, based on an argument by
Zellner, Kmenta, and Dreze (1964), Nerlove argued that at equilibrium, the deviation of costs
from the long run optimum would be independent of output. (This has a testable implication
which we will explore in Chapter 14.) Thus, the firm’s objective was cost minimization subject
to the constraint of the production function. This can be formulated as a Lagrangean problem,

MinK ,L ,F PK K + PL L + PF F + λ( Q − α0 K αK LαL F αF ) .

The solution to this minimization problem is the three factor demands and the multiplier
(which measures marginal cost). Inserted back into total costs, this produces an (intrinsically
linear) loglinear cost function,

PK K + PL L + PF F = C( Q, PK , PL , PF ) = r AQ1/r PαK /r
K PαL /r

L PαF /r
F eε i /r

or

ln C = β1 + βq ln Q + βK ln PK + βL ln PL + βF ln PF + ui (7-7)

where βq = 1/(αK + αL + αF ) is now the parameter of interest and β j = α j /r, j = K , L , F .3

Thus, the duality between production and cost functions has been used to derive the esti-
mating equation from first principles.

A complication remains. The cost parameters must sum to one; βK + βL + βF = 1, so
estimation must be done subject to this constraint.4 This restriction can be imposed by
regressing ln(C/PF ) on a constant ln Q, ln( PK /PF ) and ln( PL/PF ) . This first set of results
appears at the top of Table 7.3.

3Readers who attempt to replicate the original study should note that Nerlove used common (base 10) logs
in his calculations, not natural logs. This change creates some numerical differences.
4In the context of the econometric model, the restriction has a testable implication by the definition in
Chapter 6. But, the underlying economics require this restriction—it was used in deriving the cost function.
Thus, it is unclear what is implied by a test of the restriction. Presumably, if the hypothesis of the restriction
is rejected, the analysis should stop at that point, since without the restriction, the cost function is not a
valid representation of the production function. We will encounter this conundrum again in another form in
Chapter 14. Fortunately, in this instance, the hypothesis is not rejected. (It is in the application in Chapter 14.)

Administrator
change 1964 to 1966
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TABLE 7.3 Cobb–Douglas Cost Functions (Standard Errors in
Parentheses)

log Q log PL − log PF log PK − log PF R2

All firms 0.721 0.594 −0.0085 0.952
(0.0174) (0.205) (0.191)

Group 1 0.398 0.641 −0.093 0.512
Group 2 0.668 0.105 0.364 0.635
Group 3 0.931 0.408 0.249 0.571
Group 4 0.915 0.472 0.133 0.871
Group 5 1.045 0.604 −0.295 0.920

Initial estimates of the parameters of the cost function are shown in the top row of
Table 7.3. The hypothesis of constant returns to scale can be firmly rejected. The t ratio
is (0.721 − 1)/0.0174 = −16.03, so we conclude that this estimate is significantly less than
one or, by implication, r is significantly greater than one. Note that the coefficient on the cap-
ital price is negative. In theory, this should equal αK /r , which (unless the marginal product
of capital is negative), should be positive. Nerlove attributed this to measurement error in
the capital price variable. This seems plausible, but it carries with it the implication that the
other coefficients are mismeasured as well. [See (5-31a,b). Christensen and Greene’s (1976)
estimator of this model with these data produced a positive estimate. See Section 14.3.1.]

The striking pattern of the residuals shown in Figure 7.45 and some thought about the
implied form of the production function suggested that something was missing from the
model.6 In theory, the estimated model implies a continually declining average cost curve,
which in turn implies persistent economies of scale at all levels of output. This conflicts with
the textbook notion of a U-shaped average cost curve and appears implausible for the data.
Note the three clusters of residuals in the figure. Two approaches were used to analyze the
model.

By sorting the sample into five groups on the basis of output and fitting separate regres-
sions to each group, Nerlove fit a piecewise loglinear model. The results are given in the
lower rows of Table 7.3, where the firms in the successive groups are progressively larger.
The results are persuasive that the (log)-linear cost function is inadequate. The output coef-
ficient that rises toward and then crosses 1.0 is consistent with a U-shaped cost curve as
surmised earlier.

A second approach was to expand the cost function to include a quadratic term in log
output. This approach corresponds to a much more general model and produced the result
given in Table 7.4. Again, a simple t test strongly suggests that increased generality is called
for; t = 0.117/0.012 = 9.75. The output elasticity in this quadratic model is βq + 2γqq log Q.7

There are economies of scale when this value is less than one and constant returns to scale
when it equals one. Using the two values given in the table (0.151 and 0.117, respectively), we
find that this function does, indeed, produce a U shaped average cost curve with minimum
at log10 Q = (1 − 0.151)/(2 × 0.117) = 3.628, or Q = 4248, which was roughly in the middle
of the range of outputs for Nerlove’s sample of firms.

5The residuals are created as deviations of predicted total cost from actual, so they do not sum to zero.
6A Durbin–Watson test of correlation among the residuals (see Section 12.5.1) revealed to the author a
substantial autocorrelation. Although normally used with time series data, the Durbin–Watson statistic and
a test for “autocorrelation” can be a useful tool for determining the appropriate functional form in a cross
sectional model. To use this approach, it is necessary to sort the observations based on a variable of interest
(output). Several clusters of residuals of the same sign suggested a need to reexamine the assumed functional
form.
7Nerlove inadvertently measured economies of scale from this function as 1/(βq + δ log Q), where βq and
δ are the coefficients on log Q and log2 Q. The correct expression would have been 1/[∂ log C/∂ log Q] =
1/[βq + 2δ log Q]. This slip was periodically rediscovered in several later papers.
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This study was updated by Christensen and Greene (1976). Using the same data but a
more elaborate (translog) functional form and by simultaneously estimating the factor de-
mands and the cost function, they found results broadly similar to Nerlove’s. Their preferred
functional form did suggest that Nerlove’s generalized model in Table 7.4 did somewhat un-
derestimate the range of outputs in which unit costs of production would continue to decline.
They also redid the study using a sample of 123 firms from 1970, and found similar results.
In the latter sample, however, it appeared that many firms had expanded rapidly enough
to exhaust the available economies of scale. We will revisit the 1970 data set in a study of
efficiency in Section 17.6.4.

The preceding example illustrates three useful tools in identifying and dealing with
unspecified nonlinearity: analysis of residuals, the use of piecewise linear regression,
and the use of polynomials to approximate the unknown regression function.

7.3.3 INTRINSIC LINEARITY AND IDENTIFICATION

The loglinear model illustrates an intermediate case of a nonlinear regression model.
The equation is intrinsically linear by our definition; by taking logs of Yi = αXβ2

i eεi , we
obtain

ln Yi = ln α + β2 ln Xi + εi (7-8)

TABLE 7.4 Log-Quadratic Cost Function (Standard Errors in
Parentheses)

log Q log2 Q log(PL/PF) log(PK/PF) R2

All firms 0.151 0.117 0.498 −0.062 0.95
(0.062) (0.012) (0.161) (0.151)
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or

yi = β1 + β2xi + εi .

Although this equation is linear in most respects, something has changed in that it is no
longer linear in α. Written in terms of β1, we obtain a fully linear model. But that may
not be the form of interest. Nothing is lost, of course, since β1 is just ln α. If β1 can be
estimated, then an obvious estimate of α is suggested.

This fact leads us to a second aspect of intrinsically linear models. Maximum like-
lihood estimators have an “invariance property.” In the classical normal regression
model, the maximum likelihood estimator of σ is the square root of the maximum like-
lihood estimator of σ 2. Under some conditions, least squares estimators have the same
property. By exploiting this, we can broaden the definition of linearity and include some
additional cases that might otherwise be quite complex.

DEFINITION 7.1 Intrinsic Linearity
In the classical linear regression model, if the K parameters β1, β2, . . . , βK can
be written as K one-to-one, possibly nonlinear functions of a set of K underlying
parameters θ1, θ2, . . . , θK, then the model is intrinsically linear in θ .

Example 7.4 Intrinsically Linear Regression
In Section 17.5.4, we will estimate the parameters of the model

f ( y | β, x) = (β + x)−ρ

�(ρ)
yρ−1e−y/(β+x)

by maximum likelihood. In this model, E [y | x] = (βρ) + ρx, which suggests another way
that we might estimate the two parameters. This function is an intrinsically linear regression
model, E [y | x] = β1 +β2x, in which β1 = βρ and β2 = ρ. We can estimate the parameters by
least squares and then retrieve the estimate of β using b1/b2. Since this value is a nonlinear
function of the estimated parameters, we use the delta method to estimate the standard error.
Using the data from that example, the least squares estimates of β1 and β2 (with standard
errors in parentheses) are −4.1431 (23.734) and 2.4261 (1.5915). The estimated covariance
is −36.979. The estimate of β is −4.1431/2.4261 = −1.7077. We estimate the sampling
variance of β̂ with

Est. Var[β̂] =
(

∂β̂

∂b1

)2

V̂ar[b1] +
(

∂β̂

∂b2

)2

V̂ar[b2] + 2

(
∂β̂

∂b1

)(
∂β̂

∂b2

)
Ĉov[b1, b2]

= 8.68892.

Table 7.5 compares the least squares and maximum likelihood estimates of the parameters.
The lower standard errors for the maximum likelihood estimates result from the inefficient
(equal) weighting given to the observations by the least squares procedure. The gamma
distribution is highly skewed. In addition, we know from our results in Appendix C that this
distribution is an exponential family. We found for the gamma distribution that the sufficient
statistics for this density were �i yi and �i ln yi . The least squares estimator does not use the
second of these, whereas an efficient estimator will.
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TABLE 7.5 Estimates of the Regression in a Gamma Model: Least Squares
versus Maximum Likelihood

β ρ

Estimate Standard Error Estimate Standard Error

Least squares −1.708 8.689 2.426 1.592
Maximum likelihood −4.719 2.403 3.151 0.663

The emphasis in intrinsic linearity is on “one to one.” If the conditions are met, then
the model can be estimated in terms of the functions β1, . . . , βK, and the underlying
parameters derived after these are estimated. The one-to-one correspondence is an
identification condition. If the condition is met, then the underlying parameters of the
regression (θ) are said to be exactly identified in terms of the parameters of the linear
model β. An excellent example is provided by Kmenta (1986, p. 515).

Example 7.5 CES Production Function
The constant elasticity of substitution production function may be written

ln y = ln γ − ν

ρ
ln[δK −ρ + (1 − δ) L−ρ ] + ε. (7-9)

A Taylor series approximation to this function around the point ρ = 0 is

ln y = ln γ + νδ ln K + ν(1 − δ) ln L + ρνδ(1 − δ)
{− 1

2 [ln K − ln L ]2
} + ε′

= β1x1 + β2x2 + β3x3 + β4x4 + ε′, (7-10)

where x1 = 1, x2 = ln K , x3 = ln L , x4 = − 1
2 ln2( K/L ) , and the transformations are

β1 = ln γ , β2 = νδ, β3 = ν(1 − δ) , β4 = ρνδ(1 − δ) ,

γ = eβ1 , δ = β2/(β2 + β3) , ν = β2 + β3, ρ = β4(β2 + β3)/(β2β3) .
(7-11)

Estimates of β1, β2, β3, and β4 can be computed by least squares. The estimates of γ , δ, ν,
and ρ obtained by the second row of (7-11) are the same as those we would obtain had we
found the nonlinear least squares estimates of (7-10) directly. As Kmenta shows, however,
they are not the same as the nonlinear least squares estimates of (7-9) due to the use of the
Taylor series approximation to get to (7-10). We would use the delta method to construct the
estimated asymptotic covariance matrix for the estimates of θ ′ = [γ , δ, ν, ρ]. The derivatives
matrix is

C = ∂θ

∂β ′ =




eβ1 0 0 0

0 β2/(β2 + β3) 2 −β2/(β2 + β3) 2 0
0 1 1 0

0 −β3β4

/(
β2

2β3

) −β2β4

/(
β2β

2
3

)
(β2 + β3)/(β2β3)


 .

The estimated covariance matrix for θ̂ is Ĉ [s2(X′X)−1]Ĉ′.

Not all models of the form

yi = β1(θ)xi1 + β2(θ)xi2 + · · · + βK(θ)xik + εi (7-12)

are intrinsically linear. Recall that the condition that the functions be one to one (i.e.,
that the parameters be exactly identified) was required. For example,

yi = α + βxi1 + γ xi2 + βγ xi3 + εi

Administrator
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is nonlinear. The reason is that if we write it in the form of (7-12), we fail to account
for the condition that β4 equals β2β3, which is a nonlinear restriction. In this model,
the three parameters α, β, and γ are overidentified in terms of the four parameters
β1, β2, β3, and β4. Unrestricted least squares estimates of β2, β3, and β4 can be used to
obtain two estimates of each of the underlying parameters, and there is no assurance
that these will be the same.

7.4 MODELING AND TESTING
FOR A STRUCTURAL BREAK

One of the more common applications of the F test is in tests of structural change.8 In
specifying a regression model, we assume that its assumptions apply to all the obser-
vations in our sample. It is straightforward, however, to test the hypothesis that some
of or all the regression coefficients are different in different subsets of the data. To
analyze a number of examples, we will revisit the data on the U.S. gasoline market9 that
we examined in Example 2.3. As Figure 7.5 following suggests, this market behaved in
predictable, unremarkable fashion prior to the oil shock of 1973 and was quite volatile
thereafter. The large jumps in price in 1973 and 1980 are clearly visible, as is the much
greater variability in consumption. It seems unlikely that the same regression model
would apply to both periods.

7.4.1 DIFFERENT PARAMETER VECTORS

The gasoline consumption data span two very different periods. Up to 1973, fuel was
plentiful and world prices for gasoline had been stable or falling for at least two decades.
The embargo of 1973 marked a transition in this market (at least for a decade or so),
marked by shortages, rising prices, and intermittent turmoil. It is possible that the en-
tire relationship described by our regression model changed in 1974. To test this as a
hypothesis, we could proceed as follows: Denote the first 14 years of the data in y and
X as y1 and X1 and the remaining years as y2 and X2. An unrestricted regression that
allows the coefficients to be different in the two periods is

[
y1

y2

]
=

[
X1 0
0 X2

][
β1
β2

]
+

[
ε1

ε2

]
. (7-13)

Denoting the data matrices as y and X, we find that the unrestricted least squares
estimator is

b = (X′X)−1X′y =
[

X′
1X1 0
0 X′

2X2

]−1[X′
1y1

X′
2y2

]
=

[
b1

b2

]
, (7-14)

which is least squares applied to the two equations separately. Therefore, the total sum
of squared residuals from this regression will be the sum of the two residual sums of

8This test is often labeled a Chow test, in reference to Chow (1960).
9The data are listed in Appendix Table A6.1.
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FIGURE 7.5 Gasoline Price and Per Capita Consumption,
1960–1995.

squares from the two separate regressions:

e′e = e′
1e1 + e′

2e2.

The restricted coefficient vector can be obtained in two ways. Formally, the restriction
β1 = β2 is Rβ = q, where R = [I : −I] and q = 0. The general result given earlier can
be applied directly. An easier way to proceed is to build the restriction directly into the
model. If the two coefficient vectors are the same, then (7-13) may be written

[
y1

y2

]
=

[
X1

X2

]
β +

[
ε1

ε2

]
,

and the restricted estimator can be obtained simply by stacking the data and estimating
a single regression. The residual sum of squares from this restricted regression, e′

∗e∗
then forms the basis for the test. The test statistic is then given in (6-6), where J , the
number of restrictions, is the number of columns in X2 and the denominator degrees of
freedom is n1 + n2 − 2k.

7.4.2 INSUFFICIENT OBSERVATIONS

In some circumstances, the data series are not long enough to estimate one or the
other of the separate regressions for a test of structural change. For example, one might
surmise that consumers took a year or two to adjust to the turmoil of the two oil price
shocks in 1973 and 1979, but that the market never actually fundamentally changed or
that it only changed temporarily. We might consider the same test as before, but now
only single out the four years 1974, 1975, 1980, and 1981 for special treatment. Since
there are six coefficients to estimate but only four observations, it is not possible to fit
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the two separate models. Fisher (1970) has shown that in such a circumstance, a valid
way to proceed is as follows:

1. Estimate the regression, using the full data set, and compute the restricted sum of
squared residuals, e′

∗e∗.
2. Use the longer (adequate) subperiod (n1 observations) to estimate the regression,

and compute the unrestricted sum of squares, e′
1e1. This latter computation is

done assuming that with only n2 < K observations, we could obtain a perfect fit
and thus contribute zero to the sum of squares.

3. The F statistic is then computed, using

F [n2, n1 − K] = (e′
∗e∗ − e′

1e1)/n2

e′
1e1/(n1 − K)

. (7-15)

Note that the numerator degrees of freedom is n2, not K.10 This test has been labeled
the Chow predictive test because it is equivalent to extending the restricted model to
the shorter subperiod and basing the test on the prediction errors of the model in this
latter period. We will have a closer look at that result in Section 7.5.3.

7.4.3 CHANGE IN A SUBSET OF COEFFICIENTS

The general formulation previously suggested lends itself to many variations that allow
a wide range of possible tests. Some important particular cases are suggested by our
gasoline market data. One possible description of the market is that after the oil shock
of 1973, Americans simply reduced their consumption of gasoline by a fixed proportion,
but other relationships in the market, such as the income elasticity, remained unchanged.
This case would translate to a simple shift downward of the log-linear regression model
or a reduction only in the constant term. Thus, the unrestricted equation has separate
coefficients in the two periods, while the restricted equation is a pooled regression with
separate constant terms. The regressor matrices for these two cases would be of the
form

(unrestricted) XU =
[

i 0 Wpre73 0

0 i 0 Wpost73

]

and

(restricted) XR =
[

i 0 Wpre73

0 i Wpost73

]
.

The first two columns of X are dummy variables that indicate the subperiod in which
the observation falls.

Another possibility is that the constant and one or more of the slope coefficients
changed, but the remaining parameters remained the same. The results in Table 7.6
suggest that the constant term and the price and income elasticities changed much
more than the cross-price elasticities and the time trend. The Chow test for this type
of restriction looks very much like the one for the change in the constant term alone.
Let Z denote the variables whose coefficients are believed to have changed, and let W

10One way to view this is that only n2 < K coefficients are needed to obtain this perfect fit.
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denote the variables whose coefficients are thought to have remained constant. Then,
the regressor matrix in the constrained regression would appear as

X =
[

ipre Zpre 0 0 Wpre

0 0 ipost Zpost Wpost

]
. (7-16)

As before, the unrestricted coefficient vector is the combination of the two separate
regressions.

7.4.4 TESTS OF STRUCTURAL BREAK WITH
UNEQUAL VARIANCES

An important assumption made in using the Chow test is that the disturbance variance
is the same in both (or all) regressions. In the restricted model, if this is not true, the
first n1 elements of ε have variance σ 2

1 , whereas the next n2 have variance σ 2
2 , and so

on. The restricted model is, therefore, heteroscedastic, and our results for the classical
regression model no longer apply. As analyzed by Schmidt and Sickles (1977), Ohtani
and Toyoda (1985), and Toyoda and Ohtani (1986), it is quite likely that the actual
probability of a type I error will be smaller than the significance level we have chosen.
(That is, we shall regard as large an F statistic that is actually less than the appropriate
but unknown critical value.) Precisely how severe this effect is going to be will depend
on the data and the extent to which the variances differ, in ways that are not likely to
be obvious.

If the sample size is reasonably large, then we have a test that is valid whether or
not the disturbance variances are the same. Suppose that θ̂1 and θ̂2 are two consistent
and asymptotically normally distributed estimators of a parameter based on indepen-
dent samples,11 with asymptotic covariance matrices V1 and V2. Then, under the null
hypothesis that the true parameters are the same,

θ̂1 − θ̂2 has mean 0 and asymptotic covariance matrix V1 + V2.

Under the null hypothesis, the Wald statistic,

W = (θ̂1 − θ̂2)
′(V̂1 + V̂2)

−1(θ̂1 − θ̂2), (7-17)

has a limiting chi-squared distribution with K degrees of freedom. A test that the differ-
ence between the parameters is zero can be based on this statistic.12 It is straightforward
to apply this to our test of common parameter vectors in our regressions. Large values
of the statistic lead us to reject the hypothesis.

In a small or moderately sized sample, the Wald test has the unfortunate property
that the probability of a type I error is persistently larger than the critical level we
use to carry it out. (That is, we shall too frequently reject the null hypothesis that the
parameters are the same in the subsamples.) We should be using a larger critical value.

11Without the required independence, this test and several similar ones will fail completely. The problem
becomes a variant of the famous Behrens–Fisher problem.
12See Andrews and Fair (1988). The true size of this suggested test is uncertain. It depends on the nature of the
alternative. If the variances are radically different, the assumed critical values might be somewhat unreliable.
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Ohtani and Kobayashi (1986) have devised a “bounds” test that gives a partial remedy
for the problem.13

It has been observed that the size of the Wald test may differ from what we have
assumed, and that the deviation would be a function of the alternative hypothesis. There
are two general settings in which a test of this sort might be of interest. For comparing
two possibly different populations — such as the labor supply equations for men versus
women — not much more can be said about the suggested statistic in the absence of
specific information about the alternative hypothesis. But a great deal of work on this
type of statistic has been done in the time-series context. In this instance, the nature of
the alternative is rather more clearly defined. We will return to this analysis of structural
breaks in time-series models in Section 7.5.4.

7.5 TESTS OF MODEL STABILITY

The tests of structural change described in Section 7.4 assume that the process underlying
the data is stable up to a known transition point, where it makes a discrete change to a
new, but thereafter stable, structure. In our gasoline market, that might be a reasonable
assumption. In many other settings, however, the change to a new regime might be
more gradual and less obvious. In this section, we will examine two tests that are based
on the idea that a regime change might take place slowly, and at an unknown point
in time, or that the regime underlying the observed data might simply not be stable
at all.

7.5.1 HANSEN’S TEST

Hansen’s (1992) test of model stability is based on a cumulative sum of the least squares
residuals. From the least squares normal equations, we have

T∑
t=1

xt et = 0 and
T∑

t=1

(
e2

t − e′e
n

)
= 0.

Let the vector ft be the (K+1)×1 tth observation in this pair of sums. Then,
∑T

t=1 ft = 0.
Let the sequence of partial sums be st = ∑t

r=1 fr , so sT = 0. Finally, let F = T
∑T

t=1 ft f ′
t

and S = ∑T
t=1 st s′

t . Hansen’s test statistic can be computed simply as H = tr(F−1S).
Large values of H give evidence against the hypothesis of model stability. The logic of
Hansen’s test is that if the model is stable through the T periods, then the cumulative
sums in S will not differ greatly from those in F. Note that the statistic involves both the
regression and the variance. The distribution theory underlying this nonstandard test
statistic is much more complicated than the computation. Hansen provides asymptotic
critical values for the test of model constancy which vary with the number of coefficients
in the model. A few values for the 95 percent significance level are 1.01 for K = 2, 1.90
for K = 6, 3.75 for K = 15, and 4.52 for K = 19.

13See also Kobayashi (1986). An alternative, somewhat more cumbersome test is proposed by Jayatissa (1977).
Further discussion is given in Thursby (1982).
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7.5.2 RECURSIVE RESIDUALS AND THE CUSUMS TEST

Example 7.6 shows a test of structural change based essentially on the model’s ability
to predict correctly outside the range of the observations used to estimate it. A similar
logic underlies an alternative test of model stability proposed by Brown, Durbin, and
Evans (1975) based on recursive residuals. The technique is appropriate for time-series
data and might be used if one is uncertain about when a structural change might have
taken place. The null hypothesis is that the coefficient vector β is the same in every
period; the alternative is simply that it (or the disturbance variance) is not. The test
is quite general in that it does not require a prior specification of when the structural
change takes place. The cost, however, is that the power of the test is rather limited
compared with that of the Chow test.14

Suppose that the sample contains a total of T observations.15 The tth recursive
residual is the ex post prediction error for yt when the regression is estimated using
only the first t − 1 observations. Since it is computed for the next observation beyond
the sample period, it is also labeled a one step ahead prediction error;

et = yt − x′
t bt−1,

where xt is the vector of regressors associated with observation yt and bt−1 is the least
squares coefficients computed using the first t − 1 observations. The forecast variance
of this residual is

σ 2
f t = σ 2[1 + x′

t (X
′
t−1Xt−1)

−1xt
]
. (7-18)

Let the r th scaled residual be

wr = er√
1 + x′

r (X
′
r−1Xr−1)−1xr

. (7-19)

Under the hypothesis that the coefficients remain constant during the full sample period,
wr ∼ N[0, σ 2] and is independent of ws for all s �= r . Evidence that the distribution of
wr is changing over time weighs against the hypothesis of model stability.

One way to examine the residuals for evidence of instability is to plot wr/σ̂ (see
below) simply against the date. Under the hypothesis of the model, these residuals are
uncorrelated and are approximately normally distributed with mean zero and standard
deviation 1. Evidence that these residuals persistently stray outside the error bounds −2
and +2 would suggest model instability. (Some authors and some computer packages
plot er instead, in which case the error bounds are ±2σ̂

√
1 + x′

r (X
′
r−1Xr−1)

−1xr .

The CUSUM test is based on the cumulated sum of the residuals:

Wt =
r=t∑

r=K+1

wr

σ̂
, (7-20)

where σ̂ 2 = (T − K − 1)−1 ∑T
r=K+1(wr − w̄)2 and w̄ = (T − K)−1 ∑T

r=K+1 wr . Under

14The test is frequently criticized on this basis. The Chow test, however, is based on a rather definite piece of
information, namely, when the structural change takes place. If this is not known or must be estimated, then
the advantage of the Chow test diminishes considerably.
15Since we are dealing explicitly with time-series data at this point, it is convenient to use T instead of n for
the sample size and t instead of i to index observations.
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the null hypothesis, Wt has a mean of zero and a variance approximately equal to the
number of residuals being summed (because each term has variance 1 and they are
independent). The test is performed by plotting Wt against t . Confidence bounds for the
sum are obtained by plotting the two lines that connect the points [K, ±a(T − K)1/2]
and [T, ±3a(T − K)1/2]. Values of a that correspond to various significance levels can
be found in their paper. Those corresponding to 95 percent and 99 percent are 0.948
and 1.143, respectively. The hypothesis is rejected if Wt strays outside the boundaries.

Example 7.6 Structural Break in the Gasoline Market
The previous Figure 7.5 shows a plot of prices and quantities in the U.S. gasoline market
from 1960 to 1995. The first 13 points are the layer at the bottom of the figure and suggest
an orderly market. The remainder clearly reflect the subsequent turmoil in this market.

We will use the Chow tests described to examine this market. The model we will examine
is the one suggested in Example 2.3, with the addition of a time trend:

ln(G/pop) t = β1 + β2 ln( I /pop) + β3 ln PGt + β4 ln PNCt + β5 ln PUCt + β6t + εt .

The three prices in the equation are for G, new cars, and used cars. I /pop is per capita
income, and G/pop is per capita gasoline consumption. Regression results for four functional
forms are shown in Table 7.6. Using the data for the entire sample, 1960 to 1995, and for the
two subperiods, 1960 to 1973 and 1974 to 1995, we obtain the three estimated regressions
in the first and last two columns. The F statistic for testing the restriction that the coefficients
in the two equations are the same is

F [6, 24] = (0.02521877 − 0.000652271 − 0.004662163)/6
(0.000652271 + 0.004662163)/(14 + 22 − 12)

= 14.958.

The tabled critical value is 2.51, so, consistent with our expectations, we would reject the
hypothesis that the coefficient vectors are the same in the two periods.

Using the full set of 36 observations to fit the model, the sum of squares is e′
∗e∗ =

0.02521877. When the n1 = 4 observations for 1974, 1975, 1980 and 1981 are removed
from the sample, the sum of squares falls to e′e = 0.01968599. The F statistic is 1.817.
Since the tabled critical value for F [4, 32 − 6] is 2.72, we would not reject the hypothesis of
stability. The conclusion to this point would be that although something has surely changed
in the market, the hypothesis of a temporary disequilibrium seems not to be an adequate
explanation.

An alternative way to compute this statistic might be more convenient. Consider the
original arrangement, with all 36 observations. We now add to this regression four binary
variables, Y1974, Y1975, Y1980, and Y1981. Each of these takes the value one in the single

TABLE 7.6 Gasoline Consumption Equations

Coefficients 1960–1995 Pooled Preshock Postshock

Constant 24.6718 21.2630 −51.1812
Constant 21.3403 20.4464
ln I/pop 1.95463 1.83817 0.423995 1.01408
ln PG −0.115530 −0.178004 0.0945467 −0.242374
ln PNC 0.205282 0.209842 0.583896 0.330168
ln PUC −0.129274 −0.128132 −0.334619 −0.0553742
Year −0.019118 −0.168618 0.0263665 −0.0126170

R2 0.968275 0.978142 0.998033 0.920642
Standard error 0.02897572 0.02463767 0.00902961 0.017000
Sum of squares 0.02521877 0.0176034 0.000652271 0.004662163
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year indicated and zero in all 35 remaining years. We then compute the regression with the
original six variables and these four additional dummy variables. The sum of squared residuals
in this regression is 0.01968599, so the F statistic for testing the joint hypothesis that the
four coefficients are zero is F [4, 36 − 10] = {

[(0.02518777 − 0.01968599)/4]/[0.01968599/

(36 − 10) ]
} = 1.817, once again. (See Section 7.4.2 for discussion of this test.)

The F statistic for testing the restriction that the coefficients in the two equations are the
same apart from the constant term is based on the last three sets of results in the table;

F [5, 24] = (0.0176034 − 0.000652271 − 0.004662163)/5
(0.000652271 + 0.004662163)/(14 + 22 − 12)

= 11.099.

The tabled critical value is 2.62, so this hypothesis is rejected as well. The data suggest
that the models for the two periods are systematically different, beyond a simple shift in the
constant term.

The F ratio that results from estimating the model subject to the restriction that the two
automobile price elasticities and the coefficient on the time trend are unchanged is

F [3, 24] = (0.00802099 − 0.000652271 − 0.004662163)/3
(0.000652271 + 0.004662163)/(14 + 22 − 12)

= 4.086.

( The restricted regression is not shown.) The critical value from the F table is 3.01, so this
hypothesis is rejected as well. Note, however, that this value is far smaller than those we
obtained previously. The P-value for this value is 0.981, so, in fact, at the 99 percent signifi-
cance level, we would not have rejected the hypothesis. This fact suggests that the bulk of
the difference in the models across the two periods is, indeed, explained by the changes in
the constant and the price and income elasticities.

The test statistic in (7-17) for the regression results in Table 7.6 gives a value of 128.6673.
The 5 percent critical value from the chi-squared table for 6 degrees of freedom is 12.59.
So, on the basis of the Wald test, we would reject the hypothesis that the same coefficient
vector applies in the two subperiods 1960 to 1973 and 1974 to 1995. We should note that
the Wald statistic is valid only in large samples, and our samples of 14 and 22 observations
hardly meet that standard.

We have tested the hypothesis that the regression model for the gasoline market changed
in 1973, and on the basis of the F test (Chow test) we strongly rejected the hypothesis of
model stability. Hansen’s test is not consistent with this result; using the computations out-
lined earlier, we obtain a value of H = 1.7249. Since the critical value is 1.90, the hypothesis
of model stability is now not rejected.

Figure 7.6 shows the CUSUM test for the gasoline market. The results here are more or
less consistent with the preceding results. The figure does suggest a structural break, though
at 1984, not at 1974 or 1980 when we might have expected it.

7.5.3 PREDICTIVE TEST

The hypothesis test defined in (7-15) in Section 7.4.2 is equivalent to H0 : β2 = β1 in the
“model”

yt = x′
tβ1 + εt , t = 1, . . . , T1

yt = x′
tβ2 + εt , t = T1 + 1, . . . , T1 + T2.

(Note that the disturbance variance is assumed to be the same in both subperiods.) An
alternative formulation of the model (the one used in the example) is

[
y1

y2

]
=

[
X1 0
X2 I

](
β

γ

)
+

[
ε1

ε2

]
.
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FIGURE 7.6 CUSUM Test.

This formulation states that

yt = x′
tβ1 + εt , t= 1, . . . , T1

yt = x′
tβ2 + γt + εt , t= T1 + 1, . . . , T1 + T2.

Since each γt is unrestricted, this alternative formulation states that the regression
model of the first T1 periods ceases to operate in the second subperiod (and, in fact, no
systematic model operates in the second subperiod). A test of the hypothesis γ = 0 in
this framework would thus be a test of model stability. The least squares coefficients for
this regression can be found by using the formula for the partitioned inverse matrix;

(
b
c

)
=

[
X′

1X1 + X′
2X2 X′

2

X2 I

]−1 [
X′

1y1 + X′
2y2

y2

]

=
[

(X′
1X1)

−1 −(X′
1X1)

−1X′
2

−X2(X′
1X1)

−1 I + X2(X′
1X1)

−1X′
2

] [
X′

1y1 + X′
2y2

y2

]

=
(

b1

c2

)

where b1 is the least squares slopes based on the first T1 observations and c2 is y2 −X2b1.
The covariance matrix for the full set of estimates is s2 times the bracketed matrix.
The two subvectors of residuals in this regression are e1 = y1 − X1b1 and e2 = y2 −
(X2b1 + Ic2) = 0, so the sum of squared residuals in this least squares regression is just
e′

1e1. This is the same sum of squares as appears in (7-15). The degrees of freedom for
the denominator is [T1 +T2 − (K+T2)] = T1 − K as well, and the degrees of freedom for
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the numerator is the number of elements in γ which is T2. The restricted regression with
γ = 0 is the pooled model, which is likewise the same as appears in (7-15). This implies
that the F statistic for testing the null hypothesis in this model is precisely that which
appeared earlier in (7-15), which suggests why the test is labeled the “predictive test.”

7.5.4 UNKNOWN TIMING OF THE STRUCTURAL BREAK16

The testing procedures described in this section all assume that the point of the structural
break is known. When this corresponds to a discrete historical event, this is a reasonable
assumption. But, in some applications, the timing of the break may be unknown. The
Chow and Wald tests become useless at this point. The CUSUMS test is a step in the
right direction for this situation, but, as noted by a number of authors [e.g., Andrews
(1993)] it has serious power problems. Recent research has provided several strategies
for testing for structural change when the change point is unknown.

In Section 7.4 we considered a test of parameter equality in two populations. The
natural approach suggested there was a comparison of two separately estimated param-
eter vectors based on the Wald criterion,

W = (θ̂1 − θ̂2)
′(V1 + V2)

−1(θ̂1 − θ̂2),

where 1 and 2 denote the two populations. An alternative approach to the testing
procedure is based on a likelihood ratio-like statistic,

λ = h[(L1 + L2), L]

where L1 + L2 is the log likelihood function (or other estimation criterion) under the
alternative hypothesis of model instability (structural break) and L is the log likelihood
for the pooled estimator based on the null hypothesis of stability and h is the appropriate
function of the values, such as h(a, b) = −2(b − a) for maximum likelihood estimation.
A third approach, based on the Lagrange multiplier principle, will be developed below.
There is a major problem with this approach; the split between the two subsamples must
be known in advance. In the time series application we will examine in this section, the
problem to be analyzed is that of determining whether a model can be claimed to
be stable through a sample period t = 1, . . . , T against the alternative hypothesis that
the structure changed at some unknown time t∗. Knowledge of the sample split is crucial
for the tests suggested above, so some new results are called for.

We suppose that the model E [m(yt , xt | β)] = 0 is to be estimated by GMM using
T observations. The model is stated in terms of a moment condition, but we intend for
this to include estimation by maximum likelihood, or linear or nonlinear least squares.
As noted earlier, all these cases are included. Assuming GMM just provides us a con-
venient way to analyze all the cases at the same time. The hypothesis to be investigated
is as follows: Let [πT] = T1 denote the integer part of πT where 0 < π < 1. Thus, this
is a proportion π of the sample observations, and defines subperiod 1, t = 1, . . . , T1.
Under the null hypothesis, the model E [m(yt , xt | β)] = 0 is stable for the entire sample
period. Under the alternative hypothesis, the model E [m(yt , xt | β1)] = 0 applies to

16The material in this section is more advanced than that in the discussion thus far. It may be skipped at this
point with no loss in continuity. Since this section relies heavily on GMM estimation methods, you may wish
to read Chapter 18 before continuing.
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observations 1, . . . , [πT] and model E [m(yt , xt | β2)] = 0 applies to the remaining
T − [πT] observations.17 This describes a nonstandard sort of hypothesis test since
under the null hypothesis, the ‘parameter’ of interest, π , is not even part of the model.
Andrews and Ploberger (1994) denote this a “nuisance parameter [that] is present only
under the alternative.”

Suppose π were known. Then, the optimal GMM estimator for the first subsample
would be obtained by minimizing with respect to the parametersβ1 the criterion function

q1(π) = m̄′
1(π | β1)[Est.Asy. Var

√
[πT]m̄′

1(π | β1)]
−1m̄1(π | β1)

= m̄′
1(π | β1)[W1(π)]−1m̄1(π | β1)

where

m̄1(π | β1) = 1
[πT]

[πT]∑
t=1

mt (yt , xt | β1).

The asymptotic covariance (weighting) matrix will generally be computed using a first
round estimator in

Ŵ1(π) = 1
[πT]

[πT]∑
t=1

mt
(
π

∣∣ β̂
0
1

)
m′

t

(
π

∣∣ β̂
0
1

)
. (7-21)

(In this time-series setting, it would be natural to accommodate serial correlation in the
estimator. Following Hall and Sen (1999), the counterpart to the Newey-West (1987a)
estimator (see Section 11.3) would be

Ŵ1(π) = Ŵ1,0(π) +
B(T)∑
j=1

w j,T
[
Ŵ1, j (π) + Ŵ′

1, j (π)
]

where Ŵ1,0(π) is given in (7-21) and

Ŵ1, j (π) = 1
[πT]

[πT]∑
t= j+1

mt
(
π

∣∣ β̂
0
1

)
m′

t− j

(
π

∣∣ β̂
0
1

)
.

B(T ) is the bandwidth, chosen to be O(T1/4)—this is the L in (10-16) and (12-17)—
and w j,T is the kernel. Newey and West’s value for this is the Bartlett kernel,
[1− j/(1+ B(T))]. (See, also, Andrews (1991), Hayashi (2000, pp. 408–409) and the end
of Section C.3.) The asymptotic covariance matrix for the GMM estimator would then
be computed using

Est.Asy. Var[β̂1] = 1
[πT]

[ ¯̂G′
1(π)Ŵ−1

1 (π)
¯̂G1(π)

]−1 = V̂1

17Andrews (1993), on which this discussion draws heavily, allows for some of the parameters to be assumed to
be constant throughout the sample period. This adds some complication to the algebra involved in obtaining
the estimator, since with this assumption, efficient estimation requires joint estimation of the parameter
vectors, whereas our formulation allows GMM estimation to proceed with separate subsamples when needed.
The essential results are the same.
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where

¯̂G1(π) = 1
[πT]

[πT]∑
t=1

∂mt (π | β̂1)

∂β̂
′
1

.

Estimators for the second sample are found by changing the summations to [πT] +
1, . . . T and for the full sample by summing from 1 to T.

Still assuming that π is known, the three standard test statistics for testing the null
hypothesis of model constancy against the alternative of structural break at [πT] would
be as follows: The Wald statistic is

WT(π) = [β̂1(π) − β̂2(π)]′
{

V̂1(π) + V̂2(π)
}−1[β̂1(π) − β̂2(π)],

[See Andrews and Fair (1988).] There is a small complication with this result in this
time-series context. The two subsamples are generally not independent so the additive
result above is not quite appropriate. Asymptotically, the number of observations close
to the switch point, if there is one, becomes small, so this is only a finite sample problem.
The likelihood ratio-like statistic would be

LRT(π) = −[q1(π | β̂1) + q2(π | β̂2)][q1(π | β̂) + q2(π | β̂)]

where β̂ is based on the full sample. (This result makes use of our assumption that there
are no common parameters so that the criterion for the full sample is the sum of those
for the subsamples. With common parameters, it becomes slightly more complicated.)
The Lagrange multiplier statistic is the most convenient of the three. All matrices with
subscript “T” are based on the full sample GMM estimator. The weighting and deriva-
tive matrices are computed using the full sample. The moment equation is computed
at the first subsample [though the sum is divided by T not [πT]—see Andrews (1993,
eqn. (4.4)];

LMT(π) = T
π(1 − π)

m̄1(π | β̂T)′V̂−1
T

¯̂GT
[ ¯̂GT

′ V̂−1
T

¯̂GT
]−1 ¯̂GT

′ V̂−1
T m̄1(π | β̂T).

The LM statistic is simpler, as it requires the model only to be estimated once, using the
full sample. (Of course, this is a minor virtue. The computations for the full sample and
the subsamples are the same, so the same amount of setup is required either way.) In
each case, the statistic has a limiting chi-squared distribution with K degrees of freedom
where K is the number of parameters in the model.

Since π is unknown, the preceding does not solve the problem posed at the outset.
The CUSUMS and Hansen tests discussed in Section 7.5 were proposed for that pur-
pose, but lack power and are generally for linear regression models. Andrews (1993) has
derived the behavior of the test statistic obtained by computing the statistics suggested
previously at the range of candidate values, that is the different partitionings of the
sample say π0 = .15 to .85, then retaining the maximum value obtained. These are
the Sup WT(π), Sup LRT(π) and Sup LMT(π), respectively. Although for a given π ,
the statistics have limiting chi-squared distributions, obviously, the maximum does not.
Tables of critical values obtained by Monte Carlo methods are provided in Andrews
(1993). An interesting side calculation in the process is to plot the values of the test
statistics. (See the following application.) Two alternatives to the supremum test are
suggested by Andrews and Ploberger (1994) and Sowell (1996). The average statistics,
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Avg WT(π), Avg LRT(π) and Avg LMT(π) are computed by taking the sample average
of the sequence of values over the R partitions of the sample from π = π0 to π = 1−π0.
The exponential statistics are computed as

Exp WT(π) = ln

[
1
R

R∑
r=1

exp[.5WT(πr )]

]

and likewise for the LM and LR statistics. Tables of critical values for a range of values
of π0 and K are provided by the authors.18

Not including the Hall and Sen approaches, the preceding provides nine differ-
ent statistics for testing the hypothesis of parameter constancy—though Andrews and
Ploberger (1994) suggest that the Exp LR and Avg LR versions are less than optimal.
As the authors note, all are based on statistics which converge to chi-squared statistics.
Andrews and Ploberger present some results to suggest that the exponential form may
be preferable based on its power characteristics.

In principle the preceding suggests a maximum likelihood estimator of π (or T1) if
ML is used as the estimation method. Properties of the estimator are difficult to obtain,
as shown in Bai (1997). Moreover, Bai’s (1997) study based on least squares estimation
of a linear model includes some surprising results that suggest that in the presence of
multiple change points in a sample, the outcome of the Andrews and Ploberger tests
may depend crucially on what time interval is examined.19

Example 7.7 Instability of the Demand for Money
We will examine the demand for money in some detail in Chapters 19 and 20. At this point,
we will take a cursory look at a simple (and questionable) model

(m− p) t = α + βyt + γ i t + εt

where m, p, and y are the logs of the money supply (M1), the price level (CPI U) and GDP,
respectively, and i is the interest rate (90-day T -bill rate) in our data set. Quarterly data
on these and several other macroeconomic variables are given in Appendix F5.1 for the
quarters 1950.1 to 2000.4. We will apply the techniques described above to this money
demand equation. The data span 204 quarters. We chose a window from 1957.3 (quarter
30) to 1993.3 (quarter 175), which correspond roughly to π = .15 to π = .85. The function
is estimated by GMM using as instruments zt = [1, i t , i t−1, yt−1 yt−2]. We will use a Newey–
West estimator for the weighting matrix with L = 2041/4 ≈ 4, so we will lose 4 additional

18An extension of the Andrews and Ploberger methods based on the overidentifying restrictions in the GMM
estimator is developed in Hall and Sen (1999). Approximations to the critical values are given by Hansen
(1997). Further results are given in Hansen (2000).
19Bai (1991), Bai, Lumsdaine and Stock (1999), Bai and Perron (1998a,b) and Bai (1997). “Estimation” of π

or T1 raises a peculiarity of this strand of literature. In many applications, the notion of a change point is tied to
an historical event, such as a war or a major policy shift. For example, in Bai (1997, p. 557), a structural change
in an estimated model of the relationship between T-bill rates and the Fed’s discount rate is associated with a
specific date, October 9, 1979, a date which marked the beginning of a change in Fed operating procedures. A
second change date in his sample was associated with the end of that Fed policy regime while a third between
these two had no obvious identity. In such a case, the idea of a fixed π requires some careful thought as
to what is meant by T → ∞. If the sampling process is defined to have a true origin in a physical history,
wherever it is, then π cannot be fixed. As T increases, π must decline to zero and “estimation” of π makes no
sense. Alternatively, if π really is meant to denote a specific proportion of the sample, but remains tied to an
actual date, then presumably, increasing the sample size means shifting both origin and terminal in opposite
directions, at the same rate. Otherwise, insisting that the regime switch occur at time πT has an implausible
economic implication. Changing the orientation of the search to the change date, T1, itself, does not remove
the ambiguities. We leave the philosophical resolution of either interpretation to the reader. Andrews’ (1993,
p. 845) assessment of the situation is blunt: “[n]o optimality properties are known for the ML estimator of π .”
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TABLE 7.7 Results of Model Stability Tests

Statistic Maximum Average Average exp

LM 10.43 4.42 3.31
Wald 11.85 4.57 3.67
LR 15.69 — —
Critical Value 14.15a 4.22b 6.07c

aAndrews (1993), Table I, p = 3, π0 = 0.15.
bAndrews and Ploberger (1994), Table II, p = 3, π0 = 0.15.
cAndrews and Ploberger (1994), Table I, p = 3, π0 = 0.15.

observations after the two lagged values in the instruments. Thus, the estimation sample is
1951.3 to 2000.4, a total of 197 observations.

The GMM estimator is precisely the instrumental variables estimator shown in Chapter 5.
The estimated equation (with standard errors shown in parentheses) is

(m− p) t = −1.824 (0.166) + 0.306 (0.0216) yt − 0.0218 (0.00252) i t + et .

The Lagrange multiplier form of the test is particularly easy to carry out in this framework.
The sample moment equations are

E [m̄T ] = E

[
1
T

T∑
t=1

zt ( yt − x′
tβ)

]
= 0.

The derivative matrix is likewise simple; Ḡ = −(1/T )Z′X. The results of the various testing
procedures are shown in Table 7.7.

The results are mixed; some of the statistics reject the hypothesis while others do not.
Figure 7.7 shows the sequence of test statistics. The three are quite consistent. If there is a
structural break in these data, it occurs in the late 1970s. These results coincide with Bai’s
findings discussed in the preceding footnote.

FIGURE 7.7 Structural Change Test Statistics.
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7.6 SUMMARY AND CONCLUSIONS

This chapter has discussed the functional form of the regression model. We examined
the use of dummy variables and other transformations to build nonlinearity into the
model. We then considered other nonlinear models in which the parameters of the
nonlinear model could be recovered from estimates obtained for a linear regression.
The final sections of the chapter described hypothesis tests designed to reveal whether
the assumed model had changed during the sample period, or was different for different
groups of observations. These tests rely on information about when (or how) the sample
is to be partitioned for the test. In many time series cases, this is unknown. Tests designed
for this more complex case were considered in Section 7.5.4.

Key Terms and Concepts

• Binary variable
• Chow test
• CUSUM test
• Dummy variable
• Dummy variable trap
• Exactly identified
• Hansen’s test
• Identification condition
• Interaction term
• Intrinsically linear

• Knots
• Loglinear model
• Marginal effect
• Nonlinear restriction
• One step ahead prediction

error
• Overidentified
• Piecewise continuous
• Predictive test
• Qualification indices

• Recursive residual
• Response
• Semilog model
• Spline
• Structural change
• Threshold effect
• Time profile
• Treatment
• Wald test

Exercises

1. In Solow’s classic (1957) study of technical change in the U.S. economy, he suggests
the following aggregate production function: q(t) = A(t) f [k(t)], where q(t) is ag-
gregate output per work hour, k(t) is the aggregate capital labor ratio, and A(t) is
the technology index. Solow considered four static models, q/A= α+β ln k, q/A=
α − β/k, ln(q/A) = α + β ln k, and ln(q/A) = α + β/k. Solow’s data for the years
1909 to 1949 are listed in Appendix Table F7.2. Use these data to estimate the α

and β of the four functions listed above. [Note: Your results will not quite match
Solow’s. See the next exercise for resolution of the discrepancy.]

2. In the aforementioned study, Solow states:

A scatter of q/A against k is shown in Chart 4. Considering the amount of a
priori doctoring which the raw figures have undergone, the fit is remarkably
tight. Except, that is, for the layer of points which are obviously too high. These
maverick observations relate to the seven last years of the period, 1943–1949.
From the way they lie almost exactly parallel to the main scatter, one is tempted
to conclude that in 1943 the aggregate production function simply shifted.

a. Compute a scatter diagram of q/Aagainst k.
b. Estimate the four models you estimated in the previous problem including a

dummy variable for the years 1943 to 1949. How do your results change? [Note:
These results match those reported by Solow, although he did not report the
coefficient on the dummy variable.]
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c. Solow went on to surmise that, in fact, the data were fundamentally different
in the years before 1943 than during and after. Use a Chow test to examine
the difference in the two subperiods using your four functional forms. Note that
with the dummy variable, you can do the test by introducing an interaction term
between the dummy and whichever function of k appears in the regression. Use
an F test to test the hypothesis.

3. A regression model with K = 16 independent variables is fit using a panel of seven
years of data. The sums of squares for the seven separate regressions and the pooled
regression are shown below. The model with the pooled data allows a separate
constant for each year. Test the hypothesis that the same coefficients apply in every
year.

1954 1955 1956 1957 1958 1959 1960 All

Observations 65 55 87 95 103 87 78 570
e′e 104 88 206 144 199 308 211 1425

4. Reverse regression. A common method of analyzing statistical data to detect dis-
crimination in the workplace is to fit the regression

y = α + x′β + γ d + ε, (1)

where y is the wage rate and d is a dummy variable indicating either membership
(d = 1) or nonmembership (d = 0) in the class toward which it is suggested the
discrimination is directed. The regressors x include factors specific to the particular
type of job as well as indicators of the qualifications of the individual. The hypothesis
of interest is H0 : γ ≥ 0 versus H1 : γ < 0. The regression seeks to answer the
question, “In a given job, are individuals in the class (d = 1) paid less than equally
qualified individuals not in the class (d = 0)?” Consider an alternative approach.
Do individuals in the class in the same job as others, and receiving the same wage,
uniformly have higher qualifications? If so, this might also be viewed as a form of
discrimination. To analyze this question, Conway and Roberts (1983) suggested the
following procedure:

1. Fit (1) by ordinary least squares. Denote the estimates a, b, and c.
2. Compute the set of qualification indices,

q = ai + Xb. (2)

Note the omission of cd from the fitted value.
3. Regress q on a constant, y and d. The equation is

q = α∗ + β∗y + γ∗d + ε∗. (3)

The analysis suggests that if γ < 0, γ∗ > 0.
a. Prove that the theory notwithstanding, the least squares estimates c and c∗ are

related by

c∗ = (ȳ1 − ȳ)(1 − R2)

(1 − P)
(
1 − r2

yd

) − c, (4)
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where

ȳ1 = mean of y for observations with d = 1,

ȳ = mean of y for all observations,
P = mean of d,

R2 = coefficient of determination for (1),

r2
yd = squared correlation between y and d.

[Hint: The model contains a constant term. Thus, to simplify the algebra, assume
that all variables are measured as deviations from the overall sample means and
use a partitioned regression to compute the coefficients in (3). Second, in (2),
use the result that based on the least squares results y = ai + Xb + cd + e, so
q = y − cd − e. From here on, we drop the constant term. Thus, in the regression
in (3) you are regressing [y − cd − e] on y and d.

b. Will the sample evidence necessarily be consistent with the theory? [Hint: Sup-
pose that c = 0.]

A symposium on the Conway and Roberts paper appeared in the Journal of Business
and Economic Statistics in April 1983.

5. Reverse regression continued. This and the next exercise continue the analysis of
Exercise 4. In Exercise 4, interest centered on a particular dummy variable in which
the regressors were accurately measured. Here we consider the case in which the
crucial regressor in the model is measured with error. The paper by Kamlich and
Polachek (1982) is directed toward this issue.

Consider the simple errors in the variables model,

y = α + βx∗ + ε, x = x∗ + u,

where u and ε are uncorrelated and x is the erroneously measured, observed coun-
terpart to x∗.
a. Assume that x∗, u, and ε are all normally distributed with means µ∗, 0, and 0,

variances σ 2
∗ , σ 2

u , and σ 2
ε , and zero covariances. Obtain the probability limits of

the least squares estimators of α and β.
b. As an alternative, consider regressing x on a constant and y, and then computing

the reciprocal of the estimate. Obtain the probability limit of this estimator.
c. Do the “direct” and “reverse” estimators bound the true coefficient?

6. Reverse regression continued. Suppose that the model in Exercise 5 is extended to
y = βx∗ +γ d +ε, x = x∗ +u. For convenience, we drop the constant term. Assume
that x∗, ε and u are independent normally distributed with zero means. Suppose
that d is a random variable that takes the values one and zero with probabilities π

and 1 − π in the population and is independent of all other variables in the model.
To put this formulation in context, the preceding model (and variants of it) have
appeared in the literature on discrimination. We view y as a “wage” variable, x∗ as
“qualifications,” and x as some imperfect measure such as education. The dummy
variable d is membership (d = 1) or nonmembership (d = 0) in some protected class.
The hypothesis of discrimination turns on γ < 0 versus γ ≥ = 0.
a. What is the probability limit of c, the least squares estimator of γ , in the least

squares regression of y on x and d? [Hints: The independence of x∗ and d is
important. Also, plim d′d/n = Var[d] + E2[d] = π(1 − π) + π2 = π . This minor
modification does not affect the model substantively, but it greatly simplifies the

Administrator
delete equals sign

Administrator
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TABLE 7.8 Ship Damage Incidents

Period Constructed

Ship Type 1960–1964 1965–1969 1970–1974 1975–1979

A 0 4 18 11
B 29 53 44 18
C 1 1 2 1
D 0 0 11 4
E 0 7 12 1

Source: Data from McCullagh and Nelder (1983, p. 137).

algebra.] Now suppose that x∗ and d are not independent. In particular, suppose
that E [x∗ | d = 1] = µ1 and E [x∗ | d = 0] = µ0. Repeat the derivation with this
assumption.

b. Consider, instead, a regression of x on y and d. What is the probability limit of
the coefficient on d in this regression? Assume that x∗ and d are independent.

c. Suppose that x∗ and d are not independent, but γ is, in fact, less than zero.
Assuming that both preceding equations still hold, what is estimated by
(ȳ | d = 1) − (ȳ | d = 0)? What does this quantity estimate if γ does equal zero?

7. Data on the number of incidents of damage to a sample of ships, with the type
of ship and the period when it was constructed, are given in the Table 7.8. There
are five types of ships and four different periods of construction. Use F tests and
dummy variable regressions to test the hypothesis that there is no significant “ship
type effect” in the expected number of incidents. Now, use the same procedure to
test whether there is a significant “period effect.”
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SPECIFICATION ANALYSIS
AND MODEL SELECTION

Q
8.1 INTRODUCTION

Chapter 7 presented results which were primarily focused on sharpening the functional
form of the model. Functional form and hypothesis testing are directed toward im-
proving the specification of the model or using that model to draw generally narrow
inferences about the population. In this chapter we turn to some broader techniques that
relate to choosing a specific model when there is more than one competing candidate.
Section 8.2 describes some larger issues related to the use of the multiple regression
model—specifically the impacts of an incomplete or excessive specification on estima-
tion and inference. Sections 8.3 and 8.4 turn to the broad question of statistical methods
for choosing among alternative models.

8.2 SPECIFICATION ANALYSIS AND
MODEL BUILDING

Our analysis has been based on the assumption that the correct specification of the
regression model is known to be

y = Xβ + ε. (8-1)

There are numerous types of errors that one might make in the specification of the esti-
mated equation. Perhaps the most common ones are the omission of relevant variables
and the inclusion of superfluous variables.

8.2.1 BIAS CAUSED BY OMISSION OF RELEVANT VARIABLES

Suppose that a correctly specified regression model would be

y = X1β1 + X2β2 + ε, (8-2)

where the two parts of X have K1 and K2 columns, respectively. If we regress y on X1

without including X2, then the estimator is

b1 = (X′
1X1)

−1X′
1y = β1 + (X′

1X1)
−1X′

1X2β2 + (X′
1X1)

−1X′
1ε. (8-3)

Taking the expectation, we see that unless X′
1X2 = 0 or β2 = 0, b1 is biased. The well-

known result is the omitted variable formula:

E [b1 | X] = β1 + P1.2β2, (8-4)

148
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where

P1.2 = (X′
1X1)

−1X′
1X2. (8-5)

Each column of the K1 × K2 matrix P1.2 is the column of slopes in the least squares
regression of the corresponding column of X2 on the columns of X1.

Example 8.1 Omitted Variables
If a demand equation is estimated without the relevant income variable, then (8-4) shows
how the estimated price elasticity will be biased. Letting b be the estimator, we obtain

E [b | price, income] = β + Cov[price, income]
Var[price]

γ ,

where γ is the income coefficient. In aggregate data, it is unclear whether the missing co-
variance would be positive or negative. The sign of the bias in b would be the same as this
covariance, however, because Var[price] and γ would be positive.

The gasoline market data we have examined in Examples 2.3 and 7.6 provide a striking
example. Figure 7.5 showed a simple plot of per capita gasoline consumption, G/pop against
the price index PG. The plot is considerably at odds with what one might expect. But a look
at the data in Appendix Table F2.2 shows clearly what is at work. Holding per capita income,
I /pop and other prices constant, these data might well conform to expectations. In these
data, however, income is persistently growing, and the simple correlations between G/pop
and I /pop and between PG and I /pop are 0.86 and 0.58, respectively, which are quite large.
To see if the expected relationship between price and consumption shows up, we will have
to purge our data of the intervening effect of I /pop. To do so, we rely on the Frisch–Waugh
result in Theorem 3.3. The regression results appear in Table 7.6. The first column shows
the full regression model, with ln PG, log Income, and several other variables. The estimated
demand elasticity is −0.11553, which conforms with expectations. If income is omitted from
this equation, the estimated price elasticity is +0.074499 which has the wrong sign, but is
what we would expect given the theoretical results above.

In this development, it is straightforward to deduce the directions of bias when there
is a single included variable and one omitted variable. It is important to note, however,
that if more than one variable is included, then the terms in the omitted variable formula
involve multiple regression coefficients, which themselves have the signs of partial, not
simple, correlations. For example, in the demand equation of the previous example, if the
price of a closely related product had been included as well, then the simple correlation
between price and income would be insufficient to determine the direction of the bias in
the price elasticity. What would be required is the sign of the correlation between price
and income net of the effect of the other price. This requirement might not be obvious,
and it would become even less so as more regressors were added to the equation.

8.2.2 PRETEST ESTIMATION

The variance of b1 is that of the third term in (8-3), which is

Var[b1 | X] = σ 2(X′
1X1)

−1. (8-6)

If we had computed the correct regression, including X2, then the slopes on X1 would
have been unbiased and would have had a covariance matrix equal to the upper left
block of σ 2(X′X)−1. This matrix is

Var[b1.2 | X] = σ 2(X′
1M2X1)

−1, (8-7)

Administrator
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where

M2 = I − X2(X′
2X2)

−1X′
2,

or

Var[b1.2 | X] = σ 2[X′
1X1 − X′

1X2(X′
2X2)

−1X′
2X1]−1.

We can compare the covariance matrices of b1 and b1.2 more easily by comparing their
inverses [see result (A-120)];

Var[b1 | X]−1 − Var[b1.2 | X]−1 = (1/σ 2)X′
1X2(X′

2X2)
−1X′

2X1,

which is nonnegative definite. We conclude that although b1 is biased, its variance is
never larger than that of b1.2 (since the inverse of its variance is at least as large).

Suppose, for instance, that X1 and X2 are each a single column and that the variables
are measured as deviations from their respective means. Then

Var[b1 | X] = σ 2

s11
, where s11 =

n∑
i=1

(xi1 − x̄1)
2,

whereas

Var[b1.2 | X] = σ 2[x′
1x1 − x′

1x2(x′
2x2)

−1x′
2x1]−1 = σ 2

s11
(
1 − r2

12

) , (8-8)

where

r2
12 = (x′

1x2)
2

x′
1x1x′

2x2

is the squared sample correlation between x1 and x2. The more highly correlated x1 and
x2 are, the larger is the variance of b1.2 compared with that of b1. Therefore, it is possible
that b1 is a more precise estimator based on the mean-squared error criterion.

The result in the preceding paragraph poses a bit of a dilemma for applied re-
searchers. The situation arises frequently in the search for a model specification. Faced
with a variable that a researcher suspects should be in their model, but which is causing
a problem of collinearity, the analyst faces a choice of omitting the relevant variable or
including it and estimating its (and all the other variables’) coefficient imprecisely. This
presents a choice between two estimators, b1 and b1.2. In fact, what researchers usually
do actually creates a third estimator. It is common to include the problem variable pro-
visionally. If its t ratio is sufficiently large, it is retained; otherwise it is discarded. This
third estimator is called a pretest estimator. What is known about pretest estimators is
not encouraging. Certainly they are biased. How badly depends on the unknown pa-
rameters. Analytical results suggest that the pretest estimator is the least precise of the
three when the researcher is most likely to use it. [See Judge et al. (1985).]

8.2.3 INCLUSION OF IRRELEVANT VARIABLES

If the regression model is correctly given by

y = X1β1 + ε (8-9)
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and we estimate it as if (8-2) were correct (i.e., we include some extra variables), then it
might seem that the same sorts of problems considered earlier would arise. In fact, this
case is not true. We can view the omission of a set of relevant variables as equivalent to
imposing an incorrect restriction on (8-2). In particular, omitting X2 is equivalent to in-
correctly estimating (8-2) subject to the restriction β2 = 0. As we discovered, incorrectly
imposing a restriction produces a biased estimator. Another way to view this error is to
note that it amounts to incorporating incorrect information in our estimation. Suppose,
however, that our error is simply a failure to use some information that is correct.

The inclusion of the irrelevant variables X2 in the regression is equivalent to failing
to impose β2 = 0 on (8-2) in estimation. But (8-2) is not incorrect; it simply fails to
incorporate β2 = 0. Therefore, we do not need to prove formally that the least squares
estimator of β in (8-2) is unbiased even given the restriction; we have already proved it.
We can assert on the basis of all our earlier results that

E [b | X] =
[
β1
β2

]
=

[
β1
0

]
. (8-10)

By the same reasoning, s2 is also unbiased:

E
[

e′e
n − K1 − K2

∣∣∣∣ X
]

= σ 2. (8-11)

Then where is the problem? It would seem that one would generally want to “overfit”
the model. From a theoretical standpoint, the difficulty with this view is that the failure
to use correct information is always costly. In this instance, the cost is the reduced pre-
cision of the estimates. As we have shown, the covariance matrix in the short regression
(omitting X2) is never larger than the covariance matrix for the estimator obtained in
the presence of the superfluous variables.1 Consider again the single-variable compar-
ison given earlier. If x2 is highly correlated with x1, then incorrectly including it in the
regression will greatly inflate the variance of the estimator.

8.2.4 MODEL BUILDING—A GENERAL TO SIMPLE STRATEGY

There has been a shift in the general approach to model building in the last 20 years or so,
partly based on the results in the previous two sections. With an eye toward maintaining
simplicity, model builders would generally begin with a small specification and gradually
build up the model ultimately of interest by adding variables. But, based on the preceding
results, we can surmise that just about any criterion that would be used to decide whether
to add a variable to a current specification would be tainted by the biases caused by
the incomplete specification at the early steps. Omitting variables from the equation
seems generally to be the worse of the two errors. Thus, the simple-to-general approach
to model building has little to recommend it. Building on the work of Hendry [e.g.,
(1995)] and aided by advances in estimation hardware and software, researchers are now
more comfortable beginning their specification searches with large elaborate models

1There is no loss if X′
1X2 = 0, which makes sense in terms of the information about X1 contained in X2 (here,

none). This situation is not likely to occur in practice, however.
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involving many variables and perhaps long and complex lag structures. The attractive
strategy is then to adopt a general-to-simple, downward reduction of the model to the
preferred specification. Of course, this must be tempered by two related considerations.
In the “kitchen sink” regression, which contains every variable that might conceivably
be relevant, the adoption of a fixed probability for the type I error, say 5 percent
assures that in a big enough model, some variables will appear to be significant, even if
“by accident.” Second, the problems of pretest estimation and stepwise model building
also pose some risk of ultimately misspecifying the model. To cite one unfortunately
common example, the statistics involved often produce unexplainable lag structures in
dynamic models with many lags of the dependent or independent variables.

8.3 CHOOSING BETWEEN NONNESTED MODELS

The classical testing procedures that we have been using have been shown to be most
powerful for the types of hypotheses we have considered.2 Although use of these pro-
cedures is clearly desirable, the requirement that we express the hypotheses in the form
of restrictions on the model y = Xβ + ε,

H0 : Rβ = q

versus

H1 : Rβ �= q,

can be limiting. Two common exceptions are the general problem of determining which
of two possible sets of regressors is more appropriate and whether a linear or loglinear
model is more appropriate for a given analysis. For the present, we are interested in
comparing two competing linear models:

H0 : y = Xβ + ε0 (8-12a)

and

H1 : y = Zγ + ε1. (8-12b)

The classical procedures we have considered thus far provide no means of forming a
preference for one model or the other. The general problem of testing nonnested hy-
potheses such as these has attracted an impressive amount of attention in the theoretical
literature and has appeared in a wide variety of empirical applications.3

Before turning to classical- (frequentist-) based tests in this setting, we should note
that the Bayesian approach to this question might be more intellectually appealing.
Our procedures will continue to be directed toward an objective of rejecting one model
in favor of the other. Yet, in fact, if we have doubts as to which of two models is
appropriate, then we might well be convinced to concede that possibly neither one is
really “the truth.” We have rather painted ourselves into a corner with our “left or right”

2See, for example, Stuart and Ord (1989, Chap. 27).
3Recent surveys on this subject are White (1982a, 1983), Gourieroux and Monfort (1994), McAleer (1995),
and Pesaran and Weeks (2001). McAleer’s survey tabulates an array of applications, while Gourieroux and
Monfort focus on the underlying theory.
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approach. The Bayesian approach to this question treats it as a problem of comparing
the two hypotheses rather than testing for the validity of one over the other. We enter
our sampling experiment with a set of prior probabilities about the relative merits of the
two hypotheses, which is summarized in a “prior odds ratio,” P01 = Prob[H0]/Prob[H1].
After gathering our data, we construct the Bayes factor, which summarizes the weight
of the sample evidence in favor of one model or the other. After the data have been
analyzed, we have our “posterior odds ratio,”

P01 | data = Bayes factor × P01.

The upshot is that ex post, neither model is discarded; we have merely revised our
assessment of the comparative likelihood of the two in the face of the sample data.
Some of the formalities of this approach are discussed in Chapter 16.

8.3.1 TESTING NONNESTED HYPOTHESES

A useful distinction between hypothesis testing as discussed in the preceding chapters
and model selection as considered here will turn on the asymmetry between the null
and alternative hypotheses that is a part of the classical testing procedure.4 Since, by
construction, the classical procedures seek evidence in the sample to refute the “null”
hypothesis, how one frames the null can be crucial to the outcome. Fortunately, the
Neyman-Pearson methodology provides a prescription; the null is usually cast as the
narrowest model in the set under consideration. On the other hand, the classical pro-
cedures never reach a sharp conclusion. Unless the significance level of the testing
procedure is made so high as to exclude all alternatives, there will always remain the
possibility of a type one error. As such, the null is never rejected with certainty, but
only with a prespecified degree of confidence. Model selection tests, in contrast, give
the competing hypotheses equal standing. There is no natural null hypothesis. However,
the end of the process is a firm decision—in testing (8-12a, b), one of the models will be
rejected and the other will be retained; the analysis will then proceed in the framework
of that one model and not the other. Indeed, it cannot proceed until one of the models
is discarded. It is common, for example, in this new setting for the analyst first to test
with one model cast as the null, then with the other. Unfortunately, given the way the
tests are constructed, it can happen that both or neither model is rejected; in either case,
further analysis is clearly warranted. As we shall see, the science is a bit inexact.

The earliest work on nonnested hypothesis testing, notably Cox (1961, 1962), was
done in the framework of sample likelihoods and maximum likelihood procedures.
Recent developments have been structured around a common pillar labeled the en-
compassing principle [Mizon and Richard (1986)]. In the large, the principle directs
attention to the question of whether a maintained model can explain the features of
its competitors, that is, whether the maintained model encompasses the alternative.
Yet a third approach is based on forming a comprehensive model which contains both
competitors as special cases. When possible, the test between models can be based,
essentially, on classical (-like) testing procedures. We will examine tests that exemplify
all three approaches.

4See Granger and Pesaran (2000) for discussion.
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8.3.2 AN ENCOMPASSING MODEL

The encompassing approach is one in which the ability of one model to explain features
of another is tested. Model 0 “encompasses” Model 1 if the features of Model 1 can
be explained by Model 0 but the reverse is not true.5 Since H0 cannot be written as a
restriction on H1, none of the procedures we have considered thus far is appropriate.
One possibility is an artificial nesting of the two models. Let X̄ be the set of variables in
X that are not in Z, define Z̄ likewise with respect to X, and let W be the variables that
the models have in common. Then H0 and H1 could be combined in a “supermodel”:

y = X̄ β̄ + Z̄ γ̄ + Wδ + ε.

In principle, H1 is rejected if it is found that γ̄ = 0 by a conventional F test, whereas H0

is rejected if it is found that β̄ = 0. There are two problems with this approach. First,
δ remains a mixture of parts of β and γ , and it is not established by the F test that either
of these parts is zero. Hence, this test does not really distinguish between H0 and H1;
it distinguishes between H1 and a hybrid model. Second, this compound model may
have an extremely large number of regressors. In a time-series setting, the problem of
collinearity may be severe.

Consider an alternative approach. If H0 is correct, then y will, apart from the ran-
dom disturbance ε, be fully explained by X. Suppose we then attempt to estimate γ

by regression of y on Z. Whatever set of parameters is estimated by this regression,
say c, if H0 is correct, then we should estimate exactly the same coefficient vector if we
were to regress Xβ on Z, since ε0 is random noise under H0. Since β must be estimated,
suppose that we use Xb instead and compute c0. A test of the proposition that Model 0
“encompasses” Model 1 would be a test of the hypothesis that E [c − c0] = 0. It is
straightforward to show [see Davidson and MacKinnon (1993, pp. 384–387)] that the
test can be carried out by using a standard F test to test the hypothesis that γ 1 = 0 in
the augmented regression,

y = Xβ + Z1γ 1 + ε1,

where Z1 is the variables in Z that are not in X.

8.3.3 COMPREHENSIVE APPROACH—THE J TEST

The underpinnings of the comprehensive approach are tied to the density function as
the characterization of the data generating process. Let f0(yi | data, β0) be the assumed
density under Model 0 and define the alternative likewise as f1(yi | data, β1). Then, a
comprehensive model which subsumes both of these is

fc(yi | data, β0, β1) = [ f0(yi | data, β0)]
1−λ[ f1(yi | data, β1)]

λ

∫
range of yi

[ f0(yi | data, β0)]1−λ[ f1(yi | data, β1)]λ dyi
.

Estimation of the comprehensive model followed by a test of λ = 0 or 1 is used to assess
the validity of Model 0 or 1, respectively.6

5See Deaton (1982), Dastoor (1983), Gourieroux, et al. (1983, 1995) and, especially, Mizon and Richard
(1986).
6See Section 21.4.4c for an application to the choice of probit or logit model for binary choice suggested by
Silva (2001).
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The J test proposed by Davidson and MacKinnon (1981) can be shown [see Pesaran
and Weeks (2001)] to be an application of this principle to the linear regression model.
Their suggested alternative to the preceding compound model is

y = (1 − λ)Xβ + λ(Zγ ) + ε.

In this model, a test of λ = 0 would be a test against H1. The problem is that λ cannot
be separately estimated in this model; it would amount to a redundant scaling of the
regression coefficients. Davidson and MacKinnon’s J test consists of estimating γ by a
least squares regression of y on Z followed by a least squares regression of y on X and
Zγ̂ , the fitted values in the first regression. A valid test, at least asymptotically, of H1 is
to test H0 : λ = 0. If H0 is true, then plim λ̂ = 0. Asymptotically, the ratio λ̂/se( λ̂) (i.e.,
the usual t ratio) is distributed as standard normal and may be referred to the standard
table to carry out the test. Unfortunately, in testing H0 versus H1 and vice versa, all
four possibilities (reject both, neither, or either one of the two hypotheses) could occur.
This issue, however, is a finite sample problem. Davidson and MacKinnon show that
as n → ∞, if H1 is true, then the probability that λ̂ will differ significantly from zero
approaches 1.

Example 8.2 J Test for a Consumption Function
Gaver and Geisel (1974) propose two forms of a consumption function:

H0 : Ct = β1 + β2Yt + β3Yt−1 + ε0t

and

H1 : Ct = γ1 + γ2Yt + γ3Ct−1 + ε1t .

The first model states that consumption responds to changes in income over two periods,
whereas the second states that the effects of changes in income on consumption persist
for many periods. Quarterly data on aggregate U.S. real consumption and real disposable
income are given in Table F5.1. Here we apply the J test to these data and the two proposed
specifications. First, the two models are estimated separately (using observations 1950.2–
2000.4). The least squares regression of C on a constant, Y , lagged Y , and the fitted values
from the second model produces an estimate of λ of 1.0145 with a t ratio of 62.861. Thus,
H0 should be rejected in favor of H1. But reversing the roles of H0 and H1, we obtain an
estimate of λ of −10.677 with a t ratio of −7.188. Thus, H1 is rejected as well.7

8.3.4 THE COX TEST8

Likelihood ratio tests rely on three features of the density of the random variable of
interest. First, under the null hypothesis, the average log density of the null hypothesis
will be less than under the alternative—this is a consequence of the fact that the null
model is nested within the alternative. Second, the degrees of freedom for the chi-
squared statistic is the reduction in the dimension of the parameter space that is specified
by the null hypothesis, compared to the alternative. Third, in order to carry out the test,
under the null hypothesis, the test statistic must have a known distribution which is
free of the model parameters under the alternative hypothesis. When the models are

7For related discussion of this possibility, see McAleer, Fisher, and Volker (1982).
8The Cox test is based upon the likelihood ratio statistic, which will be developed in Chapter 17. The results
for the linear regression model, however, are based on sums of squared residuals, and therefore, rely on
nothing more than least squares, which is already familiar.
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nonnested, none of these requirements will be met. The first need not hold at all. With
regard to the second, the parameter space under the null model may well be larger
than (or, at least the same size) as under the alternative. (Merely reversing the two
models does not solve this problem. The test must be able to work in both directions.)
Finally, because of the symmetry of the null and alternative hypotheses, the distributions
of likelihood based test statistics will generally be functions of the parameters of the
alternative model. Cox’s (1961, 1962) analysis of this problem produced a reformulated
test statistic that is based on the standard normal distribution and is centered at zero.9

Versions of the Cox test appropriate for the linear and nonlinear regression models
have been derived by Pesaran (1974) and Pesaran and Deaton (1978). The latter present
a test statistic for testing linear versus loglinear models that is extended in Aneuryn-
Evans and Deaton (1980). Since in the classical regression model the least squares
estimator is also the maximum likelihood estimator, it is perhaps not surprising that
Davidson and MacKinnon (1981, p. 789) find that their test statistic is asymptotically
equal to the negative of the Cox–Pesaran and Deaton statistic.

The Cox statistic for testing the hypothesis that X is the correct set of regressors
and that Z is not is

c01 = n
2

ln
[

s2
Z

s2
X + (1/n)b′X′MZXb

]
= n

2
ln

[
s2

Z

s2
ZX

]
, (8-13)

where

MZ = I − Z(Z′Z)−1Z′,
MX = I − X(X′X)−1X′,

b = (X′X)−1X′y.

s2
Z = e′

ZeZ/n = mean-squared residual in the regression of y on Z,

s2
X = e′

XeX/n = mean-squared residual in the regression of y on X,

s2
ZX = s2

X + b′X′MZXb/n.

The hypothesis is tested by comparing

q = c01{
Est. Var[c01]

}1/2 = c01√
s2

X

s4
ZX

b′X′MZMXMZXb

(8-14)

to the critical value from the standard normal table. A large value of q is evidence
against the null hypothesis (H0).

The Cox test appears to involve an impressive amount of matrix algebra. But the
algebraic results are deceptive. One needs only to compute linear regressions and re-
trieve fitted values and sums of squared residuals. The following does the first test. The
roles of X and Z are reversed for the second.

1. Regress y on X to obtain b and ŷX = Xb, eX = y − Xb, s2
X = e′

XeX/n.

2. Regress y on Z to obtain d and ŷZ = Zd, eZ = y − Zd, s2
Z = e′

ZeZ/n.

9See Pesaran and Weeks (2001) for some of the formalities of these results.
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3. Regress ŷX on Z to obtain dX and eZ.X = ŷX − ZdX = MZXb, e′
Z.XeZ.X =

b′X′MZXb.
4. Regress eZ.X on X and compute residuals eX.ZX, e′

X.ZXeX.ZX = b′X′MZMXMZXb.

5. Compute s2
ZX = s2

X + e′
Z.XeZ.X/n.

6. Compute c01 = n
2 log

s2
Z

s2
ZX

, v01 = s2
X(e′

X.ZX eX.ZX)

s4
ZX

, q = c01√
v01

.

Therefore, the Cox statistic can be computed simply by computing a series of least
squares regressions.

Example 8.3 Cox Test for a Consumption Function
We continue the previous example by applying the Cox test to the data of Example 8.2. For
purposes of the test, let X = [i y y−1] and Z = [i y c−1]. Using the notation of (8-13) and
(8-14), we find that

s2
X = 7,556.657,

s2
Z = 456.3751,

b′X′MZXb = 167.50707,

b′X′MZMXMZXb = 2.61944,

s2
ZX = 7556.657 + 167.50707/203 = 7,557.483.

Thus,

c01 = 203
2

ln

(
456.3751
7,557.483

)
= −284.908

and

Est. Var[c01] = 7,556.657(2.61944)
7,557.4832

= 0.00034656.

Thus, q = −15,304.281. On this basis, we reject the hypothesis that X is the correct set of
regressors. Note in the previous example that we reached the same conclusion based on a
t ratio of 62.861. As expected, the result has the opposite sign from the corresponding J
statistic in the previous example. Now we reverse the roles of X and Z in our calculations.
Letting d denote the least squares coefficients in the regression of consumption on Z, we
find that

d′Z′MXZd = 1,418,985.185,

d′Z′MXMZMXZd = 22,189.811,

s2
XZ = 456.3751 + 1,418,985.185/203 = 7446.4499.

Thus,

c10 = 203
2

ln

(
7,556.657
7,446.4499

)
= 1.491

and

Est. Var[c10] = 456.3751(22,189.811)
7,446.44992

= 0.18263.

This computation produces a value of q = 3.489, which is roughly equal (in absolute value)
than its counterpart in Example 8.2, −7.188. Since 1.594 is less than the 5 percent critical
value of to −1.96, we once again reject the hypothesis that Z is the preferred set of regressors
though the results do strongly favor Z in qualitative terms.
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Pesaran and Hall (1988) have extended the Cox test to testing which of two non-
nested restricted regressions is preferred. The modeling framework is

H0: y = X0β0 + ε0, Var[ε0 | X0] = σ 2
0I, subject to R0β0 = q0

H0: y = X1β1 + ε1, Var[ε1 | X1] = σ 2
1I, subject to R1β1 = q1.

Like its counterpart for unrestricted regressions, this Cox test requires a large amount
of matrix algebra. However, once again, it reduces to a sequence of regressions, though
this time with some unavoidable matrix manipulation remaining. Let

Gi = (X′
i Xi )

−1 − (X′
i Xi )

−1R′
i [Ri (X′

i Xi )
−1R′

i ]
−1Ri (X′

i Xi )
−1, i = 0, 1,

and Ti = Xi Gi X′
i , mi = rank(Ri ), ki = rank(Xi ), hi = ki − mi and di = n − hi where n

is the sample size. The following steps produce the needed statistics:

1. Compute ei = the residuals from the restricted regression, i = 0, 1.
2. Compute e10 by computing the residuals from the restricted regression of y − e0

on X1. Compute e01 likewise by reversing the subscripts.
3. Compute e100 as the residuals from the restricted regression of y − e10 on X0 and

e110 likewise by reversing the subscripts.
Let vi , vi j and vi jk denote the sums of squared residuals in Steps 1, 2, and 3

and let s2
i = e′

i ei/di .

4. Compute trace (B 2
0 ) = h1 − trace[(T0T1)

2] − {
h1 − trace[(T0T1)

2]
}2/

(n − h0) and
trace (B 2

1 ) likewise by reversing subscripts.
5. Compute s2

10 = (
v10 + s2

0 trace[I − T0 − T1 + T0T1]
)

and s2
01 likewise.

The authors propose several statistics. A Wald test based on Godfrey and Pesaran (1983)
is based on the difference between an estimator of σ 2

1 and the probability limit of this
estimator assuming that H0 is true

W0 = √
n(v1 − v0 − v10)

/√
4v0v100.

Under the null hypothesis of Model 0, the limiting distribution of W0 is standard normal.
An alternative statistic based on Cox’s likelihood approach is

N0 = (n/2)ln
(
s2

1/s2
10

)/√
4v100s2

0/
(
s2

10

)2
.

Example 8.4 Cox Test for Restricted Regressions
The example they suggest is two competing models for expected inflation, Pe

t , based on
commonly used lag structures involving lags of Pe

t and current lagged values of actual infla-
tion, Pt ;

(Regressive): Pe
t = Pt + θ1( Pt − Pt−1) + θ2( Pt−1 − Pt−2) + ε0t

(Adaptive) Pe
t = Pe

t−1 + λ1

(
Pt − Pe

t−1

) + λ2

(
Pt−1 − Pe

t−2

) + ε1t .

By formulating these models as

yt = β1 Pe
t−1 + β2 Pe

t−2 + β3 Pt + β4 Pt−1 + β5 Pt−2 + εt ,
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They show that the hypotheses are

H0: β1 = β2 = 0, β3 + β4 + β5 = 1

H1: β1 + β3 = 1, β2 + β4 = 0, β5 = 0.

Pesaran and Hall’s analysis was based on quarterly data for British manufacturing from 1972
to 1981. The data appear in the Appendix to Pesaran (1987) and are reproduced in Table F8.1.
Using their data, the computations listed before produce the following results:

W0: Null is H0; −3.887, Null is H1; −0.134

N0: Null is H0; −2.437, Null is H1; −0.032.

These results fairly strongly support Model 1 and lead to rejection of Model 0.10

8.4 MODEL SELECTION CRITERIA

The preceding discussion suggested some approaches to model selection based on
nonnested hypothesis tests. Fit measures and testing procedures based on the sum of
squared residuals, such as R2 and the Cox test, are useful when interest centers on
the within-sample fit or within-sample prediction of the dependent variable. When the
model building is directed toward forecasting, within-sample measures are not neces-
sarily optimal. As we have seen, R2 cannot fall when variables are added to a model,
so there is a built-in tendency to overfit the model. This criterion may point us away
from the best forecasting model, because adding variables to a model may increase the
variance of the forecast error (see Section 6.6) despite the improved fit to the data. With
this thought in mind, the adjusted R2,

R̄2 = 1 − n − 1
n − K

(1 − R2) = 1 − n − 1
n − K

(
e′e∑n

i=1(yi − ȳ)2

)
, (8-15)

has been suggested as a fit measure that appropriately penalizes the loss of degrees of
freedom that result from adding variables to the model. Note that R̄2 may fall when
a variable is added to a model if the sum of squares does not fall fast enough. (The
applicable result appears in Theorem 3.7; R̄2 does not rise when a variable is added to
a model unless the t ratio associated with that variable exceeds one in absolute value.)
The adjusted R2 has been found to be a preferable fit measure for assessing the fit of
forecasting models. [See Diebold (1998b, p. 87), who argues that the simple R2 has
a downward bias as a measure of the out-of-sample, one-step-ahead prediction error
variance.]

The adjusted R2 penalizes the loss of degrees of freedom that occurs when a model
is expanded. There is, however, some question about whether the penalty is sufficiently
large to ensure that the criterion will necessarily lead the analyst to the correct model
(assuming that it is among the ones considered) as the sample size increases. Two alter-
native fit measures that have seen suggested are the Akaike information criterion,

AIC(K) = s2
y(1 − R2)e2K/n (8-16)

10Our results differ somewhat from Pesaran and Hall’s. For the first row of the table, they reported
(−2.180, −1.690) and for the second, (−2.456, −1.907). They reach the same conclusion, but the numbers
do differ substantively. We have been unable to resolve the difference.
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and the Schwartz or Bayesian information criterion,

BIC(K) = s2
y(1 − R2)nK/n. (8-17)

(There is no degrees of freedom correction in s2
y.) Both measures improve (decline) as

R2 increases, but, everything else constant, degrade as the model size increases. Like
R̄2, these measures place a premium on achieving a given fit with a smaller number
of parameters per observation, K/n. Logs are usually more convenient; the measures
reported by most software are

AIC(K) = log
(

e′e
n

)
+ 2K

n
(8-18)

BIC(K) = log
(

e′e
n

)
+ K log n

n
. (8-19)

Both prediction criteria have their virtues, and neither has an obvious advantage over
the other. [See Diebold (1998b, p. 90).] The Schwarz criterion, with its heavier penalty
for degrees of freedom lost, will lean toward a simpler model. All else given, simplicity
does have some appeal.

8.5 SUMMARY AND CONCLUSIONS

This is the last of seven chapters that we have devoted specifically to the most heavily
used tool in econometrics, the classical linear regression model. We began in Chapter 2
with a statement of the regression model. Chapter 3 then described computation of
the parameters by least squares—a purely algebraic exercise. Chapters 4 and 5 reinter-
preted least squares as an estimator of an unknown parameter vector, and described
the finite sample and large sample characteristics of the sampling distribution of the
estimator. Chapters 6 and 7 were devoted to building and sharpening the regression
model, with tools for developing the functional form and statistical results for testing
hypotheses about the underlying population. In this chapter, we have examined some
broad issues related to model specification and selection of a model among a set of
competing alternatives. The concepts considered here are tied very closely to one of
the pillars of the paradigm of econometrics, that underlying the model is a theoretical
construction, a set of true behavioral relationships that constitute the model. It is only
on this notion that the concepts of bias and biased estimation and model selection make
any sense—“bias” as a concept can only be described with respect to some underlying
“model” against which an estimator can be said to be biased. That is, there must be a
yardstick. This concept is a central result in the analysis of specification, where we con-
sidered the implications of underfitting (omitting variables) and overfitting (including
superfluous variables) the model. We concluded this chapter (and our discussion of the
classical linear regression model) with an examination of procedures that are used to
choose among competing model specifications.
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Key Terms and Concepts

• Adjusted R-squared
• Akaike criterion
• Biased estimator
• Comprehensive model
• Cox test
• Encompassing principle
• General-to-simple strategy
• Inclusion of superfluous

variables

• J test
• Mean squared error
• Model selection
• Nonnested models
• Omission of relevant

variables
• Omitted variable formula
• Prediction criterion
• Pretest estimator

• Schwarz criterion
• Simple-to-general
• Specification analysis
• Stepwise model building

Exercises

1. Suppose the true regression model is given by (8-2). The result in (8-4) shows that if
either P1.2 is nonzero or β2 is nonzero, then regression of y on X1 alone produces a
biased and inconsistent estimator of β1. Suppose the objective is to forecast y, not to
estimate the parameters. Consider regression of y on X1 alone to estimate β1 with
b1 (which is biased). Is the forecast of y computed using X1b1 also biased? Assume
that E [X2 | X1] is a linear function of X1. Discuss your findings generally. What are
the implications for prediction when variables are omitted from a regression?

2. Compare the mean squared errors of b1 and b1.2 in Section 8.2.2. (Hint: The compar-
ison depends on the data and the model parameters, but you can devise a compact
expression for the two quantities.)

3. The J test in Example 8.2 is carried out using over 50 years of data. It is optimistic
to hope that the underlying structure of the economy did not change in 50 years.
Does the result of the test carried out in Example 8.2 persist if it is based on data
only from 1980 to 2000? Repeat the computation with this subset of the data.

4. The Cox test in Example 8.3 has the same difficulty as the J test in Example 8.2. The
sample period might be too long for the test not to have been affected by underlying
structural change. Repeat the computations using the 1980 to 2000 data.
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9

NONLINEAR REGRESSION
MODELS

Q
9.1 INTRODUCTION

Although the linear model is flexible enough to allow great variety in the shape of the
regression, it still rules out many useful functional forms. In this chapter, we examine
regression models that are intrinsically nonlinear in their parameters. This allows a
much wider range of functional forms than the linear model can accommodate.1

9.2 NONLINEAR REGRESSION MODELS

The general form of the nonlinear regression model is

yi = h(xi , β) + εi . (9-1)

The linear model is obviously a special case. Moreover, some models which appear to
be nonlinear, such as

y = eβ0 xβ1
1 xβ2

2 eε

become linear after a transformation, in this case after taking logarithms. In this chapter,
we are interested in models for which there is no such transformation, such as the ones
in the following examples.

Example 9.1 CES Production Function
In Example 7.5, we examined a constant elasticity of substitution production function model:

ln y = ln γ − ν

ρ
ln[δK −ρ + (1 − δ) L−ρ ] + ε.

No transformation renders this equation linear in the parameters. We did find, however, that
a linear Taylor series approximation to this function around the point ρ = 0 produced an
intrinsically linear equation that could be fit by least squares. Nonetheless, the true model is
nonlinear in the sense that interests us in this chapter.

Example 9.2 Translog Demand System
Christensen, Jorgenson, and Lau (1975), proposed the translog indirect utility function for a
consumer allocating a budget among K commodities:

− ln V = β0 +
K∑

k=1

βk ln( pk/M) +
K∑

k=1

K∑
l=1

γkl ln( pk/M) ln( pl /M)

1A complete discussion of this subject can be found in Amemiya (1985). Other important references are
Jennrich (1969), Malinvaud (1970), and especially Goldfeld and Quandt (1971, 1972). A very lengthy author-
itative treatment is the text by Davidson and MacKinnon (1993).
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where V is indirect utility, pk is the price for the kth commodity and M is income. Roy’s identity
applied to this logarithmic function produces a budget share equation for the kth commodity
that is of the form

Sk = −∂ ln V/∂ ln pk

∂ ln V/∂ ln M
=

βk + ∑K
j =1 γkj ln( pj /M)

βM + ∑K
j =1 γMj ln( pj /M)

+ ε, k = 1, . . . , K .

where βM = ∑
k βk and γMj = ∑

k γkj . No transformation of the budget share equation pro-
duces a linear model. This is an intrinsically nonlinear regression model. (It is also one among
a system of equations, an aspect we will ignore for the present.)

9.2.1 ASSUMPTIONS OF THE NONLINEAR REGRESSION MODEL

We shall require a somewhat more formal definition of a nonlinear regression model.
Sufficient for our purposes will be the following, which include the linear model as the
special case noted earlier. We assume that there is an underlying probability distribution,
or data generating process (DGP) for the observable yi and a true parameter vector, β,
which is a characteristic of that DGP. The following are the assumptions of the nonlinear
regression model:

1. Functional form: The conditional mean function for yi given xi is

E [yi | xi ] = h(xi , β), i = 1, . . . , n,

where h(xi , β) is a twice continuously differentiable function.
2. Identifiability of the model parameters: The parameter vector in the model is iden-

tified (estimable) if there is no nonzero parameter β0 �= β such that h(xi , β
0) =

h(xi , β) for all xi . In the linear model, this was the full rank assumption, but the
simple absence of “multicollinearity” among the variables in x is not sufficient to
produce this condition in the nonlinear regression model. Note that the model given
in Example 9.2 is not identified. If the parameters in the model are all multiplied
by the same nonzero constant, the same conditional mean function results. This
condition persists even if all the variables in the model are linearly independent.
The indeterminacy was removed in the study cited by imposing the normalization
βM = 1.

3. Zero mean of the disturbance: It follows from Assumption 1 that we may write

yi = h(xi , β) + εi .

where E [εi | h(xi , β)] = 0. This states that the disturbance at observation i is uncor-
related with the conditional mean function for all observations in the sample. This
is not quite the same as assuming that the disturbances and the exogenous variables
are uncorrelated, which is the familiar assumption, however. We will return to this
point below.

4. Homoscedasticity and nonautocorrelation: As in the linear model, we assume con-
ditional homoscedasticity,

E
[
ε2

i

∣∣ h(x j , β), j = 1, . . . , n
] = σ 2, a finite constant, (9-2)

and nonautocorrelation

E [εiε j | h(xi , β), h(x j , β), j = 1, . . . , n] = 0 for all j �= i.
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5. Data generating process: The data generating process for xi is assumed to be a well
behaved population such that first and second moments of the data can be assumed
to converge to fixed, finite population counterparts. The crucial assumption is that
the process generating xi is strictly exogenous to that generating εi . The data on xi

are assumed to be “well behaved.”
6. Underlying probability model: There is a well defined probability distribution gen-

erating εi . At this point, we assume only that this process produces a sample
of uncorrelated, identically (marginally) distributed random variables εi with mean
0 and variance σ 2 conditioned on h(xi , β). Thus, at this point, our statement of the
model is semiparametric. (See Section 16.3.) We will not be assuming any partic-
ular distribution for εi . The conditional moment assumptions in 3 and 4 will be
sufficient for the results in this chapter. In Chapter 17, we will fully parameterize
the model by assuming that the disturbances are normally distributed. This will
allow us to be more specific about certain test statistics and, in addition, allow some
generalizations of the regression model. The assumption is not necessary here.

9.2.2 THE ORTHOGONALITY CONDITION
AND THE SUM OF SQUARES

Assumptions 1 and 3 imply that E [εi | h(xi , β)] = 0. In the linear model, it follows,
because of the linearity of the conditional mean, that εi and xi , itself, are uncorrelated.
However, uncorrelatedness of εi with a particular nonlinear function of xi (the regression
function) does not necessarily imply uncorrelatedness with xi , itself nor, for that matter,
with other nonlinear functions of xi . On the other hand, the results we will obtain below
for the behavior of the estimator in this model are couched not in terms of xi but in
terms of certain functions of xi (the derivatives of the regression function), so, in point
of fact, E [ε | X] = 0 is not even the assumption we need.

The foregoing is not a theoretical fine point. Dynamic models, which are very com-
mon in the contemporary literature, would greatly complicate this analysis. If it can be
assumed that εi is strictly uncorrelated with any prior information in the model, includ-
ing previous disturbances, then perhaps a treatment analogous to that for the linear
model would apply. But the convergence results needed to obtain the asymptotic prop-
erties of the estimator still have to be strengthened. The dynamic nonlinear regression
model is beyond the reach of our treatment here. Strict independence of εi and xi would
be sufficient for uncorrelatedness of εi and every function of xi , but, again, in a dynamic
model, this assumption might be questionable. Some commentary on this aspect of the
nonlinear regression model may be found in Davidson and MacKinnon (1993).

If the disturbances in the nonlinear model are normally distributed, then the log of
the normal density for the ith observation will be

ln f (yi | xi , β, σ 2) = −(1/2)
[

ln 2π + ln σ 2 + ε2
i /σ

2]. (9-3)

For this special case, we have from item D.2 in Theorem 17.2 (on maximum likelihood
estimation), that the derivatives of the log density with respect to the parameters have
mean zero. That is,

E
[
∂ ln f (yi | xi , β, σ 2)

∂β

]
= E

[
1
σ 2

(
∂h(xi , β)

∂β

)
εi

]
= 0, (9-4)
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so, in the normal case, the derivatives and the disturbances are uncorrelated. Whether
this can be assumed to hold in other cases is going to be model specific, but under
reasonable conditions, we would assume so. [See Ruud (2000, p. 540).]

In the context of the linear model, the orthogonality condition E [xiεi ] = 0 produces
least squares as a GMM estimator for the model. (See Chapter 18.) The orthogonality
condition is that the regressors and the disturbance in the model are uncorrelated.
In this setting, the same condition applies to the first derivatives of the conditional
mean function. The result in (9-4) produces a moment condition which will define the
nonlinear least squares estimator as a GMM estimator.

Example 9.3 First-Order Conditions for a Nonlinear Model
The first-order conditions for estimating the parameters of the nonlinear model,

yi = β1 + β2eβ3x + εi ,

by nonlinear least squares [see (9-10)] are

∂S(b)
∂b1

= −
n∑

i =1

[
yi − b1 − b2eb3xi

] = 0,

∂S(b)
∂b2

= −
n∑

i =1

[
yi − b1 − b2eb3xi

]
eb3xi = 0,

∂S(b)
∂b3

= −
n∑

i =1

[
yi − b1 − b2eb3xi

]
b2xi eb3xi = 0.

These equations do not have an explicit solution.

Conceding the potential for ambiguity, we define a nonlinear regression model at
this point as follows.

DEFINITION 9.1 Nonlinear Regression Model
A nonlinear regression model is one for which the first-order conditions for least
squares estimation of the parameters are nonlinear functions of the parameters.

Thus, nonlinearity is defined in terms of the techniques needed to estimate the param-
eters, not the shape of the regression function. Later we shall broaden our definition to
include other techniques besides least squares.

9.2.3 THE LINEARIZED REGRESSION

The nonlinear regression model is y = h(x, β) + ε. (To save some notation, we have
dropped the observation subscript.) The sampling theory results that have been obtained
for nonlinear regression models are based on a linear Taylor series approximation to
h(x, β) at a particular value for the parameter vector, β0:

h(x, β) ≈ h(x, β0) +
K∑

k=1

∂h(x, β0)

∂β0
k

(
βk − β0

k

)
. (9-5)

William Greene
add subscript i to x



Greene-50240 book June 11, 2002 19:33

166 CHAPTER 9 ✦ Nonlinear Regression Models

This form of the equation is called the linearized regression model. By collecting terms,
we obtain

h(x, β) ≈
[

h(x, β0) −
K∑

k=1

β0
k

(
∂h(x, β0)

∂β0
k

)]
+

K∑
k=1

βk

(
∂h(x, β0)

∂β0
k

)
. (9-6)

Let x0
k equal the kth partial derivative,2 ∂h(x, β0)/∂β0

k . For a given value of β0, x0
k is a

function only of the data, not of the unknown parameters. We now have

h(x, β) ≈
[

h0 −
K∑

k=1

x0
kβ

0
k

]
+

K∑
k=1

x0
kβk,

which may be written

h(x, β) ≈ h0 − x0′β0 + x0′β,

which implies that

y ≈ h0 − x0′β0 + x0′β + ε.

By placing the known terms on the left-hand side of the equation, we obtain a linear
equation:

y0 = y − h0 + x0′β0 = x0′β + ε0. (9-7)

Note that ε0 contains both the true disturbance, ε, and the error in the first order Taylor
series approximation to the true regression, shown in (9-6). That is,

ε0 = ε +
[

h(x, β) −
{

h0 −
K∑

k=1

x0
kβ

0
k +

K∑
k=1

x0
kβk

}]
. (9-8)

Since all the errors are accounted for, (9-7) is an equality, not an approximation. With
a value of β0 in hand, we could compute y0 and x0 and then estimate the parameters of
(9-7) by linear least squares. (Whether this estimator is consistent or not remains to be
seen.)

Example 9.4 Linearized Regression
For the model in Example 9.3, the regressors in the linearized equation would be

x0
1 = ∂h( .)

∂β0
1

= 1,

x0
2 = ∂h( .)

∂β0
2

= eβ0
3

x ,

x0
3 = ∂h( .)

∂β0
3

= β0
2 xeβ0

3
x .

With a set of values of the parameters β0,

y0 = y − h
(
x, β0

1 , β0
2 , β0

3

) + β0
1 x0

1 + β0
2 x0

2 + β0
3 x0

3

could be regressed on the three variables previously defined to estimate β1, β2, and β3.

2You should verify that for the linear regression model, these derivatives are the independent variables.
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9.2.4 LARGE SAMPLE PROPERTIES OF THE NONLINEAR
LEAST SQUARES ESTIMATOR

Numerous analytical results have been obtained for the nonlinear least squares esti-
mator, such as consistency and asymptotic normality. We cannot be sure that nonlinear
least squares is the most efficient estimator, except in the case of normally distributed
disturbances. (This conclusion is the same one we drew for the linear model.) But, in
the semiparametric setting of this chapter, we can ask whether this estimator is optimal
in some sense given the information that we do have; the answer turns out to be yes.
Some examples that follow will illustrate the points.

It is necessary to make some assumptions about the regressors. The precise require-
ments are discussed in some detail in Judge et al. (1985), Amemiya (1985), and Davidson
and MacKinnon (1993). In the linear regression model, to obtain our asymptotic results,
we assume that the sample moment matrix (1/n)X′X converges to a positive definite
matrix Q. By analogy, we impose the same condition on the derivatives of the regression
function, which are called the pseudoregressors in the linearized model when they are
computed at the true parameter values. Therefore, for the nonlinear regression model,
the analog to (5-1) is

plim
1
n

X0′X0 = plim
1
n

n∑
i=1

(
∂h(xi , β)

∂β

)(
∂h(xi , β)

∂β ′

)
= Q0, (9-9)

where Q0 is a positive definite matrix. To establish consistency of b in the linear model,
we required plim(1/n)X′ε = 0. We will use the counterpart to this for the pseudore-
gressors:

plim
1
n

n∑
i=1

x0
i εi = 0.

This is the orthogonality condition noted earlier in (5-4). In particular, note that orthog-
onality of the disturbances and the data is not the same condition. Finally, asymptotic
normality can be established under general conditions if

1√
n

n∑
i=1

x0
i εi

d−→ N[0, σ 2Q0].

With these in hand, the asymptotic properties of the nonlinear least squares estimator
have been derived. They are, in fact, essentially those we have already seen for the
linear model, except that in this case we place the derivatives of the linearized function
evaluated at β, X0 in the role of the regressors. [Amemiya (1985).]

The nonlinear least squares criterion function is

S(b) = 1
2

n∑
i=1

[yi − h(xi , b)]2 = 1
2

n∑
i=1

e2
i , (9-10)

where we have inserted what will be the solution value, b. The values of the parameters
that minimize (one half of) the sum of squared deviations are the nonlinear least squares

William Greene
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estimators. The first-order conditions for a minimum are

g(b) = −
n∑

i=1

[yi − h(xi , b)]
∂h(xi , b)

∂b
= 0. (9-11)

In the linear model of Chapter 2, this produces a set of linear equations, the normal
equations (3-4). But in this more general case, (9-11) is a set of nonlinear equations that
do not have an explicit solution. Note that σ 2 is not relevant to the solution [nor was it
in (3-4)]. At the solution,

g(b) = −X0′e = 0,

which is the same as (3-12) for the linear model.
Given our assumptions, we have the following general results:

THEOREM 9.1 Consistency of the Nonlinear Least
Squares Estimator

If the following assumptions hold:

a. The parameter space is containing β is compact (has no gaps or nonconcave
regions),

b. For any vector β0 in that parameter space, plim (1/n)S(β0) = q(β0), a con-
tinuous and differentiable function,

c. q(β0) has a unique minimum at the true parameter vector, β,

then, the nonlinear least squares estimator defined by (9-10) and (9-11) is consis-
tent. We will sketch the proof, then consider why the theorem and the proof differ
as they do from the apparently simpler counterpart for the linear model. The proof,
notwithstanding the underlying subtleties of the assumptions, is straightforward.
The estimator, say, b0 minimizes (1/n)S(β0). If (1/n)S(β0) is minimized for every
n, then it is minimized by b0 as n increases without bound. We also assumed that
the minimizer of q(β0) is uniquely β. If the minimum value of plim (1/n)S(β0)

equals the probability limit of the minimized value of the sum of squares, the
theorem is proved. This equality is produced by the continuity in assumption b.

In the linear model, consistency of the least squares estimator could be established
based on plim(1/n)X′X = Q and plim(1/n)X′ε = 0. To follow that approach here, we
would use the linearized model, and take essentially the same result. The loose end
in that argument would be that the linearized model is not the true model, and there
remains an approximation. In order for this line of reasoning to be valid, it must also be
either assumed or shown that plim(1/n)X0′δ = 0 where δi = h(xi , β) minus the Taylor
series approximation. An argument to this effect appears in Mittelhammer et al. (2000,
p. 190–191).

William Greene
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THEOREM 9.2 Asymptotic Normality of the Nonlinear
Least Squares Estimator

If the pseudoregressors defined in (9-3) are “well behaved,” then

b
a∼ N

[
β,

σ 2

n
(Q0)−1

]
,

where

Q0 = plim
1
n

X0′X0.

The sample estimate of the asymptotic covariance matrix is

Est.Asy. Var[b] = σ̂ 2(X0′X0)−1. (9-12)

Asymptotic efficiency of the nonlinear least squares estimator is difficult to establish
without a distributional assumption. There is an indirect approach that is one possibility.
The assumption of the orthogonality of the pseudoregressors and the true disturbances
implies that the nonlinear least squares estimator is a GMM estimator in this context.
With the assumptions of homoscedasticity and nonautocorrelation, the optimal weight-
ing matrix is the one that we used, which is to say that in the class of GMM estimators
for this model, nonlinear least squares uses the optimal weighting matrix. As such, it is
asymptotically efficient.

The requirement that the matrix in (9-9) converges to a positive definite matrix
implies that the columns of the regressor matrix X0 must be linearly independent. This
identification condition is analogous to the requirement that the independent variables
in the linear model be linearly independent. Nonlinear regression models usually involve
several independent variables, and at first blush, it might seem sufficient to examine the
data directly if one is concerned with multicollinearity. However, this situation is not
the case. Example 9.5 gives an application.

9.2.5 COMPUTING THE NONLINEAR LEAST SQUARES ESTIMATOR

Minimizing the sum of squares is a standard problem in nonlinear optimization that can
be solved by a number of methods. (See Section E.6.) The method of Gauss–Newton
is often used. In the linearized regression model, if a value of β0 is available, then the
linear regression model shown in (9-7) can be estimated by linear least squares. Once
a parameter vector is obtained, it can play the role of a new β0, and the computation
can be done again. The iteration can continue until the difference between successive
parameter vectors is small enough to assume convergence. One of the main virtues of
this method is that at the last iteration the estimate of (Q0)−1 will, apart from the scale
factor σ̂ 2/n, provide the correct estimate of the asymptotic covariance matrix for the
parameter estimator.
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This iterative solution to the minimization problem is

bt+1 =
[

n∑
i=1

x0
i x0′

i

]−1 [
n∑

i=1

x0
i

(
yi − h0

i + x0′
i bt

)
]

= bt +
[

n∑
i=1

x0
i x0′

i

]−1 [
n∑

i=1

x0
i

(
yi − h0

i

)
]

= bt + (X0′X0)−1X0′e0

= bt + �t ,

where all terms on the right-hand side are evaluated at bt and e0 is the vector of nonlin-
ear least squares residuals. This algorithm has some intuitive appeal as well. For each
iteration, we update the previous parameter estimates by regressing the nonlinear least
squares residuals on the derivatives of the regression functions. The process will have
converged (i.e., the update will be 0) when X0′e0 is close enough to 0. This derivative
has a direct counterpart in the normal equations for the linear model, X′e = 0.

As usual, when using a digital computer, we will not achieve exact convergence with
X0′e0 exactly equal to zero. A useful, scale-free counterpart to the convergence criterion
discussed in Section E.6.5 is δ = e0X0(X0′X0)−1X0′e0. We note, finally, that iteration of
the linearized regression, although a very effective algorithm for many problems, does
not always work. As does Newton’s method, this algorithm sometimes “jumps off” to a
wildly errant second iterate, after which it may be impossible to compute the residuals
for the next iteration. The choice of starting values for the iterations can be crucial. There
is art as well as science in the computation of nonlinear least squares estimates. [See
McCullough and Vinod (1999).] In the absence of information about starting values, a
workable strategy is to try the Gauss–Newton iteration first. If it fails, go back to the
initial starting values and try one of the more general algorithms, such as BFGS, treating
minimization of the sum of squares as an otherwise ordinary optimization problem.

A consistent estimator of σ 2 is based on the residuals:

σ̂ 2 = 1
n

n∑
i=1

[yi − h(xi , b)]2. (9-13)

A degrees of freedom correction, 1/(n− K), where K is the number of elements in β, is
not strictly necessary here, because all results are asymptotic in any event. Davidson and
MacKinnon (1993) argue that on average, (9-13) will underestimate σ 2, and one should
use the degrees of freedom correction. Most software in current use for this model does,
but analysts will want to verify which is the case for the program they are using. With
this in hand, the estimator of the asymptotic covariance matrix for the nonlinear least
squares estimator is given in (9-12).

Once the nonlinear least squares estimates are in hand, inference and hypothesis
tests can proceed in the same fashion as prescribed in Chapter 7. A minor problem can
arise in evaluating the fit of the regression in that the familiar measure,

R2 = 1 −
∑n

i=1 e2
i∑n

i=1(yi − ȳ)2
, (9-14)

is no longer guaranteed to be in the range of 0 to 1. It does, however, provide a useful
descriptive measure.
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9.3 APPLICATIONS

We will examine two applications. The first is a nonlinear extension of the consump-
tion function examined in Example 2.1. The Box–Cox transformation presented in
Section 9.3.2 is a device used to search for functional form in regression.

9.3.1 A Nonlinear Consumption Function

The linear consumption function analyzed at the beginning of Chapter 2 is a restricted
version of the more general consumption function

C = α + βYγ + ε,

in which γ equals 1. With this restriction, the model is linear. If γ is free to vary, however,
then this version becomes a nonlinear regression. The linearized model is

C − (
α0 + β0Yγ 0) + (

α01 + β0Yγ 0 + γ 0β0Yγ 0
ln Y

) = α + β
(
Yγ 0) + γ

(
β0Yγ 0

ln Y
) + ε.

The nonlinear least squares procedure reduces to iterated regression of

C0 = C + γ 0β0Yγ 0
ln Y on x0 =

[
∂h(.)

∂α

∂h(.)

∂β

∂h(.)

∂γ

]′
=




1
Yγ 0

βYγ 0
ln Y


 .

Quarterly data on consumption, real disposable income, and several other variables
for 1950 to 2000 are listed in Appendix Table F5.1. We will use these to fit the nonlinear
consumption function. This turns out to be a particularly straightforward estimation
problem. Iterations are begun at the linear least squares estimates for α and β and 1
for γ . As shown below, the solution is reached in 8 iterations, after which any further
iteration is merely “fine tuning” the hidden digits. (i.e., those that the analyst would not
be reporting to their reader.) (“Gradient” is the scale-free convergence measure noted
above.)

Begin NLSQ iterations. Linearized regression.

Iteration = 1; Sum of squares = 1536321.88; Gradient = 996103.930
Iteration = 2; Sum of squares = .1847 × 1012; Gradient = .1847 × 1012

Iteration = 3; Sum of squares = 20406917.6; Gradient = 19902415.7
Iteration = 4; Sum of squares = 581703.598; Gradient = 77299.6342
Iteration = 5; Sum of squares = 504403.969; Gradient = .752189847
Iteration = 6; Sum of squares = 504403.216; Gradient = .526642396E-04
Iteration = 7; Sum of squares = 504403.216; Gradient = .511324981E-07
Iteration = 8; Sum of squares = 504403.216; Gradient = .606793426E-10

The linear and nonlinear least squares regression results are shown in Table 9.1.
Finding the starting values for a nonlinear procedure can be difficult. Simply trying

a convenient set of values can be unproductive. Unfortunately, there are no good rules
for starting values, except that they should be as close to the final values as possible
(not particularly helpful). When it is possible, an initial consistent estimator of β will be
a good starting value. In many cases, however, the only consistent estimator available

William Greene
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TABLE 9.1 Estimated Consumption Functions

Linear Model Nonlinear Model

Parameter Estimate Standard Error Estimate Standard Error

α −80.3547 14.3059 458.7990 22.5014
β 0.9217 0.003872 0.10085 .01091
γ 1.0000 — 1.24483 .01205
e′e 1,536,321.881 504,403.1725
σ 87.20983 50.0946
R2 .996448 .998834
Var[b] — 0.000119037
Var[c] — 0.00014532
Cov[b, c] — −0.000131491

is the one we are trying to compute by least squares. For better or worse, trial and
error is the most frequently used procedure. For the present model, a natural set of
values can be obtained because a simple linear model is a special case. Thus, we can
start α and β at the linear least squares values that would result in the special case
of γ = 1 and use 1 for the starting value for γ . The procedures outlined earlier are
used at the last iteration to obtain the asymptotic standard errors and an estimate of
σ 2. (To make this comparable to s2 in the linear model, the value includes the degrees
of freedom correction.) The estimates for the linear model are shown in Table 9.1 as
well. Eight iterations are required for convergence. The value of δ is shown at the right.
Note that the coefficient vector takes a very errant step after the first iteration—the
sum of squares becomes huge—but the iterations settle down after that and converge
routinely.

For hypothesis testing and confidence intervals, the usual procedures can be used,
with the proviso that all results are only asymptotic. As such, for testing a restriction,
the chi-squared statistic rather than the F ratio is likely to be more appropriate. For
example, for testing the hypothesis that γ is different from 1, an asymptotic t test, based
on the standard normal distribution, is carried out, using

z = 1.24483 − 1
0.01205

= 20.3178.

This result is larger than the critical value of 1.96 for the 5 percent significance level,
and we thus reject the linear model in favor of the nonlinear regression. We are also
interested in the marginal propensity to consume. In this expanded model, H0 : γ = 1 is
a test that the marginal propensity to consume is constant, not that it is 1. (That would
be a joint test of both γ = 1 and β = 1.) In this model, the marginal propensity to con-
sume is

MPC = dc
dY

= βγ Yγ−1,

which varies with Y. To test the hypothesis that this value is 1, we require a particular
value of Y. Since it is the most recent value, we choose DPI2000.4 = 6634.9. At this value,
the MPC is estimated as 1.08264. We estimate its standard error using the delta method,
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with the square root of

[∂MPC/∂b ∂MPC/∂c]

[
Var[b] Cov[b, c]

Cov[b, c] Var[c]

][
∂MPC/∂b

∂MPC/∂c

]

= [cYc−1 bYc−1(1 + c ln Y)]
[

0.00011904 −0.000131491
−0.000131491 0.00014532

][
cYc−1

bYc−1(1 + c ln Y)

]

= 0.00007469,

which gives a standard error of 0.0086425. For testing the hypothesis that the MPC is
equal to 1.0 in 2000.4, we would refer

z = 1.08264 − 1
0.0086425

= −9.562

to a standard normal table. This difference is certainly statistically significant, so we
would reject the hypothesis.

Example 9.5 Multicollinearity in Nonlinear Regression
In the preceding example, there is no question of collinearity in the data matrix X = [i, y]; the
variation in Y is obvious on inspection. But at the final parameter estimates, the R2 in the
regression is 0.999312 and the correlation between the two pseudoregressors x0

2 = Yγ and
x0

3 = βYγ ln Y is 0.999752. The condition number for the normalized matrix of sums of squares
and cross products is 208.306. (The condition number is computed by computing the square
root of the ratio of the largest to smallest characteristic root of D−1X0′X0D−1 where x0

1 = 1
and D is the diagonal matrix containing the square roots of x0′

k x0
k on the diagonal.) Recall

that 20 was the benchmark value for a problematic data set. By the standards discussed in
Section 4.9.1, the collinearity problem in this “data set” is severe.

9.3.2 THE BOX–COX TRANSFORMATION

The Box–Cox transformation is a device for generalizing the linear model. The trans-
formation is3

x(λ) = xλ − 1
λ

.

In a regression model, the analysis can be done conditionally. For a given value of λ,
the model

y = α +
K∑

k=1

βkx(λ)
k + ε (9-15)

is a linear regression that can be estimated by least squares.4 In principle, each regressor
could be transformed by a different value of λ, but, in most applications, this level of
generality becomes excessively cumbersome, and λ is assumed to be the same for all
the variables in the model.5 At the same time, it is also possible to transform y, say, by

3Box and Cox (1964). To be defined for all values of λ, x must be strictly positive. See also Zarembka (1974).
4In most applications, some of the regressors—for example, dummy variable—will not be transformed. For
such a variable, say νk, ν

(λ)
k = νk, and the relevant derivatives in (9-16) will be zero.

5See, for example, Seaks and Layson (1983).
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y(θ). Transformation of the dependent variable, however, amounts to a specification of
the whole model, not just the functional form. We will examine this case more closely
in Section 17.6.2.

Example 9.6 Flexible Cost Function
Caves, Christensen, and Trethaway (1980) analyzed the costs of production for railroads
providing freight and passenger service. Continuing a long line of literature on the costs
of production in regulated industries, a translog cost function (see Section 14.3.2) would
be a natural choice for modeling this multiple-output technology. Several of the firms in
the study, however, produced no passenger service, which would preclude the use of the
translog model. (This model would require the log of zero.) An alternative is the Box–Cox
transformation, which is computable for zero output levels. A constraint must still be placed
on λ in their model, as 0(λ) is defined only if λ is strictly positive. A positive value of λ is
not assured. A question does arise in this context (and other similar ones) as to whether
zero outputs should be treated the same as nonzero outputs or whether an output of zero
represents a discrete corporate decision distinct from other variations in the output levels.
In addition, as can be seen in (9-16), this solution is only partial. The zero values of the
regressors preclude computation of appropriate standard errors.

If λ in (9-15) is taken to be an unknown parameter, then the regression becomes nonlin-
ear in the parameters. Although no transformation will reduce it to linearity, nonlinear
least squares is straightforward. In most instances, we can expect to find the least squares
value of λ between −2 and 2. Typically, then, λ is estimated by scanning this range for
the value that minimizes the sum of squares. When λ equals zero, the transformation is,
by L’Hôpital’s rule,

lim
λ→0

xλ − 1
λ

= lim
λ→0

d(xλ − 1)/dλ

1
= lim

λ→0
xλ × ln x = ln x.

Once the optimal value of λ is located, the least squares estimates, the mean squared
residual, and this value of λ constitute the nonlinear least squares (and, with normality
of the disturbance, maximum likelihood) estimates of the parameters.

After determining the optimal value of λ, it is sometimes treated as if it were a
known value in the least squares results. But λ̂ is an estimate of an unknown parameter.
It is not hard to show that the least squares standard errors will always underestimate
the correct asymptotic standard errors.6 To get the appropriate values, we need the
derivatives of the right-hand side of (9-15) with respect to α, β, and λ. In the notation
of Section 9.2.3, these are

∂h(.)

∂α
= 1,

∂h(.)

∂βk
= x(λ)

k , (9-16)

∂h(.)

∂λ
=

K∑
k=1

βk
∂x(λ)

k

∂λ
=

K∑
k=1

βk

[
1
λ

(
xλ

k ln xk − x(λ)
k

)]
.

6See Fomby, Hill, and Johnson (1984, pp. 426–431).
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We can now use (9-12) and (9-13) to estimate the asymptotic covariance matrix of the
parameter estimates. Note that ln xk appears in ∂h(.)/∂λ. If xk = 0, then this matrix
cannot be computed. This was the point noted at the end of Example 9.6.

It is important to remember that the coefficients in a nonlinear model are not equal
to the slopes (i.e., here the demand elasticities) with respect to the variables. For the
Box–Cox model,7

ln Y = α + β

[
Xλ − 1

λ

]
+ ε

dE [ln Y |X]
d ln X

= β Xλ = η.

(9-17)

Standard errors for these estimates can be obtained using the delta method. The deriva-
tives are ∂η/∂β = η/β and ∂η/∂λ = η ln X. Collecting terms, we obtain

Asy. Var[η̂] = (η/β)2{Asy. Var[β̂] + (β ln X)2Asy. Var[ λ̂] + (2β ln X)Asy. Cov[β̂, λ̂]
}
.

9.4 HYPOTHESIS TESTING AND PARAMETRIC
RESTRICTIONS

In most cases, the sorts of hypotheses one would test in this context will involve fairly
simple linear restrictions. The tests can be carried out using the usual formulas discussed
in Chapter 7 and the asymptotic covariance matrix presented earlier. For more involved
hypotheses and for nonlinear restrictions, the procedures are a bit less clear-cut. Three
principal testing procedures were discussed in Section 6.4 and Appendix C: the Wald,
likelihood ratio, and Lagrange multiplier tests. For the linear model, all three statistics
are transformations of the standard F statistic (see Section 17.6.1), so the tests are
essentially identical. In the nonlinear case, they are equivalent only asymptotically. We
will work through the Wald and Lagrange multiplier tests for the general case and
then apply them to the example of the previous section. Since we have not assumed
normality of the disturbances (yet), we will postpone treatment of the likelihood ratio
statistic until we revisit this model in Chapter 17.

9.4.1 SIGNIFICANCE TESTS FOR RESTRICTIONS:
F AND WALD STATISTICS

The hypothesis to be tested is

H0 : r(β) = q. (9-18)

where r(β) is a column vector of J continuous functions of the elements of β. These
restrictions may be linear or nonlinear. It is necessary, however, that they be overiden-
tifying restrictions. Thus, in formal terms, if the original parameter vector has K free
elements, then the hypothesis r(β) − q must impose at least one functional relationship

7We have used the result d ln Y/d ln X = Xd ln Y/dX.
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on the parameters. If there is more than one restriction, then they must be functionally
independent. These two conditions imply that the J × K matrix

R(β) = ∂r(β)

∂β ′ (9-19)

must have full row rank and that J , the number of restrictions, must be strictly less than
K. (This situation is analogous to the linear model, in which R(β) would be the matrix
of coefficients in the restrictions.)

Let b be the unrestricted, nonlinear least squares estimator, and let b∗ be the esti-
mator obtained when the constraints of the hypothesis are imposed.8 Which test statistic
one uses depends on how difficult the computations are. Unlike the linear model, the var-
ious testing procedures vary in complexity. For instance, in our example, the Lagrange
multiplier is by far the simplest to compute. Of the four methods we will consider, only
this test does not require us to compute a nonlinear regression.

The nonlinear analog to the familiar F statistic based on the fit of the regression
(i.e., the sum of squared residuals) would be

F[J, n − K] = [S(b∗) − S(b)]/J
S(b)/(n − K)

. (9-20)

This equation has the appearance of our earlier F ratio. In the nonlinear setting, how-
ever, neither the numerator nor the denominator has exactly the necessary chi-squared
distribution, so the F distribution is only approximate. Note that this F statistic requires
that both the restricted and unrestricted models be estimated.

The Wald test is based on the distance between r(b) and q. If the unrestricted esti-
mates fail to satisfy the restrictions, then doubt is cast on the validity of the restrictions.
The statistic is

W = [r(b) − q]′
{

Est.Asy. Var[r(b) − q]
}−1[r(b) − q]

= [r(b) − q]′
{

R(b)V̂R′(b)
}−1[r(b) − q],

(9-21)

where

V̂ = Est.Asy. Var[b],

and R(b) is evaluated at b, the estimate of β.
Under the null hypothesis, this statistic has a limiting chi-squared distribution with

J degrees of freedom. If the restrictions are correct, the Wald statistic and J times the F
statistic are asymptotically equivalent. The Wald statistic can be based on the estimated
covariance matrix obtained earlier using the unrestricted estimates, which may provide
a large savings in computing effort if the restrictions are nonlinear. It should be noted
that the small-sample behavior of W can be erratic, and the more conservative F statistic
may be preferable if the sample is not large.

The caveat about Wald statistics that applied in the linear case applies here as well.
Because it is a pure significance test that does not involve the alternative hypothesis, the

8This computational problem may be extremely difficult in its own right, especially if the constraints are
nonlinear. We assume that the estimator has been obtained by whatever means are necessary.
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Wald statistic is not invariant to how the hypothesis is framed. In cases in which there
are more than one equivalent ways to specify r(β) = q, W can give different answers
depending on which is chosen.

9.4.2 TESTS BASED ON THE LM STATISTIC

The Lagrange multiplier test is based on the decrease in the sum of squared residuals
that would result if the restrictions in the restricted model were released. The formalities
of the test are given in Sections 17.5.3 and 17.6.1. For the nonlinear regression model,
the test has a particularly appealing form.9 Let e∗ be the vector of residuals yi −h(xi , b∗)
computed using the restricted estimates. Recall that we defined X0 as an n × K matrix
of derivatives computed at a particular parameter vector in (9-9). Let X0

∗ be this ma-
trix computed at the restricted estimates. Then the Lagrange multiplier statistic for the
nonlinear regression model is

LM = e′
∗X0

∗[X0′
∗ X0

∗]−1X0′
∗ e∗

e′∗e∗/n
. (9-22)

Under H0, this statistic has a limiting chi-squared distribution with J degrees of freedom.
What is especially appealing about this approach is that it requires only the restricted
estimates. This method may provide some savings in computing effort if, as in our
example, the restrictions result in a linear model. Note, also, that the Lagrange multiplier
statistic is n times the uncentered R2 in the regression of e∗ on X0

∗. Many Lagrange
multiplier statistics are computed in this fashion.

Example 9.7 Hypotheses Tests in a Nonlinear Regression Model
We test the hypothesis H0 : γ = 1 in the consumption function of Section 9.3.1.

• F statistic. The F statistic is

F [1,204 − 3] = (1,536,321.881 − 504,403.57)/1
504,403.57/(204 − 3)

= 411.29.

The critical value from the tables is 4.18, so the hypothesis is rejected.• Wald statistic. For our example, the Wald statistic is based on the distance of γ̂ from
1 and is simply the square of the asymptotic t ratio we computed at the end of the
example:

W = (1.244827 − 1)2

0.012052
= 412.805.

The critical value from the chi-squared table is 3.84.• Lagrange multiplier. For our example, the elements in x∗
i are

x∗
i = [1, Yγ , βγ Yγ ln Y ].

To compute this at the restricted estimates, we use the ordinary least squares
estimates for α and β and 1 for γ so that

x∗
i = [1, Y, βY ln Y ].

9This test is derived in Judge et al. (1985). A lengthy discussion appears in Mittelhammer et al. (2000).

William Greene
change 9-9  to  9-6
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The residuals are the least squares residuals computed from the linear regression.
Inserting the values given earlier, we have

LM = 996,103.9
(1,536,321.881/204)

= 132.267.

As expected, this statistic is also larger than the critical value from the chi-squared
table.

9.4.3 A SPECIFICATION TEST FOR NONLINEAR REGRESSIONS:
THE PE TEST

MacKinnon, White, and Davidson (1983) have extended the J test discussed in Sec-
tion 8.3.3 to nonlinear regressions. One result of this analysis is a simple test for linearity
versus loglinearity.

The specific hypothesis to be tested is

H0 : y = h0(x, β) + ε0

versus

H1 : g(y) = h1(z, γ ) + ε1,

where x and z are regressor vectors and β and γ are the parameters. As the authors
note, using y instead of, say, j (y) in the first function is nothing more than an implicit
definition of the units of measurement of the dependent variable.

An intermediate case is useful. If we assume that g(y) is equal to y but we allow h0(.)

and h1(.) to be nonlinear, then the necessary modification of the J test is straightforward,
albeit perhaps a bit more difficult to carry out. For this case, we form the compound
model

y = (1 − α)h0(x, β) + αh1(z, γ ) + ε

= h0(x, β) + α[h1(z, γ ) − h0(x, β)] + ε.
(9-23)

Presumably, both β and γ could be estimated in isolation by nonlinear least squares.
Suppose that a nonlinear least squares estimate of γ has been obtained. One approach
is to insert this estimate in (9-23) and then estimate β and α by nonlinear least squares.
The J test amounts to testing the hypothesis that α equals zero. Of course, the model
is symmetric in h0(.) and h1(.), so their roles could be reversed. The same conclusions
drawn earlier would apply here.

Davidson and MacKinnon (1981) propose what may be a simpler alternative. Given
an estimate of β, say β̂, approximate h0(x, β) with a linear Taylor series at this point.
The result is

h0(x, β) ≈ h0(x, β̂) +
[

∂h0(.)

∂β̂
′

]
(β − β̂) = ĥ0 + Ĥ0β − Ĥ0β̂. (9-24)

Using this device, they replace (9-23) with

y − ĥ0 = Ĥ0b + α[h1(z, γ̂ ) − h0(x, β̂)] + e,

in which b and α can be estimated by linear least squares. As before, the J test amounts
to testing the significance of α̂. If it is found that α̂ is significantly different from zero,
then H0 is rejected. For the authors’ asymptotic results to hold, any consistent estimator
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of β will suffice for β̂; the nonlinear least squares estimator that they suggest seems a
natural choice.10

Now we can generalize the test to allow a nonlinear function, g(y), in H1. Davidson
and MacKinnon require g(y) to be monotonic, continuous, and continuously
differentiable and not to introduce any new parameters. (This requirement excludes
the Box–Cox model, which is considered in Section 9.3.2.) The compound model that
forms the basis of the test is

(1 − α)[y − h0(x, β)] + α[g(y) − h1(z, γ )] = ε. (9-25)

Again, there are two approaches. As before, if γ̂ is an estimate of γ , then β and α can be
estimated by maximum likelihood conditional on this estimate.11 This method promises
to be extremely messy, and an alternative is proposed. Rewrite (9-25) as

y − h0(x, β) = α[h1(z, γ ) − g(y)] + α[y − h0(x, β)] + ε.

Now use the same linear Taylor series expansion for h0(x, β) on the left-hand side and
replace both y and h0(x, β) with ĥ0 on the right. The resulting model is

y − ĥ0 = Ĥ0b + α[ĥ1 − g(ĥ0)] + e. (9-26)

As before, with an estimate of β, this model can be estimated by least squares.
This modified form of the J test is labeled the PE test. As the authors discuss, it is

probably not as powerful as any of the Wald or Lagrange multiplier tests that we have
considered. In their experience, however, it has sufficient power for applied research
and is clearly simple to carry out.

The PE test can be used to test a linear specification against a loglinear model. For
this test, both h0(.) and h1(.) are linear, whereas g(y) = ln y. Let the two competing
models be denoted

H0 : y = x′β + ε

and

H1 : ln y = ln(x)′γ + ε.

[We stretch the usual notational conventions by using ln(x) for (ln x1, . . . , ln xk).] Now
let b and c be the two linear least squares estimates of the parameter vectors. The PE test
for H1 as an alternative to H0 is carried out by testing the significance of the coefficient
α̂ in the model

y = x′β + α[ l̂n y − ln(x′b)] + φ. (9-27)

The second term is the difference between predictions of ln y obtained directly from
the loglinear model and obtained as the log of the prediction from the linear model.
We can also reverse the roles of the two formulas and test H0 as the alternative. The

10This procedure assumes that H0 is correct, of course.
11Least squares will be inappropriate because of the transformation of y, which will translate to a Jacobian
term in the log-likelihood. See the later discussion of the Box–Cox model.
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TABLE 9.2 Estimated Money Demand Equations

a br cY R2 s

Linear −228.714 −23.849 0.1770 0.95548 76.277
(13.891) (2.044) (0.00278)

PE test for the linear model, α̂ = −121.496 (46.353), t = −2.621

Loglinear −8.9473 −0.2590 1.8205 0.96647 0.14825
(0.2181) (0.0236) (0.0289)

PE test for the loglinear model, α̂ = −0.0003786 (0.0001969), t = 1.925

compound regression is

ln y = ln(x)′γ + α
(

ŷ − eln(x)′c) + ε. (9-28)

The test of linearity vs. loglinearity has been the subject of a number of studies.
Godfrey and Wickens (1982) discuss several approaches.

Example 9.8 Money Demand
A large number of studies have estimated money demand equations, some linear and some
log-linear.12 Quarterly data from 1950 to 2000 for estimation of a money demand equation
are given in Appendix Table F5.1. The interest rate is the quarterly average of the monthly
average 90 day T-bill rate. The money stock is M1. Real GDP is seasonally adjusted and
stated in 1996 constant dollars. Results of the PE test of the linear versus the loglinear model
are shown in Table 9.2.

Regressions of M on a constant, r and Y , and ln M on a constant, ln r and ln Y , produce
the results given in Table 9.2 (standard errors are given in parentheses). Both models appear
to fit quite well,13 and the pattern of significance of the coefficients is the same in both
equations. After computing fitted values from the two equations, the estimates of α from the
two models are as shown in Table 9.2. Referring these to a standard normal table, we reject
the linear model in favor of the loglinear model.

9.5 ALTERNATIVE ESTIMATORS FOR NONLINEAR
REGRESSION MODELS

Section 9.2 discusses the “standard” case in which the only complication to the classical
regression model of Chapter 2 is that the conditional mean function in yi = h(xi , β)+εi

is a nonlinear function of β. This fact mandates an alternative estimator, nonlinear
least squares, and some new interpretation of the “regressors” in the model. In this
section, we will consider two extensions of these results. First, as in the linear case,
there can be situations in which the assumption that Cov[xi , εi ] = 0 is not reasonable.
These situations will, as before, require an instrumental variables treatment, which we
consider in Section 9.5.1. Second, there will be models in which it is convenient to
estimate the parameters in two steps, estimating one subset at the first step and then
using these estimates in a second step at which the remaining parameters are estimated.

12A comprehensive survey appears in Goldfeld (1973).
13The interest elasticity is in line with the received results. The income elasticity is quite a bit larger.
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We will have to modify our asymptotic results somewhat to accommodate this estimation
strategy. The two-step estimator is discussed in Section 9.5.2.

9.5.1 NONLINEAR INSTRUMENTAL VARIABLES ESTIMATION

In Section 5.4, we extended the linear regression model to allow for the possibility that
the regressors might be correlated with the disturbances. The same problem can arise in
nonlinear models. The consumption function estimated in Section 9.3.1 is almost surely
a case in point, and we reestimated it using the instrumental variables technique for
linear models in Example 5.3. In this section, we will extend the method of instrumental
variables to nonlinear regression models.

In the nonlinear model,

yi = h(xi , β) + εi ,

the covariates xi may be correlated with the disturbances. We would expect this effect
to be transmitted to the pseudoregressors, x0

i = ∂h(xi , β)/∂β. If so, then the results that
we derived for the linearized regression would no longer hold. Suppose that there is a
set of variables [z1, . . . , zL] such that

plim(1/n)Z′ε = 0 (9-29)

and

plim(1/n)Z′X0 = Q0
zx �= 0,

where X0 is the matrix of pseudoregressors in the linearized regression, evaluated at the
true parameter values. If the analysis that we did for the linear model in Section 5.4 can
be applied to this set of variables, then we will be able to construct a consistent estimator
for β using the instrumental variables. As a first step, we will attempt to replicate the
approach that we used for the linear model. The linearized regression model is given in
(9-7),

y = h(X, β) + ε ≈ h0 + X0(β − β0) + ε

or

y0 ≈ X0β + ε,

where

y0 = y − h0 + X0β0.

For the moment, we neglect the approximation error in linearizing the model. In (9-29),
we have assumed that

plim(1/n)Z′y0 = plim (1/n)Z′X0β. (9-30)

Suppose, as we did before, that there are the same number of instrumental variables
as there are parameters, that is, columns in X0. (Note: This number need not be the
number of variables. See our preceding example.) Then the “estimator” used before is
suggested:

bIV = (Z′X0)−1Z′y0. (9-31)
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The logic is sound, but there is a problem with this estimator. The unknown parameter
vector β appears on both sides of (9-30). We might consider the approach we used for
our first solution to the nonlinear regression model. That is, with some initial estima-
tor in hand, iterate back and forth between the instrumental variables regression and
recomputing the pseudoregressors until the process converges to the fixed point that
we seek. Once again, the logic is sound, and in principle, this method does produce the
estimator we seek.

If we add to our preceding assumptions

1√
n

Z′ε d−→ N[0, σ 2Qzz],

then we will be able to use the same form of the asymptotic distribution for this estimator
that we did for the linear case. Before doing so, we must fill in some gaps in the preceding.
First, despite its intuitive appeal, the suggested procedure for finding the estimator is
very unlikely to be a good algorithm for locating the estimates. Second, we do not wish to
limit ourselves to the case in which we have the same number of instrumental variables as
parameters. So, we will consider the problem in general terms. The estimation criterion
for nonlinear instrumental variables is a quadratic form,

Minβ S(β) = 1
2

{
[y − h(X, β)]′Z

}
(Z′Z)−1

{
Z′[y − h(X, β)]

}

= 1
2ε(β)′Z(Z′Z)−1Z′ε(β).

The first-order conditions for minimization of this weighted sum of squares are

∂S(β)

∂β
= −X0′Z(Z′Z)−1Z′ε(β) = 0.

This result is the same one we had for the linear model with X0 in the role of X. You
should check that when ε(β) = y − Xβ, our results for the linear model in Section 9.5.1
are replicated exactly. This problem, however, is highly nonlinear in most cases, and the
repeated least squares approach is unlikely to be effective. But it is a straightforward
minimization problem in the frameworks of Appendix E, and instead, we can just treat
estimation here as a problem in nonlinear optimization.

We have approached the formulation of this instrumental variables estimator more
or less strategically. However, there is a more structured approach. The orthogonality
condition

plim(1/n)Z′ε = 0

defines a GMM estimator. With the homoscedasticity and nonautocorrelation assump-
tion, the resultant minimum distance estimator produces precisely the criterion function
suggested above. We will revisit this estimator in this context, in Chapter 18.

With well-behaved pseudoregressors and instrumental variables, we have the gen-
eral result for the nonlinear instrumental variables estimator; this result is discussed at
length in Davidson and MacKinnon (1993).
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THEOREM 9.3 Asymptotic Distribution of the Nonlinear
Instrumental Variables Estimator

With well-behaved instrumental variables and pseudoregressors,

bIV
a∼ N

[
β, σ 2(Q0

xz(Qzz)
−1Q0

zx

)−1]
.

We estimate the asymptotic covariance matrix with

Est.Asy. Var[bIV] = σ̂ 2[X̂0′Z(Z′Z)−1Z′X̂0]−1,

where X̂0 is X0 computed using bIV.

As a final observation, note that the “two-stage least squares” interpretation of the
instrumental variables estimator for the linear model still applies here, with respect
to the IV estimator. That is, at the final estimates, the first-order conditions (normal
equations) imply that

X0′Z(Z′Z)−1Z′y = X0′Z(Z′Z)−1Z′X0β,

which says that the estimates satisfy the normal equations for a linear regression of y (not
y0) on the predictions obtained by regressing the columns of X0 on Z. The interpretation
is not quite the same here, because to compute the predictions of X0, we must have the
estimate of β in hand. Thus, this two-stage least squares approach does not show how
to compute bIV; it shows a characteristic of bIV.

Example 9.9 Instrumental Variables Estimates of the
Consumption Function

The consumption function in Section 9.3.1 was estimated by nonlinear least squares without
accounting for the nature of the data that would certainly induce correlation between X0

and ε. As we did earlier, we will reestimate this model using the technique of instrumental
variables. For this application, we will use the one-period lagged value of consumption and
one- and two-period lagged values of income as instrumental variables estimates. Table 9.3
reports the nonlinear least squares and instrumental variables estimates. Since we are using
two periods of lagged values, two observations are lost. Thus, the least squares estimates
are not the same as those reported earlier.

The instrumental variable estimates differ considerably from the least squares estimates.
The differences can be deceiving, however. Recall that the MPC in the model is βYγ−1. The
2000.4 value for DPI that we examined earlier was 6634.9. At this value, the instrumental
variables and least squares estimates of the MPC are 0.8567 with an estimated standard
error of 0.01234 and 1.08479 with an estimated standard error of 0.008694, respectively.
These values do differ a bit but less than the quite large differences in the parameters might
have led one to expect. We do note that both of these are considerably greater than the
estimate in the linear model, 0.9222 (and greater than one, which seems a bit implausible).

9.5.2 TWO-STEP NONLINEAR LEAST SQUARES ESTIMATION

In this section, we consider a special case of this general class of models in which the
nonlinear regression model depends on a second set of parameters that is estimated
separately.
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TABLE 9.3 Nonlinear Least Squares and Instrumental Variable Estimates

Instrumental Variables Least Squares

Parameter Estimate Standard Error Estimate Standard Error

α 627.031 26.6063 468.215 22.788
β 0.040291 0.006050 0.0971598 0.01064
γ 1.34738 0.016816 1.24892 0.1220
σ 57.1681 — 49.87998 —
e′e 650,369.805 — 495,114.490 —

The model is

y = h(x, β, w, γ ) + ε.

We consider cases in which the auxiliary parameter γ is estimated separately in a model
that depends on an additional set of variables w. This first step might be a least squares
regression, a nonlinear regression, or a maximum likelihood estimation. The parameters
γ will usually enter h(.) through some function of γ and w, such as an expectation. The
second step then consists of a nonlinear regression of y on h(x, β, w, c) in which c is the
first-round estimate of γ . To put this in context, we will develop an example.

The estimation procedure is as follows.

1. Estimate γ by least squares, nonlinear least squares, or maximum likelihood. We
assume that this estimator, however obtained, denoted c, is consistent and asymp-
totically normally distributed with asymptotic covariance matrix Vc. Let V̂c be any
appropriate estimator of Vc.

2. Estimate β by nonlinear least squares regression of y on h(x, β, w, c). Let σ 2Vb

be the asymptotic covariance matrix of this estimator of β, assuming γ is known
and let s2V̂b be any appropriate estimator of σ 2Vb = σ 2(X0′X0)−1, where X0

is the matrix of pseudoregressors evaluated at the true parameter values x0
i =

∂h(xi , β, wi , γ )/∂β.

The argument for consistency of b is based on the Slutsky Theorem, D.12 as we treat b as a
function of c and the data. We require, as usual, well-behaved pseudoregressors. As long
as c is consistent for γ , the large-sample behavior of the estimator of β conditioned on c
is the same as that conditioned on γ , that is, as if γ were known. Asymptotic normality is
obtained along similar lines (albeit with greater difficulty). The asymptotic covariance
matrix for the two-step estimator is provided by the following theorem.

THEOREM 9.4 Asymptotic Distribution of the Two-Step Nonlinear
Least Squares Estimator [Murphy and Topel (1985)]

Under the standard conditions assumed for the nonlinear least squares estima-
tor, the second-step estimator of β is consistent and asymptotically normally dis-
tributed with asymptotic covariance matrix

V∗
b = σ 2Vb + Vb[CVcC′ − CVcR′ − RVcC′]Vb,
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THEOREM 9.4 (Continued)
where

C = n plim
1
n

n∑
i=1

x0
i ε̂

2
i

(
∂h(xi , β, wi , γ )

∂γ ′

)

and

R = n plim
1
n

n∑
i=1

x0
i ε̂i

(
∂g(wi , γ )

∂γ ′

)
.

The function ∂g(.)/∂γ in the definition of R is the gradient of the ith term in the
log-likelihood function if γ is estimated by maximum likelihood. (The precise
form is shown below.) If γ appears as the parameter vector in a regression model,

zi = f (wi , γ ) + ui , (9-32)

then ∂g(.)/∂γ will be a derivative of the sum of squared deviations function,

∂g(.)

∂γ
= ui

∂ f (wi , γ )

∂γ
.

If this is a linear regression, then the derivative vector is just wi .

Implementation of the theorem requires that the asymptotic covariance matrix
computed as usual for the second-step estimator based on c instead of the true γ must
be corrected for the presence of the estimator c in b.

Before developing the application, we note how some important special cases are
handled. If γ enters h(.) as the coefficient vector in a prediction of another variable in
a regression model, then we have the following useful results.

Case 1 Linear regression models. If h(.) = x′
iβ + δE [zi | wi ] + εi , where E [zi | wi ] =

w′
iγ , then the two models are just fit by linear least squares as usual. The regression

for y includes an additional variable, w′
i c. Let d be the coefficient on this new variable.

Then

Ĉ = d
n∑

i=1

e2
i xi w′

i

and

R̂ =
n∑

i=1

(ei ui )xi w′
i .

Case 2 Uncorrelated linear regression models. In Case 1, if the two regression distur-
bances are uncorrelated, then R = 0.

Case 2 is general. The terms in R vanish asymptotically if the regressions have
uncorrelated disturbances, whether either or both of them are linear. This situation will
be quite common.
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Case 3 Prediction from a nonlinear model. In Cases 1 and 2, if E [zi | wi ] is a nonlinear
function rather than a linear function, then it is only necessary to change wi to w0

i =
∂ E [zi | wi ]/∂γ —a vector of pseudoregressors—in the definitions of C and R.

Case 4 Subset of regressors. In case 2 (but not in case 1), if w contains all the variables
that are in x, then the appropriate estimator is simply

V∗
b = s2

e

(
1 + c2s2

u

s2
e

)
(X∗′X∗)−1,

where X∗ includes all the variables in x as well as the prediction for z.

All these cases carry over to the case of a nonlinear regression function for y. It
is only necessary to replace xi , the actual regressors in the linear model, with x0

i , the
pseudoregressors.

9.5.3 TWO-STEP ESTIMATION OF A CREDIT SCORING MODEL

Greene (1995c) estimates a model of consumer behavior in which the dependent vari-
able of interest is the number of major derogatory reports recorded in the credit history
of a sample of applicants for a type of credit card. In fact, this particular variable is one
of the most significant determinants of whether an application for a loan or a credit card
will be accepted. This dependent variable y is a discrete variable that at any time, for
most consumers, will equal zero, but for a significant fraction who have missed several
revolving credit payments, it will take a positive value. The typical values are zero, one,
or two, but values up to, say, 10 are not unusual. This count variable is modeled using a
Poisson regression model. This model appears in Sections B.4.8, 22.2.1, 22.3.7, and 21.9.
The probability density function for this discrete random variable is

Prob[yi = j] = e−λi λ
j
i

j!
.

The expected value of yi is λi , so depending on how λi is specified and despite the unusual
nature of the dependent variable, this model is a linear or nonlinear regression model.
We will consider both cases, the linear model E [yi | xi ] = x′

iβ and the more common
loglinear model E [yi | xi ] = ex′

i β , where xi might include such covariates as age, income,
and typical monthly credit account expenditure. This model is usually estimated by
maximum likelihood. But since it is a bona fide regression model, least squares, either
linear or nonlinear, is a consistent, if inefficient, estimator.

In Greene’s study, a secondary model is fit for the outcome of the credit card
application. Let zi denote this outcome, coded 1 if the application is accepted, 0 if not.
For purposes of this example, we will model this outcome using a logit model (see the
extensive development in Chapter 21, esp. Section 21.3). Thus

Prob[zi = 1] = P(wi , γ ) = ew′
i γ

1 + ew′
i γ

,

where wi might include age, income, whether the applicants own their own homes, and
whether they are self-employed; these are the sorts of variables that “credit scoring”
agencies examine.
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Finally, we suppose that the probability of acceptance enters the regression model
as an additional explanatory variable. (We concede that the power of the underlying
theory wanes a bit here.) Thus, our nonlinear regression model is

E [yi | xi ] = x′
iβ + δP(wi , γ ) (linear)

or

E [yi | xi ] = ex′
i β+δP(wi ,γ ) (loglinear, nonlinear).

The two-step estimation procedure consists of estimation of γ by maximum likelihood,
then computing P̂i = P(wi , c), and finally estimating by either linear or nonlinear
least squares [β, δ] using P̂i as a constructed regressor. We will develop the theoretical
background for the estimator and then continue with implementation of the estimator.

For the Poisson regression model, when the conditional mean function is linear,
x0

i = xi . If it is loglinear, then

x0
i = ∂λi/∂β = ∂ exp(x′

iβ)/∂β = λi xi ,

which is simple to compute. When P(wi , γ ) is included in the model, the pseudoregressor
vector x0

i includes this variable and the coefficient vector is [β, δ]. Then

V̂b = 1
n

n∑
i=1

[yi − h(xi ,wi , b, c)]2 × (X0′X0)−1,

where X0 is computed at [b, d, c], the final estimates.
For the logit model, the gradient of the log-likelihood and the estimator of Vc are

given in Section 21.3.1. They are

∂ ln f (zi | wi , γ )/∂γ = [zi − P(wi , γ )]wi

and

V̂c =
[

n∑
i=1

[zi − P(wi , γ̂ )]2wi w′
i

]−1

.

Note that for this model, we are actually inserting a prediction from a regression model
of sorts, since E [zi | wi ] = P(wi , γ ). To compute C, we will require

∂h(.)/∂γ = λiδ ∂ Pi/∂γ = λiδPi (1 − Pi )wi .

The remaining parts of the corrected covariance matrix are computed using

Ĉ =
n∑

i=1

(
λ̂i x̂0

i ε̂
2
i

)
[λ̂i d P̂i (1 − P̂i )]w′

i

and

R̂ =
n∑

i=1

(
λ̂i x̂0

i ε̂i
)
(zi − P̂i )w′

i .

(If the regression model is linear, then the three occurrences of λi are omitted.)
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TABLE 9.4 Two-Step Estimates of a Credit Scoring Model

Step 1. P(wi, γ ) Step 2. E[ yi | xi] = x′
iβ + δ Pi Step 2. E[ yi | xi] = ex′

iβ+δPi

Variable Est. St.Er. Est. St.Er.* St.Er.* Est. St.Er. Se.Er.*

Constant 2.7236 1.0970 −1.0628 1.1907 1.2681 −7.1969 6.2708 49.3854
Age −0.7328 0.02961 0.021661 0.018756 0.020089 0.079984 0.08135 0.61183
Income 0.21919 0.14296 0.03473 0.07266 0.082079 −0.1328007 0.21380 1.8687
Self-empl −1.9439 1.01270
Own Rent 0.18937 0.49817
Expend −0.000787 0.000368 0.000413 −0.28008 0.96429 0.96969
P(wi , γ ) 1.0408 1.0653 1.177299 6.99098 5.7978 49.34414
ln L −53.925
e′e 95.5506 80.31265
s 0.977496 0.89617
R2 0.05433 0.20514
Mean 0.73 0.36 0.36

Data used in the application are listed in Appendix Table F9.1. We use the following
model:

Prob[zi = 1] = P(age, income, own rent, self-employed),

E [yi ] = h(age, income, expend).

We have used 100 of the 1,319 observations used in the original study. Table 9.4 reports
the results of the various regressions and computations. The column denoted St.Er.*
contains the corrected standard error. The column marked St.Er. contains the standard
errors that would be computed ignoring the two-step nature of the computations. For
the linear model, we used e′e/n to estimate σ 2.

As expected, accounting for the variability in c increases the standard errors of the
second-step estimator. The linear model appears to give quite different results from the
nonlinear model. But this can be deceiving. In the linear model, ∂ E [yi | xi , Pi ]/∂xi =
β whereas in the nonlinear model, the counterpart is not β but λiβ. The value of
λi at the mean values of all the variables in the second-step model is roughly 0.36
(the mean of the dependent variable), so the marginal effects in the nonlinear model
are [0.0224, −0.0372, −0.07847, 1.9587], respectively, including Pi but not the constant,
which are reasonably similar to those for the linear model. To compute an asymptotic
covariance matrix for the estimated marginal effects, we would use the delta method
from Sections D.2.7 and D.3.1. For convenience, let bp = [b′, d]′, and let vi = [x′

i , P̂i ]′,
which just adds Pi to the regressor vector so we need not treat it separately. Then the
vector of marginal effects is

m = exp(v′
i bp) × bp = λi bp.

The matrix of derivatives is

G = ∂m/∂bp = λi (I + bpv′
i ),

so the estimator of the asymptotic covariance matrix for m is

Est.Asy. Var[m] = GV∗
bG′.

William Greene
change   Se.  to  St.
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TABLE 9.5 Maximum Likelihood Estimates of Second-Step Regression Model

Constant Age Income Expend P

Estimate −6.3200 0.073106 0.045236 −0.00689 4.6324
Std.Error 3.9308 0.054246 0.17411 0.00202 3.6618
Corr.Std.Error 9.0321 0.102867 0.402368 0.003985 9.918233

One might be tempted to treat λi as a constant, in which case only the first term in
the quadratic form would appear and the computation would amount simply to mul-
tiplying the asymptotic standard errors for bp by λi . This approximation would leave
the asymptotic t ratios unchanged, whereas making the full correction will change the
entire covariance matrix. The approximation will generally lead to an understatement
of the correct standard errors.

Finally, although this treatment is not discussed in detail until Chapter 18, we note at
this point that nonlinear least squares is an inefficient estimator in the Poisson regression
model; maximum likelihood is the preferred, efficient estimator. Table 9.5 presents the
maximum likelihood estimates with both corrected and uncorrected estimates of the
asymptotic standard errors of the parameter estimates. (The full discussion of the model
is given in Section 21.9.) The corrected standard errors are computed using the methods
shown in Section 17.7. A comparison of these estimates with those in the third set of
Table 9.4 suggests the clear superiority of the maximum likelihood estimator.

9.6 SUMMARY AND CONCLUSIONS

In this chapter, we extended the regression model to a form which allows nonlinearity
in the parameters in the regression function. The results for interpretation, estimation,
and hypothesis testing are quite similar to those for the linear model. The two crucial
differences between the two models are, first, the more involved estimation procedures
needed for the nonlinear model and, second, the ambiguity of the interpretation of the
coefficients in the nonlinear model (since the derivatives of the regression are often
nonconstant, in contrast to those in the linear model.) Finally, we added two additional
levels of generality to the model. A nonlinear instrumental variables estimator is sug-
gested to accommodate the possibility that the disturbances in the model are correlated
with the included variables. In the second application, two-step nonlinear least squares
is suggested as a method of allowing a model to be fit while including functions of
previously estimated parameters.

Key Terms and Concepts

• Box–Cox transformation
• Consistency
• Delta method
• GMM estimator
• Identification
• Instrumental variables

estimator
• Iteration

• Linearized regression model
• LM test
• Logit
• Multicollinearity
• Nonlinear model
• Normalization
• Orthogonality condition
• Overidentifying restrictions

• PE test
• Pseudoregressors
• Semiparametric
• Starting values
• Translog
• Two-step estimation
• Wald test
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Exercises

1. Describe how to obtain nonlinear least squares estimates of the parameters of the
model y = αxβ + ε.

2. Use MacKinnon, White, and Davidson’s PE test to determine whether a linear or
loglinear production model is more appropriate for the data in Appendix Table
F6.1. (The test is described in Section 9.4.3 and Example 9.8.)

3. Using the Box–Cox transformation, we may specify an alternative to the Cobb–
Douglas model as

ln Y = α + βk
(Kλ − 1)

λ
+ βl

(Lλ − 1)

λ
+ ε.

Using Zellner and Revankar’s data in Appendix Table F9.2, estimate α, βk, βl , and
λ by using the scanning method suggested in Section 9.3.2. (Do not forget to scale
Y, K, and L by the number of establishments.) Use (9-16), (9-12), and (9-13) to
compute the appropriate asymptotic standard errors for your estimates. Compute
the two output elasticities, ∂ ln Y/∂ ln K and ∂ ln Y/∂ ln L, at the sample means of
K and L. [Hint: ∂ ln Y/∂ ln K = K ∂ ln Y/∂K.]

4. For the model in Exercise 3, test the hypothesis that λ = 0 using a Wald test, a
likelihood ratio test, and a Lagrange multiplier test. Note that the restricted model
is the Cobb–Douglas log-linear model.

5. To extend Zellner and Revankar’s model in a fashion similar to theirs, we can use
the Box–Cox transformation for the dependent variable as well. Use the method
of Example 17.6 (with θ = λ) to repeat the study of the preceding two exercises.
How do your results change?

6. Verify the following differential equation, which applies to the Box–Cox transfor-
mation:

di x(λ)

dλi
=

(
1
λ

)[
xλ(ln x)i − idi−1x(λ)

dλi−1

]
. (9-33)

Show that the limiting sequence for λ = 0 is

lim
λ→0

di x(λ)

dλi
= (ln x)i+1

i + 1
. (9-34)

These results can be used to great advantage in deriving the actual second deriva-
tives of the log-likelihood function for the Box–Cox model.
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NONSPHERICAL
DISTURBANCES—THE

GENERALIZED REGRESSION
MODEL

Q
10.1 INTRODUCTION

In Chapter 9, we extended the classical linear model to allow the conditional mean
to be a nonlinear function.1 But we retained the important assumptions about the
disturbances: that they are uncorrelated with each other and that they have a constant
variance, conditioned on the independent variables. In this and the next several chapters,
we extend the multiple regression model to disturbances that violate these classical
assumptions. The generalized linear regression model is

y = Xβ + ε,

E [ε | X] = 0, (10-1)

E [εε′ | X] = σ 2� = �,

where � is a positive definite matrix. (The covariance matrix is written in the form σ 2�

at several points so that we can obtain the classical model, σ 2I, as a convenient special
case.) As we will examine briefly below, the extension of the model to nonlinearity is
relatively minor in comparison with the variants considered here. For present purposes,
we will retain the linear specification and refer to our model simply as the generalized
regression model.

Two cases we will consider in detail are heteroscedasticity and autocorrelation. Dis-
turbances are heteroscedastic when they have different variances. Heteroscedasticity
usually arises in volatile high frequency time-series data such as daily observations in
financial markets and in cross-section data where the scale of the dependent variable
and the explanatory power of the model tend to vary across observations. Microeco-
nomic data such as expenditure surveys are typical. The disturbances are still assumed
to be uncorrelated across observations, so σ 2� would be

σ 2� = σ 2




ω11 0 · · · 0
0 ω22 · · · 0

...

0 0 · · · ωnn


 =




σ 2
1 0 · · · 0

0 σ 2
2 · · · 0

...

0 0 · · · σ 2
n


 .

1Recall that our definition of nonlinearity pertains to the estimation method required to obtain the parameter
estimates, not to the way that they enter the regression function.

191
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(The first mentioned situation involving financial data is more complex than this, and is
examined in detail in Section 11.8.)

Autocorrelation is usually found in time-series data. Economic time series often
display a “memory” in that variation around the regression function is not independent
from one period to the next. The seasonally adjusted price and quantity series published
by government agencies are examples. Time-series data are usually homoscedastic, so
σ 2� might be

σ 2� = σ 2




1 ρ1 · · · ρn−1

ρ1 1 · · · ρn−2
...

ρn−1 ρn−2 · · · 1


 .

The values that appear off the diagonal depend on the model used for the disturbance.
In most cases, consistent with the notion of a fading memory, the values decline as we
move away from the diagonal.

Panel data sets, consisting of cross sections observed at several points in time, may
exhibit both characteristics. We shall consider them in Chapter 14. This chapter presents
some general results for this extended model. The next several chapters examine in
detail specific types of generalized regression models.

Our earlier results for the classical model will have to be modified. We will take the
same approach in this chapter on general results and in the next two on heteroscedas-
ticity and serial correlation, respectively:

1. We first consider the consequences for the least squares estimator of the more
general form of the regression model. This will include assessing the effect of
ignoring the complication of the generalized model and of devising an appropriate
estimation strategy, still based on least squares.

2. In subsequent sections, we will examine alternative estimation approaches that
can make better use of the characteristics of the model. We begin with GMM
estimation, which is robust and semiparametric. Minimal assumptions about � are
made at this point.

3. We then narrow the assumptions and begin to look for methods of detecting the
failure of the classical model—that is, we formulate procedures for testing the
specification of the classical model against the generalized regression.

4. The final step in the analysis is to formulate parametric models that make specific
assumptions about �. Estimators in this setting are some form of generalized least
squares or maximum likelihood.

The model is examined in general terms in this and the next two chapters. Major applica-
tions to panel data and multiple equation systems are considered in Chapters 13 and 14.

10.2 LEAST SQUARES AND INSTRUMENTAL
VARIABLES ESTIMATION

The essential results for the classical model with spherical disturbances

E [ε | X] = 0
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and

E [εε′ | X] = σ 2I (10-2)

are presented in Chapters 2 through 8. To reiterate, we found that the ordinary least
squares (OLS) estimator

b = (X′X)−1X′y = β + (X′X)−1X′ε (10-3)

is best linear unbiased (BLU), consistent and asymptotically normally distributed
(CAN), and if the disturbances are normally distributed, like other maximum likelihood
estimators considered in Chapter 17, asymptotically efficient among all CAN estimators.
We now consider which of these properties continue to hold in the model of (10-1).

To summarize, the least squares, nonlinear least squares, and instrumental variables
estimators retain only some of their desirable properties in this model. Least squares
remains unbiased, consistent, and asymptotically normally distributed. It will, however,
no longer be efficient—this claim remains to be verified—and the usual inference pro-
cedures are no longer appropriate. Nonlinear least squares and instrumental variables
likewise remain consistent, but once again, the extension of the model brings about
some changes in our earlier results concerning the asymptotic distributions. We will
consider these cases in detail.

10.2.1 FINITE-SAMPLE PROPERTIES OF ORDINARY
LEAST SQUARES

By taking expectations on both sides of (10-3), we find that if E [ε | X] = 0, then

E [b] = EX[E [b | X]] = β. (10-4)

Therefore, we have the following theorem.

THEOREM 10.1 Finite Sample Properties of b in the Generalized
Regression Model

If the regressors and disturbances are uncorrelated, then the unbiasedness of least
squares is unaffected by violations of assumption (10-2). The least squares estima-
tor is unbiased in the generalized regression model. With nonstochastic regressors,
or conditional on X, the sampling variance of the least squares estimator is

Var[b | X] = E [(b − β)(b − β)′ | X]

= E [(X′X)−1X′εε′X(X′X)−1 | X]

= (X′X)−1X′(σ 2�)X(X′X)−1 (10-5)

= σ 2

n

(
1
n

X′X
)−1(1

n
X′�X

)(
1
n

X′X
)−1

.

If the regressors are stochastic, then the unconditional variance is EX [Var[b | X]].
In (10-3), b is a linear function of ε. Therefore, if ε is normally distributed, then

b | X ∼ N[β, σ 2(X′X)−1(X′�X)(X′X)−1].
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The end result is that b has properties that are similar to those in the classical
regression case. Since the variance of the least squares estimator is not σ 2(X′X)−1,
however, statistical inference based on s2(X′X)−1 may be misleading. Not only is this
the wrong matrix to be used, but s2 may be a biased estimator of σ 2. There is usually
no way to know whether σ 2(X′X)−1 is larger or smaller than the true variance of b,
so even with a good estimate of σ 2, the conventional estimator of Var[b] may not be
particularly useful. Finally, since we have dispensed with the fundamental underlying
assumption, the familiar inference procedures based on the F and t distributions will no
longer be appropriate. One issue we will explore at several points below is how badly
one is likely to go awry if the result in (10-5) is ignored and if the use of the familiar
procedures based on s2(X′X)−1 is continued.

10.2.2 ASYMPTOTIC PROPERTIES OF LEAST SQUARES

If Var[b | X] converges to zero, then b is mean square consistent. With well-behaved
regressors, (X′X/n)−1 will converge to a constant matrix. But (σ 2/n)(X′�X/n) need
not converge at all. By writing this product as

σ 2

n

(
X′�X

n

)
=

(
σ 2

n

)(∑n
i=1

∑n
j=1 ωi j xi x′

j

n

)
(10-6)

we see that though the leading constant will, by itself, converge to zero, the matrix is a
sum of n2 terms, divided by n. Thus, the product is a scalar that is O(1/n) times a matrix
that is, at least at this juncture, O(n), which is O(1). So, it does appear at first blush that if
the product in (10-6) does converge, it might converge to a matrix of nonzero constants.
In this case, the covariance matrix of the least squares estimator would not converge to
zero, and consistency would be difficult to establish. We will examine in some detail, the
conditions under which the matrix in (10-6) converges to a constant matrix.2 If it does,
then since σ 2/n does vanish, ordinary least squares is consistent as well as unbiased.

THEOREM 10.2 Consistency of OLS in the Generalized
Regression Model

If Q = plim(X′X/n) and plim(X′�X/n) are both finite positive definite matrices,
then b is consistent for β. Under the assumed conditions,

plim b = β. (10-7)

The conditions in Theorem 10.2 depend on both X and �. An alternative formula3

that separates the two components is as follows. Ordinary least squares is consistent in
the generalized regression model if:

1. The smallest characteristic root of X′X increases without bound as n → ∞, which
implies that plim(X′X)−1 = 0. If the regressors satisfy the Grenander conditions
G1 through G3 of Section 5.2, then they will meet this requirement.

2In order for the product in (10-6) to vanish, it would be sufficient for (X′�X/n) to be O(nδ) where δ < 1.
3Amemiya (1985, p. 184).
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2. The largest characteristic root of � is finite for all n. For the heteroscedastic
model, the variances are the characteristic roots, which requires them to be finite.
For models with autocorrelation, the requirements are that the elements of � be
finite and that the off-diagonal elements not be too large relative to the diagonal
elements. We will examine this condition at several points below.

The least squares estimator is asymptotically normally distributed if the limiting
distribution of

√
n(b − β) =

(
X′X

n

)−1 1√
n

X′ε (10-8)

is normal. If plim(X′X/n) = Q, then the limiting distribution of the right-hand side is
the same as that of

vn,LS = Q−1 1√
n

X′ε = Q−1 1√
n

n∑
i=1

xiεi , (10-9)

where x′
i is a row of X (assuming, of course, that the limiting distribution exists at all).

The question now is whether a central limit theorem can be applied directly to v. If
the disturbances are merely heteroscedastic and still uncorrelated, then the answer is
generally yes. In fact, we already showed this result in Section 5.5.2 when we invoked
the Lindberg–Feller central limit theorem (D.19) or the Lyapounov Theorem (D.20).
The theorems allow unequal variances in the sum. The exact variance of the sum is

Ex

[
Var

[
1√
n

n∑
i=1

xiεi

]∣∣∣∣∣ xi

]
= σ 2

n

n∑
i=1

ωi Qi ,

which, for our purposes, we would require to converge to a positive definite matrix. In
our analysis of the classical model, the heterogeneity of the variances arose because of
the regressors, but we still achieved the limiting normal distribution in (5-7) through
(5-14). All that has changed here is that the variance of ε varies across observations as
well. Therefore, the proof of asymptotic normality in Section 5.2.2 is general enough to
include this model without modification. As long as X is well behaved and the diagonal
elements of � are finite and well behaved, the least squares estimator is asymptotically
normally distributed, with the covariance matrix given in (10-5). That is:

In the heteroscedastic case, if the variances of εi are finite and are not dominated
by any single term, so that the conditions of the Lindberg–Feller central limit
theorem apply to vn,LS in (10-9), then the least squares estimator is asymptotically
normally distributed with covariance matrix

Asy. Var[b] = σ 2

n
Q−1plim

(
1
n

X′�X
)

Q−1. (10-10)

For the most general case, asymptotic normality is much more difficult to establish
because the sums in (10-9) are not necessarily sums of independent or even uncorrelated
random variables. Nonetheless, Amemiya (1985, p. 187) and Anderson (1971) have
shown the asymptotic normality of b in a model of autocorrelated disturbances general
enough to include most of the settings we are likely to meet in practice. We will revisit
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this issue in Chapters 19 and 20 when we examine time series modeling. We can conclude
that, except in particularly unfavorable cases, we have the following theorem.

THEOREM 10.3 Asymptotic Distribution of b in the GR Model
If the regressors are sufficiently well behaved and the off-diagonal terms in �

diminish sufficiently rapidly, then the least squares estimator is asymptotically
normally distributed with mean β and covariance matrix given in (10-10).

There are two cases that remain to be considered, the nonlinear regression model
and the instrumental variables estimator.

10.2.3 ASYMPTOTIC PROPERTIES OF NONLINEAR
LEAST SQUARES

If the regression function is nonlinear, then the analysis of this section must be applied
to the pseudoregressors x0

i rather than the independent variables. Aside from this con-
sideration, no new results are needed. We can just apply this discussion to the linearized
regression model. Under most conditions, the results listed above apply to the nonlinear
least squares estimator as well as the linear least squares estimator.4

10.2.4 ASYMPTOTIC PROPERTIES OF THE INSTRUMENTAL
VARIABLES ESTIMATOR

The second estimator to be considered is the instrumental variables estimator that we
considered in Sections 5.4 for the linear model and 9.5.1 for the nonlinear model. We
will confine our attention to the linear model. The nonlinear case can be obtained by
applying our results to the linearized regression. To review, we considered cases in which
the regressors X are correlated with the disturbances ε. If this is the case, as in the time-
series models and the errors in variables models that we examined earlier, then b is
neither unbiased nor consistent.5 In the classical model, we constructed an estimator
around a set of variables Z that were uncorrelated with ε,

bIV = [X′Z(Z′Z)−1Z′X]−1X′Z(Z′Z)−1Z′y

= β + [X′Z(Z′Z)−1Z′X]−1X′Z(Z′Z)−1Z′ε.
(10-11)

Suppose that X and Z are well behaved in the sense discussed in Section 5.4. That is,

plim(1/n)Z′Z = QZZ, a positive definite matrix,

plim(1/n)Z′X = QZX = Q′
XZ, a nonzero matrix,

plim(1/n)X′X = QXX, a positive definite matrix.

4Davidson and MacKinnon (1993) consider this case at length.
5It may be asymptotically normally distributed, but around a mean that differs from β.
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To avoid a string of matrix computations that may not fit on a single line, for convenience
let

QXX.Z = [
QXZQ−1

ZZQZX
]−1QXZQ−1

ZZ

= plim
[(

1
n

X′Z
)(

1
n

Z′Z
)−1(1

n
Z′X

)]−1(1
n

X′Z
)(

1
n

Z′Z
)−1

.

If Z is a valid set of instrumental variables, that is, if the second term in (10-11) vanishes
asymptotically, then

plim bIV = β + QXX.Z plim
(

1
n

Z′ε
)

= β.

This result is exactly the same one we had before. We might note that at the several
points where we have established unbiasedness or consistency of the least squares or
instrumental variables estimator, the covariance matrix of the disturbance vector has
played no role; unbiasedness is a property of the means. As such, this result should
come as no surprise. The large sample behavior of bIV depends on the behavior of

vn,IV = 1√
n

n∑
i=1

ziεi .

This result is exactly the one we analyzed in Section 5.4. If the sampling distribution of
vn converges to a normal distribution, then we will be able to construct the asymptotic
distribution for bIV. This set of conditions is the same that was necessary for X when
we considered b above, with Z in place of X. We will once again rely on the results of
Anderson (1971) or Amemiya (1985) that under very general conditions,

1√
n

n∑
i=1

ziεi
d−→ N

[
0, σ 2plim

(
1
n

Z′�Z
)]

.

With the other results already in hand, we now have the following.

THEOREM 10.4 Asymptotic Distribution of the IV Estimator in
the Generalized Regression Model

If the regressors and the instrumental variables are well behaved in the fashions
discussed above, then

bIV
a∼ N[β, VIV],

where (10-12)

VIV = σ 2

n
(QXX.Z) plim

(
1
n

Z′�Z
)

(Q′
XX.Z).
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10.3 ROBUST ESTIMATION OF ASYMPTOTIC
COVARIANCE MATRICES

There is a remaining question regarding all the preceding. In view of (10-5), is it neces-
sary to discard ordinary least squares as an estimator? Certainly if � is known, then, as
shown in Section 10.5, there is a simple and efficient estimator available based on it, and
the answer is yes. If � is unknown but its structure is known and we can estimate � using
sample information, then the answer is less clear-cut. In many cases, basing estimation
of β on some alternative procedure that uses an �̂ will be preferable to ordinary least
squares. This subject is covered in Chapters 11 to 14. The third possibility is that � is
completely unknown, both as to its structure and the specific values of its elements. In
this situation, least squares or instrumental variables may be the only estimator avail-
able, and as such, the only available strategy is to try to devise an estimator for the
appropriate asymptotic covariance matrix of b.

If σ 2� were known, then the estimator of the asymptotic covariance matrix of b in
(10-10) would be

VOLS = 1
n

(
1
n

X′X
)−1(1

n
X′[σ 2�]X

)(
1
n

X′X
)−1

.

For the nonlinear least squares estimator, we replace X with X0. For the instrumen-
tal variables estimator, the left- and right-side matrices are replaced with this sample
estimates of QXX.Z and its transpose (using X0 again for the nonlinear instrumental vari-
ables estimator), and Z replaces X in the center matrix. In all these cases, the matrices
of sums of squares and cross products in the left and right matrices are sample data that
are readily estimable, and the problem is the center matrix that involves the unknown
σ 2�. For estimation purposes, note that σ 2 is not a separate unknown parameter. Since
� is an unknown matrix, it can be scaled arbitrarily, say by κ , and with σ 2 scaled by 1/κ ,
the same product remains. In our applications, we will remove the indeterminacy by
assuming that tr(�) = n, as it is when σ 2� = σ 2I in the classical model. For now, just let
� = σ 2�. It might seem that to estimate (1/n)X′�X, an estimator of �, which contains
n(n + 1)/2 unknown parameters, is required. But fortunately (since with n observations,
this method is going to be hopeless), this observation is not quite right. What is required
is an estimator of the K(K + 1)/2 unknown elements in the matrix

plim Q∗ = plim
1
n

n∑
i=1

n∑
j=1

σi j xi x′
j .

The point is that Q∗ is a matrix of sums of squares and cross products that involves σij

and the rows of X (or Z or X0). The least squares estimator b is a consistent estimator
of β, which implies that the least squares residuals ei are “pointwise” consistent esti-
mators of their population counterparts εi . The general approach, then, will be to use
X and e to devise an estimator of Q∗.

Consider the heteroscedasticity case first. We seek an estimator of

Q∗ = 1
n

n∑
i=1

σ 2
i xi x′

i .
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White (1980) has shown that under very general conditions, the estimator

S0 = 1
n

n∑
i=1

e2
i xi x′

i (10-13)

has

plim S0 = plim Q∗.6

We can sketch a proof of this result using the results we obtained in Section 5.2.7

Note first that Q∗ is not a parameter matrix in itself. It is a weighted sum of the outer
products of the rows of X (or Z for the instrumental variables case). Thus, we seek
not to “estimate” Q∗, but to find a function of the sample data that will be arbitrarily
close to this function of the population parameters as the sample size grows large. The
distinction is important. We are not estimating the middle matrix in (10-10) or (10-12);
we are attempting to construct a matrix from the sample data that will behave the same
way that this matrix behaves. In essence, if Q∗ converges to a finite positive matrix,
then we would be looking for a function of the sample data that converges to the same
matrix. Suppose that the true disturbances εi could be observed. Then each term in Q∗
would equal E [ε2

i xi x′
i | xi ]. With some fairly mild assumptions about xi , then, we could

invoke a law of large numbers (see Theorems D.2 through D.4.) to state that if Q∗ has
a probability limit, then

plim = 1
n

n∑
i=1

σ 2
i xi x′

i = plim
1
n

n∑
i=1

ε2
i xi x′

i .

The final detail is to justify the replacement of εi with ei in S0. The consistency of b for
β is sufficient for the argument. (Actually, residuals based on any consistent estimator
of β would suffice for this estimator, but as of now, b or bIV is the only one in hand.)
The end result is that the White heteroscedasticity consistent estimator

Est.Asy. Var[b] = 1
n

(
1
n

X′X
)−1

(
1
n

n∑
i=1

e2
i xi x′

i

)(
1
n

X′X
)−1

= n(X′X)−1S0(X′X)−1

(10-14)

can be used to estimate the asymptotic covariance matrix of b.
This result is extremely important and useful.8 It implies that without actually spec-

ifying the type of heteroscedasticity, we can still make appropriate inferences based on
the results of least squares. This implication is especially useful if we are unsure of the
precise nature of the heteroscedasticity (which is probably most of the time). We will
pursue some examples in Chapter 11.

6See also Eicker (1967), Horn, Horn, and Duncan (1975), and MacKinnon and White (1985).
7We will give only a broad sketch of the proof. Formal results appear in White (1980) and (2001).
8Further discussion and some refinements may be found in Cragg (1982). Cragg shows how White’s observa-
tion can be extended to devise an estimator that improves on the efficiency of ordinary least squares.
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The extension of White’s result to the more general case of autocorrelation is much
more difficult. The natural counterpart for estimating

Q∗ = 1
n

n∑
i=1

n∑
j=1

σi j xi x′
j

(10-15)would be

Q̂∗ = 1
n

n∑
i=1

n∑
j=1

ei e j xi x′
j .

But there are two problems with this estimator, one theoretical, which applies to Q∗ as
well, and one practical, which is specific to the latter.

Unlike the heteroscedasticity case, the matrix in (10-15) is 1/n times a sum of n2

terms, so it is difficult to conclude yet that it will converge to anything at all. This
application is most likely to arise in a time-series setting. To obtain convergence, it is
necessary to assume that the terms involving unequal subscripts in (10-15) diminish in
importance as n grows. A sufficient condition is that terms with subscript pairs |i − j |
grow smaller as the distance between them grows larger. In practical terms, observation
pairs are progressively less correlated as their separation in time grows. Intuitively, if
one can think of weights with the diagonal elements getting a weight of 1.0, then in
the sum, the weights in the sum grow smaller as we move away from the diagonal. If
we think of the sum of the weights rather than just the number of terms, then this sum
falls off sufficiently rapidly that as n grows large, the sum is of order n rather than n2.
Thus, we achieve convergence of Q∗ by assuming that the rows of X are well behaved
and that the correlations diminish with increasing separation in time. (See Sections 5.3,
12.5, and 20.5 for a more formal statement of this condition.)

The practical problem is that Q̂∗ need not be positive definite. Newey and West
(1987a) have devised an estimator that overcomes this difficulty:

Q̂∗ = S0 + 1
n

L∑
l=1

n∑
t=l+1

wlet et−l(xt x′
t−l + xt−lx′

t ),

wl = 1 − l
(L+ 1)

.

(10-16)

The Newey–West autocorrelation consistent covariance estimator is surprisingly simple
and relatively easy to implement.9 There is a final problem to be solved. It must be
determined in advance how large L is to be. We will examine some special cases in
Chapter 12, but in general, there is little theoretical guidance. Current practice specifies
L ≈ T1/4. Unfortunately, the result is not quite as crisp as that for the heteroscedasticity
consistent estimator.

We have the result that b and bIV are asymptotically normally distributed, and
we have an appropriate estimator for the asymptotic covariance matrix. We have not
specified the distribution of the disturbances, however. Thus, for inference purposes,
the F statistic is approximate at best. Moreover, for more involved hypotheses, the
likelihood ratio and Lagrange multiplier tests are unavailable. That leaves the Wald

9Both estimators are now standard features in modern econometrics computer programs. Further results on
different weighting schemes may be found in Hayashi (2000, pp. 406–410).
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statistic, including asymptotic “t ratios,” as the main tool for statistical inference. We
will examine a number of applications in the chapters to follow.

The White and Newey–West estimators are standard in the econometrics literature.
We will encounter them at many points in the discussion to follow.

10.4 GENERALIZED METHOD OF MOMENTS
ESTIMATION

We will analyze this estimation technique in some detail in Chapter 18, so we will only
sketch the important results here. It is useful to consider the instrumental variables
case, as it is fairly general and we can easily specialize it to the simpler regression model
if that is appropriate. Thus, we depart from the model specification in (10-1), but at
this point, we no longer require that E [εi | xi ] = 0. Instead, we adopt the instrumental
variables formulation in Section 10.2.4. That is, our model is

yi = x′
iβ + εi

E [εi | zi ] = 0

for K variables in xi and for some set of L instrumental variables, zi , where L ≥ K.
The earlier case of the generalized regression model arises if zi = xi , and the classical
regression form results if we add � = I as well, so this is a convenient encompassing
model framework.

In the next section on generalized least squares estimation, we will consider two
cases, first with a known �, then with an unknown � that must be estimated. In esti-
mation by the generalized method of moments neither of these approaches is relevant
because we begin with much less (assumed) knowledge about the data generating pro-
cess. In particular, we will consider three cases:

• Classical regression: Var[εi | X, Z] = σ 2,
• Heteroscedasticity: Var[εi | X, Z] = σ 2

i ,
• Generalized model: Cov[εt , εs | X, Z] = σ 2ωts,

where Z and X are the n×Land n×K observed data matrices. (We assume, as will often
be true, that the fully general case will apply in a time series setting. Hence the change
in the subscripts.) No specific distribution is assumed for the disturbances, conditional or
unconditional.

The assumption E [εi | zi ] = 0 implies the following orthogonality condition:

Cov[zi , εi ,] = 0, or E [zi (yi − x′
iβ)] = 0.

By summing the terms, we find that this further implies the population moment
equation,

E

[
1
n

n∑
i=1

zi (yi − x′
iβ)

]
= E [m̄(β)] = 0. (10-17)

This relationship suggests how we might now proceed to estimate β. Note, in fact, that if
zi = xi , then this is just the population counterpart to the least squares normal equations.
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So, as a guide to estimation, this would return us to least squares. Suppose, we now
translate this population expectation into a sample analog, and use that as our guide for
estimation. That is, if the population relationship holds for the true parameter vector,
β, suppose we attempt to mimic this result with a sample counterpart, or empirical
moment equation,

[
1
n

n∑
i=1

zi (yi − x′
i β̂)

]
=

[
1
n

n∑
i=1

mi (β̂)

]
= m̄(β̂) = 0. (10-18)

In the absence of other information about the data generating process, we can use the
empirical moment equation as the basis of our estimation strategy.

The empirical moment condition is Lequations (the number of variables in Z) in K
unknowns (the number of parameters we seek to estimate). There are three possibilities
to consider:

1. Underidentified: L < K. If there are fewer moment equations than there are pa-
rameters, then it will not be possible to find a solution to the equation system in (10-18).
With no other information, such as restrictions which would reduce the number of free
parameters, there is no need to proceed any further with this case.

For the identified cases, it is convenient to write (10-18) as

m̄(β̂) =
(

1
n

Z′y
)

−
(

1
n

Z′X
)

β̂. (10-19)

2. Exactly identified. If L = K, then you can easily show (we leave it as an exercise)
that the single solution to our equation system is the familiar instrumental variables
estimator,

β̂ = (Z′X)−1Z′y. (10-20)

3. Overidentified. If L > K, then there is no unique solution to the equation system
m̄(β̂) = 0. In this instance, we need to formulate some strategy to choose an estimator.
One intuitively appealing possibility which has served well thus far is “least squares.” In
this instance, that would mean choosing the estimator based on the criterion function

Minβ q = m̄(β̂)′m̄(β̂).

We do keep in mind, that we will only be able to minimize this at some positive value;
there is no exact solution to (10-18) in the overidentified case. Also, you can verify that
if we treat the exactly identified case as if it were overidentified, that is, use least squares
anyway, we will still obtain the IV estimator shown in (10-20) for the solution to case (2).
For the overidentified case, the first order conditions are

∂q
∂β

= 2
(

∂m̄′(β̂)

∂β

)
m̄(β̂) = 2Ḡ(β̂)′m̄(β̂)

= 2
(

1
n

X′Z
)(

1
n

Z′y − 1
n

Z′Xβ̂

)
= 0.

(10-21)

We leave as exercise to show that the solution in both cases (2) and (3) is now

β̂ = [(X′Z)(Z′X)]−1(X′Z)(Z′y). (10-22)
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The estimator in (10-22) is a hybrid that we have not encountered before, though if
L = K, then it does reduce to the earlier one in (10–20). (In the overidentified case,
(10-22) is not an IV estimator, it is, as we have sought, a method of moments estimator.)

It remains to establish consistency and to obtain the asymptotic distribution and
an asymptotic covariance matrix for the estimator. These are analyzed in detail in
Chapter 18. Our purpose here is only to sketch the formal result, so we will merely
claim the intermediate results we need:

ASSUMPTION GMM1. Convergence of the moments. The population moment con-
verges in probability to its population counterpart. That is, m̄(β) → 0. Different
circumstances will produce different kinds of convergence, but we will require it
in some form. For the simplest cases, such as a model of heteroscedasticity, this
will be convergence in mean square. Certain time series models that involve cor-
related observations will necessitate some other form of convergence. But, in any
of the cases we consider, we will require the general result, plim m̄(β) = 0.

ASSUMPTION GMM2. Identification. The parameters are identified in terms of the
moment equations. Identification means, essentially, that a large enough sample
will contain sufficient information for us actually to estimate β consistently using
the sample moments. There are two conditions which must be met—an order
condition, which we have already assumed (L ≥ K), and a rank condition, which
states that the moment equations are not redundant. The rank condition implies
the order condition, so we need only formalize it:

Identification condition for GMM Estimation: The L× K matrix

�(β) = E [Ḡ(β)] = plim Ḡ(β) = plim
∂m̄
∂β ′ = plim

1
n

n∑
i=1

∂mi

∂β ′

must have (full) row rank equal to L.10 Since this requires L ≥ K, this implies the order
condition. This assumption means that this derivative matrix converges in probability
to its expectation. Note that we have assumed, in addition, that the derivatives, like
the moments themselves, obey a law of large numbers—they converge in probability to
their expectations.

ASSUMPTION GMM3. Limiting Normal Distribution for the Sample Moments.
The population moment obeys a central limit theorem or some similar variant.
Since we are studying a generalized regression model, Lindberg–Levy (D.19.)
will be too narrow—the observations will have different variances. Lindberg–
Feller (D.19.A) suffices in the heteroscedasticity case, but in the general case, we
will ultimately require something more general. These theorems are discussed in
Section 12.4 and invoked in Chapter 18.

10Strictly speaking, we only require that the row rank be at least as large as K, so there could be redundant,
that is, functionally dependent, moments, so long as there are at least K that are functionally independent.
The case of rank (�) greater than or equal to K but less than L can be ignored.
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It will follow from these assumptions (again, at this point we do this without proof)
that the GMM estimators that we obtain are, in fact, consistent. By virtue of the Slutsky
theorem, we can transfer our limiting results above to the empirical moment equations.
A proof of consistency of the GMM estimator (pursued in Chapter 18) will be based
on this result.

To obtain the asymptotic covariance matrix we will simply invoke a result we will
obtain more formally in Chapter 18 for generalized method of moments estimators.
That is,

Asy. Var[β̂] = 1
n

[�′�]−1
�′ {Asy. Var[

√
n m̄(β)]

}
�[�′�]−1

.

For the particular model we are studying here,

m̄(β) = (1/n)(Z′y − Z′Xβ),

Ḡ(β) = (1/n)Z′X,

�(β) = QZX (from Section 10.2.4).

(You should check in the preceding expression that the dimensions of the particular
matrices and the dimensions of the various products produce the correctly configured
matrix that we seek.) The remaining detail, which is the crucial one for the model we
are examining, is for us to determine

V = Asy. Var[
√

n m̄(β)].

Given the form of m̄(β),

V = 1
n

Var

[
n∑

i=1

ziεi

]
= 1

n

n∑
i=1

n∑
j=1

σ 2ωi j zi z′
j = σ 2 Z′�Z

n

for the most general case. Note that this is precisely the expression that appears in
(10-6), so the question that arose there arises here once again. That is, under what
conditions will this converge to a constant matrix? We take the discussion there as
given. The only remaining detail is how to estimate this matrix. The answer appears in
Section 10.3, where we pursued this same question in connection with robust estimation
of the asymptotic covariance matrix of the least squares estimator. To review then, what
we have achieved to this point is to provide a theoretical foundation for the instrumental
variables estimator. As noted earlier, this specializes to the least squares estimator. The
estimators of V for our three cases will be

• Classical regression:

V̂ = (e′e/n)

n

n∑
i=1

zi z′
i = (e′e/n)

n
Z′Z

• Heteroscedastic:

V̂ = 1
n

n∑
i=1

e2
i zi z′

i (10-23)
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• General:

V̂ = 1
n

[
n∑

i=1

e2
t zt z′

t +
L∑

l=1

n∑
t=l+1

(
1 − l

(L+ 1)

)
et et−l(zt z′

t−l + zt−lz′
t )

]
.

We should observe, that in each of these cases, we have actually used some information
about the structure of �. If it is known only that the terms in m̄(β) are uncorrelated,
then there is a convenient estimator available,

V̂ = 1
n

n∑
i=1

mi (β̂)mi (β̂)′

that is, the natural, empirical variance estimator. Note that this is what is being used in
the heteroscedasticity case directly above.

Collecting all the terms so far, then, we have

Est.Asy. Var[β̂] = 1
n

[Ḡ(β̂)′Ḡ(β̂)]−1Ḡ(β̂)′V̂Ḡ(β̂)[Ḡ(β̂)′Ḡ(β̂)]−1

= n[(X′Z)(Z′X)]−1(X′Z)V̂(Z′X)[(X′Z)(Z′X)]−1.

(10-24)

The preceding would seem to endow the least squares or method of moments esti-
mators with some degree of optimality, but that is not the case. We have only provided
them with a different statistical motivation (and established consistency). We now con-
sider the question of whether, since this is the generalized regression model, there is
some better (more efficient) means of using the data. As before, we merely sketch the
results.

The class of minimum distance estimators is defined by the solutions to the criterion
function

Minβ q = m̄(β)′Wm̄(β),

where W is any positive definite weighting matrix. Based on the assumptions made
above, we will have the following theorem, which we claim without proof at this point:

THEOREM 10.5 Minimum Distance Estimators
If plim m̄(β) = 0 and if W is a positive definite matrix, then plim β̂ = Argmin[q =
m̄(β)′Wm̄(β)] = β. The minimum distance estimator is consistent. It is also asymp-
totically normally distributed and has asymptotic covariance matrix

Asy. Var[β̂MD] = 1
n

[Ḡ′WḠ]−1Ḡ′WVWḠ[Ḡ′WḠ]−1.

Note that our entire preceding analysis was of the simplest minimum distance estimator,
which has W = I. The obvious question now arises, if any W produces a consistent
estimator, is any W better than any other one, or is it simply arbitrary? There is a firm
answer, for which we have to consider two cases separately:

• Exactly identified case: If L= K; that is, if the number of moment conditions is the
same as the number of parameters being estimated, then W is irrelevant to the
solution, so on the basis of simplicity alone, the optimal W is I.
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• Overidentified case: In this case, the “optimal” weighting matrix, that is, the W
which produces the most efficient estimator is W = V−1. That is, the best
weighting matrix is the inverse of the asymptotic covariance of the moment vector.

THEOREM 10.6 Generalized Method of Moments Estimator
The Minimum Distance Estimator obtained by using W = V−1 is the Generalized
Method of Moments, or GMM estimator. The GMM estimator is consistent,
asymptotically normally distributed, and has asymptotic covariance matrix equal
to

Asy. Var[β̂GMM] = 1
n

[Ḡ′V−1Ḡ]−1.

For the generalized regression model, these are

β̂GMM = [(X′Z)V̂−1(Z′X)]−1(X′Z)V̂−1(Z′y)

and

Asy. Var[β̂GMM] = [(X′Z)V̂(Z′X)]−1.

We conclude this discussion by tying together what should seem to be a loose end.
The GMM estimator is computed as the solution to

Minβ q = m̄(β)′
{
Asy. Var[

√
n m̄(β)]

}−1 m̄(β),

which suggests that the weighting matrix is a function of the thing we are trying to
estimate. The process of GMM estimation will have to proceed in two steps: Step 1 is
to obtain an estimate of V, then Step 2 will consist of using the inverse of this V as the
weighting matrix in computing the GMM estimator. We will return to this in Chapter 18,
so we note directly, the following is a common strategy:

Step 1. Use W = I to obtain a consistent estimator of β. Then, estimate V with

V̂ = 1
n

n∑
i =1

e2
i zi z′

i

in the heteroscedasticity case (i.e., the White estimator) or, for the more general case,
the Newey–West estimator in (10-23).

Step 2. Use W = V̂−1 to compute the GMM estimator.

At this point, the observant reader should have noticed that in all of the preceding,
we have never actually encountered the simple instrumental variables estimator that
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we introduced in Section 5.4. In order to obtain this estimator, we must revert back
to the classical, that is homoscedastic and nonautocorrelated disturbances case. In that
instance, the weighting matrix in Theorem 10.5 will be W = (Z′Z)−1 and we will obtain
the apparently missing result.

10.5 EFFICIENT ESTIMATION BY GENERALIZED
LEAST SQUARES

Efficient estimation of β in the generalized regression model requires knowledge of
�. To begin, it is useful to consider cases in which � is a known, symmetric, positive
definite matrix. This assumption will occasionally be true, but in most models, � will
contain unknown parameters that must also be estimated. We shall examine this case
in Section 10.6.

10.5.1 GENERALIZED LEAST SQUARES (GLS)

Since � is a positive definite symmetric matrix, it can be factored into

� = C�C′,

where the columns of C are the characteristic vectors of � and the characteristic roots
of � are arrayed in the diagonal matrix �. Let �1/2 be the diagonal matrix with ith
diagonal element

√
λi , and let T = C�1/2. Then � = TT′. Also, let P′ = C�−1/2, so

�−1 = P′P. Premultiply the model in (10-1) by P to obtain

Py = PXβ + Pε

or

y∗ = X∗β + ε∗. (10-25)

The variance of ε∗ is

E [ε∗ε′
∗] = Pσ 2�P′ = σ 2I,

so the classical regression model applies to this transformed model. Since � is known,
y∗ and X∗ are observed data. In the classical model, ordinary least squares is efficient;
hence,

β̂ = (X′
∗X∗)−1X′

∗y∗

= (X′P′PX)−1X′P′Py

= (X′�−1X)−1X′�−1y

is the efficient estimator of β. This estimator is the generalized least squares (GLS) or
Aitken (1935) estimator of β. This estimator is in contrast to the ordinary least squares
(OLS) estimator, which uses a “weighting matrix,” I, instead of �−1. By appealing to
the classical regression model in (10-25), we have the following theorem, which includes
the generalized regression model analogs to our results of Chapters 4 and 5.
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THEOREM 10.7 Properties of the Generalized Least Squares
Estimator

If E [ε∗ | X∗] = 0, then

E [β̂ | X∗] = E [(X′
∗X∗)−1X′

∗y∗ | X∗] = β + E [(X′
∗X∗)−1X′

∗ε∗ | X∗] = β

The GLS estimator β̂ is unbiased. This result is equivalent to E [Pε | PX] = 0,
but since P is a matrix of known constants, we return to the familiar requirement
E [ε | X] = 0. The requirement that the regressors and disturbances be uncorre-
lated is unchanged.

The GLS estimator is consistent if plim(1/n)X′
∗X∗ = Q∗, where Q∗ is a finite

positive definite matrix. Making the substitution, we see that this implies

plim[(1/n)X′�−1X]−1 = Q−1
∗ . (10-26)

We require the transformed data X∗ = PX, not the original data X, to be well
behaved.11 Under the assumption in (10-1), the following hold:

The GLS estimator is asymptotically normally distributed, with mean β and
sampling variance

Var[β̂ | X∗] = σ 2(X′
∗X∗)−1 = σ 2(X′�−1X)−1. (10-27)

The GLS estimator β̂ is the minimum variance linear unbiased estimator in
the generalized regression model. This statement follows by applying the Gauss–
Markov theorem to the model in (10-25). The result in Theorem 10.7 is Aitken’s
(1935) Theorem, and β̂ is sometimes called the Aitken estimator. This broad result
includes the Gauss–Markov theorem as a special case when � = I.

For testing hypotheses, we can apply the full set of results in Chapter 6 to the trans-
formed model in (10-25). For testing the J linear restrictions, Rβ = q, the appropriate
statistic is

F[J, n − K] = (Rβ̂ − q)′[Rσ̂ 2(X′
∗X∗)−1R′]−1(Rβ̂ − q)

J
= (ε̂′

cε̂c − ε̂′ε̂)/J
σ̂ 2

,

where the residual vector is

ε̂ = y∗ − X∗β̂

and

σ̂ 2 = ε̂′ε̂
n − K

= (y − Xβ̂)′�−1(y − Xβ̂)

n − K
. (10-28)

The constrained GLS residuals, ε̂c = y∗ − X∗β̂c, are based on

β̂c = β̂ − [X′�−1X]−1R′[R(X′�−1X)−1R′]−1(Rβ̂ − q).12

11Once again, to allow a time trend, we could weaken this assumption a bit.
12Note that this estimator is the constrained OLS estimator using the transformed data.
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To summarize, all the results for the classical model, including the usual inference
procedures, apply to the transformed model in (10-25).

There is no precise counterpart to R2 in the generalized regression model. Alter-
natives have been proposed, but care must be taken when using them. For example,
one choice is the R2 in the transformed regression, (10-25). But this regression need
not have a constant term, so the R2 is not bounded by zero and one. Even if there is
a constant term, the transformed regression is a computational device, not the model
of interest. That a good (or bad) fit is obtained in the “model” in (10-25) may be of no
interest; the dependent variable in that model y∗ is different from the one in the model
as originally specified. The usual R2 often suggests that the fit of the model is improved
by a correction for heteroscedasticity and degraded by a correction for autocorrelation,
but both changes can often be attributed to the computation of y∗. A more appealing
fit measure might be based on the residuals from the original model once the GLS
estimator is in hand, such as

R2
G = 1 − (y − Xβ̂)′(y − Xβ̂)∑n

i=1(yi − ȳ)2
.

Like the earlier contender, however, this measure is not bounded in the unit interval.
In addition, this measure cannot be reliably used to compare models. The generalized
least squares estimator minimizes the generalized sum of squares

ε′
∗ε∗ = (y − Xβ)′�−1(y − Xβ),

not ε′ε. As such, there is no assurance, for example, that dropping a variable from the
model will result in a decrease in R2

G, as it will in R2. Other goodness-of-fit measures,
designed primarily to be a function of the sum of squared residuals (raw or weighted by
�−1) and to be bounded by zero and one, have been proposed.13 Unfortunately, they
all suffer from at least one of the previously noted shortcomings. The R2-like measures
in this setting are purely descriptive.

10.5.2 FEASIBLE GENERALIZED LEAST SQUARES

To use the results of Section 10.5.1, � must be known. If � contains unknown parameters
that must be estimated, then generalized least squares is not feasible. But with an
unrestricted �, there are n(n + 1)/2 additional parameters in σ 2�. This number is far
too many to estimate with n observations. Obviously, some structure must be imposed
on the model if we are to proceed.

The typical problem involves a small set of parameters θ such that � = �(θ). A
commonly used formula in time series settings is

�(ρ) =




1 ρ ρ2 ρ3 · · · ρn−1

ρ 1 ρ ρ2 · · · ρn−2

...

ρn−1 ρn−2 · · · 1


 ,

13See, example, Judge et al. (1985, p. 32) and Buse (1973).
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which involves only one additional unknown parameter. A model of heteroscedasticity
that also has only one new parameter is

σ 2
i = σ 2zθ

i . (10-29)

Suppose, then, that θ̂ is a consistent estimator of θ . (We consider later how such an
estimator might be obtained.) To make GLS estimation feasible, we shall use �̂ = �(θ̂)

instead of the true �. The issue we consider here is whether using �(θ̂) requires us to
change any of the results of Section 10.5.1.

It would seem that if plim θ̂ = θ , then using �̂ is asymptotically equivalent to using
the true �.14 Let the feasible generalized least squares (FGLS) estimator be denoted

ˆ̂β = (X′�̂−1X)−1X′�̂−1y.

Conditions that imply that ˆ̂β is asymptotically equivalent to β̂ are

plim
[(

1
n

X′�̂−1X
)

−
(

1
n

X′�−1X
)]

= 0 (10-30)

and

plim
[(

1√
n

X′�̂−1ε

)
−

(
1√
n

X′�−1ε

)]
= 0. (10-31)

The first of these equations states that if the weighted sum of squares matrix based on
the true � converges to a positive definite matrix, then the one based on �̂ converges
to the same matrix. We are assuming that this is true. In the second condition, if the
transformed regressors are well behaved, then the right-hand side sum will have a
limiting normal distribution. This condition is exactly the one we used in Chapter 5 to
obtain the asymptotic distribution of the least squares estimator; here we are using the
same results for X∗ and ε∗. Therefore, (10-31) requires the same condition to hold when
� is replaced with �̂.15

These conditions, in principle, must be verified on a case-by-case basis. Fortunately,
in most familiar settings, they are met. If we assume that they are, then the FGLS
estimator based on θ̂ has the same asymptotic properties as the GLS estimator. This
result is extremely useful. Note, especially, the following theorem.

THEOREM 10.8 Efficiency of the FGLS Estimator
An asymptotically efficient FGLS estimator does not require that we have an
efficient estimator of θ ; only a consistent one is required to achieve full efficiency
for the FGLS estimator.

14This equation is sometimes denoted plim �̂ = �. Since � is n × n, it cannot have a probability limit. We
use this term to indicate convergence element by element.
15The condition actually requires only that if the right-hand sum has any limiting distribution, then the left-
hand one has the same one. Conceivably, this distribution might not be the normal distribution, but that seems
unlikely except in a specially constructed, theoretical case.
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Except for the simplest cases, the finite-sample properties and exact distributions
of FGLS estimators are unknown. The asymptotic efficiency of FGLS estimators may
not carry over to small samples because of the variability introduced by the estimated
�. Some analyses for the case of heteroscedasticity are given by Taylor (1977). A model
of autocorrelation is analyzed by Griliches and Rao (1969). In both studies, the authors
find that, over a broad range of parameters, FGLS is more efficient than least squares.
But if the departure from the classical assumptions is not too severe, then least squares
may be more efficient than FGLS in a small sample.

10.6 MAXIMUM LIKELIHOOD ESTIMATION

This section considers efficient estimation when the disturbances are normally dis-
tributed. As before, we consider two cases, first, to set the stage, the benchmark case of
known �, and, second, the more common case of unknown �.16

If the disturbances are multivariate normally distributed, then the log-likelihood
function for the sample is

ln L = −n
2

ln(2π) − n
2

ln σ 2 − 1
2σ 2

(y − Xβ)′�−1(y − Xβ) − 1
2

ln |�|. (10-32)

Since � is a matrix of known constants, the maximum likelihood estimator of β is the
vector that minimizes the generalized sum of squares,

S∗(β) = (y − Xβ)′�−1(y − Xβ)

(hence the name generalized least squares). The necessary conditions for maximizing L
are

∂ ln L
∂β

= 1
σ 2

X′�−1(y − Xβ) = 1
σ 2

X′
∗(y∗ − X∗β) = 0,

∂ ln L
∂σ 2

= − n
2σ 2

+ 1
2σ 4

(y − Xβ)′�−1(y − Xβ) (10-33)

= − n
2σ 2

+ 1
2σ 4

(y∗ − X∗β)′(y∗ − X∗β) = 0.

The solutions are the OLS estimators using the transformed data:

β̂ML = (X′
∗X∗)−1X′

∗y∗ = (X′�−1X)−1X′�−1y, (10-34)

σ̂ 2
ML = 1

n
(y∗ − X∗β̂)′(y∗ − X∗β̂)

(10-35)

= 1
n
(y − Xβ̂)′�−1(y − Xβ̂),

which implies that with normally distributed disturbances, generalized least squares is

16The method of maximum likelihood estimation is developed in Chapter 17.
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also maximum likelihood. As in the classical regression model, the maximum likelihood
estimator of σ 2 is biased. An unbiased estimator is the one in (10-28). The conclusion,
which would be expected, is that when � is known, the maximum likelihood estimator
is generalized least squares.

When � is unknown and must be estimated, then it is necessary to maximize the log
likelihood in (10-32) with respect to the full set of parameters [β, σ 2, �] simultaneously.
Since an unrestricted � alone contains n(n + 1)/2 − 1 parameters, it is clear that some
restriction will have to be placed on the structure of � in order for estimation to proceed.
We will examine several applications in which � = �(θ) for some smaller vector of
parameters in the next two chapters, so we will note only a few general results at this
point.

(a) For a given value of θ the estimator of β would be feasible GLS and the estimator
of σ 2 would be the estimator in (10-35).

(b) The likelihood equations for θ will generally be complicated functions of β and
σ 2, so joint estimation will be necessary. However, in many cases, for given values
of β and σ 2, the estimator of θ is straightforward. For example, in the model of
(10-29), the iterated estimator of θ when β and σ 2 and a prior value of θ are given
is the prior value plus the slope in the regression of (e2

i /σ̂
2
i − 1) on zi .

The second step suggests a sort of back and forth iteration for this model that will work
in many situations—starting with, say, OLS, iterating back and forth between (a) and (b)
until convergence will produce the joint maximum likelihood estimator. This situation
was examined by Oberhofer and Kmenta (1974), who showed that under some fairly
weak requirements, most importantly that θ not involve σ 2 or any of the parameters in β,
this procedure would produce the maximum likelihood estimator. Another implication
of this formulation which is simple to show (we leave it as an exercise) is that under the
Oberhofer and Kmenta assumption, the asymptotic covariance matrix of the estimator
is the same as the GLS estimator. This is the same whether � is known or estimated,
which means that if θ and β have no parameters in common, then exact knowledge of
� brings no gain in asymptotic efficiency in the estimation of β over estimation of β with
a consistent estimator of �.

10.7 SUMMARY AND CONCLUSIONS

This chapter has introduced a major extension of the classical linear model. By allowing
for heteroscedasticity and autocorrelation in the disturbances, we expand the range
of models to a large array of frameworks. We will explore these in the next several
chapters. The formal concepts introduced in this chapter include how this extension
affects the properties of the least squares estimator, how an appropriate estimator
of the asymptotic covariance matrix of the least squares estimator can be computed
in this extended modeling framework, and, finally, how to use the information about
the variances and covariances of the disturbances to obtain an estimator that is more
efficient than ordinary least squares.



Greene-50240 book June 11, 2002 18:51

CHAPTER 10 ✦ Nonspherical Disturbances 213

Key Terms and Concepts

• Aitken’s Theorem
• Asymptotic properties
• Autocorrelation
• Efficient estimator
• Feasible GLS
• Finite sample properties
• Generalized least squares

(GLS)
• Generalized regression

model
• GMM estimator

• Heteroscedasticity
• Instrumental variables

estimator
• Method of moments

estimator
• Newey–West estimator
• Nonlinear least squares

estimator
• Order condition
• Ordinary least squares

(OLS)

• Orthogonality condition
• Panel data
• Parametric
• Population moment

equation
• Rank condition
• Robust estimation
• Semiparametric
• Weighting matrix
• White estimator

Exercises

1. What is the covariance matrix, Cov[β̂, β̂ − b], of the GLS estimator β̂ =
(X′�−1X)−1X′�−1y and the difference between it and the OLS estimator, b =
(X′X)−1X′y? The result plays a pivotal role in the development of specification
tests in Hausman (1978).

2. This and the next two exercises are based on the test statistic usually used to test a
set of J linear restrictions in the generalized regression model:

F[J, n − K] = (Rβ̂ − q)′[R(X′�−1X)−1R′]−1(Rβ̂ − q)/J

(y − Xβ̂)′�−1(y − Xβ̂)/(n − K)
,

where β̂ is the GLS estimator. Show that if � is known, if the disturbances are
normally distributed and if the null hypothesis, Rβ = q, is true, then this statistic
is exactly distributed as F with J and n − K degrees of freedom. What assump-
tions about the regressors are needed to reach this conclusion? Need they be non-
stochastic?

3. Now suppose that the disturbances are not normally distributed, although � is still
known. Show that the limiting distribution of previous statistic is (1/J ) times a chi-
squared variable with J degrees of freedom. (Hint: The denominator converges to
σ 2.) Conclude that in the generalized regression model, the limiting distribution of
the Wald statistic

W = (Rβ̂ − q)′
{

R
(
Est. Var[β̂]

)
R′}−1

(Rβ̂ − q)

is chi-squared with J degrees of freedom, regardless of the distribution of the distur-
bances, as long as the data are otherwise well behaved. Note that in a finite sample,
the true distribution may be approximated with an F[J, n − K] distribution. It is a
bit ambiguous, however, to interpret this fact as implying that the statistic is asymp-
totically distributed as F with J and n − K degrees of freedom, because the limiting
distribution used to obtain our result is the chi-squared, not the F. In this instance,
the F[J, n − K] is a random variable that tends asymptotically to the chi-squared
variate.

4. Finally, suppose that � must be estimated, but that assumptions (10-27) and
(10-31) are met by the estimator. What changes are required in the development
of the previous problem?
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5. In the generalized regression model, if the K columns of X are characteristic vectors
of �, then ordinary least squares and generalized least squares are identical. (The
result is actually a bit broader; X may be any linear combination of exactly K
characteristic vectors. This result is Kruskal’s Theorem.)
a. Prove the result directly using matrix algebra.
b. Prove that if X contains a constant term and if the remaining columns are in

deviation form (so that the column sum is zero), then the model of Exercise 8
below is one of these cases. (The seemingly unrelated regressions model with
identical regressor matrices, discussed in Chapter 14, is another.)

6. In the generalized regression model, suppose that � is known.
a. What is the covariance matrix of the OLS and GLS estimators of β?
b. What is the covariance matrix of the OLS residual vector e = y − Xb?
c. What is the covariance matrix of the GLS residual vector ε̂ = y − Xβ̂?
d. What is the covariance matrix of the OLS and GLS residual vectors?

7. Suppose that y has the pdf f (y | x) = (1/x′β)e−y/(β ′x), y > 0.
Then E [y | x] = β ′x and Var[y | x] = (β ′x)2. For this model, prove that GLS

and MLE are the same, even though this distribution involves the same parameters
in the conditional mean function and the disturbance variance.

8. Suppose that the regression model is y = µ + ε, where ε has a zero mean, constant
variance, and equal correlation ρ across observations. Then Cov[εi , ε j ] = σ 2ρ if
i �= j . Prove that the least squares estimator of µ is inconsistent. Find the charac-
teristic roots of � and show that Condition 2. after Theorem 10.2 is violated.
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11

HETEROSCEDASTICITY

Q
11.1 INTRODUCTION

Regression disturbances whose variances are not constant across observations are het-
eroscedastic. Heteroscedasticity arises in numerous applications, in both cross-section
and time-series data. For example, even after accounting for firm sizes, we expect to
observe greater variation in the profits of large firms than in those of small ones. The vari-
ance of profits might also depend on product diversification, research and development
expenditure, and industry characteristics and therefore might also vary across firms of
similar sizes. When analyzing family spending patterns, we find that there is greater vari-
ation in expenditure on certain commodity groups among high-income families than
low ones due to the greater discretion allowed by higher incomes.1

In the heteroscedastic regression model,

Var[εi | xi ] = σ 2
i , i = 1, . . . , n.

We continue to assume that the disturbances are pairwise uncorrelated. Thus,

E [εε′ | X ] = σ 2� = σ 2




ω1 0 0 · · · 0
0 ω2 0 · · ·

...

0 0 0 · · · ωn


 =




σ 2
1 0 0 · · · 0

0 σ 2
2 0 · · ·

...

0 0 0 · · · σ 2
n


 .

It will sometimes prove useful to write σ 2
i = σ 2ωi . This form is an arbitrary scaling

which allows us to use a normalization,

tr(�) =
n∑

i=1

ωi = n

This makes the classical regression with homoscedastic disturbances a simple special
case with ωi = 1, i = 1, . . . , n. Intuitively, one might then think of the ωs as weights
that are scaled in such a way as to reflect only the variety in the disturbance variances.
The scale factor σ 2 then provides the overall scaling of the disturbance process.

Example 11.1 Heteroscedastic Regression
The data in Appendix Table F9.1 give monthly credit card expenditure for 100 individuals,
sampled from a larger sample of 13,444 people. Linear regression of monthly expenditure on
a constant, age, income and its square, and a dummy variable for home ownership using the
72 observations for which expenditure was nonzero produces the residuals plotted in Fig-
ure 11.1. The pattern of the residuals is characteristic of a regression with heteroscedasticity.

1Prais and Houthakker (1955).
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FIGURE 11.1 Plot of Residuals Against Income.

This chapter will present the heteroscedastic regression model, first in general terms,
then with some specific forms of the disturbance covariance matrix. We begin by ex-
amining the consequences of heteroscedasticity for least squares estimation. We then
consider robust estimation, in two frameworks. Section 11.2 presents appropriate esti-
mators of the asymptotic covariance matrix of the least squares estimator. Section 11.3
discusses GMM estimation. Sections 11.4 to 11.7 present more specific formulations of
the model. Sections 11.4 and 11.5 consider generalized (weighted) least squares, which
requires knowledge at least of the form of �. Section 11.7 presents maximum likelihood
estimators for two specific widely used models of heteroscedasticity. Recent analyses
of financial data, such as exchange rates, the volatility of market returns, and inflation,
have found abundant evidence of clustering of large and small disturbances,2 which
suggests a form of heteroscedasticity in which the variance of the disturbance depends
on the size of the preceding disturbance. Engle (1982) suggested the AutoRegressive,
Conditionally Heteroscedastic, or ARCH, model as an alternative to the standard time-
series treatments. We will examine the ARCH model in Section 11.8.

11.2 ORDINARY LEAST SQUARES ESTIMATION

We showed in Section 10.2 that in the presence of heteroscedasticity, the least squares
estimator b is still unbiased, consistent, and asymptotically normally distributed. The

2Pioneering studies in the analysis of macroeconomic data include Engle (1982, 1983) and Cragg (1982).
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asymptotic covariance matrix is

Asy. Var[b] = σ 2

n

(
plim

1
n

X′X
)−1(

plim
1
n

X′�X
)(

plim
1
n

X′X
)−1

.

Estimation of the asymptotic covariance matrix would be based on

Var[b | X] = (X′X)−1

(
σ 2

n∑
i=1

ωi xi x′
i

)
(X′X)−1.

[See (10-5).] Assuming, as usual, that the regressors are well behaved, so that (X′X/n)−1

converges to a positive definite matrix, we find that the mean square consistency of b
depends on the limiting behavior of the matrix:

Q∗
n = X′�X

n
= 1

n

n∑
i=1

ωi xi x′
i . (11-1)

If Q∗
n converges to a positive definite matrix Q∗, then as n → ∞, b will converge to β

in mean square. Under most circumstances, if ωi is finite for all i , then we would expect
this result to be true. Note that Q∗

n is a weighted sum of the squares and cross products
of x with weights ωi/n, which sum to 1. We have already assumed that another weighted
sum X′X/n, in which the weights are 1/n, converges to a positive definite matrix Q, so it
would be surprising if Q∗

n did not converge as well. In general, then, we would expect that

b
a∼ N

[
β,

σ 2

n
Q−1Q∗Q−1

]
, with Q∗ = plim Q∗

n.

A formal proof is based on Section 5.2 with Qi = ωi xi x′
i .

11.2.1 INEFFICIENCY OF LEAST SQUARES

It follows from our earlier results that b is inefficient relative to the GLS estimator. By
how much will depend on the setting, but there is some generality to the pattern. As
might be expected, the greater is the dispersion in ωi across observations, the greater
the efficiency of GLS over OLS. The impact of this on the efficiency of estimation will
depend crucially on the nature of the disturbance variances. In the usual cases, in which
ωi depends on variables that appear elsewhere in the model, the greater is the dispersion
in these variables, the greater will be the gain to using GLS. It is important to note,
however, that both these comparisons are based on knowledge of �. In practice, one of
two cases is likely to be true. If we do have detailed knowledge of �, the performance
of the inefficient estimator is a moot point. We will use GLS or feasible GLS anyway. In
the more common case, we will not have detailed knowledge of �, so the comparison
is not possible.

11.2.2 THE ESTIMATED COVARIANCE MATRIX OF b

If the type of heteroscedasticity is known with certainty, then the ordinary least squares
estimator is undesirable; we should use generalized least squares instead. The precise
form of the heteroscedasticity is usually unknown, however. In that case, generalized
least squares is not usable, and we may need to salvage what we can from the results of
ordinary least squares.

William Greene
b should be bold
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The conventionally estimated covariance matrix for the least squares estimator
σ 2(X′X)−1 is inappropriate; the appropriate matrix is σ 2(X′X)−1(X′�X)(X′X)−1. It is
unlikely that these two would coincide, so the usual estimators of the standard errors
are likely to be erroneous. In this section, we consider how erroneous the conventional
estimator is likely to be.

As usual,

s2 = e′e
n − K

= ε′Mε

n − K
, (11-2)

where M = I − X(X′X)−1X′. Expanding this equation, we obtain

s2 = ε′ε
n − K

− ε′X(X′X)−1X′ε
n − K

. (11-3)

Taking the two parts separately yields

E
[

ε′ε
n − K

∣∣∣∣ X
]

= trE [εε′ | X]
n − K

= nσ 2

n − K
. (11-4)

[We have used the scaling tr(�) = n.] In addition,

E
[
ε′X(X′X)−1X′ε

n − K

∣∣∣∣ X
]

= tr
{
E [(X′X)−1X′εε′X | X]

}

n − K

=
tr

[
σ 2

(
X′X

n

)−1(X′�X
n

)]

n − K
= σ 2

n − K
tr

[(
X′X

n

)−1

Q∗
n

]
, (11-5)

where Q∗
n is defined in (11-1). As n → ∞, the term in (11-4) will converge to σ 2. The

term in (11-5) will converge to zero if b is consistent because both matrices in the product
are finite. Therefore:

If b is consistent, then lim
n→∞ E [s2] = σ 2.

It can also be shown—we leave it as an exercise—that if the fourth moment of every
disturbance is finite and all our other assumptions are met, then

lim
n→∞ Var

[
e′e

n − K

]
= lim

n→∞ Var
[

ε′ε
n − K

]
= 0.

This result implies, therefore, that:

If plim b = β, then plim s2 = σ 2.

Before proceeding, it is useful to pursue this result. The normalization tr(�) = n implies
that

σ 2 = σ̄ 2 = 1
n

∑
i

σ 2
i and ωi = σ 2

i

σ̄ 2
.

Therefore, our previous convergence result implies that the least squares estimator
s2 converges to plim σ̄ 2, that is, the probability limit of the average variance of the
disturbances, assuming that this probability limit exists. Thus, some further assumption
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about these variances is necessary to obtain the result. (For an application, see Exercise 5
in Chapter 13.)

The difference between the conventional estimator and the appropriate (true)
covariance matrix for b is

Est. Var[b|X] − Var[b|X] = s2(X′X)−1 − σ 2(X′X)−1(X′�X)(X′X)−1. (11-6)

In a large sample (so that s2 ≈ σ 2), this difference is approximately equal to

D = σ 2

n

(
X′X

n

)−1[X′X
n

− X′�X
n

](
X′X

n

)−1

. (11-7)

The difference between the two matrices hinges on

� = X′X
n

− X′�X
n

=
n∑

i=1

(
1
n

)
xi x′

i −
n∑

i=1

(
ωi

n

)
xi x′

i = 1
n

n∑
i=1

(1 − ωi )xi x′
i , (11-8)

where x′
i is the ith row of X. These are two weighted averages of the matrices Qi = xi x′

i ,

using weights 1 for the first term and ωi for the second. The scaling tr(�) = n implies
that

∑
i (ωi/n) = 1. Whether the weighted average based on ωi/n differs much from

the one using 1/n depends on the weights. If the weights are related to the values in
xi , then the difference can be considerable. If the weights are uncorrelated with xi x′

i ,

however, then the weighted average will tend to equal the unweighted average.3

Therefore, the comparison rests on whether the heteroscedasticity is related to any
of xk or xj ×xk. The conclusion is that, in general: If the heteroscedasticity is not correlated
with the variables in the model, then at least in large samples, the ordinary least squares
computations, although not the optimal way to use the data, will not be misleading. For
example, in the groupwise heteroscedasticity model of Section 11.7.2, if the observations
are grouped in the subsamples in a way that is unrelated to the variables in X, then the
usual OLS estimator of Var[b] will, at least in large samples, provide a reliable estimate
of the appropriate covariance matrix. It is worth remembering, however, that the least
squares estimator will be inefficient, the more so the larger are the differences among
the variances of the groups.4

The preceding is a useful result, but one should not be overly optimistic. First, it re-
mains true that ordinary least squares is demonstrably inefficient. Second, if the primary
assumption of the analysis—that the heteroscedasticity is unrelated to the variables in
the model—is incorrect, then the conventional standard errors may be quite far from
the appropriate values.

11.2.3 ESTIMATING THE APPROPRIATE COVARIANCE MATRIX
FOR ORDINARY LEAST SQUARES

It is clear from the preceding that heteroscedasticity has some potentially serious im-
plications for inferences based on the results of least squares. The application of more

3Suppose, for example, that X contains a single column and that both xi and ωi are independent and identically
distributed random variables. Then x′x/n converges to E [x2

i ], whereas x′�x/n converges to Cov[ωi , x2
i ] +

E [ωi ]E [x2
i ]. E [ωi ] = 1, so if ω and x2 are uncorrelated, then the sums have the same probability limit.

4Some general results, including analysis of the properties of the estimator based on estimated variances, are
given in Taylor (1977).
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appropriate estimation techniques requires a detailed formulation of �, however. It may
well be that the form of the heteroscedasticity is unknown. White (1980) has shown that
it is still possible to obtain an appropriate estimator for the variance of the least squares
estimator, even if the heteroscedasticity is related to the variables in X. The White
estimator [see (10-14) in Section 10.35]

Est. Asy. Var[b] = 1
n

(
X′X

n

)−1
(

1
n

n∑
i=1

e2
i xi x′

i

)(
X′X

n

)−1

, (11-9)

where ei is the ith least squares residual, can be used as an estimate of the asymptotic
variance of the least squares estimator.

A number of studies have sought to improve on the White estimator for OLS.6

The asymptotic properties of the estimator are unambiguous, but its usefulness in small
samples is open to question. The possible problems stem from the general result that
the squared OLS residuals tend to underestimate the squares of the true disturbances.
[That is why we use 1/(n − K) rather than 1/n in computing s2.] The end result is that
in small samples, at least as suggested by some Monte Carlo studies [e.g., MacKinnon
and White (1985)], the White estimator is a bit too optimistic; the matrix is a bit too
small, so asymptotic t ratios are a little too large. Davidson and MacKinnon (1993,
p. 554) suggest a number of fixes, which include (1) scaling up the end result by a factor
n/(n − K) and (2) using the squared residual scaled by its true variance, e2

i /mii , instead
of e2

i , where mii = 1 − x′
i (X

′X)−1xi .7 [See (4-20).] On the basis of their study, Davidson
and MacKinnon strongly advocate one or the other correction. Their admonition “One
should never use [the White estimator] because [(2)] always performs better” seems a bit
strong, but the point is well taken. The use of sharp asymptotic results in small samples
can be problematic. The last two rows of Table 11.1 show the recomputed standard
errors with these two modifications.

Example 11.2 The White Estimator
Using White’s estimator for the regression in Example 11.1 produces the results in the row
labeled “White S. E.” in Table 11.1. The two income coefficients are individually and jointly sta-
tistically significant based on the individual t ratios and F (2, 67) = [(0.244−0.064)/2]/[0.776/
(72 − 5) ] = 7.771. The 1 percent critical value is 4.94.

The differences in the estimated standard errors seem fairly minor given the extreme
heteroscedasticity. One surprise is the decline in the standard error of the age coefficient.
The F test is no longer available for testing the joint significance of the two income coefficients
because it relies on homoscedasticity. A Wald test, however, may be used in any event. The
chi-squared test is based on

W = (Rb) ′[R
(
Est. Asy. Var[b]

)
R′]−1

(Rb) where R =
[

0 0 0 1 0
0 0 0 0 1

]
,

and the estimated asymptotic covariance matrix is the White estimator. The F statistic based
on least squares is 7.771. The Wald statistic based on the White estimator is 20.604; the 95
percent critical value for the chi-squared distribution with two degrees of freedom is 5.99, so
the conclusion is unchanged.

5See also Eicker (1967), Horn, Horn, and Duncan (1975), and MacKinnon and White (1985).
6See, e.g., MacKinnon and White (1985) and Messer and White (1984).
7They also suggest a third correction, e2

i /m2
i i , as an approximation to an estimator based on the “jackknife”

technique, but their advocacy of this estimator is much weaker than that of the other two.
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TABLE 11.1 Least Squares Regression Results

Constant Age OwnRent Income Income2

Sample Mean 32.08 0.36 3.369
Coefficient −237.15 −3.0818 27.941 234.35 −14.997
Standard Error 199.35 5.5147 82.922 80.366 7.4693
t ratio −1.10 −0.5590 0.337 2.916 −2.008
White S.E. 212.99 3.3017 92.188 88.866 6.9446
D. and M. (1) 270.79 3.4227 95.566 92.122 7.1991
D. and M. (2) 221.09 3.4477 95.632 92.083 7.1995

R2 = 0.243578, s = 284.75080

Mean Expenditure = $189.02. Income is ×$10,000
Tests for Heteroscedasticity: White = 14.329, Goldfeld–Quandt = 15.001,
Breusch–Pagan = 41.920, Koenker–Bassett = 6.187.
(Two degrees of freedom. χ2

∗ = 5.99.)

11.3 GMM ESTIMATION OF THE
HETEROSCEDASTIC REGRESSION MODEL

The GMM estimator in the heteroscedastic regression model is produced by the empir-
ical moment equations

1
n

n∑
i=1

xi
(

yi − x′
i β̂GMM

) = 1
n

X′ε̂
(
β̂GMM

) = m̄
(
β̂GMM

) = 0. (11-10)

The estimator is obtained by minimizing

q = m̄′(β̂GMM

)
Wm̄

(
β̂GMM

)

where W is a positive definite weighting matrix. The optimal weighting matrix would be

W = {
Asy. Var[

√
n m̄(β)]

}−1

which is the inverse of

Asy. Var[
√

nm̄(β)] = Asy. Var

[
1√
n

n∑
i=1

xiεi

]
= plim

n→∞

1
n

n∑
i=1

σ 2ωi xi x′
i = σ 2Q∗

[see (11-1)]. The optimal weighting matrix would be [σ 2Q∗]−1. But, recall that this
minimization problem is an exactly identified case, so, the weighting matrix is irrelevant
to the solution. You can see that in the moment equation—that equation is simply the
normal equations for least squares. We can solve the moment equations exactly, so
there is no need for the weighting matrix. Regardless of the covariance matrix of the
moments, the GMM estimator for the heteroscedastic regression model is ordinary least
squares. (This is Case 2 analyzed in Section 10.4.) We can use the results we have already
obtained to find its asymptotic covariance matrix. The result appears in Section 11.2.
The implied estimator is the White estimator in (11-9). [Once again, see Theorem 10.6.]
The conclusion to be drawn at this point is that until we make some specific assumptions
about the variances, we do not have a more efficient estimator than least squares, but
we do have to modify the estimated asymptotic covariance matrix.
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11.4 TESTING FOR HETEROSCEDASTICITY

Heteroscedasticity poses potentially severe problems for inferences based on least
squares. One can rarely be certain that the disturbances are heteroscedastic however,
and unfortunately, what form the heteroscedasticity takes if they are. As such, it is useful
to be able to test for homoscedasticity and if necessary, modify our estimation proce-
dures accordingly.8 Several types of tests have been suggested. They can be roughly
grouped in descending order in terms of their generality and, as might be expected, in
ascending order in terms of their power.9

Most of the tests for heteroscedasticity are based on the following strategy. Ordinary
least squares is a consistent estimator of β even in the presence of heteroscedasticity.
As such, the ordinary least squares residuals will mimic, albeit imperfectly because of
sampling variability, the heteroscedasticity of the true disturbances. Therefore, tests
designed to detect heteroscedasticity will, in most cases, be applied to the ordinary least
squares residuals.

11.4.1 WHITE’S GENERAL TEST

To formulate most of the available tests, it is necessary to specify, at least in rough terms,
the nature of the heteroscedasticity. It would be desirable to be able to test a general
hypothesis of the form

H0 : σ 2
i = σ 2 for all i,

H1 : Not H0.

In view of our earlier findings on the difficulty of estimation in a model with n unknown
parameters, this is rather ambitious. Nonetheless, such a test has been devised by White
(1980b). The correct covariance matrix for the least squares estimator is

Var[b|X] = σ 2[X′X]−1[X′�X][X′X]−1, (11-11)

which, as we have seen, can be estimated using (11-9). The conventional estimator is
V = s2[X′X]−1. If there is no heteroscedasticity, then V will give a consistent estimator
of Var[b|X], whereas if there is, then it will not. White has devised a statistical test based
on this observation. A simple operational version of his test is carried out by obtaining
nR2 in the regression of e2

i on a constant and all unique variables contained in x and
all the squares and cross products of the variables in x. The statistic is asymptotically
distributed as chi-squared with P − 1 degrees of freedom, where P is the number of
regressors in the equation, including the constant.

The White test is extremely general. To carry it out, we need not make any specific
assumptions about the nature of the heteroscedasticity. Although this characteristic is
a virtue, it is, at the same time, a potentially serious shortcoming. The test may reveal

8There is the possibility that a preliminary test for heteroscedasticity will incorrectly lead us to use weighted
least squares or fail to alert us to heteroscedasticity and lead us improperly to use ordinary least squares.
Some limited results on the properties of the resulting estimator are given by Ohtani and Toyoda (1980).
Their results suggest that it is best to test first for heteroscedasticity rather than merely to assume that it is
present.
9A study that examines the power of several tests for heteroscedasticity is Ali and Giaccotto (1984).
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heteroscedasticity, but it may instead simply identify some other specification error
(such as the omission of x2 from a simple regression).10 Except in the context of a
specific problem, little can be said about the power of White’s test; it may be very low
against some alternatives. In addition, unlike some of the other tests we shall discuss,
the White test is nonconstructive. If we reject the null hypothesis, then the result of the
test gives no indication of what to do next.

11.4.2 THE GOLDFELD–QUANDT TEST

By narrowing our focus somewhat, we can obtain a more powerful test. Two tests that
are relatively general are the Goldfeld–Quandt (1965) test and the Breusch–Pagan
(1979) Lagrange multiplier test.

For the Goldfeld–Quandt test, we assume that the observations can be divided into
two groups in such a way that under the hypothesis of homoscedasticity, the disturbance
variances would be the same in the two groups, whereas under the alternative, the
disturbance variances would differ systematically. The most favorable case for this would
be the groupwise heteroscedastic model of Section 11.7.2 and Example 11.7 or a model
such as σ 2

i = σ 2x2
i for some variable x. By ranking the observations based on this x,

we can separate the observations into those with high and low variances. The test is
applied by dividing the sample into two groups with n1 and n2 observations. To obtain
statistically independent variance estimators, the regression is then estimated separately
with the two sets of observations. The test statistic is

F [n1 − K, n2 − K] = e′
1e1/(n1 − K)

e′
2e2/(n2 − K)

, (11-12)

where we assume that the disturbance variance is larger in the first sample. (If not, then
reverse the subscripts.) Under the null hypothesis of homoscedasticity, this statistic has
an F distribution with n1 − K and n2 − K degrees of freedom. The sample value can
be referred to the standard F table to carry out the test, with a large value leading to
rejection of the null hypothesis.

To increase the power of the test, Goldfeld and Quandt suggest that a number of
observations in the middle of the sample be omitted. The more observations that are
dropped, however, the smaller the degrees of freedom for estimation in each group will
be, which will tend to diminish the power of the test. As a consequence, the choice of how
many central observations to drop is largely subjective. Evidence by Harvey and Phillips
(1974) suggests that no more than a third of the observations should be dropped. If the
disturbances are normally distributed, then the Goldfeld–Quandt statistic is exactly
distributed as F under the null hypothesis and the nominal size of the test is correct.
If not, then the F distribution is only approximate and some alternative method with
known large-sample properties, such as White’s test, might be preferable.

11.4.3 THE BREUSCH–PAGAN/GODFREY LM TEST

The Goldfeld–Quandt test has been found to be reasonably powerful when we are able
to identify correctly the variable to use in the sample separation. This requirement does
limit its generality, however. For example, several of the models we will consider allow

10Thursby (1982) considers this issue in detail.
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the disturbance variance to vary with a set of regressors. Breusch and Pagan11 have
devised a Lagrange multiplier test of the hypothesis that σ 2

i = σ 2 f (α0 + α′zi ), where
zi is a vector of independent variables.12 The model is homoscedastic if α = 0. The test
can be carried out with a simple regression:

LM = 1
2 explained sum of squares in the regression of e2

i /(e
′e/n) on zi .

For computational purposes, let Z be the n × P matrix of observations on (1, zi ), and
let g be the vector of observations of gi = e2

i /(e
′e/n) − 1. Then

LM = 1
2 [g′Z(Z′Z)−1Z′g].

Under the null hypothesis of homoscedasticity, LM has a limiting chi-squared distri-
bution with degrees of freedom equal to the number of variables in zi . This test can
be applied to a variety of models, including, for example, those examined in Exam-
ple 11.3 (3) and in Section 11.7.13

It has been argued that the Breusch–Pagan Lagrange multiplier test is sensitive to
the assumption of normality. Koenker (1981) and Koenker and Bassett (1982) suggest
that the computation of LM be based on a more robust estimator of the variance of ε2

i ,

V = 1
n

n∑
i=1

[
e2

i − e′e
n

]2

.

The variance of ε2
i is not necessarily equal to 2σ 4 if εi is not normally distributed. Let u

equal (e2
1, e2

2, . . . , e2
n) and i be an n × 1 column of 1s. Then ū = e′e/n. With this change,

the computation becomes

LM =
[

1
V

]
(u − ū i)′Z(Z′Z)−1Z′(u − ū i).

Under normality, this modified statistic will have the same asymptotic distribution as the
Breusch–Pagan statistic, but absent normality, there is some evidence that it provides a
more powerful test. Waldman (1983) has shown that if the variables in zi are the same
as those used for the White test described earlier, then the two tests are algebraically
the same.

Example 11.3 Testing for Heteroscedasticity
1. White’s Test: For the data used in Example 11.1, there are 15 variables in x ⊗ x including
the constant term. But since Ownrent2 = OwnRent and Income × Income = Income2, only 13
are unique. Regression of the squared least squares residuals on these 13 variables produces
R2 = 0.199013. The chi-squared statistic is therefore 72(0.199013) = 14.329. The 95 percent
critical value of chi-squared with 12 degrees of freedom is 21.03, so despite what might seem
to be obvious in Figure 11.1, the hypothesis of homoscedasticity is not rejected by this test.
2. Goldfeld–Quandt Test: The 72 observations are sorted by Income, and then the regres-
sion is computed with the first 36 observations and the second. The two sums of squares
are 326,427 and 4,894,130, so the test statistic is F [31, 31] = 4,894,130/326,427 = 15.001.
The critical value from this table is 1.79, so this test reaches the opposite conclusion.

11Breusch and Pagan (1979).
12Lagrange multiplier tests are discussed in Section 17.5.3.
13The model σ 2

i = σ 2 exp(α′zi ) is one of these cases. In analyzing this model specifically, Harvey (1976) derived
the same test statistic.
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3. Breusch–Pagan Test: This test requires a specific alternative hypothesis. For this pur-
pose, we specify the test based on z = [1, Income, IncomeSq]. Using the least squares resid-
uals, we compute gi = e2

i /(e′e/72) − 1; then LM = 1
2 g′Z(Z′Z)−1Z′g. The sum of squares

is 5,432,562.033. The computation produces LM = 41.920. The critical value for the chi-
squared distribution with two degrees of freedom is 5.99, so the hypothesis of homoscedas-
ticity is rejected. The Koenker and Bassett variant of this statistic is only 6.187, which is still
significant but much smaller than the LM statistic. The wide difference between these two
statistics suggests that the assumption of normality is erroneous. Absent any knowledge
of the heteroscedasticity, we might use the Bera and Jarque (1981, 1982) and Kiefer and
Salmon (1983) test for normality,

χ2[2] = n[(m3/s3) 2 + ( (m4 − 3)/s4) 2]

where mj = (1/n)
∑

i e j
i . Under the null hypothesis of homoscedastic and normally distributed

disturbances, this statistic has a limiting chi-squared distribution with two degrees of free-
dom. Based on the least squares residuals, the value is 482.12, which certainly does lead
to rejection of the hypothesis. Some caution is warranted here, however. It is unclear what
part of the hypothesis should be rejected. We have convincing evidence in Figure 11.1 that
the disturbances are heteroscedastic, so the assumption of homoscedasticity underlying
this test is questionable. This does suggest the need to examine the data before applying a
specification test such as this one.

11.5 WEIGHTED LEAST SQUARES
WHEN � IS KNOWN

Having tested for and found evidence of heteroscedasticity, the logical next step is to
revise the estimation technique to account for it. The GLS estimator is

β̂ = (X′�−1X)−1X′�−1y.

Consider the most general case, Var[εi | xi ] = σ 2
i = σ 2ωi . Then �−1 is a diagonal matrix

whose ith diagonal element is 1/ωi . The GLS estimator is obtained by regressing

Py =




y1/
√

ω1

y2/
√

ω2

...

yn/
√

ωn




on PX =




x1/
√

ω1

x2/
√

ω2

...

xn/
√

ωn




.

Applying ordinary least squares to the transformed model, we obtain the weighted least
squares (WLS) estimator.

β̂ =
[

n∑
i=1

wi xi x′
i

]−1 [
n∑

i=1

wi xi yi

]
, (11-13)

where wi = 1/ωi .14 The logic of the computation is that observations with smaller vari-
ances receive a larger weight in the computations of the sums and therefore have greater
influence in the estimates obtained.

14The weights are often denoted wi = 1/σ 2
i . This expression is consistent with the equivalent β̂ =

[X′(σ 2�)−1X]−1X′(σ 2�)−1y. The σ 2’s cancel, leaving the expression given previously.
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A common specification is that the variance is proportional to one of the regressors
or its square. Our earlier example of family expenditures is one in which the relevant
variable is usually income. Similarly, in studies of firm profits, the dominant variable is
typically assumed to be firm size. If

σ 2
i = σ 2x2

ik,

then the transformed regression model for GLS is

y
xk

= βk + β1

(
x1

xk

)
+ β2

(
x2

xk

)
+ · · · + ε

xk
. (11-14)

If the variance is proportional to xk instead of x2
k, then the weight applied to each

observation is 1/
√

xk instead of 1/xk.
In (11-14), the coefficient on xk becomes the constant term. But if the variance is

proportional to any power of xk other than two, then the transformed model will no
longer contain a constant, and we encounter the problem of interpreting R2 mentioned
earlier. For example, no conclusion should be drawn if the R2 in the regression of y/zon
1/z and x/z is higher than in the regression of y on a constant and x for any z, including
x. The good fit of the weighted regression might be due to the presence of 1/z on both
sides of the equality.

It is rarely possible to be certain about the nature of the heteroscedasticity in a
regression model. In one respect, this problem is only minor. The weighted least squares
estimator

β̂ =
[

n∑
i=1

wi xi x′
i

]−1 [
n∑

i=1

wi xi yi

]

is consistent regardless of the weights used, as long as the weights are uncorrelated with
the disturbances.

But using the wrong set of weights has two other consequences that may be less
benign. First, the improperly weighted least squares estimator is inefficient. This point
might be moot if the correct weights are unknown, but the GLS standard errors will
also be incorrect. The asymptotic covariance matrix of the estimator

β̂ = [X′V−1X]−1X′V−1y (11-15)

is

Asy. Var[β̂] = σ 2[X′V−1X]−1X′V−1�V−1X[X′V−1X]−1. (11-16)

This result may or may not resemble the usual estimator, which would be the matrix in
brackets, and underscores the usefulness of the White estimator in (11-9).

The standard approach in the literature is to use OLS with the White estimator
or some variant for the asymptotic covariance matrix. One could argue both flaws and
virtues in this approach. In its favor, robustness to unknown heteroscedasticity is a
compelling virtue. In the clear presence of heteroscedasticity, however, least squares
can be extremely inefficient. The question becomes whether using the wrong weights is
better than using no weights at all. There are several layers to the question. If we use
one of the models discussed earlier—Harvey’s, for example, is a versatile and flexible
candidate—then we may use the wrong set of weights and, in addition, estimation of
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the variance parameters introduces a new source of variation into the slope estimators
for the model. A heteroscedasticity robust estimator for weighted least squares can
be formed by combining (11-16) with the White estimator. The weighted least squares
estimator in (11-15) is consistent with any set of weights V = diag[v1, v2, . . . , vn]. Its
asymptotic covariance matrix can be estimated with

Est.Asy. Var[β̂] = (X′V−1X)−1

[
n∑

i=1

(
e2

i

v2
i

)
xi x′

i

]
(X′V−1X)−1. (11-17)

Any consistent estimator can be used to form the residuals. The weighted least squares
estimator is a natural candidate.

11.6 ESTIMATION WHEN � CONTAINS UNKNOWN
PARAMETERS

The general form of the heteroscedastic regression model has too many parameters to
estimate by ordinary methods. Typically, the model is restricted by formulating σ 2� as
a function of a few parameters, as in σ 2

i = σ 2xα
i or σ 2

i = σ 2[x′
iα]2. Write this as �(α).

FGLS based on a consistent estimator of �(α) (meaning a consistent estimator of α)
is asymptotically equivalent to full GLS, and FGLS based on a maximum likelihood
estimator of �(α) will produce a maximum likelihood estimator of β if �(α) does
not contain any elements of β. The new problem is that we must first find consistent
estimators of the unknown parameters in �(α). Two methods are typically used, two-
step GLS and maximum likelihood.

11.6.1 TWO-STEP ESTIMATION

For the heteroscedastic model, the GLS estimator is

β̂ =
[

n∑
i=1

(
1
σ 2

i

)
xi x′

i

]−1 [
n∑

i=1

(
1
σ 2

i

)
xi yi

]
. (11-18)

The two-step estimators are computed by first obtaining estimates σ̂ 2
i , usually using

some function of the ordinary least squares residuals. Then, ˆ̂β uses (11-18) and σ̂ 2
i .

The ordinary least squares estimator of β, although inefficient, is still consistent. As
such, statistics computed using the ordinary least squares residuals, ei = (yi − x′

i b), will
have the same asymptotic properties as those computed using the true disturbances,
εi = (yi − x′

iβ). This result suggests a regression approach for the true disturbances and
variables zi that may or may not coincide with xi . Now E [ε2

i | zi ] = σ 2
i , so

ε2
i = σ 2

i + vi ,

where vi is just the difference between ε2
i and its conditional expectation. Since εi is

unobservable, we would use the least squares residual, for which ei = εi − x′
i (b − β) =

εi + ui . Then, e2
i = ε2

i + u2
i + 2εi ui . But, in large samples, as b

p−→ β, terms in ui will
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become negligible, so that at least approximately,15

e2
i = σ 2

i + v∗
i .

The procedure suggested is to treat the variance function as a regression and use the
squares or some other functions of the least squares residuals as the dependent vari-
able.16 For example, if σ 2

i = z′
iα, then a consistent estimator of α will be the least squares

slopes, a, in the “model,”

e2
i = z′

iα + v∗
i .

In this model, v∗
i is both heteroscedastic and autocorrelated, so a is consistent but

inefficient. But, consistency is all that is required for asymptotically efficient estimation
of β using �(α̂). It remains to be settled whether improving the estimator of α in this
and the other models we will consider would improve the small sample properties of
the two-step estimator of β.17

The two-step estimator may be iterated by recomputing the residuals after comput-
ing the FGLS estimates and then reentering the computation. The asymptotic properties
of the iterated estimator are the same as those of the two-step estimator, however. In
some cases, this sort of iteration will produce the maximum likelihood estimator at
convergence. Yet none of the estimators based on regression of squared residuals on
other variables satisfy the requirement. Thus, iteration in this context provides little
additional benefit, if any.

11.6.2 MAXIMUM LIKELIHOOD ESTIMATION18

The log-likelihood function for a sample of normally distributed observations is

ln L = −n
2

ln(2π) − 1
2

n∑
i=1

[
ln σ 2

i + 1
σ 2

i
(yi − x′

iβ)2
]

.

For simplicity, let (11-19)

σ 2
i = σ 2 fi (α),

where α is the vector of unknown parameters in �(α) and fi (α) is indexed by i to
indicate that it is a function of zi —note that �(α) = diag[ fi (α)] so it is also. Assume as
well that no elements of β appear in α. The log-likelihood function is

ln L = −n
2

[ln(2π) + ln σ 2] − 1
2

n∑
i=1

[
ln fi (α) + 1

σ 2

(
1

fi (α)

)
(yi − x′

iβ)2
]

.

For convenience in what follows, substitute εi for (yi − x′
iβ), denote fi (α) as simply

fi , and denote the vector of derivatives ∂ fi (α)/∂α as gi . Then, the derivatives of the

15See Amemiya (1985) for formal analysis.
16See, for example, Jobson and Fuller (1980).
17Fomby, Hill, and Johnson (1984, pp. 177–186) and Amemiya (1985, pp. 203–207; 1977a) examine this model.
18The method of maximum likelihood estimation is developed in Chapter 17.

William Greene
"a" should be bold, not italic
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log-likelihood function are

∂ ln L
∂β

=
n∑

i=1

xi
εi

σ 2 fi

∂ ln L
∂σ 2

= − n
2σ 2

+ 1
2σ 4

n∑
i=1

ε2
i

fi
=

n∑
i=1

(
1

2σ 2

)(
ε2

i

σ 2 fi
− 1

)
(11-20)

∂ ln L
∂α

=
n∑

i=1

(
1
2

)(
ε2

i

σ 2 fi
− 1

)(
1
fi

)
gi .

Since E [εi | xi , zi ] = 0 and E [ε2
i | xi , zi ] = σ 2 fi , it is clear that all derivatives have

expectation zero as required. The maximum likelihood estimators are those values
of β, σ 2, and α that simultaneously equate these derivatives to zero. The likelihood
equations are generally highly nonlinear and will usually require an iterative solution.

Let G be the n × M matrix with ith row equal to ∂ fi/∂α′ = g′
i and let i denote an

n × 1 column vector of 1s. The asymptotic covariance matrix for the maximum likelihood
estimator in this model is

(
−E

[
∂2 ln L
∂γ ∂γ ′

])−1

=




(1/σ 2)X′�−1X 0 0
0′ n/(2σ 4) (1/(2σ 2))i′�−1G

0′ (1/(2σ 2))G′�−1i (1/2)G′�−2G




−1

,

(11-21)

where γ ′ = [β ′, σ 2, α′]. (One convenience is that terms involving ∂2 fi/∂α∂α′ fall out of
the expectations. The proof is considered in the exercises.)

From the likelihood equations, it is apparent that for a given value of α, the solution
for β is the GLS estimator. The scale parameter, σ 2, is ultimately irrelevant to this
solution. The second likelihood equation shows that for given values of β and α, σ 2 will
be estimated as the mean of the squared generalized residuals, σ̂ 2 = (1/n)

∑n
i=1[(yi −

x′
i β̂)/ f̂ i ]

2. This term is the generalized sum of squares. Finally, there is no general
solution to be found for the estimator of α; it depends on the model. We will examine
two examples. If α is only a single parameter, then it may be simplest just to scan a range
of values of α to locate the one that, with the associated FGLS estimator of β, maximizes
the log-likelihood. The fact that the Hessian is block diagonal does provide an additional
convenience. The parameter vector β may always be estimated conditionally on [σ 2, α]
and, likewise, if β is given, then the solutions for σ 2 and α can be found conditionally,
although this may be a complicated optimization problem. But, by going back and
forth in this fashion, as suggested by Oberhofer and Kmenta (1974), we may be able
to obtain the full solution more easily than by approaching the full set of equations
simultaneously.

11.6.3 MODEL BASED TESTS FOR HETEROSCEDASTICITY

The tests for heteroscedasticity described in Section 11.4 are based on the behavior
of the least squares residuals. The general approach is based on the idea that if het-
eroscedasticity of any form is present in the disturbances, it will be discernible in the
behavior of the residuals. Those residual based tests are robust in the sense that they
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will detect heteroscedasticity of a variety of forms. On the other hand, their power is
a function of the specific alternative. The model considered here is fairly narrow. The
tradeoff is that within the context of the specified model, a test of heteroscedasticity will
have greater power than the residual based tests. (To come full circle, of course, that
means that if the model specification is incorrect, the tests are likely to have limited or
no power at all to reveal an incorrect hypothesis of homoscedasticity.)

Testing the hypothesis of homoscedasticity using any of the three standard meth-
ods is particularly simple in the model outlined in this section. The trio of tests for
parametric models is available. The model would generally be formulated so that the
heteroscedasticity is induced by a nonzero α. Thus, we take the test of H0 : α = 0 to be
a test against homoscedasticity.

Wald Test The Wald statistic is computed by extracting from the full parameter vector
and its estimated asymptotic covariance matrix the subvector α̂ and its asymptotic
covariance matrix. Then,

W = α̂′{Est.Asy. Var[α̂]
}−1

α̂.

Likelihood Ratio Test The results of the homoscedastic least squares regression are
generally used to obtain the initial values for the iterations. The restricted log-likelihood
value is a by-product of the initial setup; log-LR = −(n/2)[1 + ln 2π + ln(e′e/n)]. The
unrestricted log-likelihood, log-LU , is obtained as the objective function for the estima-
tion. Then, the statistic for the test is

LR = −2(ln-LR − ln-LU].

Lagrange Multiplier Test To set up the LM test, we refer back to the model in (11-19)–
(11-21). At the restricted estimates α = 0, β = b, σ 2 = e′e/n (not n − K), fi = 1 and
�(0) = I. Thus, the first derivatives vector evaluated at the least squares estimates is

∂ ln L
∂β

∣∣∣∣ (β = b, σ 2 = e′e/n, α̂ = 0) = 0

∂ ln L
∂σ 2

∣∣∣∣ (β = b, σ 2 = e′e/n, α̂ = 0) = 0

∂ ln L
∂α

∣∣∣∣ (β = b, σ 2 = e′e/n, α̂ = 0) =
n∑

i=1

1
2

(
e2

i

e′e/n
− 1

)
gi =

n∑
i=1

1
2
vi gi .

The negative expected inverse of the Hessian, from (11-21) is

(
−E

[
∂2 ln L
∂γ ∂γ ′

]

α=0

)−1

=




(1/σ 2)X′X 0 0
0′ n/(2σ 4) [1/(2σ 2)]g
0′ [1/(2σ 2)]g′ (1/2)G′G




−1

= {−E [H]
}−1

where g = ∑n
i=1 gi and G′G = ∑n

i=1 gi g′
i . The LM statistic will be

LM =
[
∂ ln L
∂γ

∣∣∣∣ (γ = b, e′e/n, 0)

]′ {−E [H]
}−1

[
∂ ln L
∂γ

∣∣∣∣ (γ = b, e′e/n, 0)

]
.
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With a bit of algebra and using (B-66) for the partitioned inverse, you can show that
this reduces to

LM = 1
2

{
n∑

i=1

vi gi

} [
n∑

i=1

(gi − ḡ)(gi − ḡ)′
]−1 {

n∑
i=1

vi gi

}
.

This result, as given by Breusch and Pagan (1980), is simply one half times the regression
sum of squares in the regression of vi on a constant and gi . This actually simplifies
even further if, as in the cases studied by Bruesch and Pagan, the variance function is
fi = f (z′

iα) where f (z′
i 0) = 1. Then, the derivative will be of the form gi = r(z′

iα)zi and
it will follow that ri (z′

i 0) = a constant. In this instance, the same statistic will result from
the regression of vi on a constant and zi which is the result reported in Section 11.4.3.
The remarkable aspect of the result is that the same statistic results regardless of the
choice of variance function, so long as it satisfies fi = f (z′

iα) where f (z′
i 0) = 1. The

model studied by Harvey, for example has fi = exp(z′
iα), so gi = zi when α = 0.

Example 11.4 Two-Step Estimation of a Heteroscedastic Regression
Table 11.2 lists weighted least squares and two-step FGLS estimates of the parameters of
the regression model in Example 11.1 using various formulations of the scedastic function.
The method used to compute the weights for weighted least squares is given below each
model formulation. The procedure was iterated to convergence for the model σ 2

i = σ 2zα
i —

convergence required 13 iterations. (The two-step estimates are those computed by the first
iteration.) ML estimates for this model are also shown. As often happens, the iteration pro-
duces fairly large changes in the estimates. There is also a considerable amount of variation
produced by the different formulations.

For the model fi = zα
i , the concentrated log-likelihood is simple to compute. We can find

the maximum likelihood estimate for this model just by scanning over a range of values for
α. For any α, the maximum likelihood estimator of β is weighted least squares, with weights
wi = 1/zα

i . For our expenditure model, we use income for zi . Figure 11.2 shows a plot of the
log-likelihood function. The maximum occurs at α = 3.65. This value, with the FGLS estimates
of β, is shown in Table 11.2.

TABLE 11.2 Two-Step and Weighted Least Squares Estimates

Constant Age OwnRent Income Income2

σ 2
i = σ 2 (OLS) est. −237.15 −3.0818 27.941 234.35 −14.997

s.e. 199.35 5.5147 82.922 80.366 7.4693

σ 2
i = σ 2 Ii (WLS) est. −181.87 −2.9350 50.494 202.17 −12.114

s.e. 165.52 4.6033 69.879 76.781 8.2731

σ 2
i = σ 2 I2

i (WLS) est. −114.11 −2.6942 60.449 158.43 −7.2492
s.e. 139.69 3.8074 58.551 76.392 9.7243

σ 2
i = σ 2 exp(z′

iα) est. −117.88 −1.2337 50.950 145.30 −7.9383
(ln e2

i on zi = (1, ln Ii )) s.e. 101.39 2.5512 52.814 46.363 3.7367

σ 2
i = σ 2zα

i (2 Step) est. −193.33 −2.9579 47.357 208.86 −12.769
(ln e2

i on (1, ln zi )) s.e. 171.08 4.7627 72.139 77.198 8.0838
(iterated) est. −130.38 −2.7754 59.126 169.74 −8.5995
(α = 1.7623) s.e. 145.03 3.9817 61.0434 76.180 9.3133
(ML) est. −19.929 −1.7058 58.102 75.970 4.3915
(α = 3.6513) s.e. 113.06 2.7581 43.5084 81.040 13.433
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FIGURE 11.2 Plot of Log-Likelihood Function.

Note that this value of α is very different from the value we obtained by iterative regression
of the logs of the squared residuals on log income. In this model, gi = fi ln zi . If we insert this
into the expression for ∂ ln L/∂α and manipulate it a bit, we obtain the implicit solution

n∑
i =1

(
ε2

i

σ 2zα
i

− 1

)
ln zi = 0.

(The 1
2 disappears from the solution.) For given values of σ 2 and β, this result provides only

an implicit solution for α. In the next section, we examine a method for finding a solution.
At this point, we note that the solution to this equation is clearly not obtained by regression
of the logs of the squared residuals on log zi . Hence, the strategy we used for the two-step
estimator does not seek the maximum likelihood estimator.

11.7 APPLICATIONS

This section will present two common applications of the heteroscedastic regression
model, Harvey’s model of multiplicative heteroscedasticity and a model of groupwise
heteroscedasticity that extends to the disturbance variance some concepts that are usu-
ally associated with variation in the regression function.

11.7.1 MULTIPLICATIVE HETEROSCEDASTICITY

Harvey’s (1976) model of multiplicative heteroscedasticity is a very flexible, general
model that includes most of the useful formulations as special cases. The general for-
mulation is

σ 2
i = σ 2 exp(z′

iα).
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The model examined in Example 11.4 has zi = ln incomei . More generally, a model with
heteroscedasticity of the form

σ 2
i = σ 2

M∏
m=1

zαm
im

results if the logs of the variables are placed in zi . The groupwise heteroscedasticity
model described below is produced by making zi a set of group dummy variables (one
must be omitted). In this case, σ 2 is the disturbance variance for the base group whereas
for the other groups, σ 2

g = σ 2 exp(αg).
We begin with a useful simplification. Let zi include a constant term so that z′

i =
[1, q′

i ], where qi is the original set of variables, and let γ ′ = [ln σ 2, α′]. Then, the model
is simply σ 2

i = exp(γ ′zi ). Once the full parameter vector is estimated, exp(γ1) provides
the estimator of σ 2. (This estimator uses the invariance result for maximum likelihood
estimation. See Section 17.4.5.d.)

The log-likelihood is

ln L = −n
2

ln(2π) − 1
2

n∑
i=1

ln σ 2
i − 1

2

n∑
i=1

ε2
i

σ 2
i

= −n
2

ln(2π) − 1
2

n∑
i=1

z′
iγ − 1

2

n∑
i=1

ε2
i

exp(z′
iγ )

.

The likelihood equations are

∂ ln L
∂β

=
n∑

i=1

xi
εi

exp(z′
iγ )

= X′�−1ε = 0,

∂ ln L
∂γ

= 1
2

n∑
i=1

zi

(
ε2

i

exp(z′
iγ )

− 1
)

= 0.

For this model, the method of scoring turns out to be a particularly convenient way to
maximize the log-likelihood function. The terms in the Hessian are

∂2 ln L
∂β ∂β ′ = −

n∑
i=1

1
exp(z′

iγ )
xi x′

i = −X′�−1X,

∂2 ln L
∂β ∂γ ′ = −

n∑
i=1

εi

exp(z′
iγ )

xi z′
i ,

∂2 ln L
∂γ ∂γ ′ = −1

2

n∑
i=1

ε2
i

exp(z′
iγ )

zi z′
i .

The expected value of ∂2 ln L/∂β ∂γ ′ is 0 since E [εi |xi , zi ] = 0. The expected value of
the fraction in ∂2 ln L/∂γ ∂γ ′ is E [ε2

i /σ
2
i |xi , zi ] = 1. Let δ = [β, γ ]. Then

−E
(

∂2 ln L
∂δ ∂δ′

)
=

[
X′�−1X 0

0′ 1
2 Z′Z

]
= −H.
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The scoring method is

δt+1 = δt − H−1
t gt ,

where δt (i.e., β t , γ t , and �t ) is the estimate at iteration t, gt is the two-part vector of
first derivatives [∂ ln L/∂β ′

t , ∂ ln L/∂γ ′
t ]

′ and Ht is partitioned likewise. Since Ht is block
diagonal, the iteration can be written as separate equations:

β t+1 = β t + (X′�−1
t X)−1(X′�−1

t εt )

= β t + (X′�−1
t X)−1X′�−1

t (y − Xβ t )

= (X′�−1
t X)−1X′�−1

t y (of course).

Therefore, the updated coefficient vectorβ t+1 is computed by FGLS using the previously
computed estimate of γ to compute �. We use the same approach for γ :

γ t+1 = γ t + [2(Z′Z)−1]

[
1
2

n∑
i=1

zi

(
ε2

i

exp(z′
iγ )

− 1
)]

.

The 2 and 1
2 cancel. The updated value of γ is computed by adding the vector of slopes

in the least squares regression of [ε2
i / exp(z′

iγ ) − 1] on zi to the old one. Note that
the correction is 2(Z′Z)−1Z′(∂ ln L/∂γ ), so convergence occurs when the derivative
is zero.

The remaining detail is to determine the starting value for the iteration. Since any
consistent estimator will do, the simplest procedure is to use OLS for β and the slopes in
a regression of the logs of the squares of the least squares residuals on zi for γ . Harvey
(1976) shows that this method will produce an inconsistent estimator of γ1 = ln σ 2,
but the inconsistency can be corrected just by adding 1.2704 to the value obtained.19

Thereafter, the iteration is simply:

1. Estimate the disturbance variance σ 2
i with exp(γ ′

t zi ).
2. Compute β t+1 by FGLS.20

3. Update γ t using the regression described in the preceding paragraph.
4. Compute dt+1 = [β t+1, γ t+1] − [β t , γ t ]. If dt+1 is large, then return to step 1.

If dt+1 at step 4 is sufficiently small, then exit the iteration. The asymptotic covariance
matrix is simply −H−1, which is block diagonal with blocks

Asy. Var[β̂ML] = (X′�−1X)−1,

Asy. Var[γ̂ ML] = 2(Z′Z)−1.

If desired, then σ̂ 2 = exp(γ̂1) can be computed. The asymptotic variance would be
[exp(γ1)]2(Asy. Var[γ̂1,ML]).

19He also presents a correction for the asymptotic covariance matrix for this first step estimator of γ .
20The two-step estimator obtained by stopping here would be fully efficient if the starting value for γ were
consistent, but it would not be the maximum likelihood estimator.
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TABLE 11.3 Multiplicative Heteroscedasticity Model

Constant Age OwnRent Income Income2

Ordinary Least Squares Estimates
Coefficient −237.15 −3.0818 27.941 234.35 −14.997
Standard error 199.35 5.5147 82.922 80.366 7.469
t ratio −1.1 −0.559 0.337 2.916 −2.008

R2 = 0.243578, s = 284.75080, Ln-L = −506.488

Maximum Likelihood Estimates (standard errors for estimates of γ in parentheses)
Coefficient −58.437 −0.37607 33.358 96.823 −3.3008
Standard error 62.098 0.55000 37.135 31.798 2.6248
t ratio −0.941 −0.684 0.898 3.045 −1.448

[exp(c1)]1/2 = 0.9792(0.79115), c2 = 5.355(0.37504), c3 = −0.56315(0.036122)
Ln-L = −465.9817, Wald = 251.423, LR = 81.0142, LM = 115.899

Example 11.5 Multiplicative Heteroscedasticity
Estimates of the regression model of Example 11.1 based on Harvey’s model are shown in
Table 11.3 with the ordinary least squares results. The scedastic function is

σ 2
i = exp

(
γ1 + γ2incomei + γ3income2

i

)
.

The estimates are consistent with the earlier results in suggesting that Income and its square
significantly explain variation in the disturbance variances across observations. The 95 per-
cent critical value for a chi-squared test with two degrees of freedom is 5.99, so all three test
statistics lead to rejection of the hypothesis of homoscedasticity.

11.7.2 GROUPWISE HETEROSCEDASTICITY

A groupwise heteroscedastic regression has structural equations

yi = x′
iβ + εi , i = 1, . . . , n,

E [εi | xi ] = 0, i = 1, . . . , n.

The n observations are grouped into G groups, each with ng observations. The slope
vector is the same in all groups, but within group g:

Var[εig | xig] = σ 2
g , i = 1, . . . , ng.

If the variances are known, then the GLS estimator is

β̂ =



G∑
g=1

(
1
σ 2

g

)
X′

gXg




−1 


G∑
g=1

(
1
σ 2

g

)
X′

gyg


 . (11-22)

Since X′
gyg = X′

gXgbg , where bg is the OLS estimator in the gth subset of observations,

β̂ =



G∑
g=1

(
1
σ 2

g

)
X′

gXg




−1


G∑
g=1

(
1
σ 2

g

)
X′

gXgbg


=




G∑
g=1

Vg




−1


G∑
g=1

Vgbg


=

G∑
g=1

Wgbg.

This result is a matrix weighted average of the G least squares estimators. The weighting
matrices are Wg = [∑G

g=1

(
Var[bg]

)−1]−1(Var[bg]
)−1. The estimator with the smaller
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covariance matrix therefore receives the larger weight. (If Xg is the same in every group,
then the matrix Wg reduces to the simple scalar, wg = hg/

∑
g hg where hg = 1/σ 2

g .)
The preceding is a useful construction of the estimator, but it relies on an algebraic

result that might be unusable. If the number of observations in any group is smaller than
the number of regressors, then the group specific OLS estimator cannot be computed.
But, as can be seen in (11-22), that is not what is needed to proceed; what is needed are
the weights. As always, pooled least squares is a consistent estimator, which means that
using the group specific subvectors of the OLS residuals,

σ̂ 2
g = e′

geg

ng
(11-23)

provides the needed estimator for the group specific disturbance variance. Thereafter,
(11-22) is the estimator and the inverse matrix in that expression gives the estimator of
the asymptotic covariance matrix.

Continuing this line of reasoning, one might consider iterating the estimator by
returning to (11-23) with the two-step FGLS estimator, recomputing the weights, then
returning to (11-22) to recompute the slope vector. This can be continued until conver-
gence. It can be shown [see Oberhofer and Kmenta (1974)] that so long as (11-23) is
used without a degrees of freedom correction, then if this does converge, it will do so at
the maximum likelihood estimator (with normally distributed disturbances). Another
method of estimating this model is to treat it as a form of Harvey’s model of multiplica-
tive heteroscedasticity where zi is a set (minus one) of group dummy variables.

For testing the homoscedasticity assumption in this model, one can use a likelihood
ratio test. The log-likelihood function, assuming homoscedasticity, is

ln L0 = −(n/2)[1 + ln 2π + ln(e′e/n)]

where n = ∑
g ng is the total number of observations. Under the alternative hypothesis

of heteroscedasticity across G groups, the log-likelihood function is

ln L1 = −n
2

ln(2π) − 1
2

G∑
g=1

ng ln σ 2
g − 1

2

G∑
g=1

ng∑
i=1

(
ε2

ig/σ
2
g

)
. (11-24)

The maximum likelihood estimators of σ 2 and σ 2
g are e′e/n and σ̂ 2

g from (11-23), respec-
tively. The OLS and maximum likelihood estimators of β are used for the slope vector
under the null and alternative hypothesis, respectively. If we evaluate ln L0 and ln L1

at these estimates, then the likelihood ratio test statistic for homoscedasticity is

−2(ln L0 − ln L1) = n ln s2 −
G∑

g=1

ng ln s2
g .

Under the null hypothesis, the statistic has a limiting chi-squared distribution with G− 1
degrees of freedom.

Example 11.6 Heteroscedastic Cost Function for Airline Production
To illustrate the computations for the groupwise heteroscedastic model, we will reexamine
the cost model for the total cost of production in the airline industry that was fit in Example 7.2.
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TABLE 11.4 Least Squares and Maximum Likelihood Estimates of
a Groupwise Heteroscedasticity Model

Least Squares: Homoscedastic Maximum Likelihood

Estimate Std. Error t Ratio Estimate Std. Error t Ratio

β1 9.706 0.193 50.25 10.057 0.134 74.86
β2 0.418 −.0152 27.47 0.400 0.0108 37.12
β3 −1.070 0.202 −5.30 −1.129 0.164 −7.87
β4 0.919 0.0299 30.76 0.928 0.0228 40.86
δ2 −0.0412 0.0252 −1.64 −0.0487 0.0237 −2.06
δ3 −0.209 0.0428 −4.88 −0.200 0.0308 −6.49
δ4 0.185 0.0608 3.04 0.192 0.0499 3.852
δ5 0.0241 0.0799 0.30 0.0419 0.0594 0.71
δ6 0.0871 0.0842 1.03 0.0963 0.0631 1.572
γ 1 −7.088 0.365 −19.41
γ 2 2.007 0.516 3.89
γ 3 0.758 0.516 1.47
γ 4 2.239 0.516 4.62
γ 5 0.530 0.516 1.03
γ 6 1.053 0.516 2.04

σ 2
1 0.001479 0.0008349

σ 2
2 0.004935 0.006212

σ 2
3 0.001888 0.001781

σ 2
4 0.005834 0.009071

σ 2
5 0.002338 0.001419

σ 2
6 0.003032 0.002393

R2 = 0.997, s2 = 0.003613, ln L = 130.0862 ln L = 140.7591

(A description of the data appears in the earlier example.) For a sample of six airlines observed
annually for 15 years, we fit the cost function

ln costit = β1 + β2 ln outputit + β3 load factorit + β4 ln fuel priceit

δ2 Firm2 + δ3 Firm3 + δ4 Firm4 + δ5 Firm5 + δ6 Firm6 + εit.

Output is measured in “revenue passenger miles.” The load factor is a rate of capacity
utilization; it is the average rate at which seats on the airline’s planes are filled. More complete
models of costs include other factor prices (materials, capital) and, perhaps, a quadratic term
in log output to allow for variable economies of scale. The “firm j ” terms are firm specific
dummy variables.

Ordinary least squares regression produces the set of results at the left side of Table 11.4.
The variance estimates shown at the bottom of the table are the firm specific variance
estimates in (11-23). The results so far are what one might expect. There are substantial
economies of scale; e.s.it = (1/0.919) − 1 = 0.088. The fuel price and load factors affect
costs in the predictable fashions as well. (Fuel prices differ because of different mixes of
types and regional differences in supply characteristics.) The second set of results shows
the model of groupwise heteroscedasticity. From the least squares variance estimates in the
first set of results, which are quite different, one might guess that a test of homoscedasticity
would lead to rejection of the hypothesis. The easiest computation is the likelihood ratio test.
Based on the log likelihood functions in the last row of the table, the test statistic, which has
a limiting chi-squared distribution with 5 degrees of freedom, equals 21.3458. The critical
value from the table is 11.07, so the hypothesis of homoscedasticity is rejected.
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11.8 AUTOREGRESSIVE CONDITIONAL
HETEROSCEDASTICITY

Heteroscedasticity is often associated with cross-sectional data, whereas time series are
usually studied in the context of homoscedastic processes. In analyses of macroeconomic
data, Engle (1982, 1983) and Cragg (1982) found evidence that for some kinds of data,
the disturbance variances in time-series models were less stable than usually assumed.
Engle’s results suggested that in models of inflation, large and small forecast errors
appeared to occur in clusters, suggesting a form of heteroscedasticity in which the
variance of the forecast error depends on the size of the previous disturbance. He
suggested the autoregressive, conditionally heteroscedastic, or ARCH, model as an
alternative to the usual time-series process. More recent studies of financial markets
suggest that the phenomenon is quite common. The ARCH model has proven to be
useful in studying the volatility of inflation [Coulson and Robins (1985)], the term
structure of interest rates [Engle, Hendry, and Trumbull (1985)], the volatility of stock
market returns [Engle, Lilien, and Robins (1987)], and the behavior of foreign exchange
markets [Domowitz and Hakkio (1985) and Bollerslev and Ghysels (1996)], to name
but a few. This section will describe specification, estimation, and testing, in the basic
formulations of the ARCH model and some extensions.21

Example 11.7 Stochastic Volatility
Figure 11.3 shows Bollerslev and Ghysel’s 1974 data on the daily percentage nominal return
for the Deutschmark/Pound exchange rate. (These data are given in Appendix Table F11.1.)
The variation in the series appears to be fluctuating, with several clusters of large and small
movements.

11.8.1 THE ARCH(1) MODEL

The simplest form of this model is the ARCH(1) model,

yt = β ′xt + εt

εt = ut

√
α0 + α1ε

2
t−1,

(11-25)

where ut is distributed as standard normal.22 It follows that E [εt | xt , εt−1] = 0, so that
E [εt | xt ] = 0 and E [yt | xt ] = β ′xt . Therefore, this model is a classical regression model.
But

Var[εt | εt−1] = E
[
ε2

t

∣∣ εt−1
] = E

[
u2

t

][
α0 + α1ε

2
t−1

] = α0 + α1ε
2
t−1,

so εt is conditionally heteroscedastic, not with respect to xt as we considered in the
preceding sections, but with respect to εt−1. The unconditional variance of εt is

Var[εt ] = Var
{
E [εt | εt−1]

} + E
{

Var[εt | εt−1]
} = α0 + α1 E

[
ε2

t−1

] = α0 + α1 Var[εt−1].

21Engle and Rothschild (1992) give a recent survey of this literature which describes many extensions. Mills
(1993) also presents several applications. See, as well, Bollerslev (1986) and Li, Ling, and McAleer (2001).
See McCullough and Renfro (1999) for discussion of estimation of this model.
22The assumption that ut has unit variance is not a restriction. The scaling implied by any other variance
would be absorbed by the other parameters.
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FIGURE 11.3 Nominal Exchange Rate Returns.

If the process generating the disturbances is weakly (covariance) stationary (see Defi-
nition 12.2),23 then the unconditional variance is not changing over time so

Var[εt ] = Var[εt−1] = α0 + α1 Var[εt−1] = α0

1 − α1
.

For this ratio to be finite and positive, |α1| must be less than 1. Then, unconditionally,
εt is distributed with mean zero and variance σ 2 = α0/(1 − α1). Therefore, the model
obeys the classical assumptions, and ordinary least squares is the most efficient linear
unbiased estimator of β.

But there is a more efficient nonlinear estimator. The log-likelihood function for
this model is given by Engle (1982). Conditioned on starting values y0 and x0 (and ε0),
the conditional log-likelihood for observations t = 1, . . . , T is the one we examined in
Section 11.6.2 for the general heteroscedastic regression model [see (11-19)],

ln L = −T
2

ln(2π) − 1
2

T∑
t=1

ln
(
α0 + α1ε

2
t−1

) − 1
2

T∑
t=1

ε2
t

α0 + α1ε
2
t−1

, εt = yt − β ′xt .

(11-26)

Maximization of log L can be done with the conventional methods, as discussed in
Appendix E.24

23This discussion will draw on the results and terminology of time series analysis in Section 12.3 and Chapter 20.
The reader may wish to peruse this material at this point.
24Engle (1982) and Judge et al. (1985, pp. 441–444) suggest a four-step procedure based on the method of
scoring that resembles the two-step method we used for the multiplicative heteroscedasticity model in Sec-
tion 11.6. However, the full MLE is now incorporated in most modern software, so the simple regression based
methods, which are difficult to generalize, are less attractive in the current literature. But, see McCullough
and Renfro (1999) and Fiorentini, Calzolari and Panattoni (1996) for commentary and some cautions related
to maximum likelihood estimation.
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11.8.2 ARCH(q), ARCH-IN-MEAN AND GENERALIZED ARCH
MODELS

The natural extension of the ARCH(1) model presented before is a more general model
with longer lags. The ARCH(q) process,

σ 2
t = α0 + α1ε

2
t−1 + α2ε

2
t−2 + · · · + αqε

2
t−q,

is a qth order moving average [MA(q)] process. (Much of the analysis of the model par-
allels the results in Chapter 20 for more general time series models.) [Once again, see
Engle (1982).] This section will generalize the ARCH(q) model, as suggested by Boller-
slev (1986), in the direction of the autoregressive-moving average (ARMA) models of
Section 20.2.1. The discussion will parallel his development, although many details are
omitted for brevity. The reader is referred to that paper for background and for some
of the less critical details.

The capital asset pricing model (CAPM) is discussed briefly in Chapter 14. Among
the many variants of this model is an intertemporal formulation by Merton (1980) that
suggests an approximate linear relationship between the return and variance of the
market portfolio. One of the possible flaws in this model is its assumption of a con-
stant variance of the market portfolio. In this connection, then, the ARCH-in-Mean, or
ARCH-M, model suggested by Engle, Lilien, and Robins (1987) is a natural extension.
The model states that

yt = β ′xt + δσ 2
t + εt ,

Var[εt | �t ] = ARCH(q).

Among the interesting implications of this modification of the standard model is that
under certain assumptions, δ is the coefficient of relative risk aversion. The ARCH-M
model has been applied in a wide variety of studies of volatility in asset returns, including
the daily Standard and Poor’s Index [French, Schwert, and Stambaugh (1987)] and
weekly New York Stock Exchange returns [Chou (1988)]. A lengthy list of applications
is given in Bollerslev, Chou, and Kroner (1992).

The ARCH-M model has several noteworthy statistical characteristics. Unlike the
standard regression model, misspecification of the variance function does impact on the
consistency of estimators of the parameters of the mean. [See Pagan and Ullah (1988)
for formal analysis of this point.] Recall that in the classical regression setting, weighted
least squares is consistent even if the weights are misspecified as long as the weights are
uncorrelated with the disturbances. That is not true here. If the ARCH part of the model
is misspecified, then conventional estimators of β and δ will not be consistent. Bollerslev,
Chou, and Kroner (1992) list a large number of studies that called into question the
specification of the ARCH-M model, and they subsequently obtained quite different
results after respecifying the model. A closely related practical problem is that the
mean and variance parameters in this model are no longer uncorrelated. In analysis
up to this point, we made quite profitable use of the block diagonality of the Hessian
of the log-likelihood function for the model of heteroscedasticity. But the Hessian for
the ARCH-M model is not block diagonal. In practical terms, the estimation problem
cannot be segmented as we have done previously with the heteroscedastic regression
model. All the parameters must be estimated simultaneously.
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The model of generalized autoregressive conditional heteroscedasticity (GARCH)
is defined as follows.25 The underlying regression is the usual one in (11-25). Conditioned
on an information set at time t, denoted �t , the distribution of the disturbance is assumed
to be

εt | �t ∼ N
[
0, σ 2

t

]
,

where the conditional variance is

σ 2
t = α0 + δ1σ

2
t−1 + δ2σ

2
t−2 + · · · + δpσ

2
t−p + α1ε

2
t−1 + α2ε

2
t−2 + · · · + αqε

2
t−q. (11-27)

Define

zt = [
1, σ 2

t−1, σ
2
t−2, . . . , σ

2
t−p, ε

2
t−1, ε

2
t−2, . . . , ε

2
t−q

]′

and

γ = [α0, δ1, δ2, . . . , δp, α1, . . . , αq]′ = [α0, δ
′, α′]′.

Then

σ 2
t = γ ′zt .

Notice that the conditional variance is defined by an autoregressive-moving average
[ARMA (p, q)] process in the innovations ε2

t , exactly as in Section 20.2.1. The difference
here is that the mean of the random variable of interest yt is described completely by
a heteroscedastic, but otherwise ordinary, regression model. The conditional variance,
however, evolves over time in what might be a very complicated manner, depending on
the parameter values and on p and q. The model in (11-27) is a GARCH(p, q) model,
where p refers, as before, to the order of the autoregressive part.26 As Bollerslev (1986)
demonstrates with an example, the virtue of this approach is that a GARCH model
with a small number of terms appears to perform as well as or better than an ARCH
model with many.

The stationarity conditions discussed in Section 20.2.2 are important in this context
to ensure that the moments of the normal distribution are finite. The reason is that
higher moments of the normal distribution are finite powers of the variance. A normal
distribution with variance σ 2

t has fourth moment 3σ 4
t , sixth moment 15σ 6

t , and so on.
[The precise relationship of the even moments of the normal distribution to the vari-
ance is µ2k = (σ 2)k(2k)!/(k!2k).] Simply ensuring that σ 2

t is stable does not ensure that
higher powers are as well.27 Bollerslev presents a useful figure that shows the conditions
needed to ensure stability for moments up to order 12 for a GARCH(1, 1) model and
gives some additional discussion. For example, for a GARCH(1, 1) process, for the
fourth moment to exist, 3α2

1 + 2α1δ1 + δ2
1 must be less than 1.

25As have most areas in time-series econometrics, the line of literature on GARCH models has progressed
rapidly in recent years and will surely continue to do so. We have presented Bollerslev’s model in some detail,
despite many recent extensions, not only to introduce the topic as a bridge to the literature, but also because it
provides a convenient and interesting setting in which to discuss several related topics such as double-length
regression and pseudo–maximum likelihood estimation.
26We have changed Bollerslev’s notation slightly so as not to conflict with our previous presentation. He used
β instead of our δ in (18-25) and b instead of our β in (18-23).
27The conditions cannot be imposed a priori. In fact, there is no nonzero set of parameters that guarantees
stability of all moments, even though the normal distribution has finite moments of all orders. As such, the
normality assumption must be viewed as an approximation.
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It is convenient to write (11-27) in terms of polynomials in the lag operator:

σ 2
t = α0 + D(L)σ 2

t + A(L)ε2
t .

As discussed in Section 20.2.2, the stationarity condition for such an equation is that the
roots of the characteristic equation, 1− D(z) = 0, must lie outside the unit circle. For the
present, we will assume that this case is true for the model we are considering and that
A(1) + D(1) < 1. [This assumption is stronger than that needed to ensure stationarity in a
higher-order autoregressive model, which would depend only on D(L).] The implication
is that the GARCH process is covariance stationary with E [εt ] = 0 (unconditionally),
Var[εt ] = α0/[1 − A(1) − D(1)], and Cov[εt , εs] = 0 for all t �= s. Thus, unconditionally
the model is the classical regression model that we examined in Chapters 2–8.

The usefulness of the GARCH specification is that it allows the variance to evolve
over time in a way that is much more general than the simple specification of the ARCH
model. The comparison between simple finite-distributed lag models and the dynamic
regression model discussed in Chapter 19 is analogous. For the example discussed in his
paper, Bollerslev reports that although Engle and Kraft’s (1983) ARCH(8) model for
the rate of inflation in the GNP deflator appears to remove all ARCH effects, a closer
look reveals GARCH effects at several lags. By fitting a GARCH (1, 1) model to the
same data, Bollerslev finds that the ARCH effects out to the same eight-period lag as fit
by Engle and Kraft and his observed GARCH effects are all satisfactorily accounted for.

11.8.3 MAXIMUM LIKELIHOOD ESTIMATION
OF THE GARCH MODEL

Bollerslev describes a method of estimation based on the BHHH algorithm. As he
shows, the method is relatively simple, although with the line search and first derivative
method that he suggests, it probably involves more computation and more iterations
than necessary. Following the suggestions of Harvey (1976), it turns out that there is a
simpler way to estimate the GARCH model that is also very illuminating. This model is
actually very similar to the more conventional model of multiplicative heteroscedasticity
that we examined in Section 11.7.1.

For normally distributed disturbances, the log-likelihood for a sample of T obser-
vations is

ln L =
T∑

t=1

−1
2

[
ln(2π) + ln σ 2

t + ε2
t

σ 2
t

]
=

T∑
t=1

ln ft (θ) =
T∑

t=1

lt (θ),28

where εt = yt − x′
tβ and θ = (β ′, α0, α

′, δ′)′ = (β ′, γ ′)′. Derivatives of ln L are obtained
by summation. Let lt denote ln ft (θ). The first derivatives with respect to the variance
parameters are

∂lt

∂γ
= −1

2

[
1
σ 2

t
− ε2

t(
σ 2

t

)2

]
∂σ 2

t

∂γ
= 1

2

(
1
σ 2

t

)
∂σ 2

t

∂γ

(
ε2

t

σ 2
t

− 1
)

= 1
2

(
1
σ 2

t

)
gtvt = btvt .

(11-28)

28There are three minor errors in Bollerslev’s derivation that we note here to avoid the apparent inconsis-
tencies. In his (22), 1

2 ht should be 1
2 h−1

t . In (23), −2h−2
t should be −h−2

t . In (28), h ∂h/∂ω should, in each
case, be (1/h) ∂h/∂ω. [In his (8), α0α1 should be α0 + α1, but this has no implications for our derivation.]
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Note that E [vt ] = 0. Suppose, for now, that there are no regression parameters.
Newton’s method for estimating the variance parameters would be

γ̂ i+1 = γ̂ i − H−1g, (11-29)

where H indicates the Hessian and g is the first derivatives vector. Following Harvey’s
suggestion (see Section 11.7.1), we will use the method of scoring instead. To do this, we
make use of E [vt ] = 0 and E [ε2

t /σ
2
t ] = 1. After taking expectations in (11-28), the iter-

ation reduces to a linear regression of v∗t = (1/
√

2)vt on regressors w∗t = (1/
√

2)gt/σ
2
t .

That is,

γ̂ i+1 = γ̂ i + [W′
∗W∗]−1W′

∗v∗ = γ̂ i + [W′
∗W∗]−1

(
∂ ln L
∂γ

)
, (11-30)

where row t of W∗ is w′
∗t

. The iteration has converged when the slope vector is zero,
which happens when the first derivative vector is zero. When the iterations are
complete, the estimated asymptotic covariance matrix is simply

Est.Asy. Var[γ̂ ] = [Ŵ′
∗W∗]−1

based on the estimated parameters.
The usefulness of the result just given is that E [∂2 ln L/∂γ ∂β ′] is, in fact, zero.

Since the expected Hessian is block diagonal, applying the method of scoring to the full
parameter vector can proceed in two parts, exactly as it did in Section 11.7.1 for the
multiplicative heteroscedasticity model. That is, the updates for the mean and variance
parameter vectors can be computed separately. Consider then the slope parameters, β.
The same type of modified scoring method as used earlier produces the iteration

β̂ i+1 = β̂ i +
[

T∑
t=1

xt x′
t

σ 2
t

+ 1
2

(
dt

σ 2
t

)(
dt

σ 2
t

)′]−1 [
T∑

t=1

xtεt

σ 2
t

+ 1
2

(
dt

σ 2
t

)
vt

]

= β̂ i +
[

T∑
t=1

xt x′
t

σ 2
t

+ 1
2

(
dt

σ 2
t

)(
dt

σ 2
t

)′]−1 (
∂ ln L
∂β

)
(11-31)

= β̂ i + hi ,

which has been referred to as a double-length regression. [See Orme (1990) and
Davidson and MacKinnon (1993, Chapter 14).] The update vector hi is the vector of
slopes in an augmented or double-length generalized regression,

hi = [C′�−1C]−1[C′�−1a], (11-32)

where C is a 2T × K matrix whose first T rows are the X from the original regression
model and whose next T rows are (1/

√
2)d′

t/σ
2
t , t = 1, . . . , T; a is a 2T ×1 vector whose

first T elements are εt and whose next T elements are (1/
√

2)vt/σ
2
t , t = 1, . . . , T; and

� is a diagonal matrix with 1/σ 2
t in positions 1, . . . , T and ones below observation T.

At convergence, [C′�−1C]−1 provides the asymptotic covariance matrix for the MLE.
The resemblance to the familiar result for the generalized regression model is striking,
but note that this result is based on the double-length regression.
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The iteration is done simply by computing the update vectors to the current pa-
rameters as defined above.29 An important consideration is that to apply the scoring
method, the estimates of β and γ are updated simultaneously. That is, one does not use
the updated estimate of γ in (11-30) to update the weights for the GLS regression to
compute the new β in (11-31). The same estimates (the results of the prior iteration)
are used on the right-hand sides of both (11-30) and (11-31). The remaining problem
is to obtain starting values for the iterations. One obvious choice is b, the OLS estima-
tor, for β, e′e/T = s2 for α0, and zero for all the remaining parameters. The OLS slope
vector will be consistent under all specifications. A useful alternative in this context
would be to start α at the vector of slopes in the least squares regression of e2

t , the
squared OLS residual, on a constant and q lagged values.30 As discussed below, an LM
test for the presence of GARCH effects is then a by-product of the first iteration. In
principle, the updated result of the first iteration is an efficient two-step estimator of
all the parameters. But having gone to the full effort to set up the iterations, nothing is
gained by not iterating to convergence. One virtue of allowing the procedure to iterate
to convergence is that the resulting log-likelihood function can be used in likelihood
ratio tests.

11.8.4 TESTING FOR GARCH EFFECTS

The preceding development appears fairly complicated. In fact, it is not, since at each
step, nothing more than a linear least squares regression is required. The intricate part
of the computation is setting up the derivatives. On the other hand, it does take a fair
amount of programming to get this far.31 As Bollerslev suggests, it might be useful to
test for GARCH effects first.

The simplest approach is to examine the squares of the least squares residuals.
The autocorrelations (correlations with lagged values) of the squares of the residuals
provide evidence about ARCH effects. An LM test of ARCH(q) against the hypothesis
of no ARCH effects [ARCH(0), the classical model] can be carried out by computing
χ2 = TR2 in the regression of e2

t on a constant and q lagged values. Under the null
hypothesis of no ARCH effects, the statistic has a limiting chi-squared distribution with
q degrees of freedom. Values larger than the critical table value give evidence of the
presence of ARCH (or GARCH) effects.

Bollerslev suggests a Lagrange multiplier statistic that is, in fact, surprisingly simple
to compute. The LM test for GARCH(p, 0) against GARCH(p, q) can be carried out
by referring T times the R2 in the linear regression defined in (11-30) to the chi-squared
critical value with q degrees of freedom. There is, unfortunately, an indeterminacy in
this test procedure. The test for ARCH(q) against GARCH(p, q) is exactly the same
as that for ARCH(p) against ARCH(p + q). For carrying out the test, one can use as

29See Fiorentini et al. (1996) on computation of derivatives in GARCH models.
30A test for the presence of q ARCH effects against none can be carried out by carrying TR2 from this
regression into a table of critical values for the chi-squared distribution. But in the presence of GARCH
effects, this procedure loses its validity.
31Since this procedure is available as a preprogrammed procedure in many computer programs, including
TSP, E-Views, Stata, RATS, LIMDEP, and Shazam, this warning might itself be overstated.
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TABLE 11.5 Maximum Likelihood Estimates of a GARCH(1, 1) Model32

µ α0 α1 δ α0/(1 − α1 − δ)

Estimate −0.006190 0.01076 0.1531 0.8060 0.2631
Std. Error 0.00873 0.00312 0.0273 0.0302 0.594
t ratio −0.709 3.445 5.605 26.731 0.443

ln L = −1106.61, ln LOLS = −1311.09, ȳ = −0.01642, s2 = 0.221128

starting values a set of estimates that includes δ = 0 and any consistent estimators for
β and α. Then TR2 for the regression at the initial iteration provides the test statistic.33

A number of recent papers have questioned the use of test statistics based solely
on normality. Wooldridge (1991) is a useful summary with several examples.

Example 11.8 GARCH Model for Exchange Rate Volatility
Bollerslev and Ghysels analyzed the exchange rate data in Example 11.7 using a GARCH(1, 1)
model,

yt = µ + εt ,

E [εt | εt−1] = 0,

Var[εt | εt−1] = σ 2
t = α0 + α1ε

2
t−1 + δσ 2

t−1.

The least squares residuals for this model are simply et = yt − ȳ. Regression of the squares
of these residuals on a constant and 10 lagged squared values using observations 11-1974
produces an R2 = 0.025255. With T = 1964, the chi-squared statistic is 49.60, which is larger
than the critical value from the table of 18.31. We conclude that there is evidence of GARCH
effects in these residuals. The maximum likelihood estimates of the GARCH model are given
in Table 11.5. Note the resemblance between the OLS unconditional variance (0.221128) and
the estimated equilibrium variance from the GARCH model, 0.2631.

11.8.5 PSEUDO-MAXIMUM LIKELIHOOD ESTIMATION

We now consider an implication of nonnormality of the disturbances. Suppose that the
assumption of normality is weakened to only

E [εt | �t ] = 0, E
[

ε2
t

σ 2
t

∣∣∣∣ �t

]
= 1, E

[
ε4

t

σ 4
t

∣∣∣∣ �t

]
= κ < ∞,

where σ 2
t is as defined earlier. Now the normal log-likelihood function is inappropriate.

In this case, the nonlinear (ordinary or weighted) least squares estimator would have the
properties discussed in Chapter 9. It would be more difficult to compute than the MLE
discussed earlier, however. It has been shown [see White (1982a) and Weiss (1982)]
that the pseudo-MLE obtained by maximizing the same log-likelihood as if it were

32These data have become a standard data set for the evaluation of software for estimating GARCH models.
The values given are the benchmark estimates. Standard errors differ substantially from one method to the
next. Those given are the Bollerslev and Wooldridge (1992) results. See McCullough and Renfro (1999).
33Bollerslev argues that in view of the complexity of the computations involved in estimating the GARCH
model, it is useful to have a test for GARCH effects. This case is one (as are many other maximum likelihood
problems) in which the apparatus for carrying out the test is the same as that for estimating the model,
however. Having computed the LM statistic for GARCH effects, one can proceed to estimate the model just
by allowing the program to iterate to convergence. There is no additional cost beyond waiting for the answer.
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correct produces a consistent estimator despite the misspecification.34 The asymptotic
covariance matrices for the parameter estimators must be adjusted, however.

The general result for cases such as this one [see Gourieroux, Monfort, and Trognon
(1984)] is that the appropriate asymptotic covariance matrix for the pseudo-MLE of a
parameter vector θ would be

Asy. Var[θ̂ ] = H−1FH−1, (11-33)

where

H = −E
[
∂2 ln L
∂θ ∂θ ′

]

and

F = E
[(

∂ ln L
∂θ

)(
∂ ln L
∂θ ′

)]

(that is, the BHHH estimator), and ln L is the used but inappropriate log-likelihood
function. For current purposes, H and F are still block diagonal, so we can treat the
mean and variance parameters separately. In addition, E [vt ] is still zero, so the second
derivative terms in both blocks are quite simple. (The parts involving ∂2σ 2

t /∂γ ∂γ ′ and
∂2σ 2

t /∂β ∂β ′ fall out of the expectation.) Taking expectations and inserting the parts
produces the corrected asymptotic covariance matrix for the variance parameters:

Asy. Var[γ̂ PMLE] = [W′
∗W∗]−1B′B[W′

∗W∗]−1,

where the rows of W∗ are defined in (18-30) and those of B are in (11-28). For the slope
parameters, the adjusted asymptotic covariance matrix would be

Asy. Var[β̂PMLE] = [C′�−1C]−1

[
T∑

t=1

bt b′
t

]
[C′�−1C]−1,

where the outer matrix is defined in (11-31) and, from the first derivatives given in
(11-29) and (11-31),

bt = xtεt

σ 2
t

+ 1
2

(
vt

σ 2
t

)
dt .

35

11.9 SUMMARY AND CONCLUSIONS

This chapter has analyzed one form of the generalized regression model, the model of
heteroscedasticity. We first considered least squares estimation. The primary result for

34White (1982a) gives some additional requirements for the true underlying density of εt . Gourieroux,
Monfort, and Trognon (1984) also consider the issue. Under the assumptions given, the expectations of
the matrices in (18-27) and (18-32) remain the same as under normality. The consistency and asymptotic
normality of the pseudo-MLE can be argued under the logic of GMM estimators.
35McCullough and Renfro (1999) examined several approaches to computing an appropriate asymptotic
covariance matrix for the GARCH model, including the conventional Hessian and BHHH estimators and
three sandwich style estimators including the one suggested above, and two based on the method of scoring
suggested by Bollerslev and Wooldridge (1992). None stand out as obviously better, but the Bollerslev and
QMLE estimator based on an actual Hessian appears to perform well in Monte Carlo studies.
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least squares estimation is that it retains its consistency and asymptotic normality, but
some correction to the estimated asymptotic covariance matrix may be needed for ap-
propriate inference. The White estimator is the standard approach for this computation.
These two results also constitute the GMM estimator for this model. After examining
some general tests for heteroscedasticity, we then narrowed the model to some specific
parametric forms, and considered weighted (generalized) least squares and maximum
likelihood estimation. If the form of the heteroscedasticity is known but involves un-
known parameters, then it remains uncertain whether FGLS corrections are better than
OLS. Asymptotically, the comparison is clear, but in small or moderately sized samples,
the additional variation incorporated by the estimated variance parameters may off-
set the gains to GLS. The final section of this chapter examined a model of stochastic
volatility, the GARCH model. This model has proved especially useful for analyzing
financial data such as exchange rates, inflation, and market returns.

Key Terms and Concepts

• ARCH model
• ARCH-in-mean
• Breusch–Pagan test
• Double-length regression
• Efficient two-step estimator
• GARCH model
• Generalized least squares
• Generalized sum of squares
• GMM estimator
• Goldfeld–Quandt test
• Groupwise

heteroscedasticity

• Lagrange multiplier test
• Heteroscedasticity
• Likelihood ratio test
• Maximum likelihood

estimators
• Model based test
• Moving average
• Multiplicative

heteroscedasticity
• Nonconstructive test
• Residual based test
• Robust estimator

• Robustness to unknown
heteroscedasticity

• Stationarity condition
• Stochastic volatility
• Two-step estimator
• Wald test
• Weighted least squares
• White estimator
• White’s test

Exercises

1. Suppose that the regression model is yi = µ + εi , where E [εi | xi ] = 0,

Cov[εi , ε j | xi , xj ] = 0 for i �= j , but Var[εi | xi ] = σ 2x2
i , xi > 0.

a. Given a sample of observations on yi and xi , what is the most efficient estimator
of µ? What is its variance?

b. What is the OLS estimator of µ, and what is the variance of the ordinary least
squares estimator?

c. Prove that the estimator in part a is at least as efficient as the estimator in part b.
2. For the model in the previous exercise, what is the probability limit of s2 =

1
n

∑n
i=1 (yi − ȳ)2? Note that s2 is the least squares estimator of the residual variance.

It is also n times the conventional estimator of the variance of the OLS estimator,

Est. Var[ȳ] = s2(X′X)−1 = s2

n
.

How does this equation compare with the true value you found in part b of Exer-
cise 1? Does the conventional estimator produce the correct estimate of the true
asymptotic variance of the least squares estimator?
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3. Two samples of 50 observations each produce the following moment matrices. (In
each case, X is a constant and one variable.)

Sample 1 Sample 2

X′X
[

50 300
300 2100

] [
50 300
300 2100

]

y′X [300 2000] [300 2200]

y′y 2100 2800

a. Compute the least squares regression coefficients and the residual variances s2

for each data set. Compute the R2 for each regression.
b. Compute the OLS estimate of the coefficient vector assuming that the coefficients

and disturbance variance are the same in the two regressions. Also compute the
estimate of the asymptotic covariance matrix of the estimate.

c. Test the hypothesis that the variances in the two regressions are the same without
assuming that the coefficients are the same in the two regressions.

d. Compute the two-step FGLS estimator of the coefficients in the regressions,
assuming that the constant and slope are the same in both regressions. Compute
the estimate of the covariance matrix and compare it with the result of part b.

4. Using the data in Exercise 3, use the Oberhofer–Kmenta method to compute the
maximum likelihood estimate of the common coefficient vector.

5. This exercise is based on the following data set.

50 Observations on Y:

−1.42 2.75 2.10 −5.08 1.49 1.00 0.16 −1.11 1.66
−0.26 −4.87 5.94 2.21 −6.87 0.90 1.61 2.11 −3.82
−0.62 7.01 26.14 7.39 0.79 1.93 1.97 −23.17 −2.52
−1.26 −0.15 3.41 −5.45 1.31 1.52 2.04 3.00 6.31

5.51 −15.22 −1.47 −1.48 6.66 1.78 2.62 −5.16 −4.71
−0.35 −0.48 1.24 0.69 1.91

50 Observations on X1:

−1.65 1.48 0.77 0.67 0.68 0.23 −0.40 −1.13 0.15
−0.63 0.34 0.35 0.79 0.77 −1.04 0.28 0.58 −0.41
−1.78 1.25 0.22 1.25 −0.12 0.66 1.06 −0.66 −1.18
−0.80 −1.32 0.16 1.06 −0.60 0.79 0.86 2.04 −0.51

0.02 0.33 −1.99 0.70 −0.17 0.33 0.48 1.90 −0.18
−0.18 −1.62 0.39 0.17 1.02

50 Observations on X2:

−0.67 0.70 0.32 2.88 −0.19 −1.28 −2.72 −0.70 −1.55
−0.74 −1.87 1.56 0.37 −2.07 1.20 0.26 −1.34 −2.10

0.61 2.32 4.38 2.16 1.51 0.30 −0.17 7.82 −1.15
1.77 2.92 −1.94 2.09 1.50 −0.46 0.19 −0.39 1.54
1.87 −3.45 −0.88 −1.53 1.42 −2.70 1.77 −1.89 −1.85
2.01 1.26 −2.02 1.91 −2.23

a. Compute the ordinary least squares regression of Y on a constant, X1, and X2. Be
sure to compute the conventional estimator of the asymptotic covariance matrix
of the OLS estimator as well.
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b. Compute the White estimator of the appropriate asymptotic covariance matrix
for the OLS estimates.

c. Test for the presence of heteroscedasticity using White’s general test. Do your
results suggest the nature of the heteroscedasticity?

d. Use the Breusch–Pagan Lagrange multiplier test to test for heteroscedasticity.
e. Sort the data keying on X1 and use the Goldfeld–Quandt test to test for het-

eroscedasticity. Repeat the procedure, using X2. What do you find?
6. Using the data of Exercise 5, reestimate the parameters using a two-step FGLS

estimator. Try the estimator used in Example 11.4.
7. For the model in Exercise 1, suppose that ε is normally distributed, with mean zero

and variance σ 2[1 + (γ x)2]. Show that σ 2 and γ 2 can be consistently estimated by
a regression of the least squares residuals on a constant and x2. Is this estimator
efficient?

8. Derive the log-likelihood function, first-order conditions for maximization, and
information matrix for the model yi = x′

iβ + εi , εi ∼ N[0, σ 2(γ ′zi )
2].

9. Suppose that y has the pdf f (y | x) = (1/β ′x)e−y/(β ′x), y > 0. Then E [y | x] = β ′x
and Var[y | x] = (β ′x)2. For this model, prove that GLS and MLE are the same,
even though this distribution involves the same parameters in the conditional mean
function and the disturbance variance.

10. In the discussion of Harvey’s model in Section 11.7, it is noted that the initial
estimator of γ1, the constant term in the regression of ln e2

i on a constant, and
zi is inconsistent by the amount 1.2704. Harvey points out that if the purpose of
this initial regression is only to obtain starting values for the iterations, then the
correction is not necessary. Explain why this statement would be true.

11. (This exercise requires appropriate computer software. The computations required
can be done with RATS, EViews, Stata, TSP, LIMDEP, and a variety of other
software using only preprogrammed procedures.) Quarterly data on the consumer
price index for 1950.1 to 2000.4 are given in Appendix Table F5.1. Use these data
to fit the model proposed by Engle and Kraft (1983). The model is

πt = β0 + β1πt−1 + β2πt−2 + β3πt−3 + β4πt−4 + εt

where πt = 100 ln[pt/pt−1] and pt is the price index.
a. Fit the model by ordinary least squares, then use the tests suggested in the text

to see if ARCH effects appear to be present.
b. The authors fit an ARCH(8) model with declining weights,

σ 2
t = α0 +

8∑
i=1

(
9 − i

36

)
ε2

t−i

Fit this model. If the software does not allow constraints on the coefficients, you
can still do this with a two-step least squares procedure, using the least squares
residuals from the first step. What do you find?

c. Bollerslev (1986) recomputed this model as a GARCH(1, 1). Use the
GARCH(1, 1) form and refit your model.
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SERIAL CORRELATION

Q
12.1 INTRODUCTION

Time-series data often display autocorrelation, or serial correlation of the disturbances
across periods. Consider, for example, the plot of the least squares residuals in the
following example.

Example 12.1 Money Demand Equation
Table F5.1 contains quarterly data from 1950.1 to 2000.4 on the U.S. money stock (M1) and
output (real GDP) and the price level (CPI U). Consider a simple (extremely) model of money
demand,1

ln M1t = β1 + β2 ln GDPt + β3 ln CPIt + εt

A plot of the least squares residuals is shown in Figure 12.1. The pattern in the residuals
suggests that knowledge of the sign of a residual in one period is a good indicator of the sign of
the residual in the next period. This knowledge suggests that the effect of a given disturbance
is carried, at least in part, across periods. This sort of “memory” in the disturbances creates
the long, slow swings from positive values to negative ones that is evident in Figure 12.1. One
might argue that this pattern is the result of an obviously naive model, but that is one of the
important points in this discussion. Patterns such as this usually do not arise spontaneously;
to a large extent, they are, indeed, a result of an incomplete or flawed model specification.

One explanation for autocorrelation is that relevant factors omitted from the time-
series regression, like those included, are correlated across periods. This fact may be
due to serial correlation in factors that should be in the regression model. It is easy to
see why this situation would arise. Example 12.2 shows an obvious case.

Example 12.2 Autocorrelation Induced by Misspecification
of the Model

In Examples 2.3 and 7.6, we examined yearly time-series data on the U.S. gasoline market
from 1960 to 1995. The evidence in the examples was convincing that a regression model
of variation in ln G/pop should include, at a minimum, a constant, ln PG and ln income/pop.
Other price variables and a time trend also provide significant explanatory power, but these
two are a bare minimum. Moreover, we also found on the basis of a Chow test of structural
change that apparently this market changed structurally after 1974. Figure 12.2 displays
plots of four sets of least squares residuals. Parts (a) through (c) show clearly that as the
specification of the regression is expanded, the autocorrelation in the “residuals” diminishes.
Part (c) shows the effect of forcing the coefficients in the equation to be the same both before
and after the structural shift. In part (d), the residuals in the two subperiods 1960 to 1974 and
1975 to 1995 are produced by separate unrestricted regressions. This latter set of residuals
is almost nonautocorrelated. (Note also that the range of variation of the residuals falls as

1Since this chapter deals exclusively with time-series data, we shall use the index t for observations and T for
the sample size throughout.

250
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FIGURE 12.1 Autocorrelated Residuals.

the model is improved, i.e., as its fit improves.) The full equation is

ln
Gt

popt
= β1 + β2 ln PGt + β3 ln

I t

popt
+ β4 ln PNCt + β5 ln PUCt

+ β6 ln PPTt + β7 ln PNt + β8 ln PDt + β9 ln PSt + β10t + εt .

Finally, we consider an example in which serial correlation is an anticipated part of the
model.

Example 12.3 Negative Autocorrelation in the Phillips Curve
The Phillips curve [Phillips (1957)] has been one of the most intensively studied relationships
in the macroeconomics literature. As originally proposed, the model specifies a negative re-
lationship between wage inflation and unemployment in the United Kingdom over a period of
100 years. Recent research has documented a similar relationship between unemployment
and price inflation. It is difficult to justify the model when cast in simple levels; labor market
theories of the relationship rely on an uncomfortable proposition that markets persistently
fall victim to money illusion, even when the inflation can be anticipated. Current research
[e.g., Staiger et al. (1996)] has reformulated a short run (disequilibrium) “expectations aug-
mented Phillips curve” in terms of unexpected inflation and unemployment that deviates from
a long run equilibrium or “natural rate.” The expectations-augmented Phillips curve can
be written as

�pt − E [�pt | �t−1] = β[ut − u∗] + εt

where �pt is the rate of inflation in year t, E [�pt | �t−1] is the forecast of �pt made in period
t − 1 based on information available at time t − 1, �t−1, ut is the unemployment rate and u∗

is the natural, or equilibrium rate. (Whether u∗ can be treated as an unchanging parameter,
as we are about to do, is controversial.) By construction, [ut − u∗] is disequilibrium, or cycli-
cal unemployment. In this formulation, εt would be the supply shock (i.e., the stimulus that
produces the disequilibrium situation.) To complete the model, we require a model for the
expected inflation. We will revisit this in some detail in Example 19.2. For the present, we’ll
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FIGURE 12.2 Residual Plots for Misspecified Models.

assume that economic agents are rank empiricists. The forecast of next year’s inflation is
simply this year’s value. This produces the estimating equation

�pt − �pt−1 = β1 + β2ut + εt

where β2 = β and β1 = −βu∗. Note that there is an implied estimate of the natural rate of
unemployment embedded in the equation. After estimation, u∗ can be estimated by −b1/b2.
The equation was estimated with the 1950.1–2000.4 data in Table F5.1 that were used in
Example 12.1 (minus two quarters for the change in the rate of inflation). Least squares
estimates (with standard errors in parentheses) are as follows:

�pt − �pt−1 = 0.49189 − 0.090136 ut + et

(0.7405) (0.1257) R2 = 0.002561, T = 201.

The implied estimate of the natural rate of unemployment is 5.46 percent, which is in line with
other recent estimates. The estimated asymptotic covariance of b1 and b2 is −0.08973. Using
the delta method, we obtain a standard error of 2.2062 for this estimate, so a confidence in-
terval for the natural rate is 5.46 percent ±1.96 (2.21 percent) = (1.13 percent, 9.79 percent)
(which seems fairly wide, but, again, whether it is reasonable to treat this as a parameter is at
least questionable). The regression of the least squares residuals on their past values gives
a slope of −0.4263 with a highly significant t ratio of −6.725. We thus conclude that the
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FIGURE 12.3 Negatively Autocorrelated Residuals.

residuals (and, apparently, the disturbances) in this model are highly negatively autocorre-
lated. This is consistent with the striking pattern in Figure 12.3.

The problems for estimation and inference caused by autocorrelation are similar to
(although, unfortunately, more involved than) those caused by heteroscedasticity. As
before, least squares is inefficient, and inference based on the least squares estimates
is adversely affected. Depending on the underlying process, however, GLS and FGLS
estimators can be devised that circumvent these problems. There is one qualitative
difference to be noted. In Chapter 11, we examined models in which the generalized
regression model can be viewed as an extension of the regression model to the con-
ditional second moment of the dependent variable. In the case of autocorrelation, the
phenomenon arises in almost all cases from a misspecification of the model. Views differ
on how one should react to this failure of the classical assumptions, from a pragmatic
one that treats it as another “problem” in the data to an orthodox methodological view
that it represents a major specification issue—see, for example, “A Simple Message to
Autocorrelation Correctors: Don’t” [Mizon (1995).]

We should emphasize that the models we shall examine here are quite far removed
from the classical regression. The exact or small-sample properties of the estimators are
rarely known, and only their asymptotic properties have been derived.

12.2 THE ANALYSIS OF TIME-SERIES DATA

The treatment in this chapter will be the first structured analysis of time series data in
the text. (We had a brief encounter in Section 5.3 where we established some conditions
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under which moments of time series data would converge.) Time-series analysis requires
some revision of the interpretation of both data generation and sampling that we have
maintained thus far.

A time-series model will typically describe the path of a variable yt in terms of
contemporaneous (and perhaps lagged) factors xt , disturbances (innovations), εt , and
its own past, yt−1, . . . For example,

yt = β1 + β2xt + β3 yt−1 + εt .

The time series is a single occurrence of a random event. For example, the quarterly
series on real output in the United States from 1950 to 2000 that we examined in Ex-
ample 12.1 is a single realization of a process, GDPt . The entire history over this period
constitutes a realization of the process. At least in economics, the process could not be
repeated. There is no counterpart to repeated sampling in a cross section or replication
of an experiment involving a time series process in physics or engineering. Nonetheless,
were circumstances different at the end of World War II, the observed history could have
been different. In principle, a completely different realization of the entire series might
have occurred. The sequence of observations, {yt }t=∞

t=−∞ is a time-series process which is
characterized by its time ordering and its systematic correlation between observations
in the sequence. The signature characteristic of a time series process is that empirically,
the data generating mechanism produces exactly one realization of the sequence. Sta-
tistical results based on sampling characteristics concern not random sampling from a
population, but from distributions of statistics constructed from sets of observations
taken from this realization in a time window, t = 1, . . . , T. Asymptotic distribution
theory in this context concerns behavior of statistics constructed from an increasingly
long window in this sequence.

The properties of yt as a random variable in a cross section are straightforward
and are conveniently summarized in a statement about its mean and variance or the
probability distribution generating yt . The statement is less obvious here. It is common
to assume that innovations are generated independently from one period to the next,
with the familiar assumptions

E [εt ] = 0,

Var[εt ] = σ 2,

and

Cov[εt , εs] = 0 for t �= s.

In the current context, this distribution of εt is said to be covariance stationary or
weakly stationary. Thus, although the substantive notion of “random sampling” must
be extended for the time series εt , the mathematical results based on that notion apply
here. It can be said, for example, that εt is generated by a time-series process whose
mean and variance are not changing over time. As such, by the method we will discuss
in this chapter, we could, at least in principle, obtain sample information and use it to
characterize the distribution of εt . Could the same be said of yt ? There is an obvious
difference between the series εt and yt ; observations on yt at different points in time
are necessarily correlated. Suppose that the yt series is weakly stationary and that, for
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the moment, β2 = 0. Then we could say that

E [yt ] = β1 + β3 E [yt−1] + E [εt ] = β1/(1 − β3)

and

Var[yt ] = β2
3 Var[yt−1] + Var[εt ],

or

γ0 = β2
3γ0 + σ 2

ε

so that

γ0 = σ 2

1 − β2
3
.

Thus, γ0, the variance of yt , is a fixed characteristic of the process generating yt . Note
how the stationarity assumption, which apparently includes |β3| < 1, has been used. The
assumption that |β3| < 1 is needed to ensure a finite and positive variance.2 Finally, the
same results can be obtained for nonzero β2 if it is further assumed that xt is a weakly
stationary series.3

Alternatively, consider simply repeated substitution of lagged values into the
expression for yt :

yt = β1 + β3(β1 + β3 yt−2 + εt−1) + εt (12-1)

and so on. We see that, in fact, the current yt is an accumulation of the entire history of
the innovations, εt . So if we wish to characterize the distribution of yt , then we might
do so in terms of sums of random variables. By continuing to substitute for yt−2, then
yt−3, . . . in (12-1), we obtain an explicit representation of this idea,

yt =
∞∑

i=0

β i
3(β1 + εt−i ).

Do sums that reach back into infinite past make any sense? We might view the
process as having begun generating data at some remote, effectively “infinite” past. As
long as distant observations become progressively less important, the extension to an
infinite past is merely a mathematical convenience. The diminishing importance of past
observations is implied by |β3| < 1. Notice that, not coincidentally, this requirement is
the same as that needed to solve for γ0 in the preceding paragraphs. A second possibility
is to assume that the observation of this time series begins at some time 0 [with (x0, ε0)

called the initial conditions], by which time the underlying process has reached a state
such that the mean and variance of yt are not (or are no longer) changing over time. The
mathematics are slightly different, but we are led to the same characterization of the
random process generating yt . In fact, the same weak stationarity assumption ensures
both of them.

Except in very special cases, we would expect all the elements in the T component
random vector (y1, . . . , yT) to be correlated. In this instance, said correlation is called

2The current literature in macroeconometrics and time series analysis is dominated by analysis of cases in
which β3 = 1 (or counterparts in different models). We will return to this subject in Chapter 20.
3See Section 12.4.1 on the stationarity assumption.
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“autocorrelation.” As such, the results pertaining to estimation with independent or
uncorrelated observations that we used in the previous chapters are no longer usable.
In point of fact, we have a sample of but one observation on the multivariate ran-
dom variable [yt , t = 1, . . . , T ]. There is a counterpart to the cross-sectional notion of
parameter estimation, but only under assumptions (e.g., weak stationarity) that estab-
lish that parameters in the familiar sense even exist. Even with stationarity, it will emerge
that for estimation and inference, none of our earlier finite sample results are usable.
Consistency and asymptotic normality of estimators are somewhat more difficult to
establish in time-series settings because results that require independent observations,
such as the central limit theorems, are no longer usable. Nonetheless, counterparts to our
earlier results have been established for most of the estimation problems we consider
here and in Chapters 19 and 20.

12.3 DISTURBANCE PROCESSES

The preceding section has introduced a bit of the vocabulary and aspects of time series
specification. In order to obtain the theoretical results we need to draw some conclusions
about autocorrelation and add some details to that discussion.

12.3.1 CHARACTERISTICS OF DISTURBANCE PROCESSES

In the usual time-series setting, the disturbances are assumed to be homoscedastic but
correlated across observations, so that

E [εε′ | X] = σ 2�,

where σ 2� is a full, positive definite matrix with a constant σ 2 = Var[εt | X] on the
diagonal. As will be clear in the following discussion, we shall also assume that �ts is
a function of |t − s|, but not of t or s alone, which is a stationarity assumption. (See
the preceding section.) It implies that the covariance between observations t and s is
a function only of |t − s|, the distance apart in time of the observations. We define the
autocovariances:

Cov[εt , εt−s | X] = Cov[εt+s, εt | X] = σ 2�t,t−s = γs = γ−s .

Note that σ 2�t t = γ0. The correlation between εt and εt−s is their autocorrelation,

Corr[εt , εt−s | X] = Cov[εt , εt−s | X]√
Var[εt | X]Var[εt−s | X]

= γs

γ0
= ρs = ρ−s .

We can then write

E [εε′ | X] = � = γ0R,

where � is an autocovariance matrix and R is an autocorrelation matrix—the ts element
is an autocorrelation coefficient

ρts = γ|t−s|
γ0

.
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(Note that the matrix � = γ0R is the same as σ 2�. The name change conforms to stan-
dard usage in the literature.) We will usually use the abbreviation ρs to denote the
autocorrelation between observations s periods apart.

Different types of processes imply different patterns in R. For example, the most
frequently analyzed process is a first-order autoregression or AR(1) process,

εt = ρεt−1 + ut ,

where ut is a stationary, nonautocorrelated (“white noise”) process and ρ is a parameter.
We will verify later that for this process, ρs = ρs . Higher-order autoregressive processes
of the form

εt = θ1εt−1 + θ2εt−2 + · · · + θpεt−p + ut

imply more involved patterns, including, for some values of the parameters, cyclical
behavior of the autocorrelations.4 Stationary autoregressions are structured so that
the influence of a given disturbance fades as it recedes into the more distant past but
vanishes only asymptotically. For example, for the AR(1), Cov[εt , εt−s] is never zero,
but it does become negligible if |ρ| is less than 1. Moving-average processes, conversely,
have a short memory. For the MA(1) process,

εt = ut − λut−1,

the memory in the process is only one period: γ0 = σ 2
u (1 + λ2), γ1 = −λσ 2

u , but γs = 0
if s > 1.

12.3.2 AR(1) DISTURBANCES

Time-series processes such as the ones listed here can be characterized by their order, the
values of their parameters, and the behavior of their autocorrelations.5 We shall consider
various forms at different points. The received empirical literature is overwhelmingly
dominated by the AR(1) model, which is partly a matter of convenience. Processes more
involved than this model are usually extremely difficult to analyze. There is, however,
a more practical reason. It is very optimistic to expect to know precisely the correct
form of the appropriate model for the disturbance in any given situation. The first-order
autoregression has withstood the test of time and experimentation as a reasonable model
for underlying processes that probably, in truth, are impenetrably complex. AR(1) works
as a first pass—higher order models are often constructed as a refinement—as in the
example below.

The first-order autoregressive disturbance, or AR(1) process, is represented in the
autoregressive form as

εt = ρεt−1 + ut , (12-2)

where

E [ut ] = 0,

E
[
u2

t

] = σ 2
u ,

4This model is considered in more detail in Chapter 20.
5See Box and Jenkins (1984) for an authoritative study.
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and

Cov[ut , us] = 0 if t �= s.

By repeated substitution, we have

εt = ut + ρut−1 + ρ2ut−2 + · · · . (12-3)

From the preceding moving-average form, it is evident that each disturbance εt embodies
the entire past history of the u’s, with the most recent observations receiving greater
weight than those in the distant past. Depending on the sign of ρ, the series will exhibit
clusters of positive and then negative observations or, if ρ is negative, regular oscillations
of sign (as in Example 12.3).

Since the successive values of ut are uncorrelated, the variance of εt is the variance
of the right-hand side of (12-3):

Var[εt ] = σ 2
u + ρ2σ 2

u + ρ4σ 2
u + · · · . (12-4)

To proceed, a restriction must be placed on ρ,

|ρ| < 1, (12-5)

because otherwise, the right-hand side of (12-4) will become infinite. This result is the
stationarity assumption discussed earlier. With (12-5), which implies that lims→∞ ρs = 0,

E [εt ] = 0 and

Var[εt ] = σ 2
u

1 − ρ2
= σ 2

ε . (12-6)

With the stationarity assumption, there is an easier way to obtain the variance:

Var[εt ] = ρ2 Var[εt−1] + σ 2
u

as Cov[ut , εs] = 0 if t > s. With stationarity, Var[εt−1] = Var[εt ], which implies (12-6).
Proceeding in the same fashion,

Cov[εt , εt−1] = E [εtεt−1] = E [εt−1(ρεt−1 + ut )] = ρ Var[εt−1] = ρσ 2
u

1 − ρ2
. (12-7)

By repeated substitution in (12-2), we see that for any s,

εt = ρsεt−s +
s−1∑
i=0

ρi ut−i

(e.g., εt = ρ3εt−3 + ρ2ut−2 + ρut−1 + ut ). Therefore, since εs is not correlated with any
ut for which t > s (i.e., any subsequent ut ), it follows that

Cov[εt , εt−s] = E [εtεt−s] = ρsσ 2
u

1 − ρ2
. (12-8)

Dividing by γ0 = σ 2
u /(1 − ρ2) provides the autocorrelations:

Corr[εt , εt−s] = ρs = ρs . (12-9)

With the stationarity assumption, the autocorrelations fade over time. Depending on
the sign of ρ, they will either be declining in geometric progression or alternating in
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sign if ρ is negative. Collecting terms, we have

σ 2� = σ 2
u

1 − ρ2




1 ρ ρ2 ρ3 · · · ρT−1

ρ 1 ρ ρ2 · · · ρT−2

ρ2 ρ 1 ρ · · · ρT−3

...
...

...
... · · · ρ

ρT−1 ρT−2 ρT−3 · · · ρ 1




. (12-10)

12.4 SOME ASYMPTOTIC RESULTS FOR
ANALYZING TIME SERIES DATA

Since � is not equal to I, the now familiar complications will arise in establishing the
properties of estimators of β, in particular of the least squares estimator. The finite sam-
ple properties of the OLS and GLS estimators remain intact. Least squares will continue
to be unbiased; the earlier general proof allows for autocorrelated disturbances. The
Aitken theorem and the distributional results for normally distributed disturbances can
still be established conditionally on X. (However, even these will be complicated when
X contains lagged values of the dependent variable.) But, finite sample properties are
of very limited usefulness in time series contexts. Nearly all that can be said about
estimators involving time series data is based on their asymptotic properties.

As we saw in our analysis of heteroscedasticity, whether least squares is consistent
or not, depends on the matrices

QT = (1/T )X′X,

and

Q∗
T = (1/T )X′�X.

In our earlier analyses, we were able to argue for convergence of QT to a positive definite
matrix of constants, Q, by invoking laws of large numbers. But, these theorems assume
that the observations in the sums are independent, which as suggested in Section 12.1, is
surely not the case here. Thus, we require a different tool for this result. We can expand
the matrix Q∗

T as

Q∗
T = 1

T

T∑
t=1

T∑
s=1

ρtsxt x′
s, (12-11)

where x′
t and x′

s are rows of X and ρts is the autocorrelation between εt and εs . Sufficient
conditions for this matrix to converge are that QT converge and that the correlations
between disturbances die off reasonably rapidly as the observations become further
apart in time. For example, if the disturbances follow the AR(1) process described
earlier, then ρts = ρ|t−s| and if x t is sufficiently well behaved, Q∗

T will converge to a
positive definite matrix Q∗ as T → ∞.
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Asymptotic normality of the least squares and GLS estimators will depend on the
behavior of sums such as

√
T w̄T =

√
T

(
1
T

T∑
t=1

xtεt

)
=

√
T

(
1
T

X′ε
)

.

Asymptotic normality of least squares is difficult to establish for this general model. The
central limit theorems we have relied on thus far do not extend to sums of dependent
observations. The results of Amemiya (1985), Mann and Wald (1943), and Anderson
(1971) do carry over to most of the familiar types of autocorrelated disturbances, in-
cluding those that interest us here, so we shall ultimately conclude that ordinary least
squares, GLS, and instrumental variables continue to be consistent and asymptotically
normally distributed, and, in the case of OLS, inefficient. This section will provide a
brief introduction to some of the underlying principles which are used to reach these
conclusions.

12.4.1 CONVERGENCE OF MOMENTS—THE ERGODIC THEOREM

The discussion thus far has suggested (appropriately) that stationarity (or its absence) is
an important characteristic of a process. The points at which we have encountered this
notion concerned requirements that certain sums converge to finite values. In particular,
for the AR(1) model, εt = ρεt−1 + ut , in order for the variance of the process to be
finite, we require |ρ| < 1, which is a sufficient condition. However, this result is only
a byproduct. Stationarity (at least, the weak stationarity we have examined) is only a
characteristic of the sequence of moments of a distribution.

DEFINITION 12.1 Strong Stationarity
A time series process, {zt }t=∞

t=−∞ is strongly stationary, or “stationary” if the joint
probability distribution of any set of k observations in the sequence, [zt , zt+1, . . . ,

zt+k] is the same regardless of the origin, t , in the time scale.

For example, in (12-2), if we add ut ∼ N[0, σ 2
u ], then the resulting process {εt }t=∞

t=−∞ can
easily be shown to be strongly stationary.

DEFINITION 12.2 Weak Stationarity
A time series process, {zt }t=∞

t=−∞ is weakly stationary (or covariance stationary) if
E [zt ] is finite and is the same for all t and if the covariances between any two
observations (labeled their autocovariance), Cov[zt , zt−k], is a finite function only
of model parameters and their distance apart in time, k, but not of the absolute
location of either observation on the time scale.

Weak stationary is obviously implied by strong stationary, though it requires less since
the distribution can, at least in principle, be changing on the time axis. The distinction
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is rarely necessary in applied work. In general, save for narrow theoretical examples,
it will be difficult to come up with a process that is weakly but not strongly stationary.
The reason for the distinction is that in much of our work, only weak stationary is
required, and, as always, when possible, econometricians will dispense with unnecessary
assumptions.

As we will discover shortly, stationarity is a crucial characteristic at this point in
the analysis. If we are going to proceed to parameter estimation in this context, we
will also require another characteristic of a time series, ergodicity. There are various
ways to delineate this characteristic, none of them particularly intuitive. We borrow one
definition from Davidson and MacKinnon (1993, p. 132) which comes close:

DEFINITION 12.3 Ergodicity
A time series process, {zt}t=∞

t=−∞ is ergodic if for any two bounded functions that map
vectors in the a and b dimensional real vector spaces to real scalars, f : Ra → R1

and g : Rb → R1,

lim
k→∞

|E [ f (zt , zt+1, . . . , zt+a)g(zt+k, zt+k+1, . . . , zt+k+b)|
= |E [ f (zt , zt+1, . . . , zt+a)| |E [g(zt+k, zt+k+1, . . . , zt+k+b)]| .

The definition states essentially that if events are separated far enough in time, then they
are “asymptotically independent.” An implication is that in a time series, every obser-
vation will contain at least some unique information. Ergodicity is a crucial element of
our theory of estimation. When a time series has this property (with stationarity), then
we can consider estimation of parameters in a meaningful sense.6 The analysis relies
heavily on the following theorem:

THEOREM 12.1 The Ergodic Theorem
If {zt }t=∞

t=−∞ is a time-series process which is stationary and ergodic and E [|zt |] is
a finite constant and E [zt ] = µ, and if z̄T = (1/T )

∑T
t=1 zt , then z̄T

a.s.−→ µ. Note
that the convergence is almost surely, not in probability (which is implied) or in
mean square (which is also implied). [See White (2001, p. 44) and Davidson and
MacKinnon (1993, p. 133).]

What we have in The Ergodic Theorem is, for sums of dependent observations, a coun-
terpart to the laws of large numbers that we have used at many points in the preceding
chapters. Note, once again, the need for this extension is that to this point, our laws of

6Much of the analysis in later chapters will encounter nonstationary series, which are the focus of most of
the current literature—tests for nonstationarity largely dominate the recent study in time series analysis.
Ergodicity is a much more subtle and difficult concept. For any process which we will consider, ergodicity
will have to be a given, at least at this level. A classic reference on the subject is Doob (1953). Another
authoritative treatise is Billingsley (1979). White (2001) provides a concise analysis of many of these concepts
as used in econometrics, and some useful commentary.
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large numbers have required sums of independent observations. But, in this context, by
design, observations are distinctly not independent.

In order for this result to be useful, we will require an extension.

THEOREM 12.2 Ergodicity of Functions
If {zt }t=∞

t=−∞ is a time series process which is stationary and ergodic and if yt =
f {zt } is a measurable function in the probability space that defines zt , then yt is
also stationary and ergodic. Let {zt }t=∞

t=−∞ define a K × 1 vector valued stochastic
process—each element of the vector is an ergodic and stationary series and the
characteristics of ergodicity and stationarity apply to the joint distribution of the
elements of {zt }t=∞

t=−∞. Then The Ergodic Theorem applies to functions of {zt }t=∞
t=−∞.

(See White (2001, pp. 44–45) for discussion.)

Theorem 12.2 produces the results we need to characterize the least squares (and other)
estimators. In particular, our minimal assumptions about the data are

ASSUMPTION 12.1 Ergodic Data Series: In the regression model, yt = x′
tβ + εt ,

[xt , εt ]t=∞
t=−∞ is a jointly stationary and ergodic process.

By analyzing terms element by element we can use these results directly to assert
that averages of wt = xtεt , Qt = xt x′

t and Q∗
t = ε2

t xt xt will converge to their population
counterparts, 0, Q and Q∗.

12.4.2 CONVERGENCE TO NORMALITY—A CENTRAL
LIMIT THEOREM

In order to form a distribution theory for least squares, GLS, ML, and GMM, we will
need a counterpart to the central limit theorem. In particular, we need to establish a
large sample distribution theory for quantities of the form

√
T

(
1
T

T∑
t=1

xtεt

)
=

√
T w̄.

As noted earlier, we cannot invoke the familiar central limit theorems (Lindberg–Levy,
Lindberg–Feller, Liapounov) because the observations in the sum are not independent.
But, with the assumptions already made, we do have an alternative result. Some needed
preliminaries are as follows:

DEFINITION 12.4 Martingale Sequence
A vector sequence zt is a martingale sequence if E [zt | zt−1, zt−2, . . .] = zt−1.
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An important example of a martingale sequence is the random walk,

zt = zt−1 + ut

where Cov[ut , us] = 0 for all t �= s. Then

E [zt | zt−1, zt−2, . . .] = E [zt−1 | zt−1, zt−2, . . .] + E [ut | zt−1, zt−2, . . .] = zt−1 + 0 = zt−1.

DEFINITION 12.5 Martingale Difference Sequence
A vector sequence zt is a martingale difference sequence if E [zt | zt−1, zt−2, . . .]
= 0.

With Definition 12.5, we have the following broadly encompassing result:

THEOREM 12.3 Martingale Difference Central Limit Theorem
If zt is a vector valued stationary and ergodic martingale difference sequence, with
E [zt z′

t ] = �, where � is a finite positive definite matrix, and if z̄T = (1/T )
∑T

t=1 zt ,

then
√

T z̄T
d−→ N[0,�]. (For discussion, see Davidson and MacKinnon (1993,

Sections. 4.7 and 4.8.)7

Theorem 12.3 is a generalization of the Lindberg–Levy Central Limit Theorem. It
is not yet broad enough to cover cases of autocorrelation, but it does go beyond
Lindberg–Levy, for example, in extending to the GARCH model of Section 11.8.
[Forms of the theorem which surpass Lindberg–Feller (D.19) and Liapounov (Theo-
rem D.20) by allowing for different variances at each time, t , appear in Ruud (2000,
p. 479) and White (2001, p. 133). These variants extend beyond our requirements in this
treatment.] But, looking ahead, this result encompasses what will be a very important
application. Suppose in the classical linear regression model, {xt }t=∞

t=−∞ is a stationary
and ergodic multivariate stochastic process and {εt }t=∞

t=−∞ is an i.i.d. process—that is,
not autocorrelated and not heteroscedastic. Then, this is the most general case of the
classical model which still maintains the assumptions about εt that we made in Chap-
ter 2. In this case, the process {wt }t=∞

t=−∞ = {xtεt }t=∞
t=−∞ is a martingale difference sequence,

so that with sufficient assumptions on the moments of xt we could use this result to
establish consistency and asymptotic normality of the least squares estimator. [See,
e.g., Hamilton (1994, pp. 208–212).]

We now consider a central limit theorem that is broad enough to include the
case that interested us at the outset, stochastically dependent observations on xt and

7For convenience, we are bypassing a step in this discussion—establishing multivariate normality requires
that the result first be established for the marginal normal distribution of each component, then that every
linear combination of the variables also be normally distributed. Our interest at this point is merely to collect
the useful end results. Interested users may find the detailed discussions of the many subtleties and narrower
points in White (2001) and Davidson and MacKinnon (1993, Chapter 4).
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autocorrelation in εt .8 Suppose as before that {zt }t=∞
t=−∞ is a stationary and ergodic

stochastic process. We consider
√

T z̄T . The following conditions are assumed:9

1. Summability of autocovariances: With dependent observations,

lim
T→∞

Var[
√

Tz̄] =
∞∑

t=0

∞∑
s=0

Cov[zt z′
s] =

∞∑
k=−∞

�k = �∗

To begin, we will need to assume that this matrix is finite, a condition called summability.
Note this is the condition needed for convergence of Q∗

T in (12-11). If the sum is to be
finite, then the k = 0 term must be finite, which gives us a necessary condition

E [zt z′
t ] = �0, a finite matrix.

2. Asymptotic uncorrelatedness: E [zt | zt−k, zt−k−1, . . .] converges in mean square to
zero as k→ ∞. Note that is similar to the condition for ergodicity. White (2001) demon-
strates that a (nonobvious) implication of this assumption is E [zt ] = 0.

3. Asymptotic negligibility of innovations: Let

rtk = E [zt | zt−k, zt−k−1, . . .] − E [zt | zt−k−1, zt−k−2, . . .].

An observation zt may be viewed as the accumulated information that has entered the
process since it began up to time t . Thus, it can be shown that

zt =
∞∑

s=0

rts

The vector rtk can be viewed as the information in this accumulated sum that entered
the process at time t − k. The condition imposed on the process is that

∑∞
s=0

√
E [r′

tsrts]
be finite. In words, condition (3) states that information eventually becomes negligible
as it fades far back in time from the current observation. The AR(1) model (as usual)
helps to illustrate this point. If zt = ρzt−1 + ut , then

rt0 = E [zt | zt , zt−1, . . .] − E [zt | zt−1, zt−2, . . .] = zt − ρzt−1 = ut

rt1 = E [zt | zt−1, zt−2 . . .] − E [zt | zt−2, zt−3 . . .]

= E [ρzt−1 + ut | zt−1, zt−2 . . .] − E [ρ(ρzt−2 + ut−1) + ut | zt−2, zt−3, . . .]

= ρ(zt−1 − ρzt−2)

= ρut−1.

By a similar construction, rtk = ρkut−k from which it follows that zt = ∑∞
s=0 ρsut−s , which

we saw earlier in (12-3). You can verify that if |ρ| < 1, the negligibility condition will
be met.

8Detailed analysis of this case is quite intricate and well beyond the scope of this book. Some fairly terse
analysis may be found in White (2001, pp. 122–133) and Hayashi (2000).
9See Hayashi (2000, p. 405) who attributes the results to Gordin (1969).
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With all this machinery in place, we now have the theorem we will need:

THEOREM 12.4 Gordin’s Central Limit Theorem
If conditions (1) – (3) listed above are met, then

√
T z̄T

d−→ N[0, �∗].

We will be able to employ these tools when we consider the least squares, IV and GLS
estimators in the discussion to follow.

12.5 LEAST SQUARES ESTIMATION

The least squares estimator is

b = (X′X)−1X′y = β +
(

X′X
T

)−1 (
X′ε
T

)
.

Unbiasedness follows from the results in Chapter 4—no modification is needed. We
know from Chapter 10 that the Gauss–Markov Theorem has been lost—assuming it ex-
ists (that remains to be established), the GLS estimator is efficient and OLS is not. How
much information is lost by using least squares instead of GLS depends on the data.
Broadly, least squares fares better in data which have long periods and little cyclical
variation, such as aggregate output series. As might be expected, the greater is the auto-
correlation in ε, the greater will be the benefit to using generalized least squares (when
this is possible). Even if the disturbances are normally distributed, the usual F and t
statistics do not have those distributions. So, not much remains of the finite sample prop-
erties we obtained in Chapter 4. The asymptotic properties remain to be established.

12.5.1 ASYMPTOTIC PROPERTIES OF LEAST SQUARES

The asymptotic properties of b are straightforward to establish given our earlier results.
If we assume that the process generating xt is stationary and ergodic, then by Theo-
rems 12.1 and 12.2, (1/T)(X′X) converges to Q and we can apply the Slutsky theorem
to the inverse. If εt is not serially correlated, then wt = xtεt is a martingale difference
sequence, so (1/T)(X′ε) converges to zero. This establishes consistency for the simple
case. On the other hand, if [xt , εt ] are jointly stationary and ergodic, then we can invoke
the Ergodic Theorems 12.1 and 12.2 for both moment matrices and establish consistency.
Asymptotic normality is a bit more subtle. For the case without serial correlation in εt ,
we can employ Theorem 12.3 for

√
T w̄. The involved case is the one that interested us at

the outset of this discussion, that is, where there is autocorrelation in εt and dependence
in xt . Theorem 12.4 is in place for this case. Once again, the conditions described in the
preceding section must apply and, moreover, the assumptions needed will have to be
established both for xt and εt . Commentary on these cases may be found in Davidson
and MacKinnon (1993), Hamilton (1994), White (2001), and Hayashi (2000). Formal
presentation extends beyond the scope of this text, so at this point, we will proceed,
and assume that the conditions underlying Theorem 12.4 are met. The results suggested
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here are quite general, albeit only sketched for the general case. For the remainder
of our examination, at least in this chapter, we will confine attention to fairly simple
processes in which the necessary conditions for the asymptotic distribution theory will
be fairly evident.

There is an important exception to the results in the preceding paragraph. If the
regression contains any lagged values of the dependent variable, then least squares will
no longer be unbiased or consistent. To take the simplest case, suppose that

yt = βyt−1 + εt ,

εt = ρεt−1 + ut .
(12-12)

and assume |β| < 1, |ρ| < 1. In this model, the regressor and the disturbance are corre-
lated. There are various ways to approach the analysis. One useful way is to rearrange
(12-12) by subtracting ρyt−1 from yt . Then,

yt = (β + ρ)yt−1 − βρyt−2 + ut (12-13)

which is a classical regression with stochastic regressors. Since ut is an innovation in
period t , it is uncorrelated with both regressors, and least squares regression of yt on
(yt−1, yt−2) estimates ρ1 = (β + ρ) and ρ2 = −βρ. What is estimated by regression of yt on
yt−1 alone? Let γk = Cov[yt , yt−k] = Cov[yt , yt+k]. By stationarity, Var[yt ] = Var[yt−1],
and Cov[yt , yt−1] = Cov[yt−1, yt−2], and so on. These and (12-13) imply the following
relationships.

γ0 = ρ1γ1 + ρ2γ2 + σ 2
u

γ1 = ρ1γ0 + ρ2γ1

γ2 = ρ1γ1 + ρ2γ0

(12-14)

(These are the Yule Walker equations for this model. See Section 20.2.3.) The slope
in the simple regression estimates γ1/γ0 which can be found in the solutions to these
three equations. (An alternative approach is to use the left out variable formula, which
is a useful way to interpret this estimator.) In this case, we see that the slope in the
short regression is an estimator of (β + ρ) − βρ(γ1/γ0). In either case, solving the three
equations in (12-14) for γ0, γ1 and γ2 in terms of ρ1, ρ2 and σ 2

u produces

plim b = β + ρ

1 + βρ
. (12-15)

This result is between β (when ρ = 0) and 1 (when both β and ρ = 1). Therefore, least
squares is inconsistent unless ρ equals zero. The more general case that includes regres-
sors, xt , involves more complicated algebra, but gives essentially the same result. This
is a general result; when the equation contains a lagged dependent variable in the pres-
ence of autocorrelation, OLS and GLS are inconsistent. The problem can be viewed as
one of an omitted variable.

12.5.2 ESTIMATING THE VARIANCE OF THE LEAST
SQUARES ESTIMATOR

As usual, s2(X′X)−1 is an inappropriate estimator of σ 2(X′X)−1(X′�X)(X′X)−1, both
because s2 is a biased estimator of σ 2 and because the matrix is incorrect. Generalities
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TABLE 12.1 Robust Covariance Estimation

Variable OLS Estimate OLS SE Corrected SE

Constant 0.7746 0.0335 0.0733
ln Output 0.2955 0.0190 0.0394
ln CPI 0.5613 0.0339 0.0708

R2 = 0.99655, d = 0.15388, r = 0.92331.

are scarce, but in general, for economic time series which are positively related to their
past values, the standard errors conventionally estimated by least squares are likely to
be too small. For slowly changing, trending aggregates such as output and consumption,
this is probably the norm. For highly variable data such as inflation, exchange rates,
and market returns, the situation is less clear. Nonetheless, as a general proposition,
one would normally not want to rely on s2(X′X)−1 as an estimator of the asymptotic
covariance matrix of the least squares estimator.

In view of this situation, if one is going to use least squares, then it is desirable to
have an appropriate estimator of the covariance matrix of the least squares estimator.
There are two approaches. If the form of the autocorrelation is known, then one can
estimate the parameters of � directly and compute a consistent estimator. Of course,
if so, then it would be more sensible to use feasible generalized least squares instead
and not waste the sample information on an inefficient estimator. The second approach
parallels the use of the White estimator for heteroscedasticity. Suppose that the form of
the autocorrelation is unknown. Then, a direct estimator of � or �(θ) is not available.
The problem is estimation of

� = 1
T

T∑
t=1

T∑
s=1

ρ|t−s|xt x′
s . (12-16)

Following White’s suggestion for heteroscedasticity, Newey and West’s (1987a) robust,
consistent estimator for autocorrelated disturbances with an unspecified structure is

S∗ = S0 + 1
T

L∑
j=1

T∑
t= j+1

(
1 − j

L+ 1

)
et et− j [xt x′

t− j + xt− j x′
t ], (12-17)

[See (10-16) in Section 10.3.] The maximum lag L must be determined in advance to be
large enough that autocorrelations at lags longer than Lare small enough to ignore. For
a moving-average process, this value can be expected to be a relatively small number.
For autoregressive processes or mixtures, however, the autocorrelations are never zero,
and the researcher must make a judgment as to how far back it is necessary to go.10

Example 12.4 Autocorrelation Consistent Covariance Estimation
For the model shown in Example 12.1, the regression results with the uncorrected standard
errors and the Newey-West autocorrelation robust covariance matrix for lags of 5 quarters
are shown in Table 12.1. The effect of the very high degree of autocorrelation is evident.

10Davidson and MacKinnon (1993) give further discussion. Current practice is to use the smallest integer
greater than or equal to T1/4.



Greene-50240 book June 17, 2002 14:1

268 CHAPTER 12 ✦ Serial Correlation

12.6 GMM ESTIMATION

The GMM estimator in the regression model with autocorrelated disturbances is pro-
duced by the empirical moment equations

1
T

T∑
t=1

xt
(

yt − x′
t β̂GMM

) = 1
T

X′ε̂
(
β̂GMM

) = m̄
(
β̂GMM

) = 0. (12-18)

The estimator is obtained by minimizing

q = m̄′(β̂GMM

)
Wm̄

(
β̂GMM

)

where W is a positive definite weighting matrix. The optimal weighting matrix would be

W = {
Asy. Var[

√
T m̄(β)]

}−1

which is the inverse of

Asy. Var[
√

T m̄(β)] = Asy. Var

[
1√
T

n∑
i=1

xiεi

]
= plim

n→∞

1
T

T∑
t=1

T∑
s=1

σ 2ρtsxt x′
s = σ 2Q∗.

The optimal weighting matrix would be [σ 2Q∗]−1. As in the heteroscedasticity case, this
minimization problem is an exactly identified case, so, the weighting matrix is irrelevant
to the solution. The GMM estimator for the regression model with autocorrelated dis-
turbances is ordinary least squares. We can use the results in Section 12.5.2 to construct
the asymptotic covariance matrix. We will require the assumptions in Section 12.4 to
obtain convergence of the moments and asymptotic normality. We will wish to extend
this simple result in one instance. In the common case in which xt contains lagged val-
ues of yt , we will want to use an instrumental variable estimator. We will return to that
estimation problem in Section 12.9.4.

12.7 TESTING FOR AUTOCORRELATION

The available tests for autocorrelation are based on the principle that if the true
disturbances are autocorrelated, then this fact can be detected through the autocorre-
lations of the least squares residuals. The simplest indicator is the slope in the artificial
regression

et = ret−1 + vt ,

et = yt − x′
t b.

r =
(

T∑
t=2

et et−1

)/(
T∑

t=1

e2
t

) (12-19)

If there is autocorrelation, then the slope in this regression will be an estimator of
ρ = Corr[εt , εt−1]. The complication in the analysis lies in determining a formal means
of evaluating when the estimator is “large,” that is, on what statistical basis to reject



Greene-50240 book June 17, 2002 14:1

CHAPTER 12 ✦ Serial Correlation 269

the null hypothesis that ρ equals zero. As a first approximation, treating (12-19) as a
classical linear model and using a t or F (squared t) test to test the hypothesis is a
valid way to proceed based on the Lagrange multiplier principle. We used this device
in Example 12.3. The tests we consider here are refinements of this approach.

12.7.1 LAGRANGE MULTIPLIER TEST

The Breusch (1978)–Godfrey (1978) test is a Lagrange multiplier test of H0: no auto-
correlation versus H1: εt = AR(P) or εt = MA(P). The same test is used for either
structure. The test statistic is

LM = T
(

e′X0(X′
0X0)

−1X′
0e

e′e

)
= TR2

0 (12-20)

where X0 is the original X matrix augmented by P additional columns containing the
lagged OLS residuals, et−1, . . . , et−P. The test can be carried out simply by regressing the
ordinary least squares residuals et on xt0 (filling in missing values for lagged residuals
with zeros) and referring TR2

0 to the tabled critical value for the chi-squared distribution
with P degrees of freedom.11 Since X′e = 0, the test is equivalent to regressing et on the
part of the lagged residuals that is unexplained by X. There is therefore a compelling
logic to it; if any fit is found, then it is due to correlation between the current and lagged
residuals. The test is a joint test of the first P autocorrelations of εt , not just the first.

12.7.2 BOX AND PIERCE’S TEST AND LJUNG’S REFINEMENT

An alternative test which is asymptotically equivalent to the LM test when the null
hypothesis, ρ = 0, is true and when X does not contain lagged values of y is due to Box
and Pierce (1970). The Q test is carried out by referring

Q = T
P∑

j=1

r2
j , (12-21)

where r j = (
∑T

t= j+1 et et− j )/(
∑T

t=1 e2
t ), to the critical values of the chi-squared table with

P degrees of freedom. A refinement suggested by Ljung and Box (1979) is

Q′ = T(T + 2)

P∑
j=1

r2
j

T − j
. (12-22)

The essential difference between the Godfrey–Breusch and the Box–Pierce tests
is the use of partial correlations (controlling for X and the other variables) in the
former and simple correlations in the latter. Under the null hypothesis, there is no
autocorrelation in εt , and no correlation between xt and εs in any event, so the two tests
are asymptotically equivalent. On the other hand, since it does not condition on xt , the

11A warning to practitioners: Current software varies on whether the lagged residuals are filled with zeros
or the first P observations are simply dropped when computing this statistic. In the interest of replicability,
users should determine which is the case before reporting results.
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Box–Pierce test is less powerful than the LM test when the null hypothesis is false, as
intuition might suggest.

12.7.3 THE DURBIN–WATSON TEST

The Durbin–Watson statistic12 was the first formal procedure developed for testing for
autocorrelation using the least squares residuals. The test statistic is

d =
∑T

t=2(et − et−1)
2

∑T
t=1 e2

t

= 2(1 − r) − e2
1 + e2

T∑T
t=1 e2

t

(12-23)

where r is the same first order autocorrelation which underlies the preceding two statis-
tics. If the sample is reasonably large, then the last term will be negligible, leaving
d ≈ 2(1 − r). The statistic takes this form because the authors were able to determine
the exact distribution of this transformation of the autocorrelation and could provide
tables of critical values. Useable critical values which depend only on T and K are pre-
sented in tables such as that at the end of this book. The one-sided test for H0: ρ = 0
against H1: ρ > 0 is carried out by comparing d to values dL(T, K) and dU(T, K). If
d < dL the null hypothesis is rejected; if d > dU , the hypothesis is not rejected. If d lies
between dL and dU , then no conclusion is drawn.

12.7.4 TESTING IN THE PRESENCE OF A LAGGED
DEPENDENT VARIABLES

The Durbin–Watson test is not likely to be valid when there is a lagged dependent
variable in the equation.13 The statistic will usually be biased toward a finding of no
autocorrelation. Three alternatives have been devised. The LM and Q tests can be used
whether or not the regression contains a lagged dependent variable. As an alternative to
the standard test, Durbin (1970) derived a Lagrange multiplier test that is appropriate
in the presence of a lagged dependent variable. The test may be carried out by referring

h = r
√

T
/(

1 − Ts2
c

)
, (12-24)

where s2
c is the estimated variance of the least squares regression coefficient on yt−1,

to the standard normal tables. Large values of h lead to rejection of H0. The test has
the virtues that it can be used even if the regression contains additional lags of yt , and
it can be computed using the standard results from the initial regression without any
further regressions. If s2

c > 1/T, however, then it cannot be computed. An alternative
is to regress et on xt , yt−1, . . . , et−1, and any additional lags that are appropriate for et

and then to test the joint significance of the coefficient(s) on the lagged residual(s) with
the standard F test. This method is a minor modification of the Breusch–Godfrey test.
Under H0, the coefficients on the remaining variables will be zero, so the tests are the
same asymptotically.

12Durbin and Watson (1950, 1951, 1971).
13This issue has been studied by Nerlove and Wallis (1966), Durbin (1970), and Dezhbaksh (1990).



Greene-50240 book June 17, 2002 14:1

CHAPTER 12 ✦ Serial Correlation 271

12.7.5 SUMMARY OF TESTING PROCEDURES

The preceding has examined several testing procedures for locating autocorrelation in
the disturbances. In all cases, the procedure examines the least squares residuals. We
can summarize the procedures as follows:

LM Test LM = TR2 in a regression of the least squares residuals on [xt , et−1, . . . et−P].
Reject H0 if LM > χ2

∗ [P]. This test examines the covariance of the residuals with lagged
values, controlling for the intervening effect of the independent variables.

Q Test Q = T(T − 2)
∑P

j=1 r2
j /(T − j). Reject H0 if Q > χ2

∗ [P]. This test examines
the raw correlations between the residuals and P lagged values of the residuals.

Durbin–Watson Test d = 2(1 − r), Reject H0: ρ = 0 if d < d∗
L. This test looks di-

rectly at the first order autocorrelation of the residuals.

Durbin’s Test FD = the F statistic for the joint significance of P lags of the residuals
in the regression of the least squares residuals on [xt , yt−1, . . . yt−R, et−1, . . . et−P].
Reject H0 if FD > F∗[P, T − K − P]. This test examines the partial correlations be-
tween the residuals and the lagged residuals, controlling for the intervening effect of
the independent variables and the lagged dependent variable.

The Durbin–Watson test has some major shortcomings. The inconclusive region is
large if T is small or moderate. The bounding distributions, while free of the parameters
β and σ , do depend on the data (and assume that X is nonstochastic). An exact version
based on an algorithm developed by Imhof (1980) avoids the inconclusive region, but is
rarely used. The LM and Box–Pierce statistics do not share these shortcomings—their
limiting distributions are chi-squared independently of the data and the parameters.
For this reason, the LM test has become the standard method in applied research.

12.8 EFFICIENT ESTIMATION WHEN � IS KNOWN

As a prelude to deriving feasible estimators for β in this model, we consider full gen-
eralized least squares estimation assuming that � is known. In the next section, we will
turn to the more realistic case in which � must be estimated as well.

If the parameters of � are known, then the GLS estimator,

β̂ = (X′�−1X)−1(X′�−1y), (12-25)

and the estimate of its sampling variance,

Est. Var[β̂] = σ̂ 2
ε [X′�−1X]−1, (12-26)

where

σ̂ 2
ε = (y − Xβ̂)′�−1(y − Xβ̂)

T
(12-27)
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can be computed in one step. For the AR(1) case, data for the transformed model
are

y∗ =




√
1 − ρ2 y1

y2 − ρy1

y3 − ρy2
...

yT − ρyT−1




, X∗ =




√
1 − ρ2x1

x2 − ρx1

x3 − ρx2
...

xT − ρxT−1




. (12-28)

These transformations are variously labeled partial differences, quasi differences, or
pseudodifferences. Note that in the transformed model, every observation except the
first contains a constant term. What was the column of 1s in X is transformed to
[(1 − ρ2)1/2, (1 − ρ), (1 − ρ), . . .]. Therefore, if the sample is relatively small, then the
problems with measures of fit noted in Section 3.5 will reappear.

The variance of the transformed disturbance is

Var[εt − ρεt−1] = Var[ut ] = σ 2
u .

The variance of the first disturbance is also σ 2
u ; [see (12-6)]. This can be estimated using

(1 − ρ2)σ̂ 2
ε .

Corresponding results have been derived for higher-order autoregressive processes.
For the AR(2) model,

εt = θ1εt−1 + θ2εt−2 + ut , (12-29)

the transformed data for generalized least squares are obtained by

z∗1 =
[

(1 + θ2)
[
(1 − θ2)

2 − θ2
1

]

1 − θ2

]1/2

z1,

z∗2 = (
1 − θ2

2

)1/2z2 − θ1
(
1 − θ2

1

)1/2

1 − θ2
z1,

z∗t = zt − θ1zt−1 − θ2zt−2, t > 2,

(12-30)

where zt is used for yt or xt . The transformation becomes progressively more complex
for higher-order processes.14

Note that in both the AR(1) and AR(2) models, the transformation to y∗ and X∗
involves “starting values” for the processes that depend only on the first one or two
observations. We can view the process as having begun in the infinite past. Since the
sample contains only T observations, however, it is convenient to treat the first one
or two (or P) observations as shown and consider them as “initial values.” Whether
we view the process as having begun at time t = 1 or in the infinite past is ultimately
immaterial in regard to the asymptotic properties of the estimators.

The asymptotic properties for the GLS estimator are quite straightforward given
the apparatus we assembled in Section 12.4. We begin by assuming that {xt , εt } are

14See Box and Jenkins (1984) and Fuller (1976).
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jointly an ergodic, stationary process. Then, after the GLS transformation, {x∗t , ε∗t }
is also stationary and ergodic. Moreover, ε∗t is nonautocorrelated by construction. In
the transformed model, then, {w∗t } = {x∗tε∗t } is a stationary and ergodic martingale
difference series. We can use the Ergodic Theorem to establish consistency and the
Central Limit Theorem for martingale difference sequences to establish asymptotic
normality for GLS in this model. Formal arrangement of the relevant results is left as
an exercise.

12.9 ESTIMATION WHEN � IS UNKNOWN

For an unknown �, there are a variety of approaches. Any consistent estimator of �(ρ)

will suffice—recall from Theorem (10.8) in Section 10.5.2, all that is needed for efficient
estimation of β is a consistent estimator of �(ρ). The complication arises, as might be
expected, in estimating the autocorrelation parameter(s).

12.9.1 AR(1) DISTURBANCES

The AR(1) model is the one most widely used and studied. The most common procedure
is to begin FGLS with a natural estimator of ρ, the autocorrelation of the residuals. Since
b is consistent, we can use r . Others that have been suggested include Theil’s (1971)
estimator, r [(T − K)/(T − 1)] and Durbin’s (1970), the slope on yt−1 in a regression of
yt on yt−1, x t and x t−1. The second step is FGLS based on (12-25)–(12-28). This is the
Prais and Winsten (1954) estimator. The Cochrane and Orcutt (1949) estimator (based
on computational ease) omits the first observation.

It is possible to iterate any of these estimators to convergence. Since the estimator
is asymptotically efficient at every iteration, nothing is gained by doing so. Unlike the
heteroscedastic model, iterating when there is autocorrelation does not produce the
maximum likelihood estimator. The iterated FGLS estimator, regardless of the estima-
tor of ρ, does not account for the term (1/2) ln(1 − ρ2) in the log-likelihood function
[see the following (12-31)].

Maximum likelihood estimators can be obtained by maximizing the log-likelihood
with respect to β, σ 2

u , and ρ. The log-likelihood function may be written

ln L = −
∑T

t=1 u2
t

2σ 2
u

+ 1
2

ln(1 − ρ2) − T
2

(
ln 2π + ln σ 2

u

)
, (12-31)

where, as before, the first observation is computed differently from the others using
(12-28). For a given value of ρ, the maximum likelihood estimators of β and σ 2

u are
the usual ones, GLS and the mean squared residual using the transformed data. The
problem is estimation of ρ. One possibility is to search the range −1 < ρ < 1 for the
value that with the implied estimates of the other parameters maximizes ln L. [This is
Hildreth and Lu’s (1960) approach.] Beach and MacKinnon (1978a) argue that this way
to do the search is very inefficient and have devised a much faster algorithm. Omitting
the first observation and adding an approximation at the lower right corner produces
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the standard approximations to the asymptotic variances of the estimators,

Est.Asy. Var
[
β̂ML

] = σ̂ 2
ε,ML

[
X′�̂−1

MLX
]−1

,

Est.Asy. Var
[
σ̂ 2

u,ML

] = 2σ̂ 4
u,ML/T,

Est.Asy. Var[ρ̂ML] = (
1 − ρ̂2

ML

)/
T.

(12-32)

All the foregoing estimators have the same asymptotic properties. The available evi-
dence on their small-sample properties comes from Monte Carlo studies and is, unfor-
tunately, only suggestive. Griliches and Rao (1969) find evidence that if the sample is
relatively small and ρ is not particularly large, say less than 0.3, then least squares is
as good as or better than FGLS. The problem is the additional variation introduced
into the sampling variance by the variance of r . Beyond these, the results are rather
mixed. Maximum likelihood seems to perform well in general, but the Prais–Winsten
estimator is evidently nearly as efficient. Both estimators have been incorporated in all
contemporary software. In practice, the Beach and MacKinnon’s maximum likelihood
estimator is probably the most common choice.

12.9.2 AR(2) DISTURBANCES

Maximum likelihood procedures for most other disturbance processes are exceedingly
complex. Beach and MacKinnon (1978b) have derived an algorithm for AR(2) dis-
turbances. For higher-order autoregressive models, maximum likelihood estimation is
presently impractical, but the two-step estimators can easily be extended. For models
of the form

εt = θ1εt−1 + θ2εt−2 + · · · + θpεt−p + ut , (12-33)

a simple approach for estimation of the autoregressive parameters is to use the follow-
ing method: Regress et on et−1, . . . , et−p, to obtain consistent estimates of the autore-
gressive parameters. With the estimates of ρ1, . . . , ρp in hand, the Cochrane–Orcutt
estimator can be obtained. If the model is an AR(2), the full FGLS procedure can be
used instead. The least squares computations for the transformed data provide (at least
asymptotically) the appropriate estimates of σ 2

u and the covariance matrix of β̂. As
before, iteration is possible but brings no gains in efficiency.

12.9.3 APPLICATION: ESTIMATION OF A MODEL
WITH AUTOCORRELATION

A restricted version of the model for the U.S. gasoline market that appears in Exam-
ple 12.2 is

ln
Gt

popt
= β1 + β2 ln PG,t + β3 ln

It

popt
+ β4 ln PNC,t + β5 ln PUC,t + εt .

The results in Figure 12.2 suggest that the specification above may be incomplete, and,
if so, there may be autocorrelation in the disturbance in this specification. Least squares
estimation of the equation produces the results in the first row of Table 12.2. The
first 5 autocorrelations of the least squares residuals are 0.674, 0.207, −0.049, −0.159,
and −0.158. This produces Box–Pierce and Box–Ljung statistics of 19.816 and 21.788,
respectively, both of which are larger than the critical value from the chi-squared table
of 11.07. We regressed the least squares residuals on the independent variables and
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TABLE 12.2 Parameter Estimates (Standard Errors in Parentheses)

β1 β2 β3 β4 β5 ρ

OLS −7.736 −0.0591 1.373 −0.127 −0.119 0.000
R2 = 0.95799 (0.674) (0.0325) (0.0756) (0.127) (0.0813) (0.000)
Prais– −6.782 −0.152 1.267 −0.0308 −0.0638 0.862
Winsten (−0.955) (0.0370) (0.107) (0.127) (0.0758) (0.0855)
Cochrane– −7.147 −0.149 1.307 −0.0599 −0.0563 0.849
Orcutt (1.297) (0.0382) (0.144) (0.146) (0.0789) (−.0893)

Maximum −5.159 −0.208 1.0828 0.0878 −0.0351 0.930
Likelihood (1.132) (0.0349) (0.127) (0.125) (0.0659) (0.0620)
AR(2) −11.828 −0.0310 1.415 −0.192 −0.114 0.760

(0.888) (0.0292) (0.0682) (0.133) (0.0846) (r1)

θ1 = 0.9936319, θ2 = −4620284

five lags of the residuals. The coefficients on the lagged residuals and the associated
t statistics are 1.075 (5.493), −0.712 (−2.488), 0.310 (0.968), −0.227 (−0.758), 0.000096
(0.000). The R2 in this regression is 0.598223, which produces a chi-squared value of
21.536. The conclusion is the same. Finally, the Durbin–Watson statistic is 0.60470. For
four regressors and 36 observations, the critical value of dl is 1.24, so on this basis as well,
the hypothesis ρ = 0 would be rejected. The plot of the residuals shown in Figure 12.4
seems consistent with this conclusion.

The Prais and Winsten FGLS estimates appear in the second row of Table 12.4,
followed by the Cochrane and Orcutt results then the maximum likelihood estimates.

FIGURE 12.4 Least Squares Residuals.
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In each of these cases, the autocorrelation coefficient is reestimated using the FGLS
residuals. This recomputed value is what appears in the table.

One might want to examine the residuals after estimation to ascertain whether the
AR(1) model is appropriate. In the results above, there are two large autocorrelation
coefficients listed with the residual based tests, and in computing the LM statistic, we
found that the first two coefficients were statistically significant. If the AR(1) model is
appropriate, then one should find that only the coefficient on the first lagged residual
is statistically significant in this auxiliary, second step regression. Another indicator is
provided by the FGLS residuals, themselves. After computing the FGLS regression,
the estimated residuals,

ε̂ = yt − x′
t β̂

will still be autocorrelated. In our results using the Prais–Winsten estimates, the auto-
correlation of the FGLS residuals is 0.865. The associated Durbin–Watson statistic is
0.278. This is to be expected. However, if the model is correct, then the transformed
residuals

ût = ε̂t − ρ̂ε̂t−1

should be at least close to nonautocorrelated. But, for our data, the autocorrelation of
the adjusted residuals is 0.438 with a Durbin–Watson statistic of 1.125. It appears on
this basis that, in fact, the AR(1) model has not completed the specification.

The results noted earlier suggest that an AR(2) process might better characterize
the disturbances in this model. Simple regression of the least squares residuals on a
constant and two lagged values (the two period counterpart to a method of obtaining
r in the AR(1) model) produces slope coefficients of 0.9936319 and −0.4620284.15

The GLS transformations for the AR(2) model are given in (12-30). We recomputed
the regression using the AR(2) transformation and these two coefficients. These are the
final results shown in Table 12.2. They do bring a substantial change in the results. As an
additional check on the adequacy of the model, we now computed the corrected FGLS
residuals from the AR(2) model,

ût = ε̂t − θ̂1ε̂t−1 − θ̂2ε̂t−2

The first five autocorrelations of these residuals are 0.132, 0.134, 0.016, 0.022, and−0.118.
The Box–Pierce and Box–Ljung statistics are 1.605 and 1.857, which are far from sta-
tistically significant. We thus conclude that the AR(2) model accounts for the autocor-
relation in the data.

The preceding suggests how one might discover the appropriate model for auto-
correlation in a regression model. However, it is worth keeping in mind that the source
of the autocorrelation might itself be discernible in the data. The finding of an AR(2)
process may still suggest that the regression specification is incomplete or inadequate
in some way.

15In fitting an AR(1) model, the stationarity condition is obvious; |r | must be less than one. For an AR(2)
process, the condition is less than obvious. We will examine this issue in Chapter 20. For the present, we
merely state the result; the two values (1/2)[θ1 ± (θ2

1 + 4θ2)
1/2] must be less than one in absolute value. Since

the term in parentheses might be negative, the “roots” might be a complex pair a ± bi , in which case a2 + b2

must be less than one. You can verify that the two complex roots for our process above are indeed “inside
the unit circle.”



Greene-50240 book June 17, 2002 14:1

CHAPTER 12 ✦ Serial Correlation 277

12.9.4 ESTIMATION WITH A LAGGED DEPENDENT VARIABLE

In Section 12.5.1, we considered the problem of estimation by least squares when the
model contains both autocorrelation and lagged dependent variable(s). Since the OLS
estimator is inconsistent, the residuals on which an estimator of ρ would be based are
likewise inconsistent. Therefore, ρ̂ will be inconsistent as well. The consequence is that
the FGLS estimators described earlier are not usable in this case. There is, however, an
alternative way to proceed, based on the method of instrumental variables. The method
of instrumental variables was introduced in Section 5.4. To review, the general problem
is that in the regression model, if

plim(1/T)X′ε �= 0,

then the least squares estimator is not consistent. A consistent estimator is

bIV = (Z′X)−1(Z′y),

where Z is set of K variables chosen such that plim(1/T)Z′ε = 0 but plim(1/T)Z′X �= 0.
For the purpose of consistency only, any such set of instrumental variables will suffice.
The relevance of that here is that the obstacle to consistent FGLS is, at least for the
present, is the lack of a consistent estimator of ρ. By using the technique of instrumental
variables, we may estimate β consistently, then estimate ρ and proceed.

Hatanaka (1974, 1976) has devised an efficient two-step estimator based on this prin-
ciple. To put the estimator in the current context, we consider estimation of the model

yt = x′
tβ + γ yt−1 + εt ,

εt = ρεt−1 + ut .

To get to the second step of FGLS, we require a consistent estimator of the slope pa-
rameters. These estimates can be obtained using an IV estimator, where the column
of Z corresponding to yt−1 is the only one that need be different from that of X. An
appropriate instrument can be obtained by using the fitted values in the regression of
yt on xt and xt−1. The residuals from the IV regression are then used to construct

ρ̂ =
∑T

t=3 ε̂t ε̂t−1∑T
t=3 ε̂2

t

,

where

ε̂t = yt − b′
IVxt − cIV yt−1.

FGLS estimates may now be computed by regressing y∗t = yt − ρ̂yt−1 on

x∗t = xt − ρ̂xt−1,

y∗t−1 = yt−1 − ρ̂yt−2,

ε̂t−1 = yt−1 − b′
IVxt−1 − cIV yt−2.

Let d be the coefficient on ε̂t−1 in this regression. The efficient estimator of ρ is

ˆ̂ρ = ρ̂ + d.

Appropriate asymptotic standard errors for the estimators, including ˆ̂ρ, are obtained
from the s2[X′∗X∗]−1 computed at the second step. Hatanaka shows that these estimators
are asymptotically equivalent to maximum likelihood estimators.
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12.10 COMMON FACTORS

We saw in Example 12.2 that misspecification of an equation could create the appear-
ance of serially correlated disturbances when, in fact, there are none. An orthodox
(perhaps somewhat optimistic) purist might argue that autocorrelation is always an
artifact of misspecification. Although this view might be extreme [see, e.g., Hendry
(1980) for a more moderate, but still strident statement], it does suggest a useful point.
It might be useful if we could examine the specification of a model statistically with
this consideration in mind. The test for common factors is such a test. [See, as well, the
aforementioned paper by Mizon (1995).]

The assumption that the correctly specified model is

yt = x′
tβ + εt , εt = ρεt−1 + ut , t = 1, . . . , T

implies the “reduced form,”

M0: yt = ρyt−1 + (xt − ρxt−1)
′β + ut , t = 2, . . . , T,

where ut is free from serial correlation. The second of these is actually a restriction on
the model

M1: yt = ρyt−1 + x′
tβ + x′

t−1α + ut , t = 2, . . . , T,

in which, once again, ut is a classical disturbance. The second model contains 2K + 1
parameters, but if the model is correct, then α = −ρβ and there are only K + 1 para-
meters and K restrictions. Both M0 and M1 can be estimated by least squares, although
M0 is a nonlinear model. One might then test the restrictions of M0 using an F test. This
test will be valid asymptotically, although its exact distribution in finite samples will not
be precisely F . In large samples, KF will converge to a chi-squared statistic, so we use
the F distribution as usual to be conservative. There is a minor practical complication
in implementing this test. Some elements of α may not be estimable. For example, if xt

contains a constant term, then the one in α is unidentified. If xt contains both current
and lagged values of a variable, then the one period lagged value will appear twice in
M1, once in xt as the lagged value and once in xt−1 as the current value. There are other
combinations that will be problematic, so the actual number of restrictions that appear
in the test is reduced to the number of identified parameters in α.

Example 12.5 Tests for Common Factors
We will examine the gasoline demand model of Example 12.2 and consider a simplified
version of the equation

ln
Gt

popt
= β1 + β2 ln PG,t + β3 ln

I t

popt
+ β4 ln PNC,t + β5 ln PUC,t + εt .

If the AR(1) model is appropriate for εt , then the restricted model,

ln
Gt

popt
= β1 + β2( ln PG,t − ρ ln PG,t−1) + β3

(
ln

I t

popt
− ρ ln

I t−1

popt−1

)

+ β4( ln PNC,t − ρ ln PNC,t−1) + β5( ln PUC,t − ρ ln PUC,t−1)

+ ρ ln Gt−1/popt−1 + ut ,

with six free coefficients will not significantly degrade the fit of the unrestricted model, which
has 10 free coefficients. The F statistic, with 4 and 25 degrees of freedom, for this test equals
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4.311, which is larger than the critical value of 2.76. Thus, we would conclude that the AR(1)
model would not be appropriate for this specification and these data. Note that we reached
the same conclusion after a more conventional analysis of the residuals in the application in
Section 12.9.3.

12.11 FORECASTING IN THE PRESENCE
OF AUTOCORRELATION

For purposes of forecasting, we refer first to the transformed model,

y∗t = x′
∗t
β + ε∗t .

Suppose that the process generating εt is an AR(1) and that ρ is known. Since this
model is a classical regression model, the results of Section 6.6 may be used. The optimal
forecast of y0

∗T+1
, given x0

T+1 and xT (i.e., x0
∗T+1

= x0
T+1 − ρxT), is

ŷ0
∗T+1

= x0′
∗T+1

β̂.

Disassembling ŷ0
∗T+1

, we find that

ŷ0
T+1 − ρyT = x0′

T+1β̂ − ρx′
Tβ̂

or

ŷ0
T+1 = x0′

T+1β̂ + ρ(yT − x′
Tβ̂)

= x0′
T+1β̂ + ρeT.

(12-34)

Thus, we carry forward a proportion ρ of the estimated disturbance in the preceding
period. This step can be justified by reference to

E [εT+1 | εT] = ρεT.

It can also be shown that to forecast n periods ahead, we would use

ŷ0
T+n = x0′

T+nβ̂ + ρneT.

The extension to higher-order autoregressions is direct. For a second-order model, for
example,

ŷ0
T+n = β̂ ′x0

T+n + θ1eT+n−1 + θ2eT+n−2. (12-35)

For residuals that are outside the sample period, we use the recursion

es = θ1es−1 + θ2es−2, (12-36)

beginning with the last two residuals within the sample.
Moving average models are somewhat simpler, as the autocorrelation lasts for only

Q periods. For an MA(1) model, for the first postsample period,

ŷ0
T+1 = x0

T+1
′
β̂ + ε̂T+1,

where

ε̂T+1 = ûT+1 − λûT.
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Therefore, a forecast of εT+1 will use all previous residuals. One way to proceed is to
accumulate ε̂T+1 from the recursion

ût = ε̂t + λût−1

with ûT+1 = û0 = 0 and ε̂t = (yt − x′
t β̂). After the first postsample period,

ε̂T+n = ûT+n − λûT+n−1 = 0.

If the parameters of the disturbance process are known, then the variances for
the forecast errors can be computed using the results of Section 6.6. For an AR(1)
disturbance, the estimated variance would be

s2
f = σ̂ 2

ε + (xt − ρxt−1)
′{Est. Var [β̂]

}
(xt − ρxt−1). (12-37)

For a higher-order process, it is only necessary to modify the calculation of x∗t accord-
ingly. The forecast variances for an MA(1) process are somewhat more involved. Details
may be found in Judge et al. (1985) and Hamilton (1994). If the parameters of the dis-
turbance process, ρ, λ, θ j , and so on, are estimated as well, then the forecast variance
will be greater. For an AR(1) model, the necessary correction to the forecast variance
of the n-period-ahead forecast error is σ̂ 2

ε n2ρ2(n−1)/T. [For a one-period-ahead forecast,
this merely adds a term, σ̂ 2

ε /T, in the brackets in (12-36)]. Higher-order AR and MA
processes are analyzed in Baillie (1979). Finally, if the regressors are stochastic, the
expressions become more complex by another order of magnitude.

If ρ is known, then (12-34) provides the best linear unbiased forecast of yt+1.16

If, however, ρ must be estimated, then this assessment must be modified. There is
information about εt+1 embodied in et . Having to estimate ρ, however, implies that
some or all the value of this information is offset by the variation introduced into the
forecast by including the stochastic component ρ̂et .17 Whether (12-34) is preferable to
the obvious expedient ŷ0

T+n = β̂ ′x0
T+n in a small sample when ρ is estimated remains to

be settled.

12.12 SUMMARY AND CONCLUSIONS

This chapter has examined the generalized regression model with serial correlation in
the disturbances. We began with some general results on analysis of time-series data.
When we consider dependent observations and serial correlation, the laws of large num-
bers and central limit theorems used to analyze independent observations no longer
suffice. We presented some useful tools which extend these results to time series set-
tings. We then considered estimation and testing in the presence of autocorrelation. As
usual, OLS is consistent but inefficient. The Newey–West estimator is a robust estima-
tor for the asymptotic covariance matrix of the OLS estimator. This pair of estimators
also constitute the GMM estimator for the regression model with autocorrelation. We
then considered two-step feasible generalized least squares and maximum likelihood
estimation for the special case usually analyzed by practitioners, the AR(1) model. The

16See Goldberger (1962).
17See Baillie (1979).
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model with a correction for autocorrelation is a restriction on a more general model with
lagged values of both dependent and independent variables. We considered a means of
testing this specification as an alternative to “fixing” the problem of autocorrelation.

Key Terms and Concepts

• AR(1)
• Asymptotic negligibility
• Asymptotic normality
• Autocorrelation
• Autocorrelation matrix
• Autocovariance
• Autocovariance matrix
• Autoregressive form
• Cochrane–Orcutt estimator
• Common factor model
• Covariance stationarity
• Durbin–Watson test
• Ergodicity

• Ergodic Theorem
• First-order autoregression
• Expectations augmented

Phillips curve
• GMM estimator
• Initial conditions
• Innovation
• Lagrange multiplier test
• Martingale sequence
• Martingale difference

sequence
• Moving average form
• Moving average process

• Partial difference
• Prais–Winsten estimator
• Pseudo differences
• Q test
• Quasi differences
• Stationarity
• Summability
• Time-series process
• Time window
• Weakly stationary
• White noise
• Yule Walker equations

Exercises

1. Does first differencing reduce autocorrelation? Consider the models yt = β ′xt +εt ,

where εt = ρεt−1 + ut and εt = ut −λut−1. Compare the autocorrelation of εt in the
original model with that of vt in yt − yt−1 = β ′(xt − xt−1) + vt , where vt = εt − εt−1.

2. Derive the disturbance covariance matrix for the model

yt = β ′xt + εt ,

εt = ρεt−1 + ut − λut−1.

What parameter is estimated by the regression of the OLS residuals on their lagged
values?

3. The following regression is obtained by ordinary least squares, using 21 observa-
tions. (Estimated asymptotic standard errors are shown in parentheses.)

yt = 1.3 + 0.97yt−1 + 2.31xt , D − W = 1.21.

(0.3) (0.18) (1.04)

Test for the presence of autocorrelation in the disturbances.
4. It is commonly asserted that the Durbin–Watson statistic is only appropriate for

testing for first-order autoregressive disturbances. What combination of the coef-
ficients of the model is estimated by the Durbin–Watson statistic in each of the
following cases: AR(1), AR(2), MA(1)? In each case, assume that the regression
model does not contain a lagged dependent variable. Comment on the impact on
your results of relaxing this assumption.

5. The data used to fit the expectations augmented Phillips curve in Example 12.3 are
given in Table F5.1. Using these data, reestimate the model given in the example.
Carry out a formal test for first order autocorrelation using the LM statistic. Then,
reestimate the model using an AR(1) model for the disturbance process. Since
the sample is large, the Prais–Winsten and Cochrane–Orcutt estimators should
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give essentially the same answer. Do they? After fitting the model, obtain the
transformed residuals and examine them for first order autocorrelation. Does the
AR(1) model appear to have adequately “fixed” the problem?

6. Data for fitting an improved Phillips curve model can be obtained from many
sources, including the Bureau of Economic Analysis’s (BEA) own website, Econo-
magic.com, and so on. Obtain the necessary data and expand the model of exam-
ple 12.3. Does adding additional explanatory variables to the model reduce the
extreme pattern of the OLS residuals that appears in Figure 12.3?
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13

MODELS FOR PANEL DATA

Q
13.1 INTRODUCTION

Data sets that combine time series and cross sections are common in economics. For
example, the published statistics of the OECD contain numerous series of economic
aggregates observed yearly for many countries. Recently constructed longitudinal data
sets contain observations on thousands of individuals or families, each observed at
several points in time. Other empirical studies have analyzed time-series data on sets
of firms, states, countries, or industries simultaneously. These data sets provide rich
sources of information about the economy. Modeling in this setting, however, calls
for some complex stochastic specifications. In this chapter, we will survey the most
commonly used techniques for time-series cross-section data analyses in single equation
models.

13.2 PANEL DATA MODELS

Many recent studies have analyzed panel, or longitudinal, data sets. Two very famous
ones are the National Longitudinal Survey of Labor Market Experience (NLS) and
the Michigan Panel Study of Income Dynamics (PSID). In these data sets, very large
cross sections, consisting of thousands of microunits, are followed through time, but the
number of periods is often quite small. The PSID, for example, is a study of roughly
6,000 families and 15,000 individuals who have been interviewed periodically from 1968
to the present. Another group of intensively studied panel data sets were those from the
negative income tax experiments of the early 1970s in which thousands of families were
followed for 8 or 13 quarters. Constructing long, evenly spaced time series in contexts
such as these would be prohibitively expensive, but for the purposes for which these
data are typically used, it is unnecessary. Time effects are often viewed as “transitions”
or discrete changes of state. They are typically modeled as specific to the period in which
they occur and are not carried across periods within a cross-sectional unit.1 Panel data
sets are more oriented toward cross-section analyses; they are wide but typically short.
Heterogeneity across units is an integral part—indeed, often the central focus—of the
analysis.

1Theorists have not been deterred from devising autocorrelation models applicable to panel data sets; though.
See, for example, Lee (1978) or Park, Sickles, and Simar (2000). As a practical matter, however, the empirical
literature in this field has focused on cross-sectional variation and less intricate time series models. Formal
time-series modeling of the sort discussed in Chapter 12 is somewhat unusual in the analysis of longitudinal
data.

283
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The analysis of panel or longitudinal data is the subject of one of the most active
and innovative bodies of literature in econometrics,2 partly because panel data provide
such a rich environment for the development of estimation techniques and theoretical
results. In more practical terms, however, researchers have been able to use time-series
cross-sectional data to examine issues that could not be studied in either cross-sectional
or time-series settings alone. Two examples are as follows.

1. In a widely cited study of labor supply, Ben-Porath (1973) observes that at
a certain point in time, in a cohort of women, 50 percent may appear to be
working. It is ambiguous whether this finding implies that, in this cohort, one-
half of the women on average will be working or that the same one-half will be
working in every period. These have very different implications for policy and
for the interpretation of any statistical results. Cross-sectional data alone will
not shed any light on the question.

2. A long-standing problem in the analysis of production functions has been
the inability to separate economies of scale and technological change.3 Cross-
sectional data provide information only about the former, whereas time-series
data muddle the two effects, with no prospect of separation. It is common,
for example, to assume constant returns to scale so as to reveal the technical
change.4 Of course, this practice assumes away the problem. A panel of data on
costs or output for a number of firms each observed over several years can pro-
vide estimates of both the rate of technological change (as time progresses) and
economies of scale (for the sample of different sized firms at each point in time).

In principle, the methods of Chapter 12 can be applied to longitudinal data sets. In the
typical panel, however, there are a large number of cross-sectional units and only a few
periods. Thus, the time-series methods discussed there may be somewhat problematic.
Recent work has generally concentrated on models better suited to these short and wide
data sets. The techniques are focused on cross-sectional variation, or heterogeneity. In
this chapter, we shall examine in detail the most widely used models and look briefly at
some extensions.

The fundamental advantage of a panel data set over a cross section is that it will allow
the researcher great flexibility in modeling differences in behavior across individuals.

2The panel data literature rivals the received research on unit roots and cointegration in econometrics in
its rate of growth. A compendium of the earliest literature is Maddala (1993). Book-length surveys on the
econometrics of panel data include Hsiao (1986), Dielman (1989), Matyas and Sevestre (1996), Raj and Baltagi
(1992), and Baltagi (1995). There are also lengthy surveys devoted to specific topics, such as limited dependent
variable models [Hsiao, Lahiri, Lee, and Pesaran (1999)] and semiparametric methods [Lee (1998)]. An
extensive bibliography is given in Baltagi (1995).
3The distinction between these two effects figured prominently in the policy question of whether it was
appropriate to break up the AT&T Corporation in the 1980s and, ultimately, to allow competition in the
provision of long-distance telephone service.
4In a classic study of this issue, Solow (1957) states: “From time series of �Q/Q, wK, �K/K, wL and �L/L
or their discrete year-to-year analogues, we could estimate �A/Aand thence A(t) itself. Actually an amusing
thing happens here. Nothing has been said so far about returns to scale. But if all factor inputs are classified
either as K or L, then the available figures always show wK and wL adding up to one. Since we have assumed
that factors are paid their marginal products, this amounts to assuming the hypothesis of Euler’s theorem.
The calculus being what it is, we might just as well assume the conclusion, namely, the F is homogeneous of
degree one.”
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The basic framework for this discussion is a regression model of the form

yit = x′
i tβ + z′

iα + εi t . (13-1)

There are K regressors in xi t , not including a constant term. The heterogeneity, or
individual effect is z′

iα where zi contains a constant term and a set of individual or
group specific variables, which may be observed, such as race, sex, location, and so on
or unobserved, such as family specific characteristics, individual heterogeneity in skill
or preferences, and so on, all of which are taken to be constant over time t . As it stands,
this model is a classical regression model. If zi is observed for all individuals, then the
entire model can be treated as an ordinary linear model and fit by least squares. The
various cases we will consider are:

1. Pooled Regression: If zi contains only a constant term, then ordinary least squares
provides consistent and efficient estimates of the common α and the slope vector β.

2. Fixed Effects: If zi is unobserved, but correlated with xi t , then the least squares
estimator of β is biased and inconsistent as a consequence of an omitted variable.
However, in this instance, the model

yit = x′
i tβ + αi + εi t ,

where αi = z′
iα, embodies all the observable effects and specifies an estimable condi-

tional mean. This fixed effects approach takes αi to be a group-specific constant term
in the regression model. It should be noted that the term “fixed” as used here indicates
that the term does not vary over time, not that it is nonstochastic, which need not be
the case.

3. Random Effects: If the unobserved individual heterogeneity, however formulated,
can be assumed to be uncorrelated with the included variables, then the model may be
formulated as

yit = x′
i tβ + E [z′

iα] + {
z′

iα − E [z′
iα]

} + εi t

= x′
i tβ + α + ui + εi t ,

that is, as a linear regression model with a compound disturbance that may be con-
sistently, albeit inefficiently, estimated by least squares. This random effects approach
specifies that ui is a group specific random element, similar to εi t except that for each
group, there is but a single draw that enters the regression identically in each period.
Again, the crucial distinction between these two cases is whether the unobserved indi-
vidual effect embodies elements that are correlated with the regressors in the model,
not whether these effects are stochastic or not. We will examine this basic formulation,
then consider an extension to a dynamic model.

4. Random Parameters: The random effects model can be viewed as a regression
model with a random constant term. With a sufficiently rich data set, we may extend
this idea to a model in which the other coefficients vary randomly across individuals as
well. The extension of the model might appear as

yit = x′
i t (β + hi ) + (α + ui ) + εi t ,

where hi is a random vector which induces the variation of the parameters across
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individuals. This random parameters model was proposed quite early in this literature,
but has only fairly recently enjoyed widespread attention in several fields. It represents
a natural extension in which researchers broaden the amount of heterogeneity across
individuals while retaining some commonalities—the parameter vectors still share a
common mean. Some recent applications have extended this yet another step by allow-
ing the mean value of the parameter distribution to be person-specific, as in

yit = x′
i t (β + �zi + hi ) + (α + ui ) + εi t ,

where zi is a set of observable, person specific variables, and � is a matrix of parameters
to be estimated. As we will examine later, this hierarchical model is extremely versatile.

5. Covariance Structures: Lastly, we will reconsider the source of the heterogeneity in
the model. In some settings, researchers have concluded that a preferable approach to
modeling heterogeneity in the regression model is to layer it into the variation around
the conditional mean, rather than in the placement of the mean. In a cross-country
comparison of economic performance over time, Alvarez, Garrett, and Lange (1991)
estimated a model of the form

yit = f (labor organizationi t , political organizationi t ) + εi t

in which the regression function was fully specified by the linear part, x′
i tβ + α, but

the variance of εi t differed across countries. Beck et al. (1993) found evidence that the
substantive conclusions of the study were dependent on the stochastic specification and
on the methods used for estimation.

Example 13.1 Cost Function for Airline Production
To illustrate the computations for the various panel data models, we will revisit the airline
cost data used in Example 7.2. This is a panel data study of a group of U.S. airlines. We will
fit a simple model for the total cost of production:

ln costi t = β1 + β2 ln outputi t + β3 ln fuel pricei t + β4 load factori t + εi t .

Output is measured in “revenue passenger miles.” The load factor is a rate of capacity
utilization; it is the average rate at which seats on the airline’s planes are filled. More complete
models of costs include other factor prices (materials, capital) and, perhaps, a quadratic term
in log output to allow for variable economies of scale. We have restricted the cost function
to these few variables to provide a straightforward illustration.

Ordinary least squares regression produces the following results. Estimated standard
errors are given in parentheses.

ln costi t = 9.5169(0.22924) + 0.88274(0.013255) ln outputi t

+ 0.45398(0.020304) ln fuel pricei t − 1.62751(0.34540) load factori t + εi t

R2 = 0.9882898, s2 = 0.015528, e′e = 1.335442193.

The results so far are what one might expect. There are substantial economies of scale;
e.s.i t = (1/0.88274) − 1 = 0.1329. The fuel price and load factors affect costs in the pre-
dictable fashions as well. (Fuel prices differ because of different mixes of types of planes and
regional differences in supply characteristics.)
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13.3 FIXED EFFECTS

This formulation of the model assumes that differences across units can be captured in
differences in the constant term.5 Each αi is treated as an unknown parameter to be
estimated. Let yi and Xi be the T observations for the ith unit, i be a T × 1 column of
ones, and let εi be associated T × 1 vector of disturbances. Then,

yi = Xiβ + iαi + εi .

Collecting these terms gives




y1

y2
...

yn


=




X1

X2
...

Xn


β +




i 0 · · · 0
0 i · · · 0

...

0 0 · · · i







α1

α2
...

αn


+




ε1

ε2
...

εn




or

y = [X d1 d2 . . . dn]
[
β

α

]
+ ε, (13-2)

where di is a dummy variable indicating the ith unit. Let the nT × n matrix D =
[d1 d2 . . . dn]. Then, assembling all nT rows gives

y = Xβ + Dα + ε. (13-3)

This model is usually referred to as the least squares dummy variable (LSDV) model
(although the “least squares” part of the name refers to the technique usually used to
estimate it, not to the model, itself).

This model is a classical regression model, so no new results are needed to analyze
it. If n is small enough, then the model can be estimated by ordinary least squares with
K regressors in X and n columns in D, as a multiple regression with K + n parameters.
Of course, if n is thousands, as is typical, then this model is likely to exceed the storage
capacity of any computer. But, by using familiar results for a partitioned regression, we
can reduce the size of the computation.6 We write the least squares estimator of β as

b = [X′MDX]−1[X′MDy], (13-4)

where

MD = I − D(D′D)−1D′.

This amounts to a least squares regression using the transformed data X∗ = MDX and

5It is also possible to allow the slopes to vary across i , but this method introduces some new methodological
issues, as well as considerable complexity in the calculations. A study on the topic is Cornwell and Schmidt
(1984). Also, the assumption of a fixed T is only for convenience. The more general case in which Ti varies
across units is considered later, in the exercises, and in Greene (1995a).
6See Theorem 3.3.
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y∗ = MDy. The structure of D is particularly convenient; its columns are orthogonal, so

MD =




M0 0 0 · · · 0
0 M0 0 · · · 0

· · ·
0 0 0 · · · M0


.

Each matrix on the diagonal is

M0 = IT − 1
T

ii′. (13-5)

Premultiplying any T × 1 vector zi by M0 creates M0zi = zi − z̄i. (Note that the mean is
taken over only the T observations for unit i .) Therefore, the least squares regression of
MDy on MDX is equivalent to a regression of [yit − ȳi.] on [xi t − x̄i.], where ȳi. and x̄i. are
the scalar and K × 1 vector of means of yit and xi t over the T observations for group i .7

The dummy variable coefficients can be recovered from the other normal equation in
the partitioned regression:

D′Da + D′Xb = D′y

or

a = [D′D]−1D′(y − Xb).

This implies that for each i ,

ai = ȳi. − b′x̄i.. (13-6)

The appropriate estimator of the asymptotic covariance matrix for b is

Est.Asy. Var[b] = s2[X′MDX]−1, (13-7)

which uses the second moment matrix with x’s now expressed as deviations from their
respective group means. The disturbance variance estimator is

s2 =
∑n

i=1

∑T
t=1 (yit − x′

i t b − ai )
2

nT − n − K
= (y − MDXb)′(y − MDXb)

(nT − n − K)
. (13-8)

The i tth residual used in this computation is

eit = yit − x′
i t b − ai = yit − x′

i t b − (ȳi. − x̄′
i.b) = (yit − ȳi.) − (xi t − x̄i.)

′b.

Thus, the numerator in s2 is exactly the sum of squared residuals using the least squares
slopes and the data in group mean deviation form. But, done in this fashion, one might
then use nT − K instead of nT − n − K for the denominator in computing s2, so a
correction would be necessary. For the individual effects,

Asy. Var[ai ] = σ 2

T
+ x̄′

i.

{
Asy. Var[b]

}
x̄i.,

so a simple estimator based on s2 can be computed.

7An interesting special case arises if T = 2. In the two-period case, you can show—we leave it as an exercise—
that this least squares regression is done with nT/2 first difference observations, by regressing observation
(yi2 − yi1) (and its negative) on (xi2 − xi1) (and its negative).
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13.3.1 TESTING THE SIGNIFICANCE OF THE GROUP EFFECTS

The t ratio for ai can be used for a test of the hypothesis that αi equals zero. This
hypothesis about one specific group, however, is typically not useful for testing in this
regression context. If we are interested in differences across groups, then we can test the
hypothesis that the constant terms are all equal with an F test. Under the null hypothesis
of equality, the efficient estimator is pooled least squares. The F ratio used for this
test is

F(n − 1, nT − n − K) =
(

R2
LSDV − R2

Pooled

)/
(n − 1)(

1 − R2
LSDV

)/
(nT − n − K)

, (13-9)

where LSDV indicates the dummy variable model and Pooled indicates the pooled
or restricted model with only a single overall constant term. Alternatively, the model
may have been estimated with an overall constant and n − 1 dummy variables instead.
All other results (i.e., the least squares slopes, s2, R2) will be unchanged, but rather
than estimate αi , each dummy variable coefficient will now be an estimate of αi − α1

where group “1” is the omitted group. The F test that the coefficients on these n − 1
dummy variables are zero is identical to the one above. It is important to keep in mind,
however, that although the statistical results are the same, the interpretation of the
dummy variable coefficients in the two formulations is different.8

13.3.2 THE WITHIN- AND BETWEEN-GROUPS ESTIMATORS

We can formulate a pooled regression model in three ways. First, the original formula-
tion is

yit = x′
i tβ + α + εi t . (13-10a)

In terms of deviations from the group means,

yit − ȳi. = (xi t − x̄i.)
′β + εi t − ε̄i., (13-10b)

while in terms of the group means,

ȳi. = x̄′
i.β + α + ε̄i.. (13-10c)

All three are classical regression models, and in principle, all three could be estimated, at
least consistently if not efficiently, by ordinary least squares. [Note that (13-10c) involves
only n observations, the group means.] Consider then the matrices of sums of squares
and cross products that would be used in each case, where we focus only on estimation
of β. In (13-10a), the moments would accumulate variation about the overall means, ¯̄y
and ¯̄x, and we would use the total sums of squares and cross products,

Stotal
xx =

n∑
i=1

T∑
t=1

(xi t − ¯̄x)(xi t − ¯̄x)′ and Stotal
xy =

n∑
i=1

T∑
t=1

(xi t − ¯̄x)(yit − ¯̄y).

For (13-10b), since the data are in deviations already, the means of (yit − ȳi.) and (xi t −x̄i.)

are zero. The moment matrices are within-groups (i.e., variation around group means)

8For a discussion of the differences, see Suits (1984).
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sums of squares and cross products,

Swithin
xx =

n∑
i=1

T∑
t=1

(xi t − x̄i.)(xi t − x̄i.)
′ and Swithin

xy =
n∑

i=1

T∑
t=1

(xi t − x̄i.)(yit − ȳi.).

Finally, for (13-10c), the mean of group means is the overall mean. The moment matrices
are the between-groups sums of squares and cross products—that is, the variation of
the group means around the overall means;

Sbetween
xx =

n∑
i=1

T(x̄i. − ¯̄x)(x̄i. − ¯̄x)′ and Sbetween
xy =

n∑
i=1

T(x̄i. − ¯̄x)(ȳi. − ¯̄y).

It is easy to verify that

Stotal
xx = Swithin

xx + Sbetween
xx and Stotal

xy = Swithin
xy + Sbetween

xy .

Therefore, there are three possible least squares estimators of β corresponding to
the decomposition. The least squares estimator is

btotal = [
Stotal

xx

]−1Stotal
xy = [

Swithin
xx + Sbetween

xx

]−1[Swithin
xy + Sbetween

xy

]
. (13-11)

The within-groups estimator is

bwithin = [
Swithin

xx

]−1Swithin
xy . (13-12)

This is the LSDV estimator computed earlier. [See (13-4).] An alternative estimator
would be the between-groups estimator,

bbetween = [
Sbetween

xx

]−1Sbetween
xy (13-13)

(sometimes called the group means estimator). This least squares estimator of (13-10c)
is based on the n sets of groups means. (Note that we are assuming that n is at least as
large as K.) From the preceding expressions (and familiar previous results),

Swithin
xy = Swithin

xx bwithin and Sbetween
xy = Sbetween

xx bbetween.

Inserting these in (13-11), we see that the least squares estimator is a matrix weighted
average of the within- and between-groups estimators:

btotal = Fwithinbwithin + Fbetweenbbetween, (13-14)

where

Fwithin = [
Swithin

xx + Sbetween
xx

]−1Swithin
xx = I − Fbetween.

The form of this result resembles the Bayesian estimator in the classical model discussed
in Section 16.2. The resemblance is more than passing; it can be shown [see, e.g., Judge
(1985)] that

Fwithin = {
[Asy. Var(bwithin)]−1 + [Asy. Var(bbetween)]−1}−1[Asy. Var(bwithin)]−1,

which is essentially the same mixing result we have for the Bayesian estimator. In the
weighted average, the estimator with the smaller variance receives the greater weight.
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13.3.3 FIXED TIME AND GROUP EFFECTS

The least squares dummy variable approach can be extended to include a time-specific
effect as well. One way to formulate the extended model is simply to add the time effect,
as in

yit = x′
i tβ + αi + γt + εi t . (13-15)

This model is obtained from the preceding one by the inclusion of an additional
T − 1 dummy variables. (One of the time effects must be dropped to avoid perfect
collinearity—the group effects and time effects both sum to one.) If the number of
variables is too large to handle by ordinary regression, then this model can also be esti-
mated by using the partitioned regression.9 There is an asymmetry in this formulation,
however, since each of the group effects is a group-specific intercept, whereas the time
effects are contrasts—that is, comparisons to a base period (the one that is excluded).
A symmetric form of the model is

yit = x′
i tβ + µ + αi + γt + εi t , (13-15′)

where a full n and T effects are included, but the restrictions
∑

i

αi =
∑

t

γt = 0

are imposed. Least squares estimates of the slopes in this model are obtained by regres-
sion of

y∗i t = yit − ȳi. − ȳ.t + ¯̄y (13-16)

on

x∗i t = xi t − x̄i. − x̄.t + ¯̄x,

where the period-specific and overall means are

ȳ.t = 1
n

n∑
i=1

yit and ¯̄y = 1
nT

n∑
i=1

T∑
t=1

yit ,

and likewise for x̄.t and ¯̄x. The overall constant and the dummy variable coefficients can
then be recovered from the normal equations as

µ̂ = m = ¯̄y − ¯̄x′b,

α̂i = ai = (ȳi. − ¯̄y) − (x̄i. − ¯̄x)′b, (13-17)

γ̂t = ct = (ȳ.t − ¯̄y) − (x̄.t − ¯̄x)′b.

9The matrix algebra and the theoretical development of two-way effects in panel data models are complex.
See, for example, Baltagi (1995). Fortunately, the practical application is much simpler. The number of periods
analyzed in most panel data sets is rarely more than a handful. Since modern computer programs, even those
written strictly for microcomputers, uniformly allow dozens (or even hundreds) of regressors, almost any
application involving a second fixed effect can be handled just by literally including the second effect as a set
of actual dummy variables.
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The estimated asymptotic covariance matrix for b is computed using the sums of squares
and cross products of x∗i t computed in (13-16) and

s2 =
∑n

i=1

∑T
t=1(yit − x′

i t b − m − ai − ct )
2

nT − (n − 1) − (T − 1) − K − 1

If one of n or T is small and the other is large, then it may be simpler just to treat the
smaller set as an ordinary set of variables and apply the previous results to the one-
way fixed effects model defined by the larger set. Although more general, this model is
infrequently used in practice. There are two reasons. First, the cost in terms of degrees
of freedom is often not justified. Second, in those instances in which a model of the
timewise evolution of the disturbance is desired, a more general model than this simple
dummy variable formulation is usually used.

Example 13.2 Fixed Effects Regressions
Table 13.1 contains the estimated cost equations with individual firm effects, specific period
effects, and both firm and period effects. For comparison, the least squares and group means
results are given also. The F statistic for testing the joint significance of the firm effects is

F [5, 81] = (0.997434 − 0.98829)/5
(1 − 0.997431)/81

= 57.614.

The critical value from the F table is 2.327, so the evidence is strongly in favor of a firm
specific effect in the data. The same computation for the time effects, in the absence of
the firm effects produces an F [14, 72] statistic of 1.170, which is considerably less than
the 95 percent critical value of 1.832. Thus, on this basis, there does not appear to be a
significant cost difference across the different periods that is not accounted for by the fuel
price variable, output, and load factors. There is a distinctive pattern to the time effects,
which we will examine more closely later. In the presence of the firm effects, the F [14, 67]
ratio for the joint significance of the period effects is 3.149, which is larger than the table
value of 1.842.

TABLE 13.1 Cost Equations with Fixed Firm and Period Effects

Parameter Estimates

Specification β1 β2 β3 β4 R2 s2

No effects 9.517 0.88274 0.45398 −1.6275 0.98829 0.015528
(0.22924) (0.013255) (0.020304) (0.34530)

Group means 85.809 0.78246 −5.5240 −1.7510 0.99364 0.015838
(56.483) (0.10877) (4.47879) (2.74319)

Firm effects 0.91928 0.41749 −1.07040 0.99743 0.003625
(0.029890) (0.015199) (0.20169)

a1 . . . a6: 9.706 9.665 9.497 9.891 9.730 9.793

Time effects 0.86773 −0.48448 −1.95440 0.99046 0.016705
(0.015408) (0.36411) (0.44238)

c1 . . . c8 20.496 20.578 20.656 20.741 21.200 21.411 21.503 21.654
c9 . . . c15 21.829 22.114 22.465 22.651 22.616 22.552 22.537

Firm and time 12.667 0.81725 0.16861 −0.88281 0.99845 0.002727
effects (2.0811) (0.031851) (0.16348) (0.26174)

a1 . . . a6 0.12833 0.06549 −0.18947 0.13425 −0.09265 −0.04596

c1 . . . c8 −0.37402 −0.31932 −0.27669 −0.22304 −0.15393 −0.10809 −0.07686 −0.02073
c9 . . . c15 0.04722 0.09173 0.20731 0.28547 0.30138 0.30047 0.31911

William Greene
change 31 to 34
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13.3.4 UNBALANCED PANELS AND FIXED EFFECTS

Missing data are very common in panel data sets. For this reason, or perhaps just because
of the way the data were recorded, panels in which the group sizes differ across groups
are not unusual. These panels are called unbalanced panels. The preceding analysis
assumed equal group sizes and relied on the assumption at several points. A modification
to allow unequal group sizes is quite simple. First, the full sample size is

∑n
i=1 Ti instead

of nT, which calls for minor modifications in the computations of s2, Var[b], Var[ai ], and
the F statistic. Second, group means must be based on Ti , which varies across groups.
The overall means for the regressors are

¯̄x =
∑n

i=1

∑Ti
t=1xi t∑n

i=1Ti
=

∑n
i=1Ti x̄i.∑n

i=1Ti
=

n∑
i=1

fi x̄i.,

where fi = Ti/(
∑n

i=1 Ti ). If the group sizes are equal, then fi = 1/n. The within groups
moment matrix shown in (13-4),

Swithin
xx = X′MDX,

is
n∑

i=1

X′
i M

0
i Xi =

n∑
i=1

(
T∑

t=1

(xi t − x̄i.)(xi t − x̄i.)
′
)

.

The other moments, Swithin
xy and Swithin

yy , are computed likewise. No other changes are
necessary for the one factor LSDV estimator. The two-way model can be handled
likewise, although with unequal group sizes in both directions, the algebra becomes fairly
cumbersome. Once again, however, the practice is much simpler than the theory. The
easiest approach for unbalanced panels is just to create the full set of T dummy variables
using as T the union of the dates represented in the full data set. One (presumably the
last) is dropped, so we revert back to (13-15). Then, within each group, any of the T
periods represented is accounted for by using one of the dummy variables. Least squares
using the LSDV approach for the group effects will then automatically take care of the
messy accounting details.

13.4 RANDOM EFFECTS

The fixed effects model allows the unobserved individual effects to be correlated with the
included variables. We then modeled the differences between units strictly as parametric
shifts of the regression function. This model might be viewed as applying only to the
cross-sectional units in the study, not to additional ones outside the sample. For example,
an intercountry comparison may well include the full set of countries for which it is
reasonable to assume that the model is constant. If the individual effects are strictly
uncorrelated with the regressors, then it might be appropriate to model the individual
specific constant terms as randomly distributed across cross-sectional units. This view
would be appropriate if we believed that sampled cross-sectional units were drawn from
a large population. It would certainly be the case for the longitudinal data sets listed
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in the introduction to this chapter.10 The payoff to this form is that it greatly reduces
the number of parameters to be estimated. The cost is the possibility of inconsistent
estimates, should the assumption turn out to be inappropriate.

Consider, then, a reformulation of the model

yit = x′
i tβ + (α + ui ) + εi t , (13-18)

where there are K regressors including a constant and now the single constant term is
the mean of the unobserved heterogeneity, E [z′

iα]. The component ui is the random
heterogeneity specific to the ith observation and is constant through time; recall from
Section 13.2, ui = {

z′
iα − E [z′

iα]
}

. For example, in an analysis of families, we can view
ui as the collection of factors, z′

iα, not in the regression that are specific to that family.
We assume further that

E [εi t | X] = E [ui | X] = 0,

E
[
ε2

i t

∣∣ X
] = σ 2

ε ,

E
[
u2

i

∣∣ X
] = σ 2

u ,

E [εi t u j | X] = 0 for all i, t, and j,

E [εi tε js | X] = 0 if t 	= s or i 	= j,

E [ui u j | X] = 0 if i 	= j.

(13-19)

As before, it is useful to view the formulation of the model in blocks of T observations
for group i, yi , Xi , ui i, and εi . For these T observations, let

ηi t = εi t + ui

and

ηi = [ηi1, ηi2, . . . , ηiT]′.

In view of this form of ηi t , we have what is often called an “error components model.”
For this model,

E
[
η2

i t

∣∣ X
] = σ 2

ε + σ 2
u ,

E [ηi tηis | X] = σ 2
u , t 	= s

E [ηi tη js | X] = 0 for all t and s if i 	= j.

For the T observations for unit i , let � = E [ηiη
′
i | X]. Then

� =




σ 2
ε + σ 2

u σ 2
u σ 2

u · · · σ 2
u

σ 2
u σ 2

ε + σ 2
u σ 2

u · · · σ 2
u

· · ·
σ 2

u σ 2
u σ 2

u · · · σ 2
ε + σ 2

u


= σ 2

ε IT + σ 2
u iT i′T, (13-20)

10This distinction is not hard and fast; it is purely heuristic. We shall return to this issue later. See Mundlak
(1978) for methodological discussion of the distinction between fixed and random effects.
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where iT is a T × 1 column vector of 1s. Since observations i and j are independent, the
disturbance covariance matrix for the full nT observations is

� =




� 0 0 · · · 0
0 � 0 · · · 0

...

0 0 0 · · · �


= In ⊗ �. (13-21)

13.4.1 GENERALIZED LEAST SQUARES

The generalized least squares estimator of the slope parameters is

β̂ = (X′�−1X)−1X′�−1y =
(

n∑
i=1

X′
i�

−1Xi

)−1 (
n∑

i=1

X′
i�

−1yi

)

To compute this estimator as we did in Chapter 10 by transforming the data and using
ordinary least squares with the transformed data, we will require �−1/2 = [In ⊗ �]−1/2.
We need only find �−1/2, which is

�−1/2 = 1
σε

[
I − θ

T
iTi′T

]
,

where

θ = 1 − σε√
σ 2

ε + Tσ 2
u

.

The transformation of yi and Xi for GLS is therefore

�−1/2yi = 1
σε




yı1 − θ ȳı.

yı2 − θ ȳı.
...

yıT − θ ȳı.


, (13-22)

and likewise for the rows of Xi .11 For the data set as a whole, then, generalized least
squares is computed by the regression of these partial deviations of yit on the same
transformations of xi t . Note the similarity of this procedure to the computation in the
LSDV model, which uses θ = 1. (One could interpret θ as the effect that would remain
if σε were zero, because the only effect would then be ui . In this case, the fixed and
random effects models would be indistinguishable, so this result makes sense.)

It can be shown that the GLS estimator is, like the OLS estimator, a matrix weighted
average of the within- and between-units estimators:

β̂ = F̂withinbwithin + (I − F̂within)bbetween,12 (13-23)

11This transformation is a special case of the more general treatment in Nerlove (1971b).
12An alternative form of this expression, in which the weighing matrices are proportional to the covariance
matrices of the two estimators, is given by Judge et al. (1985).
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where now,

F̂within = [
Swithin

xx + λSbetween
xx

]−1Swithin
xx ,

λ = σ 2
ε

σ 2
ε + Tσ 2

u
= (1 − θ)2.

To the extent that λ differs from one, we see that the inefficiency of least squares will
follow from an inefficient weighting of the two estimators. Compared with generalized
least squares, ordinary least squares places too much weight on the between-units vari-
ation. It includes it all in the variation in X, rather than apportioning some of it to
random variation across groups attributable to the variation in ui across units.

There are some polar cases to consider. If λ equals 1, then generalized least squares
is identical to ordinary least squares. This situation would occur if σ 2

u were zero, in which
case a classical regression model would apply. If λ equals zero, then the estimator is the
dummy variable estimator we used in the fixed effects setting. There are two possibilities.
If σ 2

ε were zero, then all variation across units would be due to the different ui s, which,
because they are constant across time, would be equivalent to the dummy variables we
used in the fixed-effects model. The question of whether they were fixed or random
would then become moot. They are the only source of variation across units once the
regression is accounted for. The other case is T → ∞. We can view it this way: If
T → ∞, then the unobserved ui becomes observable. Take the T observations for the
ith unit. Our estimator of [α, β] is consistent in the dimensions T or n. Therefore,

yit − x′
i tβ − α = ui + εi t

becomes observable. The individual means will provide

ȳi. − x̄′
i.β − α = ui + ε̄i .

But ε̄i. converges to zero, which reveals ui to us. Therefore, if T goes to infinity, ui

becomes the αi di we used earlier.
Unbalanced panels add a layer of difficulty in the random effects model. The first

problem can be seen in (13-21). The matrix � is no longer I ⊗ � because the diagonal
blocks in � are of different sizes. There is also groupwise heteroscedasticity, because
the ith diagonal block in �−1/2 is

�
−1/2
i = ITi − θi

Ti
iTi i

′
Ti
, θi = 1 − σε√

σ 2
ε + Tiσ 2

u

.

In principle, estimation is still straightforward, since the source of the groupwise het-
eroscedasticity is only the unequal group sizes. Thus, for GLS, or FGLS with estimated
variance components, it is necessary only to use the group specific θi in the transforma-
tion in (13-22).

13.4.2 FEASIBLE GENERALIZED LEAST SQUARES
WHEN � IS UNKNOWN

If the variance components are known, generalized least squares can be computed
as shown earlier. Of course, this is unlikely, so as usual, we must first estimate the
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disturbance variances and then use an FGLS procedure. A heuristic approach to esti-
mation of the variance components is as follows:

yit = x′
i tβ + α + εi t + ui (13-24)

and

ȳi. = x̄′
i.β + α + ε̄i. + ui .

Therefore, taking deviations from the group means removes the heterogeneity:

yit − ȳi. = [xi t − x̄i.]′β + [εi t − ε̄i.]. (13-25)

Since

E

[
T∑

t=1

(εi t − ε̄i.)
2

]
= (T − 1)σ 2

ε ,

if β were observed, then an unbiased estimator of σ 2
ε based on T observations in group

i would be

σ̂ 2
ε (i) =

∑T
t=1(εi t − ε̄i.)

2

T − 1
. (13-26)

Since β must be estimated—(13-25) implies that the LSDV estimator is consistent,
indeed, unbiased in general—we make the degrees of freedom correction and use the
LSDV residuals in

s2
e (i) =

∑T
t=1(eit − ēi.)

2

T − K − 1
. (13-27)

We have n such estimators, so we average them to obtain

s̄2
e = 1

n

n∑
i=1

s2
e (i) = 1

n

n∑
i=1

[∑T
t=1(eit − ēi.)

2

T − K − 1

]
=

∑n
i=1

∑T
t=1(eit − ēi.)

2

nT − nK − n
. (13-28)

The degrees of freedom correction in s̄2
e is excessive because it assumes that α and

β are reestimated for each i . The estimated parameters are the n means ȳi · and the K
slopes. Therefore, we propose the unbiased estimator13

σ̂ 2
ε = s2

LSDV =
∑n

i=1

∑T
t=1(eit − ēi.)

2

nT − n − K
. (13-29)

This is the variance estimator in the LSDV model in (13-8), appropriately corrected for
degrees of freedom.

It remains to estimate σ 2
u . Return to the original model specification in (13-24). In

spite of the correlation across observations, this is a classical regression model in which
the ordinary least squares slopes and variance estimators are both consistent and, in
most cases, unbiased. Therefore, using the ordinary least squares residuals from the

13A formal proof of this proposition may be found in Maddala (1971) or in Judge et al. (1985, p. 551).
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model with only a single overall constant, we have

plim s2
Pooled = plim

e′e
nT − K − 1

= σ 2
ε + σ 2

u . (13-30)

This provides the two estimators needed for the variance components; the second would
be σ̂ 2

u = s2
Pooled − s2

LSDV . A possible complication is that this second estimator could be
negative. But, recall that for feasible generalized least squares, we do not need an
unbiased estimator of the variance, only a consistent one. As such, we may drop the
degrees of freedom corrections in (13-29) and (13-30). If so, then the two variance
estimators must be nonnegative, since the sum of squares in the LSDV model cannot
be larger than that in the simple regression with only one constant term. Alternative
estimators have been proposed, all based on this principle of using two different sums
of squared residuals.14

There is a remaining complication. If there are any regressors that do not vary
within the groups, the LSDV estimator cannot be computed. For example, in a model
of family income or labor supply, one of the regressors might be a dummy variable
for location, family structure, or living arrangement. Any of these could be perfectly
collinear with the fixed effect for that family, which would prevent computation of the
LSDV estimator. In this case, it is still possible to estimate the random effects variance
components. Let [b, a] be any consistent estimator of [β, α], such as the ordinary least
squares estimator. Then, (13-30) provides a consistent estimator of mee = σ 2

ε + σ 2
u . The

mean squared residuals using a regression based only on the n group means provides a
consistent estimator of m∗∗ = σ 2

u + (σ 2
ε /T ), so we can use

σ̂ 2
ε = T

T − 1
(mee − m∗∗)

σ̂ 2
u = T

T − 1
m∗∗ − 1

T − 1
mee = ωm∗∗ + (1 − ω)mee,

where ω > 1. As before, this estimator can produce a negative estimate of σ 2
u that, once

again, calls the specification of the model into question. [Note, finally, that the residuals
in (13-29) and (13-30) could be based on the same coefficient vector.]

13.4.3 TESTING FOR RANDOM EFFECTS

Breusch and Pagan (1980) have devised a Lagrange multiplier test for the random
effects model based on the OLS residuals.15 For

H0: σ 2
u = 0 (or Corr[ηi t , ηis] = 0),

H1: σ 2
u 	= 0,

14See, for example, Wallace and Hussain (1969), Maddala (1971), Fuller and Battese (1974), and Amemiya
(1971).
15We have focused thus far strictly on generalized least squares and moments based consistent estimation of
the variance components. The LM test is based on maximum likelihood estimation, instead. See, Maddala
(1971) and Balestra and Nerlove (1966, 2003) for this approach to estimation.
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the test statistic is

LM = nT
2(T − 1)




∑n
i=1

[∑T
t=1 eit

]2

∑n
i=1

∑T
t=1 e2

i t

− 1




2

= nT
2(T − 1)

[ ∑n
i=1(Tēi.)

2

∑n
i=1

∑T
t=1 e2

i t

− 1

]2

. (13-31)

Under the null hypothesis, LM is distributed as chi-squared with one degree of freedom.

Example 13.3 Testing for Random Effects
The least squares estimates for the cost equation were given in Example 13.1. The firm
specific means of the least squares residuals are

ē = [0.068869, −0.013878, −0.19422, 0.15273, −0.021583, 0.0080906]′

The total sum of squared residuals for the least squares regression is e′e = 1.33544, so

LM = nT
2(T − 1)

[
T 2ē′ē
e′e

− 1

]2

= 334.85.

Based on the least squares residuals, we obtain a Lagrange multiplier test statistic of 334.85,
which far exceeds the 95 percent critical value for chi-squared with one degree of freedom,
3.84. At this point, we conclude that the classical regression model with a single constant
term is inappropriate for these data. The result of the test is to reject the null hypothesis in
favor of the random effects model. But, it is best to reserve judgment on that, because there
is another competing specification that might induce these same results, the fixed effects
model. We will examine this possibility in the subsequent examples.

With the variance estimators in hand, FGLS can be used to estimate the parame-
ters of the model. All our earlier results for FGLS estimators apply here. It would also
be possible to obtain the maximum likelihood estimator.16 The likelihood function is
complicated, but as we have seen repeatedly, the MLE of β will be GLS based on the
maximum likelihood estimators of the variance components. It can be shown that the
MLEs of σ 2

ε and σ 2
u are the unbiased estimators shown earlier, without the degrees of

freedom corrections.17 This model satisfies the requirements for the Oberhofer–Kmenta
(1974) algorithm—see Section 11.7.2—so we could also use the iterated FGLS proce-
dure to obtain the MLEs if desired. The initial consistent estimators can be based on
least squares residuals. Still other estimators have been proposed. None will have bet-
ter asymptotic properties than the MLE or FGLS estimators, but they may outperform
them in a finite sample.18

Example 13.4 Random Effects Models
To compute the FGLS estimator, we require estimates of the variance components. The unbi-
ased estimator of σ 2

ε is the residual variance estimator in the within-units (LSDV) regression.
Thus,

σ̂ 2
ε = 0.2926222

90 − 9
= 0.0036126.

16See Hsiao (1986) and Nerlove (2003).
17See Berzeg (1979).
18See Maddala and Mount (1973).
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Using the least squares residuals from the pooled regression we have

̂σ 2
ε + σ 2

u = 1.335442
90 − 4

= 0.015528

so

σ̂ 2
u = 0.015528 − 0.0036126 = 0.0199158.

For purposes of FGLS,

θ̂ = 1 −
[

0.0036126
15(0.0199158)

]1/2

= 0.890032.

The FGLS estimates for this random effects model are shown in Table 13.2, with the fixed
effects estimates. The estimated within-groups variance is larger than the between-groups
variance by a factor of five. Thus, by these estimates, over 80 percent of the disturbance
variation is explained by variation within the groups, with only the small remainder explained
by variation across groups.

None of the desirable properties of the estimators in the random effects model rely
on T going to infinity.19 Indeed, T is likely to be quite small. The maximum likelihood
estimator of σ 2

ε is exactly equal to an average of n estimators, each based on the T
observations for unit i . [See (13-28).] Each component in this average is, in principle,
consistent. That is, its variance is of order 1/T or smaller. Since T is small, this variance
may be relatively large. But, each term provides some information about the parameter.
The average over the n cross-sectional units has a variance of order 1/(nT ), which will
go to zero if n increases, even if we regard T as fixed. The conclusion to draw is that
nothing in this treatment relies on T growing large. Although it can be shown that some
consistency results will follow for T increasing, the typical panel data set is based on data
sets for which it does not make sense to assume that T increases without bound or, in
some cases, at all.20 As a general proposition, it is necessary to take some care in devising
estimators whose properties hinge on whether T is large or not. The widely used conven-
tional ones we have discussed here do not, but we have not exhausted the possibilities.

The LSDV model does rely on T increasing for consistency. To see this, we use the
partitioned regression. The slopes are

b = [X′MDX]−1[X′Mdy].

Since X is nT × K, as long as the inverted moment matrix converges to a zero matrix, b
is consistent as long as either n or T increases without bound. But the dummy variable
coefficients are

ai = ȳi. − x̄′
i.b = 1

T

T∑
t=1

(yit − x′
i t b).

We have already seen that b is consistent. Suppose, for the present, that x̄i. = 0. Then
Var[ai ] = Var[yit ]/T. Therefore, unless T → ∞, the estimators of the unit-specific effects
are not consistent. (They are, however, best linear unbiased.) This inconsistency is worth
bearing in mind when analyzing data sets for which T is fixed and there is no intention

19See Nickell (1981).
20In this connection, Chamberlain (1984) provided some innovative treatments of panel data that, in fact,
take T as given in the model and that base consistency results solely on n increasing. Some additional results
for dynamic models are given by Bhargava and Sargan (1983).

William Greene
change subscript to bold upper case D, like the preceding one.
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to replicate the study and no logical argument that would justify the claim that it could
have been replicated in principle.

The random effects model was developed by Balestra and Nerlove (1966). Their
formulation included a time-specific component, κt , as well as the individual effect:

yit = α + β ′xi t + εi t + ui + κt .

The extended formulation is rather complicated analytically. In Balestra and Nerlove’s
study, it was made even more so by the presence of a lagged dependent variable that
causes all the problems discussed earlier in our discussion of autocorrelation. A full set
of results for this extended model, including a method for handling the lagged dependent
variable, has been developed.21 We will turn to this in Section 13.7.

13.4.4 HAUSMAN’S SPECIFICATION TEST FOR THE RANDOM
EFFECTS MODEL

At various points, we have made the distinction between fixed and random effects mod-
els. An inevitable question is, Which should be used? From a purely practical standpoint,
the dummy variable approach is costly in terms of degrees of freedom lost. On the other
hand, the fixed effects approach has one considerable virtue. There is little justification
for treating the individual effects as uncorrelated with the other regressors, as is assumed
in the random effects model. The random effects treatment, therefore, may suffer from
the inconsistency due to this correlation between the included variables and the random
effect.22

The specification test devised by Hausman (1978)23 is used to test for orthogonality
of the random effects and the regressors. The test is based on the idea that under the
hypothesis of no correlation, both OLS in the LSDV model and GLS are consistent, but
OLS is inefficient,24 whereas under the alternative, OLS is consistent, but GLS is not.
Therefore, under the null hypothesis, the two estimates should not differ systematically,
and a test can be based on the difference. The other essential ingredient for the test is
the covariance matrix of the difference vector, [b − β̂]:

Var[b − β̂] = Var[b] + Var[β̂] − Cov[b, β̂] − Cov[b, β̂]. (13-32)

Hausman’s essential result is that the covariance of an efficient estimator with its differ-
ence from an inefficient estimator is zero, which implies that

Cov[(b − β̂), β̂] = Cov[b, β̂] − Var[β̂] = 0

or that

Cov[b, β̂] = Var[β̂].

Inserting this result in (13-32) produces the required covariance matrix for the test,

Var[b − β̂] = Var[b] − Var[β̂] = �. (13-33)

21See Balestra and Nerlove (1966), Fomby, Hill, and Johnson (1984), Judge et al. (1985), Hsiao (1986),
Anderson and Hsiao (1982), Nerlove (1971a, 2003), and Baltagi (1995).
22See Hausman and Taylor (1981) and Chamberlain (1978).
23Related results are given by Baltagi (1986).
24Referring to the GLS matrix weighted average given earlier, we see that the efficient weight uses θ , whereas
OLS sets θ = 1.
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The chi-squared test is based on the Wald criterion:

W = χ2[K − 1] = [b − β̂]′�̂−1[b − β̂]. (13-34)

For �̂, we use the estimated covariance matrices of the slope estimator in the LSDV
model and the estimated covariance matrix in the random effects model, excluding the
constant term. Under the null hypothesis, W has a limiting chi-squared distribution with
K − 1 degrees of freedom.

Example 13.5 Hausman Test
The Hausman test for the fixed and random effects regressions is based on the parts of the co-
efficient vectors and the asymptotic covariance matrices that correspond to the slopes in the
models, that is, ignoring the constant term(s). The coefficient estimates are given in Table 13.2.
The two estimated asymptotic covariance matrices are

Est. Var[bF E ] =
[

0.0008934 −0.0003178 −0.001884
−0.0003178 0.0002310 −0.0007686
−0.001884 −0.0007686 0.04068

]

TABLE 13.2 Random and Fixed Effects Estimates

Parameter Estimates

Specification β1 β2 β3 β4 R2 s2

No effects 9.517 0.88274 0.45398 −1.6275 0.98829 0.015528
(0.22924) (0.013255) (0.020304) (0.34530)

Firm effects Fixed effects
0.91930 0.41749 −1.0704 0.99743 0.0036125
(0.029890) (0.015199) (0.20169)

White(1) (0.019105) (0.013533) (0.21662)
White(2) (0.027977) (0.013802) (0.20372)

Fixed effects with autocorrelation ρ̂ = 0.5162
0.92975 0.38567 −1.22074 0.0019179
(0.033927) (0.0167409) (0.20174) s2/(1 − ρ̂2) =

0.002807

Random effects
9.6106 0.90412 0.42390 −1.0646 σ̂ 2

u = 0.0119158
(0.20277) (0.02462) (0.01375) (0.1993) σ̂ 2

ε = 0.00361262

Random effects with autocorrelation ρ̂ = 0.5162
10.139 0.91269 0.39123 −1.2074 σ̂ 2

u = 0.0268079
(0.2587) (0.027783) (0.016294) (0.19852) σ̂ 2

ε = 0.0037341

Fixed effectsFirm and time
effects 12.667 0.81725 0.16861 −0.88281 0.99845 0.0026727

(2.0811) (0.031851) (0.16348) (0.26174)

Random effects
9.799 0.84328 0.38760 −0.92943 σ̂ 2

u = 0.0142291
(0.87910) (0.025839) (0.06845) (0.25721) σ̂ 2

ε = 0.0026395
σ̂ 2

v = 0.0551958
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and

Est. Var[bRE ] =
[ 0.0006059 −0.0002089 −0.001450
−0.0002089 0.00018897 −0.002141
−0.001450 −0.002141 0.03973

]
.

The test statistic is 4.16. The critical value from the chi-squared table with three degrees of
freedom is 7.814, which is far larger than the test value. The hypothesis that the individual
effects are uncorrelated with the other regressors in the model cannot be rejected. Based on
the LM test, which is decisive that there are individual effects, and the Hausman test, which
suggests that these effects are uncorrelated with the other variables in the model, we would
conclude that of the two alternatives we have considered, the random effects model is the
better choice.

13.5 INSTRUMENTAL VARIABLES ESTIMATION
OF THE RANDOM EFFECTS MODEL

Recall the original specification of the linear model for panel data in (13-1)

yit = x′
i tβ + z′

iα + εi t . (13-35)

The random effects model is based on the assumption that the unobserved person spe-
cific effects, zi , are uncorrelated with the included variables, xi t . This assumption is a
major shortcoming of the model. However, the random effects treatment does allow
the model to contain observed time invariant characteristics, such as demographic char-
acteristics, while the fixed effects model does not—if present, they are simply absorbed
into the fixed effects. Hausman and Taylor’s (1981) estimator for the random effects
model suggests a way to overcome the first of these while accommodating the second.

Their model is of the form:

yit = x′
1i tβ1 + x′

2i tβ2 + z′
1iα1 + z′

2iα2 + εi t + ui

where β = (β ′
1, β

′
2)

′ and α = (α′
1, α

′
2)

′. In this formulation, all individual effects denoted
zi are observed. As before, unobserved individual effects that are contained in z′

iα in
(13-35) are contained in the person specific random term, ui . Hausman and Taylor define
four sets of observed variables in the model:

x1i t is K1 variables that are time varying and uncorrelated with ui ,
z1i is L1 variables that are time invariant and uncorrelated with ui ,
x2i t is K2 variables that are time varying and are correlated with ui ,
z2i is L2 variables that are time invariant and are correlated with ui .

The assumptions about the random terms in the model are

E [ui ] = E [ui | x1i t , z1i ] = 0 though E [ui | x2i t , z2i ] 	= 0,

Var[ui | x1i t , z1i , x2i t , z2i ] = σ 2
u ,

Cov[εi t , ui | x1i t , z1i , x2i t , z2i ] = 0,

Var[εi t + ui | x1i t , z1i , x2i t , z2i ] = σ 2 = σ 2
ε + σ 2

u ,

Corr[εi t + ui , εis + ui | x1i t , z1i , x2i t , z2i ] = ρ = σ 2
u /σ 2.
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Note the crucial assumption that one can distinguish sets of variables x1 and z1 that are
uncorrelated with ui from x2 and z2 which are not. The likely presence of x2 and z2 is what
complicates specification and estimation of the random effects model in the first place.

By construction, any OLS or GLS estimators of this model are inconsistent when
the model contains variables that are correlated with the random effects. Hausman and
Taylor have proposed an instrumental variables estimator that uses only the information
within the model (i.e., as already stated). The strategy for estimation is based on the
following logic: First, by taking deviations from group means, we find that

yit − ȳi. = (x1i t − x̄1i )
′β1 + (x2i t − x̄2i )

′β2 + εi t − ε̄i , (13-36)

which implies that β can be consistently estimated by least squares, in spite of the cor-
relation between x2 and u. This is the familiar, fixed effects, least squares dummy vari-
able estimator—the transformation to deviations from group means removes from the
model the part of the disturbance that is correlated with x2i t . Now, in the original model,
Hausman and Taylor show that the group mean deviations can be used as (K1 + K2)

instrumental variables for estimation of (β, α). That is the implication of (13-36). Since
z1 is uncorrelated with the disturbances, it can likewise serve as a set of L1 instrumental
variables. That leaves a necessity for L2 instrumental variables. The authors show that
the group means for x1 can serve as these remaining instruments, and the model will be
identified so long as K1 is greater than or equal to L2. For identification purposes, then,
K1 must be at least as large as L2. As usual, feasible GLS is better than OLS, and avail-
able. Likewise, FGLS is an improvement over simple instrumental variable estimation
of the model, which is consistent but inefficient.

The authors propose the following set of steps for consistent and efficient estimation:

Step 1. Obtain the LSDV (fixed effects) estimator of β = (β ′
1, β

′
2)

′ based on x1 and x2.
The residual variance estimator from this step is a consistent estimator of σ 2

ε .

Step 2. Form the within groups residuals, eit , from the LSDV regression at step 1.
Stack the group means of these residuals in a full sample length data vector. Thus,
e∗

i t = ēi i., t = 1, . . . , T, i = 1, . . . , n. These group means are used as the dependent vari-
able in an instrumental variable regression on z1 and z2 with instrumental variables z1

and x1. (Note the identification requirement that K1, the number of variables in x1 be
at least as large as L2, the number of variables in z2.) The time invariant variables are
each repeated T times in the data matrices in this regression. This provides a consistent
estimator of α.

Step 3. The residual variance in the regression in step 2 is a consistent estimator of
σ ∗2 = σ 2

u + σ 2
ε /T. From this estimator and the estimator of σ 2

ε in step 1, we deduce an
estimator of σ 2

u = σ ∗2 − σ 2
ε /T. We then form the weight for feasible GLS in this model

by forming the estimate of

θ =
√

σ 2
ε

σ 2
ε + Tσ 2

u
.

Step 4. The final step is a weighted instrumental variable estimator. Let the full set of
variables in the model be

w′
i t = (x′

1i t , x′
2i t , z′

1i , z′
2i ).

William Greene
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Collect these nT observations in the rows of data matrix W. The transformed variables
for GLS are, as before when we first fit the random effects model,

w∗′
i t = w′

i t − (1 − θ̂ )w̄′
i and y∗

i t = yit − (1 − θ̂ )ȳi

where θ̂ denotes the sample estimate of θ . The transformed data are collected in the
rows data matrix W∗ and in column vector y∗. Note in the case of the time invariant
variables in wi t , the group mean is the original variable, and the transformation just
multiplies the variable by θ̂ . The instrumental variables are

v′
i t = [(x1i t − x̄1i )

′, (x2i t − x̄2i )
′, z′

1i x̄′
1i ].

These are stacked in the rows of the nT × (K1 + K2 + L1 + K1) matrix V. Note
for the third and fourth sets of instruments, the time invariant variables and group
means are repeated for each member of the group. The instrumental variable estimator
would be

(β̂ ′, α̂′)′IV = [(W∗′V)(V′V)−1(V′W∗)]−1[(W∗′V)(V′V)−1(V′y∗)].25 (13-37)

The instrumental variable estimator is consistent if the data are not weighted, that is,
if W rather than W∗ is used in the computation. But, this is inefficient, in the same
way that OLS is consistent but inefficient in estimation of the simpler random effects
model.

Example 13.6 The Returns to Schooling
The economic returns to schooling have been a frequent topic of study by econometricians.
The PSID and NLS data sets have provided a rich source of panel data for this effort. In wage
(or log wage) equations, it is clear that the economic benefits of schooling are correlated
with latent, unmeasured characteristics of the individual such as innate ability, intelligence,
drive, or perseverance. As such, there is little question that simple random effects models
based on panel data will suffer from the effects noted earlier. The fixed effects model is the
obvious alternative, but these rich data sets contain many useful variables, such as race,
union membership, and marital status, which are generally time invariant. Worse yet, the
variable most of interest, years of schooling, is also time invariant. Hausman and Taylor
(1981) proposed the estimator described here as a solution to these problems. The authors
studied the effect of schooling on (the log of) wages using a random sample from the PSID of
750 men aged 25–55, observed in two years, 1968 and 1972. The two years were chosen so
as to minimize the effect of serial correlation apart from the persistent unmeasured individual
effects. The variables used in their model were as follows:

Experience = age—years of schooling—5,
Years of schooling,
Bad Health = a dummy variable indicating general health,
Race = a dummy variable indicating nonwhite (70 of 750 observations),
Union = a dummy variable indicating union membership,
Unemployed = a dummy variable indicating previous year’s unemployment.

The model also included a constant term and a period indicator. [The coding of the latter
is not given, but any two distinct values, including 0 for 1968 and 1 for 1972 would produce
identical results. (Why?)]

The primary focus of the study is the coefficient on schooling in the log wage equation.
Since schooling and, probably, Experience and Unemployed are correlated with the latent

25Note that the FGLS random effects estimator would be (β̂ ′, α̂′)′RE = [W∗′W∗]−1W∗′y∗.
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TABLE 13.3 Estimated Log Wage Equations

Variables OLS GLS/RE LSDV HT/IV-GLS HT/IV-GLS

x1 Experience 0.0132 0.0133 0.0241 0.0217
(0.0011)a (0.0017) (0.0042) (0.0031)

Bad health −0.0843 −0.0300 −0.0388 −0.0278 −0.0388
(0.0412) (0.0363) (0.0460) (0.0307) (0.0348)

Unemployed −0.0015 −0.0402 −0.0560 −0.0559
Last Year (0.0267) (0.0207) (0.0295) (0.0246)
Time NRb NR NR NR NR

x2 Experience 0.0241
(0.0045)

Unemployed −0.0560
(0.0279)

z1 Race −0.0853 −0.0878 −0.0278 −0.0175
(0.0328) (0.0518) (0.0752) (0.0764)

Union 0.0450 0.0374 0.1227 0.2240
(0.0191) (0.0296) (0.0473) (0.2863)

Schooling 0.0669 0.0676
(0.0033) (0.0052)

Constant NR NR NR NR NR
z2 Schooling 0.1246 0.2169

(0.0434) (0.0979)
σε 0.321 0.192 0.160 0.190 0.629
ρ =

√
σ 2

u /(σ 2
u + σ 2

ε ) 0.632 0.661 0.817
Spec. Test [3] 20.2 2.24 0.00

aEstimated asymptotic standard errors are given in parentheses.
bNR indicates that the coefficient estimate was not reported in the study.

effect, there is likely to be serious bias in conventional estimates of this equation. Table 13.3
reports some of their reported results. The OLS and random effects GLS results in the first
two columns provide the benchmark for the rest of the study. The schooling coefficient
is estimated at 0.067, a value which the authors suspected was far too small. As we saw
earlier, even in the presence of correlation between measured and latent effects, in this model,
the LSDV estimator provides a consistent estimator of the coefficients on the time varying
variables. Therefore, we can use it in the Hausman specification test for correlation between
the included variables and the latent heterogeneity. The calculations are shown in Section
13.4.4, result (13-34). Since there are three variables remaining in the LSDV equation, the
chi-squared statistic has three degrees of freedom. The reported value of 20.2 is far larger
than the 95 percent critical value of 7.81, so the results suggest that the random effects
model is misspecified.

Hausman and Taylor proceeded to reestimate the log wage equation using their proposed
estimator. The fourth and fifth sets of results in Table 13.3 present the instrumental variable
estimates. The specification test given with the fourth set of results suggests that the proce-
dure has produced the desired result. The hypothesis of the modified random effects model
is now not rejected; the chi-squared value of 2.24 is much smaller than the critical value. The
schooling variable is treated as endogenous (correlated with ui ) in both cases. The difference
between the two is the treatment of Unemployed and Experience. In the preferred equation,
they are included in z2 rather than z1. The end result of the exercise is, again, the coeffi-
cient on schooling, which has risen from 0.0669 in the worst specification (OLS) to 0.2169
in the last one, a difference of over 200 percent. As the authors note, at the same time, the
measured effect of race nearly vanishes.
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13.6 GMM ESTIMATION OF DYNAMIC
PANEL DATA MODELS

Panel data are well suited for examining dynamic effects, as in the first-order model,

yit = x′
i tβ + γ yi,t−1 + αi + εi t

= w′
i tδ + αi + εi t ,

where the set of right hand side variables, wi t now includes the lagged dependent vari-
able, yi,t−1. Adding dynamics to a model in this fashion is a major change in the in-
terpretation of the equation. Without the lagged variable, the “independent variables”
represent the full set of information that produce observed outcome yit . With the lagged
variable, we now have in the equation, the entire history of the right hand side variables,
so that any measured influence is conditioned on this history; in this case, any impact
of xi t represents the effect of new information. Substantial complications arise in es-
timation of such a model. In both the fixed and random effects settings, the difficulty
is that the lagged dependent variable is correlated with the disturbance, even if it is
assumed that εi t is not itself autocorrelated. For the moment, consider the fixed effects
model as an ordinary regression with a lagged dependent variable. We considered this
case in Section 5.3.2 as a regression with a stochastic regressor that is dependent across
observations. In that dynamic regression model, the estimator based on T observations
is biased in finite samples, but it is consistent in T. That conclusion was the main result
of Section 5.3.2. The finite sample bias is of order 1/T. The same result applies here, but
the difference is that whereas before we obtained our large sample results by allowing
T to grow large, in this setting, T is assumed to be small and fixed, and large-sample
results are obtained with respect to n growing large, not T. The fixed effects estimator
of δ = [β, γ ] can be viewed as an average of n such estimators. Assume for now that
T ≥ K + 1 where K is the number of variables in xi t . Then, from (13-4),

δ̂ =
[

n∑
i=1

W′
i M

0Wi

]−1 [
n∑

i=1

W′
i M

0yi

]

=
[

n∑
i=1

W′
i M

0Wi

]−1 [
n∑

i=1

W′
i M

0Wi di

]

=
n∑

i=1

Fi di

where the rows of the T × (K + 1) matrix Wi are w′
i t and M0 is the T × T matrix that

creates deviations from group means [see (13-5)]. Each group specific estimator, di

is inconsistent, as it is biased in finite samples and its variance does not go to zero
as n increases. This matrix weighted average of n inconsistent estimators will also be
inconsistent. (This analysis is only heuristic. If T < K + 1, then the individual coefficient
vectors cannot be computed.26)

26Further discussion is given by Nickell (1981), Ridder and Wansbeek (1990), and Kiviet (1995).
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The problem is more transparent in the random effects model. In the model

yit = γ yi,t−1 + x′
i tβ + ui + εi t ,

the lagged dependent variable is correlated with the compound disturbance in the
model, since the same ui enters the equation for every observation in group i.

Neither of these results renders the model inestimable, but they do make neces-
sary some technique other than our familiar LSDV or FGLS estimators. The general
approach, which has been developed in several stages in the literature,27 relies on in-
strumental variables estimators and, most recently [by Arellano and Bond (1991) and
Arellano and Bover (1995)] on a GMM estimator. For example, in either the fixed or
random effects cases, the heterogeneity can be swept from the model by taking first
differences, which produces

yit − yi,t−1 = δ(yi,t−1 − yi,t−2) + (xi t − xi,t−1)
′β + (εi t − εi,t−1).

This model is still complicated by correlation between the lagged dependent variable
and the disturbance (and by its first-order moving average disturbance). But without the
group effects, there is a simple instrumental variables estimator available. Assuming that
the time series is long enough, one could use the lagged differences, (yi,t−2−yi,t−3), or the
lagged levels, yi,t−2 and yi,t−3, as one or two instrumental variables for (yi,t−1 − yi,t−2).
(The other variables can serve as their own instruments.) By this construction, then, the
treatment of this model is a standard application of the instrumental variables technique
that we developed in Section 5.4.28 This illustrates the flavor of an instrumental variable
approach to estimation. But, as Arellano et al. and Ahn and Schmidt (1995) have shown,
there is still more information in the sample which can be brought to bear on estimation,
in the context of a GMM estimator, which we now consider.

We extend the Hausman and Taylor (HT) formulation of the random effects model
to include the lagged dependent variable;

yit = γ yi,t−1 + x′
1i tβ1 + x′

2i tβ2 + z′
1iα1 + z′

2iα2 + εi t + ui

= δ′wi t + εi t + ui

= δ′wi t + ηi t

where

wi t = [yi,t−1, x′
1i t , x′

2i t , z′
1i , z′

2i ]
′

is now a (1 + K1 + K2 + L1 + L2) × 1 vector. The terms in the equation are the same
as in the Hausman and Taylor model. Instrumental variables estimation of the model
without the lagged dependent variable is discussed in the previous section on the HT
estimator. Moreover, by just including yi,t−1 in x2i t , we see that the HT approach extends
to this setting as well, essentially without modification. Arellano et al. suggest a GMM
estimator, and show that efficiency gains are available by using a larger set of moment

27The model was first proposed in this form by Balestra and Nerlove (1966). See, for example, Anderson and
Hsiao (1981, 1982), Bhargava and Sargan (1983), Arellano (1989), Arellano and Bond (1991), Arellano and
Bover (1995), Ahn and Schmidt (1995), and Nerlove (2003).
28There is a question as to whether one should use differences or levels as instruments. Arellano (1989) gives
evidence that the latter is preferable.



Greene-50240 book June 18, 2002 15:28

CHAPTER 13 ✦ Models for Panel Data 309

conditions. In the previous treatment, we used a GMM estimator constructed as follows:
The set of moment conditions we used to formulate the instrumental variables were

E







x1i t

x2i t

z1i

x̄1i.


 (ηi t − η̄i )


 = E







x1i t

x2i t

z1i

x̄1i.


 (εi t − ε̄i )


 = 0.

This moment condition is used to produce the instrumental variable estimator. We could
ignore the nonscalar variance of ηi t and use simple instrumental variables at this point.
However, by accounting for the random effects formulation and using the counterpart
to feasible GLS, we obtain the more efficient estimator in (13-37). As usual, this can be
done in two steps. The inefficient estimator is computed in order to obtain the residuals
needed to estimate the variance components. This is Hausman and Taylor’s steps 1 and
2. Steps 3 and 4 are the GMM estimator based on these estimated variance components.

Arellano et al. suggest that the preceding does not exploit all the information in
the sample. In simple terms, within the T observations in group i, we have not used the
fact that

E







x1i t

x2i t

z1i

x̄1i.


 (ηis − η̄i )


 = 0 for some s 	= t.

Thus, for example, not only are disturbances at time t uncorrelated with these variables at
time t , arguably, they are uncorrelated with the same variables at time t − 1, t − 2, possi-
bly t + 1, and so on. In principle, the number of valid instruments is potentially enormous.
Suppose, for example, that the set of instruments listed above is strictly exogenous with
respect to ηi t in every period including current, lagged and future. Then, there are a total
of [T(K1 + K2)+ L1 + K1)] moment conditions for every observation on this basis alone.
Consider, for example, a panel with two periods. We would have for the two periods,

E







x1i1

x2i1

x1i2

x2i2

z1i

x̄1i.




(ηi1 − η̄i )




= E







x1i1

x2i1

x1i2

x2i2

z1i

x̄1i.




(ηi2 − η̄i )




= 0. (13-38)

How much useful information is brought to bear on estimation of the parameters is un-
certain, as it depends on the correlation of the instruments with the included exogenous
variables in the equation. The farther apart in time these sets of variables become the
less information is likely to be present. (The literature on this subject contains reference
to “strong” versus “weak” instrumental variables.29) In order to proceed, as noted, we
can include the lagged dependent variable in x2i . This set of instrumental variables can
be used to construct the estimator, actually whether the lagged variable is present or
not. We note, at this point, that on this basis, Hausman and Taylor’s estimator did not

29See West (2001).
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actually use all the information available in the sample. We now have the elements of
the Arellano et al. estimator in hand; what remains is essentially the (unfortunately,
fairly involved) algebra, which we now develop.

Let

Wi =




w′
i1

w′
i2
...

w′
iTi


 = the full set of rhs data for group i, and yi =




yi1

yi2
...

yiT


 .

Note that Wi is assumed to be, a T × (1 + K1 + K2 + L1 + L2) matrix. Since there is a
lagged dependent variable in the model, it must be assumed that there are actually T + 1
observations available on yit . To avoid a cumbersome, cluttered notation, we will leave
this distinction embedded in the notation for the moment. Later, when necessary, we
will make it explicit. It will reappear in the formulation of the instrumental variables. A
total of T observations will be available for constructing the IV estimators. We now form
a matrix of instrumental variables. Different approaches to this have been considered
by Hausman and Taylor (1981), Arellano et al. (1991, 1995, 1999), Ahn and Schmidt
(1995) and Amemiya and MaCurdy (1986), among others. We will form a matrix Vi

consisting of Ti − 1 rows constructed the same way for Ti − 1 observations and a final
row that will be different, as discussed below. [This is to exploit a useful algebraic result
discussed by Arellano and Bover (1995).] The matrix will be of the form

Vi =




v′
i1 0′ · · · 0′

0′ v′
i2 · · · 0′

...
...

. . .
...

0′ 0′ · · · a′
i


 . (13-39)

The instrumental variable sets contained in v′
i t which have been suggested might include

the following from within the model:

xi t and xi,t−1 (i.e., current and one lag of all the time varying variables)
xi1, . . . , xiT (i.e., all current, past and future values of all the time varying variables)
xi1, . . . , xi t (i.e., all current and past values of all the time varying variables)

The time invariant variables that are uncorrelated with ui , that is z1i , are appended
at the end of the nonzero part of each of the first T − 1 rows. It may seem that in-
cluding x2 in the instruments would be invalid. However, we will be converting the
disturbances to deviations from group means which are free of the latent effects—that
is, this set of moment conditions will ultimately be converted to what appears in (13-38).
While the variables are correlated with ui by construction, they are not correlated with
εi t − ε̄i . The final row of Vi is important to the construction. Two possibilities have been
suggested:

a′
i = [z′

1i x̄i1] (produces the Hausman and Taylor estimator)

a′
i = [z′

1i x′
1i1, x′

1i2, . . . , x1iT] (produces Amemiya and MaCurdy’s estimator).
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Note that the m variables are exogenous time invariant variables, z1i and the exogenous
time varying variables, either condensed into the single group mean or in the raw form,
with the full set of T observations.

To construct the estimator, we will require a transformation matrix, H constructed
as follows. Let M01 denote the first T − 1 rows of M0, the matrix that creates deviations
from group means. Then,

H =



M01

1
T

i′T


 .

Thus, H replaces the last row of M0 with a row of 1/T. The effect is as follows: if q is T
observations on a variable, then Hq produces q∗ in which the first T − 1 observations
are converted to deviations from group means and the last observation is the group
mean. In particular, let the T × 1 column vector of disturbances

ηi = [ηi1, ηi2, . . . , ηiT] = [(εi1 + ui ), (εi2 + ui ), . . . , (εiT + ui )]′,

then

Hη =




ηi1 − η̄i
...

ηi,T−1 − η̄i

η̄i


 .

We can now construct the moment conditions. With all this machinery in place, we
have the result that appears in (13-40), that is

E [V′
i Hηi ] = E [gi ] = 0.

It is useful to expand this for a particular case. Suppose T = 3 and we use as instruments
the current values in Period 1, and the current and previous values in Period 2 and the
Hausman and Taylor form for the invariant variables. Then the preceding is

E







x1i1 0 0
x2i1 0 0
z1i 0 0
0 x1i1 0
0 x2i1 0
0 x1i2 0
0 x2i2 0
0 z1i 0
0 0 z1i

0 0 x̄1i







ηi1 − η̄i

ηi2 − η̄i

η̄i







= 0. (13-40)
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This is the same as (13-38).30 The empirical moment condition that follows from this is

plim
1
n

n∑
i=1

V′
i Hηi

= plim
1
n

n∑
i=1

V′
i H




yi1 − γ yi0 − x′
1i1β1 − x′

2i1β2 − z′
1iα1 − z′

2iα2

yi2 − γ yi1 − x′
1i2β1 − x′

2i2β2 − z′
1iα1 − z′

2iα2
...

yiT − γ yi,T−1 − x′
1iTβ1 − x′

2iTβ2 − z′
1iα1 − z′

2iα2


 = 0.

Write this as

plim
1
n

n∑
i=1

mi = plim m̄ = 0.

The GMM estimator δ̂ is then obtained by minimizing

q = m̄′Am̄

with an appropriate choice of the weighting matrix, A. The optimal weighting matrix
will be the inverse of the asymptotic covariance matrix of

√
n m̄. With a consistent

estimator of δ in hand, this can be estimated empirically using

Est.Asy. Var[
√

n m̄] = 1
n

n∑
i=1

m̂i m̂′
i = 1

n

n∑
i=1

V′
i Hη̂i η̂

′
i H

′Vi .

This is a robust estimator that allows an unrestricted T × T covariance matrix for the T
disturbances, εi t +ui . But, we have assumed that this covariance matrix is the � defined
in (13-20) for the random effects model. To use this information we would, instead, use
the residuals in

η̂i = yi − Wi δ̂

to estimate σ 2
u and σ 2

ε and then �, which produces

Est.Asy. Var[
√

n m̄] = 1
n

n∑
i=1

V′
i H�̂H′Vi .

We now have the full set of results needed to compute the GMM estimator. The solution
to the optimization problem of minimizing q with respect to the parameter vector δ is

δ̂GMM =



(
n∑

i=1

W′
i HVi

)(
n∑

i=1

V′
i H

′�̂HVi

)−1( n∑
i=1

V′
i H

′Wi

)


−1

×
(

n∑
i=1

W′
i HVi

)(
n∑

i=1

V′
i H

′�̂HVi

)−1( n∑
i=1

V′
i H

′yi

)
. (13-41)

The estimator of the asymptotic covariance matrix for δ̂ is the inverse matrix in brackets.

30In some treatments [e.g., Blundell and Bond (1998)], an additional condition is assumed for the initial value,
yi0, namely E [yi0 | exogenous data] = µ0. This would add a row at the top of the matrix in (13-38) containing
[(yi0 − µ0), 0, 0].
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The remaining loose end is how to obtain the consistent estimator of δ to compute
�. Recall that the GMM estimator is consistent with any positive definite weighting
matrix, A in our expression above. Therefore, for an initial estimator, we could set
A = I and use the simple instrumental variables estimator,

δ̂IV =
[(

N∑
i=1

W′
i HVi

)(
N∑

i=1

V′
i HWi

)]−1( N∑
i=1

W′
i HVi

)(
N∑

i=1

V′
i Hyi

)
.

It is more common to proceed directly to the “two stage least squares” estimator (see
Chapter 15) which uses

A =
(

1
n

n∑
i=1

V′
i H

′HVi

)−1

.

The estimator is, then, the one given earlier in (13-41) with �̂ replace by IT . Either
estimator is a function of the sample data only and provides the initial estimator we
need.

Ahn and Schmidt (among others) observed that the IV estimator proposed here,
as extensive as it is, still neglects quite a lot of information and is therefore (relatively)
inefficient. For example, in the first differenced model,

E [yis(εi t − εi,t−1)] = 0, s = 0, . . . , t − 2, t = 2, . . . , T.

That is, the level of yis is uncorrelated with the differences of disturbances that are at
least two periods subsequent.31 (The differencing transformation, as the transformation
to deviations from group means, removes the individual effect.) The corresponding
moment equations that can enter the construction of a GMM estimator are

1
n

n∑
i=1

yis[(yit − yi,t−1) − δ(yi,t−1 − yi,t−2) − (xi t − xi,t−1)
′β] = 0

s = 0, . . . , t − 2, t = 2, . . . , T.

Altogether, Ahn and Schmidt identify T(T − 1)/2 + T − 2 such equations that involve
mixtures of the levels and differences of the variables. The main conclusion that they
demonstrate is that in the dynamic model, there is a large amount of information to
be gleaned not only from the familiar relationships among the levels of the variables
but also from the implied relationships between the levels and the first differences. The
issue of correlation between the transformed yit and the deviations of εi t is discussed
in the papers cited. (As Ahn and Schmidt show, there are potentially huge numbers
of additional orthogonality conditions in this model owing to the relationship between
first differences and second moments. We do not consider those. The matrix Vi could
be huge. Consider a model with 10 time varying right-hand side variables and suppose
Ti is 15. Then, there are 15 rows and roughly 15 × (10 × 15) or 2,250 columns. (The
Ahn and Schmidt estimator, which involves potentially thousands of instruments in a
model containing only a handful of parameters may become a bit impractical at this
point. The common approach is to use only a small subset of the available instrumental

31This is the approach suggested by Holtz-Eakin (1988) and Holtz-Eakin, Newey, and Rosen (1988).
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variables.) The order of the computation grows as the number of parameters times the
square of T.)

The number of orthogonality conditions (instrumental variables) used to estimate
the parameters of the model is determined by the number of variables in vi t and ai

in (13-39). In most cases, the model is vastly overidentified—there are far more or-
thogonality conditions than parameters. As usual in GMM estimation, a test of the
overidentifying restrictions can be based on q, the estimation criterion. At its mini-
mum, the limiting distribution of q is chi-squared with degrees of freedom equal to the
number of instrumental variables in total minus (1 + K1 + K2 + L1 + L2).32

Example 13.7 Local Government Expenditure
Dahlberg and Johansson (2000) estimated a model for the local government expenditure of
several hundred municipalities in Sweden observed over the nine year period t = 1979 to
1987. The equation of interest is

Si ,t = αt +
m∑

j =1

β j Si ,t− j +
m∑

j =1

γ j Ri ,t− j +
m∑

j =1

δ j Gi ,t− j + fi + εi t .

(We have changed their notation slightly to make it more convenient.) Si ,t , Ri ,t and Gi ,t are
municipal spending, receipts (taxes and fees) and central government grants, respectively.
Analogous equations are specified for the current values of Ri ,t and Gi ,t . The appropriate lag
length, m, is one of the features of interest to be determined by the empirical study. Note that
the model contains a municipality specific effect, fi , which is not specified as being either
“fixed” or “random.” In order to eliminate the individual effect, the model is converted to first
differences. The resulting equation has dependent variable �Si ,t = Si ,t − Si ,t−1 and a moving
average disturbance, �εi ,t = εi ,t − εi ,t−1. Estimation is done using the methods developed
by Ahn and Schmidt (1995), Arellano and Bover (1995) and Holtz-Eakin, Newey, and Rosen
(1988), as described previously. Issues of interest are the lag length, the parameter estimates,
and Granger causality tests, which we will revisit (again using this application) in Chapter 19.
We will examine this application in detail and obtain some estimates in the continuation of
this example in Section 18.5 (GMM Estimation).

13.7 NONSPHERICAL DISTURBANCES
AND ROBUST COVARIANCE ESTIMATION

Since the models considered here are extensions of the classical regression model, we
can treat heteroscedasticity in the same way that we did in Chapter 11. That is, we can
compute the ordinary or feasible generalized least squares estimators and obtain an
appropriate robust covariance matrix estimator, or we can impose some structure on
the disturbance variances and use generalized least squares. In the panel data settings,
there is greater flexibility for the second of these without making strong assumptions
about the nature of the heteroscedasticity. We will discuss this model under the head-
ing of “covariance structures” in Section 13.9. In this section, we will consider robust
estimation of the asymptotic covariance matrix for least squares.

13.7.1 ROBUST ESTIMATION OF THE FIXED EFFECTS MODEL

In the fixed effects model, the full regressor matrix is Z = [X, D]. The White het-
eroscedasticity consistent covariance matrix for OLS—that is, for the fixed effects

32This is true generally in GMM estimation. It was proposed for the dynamic panel data model by Bhargava
and Sargan (1983).



Greene-50240 book June 18, 2002 15:28

CHAPTER 13 ✦ Models for Panel Data 315

estimator—is the lower right block of the partitioned matrix

Est.Asy. Var[b, a] = (Z′Z)−1Z′E2Z(Z′Z)−1,

where E is a diagonal matrix of least squares (fixed effects estimator) residuals. This
computation promises to be formidable, but fortunately, it works out very simply. The
White estimator for the slopes is obtained just by using the data in group mean deviation
form [see (13-4) and (13-8)] in the familiar computation of S0 [see (11-7) to (11-9)]. Also,
the disturbance variance estimator in (13-8) is the counterpart to the one in (11-3),
which we showed that after the appropriate scaling of � was a consistent estimator
of σ 2 = plim[1/(nT )]

∑n
i=1

∑T
t=1 σ 2

i t . The implication is that we may still use (13-8) to
estimate the variances of the fixed effects.

A somewhat less general but useful simplification of this result can be obtained if
we assume that the disturbance variance is constant within the ith group. If E [ε2

i t ] = σ 2
i ,

then, with a panel of data, σ 2
i is estimable by e′

i ei/T using the least squares residu-
als. (This heteroscedastic regression model was considered at various points in Sec-
tion 11.7.2.) The center matrix in Est.Asy. Var[b, a] may be replaced with

∑
i (e

′
i ei/T)

Z′
i Zi . Whether this estimator is preferable is unclear. If the groupwise model is correct,

then it and the White estimator will estimate the same matrix. On the other hand, if the
disturbance variances do vary within the groups, then this revised computation may be
inappropriate.

Arellano (1987) has taken this analysis a step further. If one takes the ith group as
a whole, then we can treat the observations in

yi = Xiβ + αi iT + εi

as a generalized regression model with disturbance covariance matrix �i . We saw in
Section 11.4 that a model this general, with no structure on �, offered little hope for
estimation, robust or otherwise. But the problem is more manageable with a panel data
set. As before, let Xi∗ denote the data in group mean deviation form. The counterpart
to X′�X here is

X′
∗�X∗ =

n∑
i=1

(X′
i∗�i Xi∗).

By the same reasoning that we used to construct the White estimator in Chapter 12, we
can consider estimating �i with the sample of one, ei e′

i . As before, it is not consistent
estimation of the individual �i s that is at issue, but estimation of the sum. If n is large
enough, then we could argue that

plim
1

nT
X′

∗�X∗ = plim
1

nT

n∑
i=1

X′
i∗�i X∗i

= plim
1
n

n∑
i=1

1
T

X′
∗i

ei e′
i X∗i

= plim
1
n

n∑
i=1

(
1
T

T∑
t=1

T∑
s=1

eit eisx∗i t x
′
∗is

)
.
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The result is a combination of the White and Newey–West estimators. But the weights
in the latter are 1 rather than [1 − l/(L+ 1)] because there is no correlation across the
groups, so the sum is actually just an average of finite matrices.

13.7.2 HETEROSCEDASTICITY IN THE RANDOM EFFECTS MODEL

Since the random effects model is a generalized regression model with a known struc-
ture, OLS with a robust estimator of the asymptotic covariance matrix is not the
best use of the data. The GLS estimator is efficient whereas the OLS estimator is
not. If a perfectly general covariance structure is assumed, then one might simply use
Arellano’s estimator described in the preceding section with a single overall constant
term rather than a set of fixed effects. But, within the setting of the random effects
model, ηi t = εi t + ui , allowing the disturbance variance to vary across groups would
seem to be a useful extension.

A series of papers, notably Mazodier and Trognon (1978), Baltagi and Griffin (1988),
and the recent monograph by Baltagi (1995, pp. 77–79) suggest how one might allow
the group-specific component ui to be heteroscedastic. But, empirically, there is an
insurmountable problem with this approach. In the final analysis, all estimators of the
variance components must be based on sums of squared residuals, and, in particular, an
estimator of σ 2

ui would be estimated using a set of residuals from the distribution of ui .
However, the data contain only a single observation on ui repeated in each observation
in group i. So, the estimators presented, for example, in Baltagi (1995), use, in effect,
one residual in each case to estimate σ 2

ui. What appears to be a mean squared residual is
only (1/T )

∑T
t=1 û2

i = û2
i . The properties of this estimator are ambiguous, but efficiency

seems unlikely. The estimators do not converge to any population figure as the sample
size, even T, increases. Heteroscedasticity in the unique component, εi t represents a
more tractable modeling possibility.

In Section 13.4.1, we introduced heteroscedasticity into estimation of the ran-
dom effects model by allowing the group sizes to vary. But the estimator there (and
its feasible counterpart in the next section) would be the same if, instead of θi =
1 − σε/(Tiσ

2
u + σ 2

ε )1/2, we were faced with

θi = 1 − σεi√
σ 2

εi + Tiσ 2
u

.

Therefore, for computing the appropriate feasible generalized least squares estimator,
once again we need only devise consistent estimators for the variance components and
then apply the GLS transformation shown above. One possible way to proceed is as
follows: Since pooled OLS is still consistent, OLS provides a usable set of residuals.
Using the OLS residuals for the specific groups, we would have, for each group,

̂σ 2
εi + u2

i = e′
i ei

T
.

The residuals from the dummy variable model are purged of the individual specific
effect, ui , so σ 2

εi may be consistently (in T) estimated with

σ̂ 2
εi = e′lsdv

i elsdv
i

T
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where elsdv
it = yit − x′

i t b
lsdv − ai . Combining terms, then,

σ̂ 2
u = 1

n

n∑
i=1

[(
e′ols

i eols
i

T

)
−

(
e′lsdv

i elsdv
i

T

)]
= 1

n

n∑
i=1

(̂
u2

i

)
.

We can now compute the FGLS estimator as before.

Example 13.8 Heteroscedasticity Consistent Estimation
The fixed effects estimates for the cost equation are shown in Table 13.2 on page 302. The
row of standard errors labeled White (1) are the estimates based on the usual calculation. For
two of the three coefficients, these are actually substantially smaller than the least squares
results. The estimates labeled White (2) are based on the groupwise heteroscedasticity model
suggested earlier. These estimates are essentially the same as White (1). As noted, it is unclear
whether this computation is preferable. Of course, if it were known that the groupwise model
were correct, then the least squares computation itself would be inefficient and, in any event,
a two-step FGLS estimator would be better.

The estimators of σ 2
εi + u2

i based on the least squares residuals are 0.16188, 0.44740,
0.26639, 0.90698, 0.23199, and 0.39764. The six individual estimates of σ 2

εi based on the
LSDV residuals are 0.0015352, 0.52883, 0.20233, 0.62511, 0.25054, and 0.32482, respec-
tively. Two of the six implied estimates (the second and fifth) of u2

i are negative based on
these results, which suggests that a groupwise heteroscedastic random effects model is not
an appropriate specification for these data.

13.7.3 AUTOCORRELATION IN PANEL DATA MODELS

Autocorrelation in the fixed effects model is a minor extension of the model of the
preceding chapter. With the LSDV estimator in hand, estimates of the parameters of a
disturbance process and transformations of the data to allow FGLS estimation proceed
exactly as before. The extension one might consider is to allow the autocorrelation
coefficient(s) to vary across groups. But even if so, treating each group of observations
as a sample in itself provides the appropriate framework for estimation.

In the random effects model, as before, there are additional complications. The
regression model is

yit = x′
i tβ + α + εi t + ui .

If εi t is produced by an AR(1) process, εi t = ρεi,t−1 + vi t , then the familiar partial
differencing procedure we used before would produce33

yit − ρyi,t−1 = α(1 − ρ) + (xi t − ρxi,t−1)
′β + εi t − ρεi,t−1 + ui (1 − ρ)

= α(1 − ρ) + (xi t − ρxi,t−1)
′β + vi t + ui (1 − ρ) (13-42)

= α(1 − ρ) + (xi t − ρxi,t−1)
′β + vi t + wi .

Therefore, if an estimator of ρ were in hand, then one could at least treat partially
differenced observations two through T in each group as the same random effects
model that we just examined. Variance estimators would have to be adjusted by a factor
of (1−ρ)2. Two issues remain: (1) how is the estimate of ρ obtained and (2) how does one
treat the first observation? For the first of these, the first autocorrelation coefficient of

33See Lillard and Willis (1978).
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the LSDV residuals (so as to purge the residuals of the individual specific effects, ui ) is a
simple expedient. This estimator will be consistent in nT. It is in T alone, but, of course, T
is likely to be small. The second question is more difficult. Estimation is simple if the first
observation is simply dropped. If the panel contains many groups (large n), then omitting
the first observation is not likely to cause the inefficiency that it would in a single time
series. One can apply the Prais–Winsten transformation to the first observation in each
group instead [multiply by (1−ρ2)1/2], but then an additional complication arises at the
second (FGLS) step when the observations are transformed a second time. On balance,
the Cochrane–Orcutt estimator is probably a reasonable middle ground. Baltagi (1995,
p. 83) discusses the procedure. He also discusses estimation in higher-order AR and
MA processes.

In the same manner as in the previous section, we could allow the autocorrelation
to differ across groups. An estimate of each ρi is computable using the group mean
deviation data. This estimator is consistent in T, which is problematic in this setting. In
the earlier case, we overcame this difficulty by averaging over n such “weak” estimates
and achieving consistency in the dimension of n instead. We lose that advantage when
we allow ρ to vary over the groups. This result is the same that arose in our treatment
of heteroscedasticity.

For the airlines data in our examples, the estimated autocorrelation is 0.5086, which
is fairly large. Estimates of the fixed and random effects models using the Cochrane–
Orcutt procedure for correcting the autocorrelation are given in Table 13.2. Despite the
large value of r, the resulting changes in the parameter estimates and standard errors
are quite modest.

13.8 RANDOM COEFFICIENTS MODELS

Thus far, the model yi = Xiβ + εi has been analyzed within the familiar frameworks of
heteroscedasticity and autocorrelation. Although the models in Sections 13.3 and 13.4
allow considerable flexibility, they do entail the not entirely plausible assumption that
there is no parameter variation across firms (i.e., across the cross-sectional units). A
fully general approach would combine all the machinery of the previous sections with
a model that allows β to vary across firms.

Parameter heterogeneity across individuals or groups can be modeled as stochastic
variation.34 Suppose that we write

yi = Xiβ i + εi , (13-43)

where

β i = β + ui , (13-44)

34The most widely cited studies are Hildreth and Houck (1968), Swamy (1970, 1971, 1974), Hsiao (1975),
and Chow (1984). See also Breusch and Pagan (1979). Some recent discussions are Swamy and Tavlas (1995,
2001) and Hsiao (1986). The model bears some resemblance to the Bayesian approach of Section 16.2.2, but
the similarity is only superficial. We maintain our classical approach to estimation.
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and

E [ui | Xi ] = 0,

E [ui u′
i | Xi ] = 
.

(13-45)

(Note that if only the constant term in β is random in this fashion and the other pa-
rameters are fixed as before, then this reproduces the random effects model we studied
in Section 13.4.) Assume for now that there is no autocorrelation or cross-sectional
correlation. Thus, the β i that applies to a particular cross-sectional unit is the outcome
of a random process with mean vector β and covariance matrix 
.35 By inserting (13-44)
in (13-43) and expanding the result, we find that � is a block diagonal matrix with

�ii = E [(yi − Xiβ)(yi − Xiβ)′ | Xi ] = σ 2IT + Xi
X′
i .

We can write the GLS estimator as

β̂ = (X′�−1X)−1X′�−1y =
n∑

i=1

Wi bi (13-46)

where

Wi =
[

n∑
i=1

(

 + σ 2

i (X′
i Xi )

−1)−1

]−1 (

 + σ 2

i (X′
i Xi )

−1)−1
.

Empirical implementation of this model requires an estimator of 
. One approach
[see, e.g., Swamy (1971)] is to use the empirical variance of the set of n least squares
estimates, bi minus the average value of s2

i (X′
i Xi )

−1. This matrix may not be positive
definite, however, in which case [as Baltagi (1995) suggests], one might drop the second
term. The more difficult obstacle is that panels are often short and there may be too
few observations to compute bi . More recent applications of random parameter varia-
tion have taken a completely different approach based on simulation estimation. [See
Section 17.8, McFadden and Train (2000) and Greene (2001).]

Recent research in a number of fields have extended the random parameters model
to a “multilevel” model or “hierarchical regression” model by allowing the means of
the coefficients to vary with measured covariates. In this formulation, (13-44) becomes

β i = β + �zi + ui .

This model retains the earlier stochastic specification, but adds the measurement equa-
tion to the generation of the random parameters. In principle, this is actually only a
minor extension of the model used thus far, as the regression equation would now
become

yi = Xiβ + Xi�zi + (εi + Xi ui )

which can still be fit by least squares. However, as noted, current applications have
found this formulation to be useful in many settings that go beyond the linear model.
We will examine an application of this approach in a nonlinear model in Section 17.8.

35Swamy and Tavlas (2001) label this the “first generation RCM.” We’ll examine the “second generation”
extension at the end of this section.



Greene-50240 book June 18, 2002 15:28

320 CHAPTER 13 ✦ Models for Panel Data

13.9 COVARIANCE STRUCTURES FOR POOLED
TIME-SERIES CROSS-SECTIONAL DATA

Many studies have analyzed data observed across countries or firms in which the number
of cross-sectional units is relatively small and the number of time periods is (potentially)
relatively large. The current literature in political science contains many applications
of this sort. For example, in a cross-country comparison of economic performance over
time, Alvarez, Garrett, and Lange (1991) estimated a model of the form

performancei t = f (labor organizationi t , political organizationi t ) + εi t . (13-47)

The data set analyzed in Examples 13.1–13.5 is an example, in which the costs of six
large firms are observed for the same 15 years. The modeling context considered here
differs somewhat from the longitudinal data sets considered in the preceding sections.
In the typical application to be considered here, it is reasonable to specify a common
conditional mean function across the groups, with heterogeneity taking the form of
different variances rather than shifts in the means. Another substantive difference from
the longitudinal data sets is that the observational units are often large enough (e.g.,
countries) that correlation across units becomes a natural part of the specification,
whereas in a “panel,” it is always assumed away.

In the models we shall examine in this section, the data set consists of n cross-
sectional units, denoted i = 1, . . . , n, observed at each of T time periods, t = 1, . . . , T.
We have a total of nT observations. In contrast to the preceding sections, most of the
asymptotic results we obtain here are with respect to T → ∞. We will assume that n is
fixed.

The framework for this analysis is the generalized regression model:

yit = x′
i tβ + εi t . (13-48)

An essential feature of (13-48) is that we have assumed that β1 = β2 = · · · = βn. It is
useful to stack the n time series,

yi = Xiβ + εi , i = 1, . . . , n,

so that 


y1

y2
...

yn


 =




X1

X2
...

Xn


β +




ε1

ε2
...

εn


 . (13-49)

Each submatrix or subvector has T observations. We also specify

E [εi | X] = 0

and

E [εiε
′
j | X] = σi j�i j

so that a generalized regression model applies to each block of T observations. One new
element introduced here is the cross sectional covariance across the groups. Collecting
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the terms above, we have the full specification,

E [ε | X] = 0

and

E [εε′ | X] = � =




σ11�11 σ12�12 · · · σ1n�1n

σ21�21 σ22�22 · · · σ2n�2n

...

σn1�n1 σn2�n2 · · · σnn�nn




.

A variety of models are obtained by varying the structure of �.

13.9.1 GENERALIZED LEAST SQUARES ESTIMATION

As we observed in our first encounter with the generalized regression model, the fully
general covariance matrix in (13-49), which, as stated, contains nT(nT + 1)/2 parame-
ters is certainly inestimable. But, several restricted forms provide sufficient generality
for empirical use. To begin, we assume that there is no correlation across periods, which
implies that �i j = I.

� =




σ11I σ12I · · · σ1nI
σ21I σ22I · · · σ2nI

...

σn1I σn2I · · · σnnI




. (13-50)

The generalized least squares estimator of β is based on a known � would be

β̂ = [X′�−1X]−1[X′�−1y].

The matrix � can be written as

� = � ⊗ I, (13-51)

where � is the n× n matrix [σi j ] (note the contrast to (13-21) where � = In ⊗�). Then,

�−1 = �−1 ⊗ I =




σ 11I σ 12I · · · σ 1nI
σ 21I σ 22I · · · σ 2nI

...

σ n1I σ n2I · · · σ nnI




. (13-52)

where σ i j denotes the i jth element of �−1. This provides a specific form for the
estimator,

β̂ =



n∑
i=1

n∑
j=1

σ i j X′
i X j




−1 


n∑
i=1

n∑
j=1

σ i j X′
i y j


 . (13-53)

The asymptotic covariance matrix of the GLS estimator is the inverse matrix in brackets.
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13.9.2 FEASIBLE GLS ESTIMATION

As always in the generalized linear regression model, the slope coefficients, β can be
consistently, if not efficiently estimated by ordinary least squares. A consistent estimator
of σi j can be based on the sample analog to the result

E [εi tε j t ] = E
[
ε′

iε j

T

]
= σi j .

Using the least squares residuals, we have

σ̂i j = e′
i e j

T
. (13-54)

Some treatments use T − K instead of T in the denominator of σ̂i j .36 There is no problem
created by doing so, but the resulting estimator is not unbiased regardless. Note that
this estimator is consistent in T. Increasing T increases the information in the sample,
while increasing n increases the number of variance and covariance parameters to be
estimated. To compute the FGLS estimators for this model, we require the full set of
sample moments, y′

i y j , X′
i X j , and X′

i y j for all pairs of cross-sectional units. With σ̂i j in
hand, FGLS may be computed using

ˆ̂β = [X′�̂−1X]−1[X′�̂−1y], (13-55)

where X and y are the stacked data matrices in (13-49)—this is done in practice using
(13-53) and (13-54) which involve only K × K and K × 1 matrices. The estimated
asymptotic covariance matrix for the FGLS estimator is the inverse matrix in brackets
in (13-55).

There is an important consideration to note in feasible GLS estimation of this
model. The computation requires inversion of the matrix �̂ where the i jth element is
given by (13-54). This matrix is n × n. It is computed from the least squares residuals
using

�̂ = 1
T

T∑
t=1

et e′
t = 1

T
E′E

where e′
t is a 1 × n vector containing all n residuals for the n groups at time t, placed as

the tth row of the T × n matrix of residuals, E. The rank of this matrix cannot be larger
than T. Note what happens if n > T. In this case, the n × n matrix has rank T which is
less than n, so it must be singular, and the FGLS estimator cannot be computed. For
example, a study of 20 countries each observed for 10 years would be such a case. This
result is a deficiency of the data set, not the model. The population matrix, � is positive
definite. But, if there are not enough observations, then the data set is too short to obtain
a positive definite estimate of the matrix. The heteroscedasticity model described in the
next section can always be computed, however.

36See, for example, Kmenta (1986, p. 620). Elsewhere, for example, in Fomby, Hill, and Johnson (1984, p. 327),
T is used instead.
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13.9.3 HETEROSCEDASTICITY AND THE CLASSICAL MODEL

Two special cases of this model are of interest. The groupwise heteroscedastic model
of Section 11.7.2 results if the off diagonal terms in � all equal zero. Then, the GLS
estimator, as we saw earlier, is

β̂ = [X′�−1X]−1[X′�−1y] =
[

n∑
i=1

1
σ 2

i
X′

i Xi

]−1 [
n∑

i=1

1
σ 2

i
X′

i yi

]
.

Of course, the disturbance variances, σ 2
i , are unknown, so the two-step FGLS method

noted earlier, now based only on the diagonal elements of � would be used. The second
special case is the classical regression model, which adds the further restriction σ 2

1 =
σ 2

2 = · · · = σ 2
n . We would now stack the data in the pooled regression model in

y = Xβ + ε.

For this simple model, the GLS estimator reduces to pooled ordinary least squares.
Beck and Katz (1995) suggested that the standard errors for the OLS estimates in

this model should be corrected for the possible misspecification that would arise if σi j�i j

were correctly specified by (13-49) instead of σ 2I, as now assumed. The appropriate
asymptotic covariance matrix for OLS in the general case is, as always,

Asy. Var[b] = (X′X)−1X′�X(X′X)−1.

For the special case of �i j = σi j I,

Asy. Var[b] =
(

n∑
i=1

X′
i Xi

)−1



n∑
i=1

n∑
j=1

σi j X′
i X j




(
n∑

i=1

X′
i Xi

)−1

. (13-56)

This estimator is straightforward to compute with estimates of σi j in hand. Since the
OLS estimator is consistent, (13-54) may be used to estimate σi j .

13.9.4 SPECIFICATION TESTS

We are interested in testing down from the general model to the simpler forms if possible.
Since the model specified thus far is distribution free, the standard approaches, such as
likelihood ratio tests, are not available. We propose the following procedure. Under the
null hypothesis of a common variance, σ 2 (i.e., the classical model) the Wald statistic for
testing the null hypothesis against the alternative of the groupwise heteroscedasticity
model would be

W =
n∑

i=1

(
σ̂ 2

i − σ 2
)2

Var
[
σ̂ 2

i

] .

If the null hypothesis is correct,

W
d−→ χ2[n].

By hypothesis,

plim σ̂ 2 = σ 2,
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where σ̂ 2 is the disturbance variance estimator from the pooled OLS regression. We
must now consider Var[σ̂ 2

i ]. Since

σ̂ 2
i = 1

T

T∑
t=1

e2
i t ,

is a mean of T observations, we may estimate Var[σ̂ 2
i ] with

fii = 1
T

1
T − 1

T∑
t=1

(
e2

i t − σ̂ 2
i

)2
.37 (13-57)

The modified Wald statistic is then

W′ =
n∑

i=1

(
σ̂ 2

i − σ̂ 2
)2

fii
.

A Lagrange multiplier statistic is also simple to compute and asymptotically equiv-
alent to a likelihood ratio test—we consider these below. But, these assume normal-
ity, which we have not yet invoked. To this point, our specification is distribution free.
White’s general test38 is an alternative. To use White’s test, we would regress the squared
OLS residuals on the P unique variables in x and the squares and cross products, in-
cluding a constant. The chi-squared statistic, which has P − 1 degrees of freedom, is
(nT )R2.

For the full model with nonzero off diagonal elements in �, the preceding approach
must be modified. One might consider simply adding the corresponding terms for the
off diagonal elements, with a common σi j = 0, but this neglects the fact that under
this broader alternative hypothesis, the original n variance estimators are no longer
uncorrelated, even asymptotically, so the limiting distribution of the Wald statistic is no
longer chi-squared. Alternative approaches that have been suggested [see, e.g., Johnson
and Wichern (1999, p. 424)] are based on the following general strategy: Under the
alternative hypothesis of an unrestricted �, the sample estimate of � will be �̂ = [σ̂i j ]
as defined in (13-54). Under any restrictive null hypothesis, the estimator of � will be
�̂0, a matrix that by construction will be larger than �̂ in the matrix sense defined in
Appendix A. Statistics based on the “excess variation,” such as T(�̂0 −�̂) are suggested
for the testing procedure. One of these is the likelihood ratio test that we will consider
in Section 13.9.6.

13.9.5 AUTOCORRELATION

The preceding discussion dealt with heteroscedasticity and cross-sectional correlation.
Through a simple modification of the procedures, it is possible to relax the assumption
of nonautocorrelation as well. It is simplest to begin with the assumption that

Corr[εi t , εjs] = 0, if i 	= j.

37Note that would apply strictly if we had observed the true disturbances, εi t . We are using the residuals as
estimates of their population counterparts. Since the coefficient vector is consistent, this procedure will obtain
the desired results.
38See Section 11.4.1.
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That is, the disturbances between cross-sectional units are uncorrelated. Now, we can
take the approach of Chapter 12 to allow for autocorrelation within the cross-sectional
units. That is,

εi t = ρiεi,t−1 + uit ,

Var[εi t ] = σ 2
i = σ 2

ui

1 − ρ2
i
.

(13-58)

For FGLS estimation of the model, suppose that ri is a consistent estimator of ρi . Then,
if we take each time series [yi , Xi ] separately, we can transform the data using the
Prais–Winsten transformation:

y∗i =




√
1 − r2

i yi1

yi2 − ri yi1

yi3 − ri yi2
...

yiT − ri yi,T−1




, X∗i =




√
1 − r2

i xi1

xi2 − ri xi1

xi3 − ri xi2
...

xiT − ri xi,T−1




. (13-59)

In terms of the transformed data y∗i and X∗i , the model is now only heteroscedastic; the
transformation has removed the autocorrelation. As such, the groupwise heteroscedas-
tic model applies to the transformed data. We may now use weighted least squares, as
described earlier. This requires a second least squares estimate. The first, OLS regres-
sion produces initial estimates of ρi . The transformed data are then used in a second
least squares regression to obtain consistent estimators,

σ̂ 2
ui = e′

∗i
e∗i

T
= (y∗i − X∗i β̂)′(y∗i − X∗i β̂)

T
. (13-60)

[Note that both the initial OLS and the second round FGLS estimators of β are consis-
tent, so either could be used in (13-60). We have used β̂ to denote the coefficient vector
used, whichever one is chosen.] With these results in hand, we may proceed to the cal-
culation of the groupwise heteroscedastic regression in Section 13.9.3. At the end of the
calculation, the moment matrix used in the last regression gives the correct asymptotic
covariance matrix for the estimator, now ˆ̂β. If desired, then a consistent estimator of
σ 2

εi is

σ̂ 2
εi = σ̂ 2

ui

1 − r2
i
. (13-61)

The remaining question is how to obtain the initial estimates ri . There are two
possible structures to consider. If each group is assumed to have its own autocorrelation
coefficient, then the choices are the same ones examined in Chapter 12; the natural
choice would be

ri =
∑T

t=2 eit ei,t−1∑T
t=1 e2

i t

.

If the disturbances have a common stochastic process with the same ρi , then several
estimators of the common ρ are available. One which is analogous to that used in the
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single equation case is

r =
∑n

i=1

∑T
t=2 eit ei,t−1∑n

i=1

∑T
t=1 e2

i t

(13-62)

Another consistent estimator would be sample average of the group specific estimated
autocorrelation coefficients.

Finally, one may wish to allow for cross-sectional correlation across units. The pre-
ceding has a natural generalization. If we assume that

Cov[uit , ujt] = σuij,

then we obtain the original model in (13-49) in which the off-diagonal blocks of �, are

σi j�i j = σuij

1 − ρiρ j




1 ρ j ρ2
j · · · ρT−1

j

ρi 1 ρ j · · · ρT−2
j

ρ2
i ρi 1 · · · ρT−3

j
...
...

ρT−1
i ρT−2

i ρT−3
i · · · 1




. (13-63)

Initial estimates of ρi are required, as before. The Prais–Winsten transformation renders
all the blocks in � diagonal. Therefore, the model of cross-sectional correlation in
Section 13.9.2 applies to the transformed data. Once again, the GLS moment matrix
obtained at the last step provides the asymptotic covariance matrix for ˆ̂β. Estimates
of σεi j can be obtained from the least squares residual covariances obtained from the
transformed data:

σ̂εi j = σ̂uij

1 − rir j
, (13-64)

where σ̂uij = e′
∗i

e∗ j /T.

13.9.6 MAXIMUM LIKELIHOOD ESTIMATION

Consider the general model with groupwise heteroscedasticity and cross group correla-
tion. The covariance matrix is the � in (13-49). We now assume that the n disturbances
at time t, εt have a multivariate normal distribution with zero mean and this n × n co-
variance matrix. Taking logs and summing over the T periods gives the log-likelihood
for the sample,

ln L(β, � | data) = −nT
2

ln 2π − T
2

ln |�| − 1
2

T∑
t=1

ε′
t�

−1εt , (13-65)

εi t = yit − x′
i tβ, i = 1, . . . , n.

(This log-likelihood is analyzed at length in Section 14.2.4, so we defer the more de-
tailed analysis until then.) The result is that the maximum likelihood estimator of β

is the generalized least squares estimator in (13-53). Since the elements of � must be
estimated, the FGLS estimator in (13-54) is used, based on the MLE of �. As shown in
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Section 14.2.4, the maximum likelihood estimator of � is

σ̂i j =
(
y′

i − Xi
ˆ̂βML

)′(y j − X j
ˆ̂βML

)

T
= ε̂′

i ε̂ j

T
(13-66)

based on the MLE of β. Since each MLE requires the other, how can we proceed to
obtain both? The answer is provided by Oberhofer and Kmenta (1974) who show that
for certain models, including this one, one can iterate back and forth between the two
estimators. (This is the same estimator we used in Section 11.7.2.) Thus, the MLEs are
obtained by iterating to convergence between (13-66) and

ˆ̂β = [X′�̂−1X]−1[X′�̂−1y].

The process may begin with the (consistent) ordinary least squares estimator, then
(13-66), and so on. The computations are simple, using basic matrix algebra. Hypothesis
tests about β may be done using the familiar Wald statistic. The appropriate estimator
of the asymptotic covariance matrix is the inverse matrix in brackets in (13-55).

For testing the hypothesis that the off-diagonal elements of � are zero—that is, that
there is no correlation across firms—there are three approaches. The likelihood ratio
test is based on the statistic

λLR = T(ln |�̂heteroscedastic| − ln | �̂general|) = T

(
n∑

i=1

ln σ̂ 2
i − ln | �̂|

)
, (13-67)

where σ̂ 2
i are the estimates of σ 2

i obtained from the maximum likelihood estimates of
the groupwise heteroscedastic model and �̂ is the maximum likelihood estimator in the
unrestricted model. (Note how the excess variation produced by the restrictive model is
used to construct the test.) The large-sample distribution of the statistic is chi-squared
with n(n−1)/2 degrees of freedom. The Lagrange multiplier test developed by Breusch
and Pagan (1980) provides an alternative. The general form of the statistic is

λLM = T
n∑

i=2

i−1∑
j=1

r2
i j , (13-68)

where r2
i j is the i jth residual correlation coefficient. If every individual had a different

parameter vector, then individual specific ordinary least squares would be efficient
(and ML) and we would compute ri j from the OLS residuals (assuming that there are
sufficient observations for the computation). Here, however, we are assuming only a
single-parameter vector. Therefore, the appropriate basis for computing the correlations
is the residuals from the iterated estimator in the groupwise heteroscedastic model, that
is, the same residuals used to compute σ̂ 2

i . (An asymptotically valid approximation to
the test can be based on the FGLS residuals instead.) Note that this is not a procedure
for testing all the way down to the classical, homoscedastic regression model. That
case, which involves different LM and LR statistics, is discussed next. If either the
LR statistic in (13-67) or the LM statistic in (13-68) are smaller than the critical value
from the table, the conclusion, based on this test, is that the appropriate model is the
groupwise heteroscedastic model.

For the groupwise heteroscedasticity model, ML estimation reduces to groupwise
weighted least squares. The maximum likelihood estimator of β is feasible GLS. The
maximum likelihood estimator of the group specific variances is given by the diagonal
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element in (13-66), while the cross group covariances are now zero. An additional
useful result is provided by the negative of the expected second derivatives matrix of
the log-likelihood in (13-65) with diagonal �,

−E [H(β, σ 2
i , i = 1, . . . , n)] =




n∑
i=1

(
1
σ 2

i

)
X′

i Xi 0

0 diag
(

T

2σ 4
i
, i = 1, . . . , n

)


 .

Since the expected Hessian is block diagonal, the complete set of maximum likelihood
estimates can be computed by iterating back and forth between these estimators for σ 2

i
and the feasible GLS estimator of β. (This process is also equivalent to using a set of n
group dummy variables in Harvey’s model of heteroscedasticity in Section 11.7.1.)

For testing the heteroscedasticity assumption of the model, the full set of test strate-
gies that we have used before is available. The Lagrange multiplier test is probably the
most convenient test, since it does not require another regression after the pooled least
squares regression. It is convenient to rewrite

∂ log L

∂σ 2
i

= T

2σ 2
i

[
σ̂ 2

i

σ 2
i

− 1
]

,

where σ̂ 2
i is the ith unit-specific estimate of σ 2

i based on the true (but unobserved) dis-
turbances. Under the null hypothesis of equal variances, regardless of what the common
restricted estimator of σ 2

i is, the first-order condition for equating ∂ ln L/∂β to zero will
be the OLS normal equations, so the restricted estimator of β is b using the pooled data.
To obtain the restricted estimator of σ 2

i , return to the log-likelihood function. Under the
null hypothesis σ 2

i = σ 2, i = 1, . . . , n, the first derivative of the log-likelihood function
with respect to this common σ 2 is

∂ log LR

∂σ 2
= − nT

2σ 2
+ 1

2σ 4

n∑
i=1

ε′
iεi .

Equating this derivative to zero produces the restricted maximum likelihood estimator

σ̂ 2 = 1
nT

n∑
i=1

ε′
iεi. = 1

n

n∑
i=1

σ̂ 2
i ,

which is the simple average of the n individual consistent estimators. Using the least
squares residuals at the restricted solution, we obtain σ̂ 2 = (1/nT )e′e and σ̂ 2

i =
(1/T )e′

i ei . With these results in hand and using the estimate of the expected Hessian
for the covariance matrix, the Lagrange multiplier statistic reduces to

λLM =
n∑

i=1

[
T

2σ̂ 2

(
σ̂ 2

i

σ̂ 2
− 1

)]2(2σ̂ 4

T

)
= T

2

n∑
i=1

[
σ̂ 2

i

σ̂ 2
− 1

]2

.

The statistic has n − 1 degrees of freedom. (It has only n − 1 since the restriction is that
the variances are all equal to each other, not a specific value, which is n−1 restrictions.)

With the unrestricted estimates, as an alternative test procedure, we may use the
Wald statistic. If we assume normality, then the asymptotic variance of each variance
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estimator is 2σ 4
i /T and the variances are asymptotically uncorrelated. Therefore, the

Wald statistic to test the hypothesis of a common variance σ 2, using σ̂ 2
i to estimate σ 2

i , is

W =
n∑

i=1

(
σ̂ 2

i − σ 2)2
(

2σ 4
i

T

)−1

= T
2

n∑
i=1

(
σ 2

σ̂ 2
i

− 1
)2

.

Note the similarity to the Lagrange multiplier statistic. The estimator of the common
variance would be the pooled estimator from the first least squares regression. Recall,
we produced a general counterpart for this statistic for the case in which disturbances
are not normally distributed.

We can also carry out a likelihood ratio test using the test statistic in Section 12.3.4.
The appropriate likelihood ratio statistic is

λLR = T(ln |�̂homoscedastic| − ln |�̂heteroscedastic|) = (nT ) ln σ̂ 2 −
n∑

i=1

T ln σ̂ 2
i ,

where

σ̂ 2 = e′e
nT

and σ̂ 2
i = ε̂i ε̂i

T
,

with all residuals computed using the maximum likelihood estimators. This chi-squared
statistic has n − 1 degrees of freedom.

13.9.7 APPLICATION TO GRUNFELD’S INVESTMENT DATA

To illustrate the techniques developed in this section, we will use a panel of data that
has for several decades provided a useful tool for examining multiple equation estima-
tors. Appendix Table F13.1 lists part of the data used in a classic study of investment
demand.39 The data consist of time series of 20 yearly observations for five firms (of 10
in the original study) and three variables:

Iit = gross investment,

Fit = market value of the firm at the end of the previous year,

Cit = value of the stock of plant and equipment at the end of the previous year.

All figures are in millions of dollars. The variables Fit and Iit reflect anticipated profit and
the expected amount of replacement investment required.40 The model to be estimated
with these data is

Iit = β1 + β2 Fit + β3Cit + εi t ,
41

39See Grunfeld (1958) and Grunfeld and Griliches (1960). The data were also used in Boot and deWitt (1960).
Although admittedly not current, these data are unusually cooperative for illustrating the different aspects
of estimating systems of regression equations.
40In the original study, the authors used the notation Ft−1 and Ct−1. To avoid possible conflicts with the usual
subscripting conventions used here, we have used the preceding notation instead.
41Note that we are modeling investment, a flow, as a function of two stocks. This could be a theoretical
misspecification—it might be preferable to specify the model in terms of planned investment. But, 40 years
after the fact, we’ll take the specified model as it is.
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TABLE 13.4 Estimated Parameters and Estimated Standard Errors

β1 β2 β3

Homoscedasticity
Least squares −48.0297 0.10509 0.30537

R2 = 0.77886, σ̂ 2 = 15708.84, log-likelihood = −624.9928
OLS standard errors (21.16) (0.01121) (0.04285)
White correction (15.017) (0.00915) (0.05911)
Beck and Katz (10.814) (0.00832) (0.033043)

Heteroscedastic
Feasible GLS −36.2537 0.09499 0.33781

(6.1244) (0.00741) (0.03023)
Maximum likelihood −23.2582 0.09435 0.33371

(4.815) (0.00628) (0.2204)

Pooled σ̂ 2 = 15,853.08, log-likelihood = −564.535
Cross-section correlation

Feasible GLS −28.247 0.089101 0.33401
(4.888) (0.005072) (0.01671)

Maximum likelihood −2.217 0.02361 0.17095
(1.96) (0.004291) (0.01525)

log-likelihood = −515.422
Autocorrelation model

Heteroscedastic −23.811 0.086051 0.33215
(7.694) (0.009599) (0.03549)

Cross-section correlation −15.424 0.07522 0.33807
(4.595) (0.005710) (0.01421)

where i indexes firms and t indexes years. Different restrictions on the parameters
and the variances and covariances of the disturbances will imply different forms of
the model. By pooling all 100 observations and estimating the coefficients by ordinary
least squares, we obtain the first set of results in Table 13.4. To make the results com-
parable all variance estimates and estimated standard errors are based on e′e/(nT ).
There is no degrees of freedom correction. The second set of standard errors given are
White’s robust estimator [see (10-14) and (10-23)]. The third set of standard errors given
above are the robust standard errors based on Beck and Katz (1995) using (13-56) and
(13-54).

The estimates of σ 2
i for the model of groupwise heteroscedasticity are shown in

Table 13.5. The estimates suggest that the disturbance variance differs widely across
firms. To investigate this proposition before fitting an extended model, we can use the
tests for homoscedasticity suggested earlier. Based on the OLS results, the LM statistic
equals 46.63. The critical value from the chi-squared distribution with four degrees
of freedom is 9.49, so on the basis of the LM test, we reject the null hypothesis of
homoscedasticity. To compute White’s test statistic, we regress the squared least squares
residuals on a constant, F , C, F2, C2, and FC. The R2 in this regression is 0.36854, so the
chi-squared statistic is (nT )R2 = 36.854 with five degrees of freedom. The five percent
critical value from the table for the chi-squared statistic with five degrees of freedom
is 11.07, so the null hypothesis is rejected again. The likelihood ratio statistic, based on
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TABLE 13.5 Estimated Group Specific Variances

σ 2
GM σ 2

CH σ 2
GE σ 2

W E σ 2
US

Based on OLS 9,410.91 755.85 34,288.49 633.42 33,455.51
Heteroscedastic FGLS 8,612.14 409.19 36,563.24 777.97 32,902.83

(2897.08) (136.704) (5801.17) (323.357) (7000.857)
Heteroscedastic ML 8,657.72 175.80 40,210.96 1,240.03 29,825.21
Cross Correlation FGLS 10050.52 305.61 34556.6 833.36 34468.98
Autocorrelation, s2

ui
(ui ) 6525.7 253.104 14,620.8 232.76 8,683.9

Autocorrelation, s2
ei
(ei ) 8453.6 270.150 16,073.2 349.68 12,994.2

the ML results in Table 13.4, is

χ2 = 100 ln s2 −
n∑

i=1

20 ln σ̂ 2
i = 120.915.

This result far exceeds the tabled critical value. The Lagrange multiplier statistic based
on all variances computed using the OLS residuals is 46.629. The Wald statistic based
on the FGLS estimated variances and the pooled OLS estimate (15,708.84) is 17,676.25.
We observe the common occurrence of an extremely large Wald test statistic. (If the test
is based on the sum of squared FGLS residuals, σ̂ 2 = 15,853.08, then W = 18,012.86,
which leads to the same conclusion.) To compute the modified Wald statistic absent the
assumption of normality, we require the estimates of the variances of the FGLS residual
variances. The square roots of fii are shown in Table 13.5 in parentheses after the FGLS
residual variances. The modified Wald statistic is W′ = 14,681.3, which is consistent with
the other results. We proceed to reestimate the regression allowing for heteroscedastic-
ity. The FGLS and maximum likelihood estimates are shown in Table 13.4. (The latter
are obtained by iterated FGLS.)

Returning to the least squares estimator, we should expect the OLS standard er-
rors to be incorrect, given our findings. There are two possible corrections we can use,
the White estimator and direct computation of the appropriate asymptotic covariance
matrix. The Beck et al. estimator is a third candidate, but it neglects to use the known re-
striction that the off-diagonal elements in � are zero. The various estimates shown at the
top of Table 13.5 do suggest that the OLS estimated standard errors have been distorted.

The correlation matrix for the various sets of residuals, using the estimates in
Table 13.4, is given in Table 13.6.42 The several quite large values suggests that the more
general model will be appropriate. The two test statistics for testing the null hypothesis
of a diagonal �, based on the log-likelihood values in Table 13.4, are

λLR = −2(−565.535 − (−515.422)) = 100.226

and, based on the MLE’s for the groupwise heteroscedasticity model, λLM = 66.067 (the
MLE of � based on the coefficients from the heteroscedastic model is not shown).

For 10 degrees of freedom, the critical value from the chi-squared table is 23.21, so
both results lead to rejection of the null hypothesis of a diagonal �. We conclude that

42The estimates based on the MLEs are somewhat different, but the results of all the hypothesis tests are the
same.
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TABLE 13.6 Estimated Cross-Group Correlations Based on FGLS Estimates
(Order is OLS, FGLS heteroscedastic, FGLS correlation,
Autocorrelation)

Estimated and Correlations

GM CH GE WE US

GM 1
CH −0.344

−0.185 1
−0.349
−0.225

GE −0.182 0.283
−0.185 0.144 1
−0.248 0.158
−0.287 0.105

WE −0.352 0.343 0.890
−0.469 0.186 0.881 1
−0.356 0.246 0.895
−0.467 0.166 0.885

US −0.121 0.167 −0.151 −0.085
−0.016 0.222 −0.122 −0.119 1
−0.716 0.244 −0.176 −0.040
−0.015 0.245 −0.139 −0.101

the simple heteroscedastic model is not general enough for these data.
If the null hypothesis is that the disturbances are both homoscedastic and uncor-

related across groups, then these two tests are inappropriate. A likelihood ratio test
can be constructed using the OLS results and the MLEs from the full model; the test
statistic would be

λLR = (nT ) ln(e′e/nT ) − T ln|�̂|.
This statistic is just the sum of the LR statistics for the test of homoscedasticity and the
statistic given above. For these data, this sum would be 120.915 + 100.226 = 221.141,
which is far larger than the critical value, as might be expected.

FGLS and maximum likelihood estimates for the model with cross-sectional corre-
lation are given in Table 13.4. The estimated disturbance variances have changed dra-
matically, due in part to the quite large off-diagonal elements. It is noteworthy, however,
that despite the large changes in �̂, with the exceptions of the MLE’s in the cross section
correlation model, the parameter estimates have not changed very much. (This sample
is moderately large and all estimators are consistent, so this result is to be expected.)

We shall examine the effect of assuming that all five firms have the same slope
parameters in Section 14.2.3. For now, we note that one of the effects is to inflate the
disturbance correlations. When the Lagrange multiplier statistic in (13-68) is recom-
puted with firm-by-firm separate regressions, the statistic falls to 29.04, which is still
significant, but far less than what we found earlier.

We now allow for different AR(1) disturbance processes for each firm. The firm
specific autocorrelation coefficients of the ordinary least squares residuals are

r′ = (0.478 − 0.251 0.301 0.578 0.576).
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[An interesting problem arises at this point. If one computes these autocorrelations
using the standard formula, then the results can be substantially affected because
the group-specific residuals may not have mean zero. Since the population mean is
zero if the model is correctly specified, then this point is only minor. As we will ex-
plore later, however, this model is not correctly specified for these data. As such,
the nonzero residual mean for the group specific residual vectors matters greatly.
The vector of autocorrelations computed without using deviations from means is r0 =
(0.478, 0.793, 0.905, 0.602, 0.868). Three of the five are very different. Which way the
computations should be done now becomes a substantive question. The asymptotic
theory weighs in favor of (13-62). As a practical matter, in small or moderately sized
samples such as this one, as this example demonstrates, the mean deviations are prefer-
able.]

Table 13.4 also presents estimates for the groupwise heteroscedasticity model and
for the full model with cross-sectional correlation, with the corrections for first-order
autocorrelation. The lower part of the table displays the recomputed group specific
variances and cross-group correlations.

13.9.8 SUMMARY

The preceding sections have suggested a variety of different specifications of the gener-
alized regression model. Which ones apply in a given situation depends on the setting.
Homoscedasticity will depend on the nature of the data and will often be directly ob-
servable at the outset. Uncorrelatedness across the cross-sectional units is a strong
assumption, particularly because the model assigns the same parameter vector to all
units. Autocorrelation is a qualitatively different property. Although it does appear to
arise naturally in time-series data, one would want to look carefully at the data and
the model specification before assuming that it is present. The properties of all these
estimators depend on an increase in T, so they are generally not well suited to the types
of data sets described in Sections 13.2–13.8.

Beck et al. (1993) suggest several problems that might arise when using this model
in small samples. If T < n, then with or without a correction for autocorrelation, the
matrix �̂ is an n × n matrix of rank T (or less) and is thus singular, which precludes
FGLS estimation. A preferable approach then might be to use pooled OLS and make
the appropriate correction to the asymptotic covariance matrix. But in this situation,
there remains the possibility of accommodating cross unit heteroscedasticity. One could
use the groupwise heteroscedasticity model. The estimators will be consistent and more
efficient than OLS, although the standard errors will be inappropriate if there is cross-
sectional correlation. An appropriate estimator that extends (11-17) would be

Est. Var[b] = [X′V̂−1X]−1[X′V̂−1�̂V̂−1X][X′V̂−1X]−1

=
[

n∑
i=1

(
1
σ̂i i

)
X′

i Xi

]−1



n∑
i=1

n∑
j=1

(
σ̂i j

σ̂i i σ̂ j j

)
X′

i X j




[
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)
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[
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)
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(Note that this estimator bases all estimates on the model of groupwise heteroscedas-
ticity, but it is “robust” to the possibility of cross-sectional correlation.) When n is large
relative to T, the number of estimated parameters in the autocorrelation model be-
comes very large relative to the number of observations. Beck and Katz (1995) found
that as a consequence, the estimated asymptotic covariance matrix for the FGLS slopes
tends to underestimate the true variability of the estimator. They suggest two compro-
mises. First, use OLS and the appropriate covariance matrix, and second, impose the
restriction of equal autocorrelation coefficients across groups.

13.10 SUMMARY AND CONCLUSIONS

The preceding has shown a few of the extensions of the classical model that can be
obtained when panel data are available. In principle, any of the models we have ex-
amined before this chapter and all those we will consider later, including the multiple
equation models, can be extended in the same way. The main advantage, as we noted
at the outset, is that with panel data, one can formally model the heterogeneity across
groups that is typical in microeconomic data.

We will find in Chapter 14 that to some extent this model of heterogeneity can
be misleading. What might have appeared at one level to be differences in the vari-
ances of the disturbances across groups may well be due to heterogeneity of a different
sort, associated with the coefficient vectors. We will consider this possibility in the next
chapter. We will also examine some additional models for disturbance processes that
arise naturally in a multiple equations context but are actually more general cases of
some of the models we looked at above, such as the model of groupwise heteroscedas-
ticity.

Key Terms and Concepts
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Exercises

1. The following is a panel of data on investment (y) and profit (x) for n = 3 firms
over T = 10 periods.

i = 1 i = 2 i = 3

t y x y x y x

1 13.32 12.85 20.30 22.93 8.85 8.65
2 26.30 25.69 17.47 17.96 19.60 16.55
3 2.62 5.48 9.31 9.16 3.87 1.47
4 14.94 13.79 18.01 18.73 24.19 24.91
5 15.80 15.41 7.63 11.31 3.99 5.01
6 12.20 12.59 19.84 21.15 5.73 8.34
7 14.93 16.64 13.76 16.13 26.68 22.70
8 29.82 26.45 10.00 11.61 11.49 8.36
9 20.32 19.64 19.51 19.55 18.49 15.44

10 4.77 5.43 18.32 17.06 20.84 17.87

a. Pool the data and compute the least squares regression coefficients of the model
yit = α + βxit + εi t .

b. Estimate the fixed effects model of (13-2), and then test the hypothesis that the
constant term is the same for all three firms.

c. Estimate the random effects model of (13-18), and then carry out the Lagrange
multiplier test of the hypothesis that the classical model without the common
effect applies.

d. Carry out Hausman’s specification test for the random versus the fixed effect
model.

2. Suppose that the model of (13-2) is formulated with an overall constant term and
n − 1 dummy variables (dropping, say, the last one). Investigate the effect that this
supposition has on the set of dummy variable coefficients and on the least squares
estimates of the slopes.

3. Use the data in Section 13.9.7 (the Grunfeld data) to fit the random and fixed effect
models. There are five firms and 20 years of data for each. Use the F, LM, and/or
Hausman statistics to determine which model, the fixed or random effects model,
is preferable for these data.

4. Derive the log-likelihood function for the model in (13-18), assuming that εi t and
ui are normally distributed. [Hints: Write the log-likelihood function as ln L =∑n

i=1 ln Li , where ln Li is the log-likelihood function for the T observations in
group i. These T observations are joint normally distributed, with covariance ma-
trix given in (13-20). The log-likelihood is the sum of the logs of the joint normal
densities of the n sets of T observations,

εi t + ui = yit − α − β ′xi t .

This step will involve the inverse and determinant of �. Use (B-66) to prove that

�−1 = 1
σ 2

ε

[
I − σ 2

u

σ 2
ε + Tσ 2

u
iTi′T

]
.

To find the determinant, use the product of the characteristic roots. Note first that
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|σ 2
ε I + σ 2

u ii′| = (σ 2
ε )T|I + σ 2

u
σ 2

ε
ii′|. The roots are determined by

[
I + σ 2

u

σ 2
ε

ii′
]

c = λc or
σ 2

u

σ 2
ε

ii′c = (λ − 1)c.

Any vector whose elements sum to zero is a solution. There are T − 1 such inde-
pendent vectors, so T − 1 characteristic roots are (λ − 1) = 0 or λ = 1. Premultiply
the expression by i′ to obtain the remaining characteristic root. (Remember to add
one to the result.) Now, collect terms to obtain the log-likelihood.]

5. Unbalanced design for random effects. Suppose that the random effects model of
Section 13.4 is to be estimated with a panel in which the groups have different
numbers of observations. Let Ti be the number of observations in group i.
a. Show that the pooled least squares estimator in (13-11) is unbiased and consistent

despite this complication.
b. Show that the estimator in (13-29) based on the pooled least squares estimator of

β (or, for that matter, any consistent estimator ofβ) is a consistent estimator ofσ 2
ε .

6. What are the probability limits of (1/n)LM, where LM is defined in (13-31) under
the null hypothesis that σ 2

u = 0 and under the alternative that σ 2
u 	= 0?

7. A two-way fixed effects model. Suppose that the fixed effects model is modified to
include a time-specific dummy variable as well as an individual-specific variable.
Then yit = αi + γt + β ′xi t + εi t . At every observation, the individual- and time-
specific dummy variables sum to 1, so there are some redundant coefficients. The
discussion in Section 13.3.3 shows that one way to remove the redundancy is to
include an overall constant and drop one of the time specific and one of the time-
dummy variables. The model is, thus,

yit = µ + (αi − α1) + (γt − γ1) + β ′xi t + εi t .

(Note that the respective time- or individual-specific variable is zero when t or
i equals one.) Ordinary least squares estimates of β are then obtained by regression
of yit − ȳi.− ȳ.t + ¯̄y on xi t −x̄i.−x̄.t + ¯̄x. Then (αi −α1) and (γt −γ1) are estimated using
the expressions in (13-17) while m= ¯̄y − b′ ¯̄x. Using the following data, estimate the
full set of coefficients for the least squares dummy variable model:

t = 1 t = 2 t = 3 t = 4 t = 5 t = 6 t = 7 t = 8 t = 9 t = 10
i = 1

y 21.7 10.9 33.5 22.0 17.6 16.1 19.0 18.1 14.9 23.2
x1 26.4 17.3 23.8 17.6 26.2 21.1 17.5 22.9 22.9 14.9
x2 5.79 2.60 8.36 5.50 5.26 1.03 3.11 4.87 3.79 7.24

i = 2

y 21.8 21.0 33.8 18.0 12.2 30.0 21.7 24.9 21.9 23.6
x1 19.6 22.8 27.8 14.0 11.4 16.0 28.8 16.8 11.8 18.6
x2 3.36 1.59 6.19 3.75 1.59 9.87 1.31 5.42 6.32 5.35

i = 3

y 25.2 41.9 31.3 27.8 13.2 27.9 33.3 20.5 16.7 20.7
x1 13.4 29.7 21.6 25.1 14.1 24.1 10.5 22.1 17.0 20.5
x2 9.57 9.62 6.61 7.24 1.64 5.99 9.00 1.75 1.74 1.82

i = 4

y 15.3 25.9 21.9 15.5 16.7 26.1 34.8 22.6 29.0 37.1
x1 14.2 18.0 29.9 14.1 18.4 20.1 27.6 27.4 28.5 28.6
x2 4.09 9.56 2.18 5.43 6.33 8.27 9.16 5.24 7.92 9.63
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Test the hypotheses that (1) the “period” effects are all zero, (2) the “group” effects
are all zero, and (3) both period and group effects are zero. Use an F test in each
case.

8. Two-way random effects model. We modify the random effects model by the addition
of a time specific disturbance. Thus,

yit = α + β ′xi t + εi t + ui + vt ,

where

E [εi t ] = E [ui ] = E [vt ] = 0,

E [εi t u j ] = E [εi tvs] = E [uivt ] = 0 for all i, j, t, s

Var[εi t ] = σ 2, Cov[εi t , ε js] = 0 for all i, j, t, s

Var[ui ] = σ 2
u , Cov[ui , u j ] = 0 for all i, j

Var[vt ] = σ 2
v , Cov[vt , vs] = 0 for all t, s.

Write out the full covariance matrix for a data set with n = 2 and T = 2.
9. The model [

y1

y2

]
=

[
x1

x2

]
β +

[
ε1

ε2

]

satisfies the groupwise heteroscedastic regression model of Section 11.7.2. All vari-
ables have zero means. The following sample second-moment matrix is obtained
from a sample of 20 observations:

y1 y2 x1 x2

y1

y2

x1

x2




20 6 4 3
6 10 3 6
4 3 5 2
3 6 2 10


 .

a. Compute the two separate OLS estimates of β, their sampling variances, the
estimates of σ 2

1 and σ 2
2 , and the R2’s in the two regressions.

b. Carry out the Lagrange multiplier test of the hypothesis that σ 2
1 = σ 2

2 .
c. Compute the two-step FGLS estimate of β and an estimate of its sampling vari-

ance. Test the hypothesis that β equals 1.
d. Carry out the Wald test of equal disturbance variances.
e. Compute the maximum likelihood estimates of β, σ 2

1 , and σ 2
2 by iterating the

FGLS estimates to convergence.
f. Carry out a likelihood ratio test of equal disturbance variances.
g. Compute the two-step FGLS estimate of β, assuming that the model in (14-7)

applies. (That is, allow for cross-sectional correlation.) Compare your results
with those of part c.

10. Suppose that in the groupwise heteroscedasticity model of Section 11.7.2, Xi is the
same for all i. What is the generalized least squares estimator of β? How would you
compute the estimator if it were necessary to estimate σ 2

i ?
11. Repeat Exercise 10 for the cross sectionally correlated model of Section 13.9.1.
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12. The following table presents a hypothetical panel of data:

i = 1 i = 2 i = 3

t y x y x y x

1 30.27 24.31 38.71 28.35 37.03 21.16
2 35.59 28.47 29.74 27.38 43.82 26.76
3 17.90 23.74 11.29 12.74 37.12 22.21
4 44.90 25.44 26.17 21.08 24.34 19.02
5 37.58 20.80 5.85 14.02 26.15 18.64
6 23.15 10.55 29.01 20.43 26.01 18.97
7 30.53 18.40 30.38 28.13 29.64 21.35
8 39.90 25.40 36.03 21.78 30.25 21.34
9 20.44 13.57 37.90 25.65 25.41 15.86

10 36.85 25.60 33.90 11.66 26.04 13.28

a. Estimate the groupwise heteroscedastic model of Section 11.7.2. Include an esti-
mate of the asymptotic variance of the slope estimator. Use a two-step procedure,
basing the FGLS estimator at the second step on residuals from the pooled least
squares regression.

b. Carry out the Wald, Lagrange multiplier, and likelihood ratio tests of the hy-
pothesis that the variances are all equal. For the likelihood ratio test, use the
FGLS estimates.

c. Carry out a Lagrange multiplier test of the hypothesis that the disturbances are
uncorrelated across individuals.
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14

SYSTEMS OF REGRESSION
EQUATIONS

Q
14.1 INTRODUCTION

There are many settings in which the models of the previous chapters apply to a group
of related variables. In these contexts, it makes sense to consider the several models
jointly. Some examples follow.

1. The capital asset pricing model of finance specifies that for a given security,

rit − r f t = αi + βi (rmt − rf t ) + εi t ,

where rit is the return over period t on security i, rf t is the return on a risk-free security,
rmt is the market return, and βi is the security’s beta coefficient. The disturbances are
obviously correlated across securities. The knowledge that the return on security i
exceeds the risk-free rate by a given amount gives some information about the excess
return of security j , at least for some j ’s. It may be useful to estimate the equations
jointly rather than ignore this connection.

2. In the Grunfeld–Boot and de Witt investment model of Section 13.9.7, we examined
a set of firms, each of which makes investment decisions based on variables that reflect
anticipated profit and replacement of the capital stock. We will now specify

Iit = β1i + β2iFit + β3i Cit + εi t .

Whether the parameter vector should be the same for all firms is a question that we
shall study in this chapter. But the disturbances in the investment equations certainly
include factors that are common to all the firms, such as the perceived general health
of the economy, as well as factors that are specific to the particular firm or industry.

3. In a model of production, the optimization conditions of economic theory imply
that if a firm faces a set of factor prices p, then its set of cost-minimizing factor demands
for producing output Y will be a set of equations of the form xm = fm(Y, p). The model is

x1 = f1(Y, p : θ) + ε1,

x2 = f2(Y, p : θ) + ε2,

· · ·
xM = fM(Y, p : θ) + εM.

Once again, the disturbances should be correlated. In addition, the same parameters of
the production technology will enter all the demand equations, so the set of equations

339
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have cross-equation restrictions. Estimating the equations separately will waste the
information that the same set of parameters appears in all the equations.

All these examples have a common multiple equation structure, which we may
write as

y1 = X1β1 + ε1,

y2 = X2β2 + ε2,

...

yM = XMβM + εM.

(14-1)

There are M equations and T observations in the sample of data used to estimate them.1

The second and third examples embody different types of constraints across equations
and different structures of the disturbances. A basic set of principles will apply to them
all, however.2

Section 14.2 below examines the general model in which each equation has its
own fixed set of parameters, and examines efficient estimation techniques. Production
and consumer demand models are a special case of the general model in which the
equations of the model obey an adding up constraint that has important implications for
specification and estimation. Some general results for demand systems are considered in
Section 14.3. In Section 14.4 we examine a classic application of the model in Section 14.3
that illustrates a number of the interesting features of the current genre of demand
studies in the applied literature. Section 14.4 introduces estimation of nonlinear systems,
instrumental variable estimation, and GMM estimation for a system of equations.

Example 14.1 Grunfeld’s Investment Data
To illustrate the techniques to be developed in this chapter, we will use the Grunfeld data first
examined in Section 13.9.7 in the previous chapter. Grunfeld’s model is now

I i t = β1i + β2i Fi t + β3i Ci t + εi t ,

where i indexes firms, t indexes years, and

I i t = gross investment,

Fi t = market value of the firm at the end of the previous year,

Ci t = value of the stock of plant and equipment at the end of the previous year.

All figures are in millions of dollars. The sample consists of 20 years of observations (1935–
1954) on five firms. The model extension we consider in this chapter is to allow the coefficients
to vary across firms in an unstructured fashion.

14.2 THE SEEMINGLY UNRELATED
REGRESSIONS MODEL

The seemingly unrelated regressions (SUR) model in (14-1) is

yi = Xiβ i + εi , i = 1, . . . , M, (14-2)

1The use of T is not necessarily meant to imply any connection to time series. For instance, in the third
example above, the data might be cross-sectional.
2See the surveys by Srivastava and Dwivedi (1979), Srivastava and Giles (1987), and Feibig (2001).
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where

ε = [ε′
1, ε

′
2, . . . , ε

′
M]′

and

E [ε | X1, X2, . . . , XM] = 0,

E [εε′ | X1, X2, . . . , XM] = �.

We assume that a total of T observations are used in estimating the parameters of the M
equations.3 Each equation involves Km regressors, for a total of K = ∑n

i=1 Ki . We will
require T > Ki . The data are assumed to be well behaved, as described in Section 5.2.1,
and we shall not treat the issue separately here. For the present, we also assume that
disturbances are uncorrelated across observations. Therefore,

E [εi tε js | X1, X2, . . . , XM] = σi j , if t = s and 0 otherwise.

The disturbance formulation is therefore

E [εiε
′
j | X1, X2, . . . , XM] = σi j IT

or

E [εε′ | X1, X2, . . . , XM] = � =




σ11I σ12I · · · σ1MI
σ21I σ22I · · · σ2MI

...

σM1I σM2I · · · σMMI




. (14-3)

Note that when the data matrices are group specific observations on the same variables,
as in Example 14.1, the specification of this model is precisely that of the covariance
structures model of Section 13.9 save for the extension here that allows the parameter
vector to vary across groups. The covariance structures model is, therefore, a testable
special case.4

It will be convenient in the discussion below to have a term for the particular kind
of model in which the data matrices are group specific data sets on the same set of
variables. The Grunfeld model noted in Example 14.1 is such a case. This special case
of the seemingly unrelated regressions model is a multivariate regression model. In
contrast, the cost function model examined in Section 14.5 is not of this type—it consists
of a cost function that involves output and prices and a set of cost share equations that
have only a set of constant terms. We emphasize, this is merely a convenient term for a
specific form of the SUR model, not a modification of the model itself.

14.2.1 GENERALIZED LEAST SQUARES

Each equation is, by itself, a classical regression. Therefore, the parameters could be
estimated consistently, if not efficiently, one equation at a time by ordinary least squares.

3There are a few results for unequal numbers of observations, such as Schmidt (1977), Baltagi, Garvin, and
Kerman (1989), Conniffe (1985), Hwang, (1990) and Im (1994). But generally, the case of fixed T is the norm
in practice.
4This is the test of “Aggregation Bias” that is the subject of Zellner (1962, 1963). (The bias results if parameter
equality is incorrectly assumed.)
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The generalized regression model applies to the stacked model,



y1

y2

...

yM




=




X1 0 · · · 0
0 X2 · · · 0

...

0 0 · · · XM







β1

β2
...

βM




+




ε1

ε2

...

εM




= Xβ + ε. (14-4)

Therefore, the efficient estimator is generalized least squares.5 The model has a partic-
ularly convenient form. For the tth observation, the M × M covariance matrix of the
disturbances is

� =




σ11 σ12 · · · σ1M

σ21 σ22 · · · σ2M

...

σM1 σM2 · · · σMM




, (14-5)

so, in (14-3),

� = � ⊗ I

and

�−1 = �−1 ⊗ I. (14-6)

Denoting the i jth element of �−1 by σ i j , we find that the GLS estimator is

β̂ = [X′�−1X]−1X′�−1y = [X′(�−1 ⊗ I)X]−1X′(�−1 ⊗ I)y.

Expanding the Kronecker products produces

β̂ =




σ 11X′
1X1 σ 12X′

1X2 · · · σ 1MX′
1XM

σ 21X′
2X1 σ 22X′

2X2 · · · σ 2MX′
2XM

...

σ M1X′
MX1 σ M2X′

MX2 · · · σ MMX′
MXM




−1



∑M
j=1 σ 1 j X′

1y j

∑M
j=1 σ 2 j X′

2y j
...∑M

j=1 σ Mj X′
My j




. (14-7)

The asymptotic covariance matrix for the GLS estimator is the inverse matrix in (14-7).
All the results of Chapter 10 for the generalized regression model extend to this model
(which has both heteroscedasticity and “autocorrelation”).

This estimator is obviously different from ordinary least squares. At this point,
however, the equations are linked only by their disturbances—hence the name seem-
ingly unrelated regressions model—so it is interesting to ask just how much efficiency
is gained by using generalized least squares instead of ordinary least squares. Zellner
(1962) and Dwivedi and Srivastava (1978) have analyzed some special cases in
detail.

5See Zellner (1962) and Telser (1964).
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1. If the equations are actually unrelated—that is, if σi j = 0 for i 	= j—then there is
obviously no payoff to GLS estimation of the full set of equations. Indeed, full
GLS is equation by equation OLS.6

2. If the equations have identical explanatory variables—that is, if Xi = X j —then
OLS and GLS are identical. We will turn to this case in Section 14.2.2 and then
examine an important application in Section 14.2.5.7

3. If the regressors in one block of equations are a subset of those in another, then
GLS brings no efficiency gain over OLS in estimation of the smaller set of
equations; thus, GLS and OLS are once again identical. We will look at an
application of this result in Section 19.6.5.8

In the more general case, with unrestricted correlation of the disturbances and
different regressors in the equations, the results are complicated and dependent on the
data. Two propositions that apply generally are as follows:

1. The greater is the correlation of the disturbances, the greater is the efficiency gain
accruing to GLS.

2. The less correlation there is between the X matrices, the greater is the gain in
efficiency in using GLS.9

14.2.2 SEEMINGLY UNRELATED REGRESSIONS
WITH IDENTICAL REGRESSORS

The case of identical regressors is quite common, notably in the capital asset pricing
model in empirical finance—see Section 14.2.5. In this special case, generalized least
squares is equivalent to equation by equation ordinary least squares. Impose the as-
sumption that Xi = X j = X, so that X′

i X j = X′X for all i and j in (14-7). The inverse
matrix on the right-hand side now becomes [�−1 ⊗ X′X]−1, which, using (A-76), equals
[� ⊗ (X′X)−1]. Also on the right-hand side, each term X′

i y j equals X′y j , which, in turn
equals X′Xb j . With these results, after moving the common X′X out of the summations
on the right-hand side, we obtain

β̂ =




σ11(X′X)−1 σ12(X′X)−1 · · · σ1M(X′X)−1

σ21(X′X)−1 σ22(X′X)−1 · · · σ2M(X′X)−1

...

σM1(X′X)−1 σM2(X′X)−1 · · · σMM(X′X)−1







(X′X)
∑M

l=1 σ 1lbl

(X′X)
∑M

l=1 σ 2lbl
...

(X′X)
∑M

l=1 σ Mlbl




. (14-8)

6See also Baltagi (1989) and Bartels and Feibig (1991) for other cases in which OLS = GLS.
7An intriguing result, albeit probably of negligible practical significance, is that the result also applies if the
X’s are all nonsingular, and not necessarily identical, linear combinations of the same set of variables. The
formal result which is a corollary of Kruskal’s Theorem [see Davidson and MacKinnon (1993, p. 294)] is that
OLS and GLS will be the same if the K columns of X are a linear combination of exactly K characteristic
vectors of �. By showing the equality of OLS and GLS here, we have verified the conditions of the corollary.
The general result is pursued in the exercises. The intriguing result cited is now an obvious case.
8The result was analyzed by Goldberger (1970) and later by Revankar (1974) and Conniffe (1982a, b).
9See also Binkley (1982) and Binkley and Nelson (1988).
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Now, we isolate one of the subvectors, say the first, from β̂. After multiplication, the
moment matrices cancel, and we are left with

β̂1 =
M∑

j=1

σ1 j

M∑
l=1

σ j1bl = b1

(
M∑

j=1

σ1 jσ
j1

)
+ b2

(
M∑

j=1

σ1 jσ
j2

)
+ · · · + bM

(
M∑

j=1

σ1 jσ
j M

)
.

The terms in parentheses are the elements of the first row of ��−1 = I, so the end result
is β̂1 = b1. For the remaining subvectors, which are obtained the same way, β̂ i = bi , which
is the result we sought.10

To reiterate, the important result we have here is that in the SUR model, when all
equations have the same regressors, the efficient estimator is single-equation ordinary
least squares; OLS is the same as GLS. Also, the asymptotic covariance matrix of β̂

for this case is given by the large inverse matrix in brackets in (14-8), which would be
estimated by

Est.Asy. Cov[β̂ i , β̂j ] = σ̂i j (X′X)−1, i, j = 1, . . . , M, where �̂i j = σ̂i j = 1
T

e′
i e j .

Except in some special cases, this general result is lost if there are any restrictions on
β, either within or across equations. We will examine one of those cases, the block of
zeros restriction, in Sections 14.2.6 and 19.6.5.

14.2.3 FEASIBLE GENERALIZED LEAST SQUARES

The preceding discussion assumes that � is known, which, as usual, is unlikely to be the
case. FGLS estimators have been devised, however.11 The least squares residuals may
be used (of course) to estimate consistently the elements of � with

σ̂i j si j = e′
i e j

T
. (14-9)

The consistency of si j follows from that of bi and b j . A degrees of freedom correction
in the divisor is occasionally suggested. Two possibilities are

s∗
i j = e′

i e j

[(T − Ki )(T − Kj )]1/2
and s∗∗

i j = e′
i e j

T − max(Ki , Kj )
.12

The second is unbiased only if i equals j or Ki equals Kj , whereas the first is unbiased
only if i equals j . Whether unbiasedness of the estimate of � used for FGLS is a virtue
here is uncertain. The asymptotic properties of the feasible GLS estimator, ˆ̂β do not
rely on an unbiased estimator of �; only consistency is required. All our results from
Chapters 10–13 for FGLS estimators extend to this model, with no modification. We

10See Hashimoto and Ohtani (1996) for discussion of hypothesis testing in this case.
11See Zellner (1962) and Zellner and Huang (1962).
12See, as well, Judge et al. (1985), Theil (1971) and Srivistava and Giles (1987).
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shall use (14-9) in what follows. With

S =




s11 s12 · · · s1M

s21 s22 · · · s2M

...

sM1 sM2 · · · sMM




(14-10)

in hand, FGLS can proceed as usual. Iterated FGLS will be maximum likelihood if it is
based on (14-9).

Goodness-of-fit measures for the system have been devised. For instance, McElroy
(1977) suggested the systemwide measure

R2
∗ = 1 − ε̂′�̂−1ε̂

∑M
i=1

∑M
j=1 σ̂ i j

[∑T
t=1(yit − ȳi )(yjt − ȳ j )

] = 1 − M

tr(�̂−1Syy)
, (14-11)

where ˆ indicates the FGLS estimate. (The advantage of the second formulation is that
it involves M × M matrices, which are typically quite small, whereas �̂ is MT × MT.
In our case, M equals 5, but MT equals 100.) The measure is bounded by 0 and 1 and
is related to the F statistic used to test the hypothesis that all the slopes in the model
are zero. Fit measures in this generalized regression model have all the shortcomings
discussed in Section 10.5.1. An additional problem for this model is that overall fit
measures such as that in (14-11) will obscure the variation in fit across equations. For the
investment example, using the FGLS residuals for the least restrictive model in Table
13.4 (the covariance structures model with identical coefficient vectors), McElroy’s
measure gives a value of 0.846. But as can be seen in Figure 14.1, this apparently good

FIGURE 14.1 FGLS Residuals with Equality Restrictions.
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FIGURE 14.2 SUR Residuals.

overall fit is an aggregate of mediocre fits for Chrysler and Westinghouse and obviously
terrible fits for GM, GE, and U.S. Steel. Indeed, the conventional measure for GE based
on the same FGLS residuals, 1 − e′

GEeGE/y′
GEM0yGE is −16.7!

We might use (14-11) to compare the fit of the unrestricted model with separate
coefficient vectors for each firm with the restricted one with a common coefficient vec-
tor. The result in (14-11) with the FGLS residuals based on the seemingly unrelated
regression estimates in Table 14.1 (in Example 14.2) gives a value of 0.871, which com-
pared to 0.846 appears to be an unimpressive improvement in the fit of the model. But
a comparison of the residual plot in Figure 14.2 with that in Figure 14.1 shows that, on
the contrary, the fit of the model has improved dramatically. The upshot is that although
a fit measure for the system might have some virtue as a descriptive measure, it should
be used with care.

For testing a hypothesis about β, a statistic analogous to the F ratio in multiple
regression analysis is

F[J, MT − K] = (Rβ̂ − q)′[R(X′�̂−1X)−1R′]−1(Rβ̂ − q)/J

ε̂′�̂−1ε̂/(MT − K)
. (14-12)

The computation requires the unknown �. If we insert the FGLS estimate �̂ based on
(14-9) and use the result that the denominator converges to one, then, in large samples,
the statistic will behave the same as

F̂ = 1
J

(R ˆ̂β − q)′[R V̂ar[ ˆ̂β]R′]−1(R ˆ̂β − q). (14-13)

This can be referred to the standard F table. Because it uses the estimated �, even
with normally distributed disturbances, the F distribution is only valid approximately.
In general, the statistic F[J, n] converges to 1/J times a chi-squared [J ] as n → ∞.



Greene-50240 book June 19, 2002 10:4

CHAPTER 14 ✦ Systems of Regression Equations 347

Therefore, an alternative test statistic that has a limiting chi-squared distribution with
J degrees of freedom when the hypothesis is true is

J F̂ = (R ˆ̂β − q)′[RV̂ar[ ˆ̂β]R′]−1(R ˆ̂β − q). (14-14)

This can be recognized as a Wald statistic that measures the distance between R ˆ̂β and
q. Both statistics are valid asymptotically, but (14-13) may perform better in a small or
moderately sized sample.13 Once again, the divisor used in computing σ̂i j may make a
difference, but there is no general rule.

A hypothesis of particular interest is the homogeneity restriction of equal coefficient
vectors in the multivariate regression model. That case is fairly common in this setting.
The homogeneity restriction is that β i = βM, i = 1, . . . , M−1. Consistent with (14-13)–
(14-14), we would form the hypothesis as

Rβ =




I 0 · · · 0 −I

0 I · · · 0 −I

· · ·
0 0 · · · I −I







β1

β2

· · ·
βM




=




β1 − βM

β2 − βM

· · ·
βM−1 − βM




= 0. (14-15)

This specifies a total of (M− 1)K restrictions on the KM× 1 parameter vector. Denote
the estimated asymptotic covariance for ( ˆ̂β i ,

ˆ̂β j ) as V̂i j . The bracketed matrix in (14-13)
would have typical block

[R V̂ar[ ˆ̂β]R′]i j = V̂i i − V̂i j − V̂ j i + V̂ j j

This may be a considerable amount of computation. The test will be simpler if the model
has been fit by maximum likelihood, as we examine in the next section.

14.2.4 MAXIMUM LIKELIHOOD ESTIMATION

The Oberhofer–Kmenta (1974) conditions (see Section 11.7.2) are met for the seemingly
unrelated regressions model, so maximum likelihood estimates can be obtained by
iterating the FGLS procedure. We note, once again, that this procedure presumes the
use of (14-9) for estimation of σi j at each iteration. Maximum likelihood enjoys no
advantages over FGLS in its asymptotic properties.14 Whether it would be preferable
in a small sample is an open question whose answer will depend on the particular data
set.

By simply inserting the special form of � in the log-likelihood function for the
generalized regression model in (10-32), we can consider direct maximization instead
of iterated FGLS. It is useful, however, to reexamine the model in a somewhat different
formulation. This alternative construction of the likelihood function appears in many
other related models in a number of literatures.

13See Judge et al. (1985, p. 476). The Wald statistic often performs poorly in the small sample sizes typical in
this area. Feibig (2001, pp. 108–110) surveys a recent literature on methods of improving the power of testing
procedures in SUR models.
14Jensen (1995) considers some variation on the computation of the asymptotic covariance matrix for the
estimator that allows for the possibility that the normality assumption might be violated.
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Consider one observation on each of the Mdependent variables and their associated
regressors. We wish to arrange this observation horizontally instead of vertically. The
model for this observation can be written

[y1 y2 · · · yM]t = [x∗
t ]′[π1 π2 · · · π M] + [ε1 ε2 · · · εM]t

= [x∗
t ]′�′ + E,

(14-16)

where x∗
t is the full set of all K∗ different independent variables that appear in the model.

The parameter matrix then has one column for each equation, but the columns are not
the same as β i in (14-4) unless every variable happens to appear in every equation.
Otherwise, in the ith equation, π i will have a number of zeros in it, each one imposing
an exclusion restriction. For example, consider the GM and GE equations from the
Boot–de Witt data in Example 14.1. The tth observation would be

[Ig Ie]t = [1 Fg Cg Fe Ce]t




αg αe

β1g 0

β2g 0

0 β1e

0 β2e




+ [εg εe]t .

This vector is one observation. Let εt be the vector of M disturbances for this
observation arranged, for now, in a column. Then E [εtε

′
t ] = �. The log of the joint

normal density of these M disturbances is

log Lt = − M
2

log(2π) − 1
2

log|�| − 1
2
ε′

t�
−1εt . (14-17)

The log-likelihood for a sample of T joint observations is the sum of these over t :

log L =
T∑

t=1

log Lt = − MT
2

log(2π) − T
2

log|�| − 1
2

T∑
t=1

ε′
t�

−1εt . (14-18)

The term in the summation in (14-18) is a scalar that equals its trace. We can always
permute the matrices in a trace, so

T∑
t=1

ε′
t�

−1εt =
T∑

t=1

tr(ε′
t�

−1εt ) =
T∑

t=1

tr(�−1εtε
′
t ).

This can be further simplified. The sum of the traces of T matrices equals the trace of
the sum of the matrices [see (A-91)]. We will now also be able to move the constant
matrix, �−1, outside the summation. Finally, it will prove useful to multiply and divide
by T. Combining all three steps, we obtain

T∑
t=1

tr(�−1εtε
′
t ) = T tr

[
�−1

(
1
T

) T∑
t=1

εtε
′
t

]
= T tr(�−1W) (14-19)

where

Wi j = 1
T

T∑
t=1

εtiεt j .
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Since this step uses actual disturbances, E [Wi j ] = σi j ; W is the M × M matrix we
would use to estimate � if the εs were actually observed. Inserting this result in the
log-likelihood, we have

log L = −T
2

[M log(2π) + log|�| + tr(�−1W)]. (14-20)

We now consider maximizing this function.
It has been shown15 that

∂ log L
∂�′ = T

2
X∗′E�−1

∂ log L
∂�

= −T
2

�−1(� − W)�−1.

(14-21)

where the x∗′
t in (14-16) is row t of X∗. Equating the second of these derivatives to a zero

matrix, we see that given the maximum likelihood estimates of the slope parameters, the
maximum likelihood estimator of � is W, the matrix of mean residual sums of squares
and cross products—that is, the matrix we have used for FGLS. [Notice that there is no
correction for degrees of freedom; ∂ log L/∂� = 0 implies (14-9).]

We also know that because this model is a generalized regression model, the maxi-
mum likelihood estimator of the parameter matrix [β] must be equivalent to the FGLS
estimator we discussed earlier.16 It is useful to go a step further. If we insert our solution
for � in the likelihood function, then we obtain the concentrated log-likelihood,

log Lc = −T
2

[M(1 + log(2π)) + log|W|]. (14-22)

We have shown, therefore, that the criterion for choosing the maximum likelihood
estimator of β is

β̂ML = Minβ
1
2 log|W|, (14-23)

subject to the exclusion restrictions. This important result reappears in many other mod-
els and settings. This minimization must be done subject to the constraints in the pa-
rameter matrix. In our two-equation example, there are two blocks of zeros in the
parameter matrix, which must be present in the MLE as well. The estimator of β is the
set of nonzero elements in the parameter matrix in (14-16).

The likelihood ratio statistic is an alternative to the F statistic discussed earlier for
testing hypotheses about β. The likelihood ratio statistic is

λ = −2(log Lr − log Lu) = T(log|Ŵr | − log|Ŵu|),17 (14-24)

where Ŵr and Ŵu are the residual sums of squares and cross-product matrices using the
constrained and unconstrained estimators, respectively. The likelihood ratio statistic is
asymptotically distributed as chi-squared with degrees of freedom equal to the number
of restrictions. This procedure can also be used to test the homogeneity restriction in the
multivariate regression model. The restricted model is the covariance structures model
discussed in Section 13.9 in the preceding chapter.

15See, for example, Joreskog (1973).
16This equivalence establishes the Oberhofer–Kmenta conditions.
17See Attfield (1998) for refinements of this calculation to improve the small sample performance.
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It may also be of interest to test whether � is a diagonal matrix. Two possible
approaches were suggested in Section 13.9.6 [see (13-67) and (13-68)]. The unrestricted
model is the one we are using here, whereas the restricted model is the groupwise
heteroscedastic model of Section 11.7.2 (Example 11.5), without the restriction of equal-
parameter vectors. As such, the restricted model reduces to separate regression models,
estimable by ordinary least squares. The likelihood ratio statistic would be

λLR = T

[
M∑

i=1

log σ̂ 2
i − log |�̂|

]
, (14-25)

where σ̂ 2
i is e′

i ei/T from the individual least squares regressions and �̂ is the maximum
likelihood estimator of �. This statistic has a limiting chi-squared distribution with
M(M − 1)/2 degrees of freedom under the hypothesis. The alternative suggested by
Breusch and Pagan (1980) is the Lagrange multiplier statistic,

λLM = T
M∑

i=2

i−1∑
j=1

r2
i j , (14-26)

where ri j is the estimated correlation σ̂i j/[σ̂i i σ̂ j j ]1/2. This statistic also has a limiting chi-
squared distribution with M(M − 1)/2 degrees of freedom. This test has the advantage
that it does not require computation of the maximum likelihood estimator of �, since
it is based on the OLS residuals.

Example 14.2 Estimates of a Seemingly Unrelated Regressions Model
By relaxing the constraint that all five firms have the same parameter vector, we obtain a five-
equation seemingly unrelated regression model. The FGLS estimates for the system are given
in Table 14.1, where we have included the equality constrained (pooled) estimator from the co-
variance structures model in Table 13.4 for comparison. The variables are the constant terms,
F and C, respectively. The correlations of the FGLS and equality constrained FGLS residuals
are given below the coefficient estimates in Table 14.1. The assumption of equal-parameter
vectors appears to have seriously distorted the correlations computed earlier. We would have
expected this based on the comparison of Figures 14.1 and 14.2. The diagonal elements in
�̂ are also drastically inflated by the imposition of the homogeneity constraint. The equation
by equation OLS estimates are given in Table 14.2. As expected, the estimated standard
errors for the FGLS estimates are generally smaller. The F statistic for testing the hypothesis
of equal-parameter vectors in all five equations is 129.169 with 12 and (100–15) degrees of
freedom. This value is far larger than the tabled critical value of 1.868, so the hypothesis of
parameter homogeneity should be rejected. We might have expected this result in view of the
dramatic reduction in the diagonal elements of �̂ compared with those of the pooled esti-
mator. The maximum likelihood estimates of the parameters are given in Table 14.3. The
log determinant of the unrestricted maximum likelihood estimator of � is 31.71986, so the
log-likelihood is

log Lu = −20(5)
2

[log(2π ) + 1] − 20
2

31.71986 = −459.0925.

The restricted model with equal-parameter vectors and correlation across equations is dis-
cussed in Section 13.9.6, and the restricted MLEs are given in Table 13.4. (The estimate of
� is not shown there.) The log determinant for the constrained model is 39.1385. The log-
likelihood for the constrained model is therefore −515.422. The likelihood ratio test statistic
is 112.66. The 1 percent critical value from the chi-squared distribution with 12 degrees of
freedom is 26.217, so the hypothesis that the parameters in all five equations are equal is
(once again) rejected.
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TABLE 14.1 FGLS Parameter Estimates (Standard Errors in Parentheses)

GM CH GE WE US Pooled

β1 −162.36 0.5043 −22.439 1.0889 85.423 −28.247
(89.46) (11.51) (25.52) (6.2959) (111.9) (4.888)

β2 0.12049 0.06955 0.03729 0.05701 0.1015 0.08910
(0.0216) (0.0169) (0.0123) (0.0114) (0.0547) (0.00507)

β2 0.38275 0.3086 0.13078 0.0415 0.3999 0.3340
(0.0328) (0.0259) (0.0221) (0.0412) (0.1278) (0.0167)

FGLS Residual Covariance and Correlation Matrices [Pooled estimates]

GM 7216.04 −0.299 0.269 0.257 −0.330
[10050.52] [−0.349] [−0.248] [−.0.356] [−0.716]

CH −313.70 152.85 0.006, 0.238 0.384,
[−4.8051] [305.61] [0.158] [0.246] [0.244]

GE 605.34 2.0474 700.46 0.777 0.482
[−7160.67] [−1966.65] [34556.6] [0.895] [−0.176]

WE 129.89 16.661 200.32 94.912 0.699
[−1400.75] [−123.921] [4274.0] [833.6] [−0.040]

US −2686.5 455.09 1224.4 652.72 9188.2
[4439.99] [2158.595] [−28722.0] [−2893.7] [34468.9]

TABLE 14.2 OLS Parameter Estimates (Standard Errors in Parentheses)

GM CH GE WE US Pooled

β1 −149.78 −6.1899 −9.956 −0.5094 −30.369 −48.030
(105.84) (13.506) (31.374) (8.0152) (157.05) (21.480)

β2 0.11928 0.07795 0.02655 0.05289 0.1566 0.10509
(0.0258) (0.0198) (0.0157) (0.0157) (0.0789) (0.01378)

β2 0.37144 0.3157 0.15169 0.0924 0.4239 0.30537
(0.0371) (0.0288) (0.0257) (0.0561) (0.1552) (0.04351)

σ 2 7160.29 149.872 660.329 88.662 8896.42 15857.24

Based on the OLS results, the Lagrange multiplier statistic is 29.046, with 10 degrees of
freedom. The 1 percent critical value is 23.209, so the hypothesis that � is diagonal can also
be rejected. To compute the likelihood ratio statistic for this test, we would compute the log
determinant based on the least squares results. This would be the sum of the logs of the
residual variances given in Table 14.2, which is 33.957106. The statistic for the likelihood
ratio test using (14–25) is therefore 20(33.95706 − 31.71986) = 44.714. This is also larger
than the critical value from the table. Based on all these results, we conclude that neither the
parameter homogeneity restriction nor the assumption of uncorrelated disturbances appears
to be consistent with our data.

14.2.5 AN APPLICATION FROM FINANCIAL ECONOMETRICS:
THE CAPITAL ASSET PRICING MODEL

One of the growth areas in econometrics is its application to the analysis of financial
markets.18 The capital asset pricing model (CAPM) is one of the foundations of that
field and is a frequent subject of econometric analysis.

18The pioneering work of Campbell, Lo, and MacKinlay (1997) is a broad survey of the field. The development
in this example is based on their Chapter 5.
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TABLE 14.3 Maximum Likelihood Estimates

GM CH GE WE US Pooled

β1 −173.218 2.39111 −16.662 4.37312 136.969 −2.217
(84.30) (11.63) (24.96) (6.018) (94.8) (1.960)

β2 0.122040 0.06741 0.0371 0.05397 0.08865 0.02361
(0.02025) (0.01709) (0.0118) (0.0103) (0.0454) (0.00429)

β2 0.38914 0.30520 0.11723 0.026930 0.31246 0.17095
(0.03185) (0.02606) (0.0217) (0.03708) (0.118) (0.0152)

Residual Covariance Matrix
GM 7307.30
CH −330.55 155.08
GE 550.27 11.429 741.22
WE 118.83 18.376 220.33 103.13
US −2879.10 463.21 1408.11 734.83 9671.4

Markowitz (1959) developed a theory of an individual investor’s optimal portfolio
selection in terms of the trade-off between expected return (mean) and risk (variance).
Sharpe (1964) and Lintner (1965) showed how the theory could be extended to the
aggregate “market” portfolio. The Sharpe and Lintner analyses produce the following
model for the expected excess return from an asset i :

E [Ri ] − Rf = βi
(

E [Rm] − Rf
)
,

where Ri is the return on asset i, Rf is the return on a “risk-free” asset, Rm is the return
on the market’s optimal portfolio, and βi is the asset’s market “beta,”

βi = Cov[Ri , Rm]
Var[Rm]

.

The theory states that the expected excess return on asset i will equal βi times the
expected excess return on the market’s portfolio. Black (1972) considered the more
general case in which there is no risk-free asset. In this instance, the observed Rf is
replaced by the unobservable return on a “zero-beta” portfolio, E [R0] = γ .

The empirical counterpart to the Sharpe and Lintner model for assets, i = 1, . . . , N,
observed over T periods, t = 1, . . . , T, is a seemingly unrelated regressions (SUR)
model, which we cast in the form of (14-16):

[y1, y2, . . . , yN] = [1, zt ]
[
α1 α2 · · · αN

β1 β2 · · · βN

]
+ [ε1, ε2, . . . , εN]t = x′

t� + ε′
t ,

where yit is Rit − Rf t , the observed excess return on asset i in period t ; zt is Rmt − Rf t ,
the market excess return in period t ; and disturbances εi t are the deviations from the
conditional means. We define the T × 2 matrix X = (

[1, zt ], t = 1, . . . , T
)
. The assump-

tions of the seemingly unrelated regressions model are

1. E [εt | X] = E [εt ] = 0,
2. Var[εt | X] = E [εtε

′
t | X] = �, a positive definite N × N matrix,

3. εt | X ∼ N[0, �].
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The data are also assumed to be “well behaved” so that

4. plim z̄ = E [zt ] = µz.
5. plim s2

z = plim(1/T)
∑T

t=1(zt − z̄)2 = Var[zt ] = σ 2
z .

Since this model is a particular case of the one in (14-16), we can proceed to (14-20)
through (14-23) for the maximum likelihood estimators of � and �. Indeed, since this
model is an unrestricted SUR model with the same regressor(s) in every equation,
we know from our results in Section 14.2.2 that the GLS and maximum likelihood
estimators are simply equation by equation ordinary least squares and that the estimator
of � is just S, the sample covariance matrix of the least squares residuals. The asymptotic
covariance matrix for the 2N × 1 estimator [a, b]′ will be

Asy. Var[a, b]′ = 1
T

plim

[(
X′X

T

)−1

⊗ �

]
= 1

Tσ 2
z

[
σ 2

z + µ2
z µz

µz 1

]
⊗ �,

which we will estimate with (X′X)−1 ⊗ S. [Plim z′z/T = plim[(1/T)�t (zt − z̄)2 + z̄2] =
(σ 2

z + µ2
z).]

The model above does not impose the Markowitz–Sharpe–Lintner hypothesis, H0:
α = 0. A Wald test of H0 can be based on the unrestricted least squares estimates:

W = (a − 0)′
{

Est.Asy. Var[a − 0]
}−1

(a − 0) = a′[(X′X)11S]−1a =
(

Ts2
z

s2
z + z̄2

)
a′S−1a.

[To carry out this test, we now require that T be greater than or equal to N, so that
S = (1/T)�t et e′

t will have full rank. The assumption was not necessary until this point.]
Under the null hypothesis, the statistic has a limiting chi-squared distribution with
N degrees of freedom. The small-sample misbehavior of the Wald statistic has been
widely observed. An alternative that is likely to be better behaved is [(T − N−1)/N]W,
which is exactly distributed as F[N, T − N − 1] under the null hypothesis. To carry out
a likelihood ratio or Lagrange multiplier test of the null hypothesis, we will require the
restricted estimates. By setting α = 0 in the model, we obtain, once again, a SUR model
with identical regressor, so the restricted maximum likelihood estimators are a0i = 0
and b0i = y′

i z/z′z. The restricted estimator of � is, as before, the matrix of mean squares
and cross products of the residuals, now S0. The chi-squared statistic for the likelihood
ratio test is given in (14-24); for this application, it would be

λ = N(ln|S0| − ln|S|).
To compute the LM statistic, we will require the derivatives of the unrestricted log-

likelihood function, evaluated at the restricted estimators, which are given in (14-21).
For this model, they may be written

∂ ln L
∂αi

=
n∑

j=1

σ i j

(
T∑

t=1

ε j t

)
=

N∑
j=1

σ i j (T ε̄ j ),

where σ i j is the ijth element of �−1, and

∂ ln L
∂βi

=
n∑

j=1

σ i j

(
T∑

t=1

ztε j t

)
=

N∑
j=1

σ i j (z′ε j ).
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The first derivatives with respect to β will be zero at the restricted estimates, since the
terms in parentheses are the normal equations for restricted least squares; remember,
the residuals are now e0i t = yit −b0i zt . The first vector of first derivatives can be written
as

∂ ln L
∂α

= �−1E′i = �−1(Tε̄),

where i is a T × 1 vector of 1s, E is a T × N matrix of disturbances, and ε̄ is the N × 1
vector of means of asset specific disturbances. (The second subvector is ∂ ln L/∂β =
�−1E′z.) Since ∂ ln L/∂β = 0 at the restricted estimates, the LM statistic involves only
the upper left submatrix of −H−1. Combining terms and inserting the restricted esti-
mates, we obtain

LM = [
T ē′

0S−1
0 : 0′]′[X′X ⊗ S−1

0

]−1[
T ē′

0S−1
0 : 0′]

= T2(X′X)11ē′
0S−1

0 ē0

= T
(

s2
z + z̄2

s2
z

)
ē′

0S−1
0 ē0.

Under the null hypothesis, the limiting distribution of LM is chi-squared with N degrees
of freedom.

The model formulation gives E [Rit ] = Rf t + βi
(

E [Rmt ] − Rf t
)
. If there is no risk-

free asset but we write the model in terms of γ , the unknown return on a zero-beta
portfolio, then we obtain

Rit = γ + βi (Rmt − γ ) + εi t

= (1 − βi )γ + βi Rmt + εi t .

This is essentially the same as the original model, with two modifications. First, the
observables in the model are real returns, not excess returns, which defines the way
the data enter the model. Second, there are nonlinear restrictions on the parameters;
αi = (1 − βi )γ . Although the unrestricted model has 2N free parameters, Black’s for-
mulation implies N − 1 restrictions and leaves N + 1 free parameters. The nonlinear
restrictions will complicate finding the maximum likelihood estimators. We do know
from (14-21) that regardless of what the estimators of βi and γ are, the estimator of � is
still S = (1/T)E′E. So, we can concentrate the log-likelihood function. The Oberhofer
and Kmenta (1974) results imply that we may simply zigzag back and forth between
S and (β̂, γ̂ ) (See Section 11.7.2.) Second, although maximization over (β, γ ) remains
complicated, maximization over β for known γ is trivial. For a given value of γ , the
maximum likelihood estimator of βi is the slope in the linear regression without a con-
stant term of (Rit −γ ) on (Rmt −γ ). Thus, the full set of maximum likelihood estimators
may be found just by scanning over the admissible range of γ to locate the value that
maximizes

ln Lc = −1
2

ln|S(γ )|,
where

si j (γ ) =
∑T

t=1

{
Rit − γ [1 − β̂ i (γ )] − β̂ i (γ )Rmt

}{
Rjt − γ [1 − β̂ j (γ )] − β̂ j (γ )Rmt

}

T
,
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and

β̂ i (γ ) =
∑T

t=1(Rit − γ )(Rmt − γ )∑T
t=1(Rmt − γ )2

.

For inference purposes, an estimator of the asymptotic covariance matrix of the
estimators is required. The log-likelihood for this model is

ln L = −T
2

[N ln 2π + ln|�|] − 1
2

T∑
t=1

ε′
t�

−1εt

where the N×1 vector εt is εi t = [Rit −γ (1−βi )−βi Rmt ], i = 1, . . . , N. The derivatives
of the log-likelihood can be written

∂ ln L
∂[β ′ γ ]′

=
T∑

t=1

[
(Rmt − γ )�−1εt

(i − β)′�−1εt

]
=

T∑
t=1

g t .

(We have omitted � from the gradient because the expected Hessian is block diagonal,
and, at present, � is tangential.) With the derivatives in this form, we have

E [g t g′
t ] =

[
(Rmt − γ )2�−1 (Rmt − γ )�−1(i − β)

(Rmt − γ )(i − β)′�−1 (i − β)′�−1(i − β)

]
. (14-27)

Now, sum this expression over t and use the result that
T∑

t=1

(Rmt − γ )2 =
T∑

t=1

(Rmt − R̄m)2 + T(R̄m − γ )2 = T
[
s2

Rm + (R̄m − γ )2]

to obtain the negative of the expected Hessian,

−E




∂2 ln L

∂

[
β

γ

]
∂

[
β

γ

]′


 = T

[[
s2

Rm + (R̄m − γ )2
]
�−1 (R̄m − γ )�−1(i − β)

(R̄m − γ )(i − β)′�−1 (i − β)′�−1(i − β)

]
. (14-28)

The inverse of this matrix provides the estimator for the asymptotic covariance matrix.
Using (A-74), after some manipulation we find that

Asy. Var[γ̂ ] = 1
T

[
1 + (µRm − γ )2

σ 2
Rm

]
[(i − β)′�−1(i − β)]−1.

where µRm = plim R̄m and σ 2
Rm = plim s2

Rm.
A likelihood ratio test of the Black model requires the restricted estimates of the

parameters. The unrestricted model is the SUR model for the real returns, Rit on the
market returns, Rmt , with N free constants, αi , and N free slopes, βi . Result (14-24)
provides the test statistic. Once the estimates of βi and γ are obtained, the implied
estimates of αi are given by αi = (1−βi )γ . With these estimates in hand, the LM statistic
is exactly what it was before, although now all 2N derivatives will be required and X is
[i, Rm]. The subscript ∗ indicates computation at the restricted estimates;

LM = T
(

s2
Rm + R̄2

m

s2
Rm

)
ē′

∗S−1
∗ ē∗ +

(
1

Ts2
Rm

)
R′

mE∗S−1
∗ E′

∗Rm −
(

2R̄m

s2
z

)
R′

mE∗S−1
∗ ē∗.
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A Wald test of the Black model would be based on the unrestricted estimators. The
hypothesis appears to involve the unknown γ , but in fact, the theory implies only
the N − 1 nonlinear restrictions: [(αi/αN) − (1 − βi )/(1 − βN)] = 0 or [αi (1 − βN) −
αN(1 − βi )] = 0. Write this set of N − 1 functions as c(α, β) = 0. The Wald statistic
based on the least squares estimates would then be

W = c(a, b)′
{

Est.Asy. Var[c(a, b)]
}−1c(a, b).

Recall in the unrestricted model that Asy. Var[a, b] = (1/T)plim(X′X/T)−1 ⊗ � = 	,
say. Using the delta method (see Section D.2.7), the asymptotic covariance matrix for
c(a, b) would be

Asy. Var[c(a, b)] = 
	
′ where 
 = ∂c(α, β)

∂(α, β)
.

The ith row of the 2N × 2N matrix 
 has four only nonzero elements, one each in the
ith and Nth positions of each of the two subvectors.

Before closing this lengthy example, we reconsider the assumptions of the model.
There is ample evidence [e.g., Affleck–Graves and McDonald (1989)] that the normality
assumption used in the preceding is not appropriate for financial returns. This fact in
itself does not complicate the analysis very much. Although the estimators derived
earlier are based on the normal likelihood, they are really only generalized least squares.
As we have seen before (in Chapter 10), GLS is robust to distributional assumptions. The
LM and LR tests we devised are not, however. Without the normality assumption, only
the Wald statistics retain their asymptotic validity. As noted, the small-sample behavior
of the Wald statistic can be problematic. The approach we have used elsewhere is to
use an approximation, F = W/J , where J is the number of restrictions, and refer the
statistic to the more conservative critical values of the F[J, q] distribution, where q
is the number of degrees of freedom in estimation. Thus, once again, the role of the
normality assumption is quite minor.

The homoscedasticity and nonautocorrelation assumptions are potentially more
problematic. The latter almost certainly invalidates the entire model. [See Campbell,
Lo, and MacKinlay (1997) for discussion.] If the disturbances are only heteroscedastic,
then we can appeal to the well-established consistency of ordinary least squares in the
generalized regression model. A GMM approach might seem to be called for, but GMM
estimation in this context is irrelevant. In all cases, the parameters are exactly identified.
What is needed is a robust covariance estimator for our now pseudomaximum likelihood
estimators. For the Sharpe–Lintner formulation, nothing more than the White estimator
that we developed in Chapters 10 and 11 is required; after all, despite the complications
of the models, the estimators both with and without the restrictions are ordinary least
squares, equation by equation. For each equation separately, the robust asymptotic
covariance matrix in (10-14) applies. For the least squares estimators qi = (ai , bi ), we
seek a robust estimator of

Asy. Cov[qi , q j ] = T plim(X′X)−1X′εiε
′
j X(X′X)−1.

Assuming that E [εi tε j t ] = σi j , this matrix can be estimated with

Est.Asy. Cov[qi , q j ] = [(X′X)−1]

(
T∑

t=1

xt x′
t ei t e jt

)
[(X′X)−1].
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To form a counterpart for the Black model, we will once again rely on the assumption
that the asymptotic covariance of the MLE of � and the MLE of (β ′, γ ) is zero. Then
the “sandwich” estimator for this M estimator (see Section 17.8) is

Est. Asy. Var(β̂, γ ) = A−1BA−1
,

where A appears in (14-28) and B is in (14-27).

14.2.6 MAXIMUM LIKELIHOOD ESTIMATION OF THE SEEMINGLY
UNRELATED REGRESSIONS MODEL WITH A BLOCK
OF ZEROS IN THE COEFFICIENT MATRIX

In Section 14.2.2, we considered the special case of the SUR model with identical re-
gressors in all equations. We showed there that in this case, OLS and GLS are identical.
In the SUR model with normally distributed disturbances, GLS is the maximum likeli-
hood estimator. It follows that when the regressors are identical, OLS is the maximum
likelihood estimator. In this section, we consider a related case in which the coefficient
matrix contains a block of zeros. The block of zeros is created by excluding the same
subset of the regressors from some of but not all the equations in a model that without
the exclusion restriction is a SUR with the same regressors in all equations.

This case can be examined in the context of the derivation of the GLS estimator in
(14-7), but it is much simpler to obtain the result we seek for the maximum likelihood
estimator. The model we have described can be formulated as in (14-16) as follows.
We first transpose the equation system in (14-16) so that observation t on y1, . . . , yM is
written

yt = �xt + εt .

If we collect all T observations in this format, then the system would appear as

Y′ = � X′ + E′ .

M × T M × K K × T M × T

(Each row of � contains the parameters in a particular equation.) Now, consider once
again a particular observation and partition the set of dependent variables into two
groups of M1 and M2 variables and the set of regressors into two sets of K1 and K2

variables. The equation system is now

(
y1

y2

)

t

=
[
�11 �12

�21 �22

] (
x1

x2

)

t
+

(
ε1

ε2

)

t
, E

[
ε1

ε2

∣∣∣∣ X
]

t
=

[
0
0

]
, Var

[
ε1

ε2

∣∣∣∣ X
]

t
=

[
�11 �12

�21 �22

]
.

Since this system is still a SUR model with identical regressors, the maximum likelihood
estimators of the parameters are obtained using equation by equation least squares
regressions. The case we are interested in here is the restricted model, with �12 = 0,
which has the effect of excluding x2 from all the equations for y1. The results we will
obtain for this case are:

1. The maximum likelihood estimator of �11 when �12 = 0 is equation-by-equation
least squares regression of the variables in y1 on x1 alone. That is, even with the
restriction, the efficient estimator of the parameters of the first set of equations is



Greene-50240 book June 19, 2002 10:4

358 CHAPTER 14 ✦ Systems of Regression Equations

equation-by-equation ordinary least squares. Least squares is not the efficient
estimator for the second set, however.

2. The effect of the restriction on the likelihood function can be isolated to its effect
on the smaller set of equations. Thus, the hypothesis can be tested without
estimating the larger set of equations.

We begin by considering maximum likelihood estimation of the unrestricted system.
The log-likelihood function for this multivariate regression model is

ln L =
T∑

t=1

ln f (y1t , y2t | x1t , x2t )

where f (y1t , y2t | x1t , x2t ) is the joint normal density of the two vectors. This result is
(14-17) through (14-19) in a different form. We will now write this joint normal density
as the product of a marginal and a conditional:

f (y1t , y2t | x1t , x2t ) = f (y1t | x1t , x2t ) f (y2t | y1t , x1t , x2t ).

The mean and variance of the marginal distribution for y1t are just the upper portions
of the preceding partitioned matrices:

E [y1t | x1t , x2t ] = �11x1t + �12x2t , Var[y1t | x1t , x2t ] = �11.

The results we need for the conditional distribution are given in Theorem B.6. Collecting
terms, we have

E [y2t | y1t , x1t , x2t ] = [
�21 − �21�

−1
11 �11

]
x1t + [

�22 − �21�
−1
11 �12

]
x2t + [

�21�
−1
11

]
y1t

= �21x1t + �22x2t + 
y1t ,

Var[y2t | y1t , x1t , x2t ] = �22 − �21�
−1
11 �12 = �22.

Finally, since the marginal distributions and the joint distribution are all multivariate
normal, the conditional distribution is also. The objective of this partitioning is to par-
tition the log-likelihood function likewise;

ln L =
T∑

t=1

ln f (y1t , y2t | x1t , x2t )

=
T∑

t=1

ln f (y1t | x1t , x2t ) f (y2t | y1t , x1t , x2t )

=
T∑

t=1

ln f (y1t | x1t , x2t ) +
T∑

t=1

ln f (y2t | y1t , x1t , x2t ).

With no restrictions on any of the parameters, we can maximize this log-likelihood by
maximizing its parts separately. There are two multivariate regression systems defined
by the two parts, and they have no parameters in common. Because �21, �22, �21,
and �22 are all free, unrestricted parameters, there are no restrictions imposed on
�21, �22, 
, or �22. Therefore, in each case, the efficient estimators are equation-by-
equation ordinary least squares. The first part produces estimates of �11, �22, and �11

directly. From the second, we would obtain estimates of �21, �22, 
, and �22. But it is
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easy to see in the relationships above how the original parameters can be obtained from
these mixtures:

�21 = �21 + 
�11,

�22 = �22 + 
�12,

�21 = 
�11,

�22 = �22 + 
�11

′.

Because of the invariance of maximum likelihood estimators to transformation, these
derived estimators of the original parameters are also maximum likelihood estimators.
Thus, the result we have up to this point is that by manipulating this pair of sets of
ordinary least squares estimators, we can obtain the original least squares, efficient
estimators. This result is no surprise, of course, since we have just rearranged the original
system and we are just rearranging our least squares estimators.

Now, consider estimation of the same system subject to the restriction �12 = 0. The
second equation system is still completely unrestricted, so maximum likelihood esti-
mates of its parameters, �21, �22 (which now equals �22), 
, and �22, are still obtained
by equation-by-equation least squares. The equation systems have no parameters in
common, so maximum likelihood estimators of the first set of parameters are obtained
by maximizing the first part of the log-likelihood, once again, by equation-by-equation
ordinary least squares. Thus, our first result is established. To establish the second result,
we must obtain the two parts of the log-likelihood. The log-likelihood function for this
model is given in (14-20). Since each of the two sets of equations is estimated by least
squares, in each case (null and alternative), for each part, the term in the log-likelihood
is the concentrated log-likelihood given in (14-22), where W j j is (1/T) times the ma-
trix of sums of squares and cross products of least squares residuals. The second set of
equations is estimated by regressions on x1, x2, and y1 with or without the restriction
�12 = 0. So, the second part of the log-likelihood is always the same,

ln L2c = −T
2

[M2(1 + ln 2π) + ln|W22|].

The concentrated log-likelihood for the first set of equations equals

ln L1c = −T
2

[M1(1 + ln 2π) + ln|W11|],

when x2 is included in the equations, and the same with W11(�12 = 0) when x2 is ex-
cluded. At the maximum likelihood estimators, the log-likelihood for the whole system is

ln Lc = ln L1c + ln L2c.

The likelihood ratio statistic is

λ = −2[(ln Lc | �12 = 0) − (ln Lc)] = T[ln|W11(�12 = 0)| − ln|W11|].
This establishes our second result, since W11 is based only on the first set of equations.

The block of zeros case was analyzed by Goldberger (1970). Many regression sys-
tems in which the result might have proved useful (e.g., systems of demand equations)
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imposed cross-equation equality (symmetry) restrictions, so the result of the analysis
was often derailed. Goldberger’s result, however, is precisely what is needed in the more
recent application of testing for Granger causality in the context of vector autoregres-
sions. We will return to the issue in Section 19.6.5.

14.2.7 AUTOCORRELATION AND HETEROSCEDASTICITY

The seemingly unrelated regressions model can be extended to allow for autocorrelation
in the same fashion as in Section 13.9.5. To reiterate, suppose that

yi = Xiβ i + εi ,

εi t = ρiεi,t−1 + uit ,

where uit is uncorrelated across observations. This extension will imply that the blocks
in � in (14-3), instead of σi j I, are σi j�i j , where �i j is given in (13-63).

The treatment developed by Parks (1967) is the one we used earlier.19 It calls for a
three-step approach:

1. Estimate each equation in the system by ordinary least squares. Compute any
consistent estimators of ρ. For each equation, transform the data by the
Prais–Winsten transformation to remove the autocorrelation.20 Note that there
will not be a constant term in the transformed data because there will be a column
with (1 − r2

i )1/2 as the first observation and (1 − ri ) for the remainder.
2. Using the transformed data, use ordinary least squares again to estimate �.
3. Use FGLS based on the estimated � and the transformed data.

There is no benefit to iteration. The estimator is efficient at every step, and iteration
does not produce a maximum likelihood estimator because of the Jacobian term in the
log likelihood [see (12-30)]. After the last step, � should be reestimated with the GLS
estimates. The estimated covariance matrix for ε can then be reconstructed using

σ̂mn(ε) = σ̂mn

1 − rmrn
.

As in the single equation case, opinions differ on the appropriateness of such cor-
rections for autocorrelation. At one extreme is Mizon (1995) who argues forcefully
that autocorrelation arises as a consequence of a remediable failure to include dynamic
effects in the model. However, in a system of equations, the analysis that leads to this

19Guilkey and Schmidt (1973), Guilkey (1974) and Berndt and Savin (1977) present an alternative treatment
based on εt = Rεt−1 + ut , where εt is the M× 1 vector of disturbances at time t and R is a correlation matrix.
Extensions and additional results appear in Moschino and Moro (1994), McLaren (1996), and Holt (1998).
20There is a complication with the first observation that is not treated quite correctly by this procedure. For
details, see Judge et al. (1985, pp. 486–489). The strictly correct (and quite cumbersome) results are for the
true GLS estimator, which assumes a known �. It is unlikely that in a finite sample, anything is lost by using
the Prais–Winsten procedure with the estimated �. One suggestion has been to use the Cochrane–Orcutt
procedure and drop the first observation. But in a small sample, the cost of discarding the first observation is
almost surely greater than that of neglecting to account properly for the correlation of the first disturbance
with the other first disturbances.
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TABLE 14.4 Autocorrelation Coefficients

GM CH GE WE US

Durbin–Watson 0.9375 1.984 1.0721 1.413 0.9091
Autocorrelation 0.531 0.008 0.463 0.294 0.545

Residual Covariance Matrix [σ̂i j/(1 − ri r j)]

GM 6679.5
CH −220.97 151.96
GE 483.79 43.7891 684.59
WE 88.373 19.964 190.37 92.788
US −1381.6 342.89 1484.10 676.88 8638.1

Parameter Estimates (Standard Errors in Parentheses)
β1 −51.337 −0.4536 −24.913 4.7091 14.0207

(80.62) (11.86) (25.67) (6.510) (96.49)
β2 0.094038 0.06847 0.04271 0.05091 0.16415

(0.01733) (0.0174) (0.01134) (0.01060) (0.0386)
β3 0.040723 0.32041 0.10954 0.04284 0.2006

(0.04216) (0.0258) (0.03012) (0.04127) (0.1428)

conclusion is going to be far more complex than in a single equation model.21 Suffice
to say, the issue remains to be settled conclusively.

Example 14.3 Autocorrelation in a SUR Model
Table 14.4 presents the autocorrelation-corrected estimates of the model of Example 14.2.
The Durbin–Watson statistics for the five data sets given here, with the exception of Chrysler,
strongly suggest that there is, indeed, autocorrelation in the disturbances. The differences
between these and the uncorrected estimates given earlier are sometimes relatively large, as
might be expected, given the fairly high autocorrelation and small sample size. The smaller
diagonal elements in the disturbance covariance matrix compared with those of Example
14.2 reflect the improved fit brought about by introducing the lagged variables into the
equation.

In principle, the SUR model can accommodate heteroscedasticity as well as au-
tocorrelation. Bartels and Feibig (1991) suggested the generalized SUR model, � =
A[� ⊗ I]A′ where A is a block diagonal matrix. Ideally, A is made a function of mea-
sured characteristics of the individual and a separate parameter vector, θ , so that the
model can be estimated in stages. In a first step, OLS residuals could be used to form a
preliminary estimator of θ , then the data are transformed to homoscedasticity, leaving
� and β to be estimated at subsequent steps using transformed data. One applica-
tion along these lines is the random parameters model of Feibig, Bartels and Aigner
(1991)—(13-46) shows how the random parameters model induces heteroscedastic-
ity. Another application is Mandy and Martins–Filho, who specified σi j (t) = α′

i j zi j (t).
(The linear specification of a variance does present some problems, as a negative
value is not precluded.) Kumbhakar and Heshmati (1996) proposed a cost and demand

21Dynamic SUR models in the spirit of Mizon’s admonition were proposed by Anderson and Blundell (1982).
A few recent applications are Kiviet, Phillips, and Schipp (1995) and Deschamps (1998). However, relatively
little work has been done with dynamic SUR models. The VAR models in Chapter 20 are an important group
of applications, but they come from a different analytical framework.
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system that combined the translog model of Section 14.3.2 with the complete equation
system in 14.3.1. In their application, only the cost equation was specified to include a
heteroscedastic disturbance.

14.3 SYSTEMS OF DEMAND EQUATIONS:
SINGULAR SYSTEMS

Most of the recent applications of the multivariate regression model22 have been in the
context of systems of demand equations, either commodity demands or factor demands
in studies of production.

Example 14.4 Stone’s Expenditure System
Stone’s expenditure system23 based on a set of logarithmic commodity demand equations,
income Y , and commodity prices pn is

log qi = αi + ηi log

(
Y
P

)
+

M∑
j =1

η∗
i j log

(
pj

P

)
,

where P is a generalized (share-weighted) price index, ηi is an income elasticity, and η∗
i j

is a compensated price elasticity. We can interpret this system as the demand equation in
real expenditure and real prices. The resulting set of equations constitutes an econometric
model in the form of a set of seemingly unrelated regressions. In estimation, we must account
for a number of restrictions including homogeneity of degree one in income, �i ηi = 1, and
symmetry of the matrix of compensated price elasticities, η∗

i j = η∗
j i .

Other examples include the system of factor demands and factor cost shares from
production, which we shall consider again later. In principle, each is merely a particular
application of the model of the previous section. But some special problems arise in
these settings. First, the parameters of the systems are generally constrained across
equations. That is, the unconstrained model is inconsistent with the underlying theory.24

The numerous constraints in the system of demand equations presented earlier give an
example. A second intrinsic feature of many of these models is that the disturbance
covariance matrix � is singular.

22Note the distinction between the multivariate or multiple-equation model discussed here and the multiple
regression model.
23A very readable survey of the estimation of systems of commodity demands is Deaton and Muellbauer
(1980). The example discussed here is taken from their Chapter 3 and the references to Stone’s (1954a,b)
work cited therein. A counterpart for production function modeling is Chambers (1988). Recent developments
in the specification of systems of demand equations include Chavez and Segerson (1987), Brown and Walker
(1995), and Fry, Fry, and McLaren (1996).
24This inconsistency does not imply that the theoretical restrictions are not testable or that the unrestricted
model cannot be estimated. Sometimes, the meaning of the model is ambiguous without the restrictions,
however. Statistically rejecting the restrictions implied by the theory, which were used to derive the econo-
metric model in the first place, can put us in a rather uncomfortable position. For example, in a study of
utility functions, Christensen, Jorgenson, and Lau (1975), after rejecting the cross-equation symmetry of a
set of commodity demands, stated, “With this conclusion we can terminate the test sequence, since these
results invalidate the theory of demand” (p. 380). See Silver and Ali (1989) for discussion of testing symmetry
restrictions.
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14.3.1 COBB–DOUGLAS COST FUNCTION
(EXAMPLE 7.3 CONTINUED)

Consider a Cobb–Douglas production function,

Y = α0

M∏
i=1

xαi
i .

Profit maximization with an exogenously determined output price calls for the firm to
maximize output for a given cost level C (or minimize costs for a given output Y). The
Lagrangean for the maximization problem is

� = α0

M∏
i=1

xαi
i + λ(C − p′x),

where p is the vector of M factor prices. The necessary conditions for maximizing this
function are

∂�

∂xi
= αi Y

xi
− λpi = 0 and

∂�

∂λ
= C − p′x = 0.

The joint solution provides xi (Y, p) and λ(Y, p). The total cost of production is

M∑
i=1

pi xi =
M∑

i=1

αi Y
λ

.

The cost share allocated to the ith factor is
pi xi∑M

i=1 pi xi
= αi∑M

i=1 αi
= βi . (14-29)

The full model is25

ln C = β0 + βy ln Y +
M∑

i=1
βi ln pi + εc,

si = βi + εi , i = 1, . . . , M.

(14-30)

By construction,
∑M

i=1 βi = 1 and
∑M

i=1 si = 1. (This is the cost function analysis begun
in Example 7.3. We will return to that application below.) The cost shares will also
sum identically to one in the data. It therefore follows that

∑M
i=1 εi = 0 at every data

point, so the system is singular. For the moment, ignore the cost function. Let the M×1
disturbance vector from the shares be ε = [ε1, ε2, . . . , εM]′. Since ε′i = 0, where i is a
column of 1s, it follows that E [εε′i] = �i = 0, which implies that � is singular. Therefore,
the methods of the previous sections cannot be used here. (You should verify that the
sample covariance matrix of the OLS residuals will also be singular.)

The solution to the singularity problem appears to be to drop one of the equations,
estimate the remainder, and solve for the last parameter from the other M − 1. The
constraint

∑M
i=1 βi = 1 states that the cost function must be homogeneous of degree one

25We leave as an exercise the derivation of β0, which is a mixture of all the parameters, and βy, which equals
1/�mαm.
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in the prices, a theoretical necessity. If we impose the constraint

βM = 1 − β1 − β2 − · · · − βM−1, (14-31)

then the system is reduced to a nonsingular one:

log
(

C
pM

)
= β0 + βy log Y +

M−1∑
i=1

βi log
(

pi

pM

)
+ εc,

si = βi + εi , i = 1, . . . , M − 1

This system provides estimates of β0, βy, and β1, . . . , βM−1. The last parameter is esti-
mated using (14-31). In principle, it is immaterial which factor is chosen as the numeraire.
Unfortunately, the FGLS parameter estimates in the now nonsingular system will de-
pend on which one is chosen. Invariance is achieved by using maximum likelihood
estimates instead of FGLS,26 which can be obtained by iterating FGLS or by direct
maximum likelihood estimation.27

Nerlove’s (1963) study of the electric power industry that we examined in Exam-
ple 7.3 provides an application of the Cobb–Douglas cost function model. His ordinary
least squares estimates of the parameters were listed in Example 7.3. Among the results
are (unfortunately) a negative capital coefficient in three of the six regressions. Nerlove
also found that the simple Cobb–Douglas model did not adequately account for the
relationship between output and average cost. Christensen and Greene (1976) further
analyzed the Nerlove data and augmented the data set with cost share data to estimate
the complete demand system. Appendix Table F14.2 lists Nerlove’s 145 observations
with Christensen and Greene’s cost share data. Cost is the total cost of generation in
millions of dollars, output is in millions of kilowatt-hours, the capital price is an index of
construction costs, the wage rate is in dollars per hour for production and maintenance,
the fuel price is an index of the cost per Btu of fuel purchased by the firms, and the data
reflect the 1955 costs of production. The regression estimates are given in Table 14.5.

Least squares estimates of the Cobb–Douglas cost function are given in the first
column.28 The coefficient on capital is negative. Because βi = βy∂ ln Y/∂ ln xi —that is,
a positive multiple of the output elasticity of the ith factor—this finding is troubling.
The third column gives the maximum likelihood estimates obtained in the constrained
system. Two things to note are the dramatically smaller standard errors and the now
positive (and reasonable) estimate of the capital coefficient. The estimates of economies
of scale in the basic Cobb–Douglas model are 1/βy = 1.39 (column 1) and 1.25 (col-
umn 3), which suggest some increasing returns to scale. Nerlove, however, had found
evidence that at extremely large firm sizes, economies of scale diminished and even-
tually disappeared. To account for this (essentially a classical U-shaped average cost
curve), he appended a quadratic term in log output in the cost function. The single
equation and maximum likelihood multivariate regression estimates are given in the
second and fourth sets of results.

26The invariance result is proved in Barten (1969).
27Some additional results on the method are given by Revankar (1976).
28Results based on Nerlove’s full data set are given in Example 7.3. We have recomputed the values given in
Table 14.5. Note that Nerlove used base 10 logs while we have used natural logs in our computations.
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TABLE 14.5 Regression Estimates (Standard Errors in Parentheses)

Ordinary Least Squares Multivariate Regression

β0 −4.686 (0.885) −3.764 (0.702) −7.281 (0.104) −5.962 (0.161)
βq 0.721 (0.0174) 0.153 (0.0618) 0.798 (0.0147) 0.303 (0.0570)
βqq — 0.0505 (0.00536) — 0.0414 (0.00493)
βk −0.00847 (0.191) 0.0739 (0.150) 0.424 (0.00945) 0.424 (0.00943)
β1 0.594 (0.205) 0.481 (0.161) 0.106 (0.00380) 0.106 (0.00380)
β f 0.414 (0.0989) 0.445 (0.0777) 0.470 (0.0100) 0.470 (0.0100)
R2 0.9516 0.9581 — —
Log |W| — — −12.6726 −13.02248
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FIGURE 14.3 Predicted and Actual Average Costs.

The quadratic output term gives the cost function the expected U-shape. We can
determine the point where average cost reaches its minimum by equating ∂ ln C/∂ ln q
to 1. This is q∗ = exp[(1 − βq)/(2βqq)]. For the multivariate regression, this value is
q∗ = 4527. About 85 percent of the firms in the sample had output less than this, so by
these estimates, most firms in the sample had not yet exhausted the available economies
of scale. Figure 14.3 shows predicted and actual average costs for the sample. (In order
to obtain a reasonable scale, the smallest one third of the firms are omitted from the
figure. Predicted average costs are computed at the sample averages of the input prices.
The figure does reveal that that beyond a quite small scale, the economies of scale, while
perhaps statistically significant, are economically quite small.
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14.3.2 FLEXIBLE FUNCTIONAL FORMS: THE TRANSLOG
COST FUNCTION

The literatures on production and cost and on utility and demand have evolved in several
directions. In the area of models of producer behavior, the classic paper by Arrow et al.
(1961) called into question the inherent restriction of the Cobb–Douglas model that
all elasticities of factor substitution are equal to 1. Researchers have since developed
numerous flexible functions that allow substitution to be unrestricted (i.e., not even
constant).29 Similar strands of literature have appeared in the analysis of commodity
demands.30 In this section, we examine in detail a model of production.

Suppose that production is characterized by a production function, Y = f (x). The
solution to the problem of minimizing the cost of producing a specified output rate given
a set of factor prices produces the cost-minimizing set of factor demands xi = xi (Y, p).
The total cost of production is given by the cost function,

C =
M∑

i=1

pi xi (Y, p) = C(Y, p). (14-32)

If there are constant returns to scale, then it can be shown that C = Yc(p) or

C/Y = c(p),

where c(p) is the unit or average cost function.31 The cost-minimizing factor demands
are obtained by applying Shephard’s (1970) lemma, which states that if C(Y, p) gives
the minimum total cost of production, then the cost-minimizing set of factor demands
is given by

x∗
i = ∂C(Y, p)

∂pi
= Y∂c(p)

∂pi
. (14-33)

Alternatively, by differentiating logarithmically, we obtain the cost-minimizing factor
cost shares:

si = ∂ log C(Y, p)

∂ log pi
= pi xi

C
. (14-34)

With constant returns to scale, ln C(Y, p) = log Y + log c(p), so

si = ∂ log c(p)

∂ log pi
. (14-35)

29See, in particular, Berndt and Christensen (1973). Two useful surveys of the topic are Jorgenson (1983) and
Diewert (1974).
30See, for example, Christensen, Jorgenson, and Lau (1975) and two surveys, Deaton and Muellbauer (1980)
and Deaton (1983). Berndt (1990) contains many useful results.
31The Cobb–Douglas function of the previous section gives an illustration. The restriction of constant returns
to scale is βy = 1, which is equivalent to C = Yc(p). Nerlove’s more general version of the cost function
allows nonconstant returns to scale. See Christensen and Greene (1976) and Diewert (1974) for some of the
formalities of the cost function and its relationship to the structure of production.
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In many empirical studies, the objects of estimation are the elasticities of factor substi-
tution and the own price elasticities of demand, which are given by

θi j = c(∂2c/∂pi∂pj )

(∂c/∂pi )(∂c/∂pj )

and

ηi i = siθi i .

By suitably parameterizing the cost function (14-32) and the cost shares (14-33), we
obtain an M or M+ 1 equation econometric model that can be used to estimate these
quantities.32

The transcendental logarithmic, or translog, function is the most frequently used
flexible function in empirical work.33 By expanding log c(p) in a second-order Taylor
series about the point log p = 0, we obtain

log c ≈ β0 +
M∑

i=1

(
∂ log c
∂ log pi

)
log pi + 1

2

M∑
i=1

M∑
j=1

(
∂2 log c

∂ log pi ∂ log pj

)
log pi log pj ,

(14-36)

where all derivatives are evaluated at the expansion point. If we identify these deriva-
tives as coefficients and impose the symmetry of the cross-price derivatives, then the
cost function becomes

log c = β0 + β1 log p1 + · · · + βM log pM + δ11
( 1

2 log2 p1
) + δ12 log p1 log p2

+ δ22
( 1

2 log2 p2
) + · · · + δMM

( 1
2 log2 pM

)
. (14-37)

This is the translog cost function. If δi j equals zero, then it reduces to the Cobb–Douglas
function we looked at earlier. The cost shares are given by

s1 = ∂ log c
∂ log p1

= β1 + δ11 log p1 + δ12 log p2 + · · · + δ1M log pM,

s2 = ∂ log c
∂ log p2

= β2 + δ12 log p1 + δ22 log p2 + · · · + δ2M log pM,

...

sM = ∂ log c
∂ log pM

= βM + δ1M log p1 + δ2M log p2 + · · · + δMM log pM.

(14-38)

32The cost function is only one of several approaches to this study. See Jorgenson (1983) for a discussion.
33See Example 2.4. The function was developed by Kmenta (1967) as a means of approximating the CES
production function and was introduced formally in a series of papers by Berndt, Christensen, Jorgenson,
and Lau, including Berndt and Christensen (1973) and Christensen et al. (1975). The literature has produced
something of a competition in the development of exotic functional forms. The translog function has remained
the most popular, however, and by one account, Guilkey, Lovell, and Sickles (1983) is the most reliable of
several available alternatives. See also Example 6.2.
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The cost shares must sum to 1, which requires, in addition to the symmetry restrictions
already imposed,

β1 + β2 + · · · + βM = 1,

M∑
i=1

δi j = 0 (column sums equal zero), (14-39)

M∑
j=1

δi j = 0 (row sums equal zero).

The system of share equations provides a seemingly unrelated regressions model
that can be used to estimate the parameters of the model.34 To make the model opera-
tional, we must impose the restrictions in (14-39) and solve the problem of singularity
of the disturbance covariance matrix of the share equations. The first is accomplished
by dividing the first M− 1 prices by the Mth, thus eliminating the last term in each row
and column of the parameter matrix. As in the Cobb–Douglas model, we obtain a non-
singular system by dropping the Mth share equation. We compute maximum likelihood
estimates of the parameters to ensure invariance with respect to the choice of which
share equation we drop. For the translog cost function, the elasticities of substitution
are particularly simple to compute once the parameters have been estimated:

θi j = δi j + si s j

si s j
, θi i = δi i + si (si − 1)

s2
i

. (14-40)

These elasticities will differ at every data point. It is common to compute them at some
central point such as the means of the data.35

Example 14.5 A Cost Function for U.S. Manufacturing
A number of recent studies using the translog methodology have used a four-factor model,
with capital K , labor L, energy E , and materials M, the factors of production. Among the first
studies to employ this methodology was Berndt and Wood’s (1975) estimation of a translog
cost function for the U.S. manufacturing sector. The three factor shares used to estimate the
model are

sK = βK + δK K log

(
pK

pM

)
+ δK L log

(
pL

pM

)
+ δK E log

(
pE

pM

)
,

sL = βL + δK L log

(
pK

pM

)
+ δLL log

(
pL

pM

)
+ δL E log

(
pE

pM

)
,

sE = βE + δK E log

(
pK

pM

)
+ δL E log

(
pL

pM

)
+ δE E log

(
pE

pM

)
.

34The cost function may be included, if desired, which will provide an estimate ofβ0 but is otherwise inessential.
Absent the assumption of constant returns to scale, however, the cost function will contain parameters of
interest that do not appear in the share equations. As such, one would want to include it in the model. See
Christensen and Greene (1976) for an example.
35They will also be highly nonlinear functions of the parameters and the data. A method of computing
asymptotic standard errors for the estimated elasticities is presented in Anderson and Thursby (1986).
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TABLE 14.6 Parameter Estimates (Standard Errors
in Parentheses)

βK 0.05690 (0.00134) δKM −0.0189 (0.00971)
βL 0.2534 (0.00210) δLL 0.07542 (0.00676)
βE 0.0444 (0.00085) δLE −0.00476 (0.00234)
βM 0.6542 (0.00330) δLM −0.07061 (0.01059)
δKK 0.02951 (0.00580) δEE 0.01838 (0.00499)
δKL −0.000055 (0.00385) δEM −0.00299 (0.00799)
δKE −0.01066 (0.00339) δMM 0.09237 (0.02247)

TABLE 14.7 Estimated Elasticities

Capital Labor Energy Materials

Cost Shares for 1959
Fitted share 0.05643 0.27451 0.04391 0.62515
Actual share 0.06185 0.27303 0.04563 0.61948

Implied Elasticities of Substitution
Capital −7.783
Labor 0.9908 −1.643
Energy −3.230 0.6021 −12.19
Materials 0.4581 0.5896 0.8834 −0.3623

Implied Own Price Elasticities (smθmm)

−0.4392 −0.4510 −0.5353 −0.2265

Berndt and Wood’s data are reproduced in Appendix Table F14.1. Maximum likelihood esti-
mates of the full set of parameters are given in Table 14.6.36

The implied estimates of the elasticities of substitution and demand for 1959 (the central
year in the data) are derived in Table 14.7 using the fitted cost shares. The departure from the
Cobb–Douglas model with unit elasticities is substantial. For example, the results suggest
almost no substitutability between energy and labor37 and some complementarity between
capital and energy.

14.4 NONLINEAR SYSTEMS AND GMM
ESTIMATION

We now consider estimation of nonlinear systems of equations. The underlying theory
is essentially the same as that for linear systems. We briefly consider two cases in this
section, maximum likelihood (or FGLS) estimation and GMM estimation. Since the

36These estimates are not the same as those reported by Berndt and Wood. To purge their data of possible
correlation with the disturbances, they first regressed the prices on 10 exogenous macroeconomic variables,
such as U.S. population, government purchases of labor services, real exports of durable goods, and U.S.
tangible capital stock, and then based their analysis on the fitted values. The estimates given here are, in
general, quite close to those given by Berndt and Wood. For example, their estimates of the first five parameters
are 0.0564, 0.2539, 0.0442, 0.6455, and 0.0254.
37Berndt and Wood’s estimate of θEL for 1959 is 0.64.
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theory is essentially that of Section 14.2.4, most of the following will describe practical
aspects of estimation.

Consider estimation of the parameters of the equation system

y1 = h1(β, X) + ε1,

y2 = h2(β, X) + ε2,
...

yM = hM(β, X) + εM.

(14-41)

There are M equations in total, to be estimated with t = 1, . . . , T observations. There
are K parameters in the model. No assumption is made that each equation has “its
own” parameter vector; we simply use some of or all the K elements in β in each
equation. Likewise, there is a set of T observations on each of P independent variables
xp, p = 1, . . . , P, some of or all that appear in each equation. For convenience, the
equations are written generically in terms of the full β and X. The disturbances are
assumed to have zero means and contemporaneous covariance matrix �. We will leave
the extension to autocorrelation for more advanced treatments.

14.4.1 GLS ESTIMATION

In the multivariate regression model, if � is known, then the generalized least squares
estimator of β is the vector that minimizes the generalized sum of squares

ε(β)′�−1ε(β) =
M∑

i=1

M∑
j=1

σ i j [yi − hi (β, X)]′[y j − h j (β, X)], (14-42)

where ε(β) is an MT × 1 vector of disturbances obtained by stacking the equations
and � = � ⊗ I. [See (14-3).] As we did in Chapter 9, define the pseudoregressors as
the derivatives of the h(β, X) functions with respect to β. That is, linearize each of the
equations. Then the first-order condition for minimizing this sum of squares is

∂ε(β)′�−1ε(β)

∂β
=

M∑
i=1

M∑
j=1

σ i j[2X0′
i (β)ε j (β)

] = 0, (14-43)

where σ i j is the i jth element of �−1 and X0
i (β) is a T × K matrix of pseudoregressors

from the linearization of the ith equation. (See Section 9.2.3.) If any of the parameters
in β do not appear in the ith equation, then the corresponding column of X0

i (β) will be
a column of zeros.

This problem of estimation is doubly complex. In almost any circumstance, solution
will require an iteration using one of the methods discussed in Appendix E. Second, of
course, is that� is not known and must be estimated. Remember that efficient estimation
in the multivariate regression model does not require an efficient estimator of �, only
a consistent one. Therefore, one approach would be to estimate the parameters of each
equation separately using nonlinear least squares. This method will be inefficient if any
of the equations share parameters, since that information will be ignored. But at this
step, consistency is the objective, not efficiency. The resulting residuals can then be used
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to compute

S = 1
T

E′E. (14-44)

The second step of FGLS is the solution of (14-43), which will require an iterative
procedure once again and can be based on S instead of �. With well-behaved pseudore-
gressors, this second-step estimator is fully efficient. Once again, the same theory used
for FGLS in the linear, single-equation case applies here.38 Once the FGLS estimator
is obtained, the appropriate asymptotic covariance matrix is estimated with

Est.Asy. Var[β̂] =
[

M∑
i=1

M∑
j=1

si j X0
i (β)′X0

j (β)

]−1

.

There is a possible flaw in the strategy outlined above. It may not be possible to fit all
the equations individually by nonlinear least squares. It is conceivable that identification
of some of the parameters requires joint estimation of more than one equation. But as
long as the full system identifies all parameters, there is a simple way out of this problem.
Recall that all we need for our first step is a consistent set of estimators of the elements
of β. It is easy to show that the preceding defines a GMM estimator (see Chapter 18.) We
can use this result to devise an alternative, simple strategy. The weighting of the sums
of squares and cross products in (14-42) by σ i j produces an efficient estimator of β.
Any other weighting based on some positive definite A would produce consistent,
although inefficient, estimates. At this step, though, efficiency is secondary, so the choice
of A = I is a convenient candidate. Thus, for our first step, we can find β to minimize

ε(β)′ε(β) =
M∑

i=1

[yi − hi (β, X)]′[yi − hi (β, X)] =
M∑

i=1

T∑
t=1

[yit − hi (β, xi t )]2.

(This estimator is just pooled nonlinear least squares, where the regression function
varies across the sets of observations.) This step will produce the β̂ we need to compute S.

14.4.2 MAXIMUM LIKELIHOOD ESTIMATION

With normally distributed disturbances, the log-likelihood function for this model is
still given by (14-18). Therefore, estimation of � is done exactly as before, using the S in
(14-44). Likewise, the concentrated log-likelihood in (14-22) and the criterion function
in (14-23) are unchanged. Therefore, one approach to maximum likelihood estimation
is iterated FGLS, based on the results in Section 14.2.3. This method will require two
levels of iteration, however, since for each estimated �(βl), written as a function of
the estimates of β obtained at iteration l, a nonlinear, iterative solution is required to
obtain βl+1. The iteration then returns to S. Convergence is based either on S or β̂; if
one stabilizes, then the other will also.

The advantage of direct maximum likelihood estimation that was discussed in
Section 14.2.4 is lost here because of the nonlinearity of the regressions; there is no

38Neither the nonlinearity nor the multiple equation aspect of this model brings any new statistical issues
to the fore. By stacking the equations, we see that this model is simply a variant of the nonlinear regression
model that we treated in Chapter 9 with the added complication of a nonscalar disturbance covariance matrix,
which we analyzed in Chapter 10. The new complications are primarily practical.
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convenient arrangement of parameters into a matrix �. But a few practical aspects to
formulating the criterion function and its derivatives that may be useful do remain.
Estimation of the model in (14-41) might be slightly more convenient if each equation
did have its own coefficient vector. Suppose then that there is one underlying parameter
vector β and that we formulate each equation as

hit = hi [γ i (β), xi t ] + εi t .

Then the derivatives of the log-likelihood function are built up from

∂ ln|S(γ )|
∂γ i

= di = − 1
T

T∑
t=1




M∑
j=1

si j x0
i t (γ i )e jt (γ j )


, i = 1, . . . , M. (14-45)

It remains to impose the equality constraints that have been built into the model. Since
each γ i is built up just by extracting elements from β, the relevant derivative with
respect to β is just a sum of those with respect to γ .

∂ ln Lc

∂βk
=

n∑
i=1




Ki∑
g=1

∂ ln Lc

∂γig
1(γig = βk)


,

where 1(γig = βk) equals 1 if γig equals βk and 0 if not. This derivative can be formulated
fairly simply as follows. There are a total of G = ∑n

i=1 Ki parameters in γ , but only
K < G underlying parameters in β. Define the matrix F with G rows and K columns.
Then let Fg j = 1 if γg = β j and 0 otherwise. Thus, there is exactly one 1 and K − 1 0s
in each row of F. Let d be the G × 1 vector of derivatives obtained by stacking di from
(14-77). Then

∂ ln Lc

∂β
= F′d.

The Hessian is likewise computed as a simple sum of terms. We can construct it in blocks
using

Hi j = ∂2 ln Lc

∂γ i ∂γ ′
j

= −
T∑

t=1

si j x0
i t (γ i )x

0
j t (γ j )

′.

The asymptotic covariance matrix for β̂ is once again a sum of terms:

Est.Asy. Var[β̂] = V = [−F′ĤF]−1.

14.4.3 GMM ESTIMATION

All the preceding estimation techniques (including the linear models in the earlier
sections of this chapter) can be obtained as GMM estimators. Suppose that in the general
formulation of the model in (14-41), we allow for nonzero correlation between x0

i t and
εis . (It will not always be present, but we generalize the model to allow this correlation
as a possibility.) Suppose as well that there are a set of instrumental variables zt such
that

E [ztεi t ] = 0, t = 1, . . . , T and i = 1, . . . , M. (14-46)
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(We could allow a separate set of instrumental variables for each equation, but it would
needlessly complicate the presentation.)

Under these assumptions, the nonlinear FGLS and ML estimators above will be
inconsistent. But a relatively minor extension of the instrumental variables technique
developed for the single equation case in Section 10.4 can be used instead. The sample
analog to (14-46) is

1
T

T∑
t=1

zt [yit − hi (β, xt )] = 0, i = 1, . . . , M.

If we use this result for each equation in the system, one at a time, then we obtain exactly
the GMM estimator discussed in Section 10.4. But in addition to the efficiency loss that
results from not imposing the cross-equation constraints in γ i , we would also neglect
the correlation between the disturbances. Let

1
T

Z′�i j Z = E
[

Z′εiε
′
j Z

T

]
. (14-47)

The GMM criterion for estimation in this setting is

q =
M∑

i=1

M∑
j=1

[(yi − hi (β, X))′Z/T][Z′�i j Z/T]i j [Z′(y j − h j (β, X))/T]

(14-48)

=
M∑

i=1

M∑
j=1

[εi (β)′Z/T][Z′�i j Z/T]i j [Z′ε j (β)/T],

where [Z′�i j Z/T]i j denotes the ijth block of the inverse of the matrix with the ijth
block equal to Z′�i j Z/T. (This matrix is laid out in full in Section 15.6.3.)

GMM estimation would proceed in several passes. To compute any of the variance
parameters, we will require an initial consistent estimator ofβ. This step can be done with
equation-by-equation nonlinear instrumental variables—see Section 10.2.4—although
if equations have parameters in common, then a choice must be made as to which to
use. At the next step, the familiar White or Newey–West technique is used to compute,
block by block, the matrix in (14-47). Since it is based on a consistent estimator of β (we
assume), this matrix need not be recomputed. Now, with this result in hand, an iterative
solution to the maximization problem in (14-48) can be sought, for example, using the
methods of Appendix E. The first-order conditions are

∂q
∂β

=
M∑

i=1

M∑
j=1

[
X0

i (β)′Z/T
]
[Z′Wi j Z/T]i j [Z′ε j (β)/T] = 0. (14-49)

Note again that the blocks of the inverse matrix in the center are extracted from the
larger constructed matrix after inversion. [This brief discussion might understate the
complexity of the optimization problem in (14-48), but that is inherent in the procedure.]
At completion, the asymptotic covariance matrix for the GMM estimator is estimated
with

VGMM = 1
T

[
M∑

i=1

M∑
j=1

[
X0

i (β)′Z/T
]
[Z′Wi j Z/T]i j[Z′X0

j (β)/T
]
]−1

.
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14.5 SUMMARY AND CONCLUSIONS

This chapter has surveyed use of the seemingly unrelated regressions model. The SUR
model is an application of the generalized regression model introduced in Chapter
10. The advantage of the SUR formulation is the rich variety of behavioral models
that fit into this framework. We began with estimation and inference with the SUR
model, treating it essentially as a generalized regression. The major difference between
this set of results and the single equation model in Chapter 10 is practical. While the
SUR model is, in principle a single equation GR model with an elaborate covariance
structure, special problems arise when we explicitly recognize its intrinsic nature as a set
of equations linked by their disturbances. The major result for estimation at this step is
the feasible GLS estimator. In spite of its apparent complexity, we can estimate the SUR
model by a straightforward two step GLS approach that is similar to the one we used
for models with heteroscedasticity in Chapter 11. We also extended the SUR model to
autocorrelation and heteroscedasticity, as in Chapters 11 and 12 for the single equation.
Once again, the multiple equation nature of the model complicates these applications.
Maximum likelihood is an alternative method that is useful for systems of demand
equations. This chapter examined a number of applications of the SUR model. Much of
the empirical literature in finance focuses on the capital asset pricing model, which we
considered in Section 14.2.5. Section 14.2.6 developed an important result on estimating
systems in which some equations are derived from the set by excluding some of the
variables. The block of zeros case is useful in the VAR models used in causality testing in
Section 19.6.5. Section 14.3 presented one of the most common recent applications of the
seemingly unrelated regressions model, the estimation of demand systems. One of the
signature features of this literature is the seamless transition from the theoretical models
of optimization of consumers and producers to the sets of empirical demand equations
derived from Roy’s identity for consumers and Shephard’s lemma for producers.

Key Terms and Concepts

• Autocorrelation
• Capital asset pricing model
• Concentrated log-likelihood
• Demand system
• Exclusion restriction
• Expenditure system
• Feasible GLS
• Flexible functional form

• Generalized least squares
• GMM estimator
• Heteroscedasticity
• Homogeneity restriction
• Identical regressors
• Invariance of MLE
• Kronecker product
• Lagrange multiplier statistic

• Likelihood ratio statistic
• Maximum likelihood
• Multivariate regression
• Seemingly unrelated

regressions
• Wald statistic

Exercises

1. A sample of 100 observations produces the following sample data:

ȳ1 = 1, ȳ2 = 2,

y′
1y1 = 150,

y′
2y2 = 550,

y′
1y2 = 260.
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The underlying bivariate regression model is

y1 = µ + ε1,

y2 = µ + ε2.

a. Compute the OLS estimate of µ, and estimate the sampling variance of this
estimator.

b. Compute the FGLS estimate of µ and the sampling variance of the estimator.
2. Consider estimation of the following two equation model:

y1 = β1 + ε1,

y2 = β2x + ε2.

A sample of 50 observations produces the following moment matrix:

1 y1 y2 x

1
y1

y2

x




50
150 500

50 40 90
100 60 50 100


.

a. Write the explicit formula for the GLS estimator of [β1, β2]. What is the asymp-
totic covariance matrix of the estimator?

b. Derive the OLS estimator and its sampling variance in this model.
c. Obtain the OLS estimates of β1 and β2, and estimate the sampling covariance

matrix of the two estimates. Use n instead of (n − 1) as the divisor to compute
the estimates of the disturbance variances.

d. Compute the FGLS estimates of β1 and β2 and the estimated sampling covariance
matrix.

e. Test the hypothesis that β2 = 1.
3. The model

y1 = β1x1 + ε1,

y2 = β2x2 + ε2

satisfies all the assumptions of the classical multivariate regression model. All vari-
ables have zero means. The following sample second-moment matrix is obtained
from a sample of 20 observations:

y1 y2 x1 x2

y1

y2

x1

x2




20 6 4 3
6 10 3 6
4 3 5 2
3 6 2 10


.

a. Compute the FGLS estimates of β1 and β2.
b. Test the hypothesis that β1 = β2.
c. Compute the maximum likelihood estimates of the model parameters.
d. Use the likelihood ratio test to test the hypothesis in part b.
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4. Prove that in the model

y1 = X1β1 + ε1,

y2 = X2β2 + ε2,

generalized least squares is equivalent to equation-by-equation ordinary least
squares if X1 = X2. Does your result hold if it is also known that β1 = β2?

5. Consider the two-equation system

y1 = β1x1 + ε1,

y2 = β2x2 + β3x3 + ε2.

Assume that the disturbance variances and covariance are known. Now suppose
that the analyst of this model applies GLS but erroneously omits x3 from the second
equation. What effect does this specification error have on the consistency of the
estimator of β1?

6. Consider the system

y1 = α1 + βx + ε1,

y2 = α2 + ε2.

The disturbances are freely correlated. Prove that GLS applied to the system leads
to the OLS estimates of α1 and α2 but to a mixture of the least squares slopes in the
regressions of y1 and y2 on x as the estimator of β. What is the mixture? To simplify
the algebra, assume (with no loss of generality) that x̄ = 0.

7. For the model

y1 = α1 + βx + ε1,

y2 = α2 + ε2,

y3 = α3 + ε3,

assume that yi2 + yi3 = 1 at every observation. Prove that the sample covariance
matrix of the least squares residuals from the three equations will be singular,
thereby precluding computation of the FGLS estimator. How could you proceed
in this case?

8. Continuing the analysis of Section 14.3.2, we find that a translog cost function for
one output and three factor inputs that does not impose constant returns to scale is

ln C = α + β1 ln p1 + β2 ln p2 + β3 ln p3 + δ11
1
2 ln2 p1 + δ12 ln p1 ln p2

+ δ13 ln p1 ln p3 + δ22
1
2 ln2 p2 + δ23 ln p2 ln p3 + δ33

1
2 ln2 p3

+ γy1 ln Y ln p1 + γy2 ln Y ln p2 + γy3 ln Y ln p3

+ βy ln Y + βyy
1
2 ln2 Y + εc.

The factor share equations are

S1 = β1 + δ11 ln p1 + δ12 ln p2 + δ13 ln p3 + γy1 ln Y + ε1,

S2 = β2 + δ12 ln p1 + δ22 ln p2 + δ23 ln p3 + γy2 ln Y + ε2,

S3 = β3 + δ13 ln p1 + δ23 ln p2 + δ33 ln p3 + γy3 ln Y + ε3.
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[See Christensen and Greene (1976) for analysis of this model.]
a. The three factor shares must add identically to 1. What restrictions does this

requirement place on the model parameters?
b. Show that the adding-up condition in (14-39) can be imposed directly on the

model by specifying the translog model in (C/p3), (p1/p3), and (p2/p3) and
dropping the third share equation. (See Example 14.5.) Notice that this reduces
the number of free parameters in the model to 10.

c. Continuing Part b, the model as specified with the symmetry and equality restric-
tions has 15 parameters. By imposing the constraints, you reduce this number to
10 in the estimating equations. How would you obtain estimates of the parame-
ters not estimated directly?

The remaining parts of this exercise will require specialized software. The E-Views,
TSP, Stata or LIMDEP, programs noted in the preface are four that could be used.
All estimation is to be done using the data used in Section 14.3.1.
d. Estimate each of the three equations you obtained in Part b by ordinary least

squares. Do the estimates appear to satisfy the cross-equation equality and sym-
metry restrictions implied by the theory?

e. Using the data in Section 14.3.1, estimate the full system of three equations (cost
and the two independent shares), imposing the symmetry and cross-equation
equality constraints.

f. Using your parameter estimates, compute the estimates of the elasticities in
(14-40) at the means of the variables.

g. Use a likelihood ratio statistic to test the joint hypothesis that γyi = 0,

i = 1, 2, 3. [Hint: Just drop the relevant variables from the model.]
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SIMULTANEOUS-EQUATIONS
MODELS

Q
15.1 INTRODUCTION

Although most of our work thus far has been in the context of single-equation models,
even a cursory look through almost any economics textbook shows that much of the
theory is built on sets, or systems, of relationships. Familiar examples include market
equilibrium, models of the macroeconomy, and sets of factor or commodity demand
equations. Whether one’s interest is only in a particular part of the system or in the
system as a whole, the interaction of the variables in the model will have important
implications for both interpretation and estimation of the model’s parameters. The
implications of simultaneity for econometric estimation were recognized long before
the apparatus discussed in this chapter was developed.1 The subsequent research in
the subject, continuing to the present, is among the most extensive in econometrics.

This chapter considers the issues that arise in interpreting and estimating multiple-
equations models. Section 15.2 describes the general framework used for analyzing
systems of simultaneous equations. Most of the discussion of these models centers on
problems of estimation. But before estimation can even be considered, the fundamental
question of whether the parameters of interest in the model are even estimable must
be resolved. This problem of identification is discussed in Section 15.3. Sections 15.4
to 15.7 then discuss methods of estimation. Section 15.8 is concerned with specification
tests. In Section 15.9, the special characteristics of dynamic models are examined.

15.2 FUNDAMENTAL ISSUES IN
SIMULTANEOUS-EQUATIONS MODELS

In this section, we describe the basic terminology and statistical issues in the analysis of
simultaneous-equations models. We begin with some simple examples and then present
a general framework.

15.2.1 ILLUSTRATIVE SYSTEMS OF EQUATIONS

A familiar example of a system of simultaneous equations is a model of market equi-
librium, consisting of the following:

demand equation: qd,t = α1 pt + α2xt + εd,t ,

supply equation: qs,t = β1 pt + εs,t ,

equilibrium condition: qd,t = qs,t = qt .

1See, for example, Working (1926) and Haavelmo (1943).

378
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These equations are structural equations in that they are derived from theory and each
purports to describe a particular aspect of the economy.2 Since the model is one of
the joint determination of price and quantity, they are labeled jointly dependent or
endogenous variables. Income x is assumed to be determined outside of the model,
which makes it exogenous. The disturbances are added to the usual textbook descrip-
tion to obtain an econometric model. All three equations are needed to determine the
equilibrium price and quantity, so the system is interdependent. Finally, since an equilib-
rium solution for price and quantity in terms of income and the disturbances is, indeed,
implied (unless α1 equals β1), the system is said to be a complete system of equations.
The completeness of the system requires that the number of equations equal the number of
endogenous variables. As a general rule, it is not possible to estimate all the parameters
of incomplete systems (although it may be possible to estimate some of them).

Suppose that interest centers on estimating the demand elasticity α1. For simplicity,
assume that εd and εs are well behaved, classical disturbances with

E [εd,t | xt ] = E [εs,t | xt ] = 0,

E
[
ε2

d,t

∣∣ xt
] = σ 2

d , E
[
ε2

s,t

∣∣ xt
] = σ 2

s ,

E [εd,tεs,t | xt ] = E [εdtxt ] = E [εs,t xt ] = 0.

All variables are mutually uncorrelated with observations at different time periods.
Price, quantity, and income are measured in logarithms in deviations from their sample
means. Solving the equations for p and q in terms of x, and εd, and εs produces the
reduced form of the model

p = α2x
β1 − α1

+ εd − εs

β1 − α1
= π1x + v1,

q = β1α2x
β1 − α1

+ β1εd − α1εs

β1 − α1
= π2x + v2.

(15-1)

(Note the role of the “completeness” requirement that α1 not equal β1.)
It follows that Cov[p, εd] = σ 2

d /(β1 −α1) and Cov[p, εs] = −σ 2
s /(β1 −α1) so neither

the demand nor the supply equation satisfies the assumptions of the classical regression
model. The price elasticity of demand cannot be consistently estimated by least squares
regression of q on y and p. This result is characteristic of simultaneous-equations models.
Because the endogenous variables are all correlated with the disturbances, the least
squares estimators of the parameters of equations with endogenous variables on the
right-hand side are inconsistent.3

Suppose that we have a sample of T observations on p, q, and y such that

plim(1/T)x′x = σ 2
x .

Since least squares is inconsistent, we might instead use an instrumental variable esti-
mator.4 The only variable in the system that is not correlated with the disturbances is x.

2The distinction between structural and nonstructural models is sometimes drawn on this basis. See, for
example, Cooley and LeRoy (1985).
3This failure of least squares is sometimes labeled simultaneous-equations bias.
4See Section 5.4.
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Consider, then, the IV estimator, β̂1 = q′x/p′x. This estimator has

plim β̂1 = plim
q′x/T
p′x/T

= β1α2/(β1 − α1)

α2/(β1 − α1)
= β1.

Evidently, the parameter of the supply curve can be estimated by using an instrumental
variable estimator. In the least squares regression of p on x, the predicted values are
p̂ = (p′x/x′x)x. It follows that in the instrumental variable regression the instrument is
p̂. That is,

β̂1 = p̂′q
p̂′p

.

Since p̂′p = p̂′p̂, β̂1 is also the slope in a regression of q on these predicted values. This
interpretation defines the two-stage least squares estimator.

It would be desirable to use a similar device to estimate the parameters of the
demand equation, but unfortunately, we have exhausted the information in the sample.
Not only does least squares fail to estimate the demand equation, but without some
further assumptions, the sample contains no other information that can be used. This
example illustrates the problem of identification alluded to in the introduction to this
chapter.

A second example is the following simple model of income determination.

Example 15.1 A Small Macroeconomic Model
Consider the model,

consumption: ct = α0 + α1 yt + α2ct−1 + εt1,

investment: i t = β0 + β1rt + β2( yt − yt−1) + εt2,

demand: yt = ct + i t + gt .

The model contains an autoregressive consumption function, an investment equation based
on interest and the growth in output, and an equilibrium condition. The model determines
the values of the three endogenous variables ct , i t , and yt . This model is a dynamic model.
In addition to the exogenous variables rt and gt , it contains two predetermined variables,
ct−1 and yt−1. These are obviously not exogenous, but with regard to the current values of
the endogenous variables, they may be regarded as having already been determined. The
deciding factor is whether or not they are uncorrelated with the current disturbances, which
we might assume. The reduced form of this model is

Act = α0(1 − β2) + β0α1 + α1β1rt + α1gt + α2(1 − β2)ct−1 − α1β2 yt−1 + (1 − β2)εt1 + α1εt2,

Ait = α0β2 + β0(1 − α1) + β1(1 − α1)rt + β2gt + α2β2ct−1 − β2(1 − α1) yt−1 + β2εt1 + (1 − α1)εt2,

Ayt = α0 + β0 + β1rt + gt + α2ct−1 − β2 yt−1 + εt1 + εt2,

where A = 1 − α1 − β2. Note that the reduced form preserves the equilibrium condition.

The preceding two examples illustrate systems in which there are behavioral equa-
tions and equilibrium conditions. The latter are distinct in that even in an econometric
model, they have no disturbances. Another model, which illustrates nearly all the con-
cepts to be discussed in this chapter, is shown in the next example.
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Example 15.2 Klein’s Model I
A widely used example of a simultaneous equations model of the economy is Klein’s (1950)
Model I. The model may be written

Ct = α0 + α1 Pt + α2 Pt−1 + α3

(
Wp

t + W g
t

) + ε1t (consumption),

I t = β0 + β1 Pt + β2 Pt−1 + β3 Kt−1 + ε2t (investment),

Wp
t = γ0 + γ1 Xt + γ2 Xt−1 + γ3 At + ε3t (private wages),

Xt = Ct + I t + Gt (equilibrium demand),

Pt = Xt − Tt − Wp
t (private profits),

Kt = Kt−1 + I t (capital stock).

The endogenous variables are each on the left-hand side of an equation and are labeled
on the right. The exogenous variables are Gt = government nonwage spending, Tt = indirect
business taxes plus net exports, W g

t = government wage bill, At = time trend measured as
years from 1931, and the constant term. There are also three predetermined variables:
the lagged values of the capital stock, private profits, and total demand. The model con-
tains three behavioral equations, an equilibrium condition and two accounting identities.
This model provides an excellent example of a small, dynamic model of the economy. It
has also been widely used as a test ground for simultaneous-equations estimators. Klein
estimated the parameters using data for 1921 to 1941. The data are listed in Appendix
Table F15.1.

15.2.2 ENDOGENEITY AND CAUSALITY

The distinction between “exogenous” and “endogenous” variables in a model is a subtle
and sometimes controversial complication. It is the subject of a long literature.5 We
have drawn the distinction in a useful economic fashion at a few points in terms of
whether a variable in the model could reasonably be expected to vary “autonomously,”
independently of the other variables in the model. Thus, in a model of supply and
demand, the weather variable in a supply equation seems obviously to be exogenous in
a pure sense to the determination of price and quantity, whereas the current price clearly
is “endogenous” by any reasonable construction. Unfortunately, this neat classification
is of fairly limited use in macroeconomics, where almost no variable can be said to be
truly exogenous in the fashion that most observers would understand the term. To take
a common example, the estimation of consumption functions by ordinary least squares,
as we did in some earlier examples, is usually treated as a respectable enterprise, even
though most macroeconomic models (including the examples given here) depart from
a consumption function in which income is exogenous. This departure has led analysts,
for better or worse, to draw the distinction largely on statistical grounds.

The methodological development in the literature has produced some consensus
on this subject. As we shall see, the definitions formalize the economic characterization
we drew earlier. We will loosely sketch a few results here for purposes of our derivations
to follow. The interested reader is referred to the literature (and forewarned of some
challenging reading).

5See, for example, Zellner (1979), Sims (1977), Granger (1969), and especially Engle, Hendry, and Richard
(1983).
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Engle, Hendry, and Richard (1983) define a set of variables x t in a parameter-
ized model to be weakly exogenous if the full model can be written in terms of a
marginal probability distribution for x t and a conditional distribution for yt | x t such that
estimation of the parameters of the conditional distribution is no less efficient than esti-
mation of the full set of parameters of the joint distribution. This case will be true if none
of the parameters in the conditional distribution appears in the marginal distribution
for x t . In the present context, we will need this sort of construction to derive reduced
forms the way we did previously.

With reference to time-series applications (although the notion extends to cross sec-
tions as well), variables x t are said to be predetermined in the model if x t is independent
of all subsequent structural disturbances εt+s for s > 0. Variables that are predetermined
in a model can be treated, at least asymptotically, as if they were exogenous in the sense
that consistent estimates can be obtained when they appear as regressors. We used
this result in Chapters 5 and 12 as well, when we derived the properties of regressions
containing lagged values of the dependent variable.

A related concept is Granger causality. Granger causality (a kind of statistical feed-
back) is absent when f (x t | x t−1, yt−1) equals f (x t | x t−1). The definition states that in
the conditional distribution, lagged values of yt add no information to explanation of
movements of x t beyond that provided by lagged values of x t itself. This concept is
useful in the construction of forecasting models. Finally, if x t is weakly exogenous and
if yt−1 does not Granger cause x t , then x t is strongly exogenous.

15.2.3 A GENERAL NOTATION FOR LINEAR SIMULTANEOUS
EQUATIONS MODELS6

The structural form of the model is7

γ11 yt1 + γ21 yt2 + · · · + γM1 yt M + β11xt1 + · · · + βK1xt K = εt1,

γ12 yt1 + γ22 yt2 + · · · + γM2 yt M + β12xt1 + · · · + βK2xt K = εt2,
(15-2)

...

γ1Myt1 + γ2Myt2 + · · · + γMMyt M + β1Mxt1 + · · · + βKMxt K = εt M.

There are M equations and M endogenous variables, denoted y1, . . . , yM. There are K
exogenous variables, x1, . . . , xK, that may include predetermined values of y1, . . . , yM

as well. The first element of x t will usually be the constant, 1. Finally, εt1, . . . , εt M are the
structural disturbances. The subscript t will be used to index observations, t = 1, . . . , T.

6We will be restricting our attention to linear models in this chapter. Nonlinear systems occupy another strand
of literature in this area. Nonlinear systems bring forth numerous complications beyond those discussed here
and are beyond the scope of this text. Gallant (1987), Gallant and Holly (1980), Gallant and White (1988),
Davidson and MacKinnon (1993), and Wooldridge (2002) provide further discussion.
7For the present, it is convenient to ignore the special nature of lagged endogenous variables and treat them
the same as the strictly exogenous variables.
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In matrix terms, the system may be written

[y1 y2 · · · yM]t




γ11 γ12 · · · γ1M

γ21 γ22 · · · γ2M

...

γM1 γM2 · · · γMM




+ [x1 x2 · · · xK]t




β11 β12 · · · β1M

β21 β22 · · · β2M

...

βK1 βK2 · · · βKM




= [ε1 ε2 · · · εM]t

or

y′
t � + x′

t B = ε′
t .

Each column of the parameter matrices is the vector of coefficients in a particular
equation, whereas each row applies to a specific variable.

The underlying theory will imply a number of restrictions on � and B. One of the
variables in each equation is labeled the dependent variable so that its coefficient in the
model will be 1. Thus, there will be at least one “1” in each column of �. This normaliza-
tion is not a substantive restriction. The relationship defined for a given equation will
be unchanged if every coefficient in the equation is multiplied by the same constant.
Choosing a “dependent variable” simply removes this indeterminacy. If there are any
identities, then the corresponding columns of � and B will be completely known, and
there will be no disturbance for that equation. Since not all variables appear in all equa-
tions, some of the parameters will be zero. The theory may also impose other types of
restrictions on the parameter matrices.

If � is an upper triangular matrix, then the system is said to be triangular. In this
case, the model is of the form

yt1 = f1(x t ) + εt1,

yt2 = f2(yt1, x t ) + εt2,

...

yt M = fM(yt1, yt2, . . . , yt,M−1, x t ) + εt M.

The joint determination of the variables in this model is recursive. The first is com-
pletely determined by the exogenous factors. Then, given the first, the second is likewise
determined, and so on.
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The solution of the system of equations determining yt in terms of xt and εt is the
reduced form of the model,

y′
t = [x1 x2 · · · xK]t




π11 π12 · · · π1M

π21 π22 · · · π2M

...

πK1 πK2 · · · πKM




+ [ν1 · · · νM]t

= −x′
t B�−1 + ε′

t�
−1

= x′
t� + v′

t .

For this solution to exist, the model must satisfy the completeness condition for simul-
taneous equations systems: � must be nonsingular.

Example 15.3 Structure and Reduced Form
For the small model in Example 15.1, y ′ = [c, i , y], x′ = [1, r, g, c−1, y−1], and

� =




1 0 −1

0 1 −1

−α1 β2 1


 , B =




−α0 −β0 0

0 −β1 0

0 0 −1

−α2 0 0

0 β2 0




, �−1 = 1
�




1 − β2 β2 1

α1 1 − α1 1

α1 β2 1


 ,

�′ = 1
�




α0(1 − β2 + β0α1) α1β1 α1 α2(1 − β2) −β2α1

α0β2 + β0(1 − α1) β1(1 − α1) β2 α2β2 −β2(1 − α1)

α0 + β0 β1 1 α2 −β2




where � = 1 − α1 − β2. The completeness condition is that α1 and β2 do not sum to one.

The structural disturbances are assumed to be randomly drawn from an M-variate
distribution with

E [εt | x t ] = 0 and E [εtε
′
t | xt ] = �.

For the present, we assume that

E [εtε
′
s | x t , xs] = 0, ∀t, s.

Later, we will drop this assumption to allow for heteroscedasticity and autocorrelation.
It will occasionally be useful to assume that εt has a multivariate normal distribution,
but we shall postpone this assumption until it becomes necessary. It may be convenient
to retain the identities without disturbances as separate equations. If so, then one way
to proceed with the stochastic specification is to place rows and columns of zeros in the
appropriate places in �. It follows that the reduced-form disturbances, v′

t = ε′
t�

−1 have

E [vt | x t ] = (�−1)′0 = 0,

E [vt v′
t | xt ] = (�−1)′��−1 = �.

This implies that
� = �′��.
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The preceding formulation describes the model as it applies to an observation [y′, x′, ε′]t

at a particular point in time or in a cross section. In a sample of data, each joint obser-
vation will be one row in a data matrix,

[Y X E] =




y′
1 x′

1 ε′
1

y′
2 x′

2 ε′
2

...

y′
T x′

T ε′
T




.

In terms of the full set of T observations, the structure is

Y� + XB = E,

with

E [E | X] = 0 and E [(1/T)E′E | X] = �.

Under general conditions, we can strengthen this structure to

plim[(1/T)E′E] = �.

An important assumption, comparable with the one made in Chapter 5 for the classical
regression model, is

plim(1/T)X′X = Q, a finite positive definite matrix. (15-3)

We also assume that

plim(1/T)X′E = 0. (15-4)

This assumption is what distinguishes the predetermined variables from the endogenous
variables. The reduced form is

Y = X� + V, where V = E�−1.

Combining the earlier results, we have

plim
1
T




Y′

X′

V′


[Y X V] =




�′Q� + � �′Q �

Q� Q 0′

� 0 �


 . (15-5)

15.3 THE PROBLEM OF IDENTIFICATION

Solving the problem to be considered here, the identification problem, logically precedes
estimation. We ask at this point whether there is any way to obtain estimates of the
parameters of the model. We have in hand a certain amount of information upon which
to base any inference about its underlying structure. If more than one theory is consistent
with the same “data,” then the theories are said to be observationally equivalent and
there is no way of distinguishing them. The structure is said to be unidentified.8

8A useful survey of this issue is Hsiao (1983).
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FIGURE 15.1 Market Equilibria.

Example 15.4 Observational Equivalence9

The observed data consist of the market outcomes shown in Figure 15.1a. We have no
knowledge of the conditions of supply and demand beyond our belief that the data represent
equilibria. Unfortunately, parts (b) and (c) of Figure 15.1 both show structures—that is, true
underlying supply and demand curves—which are consistent with the data in Figure 15.1a.
With only the data in Figure 15.1a, we have no way of determining which of theories 15.1b or
c is the right one. Thus, the structure underlying the data in Figure 15.1a is unidentified. To
suggest where our discussion is headed, suppose that we add to the preceding the known
fact that the conditions of supply were unchanged during the period over which the data
were drawn. This rules out 15.1c and identifies 15.1b as the correct structure. Note how this
scenario relates to Example 15.1 and to the discussion following that example.

The identification problem is not one of sampling properties or the size of the
sample. To focus ideas, it is even useful to suppose that we have at hand an infinite-
sized sample of observations on the variables in the model. Now, with this sample and
our prior theory, what information do we have? In the reduced form,

y′
t = x′

t� + v′
t , E [vt v′

t | xt ] = �.

the predetermined variables are uncorrelated with the disturbances. Thus, we can
“observe”

plim(1/T)X′X = Q [assumed; see (15-3)],

plim(1/T)X′Y = plim(1/T)X′(X� + V) = Q�,

plim(1/T)Y′Y = plim(1/T)(�′X′ + V′)(X� + V) = �′Q� + �.

Therefore, �, the matrix of reduced-form coefficients, is observable:

� =
[

plim
(

X′X
T

)]−1 [
plim

(
X′Y

T

)]
.

9This example paraphrases the classic argument of Working (1926).

William Greene
change period to comma
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This estimator is simply the equation-by-equation least squares regression of Y on X.
Since � is observable, � is also:

� = plim
Y′Y

T
− plim

[
Y′X

T

][
X′X

T

]−1[X′Y
T

]
.

This result should be recognized as the matrix of least squares residual variances and
covariances. Therefore,

� and � can be estimated consistently by least squares regression of Y on X.

The information in hand, therefore, consists of �, �, and whatever other nonsample in-
formation we have about the structure.10 Now, can we deduce the structural parameters
from the reduced form?

The correspondence between the structural and reduced-form parameters is the
relationships

� = −B�−1 and � = E [vv′] = (�−1)′��−1.

If � were known, then we could deduce B as −�� and � as �′��. It would appear,
therefore, that our problem boils down to obtaining �, which makes sense. If � were
known, then we could rewrite (15-2), collecting the endogenous variables times their
respective coefficients on the left-hand side of a regression, and estimate the remaining
unknown coefficients on the predetermined variables by ordinary least squares.11

The identification question we will pursue can be posed as follows: We can “observe”
the reduced form. We must deduce the structure from what we know about the reduced
form. If there is more than one structure that can lead to the same reduced form,
then we cannot say that we can “estimate the structure.” Which structure would that
be? Suppose that the “true” structure is [�, B, �]. Now consider a different structure,
y′�̃+x′B̃ = ε̃′, that is obtained by postmultiplying the first structure by some nonsingular
matrix F. Thus, �̃ = �F, B̃ = BF, ε̃′ = ε′F. The reduced form that corresponds to this new
structure is, unfortunately, the same as the one that corresponds to the old one;

�̃ = −B̃�̃−1 = −BFF−1�−1 = �,

and, in the same fashion, �̃ = �. The false structure looks just like the true one, at least
in terms of the information we have. Statistically, there is no way we can tell them apart.
The structures are observationally equivalent.

Since F was chosen arbitrarily, we conclude that any nonsingular transformation
of the original structure has the same reduced form. Any reason for optimism that
we might have had should be abandoned. As the model stands, there is no means by
which the structural parameters can be deduced from the reduced form. The practical
implication is that if the only information that we have is the reduced-form parameters,
then the structural model is not estimable. So how were we able to identify the models

10We have not necessarily shown that this is all the information in the sample. In general, we observe the
conditional distribution f (yt | xt ), which constitutes the likelihood for the reduced form. With normally
distributed disturbances, this distribution is a function of �, �. (See Section 15.6.2.) With other distributions,
other or higher moments of the variables might provide additional information. See, for example, Goldberger
(1964, p. 311), Hausman (1983, pp. 402–403), and especially Riersøl (1950).
11This method is precisely the approach of the LIML estimator. See Section 15.5.5.
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in the earlier examples? The answer is by bringing to bear our nonsample information,
namely our theoretical restrictions. Consider the following examples:

Example 15.5 Identification
Consider a market in which q is quantity of Q, p is price, and z is the price of Z, a related
good. We assume that z enters both the supply and demand equations. For example, Z
might be a crop that is purchased by consumers and that will be grown by farmers instead
of Q if its price rises enough relative to p. Thus, we would expect α2 > 0 and β2 < 0. So,

qd = α0 + α1 p + α2z + εd (demand ) ,

qs = β0 + β1 p + β2z + εs (supply) ,

qd = qs = q (equilibrium) .

The reduced form is

q = α1β0 − α0β1

α1 − β1
+ α1β2 − α2β1

α1 − β1
z + α1εs − α2εd

α1 − β1
= π11 + π21z + νq,

p = β0 − α0

α1 − β1
+ β2 − α2

α1 − β1
z + εs − εd

α1 − β1
= π12 + π22z + νp.

With only four reduced-form coefficients and six structural parameters, it is obvious that there
will not be a complete solution for all six structural parameters in terms of the four reduced
parameters. Suppose, though, that it is known that β2 = 0 (farmers do not substitute the
alternative crop for this one). Then the solution for β1 is π21/π22. After a bit of manipulation,
we also obtain β0 = π11 − π12π21/π22. The restriction identifies the supply parameters. But
this step is as far as we can go.

Now, suppose that income x, rather than z, appears in the demand equation. The revised
model is

q = α0 + α1 p + α2x + ε1,

q = β0 + β1 p + β2z + ε2.

The structure is now

[q p]

[
1 1

−α1 −β1

]
+ [1 x z]




−α0 −β0

−α2 0
0 −β2


 = [ε1 ε2].

The reduced form is

[q p] = [1 x z]




(α1β0 − α0β1)/� (β0 − α0)/�
−α2β1/� −α2/�

α1β2/� β2/�


 + [ν1 ν2],

where � = (α1 − β1) . Every false structure has the same reduced form. But in the coefficient
matrix,

B̃ = BF =




α0 f11 + β0 f12 α0 f12 + β0 f22

α2 f11 α2 f12

β2 f21 β2 f22


 ,

if f12 is not zero, then the imposter will have income appearing in the supply equation,
which our theory has ruled out. Likewise, if f21 is not zero, then z will appear in the demand
equation, which is also ruled out by our theory. Thus, although all false structures have the
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same reduced form as the true one, the only one that is consistent with our theory (i.e.,
is admissible) and has coefficients of 1 on q in both equations (examine �F) is F = I. This
transformation just produces the original structure.

The unique solutions for the structural parameters in terms of the reduced-form parame-
ters are

α0 = π11 − π12

(
π31

π32

)
, β0 = π11 − π12

(
π21

π22

)
,

α1 = π31

π32
, β1 = π21

π22
,

α2 = π22

(
π21

π22
− π31

π32

)
, β2 = π32

(
π31

π32
− π21

π22

)
.

The preceding discussion has considered two equivalent methods of establishing
identifiability. If it is possible to deduce the structural parameters from the known
reduced form parameters, then the model is identified. Alternatively, if it can be shown
that no false structure is admissible—that is, satisfies the theoretical restrictions—then
the model is identified.12

15.3.1 THE RANK AND ORDER CONDITIONS FOR IDENTIFICATION

It is useful to summarize what we have determined thus far. The unknown structural
parameters consist of

� = an M × M nonsingular matrix,

B = a K × M parameter matrix,

� = an M × M symmetric positive definite matrix.

The known, reduced-form parameters are

� = a K × M reduced-form coefficients matrix,

� = an M × M reduced-form covariance matrix.

Simply counting parameters in the structure and reduced forms yields an excess of

l = M2 + KM + 1
2 M(M + 1) − KM − 1

2 M(M + 1) = M2,

which is, as might be expected from the earlier results, the number of unknown elements
in �. Without further information, identification is clearly impossible. The additional
information comes in several forms.

1. Normalizations. In each equation, one variable has a coefficient of 1. This normal-
ization is a necessary scaling of the equation that is logically equivalent to putting one
variable on the left-hand side of a regression. For purposes of identification (and some
estimation methods), the choice among the endogenous variables is arbitrary. But at
the time the model is formulated, each equation will usually have some natural depen-
dent variable. The normalization does not identify the dependent variable in any formal
or causal sense. For example, in a model of supply and demand, both the “demand”

12For other interpretations, see Amemiya (1985, p. 230) and Gabrielsen (1978). Some deeper theoretical
results on identification of parameters in econometric models are given by Bekker and Wansbeek (2001).
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equation, Q = f (P, x), and the “inverse demand” equation, P = g(Q, x), are appro-
priate specifications of the relationship between price and quantity. We note, though,
the following:

With the normalizations, there are M(M−1), not M2, undetermined values in �

and this many indeterminacies in the model to be resolved through nonsample
information.

2. Identities. In some models, variable definitions or equilibrium conditions imply that
all the coefficients in a particular equation are known. In the preceding market example,
there are three equations, but the third is the equilibrium condition Qd = Qs . Klein’s
Model I (Example 15.3) contains six equations, including two accounting identities
and the equilibrium condition. There is no question of identification with respect to
identities. They may be carried as additional equations in the model, as we do with
Klein’s Model I in several later examples, or built into the model a priori, as is typical
in models of supply and demand.

The substantive nonsample information that will be used in identifying the model
will consist of the following:
3. Exclusions. The omission of variables from an equation places zeros in B and �. In
Example 15.5, the exclusion of income from the supply equation served to identify its
parameters.
4. Linear restrictions. Restrictions on the structural parameters may also serve to
rule out false structures. For example, a long-standing problem in the estimation of
production models using time-series data is the inability to disentangle the effects of
economies of scale from those of technological change. In some treatments, the solution
is to assume that there are constant returns to scale, thereby identifying the effects due
to technological change.
5. Restrictions on the disturbance covariance matrix. In the identification of a model,
these are similar to restrictions on the slope parameters. For example, if the previ-
ous market model were to apply to a microeconomic setting, then it would probably
be reasonable to assume that the structural disturbances in these supply and demand
equations are uncorrelated. Section 15.3.3 shows a case in which a covariance restriction
identifies an otherwise unidentified model.

To formalize the identification criteria, we require a notation for a single equation.
The coefficients of the jth equation are contained in the jth columns of � and B. The jth
equation is

y′�j + x′B j = ε j . (15-6)

(For convenience, we have dropped the observation subscript.) In this equation, we
know that (1) one of the elements in �j is one and (2) some variables that appear
elsewhere in the model are excluded from this equation. Table 15.1 defines the notation
used to incorporate these restrictions in (15-6).

Equation j may be written

y j = Y′
jγ j + Y∗′

j γ ∗
j + x′

jβ j + x∗′
j β∗

j + ε j .
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TABLE 15.1 Components of Equation j (Dependent Variable = yj)

Endogenous Variables Exogenous Variables

Included Y j = Mj variables x j = Kj variables
Excluded Y∗

j = M∗
j variables x∗

j = K∗
j variables

The number of equations is Mj + M∗
j + 1 = M.

The number of exogenous variables is Kj + K∗
j = K.

The coefficient on yj in equation j is 1.
*s will always be associated with excluded variables.

The exclusions imply that γ ∗
j = 0 and β∗

j = 0. Thus,

�′
j = [1 −γ ′

j 0′] and B′
j = [−β ′

j 0′].

(Note the sign convention.) For this equation, we partition the reduced-form coefficient
matrix in the same fashion:

(1) (Mj ) (M∗
j )

[y j Y′
j Y∗′

j ] = [x′
j x∗′

j ]

[
π j � j �̄ j

¯
π∗

j �∗
j �̄

∗
j

]
+ [v j V j V∗

j ]
[Kj rows]

[K∗
j rows].

(15-7)

The reduced-form coefficient matrix is

� = −B�−1,

which implies that

�� = −B.

The jth column of this matrix equation applies to the jth equation,

��j = −B j .

Inserting the parts from Table 15.1 yields

[
π j � j �̄ j

¯
π∗

j �∗
j �̄

∗
j

] 


1
−γ j

0


 =

[
β j

0

]
.

Now extract the two subequations,

π j − � jγ j = β j (Kj equations), (15-8)
¯

π∗
j − �∗

jγ j = 0 (K∗
j equations), (15-9)

(1) (Mj ).

The solution for B in terms of � that we observed at the beginning of this discussion is
in (15-8). Equation (15-9) may be written

�∗
jγ j = π∗

j . (15-10)

This system is K∗
j equations in Mj unknowns. If they can be solved for γ j , then (15-

8) gives the solution for β j and the equation is identified. For there to be a solution,

William Greene
need a bit more space between "1" and the minus sign.
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there must be at least as many equations as unknowns, which leads to the following
condition.

DEFINITION 15.1 Order Condition for Identification of Equation j

K∗
j ≥ Mj . (15-11)

The number of exogenous variables excluded from equation j must be at least as
large as the number of endogenous variables included in equation j .

The order condition is only a counting rule. It is a necessary but not sufficient
condition for identification. It ensures that (15-10) has at least one solution, but it does
not ensure that it has only one solution. The sufficient condition for uniqueness follows.

DEFINITION 15.2 Rank Condition for Identification

rank[π∗
j , �

∗
j ] = rank[�∗

j ] = Mj .

This condition imposes a restriction on a submatrix of the reduced-form coefficient
matrix.

The rank condition ensures that there is exactly one solution for the structural
parameters given the reduced-form parameters. Our alternative approach to the iden-
tification problem was to use the prior restrictions on [�, B] to eliminate all false struc-
tures. An equivalent condition based on this approach is simpler to apply and has more
intuitive appeal. We first rearrange the structural coefficients in the matrix

A =
[
�

B

]
=




1 A1

−γ j A2

0 A3

−β j A4

0 A5




= [a j A j ]. (15-12)

The jth column in a false structure [�F, BF] (i.e., the imposter for our equation j) would
be [�f j , Bf j ], where f j is the jth column of F. This new jth equation is to be built up
as a linear combination of the old one and the other equations in the model. Thus,
partitioning as previously,

ã j =




1 A1

−γ j A2

0 A3

−β j A4

0 A5




[
f 0

f1

]
=




1
γ̃ j

0
β̃ j

0




.
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If this hybrid is to have the same variables as the original, then it must have nonzero
elements in the same places, which can be ensured by taking f 0 = 1, and zeros in the
same positions as the original a j . Extracting the third and fifth blocks of rows, if ã j is to
be admissible, then it must meet the requirement

[
A3

A5

]
f1 = 0.

This equality is not possible if the (M∗
j + K∗

j )×(M− 1) matrix in brackets has full column
rank, so we have the equivalent rank condition,

rank
[

A3

A5

]
= M − 1.

The corresponding order condition is that the matrix in brackets must have at least
as many rows as columns. Thus, M∗

j + K∗
j ≥ M − 1. But since M= Mj + M∗

j + 1, this
condition is the same as the order condition in (15-11). The equivalence of the two rank
conditions is pursued in the exercises.

The preceding provides a simple method for checking the rank and order conditions.
We need only arrange the structural parameters in a tableau and examine the relevant
submatrices one at a time; A3 and A5 are the structural coefficients in the other equations
on the variables that are excluded from equation j.

One rule of thumb is sometimes useful in checking the rank and order conditions
of a model: If every equation has its own predetermined variable, the entire model is
identified. The proof is simple and is left as an exercise. For a final example, we consider
a somewhat larger model.

Example 15.6 Identification of Klein’s Model I
The structural coefficients in the six equations of Klein’s Model I, transposed and multiplied
by −1 for convenience, are listed in Table 15.2. Identification of the consumption function
requires that the matrix [A′

3, A′
5] have rank 5. The columns of this matrix are contained in boxes

in the table. None of the columns indicated by arrows can be formed as linear combinations
of the other columns, so the rank condition is satisfied. Verification of the rank and order
conditions for the other two equations is left as an exercise.

It is unusual for a model to pass the order but not the rank condition. Generally,
either the conditions are obvious or the model is so large and has so many predetermined

TABLE 15.2 Klein’s Model I, Structural Coefficients

� ′ B′

C I W p X P K 1 Wg G T A P−1 K−1 X−1

C −1 0 α3 0 α1 0 α0 α3 0 0 0 α2 0 0
I

Wp

X
P
K

0
0
1
0
0

−1
0
1
0
1

0
−1
0

−1
0

0
γ1
−1
1
0

β1
0
0

−1
0

0
0
0
0

−1

β0
γ0
0
0
0

0
0
0
0
0

0
0
1
0
0

0
0
0

−1
0

0
γ3
0
0
0

β2
0
0
0
0

β3
0
0
0
1

0
γ2
0
0
0

↑ ↑ ↑ ↑ ↑
A′

3 A′
5
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variables that the conditions are met trivially. In practice, it is simple to check both
conditions for a small model. For a large model, frequently only the order condition is
verified. We distinguish three cases:

1. Underidentified. K∗
j < Mj or rank condition fails.

2. Exactly identified. K∗
j = Mj and rank condition is met.

3. Overidentified. K∗
j > Mj and rank condition is met.

15.3.2 IDENTIFICATION THROUGH OTHER NONSAMPLE
INFORMATION

The rank and order conditions given in the preceding section apply to identification of
an equation through exclusion restrictions. Intuition might suggest that other types of
nonsample information should be equally useful in securing identification. To take a
specific example, suppose that in Example 15.5, it is known that β2 equals 2, not 0. The
second equation could then be written as

qs − 2z = q∗
s = β0 + β1p + β∗

j z + ε2.

But we know that β∗
j = 0, so the supply equation is identified by this restriction. As

this example suggests, a linear restriction on the parameters within an equation is,
for identification purposes, essentially the same as an exclusion.13 By an appropriate
manipulation—that is, by “solving out” the restriction—we can turn the restriction into
one more exclusion. The order condition that emerges is

nj ≥ M − 1,

where nj is the total number of restrictions. Since M− 1 = Mj +M∗
j and nj is the number

of exclusions plus r j , the number of additional restrictions, this condition is equivalent
to

r j + K∗
j + M∗

j ≥ Mj + M∗
j

or

r j + K∗
j ≥ Mj .

This result is the same as (15-11) save for the addition of the number of restrictions,
which is the result suggested previously.

15.3.3 IDENTIFICATION THROUGH COVARIANCE
RESTRICTIONS—THE FULLY RECURSIVE MODEL

The observant reader will have noticed that no mention of � is made in the preceding
discussion. To this point, all the information provided by � is used in the estimation of
�; for given �, the relationship between � and � is one-to-one. Recall that � = �′��.
But if restrictions are placed on �, then there is more information in � than is needed for
estimation of �. The excess information can be used instead to help infer the elements

13The analysis is more complicated if the restrictions are across equations, that is, involve the parameters in
more than one equation. Kelly (1975) contains a number of results and examples.
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in �. A useful case is that of zero covariances across the disturbances.14 Once again, it
is most convenient to consider this case in terms of a false structure. If the structure is
[�, B, �], then a false structure would have parameters

[�̃, B̃, �̃] = [�F, BF, F′�F].

If any of the elements in � are zero, then the false structure must preserve those
restrictions to be admissible. For example, suppose that we specify that σ12 = 0. Then it
must also be true that σ̃12 = f ′

1�f2 = 0, where f1 and f2 are columns of F. As such, there
is a restriction on F that may identify the model.

The fully recursive model is an important special case of the preceding result. A
triangular system is

y1 = β ′
1x + ε1,

y2 = γ12 y1 + β ′
2x + ε2,

...

yM = γ1My1 + γ2My2 + · · · + γM−1,MyM−1 + β ′
Mx + εM.

We place no restrictions on B. The first equation is identified, since it is already in
reduced form. But for any of the others, linear combinations of it and the ones above it
involve the same variables. Thus, we conclude that without some identifying restrictions,
only the parameters of the first equation in a triangular system are identified. But suppose
that � is diagonal. Then the entire model is identified, as we now prove. As usual, we
attempt to find a false structure that satisfies the restrictions of the model.

The jth column of F, f j , is the coefficients in a linear combination of the equations
that will be an imposter for equation j . Many f j ’s are already precluded.

1. f1 must be the first column of an identity matrix. The first equation is identified
and normalized on y1.

2. In all remaining columns of F, all elements below the diagonal must be zero, since
an equation can only involve the ys in it or in the equations above it.

Without further restrictions, any upper triangular F is an admissible transformation.
But with a diagonal �, we have more information. Consider the second column. Since
�̃ must be diagonal, f ′

1�f2 = 0. But given f1 in 1 above,

f ′
1�f2 = σ11 f12 = 0,

so f12 = 0. The second column of F is now complete and is equal to the second column
of I. Continuing in the same manner, we find that

f ′
1�f3 = 0 and f ′

2�f3 = 0

will suffice to establish that f3 is the third column of I. In this fashion, it can be shown
that the only admissible F is F = I, which was to be shown. With � upper triangular,
M(M − 1)/2 unknown parameters remained. That is exactly the number of restrictions
placed on � when it was assumed to be diagonal.

14More general cases are discussed in Hausman (1983) and Judge et al. (1985).
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15.4 METHODS OF ESTIMATION

It is possible to estimate the reduced-form parameters, � and �, consistently by
ordinary least squares. But except for forecasting y given x, these are generally not
the parameters of interest; �, B, and � are. The ordinary least squares (OLS) esti-
mators of the structural parameters are inconsistent, ostensibly because the included
endogenous variables in each equation are correlated with the disturbances. Still, it
is at least of passing interest to examine what is estimated by ordinary least squares,
particularly in view of its widespread use (despite its inconsistency). Since the proof of
identification was based on solving for �, B, and � from � and �, one way to proceed
is to apply our finding to the sample estimates, P and W. This indirect least squares
approach is feasible but inefficient. Worse, there will usually be more than one possible
estimator and no obvious means of choosing among them. There are two approaches
for direct estimation, both based on the principle of instrumental variables. It is possi-
ble to estimate each equation separately using a limited information estimator. But the
same principle that suggests that joint estimation brings efficiency gains in the seemingly
unrelated regressions setting of the previous chapter is at work here, so we shall also
consider full information or system methods of estimation.

15.5 SINGLE EQUATION: LIMITED INFORMATION
ESTIMATION METHODS

Estimation of the system one equation at a time has the benefit of computational sim-
plicity. But because these methods neglect information contained in the other equations,
they are labeled limited information methods.

15.5.1 ORDINARY LEAST SQUARES

For all T observations, the nonzero terms in the jth equation are

y j = Y jγ j + X jβ j + ε j

= Z jδ j + ε j .

The M reduced-form equations are Y = X� + V. For the included endogenous vari-
ables Y j , the reduced forms are the Mj appropriate columns of � and V, written

Y j = X� j + V j . (15-13)

[Note that � j is the middle part of � shown in (15-7).] Likewise, V j is Mj columns of
V = E�−1. This least squares estimator is

d j = [Z′
j Z j ]−1Z′

j y j = δ j +
[

Y′
j Y j Y′

j X j

X′
j Y j X′

j X j

]−1 [
Y′

jε j

X′
jε j

]
.

None of the terms in the inverse matrix converge to 0. Although plim(1/T)X′
jε j = 0,

plim(1/T)Y′
jε j is nonzero, which means that both parts of d j are inconsistent. (This

is the “simultaneous equations bias” of least squares.) Although we can say with cer-
tainty that d j is inconsistent, we cannot state how serious this problem is. OLS does



Greene-50240 book June 19, 2002 10:10

CHAPTER 15 ✦ Simultaneous-Equations Models 397

have the virtue of computational simplicity, although with modern software, this virtue
is extremely modest. For better or worse, OLS is a very commonly used estimator in
this context. We will return to this issue later in a comparison of several estimators.

An intuitively appealing form of simultaneous equations model is the triangular
system, that we examined in Section 15.5.3,

(1) y1 = x′β1 + ε1,

(2) y2 = x′β2 + γ12 y1 + ε2,

(3) y3 = x′β3 + γ13 y1 + γ23 y2 + ε3,

and so on. If � is triangular and � is diagonal, so that the disturbances are uncorrelated,
then the system is a fully recursive model. (No restrictions are placed on B.) It is easy
to see that in this case, the entire system may be estimated consistently (and, as we
shall show later, efficiently) by ordinary least squares. The first equation is a classical
regression model. In the second equation, Cov(y1, ε2) = Cov(x′β1 + ε1, ε2) = 0, so it
too may be estimated by ordinary least squares. Proceeding in the same fashion to (3), it
is clear that y1 and ε3 are uncorrelated. Likewise, if we substitute (1) in (2) and then the
result for y2 in (3), then we find that y2 is also uncorrelated with ε3. Continuing in this
way, we find that in every equation the full set of right-hand variables is uncorrelated
with the respective disturbance. The result is that the fully recursive model may be
consistently estimated using equation-by-equation ordinary least squares. (In the more
general case, in which � is not diagonal, the preceding argument does not apply.)

15.5.2 ESTIMATION BY INSTRUMENTAL VARIABLES

In the next several sections, we will discuss various methods of consistent and efficient
estimation. As will be evident quite soon, there is a surprisingly long menu of choices. It
is a useful result that all of the methods in general use can be placed under the umbrella
of instrumental variable (IV) estimators.

Returning to the structural form, we first consider direct estimation of the jth
equation,

y j = Y jγ j + X jβ j + ε j

= Z jδ j + ε j .
(15-14)

As we saw previously, the OLS estimator of δ j is inconsistent because of the correlation
of Z j and ε j . A general method of obtaining consistent estimates is the method of
instrumental variables. (See Section 5.4.) Let W j be a T×(Mj + Kj ) matrix that satisfies
the requirements for an IV estimator,

plim(1/T)W′
j Z j = �wz = a finite nonsingular matrix, (15-15a)

plim(1/T)W′
jε j = 0, (15-15b)

plim(1/T)W′
j W j = �ww = a positive definite matrix. (15-15c)

Then the IV estimator,

δ̂ j,IV = [W′
j Z j ]−1W′

j y j ,

William Greene
delete the comma after system
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will be consistent and have asymptotic covariance matrix

Asy. Var[δ̂ j,IV] = σ j j

T
plim

[
1
T

W′
j Z j

]−1[ 1
T

W′
j W j

][
1
T

Z′
j W j

]−1

= σ j j

T

[
�−1

wz�ww�−1
zw

]
. (15-16)

A consistent estimator of σ j j is

σ̂ j j = (y j − Z j δ̂ j,IV)′(y j − Z j δ̂ j,IV)

T
, (15-17)

which is the familiar sum of squares of the estimated disturbances. A degrees of freedom
correction for the denominator, T − Mj − Kj , is sometimes suggested. Asymptotically,
the correction is immaterial. Whether it is beneficial in a small sample remains to be
settled. The resulting estimator is not unbiased in any event, as it would be in the
classical regression model. In the interest of simplicity (only), we shall omit the degrees
of freedom correction in what follows. Current practice in most applications is to make
the correction.

The various estimators that have been developed for simultaneous-equations mod-
els are all IV estimators. They differ in the choice of instruments and in whether the
equations are estimated one at a time or jointly. We divide them into two classes, limited
information or full information, on this basis.

15.5.3 TWO-STAGE LEAST SQUARES

The method of two-stage least squares is the most common method used for estimating
simultaneous-equations models. We developed the full set of results for this estimator
in Section 5.4. By merely changing notation slightly, the results of Section 5.4 are exactly
the derivation of the estimator we will describe here. Thus, you might want to review
this section before continuing.

The two-stage least squares (2SLS) method consists of using as the instruments for
Y j the predicted values in a regression of Y j on all the xs in the system:

Ŷ j = X[(X′X)−1X′Y j ] = XP j . (15-18)

It can be shown that absent heteroscedasticity or autocorrelation, this produces the
most efficient IV estimator that can be formed using only the columns of X. Note the
emulation of E [Y j ] = XII j in the result. The 2SLS estimator is, thus,

δ̂ j,2SLS =
[

Ŷ′
j Y j Ŷ′

j X j

X′
j Y j X′

j X j

]−1 [
Ŷ′

j y j

X′
j y j

]
. (15-19)

Before proceeding, it is important to emphasize the role of the identification con-
dition in this result. In the matrix [Ŷ j , X j ], which has Mj + Kj columns, all columns
are linear functions of the K columns of X. There exist, at most, K linearly indepen-
dent combinations of the columns of X. If the equation is not identified, then Mj + Kj

is greater than K, and [Ŷ j , X j ] will not have full column rank. In this case, the 2SLS
estimator cannot be computed. If, however, the order condition but not the rank con-
dition is met, then although the 2SLS estimator can be computed, it is not a consistent
estimator. There are a few useful simplifications. First, since X(X′X)−1X′ = (I − M) is
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idempotent, Ŷ′
j Y j = Ŷ′

j Ŷ j . Second, X′
j X(X′X)−1X′ = X′

j implies that X′
j Y j = X′

j Ŷ j .
Thus, (15-19) can also be written

δ̂ j,2SLS =
[

Ŷ′
j Ŷ j Ŷ′

j X j

X′
j Ŷ j X′

j X j

]−1 [
Ŷ′

j y j

X′
j y j

]
. (15-20)

The 2SLS estimator is obtained by ordinary least squares regression of y j on Ŷ j and
X j . Thus, the name stems from the two regressions in the procedure:

1. Stage 1. Obtain the least squares predictions from regression of Y j on X.
2. Stage 2. Estimate δ j by least squares regression of y j on Ŷ j and X j .

A direct proof of the consistency of the 2SLS estimator requires only that we
establish that it is a valid IV estimator. For (15-15a), we require

plim

[
Ŷ′

j Y j/T Ŷ′
j X j/T

X′
j Y j/T X′

j X j/T

]
= plim

[
P′

j X
′(XII j + V j )/T P′

j X
′X j/T

X′
j (XII j + V j )/T X′

j X j/T

]

to be a finite nonsingular matrix. We have used (15-13) for Y j , which is a continuous
function of P j , which has plim P j = � j . The Slutsky theorem thus allows us to substitute
� j for P j in the probability limit. That the parts converge to a finite matrix follows from
(15-3) and (15-5). It will be nonsingular if � j has full column rank, which, in turn, will
be true if the equation is identified.15 For (15-15b), we require that

plim
1
T

[
Ŷ′

jε j

X′
jε j

]
=

[
0
0

]
.

The second part is assumed in (15-4). For the first, by direct substitution,

plim
1
T

Ŷ′
j X(X′X)−1X′ε j = plim

(
Y′

j X

T

)(
X′X

T

)−1(X′ε j

T

)
.

The third part on the right converges to zero, whereas the other two converge to finite
matrices, which confirms the result. Since δ̂ j,2SLS is an IV estimator, we can just invoke
Theorem 5.3 for the asymptotic distribution. A proof of asymptotic efficiency requires
the establishment of the benchmark, which we shall do in the discussion of the MLE.

As a final shortcut that is useful for programming purposes, we note that if X j is
regressed on X, then a perfect fit is obtained, so X̂ j = X j . Using the idempotent matrix
(I − M), (15-20) becomes

δ̂ j,2SLS =
[

Y′
j (I − M)Y j Y′

j (I − M)X j

X′
j (I − M)Y j X′

j (I − M)X j

]−1 [
Y′

j (I − M)y j

X′
j (I − M)y j

]
.

Thus,

δ̂ j,2SLS = [Ẑ′
j Ẑ j ]−1Ẑ′

j y j

= [(Z′
j X)(X′X)−1(X′Z j )]−1(Z′

j X)(X′X)−1X′y j ,
(15-21)

where all columns of Ẑ′
j are obtained as predictions in a regression of the corresponding

15Schmidt (1976, pp. 150–151) provides a proof of this result.
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column of Z j on X. This equation also results in a useful simplification of the estimated
asymptotic covariance matrix,

Est.Asy. Var[δ̂ j,2SLS] = σ̂ j j [Ẑ′
j Ẑ j ]−1.

It is important to note that σ j j is estimated by

σ̂ j j = (y j − Z j δ̂ j )
′(y j − Z j δ̂ j )

T
,

using the original data, not Ẑ j .

15.5.4 GMM ESTIMATION

The GMM estimator in Section 10.4 is, with a minor change of notation, precisely the
set of procedures we have been using here. Using this method, however, will allow us
to generalize the covariance structure for the disturbances. We assume that

yjt = z′
j tδ j + ε j t ,

where z j t = [Y j t , x j t ] (we use the capital Y j t to denote the Lj included endogenous vari-
ables). Thus far, we have assumed that ε j t in the jth equation is neither heteroscedastic
nor autocorrelated. There is no need to impose those assumptions at this point. Autocor-
relation in the context of a simultaneous equations model is a substantial complication,
however. For the present, we will consider the heteroscedastic case only.

The assumptions of the model provide the orthogonality conditions,

E [x tε j t ] = E [x t (yjt − z′
j tδ j )] = 0.

If x t is taken to be the full set of exogenous variables in the model, then we obtain the
criterion for the GMM estimator,

q =
[

e(zt , δ j )
′X

T

]
W−1

j j

[
X′e(zt , δ j )

T

]

= m̄(δ j )
′W−1

j j m̄(δ j ),

where

m̄(δ j ) = 1
T

T∑
t=1

x t (yjt − z′
j tδ j ) and W−1

j j = the GMM weighting matrix.

Once again, this is precisely the estimator defined in Section 10.4 [see (10-17)]. If the
disturbances are assumed to be homoscedastic and nonautocorrelated, then the optimal
weighting matrix will be an estimator of the inverse of

W j j = Asy. Var[
√

T m̄(δ j )]

= plim

[
1
T

T∑
t=1

x t x′
t (yjt − z′

j tδ j )
2

]

= plim
1
T

T∑
t=1

σ j j x t x′
t

= plim
σ j j (X′X)

T
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The constant σ j j is irrelevant to the solution. If we use (X′X)−1 as the weighting matrix,
then the GMM estimator that minimizes q is the 2SLS estimator.

The extension that we can obtain here is to allow for heteroscedasticity of un-
known form. There is no need to rederive the earlier result. If the disturbances are
heteroscedastic, then

W j j = plim
1
T

T∑
t=1

ω j j,t x t x′
t = plim

X′� j j X
T

.

The weighting matrix can be estimated with White’s consistent estimator—see (10-23)—
if a consistent estimator of δ j is in hand with which to compute the residuals. One is, since
2SLS ignoring the heteroscedasticity is consistent, albeit inefficient. The conclusion
then is that under these assumptions, there is a way to improve on 2SLS by adding
another step. The name 3SLS is reserved for the systems estimator of this sort. When
choosing between 2.5-stage least squares and Davidson and MacKinnon’s suggested
“heteroscedastic 2SLS, or H2SLS,” we chose to opt for the latter. The estimator is
based on the initial two-stage least squares procedure. Thus,

δ̂ j,H2SLS = [Z′
j X(S0, j j )

−1X′Z j ]−1[Z′
j X(S0, j j )

−1X′y j ],

where

S0, j j =
T∑

t=1

x t x′
t (yjt − z′

j t δ̂ j,2SLS)
2.

The asymptotic covariance matrix is estimated with

Est.Asy. Var[δ̂ j,H2SLS] = [Z′
j X(S0, j j )

−1X′Z j ]−1.

Extensions of this estimator were suggested by Cragg (1983) and Cumby, Huizinga, and
Obstfeld (1983).

15.5.5 LIMITED INFORMATION MAXIMUM LIKELIHOOD
AND THE K CLASS OF ESTIMATORS

The limited information maximum likelihood (LIML) estimator is based on a single
equation under the assumption of normally distributed disturbances; LIML is efficient
among single-equation estimators. A full (lengthy) derivation of the log-likelihood is
provided in Theil (1971) and Davidson and MacKinnon (1993). We will proceed to
the practical aspects of this estimator and refer the reader to these sources for the
background formalities. A result that emerges from the derivation is that the LIML
estimator has the same asymptotic distribution as the 2SLS estimator, and the latter
does not rely on an assumption of normality. This raises the question why one would
use the LIML technique given the availability of the more robust (and computationally
simpler) alternative. Small sample results are sparse, but they would favor 2SLS as
well. [See Phillips (1983).] The one significant virtue of LIML is its invariance to the
normalization of the equation. Consider an example in a system of equations,

y1 = y2γ2 + y3γ3 + x1β1 + x2β2 + ε1.
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An equivalent equation would be

y2 = y1(1/γ2) + y3(−γ3/γ2) + x1(−β1/γ2) + x2(−β2/γ2) + ε1(−1/γ2)

= y1γ̃1 + y3γ̃3 + x1β̃1 + x2β̃2 + ε̃1

The parameters of the second equation can be manipulated to produce those of the first.
But, as you can easily verify, the 2SLS estimator is not invariant to the normalization of
the equation—2SLS would produce numerically different answers. LIML would give
the same numerical solutions to both estimation problems suggested above.

The LIML, or least variance ratio estimator, can be computed as follows.16 Let

W0
j = E0

j
′E0

j , (15-22)

where

Y0
j = [y j , Y j ]

and

E0
j = M j Y0

j = [I − X j (X′
j X j )

−1X′
j ]Y

0
j . (15-23)

Each column of E0
j is a set of least squares residuals in the regression of the corre-

sponding column of Y0
j on X j , that is, the exogenous variables that appear in the jth

equation. Thus, W0
j is the matrix of sums of squares and cross products of these residuals.

Define

W1
j = E1

j
′E1

j = Y0
j
′[I − X(X′X)−1X′]Y0

j . (15-24)

That is, W1
j is defined like W0

j except that the regressions are on all the xs in the model,
not just the ones in the jth equation. Let

λ1 = smallest characteristic root of
(
W1

j

)−1W0
j . (15-25)

This matrix is asymmetric, but all its roots are real and greater than or equal to 1.
Depending on the available software, it may be more convenient to obtain the identical
smallest root of the symmetric matrix D = (W1

j )
−1/2W0

j (W
1
j )

−1/2. Now partition W0
j into

W0
j =

[
w0

j j w0
j
′

w0
j W0

j j

]
corresponding to [y j , Y j ], and partition W1

j likewise. Then, with

these parts in hand,

γ̂ j,LIML = [
W0

j j − λ1W1
j j

]−1(w0
j − λ1w1

j

)
(15-26)

and

β̂ j,LIML = [X′
j X j ]−1X′

j (y j − Y j γ̂ j,LIML).

Note that β j is estimated by a simple least squares regression. [See (3-18).] The asymp-
totic covariance matrix for the LIML estimator is identical to that for the 2SLS

16The least variance ratio estimator is derived in Johnston (1984). The LIML estimator was derived by
Anderson and Rubin (1949, 1950).
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estimator.17 The implication is that with normally distributed disturbances, 2SLS is
fully efficient.

The “k class” of estimators is defined by the following form

δ̂ j,k =
[

Y′
j Y j − kV′

j V j Y′
j X j

X′
j Y j X′

j X j

]−1 [
Y′

j y j − kV′
j v j

X′
j y j

]
.

We have already considered three members of the class, OLS with k = 0, 2SLS with
k = 1, and, it can be shown, LIML with k = λ1. [This last result follows from (15-26).]
There have been many other k-class estimators derived; Davidson and MacKinnon
(1993, pp. 649–651) and Mariano (2001) give discussion. It has been shown that all
members of the k class for which k converges to 1 at a rate faster than 1/

√
n have the same

asymptotic distribution as that of the 2SLS estimator that we examined earlier. These
are largely of theoretical interest, given the pervasive use of 2SLS or OLS, save for an
important consideration. The large- sample properties of all k-class estimator estimators
are the same, but the finite-sample properties are possibly very different. Davidson and
MacKinnon (1993) and Mariano (1982, 2001) suggest that some evidence favors LIML
when the sample size is small or moderate and the number of overidentifying restrictions
is relatively large.

15.5.6 TWO-STAGE LEAST SQUARES IN MODELS
THAT ARE NONLINEAR IN VARIABLES

The analysis of simultaneous equations becomes considerably more complicated when
the equations are nonlinear. Amemiya presents a general treatment of nonlinear mod-
els.18 A case that is broad enough to include many practical applications is the one
analyzed by Kelejian (1971),

y j = γ1 j f1 j (y, x) + γ2 j f2 j (y, x) + · · · + X jβ j + ε j ,
19

which is an extension of (7-4). Ordinary least squares will be inconsistent for the same
reasons as before, but an IV estimator, if one can be devised, should have the familiar
properties. Because of the nonlinearity, it may not be possible to solve for the reduced-
form equations (assuming that they exist), hi j (x) = E [ fi j | x]. Kelejian shows that 2SLS
based on a Taylor series approximation to hi j , using the linear terms, higher powers, and
cross-products of the variables in x, will be consistent. The analysis of 2SLS presented
earlier then applies to the Z j consisting of [f̂1 j , f̂2 j , . . . , X j ]. [The alternative approach
of using fitted values for y appears to be inconsistent. See Kelejian (1971) and Goldfeld
and Quandt (1968).]

In a linear model, if an equation fails the order condition, then it cannot be esti-
mated by 2SLS. This statement is not true of Kelejian’s approach, however, since taking
higher powers of the regressors creates many more linearly independent instrumental
variables. If an equation in a linear model fails the rank condition but not the order

17This is proved by showing that both estimators are members of the “k class” of estimators, all of which have
the same asymptotic covariance matrix. Details are given in Theil (1971) and Schmidt (1976).
18Amemiya (1985, pp. 245–265). See, as well, Wooldridge (2002, ch. 9).
192SLS for models that are nonlinear in the parameters is discussed in Chapters 10 and 11 in connection with
GMM estimators.
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condition, then the 2SLS estimates can be computed in a finite sample but will fail to
exist asymptotically because X� j will have short rank. Unfortunately, to the extent
that Kelejian’s approximation never exactly equals the true reduced form unless it hap-
pens to be the polynomial in x (unlikely), this built-in control need not be present,
even asymptotically. Thus, although the model in Example 15.7 (below) is unidentified,
computation of Kelejian’s 2SLS estimator appears to be routine.

Example 15.7 A Nonlinear Model of Industry Structure
The following model of industry structure and performance was estimated by Strickland
and Weiss (1976). Note that the square of the endogenous variable, C, appears in the first
equation.

A = α0 + α1 M + α2Cd + α3C + α4C2 + α5Gr + α6 D + ε1,

C = β0 + β1 A + β2MES + ε2,

M = γ0 + γ1 K + γ2Gr + γ3C + γ4Gd + γ5 A + γ6MES + ε3.

S = industry sales M = price cost margin,
A = advertising/S, D = durable goods industry(0/1) ,
C = concentration, Gr = industry growth rate,

Cd = consumer demand/S, K = capital stock/S,
ME S = efficient scale/S, Gd = geographic dispersion.

Since the only restrictions are exclusions, we may check identification by the rule rank
[A′

3, A′
5] = M − 1 discussed in Section 15.3.1. Identification of the first equation requires

[A′
3, A′

5] =
[
β2 0 0
γ6 γ1 γ4

]

to have rank two, which it does unless β2 = 0. Thus, the first equation is identified by the
presence of the scale variable in the second equation. It is easily seen that the second
equation is overidentified. But for the third,

[A′
3, A′

5] =
[
α4 α2 α6

0 0 0

]
( ! ) ,

which has rank one, not two. The third equation is not identified. It passes the order condition
but fails the rank condition. The failure of the third equation is obvious on inspection. There
is no variable in the second equation that is not in the third. Nonetheless, it was possible to
obtain two stage least squares estimates because of the nonlinearity of the model and the
results discussed above.

15.6 SYSTEM METHODS OF ESTIMATION

We may formulate the full system of equations as



y1

y2
...

yM


 =




Z1 0 · · · 0
0 Z2 · · · 0
...

...
...

...

0 0 · · · ZM







δ1

δ2
...

δM


 +




ε1

ε2
...

εM


 (15-27)

or

y = Zδ + ε,
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where

E [ε | X] = 0, and E [εε′ | X] = �̄ = � ⊗ I (15-28)

[see (14-3).] The least squares estimator,

d = [Z′Z]−1Z′y,

is equation-by-equation ordinary least squares and is inconsistent. But even if ordinary
least squares were consistent, we know from our results for the seemingly unrelated
regressions model in the previous chapter that it would be inefficient compared with
an estimator that makes use of the cross-equation correlations of the disturbances.
For the first issue, we turn once again to an IV estimator. For the second, as we did in
Chapter 14, we use a generalized least squares approach. Thus, assuming that the matrix
of instrumental variables, W̄ satisfies the requirements for an IV estimator, a consistent
though inefficient estimator would be

δ̂IV = [W̄′Z]−1W̄′y. (15-29)

Analogous to the seemingly unrelated regressions model, a more efficient estimator
would be based on the generalized least squares principle,

δ̂IV,GLS = [W̄′(�−1 ⊗ I)Z]−1W̄′(�−1 ⊗ I)y (15-30)

or, where W j is the set of instrumental variables for the jth equation,

δ̂IV,GLS =




σ 11W′
1Z1 σ 12W′

1Z2 · · · σ 1MW′
1ZM

σ 21W′
2Z1 σ 22W′

2Z2 · · · σ 2MW′
2ZM

...

σ M1W′
MZ1 σ M2W′

MZ2 · · · σ MMW′
MZM




−1



∑M
j=1 σ 1 j W′

1y j
∑M

j=1 σ 2 j W′
2y j

...∑M
j=1 σ Mj W′

My j




.

Three techniques are generally used for joint estimation of the entire system of
equations: three-stage least squares, GMM, and full information maximum likelihood.

15.6.1 THREE-STAGE LEAST SQUARES

Consider the IV estimator formed from

W̄ = Ẑ = diag[X(X′X)−1X′Z1, . . . , X(X′X)−1X′ZM] =




Ẑ1 0 · · · 0
0 Ẑ2 · · · 0
...

...
...

...

0 0 · · · ẐM


 .

The IV estimator

δ̂IV = [Ẑ′Z]−1Ẑ′y

is simply equation-by-equation 2SLS. We have already established the consistency of
2SLS. By analogy to the seemingly unrelated regressions model of Chapter 14, however,
we would expect this estimator to be less efficient than a GLS estimator. A natural
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candidate would be

δ̂3SLS = [Ẑ′(�−1 ⊗ I)Z]−1Ẑ′(�−1 ⊗ I)y.

For this estimator to be a valid IV estimator, we must establish that

plim
1
T

Ẑ′(�−1 ⊗ I)ε = 0,

which is M sets of equations, each one of the form

plim
1
T

M∑
j=1

σ i j Ẑ′
jε j = 0.

Each is the sum of vectors all of which converge to zero, as we saw in the development
of the 2SLS estimator. The second requirement, that

plim
1
T

Ẑ′(�−1 ⊗ I)Z �= 0,

and that the matrix be nonsingular, can be established along the lines of its counterpart
for 2SLS. Identification of every equation by the rank condition is sufficient. [But, see
Mariano (2001) on the subject of “weak instruments.”]

Once again using the idempotency of I − M, we may also interpret this estimator
as a GLS estimator of the form

δ̂3SLS = [Ẑ′(�−1 ⊗ I)Ẑ]−1Ẑ′(�−1 ⊗ I)y. (15-31)

The appropriate asymptotic covariance matrix for the estimator is

Asy. Var[δ̂3SLS] = [Z̄′(�−1 ⊗ I)Z̄]−1, (15-32)

where Z̄ = diag[X� j , X j ]. This matrix would be estimated with the bracketed inverse
matrix in (15-31).

Using sample data, we find that Z̄ may be estimated with Ẑ. The remaining difficulty
is to obtain an estimate of �. In estimation of the multivariate regression model, for
efficient estimation (that remains to be shown), any consistent estimator of � will
do. The designers of the 3SLS method, Zellner and Theil (1962), suggest the natural
choice arising out of the two-stage least estimates. The three-stage least squares (3SLS)
estimator is thus defined as follows:

1. Estimate � by ordinary least squares and compute Ŷ j for each equation.
2. Compute δ̂ j,2SLS for each equation; then

σ̂i j = (yi − Zi δ̂i )
′(y j − Z j δ̂ j )

T
. (15-33)

3. Compute the GLS estimator according to (15-31) and an estimate of the
asymptotic covariance matrix according to (15-32) using Ẑ and �̂.

It is also possible to iterate the 3SLS computation. Unlike the seemingly unrelated
regressions estimator, however, this method does not provide the maximum likelihood
estimator, nor does it improve the asymptotic efficiency.20

20A Jacobian term needed to maximize the log-likelihood is not treated by the 3SLS estimator. See Dhrymes
(1973).
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By showing that the 3SLS estimator satisfies the requirements for an IV estimator,
we have established its consistency. The question of asymptotic efficiency remains. It can
be shown that among all IV estimators that use only the sample information embodied
in the system, 3SLS is asymptotically efficient.21 For normally distributed disturbances, it
can also be shown that 3SLS has the same asymptotic distribution as the full-information
maximum likelihood estimator, which is asymptotically efficient among all estimators.
A direct proof based on the information matrix is possible, but we shall take a much
simpler route by simply exploiting a handy result due to Hausman in the next section.

15.6.2 FULL-INFORMATION MAXIMUM LIKELIHOOD

Because of their simplicity and asymptotic efficiency, 2SLS and 3SLS are used almost
exclusively (when ordinary least squares is not used) for the estimation of simultaneous-
equations models. Nonetheless, it is occasionally useful to obtain maximum likelihood
estimates directly. The full-information maximum likelihood (FIML) estimator is based
on the entire system of equations. With normally distributed disturbances, FIML is
efficient among all estimators.

The FIML estimator treats all equations and all parameters jointly. To formulate
the appropriate log-likelihood function, we begin with the reduced form,

Y = X� + V,

where each row of V is assumed to be multivariate normally distributed, with
E [vt | X] = 0 and covariance matrix, E [vt v′

t | X] = �. The log-likelihood for this model
is precisely that of the seemingly unrelated regressions model of Chapter 14. For the
moment, we can ignore the relationship between the structural and reduced-form pa-
rameters. Thus, from (14-20),

ln L = −T
2

[M ln(2π) + ln|�| + tr(�−1W)],

where

Wi j = 1
T

(
y − Xπ0

i

)′(y − Xπ0
j

)

and

π0
j = jth column of �.

This function is to be maximized subject to all the restrictions imposed by the structure.
Make the substitutions � = −B�−1 and � = (�−1)′��−1 so that �−1 = ��−1�′. Thus,

ln L= −T
2

[
M ln(2π) + ln|(�−1)′��−1| + tr

{
1
T

[��−1�′(Y + XB�−1)′(Y+XB�−1)]
}]

,

which can be simplified. First,

−T
2

ln|(�−1)′��−1| = −T
2

ln|�| + T ln|�|.

21See Schmidt (1976) for a proof of its efficiency relative to 2SLS.
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Second, �′(Y + XB �−1)′ = �′Y′ + B′X′. By permuting � from the beginning to the
end of the trace and collecting terms,

tr(�−1W) = tr
[
�−1(Y� + XB)′(Y� + XB)

T

]
.

Therefore, the log-likelihood is

ln L = −T
2

[M ln(2π) − 2 ln|�| + tr(�−1S) + ln|�|],

where

si j = 1
T

(Y�i + XBi )
′(Y� j + XB j ).

[In terms of nonzero parameters, si j is σ̂i j of (15-32).]
In maximizing ln L, it is necessary to impose all the additional restrictions on the

structure. The trace may be written in the form

tr(�−1S) =
∑M

i=1

∑M
j=1 σ i j (yi − Yiγ i − Xiβ i )

′(y j − Y jγ j − X jβ j )

T
. (15-34)

Maximizing ln L subject to the exclusions in (15-34) and any other restrictions, if neces-
sary, produces the FIML estimator. This has all the desirable asymptotic properties of
maximum likelihood estimators and, therefore, is asymptotically efficient among esti-
mators of the simultaneous-equations model. The asymptotic covariance matrix for the
FIML estimator is the same as that for the 3SLS estimator.

A useful interpretation of the FIML estimator is provided by Dhrymes (1973, p. 360)
and Hausman (1975, 1983). They show that the FIML estimator of δ is a fixed point in
the equation

δ̂FIML = [Ẑ(δ̂)′(�̂−1 ⊗ I)Z]−1[Ẑ(δ̂)′(�̂−1 ⊗ I)y] = [ ˆ̂Z′Z]−1 ˆ̂Z′y,

where

Ẑ(δ̂)′(�̂−1 ⊗ I) =




σ̂ 11Ẑ′
1 σ̂ 12Ẑ′

1 · · · σ̂ 1MẐ′
1

σ̂ 12Ẑ′
2 σ̂ 22Ẑ′

2 · · · σ̂ 2MẐ′
2

...
... · · · ...

σ̂ 1MẐ′
M σ̂ 2MẐ′

M · · · σ̂ MMẐ′
M




= ˆ̂Z′

and

Ẑ j = [X�̂ j , X j ].

�̂ is computed from the structural estimates:

�̂ j = Mj columns of −B̂�̂−1

and

σ̂i j = 1
T

(yi − Zi δ̂i )
′(y j − Z j δ̂ j ) and σ̂ i j = (�̂−1)i j .
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This result implies that the FIML estimator is also an IV estimator. The asymptotic
covariance matrix for the FIML estimator follows directly from its form as an IV
estimator. Since this matrix is the same as that of the 3SLS estimator, we conclude
that with normally distributed disturbances, 3SLS has the same asymptotic distribution
as maximum likelihood. The practical usefulness of this important result has not gone
unnoticed by practitioners. The 3SLS estimator is far easier to compute than the FIML
estimator. The benefit in computational cost comes at no cost in asymptotic efficiency.
As always, the small-sample properties remain ambiguous, but by and large, where a
systems estimator is used, 3SLS dominates FIML nonetheless.22 (One reservation arises
from the fact that the 3SLS estimator is robust to nonnormality whereas, because of the
term ln |�| in the log-likelihood, the FIML estimator is not. In fact, the 3SLS and FIML
estimators are usually quite different numerically.)

15.6.3 GMM ESTIMATION

The GMM estimator for a system of equations is described in Section 14.4.3. As in the
single-equation case, a minor change in notation produces the estimators of this chapter.
As before, we will consider the case of unknown heteroscedasticity only. The extension
to autocorrelation is quite complicated. [See Cumby, Huizinga, and Obstfeld (1983).]
The orthogonality conditions defined in (14-46) are

E [x tε j t ] = E [x t (y j t − z′
j tδ j )] = 0.

If we consider all the equations jointly, then we obtain the criterion for estimation of
all the model’s parameters,

q =
M∑

j=1

M∑
l=1

[
e(zt , δ j )

′X
T

]
[W] jl

[
X′e(zt , δl)

T

]

=
M∑

j=1

M∑
l=1

m̄(δ j )
′[W] jlm̄(δl),

where

m̄(δ j ) = 1
T

T∑
t=1

x t (yjt − z′
j tδ j )

and

[W] jl = block jl of the weighting matrix, W−1.

As before, we consider the optimal weighting matrix obtained as the asymptotic covari-
ance matrix of the empirical moments, m̄(δ j ). These moments are stacked in a single
vector m̄(δ). Then, the jlth block of Asy. Var[

√
T m̄(δ)] is

� jl = plim

{
1
T

T∑
t=1

[x t x′
t (yjt − z′

j tδ j )(ylt − z′
ltδl)]

}
= plim

(
1
T

T∑
t=1

ω jl,t x t x′
t

)
.

22PC-GIVE(8), SAS, and TSP(4.2) are three computer programs that are widely used. A survey is given in
Silk (1996).
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If the disturbances are homoscedastic, then � jl = σ jl[plim(X′X/T)] is produced.
Otherwise, we obtain a matrix of the form � jl = plim[X′� jlX/T]. Collecting terms,
then, the criterion function for GMM estimation is

q =




[X′(y1 − Z1δ1)]/T

[X′(y2 − Z2δ2)]/T

...

[X′(yM − ZMδM)]/T




′ 


�11 �12 · · · �1M

�21 �22 · · · �2M

...
... · · · ...

�M1 �M2 · · · �MM




−1 


[X′(y1 − Z1δ1)]/T

[X′(y2 − Z2δ2)]/T

...

[X′(yM − ZMδM)]/T




.

For implementation, � jl can be estimated with

�̂ jl = 1
T

T∑
t=1

x t x′
t (yjt − z′

j t d j )(ylt − z′
lt dl),

where d j is a consistent estimator of δ j . The two-stage least squares estimator is a
natural choice. For the diagonal blocks, this choice is the White estimator as usual. For
the off-diagonal blocks, it is a simple extension. With this result in hand, the first-order
conditions for GMM estimation are

∂q̂
∂δ j

= 2
M∑

l=1

(
Z′

j X

T

)
�̂

jl
[

X′(yl − Zlδl)

T

]

where �̂
jl

is the jlth block in the inverse of the estimate if the center matrix in q.
The solution is




δ̂1,GMM

δ̂2,GMM
...

δ̂M,GMM


=




Z′
1X�̂11X′Z1 Z′

1X�̂12X′Z2 · · · Z′
1X�̂1MX′ZM

Z′
2X�̂21X′Z1 Z′

2X�̂22X′Z2 · · · Z′
2X�̂2MX′ZM

...
... · · · ...

Z′
MX�̂M1X′Z1 Z′

MX�̂M2X′Z2 · · · Z′
MX�̂MMX′ZM




−1




M∑
j=1

Z′
1X�̂1 j y j

M∑
j=1

Z′
2X�̂2 j y j

...

M∑
j=1

Z′
MX�̂Mj y j




.

The asymptotic covariance matrix for the estimator would be estimated with T times
the large inverse matrix in brackets.

Several of the estimators we have already considered are special cases:

• If �̂ j j = σ̂ j j (X′X/T) and �̂ jl = 0 for j �= l, then δ̂ j is 2SLS.
• If �̂ jl = 0 for j �= l, then δ̂ j is H2SLS, the single-equation GMM estimator.
• If �̂ jl = σ̂ jl(X′X/T), then δ̂ j is 3SLS.

As before, the GMM estimator brings efficiency gains in the presence of heteroscedas-
ticity. If the disturbances are homoscedastic, then it is asymptotically the same as 3SLS,
[although in a finite sample, it will differ numerically because S jl will not be identical
to σ̂ jl(X′X)].
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15.6.4 RECURSIVE SYSTEMS AND EXACTLY
IDENTIFIED EQUATIONS

Finally, there are two special cases worth noting. First, for the fully recursive model,

1. � is upper triangular, with ones on the diagonal. Therefore, |�| = 1 and ln|�| = 0.
2. � is diagonal, so ln|�| = ∑M

j=1 ln σ j j and the trace in the exponent becomes

tr(�−1S) =
M∑

j=1

1
σ j j

1
T

(y j − Y jγ j − X jβ j )
′(y j − Y jγ j − X jβ j ).

The log-likelihood reduces to ln L = ∑M
j=1 ln Lj , where

ln Lj = −T
2

[ln(2π) + ln σ j j ] − 1
2σ j j

(y j − Y jγ j − X jβ j )
′(y j − Y jγ j − X jβ j ).

Therefore, the FIML estimator for this model is just equation-by-equation least squares.
We found earlier that ordinary least squares was consistent in this setting. We now find
that it is asymptotically efficient as well.

The second interesting special case occurs when every equation is exactly identified.
In this case, K∗

j = Mj in every equation. It is straightforward to show that in this case,
2SLS = 3SLS = LIML = FIML, and δ̂ j = [X′Z j ]−1X′y j .

15.7 COMPARISON OF METHODS—KLEIN’S
MODEL I

The preceding has described a large number of estimators for simultaneous-equations
models. As an example, Table 15.3 presents limited- and full-information estimates for
Klein’s Model I based on the original data for 1921 and 1941. The H3SLS estimates
for the system were computed in two pairs, (C, I) and (C, Wp), because there were
insufficient observations to fit the system as a whole. The first of these are reported for
the C equation.23

It might seem, in light of the entire discussion, that one of the structural estimators
described previously should always be preferred to ordinary least squares, which, alone
among the estimators considered here, is inconsistent. Unfortunately, the issue is not so
clear. First, it is often found that the OLS estimator is surprisingly close to the structural
estimator. It can be shown that at least in some cases, OLS has a smaller variance about
its mean than does 2SLS about its mean, leading to the possibility that OLS might be
more precise in a mean-squared-error sense.24 But this result must be tempered by
the finding that the OLS standard errors are, in all likelihood, not useful for inference
purposes.25 Nonetheless, OLS is a frequently used estimator. Obviously, this discussion

23The asymptotic covariance matrix for the LIML estimator will differ from that for the 2SLS estimator
in a finite sample because the estimator of σ j j that multiplies the inverse matrix will differ and because in
computing the matrix to be inverted, the value of “k” (see the equation after (15-26)) is one for 2SLS and the
smallest root in (15-25) for LIML. Asymptotically, k equals one and the estimators of σ j j are equivalent.
24See Goldberger (1964, pp. 359–360).
25Cragg (1967).
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TABLE 15.3 Estimates of Klein’s Model I (Estimated Asymptotic Standard
Errors in Parentheses)

Limited-Information Estimates Full-Information Estimates

2SLS 3SLS
C 16.6 0.017 0.216 0.810 16.4 0.125 0.163 0.790

(1.32) (0.118) (0.107) (0.040) (1.30) (0.108) (0.100) (0.033)
I 20.3 0.150 0.616 −0.158 28.2 −0.013 0.756 −0.195

(7.54) (0.173) (0.162) (0.036) (6.79) (0.162) (0.153) (0.038)
Wp 1.50 0.439 0.147 0.130 1.80 0.400 0.181 0.150

(1.15) (0.036) (0.039) (0.029) (1.12) (0.032) (0.034) (0.028)

LIML FIML
C 17.1 −0.222 0.396 0.823 18.3 −0.232 0.388 0.802

(1.84) (0.202) (0.174) (0.055) (2.49) (0.312) (0.217) (0.036)
I 22.6 0.075 0.680 −0.168 27.3 −0.801 1.052 −0.146

(9.24) (0.219) (0.203) (0.044) (7.94) (0.491) (0.353) (0.30)
Wp 1.53 0.434 0.151 0.132 5.79 0.234 0.285 0.235

(2.40) (0.137) (0.135) (0.065) (1.80) (0.049) (0.045) (0.035)

GMM (H2SLS) GMM (H3SLS)
C 14.3 0.090 0.143 0.864 15.7 0.068 0.167 0.829

(0.897) (0.062) (0.065) (0.029) (0.951) (0.091) (0.080) (0.033)
I 23.5 0.146 0.591 −0.171 20.6 0.213 −0.520 −0.157

(6.40) (0.120) (0.129) (0.031) (4.89) (0.087) (0.099) (0.025)
Wp 3.06 0.455 0.106 0.130 2.09 0.446 0.131 0.112

(0.64) (0.028) (0.030) (0.022) (0.510) (0.019) (0.021) (0.021)

OLS I3SLS
C 16.2 0.193 0.090 0.796 16.6 0.165 0.177 0.766

(1.30) (0.091) (0.091) (0.040) (1.22) (0.096) (0.090) (0.035)
I 10.1 0.480 0.333 −0.112 42.9 −0.356 1.01 −0.260

(5.47) (0.097) (0.101) (0.027) (10.6) (0.260) (0.249) (0.051)
Wp 1.50 0.439 0.146 0.130 2.62 0.375 0.194 0.168

(1.27) (0.032) (0.037) (0.032) (1.20) (0.031) (0.032) (0.029)

is relevant only to finite samples. Asymptotically, 2SLS must dominate OLS, and in a
correctly specified model, any full-information estimator must dominate any limited-
information one. The finite-sample properties are of crucial importance. Most of what
we know is asymptotic properties, but most applications are based on rather small or
moderately sized samples.

The large difference between the inconsistent OLS and the other estimates suggests
the bias discussed earlier. On the other hand, the incorrect sign on the LIML and FIML
estimate of the coefficient on P and the even larger difference of the coefficient on P−1

in the C equation are striking. Assuming that the equation is properly specified, these
anomalies would likewise be attributed to finite sample variation, because LIML and
2SLS are asymptotically equivalent. The GMM estimator is also striking. The estimated
standard errors are noticeably smaller for all the coefficients. It should be noted, how-
ever, that this estimator is based on a presumption of heteroscedasticity when in this
time series, there is little evidence of its presence. The results are broadly suggestive,
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but the appearance of having achieved something for nothing is deceiving. Our earlier
results on the efficiency of 2SLS are intact. If there is heteroscedasticity, then 2SLS is
no longer fully efficient, but, then again, neither is H2SLS. The latter is more efficient
than the former in the presence of heteroscedasticity, but it is equivalent to 2SLS in its
absence.

Intuition would suggest that systems methods, 3SLS, GMM, and FIML, are to
be preferred to single-equation methods, 2SLS and LIML. Indeed, since the advan-
tage is so transparent, why would one ever choose a single-equation estimator? The
proper analogy is to the use of single-equation OLS versus GLS in the SURE model of
Chapter 14. An obvious practical consideration is the computational simplicity of the
single-equation methods. But the current state of available software has all but elimi-
nated this advantage.

Although the systems methods are asymptotically better, they have two problems.
First, any specification error in the structure of the model will be propagated throughout
the system by 3SLS or FIML. The limited-information estimators will, by and large,
confine a problem to the particular equation in which it appears. Second, in the same
fashion as the SURE model, the finite-sample variation of the estimated covariance
matrix is transmitted throughout the system. Thus, the finite-sample variance of 3SLS
may well be as large as or larger than that of 2SLS. Although they are only single
estimates, the results for Klein’s Model I give a striking example. The upshot would
appear to be that the advantage of the systems estimators in finite samples may be more
modest than the asymptotic results would suggest. Monte Carlo studies of the issue
have tended to reach the same conclusion.26

15.8 SPECIFICATION TESTS

In a strident criticism of structural estimation, Liu (1960) argued that all simultaneous-
equations models of the economy were truly unidentified and that only reduced forms
could be estimated. Although his criticisms may have been exaggerated (and never
gained wide acceptance), modelers have been interested in testing the restrictions that
overidentify an econometric model.

The first procedure for testing the overidentifying restrictions in a model was devel-
oped by Anderson and Rubin (1950). Their likelihood ratio test statistic is a by-product
of LIML estimation:

LR = χ2[K∗
j − Mj ] = T(λ j − 1),

where λ j is the root used to find the LIML estimator. [See (15-27).] The statistic has
a limiting chi-squared distribution with degrees of freedom equal to the number of
overidentifying restrictions. A large value is taken as evidence that there are exogenous
variables in the model that have been inappropriately omitted from the equation be-
ing examined. If the equation is exactly identified, then K∗

j − Mj = 0, but at the same
time, the root will be 1. An alternative based on the Lagrange multiplier principle was

26See Cragg (1967) and the many related studies listed by Judge et al. (1985, pp. 646–653).
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proposed by Hausman (1983, p. 433). Operationally, the test requires only the calcula-
tion of TR2, where the R2 is the uncentered R2 in the regression of ε̂ j = y j −Z j δ̂ j on all
the predetermined variables in the model. The estimated parameters may be computed
using 2SLS, LIML, or any other efficient limited-information estimator. The statistic has
a limiting chi-squared distribution with K∗

j − Mj degrees of freedom under the assumed
specification of the model.

Another specification error occurs if the variables assumed to be exogenous in the
system are, in fact, correlated with the structural disturbances. Since all the asymptotic
properties claimed earlier rest on this assumption, this specification error would be
quite serious. Several authors have studied this issue.27 The specification test devised by
Hausman that we used in Section 5.5 in the errors in variables model provides a method
of testing for exogeneity in a simultaneous-equations model. Suppose that the variable
xe is in question. The test is based on the existence of two estimators, say δ̂ and δ̂∗, such
that

under H0: (xe is exogenous), both δ̂ and δ̂∗ are consistent and δ̂∗ is asymptotically
efficient,

under H1: (xe is endogenous), δ̂ is consistent, but δ̂∗ is inconsistent.

Hausman bases his version of the test on δ̂ being the 2SLS estimator and δ̂∗ being the
3SLS estimator. A shortcoming of the procedure is that it requires an arbitrary choice of
some equation that does not contain xe for the test. For instance, consider the exogeneity
of X−1 in the third equation of Klein’s Model I. To apply this test, we must use one of
the other two equations.

A single-equation version of the test has been devised by Spencer and Berk (1981).
We suppose that xe appears in equation j , so that

y j = Y jγ j + X jβ j + xeθ + ε j

= [Y j , X j , xe]δ j + ε j .

Then δ̂∗ is the 2SLS estimator, treating xe as an exogenous variable in the system,
whereas δ̂ is the IV estimator based on regressing y j on Y j , X j , x̂e, where the least
squares fitted values are based on all the remaining exogenous variables, excluding xe.
The test statistic is then

w = (δ̂∗ − δ̂)′
{

Est. Var[δ̂] − Est. Var[δ̂∗]
}−1

(δ̂∗ − δ̂), (15-35)

which is the Wald statistic based on the difference of the two estimators. The statistic
has one degree of freedom. (The extension to a set of variables is direct.)

Example 15.8 Testing Overidentifying Restrictions
For Klein’s Model I, the test statistics and critical values for the chi-squared distribution
for the overidentifying restrictions for the three equations are given in Table 15.4. There
are 20 observations used to estimate the model and eight predetermined variables. The
overidentifying restrictions for the wage equation are rejected by both single-equation tests.
There are two possibilities. The equation may well be misspecified. Or, as Liu suggests, in a

27Wu (1973), Durbin (1954), Hausman (1978), Nakamura and Nakamura (1981) and Dhrymes (1994).

William Greene
s should not be italic,retain bold.

William Greene
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TABLE 15.4 Test Statistics and Critical Values

Chi-Squared Critical Values

λ LR T R2 K∗
j − Mj χ2[2] χ2[3]

Consumption 1.499 9.98 8.77 2
Investment 1.086 1.72 1.81 3 5% 5.99 7.82
Wages 2.466 29.3 12.49 3 1% 9.21 11.34

dynamic model, if there is autocorrelation of the disturbances, then the treatment of lagged
endogenous variables as if they were exogenous is a specification error.

The results above suggest a specification problem in the third equation of Klein’s Model I.
To pursue that finding, we now apply the preceding to test the exogeneity of X−1. The two
estimated parameter vectors are

δ̂∗ = [1.5003, 0.43886, 0.14667, 0.13040] (i.e., 2SLS)

and

δ̂ = [1.2524, 0.42277, 0.167614, 0.13062].

Using the Wald criterion, the chi-squared statistic is 1.3977. Thus, the hypothesis (such as it
is) is not rejected.

15.9 PROPERTIES OF DYNAMIC MODELS

In models with lagged endogenous variables, the entire previous time path of the exoge-
nous variables and disturbances, not just their current values, determines the current
value of the endogenous variables. The intrinsic dynamic properties of the autoregres-
sive model, such as stability and the existence of an equilibrium value, are embodied in
their autoregressive parameters. In this section, we are interested in long- and short-run
multipliers, stability properties, and simulated time paths of the dependent variables.

15.9.1 DYNAMIC MODELS AND THEIR MULTIPLIERS

The structural form of a dynamic model is

y′
t� + x′

t B + y′
t−1� = ε′

t . (15-36)

If the model contains additional lags, then we can add additional equations to the system
of the form y′

t−1 = y′
t−1. For example, a model with two periods of lags would be written

[yt yt−1]′
[
� 0
0 I

]
+ x′

t [B 0] + [yt−1 yt−2]′
[
�1 I
�2 0

]
= [ε′

t 0′]

which can be treated as a model with only a single lag—this is in the form of (15-36).
The reduced form is

y′
t = x′

t� + y′
t−1� + v′

t ,

where

� = −B�−1
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and

� = −��−1.

From the reduced form,

∂yt,m

∂xt,k
= �km.

The short-run effects are the coefficients on the current xs, so � is the matrix of impact
multipliers. By substituting for yt−1 in (15-36), we obtain

y′
t = x′

t� + x′
t−1�� + y′

t−2�
2 + (v′

t + v′
t−1�).

(This manipulation can easily be done with the lag operator—see Section 19.2.2—but it
is just as convenient to proceed in this fashion for the present.) Continuing this method
for the full t periods, we obtain

y′
t =

t−1∑
s=0

[x′
t−s��s] + y′

0�
t +

t−1∑
s=0

v′
t−s�

s . (15-37)

This shows how the initial conditions y0 and the subsequent time path of the exogenous
variables and disturbances completely determine the current values of the endogenous
variables. The coefficient matrices in the bracketed sum are the dynamic multipliers,

∂yt,m

∂xt−s,k
= (��s)km.

The cumulated multipliers are obtained by adding the matrices of dynamic multipliers.
If we let s go to infinity in (15-37), then we obtain the final form of the model,28

y′
t =

∞∑
s=0

[x′
t−s��s] +

∞∑
s=0

[v′
t−s�

s].

Assume for the present that limt→∞ �t = 0. (This says that � is nilpotent.) Then
the matrix of cumulated multipliers in the final form is

�[I + � + �2 + · · ·] = �[I − �]−1.

These coefficient matrices are the long-run or equilibrium multipliers. We can also
obtain the cumulated multipliers for s periods as

cumulated multipliers = �[I − �]−1[I − �s].

Suppose that the values of x were permanently fixed at x̄. Then the final form shows
that if there are no disturbances, the equilibrium value of yt would be

ȳ′ =
∞∑

s=0

[x̄′��s] = x̄′
∞∑

s=0

��s = x̄′�[I − �]−1. (15-38)

28In some treatments, (15-37) is labeled the final form instead. Both forms eliminate the lagged values of the
dependent variables from the current value. The dependence of the first form on the initial values may make
it simpler to interpret than the second form.
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Therefore, the equilibrium multipliers are

∂ ȳm

∂ x̄k
= [�(I − �)−1]km.

Some examples are shown below for Klein’s Model I.

15.9.2 STABILITY

It remains to be shown that the matrix of multipliers in the final form converges. For
the analysis to proceed, it is necessary for the matrix �t to converge to a zero matrix.
Although � is not a symmetric matrix, it will still have a spectral decomposition of the
form

� = C�C−1, (15-39)

where � is a diagonal matrix containing the characteristic roots of � and each column
of C is a right characteristic vector,

�cm = λmcm. (15-40)

Since � is not symmetric, the elements of � (and C) may be complex. Nonetheless,
(A-105) continues to hold:

�2 = C�C−1C�C−1 = C�2C−1 (15-41)

and

�t = C�t C−1.

It is apparent that whether or not �t vanishes as t → ∞ depends on its characteristic
roots. The condition is |λm| < 1. For the case of a complex root, |λm| = |a + bi | = √

a2 + b2.
For a given model, the stability may be established by examining the largest or dominant
root.

With many endogenous variables in the model but only a few lagged variables, � is
a large but sparse matrix. Finding the characteristic roots of large, asymmetric matrices
is a rather complex computation problem (although there exists specialized software
for doing so). There is a way to make the problem a bit more compact. In the context
of an example, in Klein’s Model I, � is 6 × 6, but with three rows of zeros, it has only
rank three and three nonzero roots. (See Table 15.5 in Example 15.9 following.) The
following partitioning is useful. Let yt1 be the set of endogenous variables that appear
in both current and lagged form, and let yt2 be those that appear only in current form.
Then the model may be written

[y′
t1 y′

t2] = x′
t [�1 �2] + [y′

t−1,1 y′
t−1,2]

[
�1 �2

0 0

]
+ [v′

t1 v′
t2]. (15-42)

The characteristic roots of � are defined by the characteristic polynomial, |� − λI| = 0.
For the partitioned model, this result is

∣∣∣∣
�1 − λI �2

0 −λI

∣∣∣∣ = 0.
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We may use (A-72) to obtain

|� − λI| = (−λ)M2 |�1 − λI| = 0,

where M2 is the number of variables in y2. Consequently, we need only concern ourselves
with the submatrix of � that defines explicit autoregressions. The part of the reduced
form defined by y′

t2 = x′
t�2 + y′

t−1,1�2 is not directly relevant.

15.9.3 ADJUSTMENT TO EQUILIBRIUM

The adjustment of a dynamic model to an equilibrium involves the following conceptual
experiment. We assume that the exogenous variables x t have been fixed at a level x̄ for a
long enough time that the endogenous variables have fully adjusted to their equilibrium
ȳ [defined in (15-38)]. In some arbitrarily chosen period, labeled period 0, an exogenous
one-time shock hits the system, so that in period t = 0, x t = x0 �= x̄. Thereafter, x t returns
to its former value x̄, and x t = x̄ for all t > 0. We know from the expression for the final
form that, if disturbed, yt will ultimately return to the equilibrium. That situation is
ensured by the stability condition. Here we consider the time path of the adjustment.
Since our only concern at this point is with the exogenous shock, we will ignore the
disturbances in the analysis.

At time 0, y′
0 = x′

0� + y′
−1�. But prior to time 0, the system was in equilibrium, so

y′
0 = x′

0� + ȳ′�. The initial displacement due to the shock to x̄ is

y′
0 − ȳ′ = x′

0� − ȳ′(I − �).

Substituting x̄′� = ȳ′(I − �) produces

y′
0 − ȳ′ = (x′

0 − x̄′)�. (15-43)

As might be expected, the initial displacement is determined entirely by the exogenous
shock occurring in that period. Since x t = x̄ after period 0, (15-37) implies that

y′
t =

t−1∑
s=0

x̄′��s + y′
0�

t

= x̄′�(I − �)−1(I − �t ) + y′
0�

t

= ȳ′ − ȳ′�t + y′
0�

t

= ȳ′ + (y′
0 − ȳ′)�t .

Thus, the entire time path is a function of the initial displacement. By inserting (15-43),
we see that

y′
t = ȳ′ + (x′

0 − x̄′)��t . (15-44)

Since limt→∞ �t = 0, the path back to the equilibrium subsequent to the exogenous
shock (x0 − x̄) is defined. The stability condition imposed on � ensures that if the
system is disturbed at some point by a one-time shock, then barring further shocks or
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disturbances, it will return to its equilibrium. Since y0, x̄, x0, and � are fixed for all time,
the shape of the path is completely determined by the behavior of �t , which we now
examine.

In the preceding section, in (15-39) to (15-42), we used the characteristic roots of
� to infer the (lack of) stability of the model. The spectral decomposition of �t given
in (15-41) may be written

�t =
M∑

m=1

λt
mcmd′

m,

where cm is the mth column of C and d′
m is the mth row of C−1.29 Inserting this result in

(15-44), gives

(yt − ȳ)′ = [(x0 − x̄)′�]
M∑

m=1

λt
mcmd′

m

=
M∑

m=1

λt
m[(x0 − x̄)′�cmd′

m] =
M∑

m=1

λt
mg′

m.

(Note that this equation may involve fewer than M terms, since some of the roots may
be zero. For Klein’s Model I, M = 6, but there are only three nonzero roots.) Since gm

depends only on the initial conditions and the parameters of the model, the behavior of
the time path of (yt − ȳ) is completely determined by λt

m. In each period, the deviation
from the equilibrium is a sum of M terms of powers of λm times a constant. (Each
variable has its own set of constants.) The terms in the sum behave as follows:

λm real > 0, λt
m adds a damped exponential term,

λm real < 0, λt
m adds a damped sawtooth term,

λm complex, λt
m adds a damped sinusoidal term.

If we write the complex root λm = a + bi in polar form, then λ = A[cos B + i sin B],
where A= [a2 + b2]1/2 and B= arc cos(a/A) (in radians), the sinusoidal components
each have amplitude At and period 2π/B.30

Example 15.9 Dynamic Model
The 2SLS estimates of the structure and reduced form of Klein’s Model I are given in
Table 15.5. (Only the nonzero rows of �̂ and �̂ are shown.)
For the 2SLS estimates of Klein’s Model I, the relevant submatrix of �̂ is

K P K

�̂1 =




0.172 −0.051 −0.008

1.511 0.848 0.743

−0.287 −0.161 0.818




X−1

P−1

K−1

.

29See Section A.6.9.
30Goldberger (1964, p. 378).
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TABLE 15.5 2SLS Estimates of Coefficient Matrices in Klein’s Model I

Equation

Variable C I W p X P K

C 1 0 0 −1 0 0
I 0 1 0 −1 0 −1
Wp −0.810 0 1 0 1 0�̂ =
X 0 0 −0.439 1 −1 0
P −0.017 −0.15 0 0 1 0
K 0 0 0 0 0 1

1 −16.555 −20.278 −1.5 0 0 0
Wg −0.810 0 0 0 0 0

B̂ = T 0 0 0 0 1 0
G 0 0 0 −1 0 0
A 0 0 −0.13 0 0 0

X−1 0 0 −0.147 0 0 0
�̂ = P−1 −0.216 −0.6160 0 0 0 0

K−1 0 0.158 0 0 0 −1

1 42.80 25.83 31.63 68.63 37.00 25.83
Wg 1.35 0.124 0.646 1.47 0.825 0.125

�̂ = T −0.128 −0.176 −0.133 −0.303 −1.17 −0.176
G 0.663 0.153 0.797 1.82 1.02 0.153
A 0.159 −0.007 0.197 0.152 −0.045 −0.007

X−1 0.179 −0.008 0.222 0.172 −0.051 −0.008
�̂ = P−1 0.767 0.743 0.663 1.511 0.848 0.743

K−1 −0.105 −0.182 −0.125 −0.287 −0.161 0.818

The characteristic roots of this matrix are 0.2995 and the complex pair 0.7692 ±
0.3494i = 0.8448 [cos 0.4263 ± i sin 0.4263]. The moduli of the complex roots are 0.8448,
so we conclude that the model is stable. The period for the oscillations is 2π/0.4263 = 14.73
periods (years). (See Figure 15.2.)

For a particular variable or group of variables, the various multipliers are subma-
trices of the multiplier matrices. The dynamic multipliers based on the estimates in
Table 15.5 for the effects of the policy variables T and G on output, X, are plotted in
Figure 15.2 for current and 20 lagged values. A plot of the period multipliers against
the lag length is called the impulse response function. The policy effects on output are
shown in Figure 15.2. The damped sine wave pattern is characteristic of a dynamic sys-
tem with imaginary roots. When the roots are real, the impulse response function is a
monotonically declining function, instead.

This model has the interesting feature that the long-run multipliers of both policy
variables for investment are zero. This is intrinsic to the model. The estimated long-
run balanced-budget multiplier for equal increases in spending and taxes is 2.10 +
(−1.48) = 0.62.
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FIGURE 15.2 Impulse Response Function.

15.10 SUMMARY AND CONCLUSIONS

The models surveyed in this chapter involve most of the issues that arise in analysis of
linear equations in econometrics. Before one embarks on the process of estimation, it
is necessary to establish that the sample data actually contain sufficient information to
provide estimates of the parameters in question. This is the question of identification.
Identification involves both the statistical properties of estimators and the role of theory
in the specification of the model. Once identification is established, there are numerous
methods of estimation. We considered a number of single equation techniques including
least squares, instrumental variables, GMM, and maximum likelihood. Fully efficient use
of the sample data will require joint estimation of all the equations in the system. Once
again, there are several techniques—these are extensions of the single equation methods
including three stage least squares, GMM, and full information maximum likelihood.
In both frameworks, this is one of those benign situations in which the computationally
simplest estimator is generally the most efficient one. In the final section of this chapter,
we examined the special properties of dynamic models. An important consideration
in this analysis was the stability of the equations. Modern macroeconometrics involves
many models in which one or more roots of the dynamic system equal one, so that
these models, in the simple autoregressive form are unstable. In terms of the analysis
in Section 15.9.3, in such a model, a shock to the system is permanent—the effects do
not die out. We will examine a model of monetary policy with these characteristics in
Example 19.6.8.
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Key Terms and Concepts

• Admissible
• Behavioral equation
• Causality
• Complete system
• Completeness condition
• Consistent estimates
• Cumulative multiplier
• Dominant root
• Dynamic model
• Dynamic multiplier
• Econometric model
• Endogenous
• Equilibrium condition
• Equilibrium multipliers
• Exactly identified model
• Exclusion restrictions
• Exogenous
• FIML
• Final form
• Full information
• Fully recursive model
• GMM estimation

• Granger causality
• Identification
• Impact multiplier
• Impulse response function
• Indirect least squares
• Initial conditions
• Instrumental variable

estimator
• Interdependent
• Jointly dependent
• k class
• Least variance ratio
• Limited information
• LIML
• Nonlinear system
• Nonsample information
• Nonstructural
• Normalization
• Observationally equivalent
• Order condition
• Overidentification
• Predetermined variable

• Problem of identification
• Rank condition
• Recursive model
• Reduced form
• Reduced-form disturbance
• Restrictions
• Simultaneous-equations

bias
• Specification test
• Stability
• Structural disturbance
• Structural equation
• System methods of

estimation
• Three-stage least squares
• Triangular system
• Two-stage least squares
• Weakly exogenous

Exercises

1. Consider the following two-equation model:

y1 = γ1 y2 + β11x1 + β21x2 + β31x3 + ε1,

y2 = γ2 y1 + β12x1 + β22x2 + β32x3 + ε2.

a. Verify that, as stated, neither equation is identified.
b. Establish whether or not the following restrictions are sufficient to identify (or

partially identify) the model:

(1) β21 = β32 = 0,
(2) β12 = β22 = 0,
(3) γ1 = 0,
(4) γ1 = γ2 and β32 = 0,
(5) σ12 = 0 and β31 = 0,
(6) γ1 = 0 and σ12 = 0,
(7) β21 + β22 = 1,
(8) σ12 = 0, β21 = β22 = β31 = β32 = 0,
(9) σ12 = 0, β11 = β21 = β22 = β31 = β32 = 0.

2. Verify the rank and order conditions for identification of the second and third
behavioral equations in Klein’s Model I.
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3. Check the identifiability of the parameters of the following model:

[y1 y2 y3 y4]




1 γ12 0 0

γ21 1 γ23 γ24

0 γ32 1 γ34

γ41 γ42 0 1




+ [x1 x2 x3 x4 x5]




0 β12 β13 β14

β21 1 0 β24

β31 β32 β33 0

0 0 β43 β44

0 β52 0 0




+ [ε1 ε2 ε3 ε4].

4. Obtain the reduced form for the model in Exercise 1 under each of the assumptions
made in parts a and in parts b1 and b9.

5. The following model is specified:

y1 = γ1 y2 + β11x1 + ε1,

y2 = γ2 y1 + β22x2 + β32x3 + ε2.

All variables are measured as deviations from their means. The sample of 25
observations produces the following matrix of sums of squares and cross products:

y1 y2 x1 x2 x3

y1

y2

x1

x2

x3




20 6 4 3 5

6 10 3 6 7

4 3 5 2 3

3 6 2 10 8

5 7 3 8 15




.

a. Estimate the two equations by OLS.
b. Estimate the parameters of the two equations by 2SLS. Also estimate the asymp-

totic covariance matrix of the 2SLS estimates.
c. Obtain the LIML estimates of the parameters of the first equation.
d. Estimate the two equations by 3SLS.
e. Estimate the reduced-form coefficient matrix by OLS and indirectly by using

your structural estimates from Part b.
6. For the model

y1 = γ1 y2 + β11x1 + β21x2 + ε1,

y2 = γ2 y1 + β32x3 + β42x4 + ε2,

show that there are two restrictions on the reduced-form coefficients. Describe a
procedure for estimating the model while incorporating the restrictions.
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7. An updated version of Klein’s Model I was estimated. The relevant submatrix of
� is

�1 =




−0.1899 −0.9471 −0.8991
0 0.9287 0

−0.0656 −0.0791 0.0952


 .

Is the model stable?
8. Prove that

plim
Y′

jε j

T
= .ω j − � j jγ j .

9. Prove that an underidentified equation cannot be estimated by 2SLS.
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16

ESTIMATION FRAMEWORKS
IN ECONOMETRICS

Q
16.1 INTRODUCTION

This chapter begins our treatment of methods of estimation. Contemporary economet-
rics offers the practitioner a remarkable variety of estimation methods, ranging from
tightly parameterized likelihood based techniques at one end to thinly stated nonpara-
metric methods that assume little more than mere association between variables at
the other, and a rich variety in between. Even the experienced researcher could be
forgiven for wondering how they should choose from this long menu. It is certainly
beyond our scope to answer this question here, but a few principles can be suggested.
Recent research has leaned when possible toward methods that require few (or fewer)
possibly unwarranted or improper assumptions. This explains the ascendance of the
GMM estimator in situations where strong likelihood-based parameterizations can be
avoided and robust estimation can be done in the presence of heteroscedasticity and
serial correlation. (It is intriguing to observe that this is occurring at a time when ad-
vances in computation have helped bring about increased acceptance of very heavily
parameterized Bayesian methods.)

As a general proposition, the progression from full to semi- to non-parametric
estimation relaxes strong assumptions, but at the cost of weakening the conclusions
that can be drawn from the data. As much as anywhere else, this is clear in the anal-
ysis of discrete choice models, which provide one of the most active literatures in the
field. (A sampler appears in Chapter 21.) A formal probit or logit model allows estima-
tion of probabilities, marginal effects, and a host of ancillary results, but at the cost of
imposing the normal or logistic distribution on the data. Semiparametric and nonpara-
metric estimators allow one to relax the restriction, but often provide, in return, only
ranges of probabilities, if that, and in many cases, preclude estimation of probabilities
or useful marginal effects. One does have the virtue of robustness in the conclusions,
however. [See, e.g., the symposium in Angrist (2001) for a spirited discussion on these
points.]

Estimation properties is another arena in which the different approaches can be
compared. Within a class of estimators, one can define “the best” (most efficient) means
of using the data. (See Example 16.2 below for an application.) Sometimes comparisons
can be made across classes as well. For example, when they are estimating the same
parameters—this remains to be established—the best parametric estimator will gener-
ally outperform the best semiparametric estimator. That is the value of the information,
of course. The other side of the comparison, however, is that the semiparametric esti-
mator will carry the day if the parametric model is misspecified in a fashion to which
the semiparametric estimator is robust (and the parametric model is not).

425
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Schools of thought have entered this conversation for a long time. Proponents of
Bayesian estimation often took an almost theological viewpoint in their criticism of their
classical colleagues. [See, for example, Poirier (1995).] Contemporary practitioners are
usually more pragmatic than this. Bayesian estimation has gained currency as a set of
techniques that can, in very many cases, provide both elegant and tractable solutions
to problems that have heretofore been out of reach. Thus, for example, the simulation-
based estimation advocated in the many papers of Chib and Greenberg (e.g., 1996) have
provided solutions to a variety of computationally challenging problems.1 Arguments
as to the methodological virtue of one approach or the other have received much less
attention than before.

Chapters 2 though 9 of this book have focused on the classical regression model
and a particular estimator, least squares (linear and nonlinear). In this and the next
two chapters, we will examine several general estimation strategies that are used in a
wide variety of situations. This chapter will survey a few methods in the three broad
areas we have listed, including Bayesian methods. Chapter 17 presents the method of
maximum likelihood, the broad platform for parametric, classical estimation in econo-
metrics. Chapter 18 discusses the generalized method of moments, which has emerged
as the centerpiece of semiparametric estimation. Sections 16.2.4 and 17.8 will examine
two specific estimation frameworks, one Bayesian and one classical, that are based on
simulation methods. This is a recently developed body of techniques that have been
made feasible by advances in estimation technology and which has made quite straight-
forward many estimators which were previously only scarcely used because of the sheer
difficulty of the computations.

The list of techniques presented here is far from complete. We have chosen a set
that constitute the mainstream of econometrics. Certainly there are others that might
be considered. [See, for example, Mittelhammer, Judge, and Miller (2000) for a lengthy
catalog.] Virtually all of them are the subject of excellent monographs on the subject. In
this chapter we will present several applications, some from the literature, some home
grown, to demonstrate the range of techniques that are current in econometric practice.
We begin in Section 16.2 with parametric approaches, primarily maximum likelihood.
Since this is the subject of much of the remainder of this book, this section is brief.
Section 16.2 also presents Bayesian estimation, which in its traditional form, is as heav-
ily parameterized as maximum likelihood estimation. This section focuses mostly on the
linear model. A few applications of Bayesian techniques to other models are presented
as well. We will also return to what is currently the standard toolkit in Bayesian esti-
mation, Markov Chain Monte Carlo methods in Section 16.2.4. Section 16.2.3 presents
an emerging technique in the classical tradition, latent class modeling, which makes
interesting use of a fundamental result based on Bayes Theorem. Section 16.3 is on
semiparametric estimation. GMM estimation is the subject of all of Chapter 18, so it is

1The penetration of Bayesian econometrics could be overstated. It is fairly well represented in the current
journals such as the Journal of Econometrics, Journal of Applied Econometrics, Journal of Business and
Economic Statistics, and so on. On the other hand, in the six major general treatments of econometrics
published in 2000, four (Hayashi, Ruud, Patterson, Davidson) do not mention Bayesian methods at all,
a buffet of 32 essays (Baltagi) devotes only one to the subject, and the one that displays any preference
(Mittelhammer et al.) devotes nearly 10 percent (70) of its pages to Bayesian estimation, but all to the broad
metatheory or the linear regression model and none to the more elaborate applications that form the received
applications in the many journals in the field.
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only introduced here. The technique of least absolute deviations is presented here as
well. A range of applications from the recent literature is also surveyed. Section 16.4
describes nonparametric estimation. The fundamental tool, the kernel density estima-
tor is developed, then applied to a problem in regression analysis. Two applications are
presented here as well. Being focused on application, this chapter will say very little
about the statistical theory for of these techniques—such as their asymptotic properties.
(The results are developed at length in the literature, of course.) We will turn to the
subject of the properties of estimators briefly at the end of the chapter, in Section 16.5,
then in greater detail in Chapters 17 and 18.

16.2 PARAMETRIC ESTIMATION AND INFERENCE

Parametric estimation departs from a full statement of the density or probability model
that provides the data generating mechanism for a random variable of interest. For the
sorts of applications we have considered thus far, we might say that the joint density
of a scalar random variable, “y” and a random vector, “x” of interest can be specified
by

f (y, x) = g(y | x, β) × h(x | θ) (16-1)

with unknown parameters β and θ . To continue the application that has occupied us
since Chapter 2, consider the linear regression model with normally distributed distur-
bances. The assumption produces a full statement of the conditional density that is the
population from which an observation is drawn;

yi | xi ∼ N[x′
iβ, σ 2].

All that remains for a full definition of the population is knowledge of the specific
values taken by the unknown but fixed parameters. With those in hand, the conditional
probability distribution for yi is completely defined—mean, variance, probabilities of
certain events, and so on. (The marginal density for the conditioning variables is usually
not of particular interest.) Thus, the signature features of this modeling platform are
specification of both the density and the features (parameters) of that density.

The parameter space for the parametric model is the set of allowable values of
the parameters which satisfy some prior specification of the model. For example, in
the regression model specified previously, the K regression slopes may take any real
value, but the variance must be a positive number. Therefore, the parameter space for
that model is [β, σ 2] ∈ R

K × R+. “Estimation” in this context consists of specifying
a criterion for ranking the points in the parameter space, then choosing that point (a
point estimate) or a set of points (an interval estimate) that optimizes that criterion,
that is, has the best ranking. Thus, for example, we chose linear least squares as one
estimation criterion for the linear model. “Inference” in this setting is a process by which
some regions of the (already specified) parameter space are deemed not to contain the
unknown parameters, though, in more practical terms, we typically define a criterion
and then, state that, by that criterion, certain regions are unlikely to contain the true
parameters.
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16.2.1 CLASSICAL LIKELIHOOD BASED ESTIMATION

The most common (by far) class of parametric estimators used in econometrics is the
maximum likelihood estimators. The underlying philosophy of this class of estimators
is the idea of “sample information.” When the density of a sample of observations is
completely specified, apart from the unknown parameters, then the joint density of
those observations (assuming they are independent), is the likelihood function,

f (y1, y2, . . . , x1, x2, . . .) =
n∏

i=1

f (yi , xi | β, θ), (16-2)

This function contains all the information available in the sample about the population
from which those observations were drawn. The strategy by which that information is
used in estimation constitutes the estimator.

The maximum likelihood estimator [Fisher (1925)] is that function of the data which
(as its name implies) maximizes the likelihood function (or, because it is usually more
convenient, the log of the likelihood function). The motivation for this approach is
most easily visualized in the setting of a discrete random variable. In this case, the
likelihood function gives the joint probability for the observed sample observations,
and the maximum likelihood estimator is the function of the sample information which
makes the observed data most probable (at least by that criterion). Though the analogy is
most intuitively appealing for a discrete variable, it carries over to continuous variables
as well. Since this estimator is the subject of Chapter 17, which is quite lengthy, we
will defer any formal discussion until then, and consider instead two applications to
illustrate the techniques and underpinnings.

Example 16.1 The Linear Regression Model
Least squares weighs negative and positive deviations equally and gives disproportionate
weight to large deviations in the calculation. This property can be an advantage or a disad-
vantage, depending on the data-generating process. For normally distributed disturbances,
this method is precisely the one needed to use the data most efficiently. If the data are
generated by a normal distribution, then the log of the likelihood function is

ln L = −n
2

ln 2π − n
2

ln σ 2 − 1
2σ 2

(y − Xβ) ′(y − Xβ) .

You can easily show that least squares is the estimator of choice for this model. Maximizing
the function means minimizing the exponent, which is done by least squares for β and e′e/n
for σ 2.

If the appropriate distribution is deemed to be something other than normal—perhaps on
the basis of an observation that the tails of the disturbance distribution are too thick—see
Example 5.1 and Section 17.6.3—then there are three ways one might proceed. First, as
we have observed, the consistency of least squares is robust to this failure of the specifi-
cation, so long as the conditional mean of the disturbances is still zero. Some correction
to the standard errors is necessary for proper inferences. (See Section 10.3.) Second, one
might want to proceed to an estimator with better finite sample properties. The least absolute
deviations estimator discussed in Section 16.3.2 is a candidate. Finally, one might consider
some other distribution which accommodates the observed discrepancy. For example, Ruud
(2000) examines in some detail a linear regression model with disturbances distributed ac-
cording to the t distribution with v degrees of freedom. As long as v is finite, this random
variable will have a larger variance than the normal. Which way should one proceed? The
third approach is the least appealing. Surely if the normal distribution is inappropriate, then
it would be difficult to come up with a plausible mechanism whereby the t distribution would
not be. The LAD estimator might well be preferable if the sample were small. If not, then least
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squares would probably remain the estimator of choice, with some allowance for the fact
that standard inference tools would probably be misleading. Current practice is generally to
adopt the first strategy.

Example 16.2 The Stochastic Frontier Model
The stochastic frontier model, discussed in detail in Section 17.6.3, is a regression-like
model with a disturbance that is asymmetric and distinctly nonnormal. (See Figure 17.3.) The
conditional density for the dependent variable in this model is

f ( y | x, β, σ, λ) =
√

2
σ
√

π
exp

[−( y − α − x′β) 2

2σ 2

]
�

(−λ( y − α − x′β)
σ

)

This produces a log-likelihood function for the model,

ln L = −n ln σ − n
2

ln
2
π

− 1
2

n∑
i =1

(
εi

σ

)2

+
n∑

i =1

ln �

(−εi λ

σ

)

There are at least two fully parametric estimators for this model. The maximum likelihood
estimator is discussed in Section 17.6.3. Greene (1997b) presents the following method
of moments estimator: For the regression slopes, excluding the constant term, use least
squares. For the parameters α, σ , and λ, based on the second and third moments of the
least squares residuals and least squares constant, solve

m2 = σ 2
v + [1 − 2/π ]σ 2

u

m3 = (2/π ) 1/2[1 − 4/π ]σ 3
u

a = α + (2/π ) 2σu

where λ = σu/σv and σ 2 = σ 2
u + σ 2

v .
Both estimators are fully parametric. The maximum likelihood estimator is for the reasons

discussed earlier. The method of moments estimators (see Section 18.2) are appropriate only
for this distribution. Which is preferable? As we will see in Chapter 17, both estimators are
consistent and asymptotically normally distributed. By virtue of the Cramér–Rao theorem,
the maximum likelihood estimator has a smaller asymptotic variance. Neither has any small
sample optimality properties. Thus, the only virtue of the method of moments estimator is
that one can compute it with any standard regression/statistics computer package and a
hand calculator whereas the maximum likelihood estimator requires specialized software
(only somewhat—it is reasonably common).

16.2.2 BAYESIAN ESTIMATION

Parametric formulations present a bit of a methodological dilemma. They would seem
to straightjacket the researcher into a fixed and immutable specification of the model.
But in any analysis, there is uncertainty as to the magnitudes and even, on occasion,
the signs of coefficients. It is rare that the presentation of a set of empirical results has
not been preceded by at least some exploratory analysis. Proponents of the Bayesian
methodology argue that the process of “estimation” is not one of deducing the values of
fixed parameters, but rather one of continually updating and sharpening our subjective
beliefs about the state of the world.

The centerpiece of the Bayesian methodology is Bayes theorem: for events A and
B, the conditional probability of event A given that B has occurred is

P(A| B) = P(B | A)P(A)

P(B)
.
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Paraphrased for our applications here, we would write

P(parameters | data) = P(data | parameters)P(parameters)
P(data)

.

In this setting, the data are viewed as constants whose distributions do not involve the
parameters of interest. For the purpose of the study, we treat the data as only a fixed set
of additional information to be used in updating our beliefs about the parameters. [Note
the similarity to the way that the joint density for our parametric model is specified in
(16-1).] Thus, we write

P(parameters | data) ∝ P(data | parameters)P(parameters)

= Likelihood function × Prior density.

The symbol ∝ means “is proportional to.” In the preceding equation, we have dropped
the marginal density of the data, so what remains is not a proper density until it is scaled
by what will be an inessential proportionality constant. The first term on the right is
the joint distribution of the observed random variables y, given the parameters. As we
shall analyze it here, this distribution is the normal distribution we have used in our
previous analysis—see (16-1). The second term is the prior beliefs of the analyst. The
left-hand side is the posterior density of the parameters, given the current body of data,
or our revised beliefs about the distribution of the parameters after “seeing” the data.
The posterior is a mixture of the prior information and the “current information,” that
is, the data. Once obtained, this posterior density is available to be the prior density
function when the next body of data or other usable information becomes available. The
principle involved, which appears nowhere in the classical analysis, is one of continual
accretion of knowledge about the parameters.

Traditional Bayesian estimation is heavily parameterized. The prior density and the
likelihood function are crucial elements of the analysis, and both must be fully specified
for estimation to proceed. The Bayesian “estimator” is the mean of the posterior density
of the parameters, a quantity that is usually obtained either by integration (when closed
forms exist), approximation of integrals by numerical techniques, or by Monte Carlo
methods, which are discussed in Section 16.2.4.

16.2.2.a BAYESIAN ANALYSIS OF THE CLASSICAL
REGRESSION MODEL

The complexity of the algebra involved in Bayesian analysis is often extremely bur-
densome. For the linear regression model, however, many fairly straightforward results
have been obtained. To provide some of the flavor of the techniques, we present the full
derivation only for some simple cases. In the interest of brevity, and to avoid the burden
of excessive algebra, we refer the reader to one of the several sources that present the
full derivation of the more complex cases.2

The classical normal regression model we have analyzed thus far is constructed
around the conditional multivariate normal distribution N[Xβ, σ 2I]. The interpreta-
tion is different here. In the sampling theory setting, this distribution embodies the

2These sources include Judge et al. (1982, 1985), Maddala (1977a), Mittelhammer et al. (2000), and the
canonical reference for econometricians, Zellner (1971). Further topics in Bayesian inference are contained
in Zellner (1985). A recent treatment of both Bayesian and sampling theory approaches is Poirier (1995).
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information about the observed sample data given the assumed distribution and the
fixed, albeit unknown, parameters of the model. In the Bayesian setting, this function
summarizes the information that a particular realization of the data provides about the
assumed distribution of the model parameters. To underscore that idea, we rename this
joint density the likelihood for β and σ 2 given the data, so

L(β, σ 2 | y, X) = [2πσ 2]−n/2e−[(1/(2σ 2))(y−Xβ)′(y−Xβ)]. (16-3)

For purposes of the results below, some reformulation is useful. Let d = n − K (the
degrees of freedom parameter), and substitute

y − Xβ = y − Xb − X(β − b) = e − X(β − b)

in the exponent. Expanding this produces(
− 1

2σ 2

)
(y − Xβ)′(y − Xβ) =

(
−1

2
ds2

)(
1
σ 2

)
− 1

2
(β − b)′

(
1
σ 2

X′X
)

(β − b).

After a bit of manipulation (note that n/2 = d/2 + K/2), the likelihood may be written

L(β, σ 2 | y, X)

= [2π ]−d/2[σ 2]−d/2e−(d/2)(s2/σ 2)[2π ]−K/2[σ 2]−K/2e−(1/2)(β−b)′[σ 2(X′X)−1]−1(β−b).

This density embodies all that we have to learn about the parameters from the observed
data. Since the data are taken to be constants in the joint density, we may multiply this
joint density by the (very carefully chosen), inessential (since it does not involve β or
σ 2) constant function of the observations,

A=

(
d
2

s2
)(d/2)+1

�

(
d
2

+ 1
) [2π ](d/2) |X′X| −1/2.

For convenience, let v = d/2. Then, multiplying L(β, σ 2 | y, X) by A gives

L(β, σ 2 | y, X) ∝ [vs2]v+1

�(v + 1)

(
1
σ 2

)v

e−vs2(1/σ 2)[2π ]−K/2 |σ 2(X′X)−1|−1/2

× e−(1/2)(β−b)′[σ 2(X′X)−1]−1(β−b). (16-4)

The likelihood function is proportional to the product of a gamma density for z =
1/σ 2 with parameters λ = vs2 and P = v + 1 [see (B-39); this is an inverted gamma
distribution] and a K-variate normal density for β | σ 2 with mean vector b and covariance
matrix σ 2(X′X)−1. The reason will be clear shortly.

The departure point for the Bayesian analysis of the model is the specification of a
prior distribution. This distribution gives the analyst’s prior beliefs about the parameters
of the model. One of two approaches is generally taken. If no prior information is known
about the parameters, then we can specify a noninformative prior that reflects that. We
do this by specifying a “flat” prior for the parameter in question:3

g(parameter) ∝ constant.

3That this “improper” density might not integrate to one is only a minor difficulty. Any constant of integration
would ultimately drop out of the final result. See Zellner (1971, pp. 41–53) for a discussion of noninformative
priors.
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There are different ways that one might characterize the lack of prior information. The
implication of a flat prior is that within the range of valid values for the parameter, all
intervals of equal length—hence, in principle, all values—are equally likely. The second
possibility, an informative prior, is treated in the next section. The posterior density is
the result of combining the likelihood function with the prior density. Since it pools
the full set of information available to the analyst, once the data have been drawn, the
posterior density would be interpreted the same way the prior density was before the
data were obtained.

To begin, we analyze the case in which σ 2 is assumed to be known. This assumption
is obviously unrealistic, and we do so only to establish a point of departure. Using Bayes
Theorem, we construct the posterior density,

f (β | y, X, σ 2) = L(β | σ 2, y, X)g(β | σ 2)

f (y)
∝ L(β | σ 2, y, X)g(β | σ 2),

assuming that the distribution of X does not depend on β or σ 2. Since g(β | σ 2) ∝
a constant, this density is the one in (16-4). For now, write

f (β | σ 2, y, X) ∝ h(σ 2)[2π ]−K/2 |σ 2(X′X)−1|−1/2e−(1/2)(β−b)′[σ 2(X′X)−1]−1(β−b), (16-5)

where

h(σ 2) = [vs2]v+1

�(v + 1)

[
1
σ 2

]v

e−vs2(1/σ 2). (16-6)

For the present, we treat h(σ 2) simply as a constant that involves σ 2, not as a proba-
bility density; (16-5) is conditional on σ 2. Thus, the posterior density f (β | σ 2, y, X) is
proportional to a multivariate normal distribution with mean b and covariance matrix
σ 2(X′X)−1.

This result is familiar, but it is interpreted differently in this setting. First, we have
combined our prior information about β (in this case, no information) and the sample
information to obtain a posterior distribution. Thus, on the basis of the sample data in
hand, we obtain a distribution for β with mean b and covariance matrix σ 2(X′X)−1. The
result is dominated by the sample information, as it should be if there is no prior infor-
mation. In the absence of any prior information, the mean of the posterior distribution,
which is a type of Bayesian point estimate, is the sampling theory estimator.

To generalize the preceding to an unknown σ 2, we specify a noninformative prior
distribution for ln σ over the entire real line.4 By the change of variable formula, if
g(ln σ) is constant, then g(σ 2) is proportional to 1/σ 2.5 Assuming that β and σ 2 are
independent, we now have the noninformative joint prior distribution:

g(β, σ 2) = gβ(β)gσ 2(σ 2) ∝ 1
σ 2

.

4See Zellner (1971) for justification of this prior distribution.
5Many treatments of this model use σ rather than σ 2 as the parameter of interest. The end results are identical.
We have chosen this parameterization because it makes manipulation of the likelihood function with a gamma
prior distribution especially convenient. See Zellner (1971, pp. 44–45) for discussion.
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We can obtain the joint posterior distribution for β and σ 2 by using

f (β, σ 2 | y, X) = L(β | σ 2, y, X)gσ 2(σ 2) ∝ L(β | σ 2, y, X) × 1
σ 2

. (16-7)

For the same reason as before, we multiply gσ 2(σ 2) by a well-chosen constant, this time
vs2�(v + 1)/�(v + 2) = vs2/(v + 1). Multiplying (16-5) by this constant times gσ 2(σ 2)

and inserting h(σ 2) gives the joint posterior for β and σ 2, given y and X:

f (β, σ 2 | y, X) ∝ [vs2]v+2

�(v + 2)

[
1
σ 2

]v+1

e−vs2(1/σ 2)[2π ]−K/2 |σ 2(X′X)−1|−1/2

× e−(1/2)(β−b)′[σ 2(X′X)−1]−1(β−b).

To obtain the marginal posterior distribution for β, it is now necessary to integrate σ 2

out of the joint distribution (and vice versa to obtain the marginal distribution for σ 2).
By collecting the terms, f (β, σ 2 | y, X) can be written as

f (β, σ 2 | y, X) ∝ A×
(

1
σ 2

)P−1

e−λ(1/σ 2),

where

A= [vs2]v+2

�(v + 2)
[2π ]−K/2 |(X′X)−1|−1/2,

P = v + 2 + K/2 = (n − K)/2 + 2 + K/2 = (n + 4)/2,

and

λ = vs2 + 1
2 (β − b)′X′X(β − b),

so the marginal posterior distribution for β is
∫ ∞

0
f (β, σ 2 | y, X)dσ 2 ∝ A

∫ ∞

0

(
1
σ 2

)P−1

e−λ(1/σ 2)dσ 2.

To do the integration, we have to make a change of variable; d(1/σ 2) = −(1/σ 2)2dσ 2,
so dσ 2 = −(1/σ 2)−2 d(1/σ 2). Making the substitution—the sign of the integral changes
twice, once for the Jacobian and back again because the integral from σ 2 = 0 to ∞ is
the negative of the integral from (1/σ 2) = 0 to ∞—we obtain

∫ ∞

0
f (β, σ 2 | y, X)dσ 2 ∝ A

∫ ∞

0

(
1
σ 2

)P−3

e−λ(1/σ 2)d
(

1
σ 2

)

= A× �(P − 2)

λP−2
.

Reinserting the expressions for A, P, and λ produces

f (β | y, X) ∝
[vs2]v+2�(v + K/2)

�(v + 2)
[2π ]−K/2 |X′X|−1/2

[
vs2 + 1

2 (β − b)′X′X(β − b)
]v+K/2 . (16-8)
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This density is proportional to a multivariate t distribution6 and is a generalization of
the familiar univariate distribution we have used at various points. This distribution has
a degrees of freedom parameter, d = n−K, mean b, and covariance matrix (d/(d−2))×
[s2(X′X)−1]. Each element of the K-element vector β has a marginal distribution that
is the univariate t distribution with degrees of freedom n − K, mean bk, and variance
equal to the kth diagonal element of the covariance matrix given earlier. Once again,
this is the same as our sampling theory. The difference is a matter of interpretation. In
the current context, the estimated distribution is for β and is centered at b.

16.2.2.b POINT ESTIMATION

The posterior density function embodies the prior and the likelihood and therefore
contains all the researcher’s information about the parameters. But for purposes of
presenting results, the density is somewhat imprecise, and one normally prefers a point
or interval estimate. The natural approach would be to use the mean of the posterior
distribution as the estimator. For the noninformative prior, we use b, the sampling
theory estimator.

One might ask at this point, why bother? These Bayesian point estimates are iden-
tical to the sampling theory estimates. All that has changed is our interpretation of
the results. This situation is, however, exactly the way it should be. Remember that
we entered the analysis with noninformative priors for β and σ 2. Therefore, the only
information brought to bear on estimation is the sample data, and it would be peculiar
if anything other than the sampling theory estimates emerged at the end. The results do
change when our prior brings out of sample information into the estimates, as we shall
see below.

The results will also change if we change our motivation for estimating β. The
parameter estimates have been treated thus far as if they were an end in themselves.
But in some settings, parameter estimates are obtained so as to enable the analyst to
make a decision. Consider then, a loss function, H(β̂, β), which quantifies the cost of
basing a decision on an estimate β̂ when the parameter is β. The expected, or average
loss is

Eβ[H(β̂, β)] =
∫

β

H(β̂, β) f (β | y, X)dβ, (16-9)

where the weighting function is the marginal posterior density. (The joint density for β

and σ 2 would be used if the loss were defined over both.) The Bayesian point estimate is
the parameter vector that minimizes the expected loss. If the loss function is a quadratic
form in (β̂ − β), then the mean of the posterior distribution is the “minimum expected
loss” (MELO) estimator. The proof is simple. For this case,

E [H(β̂, β) | y, X] = E
[ 1

2 (β̂ − β)′W(β̂ − β) | y, X
]
.

To minimize this, we can use the result that

∂ E [H(β̂, β) | y, X]/∂β̂ = E [∂ H(β̂, β)/∂β̂ | y, X]

= E [−W(β̂ − β) | y, X].

6See, for example, Judge et al. (1985) for details. The expression appears in Zellner (1971, p. 67). Note that
the exponent in the denominator is v + K/2 = n/2.
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The minimum is found by equating this derivative to 0, whence, since −W is irrelevant,
β̂ = E [β | y, X]. This kind of loss function would state that errors in the positive and
negative direction are equally bad, and large errors are much worse than small errors.
If the loss function were a linear function instead, then the MELO estimator would be
the median of the posterior distribution. These results are the same in the case of the
noninformative prior that we have just examined.

16.2.2.c INTERVAL ESTIMATION

The counterpart to a confidence interval in this setting is an interval of the posterior
distribution that contains a specified probability. Clearly, it is desirable to have this
interval be as narrow as possible. For a unimodal density, this corresponds to an interval
within which the density function is higher than any points outside it, which justifies the
term highest posterior density (HPD) interval. For the case we have analyzed, which
involves a symmetric distribution, we would form the HPD interval for β around the
least squares estimate b, with terminal values taken from the standard t tables.

16.2.2.d ESTIMATION WITH AN INFORMATIVE PRIOR DENSITY

Once we leave the simple case of noninformative priors, matters become quite compli-
cated, both at a practical level and, methodologically, in terms of just where the prior
comes from. The integration of σ 2 out of the posterior in (16-5) is complicated by itself.
It is made much more so if the prior distributions of β and σ 2 are at all involved. Partly
to offset these difficulties, researchers usually use what is called a conjugate prior, which
is one that has the same form as the conditional density and is therefore amenable to
the integration needed to obtain the marginal distributions.7

Suppose that we assume that the prior beliefs about β may be summarized in a
K-variate normal distribution with mean β0 and variance matrix �0. Once again, it is
illuminating to begin with the case in which σ 2 is assumed to be known. Proceeding in
exactly the same fashion as before, we would obtain the following result: The posterior
density of β conditioned on σ 2 and the data will be normal with

E [β | σ 2, y, X] = {
�−1

0 + [σ 2(X′X)−1]−1
}−1{

�−1
0 β0 + [σ 2(X′X)−1]−1b

}

= Fβ0 + (I − F)b,
(16-10)

where

F = {
�−1

0 + [σ 2(X′X)−1]−1}−1
�−1

0

= {
[prior variance]−1 + [conditional variance]−1}−1[prior variance]−1.

7Our choice of noninformative prior for ln σ led to a convenient prior for σ 2 in our derivation of the posterior
for β. The idea that the prior can be specified arbitrarily in whatever form is mathematically convenient is
very troubling; it is supposed to represent the accumulated prior belief about the parameter. On the other
hand, it could be argued that the conjugate prior is the posterior of a previous analysis, which could justify
its form. The issue of how priors should be specified is one of the focal points of the methodological debate.
“Non-Bayesians” argue that it is disingenuous to claim the methodological high ground and then base the
crucial prior density in a model purely on the basis of mathematical convenience. In a small sample, this
assumed prior is going to dominate the results, whereas in a large one, the sampling theory estimates will
dominate anyway.



Greene-50240 book June 20, 2002 18:2

436 CHAPTER 16 ✦ Estimation Frameworks in Econometrics

This vector is a matrix weighted average of the prior and the least squares (sample)
coefficient estimates, where the weights are the inverses of the prior and the conditional
covariance matrices.8 The smaller the variance of the estimator, the larger its weight,
which makes sense. Also, still taking σ 2 as known, we can write the variance of the
posterior normal distribution as

Var[β | y, X, σ 2] = {
�−1

0 + [σ 2(X′X)−1]−1}−1
. (16-11)

Notice that the posterior variance combines the prior and conditional variances on the
basis of their inverses.9 We may interpret the noninformative prior as having infinite
elements in �0. This assumption would reduce this case to the earlier one.

Once again, it is necessary to account for the unknown σ 2. If our prior over σ 2 is to
be informative as well, then the resulting distribution can be extremely cumbersome.
A conjugate prior for β and σ 2 that can be used is

g(β, σ 2) = gβ|σ 2(β | σ 2)gσ 2(σ 2), (16-12)

where gβ|σ 2(β | σ 2) is normal, with mean β0 and variance σ 2A and

gσ 2(σ 2) =
[
mσ 2

0

]m+1

�(m + 1)

(
1
σ 2

)m

e−mσ 2
0 (1/σ 2). (16-13)

This distribution is an inverted gamma distribution. It implies that 1/σ 2 has a gamma
distribution. The prior mean for σ 2 is σ 2

0 and the prior variance is σ 4
0 /(m − 1).10 The

product in (16-12) produces what is called a normal-gamma prior, which is the natural
conjugate prior for this form of the model. By integrating out σ 2, we would obtain the
prior marginal for β alone, which would be a multivariate t distribution.11 Combining
(16-12) with (16-13) produces the joint posterior distribution for β and σ 2. Finally, the
marginal posterior distribution for β is obtained by integrating out σ 2. It has been shown
that this posterior distribution is multivariate t with

E [β | y, X] = {
[σ̄ 2A]−1 + [σ̄ 2(X′X)−1]−1}−1{[σ̄ 2A]−1β0 + [σ̄ 2(X′X)−1]−1b

}
(16-14)

and

Var[β | y, X] =
(

j
j − 2

) {
[σ̄ 2A]−1 + [σ̄ 2(X′X)−1]−1}−1

, (16-15)

where j is a degrees of freedom parameter and σ̄ 2 is the Bayesian estimate of σ 2. The
prior degrees of freedom m is a parameter of the prior distribution for σ 2 that would
have been determined at the outset. (See the following example.) Once again, it is clear

8Note that it will not follow that individual elements of the posterior mean vector lie between those of β0

and b. See Judge et al. (1985, pp. 109–110) and Chamberlain and Leamer (1976).
9Precisely this estimator was proposed by Theil and Goldberger (1961) as a way of combining a previously
obtained estimate of a parameter and a current body of new data. They called their result a “mixed estimator.”
The term “mixed estimation” takes an entirely different meaning in the current literature, as we will see in
Chapter 17.
10You can show this result by using gamma integrals. Note that the density is a function of 1/σ 2 = 1/x
in the formula of (B-39), so to obtain E [σ 2], we use the analog of E [1/x] = λ/(P − 1) and E [(1/x)2] =
λ2/[(P − 1)(P − 2)]. In the density for (1/σ 2), the counterparts to λ and P are mσ 2

0 and m + 1.
11Full details of this (lengthy) derivation appear in Judge et al. (1985, pp. 106–110) and Zellner (1971).
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TABLE 16.1 Estimates of the MPC

Years Estimated MPC Variance of b Degrees of Freedom Estimated σ

1940–1950 0.6848014 0.061878 9 24.954
1950–2000 0.92481 0.000065865 49 92.244

that as the amount of data increases, the posterior density, and the estimates thereof,
converge to the sampling theory results.

Example 16.3 Bayesian Estimate of the Marginal Propensity
to Consume

In Example 3.2, an estimate of the marginal propensity to consume is obtained using 11 obser-
vations from 1940 to 1950, with the results shown in the top row of Table 16.1. A classical 95
percent confidence interval for β based on these estimates is (0.8780, 1.2818). (The very wide
interval probably results from the obviously poor specification of the model.) Based on nonin-
formative priors for β and σ 2, we would estimate the posterior density for β to be univariate t
with 9 degrees of freedom, with mean 0.6848014 and variance (11/9)0.061878 = 0.075628.
An HPD interval for β would coincide with the confidence interval. Using the fourth quarter
(yearly) values of the 1950–2000 data used in Example 6.3, we obtain the new estimates that
appear in the second row of the table.

We take the first estimate and its estimated distribution as our prior for β and obtain a
posterior density for β based on an informative prior instead. We assume for this exercise
that σ 2 may be taken as known at the sample value of 29.954. Then,

b̄ =
[

1
0.000065865

+ 1
0.061878

]−1 [
0.92481

0.000065865
+ 0.6848014

0.061878

]
= 0.92455

The weighted average is overwhelmingly dominated by the far more precise sample es-
timate from the larger sample. The posterior variance is the inverse in brackets, which is
0.000071164. This is close to the variance of the latter estimate. An HPD interval can be
formed in the familiar fashion. It will be slightly narrower than the confidence interval, since
the variance of the posterior distribution is slightly smaller than the variance of the sampling
estimator. This reduction is the value of the prior information. (As we see here, the prior is
not particularly informative.)

16.2.2.e HYPOTHESIS TESTING

The Bayesian methodology treats the classical approach to hypothesis testing with a
large amount of skepticism. Two issues are especially problematic. First, a close ex-
amination of only the work we have done in Chapter 6 will show that because we are
using consistent estimators, with a large enough sample, we will ultimately reject any
(nested) hypothesis unless we adjust the significance level of the test downward as the
sample size increases. Second, the all-or-nothing approach of either rejecting or not
rejecting a hypothesis provides no method of simply sharpening our beliefs. Even the
most committed of analysts might be reluctant to discard a strongly held prior based on
a single sample of data, yet this is what the sampling methodology mandates. (Note, for
example, the uncomfortable dilemma this creates in footnote 24 in Chapter 14.) The
Bayesian approach to hypothesis testing is much more appealing in this regard. Indeed,
the approach might be more appropriately called “comparing hypotheses,” since it es-
sentially involves only making an assessment of which of two hypotheses has a higher
probability of being correct.
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The Bayesian approach to hypothesis testing bears large similarity to Bayesian
estimation.12 We have formulated two hypotheses, a “null,” denoted H0, and an alter-
native, denoted H1. These need not be complementary, as in H0: “statement A is true”
versus H1: “statement A is not true,” since the intent of the procedure is not to reject
one hypothesis in favor of the other. For simplicity, however, we will confine our at-
tention to hypotheses about the parameters in the regression model, which often are
complementary. Assume that before we begin our experimentation (data gathering,
statistical analysis) we are able to assign prior probabilities P(H0) and P(H1) to the two
hypotheses. The prior odds ratio is simply the ratio

Oddsprior = P(H0)

P(H1)
. (16-16)

For example, one’s uncertainty about the sign of a parameter might be summarized in
a prior odds over H0: β ≥ 0 versus H1: β < 0 of 0.5/0.5 = 1. After the sample evidence is
gathered, the prior will be modified, so the posterior is, in general,

Oddsposterior = B01 × Oddsprior.

The value B01 is called the Bayes factor for comparing the two hypotheses. It summarizes
the effect of the sample data on the prior odds. The end result, Oddsposterior, is a new
odds ratio that can be carried forward as the prior in a subsequent analysis.

The Bayes factor is computed by assessing the likelihoods of the data observed
under the two hypotheses. We return to our first departure point, the likelihood of the
data, given the parameters:

f (y | β, σ 2, X) = [2πσ 2]−n/2e(−1/(2σ 2))(y−Xβ)′(y−Xβ). (16-17)

Based on our priors for the parameters, the expected, or average likelihood, assuming
that hypothesis j is true ( j = 0, 1), is

f (y | X, Hj ) = Eβ,σ 2 [ f (y | β, σ 2, X, Hj )] =
∫

σ 2

∫

β

f (y | β, σ 2, X, Hj )g(β, σ 2) dβ dσ 2.

(This conditional density is also the predictive density for y.) Therefore, based on the
observed data, we use Bayes theorem to reassess the probability of Hj ; the posterior
probability is

P(Hj | y, X) = f (y | X, Hj )P(Hj )

f (y)
.

The posterior odds ratio is P(H0 | y, X)/P(H1 | y, X), so the Bayes factor is

B01 = f (y | X, H0)

f (y | X, H1)
.

Example 16.4 Posterior Odds for the Classical Regression Model
Zellner (1971) analyzes the setting in which there are two possible explanations for the
variation in a dependent variable y:

Model 0: y = x′
0β0 + ε0

and

Model 1: y = x′
1β1 + ε1.

12For extensive discussion, see Zellner and Siow (1980) and Zellner (1985, pp. 275–305).
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We will briefly sketch his results. We form informative priors for [β, σ 2] j , j = 0, 1, as spec-
ified in (16-12) and (16-13), that is, multivariate normal and inverted gamma, respectively.
Zellner then derives the Bayes factor for the posterior odds ratio. The derivation is lengthy
and complicated, but for large n, with some simplifying assumptions, a useful formulation
emerges. First, assume that the priors for σ 2

0 and σ 2
1 are the same. Second, assume that

[|A−1
0 |/|A−1

0 + X′
0X0|]/[|A−1

1 |/|A−1
1 + X′

1X1|] →1. The first of these would be the usual situation,
in which the uncertainty concerns the covariation between yi and xi , not the amount of resid-
ual variation (lack of fit). The second concerns the relative amounts of information in the prior
(A) versus the likelihood (X′X). These matrices are the inverses of the covariance matrices,
or the precision matrices. [Note how these two matrices form the matrix weights in the
computation of the posterior mean in (16-10).] Zellner (p. 310) discusses this assumption at
some length. With these two assumptions, he shows that as n grows large,13

B01 ≈
(

s2
0

s2
1

)−(n+m)/2

=
(

1 − R2
0

1 − R2
1

)−(n+m)/2

.

Therefore, the result favors the model that provides the better fit using R2 as the fit measure.
If we stretch Zellner’s analysis a bit by interpreting model 1 as “the model” and model 0 as
“no model” (i.e., the relevant part of β0 = 0, so R2

0 = 0), then the ratio simplifies to

B01 = (
1 − R2

0

)(n+m)/2
.

Thus, the better the fit of the regression, the lower the Bayes factor in favor of model 0 (no
model), which makes intuitive sense.

Zellner and Siow (1980) have continued this analysis with noninformative priors for β and
σ 2

j . Specifically, they use the flat prior for ln σ [see (16-7)] and a multivariate Cauchy prior
(which has infinite variances) for β. Their main result (3.10) is

B01 =
1
2

√
π

�[(k + 1)/2]

(
n − K

2

)k/2

(1 − R2) (n−K−1)/2.

This result is very much like the previous one, with some slight differences due to degrees of
freedom corrections and the several approximations used to reach the first one.

16.2.3 USING BAYES THEOREM IN A CLASSICAL ESTIMATION
PROBLEM: THE LATENT CLASS MODEL

Latent class modeling can be viewed as a means of modeling heterogeneity across indi-
viduals in a random parameters framework. We first encountered random parameters
models in Section 13.8 in connection with panel data.14 As we shall see, the latent class
model provides an interesting hybrid of classical and Bayesian analysis. To define the
latent class model, we begin with a random parameters formulation of the density of
an observed random variable. We will assume that the data are a panel. Thus, the den-
sity of yit when the parameter vector is β i is f (yit | xi t , β i ). The parameter vector β i is
randomly distributed over individuals according to

β i = β + �zi + vi (16-18)

and where β + �zi is the mean of the distribution, which depends on time invariant
individual characteristics as well as parameters yet to be estimated, and the random

13A ratio of exponentials that appears in Zellner’s result (his equation 10.50) is omitted. To the order
of approximation in the result, this ratio vanishes from the final result. (Personal correspondence from
A. Zellner to the author.)
14In principle, the latent class model does not require panel data, but practical experience suggests that it
does work best when individuals are observed more than once and is difficult to implement in a cross section.



Greene-50240 book June 20, 2002 18:2

440 CHAPTER 16 ✦ Estimation Frameworks in Econometrics

variation comes from the individual heterogeneity, vi . This random vector is assumed
to have mean zero and covariance matrix, �. The conditional density of the parameters is

g(β i | zi , β, �, �) = g(vi + β + �zi , �),

where g(.) is the underlying marginal density of the heterogeneity. The unconditional
density for yit is obtained by integrating over vi ,

f (yit | xi t , zi , β, �, �) = Eβi [ f (yit | xi t , β i )] =
∫

vi

f (yit | xi t , β i )g(vi + β + �zi , �)dvi .

This result would provide the density that would enter the likelihood function for esti-
mation of the model parameters. We will return to this model formulation in Chapter 17.

The preceding has assumed β i has a continuous distribution. Suppose that β i is
generated from a discrete distribution with J values, or classes, so that the distribution
of β is over these J vectors.15 Thus, the model states that an individual belongs to one of
the J latent classes, but it is unknown from the sample data exactly which one. We will use
the sample data to estimate the probabilities of class membership. The corresponding
model formulation is now

f (yit | xi t , zi , �) =
J∑

j=1

pi j (�, zi ) f (yit | xi t , β j )

where it remains to parameterize the class probabilities, pi j and the structural model,
f (yit | xi t , β j ). The matrix � contains the parameters of the discrete distribution. It has
J rows (one for each class) and M columns for the M variables in zi . (The structural
mean and variance parameters β and � are no longer necessary.) At a minimum, M= 1
and zi contains a constant, if the class probabilities are fixed parameters. Finally, in
order to accommodate the panel data nature of the sampling situation, we suppose
that conditioned on β j , observations yit , t = 1, . . . , T are independent. Therefore, for
a group of T observations, the joint density is

f (yi1, yi2, . . . , yiT | β j , xi1, xi2, . . . , xiT) =
T∏

t=1

f (yit | xi t , β j ).

(We will consider models that provide correlation across observations in Chapters 17
and 21.) Inserting this result in the earlier density produces the likelihood function for
a panel of data,

ln L =
n∑

i=1

ln

[
M∑

j=1

pi j (�, zi )

T∏
t=1

g(yit | xi t , β j )

]
.

The class probabilities must be constrained to sum to 1. A simple approach is to
reparameterize them as a set of logit probabilities,

pi j = eθi j

∑J
j=1 eθi j

, j = 1, . . . , J, θi J = 0, θi j = δ′
j zi , (δ J = 0). (16-19)

(See Section 21.8 for development of this model for a set of probabilities.) Note the re-
striction on θi J . This is an identification restriction. Without it, the same set of

15One can view this as a discrete approximation to the continuous distribution. This is also an extension of
Heckman and Singer’s (1984b) model of latent heterogeneity, but the interpretation is a bit different here.
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probabilities will arise if an arbitrary vector is added to every δ j . The resulting log
likelihood is a continuous function of the parameters β1, . . . ,β J and δ1, . . . , δ J . For
all its apparent complexity, estimation of this model by direct maximization of the log
likelihood is not especially difficult. [See Section E.5 and Greene (2001).] The number
of classes that can be identified is likely to be relatively small (on the order of five or
less), however, which is viewed as a drawback of this approach, and, in general, (as
might be expected), the less rich is the panel data set in terms of cross group variation,
the more difficult it is to estimate this model.

Estimation produces values for the structural parameters, (β j , δ j ), j = 1, . . . , J .
With these in hand, we can compute the prior class probabilities, pi j using (16-20).
For prediction purposes, one might be more interested in the posterior (on the data)
class probabilities, which we can compute using Bayes theorem as

Prob(class j | observation i) = f (observation i | class j) Prob(class j)∑J
j=1 f (observation i | class j) Prob(class j)

= f (yi1, yi2, . . . , yiT | xi1, xi2, . . . , xiT, β j )pi j (�, zi )∑M
j=1 f (yi1, yi2, . . . , yiT | xi1, xi2, . . . , xiT, β j )pi j (�, zi )

= wi j .

This set of probabilities, wi = (wi1, wi2, . . . , wi J ) gives the posterior density over the
distribution of values of β, that is, [β1, β2, . . . , β J ]. The Bayesian estimator of the
(individual specific) parameter vector would be the posterior mean

β̂
p
i = Ê j [β j | observation i] =

J∑
j=1

wi j β̂ j .

Example 16.5 Applications of the Latent Class Model
The latent class formulation has provided an attractive platform for modeling latent hetero-
geneity. (See Greene (2001) for a survey.) For two examples, Nagin and Land (1993) employed
the model to study age transitions through stages of criminal careers and Wang et al. (1998)
and Wedel et al. (1993) and used the Poisson regression model to study counts of patents. To
illustrate the estimator, we will apply the latent class model to the panel data binary choice
application of firm product innovations studied by Bertschek and Lechner (1998).16 They
analyzed the dependent variable

yi t = 1 if firm i realized a product innovation in year t and 0 if not.

Thus, this is a binary choice model. (See Section 21.2 for analysis of binary choice models.)
The sample consists of 1270 German manufacturing firms observed for five years, 1984–
1988. Independent variables in the model that we formulated were

xi t1 = constant,

xi t2 = log of sales,

xi t3 = relative size = ratio of employment in business unit to employment in the industry,

xi t4 = ratio of industry imports to (industry sales + imports),

xi t5 = ratio of industry foreign direct investment to (industry sales + imports),

16We are grateful to the authors of this study who have generously loaned us their data for this analysis. The
data are proprietary and cannot be made publicly available as are the other data sets used in our examples.
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TABLE 16.2 Estimated Latent Class Model

Probit Class 1 Class 2 Class 3 Posterior

Constant −1.96 −2.32 −2.71 −8.97 −3.38
(0.23) (0.59) (0.69) (2.20) (2.14)

lnSales 0.18 0.32 0.23 0.57 0.34
(0.022) (0.061) (0.072) (0.18) (0.09)

Rel. Size 1.07 4.38 0.72 1.42 2.58
(0.14) (0.89) (0.37) (0.76) (1.30)

Import 1.13 0.94 2.26 3.12 1.81
(0.15) (0.37) (0.53) (1.38) (0.74)

FDI 2.85 2.20 2.81 8.37 3.63
(0.40) (1.16) (1.11) (1.93) (1.98)

Prod. −2.34 −5.86 −7.70 −0.91 −5.48
(0.72) (2.70) (4.69) (6.76) (1.78)

RawMtls −0.28 −0.11 −0.60 0.86 −0.08
(0.081) (0.24) (0.42) (0.70) (0.37)

Invest. 0.19 0.13 0.41 0.47 0.29
(0.039) (0.11) (0.12) (0.26) (0.13)

ln L −4114.05 −3503.55
Class Prob. 0.469 0.331 0.200
(Prior) (0.0352) (0.0333) (0.0246)
Class Prob. 0.469 0.331 0.200
(Posterior) (0.394) (0.289) (0.325)
Pred. Count 649 366 255

xi t6 = productivity = ratio of industry value added to industry employment,

xi t7 = dummy variable indicating firm is in the raw materials sector,

xi t8 = dummy variable indicating firm is in the investment goods sector.

Discussion of the data set may be found in the article (pp. 331–332 and 370). Our central
model for the binary outcome is a probit model,

f ( yi t | xi t , β j ) = Prob[ yi t | x′
i tβ j ] = �[(2yi t − 1)x′

i tβ j ], yi t = 0, 1.

This is the specification used by the authors. We have retained it so we can compare the
results of the various models. We also fit a model with year specific dummy variables instead
of a single constant and with the industry sector dummy variables moved to the latent class
probability equation. See Greene (2002) for analysis of the different specifications.

Estimates of the model parameters are presented in Table 16.2. The “probit” coefficients in
the first column are those presented by Bertschek and Lechner.17 The class specific param-
eter estimates cannot be compared directly, as the models are quite different. The estimated
posterior mean shown, which is comparable to the one class results is the sample average
and standard deviation of the 1,270 firm specific posterior mean parameter vectors. They
differ considerably from the probit model, but in each case, a confidence interval around the
posterior mean contains the probit estimator. Finally, the (identical) prior and average of the
sample posterior class probabilities are shown at the bottom of the table. The much larger
empirical standard deviations reflect that the posterior estimates are based on aggregating
the sample data and involve, as well, complicated functions of all the model parameters. The
estimated numbers of class members are computed by assigning to each firm the predicted

17The authors used the robust “sandwich” estimator for the standard errors—see Section 17.9—rather than
the conventional negative inverse of the Hessian.
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class associated with the highest posterior class probability. Finally, to explore the difference
between the probit model and the latent class model, we have computed the probability of
a product innovation at the five-year mean of the independent variables for each firm using
the probit estimates and the firm specific posterior mean estimated coefficient vector. The
two kernel density estimates shown in Figures 16.1 and 16.2 (see Section 16.4.1) show the
effect of allowing the greater between firm variation in the coefficient vectors.

FIGURE 16.1 Probit Probabilities.
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FIGURE 16.2 Latent Class Probabilities.
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16.2.4 HIERARCHICAL BAYES ESTIMATION OF A RANDOM
PARAMETERS MODEL BY MARKOV CHAIN MONTE
CARLO SIMULATION

We now consider a Bayesian approach to estimation of the random parameters model
in (16-19). For an individual i, the conditional density for the dependent variable in
period t is f (yit | xi t , β i ) where β i is the individual specific K × 1 parameter vector and
xi t is individual specific data that enter the probability density.18 For the sequence of
T observations, assuming conditional (on β i ) independence, person i’s contribution to
the likelihood for the sample is

f (yi | Xi , β i ) =
T∏

t=1

f (yit | xi t , β i ). (16-20)

where yi = (yi1, . . . , yiT) and Xi = [xi1, . . . , xiT]. We will suppose that β i is distributed
normally with mean β and covariance matrix �. (This is the “hierarchical” aspect of
the model.) The unconditional density would be the expected value over the possible
values of β i ;

f (yi | Xi , β, �) =
∫

β i

T∏
t=1

f (yit | xi t , β i )φK[β i | β, �] dβ i (16-21)

where φK[β i | β, �] denotes the K variate normal prior density for β i given β and �.
Maximum likelihood estimation of this model, which entails estimation of the “deep”
parameters, β, �, then estimation of the individual specific parameters, β i using the
same method we used for the latent class model, is considered in Section 17.8. For now,
we consider the Bayesian approach to estimation of the parameters of this model.

To approach this from a Bayesian viewpoint, we will assign noninformative prior
densities to β and �. As is conventional, we assign a flat (noninformative) prior to
β. The variance parameters are more involved. If it is assumed that the elements of
β i are conditionally independent, then each element of the (now) diagonal matrix �

may be assigned the inverted gamma prior that we used in (16-14). A full matrix � is
handled by assigning to � an inverted Wishart prior density with parameters scalar K
and matrix K × I. [The Wishart density is a multivariate counterpart to the Chi-squared
distribution. Discussion may be found in Zellner (1971, pp. 389–394).] This produces
the joint posterior density,

	(β1, . . . ,βn, β, � | all data) =
{

n∏
i=1

T∏
t=1

f (yit | xi t , β i )φK[β i | β, �]

}
× p(β, �).

(16-22)

This gives the joint density of all the unknown parameters conditioned on the observed
data. Our Bayesian estimators of the parameters will be the posterior means for these
(n + 1)K + K(K + 1)/2 parameters. In principle, this requires integration of (16-23)
with respect to the components. As one might guess at this point, that integration
is hopelessly complex and not remotely feasible. It is at this point that the recently

18In order to avoid a layer of complication, we will embed the time invariant effect �zi in x′
i tβ. A full treatment

in the same fashion as the latent class model would be substantially more complicated in this setting (though
it is quite straightforward in the maximum simulated likelihood approach discussed in Section 17.8).
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developed techniques of Markov Chain Monte Carlo (MCMC) simulation estimation
and the Metropolis Hastings algorithm enter and enable us to do the estimation in a
remarkably simple fashion.

The MCMC procedure makes use of a result that we have employed at many
points in the preceding chapters. The joint density in (16-23) is exceedingly complex,
and brute force integration is not feasible. Suppose, however, that we could draw ran-
dom samples of [β1, . . . ,βn, β, �] from this population. Then, sample statistics such
as means computed from these random draws would converge to the moments of the
underlying population. The laws of large numbers discussed in Appendix D would
apply. That partially solves the problem. The distribution remains as complex as be-
fore, however, so how to draw the sample remains to be solved. The Gibbs sampler
and the Metropolis—Hastings algorithm can be used for sampling from the (hopelessly
complex) joint density, �(β1, . . . , βn, β, � | all data). The basic principle of the Gibbs
sampler is described in Section E2.6. The core result is as follows: For a two-variable
case, f (x, y) in which f (x | y) and f (y | x) are known. A “Gibbs sequence” of draws,
y0, x0, y1, x1, y2, . . . , yM, xM, is generated as follows. First, y0 is specified “manually.”
Then x0 is obtained as a random draw from the population f (x | y0). Then y1 is drawn
from f (y | x0), and so on. The iteration is, generically, as follows.

1. Draw xj from f (x | yj ).
2. Draw yj+1 from f (y | xj ).
3. Exit or return to step 1.

If this process is repeated enough times, then at the last step, (xj , yj ) together are a
draw from the joint distribution.

Train (2001 and 2002, Chapter 12) describes how to use these results for this random
parameters model.19 The usefulness of this result for our current problem is that it is,
indeed, possible to partition the joint distribution, and we can easily sample from the
conditional distributions. We begin by partitioning the parameters into γ = (β, �) and
δ = (β1, . . . ,βn). Train proposes the following strategy: To obtain a draw from γ | δ, we
will use the Gibbs sampler to obtain a draw from the distribution of (β | �, δ) then one
from the distribution of (� | β, δ). We will lay this out first, then turn to sampling from
δ | β, �.

Conditioned on δ and �, β has a K-variate normal distribution with mean β̄ =
(1/n)

∑n
i=1 β i and covariance matrix (1/n)�. To sample from this distribution we will

first obtain the Cholesky factorization of � = LL′ where L is a lower triangular matrix.
[See Section A.7.11.] Let v be a vector of K draws from the standard normal distribution.
Then, β̄ + Lv has mean vector β̄ + L × 0 = β̄ and covariance matrix LIL′ = � which
is exactly what we need. So, this shows how to sample a draw from the conditional
distribution of β.

To obtain a random draw from the distribution of � | β, δ, we will require a random
draw from the inverted Wishart distribution. The marginal posterior distribution of
� | β, δ is inverted Wishart with parameters scalar K + n and matrix W = (KI + nV)

19Train describes use of this method for “mixed logit” models. By writing the densities in generic form, we
have extended his result to any general setting that involves a parameter vector in the fashion described
above. In Section 17.8, we will apply this model to the probit model considered in the latent class model in
Example 16.5.
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where V = (1/n)
∑n

i=1(β i − β̄)(β i − β̄)′. Train (2001) suggests the following strategy
for sampling a matrix from this distribution: Let M be the lower triangular Cholesky
factor of W−1, so MM′ = W−1. Obtain K +n draws of vk = K standard normal variates.
Then, obtain S = M(

∑K+n
k=1 vkv′

k)M
′. Then, � j = S−1 is a draw from the inverted Wishart

distribution. [This is fairly straightforward, as it involves only random sampling from the
standard normal distribution. For a diagonal � matrix, that is, uncorrelated parameters
in β i , it simplifies a bit further. A draw for the nonzero kth diagonal element can be
obtained using (1 + nVkk)/

∑K+n
r=1 v2

rk.]
The difficult step is sampling β i . For this step, we use the Metropolis–Hastings

(M-H) algorithm suggested by Chib and Greenberg (1996) and Gelman et al. (1995).
The procedure involves the following steps:

1. Given β and � and “tuning constant” τ (to be described below), compute
d = τLv where L is the Cholesky factorization of � and v is a vector of K
independent standard normal draws.

2. Create a trial value β i1 = β i0 + d where β i0 is the previous value.
3. The posterior distribution for β i is the likelihood that appears in (16-21) times the

joint normal prior density, φK[β i | β, �]. Evaluate this posterior density at the trial
value β i1 and the previous value β i0. Let

R10 = f (yi | Xi , β i1)φK(β i1 | β, �)

f (yi | Xi , β i0)φK(β i0 | β, �)
.

4. Draw one observation, u, from the standard uniform distribution, U[0, 1].
5. If u < R10, then accept the trial (new) draw. Otherwise, reuse the old one.

This M-H iteration converges to a sequence of draws from the desired density. Overall,
then, the algorithm uses the Gibbs sampler and the Metropolis–Hastings algorithm
to produce the sequence of draws for all the parameters in the model. The sequence
is repeated a large number of times to produce each draw from the joint posterior
distribution. The entire sequence must then be repeated N times to produce the sample
of N draws, which can then be analyzed, for example, by computing the posterior mean.

Some practical details remain. The tuning constant, τ is used to control the iteration.
A smaller τ increases the acceptance rate. But at the same time, a smaller τ makes new
draws look more like old draws so this slows slows down the process. Gelman et al.
(1995) suggest τ = 0.4 for K = 1 and smaller values down to about 0.23 for higher
dimensions, as will be typical. Each multivariate draw takes many runs of the MCMC
sampler. The process must be started somewhere, though it does not matter much where.
Nonetheless, a “burn-in” period is required to eliminate the influence of the starting
value. Typical applications use several draws for this burn in period for each run of
the sampler. How many sample observations are needed for accurate estimation is not
certain, though several hundred would be a minimum. This means that there is a huge
amount of computation done by this estimator. However, the computations are fairly
simple. The only complicated step is computation of the acceptance criterion at Step 3
of the M-H iteration. Depending on the model, this may, like the rest of the calculations,
be quite simple.

Uses of this methodology can be found in many places in the literature. It has
been particularly productive in marketing research, for example, in analyzing discrete

William Greene
insert 1995,  before 1996
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choice such as brand choice. The cost is in the amount of computation, which is large.
Some important qualifications: As we have hinted before, in Bayesian estimation, as the
amount of sample information increases, it eventually dominates the prior density, even
if it is informative, so long as it is proper and has finite moments. The Bernstein–von
Mises Theorem [Train (p. 5)] gives formal statements of this result, but we can summarize
it with Bickel and Doksum’s (2000) version, which observes that the asymptotic sam-
pling distribution of the posterior mean is the same as the asymptotic distribution of
the maximum likelihood estimator. The practical implication of this for us is that if the
sample size is large, the Bayesian estimator of the parameters described here and the
maximum likelihood estimator described in Section 17.9 will give the same answer.20

16.3 SEMIPARAMETRIC ESTIMATION

Semiparametric estimation is based on fewer assumptions than parametric estimation.
In general, the distributional assumption is removed, and an estimator is devised from
certain more general characteristics of the population. Intuition suggests two (correct)
conclusions. First, the semiparametric estimator will be more robust than the parametric
estimator—it will retain its properties, notably consistency) across a greater range of
specifications. Consider our most familiar example. The least squares slope estimator is
consistent whenever the data are well behaved and the disturbances and the regressors
are uncorrelated. This is even true for the frontier function in Example 16.2, which has
an asymmetric, nonnormal disturbance. But, second, this robustness comes at a cost.
The distributional assumption usually makes the preferred estimator more efficient
than a robust one. The best robust estimator in its class will usually be inferior to the
parametric estimator when the assumption of the distribution is correct. Once again,
in the frontier function setting, least squares may be robust for the slopes, and it is the
most efficient estimator that uses only the orthogonality of the disturbances and the
regressors, but it will be inferior to the maximum likelihood estimator when the two
part normal distribution is the correct assumption.

16.3.1 GMM ESTIMATION IN ECONOMETRICS

Recent applications in economics include many that base estimation on the method of
moments. The generalized method of moments departs from a set of model based mo-
ment equations, E [m(yi , xi , β)] = 0, where the set of equations specifies a relationship
known to hold in the population. We used one of these in the preceding paragraph.
The least squares estimator can be motivated by noting that the essential assumption is
that E [xi (yi − x′

iβ)] = 0. The estimator is obtained by seeking a parameter estimator,
b, which mimics the population result; (1/n)�i [xi (yi − x′

i b)] = 0. This is, of course, the

20Practitioners might note, recent developments in commercial software have produced a wide choice of
“mixed” estimators which are various implementations of the maximum likelihood procedures and hierar-
chical Bayes procedures (such as the Sawtooth program (1999)). Unless one is dealing with a small sample,
the choice between these can be based on convenience. There is little methodological difference. This returns
us to the practical point noted earlier. The choice between the Bayesian approach and the sampling theory
method in this application would not be based on a fundamental methodological criterion, but on purely
practical considerations—the end result is the same.
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normal equations for least squares. Note that the estimator is specified without benefit
of any distributional assumption. Method of moments estimation is the subject of Chap-
ter 18, so we will defer further analysis until then.

16.3.2 LEAST ABSOLUTE DEVIATIONS ESTIMATION

Least squares can be severely distorted by outlying observations. Recent applications
in microeconomics and financial economics involving thick-tailed disturbance distri-
butions, for example, are particularly likely to be affected by precisely these sorts of
observations. (Of course, in those applications in finance involving hundreds of thou-
sands of observations, which are becoming commonplace, all this discussion is moot.)
These applications have led to the proposal of “robust” estimators that are unaffected by
outlying observations.21 In this section, we will examine one of these, the least absolute
deviations, or LAD estimator.

That least squares gives such large weight to large deviations from the regression
causes the results to be particularly sensitive to small numbers of atypical data points
when the sample size is small or moderate. The least absolute deviations (LAD) esti-
mator has been suggested as an alternative that remedies (at least to some degree) the
problem. The LAD estimator is the solution to the optimization problem,

Minb0

n∑
i=1

|yi − x′
i b0|.

The LAD estimator’s history predates least squares (which itself was proposed over
200 years ago). It has seen little use in econometrics, primarily for the same reason that
Gauss’s method (LS) supplanted LAD at its origination; LS is vastly easier to compute.
Moreover, in a more modern vein, its statistical properties are more firmly established
than LAD’s and samples are usually large enough that the small sample advantage of
LAD is not needed.

The LAD estimator is a special case of the quantile regression:

Prob[yi ≤ x′
iβ] = q.

The LAD estimator estimates the median regression. That is, it is the solution to the
quantile regression when q = 0.5. Koenker and Bassett (1978, 1982), Huber (1967), and
Rogers (1993) have analyzed this regression.22 Their results suggest an estimator for
the asymptotic covariance matrix of the quantile regression estimator,

Est.Asy. Var[bq] = (X′X)−1X′DX(X′X)−1,

where D is a diagonal matrix containing weights

di =
[

q
f (0)

]2

if yi − x′
iβ is positive and

[
1 − q
f (0)

]2

otherwise,

21For some applications, see Taylor (1974), Amemiya (1985, pp. 70–80), Andrews (1974), Koenker and Bassett
(1978), and a survey written at a very accessible level by Birkes and Dodge (1993). A somewhat more rigorous
treatment is given by Hardle (1990).
22Powell (1984) has extended the LAD estimator to produce a robust estimator for the case in which data
on the dependent variable are censored, that is, when negative values of yi are recorded as zero. See Sec-
tion 22.3.4c for discussion and Melenberg and van Soest (1996) for an application. For some related results
on other semiparametric approaches to regression, see Butler, McDonald, Nelson, and White (1990) and
McDonald and White (1993).
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and f (0) is the true density of the disturbances evaluated at 0.23 [It remains to ob-
tain an estimate of f (0).] There is one useful symmetry in this result. Suppose that
the true density were normal with variance σ 2. Then the preceding would reduce to
σ 2(π/2)(X′X)−1, which is the result we used in Example E.1 to compare estimates of
the median and the mean in a simple situation of random sampling. For more general
cases, some other empirical estimate of f (0) is going to be required. Nonparametric
methods of density estimation are available [see Section 16.4 and, e.g., Johnston and
DiNardo (1997, pp. 370–375)]. But for the small sample situations in which techniques
such as this are most desirable (our application below involves 25 observations), non-
parametric kernel density estimation of a single ordinate is optimistic; these are, after
all, asymptotic results. But asymptotically, as suggested by Example E.1, the results be-
gin overwhelmingly to favor least squares. For better or worse, a convenient estimator
would be a kernel density estimator as described in Section 16.4.1. Looking ahead, the
computation would be

f̂ (0) = 1
n

n∑
i=1

1
h

K
[

ei

h

]

where h is the bandwidth (to be discussed below), K[.] is a weighting, or kernel function
and ei , i = 1, . . . , n is the set of residuals. There are no hard and fast rules for choosing
h; one popular choice is that used by Stata, h = .9s/n1/5. The kernel function is likewise
discretionary, though it rarely matters much which one chooses; the logit kernel (see
Table 16.4) is a common choice.

The bootstrap method of inferring statistical properties is well suited for this ap-
plication. Since the efficacy of the bootstrap has been established for this purpose, the
search for a formula for standard errors of the LAD estimator is not really necessary. The
bootstrap estimator for the asymptotic covariance matrix can be computed as follows:

Est. Var[bLAD] = 1
R

R∑
r=1

(bLAD(r) − bLAD)(bLAD(r) − bLAD)′,

where bLAD is the LAD estimator and bLAD(r) is the rth LAD estimate of β based on
a sample of n observations, drawn with replacement, from the original data set.

Example 16.6 LAD Estimation of a Cobb–Douglas Production Function
Zellner and Revankar (1970) proposed a generalization of the Cobb–Douglas production func-
tion which allows economies of scale to vary with output. Their statewide data on Y = value
added (output), K = capital, L = labor, and N = the number of establishments in the trans-
portation industry are given in Appendix Table F9.2. The generalized model is estimated in
Example 17.9. For this application, estimates of the Cobb–Douglas production function,

ln(Yi /Ni ) = β1 + β2 ln( Ki /Ni ) + β3 ln( Li /Ni ) + εi ,

are obtained by least squares and LAD. The standardized least squares residuals (see
Section 4.9.3) suggest that two observations (Florida and Kentucky) are outliers by the usual

23See Stata (2001). Koenker suggests that for independent and identically distributed observations, one
should replace di with the constant a = q(1−q)/[ f (F−1(q))]2 = [.25/ f (0)]2 for the median (LAD) estimator.
This reduces the expression to the true asymptotic covariance matrix, a(X′X)−1. The one given is a sample
estimator which will behave the same in large samples. (Personal communication to the author.)
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TABLE 16.3 LS and LAD Estimates of a Production Function

Least Squares LAD

Bootstrap Kernel Density

Coefficient Estimate
Standard
Error t Ratio Estimate Std. Error t Ratio Std. Error t Ratio

Constant 1.844 0.234 7.896 1.806 0.344 5.244 0.320 5.639
βk 0.245 0.107 2.297 0.205 0.128 1.597 0.147 1.398
βl 0.805 0.126 6.373 0.849 0.163 5.201 0.173 4.903
�e2 1.2222 1.2407
�|e| 4.0008 3.9927

construction. The least squares coefficient vectors with and without these two observations
are (1.844, 0.245, 0.805) and (1.764, 0.209, 0.852), respectively, which bears out the sug-
gestion that these two points do exert considerable influence. Table 16.3 presents the LAD
estimates of the same parameters, with standard errors based on 500 bootstrap replica-
tions. The LAD estimates with and without these two observations are identical, so only
the former are presented. Using the simple approximation of multiplying the corresponding
OLS standard error by (π/2)1/2 = 1.2533 produces a surprisingly close estimate of the boot-
strap estimated standard errors for the two slope parameters (0.134, 0.158) compared with
the bootstrap estimates of (0.128, 0.163). The second set of estimated standard errors are
based on Koenker’s suggested estimator, .25/f̂

2
(0) = .25/1.54672 = 0.104502. The band-

width and kernel function are those suggested earlier. The results are surprisingly consistent
given the small sample size.

16.3.3 PARTIALLY LINEAR REGRESSION

The proper functional form in the linear regression is an important specification issue.
We examined this in detail in Chapter 7. Some approaches, including the use of dummy
variables, logs, quadratics, and so on were considered as means of capturing nonlinearity.
The translog model in particular (Example 2.4.) is a well-known approach to approx-
imating an unknown nonlinear function. Even with these approaches, the researcher
might still be interested in relaxing the assumption of functional form in the model. The
partially linear model [analyzed in detail by Yatchew (1998, 2000)] is another approach.
Consider a regression model in which one variable, x, is of particular interest, and the
functional form with respect to x is problematic. Write the model as

yi = f (xi ) + z′
iβ + εi ,

where the data are assumed to be well behaved and, save for the functional form, the
assumptions of the classical model are met. The function f (xi ) remains unspecified. As
stated, estimation by least squares is not feasible until f (xi ) is specified. Suppose the
data were such that they consisted of pairs of observations (yj1, yj2), j = 1, . . . , n/2 in
which xj1 = xj2 within every pair. If so, then estimation of β could be based on the
simple transformed model

yj2 − yj1 = (z j2 − z j1)
′β + (ε j2 − ε j1), j = 1, . . . , n/2.

As long as observations are independent, the constructed disturbances, vi still have zero
mean, variance now 2σ 2, and remain uncorrelated across pairs, so a classical model
applies and least squares is actually optimal. Indeed, with the estimate of β, say, β̂d in
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hand, a noisy estimate of f (xi ) could be estimated with yi − z′
i β̂d (the estimate contains

the estimation error as well as vi ).24

The problem, of course, is that the enabling assumption is heroic. Data would not
behave in that fashion unless they were generated experimentally. The logic of the
partially linear regression estimator is based on this observation nonetheless. Suppose
that the observations are sorted so that x1 < x2 < · · · < xn. Suppose, as well, that this
variable is well behaved in the sense that as the sample size increases, this sorted data
vector more tightly and uniformly fills the space within which xi is assumed to vary.
Then, intuitively, the difference is “almost” right, and becomes better as the sample size
grows. [Yatchew (1997, 1998) goes more deeply into the underlying theory.] A theory
is also developed for a better differencing of groups of two or more observations. The
transformed observation is yd,i = ∑M

m=0 dmyi−m where
∑M

m=0 dm = 0 and
∑M

m=0 d2
m = 1.

(The data are not separated into nonoverlapping groups for this transformation—we
merely used that device to motivate the technique.) The pair of weights for M = 1 is
obviously ±√

.5—this is just a scaling of the simple difference, 1, −1. Yatchew [1998,
p. 697)] tabulates “optimal” differencing weights for M= 1, . . . , 10. The values for
M= 2 are (0.8090, −0.500, −0.3090) and for M = 3 are (0.8582, −0.3832, −0.2809,

−0.1942). This estimator is shown to be consistent, asymptotically normally distributed,
and have asymptotic covariance matrix

Asy. Var[β̂d] =
(

1 + 1
2M

)
σ 2

v

n
Ex[Var[z | x]].25

The matrix can be estimated using the sums of squares and cross products of the differ-
enced data. The residual variance is likewise computed with

σ̂ 2
v =

∑n
i=M+1(yd,i − z′

d,i β̂d)
2

n − M
.

Yatchew suggests that the partial residuals, yd,i − z′
d,i β̂d be smoothed with a kernel

density estimator to provide an improved estimator of f (xi ).

Example 16.7 Partially Linear Translog Cost Function
Yatchew (1998, 2000) applied this technique to an analysis of scale effects in the costs of
electricity supply. The cost function, following Nerlove (1963) and Christensen and Greene
(1976) was specified to be a translog model (see Example 2.4 and Section 14.3.2) involving
labor and capital input prices, other characteristics of the utiity and the variable of interest, the
number of customers in the system, C. We will carry out a similar analysis using Christenen
and Greene’s 1970 electricity supply data. The data are given in Appendix Table F5.2. (See
Section 14.3.1 for description of the data.) There are 158 observations in the data set, but
the last 35 are holding companies which are comprised of combinations of the others. In
addition, there are several extremely small New England utilities whose costs are clearly
unrepresentative of the best practice in the industry. We have done the analysis using firms
6-123 in the data set. Variables in the data set include Q = output, C = total cost and PK, PL,
and PF = unit cost measures for capital, labor and fuel, respectively. The parametric model
specified is a restricted version of the Christensen and Greene model,

ln c = β1k + β2l + β3q + β4(q) 2/2 + β5 + ε.

24See Estes and Honore (1995) who suggest this approach (with simple differencing of the data).
25Yatchew (2000, p. 191) denotes this covariance matrix E [Cov[z | x]].
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FIGURE 16.3 Smoothed Estimator for Costs.

where c = ln C/( Q × PF ) , k = ln(PK/PF ) , l = ln(PL/PF ) and q = ln Q. The partially linear
model substitutes f ( Q) for the last three terms. The division by PF ensures that average
cost is homogeneous of degree one in the prices, a theoretical necessity. The estimated
equations, with estimated standard errors are shown below.

(parametric) c = −6.83 + 0.168k + 0.146l − 0.590q + 0.061q2/2 + ε,
(0.353) (0.042) (0.048) (0.075) (0.010) s = 0.13383

(partial linear) cd = 0.170kd + 0.127ld + f ( Q) + v
(0.049) (0.057) s = 0.14044

Yatchew’s suggested smoothed kernel density estimator for the relationship between average
cost and output is shown in Figure 16.3 with the unsmoothed partial residuals. We find (as
did Christensen and Greene in the earlier study) that in the relatively low ranges of output,
there is a fairly strong relationship between scale and average cost.

16.3.4 Kernel Density Methods

The kernel density estimator is an inherently nonparametric tool, so it fits more ap-
propriately into the next section. But some models which use kernel methods are not
completely nonparametric. The partially linear model in the preceding example is a
case in point. Many models retain an index function formulation, that is, build the spec-
ification around a linear function, x′β, which makes them at least semiparametric, but
nonetheless still avoid distributional assumptions by using kernel methods. Lewbel’s
(2000) estimator for the binary choice model is another example.

Example 16.8 Semiparametric Estimator for Binary Choice Models
The core binary choice model analyzed in Example 16.5, the probit model, is a fully parametric
specification. Under the assumptions of the model, maximum likelihood is the efficient (and
appropriate) estimator. However, as documented in a voluminous literature, the estimator
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of β is fragile with respect to failures of the distributional assumption. We will examine a
few semiparametric and nonparametric estimators in Section 21.5. To illustrate the nature of
the modeling process, we consider an estimator recently suggested by Lewbel (2000). The
probit model is based on the normal distribution, with Prob[yi = 1] = Prob[x′

i β+εi > 0] where
εi ∼ N[0, 1]. The estimator of β under this specification will be inconsistent if the distribution is
not normal or if εi is heteroscedastic. Lewbel suggests the following: If (a) it can be assumed
that xi contains a “special” variable, vi , whose coefficient has a known sign—a method is
developed for determining the sign and (b) the density of εi is independent of this variable,
then a consistent estimator of β can be obtained by linear regression of [yi − s(vi ) ]/ f (vi | xi )
on xi where s(vi ) = 1 if vi > 0 and 0 otherwise and f (vi | xi ) is a kernel density estimator of
the density of vi | xi . Lewbel’s estimator is robust to heteroscedasticity and distribution. A
method is also suggested for estimating the distribution of εi . Note that Lewbel’s estimator is
semiparametric. His underlying model is a function of the parameters β, but the distribution
is unspecified.

16.4 NONPARAMETRIC ESTIMATION

Researchers have long held reservations about the strong assumptions made in para-
metric models fit by maximum likelihood. The linear regression model with normal
disturbances is a leading example. Splines, translog models, and polynomials all repre-
sent attempts to generalize the functional form. Nonetheless, questions remain about
how much generality can be obtained with such approximations. The techniques of non-
parametric estimation discard essentially all fixed assumptions about functional form
and distribution. Given their very limited structure, it follows that nonparametric spec-
ifications rarely provide very precise inferences. The benefit is that what information
is provided is extremely robust. The centerpiece of this set of techniques is the kernel
density estimator that we have used in the preceding examples. We will examine some
examples, then examine an application to a bivariate regression.26

16.4.1 KERNEL DENSITY ESTIMATION

Sample statistics such as a mean, variance, and range give summary information about
the values that a random variable may take. But, they do not suffice to show the distribu-
tion of values that the random variable takes, and these may be of interest as well. The
density of the variable is used for this purpose. A fully parametric approach to density
estimation begins with an assumption about the form of a distribution. Estimation of
the density is accomplished by estimation of the parameters of the distribution. To take
the canonical example, if we decide that a variable is generated by a normal distribution
with mean µ and variance σ 2, then the density is fully characterized by these parameters.
It follows that

f̂ (x) = f (x | µ̂, σ̂ 2) = 1
σ̂

1√
2π

exp

[
−1

2

(
x − µ̂

σ̂

)2
]

.

One may be unwilling to make a narrow distributional assumption about the density. The
usual approach in this case is to begin with a histogram as a descriptive device. Consider

26There is a large and rapidly growing literature in this area of econometrics. Two major references which
provide an applied and theoretical foundation are Härdle (1990) and Pagan and Ullah (1999).
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FIGURE 16.4 Histogram for Estimated Coefficients.

an example. In Example 16.5, we estimated a model that produced a posterior estimator
of a slope vector for each of the 1,270 firms in our sample. We might be interested in
the distribution of these estimators across firms. In particular, the posterior estimates
of the estimated slope on lnsales for the 1,270 firms have a sample mean of 0.3428, a
standard deviation of 0.08919, a minimum of 0.2361 and a maximum of 0.5664. This tells
us little about the distribution of values, though the fact that the mean is well below
the midrange of .4013 might suggest some skewness. The histogram in Figure 16.4 is
much more revealing. Based on what we see thus far, an assumption of normality might
not be appropriate. The distribution seems to be bimodal, but certainly no particular
functional form seems natural.

The histogram is a crude density estimator. The rectangles in the figure are called
bins. By construction, they are of equal width. (The parameters of the histogram are the
number of bins, the bin width and the leftmost starting point. Each is important in the
shape of the end result.) Since the frequency count in the bins sums to the sample size, by
dividing each by n, we have a density estimator that satisfies an obvious requirement for
a density; it sums (integrates) to one. We can formalize this by laying out the method by
which the frequencies are obtained. Let xk be the midpoint of the kth bin and let h be the
width of the bin—we will shortly rename h to be the bandwidth for the density estimator.
The distance to the left and right boundaries of the bins are h/2. The frequency count
in each bin is the number of observations in the sample which fall in the range xk ± h/2.
Collecting terms, we have our “estimator”

f̂ (x) = 1
n

frequency in binx

width of binx
= 1

n

n∑
i=1

1
h

1
(

x − h
2

< xi < x + h
2

)
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where 1(statement) denotes an indicator function which equals 1 if the statement is true
and 0 if it is false and binx denotes the bin which has x as its midpoint. We see, then, that
the histogram is an estimator, at least in some respects, like other estimators we have
encountered. The event in the indicator can be rearranged to produce an equivalent
form

f̂ (x) = 1
n

n∑
i=1

1
h

1
(

−1
2

<
xi − x

h
<

1
2

)
.

This form of the estimator simply counts the number of points that are within 1/2 bin
width of xk.

Albeit rather crude, this “naive” (its formal name in the literature) estimator is in
the form of kernel density estimators that we have met at various points;

f̂ (x) = 1
n

n∑
i=1

1
h

K
[

xi − x
h

]
, where K[z] = 1[−1/2 < z < 1/2].

The naive estimator has several shortcomings. It is neither smooth nor continuous.
Its shape is partly determined by where the leftmost and rightmost terminals of the
histogram are set. (In constructing a histogram, one often chooses the bin width to be
a specified fraction of the sample range. If so, then the terminals of the lowest and
highest bins will equal the minimum and maximum values in the sample, and this will
partly determine the shape of the histogram. If, instead, the bin width is set irrespective
of the sample values, then this problem is resolved.) More importantly, the shape of
the histogram will be crucially dependent on the bandwidth, itself. (Unfortunately, this
problem remains even with more sophisticated specifications.)

The crudeness of the weighting function in the estimator is easy to remedy.
Rosenblatt’s (1956) suggestion was to substitute for the naive estimator some other
weighting function which is continuous and which also integrates to one. A number of
candidates have been suggested, including the (long) list in Table 16.4. Each of these is
smooth, continuous, symmetric, and equally attractive. The Parzen, logit, and normal
kernels are defined so that the weight only asymptotically falls to zero whereas the
others fall to zero at specific points. It has been observed that in constructing density
estimator, the choice of kernel function is rarely crucial, and is usually minor in impor-
tance compared to the more difficult problem of choosing the bandwidth. (The logit
and normal kernels appear to be the default choice in many applications.)

TABLE 16.4 Kernels for Density Estimation

Kernel Formula K[z]

Epanechnikov .75(1 − .2z2)/2.236 if |z| ≤ 5, 0 else
Normal φ(z) (normal density),
Logit �(z)[1 − �(z)] (logistic density)
Uniform .5 if |z| ≤ 1, 0 else
Beta (1 − z)(1 + z)/24 if |z| ≤ 1, 0 else
Cosine 1 + cos(2πz) if |z| ≤ .5, 0 else
Triangle 1 − |z|, if |z| ≤ 1, 0 else
Parzen 4/3 − 8z2 + 8 |z|3 if |z| ≤ .5, 8(1 − |z|)3/3 else
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The kernel density function is an estimator. For any specific x, f̂ (x) is a sample
statistic,

f̂ (z) = 1
n

n∑
i=1

g(xi | z, h).

Since g(xi | z, h) is nonlinear, we should expect a bias in a finite sample. It is tempting
to apply our usual results for sample moments, but the analysis is more complicated
because the bandwidth is a function of n. Pagan and Ullah (1999) have examined the
properties of kernel estimators in detail, and found that under certain assumptions
the estimator is consistent and asymptotically normally distributed but biased in finite
samples. The bias is a function of the bandwidth but for an appropriate choice of h,
does vanish asymptotically. As intuition might suggest, the larger is the bandwidth, the
greater is the bias, but at the same time, the smaller is the variance. This might suggest
a search for an optimal bandwidth. After a lengthy analysis of the subject, however,
the authors’ conclusion provides little guidance for finding one. One consideration does
seem useful. In order for the proportion of observations captured in the bin to converge
to the corresponding area under the density, the width itself must shrink more slowly
than 1/n. Common applications typically use a bandwidth equal to some multiple of
n−1/5 for this reason. Thus, the one we used earlier is h = 0.9 × s/n1/5. To conclude the
illustration begun earlier, Figure 16.5 is a logit based kernel density estimator for the dis-
tribution of slope estimates for the model estimated earlier. The resemblance to the
histogram is to be expected.

FIGURE 16.5 Kernel Density for Coefficients.
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16.4.2 NONPARAMETRIC REGRESSION

The regression function of a variable y on a single variable x is specified as

y = µ(x) + ε.

No assumptions about distribution, homoscedasticity, serial correlation. or, most im-
portantly, functional form are made at the outset; µ(x) may be quite nonlinear. Since
this is the conditional mean, the only substantive restriction would be that deviations
from the conditional mean function are not a function of (correlated with) x. We have
already considered several possible strategies for allowing the conditional mean to be
nonlinear, including spline functions, polynomials, logs, dummy variables, and so on.
But, each of these is a “global” specification. The functional form is still the same for
all values of x. Here, we are interested in methods that do not assume any particular
functional form.

The simplest case to analyze would be one in which several (different) observations
on yi were made with each specific value of xi . Then, the conditional mean function
could be estimated naturally using the simple group means. The approach has two
shortcomings, however. Simply connecting the points of means, (xi , ȳ | xi ) does not
produce a smooth function. The method would still be assuming something specific
about the function between the points, which we seek to avoid. Second, this sort of data
arrangement is unlikely to arise except in an experimental situation. Given that data
are not likely to be grouped, another possibility is a piecewise regression in which we
define “neighborhoods” of points around each x of interest and fit a separate linear or
quadratic regression in each neighborhood. This returns us to the problem of continuity
that we noted earlier, but the method of splines is actually designed specifically for this
purpose. Still, unless the number of neighborhoods is quite large, such a function is still
likely to be crude.

Smoothing techniques are designed to allow construction of an estimator of the
conditional mean function without making strong assumptions about the behavior of
the function between the points. They retain the usefulness of the “nearest neighbor”
concept, but use more elaborate schemes to produce smooth, well behaved functions.
The general class may be defined by a conditional mean estimating function

µ̂(x∗) =
n∑

i=1

wi (x∗ | x1, x2, . . . , xn)yi =
n∑

i=1

wi (x∗ | x)yi

where the weights sum to 1. The linear least squares regression line is such an estimator.
The predictor is

µ̂(x∗) = a + bx∗

where a and b are the least squares constant and slope. For this function, you can show
that

wi (x∗ | x) = 1
n

+ x∗(xi − x̄)∑n
i=1(xi − x̄)2

.

The problem with this particular weighting function, which we seek to avoid here, is
that it allows every xi to be in the neighborhood of x∗, but it does not reduce the weight
of any xi when it is far from x∗. A number of smoothing functions have been suggested
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which are designed to produce a better behaved regression function. [See Cleveland
(1979) and Schimek (2000).] We will consider two.

The locally weighted smoothed regression estimator (“loess” or “lowess” depending
on your source) is based on explicitly defining a neighborhood of points that is close to
x∗. This requires the choice of a bandwidth, h. The neighborhood is the set of points for
which |x∗ − xi | is small. For example, the set of points that are within the range x∗ ± h/2
(as in our original histogram) might constitute the neighborhood. A suitable weight is
then required. Cleveland (1979) recommends the tricube weight,

Ti (x∗ | x, h) =
[

1 −
( |xi − x∗|

h

)3
]3

.

Combining terms, then the weight for the loess smoother is

wi (x∗ | x, h) = 1(xi in the neighborhood) × Ti (x∗ | x).

As always, the bandwidth is crucial. A wider neighborhood will produce a smoother
function. But the wider neighborhood will track the data less closely than a narrower
one. A second possibility, similar to the first, is to allow the neighborhood to be all
points, but make the weighting function decline smoothly with the distance between x∗

and any xi . Any of the kernel functions suggested earlier will serve this purpose. This
produces the kernel weighted regression estimator,

µ̂(x∗ | x, h) =
∑n

i=1
1
h

K
[

xi − x∗

h

]
yi

∑n
i=1

1
h

K
[

xi − x∗

h

] ,

which has become a standard tool in nonparametric analysis.

Example 16.9 A Nonparametric Average Cost Function
In Example 16.7, we fit a partially linear regression for the relationship between average
cost and output for electricity supply. Figures 16.6 and Figure 16.7 show the less ambitious
nonparametric regressions of average cost on output. The overall picture is the same as in
the earlier example. The kernel function is the logit density in both cases. The function in
Figure 16.6 uses a bandwidth of 2,000. Since this is a fairly large proportion of the range
of variation of output, the function is quite smooth. The regression in Figure 16.7 uses a
bandwidth of only 200. The function tracks the data better, but at an obvious cost. The
example demonstrates what we and others have noted often; the choice of bandwidth in this
exercise is crucial.

Data smoothing is essentially data driven. As with most nonparametric techniques,
inference is not part of the analysis—this body of results is largely descriptive. As can
be seen in the example, nonparametric regression can reveal interesting characteristics
of the data set. For the econometrician, however, there are a few drawbacks. Most
relationships are more complicated than simple conditional mean of one variable. In the
example just given, some of the variation in average cost relates to differences in factor
prices (particularly fuel) and in load factors. Extensions of the fully nonparametric
regression to more than one variable is feasible, but very cumbersome. [See Härdle
(1990).] A promising approach is the partially linear model considered earlier.
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FIGURE 16.7 Nonparametric Cost Function.
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16.5 PROPERTIES OF ESTIMATORS

The preceding has been concerned with methods of estimation. We have surveyed a
variety of techniques that have appeared in the applied literature. We have not yet
examined the statistical properties of these estimators. Although, as noted earlier, we
will leave extensive analysis of the asymptotic theory for more advanced treatments,
it is appropriate to spend at least some time on the fundamental theoretical platform
which underlies these techniques.

16.5.1 STATISTICAL PROPERTIES OF ESTIMATORS

Properties that we have considered are as follows:

• Unbiasedness: This is a finite sample property that can be established in only a very
small number of cases. Strict unbiasedness is rarely of central importance outside
the linear regression model. However, “asymptotic unbiasedness” (whereby the
expectation of an estimator converges to the true parameter as the sample size
grows), might be of interest. [See, e.g., Pagan and Ullah (1999, Section 2.5.1 on the
subject of the kernel density estimator).] In most cases, however, discussions of
asymptotic unbiasedness are actually directed toward consistency, which is a more
desirable property.

• Consistency: This is a much more important property. Econometricians are rarely
willing to place much credence in an estimator for which consistency cannot be
established.

• Asymptotic normality: This property forms the platform for most of the statisti-
cal inference that is done with common estimators. When asymptotic normality
cannot be established, for example, for the maximum score estimator discussed
in Section 21.5.3, it sometimes becomes difficult to find a method of progressing
beyond simple presentation of the numerical values of estimates (with caveats).
However, most of the contemporary literature in macroeconomics and time series
analysis is strongly focused on estimators which are decidedly not asymptotically
normally distributed. The implication is that this property takes its importance only
in context, not as an absolute virtue.

• Asymptotic efficiency: Efficiency can rarely be established in absolute terms.
Efficiency within a class often can, however. Thus, for example, a great deal can be
said about the relatively efficiency of maximum likelihood and GMM estimators
in the class of CAN estimators. There are two important practical considerations
in this setting. First, the researcher will want to know that they have not made
demonstrably suboptimal use of their data. (The literature contains discussions of
GMM estimation of fully specified parametric probit models—GMM estimation in
this context is unambiguously inferior to maximum likelihood.) Thus, when possi-
ble, one would want to avoid obviously inefficient estimators. On the other hand,
it will usually be the case that the researcher is not choosing from a list of avail-
able estimators; they have one at hand, and questions of relative efficiency are
moot.
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16.5.2 EXTREMUM ESTIMATORS

An extremum estimator is one which is obtained as the optimizer of a criterion function
q(θ | data). Three that have occupied much of our effort thus far are

• Least squares: θ̂ LS = Argmax
[−(1/n)

∑n
i=1(yi − h(xi , θLS))

2
]
,

• Maximum likelihood: θ̂ML = Argmax
[
(1/n)

∑n
i=1 ln f (yi | xi , θML)

]
,

• GMM: θ̂GMM = Argmax[−m̄(data, θGMM)′Wm̄(data, θGMM)].

(We have changed the signs of the first and third only for convenience so that all three
may be cast as the same type of optimization problem.) The least squares and maximum
likelihood estimators are examples of M estimators, which are defined by optimizing
over a sum of terms. Most of the familiar theoretical results developed here and in
other treatises concern the behavior of extremum estimators. Several of the estimators
considered in this chapter are extremum estimators, but a few, including the Bayesian
estimators, some of the semiparametric estimators and all of the nonparametric estima-
tors are not. Nonetheless. we are interested in establishing the properties of estimators
in all these cases, whenever possible. The end result for the practitioner will be the set
of statistical properties that will allow them to draw with confidence conclusions about
the data generating process(es) that have motivated the analysis in the first place.

Derivations of the behavior of extremum estimators are pursued at various levels
in the literature. (See, e.g., any of the sources mentioned in Footnote 1 of this chapter.)
Amemiya (1985) and Davidson and MacKinnon (1993) are very accessible treatments.
Newey and McFadden (1994) is a recent, rigorous analysis that provides a current, stan-
dard source. Our discussion at this point will only suggest the elements of the analysis.
The reader is referred to one of these sources for detailed proofs and derivations.

16.5.3 ASSUMPTIONS FOR ASYMPTOTIC PROPERTIES
OF EXTREMUM ESTIMATORS

Some broad results are needed in order to establish the asymptotic properties of the
classical (not Bayesian) conventional extremum estimators noted above.

(a) The parameter space (see Section 16.2) must be convex and the parameter vector
that is the object of estimation must be a point in its interior. The first requirement
rules out ill defined estimation problems such as estimating a parameter which
can only take one of a finite discrete set of values. Thus, searching for the date of
a structural break in a time series model as if it were a conventional parameter
leads to a nonconvexity. Some proofs in this context are simplified by assuming
that the parameter space is compact. (A compact set is closed and bounded.)
However, assuming compactness is usually restrictive, so we will opt for the weaker
requirement.

(b) The criterion function must be concave in the parameters. (See Section A.8.2.)
This assumption implies that with a given data set, the objective function has
an interior optimum and that we can locate it. Criterion functions need not be
“globally concave;” they may have multiple optima. But, if they are not at least
“locally concave” then we cannot speak meaningfully about optimization. One
would normally only encounter this problem in a badly structured model, but it is
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possible to formulate a model in which the estimation criterion is monotonically
increasing or decreasing in a parameter. Such a model would produce a noncon-
cave criterion function.27 The distinction between compactness and concavity in
the preceding condition is relevant at this point. If the criterion function is strictly
continuous in a compact parameter space, then it has a maximum in that set and
assuming concavity is not necessary. The problem for estimation, however, is that
this does not rule out having that maximum occur on the (assumed) boundary of
the parameter space. This case interferes with proofs of consistency and asymptotic
normality. The overall problem is solved by assuming that the criterion function
is concave in the neighborhood of the true parameter vector.

(c) Identifiability of the parameters. Any statement that begins with “the true param-
eters of the model, θ0 are identified if . . .” is problematic because if the parameters
are “not identified” then arguably, they are not the parameters of the (any) model.
(For example, there is no “true” parameter vector in the unidentified model of
Example 2.5.) A useful way to approach this question that avoids the ambiguity
of trying to define the true parameter vector first and then asking if it is identified
(estimable) is as follows, where we borrow from Davidson and MacKinnon (1993,
p. 591): Consider the parameterized model, M and the set of allowable data gener-
ating processes for the model, µ. Under a particular parameterization µ, let there
be an assumed “true” parameter vector, θ(µ). Consider any parameter vector θ

in the parameter space, �. Define

qµ(µ, θ) = plimµqn(θ | data).

This function is the probability limit of the objective function under the assumed
parameterization µ. If this probability limit exists (is a finite constant) and more-
over, if

qµ(µ, θ(µ)) > qµ(µ, θ) if θ �= θ(µ),

then if the parameter space is compact, the parameter vector is identified by the
criterion function. We have not assumed compactness. For a convex parameter
space, we would require the additional condition that there exist no sequences
without limit points θm such that q(µ, θm) converges to q(µ, θ(µ)).

The approach taken here is to assume first that the model has some set of
parameters. The identifiability criterion states that assuming this is the case, the
probability limit of the criterion is maximized at these parameters. This result rests
on convergence of the criterion function to a finite value at any point in the interior
of the parameter space. Since the criterion function is a function of the data, this
convergence requires a statement of the properties of the data—e.g., well behaved
in some sense. Leaving that aside for the moment, interestingly, the results to this

27In their Exercise 23.6, Griffiths, Hill, and Judge (1993), based (alas) on the first edition of this text, suggest a
probit model for statewide voting outcomes that includes dummy variables for region, Northeast, Southeast,
West, and Mountain. One would normally include three of the four dummy variables in the model, but
Griffiths et al. carefully dropped two of them because in addition to the dummy variable trap, the Southeast
variable is always zero when the dependent variable is zero. Inclusion of this variable produces a nonconcave
likelihood function—the parameter on this variable diverges. Analysis of a closely related case appears as a
caveat on page 272 of Amemiya (1985).
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point already establish the consistency of the M estimator. In what might seem to
be an extremely terse fashion, Amemiya (1985) defined identifiability simply as
“existence of a consistent estimator.” We see that identification and the conditions
for consistency of the M estimator are substantively the same.

This form of identification is necessary, in theory, to establish the consistency
arguments. In any but the simplest cases, however, it will be extremely difficult to verify
in practice. Fortunately, there are simpler ways to secure identification that will appeal
more to the intuition:

• For the least squares estimator, a sufficient condition for identification is that any
two different parameter vectors, θ and θ0 must be able to produce different values
of the conditional mean function. This means that for any two different parameter
vectors, there must be an xi which produces different values of the conditional
mean function. You should verify that for the linear model, this is the full rank
assumption A.2. For the model in example 2.5, we have a regression in which
x2 = x3 +x4. In this case, any parameter vector of the form (β1, β2 −a, β3 +a, β4 +a)

produces the same conditional mean as (β1, β2, β3, β4) regardless of xi, so this model
is not identified. The full rank assumption is needed to preclude this problem. For
nonlinear regressions, the problem is much more complicated, and there is no simple
generality. Example 9.2 shows a nonlinear regression model that is not identified
and how the lack of identification is remedied.

• For the maximum likelihood estimator, a condition similar to that for the regression
model is needed. For any two parameter vectors, θ �= θ0 it must be possible to
produce different values of the density f (yi | xi , θ) for some data vector (yi , xi ).
Many econometric models that are fit by maximum likelihood are “index function”
models that involve densities of the form f (yi | xi , θ) = f (yi | x′

iθ). When this is the
case, the same full rank assumption that applies to the regression model may be
sufficient. (If there are no other parameters in the model, then it will be sufficient.)

• For the GMM estimator, not much simplicity can be gained. A sufficient condition
for identification is that E[m̄(data, θ)] �= 0 if θ �= θ0.

(d) Behavior of the data has been discussed at various points in the preceding text.
The estimators are based on means of functions of observations. (You can see this
in all three of the definitions above. Derivatives of these criterion functions will
likewise be means of functions of observations.) Analysis of their large sample
behaviors will turn on determining conditions under which certain sample means
of functions of observations will be subject to laws of large numbers such as the
Khinchine (D.5.) or Chebychev (D.6) theorems, and what must be assumed in
order to assert that “root-n” times sample means of functions will obey central limit
theorems such as the Lindberg–Feller (D.19) or Lyapounov (D.20) theorems for
cross sections or the Martingale Difference Central Limit Theorem for dependent
observations. Ultimately, this is the issue in establishing the statistical properties.
The convergence property claimed above must occur in the context of the data.
These conditions have been discussed in Section 5.2 and in Section 10.2.2 under
the heading of “well behaved data.” At this point, we will assume that the data
are well behaved.
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16.5.4 ASYMPTOTIC PROPERTIES OF ESTIMATORS

With all this apparatus in place, the following are the standard results on asymptotic
properties of M estimators:

THEOREM 16.1 Consistency of M Estimators
If (a) the parameter space is convex and the true parameter vector is a point in
its interior; (b) the criterion function is concave; (c) the parameters are identified
by the criterion function; (d) the data are well behaved, then the M estimator
converges in probability to the true parameter vector.

Proofs of consistency of M estimators rely on a fundamental convergence result that,
itself, rests on assumptions (a) through (d) above. We have assumed identification. The
fundamental device is the following: Because of its dependence on the data, q(θ | data)

is a random variable. We assumed in (c) that plim q(θ | data) = q0(θ) for any point in
the parameter space. Assumption (c) states that the maximum of q0(θ) occurs at q0(θ0),
so θ0 is the maximizer of the probability limit. By its definition, the estimator θ̂ , is the
maximizer of q(θ | data). Therefore, consistency requires the limit of the maximizer, θ̂ be
equal to the maximizer of the limit, θ0. Our identification condition establishes this. We
will use this approach in somewhat greater detail in Section 17.4.5a where we establish
consistency of the maximum likelihood estimator.

THEOREM 16.2 Asymptotic Normality of M Estimators
If

(i) θ̂ is a consistent estimator of θ0 where θ0 is a point in the interior of the
parameter space;

(ii) q(θ | data) is concave and twice continuously differentiable in θ in a neigh-
borhood of θ0;

(iii)
√

n[∂q(θ0 | data)/∂θ0]
d−→N[0, �];

(iv) for any θ in �, lim
n→∞ Pr[|(∂2q(θ | data)/∂θk∂θm) − hkm(θ)| > ε] = 0 ∀ ε > 0

where hkm(θ) is a continuous finite valued function of θ ;
(v) the matrix of elements H(θ) is nonsingular at θ0, then√

n(θ̂ − θ0)
d−→N

{
0, [H−1(θ0)�H−1(θ0)]

}

The proof of asymptotic normality is based on the mean value theorem from calculus
and a Taylor series expansion of the derivatives of the maximized criterion function
around the true parameter vector;

√
n
∂q(θ̂ | data)

∂ θ̂
= 0 = √

n
∂q(θ0 | data)

∂θ0
+ ∂2q(θ̄ | data)

∂ θ̄∂ θ̄
′

√
n(θ̂ − θ0).
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The second derivative is evaluated at a point θ̄ that is between θ̂ and θ0, that is, θ̄ =
wθ̂ + (1−w)θ0 for some 0 < w < 1. Since we have assumed plim θ̂ = θ0, we see that the
matrix in the second term on the right must be converging to H(θ0). The assumptions
in the theorem can be combined to produce the claimed normal distribution. Formal
proof of this set of results appears in Newey and McFadden (1994). A somewhat more
detailed analysis based on this theorem appears in Section 17.4.5b where we establish
the asymptotic normality of the maximum likelihood estimator.

The preceding was restricted to M estimators, so it remains to establish counterparts
for the important GMM estimator. Consistency follows along the same lines used earlier,
but asymptotic normality is a bit more difficult to establish. We will return to this issue
in Chapter 18, where, once again, we will sketch the formal results and refer the reader
to a source such as Newey and McFadden (1994) for rigorous derivation.

The preceding results are not straightforward in all estimation problems. For exam-
ple, the least absolute deviations (LAD) is not among the estimators noted earlier, but
it is an M estimator and it shares the results given here. The analysis is complicated be-
cause the criterion function is not continuously differentiable. Nonetheless, consistency
and asymptotic normality have been established. [See Koenker and Bassett (1982) and
Amemiya (1985, pp. 152–154).] Some of the semiparametric and all of the nonparamet-
ric estimators noted require somewhat more intricate treatments. For example, Pagan
and Ullah (Section 2.5 and 2.6) are able to establish the familiar desirable properties for
the kernel density estimator f̂ (x∗), but it requires a somewhat more involved analysis
of the function and the data than is necessary, say, for the linear regression or bino-
mial logit model. The interested reader can find many lengthy and detailed analyses
of asymptotic properties of estimators in, for example, Amemiya (1985), Newey and
McFadden (1994), Davidson and MacKinnon (1993) and Hayashi (2000). In practical
terms, it is rarely possible to verify the conditions for an estimation problem at hand,
and they are usually simply assumed. However, finding violations of the conditions
is sometimes more straightforward, and this is worth pursuing. For example, lack of
parametric identification can often be detected by analyzing the model, itself.

16.5.5 TESTING HYPOTHESES

The preceding describes a set of results that (more or less) unifies the theoretical un-
derpinnings of three of the major classes of estimators in econometrics, least squares,
maximum likelihood, and GMM. A similar body of theory has been produced for the
familiar test statistics, Wald, likelihood ratio (LR), and Lagrange multiplier (LM). [See
Newey and McFadden (1994).] All of these have been laid out in practical terms else-
where in this text, so in the interest of brevity, we will refer the interested reader to the
background sources listed for the technical details. Table 16.5 lists the locations in this
text for various presentations of the testing procedures.

TABLE 16.5 Text References for Testing Procedures

Modeling Framework Wald LR LM

Least Squares 6.3.1, 6.4 17.6.1 Exercise 6.7
Nonlinear LS 9.4.1 9.4.1 9.4.2
Maximum Likelihood 17.5.2 17.5.1 17.5.3
GMM 18.4.2 18.4.2 18.4.2
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16.6 SUMMARY AND CONCLUSIONS

This chapter has presented a short overview of estimation in econometrics. There are
various ways to approach such a survey. The current literature can be broadly grouped
by three major types of estimators—parametric, semiparametric, and nonparametric.
It has been suggested that the overall drift in the literature is from the first toward the
third of these, but on a closer look, we see that this is probably not the case. Maximum
likelihood is still the estimator of choice in many settings. New applications have been
found for the GMM estimator, but at the same time, new Bayesian and simulation
estimators, all fully parametric, are emerging at a rapid pace. Certainly, the range of
tools that can be applied in any setting is growing steadily.

Key Terms and Concepts

• Bandwidth
• Bayesian estimation
• Bayes factor
• Bayes Theorem
• Conditional density
• Conjugate prior
• Criterion function
• Data generating mechanism
• Density
• Estimation criterion
• Extremum estimator
• Generalized method of

moments
• Gibbs sampler
• Hierarchical Bayes
• Highest posterior density

interval
• Histogram

• Informative prior
• Inverted gamma distribution
• Joint posterior distribution
• Kernel density estimator
• Latent class model
• Least absolute deviations
• Likelihood function
• Linear model
• Loss function
• M estimator
• Markov Chain Monte Carlo

method
• Maximum likelihood

estimator
• Method of moments
• Metropolis Hastings

algorithm
• Multivariate t distribution

• Nearest neighbor
• Noninformative prior
• Nonparametric estimators
• Normal-gamma
• Parameter space
• Parametric estimation
• Partially linear model
• Posterior density
• Precision matrices
• Prior belief
• Prior distribution
• Prior odds ratio
• Prior probabilities
• Quantile regression
• Semiparametric estimation
• Simulation-based estimation
• Smoothing function

Exercises and Questions

1. Compare the fully parametric and semiparametric approaches to estimation of a
discrete choice model such as the multinomial logit model discussed in Chapter 21.
What are the benefits and costs of the semiparametric approach?

2. Asymptotics take on a different meaning in the Bayesian estimation context, since
parameters do not “converge” to a population quantity. Nonetheless, in a Bayesian
estimation setting, as the sample size increases, the likelihood function will dominate
the posterior density. What does this imply about the Bayesian “estimator” when
this occurs.

3. Referring to the situation in Question 2, one might think that an informative prior
would outweigh the effect of the increasing sample size. With respect to the Bayesian
analysis of the linear regression, analyze the way in which the likelihood and an
informative prior will compete for dominance in the posterior mean.
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The following exercises require specific software. The relevant techniques are avail-
able in several packages that might be in use, such as SAS, Stata, or LIMDEP. The
exercises are suggested as departure points for explorations using a few of the many
estimation techniques listed in this chapter.

4. Using the gasoline market data in Appendix Table F2.2, use the partially linear
regression method in Section 16.3.3 to fit an equation of the form

ln(G/Pop) = β1ln(Income) + β2lnPnew cars + β3lnPused cars + g(lnPgasoline) + ε

5. To continue the analysis in Question 4, consider a nonparametric regression of
G/Pop on the price. Using the nonparametric estimation method in Section 16.4.2,
fit the nonparametric estimator using a range of bandwidth values to explore the
effect of bandwidth.

6. (You might find it useful to read the early sections of Chapter 21 for this exercise.)
The extramarital affairs data analyzed in Section 22.3.7 can be reinterpreted in the
context of a binary choice model. The dependent variable in the analysis is a count
of events. Using these data, first recode the dependent variable 0 for none and 1 for
more than zero. Now, first using the binary probit estimator, fit a binary choice model
using the same independent variables as in the example discussed in Section 22.3.7.
Then using a semiparametric or nonparametric estimator, estimate the same binary
choice model. A model for binary choice can be fit for at least two purposes, for
estimation of interesting coefficients or for prediction of the dependent variable.
Use your estimated models for these two purposes and compare the two models.
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MAXIMUM LIKELIHOOD
ESTIMATION

Q
17.1 INTRODUCTION

The generalized method of moments discussed in Chapter 18 and the semiparametric,
nonparametric, and Bayesian estimators discussed in Chapter 16 are becoming widely
used by model builders. Nonetheless, the maximum likelihood estimator discussed in
this chapter remains the preferred estimator in many more settings than the others
listed. As such, we focus our discussion of generally applied estimation methods on
this technique. Sections 17.2 through 17.5 present statistical results for estimation and
hypothesis testing based on the maximum likelihood principle. After establishing some
general results for this method of estimation, we will then extend them to the more
familiar setting of econometric models. Some applications are presented in Section 17.6.
Finally, three variations on the technique, maximum simulated likelihood, two-step
estimation and pseudomaximum likelihood estimation are described in Sections 17.7
through 17.9.

17.2 THE LIKELIHOOD FUNCTION AND
IDENTIFICATION OF THE PARAMETERS

The probability density function, or pdf for a random variable y, conditioned on a
set of parameters, θ , is denoted f (y | θ).1 This function identifies the data generating
process that underlies an observed sample of data and, at the same time, provides a
mathematical description of the data that the process will produce. The joint density
of n independent and identically distributed (iid) observations from this process is the
product of the individual densities;

f (y1, . . . , yn | θ) =
n∏

i=1

f (yi | θ) = L(θ | y). (17-1)

This joint density is the likelihood function, defined as a function of the unknown
parameter vector, θ , where y is used to indicate the collection of sample data. Note
that we write the joint density as a function of the data conditioned on the parameters
whereas when we form the likelihood function, we write this function in reverse, as
a function of the parameters, conditioned on the data. Though the two functions are
the same, it is to be emphasized that the likelihood function is written in this fashion to

1Later we will extend this to the case of a random vector, y, with a multivariate density, but at this point, that
would complicate the notation without adding anything of substance to the discussion.
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highlight our interest in the parameters and the information about them that is contained
in the observed data. However, it is understood that the likelihood function is not meant
to represent a probability density for the parameters as it is in Section 16.2.2. In this
classical estimation framework, the parameters are assumed to be fixed constants which
we hope to learn about from the data.

It is usually simpler to work with the log of the likelihood function:

ln L(θ | y) =
n∑

i=1

ln f (yi | θ). (17-2)

Again, to emphasize our interest in the parameters, given the observed data, we denote
this function L(θ | data) = L(θ | y). The likelihood function and its logarithm, evaluated
at θ , are sometimes denoted simply L(θ) and ln L(θ), respectively or, where no ambiguity
can arise, just L or ln L.

It will usually be necessary to generalize the concept of the likelihood function to
allow the density to depend on other conditioning variables. To jump immediately to
one of our central applications, suppose the disturbance in the classical linear regres-
sion model is normally distributed. Then, conditioned on it’s specific xi , yi is normally
distributed with mean µi = x′

iβ and variance σ 2. That means that the observed ran-
dom variables are not iid; they have different means. Nonetheless, the observations are
independent, and as we will examine in closer detail,

ln L(θ | y, X) =
n∑

i=1

ln f (yi | xi , θ) = −1
2

n∑
i=1

[ln σ 2 + ln(2π) + (yi − x′
iβ)2/σ 2], (17-3)

where X is the n × K matrix of data with ith row equal to x′
i .

The rest of this chapter will be concerned with obtaining estimates of the parameters,
θ and in testing hypotheses about them and about the data generating process. Before
we begin that study, we consider the question of whether estimation of the parameters
is possible at all—the question of identification. Identification is an issue related to the
formulation of the model. The issue of identification must be resolved before estimation
can even be considered. The question posed is essentially this: Suppose we had an
infinitely large sample—that is, for current purposes, all the information there is to be
had about the parameters. Could we uniquely determine the values of θ from such a
sample? As will be clear shortly, the answer is sometimes no.

DEFINITION 17.1 Identification
The parameter vector θ is identified (estimable) if for any other parameter vector,
θ∗ �= θ , for some data y, L(θ∗ | y) �= L(θ | y).

This result will be crucial at several points in what follows. We consider two examples,
the first of which will be very familiar to you by now.

Example 17.1 Identification of Parameters
For the regression model specified in (17-3), suppose that there is a nonzero vector a such
that x′

i a = 0 for every xi . Then there is another “parameter” vector, γ = β + a �= β such that
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x′
i β = x′

i γ for every xi . You can see in (17-3) that if this is the case, then the log-likelihood
is the same whether it is evaluated at β or at γ . As such, it is not possible to consider
estimation of β in this model since β cannot be distinguished from γ . This is the case of
perfect collinearity in the regression model which we ruled out when we first proposed the
linear regression model with “Assumption 2. Identifiability of the Model Parameters.”

The preceding dealt with a necessary characteristic of the sample data. We now consider
a model in which identification is secured by the specification of the parameters in the model.
(We will study this model in detail in Chapter 21.) Consider a simple form of the regression
model considered above, yi = β1 + β2xi + εi , where εi | xi has a normal distribution with zero
mean and variance σ 2. To put the model in a context, consider a consumer’s purchases of
a large commodity such as a car where xi is the consumer’s income and yi is the difference
between what the consumer is willing to pay for the car, p∗

i , and the price tag on the car,
pi . Suppose rather than observing p∗

i or pi , we observe only whether the consumer actually
purchases the car, which, we assume, occurs when yi = p∗

i − pi is positive. Collecting this
information, our model states that they will purchase the car if yi > 0 and not purchase it if
yi ≤ 0. Let us form the likelihood function for the observed data, which are (purchase or not)
and income. The random variable in this model is “purchase” or “not purchase”—there are
only two outcomes. The probability of a purchase is

Prob(purchase | β1, β2, σ, xi ) = Prob( yi > 0 | β1, β2, σ, xi )

= Prob(β1 + β2xi + εi > 0 | β1, β2, σ, xi )

= Prob[εi > −(β1 + β2xi ) | β1, β2, σ, xi ]

= Prob[εi /σ > −(β1 + β2xi )/σ | β1, β2, σ, xi ]

= Prob[zi > −(β1 + β2xi )/σ | β1, β2, σ, xi ]

where zi has a standard normal distribution. The probability of not purchase is just one minus
this probability. The likelihood function is

∏
i =purchased

[Prob(purchase | β1, β2, σ, xi ) ]
∏

i =not purchased

[1 − Prob(purchase | β1, β2, σ, xi ) ].

We need go no further to see that the parameters of this model are not identified. If β1, β2 and σ
are all multiplied by the same nonzero constant, regardless of what it is, then Prob(purchase)
is unchanged, 1 − Prob(purchase) is also, and the likelihood function does not change.
This model requires a normalization. The one usually used is σ = 1, but some authors
[e.g., Horowitz (1993)] have used β1 = 1 instead.

17.3 EFFICIENT ESTIMATION: THE PRINCIPLE
OF MAXIMUM LIKELIHOOD

The principle of maximum likelihood provides a means of choosing an asymptotically
efficient estimator for a parameter or a set of parameters. The logic of the technique is
easily illustrated in the setting of a discrete distribution. Consider a random sample of
the following 10 observations from a Poisson distribution: 5, 0, 1, 1, 0, 3, 2, 3, 4, and 1.
The density for each observation is

f (yi | θ) = e−θ θ yi

yi !
.
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FIGURE 17.1 Likelihood and Log-likelihood Functions for a Poisson
Distribution.

Since the observations are independent, their joint density, which is the likelihood for
this sample, is

f (y1, y2, . . . , y10 | θ) =
10∏

i=1

f (yi | θ) = e−10θ θ�10
i=1 yi

∏10
i=1 yi !

= e−10θ θ20

207, 360
.

The last result gives the probability of observing this particular sample, assuming that a
Poisson distribution with as yet unknown parameter θ generated the data. What value
of θ would make this sample most probable? Figure 17.1 plots this function for various
values of θ . It has a single mode at θ = 2, which would be the maximum likelihood
estimate, or MLE, of θ .

Consider maximizing L(θ | y) with respect to θ . Since the log function is monoton-
ically increasing and easier to work with, we usually maximize ln L(θ | y) instead; in
sampling from a Poisson population,

ln L(θ | y) = −nθ + ln θ

n∑
i=1

yi −
n∑

i=1

ln(yi !),

∂ ln L(θ | y)

∂θ
= −n + 1

θ

n∑
i=1

yi = 0 ⇒ θ̂ML = ȳn.

For the assumed sample of observations,

ln L(θ | y) = −10θ + 20 ln θ − 12.242,

d ln L(θ | y)

dθ
= −10 + 20

θ
= 0 ⇒ θ̂ = 2,
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and

d2 ln L(θ | y)

dθ2
= −20

θ2
< 0 ⇒ this is a maximum.

The solution is the same as before. Figure 17.1 also plots the log of L(θ | y) to illustrate
the result.

The reference to the probability of observing the given sample is not exact in a
continuous distribution, since a particular sample has probability zero. Nonetheless, the
principle is the same. The values of the parameters that maximize L(θ | data) or its log
are the maximum likelihood estimates, denoted θ̂ . Since the logarithm is a monotonic
function, the values that maximize L(θ | data) are the same as those that maximize
ln L(θ | data). The necessary condition for maximizing ln L(θ | data) is

∂ ln L(θ | data)

∂θ
= 0. (17-4)

This is called the likelihood equation. The general result then is that the MLE is a root
of the likelihood equation. The application to the parameters of the dgp for a discrete
random variable are suggestive that maximum likelihood is a “good” use of the data. It
remains to establish this as a general principle. We turn to that issue in the next section.

Example 17.2 Log Likelihood Function and Likelihood Equations
for the Normal Distribution

In sampling from a normal distribution with mean µ and variance σ 2, the log-likelihood func-
tion and the likelihood equations for µ and σ 2 are

ln L (µ, σ 2) = −n
2

ln(2π ) − n
2

ln σ 2 − 1
2

n∑
i =1

[
( yi − µ) 2

σ 2

]
, (17-5)

∂ ln L
∂µ

= 1
σ 2

n∑
i =1

( yi − µ) = 0, (17-6)

∂ ln L
∂σ 2

= − n
2σ 2

+ 1
2σ 4

n∑
i =1

( yi − µ) 2 = 0. (17-7)

To solve the likelihood equations, multiply (17-6) by σ 2 and solve for µ̂, then insert this solution
in (17-7) and solve for σ 2. The solutions are

µ̂ML = 1
n

n∑
i =1

yi = ȳn and σ̂ 2
ML = 1

n

n∑
i =1

( yi − ȳn) 2. (17-8)

17.4 PROPERTIES OF MAXIMUM LIKELIHOOD
ESTIMATORS

Maximum likelihood estimators (MLEs) are most attractive because of their large-
sample or asymptotic properties.
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DEFINITION 17.2 Asymptotic Efficiency
An estimator is asymptotically efficient if it is consistent, asymptotically normally
distributed (CAN), and has an asymptotic covariance matrix that is not larger than
the asymptotic covariance matrix of any other consistent, asymptotically normally
distributed estimator.2

If certain regularity conditions are met, the MLE will have these properties. The finite
sample properties are sometimes less than optimal. For example, the MLE may be bi-
ased; the MLE of σ 2 in Example 17.2 is biased downward. The occasional statement that
the properties of the MLE are only optimal in large samples is not true, however. It can
be shown that when sampling is from an exponential family of distributions (see Defini-
tion 18.1), there will exist sufficient statistics. If so, MLEs will be functions of them, which
means that when minimum variance unbiased estimators exist, they will be MLEs. [See
Stuart and Ord (1989).] Most applications in econometrics do not involve exponential
families, so the appeal of the MLE remains primarily its asymptotic properties.

We use the following notation: θ̂ is the maximum likelihood estimator; θ0 de-
notes the true value of the parameter vector; θ denotes another possible value of the
parameter vector, not the MLE and not necessarily the true values. Expectation based
on the true values of the parameters is denoted E0[.]. If we assume that the regularity
conditions discussed below are met by f (x, θ0), then we have the following theorem.

THEOREM 17.1 Properties of an MLE
Under regularity, the maximum likelihood estimator (MLE) has the following
asymptotic properties:

M1. Consistency: plim θ̂ = θ0.
M2. Asymptotic normality: θ̂

a∼ N[θ0, {I(θ0)}−1], where

I(θ0) = −E0[∂2 ln L/∂θ0∂θ ′
0].

M3. Asymptotic efficiency: θ̂ is asymptotically efficient and achieves the
Cramér–Rao lower bound for consistent estimators, given in M2 and
Theorem C.2.

M4. Invariance: The maximum likelihood estimator of γ 0 = c(θ0) is c(θ̂) if
c(θ0) is a continuous and continuously differentiable function.

17.4.1 REGULARITY CONDITIONS

To sketch proofs of these results, we first obtain some useful properties of probability
density functions. We assume that (y1, . . . , yn) is a random sample from the population

2Not larger is defined in the sense of (A-118): The covariance matrix of the less efficient estimator equals that
of the efficient estimator plus a nonnegative definite matrix.
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with density function f (yi | θ0) and that the following regularity conditions hold. [Our
statement of these is informal. A more rigorous treatment may be found in Stuart and
Ord (1989) or Davidson and MacKinnon (1993).]

DEFINITION 17.3 Regularity Conditions

R1. The first three derivatives of ln f (yi | θ) with respect to θ are continuous
and finite for almost all yi and for all θ . This condition ensures the
existence of a certain Taylor series approximation and the finite variance
of the derivatives of ln L.

R2. The conditions necessary to obtain the expectations of the first and second
derivatives of ln f (yi | θ) are met.

R3. For all values of θ , |∂3 ln f (yi | θ)/∂θ j∂θk∂θl | is less than a function that
has a finite expectation. This condition will allow us to truncate the Taylor
series.

With these regularity conditions, we will obtain the following fundamental char-
acteristics of f (yi | θ): D1 is simply a consequence of the definition of the likelihood
function. D2 leads to the moment condition which defines the maximum likelihood
estimator. On the one hand, the MLE is found as the maximizer of a function, which
mandates finding the vector which equates the gradient to zero. On the other, D2 is a
more fundamental relationship which places the MLE in the class of generalized method
of moments estimators. D3 produces what is known as the Information matrix equality.
This relationship shows how to obtain the asymptotic covariance matrix of the MLE.

17.4.2 PROPERTIES OF REGULAR DENSITIES

Densities that are “regular” by Definition 17.3 have three properties which are used in
establishing the properties of maximum likelihood estimators:

THEOREM 17.2 Moments of the Derivatives of the Log-Likelihood

D1. ln f (yi | θ), gi = ∂ ln f (yi | θ)/∂θ , and Hi = ∂2 ln f (yi | θ)/∂θ∂θ ′,
i = 1, . . . , n, are all random samples of random variables. This statement
follows from our assumption of random sampling. The notation gi (θ0)

and Hi (θ0) indicates the derivative evaluated at θ0.
D2. E0[gi (θ0)] = 0.
D3. Var[gi (θ0)] = −E [Hi (θ0)].

Condition D1 is simply a consequence of the definition of the density.

For the moment, we allow the range of yi to depend on the parameters; A(θ0) ≤ yi ≤
B(θ0). (Consider, for example, finding the maximum likelihood estimator of θ /break

William Greene
delete word "break" and preceding slash



Greene-50240 book June 26, 2002 15:8

CHAPTER 17 ✦ Maximum Likelihood Estimation 475

for a continuous uniform distribution with range [0, θ0].) (In the following, the single
integral

∫
. . . dyi , would be used to indicate the multiple integration over all the elements

of a multivariate of yi if that were necessary). By definition,
∫ B(θ0)

A(θ0)

f (y − i | θ0) dyi = 1.

Now, differentiate this expression with respect to θ0. Leibnitz’s theorem gives

∂
∫ B(θ0)

A(θ0)
f (yi | θ0) dyi

∂θ0
=

∫ B(θ0)

A(θ0)

∂ f (yi | θ0)

∂θ0
dyi + f (B(θ0) | θ0)

∂ B(θ0)

∂θ0

− f (A(θ0) | θ0)
∂ A(θ0)

∂θ0

= 0.

If the second and third terms go to zero, then we may interchange the operations of
differentiation and integration. The necessary condition is that limyi →A(θ0) f (yi | θ0) =
limyi →B(θ0) f (yi | θ0) = 0. (Note that the uniform distribution suggested above violates
this condition.) Sufficient conditions are that the range of the observed random variable,
yi , does not depend on the parameters, which means that ∂ A(θ0)/∂θ0 = ∂ B(θ0)/∂θ0 = 0
or that the density is zero at the terminal points. This condition, then, is regularity
condition R2. The latter is usually assumed, and we will assume it in what follows. So,

∂
∫

f (yi | θ0) dyi

∂θ0
=

∫
∂ f (yi | θ0)

∂θ0
dyi =

∫
∂ ln f (yi | θ0)

∂θ0
f (yi | θ0)dyi = E0

[
∂ ln f (yi | θ0)

∂θ0

]
=0.

This proves D2.
Since we may interchange the operations of integration and differentiation, we

differentiate under the integral once again to obtain
∫ [

∂2 ln f (yi | θ0)

∂θ0∂θ ′
0

f (yi | θ0) + ∂ ln f (yi | θ0)

∂θ0

∂ f (yi | θ0)

∂θ ′
0

]
dyi = 0.

But

∂ f (yi | θ0)

∂θ ′
0

= f (yi | θ0)
∂ ln f (yi | θ0)

∂θ ′
0

,

and the integral of a sum is the sum of integrals. Therefore,

−
∫ [

∂2 ln f (yi | θ0)

∂θ0∂θ ′
0

]
f (yi | θ0) dyi =

∫ [
∂ ln f (yi | θ0)

∂θ0

∂ ln f (yi | θ0)

∂θ ′
0

]
f (yi | θ0) dyi = [0].

The left-hand side of the equation is the negative of the expected second derivatives
matrix. The right-hand side is the expected square (outer product) of the first derivative
vector. But, since this vector has expected value 0 (we just showed this), the right-hand
side is the variance of the first derivative vector, which proves D3:

Var0

[
∂ ln f (yi | θ0)

∂θ0

]
= E0

[(
∂ ln f (yi | θ0)

∂θ0

)(
∂ ln f (yi | θ0)

∂θ ′
0

)]
= −E

[
∂2 ln f (yi | θ0)

∂θ0∂θ ′
0

]
.

William Greene
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17.4.3 THE LIKELIHOOD EQUATION

The log-likelihood function is

ln L(θ | y) =
n∑

i=1

ln f (yi | θ).

The first derivative vector, or score vector, is

g = ∂ ln L(θ | y)

∂θ
=

n∑
i=1

∂ ln f (yi | θ)

∂θ
=

n∑
i=1

gi . (17-9)

Since we are just adding terms, it follows from D1 and D2 that at θ0,

E0

[
∂ ln L(θ0 | y)

∂θ0

]
= E0[g0] = 0. (17-10)

which is the likelihood equation mentioned earlier.

17.4.4 THE INFORMATION MATRIX EQUALITY

The Hessian of the log-likelihood is

H = ∂2 ln L(θ | y)

∂θ∂θ ′ =
n∑

i=1

∂2 ln f (yi | θ)

∂θ∂θ ′ =
N∑

i=1

Hi .

Evaluating once again at θ0, by taking

E0[g0g′
0] = E0




n∑
i=1

n∑
j=1

g0i g′
0 j




and, because of D1, dropping terms with unequal subscripts we obtain

E0[g0g′
0] = E0

[
n∑

i=1

g0i g′
0i

]
= E0

[
n∑

i=1

(−H0i )

]
= −E0[H0],

so that

Var0

[
∂ ln L(θ0 | y)

∂θ0

]
= E0

[(
∂ ln L(θ0 | y)

∂θ0

)(
∂ ln L(θ0 | y)

∂θ ′
0

)]

= −E0

[
∂2 ln L(θ0 | y)

∂θ0∂θ ′
0

]
.

(17-11)

This very useful result is known as the information matrix equality.

17.4.5 ASYMPTOTIC PROPERTIES OF THE MAXIMUM
LIKELIHOOD ESTIMATOR

We can now sketch a derivation of the asymptotic properties of the MLE. Formal proofs
of these results require some fairly intricate mathematics. Two widely cited derivations
are those of Cramér (1948) and Amemiya (1985). To suggest the flavor of the exercise,
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we will sketch an analysis provided by Stuart and Ord (1989) for a simple case, and
indicate where it will be necessary to extend the derivation if it were to be fully general.

17.4.5.a CONSISTENCY

We assume that f (yi | θ0) is a possibly multivariate density which at this point does not
depend on covariates, xi . Thus, this is the iid, random sampling case. Since θ̂ is the MLE,
in any finite sample, for any θ �= θ̂ (including the true θ0) it must be true that

ln L(θ̂) ≥ ln L(θ). (17-12)

Consider, then, the random variable L(θ)/L(θ0). Since the log function is strictly con-
cave, from Jensen’s Inequality (Theorem D.8.), we have

E0

[
log

L(θ)

L(θ0)

]
< log E0

[
L(θ)

L(θ0)

]
. (17-13)

The expectation on the right hand side is exactly equal to one, as

E0

[
L(θ)

L(θ0)

]
=

∫ (
L(θ)

L(θ0)

)
L(θ0) dy = 1 (17-14)

is simply the integral of a joint density. Now, take logs on both sides of (17-13), insert
the result of (17-14), then divide by n to produce

E0[1/n ln L(θ)] − E0[1/n ln L(θ0)] < 0. (17-15)

This produces a central result:

THEOREM 17.3 Likelihood Inequality

E0[(1/n) ln L(θ0)] > E0[(1/n) ln L(θ)] for any θ �= θ0 (including θ̂).

This result is (17-15).

In words, the expected value of the log-likelihood is maximized at the true value of the
parameters.

For any θ , including θ̂ ,

[(1/n) ln L(θ)] = (1/n)

n∑
i=1

ln f (yi | θ)

is the sample mean of n iid random variables, with expectation E0[(1/n) ln L(θ)]. Since
the sampling is iid by the regularity conditions, we can invoke the Khinchine The-
orem, D.5; the sample mean converges in probability to the population mean. Us-
ing θ = θ̂ , it follows from Theorem 17.3 that as n → ∞, lim Prob{[(1/n) ln L(θ̂)] <

[(1/n) ln L(θ0)]} = 1 if θ̂ �= θ0. But, θ̂ is the MLE, so for every n, (1/n) ln L(θ̂) ≥
(1/n) ln L(θ0). The only way these can both be true is if (1/n) times the sample log-
likelihood evaluated at the MLE converges to the population expectation of (1/n)

times the log-likelihood evaluated at the true parameters. There remains one final step.
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Does (1/n) ln L(θ̂) → (1/n) ln L(θ0) imply that θ̂ → θ0? If there is a single parameter
and the likelihood function is one to one, then clearly so. For more general cases, this
requires a further characterization of the likelihood function. If the likelihood is strictly
continuous and twice differentiable, which we assumed in the regularity conditions, and
if the parameters of the model are identified which we assumed at the beginning of this
discussion, then yes, it does, so we have the result.

This is a heuristic proof. As noted, formal presentations appear in more advanced
treatises than this one. We should also note, we have assumed at several points that
sample means converged to the population expectations. This is likely to be true for
the sorts of applications usually encountered in econometrics, but a fully general set
of results would look more closely at this condition. Second, we have assumed iid
sampling in the preceding—that is, the density for yi does not depend on any other
variables, xi . This will almost never be true in practice. Assumptions about the behavior
of these variables will enter the proofs as well. For example, in assessing the large sample
behavior of the least squares estimator, we have invoked an assumption that the data
are “well behaved.” The same sort of consideration will apply here as well. We will
return to this issue shortly. With all this in place, we have property M1, plim θ̂ = θ0.

17.4.5.b ASYMPTOTIC NORMALITY

At the maximum likelihood estimator, the gradient of the log-likelihood equals zero
(by definition), so

g(θ̂) = 0.

(This is the sample statistic, not the expectation.) Expand this set of equations in a
second-order Taylor series around the true parameters θ0. We will use the mean value
theorem to truncate the Taylor series at the second term.

g(θ̂) = g(θ0) + H(θ̄)(θ̂ − θ0) = 0.

The Hessian is evaluated at a point θ̄ that is between θ̂ and θ0 (θ̄ = wθ̂ + (1 − w)θ0 for
some 0 < w < 1). We then rearrange this function and multiply the result by

√
n to

obtain
√

n(θ̂ − θ0) = [−H(θ̄)]−1[
√

ng(θ0)].

Because plim(θ̂−θ0) = 0, plim(θ̂−θ̄) = 0 as well. The second derivatives are continuous
functions. Therefore, if the limiting distribution exists, then

√
n(θ̂ − θ0)

d−→ [−H(θ0)]−1[
√

ng(θ0)].

By dividing H(θ0) and g(θ0) by n, we obtain
√

n(θ̂ − θ0)
d−→ [ − 1

n H(θ0)
]−1[

√
nḡ(θ0)].

We may apply the Lindberg–Levy central limit theorem (D.18) to [
√

nḡ(θ0)], since it
is

√
n times the mean of a random sample; we have invoked D1 again. The limiting

variance of [
√

nḡ(θ0)] is −E0[(1/n)H(θ0)], so
√

nḡ(θ0)
d−→ N

{
0, −E0

[ 1
n H(θ0)

]}
.
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By virtue of Theorem D.2, plim[−(1/n)H(θ0)] = − E0[(1/n)H(θ0)]. Since this result is
a constant matrix, we can combine results to obtain
[− 1

n H(θ0)
]−1√

nḡ(θ0)
d−→ N

[
0,

{−E0
[ 1

n H(θ0)
]}−1{−E0

[ 1
n H(θ0)

]}{−E0[ 1
n H(θ0)]

}−1]
,

or
√

n(θ̂ − θ0)
d−→ N

[
0,

{−E0
[ 1

n H(θ0)
]}−1]

,

which gives the asymptotic distribution of the MLE:

θ̂
a∼ N[θ0, {I(θ0)}−1].

This last step completes M2.

Example 17.3 Information Matrix for the Normal Distribution
For the likelihood function in Example 17.2, the second derivatives are

∂2 ln L
∂µ2

= −n
σ 2

,

∂2 ln L
∂ (σ 2) 2

= n
2σ 4

− 1
σ 6

n∑
i =1

( xi − µ) 2,

∂2 ln L
∂µ∂σ 2

= −1
σ 4

n∑
i =1

( xi − µ) .

For the asymptotic variance of the maximum likelihood estimator, we need the expectations
of these derivatives. The first is nonstochastic, and the third has expectation 0, as E [xi ] = µ.
That leaves the second, which you can verify has expectation −n/(2σ 4) because each of the
n terms ( xi −µ) 2 has expected value σ 2. Collecting these in the information matrix, reversing
the sign, and inverting the matrix gives the asymptotic covariance matrix for the maximum
likelihood estimators:

{
−E0

[
∂2 ln L
∂θ0 ∂θ ′

0

]}−1

=
[
σ 2/n 0

0 2σ 4/n

]
.

17.4.5.c ASYMPTOTIC EFFICIENCY

Theorem C.2 provides the lower bound for the variance of an unbiased estimator. Since
the asymptotic variance of the MLE achieves this bound, it seems natural to extend the
result directly. There is, however, a loose end in that the MLE is almost never unbiased.
As such, we need an asymptotic version of the bound, which was provided by Cramér
(1948) and Rao (1945) (hence the name):

THEOREM 17.4 Cramér–Rao Lower Bound
Assuming that the density of yi satisfies the regularity conditions R1–R3, the
asymptotic variance of a consistent and asymptotically normally distributed esti-
mator of the parameter vector θ0 will always be at least as large as

[I(θ0)]−1 =
(
−E0

[
∂2 ln L(θ0)

∂θ0 ∂θ ′
0

])−1

=
(

E0

[(
∂ ln L(θ0)

∂θ0

)(
∂ ln L(θ0)

∂θ0

)′ ])−1

.
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The asymptotic variance of the MLE is, in fact, equal to the Cramér–Rao Lower Bound
for the variance of a consistent estimator, so this completes the argument.3

17.4.5.d INVARIANCE

Lastly, the invariance property, M4, is a mathematical result of the method of computing
MLEs; it is not a statistical result as such. More formally, the MLE is invariant to one-to-
one transformations of θ . Any transformation that is not one to one either renders the
model inestimable if it is one to many or imposes restrictions if it is many to one. Some
theoretical aspects of this feature are discussed in Davidson and MacKinnon (1993,
pp. 253–255). For the practitioner, the result can be extremely useful. For example, when
a parameter appears in a likelihood function in the form 1/θ j , it is usually worthwhile
to reparameterize the model in terms of γ j = 1/θ j . In an important application, Olsen
(1978) used this result to great advantage. (See Section 22.2.3.) Suppose that the normal
log-likelihood in Example 17.2 is parameterized in terms of the precision parameter,
θ2 = 1/σ 2. The log-likelihood becomes

ln L(µ, θ2) = −(n/2) ln(2π) + (n/2) ln θ2 − θ2

2

n∑
i=1

(yi − µ)2.

The MLE for µ is clearly still x̄. But the likelihood equation for θ2 is now

∂ ln L(µ, θ2)/∂θ2 = 1
2

[
n/θ2 −

n∑
i=1

(yi − µ)2

]
= 0,

which has solution θ̂2 = n/
∑n

i=1(yi − µ̂)2 = 1/σ̂ 2, as expected. There is a second impli-
cation. If it is desired to analyze a function of an MLE, then the function of θ̂ will, itself,
be the MLE.

17.4.5.e CONCLUSION

These four properties explain the prevalence of the maximum likelihood technique in
econometrics. The second greatly facilitates hypothesis testing and the construction of
interval estimates. The third is a particularly powerful result. The MLE has the minimum
variance achievable by a consistent and asymptotically normally distributed estimator.

17.4.6 ESTIMATING THE ASYMPTOTIC VARIANCE
OF THE MAXIMUM LIKELIHOOD ESTIMATOR

The asymptotic covariance matrix of the maximum likelihood estimator is a matrix
of parameters that must be estimated (that is, it is a function of the θ0 that is being
estimated). If the form of the expected values of the second derivatives of the log-
likelihood is known, then

[I(θ0)]−1 =
{
−E0

[
∂2 ln L(θ0)

∂θ0 ∂θ ′
0

]}−1

(17-16)

3A result reported by LeCam (1953) and recounted in Amemiya (1985, p. 124) suggests that in principle,
there do exist CAN functions of the data with smaller variances than the MLE. But the finding is a narrow
result with no practical implications. For practical purposes, the statement may be taken as given.
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can be evaluated at θ̂ to estimate the covariance matrix for the MLE. This estimator
will rarely be available. The second derivatives of the log-likelihood will almost always
be complicated nonlinear functions of the data whose exact expected values will be
unknown. There are, however, two alternatives. A second estimator is

[Î(θ̂)]−1 =
(

−∂2 ln L(θ̂)

∂ θ̂ ∂ θ̂ ′

)−1

. (17-17)

This estimator is computed simply by evaluating the actual (not expected) second deriva-
tives matrix of the log-likelihood function at the maximum likelihood estimates. It is
straightforward to show that this amounts to estimating the expected second derivatives
of the density with the sample mean of this quantity. Theorem D.4 and Result (D-5) can
be used to justify the computation. The only shortcoming of this estimator is that the
second derivatives can be complicated to derive and program for a computer. A third
estimator based on result D3 in Theorem 17.2, that the expected second derivatives
matrix is the covariance matrix of the first derivatives vector is

[ ˆ̂I(θ̂)]−1 =
[

n∑
i=1

ĝi ĝ′
i

]−1

= [Ĝ′Ĝ]−1, (17-18)

where

ĝi = ∂ ln f (xi , θ̂)

∂ θ̂

and

Ĝ = [ĝ1, ĝ2, . . . , ĝn]′.

Ĝ is an n × K matrix with ith row equal to the transpose of the ith vector of derivatives
in the terms of the log-likelihood function. For a single parameter, this estimator is just
the reciprocal of the sum of squares of the first derivatives. This estimator is extremely
convenient, in most cases, because it does not require any computations beyond those
required to solve the likelihood equation. It has the added virtue that it is always non-
negative definite. For some extremely complicated log-likelihood functions, sometimes
because of rounding error, the observed Hessian can be indefinite, even at the maxi-
mum of the function. The estimator in (17-18) is known as the BHHH estimator4 and
the outer product of gradients, or OPG, estimator.

None of the three estimators given here is preferable to the others on statistical
grounds; all are asymptotically equivalent. In most cases, the BHHH estimator will
be the easiest to compute. One caution is in order. As the example below illustrates,
these estimators can give different results in a finite sample. This is an unavoidable
finite sample problem that can, in some cases, lead to different statistical conclusions.
The example is a case in point. Using the usual procedures, we would reject the hypoth-
esis that β = 0 if either of the first two variance estimators were used, but not if the
third were used. The estimator in (17-16) is usually unavailable, as the exact expectation
of the Hessian is rarely known. Available evidence suggests that in small or moderate
sized samples, (17-17) (the Hessian) is preferable.

4It appears to have been advocated first in the econometrics literature in Berndt et al. (1974).
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Example 17.4 Variance Estimators for an MLE
The sample data in Example C.1 are generated by a model of the form

f ( yi , xi , β) = 1
β + xi

e−yi /(β+xi ) ,

where y = income and x = education. To find the maximum likelihood estimate of β, we
maximize

ln L (β) = −
n∑

i =1

ln(β + xi ) −
n∑

i =1

yi

β + xi
.

The likelihood equation is

∂ ln L (β)
∂β

= −
n∑

i =1

1
β + xi

+
n∑

i =1

yi

(β + xi ) 2
= 0, (17-19)

which has the solution β̂ = 15.602727. To compute the asymptotic variance of the MLE, we
require

∂2 ln L (β)
∂β2

=
n∑

i =1

1
(β + xi ) 2

− 2
n∑

i =1

yi

(β + xi ) 3
. (17-20)

Since the function E ( yi ) = β + xi is known, the exact form of the expected value in (17-20)
is known. Inserting β + xi for yi in (17-20) and taking the reciprocal yields the first variance
estimate, 44.2546. Simply inserting β̂ = 15.602727 in (17-20) and taking the negative of the
reciprocal gives the second estimate, 46.16337. Finally, by computing the reciprocal of the
sum of squares of first derivatives of the densities evaluated at β̂,

[ ˆ̂I( β̂) ]−1 = 1∑n
i =1[−1/( β̂ + xi ) + yi /( β̂ + xi ) 2]2

,

we obtain the BHHH estimate, 100.5116.

17.4.7 CONDITIONAL LIKELIHOODS AND ECONOMETRIC MODELS

All of the preceding results form the statistical underpinnings of the technique of maxi-
mum likelihood estimation. But, for our purposes, a crucial element is missing. We have
done the analysis in terms of the density of an observed random variable and a vector
of parameters, f (yi | α). But, econometric models will involve exogenous or predeter-
mined variables, xi , so the results must be extended. A workable approach is to treat
this modeling framework the same as the one in Chapter 5, where we considered the
large sample properties of the linear regression model. Thus, we will allow xi to denote
a mix of random variables and constants that enter the conditional density of yi . By
partitioning the joint density of yi and xi into the product of the conditional and the
marginal, the log-likelihood function may be written

ln L(α | data) =
n∑

i=1

ln f (yi , xi | α) =
n∑

i=1

ln f (yi | xi , α) +
n∑

i=1

ln g(xi | α),

where any nonstochastic elements in xi such as a time trend or dummy variable, are
being carried as constants. In order to proceed, we will assume as we did before that the
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process generating xi takes place outside the model of interest. For present purposes,
that means that the parameters that appear in g(xi | α) do not overlap with those that
appear in f (yi | xi , α). Thus, we partition α into [θ , δ] so that the log-likelihood function
may be written

ln L(θ , δ | data) =
n∑

i=1

ln f (yi , xi | α) =
n∑

i=1

ln f (yi | xi , θ) +
n∑

i=1

ln g(xi | δ).

As long as θ and δ have no elements in common and no restrictions connect them (such
as θ + δ = 1), then the two parts of the log likelihood may be analyzed separately. In
most cases, the marginal distribution of xi will be of secondary (or no) interest.

Asymptotic results for the maximum conditional likelihood estimator must now
account for the presence of xi in the functions and derivatives of ln f (yi | xi , θ). We will
proceed under the assumption of well behaved data so that sample averages such as

(1/n) ln L(θ | y, X) = 1
n

n∑
i=1

ln f (yi | xi , θ)

and its gradient with respect to θ will converge in probability to their population expec-
tations. We will also need to invoke central limit theorems to establish the asymptotic
normality of the gradient of the log likelihood, so as to be able to characterize the
MLE itself. We will leave it to more advance treatises such as Amemiya (1985) and
Newey and McFadden (1994) to establish specific conditions and fine points that must
be assumed to claim the “usual” properties for maximum likelihood estimators. For
present purposes (and the vast bulk of empirical applications), the following minimal
assumptions should suffice:

• Parameter space. Parameter spaces that have gaps and nonconvexities in them
will generally disable these procedures. An estimation problem that produces this
failure is that of “estimating” a parameter that can take only one among a discrete
set of values. For example, this set of procedures does not include “estimating” the
timing of a structural change in a model. (See Section 7.4.) The likelihood function
must be a continuous function of a convex parameter space. We allow unbounded
parameter spaces, such as σ > 0 in the regression model, for example.

• Identifiability. Estimation must be feasible. This is the subject of definition 17.1
concerning identification and the surrounding discussion.

• Well behaved data. Laws of large numbers apply to sample means involving the
data and some form of central limit theorem (generally Lyapounov) can be applied
to the gradient. Ergodic stationarity is broad enough to encompass any situation
that is likely to arise in practice, though it is probably more general than we need for
most applications, since we will not encounter dependent observations specifically
until later in the book. The definitions in Chapter 5 are assumed to hold generally.

With these in place, analysis is essentially the same in character as that we used in the
linear regression model in Chapter 5 and follows precisely along the lines of Section 16.5.
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17.5 THREE ASYMPTOTICALLY EQUIVALENT
TEST PROCEDURES

The next several sections will discuss the most commonly used test procedures: the
likelihood ratio, Wald, and Lagrange multiplier tests. [Extensive discussion of these
procedures is given in Godfrey (1988).] We consider maximum likelihood estimation
of a parameter θ and a test of the hypothesis H0: c(θ) = 0. The logic of the tests can be
seen in Figure 17.2.5 The figure plots the log-likelihood function ln L(θ), its derivative
with respect to θ, d ln L(θ)/dθ , and the constraint c(θ). There are three approaches to
testing the hypothesis suggested in the figure:

• Likelihood ratio test. If the restriction c(θ) = 0 is valid, then imposing it should not
lead to a large reduction in the log-likelihood function. Therefore, we base the test
on the difference, ln LU − ln LR, where LU is the value of the likelihood function at
the unconstrained value of θ and LR is the value of the likelihood function at the
restricted estimate.

• Wald test. If the restriction is valid, then c(θ̂MLE) should be close to zero since
the MLE is consistent. Therefore, the test is based on c(θ̂MLE). We reject the
hypothesis if this value is significantly different from zero.

• Lagrange multiplier test. If the restriction is valid, then the restricted estimator
should be near the point that maximizes the log-likelihood. Therefore, the slope
of the log-likelihood function should be near zero at the restricted estimator. The
test is based on the slope of the log-likelihood at the point where the function is
maximized subject to the restriction.

These three tests are asymptotically equivalent under the null hypothesis, but they can
behave rather differently in a small sample. Unfortunately, their small-sample proper-
ties are unknown, except in a few special cases. As a consequence, the choice among
them is typically made on the basis of ease of computation. The likelihood ratio test
requires calculation of both restricted and unrestricted estimators. If both are simple
to compute, then this way to proceed is convenient. The Wald test requires only the
unrestricted estimator, and the Lagrange multiplier test requires only the restricted
estimator. In some problems, one of these estimators may be much easier to compute
than the other. For example, a linear model is simple to estimate but becomes nonlinear
and cumbersome if a nonlinear constraint is imposed. In this case, the Wald statistic
might be preferable. Alternatively, restrictions sometimes amount to the removal of
nonlinearities, which would make the Lagrange multiplier test the simpler procedure.

17.5.1 THE LIKELIHOOD RATIO TEST

Let θ be a vector of parameters to be estimated, and let H0 specify some sort of restriction
on these parameters. Let θ̂U be the maximum likelihood estimator of θ obtained without
regard to the constraints, and let θ̂ R be the constrained maximum likelihood estimator.
If L̂U and L̂R are the likelihood functions evaluated at these two estimates, then the

5See Buse (1982). Note that the scale of the vertical axis would be different for each curve. As such, the points
of intersection have no significance.
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FIGURE 17.2 Three Bases for Hypothesis Tests.

likelihood ratio is

λ = L̂R

L̂U
. (17-21)

This function must be between zero and one. Both likelihoods are positive, and L̂R

cannot be larger than L̂U . (A restricted optimum is never superior to an unrestricted
one.) If λ is too small, then doubt is cast on the restrictions.

An example from a discrete distribution helps to fix these ideas. In estimating from
a sample of 10 from a Poisson distribution at the beginning of Section 17.3, we found the
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MLE of the parameter θ to be 2. At this value, the likelihood, which is the probability of
observing the sample we did, is 0.104 × 10−8. Are these data consistent with H0: θ = 1.8?
LR = 0.936 × 10−9, which is, as expected, smaller. This particular sample is somewhat
less probable under the hypothesis.

The formal test procedure is based on the following result.

THEOREM 17.5 Limiting Distribution of the Likelihood Ratio
Test Statistic

Under regularity and under H0, the large sample distribution of −2 ln λ is chi-
squared, with degrees of freedom equal to the number of restrictions imposed.

The null hypothesis is rejected if this value exceeds the appropriate critical value
from the chi-squared tables. Thus, for the Poisson example,

−2 ln λ = −2 ln
(

0.0936
0.104

)
= 0.21072.

This chi-squared statistic with one degree of freedom is not significant at any conven-
tional level, so we would not reject the hypothesis that θ = 1.8 on the basis of this
test.6

It is tempting to use the likelihood ratio test to test a simple null hypothesis against
a simple alternative. For example, we might be interested in the Poisson setting in
testing H0: θ = 1.8 against H1: θ = 2.2. But the test cannot be used in this fashion. The
degrees of freedom of the chi-squared statistic for the likelihood ratio test equals the
reduction in the number of dimensions in the parameter space that results from imposing
the restrictions. In testing a simple null hypothesis against a simple alternative, this
value is zero.7 Second, one sometimes encounters an attempt to test one distributional
assumption against another with a likelihood ratio test; for example, a certain model
will be estimated assuming a normal distribution and then assuming a t distribution.
The ratio of the two likelihoods is then compared to determine which distribution is
preferred. This comparison is also inappropriate. The parameter spaces, and hence the
likelihood functions of the two cases, are unrelated.

17.5.2 THE WALD TEST

A practical shortcoming of the likelihood ratio test is that it usually requires estimation
of both the restricted and unrestricted parameter vectors. In complex models, one or
the other of these estimates may be very difficult to compute. Fortunately, there are
two alternative testing procedures, the Wald test and the Lagrange multiplier test, that
circumvent this problem. Both tests are based on an estimator that is asymptotically
normally distributed.

6Of course, our use of the large-sample result in a sample of 10 might be questionable.
7Note that because both likelihoods are restricted in this instance, there is nothing to prevent −2 ln λ from
being negative.
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These two tests are based on the distribution of the full rank quadratic form con-
sidered in Section B.11.6. Specifically,

If x ∼ NJ [µ, �], then (x − µ)′�−1(x − µ) ∼ chi-squared[J ]. (17-22)

In the setting of a hypothesis test, under the hypothesis that E(x) = µ, the quadratic
form has the chi-squared distribution. If the hypothesis that E(x) = µ is false, however,
then the quadratic form just given will, on average, be larger than it would be if the
hypothesis were true.8 This condition forms the basis for the test statistics discussed in
this and the next section.

Let θ̂ be the vector of parameter estimates obtained without restrictions. We hypo-
thesize a set of restrictions

H0: c(θ) = q.

If the restrictions are valid, then at least approximately θ̂ should satisfy them. If the
hypothesis is erroneous, however, then c(θ̂) − q should be farther from 0 than would
be explained by sampling variability alone. The device we use to formalize this idea is
the Wald test.

THEOREM 17.6 Limiting Distribution of the Wald Test Statistic
The Wald statistic is

W = [c(θ̂) − q]′
(
Asy.Var[c(θ̂) − q]

)−1[c(θ̂) − q].

Under H0, in large samples, W has a chi-squared distribution with degrees of
freedom equal to the number of restrictions [i.e., the number of equations in
c(θ̂)−q = 0]. A derivation of the limiting distribution of the Wald statistic appears
in Theorem 6.15.

This test is analogous to the chi-squared statistic in (17-22) if c(θ̂) − q is normally
distributed with the hypothesized mean of 0. A large value of W leads to rejection of the
hypothesis. Note, finally, that W only requires computation of the unrestricted model.
One must still compute the covariance matrix appearing in the preceding quadratic form.
This result is the variance of a possibly nonlinear function, which we treated earlier.

Est. Asy. Var[c(θ̂) − q] = Ĉ Est. Asy. Var[θ̂ ]Ĉ′,

Ĉ =
[
∂c(θ̂)

∂ θ̂ ′

]
.

(17-23)

That is, C is the J × K matrix whose jth row is the derivatives of the jth constraint with
respect to the K elements of θ . A common application occurs in testing a set of linear
restrictions.

8If the mean is not µ, then the statistic in (17-22) will have a noncentral chi-squared distribution. This
distribution has the same basic shape as the central chi-squared distribution, with the same degrees of freedom,
but lies to the right of it. Thus, a random draw from the noncentral distribution will tend, on average, to be
larger than a random observation from the central distribution.
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For testing a set of linear restrictions Rθ = q, the Wald test would be based on

H0: c(θ) − q = Rθ − q = 0,

Ĉ =
[
∂c(θ̂)

∂ θ̂
′

]
= R′, (17-24)

Est. Asy. Var[c(θ̂) − q] = R Est. Asy. Var[θ̂ ]R,

and

W = [Rθ̂ − q]′[R Est. Asy. Var(θ̂)R′]−1[Rθ̂ − q].

The degrees of freedom is the number of rows in R.
If c(θ)−q is a single restriction, then the Wald test will be the same as the test based

on the confidence interval developed previously. If the test is

H0: θ = θ0 versus H1: θ �= θ0,

then the earlier test is based on

z = |θ̂ − θ0|
s(θ̂)

, (17-25)

where s(θ̂) is the estimated asymptotic standard error. The test statistic is compared to
the appropriate value from the standard normal table. The Wald test will be based on

W = [(θ̂ − θ0)−0]
(
Asy. Var[(θ̂ − θ0)−0]

)−1[(θ̂ − θ0)−0] = (θ̂ − θ0)
2

Asy. Var[θ̂ ]
= z2. (17-26)

Here W has a chi-squared distribution with one degree of freedom, which is the distri-
bution of the square of the standard normal test statistic in (17-25).

To summarize, the Wald test is based on measuring the extent to which the un-
restricted estimates fail to satisfy the hypothesized restrictions. There are two short-
comings of the Wald test. First, it is a pure significance test against the null hypothesis,
not necessarily for a specific alternative hypothesis. As such, its power may be limited
in some settings. In fact, the test statistic tends to be rather large in applications. The
second shortcoming is not shared by either of the other test statistics discussed here.
The Wald statistic is not invariant to the formulation of the restrictions. For example,
for a test of the hypothesis that a function θ = β/(1 − γ ) equals a specific value q there
are two approaches one might choose. A Wald test based directly on θ − q = 0 would
use a statistic based on the variance of this nonlinear function. An alternative approach
would be to analyze the linear restriction β − q(1 − γ ) = 0, which is an equivalent,
but linear, restriction. The Wald statistics for these two tests could be different and
might lead to different inferences. These two shortcomings have been widely viewed as
compelling arguments against use of the Wald test. But, in its favor, the Wald test does
not rely on a strong distributional assumption, as do the likelihood ratio and Lagrange
multiplier tests. The recent econometrics literature is replete with applications that are
based on distribution free estimation procedures, such as the GMM method. As such,
in recent years, the Wald test has enjoyed a redemption of sorts.
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17.5.3 THE LAGRANGE MULTIPLIER TEST

The third test procedure is the Lagrange multiplier (LM) or efficient score (or just score)
test. It is based on the restricted model instead of the unrestricted model. Suppose that
we maximize the log-likelihood subject to the set of constraints c(θ) − q = 0. Let λ be
a vector of Lagrange multipliers and define the Lagrangean function

ln L∗(θ) = ln L(θ) + λ′(c(θ) − q).

The solution to the constrained maximization problem is the root of

∂ ln L∗

∂θ
= ∂ ln L(θ)

∂θ
+ C′λ = 0,

∂ ln L∗

∂λ
= c(θ) − q = 0,

(17-27)

where C′ is the transpose of the derivatives matrix in the second line of (17-23). If the
restrictions are valid, then imposing them will not lead to a significant difference in the
maximized value of the likelihood function. In the first-order conditions, the meaning is
that the second term in the derivative vector will be small. In particular, λ will be small.
We could test this directly, that is, test H0: λ = 0, which leads to the Lagrange multiplier
test. There is an equivalent simpler formulation, however. At the restricted maximum,
the derivatives of the log-likelihood function are

∂ ln L(θ̂ R)

∂ θ̂ R
= −Ĉ′λ̂ = ĝR. (17-28)

If the restrictions are valid, at least within the range of sampling variability, then ĝR = 0.
That is, the derivatives of the log-likelihood evaluated at the restricted parameter vector
will be approximately zero. The vector of first derivatives of the log-likelihood is the
vector of efficient scores. Since the test is based on this vector, it is called the score test
as well as the Lagrange multiplier test. The variance of the first derivative vector is the
information matrix, which we have used to compute the asymptotic covariance matrix
of the MLE. The test statistic is based on reasoning analogous to that underlying the
Wald test statistic.

THEOREM 17.7 Limiting Distribution of the Lagrange
Multiplier Statistic

The Lagrange multiplier test statistic is

LM =
(

∂ ln L(θ̂ R)

∂ θ̂ R

)′
[I(θ̂ R)]−1

(
∂ ln L(θ̂ R)

∂ θ̂ R

)
.

Under the null hypothesis, LM has a limiting chi-squared distribution with degrees
of freedom equal to the number of restrictions. All terms are computed at the
restricted estimator.
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The LM statistic has a useful form. Let ĝi R denote the ith term in the gradient of
the log-likelihood function. Then,

ĝR =
n∑

i=1

ĝi R = Ĝ′
Ri,

where ĜR is the n × K matrix with ith row equal to g′
i R and i is a column of 1s. If we use

the BHHH (outer product of gradients) estimator in (17-18) to estimate the Hessian,
then

[Î(θ̂)]−1 = [Ĝ′
RĜR]−1

and

LM = i′ĜR[Ĝ′
RĜR]−1Ĝ′

Ri.

Now, since i′i equals n, LM = n(i′ĜR[Ĝ′
RĜR]−1Ĝ′

Ri/n) = nR2
i , which is n times the

uncentered squared multiple correlation coefficient in a linear regression of a column of
1s on the derivatives of the log-likelihood function computed at the restricted estimator.
We will encounter this result in various forms at several points in the book.

17.5.4 AN APPLICATION OF THE LIKELIHOOD
BASED TEST PROCEDURES

Consider, again, the data in Example C.1. In Example 17.4, the parameter β in the
model

f (yi |xi , β) = 1
β + xi

e−yi /(β+xi ) (17-29)

was estimated by maximum likelihood. For convenience, let βi = 1/(β + xi ). This expo-
nential density is a restricted form of a more general gamma distribution,

f (yi |xi , β, ρ) = β
ρ
i

�(ρ)
yρ−1

i e−yi βi . (17-30)

The restriction is ρ = 1.9 We consider testing the hypothesis

H0: ρ = 1 versus H1: ρ �= 1

using the various procedures described previously. The log-likelihood and its derivatives
are

ln L(β, ρ) = ρ

n∑
i=1

ln βi − n ln �(ρ) + (ρ − 1)

n∑
i=1

ln yi −
n∑

i=1

yiβi ,

∂ ln L
∂β

= −ρ

n∑
i=1

βi +
n∑

i=1

yiβ
2
i ,

∂ ln L
∂ρ

=
n∑

i=1

ln βi − n�(ρ) +
n∑

i=1

ln yi , (17-31)

∂2ln L
∂β2

= ρ

n∑
i=1

β2
i − 2

n∑
i=1

yiβ
3
i ,

∂2 ln L
∂ρ2

= −n� ′(ρ),
∂2 ln L
∂β∂ρ

= −
n∑

i=1

βi .

9The gamma function �(ρ) and the gamma distribution are described in Sections B.4.5 and E.5.3.
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TABLE 17.1 Maximum Likelihood Estimates

Quantity Unrestricted Estimate a Restricted Estimate

β −4.7198 (2.344) 15.6052 (6.794)
ρ 3.1517 (0.7943) 1.0000 (0.000)
ln L −82.91444 −88.43771
∂ ln L/∂β 0.0000 0.0000
∂ ln L/∂ρ 0.0000 7.9162
∂2 ln L/∂β2 −0.85628 −0.021659
∂2 ln L/∂ρ2 −7.4569 −32.8987
∂2 ln L/∂β∂ρ −2.2423 −0.66885

aEstimated asymptotic standard errors based on V are given in parentheses.

[Recall that �(ρ) = d ln �(ρ)/dρ and � ′(ρ) = d2 ln �(ρ)/dρ2.] Unrestricted maximum
likelihood estimates of β and ρ are obtained by equating the two first derivatives to zero.
The restricted maximum likelihood estimate of β is obtained by equating ∂ ln L/∂β to
zero while fixing ρ at one. The results are shown in Table 17.1. Three estimators are
available for the asymptotic covariance matrix of the estimators of θ = (β, ρ)′. Using
the actual Hessian as in (17-17), we compute V = [−�i∂

2 ln L/∂θ∂θ ′]−1 at the maxi-
mum likelihood estimates. For this model, it is easy to show that E [yi | xi ] = ρ(β + xi )

(either by direct integration or, more simply, by using the result that E [∂ ln L/∂β] = 0
to deduce it). Therefore, we can also use the expected Hessian as in (17-16) to com-
pute VE = {−�i E [∂2 ln L/∂θ∂θ ′]}−1. Finally, by using the sums of squares and cross
products of the first derivatives, we obtain the BHHH estimator in (17-18), VB =
[�i (∂ ln L/∂θ)(∂ ln L/∂θ ′)]−1. Results in Table 17.1 are based on V.

The three estimators of the asymptotic covariance matrix produce notably different
results:

V =
[

5.495 −1.652
−1.652 0.6309

]
, VE =

[
4.897 −1.473

−1.473 0.5770

]
, VB =

[
13.35 −4.314
−4.314 1.535

]
.

Given the small sample size, the differences are to be expected. Nonetheless, the striking
difference of the BHHH estimator is typical of its erratic performance in small samples.

• Confidence Interval Test: A 95 percent confidence interval for ρ based on the
unrestricted estimates is 3.1517 ± 1.96

√
0.6309 = [1.5942, 4.7085]. This interval

does not contain ρ = 1, so the hypothesis is rejected.
• Likelihood Ratio Test: The LR statistic is λ = −2[−88.43771 − (−82.91444)] =

11.0465. The table value for the test, with one degree of freedom, is 3.842. Since
the computed value is larger than this critical value, the hypothesis is again
rejected.

• Wald Test: The Wald test is based on the unrestricted estimates. For this restric-
tion, c(θ) − q = ρ − 1, dc(ρ̂)/dρ̂ = 1, Est.Asy. Var[c(ρ̂) − q] = Est.Asy. Var[ρ̂] =
0.6309, so W = (3.1517 − 1)2/[0.6309] = 7.3384.

The critical value is the same as the previous one. Hence, H0 is once again rejected.
Note that the Wald statistic is the square of the corresponding test statistic that would
be used in the confidence interval test, |3.1517 − 1|/√0.6309 = 2.70895.
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• Lagrange Multiplier Test: The Lagrange multiplier test is based on the restricted
estimators. The estimated asymptotic covariance matrix of the derivatives used to
compute the statistic can be any of the three estimators discussed earlier. The
BHHH estimator, VB, is the empirical estimator of the variance of the gradient
and is the one usually used in practice. This computation produces

LM = [0.0000 7.9162]
[

0.0099438 0.26762
0.26762 11.197

]−1 [
0.0000
7.9162

]
= 15.687.

The conclusion is the same as before. Note that the same computation done
using V rather than VB produces a value of 5.1182. As before, we observe
substantial small sample variation produced by the different estimators.

The latter three test statistics have substantially different values. It is possible to
reach different conclusions, depending on which one is used. For example, if the test
had been carried out at the 1 percent level of significance instead of 5 percent and
LM had been computed using V, then the critical value from the chi-squared statistic
would have been 6.635 and the hypothesis would not have been rejected by the LM test.
Asymptotically, all three tests are equivalent. But, in a finite sample such as this one,
differences are to be expected.10 Unfortunately, there is no clear rule for how to proceed
in such a case, which highlights the problem of relying on a particular significance level
and drawing a firm reject or accept conclusion based on sample evidence.

17.6 APPLICATIONS OF MAXIMUM
LIKELIHOOD ESTIMATION

We now examine three applications of the maximum likelihood estimator. The first
extends the results of Chapters 2 through 5 to the linear regression model with normally
distributed disturbances. In the second application, we fit a nonlinear regression model
by maximum likelihood. This application illustrates the effect of transformation of
the dependent variable. The third application is a relatively straightforward use of the
maximum likelihood technique in a nonlinear model that does not involve the normal
distribution. This application illustrates the sorts of extensions of the MLE into settings
that depart from the linear model of the preceding chapters and that are typical in
econometric analysis.

17.6.1 THE NORMAL LINEAR REGRESSION MODEL

The linear regression model is

yi = x′
iβ + εi .

The likelihood function for a sample of n independent, identically and normally dis-
tributed disturbances is

L = (2πσ 2)−n/2e−ε′ε/(2σ 2). (17-32)

10For further discussion of this problem, see Berndt and Savin (1977).
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The transformation from εi to yi is εi = yi − x′
iβ, so the Jacobian for each observation,

|∂εi/∂yi |, is one.11 Making the transformation, we find that the likelihood function for
the n observations on the observed random variable is

L = (2πσ 2)−n/2e(−1/(2σ 2))(y−Xβ)′(y−Xβ). (17-33)

To maximize this function with respect to β, it will be necessary to maximize the expo-
nent or minimize the familiar sum of squares. Taking logs, we obtain the log-likelihood
function for the classical regression model:

ln L = −n
2

ln 2π − n
2

ln σ 2 − (y − Xβ)′(y − Xβ)

2σ 2
. (17-34)

The necessary conditions for maximizing this log-likelihood are



∂ ln L
∂β

∂ ln L
∂σ 2


 =




X′(y − Xβ)

σ 2

−n
2σ 2

+ (y − Xβ)′(y − Xβ)

2σ 4


 =

[
0
0

]
. (17-35)

The values that satisfy these equations are

β̂ML = (X′X)−1X′y = b and σ̂ 2
ML = e′e

n
. (17-36)

The slope estimator is the familiar one, whereas the variance estimator differs from the
least squares value by the divisor of n instead of n − K.12

The Cramér–Rao bound for the variance of an unbiased estimator is the negative
inverse of the expectation of




∂2 ln L
∂β∂β ′

∂2 ln L
∂β∂σ 2

∂2 ln L
∂σ 2∂β ′

∂2 ln L
∂(σ 2)2


 =




−X′X
σ 2

−X′ε
σ 4

−ε′X
σ 4

n
2σ 4

− ε′ε
σ 6


 . (17-37)

In taking expected values, the off-diagonal term vanishes leaving

[I(β, σ 2)]−1 =
[
σ 2(X′X)−1 0

0′ 2σ 4/n

]
. (17-38)

The least squares slope estimator is the maximum likelihood estimator for this model.
Therefore, it inherits all the desirable asymptotic properties of maximum likelihood
estimators.

We showed earlier that s2 = e′e/(n − K) is an unbiased estimator of σ 2. Therefore,
the maximum likelihood estimator is biased toward zero:

E
[
σ̂ 2

ML

] = n − K
n

σ 2 =
(

1 − K
n

)
σ 2 < σ 2. (17-39)

11See (B-41) in Section B.5. The analysis to follow is conditioned on X. To avoid cluttering the notation, we
will leave this aspect of the model implicit in the results. As noted earlier, we assume that the data generating
process for X does not involve β or σ 2 and that the data are well behaved as discussed in Chapter 5.
12As a general rule, maximum likelihood estimators do not make corrections for degrees of freedom.
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Despite its small-sample bias, the maximum likelihood estimator of σ 2 has the same
desirable asymptotic properties. We see in (17-39) that s2 and σ̂ 2 differ only by a factor
−K/n, which vanishes in large samples. It is instructive to formalize the asymptotic
equivalence of the two. From (17-38), we know that

√
n
(
σ̂ 2

ML − σ 2) d−→ N[0, 2σ 4].

It follows

zn =
(

1 − K
n

)√
n
(
σ̂ 2

ML − σ 2) + K√
n
σ 2 d−→

(
1 − K

n

)
N[0, 2σ 4] + K√

n
σ 2.

But K/
√

n and K/n vanish as n → ∞, so the limiting distribution of zn is also N[0, 2σ 4].
Since zn = √

n(s2 − σ 2), we have shown that the asymptotic distribution of s2 is the
same as that of the maximum likelihood estimator.

The standard test statistic for assessing the validity of a set of linear restrictions in
the linear model, Rβ − q = 0, is the F ratio,

F[J, n − K] = (e′
∗e∗ − e′e)/J

e′e/(n − K)
= (Rb − q)′[Rs2(X′X)−1R′]−1(Rb − q)

J
.

With normally distributed disturbances, the F test is valid in any sample size. There
remains a problem with nonlinear restrictions of the form c(β) = 0, since the counter-
part to F , which we will examine here, has validity only asymptotically even with nor-
mally distributed disturbances. In this section, we will reconsider the Wald statistic and
examine two related statistics, the likelihood ratio statistic and the Lagrange multiplier
statistic. These statistics are both based on the likelihood function and, like the Wald
statistic, are generally valid only asymptotically.

No simplicity is gained by restricting ourselves to linear restrictions at this point, so
we will consider general hypotheses of the form

H0: c(β) = 0,

H1: c(β) �= 0.

The Wald statistic for testing this hypothesis and its limiting distribution under H0 would
be

W = c(b)′{C(b)[σ̂ 2(X′X)−1]C(b)′}−1c(b)
d−→ χ2[J ], (17-40)

where

C(b) = [∂c(b)/∂b′]. (17-41)

The likelihood ratio (LR) test is carried out by comparing the values of the log-
likelihood function with and without the restrictions imposed. We leave aside for the
present how the restricted estimator b∗ is computed (except for the linear model, which
we saw earlier). The test statistic and it’s limiting distribution under H0 are

LR = −2[ln L∗ − ln L]
d−→ χ2[J ]. (17-42)

The log-likelihood for the regression model is given in (17-34). The first-order conditions
imply that regardless of how the slopes are computed, the estimator of σ 2 without
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restrictions on β will be σ̂ 2 = (y−Xb)′(y−Xb)/n and likewise for a restricted estimator
σ̂ 2

∗ = (y − Xb∗)′(y − Xb∗)/n = e′
∗e∗/n. The concentrated log-likelihood13 will be

ln Lc = −n
2

[1 + ln 2π + ln(e′e/n)]

and likewise for the restricted case. If we insert these in the definition of LR, then we
obtain

LR = n ln[e′
∗e∗/e′e] = n (ln σ̂ 2

∗ − ln σ̂ 2) = n ln(σ̂ 2
∗ /σ̂ 2). (17-43)

The Lagrange multiplier (LM) test is based on the gradient of the log-likelihood
function. The principle of the test is that if the hypothesis is valid, then at the restricted
estimator, the derivatives of the log-likelihood function should be close to zero. There
are two ways to carry out the LM test. The log-likelihood function can be maximized
subject to a set of restrictions by using

ln LLM = −n
2

[
ln 2π + ln σ 2 + [(y − Xβ)′(y − Xβ)]/n

σ 2

]
+ λ′c(β).

The first-order conditions for a solution are


∂ ln LLM

∂β

∂ ln LLM

∂σ 2

∂ ln LLM

∂λ




=




X′(y − Xβ)

σ 2
+ C(β)′λ

−n
2σ 2

+ (y − Xβ)′(y − Xβ)

2σ 4

c(β)




=




0
0
0


 . (17-44)

The solutions to these equations give the restricted least squares estimator, b∗; the usual
variance estimator, now e′

∗e∗/n; and the Lagrange multipliers. There are now two ways
to compute the test statistic. In the setting of the classical linear regression model, when
we actually compute the Lagrange multipliers, a convenient way to proceed is to test
the hypothesis that the multipliers equal zero. For this model, the solution for λ∗ is λ∗ =
[R(X′X)−1R′]−1(Rb−q). This equation is a linear function of the least squares estimator.
If we carry out a Wald test of the hypothesis that λ∗ equals 0, then the statistic will be

LM = λ′
∗{Est. Var[λ∗]}−1λ∗ = (Rb − q)′[R s2

∗(X
′X)−1R′]−1(Rb − q). (17-45)

The disturbance variance estimator, s2
∗ , based on the restricted slopes is e′

∗e∗/n.
An alternative way to compute the LM statistic often produces interesting results.

In most situations, we maximize the log-likelihood function without actually computing
the vector of Lagrange multipliers. (The restrictions are usually imposed some other
way.) An alternative way to compute the statistic is based on the (general) result that
under the hypothesis being tested,

E [∂ ln L/∂β] = E [(1/σ 2)X′ε] = 0

and

Asy. Var[∂ ln L/∂β] = −E [∂2 ln L/∂β∂β ′]−1 = σ 2(X′X)−1.14 (17-46)

13See Section E.6.3.
14This makes use of the fact that the Hessian is block diagonal.
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We can test the hypothesis that at the restricted estimator, the derivatives are equal to
zero. The statistic would be

LM = e′
∗X(X′X)−1X′e∗

e′∗e∗/n
= nR2

∗. (17-47)

In this form, the LM statistic is n times the coefficient of determination in a regression
of the residuals ei∗ = (yi − x′

i b∗) on the full set of regressors.
With some manipulation we can show that W = [n/(n − K)]JF and LR and LM

are approximately equal to this function of F .15 All three statistics converge to JF as n
increases. The linear model is a special case in that the LR statistic is based only on the
unrestricted estimator and does not actually require computation of the restricted least
squares estimator, although computation of F does involve most of the computation
of b∗. Since the log function is concave, and W/n ≥ ln(1 + W/n), Godfrey (1988) also
shows that W ≥ LR ≥ LM, so for the linear model, we have a firm ranking of the three
statistics.

There is ample evidence that the asymptotic results for these statistics are problem-
atic in small or moderately sized samples. [See, e.g., Davidson and MacKinnon (1993,
pp. 456–457).] The true distributions of all three statistics involve the data and the un-
known parameters and, as suggested by the algebra, converge to the F distribution
from above. The implication is that critical values from the chi-squared distribution are
likely to be too small; that is, using the limiting chi-squared distribution in small or
moderately sized samples is likely to exaggerate the significance of empirical results.
Thus, in applications, the more conservative F statistic (or t for one restriction) is likely
to be preferable unless one’s data are plentiful.

17.6.2 MAXIMUM LIKELIHOOD ESTIMATION OF NONLINEAR
REGRESSION MODELS

In Chapter 9, we considered nonlinear regression models in which the nonlinearity in
the parameters appeared entirely on the right-hand side of the equation. There are
models in which parameters appear nonlinearly in functions of the dependent variable
as well.

Suppose that, in general, the model is

g(yi , θ) = h(xi , β) + εi .

One approach to estimation would be least squares, minimizing

S(θ , β) =
n∑

i=1

[g(yi , θ) − h(xi , β)]2.

There is no reason to expect this nonlinear least squares estimator to be consistent, how-
ever, though it is difficult to show this analytically. The problem is that nonlinear least
squares ignores the Jacobian of the transformation. Davidson and MacKinnon (1993,
p. 244) suggest a qualitative argument, which we can illustrate with an example. Suppose
y is positive, g(y, θ) = exp(θy) and h(x, β) = βx. In this case, an obvious “solution” is

15See Godfrey (1988, pp. 49–51).
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β = 0 and θ → −∞, which produces a sum of squares of zero. “Estimation” becomes a
nonissue. For this type of regression model, however, maximum likelihood estimation
is consistent, efficient, and generally not appreciably more difficult than least squares.

For normally distributed disturbances, the density of yi is

f (yi ) =
∣∣∣∣
∂εi

∂yi

∣∣∣∣(2πσ 2)−1/2e−[g(yi ,θ)−h(xi ,β)]2/(2σ 2).

The Jacobian of the transformation [see (3-41)] is

J (yi , θ) =
∣∣∣∣
∂εi

∂yi

∣∣∣∣ =
∣∣∣∣
∂g(yi , θ)

∂yi

∣∣∣∣ = Ji .

After collecting terms, the log-likelihood function will be

ln L =
n∑

i=1

−1
2

[ln 2π + ln σ 2] +
n∑

i=1

ln J (yi , θ) −
∑n

i=1[g(yi , θ) − h(xi , β)]2

2σ 2
. (17-48)

In many cases, including the applications considered here, there is an inconsistency
in the model in that the transformation of the dependent variable may rule out some
values. Hence, the assumed normality of the disturbances cannot be strictly correct. In
the generalized production function, there is a singularity at yi = 0 where the Jacobian
becomes infinite. Some research has been done on specific modifications of the model to
accommodate the restriction [e.g., Poirier (1978) and Poirier and Melino (1978)], but in
practice, the typical application involves data for which the constraint is inconsequential.

But for the Jacobians, nonlinear least squares would be maximum likelihood. If
the Jacobian terms involve θ , however, then least squares is not maximum likelihood.
As regards σ 2, this likelihood function is essentially the same as that for the simpler
nonlinear regression model. The maximum likelihood estimator of σ 2 will be

σ̂ 2 = 1
n

n∑
i=1

[g(yi , θ̂) − h(xi , β̂)]2 = 1
n

n∑
i=1

e2
i . (17-49)

The likelihood equations for the unknown parameters are




∂ ln L
∂β

∂ ln L
∂θ

∂ ln L
∂σ 2




=




1
σ 2

n∑
i=1

εi∂h(xi , β)

∂β

n∑
i=1

1
Ji

(
∂ Ji

∂θ

)
−

(
1
σ 2

) n∑
i=1

εi
∂g(yi , θ)

∂θ

−n
2σ 2

+ 1
2σ 4

n∑
i=1

ε2
i




=



0
0
0


 . (17-50)

These equations will usually be nonlinear, so a solution must be obtained iteratively.
One special case that is common is a model in which θ is a single parameter. Given a
particular value of θ , we would maximize ln Lwith respect to β by using nonlinear least
squares. [It would be simpler yet if, in addition, h(xi , β) were linear so that we could use
linear least squares. See the following application.] Therefore, a way to maximize L for
all the parameters is to scan over values of θ for the one that, with the associated least
squares estimates of β and σ 2, gives the highest value of ln L. (Of course, this requires
that we know roughly what values of θ to examine.)
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If θ is a vector of parameters, then direct maximization of L with respect to the
full set of parameters may be preferable. (Methods of maximization are discussed in
Appendix E.) There is an additional simplification that may be useful. Whatever val-
ues are ultimately obtained for the estimates of θ and β, the estimate of σ 2 will be
given by (17-49). If we insert this solution in (17-48), then we obtain the concentrated
log-likelihood,

ln Lc =
n∑

i=1

ln J (yi , θ) − n
2

[1 + ln(2π)] − n
2

ln

[
1
n

n∑
i=1

ε2
i

]
. (17-51)

This equation is a function only of θ and β. We can maximize it with respect to θ and β

and obtain the estimate of σ 2 as a by-product. (See Section E.6.3 for details.)
An estimate of the asymptotic covariance matrix of the maximum likelihood esti-

mators can be obtained by inverting the estimated information matrix. It is quite likely,
however, that the Berndt et al. (1974) estimator will be much easier to compute. The
log of the density for the ith observation is the ith term in (17-50). The derivatives of
ln Li with respect to the unknown parameters are

gi =




∂ ln Li/∂β

∂ ln Li/∂θ

∂ ln Li/∂σ 2


 =




(εi/σ
2)[∂h(xi , β)/∂β]

(1/Ji )[∂ Ji/∂θ ] − (εi/σ
2)[∂g(yi , θ)/∂θ ]

(1/(2σ 2))
[
ε2

i /σ
2 − 1

]


 . (17-52)

The asymptotic covariance matrix for the maximum likelihood estimators is estimated
using

Est.Asy. Var[MLE] =
[

n∑
i=1

ĝi ĝ′
]−1

= (Ĝ′Ĝ)−1. (17-53)

Note that the preceding includes of a row and a column for σ 2 in the covariance
matrix. In a model that transforms y as well as x, the Hessian of the log-likelihood
is generally not block diagonal with respect to θ and σ 2. When y is transformed, the
maximum likelihood estimators of θ and σ 2 are positively correlated, because both
parameters reflect the scaling of the dependent variable in the model. This result may
seem counterintuitive. Consider the difference in the variance estimators that arises
when a linear and a loglinear model are estimated. The variance of ln y around its
mean is obviously different from that of y around its mean. By contrast, consider what
happens when only the independent variables are transformed, for example, by the
Box–Cox transformation. The slope estimators vary accordingly, but in such a way that
the variance of y around its conditional mean will stay constant.16

Example 17.5 A Generalized Production Function
The Cobb–Douglas function has often been used to study production and cost. Among the
assumptions of this model is that the average cost of production increases or decreases
monotonically with increases in output. This assumption is in direct contrast to the standard
textbook treatment of a U-shaped average cost curve as well as to a large amount of empirical
evidence. (See Example 7.3 for a well-known application.) To relax this assumption, Zellner

16See Seaks and Layson (1983).
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TABLE 17.2 Generalized Production Function Estimates

Maximum Likelihood

Estimate SE(1) SE(2) Nonlinear Least Squares

β1 2.914822 0.44912 0.12534 2.108925
β2 0.350068 0.10019 0.094354 0.257900
β3 1.092275 0.16070 0.11498 0.878388
θ 0.106666 0.078702 −0.031634
σ 2 0.0427427 0.0151167
ε′ε 1.068567 0.7655490
ln L −8.939044 −13.621256

and Revankar (1970) proposed a generalization of the Cobb–Douglas production function.17

Their model allows economies of scale to vary with output and to increase and then decrease
as output rises:

ln y + θy = ln γ + α(1 − δ) ln K + αδ ln L + ε.

Note that the right-hand side of their model is intrinsically linear according to the results of
Section 7.3.3. The model as a whole, however, is intrinsically nonlinear due to the parametric
transformation of y appearing on the left.

For Zellner and Revankar’s production function, the Jacobian of the transformation from
εi to yi is ∂εi /∂yi = (θ + 1/yi ) . Some simplification is achieved by writing this as (1 + θyi )/yi .
The log-likelihood is then

ln L =
n∑

i =1

ln(1 + θyi ) −
n∑

i =1

ln yi − n
2

ln(2π ) − n
2

ln σ 2 − 1
2σ 2

n∑
i =1

ε2
i ,

where εi = ( ln yi + θyi − β1 − β2 ln capitali − β3 ln labori ). Estimation of this model is straight-
forward. For a given value of θ , β and σ 2 are estimated by linear least squares. Therefore,
to estimate the full set of parameters, we could scan over the range of zero to one for θ .
The value of θ that, with its associated least squares estimates of β and σ 2, maximizes
the log-likelihood function provides the maximum likelihood estimate. This procedure was
used by Zellner and Revankar. The results given in Table 17.2 were obtained by maximizing
the log-likelihood function directly, instead. The statewide data on output, capital, labor, and
number of establishments in the transportation industry used in Zellner and Revankar’s study
are given in Appendix Table F9.2 and Example 16.6. For this application, y = value added
per firm, K = capital per firm, and L = labor per firm.

Maximum likelihood and nonlinear least squares estimates are shown in Table 17.2. The
asymptotic standard errors for the maximum likelihood estimates are labeled SE(1). These
are computed using the BHHH form of the asymptotic covariance matrix. The second set,
SE(2), are computed treating the estimate of θ as fixed; they are the usual linear least squares
results using ( ln y+θy) as the dependent variable in a linear regression. Clearly, these results
would be very misleading. The final column of Table 10.2 lists the simple nonlinear least
squares estimates. No standard errors are given, because there is no appropriate formula
for computing the asymptotic covariance matrix. The sum of squares does not provide an
appropriate method for computing the pseudoregressors for the parameters in the trans-
formation. The last two rows of the table display the sum of squares and the log-likelihood
function evaluated at the parameter estimates. As expected, the log-likelihood is much larger
at the maximum likelihood estimates. In contrast, the nonlinear least squares estimates lead
to a much lower sum of squares; least squares is still least squares.

17An alternative approach is to model costs directly with a flexible functional form such as the translog model.
This approach is examined in detail in Chapter 14.
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Example 17.6 An LM Test for (Log-) Linearity
A natural generalization of the Box–Cox regression model (Section 9.3.2) is

y(λ) = β ′x(λ) + ε. (17-54)

where z (λ) = (zλ − 1)/λ. This form includes the linear (λ = 1) and loglinear (λ = 0) models
as special cases. The Jacobian of the transformation is |dε/dy| = yλ−1. The log-likelihood
function for the model with normally distributed disturbances is

ln L = −n
2

ln(2π ) − n
2

ln σ 2 + (λ − 1)
n∑

i =1

ln yi − 1
2σ 2

n∑
i =1

(
y(λ)

i − β ′x(λ)
i

)2
. (17-55)

The MLEs of λ and β are computed by maximizing this function. The estimator of σ 2 is
the mean squared residual as usual. We can use a one-dimensional grid search over λ—for
a given value of λ, the MLE of β is least squares using the transformed data. It must be
remembered, however, that the criterion function includes the Jacobian term.

We will use the BHHH estimator of the asymptotic covariance matrix for the maximum
likelihood. The derivatives of the log likelihood are




∂ ln L
∂β

∂ ln L
∂λ

∂ ln L
∂σ 2




=
n∑

i =1




εi x
(λ)
i

σ 2

ln yi − εi

σ 2

[
∂y(λ)

i

∂λ
−

K∑
k=1

βk
∂x (λ)

i k

∂λ

]

1
2σ 2

[
ε2

i

σ 2
− 1

]




=
n∑

i =1

gi (17-56)

where

∂ [zλ − 1]/λ
∂λ

= λzλ ln z − (zλ − 1)
λ2

= 1
λ

(
zλ ln z − z(λ)

)
. (17-57)

(See Exercise 6 in Chapter 9.) The estimator of the asymptotic covariance matrix for the
maximum likelihood estimator is given in (17-53).

The Box–Cox model provides a framework for a specification test of linearity versus log-
linearity. To assemble this result, consider first the basic model

y = f ( x, β1, β2, λ) + ε = β1 + β2x (λ) + ε.

The pseudoregressors are x∗
1 = 1, x∗

2 = x (λ) , x∗
3 = β2(∂x (λ) /∂λ) as given above. We now

consider a Lagrange multiplier test of the hypothesis that λ equals zero. The test is carried
out by first regressing y on a constant and ln x (i.e., the regressor evaluated at λ = 0) and
then computing nR2

∗ in the regression of the residuals from this first regression on x∗
1, x∗

2, and
x∗

3, also evaluated at λ = 0. The first and second of these are 1 and ln x. To obtain the third,
we require x∗

3 | λ=0 = β2 limλ→0(∂x (λ) /∂λ) . Applying L’Hôpital’s rule to the right-hand side of
(12-57), differentiate numerator and denominator with respect to λ. This produces

lim
λ→0

∂x (λ)

∂λ
= lim

λ→0

[
xλ( ln x) 2 − ∂x (λ)

∂λ

]
= 1

2
lim
λ→0

xλ( ln x) 2 = 1
2

( ln x) 2.

Therefore, limλ→0 x∗
3 = β2[ 1

2 ( ln x) 2]. The Lagrange multiplier test is carried out in two steps.
First, we regress y on a constant and ln x and compute the residuals. Second, we regress
these residuals on a constant, ln x, and b2( 1

2 ln2 x) , where b2 is the coefficient on ln x in
the first regression. The Lagrange multiplier statistic is nR2 from the second regression. To
generalize this procedure to several regressors, we would use the logs of all the regressors
at the first step. Then, the additional regressor for the second regression would be

x∗
λ =

K∑
k=1

bk( 1
2 ln2 xk) ,



Greene-50240 book June 26, 2002 15:8

CHAPTER 17 ✦ Maximum Likelihood Estimation 501

where the sum is taken over all the variables that are transformed in the original model and
the bk’s are the least squares coefficients in the first regression.

By extending this process to the model of (17-54), we can devise a bona fide test of
log-linearity (against the more general model, not linearity). [See Davidson and MacKinnon
(1985). A test of linearity can be conducted using λ = 1, instead.) Computing the various
terms at λ = 0 again, we have

ε̂i = ln yi − β̂1 − β̂2 ln xi ,

where as before, β̂1 and β̂2 are computed by the least squares regression of ln y on a constant
and ln x. Let ε̂∗

i = 1
2 ln2 yi − β̂2( 1

2 ln2 xi ) . Then

ĝi =




ε̂i /σ̂
2

( ln xi ) ε̂i /σ̂
2

ln yi − ε̂i ε̂
∗
ı /σ̂

2

(
ε̂2

i /σ̂
2 − 1

)
/(2σ̂ 2)




.

If there are K regressors in the model, then the second component in ĝi will be a vector
containing the logs of the variables, whereas ε̂∗

i in the third becomes

ε̂∗
i = 1

2
ln2 yi −

K∑
k=1

β̂k

(
1
2

ln2 xi k

)
.

Using the Berndt et al. estimator given in (10-54), we can now construct the Lagrange mul-
tiplier statistic as

LM = χ2[1] =
(

n∑
i =1

ĝi

)′ [ n∑
i =1

ĝi ĝ
′
i

]−1 (
n∑

i =1

ĝi

)
= i′G(G′G )−1G′i,

where G is the n × ( K + 2) matrix whose columns are g1 through gK+2 and i is a column
of 1s. The usefulness of this approach for either of the models we have examined is that in
testing the hypothesis, it is not necessary to compute the nonlinear, unrestricted, Box–Cox
regression.

17.6.3 NONNORMAL DISTURBANCES—THE STOCHASTIC
FRONTIER MODEL

This final application will examine a regressionlike model in which the disturbances do
not have a normal distribution. The model developed here also presents a convenient
platform on which to illustrate the use of the invariance property of maximum likelihood
estimators to simplify the estimation of the model.

A lengthy literature commencing with theoretical work by Knight (1933), Debreu
(1951), and Farrell (1957) and the pioneering empirical study by Aigner, Lovell, and
Schmidt (1977) has been directed at models of production that specifically account for
the textbook proposition that a production function is a theoretical ideal.18 If y = f (x)

defines a production relationship between inputs, x, and an output, y, then for any given
x, the observed value of y must be less than or equal to f (x). The implication for an
empirical regression model is that in a formulation such as y = h(x, β) + u, u must be
negative. Since the theoretical production function is an ideal—the frontier of efficient

18A survey by Greene (1997b) appears in Pesaran and Schmidt (1997). Kumbhakar and Lovell (2000) is a
comprehensive reference on the subject.
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production—any nonzero disturbance must be interpreted as the result of inefficiency.
A strictly orthodox interpretation embedded in a Cobb–Douglas production model
might produce an empirical frontier production model such as

ln y = β1 + �kβk ln xk − u, u ≥ 0.

The gamma model described in Example 5.1 was an application. One-sided disturbances
such as this one present a particularly difficult estimation problem. The primary theoret-
ical problem is that any measurement error in ln y must be embedded in the disturbance.
The practical problem is that the entire estimated function becomes a slave to any single
errantly measured data point.

Aigner, Lovell, and Schmidt proposed instead a formulation within which observed
deviations from the production function could arise from two sources: (1) productive
inefficiency as we have defined it above and that would necessarily be negative; and
(2) idiosyncratic effects that are specific to the firm and that could enter the model with
either sign. The end result was what they labeled the “stochastic frontier”:

ln y = β1 + �kβk ln xk − u + v, u ≥ 0, v ∼ N
[
0, σ 2

v

]
.

= β1 + �kβk ln xk + ε.

The frontier for any particular firm is h(x, β) + v, hence the name stochastic fron-
tier. The inefficiency term is u, a random variable of particular interest in this setting.
Since the data are in log terms, u is a measure of the percentage by which the particular
observation fails to achieve the frontier, ideal production rate.

To complete the specification, they suggested two possible distributions for the
inefficiency term, the absolute value of a normally distributed variable and an exponen-
tially distributed variable. The density functions for these two compound distributions
are given by Aigner, Lovell, and Schmidt; let ε = v − u, λ = σu/σv, σ = (σ 2

u + σ 2
v )1/2,

and �(z) = the probability to the left of z in the standard normal distribution [see
Sections B.4.1 and E.5.6]. For the “half-normal” model,

ln h(εi | β, λ, σ ) =
[
−ln σ −

(
1
2

)
log

2
π

− 1
2

(
εi

σ

)2

+ ln �

(−εiλ

σ

)]
,

whereas for the exponential model

ln h(εi | β, θ, σv) =
[

ln θ + 1
2
θ2σ 2

v + θεi + ln �

(
− εi

σv

− θσv

)]
.

Both these distributions are asymmetric. We thus have a regression model with a
nonnormal distribution specified for the disturbance. The disturbance, ε, has a nonzero
mean as well; E [ε] = −σu(2/π)1/2 for the half-normal model and −1/θ for the expo-
nential model. Figure 17.3 illustrates the density for the half-normal model with σ = 1
and λ = 2. By writing β0 = β1 + E [ε] and ε∗ = ε− E [ε], we obtain a more conventional
formulation

ln y = β0 + �kβk ln xk + ε∗

which does have a disturbance with a zero mean but an asymmetric, nonnormal distribu-
tion. The asymmetry of the distribution of ε∗ does not negate our basic results for least
squares in this classical regression model. This model satisfies the assumptions of the
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FIGURE 17.3 Density for the Disturbance in the Stochastic Frontier
Model.

Gauss–Markov theorem, so least squares is unbiased and consistent (save for the con-
stant term), and efficient among linear unbiased estimators. In this model, however, the
maximum likelihood estimator is not linear, and it is more efficient than least squares.

We will work through maximum likelihood estimation of the half-normal model in
detail to illustrate the technique. The log likelihood is

ln L = −n ln σ − n
2

ln
2
π

− 1
2

n∑
i=1

(
εi

σ

)2

+
n∑

i=1

ln �

(−εiλ

σ

)
.

This is not a particularly difficult log-likelihood to maximize numerically. Nonetheless, it
is instructive to make use of a convenience that we noted earlier. Recall that maximum
likelihood estimators are invariant to one-to-one transformation. If we let θ = 1/σ and
γ = (1/σ)β, the log-likelihood function becomes

ln L = n ln θ − n
2

ln
2
π

− 1
2

n∑
i=1

(θyi − γ ′xi )
2 +

n∑
i=1

ln �[−λ(θyi − γ ′xi )].

As you could verify by trying the derivations, this transformation brings a dramatic
simplification in the manipulation of the log-likelihood and its derivatives. We will
make repeated use of the functions

αi = εi/σ = θyi − γ ′xi ,

δ(yi , xi , λ, θ, γ ) = φ[−λαi ]
�[−λαi ]

= δi .

�i = −δi (−λαi + δi )
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(The second of these is the derivative of the function in the final term in log L. The
third is the derivative of δi with respect to its argument; �i < 0 for all values of λαi .) It
will also be convenient to define the (K + 1) × 1 columns vectors zi = (x′

i , −yi )
′ and

ti = (0′, 1/θ)′. The likelihood equations are

∂ ln L
∂(γ ′, θ)′

=
n∑

i=1

ti +
n∑

i=1

αi zi + λ

n∑
i=1

δi zi = 0,

∂ ln L
∂λ

= −
n∑

i=1

δiαi = 0

and the second derivatives are

H(γ , θ, λ) =
n∑

i=1

{[
(λ2�i − 1)zi z′

i (δi − λαi�i )zi

(δi − λαi�i )z′
i α2

i �i

]
−

[
ti t′i 0

0′ 0

]}
.

The estimator of the asymptotic covariance matrix for the directly estimated parameters
is

Est.Asy. Var[γ̂ ′, θ̂ , λ̂]′ = {−H[γ̂ ′, θ̂ , λ̂]
}−1

.

There are two sets of transformations of the parameters in our formulation. In
order to recover estimates of the original structural parameters σ = 1/θ and β = γ /θ

we need only transform the MLEs. Since these transformations are one to one, the
MLEs of σ and β are 1/θ̂ and γ̂ /θ̂ . To compute an asymptotic covariance matrix for
these estimators we will use the delta method, which will use the derivative matrix

G =




∂β̂/∂ γ̂ ′ ∂β̂/∂θ̂ ∂β̂/∂λ̂

∂σ̂ /∂ γ̂ ′ ∂σ̂ /∂θ̂ ∂σ̂ /∂λ̂

∂λ̂/∂ γ̂ ′ ∂λ̂/∂θ̂ ∂λ̂/∂λ̂


 =




(1/θ̂)I −(1/θ̂2)γ̂ 0

0′ −(1/θ̂2) 0

0′ 0 1


 .

Then, for the recovered parameters, we

Est.Asy. Var[β̂
′
, σ̂ , λ̂]′ = G × {−H[γ̂ ′, θ̂ , λ̂]

}−1 × G′.

For the half-normal model, we would also rely on the invariance of maximum likelihood
estimators to recover estimates of the deeper variance parameters, σ 2

v = σ 2/(1 + λ2)

and σ 2
u = σ 2λ2/(1 + λ2).

The stochastic frontier model is a bit different from those we have analyzed previ-
ously in that the disturbance is the central focus of the analysis rather than the catchall
for the unknown and unknowable factors omitted from the equation. Ideally, we would
like to estimate ui for each firm in the sample to compare them on the basis of their pro-
ductive efficiency. (The parameters of the production function are usually of secondary
interest in these studies.) Unfortunately, the data do not permit a direct estimate, since
with estimates of β in hand, we are only able to compute a direct estimate of ε = y−x′β.
Jondrow et al. (1982), however, have derived a useful approximation that is now the
standard measure in these settings,

E [u | ε] = σλ

1 + λ2

[
φ(z)

1 − �(z)
− z

]
, z = ελ

σ
,

William Greene
lambda should not be bold
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TABLE 17.3 Estimated Stochastic Frontier Functions

Least Squares Half-Normal Model Exponential Model

Standard Standard Standard
Coefficient Estimate Error t Ratio Estimate Error t Ratio Estimate Error t Ratio

Constant 1.844 0.234 7.896 2.081 0.422 4.933 2.069 0.290 7.135
βk 0.245 0.107 2.297 0.259 0.144 1.800 0.262 0.120 2.184
βl 0.805 0.126 6.373 0.780 0.170 4.595 0.770 0.138 5.581
σ 0.236 0.282 0.087 3.237
σu — 0.222 0.136
σv — 0.190 0.171 0.054 3.170
λ — 1.265 1.620 0.781
θ — 7.398 3.931 1.882
log L 2.2537 2.4695 2.8605

for the half normal-model, and

E[u | ε] = z + σv

φ(z/σv)

�(z/σv)
, z = ε − θσ 2

v

for the exponential model. These values can be computed using the maximum likelihood
estimates of the structural parameters in the model. In addition, a structural parameter
of interest is the proportion of the total variance of ε that is due to the inefficiency term.
For the half-normal model, Var[ε] = Var[u] + Var[v] = (1 − 2/π)σ 2

u + σ 2
v , whereas for

the exponential model, the counterpart is 1/θ2 + σ 2
v .

Example 17.7 Stochastic Frontier Model
Appendix Table F9.2 lists 25 statewide observations used by Zellner and Revankar (1970)
to study production in the transportation equipment manufacturing industry. We have used
these data to estimate the stochastic frontier models. Results are shown in Table 17.3.19

The Jondrow, et al. (1982) estimates of the inefficiency terms are listed in Table 17.4. The
estimates of the parameters of the production function, β1, β2, and β3 are fairly similar, but the
variance parameters, σu and σv, appear to be quite different. Some of the parameter difference
is illusory, however. The variance components for the half-normal model are (1 − 2/π )σ 2

u =
0.0179 and σ 2

v = 0.0361, whereas those for the exponential model are 1/θ2 = 0.0183 and
σ 2

v = 0.0293. In each case, about one-third of the total variance of ε is accounted for by the
variance of u.

17.6.4 CONDITIONAL MOMENT TESTS OF SPECIFICATION

A spate of studies has shown how to use conditional moment restrictions for specifica-
tion testing as well as estimation.20 The logic of the conditional moment (CM) based
specification test is as follows. The model specification implies that certain moment re-
strictions will hold in the population from which the data were drawn. If the specification

19N is the number of establishments in the state. Zellner and Revankar used per establishment data in their
study. The stochastic frontier model has the intriguing property that if the least squares residuals are skewed
in the positive direction, then least squares with λ = 0 maximizes the log-likelihood. This property, in fact,
characterizes the data above when scaled by N. Since that leaves a not particularly interesting example and it
does not occur when the data are not normalized, for purposes of this illustration we have used the unscaled
data to produce Table 17.3. We do note that this result is a common, vexing occurrence in practice.
20See, for example, Pagan and Vella (1989).
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TABLE 17.4 Estimated Inefficiencies

State Half-Normal Exponential State Half-Normal Exponential

Alabama 0.2011 0.1459 Maryland 0.1353 0.0925
California 0.1448 0.0972 Massachusetts 0.1564 0.1093
Connecticut 0.1903 0.1348 Michigan 0.1581 0.1076
Florida 0.5175 0.5903 Missouri 0.1029 0.0704
Georgia 0.1040 0.0714 New Jersey 0.0958 0.0659
Illinois 0.1213 0.0830 New York 0.2779 0.2225
Indiana 0.2113 0.1545 Ohio 0.2291 0.1698
Iowa 0.2493 0.2007 Pennsylvania 0.1501 0.1030
Kansas 0.1010 0.0686 Texas 0.2030 0.1455
Kentucky 0.0563 0.0415 Virginia 0.1400 0.0968
Louisiana 0.2033 0.1507 Washington 0.1105 0.0753
Maine 0.2226 0.1725 West Virginia 0.1556 0.1124
Wisconsin 0.1407 0.0971

is correct, then the sample data should mimic the implied relationships. For example,
in the classical regression model, the assumption of homoscedasticity implies that the
disturbance variance is independent of the regressors. As such,

E
{

xi [(yi − β ′xi )
2 − σ 2]

} = E
[
xi

(
ε2

i − σ 2)] = 0.

If, on the other hand, the regression is heteroscedastic in a way that depends on xi , then
this covariance will not be zero. If the hypothesis of homoscedasticity is correct, then
we would expect the sample counterpart to the moment condition,

r̄ = 1
n

n∑
i=1

xi
(
e2

i − s2),

where ei is the OLS residual, to be close to zero. (This computation appears in Breusch
and Pagan’s LM test for homoscedasticity. See Section 11.4.3.) The practical problems
to be solved are (1) to formulate suitable moment conditions that do correspond to the
hypothesis test, which is usually straightforward; (2) to devise the appropriate sample
counterpart; and (3) to devise a suitable measure of closeness to zero of the sample
moment estimator. The last of these will be in the framework of the Wald statistics that
we have examined at various points in this book. So the problem will be to devise the
appropriate covariance matrix for the sample moments.

Consider a general case in which the moment condition is written in terms of vari-
ables in the model [yi , xi , zi ] and parameters (as in the linear regression model) θ̂ . The
sample moment can be written

r̄ = 1
n

n∑
i=1

ri (yi , xi , zi , θ̂) = 1
n

n∑
i=1

r̂i . (17-58)

The hypothesis is that based on the true θ , E [ri ] = 0. Under the null hypothesis that
E [ri ] = 0 and assuming that plim θ̂ = θ and that a central limit theorem (Theorem
D.18 or D.19) applies to

√
n r̄(θ) so that

√
nr̄(θ)

d−→ N[0, �]
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for some covariance matrix � that we have yet to estimate, it follows that the Wald
statistic,

nr̄′�̂−1
r̄

d−→ χ2(J ), (17-59)

where the degrees of freedom J is the number of moment restrictions being tested and
�̂ is an estimate of �. Thus, the statistic can be referred to the chi-squared table.

It remains to determine the estimator of �. The full derivation of � is fairly com-
plicated. [See Pagan and Vella (1989, pp. S32–S33).] But when the vector of parameter
estimators is a maximum likelihood estimator, as it would be for the least squares es-
timator with normally distributed disturbances and for most of the other estimators
we consider, a surprisingly simple estimator can be used. Suppose that the parameter
vector used to compute the moments above is obtained by solving the equations

1
n

n∑
i=1

g(yi , xi , zi , θ̂) = 1
n

n∑
i=1

ĝi = 0, (17-60)

where θ̂ is the estimated parameter vector [e.g., (β̂, σ̂ ) in the linear model]. For the
linear regression model, that would be the normal equations

1
n

X′e = 1
n

n∑
i=1

xi (yi − x′
i b) = 0.

Let the matrix G be the n× K matrix with ith row equal to ĝ′
i . In a maximum likelihood

problem, G is the matrix of derivatives of the individual terms in the log-likelihood
function with respect to the parameters. This is the G used to compute the BHHH
estimator of the information matrix. [See (17-18).] Let R be the n × J matrix whose
ith row is r̂′

i . Pagan and Vella show that for maximum likelihood estimators, � can be
estimated using

S = 1
n

[R′R − R′G(G′G)−1G′R].21 (17-61)

This equation looks like an involved matrix computation, but it is simple with any
regression program. Each element of S is the mean square or cross-product of the
least squares residuals in a linear regression of a column of R on the variables in G.22

Therefore, the operational version of the statistic is

C = nr̄′S−1r̄ = 1
n

i′R[R′R − R′G(G′G)−1G′R]−1R′i, (17-62)

where i is an n × 1 column of ones, which, once again, is referred to the appropriate
critical value in the chi-squared table. This result provides a joint test that all the moment
conditions are satisfied simultaneously. An individual test of just one of the moment

21It might be tempting just to use (1/n)R′R. This idea would be incorrect, because S accounts for R being a
function of the estimated parameter vector that is converging to its probability limit at the same rate as the
sample moments are converging to theirs.
22If the estimator is not an MLE, then estimation of � is more involved but also straightforward using basic
matrix algebra. The advantage of (17-62) is that it involves simple sums of variables that have already been
computed to obtain θ̂ and r̄. Note, as well, that if θ has been estimated by maximum likelihood, then the term
(G′G)−1 is the BHHH estimator of the asymptotic covariance matrix of θ̂ . If it were more convenient, then
this estimator could be replaced with any other appropriate estimator of Asy. Var[θ̂ ].



Greene-50240 book June 26, 2002 15:8

508 CHAPTER 17 ✦ Maximum Likelihood Estimation

restrictions in isolation can be computed even more easily than a joint test. For testing
one of the L conditions, say the �th one, the test can be carried out by a simple t test
of whether the constant term is zero in a linear regression of the �th column of R on
a constant term and all the columns of G. In fact, the test statistic in (17-62) could
also be obtained by stacking the J columns of R and treating the L equations as a
seemingly unrelated regressions model with (i, G) as the (identical) regressors in each
equation and then testing the joint hypothesis that all the constant terms are zero. (See
Section 14.2.3.)

Example 17.8 Testing for Heteroscedasticity in the Linear
Regression Model

Suppose that the linear model is specified as

yi = β1 + β2xi + β3zi + εi .

To test whether

E
[
z2

i

(
ε2

i − σ 2
)] = 0,

we linearly regress z2
i (e2

i − s2) on a constant, ei , xi ei , and zi ei . A standard t test of whether
the constant term in this regression is zero carries out the test. To test the joint hypothesis
that there is no heteroscedasticity with respect to both x and z, we would regress both
x2

i (e2
i − s2) and z2

i (e2
i − s2) i on [1, ei , xi ei , zi ei ] and collect the two columns of residuals in V.

Then S = (1/n)V′V. The moment vector would be

r̄ = 1
n

n∑
i =1

[
xi

zi

](
e2

i − s2
)
.

The test statistic would now be

C = nr̄′S−1r̄ = nr̄′
[

1
n

V′V

]−1

r̄.

We will examine other conditional moment tests using this method in Section 22.3.4
where we study the specification of the censored regression model.

17.7 TWO-STEP MAXIMUM LIKELIHOOD
ESTIMATION

The applied literature contains a large and increasing number of models in which one
model is embedded in another, which produces what are broadly known as “two-step”
estimation problems. Consider an (admittedly contrived) example in which we have the
following.

Model 1. Expected number of children = E [y1 | x1, θ1].
Model 2. Decision to enroll in job training = y2, a function of

(
x2, θ2, E [y1 | x1, θ1]

)
.

There are two parameter vectors, θ1 and θ2. The first appears in the second model,
although not the reverse. In such a situation, there are two ways to proceed. Full in-
formation maximum likelihood (FIML) estimation would involve forming the joint
distribution f (y1, y2 | x1, x2, θ1, θ2) of the two random variables and then maximizing
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the full log-likelihood function,

ln L =
n∑

i=1

f (yi1, yi2 | xi1, xi2, θ1, θ2).

A second, or two-step, limited information maximum likelihood (LIML) procedure for
this kind of model could be done by estimating the parameters of model 1, since it
does not involve θ2, and then maximizing a conditional log-likelihood function using
the estimates from Step 1:

ln L̂ =
n∑

i=1

f [yi2 | xi2, θ2, (xi1, θ̂1)].

There are at least two reasons one might proceed in this fashion. First, it may be straight-
forward to formulate the two separate log-likelihoods, but very complicated to derive
the joint distribution. This situation frequently arises when the two variables being mod-
eled are from different kinds of populations, such as one discrete and one continuous
(which is a very common case in this framework). The second reason is that maximizing
the separate log-likelihoods may be fairly straightforward, but maximizing the joint
log-likelihood may be numerically complicated or difficult.23 We will consider a few
examples. Although we will encounter FIML problems at various points later in the
book, for now we will present some basic results for two-step estimation. Proofs of the
results given here can be found in an important reference on the subject, Murphy and
Topel (1985).

Suppose, then, that our model consists of the two marginal distributions, f1(y1 | x1,

θ1) and f2(y2 | x1, x2, θ1, θ2). Estimation proceeds in two steps.

1. Estimate θ1 by maximum likelihood in Model 1. Let (1/n)V̂1 be n times any of the
estimators of the asymptotic covariance matrix of this estimator that were
discussed in Section 17.4.6.

2. Estimate θ2 by maximum likelihood in model 2, with θ̂1 inserted in place of θ1 as if
it were known. Let (1/n)V̂2 be n times any appropriate estimator of the
asymptotic covariance matrix of θ̂2.

The argument for consistency of θ̂2 is essentially that if θ1 were known, then all our results
for MLEs would apply for estimation of θ2, and since plim θ̂1 = θ1, asymptotically, this
line of reasoning is correct. But the same line of reasoning is not sufficient to justify using
(1/n)V̂2 as the estimator of the asymptotic covariance matrix of θ̂2. Some correction is
necessary to account for an estimate of θ1 being used in estimation of θ2. The essential
result is the following.

23There is a third possible motivation. If either model is misspecified, then the FIML estimates of both models
will be inconsistent. But if only the second is misspecified, at least the first will be estimated consistently.
Of course, this result is only “half a loaf,” but it may be better than none.
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THEOREM 17.8 Asymptotic Distribution of the Two-Step MLE
[Murphy and Topel (1985)]

If the standard regularity conditions are met for both log-likelihood functions, then
the second-step maximum likelihood estimator of θ2 is consistent and asymptoti-
cally normally distributed with asymptotic covariance matrix

V∗
2 = 1

n

[
V2 + V2[CV1C′ − RV1C′ − CV1R′]V2

]
,

where

V1 = Asy.Var[
√

n(θ̂1 − θ1)] based on ln L1,

V2 = Asy.Var[
√

n(θ̂2 − θ2)] based on ln L2 | θ1,

C = E
[

1
n

(
∂ ln L2

∂θ2

)(
∂ ln L2

∂θ ′
1

)]
, R = E

[
1
n

(
∂ ln L2

∂θ2

)(
∂ ln L1

∂θ ′
1

)]
.

The correction of the asymptotic covariance matrix at the second step requires
some additional computation. Matrices V1 and V2 are estimated by the respective
uncorrected covariance matrices. Typically, the BHHH estimators,

V̂1 =
[

1
n

n∑
i=1

(
∂ ln fi1

∂ θ̂1

)(
∂ ln fi1

∂ θ̂
′
1

)]−1

and

V̂2 =
[

1
n

n∑
i=1

(
∂ ln fi2

∂ θ̂2

)(
∂ ln fi2

∂ θ̂ ′
2

)]−1

are used. The matrices R and C are obtained by summing the individual obser-
vations on the cross products of the derivatives. These are estimated with

Ĉ = 1
n

n∑
i=1

(
∂ ln fi2

∂ θ̂2

)(
∂ ln fi2

∂ θ̂ ′
1

)

and

R̂ = 1
n

n∑
i=1

(
∂ ln fi2

∂ θ̂2

)(
∂ ln fi1

∂ θ̂ ′
1

)

Example 17.9 Two-Step ML Estimation
Continuing the example discussed at the beginning of this section, we suppose that yi 2 is a
binary indicator of the choice whether to enroll in the program ( yi 2 = 1) or not ( yi 2 = 0) and
that the probabilities of the two outcomes are

Prob[yi 2 = 1 | xi 1, xi 2] = ex′
i 2

β+γ E [yi 1 | x′
i 1

]

1 + ex′
i 2

β+γ E [yi 1 | x′
i 1

]
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and Prob[yi 2 = 0 | xi 1, xi 2] = 1 − Prob[yi 2 = 1 | xi 1, xi 2], where xi 2 is some covariates that
might influence the decision, such as marital status or age and xi 1 are determinants of family
size. This setup is a logit model. We will develop this model more fully in Chapter 21. The
expected value of yi 1 appears in the probability. (Remark: The expected, rather than the
actual value was chosen deliberately. Otherwise, the models would differ substantially. In our
case, we might view the difference as that between an ex ante decision and an ex post one.)
Suppose that the number of children can be described by a Poisson distribution (see Section
B.4.8) dependent on some variables xi 1 such as education, age, and so on. Then

Prob [yi 1 = j | xi 1] = e−λi λ
j
i

j !
, j = 0, 1, . . . ,

and suppose, as is customary, that

E [yi 1] = λi = exp(x′
i 1δ) .

The models involve θ = [δ, β, γ ], where θ1 = δ. In fact, it is unclear what the joint distri-
bution of y1 and y2 might be, but two-step estimation is straightforward. For model 1, the
log-likelihood and its first derivatives are

ln L1 =
n∑

i =1

ln f1( yi 1 | xi 1, δ)

=
n∑

i =1

[−λi + yi 1 ln λi − ln yi 1!] =
n∑

i =1

[−exp(x′
i 1δ) + yi 1(x′

i 1δ) − ln yi 1!],

∂ ln L1

∂δ
=

n∑
i =1

( yi 1 − λi )xi 1 =
n∑

i =1

ui xi 1.

Computation of the estimates is developed in Chapter 21. Any of the three estimators of V1
is also easy to compute, but the BHHH estimator is most convenient, so we use

V̂1 =
[

1
n

n∑
i =1

û2
i xi 1x′

i 1

]−1

.

[In this and the succeeding summations, we are actually estimating expectations of the
various matrices.]

We can write the density function for the second model as

f2( yi 2 | xi 1, xi 2, β, γ , δ) = Pyi 2
i × (1 − Pi ) 1−yi 2 ,

where Pi = Prob[yi 2 = 1 | xi 1, xi 2] as given earlier. Then

ln L2 =
n∑

i =1

yi 2 ln Pi + (1 − yi 2) ln(1 − Pi ) .

For convenience, let x̂∗
i 2 = [x′

i 2, exp(x′
i 1δ̂) ]′, and recall that θ2 = [β, γ ]′. Then

ln L̂2 =
n∑

i =1

yi 2[x̂∗′
i 2θ2 − ln(1 + exp( x̂∗′

i 2θ2) ) ] + (1 − yi 2) [− ln(1 + exp( x̂∗′
i 2θ2) ) ].

So, at the second step, we create the additional variable, append it to xi 2, and estimate the
logit model as if δ (and this additional variable) were actually observed instead of estimated.
The maximum likelihood estimates of [β, γ ] are obtained by maximizing this function. (See
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Chapter 21.) After a bit of manipulation, we find the convenient result that

∂ ln L̂2

∂θ2
=

n∑
i =1

( yi 2 − Pi ) x̂
∗
i 2 =

n∑
i =1

vi x̂
∗
i 2.

Once again, any of the three estimators could be used for estimating the asymptotic covari-
ance matrix, but the BHHH estimator is convenient, so we use

V̂2 =
[

1
n

n∑
i =1

v̂2
i x̂∗

i 2x̂∗′
i 2

]−1

.

For the final step, we must correct the asymptotic covariance matrix using Ĉ and R̂. What
remains to derive—the few lines are left for the reader—is

∂ ln L2

∂δ
=

n∑
i =1

vi [γ exp(x′
i 1δ) ]xi 1.

So, using our estimates,

Ĉ = 1
n

n∑
i =1

v̂2
i [exp(x′

i 1δ̂) ]x̂∗
i 2x′

i 1, and R̂ = 1
n

n∑
i =1

ûi v̂i x̂
∗
i 2x′

i 1.

We can now compute the correction.

In many applications, the covariance of the two gradients R converges to zero. When
the first and second step estimates are based on different samples, R is exactly zero. For
example, in our application above, R = ∑n

i=1 uivi x∗
i2x′

i1. The two “residuals,” u and v,
may well be uncorrelated. This assumption must be checked on a model-by-model basis,
but in such an instance, the third and fourth terms in V∗

2 vanish asymptotically and what
remains is the simpler alternative,

V∗∗
2 = (1/n)[V2 + V2CV1C′V2].

We will examine some additional applications of this technique (including an empirical
implementation of the preceding example) later in the book. Perhaps the most com-
mon application of two-step maximum likelihood estimation in the current literature,
especially in regression analysis, involves inserting a prediction of one variable into a
function that describes the behavior of another.

17.8 MAXIMUM SIMULATED LIKELIHOOD
ESTIMATION

The technique of maximum simulated likelihood (MSL) is essentially a classical sam-
pling theory counterpart to the hierarchical Bayesian estimator we considered in Sec-
tion 16.2.4. Since the celebrated paper of Berry, Levinsohn, and Pakes (1995), and a
related literature advocated by McFadden and Train (2000), maximum simulated like-
lihood estimation has been used in a large and growing number of studies based on
log-likelihoods that involve integrals that are expectations.24 In this section, we will lay
out some general results for MSL estimation by developing a particular application,

24A major reference for this set of techniques is Gourieroux and Monfort (1996).



Greene-50240 book June 26, 2002 15:8

CHAPTER 17 ✦ Maximum Likelihood Estimation 513

the random parameters model. This general modeling framework has been used in the
majority of the received applications. We will then continue the application to the dis-
crete choice model for panel data that we began in Section 16.2.4.

The density of yit when the parameter vector is β i is f (yit | xi t , β i ). The parameter
vector β i is randomly distributed over individuals according to

β i = β + �zi + vi

where β+�zi is the mean of the distribution, which depends on time invariant individual
characteristics as well as parameters yet to be estimated, and the random variation comes
from the individual heterogeneity, vi . This random vector is assumed to have mean zero
and covariance matrix, �. The conditional density of the parameters is denoted

g(β i | zi , β, �, �) = g(vi + β + �zi , �),

where g(.) is the underlying marginal density of the heterogeneity. For the T observa-
tions in group i , the joint conditional density is

f (yi | Xi , β i ) =
T∏

t=1

f (yit | xi t , β i ).

The unconditional density for yi is obtained by integrating over β i ,

f (yi | Xi , zi , β, �, �) = Eβ i [ f (yi | Xi , β i )] =
∫

β i

f (yi | Xi , β i )g(β i | zi , β, �, �)dβ i .

Collecting terms, and making the transformation from vi to β i , the true log-likelihood
would be

ln L =
n∑

i=1

ln

{∫

vi

[
T∏

t=1

f (yit | xi t , β + �zi + vi )

]
g(vi | �)dvi

}

=
n∑

i=1

ln
{∫

vi

f (yi | Xi , β + �zi + vi )g(vi | �)dvi

}
.

Each of the n terms involves an expectation over vi . The end result of the integration is
a function of (β, �, �) which is then maximized.

As in the previous applications, it will not be possible to maximize the log-likelihood
in this form because there is no closed form for the integral. We have considered two
approaches to maximizing such a log-likelihood. In the latent class formulation, it is
assumed that the parameter vector takes one of a discrete set of values, and the log-
likelihood is maximized over this discrete distribution as well as the structural parame-
ters. (See Section 16.2.3.) The hierarchical Bayes procedure used Markov Chain–Monte
Carlo methods to sample from the joint posterior distribution of the underlying param-
eters and used the empirical mean of the sample of draws as the estimator. We now
consider a third approach to estimating the parameters of a model of this form, maxi-
mum simulated likelihood estimation.

The terms in the log-likelihood are each of the form

ln Li = Evi [ f (yi | Xi , β + �zi + vi )].

As noted, we do not have a closed form for this function, so we cannot compute it directly.
Suppose we could sample randomly from the distribution of vi . If an appropriate law
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of large numbers can be applied, then

lim
R→∞

1
R

R∑
r=1

f (yi | Xi , β + �zi + vir ) = Evi [ f (yi | Xi , β + �zi + vi )]

where vir is the rth random draw from the distribution. This suggests a strategy for
computing the log-likelihood. We can substitute this approximation to the expectation
into the log-likelihood function. With sufficient random draws, the approximation can be
made as close to the true function as desired. [The theory for this approach is discussed
in Gourieroux and Monfort (1996), Bhat (1999), and Train (1999, 2002). Practical details
on applications of the method are given in Greene (2001).] A detail to add concerns
how to sample from the distribution of vi . There are many possibilities, but for now,
we consider the simplest case, the multivariate normal distribution. Write � in the
Cholesky form � = LL′ where L is a lower triangular matrix. Now, let uir be a vector
of K independent draws from the standard normal distribution. Then a draw from the
multivariate distribution with covariance matrix � is simply vir = Luir. The simulated
log-likelihood is

ln LS =
n∑

i=1

ln

{
1
R

R∑
r=1

[
T∏

t=1

f (yit | xi t , β + �zi + Luir )

]}
.

The resulting function is maximized with respect to β, � and L. This is obviously not
a simple calculation, but it is feasible, and much easier than trying to manipulate the
integrals directly. In fact, for most problems to which this method has been applied, the
computations are surprisingly simple. The intricate part is obtaining the function and
its derivatives. But, the functions are usually index function models that involve x′

itβ i
which greatly simplifies the derivations.

Inference in this setting does not involve any new results. The estimated asymp-
totic covariance matrix for the estimated parameters is computed by manipulating the
derivatives of the simulated log-likelihood. The Wald and likelihood ratio statistics are
also computed the way they would usually be. As before, we are interested in estimating
person specific parameters. A prior estimate might simply use β + �zi , but this would
not use all the information in the sample. A posterior estimate would compute

Êvi [β i | β, �, zi , �] =
∑R

r=1 β̂ ir f (yi | Xi , β̂ ir)∑R
r=1 f (yi | Xi , β̂ ir)

, β̂ ir = β̂ + �̂zi + L̂uir .

Mechanical details on computing the MSLE are omitted. The interested reader is
referred to Gourieroux and Monfort (1996), Train (2000, 2002), and Greene (2001,
2002) for details.

Example 17.10 Maximum Simulated Likelihood Estimation of a Binary
Choice Model

We continue Example 16.5 where estimates of a binary choice model for product innovation
are obtained. The model is for Prob[ yi t = 1 | xi t , β i ] where

yi t = 1 if firm i realized a product innovation in year t and 0 if not.
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The independent variables in the model are

xi t1 = constant,

xi t2 = log of sales,

xi t3 = relative size = ratio of employment in business unit to employment in the industry,

xi t4 = ratio of industry imports to (industry sales + imports),

xi t5 = ratio of industry foreign direct investment to (industry sales + imports),

xi t6 = productivity = ratio of industry value added to industry employment,

xi t7 = dummy variable indicating the firm is in the raw materials sector,

xi t8 = dummy variable indicating the firm is in the investment goods sector.

The sample consists of 1,270 German manufacturing firms observed for five years,
1984–1988. The density that enters the log-likelihood is

f ( yi t | xi t , β i ) = Prob[ yi t | x′
i tβ i ] = �[(2yi t − 1)x′

i tβ i ], yi t = 0, 1.

where
β i = β + vi , vi ∼ N[0, �].

To be consistent with Bertschek and Lechner (1998) we did not fit any firm-specific, time-
invariant components in the main equation for β i .

Table 17.5 presents the estimated coefficients for the basic probit model in the first column.
The estimates of the means, β are shown in the second column. There appear to be large
differences in the parameter estimates, though this can be misleading since there is large vari-
ation across the firms in the posterior estimates. The third column presents the square roots
of the implied diagonal elements of � computed as the diagonal elements of LL′. These esti-
mated standard deviations are for the underlying distribution of the parameter in the model—
they are not estimates of the standard deviation of the sampling distribution of the estimator.
For the mean parameter, that is shown in parentheses in the second column. The fourth col-
umn presents the sample means and standard deviations of the 1,270 estimated posterior

TABLE 17.5 Estimated Random Parameters Model

Probit RP Means RP Std. Devs. Empirical Distn. Posterior

Constant −1.96 −3.91 2.70 −3.27 −3.38
(0.23) (0.20) (0.57) (2.14)

lnSales 0.18 0.36 0.28 0.32 0.34
(0.022) (0.019) (0.15) (0.09)

Rel.Size 1.07 6.01 5.99 3.33 2.58
(0.14) (0.22) (2.25) (1.30)

Import 1.13 1.51 0.84 2.01 1.81
(0.15) (0.13) (0.58) (0.74)

FDI 2.85 3.81 6.51 3.76 3.63
(0.40) (0.33) (1.69) (1.98)

Prod. −2.34 −5.10 13.03 −8.15 −5.48
(0.72) (0.73) (8.29) (1.78)

RawMtls −0.28 −0.31 1.65 −0.18 −0.08
(0.081) (0.075) (0.57) (0.37)

Invest. 0.19 0.27 1.42 0.27 0.29
(0.039) (0.032) (0.38) (0.13)

ln L −4114.05 −3498.654
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estimates of the coefficients. The last column repeats the estimates for the latent class model.
The agreement in the two sets of estimates is striking in view of the crude approximation
given by the latent class model.

Figures 17.4a and b present kernel density estimators of the firm-specific probabilities
computed at the 5-year means for the random parameters model and with the original probit
estimates. The estimated probabilities are strikingly similar to the latent class model, and
also fairly similar to, though smoother than the probit estimates.

FIGURE 17.4a Probit Probabilities.
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FIGURE 17.4b Random Parameters Probabilities.
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Figure 17.5 shows the kernel density estimate for the firm-specific estimates of the log
sales coefficient. The comparison to Figure 16.5 shows some striking difference. The random
parameters model produces estimates that are similar in magnitude, but the distributions are
actually quite different. Which should be preferred? Only on the basis that the three point
discrete latent class model is an approximation to the continuous variation model, we would
prefer the latter.

FIGURE 17.5a Random Parameters, βsales.
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FIGURE 17.5b Latent Class Model, βsales.
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17.9 PSEUDO-MAXIMUM LIKELIHOOD
ESTIMATION AND ROBUST ASYMPTOTIC
COVARIANCE MATRICES

Maximum likelihood estimation requires complete specification of the distribution of
the observed random variable. If the correct distribution is something other than what
we assume, then the likelihood function is misspecified and the desirable properties
of the MLE might not hold. This section considers a set of results on an estimation
approach that is robust to some kinds of model misspecification. For example, we have
found that in a model, if the conditional mean function is E [y | x] = x′β, then certain
estimators, such as least squares, are “robust” to specifying the wrong distribution of
the disturbances. That is, LS is MLE if the disturbances are normally distributed, but
we can still claim some desirable properties for LS, including consistency, even if the
disturbances are not normally distributed. This section will discuss some results that
relate to what happens if we maximize the “wrong” log-likelihood function, and for those
cases in which the estimator is consistent despite this, how to compute an appropriate
asymptotic covariance matrix for it.25

Let f (yi | xi , β) be the true probability density for a random variable yi given a set
of covariates xi and parameter vector β. The log-likelihood function is (1/n) log L(β | y,

X) = (1/n)
∑n

i=1 log f (yi |xi , β). The MLE, β̂ML, is the sample statistic that maximizes
this function. (The division of log Lby n does not affect the solution.) We maximize the
log-likelihood function by equating its derivatives to zero, so the MLE is obtained by
solving the set of empirical moment equations

1
n

n∑
i=1

∂ log f (yi | xi , β̂ML)

∂β̂ML
= 1

n

n∑
i=1

di (β̂ML) = d̄(β̂ML) = 0.

The population counterpart to the sample moment equation is

E
[

1
n

∂ log L
∂β

]
= E

[
1
n

n∑
i=1

di (β)

]
= E [d̄(β)] = 0.

Using what we know about GMM estimators, if E [d̄(β)] = 0, then β̂ML is consistent
and asymptotically normally distributed, with asymptotic covariance matrix equal to

VML = [G(β)′G(β)]−1G(β)′
{

Var[d̄(β)]
}

G(β)[G(β)′G(β)]−1,

where G(β) = plim ∂d̄(β)/∂β ′. Since d̄(β) is the derivative vector, G(β) is 1/n times
the expected Hessian of log L; that is, (1/n)E [H(β)] = H̄(β). As we saw earlier,
Var[∂ log L/∂β] = −E [H(β)]. Collecting all seven appearances of (1/n)E [H(β)], we
obtain the familiar result VML = {−E [H(β)]

}−1
. [All the ns cancel and Var[d̄] =

(1/n)H̄(β).] Note that this result depends crucially on the result Var[∂ log L/∂β] =
−E [H(β)].

25The following will sketch a set of results related to this estimation problem. The important references on this
subject are White (1982a); Gourieroux, Monfort, and Trognon (1984); Huber (1967); and Amemiya (1985).
A recent work with a large amount of discussion on the subject is Mittelhammer et al. (2000). The derivations
in these works are complex, and we will only attempt to provide an intuitive introduction to the topic.
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The maximum likelihood estimator is obtained by maximizing the function h̄n(y,

X, β) = (1/n)
∑n

i=1 log f (yi , xi , β). This function converges to its expectation as n → ∞.

Since this function is the log-likelihood for the sample, it is also the case (not proven
here) that as n → ∞, it attains its unique maximum at the true parameter vector, β.

(We used this result in proving the consistency of the maximum likelihood estimator.)
Since plim h̄n(y, X, β) = E [h̄n(y, X, β)], it follows (by interchanging differentiation and
the expectation operation) that plim ∂ h̄n(y, X, β)/∂β = E [∂ h̄n(y, X, β)/∂β]. But, if this
function achieves its maximum at β, then it must be the case that plim ∂ h̄n(y, X, β)/

∂β = 0.

An estimator that is obtained by maximizing a criterion function is called an M
estimator [Huber (1967)] or an extremum estimator [Amemiya (1985)]. Suppose that
we obtain an estimator by maximizing some other function, Mn(y, X, β) that, although
not the log-likelihood function, also attains its unique maximum at the true β as n → ∞.

Then the preceding argument might produce a consistent estimator with a known asymp-
totic distribution. For example, the log-likelihood for a linear regression model with
normally distributed disturbances with different variances, σ 2ωi , is

h̄n(y, X, β) = 1
n

n∑
i=1

{−1
2

[
log(2πσ 2ωi ) + (yi − x′

iβ)2

σ 2ωi

]}
.

By maximizing this function, we obtain the maximum likelihood estimator. But we
also examined another estimator, simple least squares, which maximizes Mn(y, X, β) =
−(1/n)

∑n
i=1(yi − x′

iβ)2. As we showed earlier, least squares is consistent and asymp-
totically normally distributed even with this extension, so it qualifies as an M estimator
of the sort we are considering here.

Now consider the general case. Suppose that we estimateβ by maximizing a criterion
function

Mn(y|X, β) = 1
n

n∑
i=1

log g(yi |xi , β).

Suppose as well that plimMn(y, X, β) = E [Mn(y, X, β)] and that as n → ∞, E [Mn(y,

X, β)] attains its unique maximum at β. Then, by the argument we used above for the
MLE, plim ∂ Mn(y, X, β)/∂β = E [∂Mn(y, X, β)/∂β] = 0. Once again, we have a set of
moment equations for estimation. Let β̂E be the estimator that maximizes Mn(y, X, β).

Then the estimator is defined by

∂ Mn(y, X, β̂E)

∂β̂E
= 1

n

n∑
i=1

∂ log g(yi |xi , β̂E)

∂β̂E
= m̄(β̂E) = 0.

Thus, β̂E is a GMM estimator. Using the notation of our earlier discussion, G(β̂E) is
the symmetric Hessian of E [Mn(y, X, β)], which we will denote (1/n)E [HM(β̂E)] =
H̄M(β̂E). Proceeding as we did above to obtain VML, we find that the appropriate
asymptotic covariance matrix for the extremum estimator would be

VE = [H̄M(β)]−1
(

1
n
�

)
[HM(β)]−1

where � = Var[∂ log g(yi |xi , β)/∂β], and, as before, the asymptotic distribution is
normal.
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The Hessian in VE can easily be estimated by using its empirical counterpart,

Est.[H̄M(β̂E)] = 1
n

n∑
i=1

∂2 log g(yi |xi , β̂E)

∂β̂E∂β̂ ′
E

.

But,� remains to be specified, and it is unlikely that we would know what function to use.
The important difference is that in this case, the variance of the first derivatives vector
need not equal the Hessian, so VE does not simplify. We can, however, consistently
estimate � by using the sample variance of the first derivatives,

�̂ = 1
n

n∑
i=1

[
∂ log g(yi |xi , β̂)

∂β̂

] [
∂ log g(yi |xi , β̂)

∂β̂ ′

]
.

If this were the maximum likelihood estimator, then �̂ would be the BHHH estimator
that we have used at several points. For example, for the least squares estimator in
the heteroscedastic linear regression model, the criterion is Mn(y, X, β) = −(1/n)

∑n
i=1

(yi − x′
iβ)2, the solution is b, G(b) = (−2/n)X′X, and

�̂ = 1
n

n∑
i=1

[2xi (yi − x′
iβ)][2xi (yi − x′

iβ)]′ = 4
n

n∑
i=1

e2
i xi x′

i .

Collecting terms, the 4s cancel and we are left precisely with the White estimator of
(11-13)!

At this point, we consider the motivation for all this weighty theory. One disad-
vantage of maximum likelihood estimation is its requirement that the density of the
observed random variable(s) be fully specified. The preceding discussion suggests that
in some situations, we can make somewhat fewer assumptions about the distribution
than a full specification would require. The extremum estimator is robust to some kinds
of specification errors. One useful result to emerge from this derivation is an estimator
for the asymptotic covariance matrix of the extremum estimator that is robust at least to
some misspecification. In particular, if we obtain β̂E by maximizing a criterion function
that satisfies the other assumptions, then the appropriate estimator of the asymptotic
covariance matrix is

Est. VE = 1
n

[H̄(β̂E)]−1�̂(β̂E)[H̄(β̂E)]−1.

If β̂E is the true MLE, then VE simplifies to
{−[H(β̂E)]

}−1
. In the current literature,

this estimator has been called the “sandwich” estimator. There is a trend in the current
literature to compute this estimator routinely, regardless of the likelihood function. It
is worth noting that if the log-likelihood is not specified correctly, then the parameter
estimators are likely to be inconsistent, save for the cases such as those noted below, so
robust estimation of the asymptotic covariance matrix may be misdirected effort. But
if the likelihood function is correct, then the sandwich estimator is unnecessary. This
method is not a general patch for misspecified models. Not every likelihood function
qualifies as a consistent extremum estimator for the parameters of interest in the model.

One might wonder at this point how likely it is that the conditions needed for all
this to work will be met. There are applications in the literature in which this machin-
ery has been used that probably do not meet these conditions, such as the tobit model
of Chapter 22. We have seen one important case. Least squares in the generalized
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regression model passes the test. Another important application is models of “individ-
ual heterogeneity” in cross-section data. Evidence suggests that simple models often
overlook unobserved sources of variation across individuals in cross sections, such as
unmeasurable “family effects” in studies of earnings or employment. Suppose that the
correct model for a variable is h(yi |xi , vi , β, θ), where vi is a random term that is not ob-
served and θ is a parameter of the distribution of v. The correct log-likelihood function
is �i log f (yi |xi , β, θ) = �i log ∫v h(yi |xi , vi , β, θ) f (vi ) dvi . Suppose that we maximize
some other pseudo-log-likelihood function, �i log g(yi |xi , β) and then use the sandwich
estimator to estimate the asymptotic covariance matrix of β̂. Does this produce a con-
sistent estimator of the true parameter vector? Surprisingly, sometimes it does, even
though it has ignored the nuisance parameter, θ . We saw one case, using OLS in the GR
model with heteroscedastic disturbances. Inappropriately fitting a Poisson model when
the negative binomial model is correct—see Section 21.9.3—is another case. For some
specifications, using the wrong likelihood function in the probit model with proportions
data (Section 21.4.6) is a third. [These two examples are suggested, with several others,
by Gourieroux, Monfort, and Trognon (1984).] We do emphasize once again that the
sandwich estimator, in and of itself, is not necessarily of any virtue if the likelihood
function is misspecified and the other conditions for the M estimator are not met.

17.10 SUMMARY AND CONCLUSIONS

This chapter has presented the theory and several applications of maximum likelihood
estimation, which is the most frequently used estimation technique in econometrics
after least squares. The maximum likelihood estimators are consistent, asymptotically
normally distributed, and efficient among estimators that have these properties. The
drawback to the technique is that it requires a fully parametric, detailed specification
of the data generating process. As such, it is vulnerable to misspecification problems.
The next chapter considers GMM estimation techniques which are less parametric, but
more robust to variation in the underlying data generating process.

Key Terms and Concepts

• Asymptotic efficiency
• Asymptotic normality
• Asymptotic variance
• BHHH estimator
• Box–Cox model
• Conditional moment

restrictions
• Concentrated log-likelihood
• Consistency
• Cramér–Rao lower bound
• Efficient score
• Estimable parameters
• Full information maximum

likelihood

• Identification
• Information matrix
• Information matrix equality
• Invariance
• Jacobian
• Lagrange multiplier test
• Likelihood equation
• Likelihood function
• Likelihood inequality
• Likelihood ratio test
• Limited information

maximum likelihood
• Maximum likelihood

estimator

• Nonlinear least squares
• Outer product of gradients

estimator
• Regularity conditions
• Score test
• Stochastic frontier
• Two-step maximum

likelihood
• Wald statistic
• Wald test
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Exercises

1. Assume that the distribution of x is f (x) = 1/θ, 0 ≤ x ≤ θ. In random sampling
from this distribution, prove that the sample maximum is a consistent estimator of
θ. Note: You can prove that the maximum is the maximum likelihood estimator of
θ. But the usual properties do not apply here. Why not? [Hint: Attempt to verify
that the expected first derivative of the log-likelihood with respect to θ is zero.]

2. In random sampling from the exponential distribution f (x) = (1/θ)e−x/θ , x ≥ 0,

θ > 0, find the maximum likelihood estimator of θ and obtain the asymptotic
distribution of this estimator.

3. Mixture distribution. Suppose that the joint distribution of the two random variables
x and y is

f (x, y) = θe−(β+θ)y(βy)x

x!
, β, θ > 0, y ≥ 0, x = 0, 1, 2, . . . .

a. Find the maximum likelihood estimators of β and θ and their asymptotic joint
distribution.

b. Find the maximum likelihood estimator of θ/(β + θ) and its asymptotic
distribution.

c. Prove that f (x) is of the form

f (x) = γ (1 − γ )x, x = 0, 1, 2, . . . ,

and find the maximum likelihood estimator of γ and its asymptotic distribution.
d. Prove that f (y | x) is of the form

f (y | x) = λe−λy(λy)x

x!
, y ≥ 0, λ > 0.

Prove that f (y | x) integrates to 1. Find the maximum likelihood estimator of λ

and its asymptotic distribution. [Hint: In the conditional distribution, just carry
the xs along as constants.]

e. Prove that

f (y) = θe−θy, y ≥ 0, θ > 0.

Find the maximum likelihood estimator of θ and its asymptotic variance.
f. Prove that

f (x | y) = e−βy(βy)x

x!
, x = 0, 1, 2, . . . , β > 0.

Based on this distribution, what is the maximum likelihood estimator of β?
4. Suppose that x has the Weibull distribution

f (x) = αβxβ−1e−αxβ

, x ≥ 0, α, β > 0.

a. Obtain the log-likelihood function for a random sample of n observations.
b. Obtain the likelihood equations for maximum likelihood estimation of α and β.

Note that the first provides an explicit solution for α in terms of the data and
β. But, after inserting this in the second, we obtain only an implicit solution
for β. How would you obtain the maximum likelihood estimators?
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c. Obtain the second derivatives matrix of the log-likelihood with respect to α and
β. The exact expectations of the elements involving β involve the derivatives
of the gamma function and are quite messy analytically. Of course, your exact
result provides an empirical estimator. How would you estimate the asymptotic
covariance matrix for your estimators in Part b?

d. Prove that αβCov[ln x, xβ] = 1. [Hint: The expected first derivatives of the
log-likelihood function are zero.]

5. The following data were generated by the Weibull distribution of Exercise 4:

1.3043 0.49254 1.2742 1.4019 0.32556 0.29965 0.26423
1.0878 1.9461 0.47615 3.6454 0.15344 1.2357 0.96381
0.33453 1.1227 2.0296 1.2797 0.96080 2.0070

a. Obtain the maximum likelihood estimates of α and β, and estimate the asymp-
totic covariance matrix for the estimates.

b. Carry out a Wald test of the hypothesis that β = 1.

c. Obtain the maximum likelihood estimate of α under the hypothesis that β = 1.

d. Using the results of Parts a and c, carry out a likelihood ratio test of the hypothesis
that β = 1.

e. Carry out a Lagrange multiplier test of the hypothesis that β = 1.

6. (Limited Information Maximum Likelihood Estimation). Consider a bivariate
distribution for x and y that is a function of two parameters, α and β. The joint
density is f (x, y | α, β). We consider maximum likelihood estimation of the two
parameters. The full information maximum likelihood estimator is the now famil-
iar maximum likelihood estimator of the two parameters. Now, suppose that we
can factor the joint distribution as done in Exercise 3, but in this case, we have
f (x, y | α, β) = f (y | x, α, β) f (x | α). That is, the conditional density for y is a func-
tion of both parameters, but the marginal distribution for x involves only α.

a. Write down the general form for the log likelihood function using the joint
density.

b. Since the joint density equals the product of the conditional times the marginal,
the log-likelihood function can be written equivalently in terms of the factored
density. Write this down, in general terms.

c. The parameter α can be estimated by itself using only the data on x and the log
likelihood formed using the marginal density for x. It can also be estimated with
β by using the full log-likelihood function and data on both y and x. Show this.

d. Show that the first estimator in Part c has a larger asymptotic variance than
the second one. This is the difference between a limited information maximum
likelihood estimator and a full information maximum likelihood estimator.

e. Show that if ∂2 ln f (y | x, α, β)/∂α∂β = 0, then the result in Part d is no longer
true.

7. Show that the likelihood inequality in Theorem 17.3 holds for the Poisson distribu-
tion used in Section 17.3 by showing that E [(1/n) ln L(θ | y)] is uniquely maximized
at θ = θ0. Hint: First show that the expectation is −θ + θ0 ln θ − E0[ln yi !].

8. Show that the likelihood inequality in Theorem 17.3 holds for the normal
distribution.

9. For random sampling from the classical regression model in (17-3), reparameterize
the likelihood function in terms of η = 1/σ and δ = (1/σ)β. Find the maximum
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likelihood estimators of η and δ and obtain the asymptotic covariance matrix of the
estimators of these parameters.

10. Section 14.3.1 presents estimates of a Cobb–Douglas cost function using Nerlove’s
1955 data on the U.S. electric power industry. Christensen and Greene’s 1976 update
of this study used 1970 data for this industry. The Christensen and Greene data are
given in Table F5.2. These data have provided a standard test data set for estimating
different forms of production and cost functions, including the stochastic frontier
model examined in Example 17.5. It has been suggested that one explanation for
the apparent finding of economies of scale in these data is that the smaller firms were
inefficient for other reasons. The stochastic frontier might allow one to disentangle
these effects. Use these data to fit a frontier cost function which includes a quadratic
term in log output in addition to the linear term and the factor prices. Then examine
the estimated Jondrow et al. residuals to see if they do indeed vary negatively with
output, as suggested. (This will require either some programming on your part
or specialized software. The stochastic frontier model is provided as an option in
TSP and LIMDEP. Or, the likelihood function can be programmed fairly easily for
RATS or GAUSS. Note, for a cost frontier as opposed to a production frontier, it
is necessary to reverse the sign on the argument in the � function.)

11. Consider, sampling from a multivariate normal distribution with mean vector
µ = (µ1, µ2, . . . , µM) and covariance matrix σ 2I. The log-likelihood function is

ln L = −nM
2

ln(2π) − nM
2

ln σ 2 − 1
2σ 2

n∑
i=1

(yi − µ)′(yi − µ).

Show that the maximum likelihood estimates of the parameters are

σ̂ 2
ML =

∑n
i=1

∑M
m=1 (yim − ȳm)2

nM
= 1

M

M∑
m=1

1
n

n∑
i=1

(yim − ȳm)2 = 1
M

M∑
m=1

σ̂ 2
m.

Derive the second derivatives matrix and show that the asymptotic covariance
matrix for the maximum likelihood estimators is

{
−E

[
∂2 ln L
∂θ∂θ ′

]}−1

=
[

σ 2I/n 0
0 2σ 4/(nM)

]
.

Suppose that we wished to test the hypothesis that the means of the M distributions
were all equal to a particular value µ0. Show that the Wald statistic would be

W = (ȳ − µ0i)′
(

σ̂ 2

n
I
)−1

(ȳ − µ0i), =
( n

s2

)
(ȳ − µ0i)′(ȳ − µ0i),

where ȳ is the vector of sample means.
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THE GENERALIZED
METHOD OF MOMENTS

Q
18.1 INTRODUCTION

The maximum likelihood estimator is fully efficient among consistent and asymptoti-
cally normally distributed estimators, in the context of the specified parametric model.
The possible shortcoming in this result is that to attain that efficiency, it is necessary to
make possibly strong, restrictive assumptions about the distribution, or data generating
process. The generalized method of moments (GMM) estimators discussed in this
chapter move away from parametric assumptions, toward estimators which are robust
to some variations in the underlying data generating process.

This chapter will present a number of fairly general results on parameter estimation.
We begin with perhaps the oldest formalized theory of estimation, the classical theory
of the method of moments. This body of results dates to the pioneering work of Fisher
(1925). The use of sample moments as the building blocks of estimating equations is
fundamental in econometrics. GMM is an extension of this technique which, as will
be clear shortly, encompasses nearly all the familiar estimators discussed in this book.
Section 18.2 will introduce the estimation framework with the method of moments.
Formalities of the GMM estimator are presented in Section 18.3. Section 18.4 discusses
hypothesis testing based on moment equations. A major applications, dynamic panel
data models, is described in Section 18.5.

Example 18.1 Euler Equations and Life Cycle Consumption
One of the most often cited applications of the GMM principle for estimating economet-
ric models is Hall’s (1978) permanent income model of consumption. The original form of
the model (with some small changes in notation) posits a hypothesis about the optimizing
behavior of a consumer over the life cycle. Consumers are hypothesized to act according to
the model:

Maximize Et

[
T−t∑
τ=0

(
1

1 + δ

)τ

U (ct+τ ) | �t

]
subject to

T−t∑
τ=0

(
1

1 + r

)τ

(ct+τ − wt+τ ) = At

The information available at time t is denoted �t so that Et denotes the expectation formed
at time t based on information set �t . The maximand is the expected discounted stream of
future consumption from time t until the end of life at time T. The individual’s subjective rate
of time preference is β = 1/(1 + δ) . The real rate of interest, r ≥ δ is assumed to be constant.
The utility function U (ct ) is assumed to be strictly concave and time separable (as shown
in the model). One period’s consumption is ct . The intertemporal budget constraint states
that the present discounted excess of ct over earnings, wt , over the lifetime equals total
assets At not including human capital. In this model, it is claimed that the only source of
uncertainty is wt . No assumption is made about the stochastic properties of wt except that
there exists an expected future earnings, Et [wt+τ | �t ]. Successive values are not assumed
to be independent and wt is not assumed to be stationary.

525
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Hall’s major “theorem” in the paper is the solution to the optimization problem, which
states

Et [U ′(ct+1) |�t ] = 1 + δ

1 + r
U ′(ct )

For our purposes, the major conclusion of the paper is “Corollary 1” which states “No in-
formation available in time t apart from the level of consumption, ct helps predict future
consumption, ct+1, in the sense of affecting the expected value of marginal utility. In par-
ticular, income or wealth in periods t or earlier are irrelevant once ct is known.” We can
use this as the basis of a model that can be placed in the GMM framework. In order to
proceed, it is necessary to assume a form of the utility function. A common (convenient)
form of the utility function is U (ct ) = C1−α

t /(1−α) which is monotonic, U ′ = C−α
t > 0 and con-

cave, U ′′/U ′ = −α/Ct < 0. Inserting this form into the solution, rearranging the terms, and
reparameterizing it for convenience, we have

Et

[
(1 + r )

(
1

1 + δ

)(
ct+1

ct

)−α

− 1| �t

]
= Et

[
β(1 + r ) Rλ

t+1 − 1| �t

] = 0.

Hall assumed that r was constant over time. Other applications of this modeling framework
[e.g., Hansen and Singleton (1982)] have modified the framework so as to involve a forecasted
interest rate, rt+1. How one proceeds from here depends on what is in the information set.
The unconditional mean does not identify the two parameters. The corollary states that the
only relevant information in the information set is ct . Given the form of the model, the more
natural instrument might be Rt . This assumption exactly identifies the two parameters in
the model;

Et

[(
β(1 + rt+1) Rλ

t+1 − 1
)(

1
Rt

)]
=

[
0
0

]
.

As stated, the model has no testable implications. These two moment equations would
exactly identify the two unknown parameters. Hall hypothesized several models involving
income and consumption which would overidentify and thus place restrictions on the model.

18.2 CONSISTENT ESTIMATION: THE METHOD
OF MOMENTS

Sample statistics such as the mean and variance can be treated as simple descriptive
measures. In our discussion of estimation in Appendix C, however, we argued, that
in, general, sample statistics each have a counterpart in the population, for example,
the correspondence between the sample mean and the population expected value. The
natural (perhaps obvious) next step in the analysis is to use this analogy to justify using
the sample “moments” as estimators of these population parameters. What remains to
establish is whether this approach is the best, or even a good way to use the sample data
to infer the characteristics of the population.

The basis of the method of moments is as follows: In random sampling, under
generally benign assumptions, a sample statistic will converge in probability to some
constant. For example, with i.i.d. random sampling, m̄′

2 = (1/n)
∑n

i=1 y2
i will converge

in mean square to the variance plus the square of the mean of the distribution of yi . This
constant will, in turn, be a function of the unknown parameters of the distribution. To
estimate K parameters, θ1, . . . , θK, we can compute K such statistics, m̄1, . . . , m̄K, whose
probability limits are known functions of the parameters. These K moments are equated
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to the K functions, and the functions are inverted to express the parameters as functions
of the moments. The moments will be consistent by virtue of a law of large numbers
(Theorems D.4–D.9). They will be asymptotically normally distributed by virtue of the
Lindberg–Levy Central Limit Theorem (D.18). The derived parameter estimators will
inherit consistency by virtue of the Slutsky Theorem (D.12) and asymptotic normality
by virtue of the delta method (Theorem D.21).

This section will develop this technique in some detail, partly to present it in its own
right and partly as a prelude to the discussion of the generalized method of moments,
or GMM, estimation technique, which is treated in Section 18.3.

18.2.1 RANDOM SAMPLING AND ESTIMATING THE PARAMETERS
OF DISTRIBUTIONS

Consider independent, identically distributed random sampling from a distribution
f (y | θ1, . . . , θK) with finite moments up to E [y2K]. The sample consists of n obser-
vations, y1, . . . , yn. The kth “raw” or uncentered moment is

m̄′
k = 1

n

n∑
i=1

yk
i .

By Theorem D.1,

E [m̄′
k] = µ′

k = E
[
yk

i

]

and

Var[m̄′
k] = 1

n
Var

[
yk

i

] = 1
n

(
µ′

2k − µ′2
k

)
.

By convention, µ′
1 = E [yi ] = µ. By the Khinchine Theorem, D.5,

plim m̄′
k = µ′

k = E
[
yk

i

]
.

Finally, by the Lindberg–Levy Central Limit Theorem,
√

n(m̄′
k − µ′

k)
d−→ N

[
0, µ′

2k − µ′2
k

]
.

In general, µ′
k will be a function of the underlying parameters. By computing K

raw moments and equating them to these functions, we obtain K equations that can
(in principle) be solved to provide estimates of the K unknown parameters.

Example 18.2 Method of Moments Estimator for N[µ, σ2]
In random sampling from N[µ, σ 2],

plim
1
n

n∑
i =1

yi = plim m̄′
1 = E [yi ] = µ

and

plim
1
n

n∑
i =1

y2
i = plim m̄′

2 = Var [yi ] + µ2 = σ 2 + µ2.

Equating the right- and left-hand sides of the probability limits gives moment estimators

µ̂ = m̄′
1 = ȳ
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and

σ̂ 2 = m̄′
2 − m̄′ 2

1 =
(

1
n

n∑
i =1

y2
i

)
−

(
1
n

n∑
i =1

yi

)2

= 1
n

n∑
i =1

( yi − ȳ) 2.

Note that σ̂ 2 is biased, although both estimators are consistent.

Although the moments based on powers of y provide a natural source of information
about the parameters, other functions of the data may also be useful. Let mk(·) be a
continuous and differentiable function not involving the sample size n, and let

m̄k = 1
n

n∑
i=1

mk(yi ), k = 1, 2, . . . , K.

These are also “moments” of the data. It follows from Theorem D.4 and the corollary,
(D-5), that

plim m̄k = E [mk(yi )] = µk(θ1, . . . , θK).

We assume that µk(·) involves some of or all the parameters of the distribution. With
K parameters to be estimated, the K moment equations,

m̄1 − µ1(θ1, . . . , θK) = 0,

m̄2 − µ2(θ1, . . . , θK) = 0,

· · ·
m̄K − µK(θ1, . . . , θK) = 0,

provide K equations in K unknowns, θ1, . . . , θK. If the equations are continuous and
functionally independent, then method of moments estimators can be obtained by solv-
ing the system of equations for

θ̂k = θ̂k[m̄1, . . . , m̄K].

As suggested, there may be more than one set of moments that one can use for estimating
the parameters, or there may be more moment equations available than are necessary.

Example 18.3 Inverse Gaussian (Wald) Distribution
The inverse Gaussian distribution is used to model survival times, or elapsed times from some
beginning time until some kind of transition takes place. The standard form of the density for
this random variable is

f ( y) =
√

λ

2πy3
exp

[
−λ( y − µ) 2

2µ2 y

]
, y > 0, λ > 0, µ > 0.

The mean is µ while the variance is µ3/λ. The efficient maximum likelihood estimators of
the two parameters are based on (1/n)

∑n
i =1 yi and (1/n)

∑n
i =1(1/yi ) . Since the mean and

variance are simple functions of the underlying parameters, we can also use the sample mean
and sample variance as moment estimators of these functions. Thus, an alternative pair of
method of moments estimators for the parameters of the Wald distribution can be based on
(1/n)

∑n
i =1 yi and (1/n)

∑n
i =1 y2

i . The precise formulas for these two pairs of estimators is
left as an exercise.
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Example 18.4 Mixtures of Normal Distributions
Quandt and Ramsey (1978) analyzed the problem of estimating the parameters of a mixture
of normal distributions. Suppose that each observation in a random sample is drawn from
one of two different normal distributions. The probability that the observation is drawn from
the first distribution, N[µ1, σ 2

1 ], is λ, and the probability that it is drawn from the second is
(1 − λ) . The density for the observed y is

f ( y) = λN
[
µ1, σ 2

1

] + (1 − λ) N
[
µ2, σ 2

2

]
, 0 ≤ λ ≤ 1

= λ(
2πσ 2

1

)1/2 e−1/2[( y−µ1)/σ1]2 + 1 − λ(
2πσ 2

2

)1/2 e−1/2[( y−µ2)/σ2]2 .

The sample mean and second through fifth central moments,

m̄k = 1
n

n∑
i =1

( yi − ȳ) k, k = 2, 3, 4, 5,

provide five equations in five unknowns that can be solved (via a ninth-order polynomial) for
consistent estimators of the five parameters. Because ȳ converges in probability to E [yi ] = µ,
the theorems given earlier for m̄′

k as an estimator of µ′
k apply as well to m̄kas an estimator of

µk = E [( yi − µ) k].

For the mixed normal distribution, the mean and variance are

µ = E [yi ] = λµ1 + (1 − λ)µ2

and

σ 2 = Var[yi ] = λσ 2
1 + (1 − λ)σ 2

2 + 2λ(1 − λ) (µ1 − µ2) 2

which suggests how complicated the familiar method of moments is likely to become. An
alternative method of estimation proposed by the authors is based on

E [etyi ] = λetµ1+t2σ2
1

/2 + (1 − λ)etµ2+t2σ2
2

/2 = �t ,

where t is any value not necessarily an integer. Quandt and Ramsey (1978) suggest choosing
five values of t that are not too close together and using the statistics

M̄t = 1
n

n∑
i =1

etyi

to estimate the parameters. The moment equations are M̄t − �t (µ1, µ2, σ 2
1 , σ 2

2 , λ) = 0. They
label this procedure the method of moment-generating functions. (See Section B.6. for
definition of the moment generating function.)

In most cases, method of moments estimators are not efficient. The exception is in
random sampling from exponential families of distributions.
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DEFINITION 18.1 Exponential Family
An exponential (parametric) family of distributions is one whose log-likelihood
is of the form

ln L(θ | data) = a(data) + b(θ) +
K∑

k=1

ck(data)sk(θ),

where a(·), b(·), c(·), and s(·) are functions. The members of the “family” are
distinguished by the different parameter values.

If the log-likelihood function is of this form, then the functions ck(·) are called
sufficient statistics.1 When sufficient statistics exist, method of moments estimator(s)
can be functions of them. In this case, the method of moments estimators will also
be the maximum likelihood estimators, so, of course, they will be efficient, at least
asymptotically. We emphasize, in this case, the probability distribution is fully specified.
Since the normal distribution is an exponential family with sufficient statistics m̄′

1 and m̄′
2,

the estimators described in Example 18.2 are fully efficient. (They are the maximum
likelihood estimators.) The mixed normal distribution is not an exponential family.
We leave it as an exercise to show that the Wald distribution in Example 18.3 is an
exponential family. You should be able to show that the sufficient statistics are the ones
that are suggested in Example 18.3 as the bases for the MLEs of µ and λ.

Example 18.5 Gamma Distribution
The gamma distribution (see Section C.4.5) is

f ( y) = λp

�( P)
e−λy yP−1, y > 0, P > 0, λ > 0.

The log-likelihood function for this distribution is

1
n

ln L = [P ln λ − ln �( P) ] − λ
1
n

n∑
i =1

yi + ( P − 1)
1
n

n∑
i =1

ln yi .

This function is an exponential family with a(data) = 0, b(θ ) = n[P ln λ − ln �( P) ] and two suf-
ficient statistics, 1

n

∑n
i =1 yi and 1

n

∑n
i =1 ln yi . The method of moments estimators based on

1
n

∑n
i =1 yi and 1

n

∑n
i =1 ln yi would be the maximum likelihood estimators. But, we also have

plim
1
n

n∑
i =1




yi

y2
i

ln yi

1/yi


 =




P/λ

P( P + 1)/λ2

�( P) − ln λ

λ/( P − 1)


 .

(The functions �( P) and �( P) = d ln �( P)/dP are discussed in Section E.5.3.) Any two of
these can be used to estimate λ and P.

1Stuart and Ord (1989, pp. 1–29) give a discussion of sufficient statistics and exponential families of distribu-
tions. A result that we will use in Chapter 21 is that if the statistics, ck(data) are sufficient statistics, then the
conditional density f [y1, . . . , yn | ck(data), k = 1, . . . , K] is not a function of the parameters.
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For the income data in Example C.1, the four moments listed above are

(m̄′
1, m̄′

2, m̄′
∗, m̄′

−1) = 1
n

n∑
i =1

[
yi , y2

i , ln yi ,
1
yi

]
= [31.278, 1453.96, 3.22139, 0.050014].

The method of moments estimators of θ = ( P, λ) based on the six possible pairs of these
moments are as follows:

( P̂, λ̂) =




m̄′
1 m̄′

2 m̄′
−1

m̄′
2 2.05682, 0.065759

m̄′
−1 2.77198, 0.0886239 2.60905, 0.0800475

m̄′
∗ 2.4106, 0.0770702 2.26450, 0.071304 3.03580, 0.1018202


 .

The maximum likelihood estimates are θ̂ (m̄′
1, m̄′

∗) = (2.4106, 0.0770702) .

18.2.2 ASYMPTOTIC PROPERTIES OF THE METHOD
OF MOMENTS ESTIMATOR

In a few cases, we can obtain the exact distribution of the method of moments estima-
tor. For example, in sampling from the normal distribution, µ̂ has mean µ and vari-
ance σ 2/n and is normally distributed while σ̂ 2 has mean [(n − 1)/n]σ 2, and variance
[(n − 1)/n]22σ 4/(n − 1) and is exactly distributed as a multiple of a chi-squared vari-
ate with (n − 1) degrees of freedom. If sampling is not from the normal distribution,
the exact variance of the sample mean will still be Var[y]/n, whereas an asymptotic
variance for the moment estimator of the population variance could be based on the
leading term in (D-27), in Example D.10, but the precise distribution may be intractable.

There are cases in which no explicit expression is available for the variance of
the underlying sample moment. For instance, in Example 18.4, the underlying sample
statistic is

M̄t = 1
n

n∑
i=1

etyi = 1
n

n∑
i=1

Mit .

The exact variance of M̄t is known only if t is an integer. But if sampling is random, since
M̄t is a sample mean: we can estimate its variance with 1/n times the sample variance
of the observations on Mti . We can also construct an estimator of the covariance of M̄t

and M̄s

Est.Asy.Cov[M̄t , M̄s] = 1
n

{
1
n

n∑
i=1

[(etyi − M̄t )(esyi − M̄s)]

}
.

In general, when the moments are computed as

m̄k = 1
n

n∑
i=1

mk(yi ), k = 1, . . . , K,

where yi is an observation on a vector of variables, an appropriate estimator of the
asymptotic covariance matrix of [m̄1, . . . , m̄k] can be computed using

1
n

F jk = 1
n

{
1
n

n∑
i=1

[(mj (yi ) − m̄j )(mk(yi ) − m̄k)]

}
, j, k = 1, . . . , K.
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(One might divide the inner sum by n − 1 rather than n. Asymptotically it is the same.)
This estimator provides the asymptotic covariance matrix for the moments used in com-
puting the estimated parameters. Under our assumption of iid random sampling from a
distribution with finite moments up to 2K, F will converge in probability to the appro-
priate covariance matrix of the normalized vector of moments, � = Asy.Var[

√
nm̄n(θ)].

Finally, under our assumptions of random sampling, though the precise distribution is
likely to be unknown, we can appeal to the Lindberg–Levy central limit theorem (D.18)
to obtain an asymptotic approximation.

To formalize the remainder of this derivation, refer back to the moment equations,
which we will now write

m̄n,k(θ1, θ2, . . . , θK) = 0, k = 1, . . . , K.

The subscript n indicates the dependence on a data set of n observations. We have also
combined the sample statistic (sum) and function of parameters, µ(θ1, . . . , θK) in this
general form of the moment equation. Let Ḡn(θ) be the K × K matrix whose kth row
is the vector of partial derivatives

Ḡ′
n,k = ∂m̄n,k

∂θ ′ .

Now, expand the set of solved moment equations around the true values of the param-
eters θ0 in a linear Taylor series. The linear approximation is

0 ≈ [m̄n(θ0)] + Ḡn(θ0)(θ̂ − θ0).

Therefore,
√

n(θ̂ − θ0) ≈ −[Ḡ′
n(θ0)]−1√n[m̄n(θ0)]. (18-1)

(We have treated this as an approximation because we are not dealing formally with
the higher order term in the Taylor series. We will make this explicit in the treatment
of the GMM estimator below.) The argument needed to characterize the large sample
behavior of the estimator, θ̂ , are discussed in Appendix D. We have from Theorem D.18
(the Central Limit Theorem) that

√
n m̄n(θ0) has a limiting normal distribution with

mean vector 0 and covariance matrix equal to �. Assuming that the functions in the
moment equation are continuous and functionally independent, we can expect Ḡn(θ0)

to converge to a nonsingular matrix of constants, �(θ0). Under general conditions, the
limiting distribution of the right hand side of (18-1) will be that of a linear function
of a normally distributed vector. Jumping to the conclusion, we expect the asymptotic
distribution of θ̂ to be normal with mean vector θ0 and covariance matrix (1/n) ×{−[�′(θ0)]−1

}
�

{−[�(θ0)]−1
}

. Thus, the asymptotic covariance matrix for the method
of moments estimator may be estimated with

Est.Asy.Var [θ̂ ] = 1
n

[Ḡ
′
n(θ̂)F−1Ḡn(θ̂)]−1.

Example 18.5 (Continued)
Using the estimates θ̂ (m′

1, m′
∗) = (2.4106, 0.0770702) ,

ˆ̄G =
[
−1/λ̂ P̂/λ̂

2

−�̂
′

1/λ̂

]
=

[
−12.97515 405.8353
−0.51241 12.97515

]
.
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[The function � ′ is d2 ln �( P)/dP2 = (��′′ − �′ 2)/�2. With P̂ = 2.4106, �̂ = 1.250832, �̂ =
0.658347, and �̂ ′ = 0.512408]2. The matrix F is the sample covariance matrix of y and ln y
(using 1/19 as the divisor),

F =
[

25.034 0.7155
0.7155 0.023873

]
.

The product is

1
n

[
Ĝ

′
F−1G

]−1

=
[

0.38978 0.014605
0.014605 0.00068747

]
.

For the maximum likelihood estimator, the estimate of the asymptotic covariance matrix
based on the expected (and actual) Hessian is

1
n

[−H]−1 = 1
n

[
� ′ −1/λ

−1/λ P/λ2

]−1

=
[

0.51203 0.01637
0.01637 0.00064654

]
.

The Hessian has the same elements as G because we chose to use the sufficient statistics
for the moment estimators, so the moment equations that we differentiated are, apart from
a sign change, also the derivatives of the log-likelihood. The estimates of the two variances
are 0.51203 and 0.00064654, respectively, which agrees reasonably well with the estimates
above. The difference would be due to sampling variability in a finite sample and the presence
of F in the first variance estimator.

18.2.3 SUMMARY—THE METHOD OF MOMENTS

In the simplest cases, the method of moments is robust to differences in the specification
of the data generating process. A sample mean or variance estimates its population
counterpart (assuming it exists), regardless of the underlying process. It is this freedom
from unnecessary distributional assumptions that has made this method so popular in
recent years. However, this comes at a cost. If more is known about the DGP, its specific
distribution for example, then the method of moments may not make use of all of the
available information. Thus, in example 18.3, the natural estimators of the parameters
of the distribution based on the sample mean and variance turn out to be inefficient.
The method of maximum likelihood, which remains the foundation of much work in
econometrics, is an alternative approach which utilizes this out of sample information
and is, therefore, more efficient.

18.3 THE GENERALIZED METHOD OF MOMENTS
(GMM) ESTIMATOR

A large proportion of the recent empirical work in econometrics, particularly in macroe-
conomics and finance, has employed GMM estimators. As we shall see, this broad class
of estimators, in fact, includes most of the estimators discussed elsewhere in this book.

Before continuing, it will be useful for you to read (or reread) the following sections:

1. Consistent Estimation: The Method of Moments: Section 18.2,
2. Correlation Between xi and εi : Instrumental Variables Estimation, Section 5.4,

2� ′ is the digamma function. Values for �(P), �(P), and � ′(P) are tabulated in Abramovitz and Stegun
(1971). The values given were obtained using the IMSL computer program library.
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3. GMM Estimation in the Generalized Regression Model: Sections 10.4, 11.3, and
12.6,

4. Nonlinear Regression Models, Chapter 9,
5. Optimization, Section E.5,
6. Robust Estimation of Asymptotic Covariance Matrices, Section 10.3,
7. The Wald Test, Theorem 6.1,
8. GMM Estimation of Dynamic Panel Data Models, Section 13.6.

The GMM estimation technique is an extension of the method of moments technique
described in Section 18.2.3 In the following, we will extend the generalized method of
moments to other models beyond the generalized linear regression, and we will fill in
some gaps in the derivation in Section 18.2.

18.3.1 ESTIMATION BASED ON ORTHOGONALITY CONDITIONS

Estimation by the method of moments proceeds as follows. The model specified for the
random variable yi implies certain expectations, for example

E [yi ] = µ,

where µ is the mean of the distribution of yi . Estimation of µ then proceeds by forming
a sample analog to the population expectation:

E [yi − µ] = 0.

The sample counterpart to this expectation is the empirical moment equation,

1
n

n∑
i=1

(yi − µ̂) = 0.

The estimator is the value of µ̂ that satisfies the sample moment equation. The example
given is, of course, a trivial one. Example 18.5 describes a more elaborate case of sam-
pling from a gamma distribution. The moment conditions used for estimation in that
example (taken two at a time from a set of four) include

E [yi − P/λ] = 0

and

E [ln yi − 	(P) + ln λ] = 0.

(These two coincide with the terms in the likelihood equations for this model.) Inserting
the sample data into the sample analogs produces the moment equations for estimation:

1
n

n∑
i=1

[yi − P̂/λ̂] = 0

3Formal presentation of the results required for this analysis are given by Hansen (1982); Hansen and
Singleton (1988); Chamberlain (1987); Cumby, Huizinga, and Obstfeld (1983); Newey (1984, 1985a, 1985b);
Davidson and MacKinnon (1993); and McFadden and Newey (1994). Useful summaries of GMM estimation
and other developments in econometrics is Pagan and Wickens (1989) and Matyas (1999). An application of
some of these techniques that contains useful summaries is Pagan and Vella (1989). Some further discussion
can be found in Davidson and MacKinnon (1993). Ruud (2000) provides many of the theoretical details.
Hayashi (2000) is another extensive treatment of estimation centered on GMM estimators.
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and

1
n

n∑
i=1

[ln yi − 	(P̂) + ln λ̂] = 0.

Example 18.6 Orthogonality Conditions
Assuming that households are forecasting interest rates as well as earnings, Hall’s consump-
tion model with the corollary implies the following orthogonality conditions:

Et

[(
β(1 + rt+1) Rλ

t+1 − 1
) ×

(
1
Rt

)]
=

[
0
0

]
.

Now, consider the apparently different case of the least squares estimator of the
parameters in the classical linear regression model. An important assumption of the
model is

E [xiεi ] = E [xi (yi − x′
iβ)] = 0.

The sample analog is

1
n

n∑
i=1

xi ε̂i = 1
n

n∑
i=1

xi (yi − x′
i β̂) = 0.

The estimator of β is the one that satisfies these moment equations, which are just the
normal equations for the least squares estimator. So, we see that the OLS estimator is
a method of moments estimator.

For the instrumental variables estimator of Section 5.4, we relied on a large sample
analog to the moment condition,

plim
(

1
n

n∑
i=1

ziεi

)
= plim

(
1
n

n∑
i=1

zi (yi − x′
iβ)

)
= 0.

We resolved the problem of having more instruments than parameters by solving the
equations

(
1
n

X′Z
)(

1
n

Z′Z
)−1(1

n
Z′ε̂

)
= 1

n
X̂′e = 1

n

n∑
i=1

x̂i ε̂i = 0

where the columns of X̂ are the fitted values in regressions on all the columns of Z (that
is, the projections of these columns of X into the column space of Z). (See Section 5.4
for further details.)

The nonlinear least squares estimator was defined similarly, though in this case,
the normal equations are more complicated since the estimator is only implicit. The
population orthogonality condition for the nonlinear regression model is E [x0

i εi ] = 0.
The empirical moment equation is

1
n

n∑
i=1

(
∂ E [yi | xi , β]

∂β

)
(yi − E [yi | xi , β]) = 0.

All the maximum likelihood estimators that we have looked at thus far and will
encounter later are obtained by equating the derivatives of a log-likelihood to zero. The
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scaled log-likelihood function is

1
n

ln L = 1
n

n∑
i=1

ln f (yi | θ , xi ),

where f (·) is the density function and θ is the parameter vector. For densities that satisfy
the regularity conditions [see Section 17.4.1],

E
[
∂ ln f (yi | θ , xi )

∂θ

]
= 0.

The maximum likelihood estimator is obtained by equating the sample analog to zero:

1
n

∂ ln L

∂ θ̂
= 1

n

n∑
i=1

∂ ln f (yi | xi , θ̂)

∂ θ̂
= 0.

(Dividing by n to make this result comparable with our earlier ones does not change
the solution.) The upshot is that nearly all the estimators we have discussed and will
encounter later can be construed as method of moments estimators. [Manski’s (1992)
treatment of analog estimation provides some interesting extensions and methodolog-
ical discourse.]

As we extend this line of reasoning, it will emerge that nearly all the estimators
defined in this book can be viewed as method of moments estimators.

18.3.2 GENERALIZING THE METHOD OF MOMENTS

The preceding examples all have a common aspect. In each case listed save for the
general case of the instrumental variable estimator, there are exactly as many moment
equations as there are parameters to be estimated. Thus, each of these are exactly
identified cases. There will be a single solution to the moment equations, and at that
solution, the equations will be exactly satisfied.4 But there are cases in which there are
more moment equations than parameters, so the system is overdetermined. In Example
18.5, we defined four sample moments,

ḡ = 1
n

n∑
i=1

[
yi , y2

i ,
1
yi

, ln yi

]

with probability limits P/λ, P(P + 1)/λ2, λ/(P − 1), and ψ(P)—ln λ, respectively. Any
pair could be used to estimate the two parameters, but as shown in the earlier example,
the six pairs produce six somewhat different estimates of θ = (P, λ).

In such a case, to use all the information in the sample it is necessary to devise a way
to reconcile the conflicting estimates that may emerge from the overdetermined system.
More generally, suppose that the model involves K parameters, θ = (θ1, θ2, . . . , θK), and
that the theory provides a set of L > K moment conditions,

E [ml(yi , xi , zi , θ)] = E [mil(θ)] = 0

where yi , xi , and zi are variables that appear in the model and the subscript i on mil(θ)

4That is, of course if there is any solution. In the regression model with collinearity, there are K parameters
but fewer than K independent moment equations.
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indicates the dependence on (yi , xi , zi ). Denote the corresponding sample means as

m̄l(y, X, Z, θ) = 1
n

n∑
i=1

ml(yi , xi , zi , θ) = 1
n

n∑
i=1

mil(θ).

Unless the equations are functionally dependent, the system of L equations in K un-
known parameters,

m̄l(θ) = 1
n

n∑
i=1

ml(yi , xi , zi , θ) = 0, l = 1, . . . , L,

will not have a unique solution.5 It will be necessary to reconcile the
(L

K

)
different sets

of estimates that can be produced. One possibility is to minimize a criterion function,
such as the sum of squares,

q =
L∑

l=1

m̄2
l = m̄(θ)′m̄(θ).

6
(18-2)

It can be shown [see, e.g., Hansen (1982)] that under the assumptions we have made
so far, specifically that plim m̄(θ) = E [m̄(θ)] = 0, minimizing q in (18-2) produces a
consistent (albeit, as we shall see, possibly inefficient) estimator of θ . We can, in fact,
use as the criterion a weighted sum of squares,

q = m̄(θ)′Wnm̄(θ),

where Wn is any positive definite matrix that may depend on the data but is not a
function of θ , such as I in (18-2), to produce a consistent estimator of θ .7 For example,
we might use a diagonal matrix of weights if some information were available about the
importance (by some measure) of the different moments. We do make the additional
assumption that plim Wn = a positive definite matrix, W.

By the same logic that makes generalized least squares preferable to ordinary least
squares, it should be beneficial to use a weighted criterion in which the weights are
inversely proportional to the variances of the moments. Let W be a diagonal matrix
whose diagonal elements are the reciprocals of the variances of the individual moments,

wll = 1
Asy.Var[

√
n m̄l]

= 1
φll

.

(We have written it in this form to emphasize that the right-hand side involves the
variance of a sample mean which is of order (1/n).) Then, a weighted least squares
procedure would minimize

q = m̄(θ)′�−1m̄(θ). (18-3)

5It may if L is greater than the sample size, n. We assume that L is strictly less than n.
6This approach is one that Quandt and Ramsey (1978) suggested for the problem in Example 18.3.
7In principle, the weighting matrix can be a function of the parameters as well. See Hansen, Heaton and Yaron
(1996) for discussion. Whether this provides any benefit in terms of the asymptotic properties of the estimator
seems unlikely. The one payoff the authors do note is that certain estimators become invariant to the sort of
normalization that we discussed in Example 17.1. In practical terms, this is likely to be a consideration only
in a fairly small class of cases.
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In general, the Lelements of m̄ are freely correlated. In (18-3), we have used a diagonal
W that ignores this correlation. To use generalized least squares, we would define the
full matrix,

W = {
Asy.Var[

√
n m̄]

}−1 = �−1. (18-4)

The estimators defined by choosing θ to minimize

q = m̄(θ)′Wnm̄(θ)

are minimum distance estimators. The general result is that if Wn is a positive definite
matrix and if

plim m̄(θ) = 0,

then the minimum distance (generalized method of moments, or GMM) estimator of θ

is consistent.8 Since the OLS criterion in (18-2) uses I, this method produces a consistent
estimator, as does the weighted least squares estimator and the full GLS estimator. What
remains to be decided is the best W to use. Intuition might suggest (correctly) that the
one defined in (18-4) would be optimal, once again based on the logic that motivates
generalized least squares. This result is the now celebrated one of Hansen (1982).

The asymptotic covariance matrix of this generalized method of moments estimator
is

VGMM = 1
n

[�′W�]−1 = 1
n

[�′�−1�]−1, (18-5)

where � is the matrix of derivatives with jth row equal to

� j = plim
∂m̄j (θ)

∂θ ′

and � = Asy. Var[
√

n m̄]. Finally, by virtue of the central limit theorem applied to the
sample moments and the Slutsky theorem applied to this manipulation, we can expect
the estimator to be asymptotically normally distributed. We will revisit the asymptotic
properties of the estimator in Section 18.3.3.

Example 18.7 GMM Estimation of the Parameters of a Gamma
Distribution

Referring once again to our earlier results in Example 18.5, we consider how to use all four
of our sample moments to estimate the parameters of the gamma distribution.9 The four
moment equations are

E




yi − P/λ

y2
i − P( P + 1)/λ2

ln yi − �( P) + ln λ

1/yi − λ/( P − 1)


 =




0
0
0
0




8In the most general cases, a number of other subtle conditions must be met so as to assert consistency and the
other properties we discuss. For our purposes, the conditions given will suffice. Minimum distance estimators
are discussed in Malinvaud (1970), Hansen (1982), and Amemiya (1985).
9We emphasize that this example is constructed only to illustrate the computation of a GMM estimator. The
gamma model is fully specified by the likelihood function, and the MLE is fully efficient. We will examine
other cases that involve less detailed specifications later in the book.
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The sample means of these will provide the moment equations for estimation. Let y1 = y,
y2 = y2, y3 = ln y, and y4 = 1/y. Then

m̄1( P, λ) = 1
n

n∑
i =l

( yi 1 − P/λ) = 1
n

n∑
i =1

[yi 1 − µ1( P, λ) ] = ȳ1 − µ1( P, λ) ,

and likewise for m̄2( P, λ) , m̄3( P, λ) , and m̄4( P, λ) .
For our initial set of estimates, we will use ordinary least squares. The optimization problem

is

MinimizeP,λ

4∑
l=1

m̄i ( P, λ) 2 =
4∑

l=1

[ȳl − µl ( P, λ) ]2 = m̄( P, λ) ′m̄( P, λ) .

This estimator will be the minimum distance estimator with W = I. This nonlinear opti-
mization problem must be solved iteratively. As starting values for the iterations, we used the
maximum likelihood estimates from Example 18.5, P̂ML = 2.4106 and λ̂ML = 0.0770702. The
least squares values that result from this procedure are P̂ = 2.0582996 and λ̂ = 0.06579888.
We can now use these to form our estimate of W. GMM estimation usually requires a first-
step estimation such as this one to obtain the weighting matrix W. With these new estimates
in hand, we obtained

�̂ =




1
20

20∑
i =1




yi 1 − P̂/λ̂

yi 2 − P̂( P̂ + 1)/λ̂
2

yi 3 − �( P̂) + ln λ̂

yi 4 − λ̂/( P̂ − 1)







yi 1 − P̂/λ̂

yi 2 − P̂( P̂ + 1)/λ̂
2

yi 3 − �( P̂) + ln λ̂

yi 4 − λ̂/( P̂ − 1)




′


.

(Note, we could have computed �̂ using the maximum likelihood estimates.) The GMM
estimator is now obtained by minimizing

q = m̄( P, λ) ′�̂−1m̄( P, λ) .

The two estimates are P̂GMM = 3.35894 and λ̂GMM = 0.124489. At these two values, the
value of the function is q = 1.97522. To obtain an asymptotic covariance matrix for the two
estimates, we first recompute �̂ as shown above;

1
20

�̂ =




24.7051
2307.126 229,609.5

0.6974 58.8148 0.0230
−0.0283 −2.1423 −0.0011 0.000065413


 .

To complete the computation, we will require the derivatives matrix,

Ḡ′(θ ) =
[

∂m̄1/∂ P ∂m̄2/∂ P ∂m̄3/∂ P ∂m̄4/∂ P
∂m̄1/∂λ ∂m̄2/∂λ ∂m̄3/∂λ ∂m̄4/∂λ

]

=
[−1/λ −(2P + 1)/λ2 −	 ′( P) λ/( P − 1)2

P/λ2 2P( P + 1)/λ3 1/λ −1/( P − 1)

]
.

Ḡ′( θ̂ ) =
[−8.0328 −498.01 −0.34635 0.022372

216.74 15178.2 8.0328 −0.42392

]
.

Finally,

1
20

[Ĝ′�̂−1Ĝ]−1 =
[

0.202201 0.0117344
0.0117344 0.000867519

]
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TABLE 18.1 Estimates of the Parameters of
a Gamma Distribution

Generalized Method
Parameter Maximum Likelihood of Moments

P 2.4106 3.3589
Standard Error (0.87683) (0.449667)
λ 0.0770701 0.12449
Standard Error (0.02707) (0.029099)

gives the estimated asymptotic covariance matrix for the estimators. Recall that in Exam-
ple 18.5, we obtained maximum likelihood estimates of the same parameters. Table 18.1
summarizes.

Looking ahead, we should have expected the GMM estimator to improve the standard
errors. The fact that it does for P but not for λ might cast some suspicion on the specification
of the model. In fact, the data generating process underlying these data is not a gamma
population—the values were hand picked by the author. Thus, the findings in Table 18.1
might not be surprising. We will return to this issue in Section 18.4.1.

18.3.3 PROPERTIES OF THE GMM ESTIMATOR

We will now examine the properties of the GMM estimator in some detail. Since the
GMM estimator includes other familiar estimators that we have already encountered,
including least squares (linear and nonlinear), instrumental variables, and maximum
likelihood, these results will extend to those cases. The discussion given here will only
sketch the elements of the formal proofs. The assumptions we make here are somewhat
narrower than a fully general treatment might allow; but they are broad enough to in-
clude the situations likely to arise in practice. More detailed and rigorous treatments may
be found in, for example, Newey and McFadden (1994), White (2001), Hayashi (2000),
Mittelhammer et al. (2000), or Davidson (2000). This development will continue the
analysis begun in Section 10.4 and add some detail to the formal results of Section 16.5.

The GMM estimator is based on the set of population orthogonality conditions,

E [mi (θ0)] = 0

where we denote the true parameter vector by θ0. The subscript i on the term on the
right hand side indicates dependence on the observed data, yi , xi , zi . Averaging this
over the sample observations produces the sample moment equation

E [m̄n(θ0)] = 0

where

m̄n(θ0) = 1
n

n∑
i=1

mi (θ0).

This moment is a set of L equations involving the K parameters. We will assume that
this expectation exists and that the sample counterpart converges to it. The definitions
are cast in terms of the population parameters and are indexed by the sample size. To
fix the ideas, consider, once again, the empirical moment equations which define the
instrumental variable estimator for a linear or nonlinear regression model.
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Example 18.8 Empirical Moment Equation for Instrumental Variables
For the IV estimator in the linear or nonlinear regression model, we assume

E [m̄n(β) ] = E

[
1
n

n∑
i =1

zi [ yi − h(xi , β) ]

]
= 0.

There are L instrumental variables in zi and K parameters in β. This statement defines L
moment equations, one for each instrumental variable.

We make the following assumptions about the model and these empirical moments:

ASSUMPTION 18.1. Convergence of the Empirical Moments: The data generating
process is assumed to meet the conditions for a law of large numbers to apply, so
that we may assume that the empirical moments converge in probability to their
expectation. Appendix D lists several different laws of large numbers that increase in
generality. What is required for this assumption is that

m̄n(θ0) = 1
n

n∑
i=1

mi (θ0)
p−→ 0.

The laws of large numbers that we examined in Appendix D accommodate cases of
independent observations. Cases of dependent or correlated observations can be gath-
ered under the Ergodic Theorem (12.1). For this more general case, then, we would
assume that the sequence of observations m(θ) constant a jointly (L×1) stationary and
ergodic process.

The empirical moments are assumed to be continuous and continuously dif-
ferentiable functions of the parameters. For our example above, this would
mean that the conditional mean function, h(xi , β) is a continuous function of
β (though not necessarily of xi ).

With continuity and differentiability, we also will be able to assume that the deriva-
tives of the moments,

Ḡn(θ0) = ∂m̄n(θ0)

∂θ ′
0

= 1
n

n∑
i=1

∂mi,n(θ0)

∂θ ′
0

converge to a probability limit, say plim Ḡn(θ0) = Ḡ(θ0). For sets of independent obser-
vations, the continuity of the functions and the derivatives will allow us to invoke the
Slutsky Theorem to obtain this result. For the more general case of sequences of depen-
dent observations, Theorem 12.2, Ergodicity of Functions, will provide a counterpart to
the Slutsky Theorem for time series data. In sum, if the moments themselves obey a
law of large numbers, then it is reasonable to assume that the derivatives do as well.

ASSUMPTION 18.2. Identification: For any n ≥ K, if θ1 and θ2 are two different pa-
rameter vectors, then there exist data sets such that m̄n(θ1) �= m̄n(θ2). Formally, in
Section 16.5.3, identification is defined to imply that the probability limit of the GMM
criterion function is uniquely minimized at the true parameters, θ0.
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Assumption 18.2 is a practical prescription for identification. More formal condi-
tions are discussed in Section 16.5.3. We have examined two violations of this crucial
assumption. In the linear regression model, one of the assumptions is full rank of the
matrix of exogenous variables—the absence of multicollinearity in X. In our discussion
of the maximum likelihood estimator, we encountered a case (Example 17.2) in which
the a normalization was needed to identify the vector of parameters. [See Hansen et al.
(1996) for discussion of this case.] Both of these cases are included in this assumption.
The identification condition has three important implications:

Order Condition The number of moment conditions is at least as large as the number
of parameter; L ≥ K. This is necessary but not sufficient for identification.

Rank Condition The L× K matrix of derivatives, Ḡn(θ0) will have row rank equal to
K. (Again, note that the number of rows must equal or exceed the number of columns.)

Uniqueness With the continuity assumption, the identification assumption implies
that the parameter vector that satisfies the population moment condition is unique. We
know that at the true parameter vector, plim m̄n(θ0) = 0. If θ1 is any parameter vector
that satisfies this condition, then θ1 must equal θ0.

Assumptions 18.1 and 18.2 characterize the parameterization of the model.
Together they establish that the parameter vector will be estimable. We now make
the statistical assumption that will allow us to establish the properties of the GMM
estimator.

ASSUMPTION 18.3. Asymptotic Distribution of Empirical Moments: We assume that
the empirical moments obey a central limit theorem. This assumes that the moments
have a finite asymptotic covariance matrix, (1/n)�, so that

√
n m̄n(θ0)

d−→ N [0, �].

The underlying requirements on the data for this assumption to hold will vary
and will be complicated if the observations comprising the empirical moment are not
independent. For samples of independent observations, we assume the conditions un-
derlying the Lindberg–Feller (D.19) or Liapounov Central Limit Theorem (D.20) will
suffice. For the more general case, it is once again necessary to make some assumptions
about the data. We have assumed that

E [mi (θ0)] = 0.

If we can go a step further and assume that the functions mi (θ0) are an ergodic, stationary
martingale difference series,

E [mi (θ0) | mi−1(θ0), mi−2(θ0) . . .] = 0,

then we can invoke Theorem 12.3, the Central Limit Theorem for Martingale Difference
Series. It will generally be fairly complicated to verify this assumption for nonlinear
models, so it will usually be assumed outright. On the other hand, the assumptions are
likely to be fairly benign in a typical application. For regression models, the assumption
takes the form

E [ziεi | zi−1εi−1, . . .] = 0

which will often be part of the central structure of the model.
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With the assumptions in place, we have

THEOREM 18.1 Asymptotic Distribution of the GMM Estimator
Under the preceding assumptions,

θ̂GMM
p−→ θ

θ̂GMM
a∼ N[θ , VGMM], (18-6)

where VGMM is defined in (18-5).

We will now sketch a proof of Theorem 18.1. The GMM estimator is obtained by
minimizing the criterion function

qn(θ) = m̄n(θ)′Wnm̄n(θ)

where Wn is the weighting matrix used. Consistency of the estimator that minimizes
this criterion can be established by the same logic we used for the maximum likelihood
estimator. It must first be established that qn(θ) converges to a value q0(θ). By our
assumptions of strict continuity and Assumption 18.1, qn(θ0) converges to 0. (We could
apply the Slutsky theorem to obtain this result.) We will assume that qn(θ) converges to
q0(θ) for other points in the parameter space as well. Since Wn is positive definite, for
any finite n, we know that

0 ≤ qn(θ̂GMM) ≤ qn(θ0). (18-7)

That is, in the finite sample, θ̂GMM actually minimizes the function, so the sample value of
the criterion is not larger at θ̂GMM than at any other value, including the true parameters.
But, at the true parameter values, qn(θ0)

p−→ 0. So, if (18-7) is true, then it must follow
that qn(θ̂GMM)

p−→ 0 as well because of the identification assumption, 18.2. As n → ∞,
qn(θ̂GMM) and qn(θ) converge to the same limit. It must be the case, then, that as n → ∞,
m̄n(θ̂GMM) → m̄n(θ0), since the function is quadratic and W is positive definite. The
identification condition that we assumed earlier now assures that as n → ∞, θ̂GMM must
equal θ0. This establishes consistency of the estimator.

We will now sketch a proof of the asymptotic normality of the estimator: The first
order conditions for the GMM estimator are

∂qn(θ̂GMM)

∂ θ̂GMM
= 2Ḡn(θ̂GMM)′Wnm̄n(θ̂GMM) = 0. (18-8)

(The leading 2 is irrelevant to the solution, so it will be dropped at this point.) The
orthogonality equations are assumed to be continuous and continuously differentiable.
This allows us to employ the mean value theorem as we expand the empirical moments
in a linear Taylor series around the true value. θ ;

m̄n(θ̂GMM) = m̄n(θ0) + Ḡn(θ̄)(θ̂GMM − θ0), (18-9)

where θ̄ is a point between θ̂GMM and the true parameters, θ0. Thus, for each element
θ̄k = wkθ̂k,GMM + (1 − wk)θ0,k for some wk such that 0 < wk < 1. Insert (18-9) in (18-8) to
obtain

Ḡn(θ̂GMM)′Wnm̄n(θ0) + Ḡn(θ̂GMM)′WnḠn(θ̄)(θ̂GMM − θ0) = 0.
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Solve this equation for the estimation error and multiply by
√

n. This produces
√

n(θ̂GMM − θ0) = −[Ḡn(θ̂GMM)′WnḠn(θ̄)]−1Ḡn(θ̂GMM)′Wn

√
n m̄n(θ0).

Assuming that they have them, the quantities on the left- and right-hand sides have the
same limiting distributions. By the consistency of θ̂GMM we know that θ̂GMM and θ̄ both
converge to θ0. By the strict continuity assumed, it must also be the case that

Ḡn(θ̄)
p−→ Ḡ(θ0) and Ḡn(θ̂GMM)

p−→ Ḡ(θ0).

We have also assumed that the weighting matrix, Wn converges to a matrix of constants,
W. Collecting terms, we find that the limiting distribution of the vector on the right hand
side must be the same as that on the right hand side in (18-10),

√
n(θ̂GMM − θ0)

p−→ {
[Ḡ(θ0)

′WḠ(θ0)]−1Ḡ(θ0)
′W

}√
n m̄n(θ0). (18-10)

We now invoke Assumption 18.3. The matrix in curled brackets is a set of constants.
The last term has the normal limiting distribution given in Assumption 18.3. The mean
and variance of this limiting distribution are zero and �, respectively. Collecting terms,
we have the result in Theorem 18.1, where

VGMM = 1
n

[Ḡ(θ0)
′WḠ(θ0)]−1Ḡ(θ0)

′W�WḠ(θ0)[Ḡ(θ0)
′WḠ(θ0)]−1. (18-11)

The final result is a function of the choice of weighting matrix, W. If the optimal weighting
matrix, W = �−1, is used, then the expression collapses to

VGMM,optimal = 1
n

[Ḡ(θ0)
′�−1Ḡ(θ0)]−1. (18-12)

Returning to (18-11), there is a special case of interest. If we use least squares or
instrumental variables with W = I, then

VGMM = 1
n
(Ḡ′Ḡ)−1Ḡ′�Ḡ(Ḡ′Ḡ)−1.

This equation is essentially (10-23) to (10-24), the White or Newey-West estimator,
which returns us to our departure point and provides a neat symmetry to the GMM
principle.

18.3.4 GMM ESTIMATION OF SOME SPECIFIC
ECONOMETRIC MODELS

Suppose that the theory specifies a relationship

yi = h(xi , β) + εi ,

where β is a K × 1 parameter vector that we wish to estimate. This may not be a
regression relationship, since it is possible that

Cov[εi , h(xi , β)] �= 0,

or even

Cov[εi , x j ] �= 0 for all i and j .



Greene-50240 book June 26, 2002 15:6

CHAPTER 18 ✦ The Generalized Method of Moments 545

Consider, for example, a model that contains lagged dependent variables and autocor-
related disturbances. (See Section 12.9.4.) For the present, we assume that

E [ε | X] �= 0

and

E [εε′ | X] = σ 2� = �,

where � is symmetric and positive definite but otherwise unrestricted. The disturbances
may be heteroscedastic and/or autocorrelated. But for the possibility of correlation be-
tween regressors and disturbances, this model would be a generalized, possibly non-
linear, regression model. Suppose that at each observation i we observe a vector of
L variables, zi , such that zi is uncorrelated with εi . You will recognize zi as a set of
instrumental variables. The assumptions thus far have implied a set of orthogonality
conditions,

E [ziεi | xi ] = 0,

which may be sufficient to identify (if L= K) or even overidentify (if L> K) the pa-
rameters of the model.

For convenience, define

e(X, β̂) = yi − h(xi , β̂), i = 1, . . . , n,

and

Z = n × L matrix whose ith row is z′
i .

By a straightforward extension of our earlier results, we can produce a GMM estimator
of β. The sample moments will be

m̄n(β) = 1
n

n∑
i=1

zi e(xi , β) = 1
n

Z′e(X, β).

The minimum distance estimator will be the β̂ that minimizes

q = m̄n(β̂)′Wm̄n(β̂) =
(

1
n

[e(X, β̂)′Z]
)

W
(

1
n

[Z′e(X, β̂)]
)

(18-13)

for some choice of W that we have yet to determine. The criterion given above produces
the nonlinear instrumental variable estimator. If we use W = (Z′Z)−1, then we have
exactly the estimation criterion we used in Section 9.5.1 where we defined the nonlinear
instrumental variables estimator. Apparently (18-13) is more general, since we are
not limited to this choice of W. The linear IV estimator is a special case. For any
given choice of W, as long as there are enough orthogonality conditions to identify
the parameters, estimation by minimizing q is, at least in principle, a straightforward
problem in nonlinear optimization. Hansen (1982) showed that the optimal choice of
W for this estimator is

WGMM = {
Asy. Var[

√
n m̄n(β)]

}−1

=
{

Asy. Var

[
1√
n

n∑
i=1

ziεi

]}−1

=
{

Asy. Var
[

1√
n

Z′e(X, β)

]}−1

.
(18-14)
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For our model, this is

W = 1
n

n∑
i=1

n∑
j=1

Cov[ziεi , z jε j ] = 1
n

n∑
i=1

n∑
j=1

σi j zi z′
j = Z′�Z

n
.

If we insert this result in (18-13), we obtain the criterion for the GMM estimator:

q =
[(

1
n

)
e(X, β̂)′Z

] (
Z′�Z

n

)−1[(
1
n

)
Z′e(X, β̂)

]
.

There is a possibly difficult detail to be considered. The GMM estimator involves

1
n

Z′�Z = 1
n

n∑
i=1

n∑
j=1

zi z′
j Cov[εiε j ] = 1

n

n∑
i=1

n∑
j=1

zi z′
j Cov[(yi − h(xi , β))(yj − h(x j , β))].

The conditions under which such a double sum might converge to a positive definite
matrix are sketched in Sections 5.3.2 and 12.4.1. Assuming that they do hold, estimation
appears to require that an estimate of β be in hand already, even though it is the object
of estimation. It may be that a consistent but inefficient estimator of β is available.
Suppose for the present that one is. If observations are uncorrelated, then the cross
observations terms may be omitted, and what is required is

1
n

Z′�Z = 1
n

n∑
i=1

zi z′
i Var[(yi − h(xi , β))].

We can use the White (1980) estimator discussed in Section 11.2.2 and 11.3 for this
case:

S0 = 1
n

n∑
i=1

zi z′
i (yi − h(xi , β̂))2. (18-15)

If the disturbances are autocorrelated but the process is stationary, then Newey and
West’s (1987a) estimator is available (assuming that the autocorrelations are sufficiently
small at a reasonable lag, p):

S =
[

S0 + 1
n

p∑
�=1

w(�)

n∑
i=�+1

ei ei−�(zi z′
i−� + zi−�z′

i )

]
=

p∑
�=0

w(�)S�, (18-16)

where

w(�) = 1 − �

p + 1
.

The maximum lag length p must be determined in advance. We will require that
observations that are far apart in time—that is, for which |i − �| is large—must have
increasingly smaller covariances for us to establish the convergence results that justify
OLS, GLS, and now GMM estimation. The choice of p is a reflection of how far back in
time one must go to consider the autocorrelation negligible for purposes of estimating
(1/n)Z′�Z. Current practice suggests using the smallest integer greater than or equal
to T1/4.

Still left open is the question of where the initial consistent estimator should be
obtained. One possibility is to obtain an inefficient but consistent GMM estimator by
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using W = I in (18-13). That is, use a nonlinear (or linear, if the equation is linear)
instrumental variables estimator. This first-step estimator can then be used to construct
W, which, in turn, can then be used in the GMM estimator. Another possibility is that
β may be consistently estimable by some straightforward procedure other than GMM.

Once the GMM estimator has been computed, its asymptotic covariance matrix
and asymptotic distribution can be estimated based on (18-11) and (18-12). Recall that

m̄n(β) = 1
n

n∑
i=1

ziεi ,

which is a sum of L× 1 vectors. The derivative, ∂m̄n(β)/∂β ′, is a sum of L× K matrices,
so

Ḡ(β) = ∂m̄(β)/∂β ′ = 1
n

n∑
i=1

Gi (β) = 1
n

n∑
i=1

zi

[
∂εi

∂β ′

]
. (18-17)

In the model we are considering here,

∂εi

∂β ′ = −∂h(xi , β)

∂β ′ .

The derivatives are the pseudoregressors in the linearized regression model that we
examined in Section 9.2.3. Using the notation defined there,

∂εi

∂β
= −xi0,

so

Ḡ(β) = 1
n

n∑
i=1

Gi (β) = 1
n

n∑
i=1

−zi x′
i0 = −1

n
Z′X0. (18-18)

With this matrix in hand, the estimated asymptotic covariance matrix for the GMM
estimator is

Est.Asy. Var[β̂] =
[

G(β̂)′
(

1
n

Z′�̂Z
)−1

G(β̂)

]−1

= [(X′
0Z)(Z′�̂Z)−1(Z′X0)]−1.

(18-19)

(The two minus signs, a 1/n2 and an n2, all fall out of the result.)
If the � that appears in (18-19) were σ 2I, then (18-19) would be precisely the asymp-

totic covariance matrix that appears in Theorem 5.4 for linear models and Theorem 9.3
for nonlinear models. But there is an interesting distinction between this estimator
and the IV estimators discussed earlier. In the earlier cases, when there were more
instrumental variables than parameters, we resolved the overidentification by specifi-
cally choosing a set of K instruments, the K projections of the columns of X or X0 into
the column space of Z. Here, in contrast, we do not attempt to resolve the overidenti-
fication; we simply use all the instruments and minimize the GMM criterion. Now you
should be able to show that when � = σ 2I and we use this information, when all is said
and done, the same parameter estimates will be obtained. But, if we use a weighting
matrix that differs from W = (Z′Z/n)−1, then they are not.
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18.4 TESTING HYPOTHESES IN THE GMM
FRAMEWORK

The estimation framework developed in the previous section provides the basis for
a convenient set of statistics for testing hypotheses. We will consider three groups of
tests. The first is a pair of statistics that is used for testing the validity of the restrictions
that produce the moment equations. The second is a trio of tests that correspond to
the familiar Wald, LM, and LR tests that we have examined at several points in the
preceding chapters. The third is a class of tests based on the theoretical underpinnings
of the conditional moments that we used earlier to devise the GMM estimator.

18.4.1 TESTING THE VALIDITY OF THE MOMENT RESTRICTIONS

In the exactly identified cases we examined earlier (least squares, instrumental variables,
maximum likelihood), the criterion for GMM estimation

q = m̄(θ)′Wm̄(θ)

would be exactly zero because we can find a set of estimates for which m̄(θ) is exactly
zero. Thus in the exactly identified case when there are the same number of moment
equations as there are parameters to estimate, the weighting matrix W is irrelevant to
the solution. But if the parameters are overidentified by the moment equations, then
these equations imply substantive restrictions. As such, if the hypothesis of the model
that led to the moment equations in the first place is incorrect, at least some of the
sample moment restrictions will be systematically violated. This conclusion provides
the basis for a test of the overidentifying restrictions. By construction, when the optimal
weighting matrix is used,

nq = [√
n m̄(θ̂)′

] {
Est.Asy. Var[

√
n m̄(θ̂)]

}−1 [√
n m̄(θ̂)

]
,

so nq is a Wald statistic. Therefore, under the hypothesis of the model,

nq
d−→ χ2[L− K].

(For the exactly identified case, there are zero degrees of freedom and q = 0.)

Example 18.9 Overidentifying Restrictions
In Hall’s consumption model with the corollary the two orthogonality conditions noted in
Example 18.6 exactly identify the two parameters. But, his analysis of the model suggests a
way to test the specification. The conclusion, “No information available in time t apart from
the level of consumption, ct helps predict future consumption, ct+1, in the sense of affecting
the expected value of marginal utility. In particular, income or wealth in periods t or earlier
are irrelevant once ct is known” suggests how one might test the model. If lagged values
of income (Yt might equal the ratio of current income to the previous period’s income) are
added to the set of instruments, then the model is now overidentified by the orthogonality
conditions;

Et




(
β(1 + rt+1) Rλ

t+1 − 1
) ×




1
Rt

Yt−1

Yt−2





 =

[
0
0

]
.
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A simple test of the overidentifying restrictions would be suggestive of the validity of the
model. Rejecting the restrictions casts doubt on the original model. Hall’s proposed tests
to distinguish the life cycle—permanent income model from other theories of consump-
tion involved adding two lags of income to the information set. His test is more involved
than the one suggested above Hansen and Singleton (1982) operated directly on this form
of the model. Other studies, for example, Campbell and Mankiw (1989) as well as Hall’s,
used the model’s implications to formulate more conventional instrumental variable regres-
sion models.

The preceding is a specification test, not a test of parametric restrictions. However,
there is a symmetry between the moment restrictions and restrictions on the parameter
vector. Suppose θ is subjected to J restrictions (linear or nonlinear) which restrict
the number of free parameters from K to K − J . (That is, reduce the dimensionality of
the parameter space from K to K − J .) The nature of the GMM estimation problem
we have posed is not changed at all by the restrictions. The constrained problem may
be stated in terms of

qR = m̄(θ R)′Wm̄(θ R).

Note that the weighting matrix, W, is unchanged. The precise nature of the solution
method may be changed—the restrictions mandate a constrained optimization. How-
ever, the criterion is essentially unchanged. It follows then that

nqR
d−→ χ2[L− (K − J )].

This result suggests a method of testing the restrictions, though the distribution theory
is not obvious. The weighted sum of squares with the restrictions imposed, nqR must
be larger than the weighted sum of squares obtained without the restrictions, nq. The
difference is

(nqR − nq)
d−→ χ2[J ]. (18-20)

The test is attributed to Newey and West (1987b). This provides one method of testing
a set of restrictions. (The small-sample properties of this test will be the central focus
of the application discussed in Section 18.5.) We now consider several alternatives.

18.4.2 GMM COUNTERPARTS TO THE WALD, LM, AND LR TESTS

Section 17.5 described a trio of testing procedures that can be applied to a hypothesis
in the context of maximum likelihood estimation. To reiterate, let the hypothesis to
be tested be a set of J possibly nonlinear restrictions on K parameters θ in the form
H0: r(θ) = 0. Let c1 be the maximum likelihood estimates of θ estimated without the
restrictions, and let c0 denote the restricted maximum likelihood estimates, that is,
the estimates obtained while imposing the null hypothesis. The three statistics, which
are asymptotically equivalent, are obtained as follows:

LR = likelihood ratio = −2(ln L0 − ln L1),

where

ln Lj = log likelihood function evaluated at c j , j = 0, 1.
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The likelihood ratio statistic requires that both estimates be computed. The Wald statis-
tic is

W = Wald = [r(c1)]′
{

Est.Asy. Var[r(c1)]
}−1[r(c1)]. (18-21)

The Wald statistic is the distance measure for the degree to which the unrestricted esti-
mator fails to satisfy the restrictions. The usual estimator for the asymptotic covariance
matrix would be

Est.Asy. Var[r(c1)] = A1
{

Est.Asy. Var[c1]
}

A′
1, (18-22)

where

A1 = ∂r(c1)/∂c′
1 (A1 is a J × K matrix).

The Wald statistic can be computed using only the unrestricted estimate. The LM statistic
is

LM = Lagrange multiplier = g′
1(c0)

{
Est.Asy. Var[g1(c0)]

}−1g1(c0), (18-23)

where

g1(c0) = ∂ ln L1(c0)/∂c0,

that is, the first derivatives of the unconstrained log-likelihood computed at the restricted
estimates. The term Est.Asy. Var[g1(c0)] is inverse of any of the usual estimators of the
asymptotic covariance matrix of the maximum likelihood estimators of the parameters,
computed using the restricted estimates. The most convenient choice is usually the
BHHH estimator. The LM statistic is based on the restricted estimates.

Newey and West (1987b) have devised counterparts to these test statistics for the
GMM estimator. The Wald statistic is computed identically, using the results of GMM
estimation rather than maximum likelihood.10 That is, in (18-21), we would use the
unrestricted GMM estimator of θ . The appropriate asymptotic covariance matrix is
(18-12). The computation is exactly the same. The counterpart to the LR statistic is
the difference in the values of nq in (18-20). It is necessary to use the same weighting
matrix, W, in both restricted and unrestricted estimators. Since the unrestricted esti-
mator is consistent under both H0 and H1, a consistent, unrestricted estimator of θ is
used to compute W. Label this �−1

1 = {
Asy. Var[

√
n m̄1(c1)]

}−1. In each occurrence,
the subscript 1 indicates reference to the unrestricted estimator. Then q is minimized
without restrictions to obtain q1 and then subject to the restrictions to obtain q0. The
statistic is then (nq0 − nq1).11 Since we are using the same W in both cases, this statistic
is necessarily nonnegative. (This is the statistic discussed in Section 18.4.1.)

Finally, the counterpart to the LM statistic would be

LMGMM = n
[
m̄1(c0)

′�̂−1
1 Ḡ1(c0)

][
Ḡ1(c0)

′�̂−1
1 Ḡ1(c0)

]−1[Ḡ1(c0)
′�̂−1

1 m̄1(c0)
]
.

10See Burnside and Eichenbaum (1996) for some small-sample results on this procedure. Newey and
McFadden (1994) have shown the asymptotic equivalence of the three procedures.
11Newey and West label this test the D test.
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The logic for this LM statistic is the same as that for the MLE. The derivatives of the
minimized criterion q in (18-3) are

g1(c0) = ∂q
∂c0

= 2Ḡ1(c0)
′�̂−1

1 m̄(c0).

The LM statistic, LMGMM, is a Wald statistic for testing the hypothesis that this vector
equals zero under the restrictions of the null hypothesis. From our earlier results, we
would have

Est.Asy. Var[g1(c0)] = 4
n

Ḡ1(c0)
′�̂−1

1

{
Est.Asy. Var[

√
n m̄(c0)]

}
�̂−1

1 Ḡ1(c0).

The estimated asymptotic variance of
√

n m̄(c0) is �̂1, so

Est.Asy. Var[g1(c0)] = 4
n

Ḡ1(c0)
′�̂−1

1 Ḡ1(c0).

The Wald statistic would be

Wald = g1(c0)
′{Est.Asy. Var[g1(c0)]

}−1g1(c0)

= n m̄′
1(c0)�̂

−1
1 Ḡ(c0)

{
Ḡ(c0)

′�̂−1
1 Ḡ(c0)

}−1Ḡ(c0)
′�̂−1

1 m̄1(c0).
(18-24)

18.5 APPLICATION: GMM ESTIMATION OF A
DYNAMIC PANEL DATA MODEL OF LOCAL
GOVERNMENT EXPENDITURES

(This example continues the analysis begun in Example 13.7.) Dahlberg and Johansson
(2000) estimated a model for the local government expenditure of several hundred
municipalities in Sweden observed over the 9-year period t = 1979 to 1987. The equation
of interest is

Si,t = αt +
m∑

j=1

β j Si,t− j +
m∑

j=1

γ j Ri,t− j +
m∑

j=1

δ j Gi,t− j + fi + εi t

for i = 1, . . . , N = 265 and t = m+ 1, . . . , 9. (We have changed their notation slightly to
make it more convenient.) Si,t , Ri,t and Gi,t are municipal spending, receipts (taxes and
fees) and central government grants, respectively. Analogous equations are specified for
the current values of Ri,t and Gi,t . The appropriate lag length, m, is one of the features
of interest to be determined by the empirical study. The model contains a municipality
specific effect, fi , which is not specified as being either “fixed” or “random.” In order to
eliminate the individual effect, the model is converted to first differences. The resulting
equation is

�Si,t = λt +
m∑

j=1

β j�Si,t− j +
m∑

j=1

γ j�Ri,t− j +
m∑

j=1

δ j�Gi,t− j + uit

or
yi,t = x′

i,tθ + ui,t ,

where �Si,t = Si,t − Si,t−1 and so on and ui,t = εi,t − εi,t−1. This removes the group ef-
fect and leaves the time effect. Since the time effect was unrestricted to begin with,
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�αt = λt remains an unrestricted time effect, which is treated as “fixed” and modeled
with a time-specific dummy variable. The maximum lag length is set at m = 3. With 9
years of data, this leaves useable observations from 1983 to 1987 for estimation, that is,
t = m+ 2, . . . , 9. Similar equations were fit for Ri,t and Gi,t .

The orthogonality conditions claimed by the authors are

E [Si,sui,t ] = E [Ri,sui,t ] = E [Gi,sui,t ] = 0, s = 1, . . . , t − 2.

The orthogonality conditions are stated in terms of the levels of the financial variables
and the differences of the disturbances. The issue of this formulation as opposed to, for
example, E [�Si,s�εi,t ] = 0 (which is implied) is discussed by Ahn and Schmidt (1995).
As we shall see, this set of orthogonality conditions implies a total of 80 instrumental
variables. The authors use only the first of the three sets listed above, which produces a
total of 30. For the five observations, using the formulation developed in Section 13.6,
we have the following matrix of instrumental variables for the orthogonality conditions

Zi =




S81−79 d83 0′ 0 0′ 0 0′ 0 0′ 0

0′ 0 S82−79 d84 0′ 0 0′ 0 0′ 0

0′ 0 0′ 0 S83−79 d85 0′ 0 0′ 0

0′ 0 0′ 0 0′ 0 S84−79 d86 0′ 0

0′ 0 0′ 0 0′ 0 0′ 0 S85−79 d87




1983

1984

1985

1986

1987

where the notation Et1−t0 indicates the range of years for that variable. For example,
S83−79 denotes [Si,1983, Si,1982, Si,1981, Si,1980, Si,1979] and dyear denotes the year specific
dummy variable. Counting columns in Zi we see that using only the lagged values of the
dependent variable and the time dummy variables, we have (3 + 1)+ (4 + 1) + (5 + 1) +
(6 + 1) + (7 + 1) = 30 instrumental variables. Using the lagged values of the other two
variables in each equation would add 50 more, for a total of 80 if all the orthogonality
conditions suggested above were employed. Given the construction above, the orthog-
onality conditions are now

E [Z′
i ui ] = 0,

where ui = [ui,1987, ui,1986, ui,1985, ui,1984, ui,1983]′. The empirical moment equation is

plim

[
1
n

N∑
i=1

Z′
i ui

]
= plim m̄(θ) = 0.

The parameters are vastly overidentified. Using only the lagged values of the depen-
dent variable in each of the three equations estimated, there are 30 moment conditions
and 14 parameters being estimated when m = 3, 11 when m = 2, 8 when m = 1 and 5
when m = 0. (As we do our estimation of each of these, we will retain the same matrix
of instrumental variables in each case.) GMM estimation proceeds in two steps. In the
first step, basic, unweighted instrumental variables is computed using

θ̂
′
IV =



(

N∑
i=1

X′
i Zi

)(
N∑

i=1

Z′
i Zi

)−1( N∑
i=1

Z′
i Xi

)


−1(
N∑

i=1

X′
i Zi

)(
N∑

i=1

Z′
i Zi

)−1( N∑
i=1

Z′
i yi

)
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where

y′
i = (�S83 �S84 �S85 �S86 �S87)

and

Xi =




�S82 �S81 �S80 �R82 �R81 �R80 �G82 �G81 �G80 1 0 0 0 0

�S83 �S82 �S81 �R83 �R82 �R81 �G83 �G82 �G81 0 1 0 0 0

�S84 �S83 �S82 �R84 �R83 �R82 �G84 �G83 �G82 0 0 1 0 0

�S85 �S84 �S83 �R85 �R84 �R83 �G85 �G84 �G83 0 0 0 1 0

�S86 �S85 �S84 �R86 �R85 �R84 �G86 �G85 �G84 0 0 0 0 1




.

The second step begins with the computation of the new weighting matrix,

�̂ = Est.Asy. Var[
√

Nm̄] = 1
N

N∑
i=1

Z′
i ûi û′

i Zi .

After multiplying and dividing by the implicit (1/N) in the outside matrices, we obtain
the estimator,

θ ′
GMM =

[(
N∑

i=1

X′
i Zi

) (
N∑

i=1

Z′
i ûi û′

i Zi

)−1 (
N∑

i=1

Z′
i Xi

)]−1

×
(

N∑
i=1

X′
i Zi

) (
N∑

i=1

Z′
i ûi û′

i Zi

)−1 (
N∑

i=1

Z′
i yi

)

=
[(

N∑
i=1

X′
i Zi

)
W

(
N∑

i=1

Z′
i Xi

)]−1 (
N∑

i=1

X′
i Zi

)
W

(
N∑

i=1

Z′
i yi

)
.

The estimator of the asymptotic covariance matrix for the estimator is the matrix in
square brackets in the first line of the result.

The primary focus of interest in the study was not the estimator itself, but the lag
length and whether certain lagged values of the independent variables appeared in
each equation. These restrictions would be tested by using the GMM criterion function,
which in this formulation would be (based on recomputing the residuals after GMM
estimation)

q =
(

n∑
i=1

û′
i Zi

)
W

(
n∑

i=1

Z′
i ûi

)
.

Note that the weighting matrix is not (necessarily) recomputed. For purposes of testing
hypotheses, the same weighting matrix should be used.

At this point, we will consider the appropriate lag length, m. The specification can be
reduced simply by redefining X to change the lag length. In order to test the specification,
the weighting matrix must be kept constant for all restricted versions (m = 2 and m = 1)
of the model.

The Dahlberg and Johansson data may be downloaded from the Journal of Applied
Econometrics website—See Appendix Table F18.1. The authors provide the summary
statistics for the raw data that are given in Table 18.2. The data used in the study
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TABLE 18.2 Descriptive Statistics for Local Expenditure Data

Variable Mean Std. Deviation Minimum Maximum

Spending 18478.51 3174.36 12225.68 33883.25
Revenues 13422.56 3004.16 6228.54 29141.62
Grants 5236.03 1260.97 1570.64 12589.14

TABLE 18.3 Estimated Spending Equation

Variable Estimate Standard Error t Ratio

Year 1983 −0.0036578 0.0002969 −12.32
Year 1984 −0.00049670 0.0004128 −1.20
Year 1985 0.00038085 0.0003094 1.23
Year 1986 0.00031469 0.0003282 0.96
Year 1987 0.00086878 0.0001480 5.87
Spending (t − 1) 1.15493 0.34409 3.36
Revenues (t − 1) −1.23801 0.36171 −3.42
Grants (t − 1) 0.016310 0.82419 0.02
Spending (t − 2) −0.0376625 0.22676 −0.17
Revenues (t − 2) 0.0770075 0.27179 0.28
Grants (t − 2) 1.55379 0.75841 2.05
Spending (t − 3) −0.56441 0.21796 −2.59
Revenues (t − 3) 0.64978 0.26930 2.41
Grants (t − 3) 1.78918 0.69297 2.58

and provided in the internet source are nominal values in Swedish Kroner, deflated
by a municipality specific price index then converted to per capita values. Descrip-
tive statistics for the raw and transformed data appear in Table 18.2.12 Equations
were estimated for all three variables, with maximum lag lengths of m= 1, 2, and 3.
(The authors did not provide the actual estimates.) Estimation is done using the meth-
ods developed by Ahn and Schmidt (1995), Arellano and Bover (1995) and Holtz-Eakin,
Newey, and Rosen (1988), as described above. The estimates of the first specification
given above are given in Table 18.3.

Table 18.4 contains estimates of the model parameters for each of the three equa-
tions, and for the three lag lengths, as well as the value of the GMM criterion function
for each model estimated. The base case for each model has m = 3. There are three
restrictions implied by each reduction in the lag length. The critical chi-squared value
for three degrees of freedom is 7.81 for 95 percent significance, so at this level, we find
that the two-level model is just barely accepted for the spending equation, but clearly
appropriate for the other two—the difference between the two criteria is 7.62. Condi-
tioned on m = 2, only the revenue model rejects the restriction of m = 1. As a final test,
we might ask whether the data suggest that perhaps no lag structure at all is necessary.
The GMM criterion value for the three equations with only the time dummy variables
are 45.840, 57.908, and 62.042, respectively. Therefore, all three zero lag models are
rejected.

12The data provided on the website and used in our computations were further transformed by dividing by
100,000.
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TABLE 18.4 Estimated Lag Equations for Spending, Revenue, and Grants

Expenditure Model Revenue Model Grant Model

m = 3 m = 2 m = 1 m = 3 m = 2 m = 1 m = 3 m = 2 m = 1

St−1 1.155 0.8742 0.5562 −0.1715 −0.3117 −0.1242 −0.1675 −0.1461 −0.1958
St−2 −0.0377 0.2493 — 0.1621 −0.0773 — −0.0303 −0.0304 —
St−3 −0.5644 — — −0.1772 — — −0.0955 — —
Rt−1 −1.2380 −0.8745 −0.5328 −0.0176 0.1863 −0.0245 0.1578 0.1453 0.2343
Rt−2 0.0770 −0.2776 — −0.0309 0.1368 — 0.0485 0.0175 —
Rt−3 0.6497 — — 0.0034 — — 0.0319 — —
Gt−1 0.0163 −0.4203 0.1275 −0.3683 0.5425 −0.0808 −0.2381 −0.2066 −0.0559
Gt−2 1.5538 0.1866 — −2.7152 2.4621 — −0.0492 −0.0804 —
Gt−3 1.7892 — — 0.0948 — — 0.0598 — —

q 22.8287 30.4526 34.4986 30.5398 34.2590 53.2506 17.5810 20.5416 27.5927

Among the interests in this study were the appropriate critical values to use for the
specification test of the moment restriction. With 16 degrees of freedom, the critical chi-
squared value for 95 percent significance is 26.3, which would suggest that the revenues
equation is misspecified. Using a bootstrap technique, the authors find that a more
appropriate critical value leaves the specification intact. Finally, note that the three-
equation model in the m = 3 columns of Table 18.4 imply a vector autoregression of
the form

yt = �1yt−1 + �2yt−2 + �3yt−3 + vt

where yt = (�St , �Rt , �Gt )
′. We will explore the properties and characteristics of equa-

tion systems such as this in our discussion of time series models in Chapter 20.

18.6 SUMMARY AND CONCLUSIONS

The generalized method of moments provides an estimation framework that includes
least squares, nonlinear least squares, instrumental variables, and maximum likelihood,
and a general class of estimators that extends beyond these. But it is more than just a
theoretical umbrella. The GMM provides a method of formulating models and implied
estimators without making strong distributional assumptions. Hall’s model of household
consumption is a useful example that shows how the optimization conditions of an
underlying economic theory produce a set of distribution free estimating equations. In
this chapter, we first examined the classical method of moments. GMM as an estimator
is an extension of this strategy that allows the analyst to use additional information
beyond that necessary to identify the model, in an optimal fashion. After defining and
establishing the properties of the estimator, we then turned to inference procedures.
It is convenient that the GMM procedure provides counterparts to the familiar trio of
test statistics, Wald, LM, and LR. In the final section, we developed an example that
appears at many points in the recent applied literature, the dynamic panel data model
with individual specific effects, and lagged values of the dependent variable.

This chapter concludes our survey of estimation techniques and methods in econo-
metrics. In the remaining chapters of the book, we will examine a variety of applications
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and modeling tools, first in time series and macroeconometrics in Chapters 19 and 20,
then in discrete choice models and limited dependent variables, the staples of microe-
conometrics, in Chapters 21 and 22.

Key Terms and Concepts

• Analog estimation
• Asymptotic properties
• Central limit theorem
• Central moments
• Consistent estimator
• Dynamic panel data model
• Empirical moment equation
• Ergodic theorem
• Euler equation
• Exactly identified
• Exponential family
• Generalized method of

moments
• Identification
• Instrumental variables
• LM statistic

• LR statistic
• Martingale difference

sequence
• Maximum likelihood

estimator
• Mean value theorem
• Method of moment

generating functions
• Method of moments
• Method of moments

estimators
• Minimum distance estimator
• Moment equation
• Newey–West estimator
• Nonlinear instrumental

variable estimator

• Order condition
• Orthogonality conditions
• Overidentifying restrictions
• Probability limit
• Random sample
• Rank condition
• Robust estimation
• Slutsky Theorem
• Specification test statistic
• Sufficient statistic
• Taylor series
• Uncentered moment
• Wald statistic
• Weighted least squares

Exercises

1. For the normal distribution µ2k = σ 2k(2k)!/(k!2k) and µ2k+1 = 0, k = 0, 1, . . . . Use
this result to analyze the two estimators

√
b1 = m3

m3/2
2

and b2 = m4

m2
2
.

where mk = 1
n

∑n
i=1(xi − x̄)k. The following result will be useful:

Asy.Cov[
√

nmj ,
√

nmk] = µ j+k −µ jµk + jkµ2µ j−1µk−1 − jµ j−1µk+1 − kµk−1µ j+1.

Use the delta method to obtain the asymptotic variances and covariance of these
two functions assuming the data are drawn from a normal distribution with mean
µ and variance σ 2. (Hint: Under the assumptions, the sample mean is a consistent
estimator ofµ, so for purposes of deriving asymptotic results, the difference between
x̄ and µ may be ignored. As such, no generality is lost by assuming the mean is zero,
and proceeding from there. Obtain V, the 3 × 3 covariance matrix for the three
moments, then use the delta method to show that the covariance matrix for the two
estimators is

JVJ′ =
[

6 0
0 24

]

where J is the 2 × 3 matrix of derivatives.
2. Using the results in Example 18.7, estimate the asymptotic covariance matrix of

the method of moments estimators of P and λ based on m′
1 and m′

2 [Note: You will
need to use the data in Example C.1 to estimate V.]
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3. Exponential Families of Distributions. For each of the following distributions,
determine whether it is an exponential family by examining the log-likelihood func-
tion. Then, identify the sufficient statistics.
a. Normal distribution with mean µ and variance σ 2.
b. The Weibull distribution in Exercise 4 in Chapter 17.
c. The mixture distribution in Exercise 3 in Chapter 17.

4. In the classical regression model with heteroscedasticity, which is more efficient,
ordinary least squares or GMM? Obtain the two estimators and their respective
asymptotic covariance matrices, then prove your assertion.

5. Consider the probit model analyzed in Section 17.8. The model states that for given
vector of independent variables,

Prob[yi = 1 | xi ] = �[x′
iβ], Prob[yi = 0 | xi ] = 1 − Prob[yi = 1 | xi ].

We have considered maximum likelihood estimation of the parameters of this model
at several points. Consider, instead, a GMM estimator based on the result that

E [yi | xi ] = �(x′
iβ)

This suggests that we might base estimation on the orthogonality conditions

E [(yi − �(x′
iβ))xi ] = 0

Construct a GMM estimator based on these results. Note that this is not the non-
linear least squares estimator. Explain—what would the orthogonality conditions
be for nonlinear least squares estimation of this model?

6. Consider GMM estimation of a regression model as shown at the beginning of
Example 18.8. Let W1 be the optimal weighting matrix based on the moment
equations. Let W2 be some other positive definite matrix. Compare the asymp-
totic covariance matrices of the two proposed estimators. Show conclusively that
the asymptotic covariance matrix of the estimator based on W1 is not larger than
that based on W2.
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19

MODELS WITH LAGGED
VARIABLES

Q
19.1 INTRODUCTION

This chapter begins our introduction to the analysis of economic time series. By most
views, this field has become synonymous with empirical macroeconomics and the anal-
ysis of financial markets.1 In this and the next chapter, we will consider a number of
models and topics in which time and relationships through time play an explicit part in
the formulation. Consider the dynamic regression model

yt = β1 + β2xt + β3xt−1 + γ yt−1 + εt . (19-1)

Models of this form specifically include as right-hand side variables earlier as well as
contemporaneous values of the regressors. It is also in this context that lagged values of
the dependent variable appear as a consequence of the theoretical basis of the model
rather than as a computational means of removing autocorrelation. There are several
reasons why lagged effects might appear in an empirical model.

• In modeling the response of economic variables to policy stimuli, it is expected that
there will be possibly long lags between policy changes and their impacts. The length
of lag between changes in monetary policy and its impact on important economic
variables such as output and investment has been a subject of analysis for several
decades.

• Either the dependent variable or one of the independent variables is based on
expectations. Expectations about economic events are usually formed by aggregat-
ing new information and past experience. Thus, we might write the expectation of
a future value of variable x, formed this period, as

xt = Et [x∗
t+1 | zt , xt−1, xt−2, . . .] = g(zt , xt−1, xt−2, . . .).

1The literature in this area has grown at an impressive rate, and, more so than in any other area, it has
become impossible to provide comprehensive surveys in general textbooks such as this one. Fortunately,
specialized volumes have been produced that can fill this need at any level. Harvey (1990) has been in wide
use for some time. Among the many other books written in the 1990s, three very useful works are Enders
(1995), which presents the basics of time series analysis at an introductory level with several very detailed
applications; Hamilton (1994), which gives a relatively technical but quite comprehensive survey of the field;
and Lutkepohl (1993), which provides an extremely detailed treatment of the topics presented at the end
of this chapter. Hamilton also surveys a number of the applications in the contemporary literature. Two
references that are focused on financial econometrics are Mills (1993) and Tsay (2002). There are also a
number of important references that are primarily limited to forecasting, including Diebold (1998a, 1998b)
and Granger and Newbold (1996). A survey of recent research in many areas of time series analysis is Engle
and McFadden (1994). An extensive, fairly advanced treatise that analyzes in great depth all the issues we
touch on in this chapter is Hendry (1995). Finally, Patterson (2000) surveys most of the practical issues in
time series and presents a large variety of useful and very detailed applications.

558
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For example, forecasts of prices and income enter demand equations and con-
sumption equations. (See Example 18.1 for an influential application.)

• Certain economic decisions are explicitly driven by a history of related activities.
For example, energy demand by individuals is clearly a function not only of current
prices and income, but also the accumulated stocks of energy using capital. Even
energy demand in the macroeconomy behaves in this fashion—the stock of auto-
mobiles and its attendant demand for gasoline is clearly driven by past prices of
gasoline and automobiles. Other classic examples are the dynamic relationship be-
tween investment decisions and past appropriation decisions and the consumption
of addictive goods such as cigarettes and theater performances.

We begin with a general discussion of models containing lagged variables. In Sec-
tion 19.2, we consider some methodological issues in the specification of dynamic
regressions. In Sections 19.3 and 19.4, we describe a general dynamic model that en-
compasses some of the extensions and more formal models for time-series data that
are presented in Chapter 20. Section 19.5 takes a closer look at some of issues in model
specification. Finally, Section 19.6 considers systems of dynamic equations. These are
largely extensions of the models that we examined at the end of Chapter 15. But the
interpretation is rather different here. This chapter is generally not about methods of
estimation. OLS and GMM estimation are usually routine in this context. Since we are
examining time series data, conventional assumptions including ergodicity and station-
arity will be made at the outset. In particular, in the general framework, we will assume
that the multivariate stochastic process (yt , xt , εt ) are a stationary and ergodic process.
As such, without further analysis, we will invoke the theorems discussed in Chapters 5,
12, 16, and 18 that support least squares and GMM as appropriate estimate techniques
in this context. In most of what follows, in fact, in practical terms, the dynamic regres-
sion model can be treated as a linear regression model, and estimated by conventional
methods (e.g., ordinary least squares or instrumental variables if εt is autocorrelated).
As noted, we will generally not return to the issue of estimation and inference the-
ory except where new results are needed, such as in the discussion of nonstationary
processes.

19.2 DYNAMIC REGRESSION MODELS

In some settings, economic agents respond not only to current values of independent
variables but to past values as well. When effects persist over time, an appropriate model
will include lagged variables. Example 19.1 illustrates a familiar case.

Example 19.1 A Structural Model of the Demand for Gasoline
Drivers demand gasoline not for direct consumption but as fuel for cars to provide a source
of energy for transportation. Per capita demand for gasoline in any period, G/pop, is deter-
mined partly by the current price, Pg, and per capita income, Y/pop, which influence how
intensively the existing stock of gasoline using “capital,” K , is used and partly by the size
and composition of the stock of cars and other vehicles. The capital stock is determined, in
turn, by income, Y/pop; prices of the equipment such as new and used cars, Pnc and Puc;
the price of alternative modes of transportation such as public transportation, Ppt; and past
prices of gasoline as they influence forecasts of future gasoline prices. A structural model of
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these effects might appear as follows:

per capita demand: Gt/popt = α + β Pgt + δYt/popt + γ Kt + ut ,

stock of vehicles: Kt = (1 − �) Kt−1 + I t , � = depreciation rate,

investment in new vehicles: I t = θYt/popt + φEt [Pgt+1] + λ1 Pnct + λ2 Puct + λ3 Pptt

expected price of gasoline: Et [Pgt+1] = w0 Pgt + w1 Pgt−1 + w2 Pgt−2.

The capital stock is the sum of all past investments, so it is evident that not only current
income and prices, but all past values, play a role in determining K . When income or the
price of gasoline changes, the immediate effect will be to cause drivers to use their vehicles
more or less intensively. But, over time, vehicles are added to the capital stock, and some
cars are replaced with more or less efficient ones. These changes take some time, so the
full impact of income and price changes will not be felt for several periods. Two episodes in
the recent history have shown this effect clearly. For well over a decade following the 1973
oil shock, drivers gradually replaced their large, fuel-inefficient cars with smaller, less-fuel-
intensive models. In the late 1990s in the United States, this process has visibly worked
in reverse. As American drivers have become accustomed to steadily rising incomes and
steadily falling real gasoline prices, the downsized, efficient coupes and sedans of the 1980s
have yielded the highways to a tide of ever-larger, six- and eight-cylinder sport utility vehicles,
whose size and power can reasonably be characterized as astonishing.

19.2.1 LAGGED EFFECTS IN A DYNAMIC MODEL

The general form of a dynamic regression model is

yt = α +
∞∑

i=0

βi xt−i + εt . (19-2)

In this model, a one-time change in x at any point in time will affect E [ys | xt , xt−1, . . .]
in every period thereafter. When it is believed that the duration of the lagged effects
is extremely long—for example, in the analysis of monetary policy—infinite lag models
that have effects that gradually fade over time are quite common. But models are often
constructed in which changes in x cease to have any influence after a fairly small number
of periods. We shall consider these finite lag models first.

Marginal effects in the static classical regression model are one-time events. The
response of y to a change in x is assumed to be immediate and to be complete at the
end of the period of measurement. In a dynamic model, the counterpart to a marginal
effect is the effect of a one-time change in xt on the equilibrium of yt . If the level of xt

has been unchanged from, say, x̄ for many periods prior to time t , then the equilibrium
value of E [yy | xt , xt−1, . . .] (assuming that it exists) will be

ȳ = α +
∞∑

i=0

βi x̄ = α + x̄
∞∑

i=0

βi , (19-3)

where x̄ is the permanent value of xt . For this value to be finite, we require that∣∣∣∣∣
∞∑

i=0

βi

∣∣∣∣∣ < ∞. (19-4)

Consider the effect of a unit change in x̄ occurring in period s. To focus ideas, consider
the earlier example of demand for gasoline and suppose that xt is the unit price. Prior to
the oil shock, demand had reached an equilibrium consistent with accumulated habits,
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FIGURE 19.1 Lagged Adjustment.

experience with stable real prices, and the accumulated stocks of vehicles. Now suppose
that the price of gasoline, Pg, rises permanently from P̄g to P̄g + 1 in period s. The
path to the new equilibrium might appear as shown in Figure 19.1. The short-run effect
is the one that occurs in the same period as the change in x. This effect is β0 in the figure.

DEFINITION 19.1 Impact Multiplier
β0 = impact multiplier = short-run multiplier.

DEFINITION 19.2 Cumulated Effect
The accumulated effect τ periods later of an impulse at time t is βτ = ∑τ

i=0 βi .

In Figure 19.1, we see that the total effect of a price change in period t after three periods
have elapsed will be β0 + β1 + β2 + β3.

The difference between the old equilibrium D0 and the new one D1 is the sum of
the individual period effects. The long-run multiplier is this total effect.
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DEFINITION 19.3 Equilibrium Multiplier
β = ∑∞

i=0 βi = equilibrium multiplier = long-run multiplier.

Since the lag coefficients are regression coefficients, their scale is determined by the
scales of the variables in the model. As such, it is often useful to define the

lag weights: wi = βi∑∞
j=0 β j

(19-5)

so that
∑∞

i=0 wi = 1, and to rewrite the model as

yt = α + β

∞∑
i=0

wi xt−i + εt . (19-6)

(Note the equation for the expected price in Example 19.1.) Two useful statistics, based
on the lag weights, that characterize the period of adjustment to a new equilibrium are
the median lag = smallest q∗ such that

∑q∗
i=0 wi ≥ 0.5 and the mean lag = ∑∞

i=0 iwi .2

19.2.2 THE LAG AND DIFFERENCE OPERATORS

A convenient device for manipulating lagged variables is the lag operator,

Lxt = xt−1.

Some basic results are La = a if a is a constant and L(Lxt ) = L2xt = xt−2. Thus,
Lpxt = xt−p, Lq(Lpxt ) = Lp+qxt = xt−p−q, and (Lp + Lq)xt = xt−p + xt−q. By convention,
L0xt = 1xt = xt . A related operation is the first difference,

�xt = xt − xt−1.

Obviously, �xt = (1 − L)xt and xt = xt−1 + �xt . These two operations can be usefully
combined, for example, as in

�2xt = (1 − L)2xt = (1 − 2L+ L2)xt = xt − 2xt−1 + xt−2.

Note that

(1 − L)2xt = (1 − L)(1 − L)xt = (1 − L)(xt − xt−1) = (xt − xt−1) − (xt−1 − xt−2).

The dynamic regression model can be written

yt = α +
∞∑

i=0

βi Li xt + εt = α + B(L)xt + εt ,

2If the lag coefficients do not all have the same sign, then these results may not be meaningful. In some contexts,
lag coefficients with different signs may be taken as an indication that there is a flaw in the specification of
the model.
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where B(L) is a polynomial in L, B(L) = β0 + β1L + β2L2 + · · · . A polynomial in the
lag operator that reappears in many contexts is

A(L) = 1 + aL+ (aL)2 + (aL)3 + · · · =
∞∑

i=0

(aL)i .

If |a| < 1, then

A(L) = 1
1 − aL

.

A distributed lag model in the form

yt = α + β

∞∑
i=0

γ i Li xt + εt

can be written

yt = α + β(1 − γ L)−1xt + εt ,

if |γ | < 1. This form is called the moving-average form or distributed lag form. If we
multiply through by (1−γ L) and collect terms, then we obtain the autoregressive form,

yt = α(1 − γ ) + βxt + γ yt−1 + (1 − γ L)εt .

In more general terms, consider the pth order autoregressive model,

yt = α + βxt + γ1 yt−1 + γ2 yt−2 + · · · + γpyt−p + εt

which may be written

C(L)yt = α + βxt + εt

where

C(L) = (1 − γ1L− γ2L2 − · · · − γpLp).

Can this equation be “inverted” so that yt is written as a function only of current and
past values of xt and εt ? By successively substituting the corresponding autoregressive
equation for yt−1 in that for yt , then likewise for yt−2 and so on, it would appear so.
However, it is also clear that the resulting distributed lag form will have an infinite
number of coefficients. Formally, the operation just described amounts to writing

yt = [C(L)]−1(α + βxt + εt ) = A(L)(α + βxt + εt ).

It will be of interest to be able to solve for the elements of A(L) (see, for example,
Section 19.6.6). By this arrangement, it follows that C(L)A(L) = 1 where

A(L) = (α0L0 − α1L− α2L2 − · · ·).
By collecting like powers of L in

(1 − γ1L− γ2L2 − · · · − γpLp)(α0L0 + α1L+ α2L2 − · · ·) = 1,
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we find that a recursive solution for the α coefficients is

L0: α0 = 1

L1: α1 − γ1α0 = 0

L2: α2 − γ1α1 − γ2α0 = 0

L3: α3 − γ1α2 − γ2α1 − γ3α0 = 0

L4: α4 − γ1α3 − γ2α2 − γ3α1 − γ4α0 = 0
. . .

Lp: αp − γ1αp−1 − γ2αp−2 − · · · − γpα0 = 0

and, thereafter,

Lq: αq − γ1αq−1 − γ2αq−2 − · · · − γpαq−p = 0.

(19-7)

After a set of p−1 starting values, the α coefficients obey the same difference equation
as yt does in the dynamic equation. One problem remains. For the given set of values, the
preceding gives no assurance that the solution for αq does not ultimately explode. The
equation system above is not necessarily stable for all values of γ j (though it certainly
is for some). If the system is stable in this sense, then the polynomial C(L) is said to be
invertible. The necessary conditions are precisely those discussed in Section 19.4.3, so
we will defer completion of this discussion until then.

Finally, two useful results are

B(1) = β010 + β111 + β212 + · · · = β = long-run multiplier

and

B′(1) = [dB(L)/dL]|L=1 =
∞∑

i=0

iβi .

It follows that B′(1)/B(1) = mean lag.

19.2.3 SPECIFICATION SEARCH FOR THE LAG LENGTH

Various procedures have been suggested for determining the appropriate lag length in
a dynamic model such as

yt = α +
p∑

i=0

βi xt−i + εt . (19-8)

One must be careful about a purely significance based specification search. Let us
suppose that there is an appropriate, “true” value of p > 0 that we seek. A simple-to-
general approach to finding the right lag length would depart from a model with only the
current value of the independent variable in the regression, and add deeper lags until a
simple t test suggested that the last one added is statistically insignificant. The problem
with such an approach is that at any level at which the number of included lagged
variables is less than p, the estimator of the coefficient vector is biased and inconsistent.
[See the omitted variable formula (8-4).] The asymptotic covariance matrix is biased
as well, so statistical inference on this basis is unlikely to be successful. A general-to-
simple approach would begin from a model that contains more than p lagged values—it
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is assumed that though the precise value of p is unknown, the analyst can posit a
maintained value that should be larger than p. Least squares or instrumental variables
regression of y on a constant and (p + d) lagged values of x consistently estimates
θ = [α, β0, β1, . . . , βp, 0, 0, . . .].

Since models with lagged values are often used for forecasting, researchers have
tended to look for measures that have produced better results for assessing “out of
sample” prediction properties. The adjusted R2 [see Section 3.5.1] is one possibility.
Others include the Akaike (1973) information criterion, AIC(p),

AIC(p) = ln
e′e
T

+ 2p
T

(19-9)

and Schwartz’s criterion, SC(p):

SC(p) = AIC(p) +
(

p
T

)
(ln T − 2). (19-10)

(See Section 8.4.) If some maximum P is known, then p < P can be chosen to minimize
AIC(p) or SC(p).3 An alternative approach, also based on a known P, is to do sequential
F tests on the last P > p coefficients, stopping when the test rejects the hypothesis that
the coefficients are jointly zero. Each of these approaches has its flaws and virtues. The
Akaike information criterion retains a positive probability of leading to overfitting even
as T → ∞. In contrast, SC(p) has been seen to lead to underfitting in some finite sample
cases. They do avoid, however, the inference problems of sequential estimators. The
sequential F tests require successive revision of the significance level to be appropriate,
but they do have a statistical underpinning.4

19.3 SIMPLE DISTRIBUTED LAG MODELS

Before examining some very general specifications of the dynamic regression, we briefly
consider two specific frameworks—finite lag models, which specify a particular value of
the lag length p in 19-8, and an infinite lag model, which emerges from a simple model
of expectations.

19.3.1 FINITE DISTRIBUTED LAG MODELS

An unrestricted finite distributed lag model would be specified as

yt = α +
p∑

i=0

βi xt−i + εt . (19-11)

We assume that xt satisfies the conditions discussed in Section 5.2. The assumption
that there are no other regressors is just a convenience. We also assume that εt is
distributed with mean zero and variance σ 2

ε . If the lag length p is known, then (19-11)
is a classical regression model. Aside from questions about the properties of the

3For further discussion and some alternative measures, see Geweke and Meese (1981), Amemiya (1985,
pp. 146–147), Diebold (1998a, pp. 85–91), and Judge et al. (1985, pp. 353–355).
4See Pagano and Hartley (1981) and Trivedi and Pagan (1979).
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independent variables, the usual estimation results apply.5 But the appropriate length
of the lag is rarely, if ever, known, so one must undertake a specification search, with
all its pitfalls. Worse yet, least squares may prove to be rather ineffective because
(1) time series are sometimes fairly short, so (19-11) will consume an excessive number
of degrees of freedom;6 (2) εt will usually be serially correlated; and (3) multicollinearity
is likely to be quite severe.

Restricted lag models which parameterize the lag coefficients as functions of a few
underlying parameters are a practical approach to the problem of fitting a model with
long lags in a relatively short time series. An example is the polynomial distributed
lag (PDL) [or Almon (1965) lag in reference to S. Almon, who first proposed the
method in econometrics]. The polynomial model assumes that the true distribution of
lag coefficients can be well approximated by a low-order polynomial,

βi = α0 + α1i + α2i2 + · · · + αpiq, i = 0, 1, . . . , p > q. (19-12)

After substituting (19-12) in (19-11) and collecting terms, we obtain

yt = γ + α0

(
p∑

i=0

i0xt−i

)
+ α1

(
p∑

i=0

i1xt−i

)
+ · · · + αq

(
p∑

i=0

iqxt−i

)
+ εt

= γ + α0z0t + α1z1t + · · · + αqzqt + εt .

(19-13)

Each zjt is a linear combination of the current and p lagged values of xt . With the
assumption of strict exogeneity of xt , γ and (α0, α1, . . . , αq) can be estimated by ordinary
or generalized least squares. The parameters of the regression model, βi and asymptotic
standard errors for the estimators can then be obtained using the delta method (see
Section D.2.7).

The polynomial lag model and other tightly structured finite lag models are only
infrequently used in contemporary applications. They have the virtue of simplicity, al-
though modern software has made this quality a modest virtue. The major drawback is
that they impose strong restrictions on the functional form of the model and thereby
often induce autocorrelation that is essentially an artifact of the missing variables and
restrictive functional form in the equation. They remain useful tools in some forecasting
settings and analysis of markets, as in Example 19.3, but in recent work in macroeco-
nomic and financial modeling, where most of this sort of analysis takes place, the avail-
ability of ample data has made restrictive specifications such as the PDL less attractive
than other tools.

19.3.2 AN INFINITE LAG MODEL: THE GEOMETRIC LAG MODEL

There are cases in which the distributed lag models the accumulation of information.
The formation of expectations is an example. In these instances, intuition suggests that

5The question of whether the regressors are well behaved or not becomes particularly pertinent in this setting,
especially if one or more of them happen to be lagged values of the dependent variable. In what follows, we
shall assume that the Grenander conditions discussed in Section 5.2.1 are met. We thus assume that the usual
asymptotic results for the classical or generalized regression model will hold.
6Even when the time series is long, the model may be problematic—in this instance, the assumption that
the same model can be used, without structural change through the entire time span becomes increasingly
suspect the longer the time series is. See Sections 7.4 and 7.7 for analysis of this issue.
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the most recent past will receive the greatest weight and that the influence of past
observations will fade uniformly with the passage of time. The geometric lag model is
often used for these settings. The general form of the model is

yt = α + β

∞∑
i=1

(1 − λ)λi xt−i + εt , 0 < λ < 1,

= α + β B(L)xt + εt ,

(19-14)

where

B(L) = (1 − λ)(1 + λL+ λ2L2 + λ3L3 + · · ·) = 1 − λ

1 − λL
.

The lag coefficients are βi = β(1 − λ)λi . The model incorporates infinite lags, but it as-
signs arbitrarily small weights to the distant past. The lag weights decline geometrically;

wi = (1 − λ)λi , 0 ≤ wi < 1.

The mean lag is

w̄ = B′(1)

B(1)
= λ

1 − λ
.

The median lag is p∗ such that
∑p∗−1

i=0 wi = 0.5. We can solve for p∗ by using the result
p∑

i=0

λi = 1 − λp+1

1 − λ
.

Thus,

p∗ = ln 0.5
ln λ

− 1.

The impact multiplier is β(1 − λ). The long run multiplier is β
∑∞

i=0 (1 − λ)λi = β. The
equilibrium value of yt would be found by fixing xt at x̄ and εt at zero in (19-14), which
produces ȳ = α + β x̄.

The geometric lag model can be motivated with an economic model of expectations.
We begin with a regression in an expectations variable such as an expected future price
based on information available at time t, x∗

t+1|t , and perhaps a second regressor, wt ,

yt = α + βx∗
t+1|t + δwt + εt ,

and a mechanism for the formation of the expectation,

x∗
t+1|t = λx∗

t |t−1 + (1 − λ)xt = λLx∗
t+1|t + (1 − λ)xt . (19-15)

The currently formed expectation is a weighted average of the expectation in the previ-
ous period and the most recent observation. The parameter λ is the adjustment coeffi-
cient. If λ equals 1, then the current datum is ignored and expectations are never revised.
A value of zero characterizes a strict pragmatist who forgets the past immediately. The
expectation variable can be written as

x∗
t+1|t = 1 − λ

1 − λL
xt = (1 − λ)[xt + λxt−1 + λ2xt−2 + · · ·]. (19-16)
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Inserting (19-16) into (19-15) produces the geometric distributed lag model,

yt = α + β(1 − λ)[xt + λxt−1 + λ2xt−2 + · · ·] + δwt + εt .

The geometric lag model can be estimated by nonlinear least squares. Rewrite it as

yt = α + γ zt (λ) + δwt + εt , γ = β(1 − λ). (19-17)

The constructed variable zt (λ) obeys the recursion zt (λ) = xt + λzt−1(λ). For the first
observation, we use z1(λ) = x∗

1|0 = x1/(1 − λ). If the sample is moderately long, then
assuming that xt was in long-run equilibrium, although it is an approximation, will not
unduly affect the results. One can then scan over the range of λ from zero to one to locate
the value that minimizes the sum of squares. Once the minimum is located, an estimate of
the asymptotic covariance matrix of the estimators of (α, γ, δ, λ) can be found using (9-9)
and Theorem 9.2. For the regression function ht (data | α, γ, δ, λ), x0

t1 = 1, x0
t2 = zt (λ),

and x0
t3 = wt . The derivative with respect to λ can be computed by using the recursion

dt (λ) = ∂zt (λ)/∂λ = zt−1(λ) + λ∂zt−1(λ)/∂λ. If z1 = x1/(1 − λ), then d1(λ) = z1/(1 − λ).
Then, x0

t4 = dt (λ). Finally, we estimate β from the relationship β = γ /(1 − λ) and use
the delta method to estimate the asymptotic standard error.

For purposes of estimating long- and short-run elasticities, researchers often use a
different form of the geometric lag model. The partial adjustment model describes the
desired level of yt ,

y∗
t = α + βxt + δwt + εt ,

and an adjustment equation,

yt − yt−1 = (1 − λ)(y∗
t − yt−1).

If we solve the second equation for yt and insert the first expression for y∗
t , then we

obtain

yt = α(1 − λ) + β(1 − λ)xt + δ(1 − λ)wt + λyt−1 + (1 − λ)εt

= α′ + β ′xt + δ′wt + λyt−1 + ε′
t .

This formulation offers a number of significant practical advantages. It is intrinsically
linear in the parameters (unrestricted), and its disturbance is nonautocorrelated if εt

was to begin with. As such, the parameters of this model can be estimated consistently
and efficiently by ordinary least squares. In this revised formulation, the short-run
multipliers for xt and wt are β ′ and δ′. The long-run effects are β = β ′/(1 − λ) and
δ = δ′/(1 − λ). With the variables in logs, these effects are the short- and long-run
elasticities.

Example 19.2 Expectations Augmented Phillips Curve
In Example 12.3, we estimated an expectations augmented Phillips curve of the form

�pt − E [�pt | �t−1] = β[ut − u∗] + εt .

This model assumes a particularly simple model of expectations, E [�pt | �t−1] = �pt−1. The
least squares results for this equation were

�pt − �pt−1 = 0.49189 − 0.090136 ut + et

(0.7405) (0.1257) R2 = 0.002561, T = 201.
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FIGURE 19.2 Sums of Squares for Phillips Curve Estimates.

The implied estimate of the natural rate of unemployment is −(0.49189/−0.090136) or about
5.46 percent. Suppose we allow expectations to be formulated less pragmatically with the
expectations model in (19-15). For this setting, this would be

E [�pt | �t−1] = λE [�pt−1 | �t−2] + (1 − λ)�pt−1.

The strict pragmatist has λ = 0.0. Using the method set out earlier, we would compute this
for different values of λ, recompute the dependent variable in the regression, and locate the
value of λ which produces the lowest sum of squares. Figure 19.2 shows the sum of squares
for the values of λ ranging from 0.0 to 1.0.

The minimum value of the sum of squares occurs at λ = 0.66. The least squares regression
results are

�pt − �̂pt−1 = 1.69453 − 0.30427 ut + et

(0.6617) (0.11125) T = 201.

The estimated standard errors are computed using the method described earlier for the
nonlinear regression. The extra variable described in the paragraph after (19-17) accounts
for the estimated λ. The estimated asymptotic covariance matrix is then computed using
(e′e/201) [W′W]−1 where w1 = 1, w2 = ut and w3 = ∂�̂pt−1/∂λ. The estimated standard error
for λ is 0.04610. Since this is highly statistically significantly different from zero ( t = 14.315) ,
we would reject the simple model. Finally, the implied estimate of the natural rate of unemploy-
ment is −(−1.69453/.30427) or about 5.57 percent. The estimated asymptotic covariance of
the slope and constant term is −0.0720293, so, using this value and the estimated standard
errors given above and the delta method, we obtain an estimated standard error for this es-
timate of 0.5467. Thus, a confidence interval for the natural rate of unemployment based on
these results would be (4.49%, 6.64%) which is in line with our prior expectations. There are
two things to note about these results. First, since the dependent variables are different, we
cannot compare the R2s of the models with λ = 0.00 and λ = 0.66. But, the sum of squares
for the two models can be compared; they are 1592.32 and 1112.89, so the second model



Greene-50240 book June 26, 2002 21:55

570 CHAPTER 19 ✦ Models with Lagged Variables

TABLE 19.1 Estimated Distributed Lag Models

Expectations Partial Adjustment

Coefficient Unrestricted Estimated Derived Estimated Derived

Constant −18.165 −18.080 −5.133 −14.102
Ln Pnc 0.190 −0.0592 −0.139 −0.382
Ln Puc 0.0802 0.370 0.126 0.346
Ln Ppt −0.0754 0.116 0.051 0.140
Trend −0.0336 −0.0399 −0.0106 −0.029

Ln Pg −0.209 — −0.171∗ −0.118 −0.118
Ln Pg[−1] −0.133 — −0.113 — −0.075
Ln Pg[−2] 0.0820 — −0.074 — −0.048
Ln Pg[−3] 0.0026 — −0.049 — −0.030
Ln Pg[−4] −0.0585 — −0.032 — −0.019
Ln Pg[−5] 0.0455 — −0.021 — −0.012
Ln income 0.785 — 0.877∗ 0.772 0.772
Ln Y[−1] −0.0138 — 0.298 — 0.491
Ln Y[−2] 0.696 — 0.101 — 0.312
Ln Y[−3] 0.0876 — 0.034 — 0.199
Ln Y[−4] 0.257 — 0.012 — 0.126
Ln Y[−5] 0.779 — 0.004 — 0.080
Zt(price G) — −0.171 — 0.051
Zt(income) — 0.877 —
Ln G/pop[−1] — — 0.636
β — −0.502 —
γ 2.580 —
λ — 0.66 0.636
e′e 0.001649509 0.0098409286 0.01250433
T 31 36 35

∗Estimated directly.

fits far better. One of the payoffs is the much narrower confidence interval for the natural
rate. The counterpart to the one given above when λ = 0.00 is (1.13%, 9.79%). No doubt
the model could be improved still further by expanding the equation. (This is considered in
the exercises.)

Example 19.3 Price and Income Elasticities of Demand for Gasoline
We have extended the gasoline demand equation estimated in Examples 2.3, 4.4, and 7.6
to allow for dynamic effects. Table 19.1 presents estimates of three distributed lag models
for gasoline consumption. The unrestricted model allows 5 years of adjustment in the price
and income effects. The expectations model includes the same distributed lag (λ) on price
and income but different long-run multipliers (βPg and βI ) . [Note, for this formulation, that the
extra regressor used in computing the asymptotic covariance matrix is dt (λ) = βPgdprice(λ) +
βI dincome(λ) .] Finally, the partial adjustment model implies lagged effects for all the variables
in the model. To facilitate comparison, the constant and the first four slope coefficients in the
partial adjustment model have been divided by the estimate of (1−λ) . The implied long- and
short-run price and income elasticities are shown in Table 19.2. The ancillary elasticities for
the prices of new and used cars and for public transportation vary surprisingly widely across
the models, but the price and income elasticities are quite stable.

As might be expected, the best fit to the data is provided by the unrestricted lag model.
The sum of squares is far lower for this form than for the other two. A direct comparison is
difficult, because the models are not nested and because they are based on different numbers
of observations. As an approximation, we can compute the sum of squared residuals for
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TABLE 19.2 Estimated Elasticities

Short Run Long Run

Price Income Price Income

Unrestricted model −0.209 0.785 −0.270 2.593
Expectations model −0.170 0.901 −0.502 2.580
Partial adjustment model −0.118 0.772 −0.324 2.118

the estimated distributed lag model, using only the 31 observations used to compute the
unrestricted model. This sum of squares is 0.009551995087. An F statistic based on this
sum of squares would be

F [17 − 8, 31 − 17] = (0.009551995 − 0.0016495090)/9
0.0016495090/14

= 7.4522.

The 95 percent critical value for this distribution is 2.646, so the restrictions of the distributed
lag model would be rejected. The same computation (same degrees of freedom) for the partial
adjustment model produces a sum of squares of 0.01215449 and an F of 9.68. Once again,
these are only rough indicators, but they do suggest that the restrictions of the distributed
lag models are inappropriate in the context of the model with five lagged values for price and
income.

19.4 AUTOREGRESSIVE DISTRIBUTED
LAG MODELS

Both the finite lag models and the geometric lag model impose strong, possibly in-
correct restrictions on the lagged response of the dependent variable to changes in
an independent variable. A very general compromise that also provides a useful plat-
form for studying a number of interesting methodological issues is the autoregressive
distributed lag (ARDL) model,

yt = µ +
p∑

i=1

γi yt−i +
r∑

j=0

β j xt− j + δwt + εt , (19-18)

in which εt is assumed to be serially uncorrelated and homoscedastic (we will relax both
these assumptions in Chapter 20). We can write this more compactly as

C(L)yt = µ + B(L)xt + δwt + εt

by defining polynomials in the lag operator,

C(L) = 1 − γ1L− γ2L2 − · · · − γpLp

and

B(L) = β0 + β1L+ β2L2 + · · · + βr Lr .

The model in this form is denoted ARDL(p, r) to indicate the orders of the two poly-
nomials in L. The partial adjustment model estimated in the previous section is the
special case in which p equals 1 and r equals 0. A number of other special cases are also
interesting, including the familiar model of autocorrelation (p = 1, r = 1, β1 = −γ1β0),
the classical regression model (p = 0, r = 0), and so on.
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19.4.1 ESTIMATION OF THE ARDL MODEL

Save for the presence of the stochastic right-hand-side variables, the ARDL is a linear
model with a classical disturbance. As such, ordinary least squares is the efficient esti-
mator. The lagged dependent variable does present a complication, but we considered
this in Section 5.4. Absent any obvious violations of the assumptions there, least squares
continues to be the estimator of choice. Conventional testing procedures are, as before,
asymptotically valid as well. Thus, for testing linear restrictions, the Wald statistic can
be used, although the F statistic is generally preferable in finite samples because of its
more conservative critical values.

One subtle complication in the model has attracted a large amount of attention
in the recent literature. If C(1) = 0, then the model is actually inestimable. This fact
is evident in the distributed lag form, which includes a term µ/C(1). If the equivalent
condition �iγi = 1 holds, then the stochastic difference equation is unstable and a host
of other problems arise as well. This implication suggests that one might be interested
in testing this specification as a hypothesis in the context of the model. This restriction
might seem to be a simple linear constraint on the alternative (unrestricted) model in
(19-18). Under the null hypothesis, however, the conventional test statistics do not have
the familiar distributions. The formal derivation is complicated [in the extreme, see
Dickey and Fuller (1979) for example], but intuition should suggest the reason. Under
the null hypothesis, the difference equation is explosive, so our assumptions about well
behaved data cannot be met. Consider a simple ARDL(1, 0) example and simplify it
even further with B(L) = 0. Then,

yt = µ + γ yt−1 + εt .

If γ equals 1, then

yt = µ + yt−1 + εt .

Assuming we start the time series at time t = 1,

yt = tµ + �sεs = tµ + vt .

The conditional mean in this random walk with drift model is increasing without limit,
so the unconditional mean does not exist. The conditional mean of the disturbance, vt , is
zero, but its conditional variance is tσ 2, which shows a peculiar type of heteroscedasticity.
Consider least squares estimation of µ with m = (t′y)/(t′t), where t = [1, 2, 3, . . . , T].
Then E [m] = µ + E [(t′t)−1(t′v)] = µ, but

Var[m] = σ 2 ∑T
t=1 t3

(∑T
t=1 t2

)2 = O(T4)

[O(T3)]2
= O

(
1

T2

)
.

So, the variance of this estimator is an order of magnitude smaller than we are used to
seeing in regression models. Not only is m mean square consistent, it is “superconsis-
tent.” As such, without doing a formal derivation, we conclude that there is something
“unusual” about this estimator and that the “usual” testing procedures whose distribu-
tions build on the distribution of

√
T(m − µ) will not be appropriate; the variance of

this normalized statistic converges to zero.
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This result does not mean that the hypothesis γ = 1 is not testable in this model.
In fact, the appropriate test statistic is the conventional one that we have computed for
comparable tests before. But the appropriate critical values against which to measure
those statistics are quite different. We will return to this issue in our discussion of the
Dickey–Fuller test in Section 20.3.4.

19.4.2 COMPUTATION OF THE LAG WEIGHTS IN THE ARDL MODEL

The distributed lag form of the ARDL model is

yt = µ

C(L)
+ B(L)

C(L)
xt + 1

C(L)
δwt + 1

C(L)
εt

= µ

1 − γ1 − · · · − γp
+

∞∑
j=0

α j xt− j + δ

∞∑
l=0

θlwt−l +
∞∑

l=0

θlεt−l .

This model provides a method of approximating a very general lag structure. In
Jorgenson’s (1966) study, in which he labeled this model a rational lag model, he demon-
strated that essentially any desired shape for the lag distribution could be produced with
relatively few parameters.7

The lag coefficients on xt , xt−1, . . . in the ARDL model are the individual terms in
the ratio of polynomials that appear in the distributed lag form. We denote these as
coefficients

α0, α1, α2, . . . = the coefficient on 1, L, L2, . . . in
B(L)

C(L)
. (19-19)

A convenient way to compute these coefficients is to write (19-19) as A(L)C(L) = B(L).
Then we can just equate coefficients on the powers of L. Example 19.4 demonstrates
the procedure.

The long-run effect in a rational lag model is
∑∞

i=0 αi . This result is easy to compute
since it is simply

∞∑
i=0

αi = B(1)

C(1)
.

A standard error for the long-run effect can be computed using the delta method.

19.4.3 STABILITY OF A DYNAMIC EQUATION

In the geometric lag model, we found that a stability condition |λ| < 1 was necessary
for the model to be well behaved. Similarly, in the AR(1) model, the autocorrelation
parameter ρ must be restricted to |ρ| < 1 for the same reason. The dynamic model in
(19-18) must also be restricted, but in ways that are less obvious. Consider once again
the question of whether there exists an equilibrium value of yt .

In (19-18), suppose that xt is fixed at some value x̄, wt is fixed at zero, and the distur-
bances εt are fixed at their expectation of zero. Would yt converge to an equilibrium?

7A long literature, highlighted by Griliches (1967), Dhrymes (1971), Nerlove (1972), Maddala (1977a), and
Harvey (1990), describes estimation of models of this sort.
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The relevant dynamic equation is

yt = ᾱ + γ1 yt−1 + γ2 yt−2 + · · · + γpyt−p,

where ᾱ = µ + B(1)x̄. If yt converges to an equilibrium, then, that equilibrium is

ȳ = µ + B(1)x̄
C(1)

= ᾱ

C(1)
.

Stability of a dynamic equation hinges on the characteristic equation for the autore-
gressive part of the model. The roots of the characteristic equation,

C(z) = 1 − γ1z − γ2z2 − · · · − γpzp = 0, (19-20)

must be greater than one in absolute value for the model to be stable. To take a simple
example, the characteristic equation for the first-order models we have examined thus
far is

C(z) = 1 − λz = 0.

The single root of this equation is z = 1/λ, which is greater than one in absolute value if
|λ| is less than one. The roots of a more general characteristic equation are the reciprocals
of the characteristic roots of the matrix

C =




γ1 γ2 γ3 . . . γp−1 γp

1 0 0 . . . 0 0
0 1 0 . . . 0 0
0 0 1 . . . 0 0

. . .

0 0 0 . . . 1 0




. (19-21)

Since the matrix is asymmetric, its roots may include complex pairs. The reciprocal of
the complex number a + bi is a/M − (b/M)i , where M = a2 + b2 and i2 = −1. We thus
require that M be less than 1.

The case of z = 1, the unit root case, is often of special interest. If one of the
roots of C(z) = 0 is 1, then it follows that

∑p
i=1 γi = 1. This assumption would appear

to be a simple hypothesis to test in the framework of the ARDL model. Instead, we
find the explosive case that we examined in Section 19.4.1, so the hypothesis is more
complicated than it first appears. To reiterate, under the null hypothesis that C(1) = 0,
it is not possible for the standard F statistic to have a central F distribution because of
the behavior of the variables in the model. We will return to this case shortly.

The univariate autoregression,

yt = µ + γ1 yt−1 + γ2 yt−2 + · · · + γpyt−p + εt ,

can be augmented with the p − 1 equations

yt−1 = yt−1,

yt−2 = yt−2,

and so on to give a vector autoregression, VAR (to be considered in the next section):

yt = µ + Cyt−1 + εt ,
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where yt has p elements εt = (εt , 0, . . .)′ and µ = (µ, 0, 0, . . .)′. Since it will ultimately
not be relevant to the solution, we will let εt equal its expected value of zero. Now, by
successive substitution, we obtain

yt = µ + Cµ + C2µ + · · · ,
which may or may not converge. Write C in the spectral form C = P�Q, where QP = I
and � is a diagonal matrix of the characteristic roots. (Note that the characteristic roots
in � and vectors in P and Q may be complex.) We then obtain

yt =
[ ∞∑

i=0

P�i Q

]
µ. (19-22)

If all the roots of C are less than one in absolute value, then this vector will converge to
the equilibrium

y∞ = (I − C)−1µ.

Nonexplosion of the powers of the roots of C is equivalent to |λp| < 1, or |1/λp| > 1,
which was our original requirement. Note finally that since µ is a multiple of the first
column of Ip, it must be the case that each element in the first column of (I − C)−1 is
the same. At equilibrium, therefore, we must have yt = yt−1 = · · · = y∞.

Example 19.4 A Rational Lag Model
Appendix Table F5.1 lists quarterly data on a number of macroeconomic variables including
consumption and disposable income for the U.S. economy for the years 1950 to 2000, a
total of 204 quarters. The model

ct = δ + β0 yt + β1 yt−1 + β2 yt−2 + β3 yt−3 + γ1ct−1 + γ2ct−2 + γ3ct−3 + εt

is estimated using the logarithms of consumption and disposable income, denoted ct and
yt . Ordinary least squares estimates of the parameters of the ARDL(3,3) model are

ct = 0.7233ct−1 + 0.3914ct−2 − 0.2337ct−3

+ 0.5651yt − 0.3909yt−1 − 0.2379yt−2 + 0.902yt−3 + et .

(A full set of quarterly dummy variables is omitted.) The Durbin–Watson statistic is 1.78957,
so remaining autocorrelation seems unlikely to be a consideration. The lag coefficients are
given by the equality

(α0 + α1L + α2L2 + · · ·) (1 − γ1L − γ2L2 − γ3L3) = (β0 + β1L + β2L2 + β3L3) .

Note that A( L ) is an infinite polynomial. The lag coefficients are

1: α0 = β0 (which will always be the case),

L1: −α0γ1 + α1 = β1 or α1 = β1 + α0γ1,

L2: −α0γ2 − α1γ1 + α2 = β2 or α2 = β2 + α0γ2 + α1γ1,

L3: −α0γ3 − α1γ2 − α2γ1 + α3 = β3 or α3 = β3 + α0γ3 + α1γ2 + α2γ1,

L4: −α1γ3 − α2γ2 − α3γ1 + α4 = 0 or α4 = γ1α3 + γ2α2 + γ3α1,

L j : −α j −3γ3 − α j −2γ2 − α j −1γ1 + α j = 0 or α j = γ1α j −1 + γ2α j −2 + γ3α j −3, j = 5, 6, . . .

and so on. From the fifth term onward, the series of lag coefficients follows the recursion
α j = γ1α j −1 + γ2α j −2 + γ3α j −3, which is the same as the autoregressive part of the ARDL
model. The series of lag weights follows the same difference equation as the current and
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TABLE 19.3 Lag Coefficients in a Rational Lag Model

Lag 0 1 2 3 4 5 6 7
ARDL .565 .018 −.004 .062 .039 .054 .039 .041
Unrestricted .954 −.090 −.063 .100 −.024 .057 −.112 .236

lagged values of yt after r initial values, where r is the order of the DL part of the ARDL
model. The three characteristic roots of the C matrix are 0.8631, −0.5949, and 0.4551. Since
all are less than one, we conclude that the stochastic difference equation is stable.

The first seven lag coefficients of the estimated ARDL model are listed in Table 19.3 with
the first seven coefficients in an unrestricted lag model. The coefficients from the ARDL model
only vaguely resemble those from the unrestricted model, but the erratic swings of the latter
are prevented by the smooth equation from the distributed lag model. The estimated long-
term effects (with standard errors in parentheses) from the two models are 1.0634 (0.00791)
from the ARDL model and 1.0570 (0.002135) from the unrestricted model. Surprisingly, in view
of the large and highly significant estimated coefficients, the lagged effects fall off essentially
to zero after the initial impact.

19.4.4 FORECASTING

Consider, first, a one-period-ahead forecast of yt in the ARDL(p, r) model. It will be
convenient to collect the terms in µ, xt , wt , and so on in a single term,

µt = µ +
r∑

j=0

β j xt− j + δwt .

Now, the ARDL model is just

yt = µt + γ1 yt−1 + · · · + γpyt−p + εt .

Conditioned on the full set of information available up to time T and on forecasts of
the exogenous variables, the one-period-ahead forecast of yt would be

ŷT+1|T = µ̂T+1|T + γ1 yT + · · · + γpyT−p+1 + ε̂T+1|T.

To form a prediction interval, we will be interested in the variance of the forecast error,

eT+1|T = ŷT+1|T − yT+1.

This error will arise from three sources. First, in forecasting µt , there will be two sources
of error. The parameters, µ, δ, and β0, . . . , βr will have been estimated, so µ̂T+1|T will
differ from µT+1 because of the sampling variation in these estimators. Second, if the
exogenous variables, xT+1 and wT+1 have been forecasted, then to the extent that these
forecasts are themselves imperfect, yet another source of error to the forecast will result.
Finally, although we will forecast εT+1 with its expectation of zero, we would not assume
that the actual realization will be zero, so this step will be a third source of error. In
principle, an estimate of the forecast variance, Var[eT+1|T], would account for all three
sources of error. In practice, handling the second of these errors is largely intractable
while the first is merely extremely difficult. [See Harvey (1990) and Hamilton (1994,
especially Section 11.7) for useful discussion. McCullough (1996) presents results that
suggest that “intractable” may be too pessimistic.] For the moment, we will concentrate
on the third source and return to the other issues briefly at the end of the section.
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Ignoring for the moment the variation in µ̂T+1|T—that is, assuming that the param-
eters are known and the exogenous variables are forecasted perfectly—the variance of
the forecast error will be simply

Var[eT+1|T | xT+1, wT+1, µ, β, δ, yT, . . .] = Var[εT+1] = σ 2,

so at least within these assumptions, forming the forecast and computing the forecast
variance are straightforward. Also, at this first step, given the data used for the forecast,
the first part of the variance is also tractable. Let zT+1 = [1, xT+1, xT, . . . , xT−r+1, wT, yT,

yT−1, . . . , yT−p+1], and let θ̂ denote the full estimated parameter vector. Then we would
use

Est. Var[eT+1|T | zT+1] = s2 + z′
T+1

{
Est.Asy. Var[θ̂ ]

}
zT+1.

Now, consider forecasting further out beyond the sample period:

ŷT+2|T = µ̂T+2|T + γ1 ŷT+1|T + · · · + γpyT−p+2 + ε̂T+2|T.

Note that for period T + 1, the forecasted yT+1 is used. Making the substitution for
ŷT+1|T , we have

ŷT+2|T = µ̂T+2|T +γ1(µ̂T+1|T +γ1 yT +· · ·+γpyT−p+1 + ε̂T+1|T)+· · ·+γpyT−p+2 + ε̂T+2|T

and, likewise, for subsequent periods. Our method will be simplified considerably if we
use the device we constructed in the previous section. For the first forecast period, write
the forecast with the previous p lagged values as




ŷT+1|T
yT

yT−1
...


 =




µ̂T+1|T
0
0
...


 +




γ1 γ2 · · · γp

1 0 · · · 0
0 1 · · · 0
0 · · · 1 0







yT

yT−1

yT−2
...


 +




ε̂T+1|T
0
0
...


 .

The coefficient matrix on the right-hand side is C, which we defined in (19-21). To
maintain the thread of the discussion, we will continue to use the notation µ̂T+1|T for
the forecast of the deterministic part of the model, although for the present, we are
assuming that this value, as well as C, is known with certainty. With this modification,
then, our forecast is the top element of the vector of forecasts,

ŷT+1|T = µ̂T+1|T + CyT + ε̂T+1|T.

Since we are assuming that everything on the right-hand side is known except the period
T + 1 disturbance, the covariance matrix for this p + 1 vector is

E [(ŷT+1|T − yT+1)(ŷT+1|T − yT+1)
′] =




σ 2 0 · · ·
0 0

...
... · · · . . .


 ,

and the forecast variance for ŷT+1|T is just the upper left element, σ 2.
Now, extend this notation to forecasting out to periods T + 2, T + 3, and so on:

ŷT+2|T = µ̂T+2|T + CŷT+1|T + ε̂T+2|T

= µ̂T+2|T + Cµ̂T+1|T + C2yT + ε̂T+2|T + Cε̂T+1|T.
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Once again, the only unknowns are the disturbances, so the forecast variance for this
two-period-ahead forecasted vector is

Var[ε̂T+2|T + Cε̂T+1|T] =




σ 2 0 · · ·
0 0

...
... · · · . . .


 + C




σ 2 0 · · ·
0 0

...
... · · · . . .


 C′.

Thus, the forecast variance for the two-step-ahead forecast is σ 2[1 + �(1)11], where
�(1)11 is the 1, 1 element of �(1) = Cjj′C′, where j′ = [σ, 0, . . . , 0]. By extending this
device to a forecast F periods beyond the sample period, we obtain

ŷT+F |T =
F∑

f =1

C f −1µ̂T+F−( f −1)|T + CF yT +
F∑

f =1

C f −1ε̂t+F−( f −1)|T. (19-23)

This equation shows how to compute the forecasts, which is reasonably simple. We also
obtain our expression for the conditional forecast variance,

Conditional Var[ŷT+F |T] = σ 2[1 + �(1)11 + �(2)11 + · · · + �(F − 1)11], (19-24)

where �(i) = Ci jj′Ci ′.
The general form of the F-period-ahead forecast shows how the forecasts will

behave as the forecast period extends further out beyond the sample period. If the
equation is stable—that is, if all roots of the matrix C are less than one in absolute
value—then CF will converge to zero, and since the forecasted disturbances are zero,
the forecast will be dominated by the sum in the first term. If we suppose, in addition,
that the forecasts of the exogenous variables are just the period T + 1 forecasted values
and not revised, then, as we found at the end of the previous section, the forecast will
ultimately converge to

lim
F→∞

ŷT+F |T | µ̂T+1|T = [I − C]−1µ̂T+1|T.

To account fully for all sources of variation in the forecasts, we would have to revise the
forecast variance to include the variation in the forecasts of the exogenous variables
and the variation in the parameter estimates. As noted, the first of these is likely to
be intractable. For the second, this revision will be extremely difficult, the more so
when we also account for the matrix C, as well as the vector µ, being built up from the
estimated parameters. One consolation is that in the presence of a lagged value of the
dependent variable, as γ approaches one, the parameter variances tend to order 1/T2

rather than the 1/T we are accustomed to. With this faster convergence, the variation
due to parameter estimation becomes less important. (See Section 20.3.3 for related
results.) The level of difficulty in this case falls from impossible to merely extremely
difficult. In principle, what is required is

Est.Conditional Var[ŷT+F |T] = σ 2[1 + �(1)11 + �(2)11 + · · · + �(F − 1)11]

+ g′Est.Asy. Var[µ̂, β̂, γ̂ ]g,

where

g = ∂ ŷT+F

∂[µ̂, β̂, γ̂ ]
.

[See Hamilton (1994, Appendix to Chapter 11) for formal derivation.]
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One possibility is to use the bootstrap method. For this application, bootstrapping
would involve sampling new sets of disturbances from the estimated distribution of εt ,
and then repeatedly rebuilding the within sample time series of observations on yt by
using

ŷt = µ̂t + γ1 yt−1 + · · · + γpyt−p + ebt (m),

where ebt (m) is the estimated “bootstrapped” disturbance in period t during replica-
tion m. The process is repeated M times, with new parameter estimates and a new
forecast generated in each replication. The variance of these forecasts produces the
estimated forecast variance.8

19.5 METHODOLOGICAL ISSUES IN THE ANALYSIS
OF DYNAMIC MODELS

19.5.1 AN ERROR CORRECTION MODEL

Consider the ARDL(1, 1) model, which has become a workhorse of the modern lit-
erature on time-series analysis. By defining the first differences �yt = yt − yt−1 and
�xt = xt − xt−1 we can rearrange

yt = µ + γ1 yt−1 + β0xt + β1xt−1 + εt

to obtain

�yt = µ + β0�xt + (γ1 − 1)(yt−1 − θxt−1) + εt , (19-25)

where θ = −(β0 + β1)/(γ1 − 1). This form of the model is in the error correction
form. In this form, we have an equilibrium relationship, �yt = µ + β0�xt + εt , and
the equilibrium error, (γ1 − 1)(yt−1 − θxt−1), which account for the deviation of the
pair of variables from that equilibrium. The model states that the change in yt from
the previous period consists of the change associated with movement with xt along the
long-run equilibrium path plus a part (γ1 − 1) of the deviation (yt−1 − θxt−1) from the
equilibrium. With a model in logs, this relationship would be in proportional terms.

It is useful at this juncture to jump ahead a bit—we will return to this topic in some
detail in Chapter 20—and explore why the error correction form might be such a useful
formulation of this simple model. Consider the logged consumption and income data
plotted in Figure 19.3. It is obvious on inspection of the figure that a simple regression
of the log of consumption on the log of income would suggest a highly significant
relationship; in fact, the simple linear regression produces a slope of 1.0567 with a t
ratio of 440.5 (!) and an R2 of 0.99896. The disturbing result of a line of literature in
econometrics that begins with Granger and Newbold (1974) and continues to the present
is that this seemingly obvious and powerful relationship might be entirely spurious.
Equally obvious from the figure is that both ct and yt are trending variables. If, in fact,
both variables unconditionally were random walks with drift of the sort that we met
at the end of Section 19.4.1—that is, ct = tµc + vt and likewise for yt —then we would
almost certainly observe a figure such as 19.3 and compelling regression results such
as those, even if there were no relationship at all. In addition, there is ample evidence

8Bernard and Veall (1987) give an application of this technique. See, also, McCullough (1996).
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FIGURE 19.3 Consumption and Income Data.

in the recent literature that low-frequency (infrequently observed, aggregated over
long periods) flow variables such as consumption and output are, indeed, often well
described as random walks. In such data, the ARDL(1, 1) model might appear to be
entirely appropriate even if it is not. So, how is one to distinguish between the spurious
regression and a genuine relationship as shown in the ARDL(1, 1)? The first difference
of consumption produces �ct = µc +vt −vt−1. If the random walk proposition is indeed
correct, then the spurious appearance of regression will not survive the first differencing,
whereas if there is a relationship between ct and yt , then it will be preserved in the error
correction model. We will return to this issue in Chapter 20, when we examine the issue
of integration and cointegration of economic variables.

Example 19.5 An Error Correction Model for Consumption
The error correction model is a nonlinear regression model, although in fact it is intrinsically
linear and can be deduced simply from the unrestricted form directly above it. Since the
parameter θ is actually of some interest, it might be more convenient to use nonlinear least
squares and fit the second form directly. (Since the model is intrinsically linear, the nonlinear
least squares estimates will be identical to the derived linear least squares estimates.) The
logs of consumption and income data in Appendix Table F5.1 are plotted in Figure 19.3. Not
surprisingly, the two variables are drifting upward together.

The estimated error correction model, with estimated standard errors in parentheses, is

ct − ct−1 = −0.08533 + (0.90458 − 1) [ct−1 − 1.06034yt−1] + 0.58421( yt − yt−1) .

(0.02899) (0.03029) (0.01052) (0.05090)

The estimated equilibrium errors are shown in Figure 19.4. Note that they are all positive,
but that in each period, the adjustment is in the opposite direction. Thus (according to this
model), when consumption is below its equilibrium value, the adjustment is upward, as might
be expected.
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19.5.2 AUTOCORRELATION

The disturbance in the error correction model is assumed to be nonautocorrelated. As
we saw in Chapter 12, autocorrelation in a model can be induced by misspecification. An
orthodox view of the modeling process might state, in fact, that this misspecification is the
only source of autocorrelation. Although admittedly a bit optimistic in its implication,
this misspecification does raise an interesting methodological question. Consider once
again the simplest model of autocorrelation from Chapter 12 (with a small change in
notation to make it consistent with the present discussion),

yt = βxt + vt , vt = ρvt−1 + εt , (19-26)

where εt is nonautocorrelated. As we found earlier, this model can be written as

yt − ρyt−1 = β(xt − ρxt−1) + εt (19-27)

or

yt = ρyt−1 + βxt − βρxt−1 + εt . (19-28)

This model is an ARDL(1, 1) model in which β1 = −γ1β0. Thus, we can view (19-28) as
a restricted version of

yt = γ1 yt−1 + β0xt + β1xt−1 + εt . (19-29)

The crucial point here is that the (nonlinear) restriction on (19-29) is testable, so there is
no compelling reason to proceed to (19-26) first without establishing that the restriction
is in fact consistent with the data. The upshot is that the AR(1) disturbance model, as a
general proposition, is a testable restriction on a simpler, linear model, not necessarily
a structure unto itself.
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Now, let us take this argument to its logical conclusion. The AR(p) disturbance
model,

vt = ρ1vt−1 + · · · + ρpvt−p + εt ,

or R(L)vt = εt , can be written in its moving average form as

vt = εt

R(L)
.

[Recall, in the AR(1) model, that εt = ut +ρut−1 +ρ2ut−2 +· · · .] The regression model
with this AR(p) disturbance is, therefore,

yt = βxt + εt

R(L)
.

But consider instead the ARDL(p, p) model

C(L)yt = βB(L)xt + εt .

These coefficients are the same model if B(L) = C(L). The implication is that any model
with an AR(p) disturbance can be interpreted as a nonlinearly restricted version of an
ARDL(p, p) model.

The preceding discussion is a rather orthodox view of autocorrelation. It is pred-
icated on the AR(p) model. Researchers have found that a more involved model for
the process generating εt is sometimes called for. If the time-series structure of εt is not
autoregressive, much of the preceding analysis will become intractable. As such, there
remains room for disagreement with the strong conclusions. We will turn to models
whose disturbances are mixtures of autoregressive and moving-average terms, which
would be beyond the reach of this apparatus, in Chapter 20.

19.5.3 SPECIFICATION ANALYSIS

The usual explanation of autocorrelation is serial correlation in omitted variables. The
preceding discussion and our results in Chapter 12 suggest another candidate: misspec-
ification of what would otherwise be an unrestricted ARDL model. Thus, upon finding
evidence of autocorrelation on the basis of a Durbin–Watson statistic or an LM statistic,
we might find that relaxing the nonlinear restrictions on the ARDL model is a prefer-
able next step to “correcting” for the autocorrelation by imposing the restrictions and
refitting the model by FGLS. Since an ARDL(p, r) model with AR disturbances, even
with p = 0, is implicitly an ARDL(p + d, r + d) model, where d is usually one, the ap-
proach suggested is just to add additional lags of the dependent variable to the model.
Thus, one might even ask why we would ever use the familiar FGLS procedures. [See,
e.g., Mizon (1995).] The payoff is that the restrictions imposed by the FGLS procedure
produce a more efficient estimator than other methods. If the restrictions are in fact
appropriate, then not imposing them amounts to not using information.

A related question now arises, apart from the issue of autocorrelation. In the context
of the ARDL model, how should one do the specification search? (This question is not
specific to the ARDL or even to the time-series setting.) Is it better to start with a small
model and expand it until conventional fit measures indicate that additional variables
are no longer improving the model, or is it better to start with a large model and pare
away variables that conventional statistics suggest are superfluous? The first strategy,
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going from a simple model to a general model, is likely to be problematic, because the
statistics computed for the narrower model are biased and inconsistent if the hypothesis
is incorrect. Consider, for example, an LM test for autocorrelation in a model from which
important variables have been omitted. The results are biased in favor of a finding of
autocorrelation. The alternative approach is to proceed from a general model to a simple
one. Thus, one might overfit the model and then subject it to whatever battery of tests
are appropriate to produce the correct specification at the end of the procedure. In this
instance, the estimates and test statistics computed from the overfit model, although
inefficient, are not generally systematically biased. (We have encountered this issue at
several points.)

The latter approach is common in modern analysis, but some words of caution are
needed. The procedure routinely leads to overfitting the model. A typical time-series
analysis might involve specifying a model with deep lags on all the variables and then
paring away the model as conventional statistics indicate. The danger is that the resulting
model might have an autoregressive structure with peculiar holes in it that would be
hard to justify with any theory. Thus, a model for quarterly data that includes lags of 2,
3, 6, and 9 on the dependent variable would look suspiciously like the end result of a
computer-driven fishing trip and, moreover, might not survive even moderate changes
in the estimation sample. [As Hendry (1995) notes, a model in which the largest and
most significant lag coefficient occurs at the last lag is surely misspecified.]

19.5.4 COMMON FACTOR RESTRICTIONS

The preceding discussion suggests that evidence of autocorrelation in a time-series
regression model might signal more than merely a need to use generalized least squares
to make efficient use of the data. [See Hendry (1993).] If we find evidence of autocor-
relation based, say, on the Durbin–Watson statistic or on Durbin’s h statistic, then it
would make sense to test the hypothesis of the AR(1) model that might normally be
the next step against the alternative possibility that the model is merely misspecified.
The test is suggested by (19-27) and (19-28). In general, we can formulate it as a test of

H0: yt = x′
tβ + ρyt−1 − ρ(x′

t−1β) + εt

versus

H1: yt = x′
tβ + ρyt−1 + x′

t−1γ + εt .

The null model is obtained from the alternative by the nonlinear restriction γ = −ρβ.
Since the models are both classical regression models, the test can be carried out by
referring the F statistic,

F [J, T − K1] = (e′
0e0 − e′

1e1)/J
e′

1e1/(T − K)
,

to the appropriate critical value from the F distribution. The test is only asymptotically
valid because of the nonlinearity of the restricted regression and because of the lagged
dependent variables in the models. There are two additional complications in this proce-
dure. First, the unrestricted model may be unidentified because of redundant variables.
For example, it will usually have two constant terms. If both zt and zt−1 appear in the
restricted equation, then zt−1 will appear twice in the unrestricted model, and so on.
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The solution is simple; just drop the redundant variables. The sum of squares without
the redundant variables will be identical to that with them. Second, at first blush, the
restrictions in the nonlinear model appear complicated. The restricted model, however,
is actually quite straightforward. Rewrite it in a familiar form:

H0: yt = ρyt−1 + (xt − ρxt−1)
′β + εt .

Given ρ, the regression is linear. In this form, the grid search over the values of ρ can
be used to obtain the full set of estimates. (Cochrane–Orcutt and the other two-step
estimators are likely not to be the best solution.) Also, it is important to search the full
[0, 1] range to allow for the possibility of local minima of the sum of squares. Depending
on the available software, it may be equally simple just to fit the nonlinear regression
model directly.

Higher-order models can be handled analogously. In an AR(1) model, this “com-
mon factor” restriction (the reason for the name will be clear shortly) takes the form

(1 − γ L)yt = (β0 + β1L)x1 + εt , β1 = −γβ0.

Consider, instead, an AR(2) model. The “restricted” and unrestricted models would
appear as

H0: (1 − ρ1L− ρ2L2)yt = (1 − ρ1L− ρ2L2)x′
tβ + εt ,

H1: yt = γ1 yt−1 + γ2 yt−2 + x′
tβ0 + x′

t−1β1 + x′
t−2β2 + εt ,

so the full set of restrictions is β1 = −γ1β0 and β2 = −γ2β0. This expanded model can
be handled analogously to the AR(1) model. Once again, an F test of the nonlinear
restrictions can be used.

This approach neglects another possibility. The restricted model above goes the full
distance from the unrestricted model to the AR(2) autocorrelation model. There is an
intermediate possibility. The polynomials in the lag operator, C(L) and B(L), can be
factored into products of linear, primitive terms. A quadratic equation in L, for example,
may always be written as

C(L) = (1 − γ1L− γ2L2) = (1 − λ1L)(1 − λ2L),

where the λ’s are the roots of the characteristic polynomial C(z) = 0. Here, B(L) may
be factored likewise, say into (1 − τ1L)(1 − τ2L). (These “roots” may include pairs
of imaginary values.) With these results in hand, rewrite the basic model C(L)yt =
B(L)xt + εt in the form

(1 − λ1L)(1 − λ2L)yt = (1 − τ1L)(1 − τ2L)x′
tβ + εt .

Now suppose that λ1 = τ1 = ρ. Dividing through both sides of the equation by (1−ρL)

produces the restricted model

(1 − λ2L)yt = (1 − τ2L)x′
tβ + εt

1 − ρL
.

The restricted model is a lower-order autoregression, which has some virtue, but now,
by construction, its disturbance is an AR(1) process in ρ. (This conclusion was expected,
of course, since we reached it in reverse at the beginning of this section.) The restricted
model is appropriate only if the two polynomials have a common factor, (1 − λ2) =
(1 − τ2), hence the name for the procedure.
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It is useful to develop this procedure in more detail for an ARDL(2, 2) model.
Write the distributed lag part, B(L), as β0(1 − β1L− β2L2). Multiplying out the factors,
we see that the unrestricted model,

yt = µ + γ1 yt−1 + γ2 yt−2 + β0(1 − β1L− β2L2)xt + εt ,

can be written as

yt = µ + (λ1 + λ2)yt−1 − (λ1λ2)yt−2 + β0xt − β0(τ1 + τ2)xt−1 + β0(τ1τ2)xt−2 + εt .

Despite what appears to be extreme nonlinearity, this equation is intrinsically linear.
In fact, it cannot be estimated in this form by nonlinear least squares, since any pair
of values λ1, λ2 that one might find can just be reversed and the function and sum of
squares will not change. The same is true for pairs of τ1, τ2. Of course, this information
is irrelevant to the solution, since the model can be fit by ordinary linear least squares
in the ARDL form just above it, and for the test, we only need the sum of squares. But
now impose the common factor restriction (1 −λ1) = (1 − τ1), or λ1 = τ1. The now very
nonlinear regression model

yt = µ + (τ1 + λ2)yt−1 − (τ1λ2)yt−2 + β0xt − β0(τ1 + τ2)xt−1 + β0(τ1τ2)xt−2 + εt

has six terms on the right-hand side but only five parameters and is overidentified. This
model can be fit as is by nonlinear least squares. The F test of one restriction suggested
earlier can now be carried out. Note that this test of one common factor restriction is
a test of the hypothesis of the ARDL(1, 1) model with an AR(1) disturbance against
the unrestricted ARDL(2, 2) model. Turned around, we note, once again, a finding of
autocorrelation in the ARDL(1, 1) model does not necessarily suggest that one should
just use GLS. The appropriate next step might be to expand the model. Finally, testing
both common factor restrictions in this model is equivalent to testing the two restrictions
γ1 = ρ1 and γ2 = ρ2 in the model

yt = γ1 yt−1 + γ2 yt−2 + β(xt − ρ1xt−1 − ρ2xt−2) + εt .

The unrestricted model is the linear ARDL(2, 2) we used earlier. The restricted model
is nonlinear, but it can be estimated easily by nonlinear least squares.

The analysis of common factors in models more complicated than ARDL(2, 2) is
extremely involved. [See Hendry (1993) and Hendry and Doornik (1996).]

Example 19.6 Testing Common Factor Restrictions
The consumption and income data used in Example 19.5 (quarters 1950.3 to 2000.4) are
used to fit an unrestricted ARDL(2, 2) model,

ct = µ + γ1ct−1 + γ2ct−2 + β0 yt + β1 yt−1 + β2 yt−2 + εt .

Ordinary least squares estimates of the parameters appear in Table 19.4. For the one common
factor model, the parameters are formulated as

ct = µ + (τ1 + λ2)ct−1 − (τ1λ2)ct−2 + β0 yt − β0(τ1 + τ2) yt−1 + β0(τ1τ2) yt−2 + εt .

The structural parameters are computed using nonlinear least squares and then the ARDL
coefficients are computed from these. A two common factors model is obtained by imposing
the additional restriction λ2 = τ2. The resulting model is the familiar one,

ct = µ + ρ1ct−1 + ρ2ct−2 + β0( yt − ρ1 yt−1 − ρ2 yt−2) + εt .
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TABLE 19.4 Estimated Autoregressive Distributed Lag Models

Parameter

Restrictions µ γ1 γ2 β0 β1 β2 e′e

2 0.04020 0.6959 0.03044 0.5710 −0.3974 −0.1739 0.0091238
(0.006397) (0.06741) (0.06747) (0.04229) (0.04563) (0.04206)
[Estimated: ρ1 = 0.6959, ρ2 = 0.3044]

1 −0.006499 0.6456 −0.2724 0.5972 0.6104 −0.2596 0.0088736
(0.02959) (0.06866) (0.06784) (0.04342) (0.07225) (0.06685)
[Estimated: τ1 = −0.2887, τ2 = 0.8992, λ2 = 0.9433]

0 −0.06628 0.6487 0.2766 0.6126 −0.4004 −0.1329 0.0088626
(0.03014) (0.07066) (0.06935) (0.05408) (0.08759) (0.06218)

Standard errors are given in parentheses. As expected, they decline generally as the
restrictions are added. The sum of squares increases at the same time. The F statistic for
one restriction is

F = (0.0088736 − 0.0088626)/1
0.0088626/(202 − 6)

= 0.243.

The 95 percent critical value from the F [1, 119] table is 3.921, so the hypothesis of the single
common factor cannot be rejected. The F statistic for two restrictions is 5.777 against a
critical value of 3.072, so the hypothesis of the AR(2) disturbance model is rejected.

19.6 VECTOR AUTOREGRESSIONS

The preceding discussions can be extended to sets of variables. The resulting autore-
gressive model is

yt = µ + 	1yt−1 + · · · + 	 pyt−p + εt , (19-30)

where εt is a vector of nonautocorrelated disturbances (innovations) with zero means
and contemporaneous covariance matrix E [εtε

′
t ] = 
. This equation system is a vector

autoregression, or VAR. Equation (19-30) may also be written as

	(L)yt = µ + εt

where 	(L) is a matrix of polynomials in the lag operator. The individual equations are

ymt = µm +
p∑

j=1

(	 j )m1 y1,t− j +
p∑

j=1

(	 j )m2 y2,t− j + · · · +
p∑

j=1

(	 j )mMyM,t− j + εmt ,

where (	 j )lm indicates the (l, m) element of 	 j .
VARs have been used primarily in macroeconomics. Early in their development, it

was argued by some authors [e.g., Sims (1980), Litterman (1979, 1986)] that VARs would
forecast better than the sort of structural equation models discussed in Chapter 15. One
could argue that as long as µ includes the current observations on the (truly) relevant
exogenous variables, the VAR is simply an overfit reduced form of some simultaneous
equations model. [See Hamilton (1994, pp. 326–327).] The overfitting results from the
possible inclusion of more lags than would be appropriate in the original model. (See
Example 19.8 for a detailed discussion of one such model.) On the other hand, one of the
virtues of the VAR is that it obviates a decision as to what contemporaneous variables
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are exogenous; it has only lagged (predetermined) variables on the right-hand side, and
all variables are endogenous.

The motivation behind VARs in macroeconomics runs deeper than the statistical
issues.9 The large structural equations models of the 1950s and 1960s were built on a the-
oretical foundation that has not proved satisfactory. That the forecasting performance
of VARs surpassed that of large structural models—some of the later counterparts to
Klein’s Model I ran to hundreds of equations—signaled to researchers a more fun-
damental problem with the underlying methodology. The Keynesian style systems of
equations describe a structural model of decisions (consumption, investment) that seem
loosely to mimic individual behavior; see Keynes’s formulation of the consumption func-
tion in Example 1.1 that is, perhaps, the canonical example. In the end, however, these
decision rules are fundamentally ad hoc, and there is little basis on which to assume
that they would aggregate to the macroeconomic level anyway. On a more practical
level, the high inflation and high unemployment experienced in the 1970s were very
badly predicted by the Keynesian paradigm. From the point of view of the underlying
paradigm, the most troubling criticism of the structural modeling approach comes in the
form of “the Lucas critique” (1976) in which the author argued that the parameters of
the “decision rules” embodied in the systems of structural equations would not remain
stable when economic policies changed, even if the rules themselves were appropriate.
Thus, the paradigm underlying the systems of equations approach to macroeconomic
modeling is arguably fundamentally flawed. More recent research has reformulated
the basic equations of macroeconomic models in terms of a microeconomic optimiza-
tion foundation and has, at the same time, been much less ambitious in specifying the
interrelationships among economic variables.

The preceding arguments have drawn researchers to less structured equation
systems for forecasting. Thus, it is not just the form of the equations that has changed. The
variables in the equations have changed as well; the VAR is not just the reduced form
of some structural model. For purposes of analyzing and forecasting macroeconomic
activity and tracing the effects of policy changes and external stimuli on the economy,
researchers have found that simple, small-scale VARs without a possibly flawed theo-
retical foundation have proved as good as or better than large-scale structural equation
systems. In addition to forecasting, VARs have been used for two primary functions,
testing Granger causality and studying the effects of policy through impulse response
characteristics.

19.6.1 MODEL FORMS

To simplify things for the present, we note that the pth order VAR can be written as a
first-order VAR as follows:




yt

yt−1
· · ·

yt−p+1


 =




µ

0
· · ·
0


 +




	1 	2 · · · 	 p

I 0 · · · 0
· · · · · · · · · 0
0 · · · I 0







yt−1

yt−2

yt−p


 +




εt

0
· · ·
0


 .

9An extremely readable, nontechnical discussion of the paradigm shift in macroeconomic forecasting is given
in Diebold (1998b). See also Stock and Watson (2001).
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This means that we do not lose any generality in casting the treatment in terms of a first
order model

yt = µ + 	yt−1 + εt .

In Section 18.5, we examined Dahlberg and Johansson’s model for municipal finances
in Sweden, in which yt = [�St , �Rt , �Gt ]′ where St is spending, Rt is receipts and Gt

is grants from the central government, and p = 3. We will continue that application in
Example 19.8 below.

In principle, the VAR model is a seemingly unrelated regressions model—indeed,
a particularly simple one since each equation has the same set of regressors. This is
the traditional form of the model as originally proposed, for example, by Sims (1980).
The VAR may also be viewed as the reduced form of a simultaneous equations model;
the corresponding structure would then be

�yt = α + yt−1 + ωt

where � is a nonsingular matrix and Var[ω] = �. In one of Cecchetti and Rich’s (2001)
formulations, for example, yt = [�yt , �πt ]′ where yt is the log of aggregate real output,

πt is the inflation rate from time t − 1 to time t, � =
[

1 −θ12−θ21 1

]
and p= 8. (We will

examine their model in Section 19.6.8.) In this form, we have a conventional simul-
taneous equations model, which we analyzed in detail in Chapter 15. As we saw, in
order for such a model to be identified—that is, estimable—certain restrictions must
be placed on the structural coefficients. The reason for this is that ultimately, only the
original VAR form, now the reduced form, is estimated from the data; the structural
parameters must be deduced from these coefficients. In this model, in order to deduce
these structural parameters, they must be extracted from the reduced form parame-
ters, 	 = �−1, µ = �−1α, and 
 = �−1��−1′. We analyzed this issue in detail in
Section 15.3. The results would be the same here. In Cecchetti and Rich’s application,
certain restrictions were placed on the lag coefficients in order to secure identification.

19.6.2 ESTIMATION

In the form of (19-30)—that is, without autocorrelation of the disturbances—VARs
are particularly simple to estimate. Although the equation system can be exceedingly
large, it is, in fact, a seemingly unrelated regressions model with identical regressors.
As such, the equations should be estimated separately by ordinary least squares. (See
Section 14.4.2 for discussion of SUR systems with identical regressors.) The disturbance
covariance matrix can then be estimated with average sums of squares or cross-products
of the least squares residuals. If the disturbances are normally distributed, then these
least squares estimators are also maximum likelihood. If not, then OLS remains an
efficient GMM estimator. The extension to instrumental variables and GMM is a bit
more complicated, as the model now contains multiple equations (see Section 14.4),
but since the equations are all linear, the necessary extensions are at least relatively
straightforward. GMM estimation of the VAR system is a special case of the model
discussed in Section 14.4. (We will examine an application below in Example 20.8.)

The proliferation of parameters in VARs has been cited as a major disadvantage
of their use. Consider, for example, a VAR involving five variables and three lags. Each
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	 has 25 unconstrained elements, and there are three of them, for a total of 75 free
parameters, plus any others in µ, plus 5(6)/2 = 15 free parameters in 
. On the other
hand, each single equation has only 25 parameters, and at least given sufficient degrees
of freedom—there’s the rub—a linear regression with 25 parameters is simple work.
Moreover, applications rarely involve even as many as four variables, so the model-size
issue may well be exaggerated.

19.6.3 TESTING PROCEDURES

Formal testing in the VAR setting usually centers either on determining the appropriate
lag length (a specification search) or on whether certain blocks of zeros in the coefficient
matrices are zero (a simple linear restriction on the collection of slope parameters).
Both types of hypotheses may be treated as sets of linear restrictions on the elements
in γ = vec[µ, 	1, 	2, . . . ,	 p].

We begin by assuming that the disturbances have a joint normal distribution. Let
W be the M× M residual covariance matrix based on a restricted model, and let W∗ be
its counterpart when the model is unrestricted. Then the likelihood ratio statistic,

λ = T(ln|W| − ln|W∗|),
can be used to test the hypothesis. The statistic would have a limiting chi-squared dis-
tribution with degrees of freedom equal to the number of restrictions. In principle, one
might base a specification search for the right lag length on this calculation. The proce-
dure would be to test down from, say, lag q to lag to p. The general-to-simple principle
discussed in Section 19.5.3 would be to set the maximum lag length and test down from
it until deletion of the last set of lags leads to a significant loss of fit. At each step at which
the alternative lag model has excess terms, the estimators of the superfluous coefficient
matrices would have probability limits of zero and the likelihood function would (again,
asymptotically) resemble that of the model with the correct number of lags. Formally,
suppose the appropriate lag length is p but the model is fit with q ≥ p+ 1 lagged terms.
Then, under the null hypothesis,

λq = T[ln|W(µ, 	1, . . . , 	q−1)| − ln|W∗(µ, 	1, . . . ,	q)|] d−→ χ2[M2].

The same approach would be used to test other restrictions. Thus, the Granger causality
test noted below would fit the model with and without certain blocks of zeros in the
coefficient matrices, then refer the value of λ once again to the chi-squared distribution.

For specification searches for the right lag, the suggested procedure may be less
effective than one based on the information criteria suggested for other linear models
(see Section 8.4.) Lutkepohl (1993, pp. 128–135) suggests an alternative approach based
on the minimizing functions of the information criteria we have considered earlier;

λ∗ = ln(|W|) + (pM2 + M)IC(T)/T

where T is the sample size, p is the number of lags, M is the number of equations and
IC(T) = 2 for the Akaike information criterion and ln T for the Schwartz (Bayesian)
information criterion. We should note, this is not a test statistic; it is a diagnostic tool
that we are using to conduct a specification search. Also, as in all such cases, the testing
procedure should be from a larger one to a smaller one to avoid the misspecification
problems induced by a lag length that is smaller than the appropriate one.
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The preceding has relied heavily on the normality assumption. Since most recent
applications of these techniques have either treated the least squares estimators as
robust (distribution free) estimators, or used GMM (as we did in Chapter 18), it is
necessary to consider a different approach that does not depend on normality. An
alternative approach which should be robust to variations in the underlying distributions
is the Wald statistic. [See Lutkepohl (1993, pp. 93–95).] The full set of coefficients in the
model may be arrayed in a single coefficient vector, γ . Let c be the sample estimator of
γ and let V denote the estimated asymptotic covariance matrix. Then, the hypothesis
in question (lag length, or other linear restriction) can be cast in the form Rγ − q = 0.
The Wald statistic for testing the null hypothesis is

W = (Rc − q)′[RVR′]−1(Rc − q).

Under the null hypothesis, this statistic has a limiting chi-squared distribution with de-
grees of freedom equal to J , the number of restrictions (rows in R). For the specification
search for the appropriate lag length (or the Granger causality test discussed in the next
section), the null hypothesis will be that a certain subvector of γ , say γ 0, equals zero.
In this case, the statistic will be

W0 = c′
0V−1

00 c0

where V00 denotes the corresponding submatrix of V.
Since time series data sets are often only moderately long, use of the limiting

distribution for the test statistic may be a bit optimistic. Also, the Wald statistic does
not account for the fact that the asymptotic covariance matrix is estimated using a finite
sample. In our analysis of the classical linear regression model, we accommodated these
considerations by using the F distribution instead of the limiting chi-squared. (See Sec-
tion 6.4.) The adjustment made was to refer W/J to the F[J, T − K] distribution. This
produces a more conservative test—the corresponding critical values of JF converge
of to those of the chi-squared from above. A remaining complication is to decide what
degrees of freedom to use for the denominator. It might seem natural to use MT minus
the number of parameters, which would be correct if the restrictions are imposed on
all equations simultaneously, since there are that many “observations.” In testing for
causality, as in Section 19.6.5 below, Lutkepohl (1993, p. 95) argues that MT is excessive,
since the restrictions are not imposed on all equations. When the causality test involves
testing for zero restrictions within a single equation, the appropriate degrees of freedom
would be T − Mp − 1 for that one equation.

19.6.4 EXOGENEITY

In the classical regression model with nonstochastic regressors, there is no ambiguity
about which is the independent or conditioning or “exogenous” variable in the model

yt = β1 + β2xt + εt . (19-31)

This is the kind of characterization that might apply in an experimental situation in which
the analyst is choosing the values of xt . But, the case of nonstochastic regressors has
little to do with the sort of modeling that will be of interest in this and the next chapter.
There is no basis for the narrow assumption of nonstochastic regressors, and, in fact,
in most of the analysis that we have done to this point, we have left this assumption
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far behind. With stochastic regressor(s), the regression relationship such as the one
above becomes a conditional mean in a bivariate distribution. In this more realistic
setting, what constitutes an “exogenous” variable becomes ambiguous. Assuming that
the regression relationship is linear, (19-31) can be written (trivially) as

yt = E [yt | xt ] + (
y − E [yt | xt ]

)

where the familiar moment condition E [xtεt ] = 0 follows by construction. But, this form
of the model is no more the “correct” equation than would be

xt = δ1 + δ2 yt + ωt

which is (we assume)

xt = E [xt | yt ] + (
xt − E [xt | yt ]

)

and now, E [ytωt ] = 0. Since both equations are correctly specified in the context of the
bivariate distribution, there is nothing to define one variable or the other as “exoge-
nous.” This might seem puzzling, but it is, in fact, at the heart of the matter when one
considers modeling in a world in which variables are jointly determined. The definition
of exogeneity depends on the analyst’s understanding of the world they are modeling,
and, in the final analysis, on the purpose to which the model is to be put.

The methodological platform on which this discussion rests is the classic paper
by Engle, Hendry, and Richard (1983) where they point out that exogeneity is not an
absolute concept at all; it is defined in the context of the model. The central idea, which
will be very useful to us here, is that we define a variable (set of variables) as exogenous
in the context of our model if the joint density may be written

f (yt , xt ) = f (yt | β, xt ) × f (θ , xt )

where the parameters in the conditional distribution do not appear in and are func-
tionally unrelated to those in the marginal distribution of xt . By this arrangement, we
can think of “autonomous variation” of the parameters of interest, β. The parameters
in the conditional model for yt | xt can be analyzed as if they could vary independently
of those in the marginal distribution of xt . If this condition does not hold, then we
cannot think of variation of those parameters without linking that variation to some
effect in the marginal distribution of xt . In this case, it makes little sense to think of xt

as somehow being determined “outside” the (conditional) model. (We considered this
issue in Section 15.8 in the context of a simultaneous equations model.)

A second form of exogeneity we will consider is strong exogeneity, which is some-
times called Granger noncausality. Granger noncausality can be superficially defined
by the assumption

E [yt | yt−1, xt−1, xt−2, . . .] = E [yt | yt−1].

That is, lagged values of xt do not provide information about the conditional mean of
yt once lagged values of yt , itself, are accounted for. We will consider this issue at the
end of this chapter. For the present, we note that most of the models we will examine
will explicitly fail this assumption.

To put this back in the context of our model, we will be assuming that in the model

yt = β1 + β2xt + β3xt−1 + γ yt−1 + εt .
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and the extensions that we will consider, xt is weakly exogenous—we can meaningfully
estimate the parameters of the regression equation independently of the marginal dis-
tribution of xt , but we will allow for Granger causality between xt and yt , thus generally
not assuming strong exogeneity.

19.6.5 TESTING FOR GRANGER CAUSALITY

Causality in the sense defined by Granger (1969) and Sims (1972) is inferred when
lagged values of a variable, say xt , have explanatory power in a regression of a variable
yt on lagged values of yt and xt . (See Section 15.2.2.) The VAR can be used to test
the hypothesis.10 Tests of the restrictions can be based on simple F tests in the single
equations of the VAR model. That the unrestricted equations have identical regressors
means that these tests can be based on the results of simple OLS estimates. The notion
can be extended in a system of equations to attempt to ascertain if a given variable is
weakly exogenous to the system. If lagged values of a variable xt have no explanatory
power for any of the variables in a system, then we would view x as weakly exogenous
to the system. Once again, this specification can be tested with a likelihood ratio test as
described below—the restriction will be to put “holes” in one or more 	 matrices—or
with a form of F test constructed by stacking the equations.

Example 19.7 Granger Causality11

All but one of the major recessions in the U.S. economy since World War II have been
preceded by large increases in the price of crude oil. Does movement of the price of oil
cause movements in U.S. GDP in the Granger sense? Let yt = [GDP, crude oil price]′t . Then,
a simple VAR would be

yt =
[
µ1

µ2

]
+

[
α1 α2

β1 β2

]
yt−1 +

[
ε1t

ε2t

]
.

To assert a causal relationship between oil prices and GDP, we must find that α2 is not zero;
previous movements in oil prices do help explain movements in GDP even in the presence
of the lagged value of GDP. Consistent with our earlier discussion, this fact, in itself, is not
sufficient to assert a causal relationship. We would also have to demonstrate that there were
no other intervening explanations that would explain movements in oil prices and GDP. (We
will examine a more extensive application in Example 19.9.)

To establish the general result, it will prove useful to write the VAR in the multi-
variate regression format we used in Section 14.4.2. Partition the two data vectors yt

and xt into [y1t , y2t ] and [x1t , x2t ]. Consistent with our earlier discussion, x1 is lagged
values of y1 and x2 is lagged values of y2. The VAR with this partitioning would be

[
y1

y2

]
=

[
	11 	12

	21 	22

][
x1

x2

]
+

[
ε1

ε2

]
, Var

[
ε1t

ε2t

]
=

[
�11 �12

�21 �22

]
.

We would still obtain the unrestricted maximum likelihood estimates by least squares
regressions. For testing Granger causality, the hypothesis 	12 = 0 is of interest. (See
Example 19.7.) This model is the block of zeros case examined in Section 14.2.6. The
full set of results we need are derived there. For testing the hypothesis of interest,
	12 = 0, the second set of equations is irrelevant. For testing for Granger causality in

10See Geweke, Meese, and Dent (1983), Sims (1980), and Stock and Watson (2001).
11This example is adapted from Hamilton (1994, pp. 307–308).
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the VAR model, only the restricted equations are relevant. The hypothesis can be tested
using the likelihood ratio statistic. For the present application, testing means computing

S11 = residual covariance matrix when current values of y1 are regressed on
values of both x1 and x2,

S11(0) = residual covariance matrix when current values of y1 are regressed only
on values of x1.

The likelihood ratio statistic is then

λ = T(ln|S11(0)| − ln|S11|).
The number of degrees of freedom is the number of zero restrictions.

As discussed earlier, the fact that this test is wedded to the normal distribution
limits its generality. The Wald test or its transformation to an approximate F statistic as
described in Section 19.6.3 is an alternative that should be more generally applicable.
When the equation system is fit by GMM, as in Example 19.8, the simplicity of the
likelihood ratio test is lost. The Wald statistic remains usable, however. Another possi-
bility is to use the GMM counterpart to the likelihood ratio statistic (see Section 18.4.2)
based on the GMM criterion functions. This is just the difference in the GMM criteria.
Fitting both restricted and unrestricted models in this framework may be burdensome,
but having set up the GMM estimator for the (larger) unrestricted model, imposing the
zero restrictions of the smaller model should require only a minor modification.

There is a complication in these causality tests. The VAR can be motivated by
the Wold representation theorem (see Section 20.2.5, Theorem 20.1), although with
assumed nonautocorrelated disturbances, the motivation is incomplete. On the other
hand, there is no formal theory behind the formulation. As such, the causality tests
are predicated on a model that may, in fact, be missing either intervening variables or
additional lagged effects that should be present but are not. For the first of these, the
problem is that a finding of causal effects might equally well result from the omission
of a variable that is correlated with both of (or all) the left-hand-side variables.

19.6.6 IMPULSE RESPONSE FUNCTIONS

Any VAR can be written as a first-order model by augmenting it, if necessary, with
additional identity equations. For example, the model

yt = µ + 	1yt−1 + 	2yt−2 + vt

can be written
[

yt

yt−1

]
=

[
µ

0

]
+

[
	1 	2

I 0

][
yt−1

yt−2

]
+

[
vt

0

]
,

which is a first-order model. We can study the dynamic characteristics of the model in
either form, but the second is more convenient, as will soon be apparent.

As we analyzed earlier, in the model

yt = µ + 	yt−1 + vt ,

dynamic stability is achieved if the characteristic roots of 	 have modulus less than one.
(The roots may be complex, because 	 need not be symmetric. See Section 19.4.3 for
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the case of a single equation and Section 15.9 for analysis of essentially this model in a
simultaneous-equations context.)

Assuming that the equation system is stable, the equilibrium is found by obtaining
the final form of the system. We can do this step by repeated substitution, or more
simply by using the lag operator to write

yt = µ + 	(L)yt + vt

or

[I − 	(L)]yt = µ + vt .

With the stability condition, we have

yt = [I − 	(L)]−1(µ + vt )

= (I − 	)−1µ +
∞∑

i=0

	i vt−i

= ȳ +
∞∑

i=0

	i vt−i

= ȳ + vt + 	vt−1 + 	2vt−2 + · · · .

(19-32)

The coefficients in the powers of 	 are the multipliers in the system. In fact, by
renaming things slightly, this set of results is precisely the one we examined in Sec-
tion 15.9 in our discussion of dynamic simultaneous-equations models. We will change
the interpretation slightly here, however. As we did in Section 15.9, we consider the con-
ceptual experiment of disturbing a system in equilibrium. Suppose that v has equaled
0 for long enough that y has reached equilibrium, ȳ. Now we consider injecting a shock
to the system by changing one of the v’s, for one period, and then returning it to zero
thereafter. As we saw earlier, ymt will move away from, then return to, its equilibrium.
The path whereby the variables return to the equilibrium is called the impulse response
of the VAR.12

In the autoregressive form of the model, we can identify each innovation, vmt , with
a particular variable in yt , say ymt . Consider then the effect of a one-time shock to the
system, dvmt . As compared with the equilibrium, we will have, in the current period,

ymt − ȳm = dvmt = φmm(0)dvt .

One period later, we will have

ym,t+1 − ȳm = (	)mmdvmt = φmm(1)dvt .

Two periods later,

ym,t+2 − ȳm = (	2)mmdvmt = φmm(2)dvt ,

and so on. The function, φmm(i) gives the impulse response characteristics of variable
ym to innovations in vm. A useful way to characterize the system is to plot the im-
pulse response functions. The preceding traces through the effect on variable m of a

12See Hamilton (1994, pp. 318–323 and 336–350) for discussion and a number of related results.
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one-time innovation in vm. We could also examine the effect of a one-time innovation
of vl on variable m. The impulse response function would be

φml(i) = element (m, l) in 	i .

Point estimation of φml(i) using the estimated model parameters is straightforward.
Confidence intervals present a more difficult problem because the estimated functions
φ̂ml(i, β̂) are so highly nonlinear in the original parameter estimates. The delta method
has thus proved unsatisfactory. Killian (1998) presents results that suggest that boot-
strapping may be the more productive approach to statistical inference regarding im-
pulse response functions.

19.6.7 STRUCTURAL VARs

The VAR approach to modeling dynamic behavior of economic variables has provided
some interesting insights and appears [see Litterman (1986)] to bring some real benefits
for forecasting. The method has received some strident criticism for its atheoretical
approach, however. The “unrestricted” nature of the lag structure in (19-30) could be
synonymous with “unstructured.” With no theoretical input to the model, it is difficult
to claim that its output provides much of a theoretically justified result. For example,
how are we to interpret the impulse response functions derived in the previous section?
What lies behind much of this discussion is the idea that there is, in fact, a structure
underlying the model, and the VAR that we have specified is a mere hodgepodge of all
its components. Of course, that is exactly what reduced forms are. As such, to respond
to this sort of criticism, analysts have begun to cast VARs formally as reduced forms
and thereby attempt to deduce the structure that they had in mind all along.

A VAR model yt = µ + 	yt−1 + vt could, in principle, be viewed as the reduced
form of the dynamic structural model

�yt = α + �yt−1 + εt ,

where we have embedded any exogenous variables xt in the vector of constants α. Thus,
� = �−1�, µ = �−1α, v = �−1ε, and 
 = �−1�(�−1)′. Perhaps it is the structure,
specified by an underlying theory, that is of interest. For example, we can discuss the
impulse response characteristics of this system. For particular configurations of �, such
as a triangular matrix, we can meaningfully interpret innovations, ε. As we explored at
great length in the previous chapter, however, as this model stands, there is not suffi-
cient information contained in the reduced form as just stated to deduce the structural
parameters. A possibly large number of restrictions must be imposed on �, �, and �

to enable us to deduce structural forms from reduced-form estimates, which are always
obtainable. The recent work on “structural VARs” centers on the types of restrictions
and forms of the theory that can be brought to bear to allow this analysis to proceed.
See, for example, the survey in Hamilton (1994, Chapter 11). At this point, the literature
on this subject has come full circle because the contemporary development of “unstruc-
tured VARs” becomes very much the analysis of quite conventional dynamic structural
simultaneous equations models. Indeed, current research [e.g., Diebold (1998a)] brings
the literature back into line with the structural modeling tradition by demonstrating
how VARs can be derived formally as the reduced forms of dynamic structural models.
That is, the most recent applications have begun with structures and derived the reduced
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forms as VARs, rather than departing from the VAR as a reduced form and attempting
to deduce a structure from it by layering on restrictions.

19.6.8 APPLICATION: POLICY ANALYSIS WITH A VAR

Cecchetti and Rich (2001) used a structural VAR to analyze the effect of recent disin-
flationary policies of the Fed on aggregate output in the U.S. economy. The Fed’s policy
of the last two decades has leaned more toward controlling inflation and less toward
stimulation of the economy. The authors argue that the long-run benefits of this policy
include economic stability and increased long-term trend output growth. But, there is a
short-term cost in lost output. Their study seeks to estimate the “sacrifice ratio,” which
is a measure of the cumulative cost of this policy. The specific indicator they study mea-
sures the cumulative output loss after τ periods of a policy shock at time t , where the
(persistent) shock is measured as the change in the level of inflation.

19.6.8a A VAR Model for the Macroeconomic Variables

The model proposed for estimating the ratio is a structural VAR,

�yt =
p∑

i=1

bi
11�yt−i + b0

12�πt +
p∑

i=1

bi
12�πt−i + ε

y
t

�πt = b0
21�yt +

p∑
i=1

bi
21�yt−i +

p∑
i=1

bi
22�πt−i + επ

t

where yt is aggregate real output in period t and πt is the rate of inflation from period
t − 1 to t and the model is cast in terms of rates of changes of these two variables.
(Note, therefore, that sums of �πt measure accumulated changes in the rate of inflation,
not changes in the CPI.) The innovations, εt = (ε

y
t , επ

t )′ is assumed to have mean 0,
contemporaneous covariance matrix E [εtε

′
t ] = 
 and to be strictly nonautocorrelated.

(We have retained Cecchetti and Rich’s notation for most of this discussion, save for
the number of lags, which is denoted n in their paper and p here, and some other minor
changes which will be noted in passing where necessary.)13 The equation system may
also be written

B(L)

[
�yt

�πt

]
=

[
ε

y
t

επ
t

]

where B(L) is a 2 × 2 matrix of polynomials in the lag operator. The components of
the disturbance (innovation) vector εt are identified as shocks to aggregate supply and
aggregate demand respectively.

19.6.8b The Sacrifice Ratio

Interest in the study centers on the impact over time of structural shocks to output
and the rate of inflation. In order to calculate these, the authors use the vector moving

13The authors examine two other VAR models, a three-equation model of Shapiro and Watson (1988), which
adds an equation in real interest rates (it − πt ) and a four-equation model by Gali (1992), which models
�yt , �it , (it − πt ), and the real money stock, (�mt − πt ). Among the foci of Cecchetti and Rich’s paper was
the surprisingly large variation in estimates of the sacrifice ratio produced by the three models. In the interest
of brevity, we will restrict our analysis to Cecchetti’s (1994) two-equation model.
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average (VMA) form of the model, which would be
[
�yt

�πt

]
= [B(L)]−1

[
ε

y
t

επ
t

]
= A(L)

[
ε

y
t

επ
t

]
=

[
A11(L) A12(L)

A21(L) A22(L)

][
ε

y
t

επ
t

]

=



∑∞
i=0 ai

11ε
y
t−i

∑∞
i=0 ai

12ε
π
t−i

∑∞
i=0 ai

21ε
y
t−i

∑∞
i=0 ai

22ε
π
t−i


 .

(Note that the superscript “i” in the last form of the model above is not an exponent;
it is the index of the sequence of coefficients.) The impulse response functions for the
model corresponding to (19-30) are precisely the coefficients in A(L). In particular, the
effect on the change in inflation τ periods later of a change in επ

t in period t is aτ
22.

The total effect from time t + 0 to time t + τ would be the sum of these,
∑τ

i=0 ai
22. The

counterparts for the rate of output would be
∑τ

i=0 ai
12. However, what is needed is not

the effect only on period τ ’s output, but the cumulative effect on output from the time
of the shock up to period τ . That would be obtained by summing these period specific
effects, to obtain

∑τ
i=0

∑i
j=0 ai

12. Combining terms, the sacrifice ratio is

Sεπ (τ ) =
∑τ

j=0
∂yt+ j

∂επ
t

∂πt+τ

∂επ
t

=
∑0

i=0 ai
12 + ∑1

i=0 ai
12 + · · · + ∑τ

i=0 ai
12∑τ

i=0 ai
22

=
∑τ

i=0

∑i
j=0 ai

12∑τ
i=0 ai

22
.

The function S(τ ) is then examined over long periods to study the long term effects of
monetary policy.

19.6.8c Identification and Estimation of a Structural VAR Model

Estimation of this model requires some manipulation. The structural model is a con-
ventional linear simultaneous equations model of the form

B0yt = Bxt + εt

where yt is (�yt , �πt )
′ and xt is the lagged values on the right-hand side. As we saw

in Section 15.3.1, without further restrictions, a model such as this is not identified
(estimable). A total of M2 restrictions—M is the number of equations, here two—are
needed to identify the model. In the familiar cases of simultaneous-equations models
that we examined in Chapter 15, identification is usually secured through exclusion
restrictions, that is zero restrictions, either in B0 or B. This type of exclusion restriction
would be unnatural in a model such as this one—there would be no basis for poking
specific holes in the coefficient matrices. The authors take a different approach, which
requires us to look more closely at the different forms the time-series model can take.

Write the structural form as

B0yt = B1yt−1 + B2yt−2 + · · · + Bpyt−p + εt .

where

B0 =
[

1 −b0
12

−b0
21 1

]
.

As noted, this is in the form of a conventional simultaneous equations model. Assuming
that B0 is nonsingular, which for this two-equation system requires only that 1 − b0

12b0
21
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not equal zero, we can obtain the reduced form of the model as

yt = B−1
0 B1yt−1 + B−1

0 B2yt−2 + · · · + B−1
0 Bpyt−p + B−1

0 εt

= D1yt−1 + D2yt−2 + · · · + Dpyt−p + µt

(19-33)

where µt is the vector of reduced form innovations. Now, collect the terms in the equiv-
alent form

[I − D1L− D2L2 − · · ·]yt = µt .

The moving average form that we obtained earlier is

yt = [I − D1L− D2L2 − · · ·]−1µt .

Assuming stability of the system, we can also write this as

yt = [I − D1L− D2L2 − · · ·]−1µt

= [I − D1L− D2L2 − · · ·]−1B−1
0 εt

= [I + C1L+ C2L2 + · · ·]µt

= µt + C1µt−1 + C2µt−2 . . .

= B−1
0 εt + C1µt−1 + C2µt−2 . . .

So, the C j matrices correspond to our A j matrices in the original formulation. But,
this manipulation has added something. We can see that A0 = B−1

0 . Looking ahead, the
reduced form equations can be estimated by least squares. Whether the structural pa-
rameters, and thereafter, the VMA parameters can as well depends entirely on whether
B0 can be estimated. From (19-33) we can see that if B0 can be estimated, then B1 . . . Bp

can also just by premultiplying the reduced form coefficient matrices by this estimated
B0. So, we must now consider this issue. (This is precisely the conclusion we drew at the
beginning of Section 15.3.)

Recall the initial assumption that E [εtε
′
t ] = 
. In the reduced form, we assume

E [µtµ
′
t ] = �. As we know, reduced forms are always estimable (indeed, by least squares

if the assumptions of the model are correct). That means that � is estimable by the least
squares residual variances and covariance. From the earlier derivation, we have that
� = B−1

0 
(B−1
0 )′ = A0
A′

0. (Again, see the beginning of Section 15.3.) The authors
have secured identification of the model through this relationship. In particular, they
assume first that 
 = I. Assuming that 
 = I, we now have that A0A′

0 = �, where � is
an estimable matrix with three free parameters. Since A0 is 2 × 2, one more restriction
is needed to secure identification. At this point, the authors, invoking Blanchard and
Quah (1989), assume that “demand shocks have no permanent effect on the level of
output. This is equivalent to A12(1) = ∑∞

i=0 ai
12 = 0.” This might seem like a cumbersome

restriction to impose. But, the matrix A(1) is [I − D1 − D2 − · · · − Dp]−1A0 = FA0 and
the components, D j have been estimated as the reduced form coefficient matrices, so
A12(1) = 0 assumes only that the upper right element of this matrix is zero. We now
obtain the equations needed to solve for A0. First,

A0A′
0 = � ⇒




(
a0

11

)2 + (
a0

12

)2
a0

11a0
21 + a0

12a0
22

a0
11a0

21 + a0
12a0

22

(
a0

21

)2 + (
a0

22

)2


 =

[
σ11 σ12

σ12 σ11

]
(19-34)
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which provides three equations. Second, the theoretical restriction is

FA0 =
[∗ f11a0

12 + f12a0
22

∗ ∗
]

=
[∗ 0
∗ ∗

]
.

This provides the four equations needed to identify the four elements in A0.14

Collecting results, the estimation strategy is first to estimate D1, . . . Dp and � in the
reduced form, by least squares. (They set p = 8.) Then use the restrictions and (19-34)
to obtain the elements of A0 = B−1

0 and, finally, B j = A−1
0 D j .

The last step is estimation of the matrices of impulse responses, which can be done
as follows: We return to the reduced form which, using our augmentation trick, we write
as




yt

yt−1

· · ·
yt−p+1


 =




D1 D2 · · · Dp

I 0 · · · 0
· · · · · · · · · 0
0 · · · I 0







yt−1

yt−2

· · ·
yt−p


 +




A0εt

0
· · ·
0


 . (19-35)

For convenience, arrange this result as

Yt = (DL)Yt + wt .

Now, solve this for Yt to obtain the final form

Yt = [I − DL]−1wt .

Write this in the spectral form and expand as we did earlier, to obtain

Yt =
∞∑

i=0

P�i Qwt−i . (19-36)

14At this point, an intriguing loose end arises. We have carried this discussion in the form of the original
papers by Blanchard and Quah (1989) and Cecchetti and Rich (2001). Returning to the original structure,
however, we see that since A0 = B−1

0 , it actually does not have four unrestricted and unknown elements;
it has two. The model is overidentified. We could have predicted this at the outset. As in our conventional
simultaneous equations model, the normalizations in B0 (ones on the diagonal) provide two restrictions of
the M2 = 4 required. Assuming that 
 = I provides three more, and the theoretical restriction provides a
sixth. Therefore, the four unknown elements in an unrestricted B0 are overidentified. The assumption that

 = I, in itself, may be a substantive, and strong restriction. In the original data that Cecchetti and Rich
used, over the period of their estimation, the unconditional variances of �yt and �πt are 0.923 and 0.676.
The latter is far enough below one that one might expect this assumption actually to be substantive. It might
seem convenient at this point to forego the theoretical restriction on long-term impacts, but it seems more
natural to omit the restrictions on the scaling of 
. With the two normalizations already in place, assuming
that the innovations are uncorrelated (
 is diagonal) and “demand shocks have no permanent effect on
the level of output” together suffice to identify the model. Blanchard and Quah appear to reach the same
conclusion (page 656), but then they also assume the unit variances [page 657, equation (1).] They argue that
the assumption of unit variances is just a convenient normalization, but this is not the case. Since the model
is already identified without the assumption, the scaling restriction is substantive. Once again, this is clear
from a look at the structure. The assumption that B0 has ones on its diagonal has already scaled the equation.
In fact, this is logically identical to assuming that the disturbance in a conventional regression model has
variance one, which one normally would not do.
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We will be interested in the uppermost subvector of Yt , so we expand (19-36) to yield



yt

yt−1

· · ·
yt−p+1


 =




∞∑
i=0

P�i Q




A0εt−i

0
· · ·
0





 .

The matrix in the summation is Mp × Mp. The impact matrices we seek are the M × M
matrices in the upper left corner of the spectral form, multiplied by A0.

19.6.8d Inference

As noted at the end of Section 19.6.6, obtaining usable standard errors for estimates of
impulse responses is a difficult (as yet unresolved) problem. Killian (1998) has suggested
that bootstrapping is a preferable approach to using the delta method. Cecchetti and
Rich reach the same conclusion, and likewise resort to a bootstrapping procedure. Their
bootstrap procedure is carried out as follows: Let δ̂ and �̂ denote the full set of estimated
coefficients and estimated reduced form covariance matrix based on direct estimation.
As suggested by Doan (1996), they construct a sequence of N draws for the reduced
form parameters, then recompute the entire set of impulse responses. The narrowest
interval which contains 90 percent of these draws is taken to be a confidence interval
for an estimated impulse function.

19.6.8e Empirical Results

Cecchetti and Rich used quarterly observations on real aggregate output and the con-
sumer price index. Their data set spanned 1959.1 to 1997.4. This is a subset of the
data described in the Appendix Table F5.1. Before beginning their analysis, they sub-
jected the data to the standard tests for stationarity. Figures 19.5 through 19.7 show

FIGURE 19.5 Log GDP.

7.6
1958 1963 1968 1973 1978 1983 1988 1993 1998

Quarter

Log Real GDP, 1959.1–1997.4

L
O

G
G

D
P

9.2

9.0

8.8

8.6

8.4

8.2

8.0

7.8



Greene-50240 book June 26, 2002 21:55

CHAPTER 19 ✦ Models with Lagged Variables 601

�.01

.00

.01

.02

.03

.04

1958 1963 1968 1973 1978 1983 1988 1993 1998
Quarter

Inflation Rate, 1959.1–1997.4

IN
F

L

.05

FIGURE 19.6 The Quarterly Rate of Inflation.
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the log of real output, the rate of inflation, and the changes in these two variables.
The first two figures do suggest that neither variable is stationary. On the basis of the
Dickey–Fuller (1981) test (see Section 20.3), they found (as might be expected) that the
yt and πt series both contain unit roots. They conclude that since output has a unit root,
the identification restriction that the long run effect of aggregate demand shocks on
output is well defined and meaningful. The unit root in inflation allows for permanent
shifts in its level. The lag length for the model is set at p = 8. Long-run impulse response
function are truncated at 20 years (80 quarters). Analysis is based on the rate of change
data shown in Figure 19.7.

As a final check on the model, the authors examined the data for the possibility of
a structural shift using the tests described in Section 7.5. None of the Andrews/Quandt
supremum LM test, Andrews/Ploberger exponential LM test, or the Andrews/Ploberger
average LM test suggested that the underlying structure had changed (in spite of what
seems likely to have been a major shift in Fed policy in the 1970s). On this basis, they
concluded that the VAR is stable over the sample period.

Figure 19.8 (Figures 3A and 3B taken from the article) shows their two separate
estimated impulse response functions. The dotted lines in the figures show the bootstrap
generated confidence bounds. Estimates of the sacrifice ratio for Cecchetti’s model are
1.3219 for τ = 4, 1.3204 for τ = 8, 1.5700 for τ = 12, 1.5219 for τ = 16, and 1.3763 for
τ = 20.

The authors also examined the forecasting performance of their model compared
to Shapiro and Watson’s and Gali’s. The device used was to produce one step ahead,
period T + 1 | T forecasts for the model estimated using periods 1 . . . , T. The first
reduced form of the model is fit using 1959.1 to 1975.1 and used to forecast 1975.2.
Then, it is reestimated using 1959.1 to 1975.2 and used to forecast 1975.3, and so on.
Finally, the root mean squared error of these out of sample forecasts is compared for
three models. In each case, the level, rather than the rate of change of the inflation rate
is forecasted. Overall, the results suggest that the smaller model does a better job of
estimating the impulse responses (has smaller confidence bounds and conforms more
nearly with theoretical predictions) but performs worst of the three (slightly) in terms of
the mean squared error of the out-of-sample forecasts. Since the unrestricted reduced
form model is being used for the latter, this comes as no surprise. The end result follows
essentially from the result that adding variables to a regression model improves its fit.

19.6.9 VARs IN MICROECONOMICS

VARs have appeared in the microeconometrics literature as well. Chamberlain (1980)
suggested that a useful approach to the analysis of panel data would be to treat each
period’s observation as a separate equation. For the case of T = 2, we would have

yi1 = αi + β ′xi1 + εi1,

yi2 = αi + β ′xi2 + εi2,

where i indexes individuals and αi are unobserved individual effects. This specification
produces a multivariate regression, to which Chamberlain added restrictions related to
the individual effects. Holtz-Eakin, Newey, and Rosen’s (1988) approach is to specify
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the equation as

yit = α0t +
m∑

l=1

αlt yi,t−l +
m∑

l=1

δlt xi,t−l + �t fi + µi t .

In their study, yit is hours worked by individual i in period t and xit is the individual’s
wage in that period. A second equation for earnings is specified with lagged values of
hours and earnings on the right-hand side. The individual, unobserved effects are fi .
This model is similar to the VAR in (19-30), but it differs in several ways as well. The
number of periods is quite small (14 yearly observations for each individual), but there
are nearly 1000 individuals. The dynamic equation is specified for a specific period,
however, so the relevant sample size in each case is n, not T. Also, the number of lags
in the model used is relatively small; the authors fixed it at three. They thus have a two-
equation VAR containing 12 unknown parameters, six in each equation. The authors
used the model to analyze causality, measurement error, and parameter stability—that
is, constancy of αlt and δlt across time.

Example 19.8 VAR for Municipal Expenditures
In Section 18.5, we examined a model of municipal expenditures proposed by Dahlberg and
Johansson (2000): Their equation of interest is

�Si ,t = µt +
m∑

j =1

β j �Si ,t− j +
m∑

j =1

γ j �Ri ,t− j +
m∑

j =1

δ j �Gi ,t− j + uS
i ,t

for i = 1, . . . , N = 265 and t = m + 1, . . . , 9. Si ,t , Ri ,t and Gi ,t are municipal spending,
receipts (taxes and fees) and central government grants, respectively. Analogous equations
are specified for the current values of Ri ,t and Gi ,t . This produces a vector autoregression for
each municipality,




�Si ,t

�Ri ,t

�Gi ,t


 =




µS,t

µR,t

µG,t


 +




βS,1 γS,1 δS,1

βR,1 γR,1 δR,1

βG,1 γG,1 δG,1







�Si ,t−1

�Ri ,t−1

�Gi ,t−1


+ · · ·

+




βS,m γS,m δS,m

βR,m γR,m δR,m

βG,m γG,m δG,m







�Si ,t−m

�Ri ,t−m

�Gi ,t−m


+




uS
i ,t

uR
i ,t

uG
i ,t


 .

The model was estimated by GMM, so the discussion at the end of the preceding section
applies here. We will be interested in testing whether changes in municipal spending, �Si ,t
are Granger caused by changes in revenues, �Ri ,t and grants, �Gi ,t . The hypothesis to be
tested is γS, j = δS, j = 0 for all j . This hypothesis can be tested in the context of only the first
equation. Parameter estimates and diagnostic statistics are given in Section 17.5. We can
carry out the test in two ways. In the unrestricted equation with all three lagged values of all
three variables, the minimized GMM criterion is q = 22.8287. If the lagged values of �R and
�G are omitted from the �Sequation, the criterion rises to 42.9182.15 There are 6 restrictions.
The difference is 20.090 so the F statistic is 20.09/6 = 3.348. We have over 1,000 degrees of
freedom for the denominator, with 265 municipalities and 5 years, so we can use the limiting
value for the critical value. This is 2.10, so we may reject the hypothesis of noncausality
and conclude that changes in revenues and grants do Granger cause changes in spending.

15Once again, these results differ from those given by Dahlberg and Johansson. As before, the difference
results from our use of the same weighting matrix for all GMM computations in contrast to their recomputation
of the matrix for each new coefficient vector estimated.



Greene-50240 book June 26, 2002 21:55

CHAPTER 19 ✦ Models with Lagged Variables 605

(This seems hardly surprising.) The alternative approach is to use a Wald statistic to test the
six restrictions. Using the full GMM results for the �Sequation with 14 coefficients we obtain
a Wald statistic of 15.3030. The critical chi-squared would be 6 × 2.1 = 12.6, so once again,
the hypothesis is rejected.

Dahlberg and Johansson approach the causality test somewhat differently by using a
sequential testing procedure. (See their page 413 for discussion.) They suggest that the
intervening variables be dropped in turn. By dropping first G, then R and G and then first
R then G and R, they conclude that grants do not Granger cause changes in spending
(�q= only .07) but in the absence of grants, revenues do (�q|grants excluded) = 24.6. The
reverse order produces test statistics of 12.2 and 12.4, respectively. Our own calculations
of the four values of q yields 22.829 for the full model, 23.1302 with only grants excluded,
23.0894 with only R excluded, and 42.9182 with both excluded, which disagrees with their
results but is consistent with our earlier ones.

Instability of a VAR Model
The coefficients for the three-variable VAR model in Example 19.8 appear in Table 18.4. The
characteristic roots of the 9 × 9 coefficient matrix are −0.6025, 0.2529, 0.0840, (1.4586 ±
0.6584i), (−0.6992 ± 0.2019i) and (0.0611 ± 0.6291i). The first pair of complex roots has mod-
ulus greater than one, so the estimated VAR is unstable. The data do not appear to be con-
sistent with this result, though with only five useable years of data, that conclusion is a bit
fragile. One might suspect that the model is overfit. Since the disturbances are assumed
to be uncorrelated across equations, the three equations have been estimated separately.
The GMM criterion for the system is then the sum of those for the three equations. For
m = 3, 2, and 1, respectively, these are (22.8287+30.5398+17.5810) = 70.9495, 30.4526+
34.2590 + 20.5416) = 85.2532, and (34.4986 + 53.2506 + 27.5927) = 115.6119. The differ-
ence statistic for testing down from three lags to two is 14.3037. The critical chi-squared
for nine degrees of freedom is 19.62, so it would appear that m = 3 may be too large. The
results clearly reject the hypothesis that m = 1, however. The coefficients for a model with
two lags instead of one appear in Table 17.4. If we construct 	 from these results instead,
we obtain a 6 × 6 matrix whose characteristic roots are 1.5817, −0.2196, −0.3509 ± 0.4362i
and 0.0968 ± 0.2791i. The system remains unstable.

19.7 SUMMARY AND CONCLUSIONS

This chapter has surveyed a particular type of regression model, the dynamic regres-
sion. The signature feature of the dynamic model is effects that are delayed or that
persist through time. In a static regression setting, effects embodied in coefficients are
assumed to take place all at once. In the dynamic model, the response to an innovation
is distributed through several periods. The first three sections of this chapter examined
several different forms of single equation models that contained lagged effects. The pro-
gression, which mirrors the current literature is from tightly structured lag “models”
(which were sometimes formulated to respond to a shortage of data rather than to
correspond to an underlying theory) to unrestricted models with multiple period lag
structures. We also examined several hybrids of these two forms, models that allow
long lags but build some regular structure into the lag weights. Thus, our model of the
formation of expectations of inflation is reasonably flexible, but does assume a specific
behavioral mechanism. We then examined several methodological issues. In this context
as elsewhere, there is a preference in the methods toward forming broad unrestricted
models and using familiar inference tools to reduce them to the final appropriate spec-
ification. The second half of the chapter was devoted to a type of seemingly unrelated
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regressions model. The vector autoregression, or VAR, has been a major tool in recent
research. After developing the econometric framework, we examined two applications,
one in macroeconomics centered on monetary policy and one from microeconomics.

Key Terms and Concepts

• Autocorrelation
• Autoregression
• Autoregressive distributed

lag
• Autoregressive form
• Autoregressive model
• Characteristic equation
• Common factor
• Distributed lag
• Dynamic regression model
• Elasticity
• Equilibrium
• Equilibrium error
• Equilibrium multiplier
• Equilibrium relationship
• Error correction
• Exogeneity
• Expectation

• Finite lags
• General-to-simple method
• Granger noncausality
• Impact multiplier
• Impulse response
• Infinite lag model
• Infinite lags
• Innovation
• Invertible
• Lagged variables
• Lag operator
• Lag weight
• Mean lag
• Median lag
• Moving-average form
• One period ahead forecast
• Partial adjustment
• Phillips curve

• Polynomial in lag operator
• Polynomial lag model
• Random walk with drift
• Rational lag
• Simple-to-general approach
• Specification
• Stability
• Stationary
• Strong exogeneity
• Structural model
• Structural VAR
• Superconsistent
• Univariate autoregression
• Vector autoregression

(VAR)
• Vector moving average

(VMA)

Exercises

1. Obtain the mean lag and the long- and short-run multipliers for the following
distributed lag models:
a. yt = 0.55(0.02xt + 0.15xt−1 + 0.43xt−2 + 0.23xt−3 + 0.17xt−4) + et .
b. The model in Exercise 5.
c. The model in Exercise 6. (Do for either x or z.)

2. Explain how to estimate the parameters of the following model:

yt = α + βxt + γ yt−1 + δyt−2 + et ,

et = ρet−1 + ut .

Is there any problem with ordinary least squares? Let yt be consumption and let xt

be disposable income. Using the method you have described, fit the previous model
to the data in Appendix Table F5.1. Report your results.

3. Show how to estimate a polynomial distributed lag model with lags of six periods
and a third-order polynomial.

4. Expand the rational lag model yt = [(0.6 + 2L)/(1 − 0.6L + 0.5L2)]xt + et . What
are the coefficients on xt , xt−1, xt−2, xt−3, and xt−4?

5. Suppose that the model of Exercise 4 were specified as

yt = α + β + γ L
1 − δ1L− δ2L2

xt + et .
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Describe a method of estimating the parameters. Is ordinary least squares consis-
tent?

6. Describe how to estimate the parameters of the model

yt = α + β
xt

1 − γ L
+ δ

zt

1 − φL
+ εt ,

where εt is a serially uncorrelated, homoscedastic, classical disturbance.
7. We are interested in the long run multiplier in the model

yt = β0 +
6∑

j=0

β j xt− j + εt .

Assume that xt is an autoregressive series, xt = r xt−1 + vt where |r | < 1.
a. What is the long run multiplier in this model?
b. How would you estimate the long-run multiplier in this model?
c. Suppose you that the preceding is the true model but you linearly regress yt only

on a constant and the first 5 lags of xt . How does this affect your estimate of the
long run multiplier?

d. Same as c. for 4 lags instead of 5.
e. Using the macroeconomic data in Appendix F5.1, let yt be the log of real in-

vestment and xt be the log of real output. Carry out the computations suggested
and report your findings. Specifically, how does the omission of a lagged value
affect estimates of the short-run and long-run multipliers in the unrestricted lag
model?
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TIME-SERIES MODELS

Q
20.1 INTRODUCTION

For forecasting purposes, a simple model that describes the behavior of a variable (or
a set of variables) in terms of past values, without the benefit of a well-developed
theory, may well prove quite satisfactory. Researchers have observed that the large
simultaneous-equations macroeconomic models constructed in the 1960s frequently
have poorer forecasting performance than fairly simple, univariate time-series models
based on just a few parameters and compact specifications. It is just this observation
that has raised to prominence the univariate time-series forecasting models pioneered
by Box and Jenkins (1984).

In this chapter, we introduce some of the tools employed in the analysis of time-
series data.1 Section 20.2 describes stationary stochastic processes. We encountered this
body of theory in Chapters 12, 16, and 19, where we discovered that certain assump-
tions were required to ascribe familiar properties to a time-series of data. We continue
that discussion by defining several characteristics of a stationary time-series. The recent
literature in macroeconometrics has seen an explosion of studies of nonstationary time
series. Nonstationarity mandates a revision of the standard inference tools we have
used thus far. In Section 20.3, on nonstationarity and unit roots, we discuss some of
these tools. Section 20.4 on cointegration discusses some extensions of regression mod-
els that are made necessary when strongly trended, nonstationary variables appear in
them.

Some of the concepts to be discussed here were introduced in Section 12.2. Sec-
tion 12.2 also contains a cursory introduction to the nature of time-series processes. It
will be useful to review that material before proceeding with the rest of this chapter. Fi-
nally, Sections 15.9.1 on estimation and 15.9.2 and 19.4.3 on stability of dynamic models
will be especially useful for the latter sections of this chapter.

1Each topic discussed here is the subject of a vast literature with articles and book-length treatments at all
levels. For example, two survey papers on the subject of unit roots in economic time-series data, Diebold
and Nerlove (1990) and Campbell and Perron (1991) cite between them over 200 basic sources on the
subject. The literature on unit roots and cointegration is almost surely the most rapidly moving target in
econometrics. Stock’s (1994) survey adds hundreds of references to those in the aforementioned surveys
and brings the literature up to date as of then. Useful basic references on the subjects of this chapter are
Box and Jenkins (1984); Judge et al. (1985); Mills (1990); Granger and Newbold (1996); Granger and Watson
(1984); Hendry, Pagan, and Sargan (1984); Geweke (1984); and especially Harvey (1989, 1990); Enders (1995);
Hamilton (1994) and Patterson (2000). There are also many survey style and pedagogical articles on these
subjects. The aforementioned paper by Diebold and Nerlove is a useful tour guide through some of the
literature. We recommend Dickey, Bell, and Miller (1986) and Dickey, Jansen, and Thorton (1991) as well.
The latter is an especially clear introduction at a very basic level of the fundamental tools for empirical
researchers.

608
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20.2 STATIONARY STOCHASTIC PROCESSES

The essential building block for the models to be discussed in this chapter is the white
noise time-series process,

{εt }, t = −∞, +∞,

where each element in the sequence has E [εt ] = 0, E [ε2
t ] = σ 2

e , and Cov[εt , εs] = 0
for all s �= t . Each element in the series is a random draw from a population with zero
mean and constant variance. It is occasionally assumed that the draws are independent
or normally distributed, although for most of our analysis, neither assumption will be
essential.

A univariate time-series model describes the behavior of a variable in terms of its
own past values. Consider, for example, the autoregressive disturbance models intro-
duced in Chapter 12,

ut = ρut−1 + εt . (20-1)

Autoregressive disturbances are generally the residual variation in a regression model
built up from what may be an elaborate underlying theory, yt = β ′xt + ut . The theory
usually stops short of stating what enters the disturbance. But the presumption that
some time-series process generates xt should extend equally to ut . There are two ways
to interpret this simple series. As stated above, ut equals the previous value of ut plus
an “innovation,” εt . Alternatively, by manipulating the series, we showed that ut could
be interpreted as an aggregation of the entire history of the εt ’s.

Occasionally, statistical evidence is convincing that a more intricate process is at
work in the disturbance. Perhaps a second-order autoregression,

ut = ρ1ut−1 + ρ2ut−2 + εt , (20-2)

better explains the movement of the disturbances in the regression. The model may not
arise naturally from an underlying behavioral theory. But in the face of certain kinds
of statistical evidence, one might conclude that the more elaborate model would be
preferable.2 This section will describe several alternatives to the AR(1) model that we
have relied on in most of the preceding applications.

20.2.1 AUTOREGRESSIVE MOVING-AVERAGE PROCESSES

The variable yt in the model

yt = µ + γ yt−1 + εt (20-3)

is said to be autoregressive (or self-regressive) because under certain assumptions,

E [yt | yt−1] = µ + γ yt−1.

A more general pth-order autoregression or AR(p) process would be written

yt = µ + γ1 yt−1 + γ2 yt−2 + · · · + γpyt−p + εt . (20-4)

2For example, the estimates of εt computed after a correction for first-order autocorrelation may fail tests of
randomness such as the LM (Section 12.7.1) test.
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The analogy to the classical regression is clear. Now consider the first order moving
average, or MA(1) specification

yt = µ + εt − θεt−1. (20-5)

By writing

yt = µ + (1 − θ L)εt

or
yt

1 − θ L
= µ

1 − θ
+ εt ,

3

we find that

yt = µ

1 − θ
− θyt−1 − θ2 yt−2 − · · · + εt .

Once again, the effect is to represent yt as a function of its own past values.
An extremely general model that encompasses (20-4) and (20-5) is the autoregres-

sive moving average, or ARMA(p, q), model:

yt = µ + γ1 yt−1 + γ2 yt−2 + · · · + γpyt−p + εt − θ1εt−1 − · · · − θqεt−q. (20-6)

Note the convention that the ARMA(p, q) process has p autoregressive (lagged
dependent-variable) terms and q lagged moving-average terms. Researchers have found
that models of this sort with relatively small values of p and q have proved quite effective
as forecasting models.

The disturbances εt are labeled the innovations in the model. The term is fitting
because the only new information that enters the processes in period t is this innovation.
Consider, then, the AR(1) process

yt = µ + γ yt−1 + εt . (20-7)

Either by successive substitution or by using the lag operator, we obtain

(1 − γL)yt = µ + εt

or

yt = µ

1 − γ
+

∞∑
i=0

γ iεt−i .
4

(20-8)

The observed series is a particular type of aggregation of the history of the innovations.
The moving average, MA(q) model,

yt = µ + εt − θ1εt−1 − · · · − θqεt−q = µ + D(L)εt , (20-9)

is yet another, particularly simple form of aggregation in that only information from the
q most recent periods is retained. The general result is that many time-series processes
can be viewed either as regressions on lagged values with additive disturbances or as

3The lag operator is discussed in Section 19.2.2. Since µ is a constant, (1 − θ L)−1µ = µ + θµ + θ2µ + · · · =
µ/(1 − θ). The lag operator may be set equal to one when it operates on a constant.
4See Section 19.3.2 for discussion of models with infinite lag structures.
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aggregations of a history of innovations. They differ from one to the next in the form
of that aggregation.

More involved processes can be similarly represented in either an autoregressive
or moving-average form. (We will turn to the mathematical requirements below.) Con-
sider, for example, the ARMA(2, 1) process,

yt = µ + γ1 yt−1 + γ2 yt−2 + εt − θεt−1,

which we can write as

(1 − θ L)εt = yt − µ − γ1 yt−1 − γ2 yt−2.

If |θ | < 1, then we can divide both sides of the equation by (1 − θ L) and obtain

εt =
∞∑

i=0

θ i (yt−i − µ − γ1 yt−i−1 − γ2 yt−i−2).

After some tedious manipulation, this equation produces the autoregressive form,

yt = µ

1 − θ
+

∞∑
i=1

πi yt−i + εt ,

where

π1 = γ1 − θ and π j = −(θ j − γ1θ
j−1 − γ2θ

j−2), j = 2, 3, . . . . (20-10)

Alternatively, by similar (yet more tedious) manipulation, we would be able to write

yt = µ

1 − γ1 − γ2
+

[
1 − θ L

1 − γ1L− γ2L2

]
εt = µ

1 − γ1 − γ2
+

∞∑
i=0

δiεt−i . (20-11)

In each case, the weights, πi in the autoregressive form and δi in the moving-average
form are complicated functions of the original parameters. But nonetheless, each is just
an alternative representation of the same time-series process that produces the current
value of yt . This result is a fundamental property of certain time series. We will return
to the issue after we formally define the assumption that we have used at several steps
above that allows these transformations.

20.2.2 STATIONARITY AND INVERTIBILITY

At several points in the preceding, we have alluded to the notion of stationarity, either
directly or indirectly by making certain assumptions about the parameters in the model.
In Section 12.3.2, we characterized an AR(1) disturbance process

ut = ρut−1 + εt ,

as stationary if |ρ| < 1 and εt is white noise. Then

E [ut ] = 0 for all t,

Var[ut ] = σ 2
ε

1 − ρ2
,

Cov[ut , us] = ρ|t−s|σ 2
ε

1 − ρ2
.

(20-12)

If |ρ| ≥ 1, then the variance and covariances are undefined.
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In the following, we use εt to denote the white noise innovations in the process. The
ARMA(p, q) process will be denoted as in (20-6).

DEFINITION 20.1 Covariance Stationarity
A stochastic process yt is weakly stationary or covariance stationary if it satisfies
the following requirements:5

1. E [yt ] is independent of t .
2. Var[yt ] is a finite, positive constant, independent of t .
3. Cov[yt , ys] is a finite function of |t − s|, but not of t or s.

The third requirement is that the covariance between observations in the series is a
function only of how far apart they are in time, not the time at which they occur. These
properties clearly hold for the AR(1) process immediately above. Whether they apply
for the other models we have examined remains to be seen.

We define the autocovariance at lag k as

λk = Cov[yt , yt−k].

Note that

λ−k = Cov[yt , yt+k] = λk.

Stationarity implies that autocovariances are a function of k, but not of t . For example,
in (20-12), we see that the autocovariances of the AR(1) process yt = µ + γ yt−1 + εt

are

Cov[yt , yt−k] = γ kσ 2
ε

1 − γ 2
, k = 0, 1 . . . . (20-13)

If |γ | < 1, then this process is stationary. For any MA(q) series,

yt = µ + εt − θ1εt−1 − · · · − θqεt−q,

E [yt ] = µ + E [εt ] − θ1 E [εt−1] − · · · − θq E [εt−q] = µ,

Var[yt ] = (
1 + θ2

1 + · · · + θ2
q

)
σ 2

ε ,

Cov[yt , yt−1] = (−θ1 + θ1θ2 + θ2θ3 + · · · + θq−1θq) σ 2
ε ,

(20-14)

and so on until

Cov[yt , yt−(q−1)] = [−θq−1 + θ1θq] σ 2
ε ,

Cov[yt , yt−q] = −θqσ
2
ε ,

5Strong stationarity requires that the joint distribution of all sets of observations (yt , yt−1, . . .) be invariant
to when the observations are made. For practical purposes in econometrics, this statement is a theoretical
fine point. Although weak stationary suffices for our applications, we would not normally analyze weakly
stationary time series that were not strongly stationary as well. Indeed, we often go even beyond this step
and assume joint normality.
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and, for lags greater than q, the autocovariances are zero. It follows, therefore, that finite
moving-average processes are stationary regardless of the values of the parameters.
The MA(1) process yt = εt − θεt−1 is an important special case that has Var[yt ] =
(1 + θ2)σ 2

e , λ1 = −θσ 2
e , and λk = 0 for |k| > 1.

For the AR(1) process, the stationarity requirement is that |γ | < 1, which in turn,
implies that the variance of the moving average representation in (20-8) is finite. Con-
sider the AR(2) process

yt = µ + γ1 yt−1 + γ2 yt−2 + εt .

Write this equation as

C(L)yt = µ + εt ,

where

C(L) = 1 − γ1L− γ2L2.

Then, if it is possible, we invert this result to produce

yt = [C(L)]−1(µ + εt ).

Whether the inversion of the polynomial in the lag operator leads to a convergent
series depends on the values of γ1 and γ2. If so, then the moving-average representation
will be

yt =
∞∑

i=0

δi (µ + εt−i )

so that

Var[yt ] =
∞∑

i=0

δ2
i σ

2
ε .

Whether this result is finite or not depends on whether the series of δi s is exploding
or converging. For the AR(2) case, the series converges if |γ2| < 1, γ1 + γ2 < 1, and
γ2 − γ1 < 1.6

For the more general case, the autoregressive process is stationary if the roots of
the characteristic equation,

C(z) = 1 − γ1z − γ2z2 − · · · − γpzp = 0,

have modulus greater than one, or “lie outside the unit circle.”7 It follows that if a
stochastic process is stationary, it has an infinite moving-average representation (and, if
not, it does not). The AR(1) process is the simplest case. The characteristic equation is

C(z) = 1 − γ z = 0,

6This requirement restricts (γ1, γ2) to within a triangle with points at (2, −1), (−2, −1), and (0, 1).
7The roots may be complex. (See Sections 15.9.2 and 19.4.3.) They are of the form a ± bi , where i = √−1.
The unit circle refers to the two-dimensional set of values of a and b defined by a2 + b2 = 1, which defines a
circle centered at the origin with radius 1.
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and its single root is 1/γ . This root lies outside the unit circle if |γ | < 1, which we saw
earlier.

Finally, consider the inversion of the moving-average process in (20-9) and (20-10).
Whether this inversion is possible depends on the coefficients in D(L) in the same fash-
ion that stationarity hinges on the coefficients in C(L). This counterpart to stationarity of
an autoregressive process is called invertibility. For it to be possible to invert a moving-
average process to produce an autoregressive representation, the roots of D(L) = 0
must be outside the unit circle. Notice, for example, that in (20-5), the inversion of the
moving-average process is possible only if |θ | < 1. Since the characteristic equation for
the MA(1) process is 1 − θ L = 0, the root is 1/θ , which must be larger than one.

If the roots of the characteristic equation of a moving-average process all lie outside
the unit circle, then the series is said to be invertible. Note that invertibility has no bearing
on the stationarity of a process. All moving-average processes with finite coefficients
are stationary. Whether an ARMA process is stationary or not depends only on the AR
part of the model.

20.2.3 AUTOCORRELATIONS OF A STATIONARY STOCHASTIC
PROCESS

The function

λk = Cov[yt , yt−k]

is called the autocovariance function of the process yt . The autocorrelation function, or
ACF, is obtained by dividing by the variance λ0 to obtain

ρk = λk

λ0
, −1 ≤ ρk ≤ 1.

For a stationary process, the ACF will be a function of k and the parameters of the
process. The ACF is a useful device for describing a time-series process in much the same
way that the moments are used to describe the distribution of a random variable. One
of the characteristics of a stationary stochastic process is an autocorrelation function
that either abruptly drops to zero at some finite lag or eventually tapers off to zero. The
AR(1) process provides the simplest example, since

ρk = γ k,

which is a geometric series that either declines monotonically from ρ0 = 1 if γ is positive
or with a damped sawtooth pattern if γ is negative. Note as well that for the process
yt = γ yt−1 + εt ,

ρk = γρk−1, k ≥ 1,

which bears a noteworthy resemblance to the process itself.
For higher-order autoregressive series, the autocorrelations may decline monoton-

ically or may progress in the fashion of a damped sine wave.8 Consider, for example, the
second-order autoregression, where we assume without loss of generality that µ = 0

8The behavior is a function of the roots of the characteristic equation. This aspect is discussed in Section 15.9
and especially 15.9.3.
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(since we are examining second moments in deviations from the mean):

yt = γ1 yt−1 + γ2 yt−2 + εt .

If the process is stationary, then Var[yt ] = Var[yt−s] for all s. Also, Var[yt ] = Cov[yt , yt ],
and Cov[εt , yt−s] = 0 if s > 0. These relationships imply that

λ0 = γ1λ1 + γ2λ2 + σ 2
ε .

Now, using additional lags, we find that

λ1 = γ1λ0 + γ2λ1

(20-15)and
λ2 = γ1λ1 + γ2λ0.

These three equations provide the solution:

λ0 = σ 2
ε

[(1 − γ2)/(1 + γ2)](
1 − γ 2

1 − γ 2
2

) .

The variance is unchanging, so we can divide throughout by λ0 to obtain the relationships
for the autocorrelations,

ρ1 = γ1ρ0 + γ2ρ1.

Since ρ0 = 1, ρ1 = γ1/(1−γ2). Using the same procedure for additional lags, we find that

ρ2 = γ1ρ1 + γ2,

so ρ2 = γ 2
1 /(1 − γ2) + γ2. Generally, then, for lags of two or more,

ρk = γ1ρk−1 + γ2ρk−2.

Once again, the autocorrelations follow the same difference equation as the series itself.
The behavior of this function depends on γ1, γ2, and k, although not in an obvious way.
The inherent behavior of the autocorrelation function can be deduced from the charac-
teristic equation.9 For the second-order process we are examining, the autocorrelations
are of the form

ρk = φ1(1/z1)
k + φ2(1/z2)

k,

where the two roots are10

1/z = 1
2

[
γ1 ±

√
γ 2

1 + 4γ2
]
.

If the two roots are real, then we know that their reciprocals will be less than one in
absolute value, so that ρk will be the sum of two terms that are decaying to zero. If the
two roots are complex, then ρk will be the sum of two terms that are oscillating in the
form of a damped sine wave.

9The set of results that we would use to derive this result are exactly those we used in Section 19.4.3 to
analyze the stability of a dynamic equation, which makes sense, of course, since the equation linking the
autocorrelations is a simple difference equation.
10We used the device in Section 19.4.4 to find the characteristic roots. For a second-order equation, the
quadratic is easy to manipulate.
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Applications that involve autoregressions of order greater than two are relatively
unusual. Nonetheless, higher-order models can be handled in the same fashion. For the
AR(p) process

yt = γ1 yt−1 + γ2 yt−2 + · · · + γpyt−p + εt ,

the autocovariances will obey the Yule–Walker equations

λ0 = γ1λ1 + γ2λ2 + · · · + γpλp + σ 2
ε ,

λ1 = γ1λ0 + γ2λ1 + · · · + γpλp−1,

and so on. The autocorrelations will once again follow the same difference equation as
the original series,

ρk = γ1ρk−1 + γ2ρk−2 + · · · + γpρk−p.

The ACF for a moving-average process is very simple to obtain. For the first-order
process,

yt = εt − θεt−1,

λ0 = (1 + θ2)σ 2
ε ,

λ1 = −θσ 2
ε ,

then λk = 0 for k > 1. Higher-order processes appear similarly. For the MA(2) process,
by multiplying out the terms and taking expectations, we find that

λ0 = (
1 + θ2

1 + θ2
2

)
σ 2

ε ,

λ1 = (−θ1 + θ1θ2)σ
2
ε ,

λ2 = −θ1σ
2
ε ,

λk = 0, k > 2.

The pattern for the general MA(q) process yt = εt − θ1εt−1 − θ2εt−2 − · · · − θqεt−q is
analogous. The signature of a moving-average process is an autocorrelation function that
abruptly drops to zero at one lag past the order of the process. As we will explore below,
this sharp distinction provides a statistical tool that will help us distinguish between these
two types of processes empirically.

The mixed process, ARMA(p, q), is more complicated since it is a mixture of the
two forms. For the ARMA(1, 1) process

yt = γ yt−1 + εt − θεt−1,

the Yule–Walker equations are

λ0 = E [yt (γ yt−1 + εt − θεt−1)] = γ λ1 + σ 2
ε − σ 2

ε (θγ − θ2),

λ1 = γ λ0 − θσ 2
ε ,

and
λk = γ λk−1, k > 1.

The general characteristic of ARMA processes is that when the moving-average com-
ponent is of order q, then in the series of autocorrelations there will be an initial q terms
that are complicated functions of both the AR and MA parameters, but after q periods,

ρk = γ1ρk−1 + γ2ρk−2 + · · · + γpρk−p, k > q.
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20.2.4 PARTIAL AUTOCORRELATIONS OF A STATIONARY
STOCHASTIC PROCESS

The autocorrelation function ACF(k) gives the gross correlation between yt and yt−k.
But as we saw in our analysis of the classical regression model in Section 3.4, a gross
correlation such as this one can mask a completely different underlying relationship. In
this setting, we observe, for example, that a correlation between yt and yt−2 could arise
primarily because both variables are correlated with yt−1. Consider the AR(1) process
yt = γ yt−1 + εt . The second gross autocorrelation is ρ2 = γ 2. But in the same spirit,
we might ask what is the correlation between yt and yt−2 net of the intervening effect
of yt−1? In this model, if we remove the effect of yt−1 from yt , then only εt remains,
and this disturbance is uncorrelated with yt−2. We would conclude that the partial
autocorrelation between yt and yt−2 in this model is zero.

DEFINITION 20.2 Partial Autocorrelation Coefficient
The partial correlation between yt and yt−k is the simple correlation between yt−k

and yt minus that part explained linearly by the intervening lags. That is,

ρ∗
k = Corr[yt − E∗(yt | yt−1, . . . , yt−k+1), yt−k],

where E∗(yt | yt−1, . . . , yt−k+1) is the minimum mean-squared error predictor of
yt by yt−1, . . . , yt−k+1.

The function E∗(.) might be the linear regression if the conditional mean happened
to be linear, but it might not. The optimal linear predictor is the linear regression,
however, so what we have is

ρ∗
k = Corr[yt − β1 yt−1 − β2 yt−2 − · · · − βk−1 yt−k+1, yt−k],

whereβ = [β1, β2, . . . , βk−1] = {
Var[yt−1, yt−2, . . . , yt−k+1]

}−1 × Cov[yt , (yt−1, yt−2, . . . ,

yt−k+1)]′. This equation will be recognized as a vector of regression coefficients. As such,
what we are computing here (of course) is the correlation between a vector of resid-
uals and yt−k. There are various ways to formalize this computation [see, e.g., Enders
(1995, pp. 82–85)]. One intuitively appealing approach is suggested by the equivalent
definition (which is also a prescription for computing it), as follows.

DEFINITION 20.3 Partial Autocorrelation Coefficient
The partial correlation between yt and yt−k is the last coefficient in the linear
projection of yt on [yt−1, yt−2, . . . , yt−k],




β1

β2

...

βk−1

ρ∗
k




=




λ0 λ1 · · · λk−2 λk−1

λ1 λ0 · · · λk−3 λk−2

· · · ... · · ·
λk−1 λk−2 · · · λ1 λ0




−1 


λ1

λ2

...

λk




.
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As before, there are some distinctive patterns for particular time-series processes.
Consider first the autoregressive processes,

yt = γ1 yt−1 + γ2 yt−2 + · · · + γpyt−p + εt .

We are interested in the last coefficient in the projection of yt on yt−1, then on [yt−1, yt−2],
and so on. The first of these is the simple regression coefficient of yt on yt−1, so

ρ∗
1 = Cov[yt , yt−1]

Var[yt−1]
= λ1

λ0
= ρ1.

The first partial autocorrelation coefficient for any process equals the first
autocorrelation coefficient.

Without doing the messy algebra, we also observe that for the AR(p) process, ρ∗
1 is a

mixture of all the γ coefficients. Of course, if p equals 1, then ρ∗
1 = ρ1 = γ . For the

higher-order processes, the autocorrelations are likewise mixtures of the autoregressive
coefficients until we reach ρ∗

p. In view of the form of the AR(p) model, the last coefficient
in the linear projection on p lagged values is γp. Also, we can see the signature pattern
of the AR(p) process, any additional partial autocorrelations must be zero, because
they will be simply ρ∗

k = Corr[εt , yt−k] = 0 if k > p.
Combining results thus far, we have the characteristic pattern for an autoregressive

process. The ACF, ρk, will gradually decay to zero, either monotonically if the charac-
teristic roots are real or in a sinusoidal pattern if they are complex. The PACF, ρ∗

k , will
be irregular out to lag p, when they abruptly drop to zero and remain there.

The moving-average process has the mirror image of this pattern. We have already
examined the ACF for the MA(q) process; it has q irregular spikes, then it falls to zero
and stays there. For the PACF, write the model as

yt = (1 − θ1L− θ2L2 − · · · − θq Lq)εt .

If the series is invertible, which we will assume throughout, then we have
yt

1 − θ1L− · · · − θq Lq
= εt ,

or

yt = π1 yt−1 + π2 yt−2 + · · · + εt

=
∞∑

i=1

πi yt−i + εt .

The autoregressive form of the MA(q) process has an infinite number of terms, which
means that the PACF will not fall off to zero the way that the PACF of the AR process
does. Rather, the PACF of an MA process will resemble the ACF of an AR process. For
example, for the MA(1) process yt = εt − θεt−1, the AR representation is

yt = θyt−1 + θ2 yt−2 + · · · + εt ,

which is the familiar form of an AR(1) process. Thus, the PACF of an MA(1) process is
identical to the ACF of an AR(1) process, ρ∗

k = θk.
The ARMA(p, q) is a mixture of the two types of processes, so its ACF and PACF

are likewise mixtures of the two forms discussed above. Generalities are difficult to
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draw, but normally, the ACF of an ARMA process will have a few distinctive spikes in
the early lags corresponding to the number of MA terms, followed by the characteristic
smooth pattern of the AR part of the model. High-order MA processes are relatively
uncommon in general, and high-order AR processes (greater than two) seem primarily
to arise in the form of the nonstationary processes described in the next section. For
a stationary process, the workhorses of the applied literature are the (2, 0) and (1, 1)
processes. For the ARMA(1, 1) process, both the ACF and the PACF will display a
distinctive spike at lag 1 followed by an exponentially decaying pattern thereafter.

20.2.5 MODELING UNIVARIATE TIME SERIES

The preceding discussion is largely descriptive. There is no underlying economic theory
that states why a compact ARMA(p, q) representation should adequately describe the
movement of a given economic time series. Nonetheless, as a methodology for building
forecasting models, this set of tools and its empirical counterpart have proved as good as
and even superior to much more elaborate specifications (perhaps to the consternation
of the builders of large macroeconomic models).11 Box and Jenkins (1984) pioneered a
forecasting framework based on the preceding that has been used in a great many fields
and that has, certainly in terms of numbers of applications, largely supplanted the use
of large integrated econometric models.

Box and Jenkins’s approach to modeling a stochastic process can be motivated by
the following.

THEOREM 20.1 Wold’s Decomposition Theorem
Every zero mean covariance stationary stochastic process can be represented in
the form

yt = E∗[yt | yt−1, yt−2, . . . , tt−p] +
∞∑

i=0

πiεt−i ,

where εt is white noise, π0 = 1, and the weights are square summable—that is,
∞∑

i=1

π2
i < ∞

—E∗[yt | yt−1, yt−2, . . . , yt−p] is the optimal linear predictor of yt based on its
lagged values, and the predictor E∗

t is uncorrelated with εt−i .

Thus, the theorem decomposes the process generating yt into

E∗
t = E∗[yt | yt−1, yt−2, . . . , yt−p] = the linearly deterministic component

11This observation can be overstated. Even the most committed advocate of the Box–Jenkins methods would
concede that an ARMA model of, for example, housing starts will do little to reveal the link between the
interest rate policies of the Federal Reserve and their variable of interest. That is, the covariation of economic
variables remains as interesting as ever.
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and
∞∑

i=0

πiεt−i = the linearly indeterministic component.

The theorem states that for any stationary stochastic process, for a given choice of p,
there is a Wold representation of the stationary series

yt =
p∑

i=1

γi yt−i +
∞∑

i=0

πiεt−i .

Note that for a specific ARMA(P, Q) process, if p ≥ P, then πi = 0 for i > Q. For
practical purposes, the problem with the Wold representation is that we cannot estimate
the infinite number of parameters needed to produce the full right-hand side, and, of
course, P and Q are unknown. The compromise, then, is to base an estimate of the
representation on a model with a finite number of moving-average terms. We can seek
the one that best fits the data in hand.

It is important to note that neither the ARMA representation of a process nor the
Wold representation is unique. In general terms, suppose that the process generating
yt is

�(L)yt = �(L)εt .

We assume that �(L) is finite but �(L) need not be. Let �(L) be some other polynomial
in the lag operator with roots that are outside the unit circle. Then

[
�(L)

�(L)

]
�(L)yt =

[
�(L)

�(L)

]
�(L)εt

or

�(L)yt = �(L)εt .

The new representation is fully equivalent to the old one, but it might have a different
number of autoregressive parameters, which is exactly the point of the Wold decompo-
sition. The implication is that part of the model-building process will be to determine
the lag structures. Further discussion on the methodology is given by Box and Jenkins
(1984).

The Box–Jenkins approach to modeling stochastic processes consists of the follow-
ing steps:

1. Satisfactorily transform the data so as to obtain a stationary series. This step will
usually mean taking first differences, logs, or both to obtain a series whose
autocorrelation function eventually displays the characteristic exponential decay
of a stationary series.

2. Estimate the parameters of the resulting ARMA model, generally by nonlinear
least squares.

3. Generate the set of residuals from the estimated model and verify that they
satisfactorily resemble a white noise series. If not, respecify the model and return
to step 2.

4. The model can now be used for forecasting purposes.
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Space limitations prevent us from giving a full presentation of the set of techniques.
Since this methodology has spawned a mini-industry of its own, however, there is no
shortage of book length analyses and prescriptions to which the reader may refer. Five
to consider are the canonical source, Box and Jenkins (1984), Granger and Newbold
(1986), Mills (1993), Enders (1995) and Patterson (2000). Some of the aspects of the
estimation and analysis steps do have broader relevance for our work here, so we will
continue to examine them in some detail.

20.2.6 ESTIMATION OF THE PARAMETERS OF A UNIVARIATE
TIME SERIES

The broad problem of regression estimation with time series data, which carries through
to all the discussions of this chapter, is that the consistency and asymptotic normality
results that we derived based on random sampling will no longer apply. For example,
for a stationary series, we have assumed that Var[yt ] = λ0 regardless of t . But we have
yet to establish that an estimated variance,

c0 = 1
T − 1

T∑
t=1

(yt − ȳ)2,

will converge to λ0, or anything else for that matter. It is necessary to assume that
the process is ergodic. (We first encountered this assumption in Section 12.4.1—see
Definition 12.3.) Ergodicity is a crucial element of our theory of estimation. When a
time series has this property (with stationarity), then we can consider estimation of
parameters in a meaningful sense. If the process is stationary and ergodic then, by the
Ergodic Theorem (Theorems 12.1 and 12.2) moments such as ȳ and c0 converge to
their population counterparts µ and λ0.12 The essential component of the condition
is one that we have met at many points in this discussion, that autocovariances must
decline sufficiently rapidly as the separation in time increases. It is possible to construct
theoretical examples of processes that are stationary but not ergodic, but for practical
purposes, a stationarity assumption will be sufficient for us to proceed with estimation.
For example, in our models of stationary processes, if we assume that εt ∼ N[0, σ 2],
which is common, then the stationary processes are ergodic as well.

Estimation of the parameters of a time-series process must begin with a determi-
nation of the type of process that we have in hand. (Box and Jenkins label this the
identification step. But identification is a term of art in econometrics, so we will steer
around that admittedly standard name.) For this purpose, the empirical estimates of the
autocorrelation and partial autocorrelation functions are useful tools.

The sample counterpart to the ACF is the correlogram,

rk =
∑T

t=k+1 (yt − ȳ)(yt−k − ȳ)∑T
t=1 (yt − ȳ)2

.

A plot of rk against k provides a description of a process and can be used to help discern
what type of process is generating the data. The sample PACF is the counterpart to the

12The formal conditions for ergodicity are quite involved; see Davidson and MacKinnon (1993) or Hamilton
(1994, Chapter 7).
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ACF, but net of the intervening lags; that is,

r∗
k =

∑T
t=k+1 y∗

t y∗
t−k∑T

t=k+1 (y∗
t−k)

2
,

where y∗
t and y∗

t−k are residuals from the regressions of yt and yt−k on [1, yt−1, yt−2, . . . ,

yt−k+1]. We have seen this at many points before; r∗
k is simply the last linear least squares

regression coefficient in the regression of yt on [1, yt−1, yt−2, . . . , yt−k+1, yt−k]. Plots of
the ACF and PACF of a series are usually presented together. Since the sample estimates
of the autocorrelations and partial autocorrelations are not likely to be identically zero
even when the population values are, we use diagnostic tests to discern whether a time
series appears to be nonautocorrelated.13 Individual sample autocorrelations will be
approximately distributed with mean zero and variance 1/T under the hypothesis that
the series is white noise. The Box–Pierce (1970) statistic

Q = T
p∑

k=1

r2
k

is commonly used to test whether a series is white noise. Under the null hypothesis
that the series is white noise, Q has a limiting chi-squared distribution with p degrees
of freedom. A refinement that appears to have better finite-sample properties is the
Ljung–Box (1979) statistic,

Q′ = T(T + 2)

p∑
k=1

r2
k

T − k
.

The limiting distribution of Q′ is the same as that of Q.
The process of finding the appropriate specification is essentially trial and error. An

initial specification based on the sample ACF and PACF can be found. The parameters
of the model can then be estimated by least squares. For pure AR(p) processes, the
estimation step is simple. The parameters can be estimated by linear least squares.
If there are moving-average terms, then linear least squares is inconsistent, but the
parameters of the model can be fit by nonlinear least squares. Once the model has been
estimated, a set of residuals is computed to assess the adequacy of the specification. In
an AR model, the residuals are just the deviations from the regression line.

The adequacy of the specification can be examined by applying the foregoing tech-
niques to the estimated residuals. If they appear satisfactorily to mimic a white noise
process, then analysis can proceed to the forecasting step. If not, a new specification
should be considered.

Example 20.1 ACF and PACF for a Series of Bond Yields
Appendix Table F20.1 lists 5 years of monthly averages of the yield on a Moody’s Aaa rated
corporate bond. The series is plotted in Figure 20.1. From the figure, it would appear that
stationarity may not be a reasonable assumption. We will return to this question below. The
ACF and PACF for the original series are shown in Table 20.1, with the diagnostic statistics
discussed earlier.

The plots appear to be consistent with an AR(2) process, although the ACF at longer
lags seems a bit more persistent than might have been expected. Once again, this condition

13The LM test discussed in Section 12.7.1 is one of these.
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may indicate that the series is not stationary. Maintaining that assumption for the present,
we computed the residuals from the AR(2) model and subjected them to the same tests as
the original series. The coefficients of the AR(2) model are 1.1566 and −0.2083, which also
satisfy the restrictions for stationarity given in Section 20.2.2. Despite the earlier suggestions,
the residuals do appear to resemble a white noise series (Table 20.2).

FIGURE 20.1 Monthly Data on Bond Yields.
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TABLE 20.1 ACF and PACF for Bond Yields

Time-series identification for YIELD
Box–Pierce statistic = 323.0587 Box–Ljung Statistic = 317.4389
Degrees of freedom = 14 Degrees of freedom = 14
Significance level = 0.0000 Significance level = 0.0000
� → |coefficient| > 2/sqrt(N) or > 95% significant

Autocorrelation Function Partial Autocorrelations

Lag −1 0 +1 Box–Pierce −1 0 +1

1 0.970� 56.42� 0.970�

2 0.908� 105.93� −0.573�

3 0.840� 148.29� 0.157
4 0.775� 184.29� −0.043
5 0.708� 214.35� −0.309�

6 0.636� 238.65� −0.024
7 0.567� 257.93� −0.037
8 0.501� 272.97� 0.059
9 0.439� 284.51� −0.068

10 0.395� 293.85� 0.216
11 0.370� 302.08� −0.180
12 0.354� 309.58� 0.048
13 0.339� 316.48� 0.162
14 0.331� 323.06� 0.171
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TABLE 20.2 ACF and PACF for Residuals

Time-series identification for U
Box–Pierce statistic = 13.7712 Box–Ljung statistic = 16.1336
Significance level = 0.4669 Significance level = 0.3053
� → |coefficient| > 2/sqrt(N) or > 95% significant

Autocorrelation Function Partial Autocorrelations

Lag −1 0 +1 Box–Pierce −1 0 +1

1 0.154 1.38 0.154
2 −0.147 2.64 −0.170
3 −0.207 5.13 −0.179
4 0.161 6.64 0.183
5 0.117 7.43 0.068
6 0.114 8.18 0.094
7 −0.110 8.89 −0.066
8 0.041 8.99 0.125
9 −0.168 10.63 −0.258

10 0.014 10.64 0.035
11 −0.016 10.66 0.015
12 −0.009 10.66 −0.089
13 −0.195 12.87 −0.166
14 −0.125 13.77 0.132

20.2.7 THE FREQUENCY DOMAIN

For the analysis of macroeconomic flow data such as output and consumption, and
aggregate economic index series such as the price level and the rate of unemploy-
ment, the tools described in the previous sections have proved quite satisfactory. The
low frequency of observation (yearly, quarterly, or, occasionally, monthly) and very
significant aggregation (both across time and of individuals) make these data rela-
tively smooth and straightforward to analyze. Much contemporary economic analysis,
especially financial econometrics, has dealt with more disaggregated, microlevel data,
observed at far greater frequency. Some important examples are stock market data for
which daily returns data are routinely available, and exchange rate movements, which
have been tabulated on an almost continuous basis. In these settings, analysts have found
that the tools of spectral analysis, and the frequency domain, have provided many use-
ful results and have been applied to great advantage. This section introduces a small
amount of the terminology of spectral analysis to acquaint the reader with a few basic
features of the technique. For those who desire further detail, Fuller (1976), Granger and
Newbold (1996), Hamilton (1994), Chatfield (1996), Shumway (1988), and Hatanaka
(1996) (among many others with direct application in economics) are excellent intro-
ductions. Most of the following is based on Chapter 6 of Hamilton (1994).

In this framework, we view an observed time series as a weighted sum of underlying
series that have different cyclical patterns. For example, aggregate retail sales and con-
struction data display several different kinds of cyclical variation, including a regular
seasonal pattern and longer frequency variation associated with variation in the econ-
omy as a whole over the business cycle. The total variance of an observed time series
may thus be viewed as a sum of the contributions of these underlying series, which vary
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at different frequencies. The standard application we consider is how spectral analysis
is used to decompose the variance of a time series.

20.2.7.a. Theoretical Results

Let {yt }t=−∞,∞ define a zero mean, stationary time-series process. The autocovariance
at lag k was defined in Section 20.2.2 as

λk = λ−k = Cov[yt , yt−k].

We assume that the series λk is absolutely summable;
∑∞

i=0 |λk| is finite. The autocovari-
ance generating function for this time-series process is

gY(z) =
∞∑

k=−∞
λkzk.

We evaluate this function at the complex value z = exp(iω), where i = √−1 and ω is a
real number, and divide by 2π to obtain the spectrum, or spectral density function, of
the time-series process,

h Y(ω) = 1
2π

( ∞∑
k=−∞

λke−iωk

)
. (20-16)

The spectral density function is a characteristic of the time-series process very much
like the sequence of autocovariances (or the sequence of moments for a probability
distribution). For a time-series process that has the set of autocovariances λk, the spectral
density can be computed at any particular value of ω. Several results can be combined
to simplify hY(ω):

1. Symmetry of the autocovariances, λk = λ−k;
2. DeMoivre’s theorem, exp(± iωk) = cos(ωk) ± i sin(ωk);
3. Polar values, cos(0) = 1, cos(π) = 0, sin(0) = 0, sin(π) = 1;
4. Symmetries of sin and cos functions, sin(−ω) = − sin(ω) and cos(−ω) = cos(ω).

One of the convenient consequences of result 2 is exp(iωk) + exp(−iωk) = 2 cos(ωk),
which is always real. These equations can be combined to simplify the spectrum.

hY(ω) = 1
2π

[
λ0 + 2

∞∑
k=1

λk cos(ωk)

]
, ω ∈ [0, π ]. (20-17)

This is a strictly real-valued, continuous function of ω. Since the cosine function is
cyclic with period 2π, hY(ω) = hY(ω + M2π) for any integer M, which implies that the
entire spectrum is known if its values for ω from 0 to π are known. [Since cos(−ω) =
cos(ω), hY(ω) = hY(−ω), so the values of the spectrum for ω from 0 to −π are the same
as those from 0 to +π .] There is also a correspondence between the spectrum and the
autocovariances,

λk =
∫ π

−π

h Y(ω) cos(kω) dω,

which we can interpret as indicating that the sequence of autocovariances and the
spectral density function just produce two different ways of looking at the same
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time-series process (in the first case, in the “time domain,” and in the second case,
in the “frequency domain,” hence the name for this analysis).

The spectral density function is a function of the infinite sequence of autocovari-
ances. For ARMA processes, however, the autocovariances are functions of the usually
small numbers of parameters, so hY(ω) will generally simplify considerably. For the
ARMA(p, q) process defined in (20-6),

(yt − µ) = γ1(yt−1 − µ) + · · · + γp(yt−p − µ) + εt − θ1εt−1 − · · · − θqεt−q

or

�(L)(yt − µ) = �(L)εt ,

the autocovariance generating function is

gY(z) = σ 2�(z)�(1/z)
�(z)�(1/z)

= σ 2�(z)�(1/z),

where �(z) gives the sequence of coefficients in the infinite moving-average represen-
tation of the series, �(z)/�(z). See, for example, (201), where this result is derived for
the ARMA(2, 1) process. In some cases, this result can be used explicitly to derive
the spectral density function. The spectral density function can be obtained from this
relationship through

hY(ω) = σ 2

2π
�(e−iω)�(eiω).

Example 20.2 Spectral Density Function for an AR(1) Process
For an AR(1) process with autoregressive parameter ρ , yt = ρyt−1 + εt , εt ∼ N[0, 1], the lag
polynomials are �(z) = 1 and �(z) = 1 − ρz. The autocovariance generating function is

gY (z) = σ 2

(1 − ρz) (1 − ρ/z)

= σ 2

1 + ρ2 − ρ (z + 1/z)

= σ 2

1 + ρ2

∞∑
i =0

(
ρ

1 + ρ2

)i (
1 + z2

z

)i

.

The spectral density function is

hY (ω) = σ 2

2π

1
[1 − ρ exp(−i ω) ][1 − ρ exp( i ω) ]

= σ 2

2π

1
[1 + ρ2 − 2ρ cos(ω) ]

.

For the general case suggested at the outset, �(L)(yt − µ) = �(L)εt , there is a
template we can use, which, if not simple, is at least transparent. Let αi be the reciprocal
of a root of the characteristic polynomial for the autoregressive part of the model,
�(αi ) = 0, i = 1, . . . , p, and let δ j , j = 1, . . . , q, be the same for the moving-average
part of the model. Then

hY(ω) = σ 2

2π

∏q
j=1

[
1 + δ2

j − 2δ j cos(ω)
]

∏p
i=1

[
1 + α2

i − 2αi cos(ω)
] .
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Some of the roots of either polynomial may be complex pairs, but in this case, the
product for adjacent pairs (a ± bi) is real, so the function is always real valued. [Note
also that (a ± bi)−1 = (a ∓ bi)/(a2 + b2).]

For purposes of our initial objective, decomposing the variance of the time series,
our final useful theoretical result is∫ π

−π

hY(ω) dω = λ0.

Thus, the total variance can be viewed as the sum of the spectral densities over all
possible frequencies. (More precisely, it is the area under the spectral density.) Once
again exploiting the symmetry of the cosine function, we can rewrite this equation in
the form

2
∫ π

0
hY(ω) dω = λ0.

Consider, then, integration over only some of the frequencies;

2
λ0

∫ ω j

0
hY(ω) dω = τ(ω j ), 0 < ω j ≤ π, 0 < τ(ω j ) ≤ 1.

Thus, τ(ω j ) can be interpreted as the proportion of the total variance of the time series
that is associated with frequencies less than or equal to ω j .

20.2.7.b. Empirical Counterparts

We have in hand a sample of observations, yt , t = 1, . . . , T. The first task is to establish
a correspondence between the frequencies 0 < ω ≤ π and something of interest in the
sample. The lowest frequency we could observe would be once in the entire sample
period, so we map ω1 to 2π/T. The highest would then be ωT = 2π , and the intervening
values will be 2π j/T, j = 2, . . . , T − 1. It may be more convenient to think in terms
of period rather than frequency. The number of periods per cycle will correspond to
T/j = 2π/ω j . Thus, the lowest frequency, ω1, corresponds to the highest period, T
“dates” (months, quarters, years, etc.).

There are a number of ways to estimate the population spectral density function.
The obvious way is the sample counterpart to the population spectrum. The sample of
T observations provides the variance and T − 1 distinct sample autocovariances

ck = c−k = 1
T

T∑
t=k+1

(yt − ȳ)(yt−k − ȳ), ȳ = 1
T

T∑
t=1

yt , k = 0, 1, . . . , T − 1,

so we can compute the sample periodogram, which is

ĥY(ω) = 1
2π

[
c0 + 2

T−1∑
k=1

ck cos(ωk)

]
.

The sample periodogram is a natural estimator of the spectrum, but it has a statisti-
cal flaw. With the sample variance and the T − 1 autocovariances, we are estimating
T parameters with T observations. The periodogram is, in the end, T transformations
of these T estimates. As such, there are no “degrees of freedom”; the estimator does
not improve as the sample size increases. A number of methods have been suggested
for improving the behavior of the estimator. Two common ways are truncation and
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windowing [see Chatfield (1996, pp. 139–143)]. The truncated estimator of the peri-
odogram is based on a subset of the first L < T autocovariances. The choice of L is a
problem because there is no theoretical guidance. Chatfield (1996) suggests L approxi-
mately equal to 2

√
T is large enough to provide resolution while removing some of the

sampling variation induced by the long lags in the untruncated estimator. The second
mechanism for improving the properties of the estimator is a set of weights called a lag
window. The revised estimator is

ĥY(ω) = 1
2π

[
w0c0 + 2

L∑
k=1

wkck cos(ωk)

]
,

where the set of weights, {wk, k = 0, . . . , L}, is the lag window. One choice for the
weights is the Bartlett window, which produces

ĥY,Bartlett(ω) = 1
2π

[
c0 + 2

L∑
k=1

w(k, L)ck cos(ωk)

]
, w(k, L) = 1 − k

L+ 1
.

Note that this result is the same set of weights used in the Newey–West robust covariance
matrix estimator in Chapter 12, with essentially the same motivation. Two others that
are commonly used are the Tukey window, which has wk = 1

2 [1 + cos(πk/L)], and the
Parzen window, wk = 1−6[(k/L)2−(k/L)3], if k ≤ L/2, and wk = 2(1−k/L)3 otherwise.

If the series has been modeled as an ARMA process, we can instead compute the
fully parametric estimator based on our sample estimates of the roots of the autore-
gressive and moving-average polynomials. This second estimator would be

ĥY,ARMA(ω) = σ̂ 2

2π

∏q
j=1

[
1 + d2

j − 2dj cos(ωk)
]

∏p
i=1

[
1 + a2

i − 2ai cos(ωk)
] .

Others have been suggested. [See Chatfield (1996, Chap. 7).]
Finally, with the empirical estimate of the spectrum, the variance decomposition

can be approximated by summing the values around the frequencies of interest.

Example 20.3 Spectral Analysis of the Growth Rate of Real GNP
Appendix Table F20.2 lists quarterly observations on U.S. GNP and the implicit price defla-
tor for GNP for 1950 through 1983. The GNP series, with its upward trend, is obviously
nonstationary. We will analyze instead the quarterly growth rate, 100[log(GNPt/pricet ) −
log(GNPt−1/pricet−1)]. Figure 20.2 shows the resulting data. The differenced series has 135
observations.

Figure 20.3 plots the sample periodogram, with frequencies scaled so that ω j = ( j/T )2π .
The figure shows the sample periodogram for j = 1, . . . , 67 (since values of the spectrum
for j = 68, . . . , 134) are a mirror image of the first half, we have omitted them). Figure 20.3
shows peaks at several frequencies. The effect is more easily visualized in terms of the periods
of these cyclical components. The second row of labels shows the periods, computed as
quarters = T/(2 j ) , where T = 67 quarters. There are distinct masses around 2 to 3 years
that correspond roughly to the “business cycle” of this era. One might also expect seasonal
effects in these quarterly data, and there are discernible spikes in the periodogram at about
0.3 year (one quarter). These spikes, however, are minor compared with the other effects in the
figure. This is to be expected, because the data are seasonally adjusted already. Finally, there
is a pronounced spike at about 6 years in the periodogram. The original data in Figure 20.2
do seem consistent with this result, with substantial recessions coming at intervals of 5 to 7
years from 1953 to 1980.

To underscore these results, consider what we would obtain if we analyzed the original
(log) real GNP series instead of the growth rates. Figure 20.4 shows the raw data. Although
there does appear to be some short-run (high-frequency) variation (around a long-run trend,
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for example), the cyclical variation of this series is obviously dominated by the upward trend.
If this series were viewed as a single periodic series, then we would surmise that the period of
this cycle would be the entire sample interval. The frequency of the dominant part of this time
series seems to be quite close to zero. The periodogram for this series, shown in Figure 20.5,
is consistent with that suspicion. By far, the largest component of the spectrum is provided
by frequencies close to zero.

FIGURE 20.2 Growth Rate of U.S. Real GNP, Quarterly, 1953
to 1984.
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FIGURE 20.5 Spectrum for Real GNP.

A Computational Note The computation in (20-16) or (20-17) is the discrete Fourier
transform of the series of autocovariances. In principle, it involves an enormous amount
of computation, on the order of T2 sets of computations. For ordinary time series in-
volving up to a few hundred observations, this work is not particularly onerous. (The
preceding computations involving 135 observations took a total of perhaps 20 seconds of
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computing time.) For series involving multiple thousands of observations, such as daily
market returns, or far more, such as in recorded exchange rates and forward premiums,
the amount of computation could become prohibitive. However, the computation can
be done using an important tool, the fast Fourier transform (FFT), that reduces the
computational level to O(T log2T), which is many orders of magnitude less than T2.
The FFT is programmed in some econometric software packages, such as RATS and
Matlab. [See Press et al. (1986) for further discussion.]

20.3 NONSTATIONARY PROCESSES
AND UNIT ROOTS

Most economic variables that exhibit strong trends, such as GDP, consumption, or the
price level, are not stationary and are thus not amenable to the analysis of the previous
section. In many cases, stationarity can be achieved by simple differencing or some
other transformation. But, new statistical issues arise in analyzing nonstationary series
that are understated by this superficial observation.

20.3.1 INTEGRATED PROCESSES AND DIFFERENCING

A process that figures prominently in recent work is the random walk with drift,

yt = µ + yt−1 + εt .

By direct substitution,

yt =
∞∑

i=0

(µ + εt−i ).

That is, yt is the simple sum of what will eventually be an infinite number of random
variables, possibly with nonzero mean. If the innovations are being generated by the
same zero-mean, constant-variance distribution, then the variance of yt would obviously
be infinite. As such, the random walk is clearly a nonstationary process, even if µ equals
zero. On the other hand, the first difference of yt ,

zt = yt − yt−1 = µ + εt ,

is simply the innovation plus the mean of zt , which we have already assumed is stationary.
The series yt is said to be integrated of order one, denoted I(1), because taking a

first difference produces a stationary process. A nonstationary series is integrated of
order d, denoted I(d), if it becomes stationary after being first differenced d times. A
further generalization of the ARMA model discussed in Section 20.2.1 would be the
series

zt = (1 − L)d yt = �d yt .
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The resulting model is denoted an autoregressive integrated moving-average model, or
ARIMA (p, d, q).14 In full, the model would be

�d yt = µ + γ1�
d yt−1 + γ2�

d yt−2 + · · · + γp�
d yt−p + εt − θ1εt−1 − · · · − θqεt−q,

where

�yt = yt − yt−1 = (1 − L)yt .

This result may be written compactly as

C(L)[(1 − L)d yt ] = µ + D(L)εt ,

where C(L) and D(L) are the polynomials in the lag operator and (1 − L)d yt = �d yt is
the dth difference of yt .

An I(1) series in its raw (undifferenced) form will typically be constantly growing, or
wandering about with no tendency to revert to a fixed mean. Most macroeconomic flows
and stocks that relate to population size, such as output or employment, are I(1). An
I(2) series is growing at an ever-increasing rate. The price-level data in Appendix Table
F20.2 and shown below appear to be I(2). Series that are I(3) or greater are extremely
unusual, but they do exist. Among the few manifestly I(3) series that could be listed, one
would find, for example, the money stocks or price levels in hyperinflationary economies
such as interwar Germany or Hungary after World War II.

Example 20.4 A Nonstationary Series
The nominal GDP and price deflator variables in Appendix Table F20.2 are strongly trended,
so the mean is changing over time. Figures 20.6 through 20.8 plot the log of the GDP deflator
series in Table F20.2 and its first and second differences. The original series and first differ-
ences are obviously nonstationary, but the second differencing appears to have rendered the
series stationary.

The first 10 autocorrelations of the log of the GDP deflator series are shown in Table 20.3.
The autocorrelations of the original series show the signature of a strongly trended, nonsta-
tionary series. The first difference also exhibits nonstationarity, because the autocorrelations
are still very large after a lag of 10 periods. The second difference appears to be stationary,
with mild negative autocorrelation at the first lag, but essentially none after that. Intuition
might suggest that further differencing would reduce the autocorrelation further, but it would
be incorrect. We leave as an exercise to show that, in fact, for values of γ less than about
0.5, first differencing of an AR(1) process actually increases autocorrelation.

20.3.2 RANDOM WALKS, TRENDS, AND SPURIOUS REGRESSIONS

In a seminal paper, Granger and Newbold (1974) argued that researchers had not paid
sufficient attention to the warning of very high autocorrelation in the residuals from
conventional regression models. Among their conclusions were that macroeconomic
data, as a rule, were integrated and that in regressions involving the levels of such data,
the standard significance tests were usually misleading. The conventional t and F tests
would tend to reject the hypothesis of no relationship when, in fact, there might be none.

14There are yet further refinements one might consider, such as removing seasonal effects from zt by differ-
encing by quarter or month. See Harvey (1990) and Davidson and MacKinnon (1993). Some recent work has
relaxed the assumption that d is an integer. The fractionally integrated series, or ARFIMA has been used to
model series in which the very long-run multipliers decay more slowly than would be predicted otherwise.
See Section 20.3.5.
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The general result at the center of these findings is that conventional linear regression,
ignoring serial correlation, of one random walk on another is virtually certain to suggest
a significant relationship, even if the two are, in fact, independent. Among their extreme
conclusions, Granger and Newbold suggested that researchers use a critical t value
of 11.2 rather than the standard normal value of 1.96 to assess the significance of a
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TABLE 20.3 Autocorrelations for ln GNP Deflator

Autocorrelation Function Autocorrelation Function Autocorrelation Function
Lag Original Series, log Price First Difference of log Price Second Difference of log Price

1 1.000 0.812 −0.395
2 1.000 0.765 −0.112
3 0.999 0.776 0.258
4 0.999 0.682 −0.101
5 0.999 0.631 −0.022
6 0.998 0.592 0.076
7 0.998 0.523 −0.163
8 0.997 0.513 0.052
9 0.997 0.488 −0.054

10 0.997 0.491 0.062

coefficient estimate. Phillips (1986) took strong issue with this conclusion. Based on
a more general model and on an analytical rather than a Monte Carlo approach, he
suggested that the normalized statistic tβ/

√
T be used for testing purposes rather than

tβ itself. For the 50 observations used by Granger and Newbold, the appropriate critical
value would be close to 15! If anything, Granger and Newbold were too optimistic.

The random walk with drift,

zt = µ + zt−1 + εt , (20-18)

and the trend stationary process,

zt = µ + βt + εt , (20-19)
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where, in both cases, ut is a white noise process, appear to be reasonable characteriza-
tions of many macroeconomic time series.15 Clearly both of these will produce strongly
trended, nonstationary series,16 so it is not surprising that regressions involving such
variables almost always produce significant relationships. The strong correlation would
seem to be a consequence of the underlying trend, whether or not there really is any
regression at work. But Granger and Newbold went a step further. The intuition is less
clear if there is a pure random walk at work,

zt = zt−1 + εt , (20-20)

but even here, they found that regression “relationships” appear to persist even in
unrelated series.

Each of these three series is characterized by a unit root. In each case, the data-
generating process (DGP) can be written

(1 − L)zt = α + εt , (20-21)

where α = µ, β, and 0, respectively, and vt is a stationary process. Thus, the characteristic
equation has a single root equal to one, hence the name. The upshot of Granger and
Newbold’s and Phillips’s findings is that the use of data characterized by unit roots has
the potential to lead to serious errors in inferences.

In all three settings, differencing or detrending would seem to be a natural first
step. On the other hand, it is not going to be immediately obvious which is the correct
way to proceed—the data are strongly trended in all three cases—and taking the incor-
rect approach will not necessarily improve matters. For example, first differencing in
(20-18) or (20-20) produces a white noise series, but first differencing in (20-19) trades
the trend for autocorrelation in the form of an MA(1) process. On the other hand,
detrending—that is, computing the residuals from a regression on time—is obviously
counterproductive in (20-18) and (20-20), even though the regression of zt on a trend
will appear to be significant for the reasons we have been discussing, whereas detrending
in (21-19) appears to be the right approach.17 Since none of these approaches is likely
to be obviously preferable at the outset, some means of choosing is necessary. Consider
nesting all three models in a single equation,

zt = µ + βt + zt−1 + εt .

Now subtract zt−1 from both sides of the equation and introduce the artificial
parameter γ .

zt − zt−1 = µγ + βγ t + (γ − 1)zt−1 + εt

= α0 + α1t + (γ − 1)zt−1 + εt .
(20-22)

15The analysis to follow has been extended to more general disturbance processes, but that complicates
matters substantially. In this case, in fact, our assumption does cost considerable generality, but the extension
is beyond the scope of our work. Some references on the subject are Phillips and Perron (1988) and Davidson
and MacKinnon (1993).
16The constant term µ produces the deterministic trend in the random walk with drift. For convenience,
suppose that the process starts at time zero. Then zt = ∑t

s=0(µ + εs) = µt + ∑t
s=0 εs . Thus, zt consists of

a deterministic trend plus a stochastic trend consisting of the sum of the innovations. The result is a variable
with increasing variance around a linear trend.
17See Nelson and Kang (1984).
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where, by hypothesis, γ = 1. Equation (20-22) provides the basis for a variety of tests
for unit roots in economic data. In principle, a test of the hypothesis that γ − 1 equals
zero gives confirmation of the random walk with drift, since if γ equals 1 (and α1 equals
zero), then (20-18) results. If γ − 1 is less than zero, then the evidence favors the trend
stationary (or some other) model, and detrending (or some alternative) is the preferable
approach. The practical difficulty is that standard inference procedures based on least
squares and the familiar test statistics are not valid in this setting. The issue is discussed
in the next section.

20.3.3 TESTS FOR UNIT ROOTS IN ECONOMIC DATA

The implications of unit roots in macroeconomic data are, at least potentially, profound.
If a structural variable, such as real output, is truly I(1), then shocks to it will have per-
manent effects. If confirmed, then this observation would mandate some rather serious
reconsideration of the analysis of macroeconomic policy. For example, the argument
that a change in monetary policy could have a transitory effect on real output would
vanish.18 The literature is not without its skeptics, however. This result rests on a razor’s
edge. Although the literature is thick with tests that have failed to reject the hypothesis
that γ = 1, many have also not rejected the hypothesis that γ ≥ 0.95, and at 0.95 (or
even at 0.99), the entire issue becomes moot.19

Consider the simple AR(1) model with zero-mean, white noise innovations,

yt = γ yt−1 + εt .

The downward bias of the least squares estimator when γ approaches one has been
widely documented.20 For |γ | < 1, however, the least squares estimator

c =
∑T

t=2 yt yt−1∑T
t=2 y2

t−1

does have

plim c = γ

and
√

T(c − γ )
d−→ N[0, 1 − γ 2].

Does the result hold up if γ = 1? The case is called the unit root case, since in the ARMA
representation C(L)yt = εt , the characteristic equation 1 − γ z = 0 has one root equal
to one. That the limiting variance appears to go to zero should raise suspicions. The
literature on the questions dates back to Mann and Wald (1943) and Rubin (1950). But
for econometric purposes, the literature has a focal point at the celebrated papers of

18The 1980s saw the appearance of literally hundreds of studies, both theoretical and applied, of unit roots
in economic data. An important example is the seminal paper by Nelson and Plosser (1982). There is little
question but that this observation is an early part of the radical paradigm shift that has occurred in empirical
macroeconomics.
19A large number of issues are raised in Maddala (1992, pp. 582–588).
20See, for example, Evans and Savin (1981, 1984).
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Dickey and Fuller (1979, 1981). They showed that if γ equals one, then

T(c − γ )
d−→ v,

where v is a random variable with finite, positive variance, and in finite samples,
E [c] < 1.21

There are two important implications in the Dickey–Fuller results. First, the estima-
tor of γ is biased downward if γ equals one. Second, the OLS estimator of γ converges
to its probability limit more rapidly than the estimators to which we are accustomed.
That is, the variance of c under the null hypothesis is O(1/T2), not O(1/T). (In a
mean squared error sense, the OLS estimator is superconsistent.) It turns out that the
implications of this finding for the regressions with trended data are considerable.

We have already observed that in some cases, differencing or detrending is required
to achieve stationarity of a series. Suppose, though, that the AR(1) model above is fit
to an I(1) series, despite that fact. The upshot of the preceding discussion is that the
conventional measures will tend to hide the true value of γ ; the sample estimate is biased
downward, and by dint of the very small true sampling variance, the conventional t test
will tend, incorrectly, to reject the hypothesis that γ = 1. The practical solution to this
problem devised by Dickey and Fuller was to derive, through Monte Carlo methods,
an appropriate set of critical values for testing the hypothesis that γ equals one in an
AR(1) regression when there truly is a unit root. One of their general results is that the
test may be carried out using a conventional t statistic, but the critical values for the
test must be revised; the standard t table is inappropriate. A number of variants of this
form of testing procedure have been developed. We will consider several of them.

20.3.4 THE DICKEY–FULLER TESTS

The simplest version of the of the model to be analyzed is the random walk

yt = γ yt−1 + εt , εt ∼ N[0, σ 2] and Cov[εt , εs] = 0 ∀ t �= s.

Under the null hypothesis that γ = 1, there are two approaches to carrying out the test.
The conventional t ratio

DFt = γ̂ − 1
Est.Std.Error(γ̂ )

with the revised set of critical values may be used for a one-sided test. Critical values for
this test are shown in the top panel of Table 20.4. Note that in general, the critical value
is considerably larger in absolute value than its counterpart from the t distribution. The
second approach is based on the statistic

DFγ = T(γ̂ − 1).

Critical values for this test are shown in the top panel of Table 20.4.
The simple random walk model is inadequate for many series. Consider the rate

of inflation from 1950.2 to 2000.4 (plotted in Figure 20.9) and the log of GDP over the
same period (plotted in Figure 20.10). The first of these may be a random walk, but it is

21A full derivation of this result is beyond the scope of this book. For the interested reader, a fairly compre-
hensive treatment at an accessible level is given in Chapter 17 of Hamilton (1994, pp. 475–542).
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TABLE 20.4 Critical Values for the Dickey–Fuller DFτ Test

Sample Size

25 50 100 ∞
F ratio (D–F)a 7.24 6.73 6.49 6.25
F ratio (standard) 3.42 3.20 3.10 3.00

AR modelb (random walk)
0.01 −2.66 −2.62 −2.60 −2.58
0.025 −2.26 −2.25 −2.24 −2.23
0.05 −1.95 −1.95 −1.95 −1.95
0.10 −1.60 −1.61 −1.61 −1.62
0.975 1.70 1.66 1.64 1.62

AR model with constant (random walk with drift)
0.01 −3.75 −3.59 −3.50 −3.42
0.025 −3.33 −3.23 −3.17 −3.12
0.05 −2.99 −2.93 −2.90 −2.86
0.10 −2.64 −2.60 −2.58 −2.57
0.975 0.34 0.29 0.26 0.23

AR model with constant and time trend (trend stationary)
0.01 −4.38 −4.15 −4.04 −3.96
0.025 −3.95 −3.80 −3.69 −3.66
0.05 −3.60 −3.50 −3.45 −3.41
0.10 −3.24 −3.18 −3.15 −3.13
0.975 −0.50 −0.58 −0.62 −0.66
aFrom Dickey and Fuller (1981, p. 1063). Degrees of freedom are 2 and T − p − 3.
bFrom Fuller (1976, p. 373 and 1996, Table 10.A.2).

FIGURE 20.9 Rate of Inflation in the Consumer Price Index.
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clearly drifting. The log GDP series, in contrast, has a strong trend. For the first of these,
a random walk with drift may be specified,

yt = µ + zt , zt = γ zt−1 + εt

or

yt = µ(1 − γ ) + γ yt−1 + εt .

For the second type of series, we may specify the trend stationary form,

yt = µ + βt + zt , zt = γ zt−1 + εt

or

yt = [µ(1 − γ ) + γβ] + β(1 − γ ) + γ yt−1 + εt .

The tests for these forms may be carried out in the same fashion. For the model with
drift only, the center panels of Tables 20.4 and 20.5 are used. When the trend is included,
the lower panel of each table is used.

Example 20.5 Tests for Unit Roots
In Section 19.6.8, we examined Cecchetti and Rich’s study of the effect of recent monetary
policy on the U.S. economy. The data used in their study were the following variables:

π = one period rate of inflation = the rate of change in the CPI
y = log of real GDP
i = nominal interest rate = the quarterly average yield on a 90 day T-bill

�m = change in the log of the money stock, M1
i − π = ex post real interest rate

�m− π = real growth in the money stock.
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TABLE 20.5 Critical Values for the Dickey–Fuller DFγ Test

Sample Size

25 50 100 ∞
AR modela (random walk)
0.01 −11.8 −12.8 −13.3 −13.8
0.025 −9.3 −9.9 −10.2 −10.5
0.05 −7.3 −7.7 −7.9 −8.1
0.10 −5.3 −5.5 −5.6 −5.7
0.975 1.78 1.69 1.65 1.60

AR model with constant (random walk with drift)
0.01 −17.2 −18.9 −19.8 −20.7
0.025 −14.6 −15.7 −16.3 −16.9
0.05 −12.5 −13.3 −13.7 −14.1
0.10 −10.2 −10.7 −11.0 −11.3
0.975 0.65 0.53 0.47 0.41

AR model with constant and time trend (trend stationary)
0.01 −22.5 −25.8 −27.4 −29.4
0.025 −20.0 −22.4 −23.7 −24.4
0.05 −17.9 −19.7 −20.6 −21.7
0.10 −15.6 −16.8 −17.5 −18.3
0.975 −1.53 −1.667 −1.74 −1.81
aFrom Fuller (1976, p. 373 and 1996, Table 10.A.1).

Data used in their analysis were from the period 1959.1 to 1997.4. As part of their analysis,
they checked each of these series for a unit root and suggested that the hypothesis of a unit
root could only be rejected for the last two variables. We will reexamine these data for the
longer interval, 1950.2 to 2000.4. The data are in Appendix Table F5.1. Figures 20.11 to 20.14
show the behavior of the last four variables. The first two are shown above in Figures 20.9
and 20.10. Only the real output figure shows a strong trend, so we will use the random walk
with drift for all the variables except this one.

The Dickey–Fuller tests are carried out in Table 20.6. There are 202 observations used in
each one. The first observation is lost when computing the rate of inflation and the change
in the money stock, and one more is lost for the difference term in the regression. The
critical values from interpolating to the second row, last column in each panel for 95 percent
significance and a one tailed test are −3.70 and −24.2, respectively for DFτ and DFγ for the
output equation, which contains the time trend and −3.14 and −16.8 for the other equations
which contain a constant but no trend. For the output equation ( y) , the test statistics are

DFτ = 0.9584940384 − 1
.017880922

= −2.32 > −3.44

and

DFγ = 202(0.9584940384 − 1) = −8.38 > −21.2.

Neither is less than the critical value, so we conclude (as have others) that there is a unit root
in the log GDP process. The results of the other tests are shown in Table 20.6. Surprisingly,
these results do differ sharply from those obtained by Cecchetti and Rich (2001) for π and
�m. The sample period appears to matter; if we repeat the computation using Cecchetti
and Rich’s interval, 1959.4 to 1997.4, then DFτ equals −3.51. This is borderline, but less
contradictory. For �m we obtain a value of −4.204 for DFτ when the sample is restricted to
the shorter interval.
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TABLE 20.6 Unit Root Tests. (Standard errors of estimates in parentheses)

µ β γ DFτ DFγ Conclusion

π 0.332 0.659 −6.40 −68.88 Reject H0

(0.0696) (0.0532) R2 = 0.432, s = 0.643

y 0.320 0.00033 0.958 −2.35 −8.48 Do not reject H0

(0.134) (0.00015) (0.0179) R2 = 0.999, s = 0.001

i 0.228 0.961 −2.14 −7.88 Do not reject H0

(0.109) (0.0182) R2 = 0.933, s = 0.743

�m 0.448 0.596 −7.05 −81.61 Reject H0

(0.0923) (0.0573) R2 = 0.351, s = 0.929

i − π 0.615 0.557 −7.57 −89.49 Reject H0

(0.185) (0.0585) R2 = 0.311, s = 2.395

�m − π 0.0700 0.490 −8.25 −103.02 Reject H0

(0.0833) (0.0618) R2 = 0.239, s = 1.176

The Dickey–Fuller tests described above assume that the disturbances in the model
as stated are white noise. An extension which will accommodate some forms of serial
correlation is the augmented Dickey–Fuller test. The augmented Dickey–Fuller test is
the same one as above, carried out in the context of the model

yy = µ + βt + γ yt−1 + γ1�yt−1 + · · · + γp�yt−p + εt .

The random walk form is obtained by imposing µ = 0 and β = 0; the random walk
with drift has β = 0; and the trend stationary model leaves both parameters free. The
two test statistics are

DFτ = γ̂ − 1
Est.Std.Error(γ̂ )

exactly as constructed before and

DFγ = T(γ̂ − 1)

1 − γ̂1 − · · · − γ̂p
.

The advantage of this formulation is that it can accommodate higher-order autoregres-
sive processes in εt .

An alternative formulation may prove convenient. By subtracting yt−1 from both
sides of the equation, we obtain

�yt = µ + γ ∗yt−1 +
p−1∑
j=1

φ j�yt− j + εt ,

where

φ j = −
p∑

k= j+1

γk and γ ∗ =
(

p∑
i=1

γi

)
− 1.
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The unit root test is carried out as before by testing the null hypothesis γ ∗ = 0 against
γ ∗ < 0.22 The t test, DFτ may be used. If the failure to reject the unit root is taken
as evidence that a unit root is present, i.e., γ ∗ = 0, then the model specializes to the
AR(p − 1) model in the first differences which is an ARIMA(p − 1, 1, 0) model for yt .
For a model with a time trend,

�yt = µ + βt + γ ∗yt−1 +
p−1∑
j=1

φ j�yt− j + εt ,

the test is carried out by testing the joint hypothesis that β = γ ∗ = 0. Dickey and Fuller
(1981) present counterparts to the critical F statistics for testing the hypothesis. Some of
their values are reproduced in the first row of Table 20.4. (Authors frequently focus on
γ ∗ and ignore the time trend, maintaining it only as part of the appropriate formulation.
In this case, one may use the simple test of γ ∗ = 0 as before, with the DFτ critical values.)

The lag length, p, remains to be determined. As usual, we are well advised to
test down to the right value instead of up. One can take the familiar approach and
sequentially examine the t statistic on the last coefficient—the usual t test is appropriate.
An alternative is to combine a measure of model fit, such as the regression s2 with one
of the information criteria. The Akaike and Schwartz (Bayesian) information criteria
would produce the two information measures

IC(p) = ln
(

e′e
T − pmax − K∗

)
+ (p + K∗)

(
A∗

T − pmax − K∗

)

K∗ = 1 for random walk, 2 for random walk with drift, 3 for trend stationary

A∗ = 2 for Akaike criterion, ln(T − pmax − K∗) for Bayesian criterion

pmax = the largest lag length being considered.

The remaining detail is to decide upon pmax. The theory provides little guidance here.
On the basis of a large number of simulations, Schwert (1989) found that

pmax = integer part of [12 × (T/100).25]

gave good results.
Many alternatives to the Dickey–Fuller tests have been suggested, in some cases

to improve on the finite sample properties and in others to accommodate more general
modeling frameworks. The Phillips (1987) and Phillips and Perron (1988) statistic may
be computed for the same three functional forms,

yy = δt + γ yt−1 + γ1�yt−1 + · · · + γp�yt−p + εt (20-23)

where δt may be 0, µ, or µ+βt . The procedure modifies the two Dickey–Fuller statistics
we examined above;

Zτ =
√

c0

a

(
γ̂ − 1

v

)
− 1

2
(a − c0)

Tv√
as2

Zγ = T(γ̂ − 1)

1 − γ̂1 − · · · − γ̂p
− 1

2

(
T2v2

s2

)
(a − c0)

22It is easily verified that one of the roots of the characteristic polynomial is 1/(γ1 + γ2 + · · · + γp).
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where

s2 =
∑T

t=1 e2
t

T − K

v2 = estimated asymptotic variance of γ̂

c j = 1
T

T∑
s= j+1

et et−s, j = 0, . . . , p = jth autocovariance of residuals

c0 = [(T − K)/T]s2

a = c0 + 2
L∑

j=1

(
1 − j

L+ 1

)
c j .

(Note the Newey–West (Bartlett) weights in the computation of a. As before, the analyst
must choose L.) The test statistics are referred to the same Dickey–Fuller tables we have
used before.

Elliot, Rothenberg, and Stock (1996) have proposed a method they denote the
ADF-GLS procedure which is designed to accommodate more general formulations
of ε; the process generating εt is assumed to be an I(0) stationary process, possibly an
ARMA(r, s). The null hypothesis, as before, is γ = 1 in (20-23) where δt = µ or µ+βt .
The method proceeds as follows:

Step 1. Linearly regress

y∗ =




y1

y2 − r̄ y1

· · ·
yT − r̄ yT−1


 on X∗ =




1
1 − r̄
· · ·

1 − r̄


 or X∗ =




1 1
1 − r̄ 2 − r̄
· · ·

1 − r̄ T − r̄(T − 1)




for the random walk with drift and trend stationary cases, respectively. (Note that the
second column of the matrix is simply r̄ + (1 − r̄)t.) Compute the residuals from this
regression, ỹt = yt − δ̂t . r̄ = 1 − 7/T for the random walk model and 1 − 13.5/T for the
model with a trend.
Step 2. The Dickey–Fuller DFτ test can now be carried out using the model

ỹy = γ ỹt−1 + γ1�ỹt−1 + · · · + γp�ỹt−p + ηt .

If the model does not contain the time trend, then the t statistic for (γ − 1) may be
referred to the critical values in the center panel of Table 20.4. For the trend stationary
model, the critical values are given in a table presented in Elliot et al. The 97.5 percent
critical values for a one-tailed test from their table is −3.15.

As in many such cases of a new technique, as researchers develop large and small
modifications of these tests, the practitioner is likely to have some difficulty deciding how
to proceed. The Dickey–Fuller procedures have stood the test of time as robust tools
that appear to give good results over a wide range of applications. The Phillips–Perron
tests are very general, but appear to have less than optimal small sample properties.
Researchers continue to examine it and the others such as Elliot et al. method. Other
tests are catalogued in Maddala and Kim (1998).
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Example 20.6 Augmented Dickey–Fuller Test for a Unit Root in GDP
The Dickey–Fuller 1981 JASA paper is a classic in the econometrics literature—it is probably
the single most frequently cited paper in the field. It seems appropriate, therefore, to revisit
at least some of their work. Dickey and Fuller apply their methodology to a model for the
log of a quarterly series on output, the Federal Reserve Board Production Index. The model
used is

yt = µ + βt + γ yt−1 + φ ( yt−1 − yt−2) + εt . (20-24)

The test is carried out by testing the joint hypothesis that both β and γ ∗ are zero in the model

yt − yt−1 = µ∗ + βt + γ ∗yt−1 + φ ( yt−1 − yt−2) + εt .

(If γ = 0, then µ∗ will also by construction.) We will repeat the study with our data on real GNP
from Appendix Table F5.1 using observations 1950.1 to 2000.4.

We will use the augmented Dickey–Fuller test first. Thus, the first step is to determine
the appropriate lag length for the augmented regression. Using Schwert’s suggestion, we
find that the maximum lag length should be allowed to reach pmax = {the integer part of
12[204/100].25} = 14. The specification search uses observations 18 to 204, since as many
as 17 coefficients will be estimated in the equation

yt = µ + βt + γ yt−1 +
p∑

j =1

γ j �yt− j + εt .

In the sequence of 14 regressions with j = 14, 13, . . . , the only statistically significant lagged
difference is the first one, in the last regression, so it would appear that the model used by
Dickey and Fuller would be chosen on this basis. The two information criteria produce a
similar conclusion. Both of them decline monotonically from j = 14 all the way down to j = 1,
so on this basis, we end the search with j = 1, and proceed to analyze Dickey and Fuller’s
model.

The linear regression results for the equation in (20-24) are

yt = 0.368 + 0.000391t + 0.952yt−1 + 0.36025�yt−1 + et , s = 0.00912

(0.125) (0.000138) (0.0167) (0.0647) R2 = 0.999647.

The two test statistics are

DFτ = 0.95166 − 1
0.016716

= −2.892

and

DFc = 201(0.95166 − 1)
1 − 0.36025

= −15.263.

Neither statistic is less than the respective critical values, which are −3.70 and −24.5. On
this basis, we conclude, as have many others, that there is a unit root in log GDP.

For the Phillips and Perron statistic, we need several additional intermediate statistics.
Following Hamilton (1994, page 512), we choose L = 4 for the long-run variance calculation.
Other values we need are T = 201, γ̂ = 0.9516613, s2 = 0.00008311488, v2 = 0.00027942647,
and the first five autocovariances, c0 = 0.000081469, c1 = −0.00000351162, c2 =
0.00000688053, c3 = 0.000000597305, and c4 = −0.00000128163. Applying these to the
weighted sum produces a = 0.0000840722, which is only a minor correction to c0. Collect-
ing the results, we obtain the Phillips–Perron statistics, Zτ = −2.89921 and Zγ = −15.44133.
Since these are applied to the same critical values in the Dickey–Fuller tables, we reach the
same conclusion as before—we do not reject the hypothesis of a unit root in log GDP.
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20.3.5 LONG MEMORY MODELS

The autocorrelations of an integrated series [I(1) or I(2)] display the characteristic
pattern shown in Table 20.3 for the log of the GNP deflator. They remain persistently
extremely high at long lags. In contrast, the autocorrelations of a stationary process typ-
ically decay at an exponential rate, so large values typically cease to appear after only a
few lags. (See, e.g., the rightmost panel of Table 20.3.) Some processes appear to behave
between these two benchmarks; they are clearly nonstationary, yet when differenced,
they appear to show the characteristic alternating positive and negative autocorrela-
tions, still out to long lags, that suggest “overdifferencing.” But the undifferenced data
show significant autocorrelations out to very long lags. Stock returns [Lo (1991)] and
exchange rates [Cheung (1993)] provide some cases that have been studied. In a strik-
ing example, Ding, Granger, and Engle (1993) found significant autocorrelations out to
lags of well over 2,000 days in the absolute values of daily stock market returns. [See
also Granger and Ding (1996).] There is ample evidence of a lack of memory in stock
market returns, but a spate of recent evidence, such as this, has been convincing that
the volatility—the absolute value resembles the standard deviation—in stock returns
has extremely long memory.

Although it is clear that an extension of the standard models of stationary time series
is needed to explain the persistence of the effects of shocks on, for example, GDP and the
money stock, and models of unit roots and cointegration (see Section 20.4) do appear to
be helpful, there remains something of a statistical balancing act in their construction.
If “the root” differs from one in either direction, then an altogether different set of
statistical tools is called for. For models of very long term autocorrelation, which likewise
reflect persistent response to shocks, models of long-term memory have provided a very
useful extension of the concept of nonstationarity.23 The basic building block in this class
of models is the fractionally integrated white noise series,

(1 − L)d yt = εt .

This time series has an infinite moving-average representation if |d| < 1
2 , but it is non-

stationary. For d �= 0, the sequence of autocorrelations, ρk = λk/λ0, is not absolutely
summable. For this simple model,

ρk = �(k + d)�(1 − d)

�(k − d + 1)�(d)
.

The first 50 values of ρk are shown in Figure 20.15 for d = 0.1, 0.25, 0.4, and 0.475. The
Ding, Granger, and Engle computations display a pattern similar to that shown for 0.25
in the figure. [See Granger and Ding (1996, p. 66).] The natural extension of the model
that allows for more intricate patterns in the data is the autoregressive, fractionally
integrated, moving-average, or ARFIMA(p, d, q) model,

(1 − L)d[yt − γ1 yt−1 − · · · − γpyt−p] = εt − θ1εt−1 − · · · − θqεt−q, yt = Yt − µ.

23These models appear to have originated in the physical sciences early in the 1950s, especially with Hurst
(1951), whose name is given to the effect of very long term autocorrelation in observed time series. The pio-
neering work in econometrics is that of Taqqu (1975), Granger and Joyeux (1980), Granger (1981), Hosking
(1981), and Geweke and Porter-Hudak (1983). An extremely thorough summary and an extensive bibliogra-
phy are given in Baillie (1996).
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FIGURE 20.15 Autocorrelations for a Fractionally Integrated
Time Series.

Estimation of ARFIMA models is discussed in Baillie (1996) and the references cited
there. A test for fractional integration effects is suggested by Geweke and Porter-Hudak
(1983). The test is based on the slope in the linear regression of the logs of the first n(T)

values from the sample periodogram of yt , that is, zk = log hY(ωk), on the corresponding
functions of the first n(T) frequencies, xk = log{4 sin2(ωk/2)}. Here n(T) is taken to be
reasonably small; Geweke and Porter-Hudak suggest n(T) = √

T. A conventional t test
of the hypothesis that the slope equals zero is used to test the hypothesis.

Example 20.7 Long-Term Memory in the Growth of Real GNP
For the real GDP series analyzed in Example 20.6, we analyze the subseries 1950.3 to
1983.4, with T = 135, so we take n(T ) = 12. The frequencies used for the periodogram are
2πk/135, k = 1, . . . , 12. The first 12 values from the periodogram are [0.05104, 0.4322,
0.7227, 0.3659, 1.353, 1.257, 0.05533, 1.388, 0.5955, 0.2043, 0.3040, 0.6381]. The linear
regression produces an estimate of d of 0.2505 with a standard error of 0.225. Thus, the
hypothesis that d equals zero cannot be rejected. This result is not surprising; the first seven
autocorrelations of the series are 0.491, 0.281, 0.044, −0.076, −0.120, −0.052, and 0.018.
They are trivial thereafter, suggesting that the series is, in fact, stationary. This assumption, in
itself, creates something of an ambiguity. The log of the real GNP series does indeed appear
to be I (1) . But the price level used to compute real GNP is fairly convincingly I (2) , or at least
I (1 + d) for some d greater than zero, judging from Figure 20.7. As such, the log of real GNP
is the log of a variable that is probably at least I (1 + d) . Although received results are not
definitive, this result is probably not I (1) .

Models of long-term memory have been extended in many directions, and the
results have been fully integrated with the unit root platform discussed earlier. Baillie’s
survey details many of the recently developed methods.
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Example 20.8 Long-Term Memory in Foreign Exchange Markets
Cheung (1993) applied the long-term memory model to a study of end of week exchange
rates for 16 years, 1974 to 1989. The time-series studied were the dollar spot rates of the
British pound (BP), Deutsche mark (DM), Swiss franc (SF), French franc (FF), and Japanese
yen (JY). Testing and estimation were done using the 1974 to 1987 data. The final 2 years of
the sample were held out for out of sample forecasting.

Data were analyzed in the form of first differences of the logs so that observations are
week-to-week percentage changes. Plots of the data did not suggest any obvious deviation
from stationarity. As an initial assessment, the undifferenced data were subjected to aug-
mented Dickey–Fuller tests for unit roots and the hypothesis could not be rejected. Thus,
analysis proceeded using the first differences of the logs. The GPH test using n(T ) = √

T for
long memory in the first differences produced the following estimates of d, with estimated
“p values” in parentheses. (The p value is the standard normal probability that N[0, 1] is
greater than or equal to the ratio of the estimated d to its estimated standard error. These
tests are one-sided tests. Values less than 0.05 indicate statistical significance by the usual
conventions.)

Currency BP DM SF JY FF
d 0.1869 0.2943 0.2870 0.2907 0.4240
p value (0.106) (0.025) (0.028) (0.026) (0.003)

The unit root hypothesis is rejected in favor of the long memory model in four of the five
cases. The author proceeded to estimate ARFIMA(p, d, q) models. The coefficients of the
ARFIMA models (d is recomputed) are small in all cases save for the French franc, for which
the estimated model is

(1 − L ) 0.3664[( F Ft − F F ) − 0.4776( F Ft−1 − F F ) − 0.1227( F Ft−2 − F F ) ]

= et + 0.8657et−1.

20.4 COINTEGRATION

Studies in empirical macroeconomics almost always involve nonstationary and trending
variables, such as income, consumption, money demand, the price level, trade flows, and
exchange rates. Accumulated wisdom and the results of the previous sections suggest
that the appropriate way to manipulate such series is to use differencing and other
transformations (such as seasonal adjustment) to reduce them to stationarity and then
to analyze the resulting series as VARs or with the methods of Box and Jenkins. But
recent research and a growing literature has shown that there are more interesting,
appropriate ways to analyze trending variables.

In the fully specified regression model

yt = βxt + εt ,

there is a presumption that the disturbances εt are a stationary, white noise series.24 But
this presumption is unlikely to be true if yt and xt are integrated series. Generally, if
two series are integrated to different orders, then linear combinations of them will be
integrated to the higher of the two orders. Thus, if yt and xt are I(1)—that is, if both
are trending variables—then we would normally expect yt − βxt to be I(1) regardless
of the value of β, not I(0) (i.e., not stationary). If yt and xt are each drifting upward

24If there is autocorrelation in the model, then it has been removed through an appropriate transformation.
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with their own trend, then unless there is some relationship between those trends, the
difference between them should also be growing, with yet another trend. There must
be some kind of inconsistency in the model. On the other hand, if the two series are
both I(1), then there may be a β such that

εt = yt − βxt

is I(0). Intuitively, if the two series are both I(1), then this partial difference between
them might be stable around a fixed mean. The implication would be that the series are
drifting together at roughly the same rate. Two series that satisfy this requirement are
said to be cointegrated, and the vector [1, −β] (or any multiple of it) is a cointegrating
vector. In such a case, we can distinguish between a long-run relationship between yt

and xt , that is, the manner in which the two variables drift upward together, and the
short-run dynamics, that is, the relationship between deviations of yt from its long-run
trend and deviations of xt from its long-run trend. If this is the case, then differencing of
the data would be counterproductive, since it would obscure the long-run relationship
between yt and xt . Studies of cointegration and a related technique, error correction,
are concerned with methods of estimation that preserve the information about both
forms of covariation.25

Example 20.9 Cointegration in Consumption and Output
Consumption and income provide one of the more familiar examples of the phenomenon
described above. The logs of GDP and consumption for 1950.1 to 2000.4 are plotted in Fig-
ure 20.16. Both variables are obviously nonstationary. We have already verified that there
is a unit root in the income data. We leave as an exercise for the reader to verify that
consumption variable is likewise I (1) . Nonetheless, there is a clear relationship between
consumption and output. To see where this discussion of relationships among variables
is going, consider a simple regression of the log of consumption on the log of income,
where both variables are manipulated in mean deviation form (so, the regression includes
a constant). The slope in that regression is 1.056765. The residuals from the regression,
ut = [lnCons∗, lnGDP∗][1, −1.056765]′ (where the “∗” indicates mean deviations) are plot-
ted in Figure 20.17. The trend is clearly absent from the residuals. But, it remains to verify
whether the series of residuals is stationary. In the ADF regression of the least squares resid-
uals on a constant (random walk with drift), the lagged value and the lagged first difference,
the coefficient on ut−1 is 0.838488 (0.0370205) and that on ut−1 − ut−2 is −0.098522. (The
constant differs trivially from zero because two observations are lost in computing the ADF
regression.) With 202 observations, we find DFτ = −4.63 and DFγ = −29.55. Both are well
below the critical values, which suggests that the residual series does not contain a unit
root. We conclude (at least it appears so) that even after accounting for the trend, although
neither of the original variables is stationary, there is a linear combination of them that is. If
this conclusion holds up after a more formal treatment of the testing procedure, we will state
that logGDP and log consumption are cointegrated.

Example 20.10 Several Cointegrated Series
The theory of purchasing power parity specifies that in long-run equilibrium, exchange rates
will adjust to erase differences in purchasing power across different economies. Thus, if p1
and p0 are the price levels in two countries and E is the exchange rate between the two
currencies, then in equilibrium,

vt = Et
p1t

p0t
= µ, a constant.

25See, for example, Engle and Granger (1987) and the lengthy literature cited in Hamilton (1994). A survey
paper on VARs and cointegration is Watson (1994).
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The price levels in any two countries are likely to be strongly trended. But allowing for short-
term deviations from equilibrium, the theory suggests that for a particular β = ( ln µ, −1, 1) ,
in the model

ln Et = β1 + β2 ln p1t + β3 ln p0t + εt ,

εt = ln vt would be a stationary series, which would imply that the logs of the three variables
in the model are cointegrated.

We suppose that the model involves M variables, yt = [y1t , . . . , yMt ]′, which indi-
vidually may be I(0) or I(1), and a long-run equilibrium relationship,

y′
tγ − x′

tβ = 0.

The “regressors” may include a constant, exogenous variables assumed to be I(0),
and/or a time trend. The vector of parameters γ is the cointegrating vector. In the short
run, the system may deviate from its equilibrium, so the relationship is rewritten as

y′
tγ − x′

tβ = εt ,

where the equilibrium error εt must be a stationary series. In fact, since there are M
variables in the system, at least in principle, there could be more than one cointegrating
vector. In a system of M variables, there can only be up to M − 1 linearly independent
cointegrating vectors. A proof of this proposition is very simple, but useful at this point.

Proof: Suppose that γ i is a cointegrating vector and that there are M linearly
independent cointegrating vectors. Then, neglecting x′

tβ for the moment, for
every γ i , y′

tγ i is a stationary series νti . Any linear combination of a set of
stationary series is stationary, so it follows that every linear combination of the
cointegrating vectors is also a cointegrating vector. If there are M such M × 1
linearly independent vectors, then they form a basis for the M-dimensional
space, so any M × 1 vector can be formed from these cointegrating vectors,
including the columns of an M × M identity matrix. Thus, the first column of
an identity matrix would be a cointegrating vector, or yt1 is I(0). This result is
a contradiction, since we are allowing yt1 to be I(1). It follows that there can
be at most M − 1 cointegrating vectors.

The number of linearly independent cointegrating vectors that exist in the equilib-
rium system is called its cointegrating rank. The cointegrating rank may range from 1 to
M − 1. If it exceeds one, then we will encounter an interesting identification problem.
As a consequence of the observation in the preceding proof, we have the unfortunate
result that, in general, if the cointegrating rank of a system exceeds one, then without
out-of-sample, exact information, it is not possible to estimate behavioral relationships
as cointegrating vectors. Enders (1995) provides a useful example.

Example 20.11 Multiple Cointegrating Vectors
We consider the logs of four variables, money demand m, the price level p, real income y,
and an interest rate r . The basic relationship is

m = γ0 + γ1 p + γ2 y + γ3r + ε.

The price level and real income are assumed to be I (1) . The existence of long-run equilibrium
in the money market implies a cointegrating vector α1. If the Fed follows a certain feedback
rule, increasing the money stock when nominal income ( y + p) is low and decreasing it when
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nominal income is high—which might make more sense in terms of rates of growth—then
there is a second cointegrating vector in which γ1 = γ2 and γ3 = 0. Suppose that we label
this vector α2. The parameters in the money demand equation, notably the interest elasticity,
are interesting quantities, and we might seek to estimate α1 to learn the value of this quantity.
But since every linear combination of α1 and α2 is a cointegrating vector, to this point we are
only able to estimate a hash of the two cointegrating vectors.

In fact, the parameters of this model are identifiable from sample information (in principle).
We have specified two cointegrating vectors,

γ 1 = [1, −γ10, −γ11, −γ12, −γ13]

and

γ 2 = [1, −γ20, γ21, γ21, 0]′.

Although it is true that every linear combination of γ 1 and γ 2 is a cointegrating vector, only
the original two vectors, as they are, have ones in the first position of both and a 0 in the
last position of the second. (The equality restriction actually overidentifies the parameter
matrix.) This result is, of course, exactly the sort of analysis that we used in establishing the
identifiability of a simultaneous-equations system.

20.4.1 COMMON TRENDS

If two I(1) variables are cointegrated, then some linear combination of them is I(0).
Intuition should suggest that the linear combination does not mysteriously create a
well-behaved new variable; rather, something present in the original variables must be
missing from the aggregated one. Consider an example. Suppose that two I(1) variables
have a linear trend,

y1t = α + βt + ut ,

y2t = γ + δt + vt ,

where ut and vt are white noise. A linear combination of y1t and y2t with vector (1, θ)

produces the new variable,

zt = (α + θγ ) + (β + θδ)t + ut + θvt ,

which, in general, is still I(1). In fact, the only way the zt series can be made stationary
is if θ = −β/δ. If so, then the effect of combining the two variables linearly is to remove
the common linear trend, which is the basis of Stock and Watson’s (1988) analysis of the
problem. But their observation goes an important step beyond this one. The only way
that y1t and y2t can be cointegrated to begin with is if they have a common trend of some
sort. To continue, suppose that instead of the linear trend t , the terms on the right-hand
side, y1 and y2, are functions of a random walk, wt = wt−1 + ηt , where ηt is white noise.
The analysis is identical. But now suppose that each variable yit has its own random
walk component wit , i = 1, 2. Any linear combination of y1t and y2t must involve both
random walks. It is clear that they cannot be cointegrated unless, in fact, w1t = w2t .
That is, once again, they must have a common trend. Finally, suppose that y1t and y2t

share two common trends,

y1t = α + βt + λwt + ut ,

y2t = γ + δt + πwt + vt .
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We place no restriction on λ and π . Then, a bit of manipulation will show that it is not
possible to find a linear combination of y1t and y2t that is cointegrated, even though
they share common trends. The end result for this example is that if y1t and y2t are
cointegrated, then they must share exactly one common trend.

As Stock and Watson determined, the preceding is the crux of the cointegration
of economic variables. A set of M variables that are cointegrated can be written as a
stationary component plus linear combinations of a smaller set of common trends. If
the cointegrating rank of the system is r , then there can be up to M− r linear trends and
M− r common random walks. [See Hamilton (1994, p. 578).] (The two-variable case is
special. In a two-variable system, there can be only one common trend in total.) The
effect of the cointegration is to purge these common trends from the resultant variables.

20.4.2 ERROR CORRECTION AND VAR REPRESENTATIONS

Suppose that the two I(1) variables yt and zt are cointegrated and that the cointegrating
vector is [1, −θ ]. Then all three variables �yt = yt − yt−1, �zt , and (yt − θzt ) are I(0).
The error correction model

�yt = x′
tβ + γ (�zt ) + λ(yt−1 − θzt−1) + εt

describes the variation in yt around its long-run trend in terms of a set of I(0) exogenous
factors xt , the variation of zt around its long-run trend, and the error correction (yt −θzt ),
which is the equilibrium error in the model of cointegration. There is a tight connection
between models of cointegration and models of error correction. The model in this form
is reasonable as it stands, but in fact, it is only internally consistent if the two variables
are cointegrated. If not, then the third term, and hence the right-hand side, cannot be
I(0), even though the left-hand side must be. The upshot is that the same assumption
that we make to produce the cointegration implies (and is implied by) the existence
of an error correction model.26 As we will examine in the next section, the utility of
this representation is that it suggests a way to build an elaborate model of the long-run
variation in yt as well as a test for cointegration. Looking ahead, the preceding suggests
that residuals from an estimated cointegration model—that is, estimated equilibrium
errors—can be included in an elaborate model of the long-run covariation of yt and
zt . Once again, we have the foundation of Engel and Granger’s approach to analyzing
cointegration.

Consider the VAR representation of the model

yt = �yt−1 + εt ,

where the vector yt is [yt , zt ]′. Now take first differences to obtain

yt − yt−1 = (� − I)yt−1 + εt

or

�yt = 
yt−1 + εt .

If all variables are I(1), then all M variables on the left-hand side are I(0). Whether
those on the right-hand side are I(0) remains to be seen. The matrix 
 produces linear

26The result in its general form is known as the Granger representation theorem. See Hamilton (1994, p. 582).
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combinations of the variables in yt . But as we have seen, not all linear combinations
can be cointegrated. The number of such independent linear combinations is r < M.
Therefore, although there must be a VAR representation of the model, cointegration
implies a restriction on the rank of 
. It cannot have full rank; its rank is r . From another
viewpoint, a different approach to discerning cointegration is suggested. Suppose that
we estimate this model as an unrestricted VAR. The resultant coefficient matrix should
be short-ranked. The implication is that if we fit the VAR model and impose short rank
on the coefficient matrix as a restriction—how we could do that remains to be seen—
then if the variables really are cointegrated, this restriction should not lead to a loss
of fit. This implication is the basis of Johansen’s (1988) and Stock and Watson’s (1988)
analysis of cointegration.

20.4.3 TESTING FOR COINTEGRATION

A natural first step in the analysis of cointegration is to establish that it is indeed a
characteristic of the data. Two broad approaches for testing for cointegration have
been developed. The Engle and Granger (1987) method is based on assessing whether
single-equation estimates of the equilibrium errors appear to be stationary. The second
approach, due to Johansen (1988, 1991) and Stock and Watson (1988), is based on the
VAR approach. As noted earlier, if a set of variables is truly cointegrated, then we
should be able to detect the implied restrictions in an otherwise unrestricted VAR. We
will examine these two methods in turn.

Let yt denote the set of M variables that are believed to be cointegrated. Step one
of either analysis is to establish that the variables are indeed integrated to the same
order. The Dickey–Fuller tests discussed in Section 20.3.4 can be used for this purpose.
If the evidence suggests that the variables are integrated to different orders or not at
all, then the specification of the model should be reconsidered.

If the cointegration rank of the system is r , then there are r independent vectors,
γ i = [1, −θ i ], where each vector is distinguished by being normalized on a different
variable. If we suppose that there are also a set of I(0) exogenous variables, includ-
ing a constant, in the model, then each cointegrating vector produces the equilibrium
relationship

y′
tγ i = x′

tβ + εt ,

which we may rewrite as

yit = Y′
i tθ i + x′

tβ + εt .

We can obtain estimates of θ i by least squares regression. If the theory is correct and if
this OLS estimator is consistent, then residuals from this regression should estimate the
equilibrium errors. There are two obstacles to consistency. First, since both sides of the
equation contain I(1) variables, the problem of spurious regressions appears. Second,
a moment’s thought should suggest that what we have done is extract an equation
from an otherwise ordinary simultaneous-equations model and propose to estimate
its parameters by ordinary least squares. As we examined in Chapter 15, consistency
is unlikely in that case. It is one of the extraordinary results of this body of theory
that in this setting, neither of these considerations is a problem. In fact, as shown by
a number of authors [see, e.g., Davidson and MacKinnon (1993)], not only is ci , the
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OLS estimator of θ i , consistent, it is superconsistent in that its asymptotic variance
is O(1/T2) rather than O(1/T) as in the usual case. Consequently, the problem of
spurious regressions disappears as well. Therefore, the next step is to estimate the
cointegrating vector(s), by OLS. Under all the assumptions thus far, the residuals from
these regressions, eit , are estimates of the equilibrium errors, εi t . As such, they should
be I(0). The natural approach would be to apply the familiar Dickey–Fuller tests to
these residuals. The logic is sound, but the Dickey–Fuller tables are inappropriate for
these estimated errors. Estimates of the appropriate critical values for the tests are
given by Engle and Granger (1987), Engle and Yoo (1987), Phillips and Ouliaris (1990),
and Davidson and MacKinnon (1993). If autocorrelation in the equilibrium errors is
suspected, then an augmented Engle and Granger test can be based on the template

�eit = δei,t−1 + φ1(�ei,t−1) + · · · + ut .

If the null hypothesis that δ = 0 cannot be rejected (against the alternative δ < 0), then
we conclude that the variables are not cointegrated. (Cointegration can be rejected by
this method. Failing to reject does not confirm it, of course. But having failed to reject
the presence of cointegration, we will proceed as if our finding had been affirmative.)

Example 20.9 (Continued) Consumption and Output
In the example presented at the beginning of this discussion, we proposed precisely the sort
of test suggested by Phillips and Ouliaris (1990) to determine if (log) consumption and (log)
GDP are cointegrated. As noted, the logic of our approach is sound, but a few considerations
remain. The Dickey–Fuller critical values suggested for the test are appropriate only in a few
cases, and not when several trending variables appear in the equation. For the case of only a
pair of trended variables, as we have here, one may use infinite sample values in the Dickey–
Fuller tables for the trend stationary form of the equation. (The drift and trend would have
been removed from the residuals by the original regression, which would have these terms
either embedded in the variables or explicitly in the equation.) Finally, there remains an issue
of how many lagged differences to include in the ADF regression. We have specified one,
though further analysis might be called for. (A lengthy discussion of this set of issues appears
in Hayashi (2000, pp. 645–648.) Thus, but for the possibility of this specification issue, the
ADF approach suggested in the introduction does pass muster. The sample value found
earlier was −4.63. The critical values from the table are −3.45 for 5 percent and −3.67 for
2.5 percent. Thus, we conclude (as have many other analysts) that log consumption and log
GDP are cointegrated.

The Johansen (1988, 1992) and Stock and Watson (1988) methods are similar, so
we will describe only the first one. The theory is beyond the scope of this text, although
the operational details are suggestive. To carry out the Johansen test, we first formulate
the VAR

yt = �1yt−1 + �2yt−2 + · · · + � pyt−p + εt .

The order of the model, p, must be determined in advance. Now, let zt denote the vector
of M(p − 1) variables,

zt = [�yt−1, �yt−2, . . . , �yt−p+1].

That is, zt contains the lags 1 to p−1 of the first differences of all M variables. Now, using
the T available observations, we obtain two T × M matrices of least squares residuals:

D = the residuals in the regressions of �yt on zt ,

E = the residuals in the regressions of yt−p on zt .
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We now require the M squared canonical correlations between the columns in D
and those in E. To continue, we will digress briefly to define the canonical correlations.
Let d∗

1 denote a linear combination of the columns of D, and let e∗
1 denote the same from

E. We wish to choose these two linear combinations so as to maximize the correlation
between them. This pair of variables are the first canonical variates, and their correlation
r∗

1 is the first canonical correlation. In the setting of cointegration, this computation has
some intuitive appeal. Now, with d∗

1 and e∗
1 in hand, we seek a second pair of variables d∗

2
and e∗

2 to maximize their correlation, subject to the constraint that this second variable
in each pair be orthogonal to the first. This procedure continues for all M pairs of
variables. It turns out that the computation of all these is quite simple. We will not need
to compute the coefficient vectors for the linear combinations. The squared canonical
correlations are simply the ordered characteristic roots of the matrix

R∗ = R−1/2
DD RDER−1

EEREDR−1/2
DD ,

where Ri j is the (cross-) correlation matrix between variables in set i and set j , for
i, j = D, E.

Finally, the null hypothesis that there are r or fewer cointegrating vectors is tested
using the test statistic

TRACE TEST = −T
M∑

i=r+1

ln[1 − (r∗
i )2].

If the correlations based on actual disturbances had been observed instead of estimated,
then we would refer this statistic to the chi-squared distribution with M − r degrees
of freedom. Alternative sets of appropriate tables are given by Johansen and Juselius
(1990) and Osterwald-Lenum (1992). Large values give evidence against the hypothesis
of r or fewer cointegrating vectors.

20.4.4 ESTIMATING COINTEGRATION RELATIONSHIPS

Both of the testing procedures discussed above involve actually estimating the coin-
tegrating vectors, so this additional section is actually superfluous. In the Engle and
Granger framework, at a second step after the cointegration test, we can use the resid-
uals from the static regression as an error correction term in a dynamic, first-difference
regression, as shown in Section 20.4.2. One can then “test down” to find a satisfactory
structure. In the Johansen test shown earlier, the characteristic vectors corresponding to
the canonical correlations are the sample estimates of the cointegrating vectors. Once
again, computation of an error correction model based on these first step results is a
natural next step. We will explore these in an application.

20.4.5 APPLICATION: GERMAN MONEY DEMAND

The demand for money has provided a convenient and well targeted illustration of
methods of cointegration analysis. The central equation of the model is

mt − pt = µ + βyt + γ it + εt (20-25)

where mt , pt and yt are the logs of nominal money demand, the price level and output
and i is the nominal interest rate (not the log of). The equation involves trending
variables (mt , pt , yt ) and one which we found earlier appears to be a random walk with
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drift (it ). As such, the usual form of statistical inference for estimation of the income
elasticity and interest semielasticity based on stationary data is likely to be misleading.

Beyer (1998) analyzed the demand for money in Germany over the period 1975
to 1994. A central focus of the study was whether the 1990 reunification produced a
structural break in the long-run demand function. (The analysis extended an earlier
study by the same author that was based on data which predated the reunification.)
One of the interesting questions pursued in this literature concerns the stability of the
long-term demand equation,

(m − p)t − yt = µ + γ it + εt . (20-26)

The left hand side is the log of the inverse of the velocity of money, as suggested
by Lucas (1988). An issue to be confronted in this specification is the exogeneity of
the interest variable—exogeneity [in the Engle, Hendry, and Richard (1993) sense] of
income is moot in the long-run equation as its coefficient is assumed (per Lucas) to
equal one. Beyer explored this latter issue in the framework developed by Engle et al.
(see Section 19.6.4) and through the Granger causality testing methods discussed in
Section 19.6.5.

The analytical platform of Beyer’s study is a long run function for the real money
stock M3 (we adopt the author’s notation)

(m − p)∗ = δ0 + δ1 y + δ2RS + δ3RL + δ4�4 p (20-27)

where RS is a short-term interest rate, RL is a long-term interest rate, and �4 p is the
annual inflation rate—the data are quarterly. The first step is an examination of the
data. Augmented Dickey–Fuller tests suggest that for these German data in this period,
mt and pt are I(2) while (mt − pt ), yt , �4 pt , RSt and RLt are all I(1). Some of Beyer’s
results which produced these conclusions are shown in Table 20.7. Note that though
both mt and pt appear to be I(2), their simple difference (linear combination) is I(1),
that is, integrated to a lower order. That produces the long-run specification given by
(20-27). The Lucas specification is layered onto this to produce the model for the long-
run velocity

(m − p − y)∗ = δ∗
0 + δ∗

2RS + δ∗
3RL + δ∗

4�4 p. (20-28)

TABLE 20.7 Augmented Dickey–Fuller Tests for Variables in the Beyer Model

Variable m �m �2m p �p �2p �4p ��4p

Spec. TS RW RW TS RW/D RW RW/D RW
lag 0 4 3 4 3 2 2 2
DFτ −1.82 −1.61 −6.87 −2.09 −2.14 −10.6 −2.66 −5.48
Crit. Value −3.47 −1.95 −1.95 −3.47 −2.90 −1.95 −2.90 −1.95

Variable y �y RS �RS RL �RL (m− p) �(m− p)

Spec. TS RW/D TS RW TS RW RW/D RW/D
lag 4 3 1 0 1 0 0 0
DFτ −1.83 −2.91 −2.33 −5.26 −2.40 −6.01 −1.65 −8.50
Crit. Value −3.47 −2.90 −2.90 −1.95 −2.90 −1.95 −3.47 −2.90
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20.4.5a. Cointegration Analysis and a Long Run Theoretical Model

In order for (20-27) to be a valid model, there must be at least one cointegrating vector
that transforms zt = [(mt − pt ), yt , RSt , RLt , �4 pt ] to stationarity. The Johansen trace
test described in Section 20.4.3 was applied to the VAR consisting of these five I(1)

variables. A lag length of two was chosen for the analysis. The results of the trace test
are a bit ambiguous; the hypothesis that r = 0 is rejected, albeit not strongly (sample
value = 90.17 against a 95% critical value = 87.31) while the hypothesis that r ≤ 1 is not
rejected (sample value = 60.15 against a 95% critical value of 62.99). (These borderline
results follow from the result that Beyer’s first three eigenvalues—canonical correlations
in the trace test statistic—are nearly equal. Variation in the test statistic results from
variation in the correlations.) On this basis, it is concluded that the cointegrating rank
equals one. The unrestricted cointegrating vector for the equation, with a time trend
added is found to be

(m − p) = 0.936y − 1.780�4 p + 1.601RS − 3.279RL + 0.002t. (20-29)

(These are the coefficients from the first characteristic vector of the canonical correlation
analysis in the Johansen computations detailed in Section 20.4.3.) An exogeneity test—
we have not developed this in detail; see Beyer (1998, p. 59), Hendry and Ericsson (1991)
and Engle and Hendry (1993)—confirms weak exogeneity of all four right-hand side
variables in this specification. The final specification test is for the Lucas formulation
and elimination of the time trend, both of which are found to pass, producing the
cointegration vector

(m − p − y) = −1.832�4 p + 4.352RS − 10.89RL.

The conclusion drawn from the cointegration analysis is that a single equation model
for the long run money demand is appropriate and a valid way to proceed. A last step
before this analysis is a series of Granger causality tests for feedback between changes
in the money stock and the four right hand variables in (20-29) (not including the trend).
(See Section 19.6.5.) The test results are generally favorable, with some mixed results
for exogeneity of GDP.

20.4.5b. Testing for Model Instability

Let zt = [(mt − pt ), yt , �4 pt , RSt , RLt ] and let z0
t−1 denote the entire history of zt up

to the previous period. The joint distribution for zt , conditioned on z0
t−1 and a set of

parameters � factors one level further into

f
(
zt

∣∣ z0
t−1, �

) = f
[
(m − p)t

∣∣ yt , �4 pt , RSt , RLt , z0
t−1, �1

]

× g
(

yt , �4 pt , RSt , RLt , z0
t−1, �2

)
.

The result of the exogeneity tests carried out earlier implies that the conditional
distribution may be analyzed apart from the marginal distribution—that is the im-
plication of the Engle, Hendry, and Richard results noted earlier. Note the partitioning
of the parameter vector. Thus, the conditional model is represented by an error correc-
tion form that explains �(m − p)t in terms of its own lags, the error correction term
and contemporaneous and lagged changes in the (now established) weakly exogenous
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variables as well as other terms such as a constant term, trend, and certain dummy
variables which pick up particular events. The error correction model specified is

�(m − p)t =
4∑

i=1

ci�(m − p)t−i +
4∑

i=0

d1,i�
(
�4pt−i

) +
4∑

i=0

d2,i�yt−i

+
4∑

i=0

d3,i�RSt−i +
4∑

i=0

d4,i�RLt−i + λ(m − p − y)t−1 (20-30)

+ γ1RSt−1 + γ2RLt−1 + d′
tφ + ωt

where dt is the set of additional variables, including the constant and five one period
dummy variables that single out specific events such as a currency crisis in September,
1992 [Beyer (1998, page 62, fn. 4)]. The model is estimated by least squares, “stepwise
simplified and reparameterized.” (The number of parameters in the equation is reduced
from 32 to 15.27)

The estimated form of (20-30) is an autoregressive distributed lag model. We pro-
ceed to use the model to solve for the long run, steady state growth path of the real
money stock, (21-27). The annual growth rates �4m = gm, �4 p = gp, �4 y = gy and
(assumed) �4RS = gRS = �4RL = gRL = 0 are used for the solution

1
4
(gm − gp) = c4

4
(gm − gp) − d1,1gp + d2,2

2
gy + γ1RS + γ2RL + λ(m − p − y).28

This equation is solved for (m − p)∗ under the assumption that gm = (gy + gp),

(m − p)∗ = δ̂0 + δ̂1gy + y + δ̂2�4 p + δ̂3RS + δ̂4RL.

Analysis then proceeds based on this estimated long run relationship.
The primary interest of the study is the stability of the demand equation pre- and

postunification. A comparison of the parameter estimates from the same set of pro-
cedures using the period 1976–1989 shows them to be surprisingly similar, [(1.22 −
3.67gy), 1, −3.67, 3.67, −6.44] for the earlier period and [(1.25 − 2.09gy), 1, −3.625,

3.5, −7.25] for the later one. This suggests, albeit informally, that the function has not
changed (at least by much). A variety of testing procedures for structural break, includ-
ing the Andrews and Ploberger tests discussed in Section 7.4, led to the conclusion that
in spite of the dramatic changes of 1990, the long run money demand function had not
materially changed in the sample period.

20.5 SUMMARY AND CONCLUSIONS

This chapter has completed our survey of techniques for the analysis of time-series data.
While Chapter 19 was about extensions of regression modeling to time-series setting,
most of the results in this Chapter focus on the internal structure of the individual time
series, themselves. We began with the standard models for time-series processes. While

27The equation ultimately used is �(mt − pt ) = h[�(m− p)t−4, ��4 pt , �2 yt−2, �RSt−1 + �RSt−3, �2RLt ,

RSt−1, RLt−1, �4 pt−1, (m − p − y)t−1, dt ].
28The division of the coefficients is done because the intervening lags do not appear in the estimated equation.
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the empirical distinction between, say AR(p) and MA(q) series may seem ad hoc, the
Wold decomposition assures that with enough care, a variety of models can be used to
analyze a time series. Section 20.2 described what is arguably the fundamental tool of
modern macroeconometrics, the tests for nonstationarity. Contemporary econometric
analysis of macroeconomic data has added considerable structure and formality to
trending variables, which are more common than not in that setting. The variants of
the Dickey–Fuller tests for unit roots are an indispensable tool for the analyst of time-
series data. Section 20.4 then considered the subject of cointegration. This modeling
framework is a distinct extension of the regression modeling where this discussion
began. Cointegrated relationships and equilibrium relationships form the basis the time-
series counterpart to regression relationships. But, in this case, it is not the conditional
mean as such that is of interest. Here, both the long-run equilibrium and short-run
relationships around trends are of interest and are studied in the data.

Key Terms and Concepts

• Autoregressive integrated
moving-average (ARIMA)
process

• Augmented Dickey–Fuller
test

• Autocorrelation
• Autocorrelation function

(ACF)
• Autocovariance at lag K
• Autoregression
• Autoregressive form
• Autoregressive moving

average
• Box–Jenkins analysis
• Canonical correlation
• Characteristic equation
• Cointegration
• Cointegration rank
• Cointegration relationship
• Cointegrating vector

• Common trend
• Correlogram
• Covariance stationary
• Data generating process

(DGP)
• Dickey–Fuller test
• Equilibrium error
• Ergodic
• Error correction model
• Fourier transform
• Fractional integration
• Frequency domain
• Identification
• Innovation
• Integrated process
• Integrated of order one
• Invertibility
• Lag window
• Linearly deterministic

component

• Linearly indeterministic
component

• Moving average
• Nonstationary process
• Partial autocorrelation
• Phillips–Perron test
• Random walk
• Random walk with drift
• Sample periodogram
• Spectral density function
• Stationarity
• Square summable
• Superconsistent
• Trend stationary
• Unit root
• Univariate time series
• White noise
• Wold decomposition
• Yule–Walker equations

Exercises

1. Find the autocorrelations and partial autocorrelations for the MA(2) process

εt = vt − θ1vt−1 − θ2vt−2.

2. Carry out the ADF test for a unit root in the bond yield data of Example 20.1.
3. Using the macroeconomic data in Appendix Table F5.1, estimate by least squares

the parameters of the model

ct = β0 + β1 yt + β2ct−1 + β3ct−2 + εt ,

where ct is the log of real consumption and yt is the log of real disposable income.
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a. Use the Breusch and Pagan test to examine the residuals for autocorrelation.
b. Is the estimated equation stable? What is the characteristic equation for the au-

toregressive part of this model? What are the roots of the characteristic equation,
using your estimated parameters?

c. What is your implied estimate of the short-run (impact) multiplier for change in
yt on ct ? Compute the estimated long-run multiplier.

4. Verify the result in (20-10).
5. Show the Yule–Walker equations for an ARMA(1, 1) process.
6. Carry out an ADF test for a unit root in the rate of inflation using the subset of the

data in Table F5.1 since 1974.1. (This is the first quarter after the oil shock of 1973.)
7. Estimate the parameters of the model in Example 15.1 using two-stage least squares.

Obtain the residuals from the two equations. Do these residuals appear to be white
noise series? Based on your findings, what do you conclude about the specification
of the model?
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MODELS FOR DISCRETE
CHOICE

Q
21.1 INTRODUCTION

There are many settings in which the economic outcome we seek to model is a discrete
choice among a set of alternatives, rather than a continuous measure of some activity.
Consider, for example, modeling labor force participation, the decision of whether or
not to make a major purchase, or the decision of which candidate to vote for in an
election. For the first of these examples, intuition would suggest that factors such as
age, education, marital status, number of children, and some economic data would be
relevant in explaining whether an individual chooses to seek work or not in a given
period. But something is obviously lacking if this example is treated as the same sort
of regression model we used to analyze consumption or the costs of production or the
movements of exchange rates. In this chapter, we shall examine a variety of what have
come to be known as qualitative response (QR) models. There are numerous different
types that apply in different situations. What they have in common is that they are
models in which the dependent variable is an indicator of a discrete choice, such as a
“yes or no” decision. In general, conventional regression methods are inappropriate in
these cases.

This chapter is a lengthy but far from complete survey of topics in estimating QR
models. Almost none of these models can be consistently estimated with linear regres-
sion methods. Therefore, readers interested in the mechanics of estimation may want to
review the material in Appendices D and E before continuing. In most cases, the method
of estimation is maximum likelihood. The various properties of maximum likelihood
estimators are discussed in Chapter 17. We shall assume throughout this chapter that the
necessary conditions behind the optimality properties of maximum likelihood estima-
tors are met and, therefore, we will not derive or establish these properties specifically
for the QR models. Detailed proofs for most of these models can be found in surveys by
Amemiya (1981), McFadden (1984), Maddala (1983), and Dhrymes (1984). Additional
commentary on some of the issues of interest in the contemporary literature is given by
Maddala and Flores-Lagunes (2001).

21.2 DISCRETE CHOICE MODELS

The general class of models we shall consider are those for which the dependent variable
takes values 0, 1, 2, . . . . In a few cases, the values will themselves be meaningful, as in
the following:

1. Number of patents: y = 0, 1, 2, . . . These are count data.

663
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In most of the cases we shall study, the values taken by the dependent variables are
merely a coding for some qualitative outcome. Some examples are as follows:

2. Labor force participation: We equate “no” with 0 and “yes” with 1. These
decisions are qualitative choices. The 0/1 coding is a mere convenience.

3. Opinions of a certain type of legislation: Let 0 represent “strongly opposed,”
1 “opposed,” 2 “neutral,” 3 “support,” and 4 “strongly support.” These numbers
are rankings, and the values chosen are not quantitative but merely an ordering.
The difference between the outcomes represented by 1 and 0 is not necessarily
the same as that between 2 and 1.

4. The occupational field chosen by an individual: Let 0 be clerk, 1 engineer,
2 lawyer, 3 politician, and so on. These data are merely categories, giving neither
a ranking nor a count.

5. Consumer choice among alternative shopping areas: This case has the same
characteristics as example 4, but the appropriate model is a bit different. These
two examples will differ in the extent to which the choice is based on
characteristics of the individual, which are probably dominant in the occupational
choice, as opposed to attributes of the choices, which is likely the more important
consideration in the choice of shopping venue.

None of these situations lends themselves readily to our familiar type of regression
analysis. Nonetheless, in each case, we can construct models that link the decision or
outcome to a set of factors, at least in the spirit of regression. Our approach will be to
analyze each of them in the general framework of probability models:

Prob(event j occurs) = Prob(Y = j) = F[relevant effects, parameters]. (21-1)

The study of qualitative choice focuses on appropriate specification, estimation, and
use of models for the probabilities of events, where in most cases, the “event” is an
individual’s choice among a set of alternatives.

Example 21.1 Labor Force Participation Model
In Example 4.3 we estimated an earnings equation for the subsample of 428 married women
who participated in the formal labor market taken from a full sample of 753 observations.
The semilog earnings equation is of the form

ln earnings = β1 + β2age + β3age2 + β4education + β5kids + ε

where earnings is hourly wage times hours worked, education is measured in years of school-
ing and kids is a binary variable which equals one if there are children under 18 in the house-
hold. What of the other 325 individuals? The underlying labor supply model described a
market in which labor force participation was the outcome of a market process whereby the
demanders of labor services were willing to offer a wage based on expected marginal product
and individuals themselves made a decision whether or not to accept the offer depending
on whether it exceeded their own reservation wage. The first of these depends on, among
other things, education, while the second (we assume) depends on such variables as age,
the presence of children in the household, other sources of income (husband’s), and marginal
tax rates on labor income. The sample we used to fit the earnings equation contains data
on all these other variables. The models considered in this chapter would be appropriate for
modeling the outcome yi = 1 if in the labor force, and 0 if not.
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21.3 MODELS FOR BINARY CHOICE

Models for explaining a binary (0/1) dependent variable typically arise in two contexts.
In many cases, the analyst is essentially interested in a regressionlike model of the sort
considered in Chapters 2 to 9. With data on the variable of interest and a set of covariates,
the analyst is interested in specifying a relationship between the former and the latter,
more or less along the lines of the models we have already studied. The relationship
between voting behavior and income is typical. In other cases, the binary choice model
arises in the context of a model in which the nature of the observed data dictate the
special treatment of a binary choice model. For example, in a model of the demand
for tickets for sporting events, in which the variable of interest is number of tickets,
it could happen that the observation consists only of whether the sports facility was
filled to capacity (demand greater than or equal to capacity so Y= 1) or not (Y= 0). It
will generally turn out that the models and techniques used in both cases are the same.
Nonetheless, it is useful to examine both of them.

21.3.1 THE REGRESSION APPROACH

To focus ideas, consider the model of labor force participation suggested in Example
21.1.1 The respondent either works or seeks work (Y= 1) or does not (Y= 0) in the
period in which our survey is taken. We believe that a set of factors, such as age, marital
status, education, and work history, gathered in a vector x explain the decision, so that

Prob(Y = 1 | x) = F(x, β)

Prob(Y = 0 | x) = 1 − F(x, β).
(21-2)

The set of parameters β reflects the impact of changes in x on the probability. For
example, among the factors that might interest us is the marginal effect of marital status
on the probability of labor force participation. The problem at this point is to devise a
suitable model for the right-hand side of the equation.

One possibility is to retain the familiar linear regression,

F(x, β) = x′β.

Since E [y | x] = F(x, β), we can construct the regression model,

y = E [y | x] + (
y − E [y | x]

) = x′β + ε. (21-3)

The linear probability model has a number of shortcomings. A minor complication
arises because ε is heteroscedastic in a way that depends on β. Since x′β + ε must equal
0 or 1, ε equals either −x′β or 1−x′β, with probabilities 1− F and F , respectively. Thus,
you can easily show that

Var[ε | x] = x′β(1 − x′β). (21-4)

We could manage this complication with an FGLS estimator in the fashion of Chapter 11.
A more serious flaw is that without some ad hoc tinkering with the disturbances, we
cannot be assured that the predictions from this model will truly look like probabilities.

1Models for qualitative dependent variables can now be found in most disciplines in economics. A frequent
use is in labor economics in the analysis of microlevel data sets.
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FIGURE 21.1 Model for a Probability.

We cannot constrain x′β to the 0–1 interval. Such a model produces both nonsense
probabilities and negative variances. For these reasons, the linear model is becoming
less frequently used except as a basis for comparison to some other more appropriate
models.2

Our requirement, then, is a model that will produce predictions consistent with the
underlying theory in (21-1). For a given regressor vector, we would expect

lim
x′β→+∞

Prob(Y = 1 | x) = 1

lim
x′β→−∞

Prob(Y = 1 | x) = 0.
(21-5)

See Figure 21.1. In principle, any proper, continuous probability distribution defined
over the real line will suffice. The normal distribution has been used in many analyses,
giving rise to the probit model,

Prob(Y = 1 | x) =
∫ x′β

−∞
φ(t) dt = 
(x′β). (21-6)

The function 
(.) is a commonly used notation for the standard normal distribution.

2The linear model is not beyond redemption. Aldrich and Nelson (1984) analyze the properties of the model
at length. Judge et al. (1985) and Fomby, Hill, and Johnson (1984) give interesting discussions of the ways we
may modify the model to force internal consistency. But the fixes are sample dependent, and the resulting
estimator, such as it is, may have no known sampling properties. Additional discussion of weighted least
squares appears in Amemiya (1977) and Mullahy (1990). Finally, its shortcomings notwithstanding, the linear
probability model is applied by Caudill (1988), Heckman and MaCurdy (1985), and Heckman and Snyder
(1997).
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Partly because of its mathematical convenience, the logistic distribution,

Prob(Y = 1 | x) = ex′β

1 + ex′β = �(x′β), (21-7)

has also been used in many applications. We shall use the notation �(.) to indicate the
logistic cumulative distribution function. This model is called the logit model for reasons
we shall discuss in the next section. Both of these distributions have the familiar bell
shape of symmetric distributions. Other models which do not assume symmetry, such
as the Weibull model

Prob(Y = 1 | x) = exp[−exp(x′β)]

and complementary log log model,

Prob(Y = 1 | x) = 1 − exp[exp(−x′β)]

have also been employed. Still other distributions have been suggested,3 but the
probit and logit models are still the most common frameworks used in econometric
applications.

The question of which distribution to use is a natural one. The logistic distribution is
similar to the normal except in the tails, which are considerably heavier. (It more closely
resembles a t distribution with seven degrees of freedom.) Therefore, for intermediate
values of x′β (say, between −1.2 and +1.2), the two distributions tend to give similar
probabilities. The logistic distribution tends to give larger probabilities to y = 0 when
x′β is extremely small (and smaller probabilities to Y = 0 when β ′x is very large) than the
normal distribution. It is difficult to provide practical generalities on this basis, however,
since they would require knowledge of β. We should expect different predictions from
the two models, however, if the sample contains (1) very few responses (Ys equal to 1)
or very few nonresponses (Ys equal to 0) and (2) very wide variation in an important
independent variable, particularly if (1) is also true. There are practical reasons for
favoring one or the other in some cases for mathematical convenience, but it is difficult
to justify the choice of one distribution or another on theoretical grounds. Amemiya
(1981) discusses a number of related issues, but as a general proposition, the question
is unresolved. In most applications, the choice between these two seems not to make
much difference. However, as seen in the example below, the symmetric and asymmetric
distributions can give substantively different results, and here, the guidance on how to
choose is unfortunately sparse.

The probability model is a regression:

E [y | x] = 0[1 − F(x′β)] + 1[F(x′β)] = F(x′β). (21-8)

Whatever distribution is used, it is important to note that the parameters of the model,
like those of any nonlinear regression model, are not necessarily the marginal effects
we are accustomed to analyzing. In general,

∂ E [y | x]
∂x

=
{

dF(x′β)

d(x′β)

}
β = f (x′β)β, (21-9)

3See, for example, Maddala (1983, pp. 27–32), Aldrich and Nelson (1984) and Greene (2001).



Greene-50240 book June 27, 2002 22:39

668 CHAPTER 21 ✦ Models for Discrete Choice

where f (.) is the density function that corresponds to the cumulative distribution, F(.).
For the normal distribution, this result is

∂ E [y | x]
∂x

= φ(x′β)β, (21-10)

where φ(t) is the standard normal density. For the logistic distribution,

d�(x′β)

d(x′β)
= ex′β

(1 + ex′β)2
= �(x′β)[1 − �(x′β)]. (21-11)

Thus, in the logit model,

∂ E [y | x]
∂x

= �(x′β)[1 − �(x′β)]β. (21-12)

It is obvious that these values will vary with the values of x. In interpreting the estimated
model, it will be useful to calculate this value at, say, the means of the regressors and,
where necessary, other pertinent values. For convenience, it is worth noting that the
same scale factor applies to all the slopes in the model.

For computing marginal effects, one can evaluate the expressions at the sample
means of the data or evaluate the marginal effects at every observation and use the
sample average of the individual marginal effects. The functions are continuous with
continuous first derivatives, so Theorem D.12 (the Slutsky theorem) and assuming that
the data are “well behaved” a law of large numbers (Theorems D.4 and D.5) apply; in
large samples these will give the same answer. But that is not so in small or moderate-
sized samples. Current practice favors averaging the individual marginal effects when
it is possible to do so.

Another complication for computing marginal effects in a binary choice model
arises because x will often include dummy variables—for example, a labor force par-
ticipation equation will often contain a dummy variable for marital status. Since the
derivative is with respect to a small change, it is not appropriate to apply (21-10) for the
effect of a change in a dummy variable, or change of state. The appropriate marginal
effect for a binary independent variable, say d, would be

Marginal effect = Prob
[
Y = 1

∣∣ x̄(d), d = 1
] − Prob

[
Y = 1

∣∣ x̄(d), d = 0
]
,

where x̄(d), denotes the means of all the other variables in the model. Simply taking
the derivative with respect to the binary variable as if it were continuous provides an
approximation that is often surprisingly accurate. In Example 21.3, the difference in
the two probabilities for the probit model is (0.5702 − 0.1057) = 0.4645, whereas the
derivative approximation reported below is 0.468. Nonetheless, it might be optimistic
to rely on this outcome. We will revisit this computation in the examples and discussion
to follow.

21.3.2 LATENT REGRESSION—INDEX FUNCTION MODELS

Discrete dependent-variable models are often cast in the form of index function models.
We view the outcome of a discrete choice as a reflection of an underlying regression.
As an often-cited example, consider the decision to make a large purchase. The theory
states that the consumer makes a marginal benefit-marginal cost calculation based on
the utilities achieved by making the purchase and by not making the purchase and by
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using the money for something else. We model the difference between benefit and cost
as an unobserved variable y∗ such that

y∗ = x′β + ε.

We assume that ε has mean zero and has either a standardized logistic with (known) vari-
ance π2/3 [see (21-7)] or a standard normal distribution with variance one [see (21-6)].
We do not observe the net benefit of the purchase, only whether it is made or not.
Therefore, our observation is

y = 1 if y∗ > 0,

y = 0 if y∗ ≤ 0.

In this formulation, x′β is called the index function.
Two aspects of this construction merit our attention. First, the assumption of known

variance of ε is an innocent normalization. Suppose the variance of ε is scaled by an
unrestricted parameter σ 2. The latent regression will be y∗ = x′β + σε. But, (y∗/σ) =
x′(β/σ )+ε is the same model with the same data. The observed data will be unchanged;
y is still 0 or 1, depending only on the sign of y∗ not on its scale. This means that there is
no information about σ in the data so it cannot be estimated. Second, the assumption
of zero for the threshold is likewise innocent if the model contains a constant term (and
not if it does not).4 Let a be the supposed nonzero threshold and α be an unknown
constant term and, for the present, x and β contain the rest of the index not including
the constant term. Then, the probability that y equals one is

Prob(y∗ > a | x) = Prob(α + x′β + ε > a | x) = Prob[(α − a) + x′β + ε > 0 | x].

Since α is unknown, the difference (α − a) remains an unknown parameter. With the
two normalizations,

Prob(y∗ > 0 | x) = Prob(ε > −x′β | x).

If the distribution is symmetric, as are the normal and logistic, then

Prob(y∗ > 0 | x) = Prob(ε < x′β | x) = F(x′β),

which provides an underlying structural model for the probability.

Example 21.2 Structural Equations for a Probit Model
Nakosteen and Zimmer (1980) analyze a model of migration based on the following structure:5

For individual i, the market wage that can be earned at the present location is

y∗
p = x′

pβ + εp.

Variables in the equation include age, sex, race, growth in employment, and growth in
per capita income. If the individual migrates to a new location, then his or her market wage

4Unless there is some compelling reason, binomial probability models should not be estimated without
constant terms.
5A number of other studies have also used variants of this basic formulation. Some important examples
are Willis and Rosen (1979) and Robinson and Tomes (1982). The study by Tunali (1986) examined in
Example 21.5 is another example. The now standard approach, in which “participation” equals one if wage
offer (x′

wβw +εw) minus reservation wage (x′
r βr +εr ) is positive, is also used in Fernandez and Rodriguez-Poo

(1997). Brock and Durlauf (2000) describe a number of models and situations involving individual behavior
that give rise to binary choice models.
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would be

y∗
m = x′

mγ + εm.

Migration, however, entails costs that are related both to the individual and to the labor
market:

C∗ = z′α + u.

Costs of moving are related to whether the individual is self-employed and whether that
person recently changed his or her industry of employment. They migrate if the benefit
y∗

m − y∗
p is greater than the cost C∗. The net benefit of moving is

M∗ = y∗
m − y∗

p − C∗

= x′
mγ − x′

pβ − z′α + (εm − εp − u)

= w′δ + ε.

Since M∗ is unobservable, we cannot treat this equation as an ordinary regression. The
individual either moves or does not. After the fact, we observe only y∗

m if the individual has
moved or y∗

p if he or she has not. But we do observe that M = 1 for a move and M = 0 for no
move. If the disturbances are normally distributed, then the probit model we analyzed earlier
is produced. Logistic disturbances produce the logit model instead.

21.3.3 RANDOM UTILITY MODELS

An alternative interpretation of data on individual choices is provided by the random
utility model. Suppose that in the Nakosteen–Zimmer framework, ym and yp represent
the individual’s utility of two choices, which we might denote Ua and Ub. For another
example, Ua might be the utility of rental housing and Ub that of home ownership. The
observed choice between the two reveals which one provides the greater utility, but not
the unobservable utilities. Hence, the observed indicator equals 1 if Ua > Ub and 0 if
Ua ≤ Ub. A common formulation is the linear random utility model,

Ua = x′βa + εa and Ub = x′βb + εb. (21-13)

Then, if we denote by Y = 1 the consumer’s choice of alternative a, we have

Prob[Y = 1 | x] = Prob[Ua > Ub]

= Prob[x′βa + εa − x′βb − εb > 0 | x]

= Prob[x′(βa − βb) + εa − εb > 0 | x]

= Prob[x′β + ε > 0 | x]

(21-14)

once again.

21.4 ESTIMATION AND INFERENCE IN BINARY
CHOICE MODELS

With the exception of the linear probability model, estimation of binary choice models
is usually based on the method of maximum likelihood. Each observation is treated as
a single draw from a Bernoulli distribution (binomial with one draw). The model with
success probability F(x′β) and independent observations leads to the joint probability,
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or likelihood function,

Prob(Y1 = y1, Y2 = y2, . . . , Yn = yn | X) =
∏
yi =0

[1 − F(x′
iβ)]

∏
yi =1

F(x′
iβ), (21-15)

where X denotes [xi ]i=1,...,n. The likelihood function for a sample of n observations can
be conveniently written as

L(β | data) =
n∏

i=1

[F(x′
iβ)]yi [1 − F(x′

iβ)]1−yi . (21-16)

Taking logs, we obtain

ln L =
n∑

i=1

{
yi ln F(x′

iβ) + (1 − yi ) ln[1 − F(x′
iβ)]

}
.6 (21-17)

The likelihood equations are

∂ ln L
∂β

=
n∑

i=1

[
yi fi

Fi
+ (1 − yi )

− fi

(1 − Fi )

]
xi = 0 (21-18)

where fi is the density, dFi/d(x′
iβ). [In (21-18) and later, we will use the subscript i to

indicate that the function has an argument x′
iβ.] The choice of a particular form for Fi

leads to the empirical model.
Unless we are using the linear probability model, the likelihood equations in (21-18)

will be nonlinear and require an iterative solution. All of the models we have seen thus
far are relatively straightforward to analyze. For the logit model, by inserting (21-7) and
(21-11) in (21-18), we get, after a bit of manipulation, the likelihood equations

∂ ln L
∂β

=
n∑

i=1

(yi − �i )xi = 0. (21-19)

Note that if xi contains a constant term, the first-order conditions imply that the average
of the predicted probabilities must equal the proportion of ones in the sample.7 This
implication also bears some similarity to the least squares normal equations if we view
the term yi − �i as a residual.8 For the normal distribution, the log-likelihood is

ln L =
∑
yi =0

ln[1 − 
(x′
iβ)] +

∑
yi =1

ln 
(x′
iβ). (21-20)

The first-order conditions for maximizing L are

∂ ln L
∂β

=
∑
yi =0

−φi

1 − 
i
xi +

∑
yi =1

φi


i
xi =

∑
yi =0

λ0
i xi +

∑
yi =1

λ1
i xi .

6If the distribution is symmetric, as the normal and logistic are, then 1− F(x′β) = F(−x′β). There is a further
simplification. Let q = 2y − 1. Then ln L = �i ln F(qi xi β). See (21-21).
7The same result holds for the linear probability model. Although regularly observed in practice, the result
has not been verified for the probit model.
8This sort of construction arises in many models. The first derivative of the log-likelihood with respect to the
constant term produces the generalized residual in many settings. See, for example, Chesher, Lancaster, and
Irish (1985) and the equivalent result for the tobit model in Section 20.3.5.
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Using the device suggested in footnote 6, we can reduce this to

∂ log L
∂β

=
n∑

i=1

[
qiφ(qi x′

iβ)


(qi x′
iβ)

]
xi =

n∑
i=1

λi xi = 0. (21-21)

where qi = 2yi − 1.
The actual second derivatives for the logit model are quite simple:

H = ∂2 ln L
∂β∂β ′ = −

∑
i

�i (1 − �i )xi x′
i . (21-22)

Since the second derivatives do not involve the random variable yi , Newton’s method
is also the method of scoring for the logit model. Note that the Hessian is always
negative definite, so the log-likelihood is globally concave. Newton’s method will usually
converge to the maximum of the log-likelihood in just a few iterations unless the data
are especially badly conditioned. The computation is slightly more involved for the
probit model. A useful simplification is obtained by using the variable λ(yi , β

′xi ) = λi

that is defined in (21-21). The second derivatives can be obtained using the result that
for any z, dφ(z)/dz = −zφ(z). Then, for the probit model,

H = ∂2 ln L
∂β∂β ′ =

n∑
i=1

−λi (λi + x′
iβ)xi x′

i . (21-23)

This matrix is also negative definite for all values of β. The proof is less obvious than for
the logit model.9 It suffices to note that the scalar part in the summation is Var[ε | ε ≤ β ′x]
− 1 when y = 1 and Var[ε | ε ≥ −β ′x] − 1 when y = 0. The unconditional variance is
one. Since truncation always reduces variance—see Theorem 22.3—in both cases, the
variance is between zero and one, so the value is negative.10

The asymptotic covariance matrix for the maximum likelihood estimator can be
estimated by using the inverse of the Hessian evaluated at the maximum likelihood
estimates. There are also two other estimators available. The Berndt, Hall, Hall, and
Hausman estimator [see (17-18) and Example 17.4] would be

B =
n∑

i=1

g2
i xi x′

i ,

where gi = (yi − �i ) for the logit model [see (21-19)] and gi = λi for the probit model
[see (21-21)]. The third estimator would be based on the expected value of the Hessian.
As we saw earlier, the Hessian for the logit model does not involve yi , so H = E [H].
But because λi is a function of yi [see (21-21)], this result is not true for the probit model.
Amemiya (1981) showed that for the probit model,

E
[
∂2 ln L
∂β ∂β ′

]

probit
=

n∑
i=1

λ0iλi1xi x′
i . (21-24)

Once again, the scalar part of the expression is always negative [see (21-23) and note
that λ0i is always negative and λi1 is always positive]. The estimator of the asymptotic

9See, for example, Amemiya (1985, pp. 273–274) and Maddala (1983, p. 63).
10See Johnson and Kotz (1993) and Heckman (1979). We will make repeated use of this result in Chapter 22.
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covariance matrix for the maximum likelihood estimator is then the negative inverse of
whatever matrix is used to estimate the expected Hessian. Since the actual Hessian is
generally used for the iterations, this option is the usual choice. As we shall see below,
though, for certain hypothesis tests, the BHHH estimator is a more convenient choice.

In some studies [e.g., Boyes, Hoffman, and Low (1989), Greene (1992)], the mix of
ones and zeros in the observed sample of the dependent variable is deliberately skewed
in favor of one outcome or the other to achieve a more balanced sample than random
sampling would produce. The sampling is said to be choice based. In the studies noted,
the dependent variable measured the occurrence of loan default, which is a relatively
uncommon occurrence. To enrich the sample, observations with y = 1 (default) were
oversampled. Intuition should suggest (correctly) that the bias in the sample should
be transmitted to the parameter estimates, which will be estimated so as to mimic the
sample, not the population, which is known to be different. Manski and Lerman (1977)
derived the weighted endogenous sampling maximum likelihood (WESML) estimator
for this situation. The estimator requires that the true population proportions, ω1 and
ω0, be known. Let p1 and p0 be the sample proportions of ones and zeros. Then the
estimator is obtained by maximizing a weighted log-likelihood,

ln L =
n∑

i=1

wi ln F(qiβ
′xi ),

where wi = yi (ω1/p1) + (1 − yi )(ω0/p0). Note that wi takes only two different values.
The derivatives and the Hessian are likewise weighted. A final correction is needed
after estimation; the appropriate estimator of the asymptotic covariance matrix is the
sandwich estimator discussed in the next section, H−1BH−1 (with weighted B and H),
instead of B or H alone. (The weights are not squared in computing B.)11

21.4.1 ROBUST COVARIANCE MATRIX ESTIMATION

The probit maximum likelihood estimator is often labeled a quasi-maximum likeli-
hood estimator (QMLE) in view of the possibility that the normal probability model
might be misspecified. White’s (1982a) robust “sandwich” estimator for the asymptotic
covariance matrix of the QMLE (see Section 17.9 for discussion),

Est.Asy. Var[β̂] = [Ĥ]−1B̂[Ĥ]−1,

has been used in a number of recent studies based on the probit model [e.g., Fernandez
and Rodriguez-Poo (1997), Horowitz (1993), and Blundell, Laisney, and Lechner
(1993)]. If the probit model is correctly specified, then plim(1/n)B̂ = plim(1/n)(−Ĥ)

and either single matrix will suffice, so the robustness issue is moot (of course). On the
other hand, the probit (Q-) maximum likelihood estimator is not consistent in the pres-
ence of any form of heteroscedasticity, unmeasured heterogeneity, omitted variables
(even if they are orthogonal to the included ones), nonlinearity of the functional form
of the index, or an error in the distributional assumption [with some narrow exceptions

11WESML and the choice-based sampling estimator are not the free lunch they may appear to be. That which
the biased sampling does, the weighting undoes. It is common for the end result to be very large standard
errors, which might be viewed as unfortunate, insofar as the purpose of the biased sampling was to balance
the data precisely to avoid this problem.
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as described by Ruud (1986)]. Thus, in almost any case, the sandwich estimator pro-
vides an appropriate asymptotic covariance matrix for an estimator that is biased in an
unknown direction. White raises this issue explicitly, although it seems to receive little
attention in the literature: “it is the consistency of the QMLE for the parameters of
interest in a wide range of situations which insures its usefulness as the basis for robust
estimation techniques” (1982a, p. 4). His very useful result is that if the quasi-maximum
likelihood estimator converges to a probability limit, then the sandwich estimator can,
under certain circumstances, be used to estimate the asymptotic covariance matrix of
that estimator. But there is no guarantee that the QMLE will converge to anything
interesting or useful. Simply computing a robust covariance matrix for an otherwise
inconsistent estimator does not give it redemption. Consequently, the virtue of a robust
covariance matrix in this setting is unclear.

21.4.2 MARGINAL EFFECTS

The predicted probabilities, F(x′β̂) = F̂ and the estimated marginal effects f (x′β̂)×β̂ =
f̂ β̂ are nonlinear functions of the parameter estimates. To compute standard errors, we
can use the linear approximation approach (delta method) discussed in Section 5.2.4.
For the predicted probabilities,

Asy. Var[F̂] = [∂ F̂/∂β̂]′V[∂ F̂/∂β̂],

where

V = Asy. Var[β̂].

The estimated asymptotic covariance matrix of β̂ can be any of the three described
earlier. Let z = x′β̂. Then the derivative vector is

[∂ F̂/∂β̂] = [dF̂/dz][∂z/∂β̂] = f̂ x.

Combining terms gives

Asy. Var[F̂] = f̂ 2x′ Vx,

which depends, of course, on the particular x vector used. This results is useful when a
marginal effect is computed for a dummy variable. In that case, the estimated effect is

�F̂ = F̂ | d = 1 − F̂ | d = 0. (21-25)

The asymptotic variance would be

Asy. Var[�F̂] = [∂�F̂/∂β̂]′V[∂�F̂/∂β̂],

where (21-26)

[∂�F̂/∂β̂] = f̂ 1

(
x̄(d)

1

)
− f̂ 0

(
x̄(d)

0

)
.

For the other marginal effects, let γ̂ = f̂ β̂. Then

Asy. Var[γ̂ ] =
[

∂ γ̂

∂β̂
′

]
V

[
∂ γ̂

∂β̂ ′

]′
.
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TABLE 21.1 Estimated Probability Models

Linear Logistic Probit Weibull

Variable Coefficient Slope Coefficient Slope Coefficient Slope Coefficient Slope

Constant −1.498 — −13.021 — −7.452 — −10.631 —
GPA 0.464 0.464 2.826 0.534 1.626 0.533 2.293 0.477
TUCE 0.010 0.010 0.095 0.018 0.052 0.017 0.041 0.009
PSI 0.379 0.379 2.379 0.499 1.426 0.468 1.562 0.325
f (x̄′β̂) 1.000 0.189 0.328 0.208

The matrix of derivatives is

f̂

(
∂β̂

∂β̂
′

)
+ β̂

(
d f̂
dz

) (
∂z

∂β̂
′

)
= f̂ I +

(
d f̂
dz

)
β̂x′.

For the probit model, df/dz = −zφ, so

Asy. Var[γ̂ ] = φ2[I − (β ′x)βx′]V[I − (β ′x)βx′]′.

For the logit model, f̂ = �̂(1 − �̂), so

d f̂
dz

= (1 − 2�̂)

(
d�̂

dz

)
= (1 − 2�̂)�̂(1 − �̂).

Collecting terms, we obtain

Asy. Var[γ̂ ] = [�(1 − �)]2[I + (1 − 2�)βx′]V[I + (1 − 2�)xβ ′].

As before, the value obtained will depend on the x vector used.

Example 21.3 Probability Models
The data listed in Appendix Table F21.1 were taken from a study by Spector and Mazzeo
(1980), which examined whether a new method of teaching economics, the Personalized
System of Instruction (PSI), significantly influenced performance in later economics courses.
The “dependent variable” used in our application is GRADE, which indicates the whether
a student’s grade in an intermediate macroeconomics course was higher than that in the
principles course. The other variables are GPA, their grade point average; TUCE, the score
on a pretest that indicates entering knowledge of the material; and PSI, the binary variable
indicator of whether the student was exposed to the new teaching method. (Spector and
Mazzeo’s specific equation was somewhat different from the one estimated here.)

Table 21.1 presents four sets of parameter estimates. The slope parameters and deriva-
tives were computed for four probability models: linear, probit, logit, and Weibull. The last
three sets of estimates are computed by maximizing the appropriate log-likelihood function.
Estimation is discussed in the next section, so standard errors are not presented here. The
scale factor given in the last row is the density function evaluated at the means of the vari-
ables. Also, note that the slope given for PSI is the derivative, not the change in the function
with PSI changed from zero to one with other variables held constant.

If one looked only at the coefficient estimates, then it would be natural to conclude that
the four models had produced radically different estimates. But a comparison of the columns
of slopes shows that this conclusion is clearly wrong. The models are very similar; in fact,
the logit and probit models results are nearly identical.

The data used in this example are only moderately unbalanced between 0s and 1s for
the dependent variable (21 and 11). As such, we might expect similar results for the probit
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and logit models.12 One indicator is a comparison of the coefficients. In view of the different
variances of the distributions, one for the normal and π2/3 for the logistic, we might expect to
obtain comparable estimates by multiplying the probit coefficients by π/

√
3 ≈ 1.8. Amemiya

(1981) found, through trial and error, that scaling by 1.6 instead produced better results. This
proportionality result is frequently cited. The result in (21-9) may help to explain the finding.
The index x′β is not the random variable. (See Section 21.3.2.) The marginal effect in the probit
model for, say, xk is φ (x′β p)βpk, whereas that for the logit is �(1 − �)βl k. (The subscripts p
and l are for probit and logit.) Amemiya suggests that his approximation works best at the
center of the distribution, where F = 0.5, or x′β = 0 for either distribution. Suppose it is. Then
φ (0) = 0.3989 and �(0) [1 − �(0) ] = 0.25. If the marginal effects are to be the same, then
0.3989 βpk = 0.25βl k, or βl k = 1.6βpk, which is the regularity observed by Amemiya. Note,
though, that as we depart from the center of the distribution, the relationship will move away
from 1.6. Since the logistic density descends more slowly than the normal, for unbalanced
samples such as ours, the ratio of the logit coefficients to the probit coefficients will tend to
be larger than 1.6. The ratios for the ones in Table 21.1 are closer to 1.7 than 1.6.

The computation of the derivatives of the conditional mean function is useful when the vari-
able in question is continuous and often produces a reasonable approximation for a dummy
variable. Another way to analyze the effect of a dummy variable on the whole distribution is
to compute Prob(Y = 1) over the range of x′β (using the sample estimates) and with the two
values of the binary variable. Using the coefficients from the probit model in Table 21.1, we
have the following probabilities as a function of GPA, at the mean of TUCE:

PSI = 0: Prob(GRADE = 1) = 
[−7.452 + 1.626GPA + 0.052(21.938) ]

PSI = 1: Prob(GRADE = 1) = 
[−7.452 + 1.626GPA + 0.052(21.938) + 1.426]

Figure 21.2 shows these two functions plotted over the range of GRADE observed in the
sample, 2.0 to 4.0. The marginal effect of PSI is the difference between the two functions,
which ranges from only about 0.06 at GPA = 2 to about 0.50 at GPA of 3.5. This effect shows
that the probability that a student’s grade will increase after exposure to PSI is far greater
for students with high GPAs than for those with low GPAs. At the sample mean of GPA of
3.117, the effect of PSI on the probability is 0.465. The simple derivative calculation of (21-9)
is given in Table 21.1; the estimate is 0.468. But, of course, this calculation does not show
the wide range of differences displayed in Figure 21.2.

Table 21.2 presents the estimated coefficients and marginal effects for the probit and
logit models in Table 21.1. In both cases, the asymptotic covariance matrix is computed
from the negative inverse of the actual Hessian of the log-likelihood. The standard errors for
the estimated marginal effect of PSI are computed using (21-25) and (21-26) since PSI is a
binary variable. In comparison, the simple derivatives produce estimates and standard errors
of (0.449, 0.181) for the logit model and (0.464, 0.188) for the probit model. These differ only
slightly from the results given in the table.

21.4.3 HYPOTHESIS TESTS

For testing hypotheses about the coefficients, the full menu of procedures is available.
The simplest method for a single restriction would be based on the usual t tests, using
the standard errors from the information matrix. Using the normal distribution of the
estimator, we would use the standard normal table rather than the t table for critical
points. For more involved restrictions, it is possible to use the Wald test. For a set of

12One might be tempted in this case to suggest an asymmetric distribution for the model, such as the Weibull
distribution. However, the asymmetry in the model, to the extent that it is present at all, refers to the values
of ε, not to the observed sample of values of the dependent variable.
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FIGURE 21.2 Effect of PSI on Predicted Probabilities.

TABLE 21.2 Estimated Coefficients and Standard Errors (Standard Errors
in Parentheses)

Logistic Probit

Variable Coefficient t Ratio Slope t Ratio Coefficient t Ratio Slope t Ratio

Constant −13.021 −2.641 — — −7.452 −2.931 — —
(4.931) (2.542)

GPA 2.826 2.238 0.534 2.252 1.626 2.343 0.533 2.294
(1.263) (0.237) (0.694) (0.232)

TUCE 0.095 0.672 0.018 0.685 0.052 0.617 0.017 0.626
(0.142) (0.026) (0.084) (0.027)

PSI 2.379 2.234 0.456 2.521 1.426 2.397 0.464 2.727
(1.065) (0.181) (0.595) (0.170)

log likelihood −12.890 −12.819

restrictions Rβ = q, the statistic is

W = (Rβ̂ − q)′{R(Est.Asy. Var[β̂])R′}−1(Rβ̂ − q).

For example, for testing the hypothesis that a subset of the coefficients, say the last M,
are zero, the Wald statistic uses R = [0 | IM] and q = 0. Collecting terms, we find that
the test statistic for this hypothesis is

W = β̂ ′
MV−1

M β̂M, (21-27)

where the subscript M indicates the subvector or submatrix corresponding to the M
variables and V is the estimated asymptotic covariance matrix of β̂.
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Likelihood ratio and Lagrange multiplier statistics can also be computed. The like-
lihood ratio statistic is

LR = −2[ln L̂R − ln L̂U],

where L̂R and L̂U are the log-likelihood functions evaluated at the restricted and unre-
stricted estimates, respectively. A common test, which is similar to the F test that all the
slopes in a regression are zero, is the likelihood ratio test that all the slope coefficients in
the probit or logit model are zero. For this test, the constant term remains unrestricted.
In this case, the restricted log-likelihood is the same for both probit and logit models,

ln L0 = n[P ln P + (1 − P) ln(1 − P)], (21-28)

where P is the proportion of the observations that have dependent variable equal to 1.
It might be tempting to use the likelihood ratio test to choose between the probit

and logit models. But there is no restriction involved, and the test is not valid for this
purpose. To underscore the point, there is nothing in its construction to prevent the
chi-squared statistic for this “test” from being negative.

The Lagrange multiplier test statistic is LM = g′Vg, where g is the first derivatives
of the unrestricted model evaluated at the restricted parameter vector and V is any of
the three estimators of the asymptotic covariance matrix of the maximum likelihood es-
timator, once again computed using the restricted estimates. Davidson and MacKinnon
(1984) find evidence that E [H] is the best of the three estimators to use, which gives

LM =
(

n∑
i=1

gi xi

)′ [ n∑
i=1

E [−hi ]xi x′
i

]−1 (
n∑

i=1

gi xi

)
, (21-29)

where E [−hi ] is defined in (21-22) for the logit model and in (21-24) for the probit
model.

For the logit model, when the hypothesis is that all the slopes are zero,

LM = nR2,

where R2 is the uncentered coefficient of determination in the regression of (yi − ȳ) on
xi and ȳ is the proportion of 1s in the sample. An alternative formulation based on the
BHHH estimator, which we developed in Section 17.5.3 is also convenient. For any of
the models (probit, logit, Weibull, etc.), the first derivative vector can be written as

∂ ln L
∂β

=
n∑

i=1

gi xi = X′Gi,

where G(n × n) = diag[g1, g2, . . . , gn] and i is an n × 1 column of 1s. The BHHH esti-
mator of the Hessian is (X′G′GX), so the LM statistic based on this estimator is

LM = n
[

1
n

i′(GX)(X′G′GX)−1(X′G′)i
]

= nR2
i , (21-30)

where R2
i is the uncentered coefficient of determination in a regression of a column of

ones on the first derivatives of the logs of the individual probabilities.
All the statistics listed here are asymptotically equivalent and under the null hypoth-

esis of the restricted model have limiting chi-squared distributions with degrees of free-
dom equal to the number of restrictions being tested. We consider some examples below.
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21.4.4 SPECIFICATION TESTS FOR BINARY CHOICE MODELS

In the linear regression model, we considered two important specification problems, the
effect of omitted variables and the effect of heteroscedasticity. In the classical model,
y = X1β1 + X2β2 + ε, when least squares estimates b1 are computed omitting X2,

E [b1] = β1 + [X′
1X1]−1X′

1X2β2.

Unless X1 and X2 are orthogonal or β2 = 0, b1 is biased. If we ignore heteroscedasticity,
then although the least squares estimator is still unbiased and consistent, it is inefficient
and the usual estimate of its sampling covariance matrix is inappropriate. Yatchew and
Griliches (1984) have examined these same issues in the setting of the probit and logit
models. Their general results are far more pessimistic. In the context of a binary choice
model, they find the following:

1. If x2 is omitted from a model containing x1 and x2, (i.e. β2 �= 0) then

plim β̂1 = c1β1 + c2β2,

where c1 and c2 are complicated functions of the unknown parameters. The
implication is that even if the omitted variable is uncorrelated with the included
one, the coefficient on the included variable will be inconsistent.

2. If the disturbances in the underlying regression are heteroscedastic, then the
maximum likelihood estimators are inconsistent and the covariance matrix is
inappropriate.

The second result is particularly troubling because the probit model is most often used
with microeconomic data, which are frequently heteroscedastic.

Any of the three methods of hypothesis testing discussed above can be used to
analyze these specification problems. The Lagrange multiplier test has the advantage
that it can be carried out using the estimates from the restricted model, which sometimes
brings a large saving in computational effort. This situation is especially true for the test
for heteroscedasticity.13

To reiterate, the Lagrange multiplier statistic is computed as follows. Let the null
hypothesis, H0, be a specification of the model, and let H1 be the alternative. For example,
H0 might specify that only variables x1 appear in the model, whereas H1 might specify
that x2 appears in the model as well. The statistic is

LM = g′
0V−1

0 g0,

where g0 is the vector of derivatives of the log-likelihood as specified by H1 but evaluated
at the maximum likelihood estimator of the parameters assuming that H0 is true, and
V−1

0 is any of the three consistent estimators of the asymptotic variance matrix of the
maximum likelihood estimator under H1, also computed using the maximum likelihood
estimators based on H0. The statistic is asymptotically distributed as chi-squared with
degrees of freedom equal to the number of restrictions.

13The results in this section are based on Davidson and MacKinnon (1984) and Engle (1984). A symposium
on the subject of specification tests in discrete choice models is Blundell (1987).
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21.4.4.a Omitted Variables

The hypothesis to be tested is

H0: y∗ = β ′
1x1 +ε,

H1: y∗ = β ′
1x1 + β ′

2x2 +ε,
(21-31)

so the test is of the null hypothesis that β2 = 0. The Lagrange multiplier test would be
carried out as follows:

1. Estimate the model in H0 by maximum likelihood. The restricted coefficient
vector is [β̂1, 0].

2. Let x be the compound vector, [x1, x2].

The statistic is then computed according to (21-29) or (21-30). It is noteworthy that in
this case as in many others, the Lagrange multiplier is the coefficient of determination
in a regression.

21.4.4.b Heteroscedasticity

We use the general formulation analyzed by Harvey (1976),14

Var[ε] = [exp(z′γ )]2.15

This model can be applied equally to the probit and logit models. We will derive the
results specifically for the probit model; the logit model is essentially the same. Thus,

y∗ = x′β + ε,

Var[ε | x, z] = [exp(z′γ )]2.
(21-32)

The presence of heteroscedasticity makes some care necessary in interpreting the
coefficients for a variable wk that could be in x or z or both,

∂ Prob(Y = 1 | x, z)
∂wk

= φ

[
x′β

exp(z′γ )

]
βk − (x′β)γk

exp(z′γ )
.

Only the first (second) term applies if wk appears only in x (z). This implies that the
simple coefficient may differ radically from the effect that is of interest in the estimated
model. This effect is clearly visible in the example below.

The log-likelihood is

ln L =
n∑

i=1

{
yi ln F

(
x′

iβ

exp(z′
iγ )

)
+ (1 − yi ) ln

[
1 − F

(
x′

iβ

exp(z′
iγ )

)]}
. (21-33)

14See Knapp and Seaks (1992) for an application. Other formulations are suggested by Fisher and Nagin
(1981), Hausman and Wise (1978), and Horowitz (1993).
15See Section 11.7.1.
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To be able to estimate all the parameters, z cannot have a constant term. The derivatives
are

∂ ln L
∂β

=
n∑

i=1

[
fi (yi − Fi )

Fi (1 − Fi )

]
exp(−z′

iγ )xi ,

∂ ln L
∂γ

=
n∑

i=1

[
fi (yi − Fi )

Fi (1 − Fi )

]
exp(−z′

iγ )zi (−x′
iβ),

(21-34)

which implies a difficult log-likelihood to maximize. But if the model is estimated
assuming that γ = 0, then we can easily test for homoscedasticity. Let

wi =
[

xi

(−x′
i β̂)zi

]
(21-35)

computed at the maximum likelihood estimator, assuming that γ = 0. Then (21-29) or
(21-30) can be used as usual for the Lagrange multiplier statistic.

Davidson and MacKinnon carried out a Monte Carlo study to examine the true
sizes and power functions of these tests. As might be expected, the test for omitted
variables is relatively powerful. The test for heteroscedasticity may well pick up some
other form of misspecification, however, including perhaps the simple omission of z from
the index function, so its power may be problematic. It is perhaps not surprising that
the same problem arose earlier in our test for heteroscedasticity in the linear regression
model.

Example 21.4 Specification Tests in a Labor Force Participation Model
Using the data described in Example 21.1, we fit a probit model for labor force participation
based on the specification

Prob[LFP = 1] = F (constant, age, age2, family income, education, kids)

For these data, P = 428/753 = 0.568393. The restricted (all slopes equal zero, free constant
term) log-likelihood is 325× ln(325/753) +428× ln(428/753) = −514.8732. The unrestricted
log-likelihood for the probit model is −490.84784. The chi-squared statistic is, therefore,
48.05072. The critical value from the chi-squared distribution with 5 degrees of freedom is
11.07, so the joint hypothesis that the coefficients on age, age2, family income and kids are
all zero is rejected.

Consider the alternative hypothesis, that the constant term and the coefficients on age,
age2, family income and education are the same whether kids equals one or zero, against the
alternative that an altogether different equation applies for the two groups of women, those
with kids = 1 and those with kids = 0. To test this hypothesis, we would use a counterpart to
the Chow test of Section 7.4 and Example 7.6. The restricted model in this instance would
be based on the pooled data set of all 753 observations. The log-likelihood for the pooled
model—which has a constant term, age, age2, family income and education is −496.8663.
The log-likelihoods for this model based on the 428 observations with kids = 1 and the 325
observations with kids = 0 are −347.87441 and −141.60501, respectively. The log-likelihood
for the unrestricted model with separate coefficient vectors is thus the sum, −489.47942.
The chi-squared statistic for testing the five restrictions of the pooled model is twice the
difference, LR = 2[−489.47942− (−496.8663) ] = 14.7738. The 95 percent critical value from
the chi-squared distribution with 5 degrees of freedom is 11.07 is so at this significance level,
the hypothesis that the constant terms and the coefficients on age, age2, family income and
education are the same is rejected. (The 99% critical value is 15.09.)



Greene-50240 book June 27, 2002 22:39

682 CHAPTER 21 ✦ Models for Discrete Choice

TABLE 21.3 Estimated Coefficients

Estimate (Std.Er) Marg. Effect* Estimate (St.Er.) Marg. Effect*

Constant β1 −4.157(1.402) — −6.030(2.498) —
Age β2 0.185(0.0660) −0.0079(0.0027) 0.264(0.118) −0.0088(0.00251)
Age2 β3 −0.0024(0.00077) — −0.0036(0.0014) —
Income β4 0.0458(0.0421) 0.0180(0.0165) 0.424(0.222) 0.0552(0.0240)
Education β5 0.0982(0.0230) 0.0385(0.0090) 0.140(0.0519) 0.0289(0.00869)
Kids β6 −0.449(0.131) −0.171(0.0480) −0.879(0.303) −0.167(0.0779)
Kids γ1 0.000 — −0.141(0.324) —
Income γ2 0.000 — 0.313(0.123) —
Log L −490.8478 −487.6356
Correct Preds. 0s: 106, 1s: 357 0s: 115, 1s: 358

*Marginal effect and estimated standard error include both mean (β) and variance (γ ) effects.

Table 21.3 presents estimates of the probit model now with a correction for heteroscedas-
ticity of the form

Var[εi ] = exp(γ1kids + γ2family income) .

The three tests for homoscedasticity give

LR = 2[−487.6356 − (−490.8478) ] = 6.424,

LM = 2.236 based on the BHHH estimator,

Wald = 6.533 (2 restrictions) .

The 99 percent critical value for two restrictions is 5.99, so the LM statistic conflicts with the
other two.

21.4.4.c A Specification Test for Nonnested
Models—Testing for the Distribution

Whether the logit or probit form, or some third alternative, is the best specification for
a discrete choice model is a perennial question. Since the distributions are not nested
within some higher level model, testing for an answer is always problematic. Building
on the logic of the PE test discussed in Section 9.4.3, Silva (2001) has suggested a score
test which may be useful in this regard. The statistic is intended for a variety of discrete
choice models, but is especially convenient for binary choice models which are based on a
common single index formulation—the probability model is Prob(yi = 1 | xi ) = F(x′

iβ).
Let “1” denote Model 1 based on parameter vector β and “2” denote Model 2 with
parameter vector γ and let Model 1 be the null specification while Model 2 is the
alternative. A “super-model” which combines two alternatives would have likelihood
function

Lρ = [(1 − α)L1(y | X, β)ρ + αL2(y | X, γ )ρ]1/ρ

∫
z [(1 − α)L1(z | X, β)ρ + αL2(z | X, γ )ρ]1/ρdz

(Note that integration is used generically here, since y is discrete.) The two mixing
parameters are ρ and α. Silva derives an LM test in this context for the hypothesis
α = 0 for any particular value of ρ. The case when ρ = 0 is of particular interest. As he
notes, it is the nonlinear counterpart to the Cox test we examined in Section 8.3.4. [For
related results, see Pesaran and Pesaran (1993), Davidson and MacKinnon (1984, 1993),
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Orme (1994), and Weeks (1996).] For binary choice models, Silva suggests the following
procedure (as one of three computational strategies): Compute the parameters of the
competing models by maximum likelihood and obtain predicted probabilities for yi = 1,
P̂m

i where “i” denotes the observation and “m” = 1 or 2 for the two models.15 The
individual observations on the density for the null model, f̂ m

i , are also required. The
new variable

zi (0) = P̂1
i

(
1 − P̂1

i

)

f̂ 1
i

ln

[
P̂1

i

(
1 − P̂2

i

)

P̂2
i

(
1 − P̂1

i

)
]

is then computed. Finally, Model 1 is then reestimated with zi (0) added as an additional
independent variable. A test of the hypothesis that its coefficient is zero is equivalent to
a test of the null hypothesis that α = 1, which favors Model 1. Rejection of the hypothesis
favors Model 2. Silva’s preferred procedure is the same as this based on

zi (1) = P̂2
i − P̂1

i

f̂ 1
i

.

As suggested by the citations above, tests of this sort have a long history in this literature.
Silva’s simulation study for the Cox test (ρ = 0) and his score test (ρ = 1) suggest that
the power of the test is quite erratic.

21.4.5 MEASURING GOODNESS OF FIT

There have been many fit measures suggested for QR models.16 At a minimum, one
should report the maximized value of the log-likelihood function, ln L. Since the
hypothesis that all the slopes in the model are zero is often interesting, the log-likelihood
computed with only a constant term, ln L0 [see (21-28)], should also be reported. An
analog to the R2 in a conventional regression is McFadden’s (1974) likelihood ratio
index,

LRI = 1 − ln L
ln L0

.

This measure has an intuitive appeal in that it is bounded by zero and one. If all the
slope coefficients are zero, then it equals zero. There is no way to make LRI equal 1,
although one can come close. If Fi is always one when y equals one and zero when y
equals zero, then ln L equals zero (the log of one) and LRI equals one. It has been
suggested that this finding is indicative of a “perfect fit” and that LRI increases as the
fit of the model improves. To a degree, this point is true (see the analysis in Section
21.6.6). Unfortunately, the values between zero and one have no natural interpretation.
If F(x′

iβ) is a proper pdf, then even with many regressors the model cannot fit perfectly
unless x′

iβ goes to +∞ or −∞. As a practical matter, it does happen. But when it does,
it indicates a flaw in the model, not a good fit. If the range of one of the independent
variables contains a value, say x∗, such that the sign of (x − x∗) predicts y perfectly

15His conjecture about the computational burden is probably overstated given that modern software offers
a variety of binary choice models essentially in push-button fashion.
16See, for example, Cragg and Uhler (1970), Amemiya (1981), Maddala (1983), McFadden (1974), Ben-Akiva
and Lerman (1985), Kay and Little (1986), Veall and Zimmermann (1992), Zavoina and McKelvey (1975),
Efron (1978), and Cramer (1999). A survey of techniques appears in Windmeijer (1995).
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and vice versa, then the model will become a perfect predictor. This result also holds in
general if the sign of x′β gives a perfect predictor for some vector β.17 For example, one
might mistakenly include as a regressor a dummy variables that is identical, or nearly
so, to the dependent variable. In this case, the maximization procedure will break down
precisely because x′β is diverging during the iterations. [See McKenzie (1998) for an
application and discussion.] Of course, this situation is not at all what we had in mind
for a good fit.

Other fit measures have been suggested. Ben-Akiva and Lerman (1985) and Kay
and Little (1986) suggested a fit measure that is keyed to the prediction rule,

R2
BL = 1

n

n∑
i=1

yi F̂ i + (1 − yi )(1 − F̂ i ),

which is the average probability of correct prediction by the prediction rule. The diffi-
culty in this computation is that in unbalanced samples, the less frequent outcome will
usually be predicted vary badly by the standard procedure, and this measure does not
pick that point up. Cramer (1999) has suggested an alternative measure that directly
measures this failure,

λ = (averageF̂ | yi = 1) − (averageF̂ | yi = 0)

= (average(1 − F̂) | yi = 0) − (average(1 − F̂) | yi = 1).

Cramer’s measure heavily penalizes the incorrect predictions, and because each propor-
tion is taken within the subsample, it is not unduly influenced by the large proportionate
size of the group of more frequent outcomes. Some of the other proposed fit measures
are Efron’s (1978)

R2
Ef = 1 −

∑n
i=1 (yi − p̂i )

2
∑n

i=1 (yi − ȳ)2
,

Veall and Zimmermann’s (1992)

R2
VZ =

(
δ − 1

δ − LRI

)
LRI, δ = n

2 log L0
,

and Zavoina and McKelvey’s (1975)

R2
MZ =

∑n
i=1 (β̂ ′xi − β̂ ′x)2

n + ∑n
i=1 (β̂ ′xi − β̂ ′x)2

.

The last of these measures corresponds to the regression variation divided by the total
variation in the latent index function model, where the disturbance variance is σ 2 = 1.
The values of several of these statistics are given with the model results in Example 21.4
for illustration.

A useful summary of the predictive ability of the model is a 2 × 2 table of the hits
and misses of a prediction rule such as

ŷ = 1 if F̂ > F∗ and 0 otherwise. (21-36)

17See McFadden (1984) and Amemiya (1985). If this condition holds, then gradient methods will find that β.
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The usual threshold value is 0.5, on the basis that we should predict a one if the model
says a one is more likely than a zero. It is important not to place too much emphasis on
this measure of goodness of fit, however. Consider, for example, the naive predictor

ŷ = 1 if P > 0.5 and 0 otherwise, (21-37)

where P is the simple proportion of ones in the sample. This rule will always predict
correctly 100P percent of the observations, which means that the naive model does not
have zero fit. In fact, if the proportion of ones in the sample is very high, it is possible to
construct examples in which the second model will generate more correct predictions
than the first! Once again, this flaw is not in the model; it is a flaw in the fit measure.18

The important element to bear in mind is that the coefficients of the estimated model
are not chosen so as to maximize this (or any other) fit measure, as they are in the linear
regression model where b maximizes R2. (The maximum score estimator discussed
below addresses this issue directly.)

Another consideration is that 0.5, although the usual choice, may not be a very good
value to use for the threshold. If the sample is unbalanced—that is, has many more ones
than zeros, or vice versa—then by this prediction rule it might never predict a one (or
zero). To consider an example, suppose that in a sample of 10,000 observations, only
1000 have Y = 1. We know that the average predicted probability in the sample will be
0.10. As such, it may require an extreme configuration of regressors even to produce
an F of 0.2, to say nothing of 0.5. In such a setting, the prediction rule may fail every
time to predict when Y = 1. The obvious adjustment is to reduce F∗. Of course, this
adjustment comes at a cost. If we reduce the threshold F∗ so as to predict y = 1 more
often, then we will increase the number of correct classifications of observations that
do have y = 1, but we will also increase the number of times that we incorrectly classify
as ones observations that have y = 0.19 In general, any prediction rule of the form in
(21-36) will make two types of errors: It will incorrectly classify zeros as ones and ones
as zeros. In practice, these errors need not be symmetric in the costs that result. For
example, in a credit scoring model [see Boyes, Hoffman, and Low (1989)], incorrectly
classifying an applicant as a bad risk is not the same as incorrectly classifying a bad
risk as a good one. Changing F∗ will always reduce the probability of one type of error
while increasing the probability of the other. There is no correct answer as to the best
value to choose. It depends on the setting and on the criterion function upon which the
prediction rule depends.

The likelihood ratio index and Veall and Zimmermann’s modification of it are obvi-
ously related to the likelihood ratio statistic for testing the hypothesis that the coefficient
vector is zero. Efron’s and Cramer’s measures listed above are oriented more toward the
relationship between the fitted probabilities and the actual values. Efron’s and Cramer’s
statistics are usefully tied to the standard prediction rule ŷ = 1[F̂ > 0.5]. The McKelvey
and Zavoina measure is an analog to the regression coefficient of determination, based
on the underlying regression y∗ = β ′x + ε. Whether these have a close relationship to
any type of fit in the familiar sense is a question that needs to be studied. In some cases,

18See Amemiya (1981).
19The technique of discriminant analysis is used to build a procedure around this consideration. In this
setting, we consider not only the number of correct and incorrect classifications, but the cost of each type of
misclassification.
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it appears so. But the maximum likelihood estimator, on which all the fit measures are
based, is not chosen so as to maximize a fitting criterion based on prediction of y as it is in
the classical regression (which maximizes R2). It is chosen to maximize the joint density
of the observed dependent variables. It remains an interesting question for research
whether fitting y well or obtaining good parameter estimates is a preferable estimation
criterion. Evidently, they need not be the same thing.

Example 21.5 Prediction with a Probit Model
Tunali (1986) estimated a probit model in a study of migration, subsequent remigration, and
earnings for a large sample of observations of male members of households in Turkey. Among
his results, he reports the summary shown below for a probit model: The estimated model is
highly significant, with a likelihood ratio test of the hypothesis that the coefficients (16 of them)
are zero based on a chi-squared value of 69 with 16 degrees of freedom.20 The model predicts
491 of 690, or 71.2 percent, of the observations correctly, although the likelihood ratio index
is only 0.083. A naive model, which always predicts that y = 0 because P < 0.5, predicts
487 of 690, or 70.6 percent, of the observations correctly. This result is hardly suggestive
of no fit. The maximum likelihood estimator produces several significant influences on the
probability but makes only four more correct predictions than the naive predictor.21

Predicted

D = 0 D = 1 Total

Actual D = 0 471 16 487
D = 1 183 20 203
Total 654 36 690

21.4.6 ANALYSIS OF PROPORTIONS DATA

Data for the analysis of binary responses will be in one of two forms. The data we
have considered thus far are individual; each observation consists of [yi , xi ], the actual
response of an individual and associated regressor vector. Grouped data usually consist
of counts or proportions. Grouped data are obtained by observing the response of ni

individuals, all of whom have the same xi . The observed dependent variable will consist
of the proportion Pi of the ni individuals i j who respond with yi j = 1. An observation
is thus [ni , Pi , xi ], i = 1, . . . , N. Election data are typical.22 In the grouped data setting,
it is possible to use regression methods as well as maximum likelihood procedures
to analyze the relationship between Pi and xi . The observed Pi is an estimate of the
population quantity, πi = F(x′

iβ). If we treat this problem as a simple one of sampling
from a Bernoulli population, then, from basic statistics, we have

Pi = F(β ′xi ) + εi = πi + εi ,

20This view actually understates slightly the significance of his model, because the preceding predictions are
based on a bivariate model. The likelihood ratio test fails to reject the hypothesis that a univariate model
applies, however.
21It is also noteworthy that nearly all the correct predictions of the maximum likelihood estimator are the
zeros. It hits only 10 percent of the ones in the sample.
22The earliest work on probit modeling involved applications of grouped data in laboratory experiments.
Each observation consisted of ni subjects receiving dosage xi of some treatment, such as an insecticide, and a
proportion Pi “responding” to the treatment, usually by dying. Finney (1971) and Cox (1970) are useful and
early surveys of this literature.
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where

E [εi ] = 0, Var[εi ] = πi (1 − πi )

ni
. (21-38)

This heteroscedastic regression format suggests that the parameters could be estimated
by a nonlinear weighted least squares regression. But there is a simpler way to proceed.
Since the function F(x′

iβ) is strictly monotonic, it has an inverse. (See Figure 21.1.)
Consider, then, a Taylor series approximation to this function around the point εi = 0,
that is, around the point Pi = πi ,

F−1(Pi ) = F−1(πi + εi ) ≈ F−1(πi ) +
[

dF−1(πi )

dπi

]
(Pi − πi ).

But F−1(πi ) = x′
iβ and

dF−1(πi )

dπi
= 1

F ′(F−1(πi ))
= 1

f (πi )
,

so

F−1(Pi ) ≈ x′
iβ + εi

f (πi )
.

This equation produces a heteroscedastic linear regression,

F−1(Pi ) = zi = x′
iβ + ui ,

where

E [ui | xi ] = 0 and Var[ui | xi ] = F(πi )[(1 − F(πi )]
ni [ f (πi )]2

. (21-39)

The inverse function for the logistic model is particularly easy to obtain. If

πi = exp(x′
iβ)

1 + exp(x′
iβ)

,

then

ln
(

πi

1 − πi

)
= x′

iβ.

This function is called the logit of πi , hence the name “logit” model. For the normal
distribution, the inverse function
−1(πi ), called the normit ofπi , must be approximated.
The usual approach is a ratio of polynomials.23

Weighted least squares regression based on (21-39) produces the minimum chi-
squared estimator (MCSE) of β. Since the weights are functions of the unknown pa-
rameters, a two-step procedure is called for. As always, simple least squares at the first
step produces consistent but inefficient estimates. Then the estimated variances

wi = 
̂i (1 − 
̂i )

ni φ̂
2
i

23See Abramovitz and Stegun (1971) and Section E.5.2. The function normit +5 is called the probit of Pi . The
term dates from the early days of this analysis, when the avoidance of negative numbers was a simplification
with considerable payoff.
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for the probit model or

wi = 1

ni �̂i (1 − �̂i )

for the logit model based on the first-step estimates can be used for weighted least
squares.24 An iteration can then be set up,

β̂(k+1) =
[

n∑
i=1

1

ŵ(k)
i

xi x′
i

]−1 [
n∑

i=1

1

ŵ(k)
i

xi F−1(π̂ (k)
i

)
]

where “(k)” indicates the kth iteration and “∧” indicates computation of the quantity at
the current (kth) estimate of β. The MCSE has the same asymptotic properties as the
maximum likelihood estimator at every step after the first, so, in fact, iteration is not
necessary. Although they have the same probability limit, the MCSE is not algebraically
the same as the MLE, and in a finite sample, they will differ numerically.

The log-likelihood function for a binary choice model with grouped data is

ln L =
n∑

i=1

ni
{

Pi ln F(x′
iβ) + (1 − Pi ) ln[1 − F(x′

iβ)]
}
.

The likelihood equation that defines the maximum likelihood estimator is

∂ ln L
∂β

=
n∑

i=1

ni

[
Pi

f (x′
iβ)

F(x′
iβ)

− (1 − Pi )
f (x′

iβ)

1 − F(x′
iβ)

]
xi = 0.

This equation closely resembles the solution for the individual data case, which makes
sense if we view the grouped observation as ni replications of an individual obser-
vation. On the other hand, it is clear on inspection that the solution to this set of
equations will not be the same as the generalized (weighted) least squares estimator
suggested in the previous paragraph. For convenience, define Fi = F(x′

iβ), fi = f (x′
iβ),

and f ′
i = [ f ′(z) | z= x′

iβ] = [df (z)/dz] | z= x′
iβ. The Hessian of the log-likelihood is

∂2 ln L
∂β∂β ′ =

n∑
i=1

ni

{
Pi

[(
f ′
i

Fi

)
−

(
fi

Fi

)2
]

− (1 − Pi )

[(
f ′
i

1 − Fi

)
+

(
fi

(1 − Fi )

)2
]}

xi x′
i .

To evaluate the expectation of the Hessian, we need only insert the expectation of the
only stochastic element, Pi , which is E [Pi | xi ] = Fi . Then

E
[
∂2 log L
∂β ∂β ′

]
=

n∑
i=1

ni

[
f ′
i − f 2

i

Fi
− f ′

i − f 2
i

1 − Fi

]
xi x′

i = −
n∑

i=1

[
ni f 2

i

Fi (1 − Fi )

]
xi x′

i .

The asymptotic covariance matrix for the maximum likelihood estimator is the negative
inverse of this matrix. From (21-39), we see that it is exactly equal to

Asy. Var[minimum χ2 estimator] = [X′	−1X]−1

24Simply using pi and f [F−1(Pi )] might seem to be a simple expedient in computing the weights. But this
method would be analogous to using y2

i instead of an estimate of σ 2
i in a heteroscedastic regression. Fitted

probabilities and, for the probit model, densities should be based on a consistent estimator of the parameters.
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since the diagonal elements of 	−1 are precisely the values in brackets in the expression
for the expected Hessian above. We conclude that although the MCSE and the MLE
for this model are numerically different, they have the same asymptotic properties,
consistent and asymptotically normal (the MCS estimator by virtue of the results of
Chapter 10, the MLE by those in Chapter 17), and with asymptotic covariance matrix
as previously given.

There is a complication in using the MCS estimator. The FGLS estimator breaks
down if any of the sample proportions equals one or zero. A number of ad hoc patches
have been suggested; the one that seems to be most widely used is to add or subtract
a small constant, say 0.001, to or from the observed proportion when it is zero or one.
The familiar results in (21-38) also suggest that when the proportion is based on a
large population, the variance of the estimator can be exceedingly low. This issue will
resurface in surprisingly low standard errors and high t ratios in the weighted regression.
Unfortunately, that is a consequence of the model.25 The same result will emerge in
maximum likelihood estimation with grouped data.

21.5 EXTENSIONS OF THE BINARY CHOICE MODEL

Qualitative response models have been a growth industry in econometrics. The recent
literature, particularly in the area of panel data analysis, has produced a number of new
techniques.

21.5.1 RANDOM AND FIXED EFFECTS MODELS FOR PANEL DATA

The availability of high quality panel data sets on microeconomic behavior has main-
tained an interest in extending the models of Chapter 13 to binary (and other discrete
choice) models. In this section, we will survey a few results from this rapidly growing
literature.

The structural model for a possibly unbalanced panel of data would be written

y∗
i t = x′

i tβ + εi t , i = 1, . . . , n, t = 1, . . . , Ti ,

yit = 1 if y∗
i t > 0, and 0 otherwise.

The second line of this definition is often written

yit = 1(x′
i tβ + εi t > 0)

to indicate a variable which equals one when the condition in parentheses is true and
zero when it is not. Ideally, we would like to specify that εi t and εis are freely correlated
within a group, but uncorrelated across groups. But doing so will involve computing

25Whether the proportion should, in fact, be considered as a single observation from a distribution of pro-
portions is a question that arises in all these cases. It is unambiguous in the bioassay cases noted earlier. But
the issue is less clear with election data, especially since in these cases, the ni will represent most of if not all
the potential respondents in location i rather than a random sample of respondents.
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joint probabilities from a Ti variate distribution, which is generally problematic.26 (We
will return to this issue below.) A more promising approach is an effects model,

y∗
i t = x′

i tβ + vi t + ui , i = 1, . . . , n, t = 1, . . . , Ti ,

yit = 1 if y∗
i t > 0, and 0 otherwise

where, as before (see Section 13.4), ui is the unobserved, individual specific hetero-
geneity. Once again, we distinguish between “random” and “fixed” effects models by
the relationship between ui and xi t . The assumption that ui is unrelated to xi t , so that
the conditional distribution f (ui | xi t ) is not dependent on xi t , produces the random
effects model. Note that this places a restriction on the distribution of the heterogene-
ity. If that distribution is unrestricted, so that ui and xi t may be correlated, then we have
what is called the fixed effects model. The distinction does not relate to any intrinsic
characteristic of the effect, itself.

As we shall see shortly, this is a modeling framework that is fraught with difficul-
ties and unconventional estimation problems. Among them are: estimation of the ran-
dom effects model requires very strong assumptions about the heterogeneity; the fixed
effects model encounters an incidental parameters problem that renders the maximum
likelihood estimator inconsistent.

We begin with the random effects specification, then consider fixed effects and some
semiparametric approaches that do not require the distinction. We conclude with a brief
look at dynamic models of state dependence.27

21.5.1.a Random Effects Models

A specification which has the same structure as the random effects model of Section 13.4,
has been implemented by Butler and Moffitt (1982). We will sketch the derivation to
suggest how random effects can be handled in discrete and limited dependent variable
models such as this one. Full details on estimation and inference may be found in Butler
and Moffitt (1982) and Greene (1995a). We will then examine some extensions of the
Butler and Moffitt model.

The random effects model specifies

εi t = vi t + ui

where vi t and ui are independent random variables with

E [vi t | X] = 0; Cov[vi t , v js | X] = Var[vi t | X] = 1 if i = j and t = s; 0 otherwise

E [ui | X] = 0; Cov[ui , u j | X] = Var[ui | X] = σ 2
u if i = j; 0 otherwise

Cov[vi t , u j | X] = 0 for all i, t, j

26A “limited information” approach based on the GMM estimation method has been suggested by Avery,
Hansen, and Hotz (1983). With recent advances in simulation-based computation of multinormal integrals
(see Section E.5.6), some work on such a panel data estimator has appeared in the literature. See, for example,
Geweke, Keane, and Runkle (1994, 1997). The GEE estimator of Diggle, Liang, and Zeger (1994) [see also,
Liang and Zeger (1980) and Stata (2001)] seems to be another possibility. However, in all these cases, it must
be remembered that the procedure specifies estimation of a correlation matrix for a Ti vector of unobserved
variables based on a dependent variable which takes only two values. We should not be too optimistic about
this if Ti is even moderately large.
27A survey of some of these results is given by Hsiao (1996). Most of Hsiao (1996) is devoted to the linear
regression model. A number of studies specifically focused on discrete choice models and panel data have
appeared recently, including Beck, Epstein, Jackman, and O’Halloran (2001), Arellano (2001) and Greene
(2001).
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and X indicates all the exogenous data in the sample, xi t for all i and t.28 Then,

E [εi t | X] = 0

Var[εi t | X] = σ 2
v + σ 2

u = 1 + σ 2
u

and

Corr[εi t , εis | X] = ρ = σ 2
u

1 + σ 2
u
.

The new free parameter is σ 2
u = ρ/(1 − ρ).

Recall that in the cross-section case, the probability associated with an observation
is

P(yi | xi ) =
∫ Ui

Li

f (εi )dεi , (Li , Ui ) = (−∞, −x′
iβ) if yi = 0 and (−x′

iβ, +∞) if yi = 1.

This simplifies to 
[(2yi −1)x′
iβ] for the normal distribution and �[(2yi −1)x′

iβ] for the
logit model. In the fully general case with an unrestricted covariance matrix, the contri-
bution of group i to the likelihood would be the joint probability for all Ti observations;

Li = P(yi1, . . . , yiTi | X) =
∫ UiTi

LiTi

. . .

∫ Ui1

Li1

f (εi1, εi2, . . . , εiTi )dεi1dεi2 . . . dεiTi . (21-40)

The integration of the joint density, as it stands, is impractical in most cases. The special
nature of the random effects model allows a simplification, however. We can obtain the
joint density of the vi t ’s by integrating ui out of the joint density of (εi1, . . . , εiTi , ui )

which is

f (εi1, . . . , εiTi , ui ) = f (εi1, . . . , εiTi | ui ) f (ui ).

So,

f (εi1, εi2, . . . , εiTi ) =
∫ +∞

−∞
f (εi1, εi2, . . . , εiTi | ui ) f (ui ) dui .

The advantage of this form is that conditioned on ui , the εi ’s are independent, so

f (εi1, εi2, . . . , εiTi ) =
∫ +∞

−∞

Ti∏
t=1

f (εi t | ui ) f (ui ) dui .

Inserting this result in (21-40) produces

Li = P[yi1, . . . , yiTi | X] =
∫ UiTi

LiTi

. . .

∫ Ui1

Li1

∫ +∞

−∞

Ti∏
t=1

f (εi t | ui ) f (ui ) dui dεi1 dεi2 . . . dεiTi .

This may not look like much simplification, but in fact, it is. Since the ranges of integra-
tion are independent, we may change the order of integration;

Li = P[yi1, . . . , yiTi | X] =
∫ +∞

−∞

[∫ UiTi

LiTi

. . .

∫ Ui1

Li1

Ti∏
t=1

f (εi t | ui ) dεi1 dεi2 . . . dεiTi

]
f (ui ) dui .

28See Wooldridge (1999) for discussion of this assumption.
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Conditioned on the common ui , the ε’s are independent, so the term in square brackets
is just the product of the individual probabilities. We can write this as

Li = P[yi1, . . . , yiTi | X] =
∫ +∞

−∞

[
Ti∏

t=1

(∫ Uit

Lit

f (εi t | ui ) dεi t

)]
f (ui ) dui .

Now, consider the individual densities in the product. Conditioned on ui , these are the
now familiar probabilities for the individual observations, computed now at x′

i tβ + ui .
This produces a general model for random effects for the binary choice model. Collecting
all the terms, we have reduced it to

Li = P[yi1, . . . , yiTi | X] =
∫ +∞

−∞

[
Ti∏

t=1

Prob(Yit = yit | x′
i tβ + ui )

]
f (ui ) dui .

It remains to specify the distributions, but the important result thus far is that the
entire computation requires only one dimensional integration. The inner probabilities
may be any of the models we have considered so far, such as probit, logit, Weibull, and so
on. The intricate part remaining is to determine how to do the outer integration. Butler
and Moffitt’s method assuming that ui is normally distributed is fairly straightforward,
so we will consider it first. We will then consider some other possibilities. For the probit
model, the individual probabilities inside the product would be 
[qit (x′

i tβ + ui )], where

[.] is the standard normal CDF and qit = 2yit − 1. For the logit model, 
[.] would be
replaced with the logistic probability, �[.]. For the present, treat the entire function as
a function of ui , g(ui ). The integral is, then

Li =
∫ ∞

−∞

1

σu
√

2π
e
− u2

i
2σ2

u g(ui ) dui .

Let ri = ui/(σu
√

2). Then, ui = (σu
√

2)ri = θri and dui = θdri . Making the change of
variable produces

Li = 1√
π

∫ ∞

−∞
e−r2

i g(θri ) dri .

(Several constants cancel out of the fractions.) Returning to our probit (or logit model),
we now have

Li = 1√
π

∫ +∞

−∞
e−r2

i

[
Ti∏

t=1


(qit (x′
i tβ + θri )

]
dri .

The payoff to all this manipulation is that this likelihood function involves only one-
dimensional integrals. The inner integrals are the CDF of the standard normal distri-
bution or the logistic or extreme value distributions, which are simple to obtain. The
function is amenable to Gauss–Hermite quadrature for computation. (Gauss–Hermite
quadrature is discussed in Section E.5.4.) Assembling all the pieces, we obtain the ap-
proximation to the log-likelihood;

ln LH =
n∑

i=1

{
ln

[
1√
π

H∑
h=1

Ti∏
t=1

wh
(qit (x′
i tβ + θzh))

]}
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where H is the number of points for the quadrature, and wh and zh are the weights
and nodes for the quadrature. Maximizing this function remains a complex problem.
But, it is made quite feasible by the transformations which reduce the integration to
one dimension. This technique for the probit model has been incorporated in most
contemporary econometric software and can be easily extended to other models.

The first and second derivatives are likewise complex but still computable by
quadrature. An estimate of σu is obtained from the result σu = θ/

√
2 and a standard

error can be obtained by dividing that for θ̂ by
√

2. The model may be adapted to the
logit or any other formulation just by changing the CDF in the preceding equation from

[.] to the logistic CDF, �[.] or the other appropriate CDF.

The hypothesis of no cross-period correlation can be tested, in principle, using any
of the three classical testing procedures we have discussed to examine the statistical
significance of the estimated σu.

A number of authors have found the Butler and Moffitt formulation to be a satis-
factory compromise between a fully unrestricted model and the cross-sectional variant
that ignores the correlation altogether. A recent application that includes both group
and time effects is Tauchen, Witte, and Griesinger’s (1994) study of arrests and criminal
behavior. The Butler and Moffitt approach has been criticized for the restriction of
equal correlation across periods. But it does have a compelling virtue that the model
can be efficiently estimated even with fairly large Ti using conventional computational
methods. [See Greene (1995a, pp. 425–431).]

A remaining problem with the Butler and Moffitt specification is its assumption of
normality. In general, other distributions are problematic because of the difficulty of
finding either a closed form for the integral or a satisfactory method of approximating
the integral. An alternative approach which allows some flexibility is the method of
maximum simulated likelihood (MSL) which was discussed in Section 17.8. The trans-
formed likelihood we derived above is an expectation;

Li =
∫ +∞

−∞

[
Ti∏

t=1

Prob(Yit = yit | x′
i tβ + ui )

]
f (ui ) dui

= Eui

[
Ti∏

t=1

Prob(Yit = yit | x′
i tβ + ui )

]
.

This expectation can be approximated by simulation rather than quadrature. First, let θ

now denote the scale parameter in the distribution of ui . This would be σu for a normal
distribution, for example, or some other scaling for the logistic or uniform distribution.
Then, write the term in the likelihood function as

Li = Eui

[
Ti∏

t=1

F(yit , x′
i tβ + θui )

]
= Eui [h(ui )].

The function is smooth, continuous, and continuously differentiable. If this expectation
is finite, then the conditions of the law of large numbers should apply, which would
mean that for a sample of observations ui1, . . . , ui R,

plim
1
R

R∑
r=1

h(uir ) = Eu[h(ui )].
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This suggests, based on the results in Chapter 17, an alternative method of maximizing
the log-likelihood for the random effects model. A sample of person specific draws from
the population ui can be generated with a random number generator. For the Butler
and Moffitt model with normally distributed ui , the simulated log-likelihood function is

ln LSimulated =
n∑

i=1

ln

{
1
R

R∑
r=1

[
Ti∏

t=1

F [qit (x′
i tβ + σuuir )]

]}
.

This function is maximized with respect β and σu. Note that in the preceding, as in
the quadrature approximated log-likelihood, the model can be based on a probit, logit,
or any other functional form desired. There is an additional degree of flexibility in this
approach. The Hermite quadrature approach is essentially limited by its functional form
to the normal distribution. But, in the simulation approach, uir can come from some
other distribution. For example, it might be believed that the dispersion of the hetero-
geneity is greater than implied by a normal distribution. The logistic distribution might
be preferable. A random sample from the logistic distribution can be created by sampling
(wi1, . . . , wi R) from the standard uniform [0, 1] distribution, then uir = ln(wir/(1−wir )).
Other distributions, such as the uniform itself, are also possible.

We have examined two approaches to estimation of a probit model with random ef-
fects. GMM estimation is another possibility. Avery, Hansen, and Hotz (1983), Bertschek
and Lechner (1998), and Inkmann (2000) examine this approach; the latter two offer
some comparison with the quadrature and simulation based estimators considered here.
(Our applications in the following Examples 16.5, 17.10, and 21.6 use the Bertschek and
Lechner data.)

The preceding opens another possibility. The random effects model can be cast as
a model with a random constant term;

y∗
i t = αi + x′

(1),i tβ(1) + εi t , i = 1, . . . , n, t = 1, . . . , Ti ,

yit = 1 if y∗
i t > 0, and 0 otherwise

where αi = α+σuui . This is simply a reinterpretation of the model we just analyzed. We
might, however, now extend this formulation to the full parameter vector. The resulting
structure is

y∗
i t = x′

i tβ i + εi t , i = 1, . . . , n, t = 1, . . . , Ti ,

yit = 1 if y∗
i t > 0, and 0 otherwise

where β i = β + �ui where � is a nonnegative definite diagonal matrix—some of its
diagonal elements could be zero for nonrandom parameters. The method of estimation
is essentially the same as before. The simulated log likelihood is now

ln LSimulated =
n∑

i=1

ln

{
1
R

R∑
r=1

[
Ti∏

t=1

F[qit (x′
i t (β + �uir ))]

]}
.

The simulation now involves R draws from the multivariate distribution of u. Since the
draws are uncorrelated—� is diagonal—this is essentially the same estimation problem
as the random effects model considered previously. This model is estimated in Exam-
ple 17.10. Example 16.5 presents a similar model that assumes that the distribution of
β i is discrete rather than continuous.
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21.5.1.b Fixed Effects Models

The fixed effects model is

y∗
i t = αi dit + x′

i tβ + εi t , i = 1, . . . , n, t = 1, . . . , Ti ,

yit = 1 if y∗
i t > 0, and 0 otherwise

where dit is a dummy variable which takes the value one for individual i and zero
otherwise. For convenience, we have redefined xi t to be the nonconstant variables in
the model. The parameters to be estimated are the K elements of β and the n individual
constant terms. Before we consider the several virtues and shortcomings of this model,
we consider the practical aspects of estimation of what are possibly a huge number of
parameters (n + K) − n is not limited here, and could be in the thousands in a typical
application. The log likelihood function for the fixed effects model is

ln L =
n∑

i=1

Ti∑
t=1

ln P(yit | αi + x′
i tβ)

where P(.) is the probability of the observed outcome, for example, 
[qit (αi + x′
i tβ)]

for the probit model or �[qit (αi + x′
i tβ)] for the logit model. What follows can be

extended to any index function model, but for the present, we’ll confine our attention
to symmetric distributions such as the normal and logistic, so that the probability can
be conveniently written as Prob(Yit = yit | xi t ) = P[qit (αi + x′

i tβ)]. It will be convenient
to let zit = αi + x′

i tβ so Prob(Yit = yit | xi t ) = P(qit zit ).
In our previous application of this model, in the linear regression case, we found

that estimation of the parameters was made possible by a transformation of the data
to deviations from group means which eliminated the person specific constants from
the estimator. (See Section 13.3.2.) Save for the special case discussed below, that will
not be possible here, so that if one desires to estimate the parameters of this model, it
will be necessary actually to compute the possibly huge number of constant terms at
the same time. This has been widely viewed as a practical obstacle to estimation of this
model because of the need to invert a potentially large second derivatives matrix, but
this is a misconception. [See, e.g., Maddala (1987), p. 317.] The likelihood equations for
this model are

∂ ln L
∂αi

=
Ti∑

t=1

qit f (qit zit )

P(qit zit )
=

Ti∑
t=1

git = gii = 0

and

∂ ln L
∂β

=
n∑

i=1

Ti∑
t=1

qit f (qit zit )

P(qit zit )
xi t =

Ti∑
t=1

git xi t = 0

where f (.) is the density that corresponds to P(.). For our two familiar models, git =
qitφ(qit zit )/
(qit zit ) for the normal and qit [1 − �(qit zit )] for the logistic. Note that for
these distributions, git is always negative when yit is zero and always positive when yit

equals one. (The use of qit as in the preceding assumes the distribution is symmetric. For
asymmetric distributions such as the Weibull, git and hit would be more complicated,
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but the central results would be the same.) The second derivatives matrix is

∂2 ln L

∂α2
i

=
Ti∑

t=1

[
f ′(qit zit )

P(qit zit )
−

(
f (qit zit )

P(qit zit )

)2
]

=
Ti∑

t=1

hit = hii < 0,

∂2 ln L
∂β∂αi

=
Ti∑

t=1

hit xi t

∂2 ln L
∂β∂β ′ =

n∑
i=1

Ti∑
t=1

hit xi t x′
i t = Hββ ′ , a negative semidefinite matrix.

Note that the leading qit falls out of the second derivatives since in each appear-
ance, since q2

i t = 1. The derivatives of the densities with respect to their arguments
are −(qit zit )φ(qit zit ) for the normal distribution and [1 − 2�(qit zit )] f (qit zit ) for the
logistic. In both cases, hit is negative for all values of qit zit . The likelihood equations
are a large system, but the solution turns out to be surprisingly straightforward. [See
Greene (2001).]

By using the formula for the partitioned inverse, we find that the K × K submatrix
of the inverse of the Hessian that corresponds to β, which would provide the asymptotic
covariance matrix for the MLE, is

Hββ ′ =
{

n∑
i=1

[
Ti∑

t=1

hit xi t x′
i t − 1

hii

(
Ti∑

t=1

hit xi t

) (
Ti∑

t=1

hit x′
i t

)]}−1

=
{

n∑
i=1

[
Ti∑

t=1

hit (xi t − x̄i ) (xi t − x̄i )
′
]}−1

where x̄i =
∑Ti

t=1 hit xi t

hii
.

Note the striking similarity to the result we had for the fixed effects model in the linear
case. By assembling the Hessian as a partitioned matrix for β and the full vector of
constant terms, then using (A-66b) and the definitions above to isolate one diagonal
element, we find

Hαi αi = 1
hii

+ x̄′
i H

ββ ′
x̄i

Once again, the result has the same format as its counterpart in the linear model. In prin-
ciple, the negatives of these would be the estimators of the asymptotic variances of the
maximum likelihood estimators. (Asymptotic properties in this model are problematic,
as we consider below.)

All of these can be computed quite easily once the parameter estimates are in hand,
so that in fact, practical estimation of the model is not really the obstacle. (This must be
qualified, however. Looking at the likelihood equation for a constant term, it is clear
that if yit is the same in every period then there is no solution. For example, if yit = 1
in every period, then ∂ ln L/∂αi must be positive, so it cannot be equated to zero with
finite coefficients. Such groups would have to be removed from the sample in order to
fit this model.) It is shown in Greene (2001) in spite of the potentially large number
of parameters in the model, Newton’s method can be used with the following iteration



Greene-50240 book June 27, 2002 22:39

CHAPTER 21 ✦ Models for Discrete Choice 697

which uses only the K × K matrix computed above and a few K × 1 vectors:

β̂(s+1) = β̂(s) −
{

n∑
i=1

[
Ti∑

t=1

hit (xi t − x̄i )(xi t − x̄i )
′
]}−1 {

n∑
i=1

[
Ti∑

t=1

git (xi t − x̄i )

]}

= β̂(s) + �
(s)
β

and

α̂(s+1)
ı = α̂(s)

ı − [
(gii/hii ) + x̄′

i�
(s)
β

]
.29

This is a large amount of computation involving many summations, but it is linear in
the number of parameters and does not involve any n × n matrices.

The problems with the fixed effects estimator are statistical, not practical.30 The
estimator relies on Ti increasing for the constant terms to be consistent—in essence,
each αi is estimated with Ti observations. But, in this setting, not only is Ti fixed, it is
likely to be quite small. As such, the estimators of the constant terms are not consistent
(not because they converge to something other than what they are trying to estimate, but
because they do not converge at all). The estimator of β is a function of the estimators
of α, which means that the MLE of β is not consistent either. This is the incidental
parameters problem. [See Neyman and Scott (1948) and Lancaster (2000).] There is, as
well, a small sample (small Ti ) bias in the estimators. How serious this bias is remains
a question in the literature. Two pieces of received wisdom are Hsiao’s (1986) results
for a binary logit model and Heckman and MaCurdy’s (1980) results for the probit
model. Hsiao found that for Ti = 2, the bias in the MLE of β is 100 percent, which is
extremely pessimistic. Heckman and MaCurdy found in a Monte Carlo study that in
samples of n = 100 and T = 8, the bias appeared to be on the order of 10 percent,
which is substantive, but certainly less severe than Hsiao’s results suggest. The fixed
effects approach does have some appeal in that it does not require an assumption of
orthogonality of the independent variables and the heterogeneity. An ongoing pursuit
in the literature is concerned with the severity of the tradeoff of this virtue against the
incidental parameters problem. Some commentary on this issue appears in Arellano
(2001).

Why did the incidental parameters problem arise here and not in the linear regres-
sion model? Recall that estimation in the regression model was based on the deviations
from group means, not the original data as it is here. The result we exploited there was
that although f (yit | Xi ) is a function of αi , f (yit | Xi , ȳi ) is not a function of αi , and we
used the latter in estimation of β. In that setting, ȳi is a minimal sufficient statistic for
αi . Sufficient statistics are available for a few distributions that we will examine, but not
for the probit model. They are available for the logit model, as we now examine.

29Similar results appear in Prentice and Gloeckler (1978) who attribute it to Rao (1973), and Chamberlain
(1983).
30See Vytlacil, Aakvik and Heckman (2002), Chamberlain (1980, 1984), Newey (1994), Bover and Arellano
(1997) and Chen (1998) for some extensions of parametric forms of the binary choice models with fixed
effects.
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A fixed effects binary logit model is

Prob(yit = 1 | xi t ) = eαi +x′
i t β

1 + eαi +x′
i t β

.

The unconditional likelihood for the nT independent observations is

L =
∏

i

∏
t

(Fit )
yit (1 − Fit )

1−yit .

Chamberlain (1980) [following Rasch (1960) and Anderson (1970)] observed that the
conditional likelihood function,

Lc =
n∏

i=1

Prob

(
Yi1 = yi1, Yi2 = yi2, . . . , YiTi = yiTi

∣∣∣∣∣
Ti∑

t=1

yit

)
,

is free of the incidental parameters, αi . The joint likelihood for each set of Ti observations
conditioned on the number of ones in the set is

Prob

(
Yi1 = yi1, Yi2 = yi2, . . . , YiTi = yiTi

∣∣∣∣∣
Ti∑

t=1

yit , data

)

=
exp

(∑Ti
t=1 yit x′

i tβ
)

∑
�t dit =Si

exp
(∑Ti

t=1 dit x′
i tβ

) .

The function in the denominator is summed over the set of all
(Ti

Si

)
different sequences

of Ti zeros and ones that have the same sum as Si = ∑Ti
t=1 yit .31

Consider the example of Ti = 2. The unconditional likelihood is

L =
∏

i

Prob(Yi1 = yi1)Prob(Yi2 = yi2).

For each pair of observations, we have these possibilities:

1. yi1 = 0 and yi2 = 0. Prob(0, 0 | sum = 0) = 1.
2. yi1 = 1 and yi2 = 1. Prob(1, 1 | sum = 2) = 1.

The ith term in Lc for either of these is just one, so they contribute nothing to the con-
ditional likelihood function.32 When we take logs, these terms (and these observations)
will drop out. But suppose that yi1 = 0 and yi2 = 1. Then

3. Prob(0, 1 | sum = 1) = Prob(0, 1 and sum = 1)

Prob(sum = 1)
= Prob(0, 1)

Prob(0, 1) + Prob(1, 0)
.

31The enumeration of all these computations stands to be quite a burden—see Arellano (2000, p. 47) or
Baltagi (1995, p. 180) who [citing Greene (1993)] suggests that Ti > 10 would be excessive. In fact, using a
recursion suggested by Krailo and Pike (1984), the computation even with Ti up to 100 is routine.
32Recall in the probit model when we encountered this situation, the individual constant term could not be
estimated and the group was removed from the sample. The same effect is at work here.
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Therefore, for this pair of observations, the conditional probability is

1

1 + eαi +x′
i1β

eαi +x′
i2β

1 + eαi +x′
i2β

1

1 + eαi +x′
i1β

eαi +x′
i2β

1 + eαi +x′
i2β

+ eαi +x′
i1β

1 + eαi +x′
i1β

1

1 + eαi +x′
i2β

= ex′
i2β

ex′
i1β + ex′

i2β
.

By conditioning on the sum of the two observations, we have removed the heterogeneity.
Therefore, we can construct the conditional likelihood function as the product of these
terms for the pairs of observations for which the two observations are (0, 1). Pairs of
observations with one and zero are included analogously. The product of the terms such
as the preceding, for those observation sets for which the sum is not zero or Ti , constitutes
the conditional likelihood. Maximization of the resulting function is straightforward and
may be done by conventional methods.

As in the linear regression model, it is of some interest to test whether there is
indeed heterogeneity. With homogeneity (αi = α), there is no unusual problem, and the
model can be estimated, as usual, as a logit model. It is not possible to test the hypothesis
using the likelihood ratio test, however, because the two likelihoods are not compara-
ble. (The conditional likelihood is based on a restricted data set.) None of the usual tests
of restrictions can be used because the individual effects are never actually estimated.33

Hausman’s (1978) specification test is a natural one to use here, however. Under the
null hypothesis of homogeneity, both Chamberlain’s conditional maximum likelihood
estimator (CMLE) and the usual maximum likelihood estimator are consistent, but
Chamberlain’s is inefficient. (It fails to use the information that αi = α, and it may not
use all the data.) Under the alternative hypothesis, the unconditional maximum like-
lihood estimator is inconsistent,34 whereas Chamberlain’s estimator is consistent and
efficient. The Hausman test can be based on the chi-squared statistic

χ2 = (β̂CML − β̂ML)′(Var[CML] − Var[ML])−1(β̂CML − β̂ML).

The estimated covariance matrices are those computed for the two maximum likelihood
estimators. For the unconditional maximum likelihood estimator, the row and column
corresponding to the constant term are dropped. A large value will cast doubt on the
hypothesis of homogeneity. (There are K degrees of freedom for the test.) It is possible
that the covariance matrix for the maximum likelihood estimator will be larger than
that for the conditional maximum likelihood estimator. If so, then the difference matrix
in brackets is assumed to be a zero matrix, and the chi-squared statistic is therefore
zero.

33This produces a difficulty for this estimator that is shared by the semiparametric estimators discussed in the
next section. Since the fixed effects are not estimated, it is not possible to compute probabilities or marginal
effects with these estimated coefficients, and it is a bit ambiguous what one can do with the results of the
computations. The brute force estimator that actually computes the individual effects might be preferable.
34Hsaio (1996) derives the result explicitly for some particular cases.
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Example 21.6 Individual Effects in a Binary Choice Model
To illustrate the fixed and random effects estimators, we continue the analyses of Exam-
ples 16.5 and 17.10.35 The binary dependent variable is

yi t = 1 if firm i realized a product innovation in year t and 0 if not.

The sample consists of 1,270 German firms observed for 5 years, 1984–1988. Independent
variables in the model that we formulated were

xi t1 = constant,

xi t2 = log of sales,

xi t3 = relative size = ratio of employment in business unit to employment in the industry,

xi t4 = ratio of industry imports to (industry sales + imports),

xi t5 = ratio of industry foreign direct investment to (industry sales + imports),

xi t6 = productivity = ratio of industry value added to industry industry employment,

Latent class and random parameters models were fit to these data in Examples 16.5 and
17.10. (For this example, we have dropped the two sector dummy variables as they are
constant across periods. This precludes estimation of the fixed effects models.) Table 21.4
presents estimates of the probit and logit models with individual effects. The differences
across the models are quite large. Note, for example, that the signs of the sales and FDI
variables, both of which are highly significant in the base case, change sign in the fixed
effects model. (The random effects logit model is estimated by appending a normally dis-
tributed individual effect to the model and using the Butler and Moffitt method described
earlier.)

The evidence of heterogeneity in the data is quite substantial. The simple likelihood ratio
tests of either panel data form against the base case leads to rejection of the restricted
model. (The fixed effects logit model cannot be used for this test because it is based on the
conditional log likelihood whereas the other two forms are based on unconditional likelihoods.
It was not possible to fit the logit model with the full set of fixed effects. The relative size
variable has some, but not enough within group variation, and the model became unstable
after only a few iterations.) The Hausman statistic based on the logit estimates equals 19.59.
The 95 percent critical value from the chi-squared distribution with 5 degrees of freedom is
11.07, so based on the logit estimates, we would reject the homogeneity restriction. In this
setting, unlike in the linear model (see Section 13.4.4), neither the probit nor the logit model
provides a means of testing for whether the random or fixed effects model is preferred.

21.5.2 SEMIPARAMETRIC ANALYSIS

In his survey of qualitative response models, Amemiya (1981) reports the following
widely cited approximations for the linear probability (LP) model: Over the range of
probabilities of 30 to 70 percent,

β̂LP ≈ 0.4βprobit for the slopes,

β̂LP ≈ 0.25β logit for the slopes.36

35The data are from by Bertschek and Lechner (1998). Description of the data appears in Example 16.5 and
in the original paper.
36An additional 0.5 is added for the constant term in both models.
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TABLE 21.4 Estimated Panel Data Models. (Standard Errors in Parentheses;
Marginal Effects in Brackets.)

Probit Logit

Base Random Fixed Base Random Fixed

Constant −2.35 −3.51 — −3.83 −0.751 —
(0.214) (0.502) (0.351) (0.611)

InSales 0.243 0.353 −0.650 0.408 0.429 −0.863
(0.194) (0.448) (0.355) (0.0323) (0.547) (0.530)
[0.094] [0.088] [−0.255] [0.097] [0.103]

RelSize 1.17 1.59 0.278 2.16 1.36 0.340
(0.141) (0.241) (0.734) (0.272) (0.296) (1.06)
[0.450] [0.398] [0.110] [0.517] [0.328]

Imports 0.909 1.40 3.50 1.49 0.858 4.69
(0.143) (0.343) (2.92) (0.232) (0.418) (4.34)
[0.350] [0.351] [1.38] [0.356] [0.207]

FDI 3.39 4.55 −8.13 5.75 1.98 −10.44
(0.394) (0.828) (3.38) (0.705) (1.01) (5.01)
[1.31] [1.14] [−3.20] [1.37] [0.477]

Prod −4.71 −5.62 5.30 −9.33 −1.76 6.64
(0.553) (0.753) (4.03) (1.13) (0.927) (5.93)
[−1.82] [−1.41] [2.09] [−2.29] [−0.424]

ρ — 0.582 — 0.252 —
(0.019) (0.081)

Ln L −4134.86 −3546.01 −2086.26 −4128.98 −3545.84 −1388.51

Aside from confirming our intuition that least squares approximates the nonlinear
model and providing a quick comparison for the three models involved, the practical
usefulness of the formula is somewhat limited. Still, it is a striking result.37 A series of
studies has focused on reasons why the least squares estimates should be proportional
to the probit and logit estimates. A related question concerns the problems associated
with assuming that a probit model applies when, in fact, a logit model is appropriate or
vice versa.38 The approximation would seem to suggest that with this type of misspeci-
fication, we would once again obtain a scaled version of the correct coefficient vector.
(Amemiya also reports the widely observed relationship β̂ logit = 1.6β̂probit, which fol-
lows from the results above.)

Greene (1983), building on Goldberger (1981), finds that if the probit model is
correctly specified and if the regressors are themselves joint normally distributed, then
the probability limit of the least squares estimator is a multiple of the true coefficient

37This result does not imply that it is useful to report 2.5 times the linear probability estimates with the probit
estimates for comparability. The linear probability estimates are already in the form of marginal effects,
whereas the probit coefficients must be scaled downward. If the sample proportion happens to be close to
0.5, then the right scale factor will be roughly φ[
−1(0.5)] = 0.3989. But the density falls rapidly as P moves
away from 0.5.
38See Ruud (1986) and Gourieroux et al. (1987).
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vector.39 Greene’s result is useful only for the same purpose as Amemiya’s quick
correction of OLS. Multivariate normality is obviously inconsistent with most appli-
cations. For example, nearly all applications include at least one dummy variable. Ruud
(1982) and Cheung and Goldberger (1984), however, have shown that much weaker
conditions than joint normality will produce the same proportionality result. For a pro-
bit model, Cheung and Goldberger require only that E [x | y∗] be linear in y∗. Several
authors have built on these observations to pursue the issue of what circumstances will
lead to proportionality results such as these. Ruud (1986) and Stoker (1986) have ex-
tended them to a very wide class of models that goes well beyond those of Cheung and
Goldberger. Curiously enough, Stoker’s results rule out dummy variables, but it is those
for which the proportionality result seems to be most robust.40

21.5.3 THE MAXIMUM SCORE ESTIMATOR (MSCORE)

In Section 21.4.5, we discussed the issue of prediction rules for the probit and logit
models. In contrast to the linear regression model, estimation of these binary choice
models is not based on a fitting rule, such as the sum of squared residuals, which is
related to the fit of the model to the data. The maximum score estimator is based on a
fitting rule,

Maximizeβ Snα(β) = 1
n

n∑
i=1

[zi − (1 − 2α)]sgn(x′
iβ).41

The parameter α is a preset quantile, and zi = 2yi − 1. (So z = −1 if y = 0.) If α is
set to 1

2 , then the maximum score estimator chooses the β to maximize the number of
times that the prediction has the same sign as z. This result matches our prediction rule
in (21-36) with F∗ = 0.5. So for α = 0.5, maximum score attempts to maximize the
number of correct predictions. Since the sign of x′β is the same for all positive multiples
of β, the estimator is computed subject to the constraint that β ′β = 1.

Since there is no log-likelihood function underlying the fitting criterion, there is no
information matrix to provide a method of obtaining standard errors for the estimates.
Bootstrapping can used to provide at least some idea of the sampling variability of
the estimator. (See Section E.4.) The method proceeds as follows. After the set of
coefficients bn is computed, R randomly drawn samples of m observations are drawn
from the original data set with replacement. The bootstrap sample size m may be less
than or equal to n, the sample size. With each such sample, the maximum score estimator
is recomputed, giving bm(r). Then the mean-squared deviation matrix

MSD(b) = 1
R

R∑
b=1

[bm(r) − bn][bm(r) − bn]′

39The scale factor is estimable with the sample data, so under these assumptions, a method of moments
estimator is available.
40See Greene (1983).
41See Manski (1975, 1985, 1986) and Manski and Thompson (1986). For extensions of this model, see Horowitz
(1992), Charlier, Melenberg and van Soest (1995), Kyriazidou (1997) and Lee (1996).
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TABLE 21.5 Maximum Score Estimator

Maximum Score Probit

Estimate Mean Square Dev. Estimate Standard Error

Constant β1 −0.9317 0.1066 −7.4522 2.5420
GPA β2 0.3582 0.2152 1.6260 0.6939
TUCE β3 −0.01513 0.02800 0.05173 0.08389
PSI β4 0.05902 0.2749 1.4264 0.5950

Fitted Fitted

Actual
0 1

0 21 0
1 4 7

Actual
0 1

0 18 3
1 3 8

is computed. The authors of the technique emphasize that this matrix is not a covariance
matrix.42

Example 21.7 The Maximum Score Estimator
Table 21.5 presents maximum score estimates for Spector and Mazzeo’s GRADE model
using α = 0.5. Note that they are quite far removed from the probit estimates. (The estimates
are extremely sensitive to the choice of α.) Of course, there is no meaningful comparison
of the coefficients, since the maximum score estimates are not the slopes of a conditional
mean function. The prediction performance of the model is also quite sensitive to α, but that
is to be expected.43 As expected, the maximum score estimator performs better than the
probit estimator. The score is precisely the number of correct predictions in the 2 × 2 table,
so the best that the probit model could possibly do is obtain the “maximum score.” In this
example, it does not quite attain that maximum. [The literature awaits a comparison of the
prediction performance of the probit/logit (parametric) approaches and this semiparametric
model.] The relevant scores for the two estimators are also given in the table.

Semiparametric approaches such as this one have the virtue that they do not make a
possibly erroneous assumption about the underlying distribution. On the other hand, as
seen in the example, there is no guarantee that the estimator will outperform the fully
parametric estimator. One additional practical consideration is that semiparametric
estimators such as this one are very computation intensive. At present, the maximum
score estimator is not usable for more than roughly 15 coefficients and perhaps 1,500 to
2,000 observations.44 A third shortcoming of the approach is, unfortunately, inherent in

42Note that we are not yet agreed that bn even converges to a meaningful vector, since no underlying proba-
bility distribution as such has been assumed. Once it is agreed that there is an underlying regression function
at work, then a meaningful set of asymptotic results, including consistency, can be developed. Manski and
Thompson (1986) and Kim and Pollard (1990) present a number of results. Even so, it has been shown that
the bootstrap MSD matrix is useful for little more than descriptive purposes. Horowitz’s (1993) smoothed
maximum score estimator replaces the discontinuous sgn (β ′xi ) in the MSCORE criterion with a continuous
weighting function, 
(β ′xi /h), where h is a bandwidth proportional to n−1/5. He argues that this estimator
is an improvement over Manski’s MSCORE estimator. (“Its asymptotic distribution is very complicated and
not useful for making inferences in applications.” Later in the same paragraph he argues, “There has been no
theoretical investigation of the properties of the bootstrap in maximum score estimation.”)
43The criterion function for choosing b is not continuous, and it has more than one optimum. M. E. Bissey
reported finding that the score function varies significantly between the local optima as well. [Personal
correspondence to the author, University of York (1995).]
44Communication from C. Manski to the author. The maximum score estimator has been implemented by
Manski and Thompson (1986) and Greene (1995a).
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its design. The parametric assumptions of the probit or logit produce a large amount of
information about the relationship between the response variable and the covariates.
In the final analysis, the marginal effects discussed earlier might well have been the
primary objective of the study. That information is lost here.

21.5.4 SEMIPARAMETRIC ESTIMATION

The fully parametric probit and logit models remain by far the mainstays of empirical
research on binary choice. Fully nonparametric discrete choice models are fairly exotic
and have made only limited inroads in the literature, and much of that literature is
theoretical [e.g., Matzkin (1993)]. The primary obstacle to application is their paucity
of interpretable results. (See Example 21.9.) Of course, one could argue on this basis
that the firm results produced by the fully parametric models are merely fragile artifacts
of the detailed specification, not genuine reflections of some underlying truth. [In this
connection, see Manski (1995).] But that orthodox view raises the question of what
motivates the study to begin with and what one hopes to learn by embarking upon it.
The intent of model building to approximate reality so as to draw useful conclusions is
hardly limited to the analysis of binary choices. Semiparametric estimators represent
a middle ground between these extreme views.45 The single index model of Klein and
Spady (1993) has been used in several applications, including Gerfin (1996), Horowitz
(1993), and Fernandez and Rodriguez-Poo (1997).46

The single index formulation departs from a linear “regression” formulation,

E [yi | xi ] = E [yi | x′
iβ].

Then

Prob(yi = 1 | xi ) = F(x′
iβ | xi ) = G(x′

iβ),

where G is an unknown continuous distribution function whose range is [0, 1]. The
function G is not specified a priori; it is estimated along with the parameters. (Since G
as well as β is to be estimated, a constant term is not identified; essentially, G provides
the location for the index that would otherwise be provided by a constant.) The criterion
function for estimation, in which subscripts n denote estimators of their unsubscripted
counterparts, is

ln Ln = 1
n

n∑
i=1

{
yi ln Gn(x′

iβn) + (1 − yi ) ln[1 − Gn(x′
iβn)]

}
.

The estimator of the probability function, Gn, is computed at each iteration using
a nonparametric kernel estimator of the density of x′βn; we did this calculation in
Section 16.4. For the Klein and Spady estimator, the nonparametric regression

45Recent proposals for semiparametric estimators in addition to the one developed here include Lewbel
(1997, 2000), Lewbel and Honore (2001), and Altonji and Matzkin (2001). In spite of nearly 10 years of
development, this is a nascent literature. The theoretical development tends to focus on root-n consistent
coefficient estimation in models which provide no means of computation of probabilities or marginal effects.
46A symposium on the subject is Hardle and Manski (1993).



Greene-50240 book June 27, 2002 22:39

CHAPTER 21 ✦ Models for Discrete Choice 705

estimator is

Gn(zi ) = ȳgn(zi | yi = 1)

ȳgn(zi | yi = 1) + (1 − ȳ) gn(zi | yi = 0)
,

where gn(zi | yi ) is the kernel estimate of the density of zi = β ′
nxi . This result is

gn(zi | yi = 1) = 1
nȳhn

n∑
j=1

yj K
(

zi − β ′
nx j

hn

)
;

gn(zi | yi = 0) is obtained by replacing ȳ with 1− ȳ in the leading scalar and yj with 1− yj

in the summation. As before, hn is the bandwidth. There is no firm theory for choosing
the kernel function or the bandwidth. Both Horowitz and Gerfin used the standard
normal density. Two different methods for choosing the bandwidth are suggested by
them.47 Klein and Spady provide theoretical background for computing asymptotic
standard errors.

Example 21.8 A Comparison of Binary Choice Estimators
Gerfin (1996) did an extensive analysis of several binary choice estimators, the probit model,
Klein and Spady’s single index model, and Horowitz’s smoothed maximum score estimator.
(A fourth “seminonparametric” estimator was also examined, but in the interest of brevity, we
confine our attention to the three more widely used procedures.) The several models were all
fit to two data sets on labor force participation of married women, one from Switzerland and
one from Germany. Variables included in the equation were (our notation), x1 = a constant,
x2 = age, x3 = age2, x4 = education, x5 = number of young children, x6 = number of older
children, x7 = log of yearly nonlabor income, and x8 = a dummy variable for permanent for-
eign resident (Swiss data only). Coefficient estimates for the models are not directly compa-
rable. We suggested in Example 21.3 that they could be made comparable by transforming
them to marginal effects. Neither MSCORE nor the single index model, however, produces a
marginal effect (which does suggest a question of interpretation). The author obtained com-
parability by dividing all coefficients by the absolute value of the coefficient on x7. The set of
normalized coefficients estimated for the Swiss data appears in Table 21.6, with estimated
standard errors (from Gerfin’s Table III) shown in parentheses.

Given the very large differences in the models, the agreement of the estimates is impres-
sive. [A similar comparison of the same estimators with comparable concordance may be
found in Horowitz (1993, p. 56).] In every case, the standard error of the probit estimator is
smaller than that of the others. It is tempting to conclude that it is a more efficient estimator,
but that is true only if the normal distribution assumed for the model is correct. In any event,
the smaller standard error is the payoff to the sharper specification of the distribution. This
payoff could be viewed in much the same way that parametric restrictions in the classical
regression make the asymptotic covariance matrix of the restricted least squares estimator
smaller than its unrestricted counterpart, even if the restrictions are incorrect.

Gerfin then produced plots of F (z) for z in the range of the sample values of b′x. Once
again, the functions are surprisingly close. In the German data, however, the Klein–Spady
estimator is nonmonotonic over a sizeable range, which would cause some difficult problems
of interpretation. The maximum score estimator does not produce an estimate of the proba-
bility, so it is excluded from this comparison. Another comparison is based on the predictions
of the observed response. Two approaches are tried, first counting the number of cases in
which the predicted probability exceeds 0.5. (b′x > 0 for MSCORE) and second by summing
the sample values of F (b′x) . (Once again, MSCORE is excluded.) By the second approach,

47The function Gn(z) involves an enormous amount of computation, on the order of n2, in principle. As Gerfin
(1996) observes, however, computation of the kernel estimator can be cast as a Fourier transform, for which
the fast Fourier transform reduces the amount of computation to the order of n log2 n. This value is only
slightly larger than linear in n. See Press et al. (1986) and Gerfin (1996).
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TABLE 21.6 Estimated Parameters for Semiparametric Models

x1 x2 x3 x4 x5 x6 x7 x8 h

Probit 5.62 3.11 −0.44 0.03 −1.07 −0.22 −1.00 1.07 —
(1.35) (0.77) (0.10) (0.03) (0.26) (0.09) — (0.29)

Single — 2.98 −0.44 0.02 −1.32 −0.25 −1.00 1.06 0.40
index — (0.90) (0.12) (0.03) (0.33) (0.11) — (0.32)
MSCORE 5.83 2.84 −0.40 0.03 −0.80 −0.16 −1.00 0.91 0.70

(1.78) (0.98) (0.13) (0.05) (0.43) (0.20) — (0.57)

the estimators are almost indistinguishable, but the results for the first differ widely. Of 401
ones (out of 873 observations), the counts of predicted ones are 389 for probit, 382 for
Klein/Spady, and 355 for MSCORE. (The results do not indicate how many of these counts
are correct predictions.)

21.5.5 A KERNEL ESTIMATOR FOR A NONPARAMETRIC
REGRESSION FUNCTION

As noted, one unsatisfactory aspect of semiparametric formulations such as MSCORE
is that the amount of information that the procedure provides about the population
is limited; this aspect is, after all, the purpose of dispensing with the firm (parametric)
assumptions of the probit and logit models. Thus, in the preceding example, there is little
that one can say about the population that generated the data based on the MSCORE
“estimates” in the table. The estimates do allow predictions of the response variable.
But there is little information about any relationship between the response and the inde-
pendent variables based on the “estimation” results. Even the mean-squared deviation
matrix is suspect as an estimator of the asymptotic covariance matrix of the MSCORE
coefficients.

The authors of the technique have proposed a secondary analysis of the results. Let

Fβ(zi ) = E [yi | x′
iβ = zi ]

denote a smooth regression function for the response variable. Based on a parameter
vector β, the authors propose to estimate the regression by the method of kernels
as follows. For the n observations in the sample and for the given β (e.g., bn from
MSCORE), let

zi = x′
iβ,

s =
[

1
n

n∑
i=1

(zi − z̄)2

]1/2

.

For a particular value z∗, we compute a set of n weights using the kernel function,

wi (z∗) = K[(z∗ − zi )/(λs)],

where

K(ri ) = P(ri )[1 − P(ri )]
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and

P(ri ) = [1 + exp(−cri )]−1.

The constant c = (π/
√

3)−1 ≈ 0.55133 is used to standardize the logistic distribution that
is used for the kernel function. (See Section 16.4.1.) The parameter λ is the smoothing
(bandwidth) parameter. Large values will flatten the estimated function through ȳ,
whereas values close to zero will allow greater variation in the function but might cause
it to be unstable. There is no good theory for the choice, but some suggestions have been
made based on descriptive statistics. [See Wong (1983) and Manski (1986).] Finally, the
function value is estimated with

F(z∗) ≈
∑n

i=1 wi (z∗)yi∑n
i=1 wi (z∗)

.

Example 21.9 Nonparametric Regression
Figure 21.3 shows a plot of two estimates of the regression function for E [GRADE | z]. The
coefficients are the MSCORE estimates given in Table 21.5. The plot is produced by com-
puting fitted values for 100 equally spaced points in the range of x′bn, which for these data
and coefficients is [−0.66229, 0.05505]. The function is estimated with two values of the
smoothing parameter, 1.0 and 0.3. As expected, the function based on λ = 1.0 is much
flatter than that based on λ = 0.3. Clearly, the results of the analysis are crucially dependent
on the value assumed.

The nonparametric estimator displays a relationship between x′β and E [yi ]. At first
blush, this relationship might suggest that we could deduce the marginal effects, but
unfortunately, that is not the case. The coefficients in this setting are not meaningful,
so all we can deduce is an estimate of the density, f (z), by using first differences of the
estimated regression function. It might seem, therefore, that the analysis has produced

FIGURE 21.3 Nonparametric Regression.
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relatively little payoff for the effort. But that should come as no surprise if we reconsider
the assumptions we have made to reach this point. The only assumptions made thus
far are that for a given vector of covariates xi and coefficient vector β (that is, any β),
there exists a smooth function F(x′β) = E [yi | zi ]. We have also assumed, at least im-
plicitly, that the coefficients carry some information about the covariation of x′β and
the response variable. The technique will approximate any such function [see Manski
(1986)].

There is a large and burgeoning literature on kernel estimation and nonparametric
estimation in econometrics. [A recent application is Melenberg and van Soest (1996).]
As this simple example suggests, with the radically different forms of the specified model,
the information that is culled from the data changes radically as well. The general prin-
ciple now made evident is that the fewer assumptions one makes about the population,
the less precise the information that can be deduced by statistical techniques. That
tradeoff is inherent in the methodology.

21.5.6 DYNAMIC BINARY CHOICE MODELS

A random or fixed effects model which explicitly allows for lagged effects would be

yit = 1(x′
itβ + αi + γ yi,t−1 + εi t > 0).

Lagged effects, or persistence, in a binary choice setting can arise from three sources,
serial correlation in εi t , the heterogeneity, αi , or true state dependence through the
term γ yi,t−1. Chiappori (1998) [and see Arellano (2001)] suggests an application to
the French automobile insurance market in which the incentives built into the pricing
system are such that having an accident in one period should lower the probability of
having one in the next (state dependence), but, some drivers remain more likely to have
accidents than others in every period, which would reflect the heterogeneity instead.
State dependence is likely to be particularly important in the typical panel which has
only a few observations for each individual. Heckman (1981a) examined this issue at
length. Among his findings were that the somewhat muted small sample bias in fixed
effects models with T = 8 was made much worse when there was state dependence.
A related problem is that with a relatively short panel, the initial conditions, yi0, have
a crucial impact on the entire path of outcomes. Modeling dynamic effects and initial
conditions in binary choice models is more complex than in the linear model, and by
comparison there are relatively fewer firm results in the applied literature.

Much of the contemporary literature has focused on methods of avoiding the strong
parametric assumptions of the probit and logit models. Manski (1987) and Honore and
Kyriadizou (2000) show that Manski’s (1986) maximum score estimator can be applied
to the differences of unequal pairs of observations in a two period panel with fixed
effects. However, the limitations of the maximum score estimator noted earlier have
motivated research on other approaches. An extension of lagged effects to a parametric
model is Chamberlain (1985), Jones and Landwehr (1988) and Magnac (1997) who
added state dependence to Chamberlain’s fixed effects logit estimator. Unfortunately,
once the identification issues are settled, the model is only operational if there are
no other exogenous variables in it, which limits is usefulness for practical application.
Lewbel (2000) has extended his fixed effects estimator to dynamic models as well. In
this framework, the narrow assumptions about the independent variables somewhat
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limit its practical applicability. Honore and Kyriazidou (2000) have combined the logic
of the conditional logit model and Manski’s maximum score estimator. They specify

Prob(yi0 = 1 | xi , αi ) = p0(xi , αi ) where xi = (xi1, xi2, . . . , xiT)

Prob(yit = 1 | xi , αi , yi0, yi1, . . . , yi,t−1) = F(x′
i tβ + αi + γ yi,t−1) t = 1, . . . , T

The analysis assumes a single regressor and focuses on the case of T = 3. The resulting
estimator resembles Chamberlain’s but relies on observations for which xi t = xi,t−1

which rules out direct time effects as well as, for practical purposes, any continuous
variable. The restriction to a single regressor limits the generality of the technique as
well. The need for observations with equal values of xit is a considerable restriction, and
the authors propose a kernel density estimator for the difference, xi t − xi,t−1, instead
which does relax that restriction a bit. The end result is an estimator which converges
(they conjecture) but to a nonnormal distribution and at a rate slower than n−1/3.

Semiparametric estimators for dynamic models at this point in the development
are still primarily of theoretical interest. Models that extend the parametric formulations
to include state dependence have a much longer history, including Heckman (1978,
1981a, 1981b), Heckman and MaCurdy (1980), Jakubson (1988), Keane (1993) and
Beck et al. (2001) to name a few.48 In general, even without heterogeneity, dynamic
models ultimately involve modeling the joint outcome (yi0, . . . , yiT) which necessitates
some treatment involving multivariate integration. Example 21.10 describes a recent
application.

Example 21.10 An Intertemporal Labor Force Participation Equation
Hyslop (1999) presents a model of the labor force participation of married women. The focus
of the study is the high degree of persistence in the participation decision. Data used in
the study were the years 1979–1985 of the Panel Study of Income Dynamics. A sample of
1812 continuously married couples were studied. Exogenous variables which appeared in
the model were measures of permanent and transitory income and fertility captured in yearly
counts of the number of children from 0–2, 3–5 and 6–17 years old. Hyslop’s formulation, in
general terms, is

(initial condition) yi 0 = 1(x′
i 0β0 + vi 0 > 0) ,

(dynamic model) yi t = 1(x′
i tβ + γ yi ,t−1 + αi + vi t > 0)

(heterogeneity correlated with participation) αi = z′
i δ + ηi ,

(Stochastic specification)

ηi | Xi ∼ N
[
0, σ 2

η

]
,

vi 0 | Xi ∼ N
[
0, σ 2

0

]
,

wi t | Xi ∼ N
[
0, σ 2

w

]
,

vi t = ρvi ,t−1 + wi t , σ 2
η + σ 2

w = 1.

Corr[vi 0, vi t ] = ρt , t = 1, . . . , T − 1.

48Beck et al. (2001) is a bit different from the others mentioned in that in their study of “state failure,” they
observe a large sample of countries (147) observed over a fairly large number of years, 40. As such, they
are able to formulate their models in a way that makes the asymptotics with respect to T appropriate. They
can analyze the data essentially in a time series framework. Sepanski (2000) is another application which
combines state dependence and the random coefficient specification of Akin, Guilkey, and Sickles (1979).

wgreene
do not capitalize stochastic
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The presence of the autocorrelation and state dependence in the model invalidate the sim-
ple maximum likelihood procedures we have examined earlier. The appropriate likelihood
function is constructed by formulating the probabilities as

Prob( yi 0, yi 1, . . .) = Prob( yi 0) × Prob( yi 1 | yi 0) × · · · × Prob( yi T | yi ,T−1)

This still involves a T = 7 order normal integration, which is approximated in the study using
a simulator similar to the GHK simulator discussed in E.4.2e. Among Hyslop’s results are a
comparison of the model fit by the simulator for the multivariate normal probabilities with the
same model fit using the maximum simulated likelihood technique described in Section 17.8.

21.6 BIVARIATE AND MULTIVARIATE
PROBIT MODELS

In Chapter 14, we analyzed a number of different multiple-equation extensions of the
classical and generalized regression model. A natural extension of the probit model
would be to allow more than one equation, with correlated disturbances, in the same
spirit as the seemingly unrelated regressions model. The general specification for a
two-equation model would be

y∗
1 = x′

1β1 + ε1, y1 = 1 if y∗
1 > 0, 0 otherwise,

y∗
2 = x′

2β2 + ε2, y2 = 1 if y∗
2 > 0, 0 otherwise,

E [ε1 | x1, x2] = E [ε2 | x1, x2] = 0,

Var[ε1 | x1, x2] = Var[ε2 | x1, x2] = 1,

Cov[ε1, ε2 | x1, x2] = ρ.

(21-41)

21.6.1 MAXIMUM LIKELIHOOD ESTIMATION

The bivariate normal cdf is

Prob(X1 < x1, X2 < x2) =
∫ x2

−∞

∫ x1

−∞
φ2(z1, z2, ρ) dz1dz2,

which we denote 
2(x1, x2, ρ). The density is

φ2(x1, x2, ρ) = e−(1/2)(x2
1 +x2

2 −2ρx1x2)/(1−ρ2)

2π(1 − ρ2)1/2
.49

To construct the log-likelihood, let qi1 = 2yi1 − 1 and qi2 = 2yi2 − 1. Thus, qi j = 1 if
yi j = 1 and −1 if yi j = 0 for j = 1 and 2. Now let

zi j = x′
i jβ j and wi j = qi j zi j , j = 1, 2,

and

ρi∗ = qi1qi2ρ.

Note the national convention. The subscript 2 is used to indicate the bivariate normal
distribution in the density φ2 and cdf 
2. In all other cases, the subscript 2 indicates

49See Section B.9.
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the variables in the second equation above. As before, φ(.) and 
(.) without subscripts
denote the univariate standard normal density and cdf.

The probabilities that enter the likelihood function are

Prob(Y1 = yi1, Y2 = yi2 | x1, x2) = 
2(wi1, wi2, ρt∗),

which accounts for all the necessary sign changes needed to compute probabilities for
ys equal to zero and one. Thus,

log L =
n∑

i=1

ln 
2(wi1, wi2, ρi∗).50

The derivatives of the log-likelihood then reduce to

∂ ln L
∂β j

=
n∑

i=1

(
qi j gi j


2

)
xi j , j = 1, 2,

∂ ln L
∂ρ

=
n∑

i=1

qi1qi2φ2


2
,

(21-42)

where

gi1 = φ(wi1)


[
wi2 − ρi∗wi1√

1 − ρ2
i∗

]
(21-43)

and the subscripts 1 and 2 in gi1 are reversed to obtain gi2. Before considering the
Hessian, it is useful to note what becomes of the preceding if ρ = 0. For ∂ ln L/∂β1, if ρ =
ρi∗ = 0, then gi1 reduces to φ(wi1)
(wi2), φ2 is φ(wi1)φ(wi2), and 
2 is 
(wi1)
(wi2).
Inserting these results in (21-42) with qi1 and qi2 produces (21-21). Since both functions
in ∂ ln L/∂ρ factor into the product of the univariate functions, ∂ ln L/∂ρ reduces to∑n

i=1 λi1λi2 where λi j , j = 1, 2, is defined in (21-21). (This result will reappear in the
LM statistic below.)

The maximum likelihood estimates are obtained by simultaneously setting the three
derivatives to zero. The second derivatives are relatively straightforward but tedious.
Some simplifications are useful. Let

δi = 1√
1 − ρ2

i∗
,

vi1 = δi (wi2 − ρi∗wi1), so gi1 = φ(wi1)
(vi1),

vi2 = δi (wi1 − ρi∗wi2), so gi2 = φ(wi2)
(vi2).

By multiplying it out, you can show that

δiφ(wi1)φ(vi1) = δiφ(wi2)φ(vi2) = φ2.

50To avoid further ambiguity, and for convenience, the observation subscript will be omitted from

2 = 
2(wi1, wi2, ρi∗ ) and from φ2 = φ2(wi1, wi2, ρi∗ ).
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Then

∂2 log L
∂β1∂β ′

1
=

n∑
i=1

xi1x′
i1

[−wi1gi1


2
− ρi∗φ2


2
− g2

i1


2
2

]
,

∂2 log L
∂β1∂β ′

2
=

n∑
i=1

qi1qi2xi1x′
i2

[
φ2


2
− gi1gi2


2
2

]
,

∂2 log L
∂β1∂ρ

=
n∑

i=1

qi2xi1
φ2


2

[
ρi∗δivi1 − wi1 − gi1


2

]
,

∂2 log L
∂ρ2

=
n∑

i=1

φ2


2

[
δ2

i ρi∗(1 − w′
i R

−1
i wi ) + δ2

i wi1wi2 − φ2


2

]
,

where w′
i R

−1
i wi = δ2

i (w
2
i1 + w2

i2 − 2ρi∗wi1wi2). (For β2, change the subscripts in ∂2 ln L/

∂β1∂β ′
1 and ∂2 ln L/∂β1∂ρ accordingly.) The complexity of the second derivatives for

this model makes it an excellent candidate for the Berndt et al. estimator of the variance
matrix of the maximum likelihood estimator.

21.6.2 TESTING FOR ZERO CORRELATION

The Lagrange multiplier statistic is a convenient device for testing for the absence
of correlation in this model. Under the null hypothesis that ρ equals zero, the model
consists of independent probit equations, which can be estimated separately. Moreover,
in the multivariate model, all the bivariate (or multivariate) densities and probabilities
factor into the products of the marginals if the correlations are zero, which makes
construction of the test statistic a simple matter of manipulating the results of the
independent probits. The Lagrange multiplier statistic for testing H0: ρ = 0 in a bivariate
probit model is51

LM =

[∑n
i=1 qi1qi2

φ(wi1)φ(wi2)


(wi1)
(wi2)

]2

∑n
i=1

[φ(wi1)φ(wi2)]2


(wi1)
(−wi1)
(wi2)
(−wi2)

.

As usual, the advantage of the LM statistic is that it obviates computing the bivariate
probit model. But, the full unrestricted model is now fairly common in commercial
software, so that advantage is minor. The likelihood ratio or Wald test can often be used
with equal ease.

21.6.3 MARGINAL EFFECTS

There are several “marginal effects” one might want to evaluate in a bivariate probit
model.52 For convenience in evaluating them, we will define a vector x = x1 ∪ x2 and let

51This is derived in Kiefer (1982).
52See Greene (1996b).
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x′
1β1 = x′γ 1. Thus, γ 1 contains all the nonzero elements of β1 and possibly some zeros

in the positions of variables in x that appear only in the other equation; γ 2 is defined
likewise. The bivariate probability is

Prob[y1 = 1, y2 = 1 | x] = 
2[x′γ 1, x′γ 2, ρ].

Signs are changed appropriately if the probability of the zero outcome is desired in
either case. (See 21-41.) The marginal effects of changes in x on this probability are
given by

∂
2

∂x
= g1γ 1 + g2γ 2,

where g1 and g2 are defined in (21-43). The familiar univariate cases will arise if ρ = 0,
and effects specific to one equation or the other will be produced by zeros in the corre-
sponding position in one or the other parameter vector. There are also some conditional
mean functions to consider. The unconditional mean functions are given by the univari-
ate probabilities:

E [yj | x] = 
(x′γ j ), j = 1, 2,

so the analysis of (21-9) and (21-10) applies. One pair of conditional mean functions
that might be of interest are

E [y1 | y2 = 1, x] = Prob[y1 = 1 | y2 = 1, x] = Prob[y1 = 1, y2 = 1 | x]
Prob[y2 = 1 | x]

= 
2(x′γ 1, x′γ 2, ρ)


(x′γ 2)

and similarly for E [y2 | y1 = 1, x]. The marginal effects for this function are given by

∂ E [y1 | y2 = 1, x]
∂x

=
(

1

(x′γ 2)

) [
g1γ 1 +

(
g2 − 
2

φ(x′γ 2)


(x′γ 2)

)
γ 2

]
.

Finally, one might construct the nonlinear conditional mean function

E [y1 | y2, x] = 
2[x′γ 1, (2y2 − 1)x′γ 2, (2y2 − 1)ρ]

[(2y2 − 1)x′γ 2]

.

The derivatives of this function are the same as those above, with sign changes in several
places if y2 = 0 is the argument.

21.6.4 SAMPLE SELECTION

There are situations in which the observed variables in the bivariate probit model are
censored in one way or another. For example, in an evaluation of credit scoring models,
Boyes, Hoffman, and Low (1989) analyzed data generated by the following rule:

y1 = 1 if individual i defaults on a loan, 0 otherwise,

y2 = 2 if the individual is granted a loan, 0 otherwise.

Greene (1992) applied the same model to y1 = default on credit card loans, in which y2

denotes whether an application for the card was accepted or not. For a given individual,
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y1 is not observed unless y2 equals one. Thus, there are three types of observations in
the sample, with unconditional probabilities:53

y2 = 0: Prob(y2 = 0 | x1, x2) = 1 − 
(x′
2β2),

y1 = 0, y2 = 1: Prob(y1 = 0, y2 = 1 | x1, x2) = 
2[−x′
1β1, x′

2β2, −ρ],

y1 = 1, y2 = 1: Prob(y1 = 1, y2 = 1 | x1, x2) = 
2[x′
1β1, x′

2β2, ρ].

The log-likelihood function is based on these probabilities.54

21.6.5 A MULTIVARIATE PROBIT MODEL

In principle, a multivariate model would extend (21-41) to more than two outcome
variables just by adding equations. The practical obstacle to such an extension is pri-
marily the evaluation of higher-order multivariate normal integrals. Some progress has
been made on using quadrature for trivariate integration, but existing results are not
sufficient to allow accurate and efficient evaluation for more than two variables in a sam-
ple of even moderate size. An altogether different approach has been used in recent
applications. Lerman and Manski (1981) suggested that one might approximate multi-
variate normal probabilities by random sampling. For example, to approximate
Prob(y1 > 1, y2 < 3, y3 < −1) | x1, x2, ρ12, ρ13, ρ23), we would simply draw random ob-
servations from this trivariate normal distribution (see Section E.5.6.) and count the
number of observations that satisfy the inequality. To obtain an accurate estimate of the
probability, quite a large number of draws is required. Also, the substantive possibility
of getting zero such draws in a finite number of draws is problematic. Nonetheless, the
logic of the Lerman–Manski approach is sound. As discussed in Section E.5.6 recent
developments have produced methods of producing quite accurate estimates of multi-
variate normal integrals based on this principle. The evaluation of multivariate normal
integral is generally a much less formidable obstacle to the estimation of models based
on the multivariate normal distribution.55

McFadden (1989) pointed out that for purposes of maximum likelihood estimation,
accurate evaluation of probabilities is not necessarily the problem that needs to be
solved. One can view the computation of the log-likelihood and its derivatives as a
problem of estimating a mean. That is, in (21-41) and (21-42), the same problem arises
if we divide by n. The idea is that even though the individual terms in the average
might be in error, if the error has mean zero, then it will average out in the summation.
The important insight, then, is that if we can obtain probability estimates that only err
randomly both positively and negatively, then it may be possible to obtain an estimate
of the log-likelihood and its derivatives that is reasonably close to the one that would

53The model was first proposed by Wynand and van Praag (1981).
54Extensions of the bivariate probit model to other types of censoring are discussed in Poirier (1980) and
Abowd and Farber (1982).
55Papers that propose improved methods of simulating probabilities include Pakes and Pollard (1989) and
especially Börsch-Supan and Hajivassilou (1990), Geweke (1989), and Keane (1994). A symposium in the
November 1994 issue of Review of Economics and Statistics presents discussion of numerous issues in speci-
fication and estimation of models based on simulation of probabilities. Applications that employ simulation
techniques for evaluation of multivariate normal integrals are now fairly numerous. See, for example, Hyslop
(1999) (Example 21.10) who applies the technique to a panel data application with T = 7.
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result from actually computing the integral. From a practical standpoint, it does not
take inordinately large numbers of random draws to achieve this result, which with the
progress that has been made on Monte Carlo integration, has made feasible multivariate
models that previously were intractable.

The multivariate probit model in another form presents a useful extension of the
probit model to panel data. The structural equation for the model would be

y∗
i t = x′

i tβ + εi t , yit = 1 if y∗
i t > 0, 0 otherwise, i = 1, . . . , n; t = 1, . . . , T.

The Butler and Moffitt approach for this model has proved useful in numerous applica-
tions. But, the underlying assumption that Cov[εi t , εis] = ρ is a substantive restriction.
By treating this structure as a multivariate probit model with a restriction that the coef-
ficient vector be the same in every period, one can obtain a model with free correlations
across periods. Hyslop (1999) and Greene (2002) are two applications.

21.6.6 APPLICATION: GENDER ECONOMICS COURSES
IN LIBERAL ARTS COLLEGES

Burnett (1997) proposed the following bivariate probit model for the presence of a
gender economics course in the curriculum of a liberal arts college:

Prob[y1 = 1, y2 = 1 | x1, x2] = 
2(x′
1β1 + γ y2, x′

2β2, ρ).

The dependent variables in the model are

y1 = presence of a gender economics course,

y2 = presence of a women’s studies program on the campus.

The independent variables in the model are

z1 = constant term;

z2 = academic reputation of the college, coded 1 (best), 2, . . . to 141;

z3 = size of the full time economics faculty, a count;

z4 = percentage of the economics faculty that are women, proportion (0 to 1);

z5 = religious affiliation of the college, 0 = no, 1 = yes;

z6 = percentage of the college faculty that are women, proportion (0 to 1);

z7–z10 = regional dummy variables, south, midwest, northeast, west.

The regressor vectors are

x1 = z1, z2, z3, z4, z5, x2 = z2, z6, z5, z7–z10.

Burnett’s model illustrates a number of interesting aspects of the bivariate probit model.
Note that this model is qualitatively different from the bivariate probit model in (21-41);
the second dependent variable, y2, appears on the right-hand side of the first equation.
This model is a recursive, simultaneous-equations model. Surprisingly, the endogenous
nature of one of the variables on the right-hand side of the first equation can be ignored
in formulating the log-likelihood. [The model appears in Maddala (1983, p. 123).] We
can establish this fact with the following (admittedly trivial) argument: The term that
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enters the log-likelihood is P(y1 = 1, y2 = 1) = P(y1 = 1 | y2 = 1)P(y2 = 1). Given the
model as stated, the marginal probability for y2 is just 
(x′

2β2), whereas the conditional
probability is 
2(. . .)/
(x′

2β2). The product returns the probability we had earlier. The
other three terms in the log-likelihood are derived similarly, which produces (Maddala’s
results with some sign changes):

P11 = 
2(x′
1β1 + γ y2, x′

2β2, ρ), P10 = 
2(x′
1β1, −x′

2β2, −ρ)

P01 = 
2[−(x′
1β1 + γ y2), β

′
2x2, −ρ], P00 = 
2(−x′

1β1, −x′
2β2, ρ).

These terms are exactly those of (21-41) that we obtain just by carrying y2 in the first
equation with no special attention to its endogenous nature. We can ignore the simul-
taneity in this model and we cannot in the linear regression model because, in this
instance, we are maximizing the log-likelihood, whereas in the linear regression case,
we are manipulating certain sample moments that do not converge to the necessary
population parameters in the presence of simultaneity. Note that the same result is at
work in Section 15.6.2, where the FIML estimator of the simultaneous equations model
is obtained with the endogenous variables on the right-hand sides of the equations, but
not by using ordinary least squares.

The marginal effects in this model are fairly involved, and as before, we can consider
several different types. Consider, for example, z2, academic reputation. There is a direct
effect produced by its presence in the first equation, but there is also an indirect effect.
Academic reputation enters the women’s studies equation and, therefore, influences
the probability that y2 equals one. Since y2 appears in the first equation, this effect is
transmitted back to y1. The total effect of academic reputation and, likewise, religious
affiliation is the sum of these two parts. Consider first the gender economics variable,
y1. The conditional mean is

E [y1 | x1, x2] = Prob[y2 = 1]E [y1 | y2 = 1, x1, x2] + Prob[y2 = 0]E [y1 | y2 = 0, x1, x2]

= 
2(x′
1β1 + γ y2, x′

2β2, ρ) + 
2(x′
1β1, −x′

2β2, −ρ).

Derivatives can be computed using our earlier results. We are also interested in the effect
of religious affiliation. Since this variable is binary, simply differentiating the conditional
mean function may not produce an accurate result. Instead, we would compute the
conditional mean function with this variable set to one and then zero, and take the
difference. Finally, what is the effect of the presence of a women’s studies program on
the probability that the college will offer a gender economics course? To compute this
effect, we would compute Prob[y1 = 1 | y2 = 1, x1, x2] − Prob[y1 = 1 | y2 = 0, x1, x2]. In
all cases, standard errors for the estimated marginal effects can be computed using the
delta method.

Maximum likelihood estimates of the parameters of Burnett’s model were com-
puted by Greene (1998) using her sample of 132 liberal arts colleges; 31 of the schools
offer gender economics, 58 have women’s studies, and 29 have both. The estimated pa-
rameters are given in Table 21.7. Both bivariate probit and the single-equation estimates
are given. The estimate of ρ is only 0.1359, with a standard error of 1.2359. The Wald
statistic for the test of the hypothesis that ρ equals zero is (0.1359/1.2539)2 = 0.011753.
For a single restriction, the critical value from the chi-squared table is 3.84, so the hy-
pothesis cannot be rejected. The likelihood ratio statistic for the same hypothesis is
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TABLE 21.7 Estimates of a Recursive Simultaneous Bivariate Probit Model
(Estimated Standard Errors in Parentheses)

Single Equation Bivariate Probit
Variable Coefficient Standard Error Coefficient Standard Error

Gender Economics Equation
Constant −1.4176 (0.8069) −1.1911 (2.2155)
AcRep −0.01143 (0.004081) −0.01233 (0.007937)
WomStud 1.1095 (0.5674) 0.8835 (2.2603)
EconFac 0.06730 (0.06874) 0.06769 (0.06952)
PctWecon 2.5391 (0.9869) 2.5636 (1.0144)
Relig −0.3482 (0.4984) −0.3741 (0.5265)

Women’s Studies Equation
AcRep −0.01957 (0.005524) −0.01939 (0.005704)
PctWfac 1.9429 (0.8435) 1.8914 (0.8714)
Relig −0.4494 (0.3331) −0.4584 (0.3403)
South 1.3597 (0.6594) 1.3471 (0.6897)
West 2.3386 (0.8104) 2.3376 (0.8611)
North 1.8867 (0.8204) 1.9009 (0.8495)
Midwest 1.8248 (0.8723) 1.8070 (0.8952)

ρ 0.0000 (0.0000) 0.1359 (1.2539)
Log L −85.6458 −85.6317

2[−85.6317 − (−85.6458)] = 0.0282, which leads to the same conclusion. The Lagrange
multiplier statistic is 0.003807, which is consistent. This result might seem counterintu-
itive, given the setting. Surely “gender economics” and “women’s studies” are highly
correlated, but this finding does not contradict that proposition. The correlation coeffi-
cient measures the correlation between the disturbances in the equations, the omitted
factors. That is, ρ measures (roughly) the correlation between the outcomes after the
influence of the included factors is accounted for. Thus, the value 0.13 measures the
effect after the influence of women’s studies is already accounted for. As discussed in
the next paragraph, the proposition turns out to be right. The single most important
determinant (at least within this model) of whether a gender economics course will be
offered is indeed whether the college offers a women’s studies program.

Table 21.8 presents the estimates of the marginal effects and some descriptive statis-
tics for the data. The calculations were simplified slightly by using the restricted model
with ρ = 0. Computations of the marginal effects still require the decomposition above,
but they are simplified slightly by the result that if ρ equals zero, then the bivariate
probabilities factor into the products of the marginals. Numerically, the strongest effect
appears to be exerted by the representation of women on the faculty; its coefficient
of +0.4491 is by far the largest. This variable, however, cannot change by a full unit
because it is a proportion. An increase of 1 percent in the presence of women on the
faculty raises the probability by only +0.004, which is comparable in scale to the effect
of academic reputation. The effect of women on the faculty is likewise fairly small, only
0.0013 per 1 percent change. As might have been expected, the single most important
influence is the presence of a women’s studies program, which increases the likelihood
of a gender economics course by a full 0.1863. Of course, the raw data would have
anticipated this result; of the 31 schools that offer a gender economics course, 29 also
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TABLE 21.8 Marginal Effects in Gender Economics Model

Direct Indirect Total (Std. Error) (Type of Variable, Mean)

Gender Economics Equation
AcRep −0.002022 −0.001453 −0.003476 (0.00126) (Continuous, 119.242)
PctWecon +0.4491 +0.4491 (0.1568) (Continuous, 0.24787)
EconFac +0.01190 +0.1190 (0.01292) (Continuous, 6.74242)
Relig −0.07049 −0.03227 −0.1028 (0.1055) (Binary, 0.57576)
WomStud +0.1863 +0.1863 (0.0868) (Endogenous, 0.43939)
PctWfac +0.13951 +0.13951 (0.08916) (Continuous, 0.35772)

Women’s Studies Equation
AcRep −0.00754 −0.00754 (0.002187) (Continuous, 119.242)
PctWfac +0.13789 +0.13789 (0.01002) (Continuous, 0.35772)
Relig −0.13265 −0.13266 (0.18803) (Binary, 0.57576)

have a women’s studies program and only two do not. Note finally that the effect of
religious affiliation (whatever it is) is mostly direct.

Before closing this application, we can use this opportunity to examine the fit mea-
sures listed in Section 21.4.5. We computed the various fit measures using seven different
specifications of the gender economics equation:

1. Single-equation probit estimates, z1, z2, z3, z4, z5, y2

2. Bivariate probit model estimates, z1, z2, z3, z4, z5, y2

3. Single-equation probit estimates, z1, z2, z3, z4, z5

4. Single-equation probit estimates, z1, z3, z5, y2

5. Single-equation probit estimates, z1, z3, z5

6. Single-equation probit estimates, z1, z5

7. Single-equation probit estimates z1 (constant only).

The specifications are in descending “quality” because we removed the most statistically
significant variables from the model at each step. The values are listed in Table 21.9.
The matrix below each column is the table of “hits” and “misses” of the prediction rule
ŷ = 1 if P̂ > 0.5, 0 otherwise. [Note that by construction, model (7) must predict all
ones or all zeros.] The column is the actual count and the row is the prediction. Thus,
for model (1), 92 of 101 zeros were predicted correctly, whereas five of 31 ones were
predicted incorrectly. As one would hope, the fit measures decline as the more significant

TABLE 21.9 Binary Choice Fit Measures

Measure (1) (2) (3) (4) (5) (6) (7)

LRI 0.573 0.535 0.495 0.407 0.279 0.206 0.000
R2

BL 0.844 0.844 0.823 0.797 0.754 0.718 0.641
λ 0.565 0.560 0.526 0.444 0.319 0.216 0.000
R2

EF 0.561 0.558 0.530 0.475 0.343 0.216 0.000
R2

VZ 0.708 0.707 0.672 0.589 0.447 0.352 0.000
R2

MZ 0.687 0.679 0.628 0.567 0.545 0.329 0.000

Predictions

[
92 9
5 26

] [
93 8
5 26

] [
92 9
8 23

] [
94 7
8 23

] [
98 3
16 15

] [
101 0
31 0

] [
101 0
31 0

]
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variables are removed from the model. The Ben-Akiva measure has an obvious flaw
in that with only a constant term, the model still obtains a “fit” of 0.641. From the
prediction matrices, it is clear that the explanatory power of the model, such as it is,
comes from its ability to predict the ones correctly. The poorer is the model, the greater
the number of correct predictions of y = 0. But as this number rises, the number of
incorrect predictions rises and the number of correct predictions of y = 1 declines. All
the fit measures appear to react to this feature to some degree. The Efron and Cramer
measures, which are nearly identical, and McFadden’s LRI appear to be most sensitive
to this, with the remaining two only slightly less consistent.

21.7 LOGIT MODELS FOR MULTIPLE CHOICES

Some studies of multiple-choice settings include the following:

1. Hensher (1986), McFadden (1974), and many others have analyzed the travel
mode of urban commuters.

2. Schmidt and Strauss (1975a,b) and Boskin (1974) have analyzed occupational
choice among multiple alternatives.

3. Terza (1985) has studied the assignment of bond ratings to corporate bonds as a
choice among multiple alternatives.

These are all distinct from the multivariate probit model we examined earlier. In that
setting, there were several decisions, each between two alternatives. Here there is a
single decision among two or more alternatives. We will examine two broad types of
choice sets, ordered and unordered. The choice among means of getting to work—by
car, bus, train, or bicycle—is clearly unordered. A bond rating is, by design, a ranking;
that is its purpose. As we shall see, quite different techniques are used for the two types
of models. Models for unordered choice sets are considered in this section. A model for
ordered choices is described in Section 21.8.

Unordered-choice models can be motivated by a random utility model. For the ith
consumer faced with J choices, suppose that the utility of choice j is

Ui j = z′
i jβ + εi j .

If the consumer makes choice j in particular, then we assume that Ui j is the maximum
among the J utilities. Hence, the statistical model is driven by the probability that choice
j is made, which is

Prob(Ui j > Uik) for all other k �= j.

The model is made operational by a particular choice of distribution for the disturbances.
As before, two models have been considered, logit and probit. Because of the need to
evaluate multiple integrals of the normal distribution, the probit model has found rather
limited use in this setting. The logit model, in contrast, has been widely used in many
fields, including economics, market research, and transportation engineering. Let Yi be
a random variable that indicates the choice made. McFadden (1973) has shown that
if (and only if) the J disturbances are independent and identically distributed with
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type I extreme value (Gumbel) distribution,

F(εi j ) = exp(−e−εi j ),

then

Prob(Yi = j) = ez′
i j β

∑J
j=1 ez′

i j β
, (21-44)

which leads to what is called the conditional logit model.56

Utility depends on xi j , which includes aspects specific to the individual as well as to
the choices. It is useful to distinguish them. Let zi j = [xi j , wi ]. Then xi j varies across the
choices and possibly across the individuals as well. The components of xi j are typically
called the attributes of the choices. But wi contains the characteristics of the individual
and is, therefore, the same for all choices. If we incorporate this fact in the model, then
(21-44) becomes

Prob(Yi = j) = eβ ′xi j +α′wi

∑J
j=1 eβ ′xi j +α′wi

= eβ ′xi j eα′
i wi

∑J
j=1 eβ ′xi j eα′

i wi
.

Terms that do not vary across alternatives—that is, those specific to the individual—fall
out of the probability. Evidently, if the model is to allow individual specific effects, then
it must be modified. One method is to create a set of dummy variables for the choices
and multiply each of them by the common w. We then allow the coefficient to vary
across the choices instead of the characteristics. Analogously to the linear model, a
complete set of interaction terms creates a singularity, so one of them must be dropped.
For example, a model of a shopping center choice by individuals might specify that
the choice depends on attributes of the shopping centers such as number of stores and
distance from the central business district, both of which are the same for all individuals,
and income, which varies across individuals. Suppose that there were three choices. The
three regressor vectors would be as follows:

Choice 1: Stores Distance Income 0

Choice 2: Stores Distance 0 Income

Choice 3: Stores Distance 0 0

The data sets typically analyzed by economists do not contain mixtures of individual-
and choice-specific attributes. Such data would be far too costly to gather for most
purposes. When they do, the preceding framework can be used. For the present, it is
useful to examine the two types of data separately and consider aspects of the model
that are specific to the two types of applications.

21.7.1 THE MULTINOMIAL LOGIT MODEL

To set up the model that applies when data are individual specific, it will help to con-
sider an example. Schmidt and Strauss (1975a,b) estimated a model of occupational

56It is occasionally labeled the multinomial logit model, but this wording conflicts with the usual name for
the model discussed in the next section, which differs slightly. Although the distinction turns out to be purely
artificial, we will maintain it for the present.



Greene-50240 book June 27, 2002 22:39

CHAPTER 21 ✦ Models for Discrete Choice 721

choice based on a sample of 1000 observations drawn from the Public Use Sample for
three years, 1960, 1967, and 1970. For each sample, the data for each individual in the
sample consist of the following:

1. Occupation: 0 = menial, 1 = blue collar, 2 = craft, 3 = white collar,
4 = professional.

2. Regressors: constant, education, experience, race, sex.

The model for occupational choice is

Prob(Yi = j) = eβ ′
j xi

∑4
k=0 eβ ′

kxi
, j = 0, 1, . . . , 4. (21-45)

(The binomial logit of Sections 21.3 and 21.4 is conveniently produced as the special
case of J = 1.)

The model in (21-45) is a multinomial logit model.57 The estimated equations pro-
vide a set of probabilities for the J + 1 choices for a decision maker with characteristics
xi . Before proceeding, we must remove an indeterminacy in the model. If we define
β∗

j = β j + q for any vector q, then recomputing the probabilities defined below using
β∗

j instead of β j produces the identical set of probabilities because all the terms involv-
ing q drop out. A convenient normalization that solves the problem is β0 = 0. (This
arises because the probabilities sum to one, so only J parameter vectors are needed to
determine the J + 1 probabilities.) Therefore, the probabilities are

Prob(Yi = j | xi ) = eβ ′
j xi

1 + ∑J
k=1 eβ ′

kxi
for j = 0, 2, . . . , J, β0 = 0. (21-46)

The form of the binomial model examined in Section 21.4 results if J = 1. The model
implies that we can compute J log-odds ratios

ln
[

Pi j

Pik

]
= x′

i (β j − βk) = x′
iβ j if k = 0.

From the point of view of estimation, it is useful that the odds ratio, Pj/Pk, does not
depend on the other choices, which follows from the independence of disturbances in
the original model. From a behavioral viewpoint, this fact is not very attractive. We shall
return to this problem in Section 21.7.3.

The log-likelihood can be derived by defining, for each individual, di j = 1 if alter-
native j is chosen by individual i , and 0 if not, for the J − 1 possible outcomes. Then,
for each i , one and only one of the di j ’s is 1. The log-likelihood is a generalization of
that for the binomial probit or logit model:

ln L =
n∑

i=1

J∑
j=0

di j ln Prob(Yi = j).

The derivatives have the characteristically simple form

∂ ln L
∂β j

=
∑

i

(di j − Pi j )xi for j = 1, . . . , J.

57Nerlove and Press (1973).
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The exact second derivatives matrix has J 2 K × K blocks,

∂2 ln L
∂β j∂β ′

l
= −

n∑
i=1

Pi j [1( j = l) − Pil]xi x′
i ,

58

where 1( j = l) equals 1 if j equals l and 0 if not. Since the Hessian does not involve
di j , these are the expected values, and Newton’s method is equivalent to the method of
scoring. It is worth noting that the number of parameters in this model proliferates with
the number of choices, which is unfortunate because the typical cross section sometimes
involves a fairly large number of regressors.

The coefficients in this model are difficult to interpret. It is tempting to associate
β j with the jth outcome, but that would be misleading. By differentiating (21-46), we
find that the marginal effects of the characteristics on the probabilities are

δ j = ∂ Pj

∂xi
= Pj

[
β j −

J∑
k=0

Pkβk

]
= Pj [β j − β̄]. (21-47)

Therefore, every subvector of β enters every marginal effect, both through the prob-
abilities and through the weighted average that appears in δ j . These values can be
computed from the parameter estimates. Although the usual focus is on the coefficient
estimates, equation (21-47) suggests that there is at least some potential for confusion.
Note, for example, that for any particular xk, ∂ Pj/∂xk need not have the same sign as
β jk. Standard errors can be estimated using the delta method. (See Section 5.2.4.) For
purposes of the computation, let β = [0, β ′

1, β
′
2, . . . ,β

′
j ]

′. We include the fixed 0 vector
for outcome 0 because although β0 = 0, γ 0 = −P0β̄, which is not 0. Note as well that
Asy. Cov[β̂0, β̂ j ] = 0 for j = 0, . . . , J . Then

Asy. Var[δ̂ j ] =
J∑

l=0

J∑
m=0

(
∂δ j

∂β ′
l

)
Asy. Cov[β̂l , β̂m]

(
∂δ′

j

∂βm

)
,

∂δ j

∂βl
= [1( j = l) − Pl][Pj I + δ j x′] + Pj [δlx′].

Finding adequate fit measures in this setting presents the same difficulties as in
the binomial models. As before, it is useful to report the log-likelihood. If the model
contains no covariates and no constant term, then the log-likelihood will be

ln Lc =
J∑

j=0

nj ln
(

1
J + 1

)
.

where nj is the number of individuals who choose outcome j . If the regressor vector
includes only a constant term, then the restricted log-likelihood is

ln L0 =
J∑

j=0

nj ln
(

nj

n

)
=

J∑
j=0

nj ln pj ,

58If the data were in the form of proportions, such as market shares, then the appropriate log-likelihood
and derivatives are

∑
i

∑
j ni pi j and

∑
i

∑
j ni (pi j − Pi j )xi , respectively. The terms in the Hessian are

multiplied by ni .
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where pj is the sample proportion of observations that make choice j . If desired, the
likelihood ratio index can also be reported. A useful table will give a listing of hits and
misses of the prediction rule “predict Yi = j if P̂ j is the maximum of the predicted
probabilities.”59

21.7.2 THE CONDITIONAL LOGIT MODEL

When the data consist of choice-specific attributes instead of individual-specific char-
acteristics, the appropriate model is

Prob(Yi = j | zi1, zi2, . . . , zi J ) = eβ ′zi j

∑J
j=1 eβ ′zi j

. (21-48)

Here, in accordance with the convention in the literature, we let j = 1, 2, . . . , J for a
total of J alternatives. The model is otherwise essentially the same as the multinomial
logit. Even more care will be required in interpreting the parameters, however. Once
again, an example will help to focus ideas.

In this model, the coefficients are not directly tied to the marginal effects. The
marginal effects for continuous variables can be obtained by differentiating (21-48)
with respect to x to obtain

∂ Pj

∂xk
= [Pj (1( j = k) − Pk)]β, k = 1, . . . , J.

(To avoid cluttering the notation, we have dropped the observation subscript.) It is clear
that through its presence in Pj and Pk, every attribute set x j affects all the probabilities.
Hensher suggests that one might prefer to report elasticities of the probabilities. The
effect of attribute m of choice k on Pj would be

∂ log Pj

∂ log xkm
= xkm[1( j = k) − Pk]βm.

Since there is no ambiguity about the scale of the probability itself, whether one should
report the derivatives or the elasticities is largely a matter of taste. Some of Hensher’s
elasticity estimates are given in Table 21.16 later on in this chapter.

Estimation of the conditional logit model is simplest by Newton’s method or the
method of scoring. The log-likelihood is the same as for the multinomial logit model.
Once again, we define di j = 1 if Yi = j and 0 otherwise. Then

log L =
n∑

i=1

J∑
j=1

di j log Prob(Yi = j).

Market share and frequency data are common in this setting. If the data are in this form,
then the only change needed is, once again, to define di j as the proportion or frequency.

59Unfortunately, it is common for this rule to predict all observation with the same value in an unbalanced
sample or a model with little explanatory power.
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Because of the simple form of L, the gradient and Hessian have particularly convenient
forms: Let x̄i = ∑J

j=1 Pi j xi j . Then,

∂ log L
∂β

=
n∑

i=1

J∑
j=1

di j (xi j − x̄i ),

∂2 log L
∂β∂β ′ = −

n∑
i=1

J∑
j=1

Pi j (xi j − x̄i )(xi j − x̄i )
′,

The usual problems of fit measures appear here. The log-likelihood ratio and tabula-
tion of actual versus predicted choices will be useful. There are two possible constrained
log-likelihoods. Since the model cannot contain a constant term, the constraint β = 0
renders all probabilities equal to 1/J . The constrained log-likelihood for this constraint
is then Lc = −n ln J . Of course, it is unlikely that this hypothesis would fail to be re-
jected. Alternatively, we could fit the model with only the J −1 choice-specific constants,
which makes the constrained log-likelihood the same as in the multinomial logit model,
ln L∗

0 = ∑
j n j ln pj where, as before, nj is the number of individuals who choose

alternative j .

21.7.3 THE INDEPENDENCE FROM IRRELEVANT ALTERNATIVES

We noted earlier that the odds ratios in the multinomial logit or conditional logit mod-
els are independent of the other alternatives. This property is convenient as regards
estimation, but it is not a particularly appealing restriction to place on consumer be-
havior. The property of the logit model whereby Pj/Pk is independent of the remaining
probabilities is called the independence from irrelevant alternatives (IIA).

The independence assumption follows from the initial assumption that the distur-
bances are independent and homoscedastic. Later we will discuss several models that
have been developed to relax this assumption. Before doing so, we consider a test that
has been developed for testing the validity of the assumption. Hausman and McFadden
(1984) suggest that if a subset of the choice set truly is irrelevant, omitting it from the
model altogether will not change parameter estimates systematically. Exclusion of these
choices will be inefficient but will not lead to inconsistency. But if the remaining odds
ratios are not truly independent from these alternatives, then the parameter estimates
obtained when these choices are included will be inconsistent. This observation is the
usual basis for Hausman’s specification test. The statistic is

χ2 = (β̂s − β̂ f )
′[V̂s − V̂ f ]−1(β̂s − β̂ f ),

where s indicates the estimators based on the restricted subset, f indicates the estimator
based on the full set of choices, and V̂s and V̂ f are the respective estimates of the
asymptotic covariance matrices. The statistic has a limiting chi-squared distribution
with K degrees of freedom.60

60McFadden (1987) shows how this hypothesis can also be tested using a Lagrange multiplier test.
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21.7.4 NESTED LOGIT MODELS

If the independence from irrelevant alternatives test fails, then an alternative to the
multinomial logit model will be needed. A natural alternative is a multivariate probit
model:

Uj = β ′x j + ε j , j = 1, . . . , J, [ε1, ε2, . . . , εJ ] ∼ N[0, ].

We had considered this model earlier but found that as a general model of consumer
choice, its failings were the practical difficulty of computing the multinormal integral
and estimation of an unrestricted correlation matrix. Hausman and Wise (1978) point
out that for a model of consumer choice, the probit model may not be as impractical
as it might seem. First, for J choices, the comparisons implicit in Uj > Uk for k �= j
involve the J − 1 differences, ε j − εk. Thus, starting with a J -dimensional problem,
we need only consider derivatives of (J − 1)-order probabilities. Therefore, to come
to a concrete example, a model with four choices requires only the evaluation of bi-
variate normal integrals, which, albeit still complicated to estimate, is well within the
received technology. For larger models, however, other specifications have proved more
useful.

One way to relax the homoscedasticity assumption in the conditional logit model
that also provides an intuitively appealing structure is to group the alternatives into
subgroups that allow the variance to differ across the groups while maintaining the IIA
assumption within the groups. This specification defines a nested logit model. To fix
ideas, it is useful to think of this specification as a two-(or more) level choice problem
(although, once again, the model arises as a modification of the stochastic specification
in the original conditional logit model, not as a model of behavior). Suppose, then,
that the J alternatives can be divided into L subgroups such that the choice set can be
written [c1, . . . , cJ ] = (c1 | 1, . . . , cJ1 | 1), . . . , (c1 | L, . . . , cJ L| L). Logically, we may think
of the choice process as that of choosing among the L choice sets and then making the
specific choice within the chosen set. This method produces a tree structure, which for
two branches and, say, five choices might look as follows:

Choice

Branch2Branch1

c1 | 1 c2 | 1 c1 | 2 c3 | 2c2 | 2

Suppose as well that the data consist of observations on the attributes of the choices
x j | l and attributes of the choice sets zl .

To derive the mathematical form of the model, we begin with the unconditional
probability

Prob[twig j , branchl] = Pjl = ex′
j | lβ+z′

lγ

∑L
l=1

∑Jl
j=1 ex′

j | lβ+z′
lγ

.
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Now write this probability as

Pjl = Pj |l Pl =
(

ex′
j | lβ

∑Jl
j=1 ex′

j | lβ

) (
ez′

lγ

∑L
l=1 ez′

lγ

) (∑Jl
j=1 ex′

j | lβ
) (∑L

l=1 ez′
lγ

)
(∑L

l=1

∑Jl
j=1 ex′

j | lβ+z′
lγ

) .

Define the inclusive value for the lth branch as

Il = ln
Jl∑

j=1

ex′
j | lβ .

Then, after canceling terms and using this result, we find

Pj |l = ex′
j | lβ

∑Jl
j=1 ex′

j | lβ
and Pl = ez′

lγ+τl Il

∑L
l=1 ez′

lγ+τl Il
,

where the new parameters τl must equal 1 to produce the original model. Therefore,
we use the restriction τl = 1 to recover the conditional logit model, and the preceding
equation just writes this model in another form. The nested logit model arises if this
restriction is relaxed. The inclusive value coefficients, unrestricted in this fashion, allow
the model to incorporate some degree of heteroscedasticity. Within each branch, the
IIA restriction continues to hold. The equal variance of the disturbances within the jth
branch are now

σ 2
j = π2

6τ j
.61

With τ j = 1, this reverts to the basic result for the multinomial logit model.
As usual, the coefficients in the model are not directly interpretable. The derivatives

that describe covariation of the attributes and probabilities are

∂ ln Prob[choicec, branchb]
∂x(k) in choice C and branch B

= {
1(b = B)[1(c = C) − PC|B]

+ τB[1(b = B) − PB]PC | B
}
βk.

The nested logit model has been extended to three and higher levels. The complexity
of the model increases geometrically with the number of levels. But the model has been
found to be extremely flexible and is widely used for modeling consumer choice and in
the marketing and transportation literatures, to name a few.

There are two ways to estimate the parameters of the nested logit model. A limited
information, two-step maximum likelihood approach can be done as follows:

1. Estimate β by treating the choice within branches as a simple conditional logit
model.

2. Compute the inclusive values for all the branches in the model. Estimate γ and
the τ parameters by treating the choice among branches as a conditional logit
model with attributes zl and Il .

61See Hensher, Louviere, and Swaite (2000).
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Since this approach is a two-step estimator, the estimate of the asymptotic covariance
matrix of the estimates at the second step must be corrected. [See Section 4.6, McFadden
(1984), and Greene (1995a, Chapter 25).] For full information maximum likelihood
(FIML) estimation of the model, the log-likelihood is

ln L =
n∑

i=1

ln[Prob(twig | branch)] × Prob(branch)]i .

The information matrix is not block diagonal in β and (γ , τ ), so FIML estimation will
be more efficient than two-step estimation.

To specify the nested logit model, it is necessary to partition the choice set into
branches. Sometimes there will be a natural partition, such as in the example given
by Maddala (1983) when the choice of residence is made first by community, then by
dwelling type within the community. In other instances, however, the partitioning of the
choice set is ad hoc and leads to the troubling possibility that the results might be depen-
dent on the branches so defined. (Many studies in this literature present several sets of
results based on different specifications of the tree structure.) There is no well-defined
testing procedure for discriminating among tree structures, which is a problematic as-
pect of the model.

21.7.5 A HETEROSCEDASTIC LOGIT MODEL

Bhat (1995) and Allenby and Ginter (1995) have developed an extension of the con-
ditional logit model that works around the difficulty of specifying the tree for a nested
model. Their model is based on the same random utility structure as before,

Ui j = β ′xi j + εi j .

The logit model arises from the assumption that εi j has a homoscedastic extreme value
(HEV) distribution with common variance π2/6. The authors’ proposed model simply
relaxes the assumption of equal variances. Since the comparisons are all pairwise, one
of the variances is set to 1.0; the same comparisons of utilities will result if all equations
are multiplied by the same constant, so the indeterminacy is removed by setting one
of the variances to one. The model that remains, then, is exactly as before, with the
additional assumption that Var[εi j ] = σ j , with σJ = 1.0.

21.7.6 MULTINOMIAL MODELS BASED ON
THE NORMAL DISTRIBUTION

A natural alternative model that relaxes the independence restrictions built into the
multinomial logit (MNL) model is the multinomial probit (MNP) model. The structural
equations of the MNP model are

Uj = x′
jβ j + ε j , j = 1, . . . , J, [ε1, ε2, . . . , εJ ] ∼ N[0, ].

The term in the log-likelihood that corresponds to the choice of alternative q is

Prob[choice q] = Prob[Uq > Uj , j = 1, . . . , J, j �= q].

The probability for this occurrence is

Prob[choice q] = Prob[ε1 − εq > (xq − x1)
′β, . . . , εJ − εq > (xq − xJ )

′β]
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for the J − 1 other choices, which is a cumulative probability from a (J − 1)-variate
normal distribution. As in the HEV model, since we are only making comparisons, one
of the variances in this J − 1 variate structure—that is, one of the diagonal elements in
the reduced —must be normalized to 1.0. Since only comparisons are ever observable
in this model, for identification, J − 1 of the covariances must also be normalized, to
zero. The MNP model allows an unrestricted (J − 1)× (J − 1) correlation structure and
J − 2 free standard deviations for the disturbances in the model. (Thus, a two choice
model returns to the univariate probit model of Section 21.2.) For more than two choices,
this specification is far more general than the MNL model, which assumes that  = I.
(The scaling is absorbed in the coefficient vector in the MNL model.)

The main obstacle to implementation of the MNP model has been the difficulty in
computing the multivariate normal probabilities for any dimensionality higher than 2.
Recent results on accurate simulation of multinormal integrals, however, have made
estimation of the MNP model feasible. (See Section E.5.6 and a symposium in the
November 1994 issue of the Review of Economics and Statistics.) Yet some practical
problems remain. Computation is exceedingly time consuming. It is also necessary to
ensure that  remain a positive definite matrix. One way often suggested is to construct
the Cholesky decomposition of , LL′, where L is a lower triangular matrix, and esti-
mate the elements of L. Maintaining the normalizations and zero restrictions will still
be cumbersome, however. An alternative is estimate the correlations, R, and a diagonal
matrix of standard deviations, S = diag(σ1, . . . , σJ−2, 1, 1) separately. The normaliza-
tions, R j j = 1, and exclusions, RJl = 0, are simple to impose, and  is just SRS. R is
otherwise restricted only in that −1 < R jl < +1. The resulting matrix must be positive
definite. Identification appears to be a serious problem with the MNP model. Although
the unrestricted MNP model is fully identified in principle, convergence to satisfactory
results in applications with more than three choices appears to require many additional
restrictions on the standard deviations and correlations, such as zero restrictions or
equality restrictions in the case of the standard deviations.

21.7.7 A RANDOM PARAMETERS MODEL

Another variant of the multinomial logit model is the random parameters logit (RPL)
model (also called the “mixed logit model”). [See Revelt and Train (1996); Bhat (1996);
Berry, Levinsohn, and Pakes (1995); and Jain, Vilcassim, and Chintagunta (1994).]
Train’s formulation of the RPL model (which encompasses the others) is a modification
of the MNL model. The model is a random coefficients formulation. The change to the
basic MNL model is the parameter specification in the distribution of the parameters
across individuals, i ;

βik = βk + z′
iθk + σkuik,

where uik is normally distributed with correlation matrix R, σk is the standard deviation
of the distribution, βk + z′

iθk is the mean of the distribution, and zi is a vector of person
specific characteristics (such as age and income) that do not vary across choices. This
formulation contains all the earlier models. For example, if θk = 0 for all the coefficients
and σk = 0 for all the coefficients except for choice specific constants, then the original
MNL model with a normal-logistic mixture for the random part of the MNL model
arises (hence the name).
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The authors propose estimation of the model by simulating the log-likelihood func-
tion rather than direct integration to compute the probabilities, which would be infea-
sible because the mixture distribution composed of the original εi j and the random part
of the coefficient is unknown. For any individual,

Prob[choice q | ui ] = MNL probability | β i (ui ),

with all restrictions imposed on the coefficients. The appropriate probability is

Eu[Prob(choice q | u)] =
∫

u1,...,uk

Prob[choice q | u] f (u) du,

which can be estimated by simulation, using

Est.Eu[Prob(choice q | u)] = 1
R

R∑
r=1

Prob[choice q | β̂ i (eir )]

where eir is the r th of R draws for observation i . (There are nkR draws in total. The
draws for observation i must be the same from one computation to the next, which
can be accomplished by assigning to each individual their own seed for the random
number generator and restarting it each time the probability is to be computed.) By this
method, the log-likelihood and its derivatives with respect to (βk, θk, σk), k = 1, . . . , K
and R are simulated to find the values that maximize the simulated log-likelihood. This
is precisely the approach we used in Example 17.10.

The RPL model enjoys a considerable advantage not available in any of the other
forms suggested. In a panel data setting, one can formulate a random effects model
simply by making the variation in the coefficients time invariant. Thus, the model is
changed to

Ui jt = x′
i j tβ i j t + εi j t , i = 1, . . . , n, j = 1, . . . , J, t = 1, . . . T

βi j t,k = βk + z′
i tθ ik + σkuik,

The time variation in the coefficients is provided by the choice invariant variables which
may change through time. Habit persistence is carried by the time invariant random
effect, uik. If only the constant terms vary and they are assumed to be uncorrelated,
then this is logically equivalent to the familiar random effects model. But, much greater
generality can be achieved by allowing the other coefficients to vary randomly across
individuals and by allowing correlation of these effects.62

21.7.8 APPLICATION: CONDITIONAL LOGIT MODEL
FOR TRAVEL MODE CHOICE

Hensher and Greene [Greene (1995a)] report estimates of a model of travel mode
choice for travel between Sydney and Melbourne, Australia. The data set contains
210 observations on choice among four travel modes, air, train, bus, and car. (See Ap-
pendix Table F21.2.) The attributes used for their example were: choice-specific con-
stants; two choice-specific continuous measures; GC, a measure of the generalized cost
of the travel that is equal to the sum of in-vehicle cost, INVC and a wagelike measure

62See Hensher (2001) for an application to transportation mode choice in which each individual is observed
in several choice situations.
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TABLE 21.10 Summary Statistics for Travel Mode Choice Data

Number True
GC TTME INVC INVT HINC Choosing p prop.

Air 102.648 61.010 85.522 133.710 34.548 58 0.28 0.14
113.522 46.534 97.569 124.828 41.274

Train 130.200 35.690 51.338 608.286 34.548 63 0.30 0.13
106.619 28.524 37.460 532.667 23.063

Bus 115.257 41.650 33.457 629.462 34.548 30 0.14 0.09
108.133 25.200 33.733 618.833 29.700

Car 94.414 0 20.995 573.205 34.548 59 0.28 0.64
89.095 0 15.694 527.373 42.220

Note: The upper figure is the average for all 210 observations. The lower figure is the mean for the observations
that made that choice.

times INVT, the amount of time spent traveling; and TTME, the terminal time (zero for
car); and for the choice between air and the other modes, HINC, the household income.
A summary of the sample data is given in Table 21.10. The sample is choice based so as
to balance it among the four choices—the true population allocation, as shown in the
last column of Table 21.10, is dominated by drivers.

The model specified is

Ui j = αairdi,air + αtraindi,train + αbusdi,bus + βGGCi j + βTTTMEi j + γHdi,airHINCi + εi j .

where for each j, εi j has the same independent, type 1 extreme value distribution,

Fε(εi j ) = exp(−exp(−εi j ))

which has standard deviation π2/6. The mean is absorbed in the constants. Estimates of
the conditional logit model are shown in Table 21.11. The model was fit with and without
the corrections for choice based sampling. Since the sample shares do not differ radically
from the population proportions, the effect on the estimated parameters is fairly modest.
Nonetheless, it is apparent that the choice based sampling is not completely innocent.
A cross tabulation of the predicted versus actual outcomes is given in Table 21.12.
The predictions are generated by tabulating the integer parts of mjk = ∑210

i=1 p̂i j dik,

TABLE 21.11 Parameter Estimates (t Values in Parentheses)

Unweighted Sample Choice Based Weighting

Estimate t Ratio Estimate t Ratio

βG −0.15501 −3.517 −0.01333 −2.724
βT −0.19612 −9.207 −0.13405 −7.164
γH 0.01329 1.295 −0.00108 −0.087
αair 5.2074 6.684 6.5940 5.906
αtrain 3.8690 8.731 3.6190 7.447
αbus 3.1632 7.025 3.3218 5.698
Log likelihood at β = 0 −291.1218 −291.1218
Log likelihood (sample shares) −283.7588 −223.0578
Log likelihood at convergence −199.1284 −147.5896
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TABLE 21.12 Predicted Choices Based on Model Probabilities (Predictions
Based on Choice Based Sampling are in Parentheses.)

Air Train Bus Car Total (Actual)

Air 32 (30) 8 (3) 5 (3) 13 (23) 58
Train 7 (3) 37 (30) 5 (3) 14 (27) 63
Bus 3 (1) 5 (2) 15 (4) 6 (12) 30
Car 16 (5) 13 (5) 6 (3) 25 (45) 59
Total (Predicted) 58 (39) 63 (40) 30 (23) 59 (108) 210

j, k= air, train, bus, car, where p̂i j is the predicted probability of outcome j for obser-
vation i and dik is the binary variable which indicates if individual i made choice k.

Are the odds ratios train/bus and car/bus really independent from the presence of
the air alternative? To use the Hausman test, we would eliminate choice air, from the
choice set and estimate a three-choice model. Since 58 respondents chose this mode,
we would lose 58 observations. In addition, for every data vector left in the sample,
the air specific constant and the interaction, di,air × HINCi would be zero for every
remaining individual. Thus, these parameters could not be estimated in the restricted
model. We would drop these variables. The test would be based on the two estimators
of the remaining four coefficients in the model, [βG, βT, αtrain, αbus]. The results for the
test are as shown in Table 21.13.

The hypothesis that the odds ratios for the other three choices are independent
from air would be rejected based on these results, as the chi-squared statistic exceeds
the critical value.

Since IIA was rejected, they estimated a nested logit model of the following type:

Travel Determinants

(Income)FLY GROUND

TRAIN BUS CAR (G cost, T time)AIR

TABLE 21.13 Results for IIA Test

Full Choice Set Restricted Choice Set

βG βT αtrain αbus βG βT αtrain αbus

Estimate −0.0155 −0.0961 3.869 3.163 −0.0639 −0.0699 4.464 3.105

Estimated Asymptotic Covariance Matrix Estimated Asymptotic Covariance Matrix

βG 0.194e-5 0.000101
βT −0.46e-7 0.000110 −0.0000013 0.000221
αtrain −0.00060 −0.0038 0.196 −0.000244 −0.00759 0.410
αbus −0.00026 −0.0037 0.161 0.203 −0.000113 −0.00753 0.336 0.371

Note: 0.nnne-p indicates times 10 to the negative p power.
H = 33.3363. Critical chi-squared[4] = 9.488.
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TABLE 21.14 Estimates of a Mode Choice Model (Standard Errors
in Parentheses)

Parameter FIML Estimate LIML Estimate Unconditional

αair 6.042 (1.199) −0.0647 (2.1485) 5.207 (0.779)
αbus 4.096 (0.615) 3.105 (0.609) 3.163 (0.450)
αtrain 5.065 (0.662) 4.464 (0.641) 3.869 (0.443)
βGC −0.03159 (0.00816) −0.06368 (0.0100) −0.1550 (0.00441)
βTTME −0.1126 (0.0141) −0.0699 (0.0149) −0.09612 (0.0104)
γH 0.01533 (0.00938) 0.02079 (0.01128) 0.01329 (0.0103)
τflyu 0.5860 (0.141) 0.2266 (0.296) 1.0000 (0.000)
τground 0.3890 (0.124) 0.1587 (0.262) 1.0000 (0.000)
σfly 2.1886 (0.525) 5.675 (2.350) 1.2825 (0.000)
σground 3.2974 (1.048) 8.081 (4.219) 1.2825 (0.000)
log L −193.6561 −115.3354 + (−87.9382) −199.1284

Note that one of the branches has only a single choice, so the conditional probabil-
ity, Pj |fly = Pair |fly = 1. The model is fit by both FIML and LIML methods. Three sets of
estimates are shown in Table 21.14. The set marked “unconditional” are the simple con-
ditional (multinomial) logit (MNL) model for choice among the four alternatives that
was reported earlier. Both inclusive value parameters are constrained (by construction)
to equal 1.0000. The FIML estimates are obtained by maximizing the full log likelihood
for the nested logit model. In this model,

Prob(choice | branch) = P(αairdair + αtraindtrain + αbusdbus + βGGC + βTTTME),

Prob(branch) = P(γ dairHINC + τfly IVfly + τground IVground),

Prob(choice, branch) = Prob(choice | branch) × Prob(branch).

Finally, the limited information estimator is estimated in two steps. At the first step, a
choice model is estimated for the three choices in the ground branch:

Prob(choice | ground) = P(αtraindtrain + αbusdbus + βGGC + βTTTME)

This model uses only the observations that chose one of the three ground modes; for
these data, this subset was 152 of the 210 observations. Using the estimates from this
model, we compute, for all 210 observations, IVfly = log[exp(z′

airβ)] for air and 0 for
ground, and IVground = log[

∑
j=ground exp(z′

jβ)] for ground modes and 0 for air. Then,
the choice model

Prob(branch) = P(αairdair + γHdairHINC + τfly IVfly + τground IVground)

is fit separately. Since the Hessian is not block diagonal, the FIML estimator is more
efficient. To obtain appropriate standard errors, we must make the Murphy and Topel
correction for two-step estimation; see Section 17.7 and Theorem 17.8. It is simplified
a bit here because different samples are used for the two steps. As such, the matrix R
in the theorem is not computed. To compute C, we require the matrix of derivatives of
log Prob(branch) with respect to the direct parameters, αair, γH, τfly, τground, and with
respect to the choice parameters, β. Since this model is a simple binomial (two choice)
logit model, these are easy to compute, using (21-19). Then the corrected asymptotic
covariance matrix is computed using Theorem 17.8 with R = 0.
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TABLE 21.15 Estimates of a Heteroscedastic Extreme Value Model (Standard Errors
in Parentheses)

Parameter HEV Estimate Nested Logit Estimate Restricted HEV

αair 7.8326 (10.951) 6.062 (1.199) 2.973 (0.995)
αbus 7.1718 (9.135) 4.096 (0.615) 4.050 (0.494)
αtrain 6.8655 (8.829) 5.065 (0.662) 3.042 (0.429)
βGC −0.05156 (0.0694) −0.03159 (0.00816) −0.0289 (0.00580)
βTTME −0.1968 (0.288) −0.1126 (0.0141) −0.0828 (0.00576)
γ 0.04024 (0.0607) 0.01533 (0.00938) 0.0238 (0.0186)
τfly — 0.5860 (0.141) —
τground — 0.3890 (0.124) —
θair 0.2485 (0.369) 0.4959 (0.124)
θtrain 0.2595 (0.418) 1.0000 (0.000)
θbus 0.6065 (1.040) 1.0000 (0.000)
θcar 1.0000 (0.000) 1.0000 (0.000)

Implied Standard Deviations

σair 5.161 (7.667)
σtrain 4.942 (7.978)
σbus 2.115 (3.623)
σcar 1.283 (0.000)
ln L −195.6605 −193.6561 −200.3791

The likelihood ratio statistic for the nesting (heteroscedasticity) against the null hy-
pothesis of homoscedasticity is −2[−199.1284− (−193.6561)] = 10.945. The 95 percent
critical value from the chi-squared distribution with two degrees of freedom is 5.99, so
the hypothesis is rejected. We can also carry out a Wald test. The asymptotic covariance
matrix for the two inclusive value parameters is [0.01977/0.009621, 0.01529]. The Wald
statistic for the joint test of the hypothesis that τfly = τground = 1, is

W = (0.586 − 1.0 0.389 − 1.0)

[
0.1977 0.009621

0.009621 0.01529

]−1 (
0.586 − 1.0
0.389 − 1.0

)
= 24.475

The hypothesis is rejected, once again.
The nested logit model was reestimated under assumptions of the heteroscedastic

extreme value model. The results are shown in Table 21.15. This model is less restrictive
than the nested logit model. To make them comparable, we note that we found that
σair = π/(τair

√
6) = 2.1886 and σtrain = σbus = σcar = π/(τground

√
6) = 3.2974. The het-

eroscedastic extreme value (HEV) model thus relaxes one variance restriction, because
it has three free variance parameters instead of two. On the other hand, the important
degree of freedom here is that the HEV model does not impose the IIA assumption
anywhere in the choice set, whereas the nested logit does, within each branch.

A primary virtue of the HEV model, the nested logit model, and other alternative
models is that they relax the IIA assumption. This assumption has implications for
the cross elasticities between attributes in the different probabilities. Table 21.16 lists
the estimated elasticities of the estimated probabilities with respect to changes in the
generalized cost variable. Elasticities are computed by averaging the individual sample
values rather than computing them once at the sample means. The implication of the IIA
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TABLE 21.16 Estimated Elasticities with Respect
to Generalized Cost

Cost Is That of Alternative

Effect on Air Train Bus Car

Multinomial Logit
Air −1.136 0.498 0.238 0.418
Train 0.456 −1.520 0.238 0.418
Bus 0.456 0.498 −1.549 0.418
Car 0.456 0.498 0.238 −1.061

Nested Logit
Air −0.858 0.332 0.179 0.308
Train 0.314 −4.075 0.887 1.657
Bus 0.314 1.595 −4.132 1.657
Car 0.314 1.595 0.887 −2.498

Heteroscedastic Extreme Value
Air −1.040 0.367 0.221 0.441
Train 0.272 −1.495 0.250 0.553
Bus 0.688 0.858 −6.562 3.384
Car 0.690 0.930 1.254 −2.717

assumption can be seen in the table entries. Thus, in the estimates for the multinomial
logit (MNL) model, the cross elasticities for each attribute are all equal. In the nested
logit model, the IIA property only holds within the branch. Thus, in the first column, the
effect of GC of air affects all ground modes equally, whereas the effect of GC for train
is the same for bus and car but different from these two for air. All these elasticities
vary freely in the HEV model.

Table 21.17 lists the estimates of the parameters of the multinomial probit and
random parameters logit models. For the multinomial probit model, we fit three spec-
ifications: (1) free correlations among the choices, which implies an unrestricted 3 × 3
correlation matrix and two free standard deviations; (2) uncorrelated disturbances,
but free standard deviations, a model that parallels the heteroscedastic extreme value
model; and (3) uncorrelated disturbances and equal standard deviations, a model that
is the same as the original conditional logit model save for the normal distribution of
the disturbances instead of the extreme value assumed in the logit model. In this case,
the scaling of the utility functions is different by a factor of (π2/6)1/2 = 1.283, as the
probit model assumes ε j has a standard deviation of 1.0.

We also fit three variants of the random parameters logit. In these cases, the choice
specific variance for each utility function is σ 2

j + θ2
j where σ 2

j is the contribution of
the logit model, which is π2/6 = 1.645, and θ2

j is the estimated constant specific vari-
ance estimated in the random parameters model. The combined estimated standard
deviations are given in the table. The estimates of the specific parameters, θ j are given
in the footnotes. The estimated models are: (1) unrestricted variation and correlation
among the three intercept parameters—this parallels the general specification of the
multinomial probit model; (2) only the constant terms randomly distributed but uncor-
related, a model that is parallel to the multinomial probit model with no cross equa-
tion correlation and to the heteroscedastic extreme value model shown in Table 21.15;
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TABLE 21.17 Parameter Estimates for Normal Based Multinomial Choice Models

Multinomial Probit Random Parameters Logit

Parameter Unrestricted Homoscedastic Uncorrelated Unrestricted Constants Uncorrelated

αair 1.358 3.005 3.171 5.519 4.807 12.603
σair 4.940 1.000a 3.629 4.009d 3.225b 2.803c

αtrain 4.298 2.409 4.277 5.776 5.035 13.504
σtrain 1.899 1.000a 1.581 1.904 1.290b 1.373
αbus 3.609 1.834 3.533 4.813 4.062 11.962
σbus 1.000a 1.000a 1.000a 1.424 3.147b 1.287
αcar 0.000a 0.000a 0.000a 0.000a 0.000a 0.000
σcar 1.000a 1.000 1.000a 1.283a 1.283a 1.283a

βG −0.0351 −0.0113 −0.0325 −0.0326 −0.0317 −0.0544
σβG — — — 0.000a 0.000a 0.00561
βT −0.0769 −0.0563 −0.0918 −0.126 −0.112 −0.2822
σβT — — — 0.000a 0.000a 0.182
γH 0.0593 0.0126 0.0370 0.0334 0.0319 0.0846
σγ — — — 0.000a 0.000a 0.0768
ρAT 0.581 0.000a 0.000a 0.543 0.000a 0.000a

ρAB 0.576 0.000a 0.000a 0.532 0.000a 0.000a

ρBT 0.718 0.000a 0.000a 0.993 0.000a 0.000a

log L −196.9244 −208.9181 −199.7623 −193.7160 −199.0073 −175.5333

aRestricted to this fixed value.
bComputed as the square root of (π2/6 + θ2

j ), θair = 2.959, θtrain = 0.136, θbus = 0.183, θcar = 0.000.
cθair = 2.492, θtrain = 0.489, θbus = 0.108, θcar = 0.000.
dDerived standard deviations for the random constants are θair = 3.798, θtrain = 1.182, θbus = 0.0712, θcar = 0.000.

(3) random but uncorrelated parameters. This model is more general than the others,
but is somewhat restricted as the parameters are assumed to be uncorrelated. Identi-
fication of the correlation model is weak in this model—after all, we are attempting
to estimate a 6 × 6 correlation matrix for all unobserved variables. Only the estimated
parameters are shown in Table 21.17. Estimated standard errors are similar to (although
generally somewhat larger than) those for the basic multinomial logit model.

The standard deviations and correlations shown for the multinomial probit model
are parameters of the distribution of εi j , the overall randomness in the model. The
counterparts in the random parameters model apply to the distributions of the param-
eters. Thus, the full disturbance in the model in which only the constants are random
is εiair + uair for air, and likewise for train and bus. Likewise, the correlations shown
for the first two models are directly comparable, though it should be noted that in the
random parameters model, the disturbances have a distribution that is that of a sum
of an extreme value and a normal variable, while in the probit model, the disturbances
are normally distributed. With these considerations, the “unrestricted” models in each
case are comparable and are, in fact, fairly similar.

None of this discussion suggests a preference for one model or the other. The
likelihood values are not comparable, so a direct test is precluded. Both relax the IIA
assumption, which is a crucial consideration. The random parameters model enjoys
a significant practical advantage, as discussed earlier, and also allows a much richer
specification of the utility function itself. But, he question still warrants additional study.
Both models are making their way into the applied literature.
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21.8 ORDERED DATA

Some multinomial-choice variables are inherently ordered. Examples that have ap-
peared in the literature include the following:

1. Bond ratings
2. Results of taste tests
3. Opinion surveys
4. The assignment of military personnel to job classifications by skill level
5. Voting outcomes on certain programs
6. The level of insurance coverage taken by a consumer: none, part, or full
7. Employment: unemployed, part time, or full time

In each of these cases, although the outcome is discrete, the multinomial logit or probit
model would fail to account for the ordinal nature of the dependent variable.63 Ordinary
regression analysis would err in the opposite direction, however. Take the outcome of
an opinion survey. If the responses are coded 0, 1, 2, 3, or 4, then linear regression would
treat the difference between a 4 and a 3 the same as that between a 3 and a 2, whereas
in fact they are only a ranking.

The ordered probit and logit models have come into fairly wide use as a framework
for analyzing such responses (Zavoina and McElvey, 1975). The model is built around
a latent regression in the same manner as the binomial probit model. We begin with

y∗ = x′β + ε.

As usual, y∗ is unobserved. What we do observe is

y = 0 if y∗ ≤ 0,

= 1 if 0 < y∗ ≤ µ1,

= 2 if µ1 < y∗ ≤ µ2,

...

= J if µJ−1 ≤ y∗,

which is a form of censoring. The µs are unknown parameters to be estimated with β.
Consider, for example, an opinion survey. The respondents have their own intensity
of feelings, which depends on certain measurable factors x and certain unobservable
factors ε. In principle, they could respond to the questionnaire with their own y∗ if asked
to do so. Given only, say, five possible answers, they choose the cell that most closely
represents their own feelings on the question.

63In two papers, Beggs, Cardell, and Hausman (1981) and Hausman and Ruud (1986), the authors analyze a
richer specification of the logit model when respondents provide their rankings of the full set of alternatives in
addition to the identity of the most preferred choice. This application falls somewhere between the conditional
logit model and the ones we shall discuss here in that, rather than provide a single choice among J either
unordered or ordered alternatives, the consumer chooses one of the J! possible orderings of the set of
unordered alternatives.
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FIGURE 21.4 Probabilities in the Ordered Probit Model.

As before, we assume that ε is normally distributed across observations.64 For the
same reasons as in the binomial probit model (which is the special case of J = 1), we
normalize the mean and variance of ε to zero and one. We then have the following
probabilities:

Prob(y = 0 | x) = 
(−x′β),

Prob(y = 1 | x) = 
(µ1 − x′β) − 
(−x′β),

Prob(y = 2 | x) = 
(µ2 − x′β) − 
(µ1 − x′β),

...

Prob(y = J | x) = 1 − 
(µJ−1 − x′β).

For all the probabilities to be positive, we must have

0 < µ1 < µ2 < · · · < µJ−1.

Figure 21.4 shows the implications of the structure. This is an extension of the univariate
probit model we examined earlier. The log-likelihood function and its derivatives can
be obtained readily, and optimization can be done by the usual means.

As usual, the marginal effects of the regressors x on the probabilities are not equal
to the coefficients. It is helpful to consider a simple example. Suppose there are three
categories. The model thus has only one unknown threshold parameter. The three

64Other distributions, particularly the logistic, could be used just as easily. We assume the normal purely for
convenience. The logistic and normal distributions generally give similar results in practice.
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probabilities are

Prob(y = 0 | x) = 1 − 
(x′β),

Prob(y = 1 | x) = 
(µ − x′β) − 
(−x′β),

Prob(y = 2 | x) = 1 − 
(µ − x′β).

For the three probabilities, the marginal effects of changes in the regressors are

∂ Prob(y = 0 | x)

∂x
= −φ(x′β)β,

∂ Prob(y = 1 | x)

∂x
= [φ(−x′β) − φ(µ − x′β)]β,

∂ Prob(y = 2 | x)

∂x
= φ(µ − x′β)β.

Figure 21.5 illustrates the effect. The probability distributions of y and y∗ are shown in
the solid curve. Increasing one of the x’s while holding β and µ constant is equivalent
to shifting the distribution slightly to the right, which is shown as the dashed curve.
The effect of the shift is unambiguously to shift some mass out of the leftmost cell.
Assuming that β is positive (for this x), Prob(y = 0 | x) must decline. Alternatively,
from the previous expression, it is obvious that the derivative of Prob(y = 0 | x) has the
opposite sign from β. By a similar logic, the change in Prob(y = 2 | x) [or Prob(y = J | x)

in the general case] must have the same sign as β. Assuming that the particular β is
positive, we are shifting some probability into the rightmost cell. But what happens
to the middle cell is ambiguous. It depends on the two densities. In the general case,
relative to the signs of the coefficients, only the signs of the changes in Prob(y = 0 | x)

and Prob(y = J | x) are unambiguous! The upshot is that we must be very careful

FIGURE 21.5 Effects of Change in x on Predicted Probabilities.
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TABLE 21.18 Estimated Rating
Assignment Equation

Mean of
Variable Estimate t Ratio Variable

Constant −4.34 — —
ENSPA 0.057 1.7 0.66
EDMA 0.007 0.8 12.1
AFQT 0.039 39.9 71.2
EDYRS 0.190 8.7 12.1
MARR −0.48 −9.0 0.08
AGEAT 0.0015 0.1 18.8
µ 1.79 80.8 —

in interpreting the coefficients in this model. Indeed, without a fair amount of extra
calculation, it is quite unclear how the coefficients in the ordered probit model should
be interpreted.65

Example 21.11 Rating Assignments
Marcus and Greene (1985) estimated an ordered probit model for the job assignments of
new Navy recruits. The Navy attempts to direct recruits into job classifications in which
they will be most productive. The broad classifications the authors analyzed were technical
jobs with three clearly ranked skill ratings: “medium skilled,” “highly skilled,” and “nuclear
qualified/highly skilled.” Since the assignment is partly based on the Navy’s own assessment
and needs and partly on factors specific to the individual, an ordered probit model was used
with the following determinants: (1) ENSPE = a dummy variable indicating that the individual
entered the Navy with an “A school” (technical training) guarantee, (2) EDMA = educational
level of the entrant’s mother, (3) AFQT = score on the Air Force Qualifying Test, (4) EDYRS =
years of education completed by the trainee, (5) MARR = a dummy variable indicating that
the individual was married at the time of enlistment, and (6) AGEAT = trainee’s age at the
time of enlistment. The sample size was 5,641. The results are reported in Table 21.18. The
extremely large t ratio on the AFQT score is to be expected, since it is a primary sorting
device used to assign job classifications.

To obtain the marginal effects of the continuous variables, we require the standard normal
density evaluated at −x̄′β̂ = −0.8479 and µ̂ − x̄′β̂ = 0.9421. The predicted probabilities are

(−0.8479) = 0.198, 
(0.9421) − 
(−0.8479) = 0.628, and 1 − 
(0.9421) = 0.174. (The
actual frequencies were 0.25, 0.52, and 0.23.) The two densities are φ (−0.8479) = 0.278 and
φ (0.9421) = 0.255. Therefore, the derivatives of the three probabilities with respect to AFQT,
for example, are

∂ P0

∂AFQT
= (−0.278)0.039 = −0.01084,

∂ P1

∂AFQT
= (0.278 − 0.255)0.039 = 0.0009,

∂ P2

∂AFQT
= 0.255(0.039) = 0.00995.

65This point seems uniformly to be overlooked in the received literature. Authors often report coefficients
and t ratios, occasionally with some commentary about significant effects, but rarely suggest upon what or in
what direction those effects are exerted.
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TABLE 21.19 Marginal Effect of a Binary Variable

−β̂ ′x µ̂ − β̂ ′x Prob[ y = 0] Prob[ y = 1] Prob[ y = 2]

MARR = 0 −0.8863 0.9037 0.187 0.629 0.184
MARR = 1 −0.4063 1.3837 0.342 0.574 0.084
Change 0.155 −0.055 −0.100

Note that the marginal effects sum to zero, which follows from the requirement that the
probabilities add to one. This approach is not appropriate for evaluating the effect of a dummy
variable. We can analyze a dummy variable by comparing the probabilities that result when
the variable takes its two different values with those that occur with the other variables held
at their sample means. For example, for the MARR variable, we have the results given in
Table 21.19.

21.9 MODELS FOR COUNT DATA

Data on patents suggested in Section 21.2 are typical of count data. In principle, we
could analyze these data using multiple linear regression. But the preponderance of
zeros and the small values and clearly discrete nature of the dependent variable suggest
that we can improve on least squares and the linear model with a specification that
accounts for these characteristics. The Poisson regression model has been widely used
to study such data.66

The Poisson regression model specifies that each yi is drawn from a Poisson distri-
bution with parameter λi , which is related to the regressors xi . The primary equation of
the model is

Prob(Yi = yi | xi ) = e−λi λ
yi
i

yi !
, yi = 0, 1, 2, . . . .

The most common formulation for λi is the loglinear model,

ln λi = x′
iβ.

It is easily shown that the expected number of events per period is given by

E [yi | xi ] = Var[yi | xi ] = λi = ex′
i β,

so
∂ E [yi | xi ]

∂xi
= λiβ.

With the parameter estimates in hand, this vector can be computed using any data vector
desired.

In principle, the Poisson model is simply a nonlinear regression.67 But it is far easier
to estimate the parameters with maximum likelihood techniques. The log-likelihood

66There are several recent surveys of specification and estimation of models for counts. Among them are
Cameron and Trivedi (1998), Greene (1996a), Winkelmann (2000), and Wooldridge (1997).
67We have estimated a Poisson regression model using two-step nonlinear least squares in Example 17.9.
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function is

ln L =
n∑

i=1

[−λi + yi x′
iβ − ln yi !].

The likelihood equations are

∂ ln L
∂β

=
n∑

i=1

(yi − λi )xi = 0.

The Hessian is

∂2 ln L
∂β∂β ′ = −

n∑
i=1

λi xi x′
i .

The Hessian is negative definite for all x and β. Newton’s method is a simple algorithm
for this model and will usually converge rapidly. At convergence, [

∑n
i=1 λ̂i xi x′

i ]
−1 pro-

vides an estimator of the asymptotic covariance matrix for the parameter estimates.
Given the estimates, the prediction for observation i is λ̂i = exp(x′β̂). A standard error
for the prediction interval can be formed by using a linear Taylor series approximation.
The estimated variance of the prediction will be λ̂

2
i x′

i Vxi , where V is the estimated
asymptotic covariance matrix for β̂.

For testing hypotheses, the three standard tests are very convenient in this model.
The Wald statistic is computed as usual. As in any discrete choice model, the likelihood
ratio test has the intuitive form

LR = 2
n∑

i=1

ln
(

P̂i

P̂restricted,i

)
,

where the probabilities in the denominator are computed with using the restricted
model. Using the BHHH estimator for the asymptotic covariance matrix, the LM
statistic is simply

LM =
[

n∑
i=1

x′
i (yi − λ̂i )

]′ [ n∑
i=1

xi x′
i (yi − λ̂i )

2

]−1 [
n∑

i=1

xi (yi − λ̂i )

]
= i′G(G′G)−1G′i,

where each row of G is simply the corresponding row of X multiplied by ei = (yi − λ̂i ), λ̂i

is computed using the restricted coefficient vector, and i is a column of ones.

21.9.1 MEASURING GOODNESS OF FIT

The Poisson model produces no natural counterpart to the R2 in a linear regression
model, as usual, because the conditional mean function is nonlinear and, moreover,
because the regression is heteroscedastic. But many alternatives have been suggested.68

68See the surveys by Cameron and Windmeijer (1993), Gurmu and Trivedi (1994), and Greene (1995b).
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A measure based on the standardized residuals is

R2
p = 1 −

∑n
i=1

[
yi −λ̂i√

λ̂i

]2

∑n
i=1

[
yi −ȳ√

ȳ

]2 .

This measure has the virtue that it compares the fit of the model with that provided by a
model with only a constant term. But it can be negative, and it can fall when a variable
is dropped from the model. For an individual observation, the deviance is

di = 2[yi ln(yi/λ̂i ) − (yi − λ̂i )] = 2[yi ln(yi/λ̂i ) − ei ],

where, by convention, 0 ln(0) = 0. If the model contains a constant term, then
∑n

i=1 ei = 0.

The sum of the deviances,

G2 =
n∑

i=1

di = 2
n∑

i=1

yi ln(yi/λ̂i ),

is reported as an alternative fit measure by some computer programs. This statistic will
equal 0.0 for a model that produces a perfect fit. (Note that since yi is an integer while
the prediction is continuous, it could not happen.) Cameron and Windmeijer (1993)
suggest that the fit measure based on the deviances,

R2
d = 1 −

∑n
i=1

[
yi log

(
yi

λ̂i

)
− (yi − λ̂i )

]

∑n
i=1

[
yi log

(
yi

ȳ

)] ,

has a number of desirable properties. First, denote the log-likelihood function for the
model in which ψi is used as the prediction (e.g., the mean) of yi as  (ψi , yi ). The Poisson
model fit by MLE is, then,  (λ̂i , yi ), the model with only a constant term is  (ȳ, yi ), and
a model that achieves a perfect fit (by predicting yi with itself) is l(yi , yi ). Then

R2
d =  (λ̂, yi ) −  (ȳ, yi )

 (yi , yi ) −  (ȳ, yi )
.

Both numerator and denominator measure the improvement of the model over one
with only a constant term. The denominator measures the maximum improvement,
since one cannot improve on a perfect fit. Hence, the measure is bounded by zero and
one and increases as regressors are added to the model.69 We note, finally, the passing
resemblance of R2

d to the “pseudo-R2,” or “likelihood ratio index” reported by some
statistical packages (e.g., Stata),

R2
LRI = 1 −  (λ̂i , yi )

 (ȳ, yi )
.

69Note that multiplying both numerator and denominator by 2 produces the ratio of two likelihood ratio
statistics, each of which is distributed as chi-squared.
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Many modifications of the Poisson model have been analyzed by economists.70 In this
and the next few sections, we briefly examine a few of them.

21.9.2 TESTING FOR OVERDISPERSION

The Poisson model has been criticized because of its implicit assumption that the
variance of yi equals its mean. Many extensions of the Poisson model that relax this
assumption have been proposed by Hausman, Hall, and Griliches (1984), McCullagh
and Nelder (1983), and Cameron and Trivedi (1986), to name but a few.

The first step in this extended analysis is usually a test for overdispersion in the
context of the simple model. A number of authors have devised tests for “overdisper-
sion” within the context of the Poisson model. [See Cameron and Trivedi (1990), Gurmu
(1991), and Lee (1986).] We will consider three of the common tests, one based on a
regression approach, one a conditional moment test, and a third, a Lagrange multi-
plier test, based on an alternative model. Conditional moment tests are developed in
Section 17.6.4.

Cameron and Trivedi (1990) offer several different tests for overdispersion. A
simple regression based procedure used for testing the hypothesis

H0: Var[yi ] = E [yi ],

H1: Var[yi ] = E [yi ] + αg(E [yi ])

is carried out by regressing

zi = (yi − λ̂i )
2 − yi

λ̂i
√

2
,

where λ̂i is the predicted value from the regression, on either a constant term or λ̂i with-
out a constant term. A simple t test of whether the coefficient is significantly different
from zero tests H0 versus H1.

Cameron and Trivedi’s regression based test for overdispersion is formulated
around the alternative Var[yi ] = E [yi ]+g(E [yi ]). This is a very specific type of overdis-
persion. Consider the more general hypothesis that Var[yi ] is completely given by E [yi ].
The alternative is that the variance is systematically related to the regressors in a way
that is not completely accounted for by E [yi ]. Formally, we have E [yi ] = exp(β ′xi ) = λi .
The null hypothesis is that Var[yi ] = λi as well. We can test the hypothesis using the
conditional moment test described in Section 17.6.4. The expected first derivatives and
the moment restriction are

E [xi (yi − λi )] = 0 and E
{

zi [(yi − λi )
2 − λi ]

} = 0.

To carry out the test, we do the following. Let ei = yi − λ̂i and zi = xi without the constant
term.

1. Compute the Poisson regression by maximum likelihood.
2. Compute r = ∑n

i=1 zi [e2
i − λ̂i ] = ∑n

i=1 zvi based on the maximum likelihood
estimates.

70There have been numerous surveys of models for count data, including Cameron and Trivedi (1986) and
Gurmu and Trivedi (1994).
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3. Compute M′M = ∑n
i=1 zi z′

iv
2
i , D′D = ∑n

i=1 xi x′
i e

2
i , and M′D = ∑n

i=1 zi x′
ivi ei .

4. Compute S = M′M − M′D(D′D)−1D′M.
5. C = r′S−1r is the chi-squared statistic. It has K degrees of freedom.

The next section presents the negative binomial model. This model relaxes the
Poisson assumption that the mean equals the variance. The Poisson model is obtained
as a parametric restriction on the negative binomial model, so a Lagrange multiplier
test can be computed. In general, if an alternative distribution for which the Poisson
model is obtained as a parametric restriction, such as the negative binomial model, can
be specified, then a Lagrange multiplier statistic can be computed. [See Cameron and
Trivedi (1986, p. 41).] The LM statistic is

LM =
[∑n

i=1 ŵi [(yi − λ̂i )
2 − yi ]√

2
∑n

i=1 ŵi λ̂
2
i

]2

.

The weight, ŵi , depends on the assumed alternative distribution. For the negative
binomial model discussed later, ŵi equals 1.0. Thus, under this alternative, the statistic
is particularly simple to compute:

LM = (e′e − nȳ)2

2 λ̂
′
λ̂

.

The main advantage of this test statistic is that one need only estimate the Poisson model
to compute it. Under the hypothesis of the Poisson model, the limiting distribution of
the LM statistic is chi-squared with one degree of freedom.

21.9.3 HETEROGENEITY AND THE NEGATIVE BINOMIAL
REGRESSION MODEL

The assumed equality of the conditional mean and variance functions is typically taken
to be the major shortcoming of the Poisson regression model. Many alternatives have
been suggested [see Hausman, Hall, and Griliches (1984), Cameron and Trivedi (1986,
1998), Gurmu and Trivedi (1994), Johnson and Kotz (1993), and Winkelmann (1997)
for discussion.] The most common is the negative binomial model, which arises from
a natural formulation of cross-section heterogeneity. We generalize the Poisson model
by introducing an individual, unobserved effect into the conditional mean,

ln µi = x′
iβ + εi = ln λi + ln ui ,

where the disturbance εi reflects either specification error as in the classical regression
model or the kind of cross-sectional heterogeneity that normally characterizes microe-
conomic data. Then, the distribution of yi conditioned on xi and ui (i.e., εi ) remains
Poisson with conditional mean and variance µi :

f (yi | xi , ui ) = e−λi ui (λi ui )
yi

yi !
.

The unconditional distribution f (yi | xi ) is the expected value (over ui ) of f (yi | xi , ui ),

f (yi | xi ) =
∫ ∞

0

e−λi ui (λi ui )
yi

yi !
g(ui ) dui .
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The choice of a density for ui defines the unconditional distribution. For mathematical
convenience, a gamma distribution is usually assumed for ui = exp(εi ).71 As in other
models of heterogeneity, the mean of the distribution is unidentified if the model con-
tains a constant term (because the disturbance enters multiplicatively) so E [exp(εi )] is
assumed to be 1.0. With this normalization,

g(ui ) = θθ

!(θ)
e−θui uθ−1

i .

The density for yi is then

f (yi | xi ) =
∫ ∞

0

e−λi ui (λi ui )
yi

yi !
θθuθ−1

i e−θui

!(θ)
dui

= θθλ
yi
i

!(yi + 1)!(θ)

∫ ∞

0
e−(λi +θ)ui uθ+yi −1

i dui

= θθλ
yi
i !(θ + yi )

!(yi + 1)!(θ)(λi + θ)θ+yi

= !(θ + yi )

!(yi + 1)!(θ)
r yi

i (1 − ri )
θ , where ri = λi

λi + θ
,

which is one form of the negative binomial distribution. The distribution has conditional
mean λi and conditional variance λi (1 + (1/θ)λi ). [This model is Negbin II in Cameron
and Trivedi’s (1986) presentation.] The negative binomial model can be estimated by
maximum likelihood without much difficulty. A test of the Poisson distribution is often
carried out by testing the hypothesis θ = 0 using the Wald or likelihood ratio test.

21.9.4 APPLICATION: THE POISSON REGRESSION MODEL

The number of accidents per service month for a sample of ship types is listed in
Appendix Table F21.3. The ships are of five types constructed in one of four peri-
ods. The observation is over two periods. Since ships constructed from 1975 to 1979
could not have operated from 1960 to 1974, there is one missing observation in each
group. The second observation for group E is also missing, for reasons unexplained
by the authors.72 The substantive variables in the model are number of accidents in
the observation period and aggregate number of service months for the ship type by
construction year for the period of operation.

Estimates of the parameters of a Poisson regression model are shown in Table 21.20.
The model is

ln E [accident per month] = x′β.

71An alternative approach based on the normal distribution is suggested in Terza (1998), Greene (1995a,
1997a), and Winkelmann (1997). The normal-Poisson mixture is also easily extended to the random effects
model discussed in the next section. There is no closed form for the normal-Poisson mixture model, but it can
be easily approximated by using Hermite quadrature.
72Data are from McCullagh and Nelder (1983). See Exercise 8 in Chapter 7 for details.
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TABLE 21.20 Estimated Poisson Regressions (Standard Errors in Parentheses)

Mean Dependent Variable 10.47

Variable Full Model No Ship Type Effect No Period Effect

Constant −6.4029 (0.2175) −6.9470 (0.1269) −5.7999 (0.1784)
Type = A
Type = B −0.5447 (0.1776) −0.7437 (0.1692)
Type = C −0.6888 (0.3290) −0.7549 (0.3276)
Type = D −0.0743 (0.2906) −0.1843 (0.2876)
Type = E 0.3205 (0.2358) 0.3842 (0.2348)
60–64
65–69 0.6959 (0.1497) 0.7536 (0.1488)
70–74 0.8175 (0.1698) 1.0503 (0.1576)
75–79 0.4450 (0.2332) 0.6999 (0.2203)
Period = 60–74
Period = 75–79 0.3839 (0.1183) 0.3875 (0.1181) 0.5001 (0.1116)
Log service 1.0000 1.0000 1.0000
Log L −68.41455 −80.20123 −84.11514
G2 38.96262 62.53596 70.34967
R2

p 0.94560 0.89384 0.90001
R2

d 0.93661 0.89822 0.88556

The model therefore contains the ship type, construction period, and operation period
effects, and the aggregate number of months with a coefficient of 1.0.73 The model
is shown in Table 21.20, with sets of estimates for the full model and with the model
omitting the type and construction period effects. Predictions from the estimated full
model are shown in the last column of Appendix Table F21.3.

The hypothesis that the year of construction is not a significant factor in explaining
the number of accidents is strongly rejected by the likelihood ratio test:

χ2 = 2[84.11514 − 68.41455] = 31.40118.

The critical chi-squared value for three degrees of freedom is 7.82. The ship type effect
is likewise significant,

χ2 = 2[80.20123 − 68.41455] = 23.57336,

against a critical value for four degrees of freedom of 9.49. The LM tests for the two
restrictions give the same conclusions, but much less strongly. The value is 28.526 for
the ship type effect and 31.418 for the period effects.

In their analysis of these data, McCullagh and Nelder assert, without evidence, that
there is overdispersion in the data. Some of their analysis follows on an assumption that
the standard deviation of yi is 1.3 times the mean. The t statistics for the two regressions
in Cameron and Trivedi’s regression based tests are 0.934 and −0.613, respectively, so
based on these tests, we do not reject H0: no overdispersion. The LM statistic for the same

73When the length of the period of observation varies by observation by Ti and the model is of the rate of
occurrence of events per unit of time, then the mean of the observed distribution is Ti λi . This assumption
produces the coefficient of 1.0 on the number of periods of service in the model.
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hypothesis is 0.75044 with one degree of freedom. The critical value from the table is 3.84,
so again, the hypothesis of the Poisson model is not rejected. However, the conditional
moment test is contradictory; C = r′S−1r = 26.555. There are eight degrees of freedom.
The 5 percent critical value from the chi-squared table is 15.507, so the hypothesis is
now rejected. This test is much more general, since the form of overdispersion is not
specified, which may explain the difference. Note that this result affirms McCullagh and
Nelder’s conjecture.

21.9.5 POISSON MODELS FOR PANEL DATA

The familiar approaches to accommodating heterogeneity in panel data have fairly
straightforward extensions in the count data setting. [Hausman, Hall, and Griliches
(1984) give full details for these models.] We will examine them for the Poisson model.
The authors [and Allison (2000)] also give results for the negative binomial model.

Consider first a fixed effects approach. The Poisson distribution is assumed to have
conditional mean

log λi t = β ′xi t + αi .

where now, xi t has been redefined to exclude the constant term. The approach used
in the linear model of transforming yit to group mean deviations does not remove the
heterogeneity, nor does it leave a Poisson distribution for the transformed variable.
However, the Poisson model with fixed effects can be fit using the methods described
for the probit model in Section 21.5.1b. The extension to the Poisson model requires
only the minor modifications, git = (yit − λi t ) and hit = − λi t . Everything else in that
derivation applies with only a simple change in the notation. The first order conditions
for maximizing the log-likelihood function for the Poisson model will include

∂ ln L
∂αi

=
T∑

t=1

(yit − eαi µi t ) = 0 where µi t = ex′
i t β .

This implies an explicit solution for αi in terms of β in this model,

α̂i = ln
(

(1/n)
∑T

t=1 yit

(1/n)
∑T

t=1 µ̂i t

)
= ln

(
ȳi

¯̂µi

)

Unlike the regression or the probit model, this does not require that there be within
group variation in yit —all the values can be the same. It does require that at least one
observation for individual i be nonzero, however. The rest of the solution for the fixed
effects estimator follows the same lines as that for the probit model. An alternative
approach, albeit with little practical gain, would be to concentrate the log likelihood
function by inserting this solution for αi back into the original log likelihood, then
maximizing the resulting function of β. While logically this makes sense, the approach
suggested earlier for the probit model is simpler to implement.

An estimator that is not a function of the fixed effects is found by obtaining the
joint distribution of (yi1, . . . , yiTi ) conditional on their sum. For the Poisson model, a



Greene-50240 book June 27, 2002 22:39

748 CHAPTER 21 ✦ Models for Discrete Choice

close cousin to the logit model discussed earlier is produced:

p

(
yi1, yi2, . . . , yiTi

∣∣∣∣∣
Ti∑

i=1

yit

)
=

(∑Ti
t=1 yit

)
!

(∏Ti
t=1 yit !

)
Ti∏

t=1

pyit
i t ,

where

pit = ex′
i t β+αi

∑Ti
t=1 ex′

i t β+αi
= ex′

i t β

∑Ti
t=1 ex′

i t β
.

The contribution of group i to the conditional log-likelihood is

ln Li =
Ti∑

t=1

yit ln pit .

Note, once again, that the contribution to ln L of a group in which yit = 0 in every
period is zero. Cameron and Trivedi (1998) have shown that these two approaches give
identical results.

The fixed effects approach has the same flaws and virtues in this setting as in the
probit case. It is not necessary to assume that the heterogeneity is uncorrelated with the
included, exogenous variables. If the uncorrelatedness of the regressors and the hetero-
geneity can be maintained, then the random effects model is an attractive alternative
model. Once again, the approach used in the linear regression model, partial deviations
from the group means followed by generalized least squares (see Chapter 13), is not
usable here. The approach used is to formulate the joint probability conditioned upon
the heterogeneity, then integrate it out of the joint distribution. Thus, we form

p(yi1, . . . , yiTi | ui ) =
Ti∏

t=1

p(yit | ui ).

Then the random effect is swept out by obtaining

p(yi1, . . . , yiTi ) =
∫

ui

p(yi1, . . . , yiTi , ui ) dui

=
∫

ui

p(yi1, . . . , yiTi | ui )g(ui ) dui

= Eui [p(yi1, . . . , yiTi | ui )].

This is exactly the approach used earlier to condition the heterogeneity out of the
Poisson model to produce the negative binomial model. If, as before, we take p(yit | ui )

to be Poisson with mean λi t = exp(x′
i tβ + ui ) in which exp(ui ) is distributed as gamma

with mean 1.0 and variance 1/α, then the preceding steps produce the negative binomial
distribution,

p(yi1, . . . , yiTi ) =
[∏Ti

t=1 λ
yit
i t

]
!

(
θ + ∑Ti

t=1 yit

)

[
!(θ)

∏Ti
t=1 yit !

] [(∑Ti
t=1 λi t

)∑Ti
t=1

yit

] Qθ
i (1 − Qi )

∑Ti
t=1

yit ,
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where

Qi = θ

θ + ∑Ti
t=1 λi t

.

For estimation purposes, we have a negative binomial distribution for Yi = ∑
t yit with

mean �i = ∑
t λi t .

There is a mild preference in the received literature for the fixed effects estimators
over the random effects estimators. The virtue of dispensing with the assumption of
uncorrelatedness of the regressors and the group specific effects is substantial. On the
other hand, the assumption does come at a cost. In order to compute the probabilities
or the marginal effects it is necessarily to estimate the constants, αi . The unscaled
coefficients in these models are of limited usefulness because of the nonlinearity of the
conditional mean functions.

Other approaches to the random effects model have been proposed. Greene (1994,
1995a) and Terza (1995) specify a normally distributed heterogeneity, on the assumption
that this is a more natural distribution for the aggregate of small independent effects.
Brannas and Johanssen (1994) have suggested a semiparametric approach based on
the GMM estimator by superimposing a very general form of heterogeneity on the
Poisson model. They assume that conditioned on a random effect εi t , yit is distributed
as Poisson with mean εi tλi t . The covariance structure of εi t is allowed to be fully gen-
eral. For t, s = 1, . . . , T, Var[εi t ] = σ 2

i , Cov[εi t , ε js] = γi j (|t − s|). For long time series,
this model is likely to have far too many parameters to be identified without some re-
strictions, such as first-order homogeneity (β i = β ∀ i), uncorrelatedness across groups,
[γi j (.) = 0 for i �= j], groupwise homoscedasticity (σ 2

i = σ 2 ∀ i), and nonautocorrelated-
ness [γ (r) = 0 ∀ r �= 0]. With these assumptions, the estimation procedure they propose
is similar to the procedures suggested earlier. If the model imposes enough restrictions,
then the parameters can be estimated by the method of moments. The authors discuss
estimation of the model in its full generality. Finally, the latent class model discussed in
Section 16.2.3 and the random parameters model in Section 17.8 extend naturally to the
Poisson model. Indeed, most of the received applications of the latent class structure
have been in the Poisson regression framework. [See Greene (2001) for a survey.]

21.9.6 HURDLE AND ZERO-ALTERED POISSON MODELS

In some settings, the zero outcome of the data generating process is qualitatively differ-
ent from the positive ones. Mullahy (1986) argues that this fact constitutes a shortcoming
of the Poisson (or negative binomial) model and suggests a “hurdle” model as an alter-
native.74 In his formulation, a binary probability model determines whether a zero or
a nonzero outcome occurs, then, in the latter case, a (truncated) Poisson distribution
describes the positive outcomes. The model is

Prob(yi = 0 | xi ) = e−θ

Prob(yi = j | xi ) = (1 − e−θ ) e−λi λ
j
i

j!(1 − e−λi )
, j = 1, 2, . . . .

74For a similar treatment in a continuous data application, see Cragg (1971).
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This formulation changes the probability of the zero outcome and scales the remaining
probabilities so that the sum to one. It adds a new restriction that Prob(yi = 0 | xi )

no longer depends on the covariates, however. Therefore, a natural next step is to
parameterize this probability. Mullahey suggests some formulations and applies the
model to a sample of observations on daily beverage consumption.

Mullahey (1986), Heilbron (1989), Lambert (1992), Johnson and Kotz (1993), and
Greene (1994) have analyzed an extension of the hurdle model in which the zero out-
come can arise from one of two regimes.75 In one regime, the outcome is always zero.
In the other, the usual Poisson process is at work, which can produce the zero outcome
or some other. In Lambert’s application, she analyzes the number of defective items
produced by a manufacturing process in a given time interval. If the process is under
control, then the outcome is always zero (by definition). If it is not under control, then
the number of defective items is distributed as Poisson and may be zero or positive in
any period. The model at work is therefore

Prob(yi = 0 | xi ) = Prob(regime 1) + Prob(yi = 0 | xi , regime 2)Prob(regime 2),

Prob(yi = j | xi ) = Prob(yi = j | xi , regime 2)Prob(regime 2), j = 1, 2, . . . .

Let z denote a binary indicator of regime 1 (z = 0) or regime 2 (z = 1), and let y∗ denote
the outcome of the Poisson process in regime 2. Then the observed y is z× y∗. A natural
extension of the splitting model is to allow z to be determined by a set of covariates. These
covariates need not be the same as those that determine the conditional probabilities
in the Poisson process. Thus, the model is

Prob(zi = 1 | wi ) = F(wi , γ ),

Prob(yi = j | xi , zi = 1) = e−λi λ
j
i

j!
.

The mean in this distribution is

E [yi | xi ] = F × 0 + (1 − F) × E [y∗
i | xi , y∗

i > 0] = (1 − F) × λi

1 − e−λi
.

Lambert (1992) and Greene (1994) consider a number of alternative formulations,
including logit and probit models discussed in Sections 21.3 and 21.4, for the probability
of the two regimes.

Both of these modifications substantially alter the Poisson formulation. First, note
that the equality of the mean and variance of the distribution no longer follows; both
modifications induce overdispersion. On the other hand, the overdispersion does not
arise from heterogeneity; it arises from the nature of the process generating the zeros.
As such, an interesting identification problem arises in this model. If the data do appear
to be characterized by overdispersion, then it seems less than obvious whether it should
be attributed to heterogeneity or to the regime splitting mechanism. Mullahy (1986)
argues the point more strongly. He demonstrates that overdispersion will always induce
excess zeros. As such, in a splitting model, we are likely to misinterpret the excess zeros
as due to the splitting process instead of the heterogeneity.

75The model is variously labeled the “With Zeros,” or WZ, model [Mullahy (1986)], the “Zero Inflated
Poisson,” or ZIP, model [Lambert (1992)], and “Zero-Altered Poisson,” or ZAP, model [Greene (1994)].
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It might be of interest to test simply whether there is a regime splitting mechanism at
work or not. Unfortunately, the basic model and the zero-inflated model are not nested.
Setting the parameters of the splitting model to zero, for example, does not produce
Prob[z = 0] = 0. In the probit case, this probability becomes 0.5, which maintains the
regime split. The preceding tests for over- or underdispersion would be rather indirect.
What is desired is a test of non-Poissonness. An alternative distribution may (but need
not) produce a systematically different proportion of zeros than the Poisson. Testing
for a different distribution, as opposed to a different set of parameters, is a difficult
procedure. Since the hypotheses are necessarily nonnested, the power of any test is a
function of the alternative hypothesis and may, under some, be small. Vuong (1989) has
proposed a test statistic for nonnested models that is well suited for this setting when the
alternative distribution can be specified. Let f j (yi | xi ) denote the predicted probability
that the random variable Y equals yi under the assumption that the distribution is
f j (yi | xi ), for j = 1, 2, and let

mi = log
(

f1(yi | xi )

f2(yi | xi )

)
.

Then Vuong’s statistic for testing the nonnested hypothesis of Model 1 versus Model 2
is

v =
√

n
[ 1

n

∑n
i=1 mi

]
√

1
n

∑n
i=1(mi − m̄)2

.

This is the standard statistic for testing the hypothesis that E [mi ] equals zero. Vuong
shows that v has a limiting standard normal distribution. As he notes, the statistic is
bidirectional. If |v| is less than two, then the test does not favor one model or the other.
Otherwise, large values favor Model 1 whereas small (negative) values favor Model 2.
Carrying out the test requires estimation of both models and computation of both sets
of predicted probabilities.

In Greene (1994), it is shown that the Vuong test has some power to discern this
phenomenon. The logic of the testing procedure is to allow for overdispersion by spec-
ifying a negative binomial count data process, then examine whether, even allowing for
the overdispersion, there still appear to be excess zeros. In his application, that appears
to be the case.

Example 21.12 A Split Population Model for Major Derogatory Reports
Greene (1995c) estimated a model of consumer behavior in which the dependent variable
of interest was the number of major derogatory reports recorded in the credit history for a
sample of applicants for a type of credit card. The basic model predicts yi , the number of
major derogatory credit reports, as a function of xi = [1, age, income, average expenditure].
The data for the model appear in Appendix Table F21.4. There are 1,319 observations in
the sample (10% of the original data set.) Inspection of the data reveals a preponderance of
zeros. Indeed, of 1,319 observations, 1060 have yi = 0, whereas of the remaining 259, 137
have 1, 50 have 2, 24 have 3, 17 have 4, and 11 have 5—the remaining 20 range from 6 to
14. Thus, for a Poisson distribution, these data are actually a bit extreme. We propose to use
Lambert’s zero inflated Poisson model instead, with the Poisson distribution built around

ln λi = β1 + β2 age + β3 income + β4 expenditure.

For the splitting model, we use a logit model, with covariates z = [1, age, income, own/rent].
The estimates are shown in Table 21.21. Vuong’s diagnostic statistic appears to confirm
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TABLE 21.21 Estimates of a Split Population Model

Poisson and Logit Models Split Population Model
Variable Poisson for y Logit for y > 0 Poisson for y Logit for y > 0

Constant −0.8196 −2.2442 1.0010 2.1540
(0.1453) (0.2515) (0.1267) (0.2900)

Age 0.007181 0.02245 −0.005073 −0.02469
(0.003978) (0.007313) (0.003218) (0.008451)

Income 0.07790 0.06931 0.01332 −0.1167
(0.02394) (0.04198) (0.02249) (0.04941)

Expend −0.004102 −0.002359
(0.0003740) (0.0001948)

Own/Rent −0.3766 0.3865
(0.1578) (0.1709)

Log L −1396.719 −645.5649 −1093.0280
nP̂ (0 | x̂) 938.6 1061.5

intuition that the Poisson model does not adequately describe the data; the value is 6.9788.
Using the model parameters to compute a prediction of the number of zeros, it is clear that
the splitting model does perform better than the basic Poisson regression.

21.10 SUMMARY AND CONCLUSIONS

This chapter has surveyed techniques for modeling discrete choice. We examined four
classes of models: binary choice, ordered choice, multinomial choice, and models for
counts. The first three of these are quite far removed from the regression models (lin-
ear and nonlinear) that have been the focus of the preceding 20 chapters. The most
important difference concerns the modeling approach. Up to this point, we have been
primarily interested in modeling the conditional mean function for outcomes that vary
continuously. In this chapter, we have shifted our approach to one of modeling the
conditional probabilities of events.

Modeling binary choice—the decision between two alternatives—is a growth area
in the applied econometrics literature. Maximum likelihood estimation of fully parame-
terized models remains the mainstay of the literature. But, we also considered semipara-
metric and nonparametric forms of the model and examined models for time series and
panel data. The ordered choice model is a natural extension of the binary choice setting
and also a convenient bridge between models of choice between two alternatives and
more complex models of choice among multiple alternatives. Multinomial choice mod-
eling is likewise a large field, both within economics and, especially, in many other fields,
such as marketing, transportation, political science, and so on. The multinomial logit
model and many variations of it provide an especially rich framework within which
modelers have carefully matched behavioral modeling to empirical specification and
estimation. Finally, models of count data are closer to regression models than the other
three fields. The Poisson regression model is essentially a nonlinear regression, but, as
in the other cases, it is more fruitful to do the modeling in terms of the probabilities of
discrete choice rather than as a form of regression analysis.



Greene-50240 book June 27, 2002 22:39

CHAPTER 21 ✦ Models for Discrete Choice 753

Key Terms and Concepts

• Attributes
• Binary choice model
• Bivariate probit
• Bootstrapping
• Butler and Moffitt method
• Choice based sampling
• Chow test
• Conditional likelihood

function
• Conditional logit
• Count data
• Fixed effects model
• Full information ML
• Generalized residual
• Goodness of fit measure
• Grouped data
• Heterogeneity
• Heteroscedasticity
• Incidental parameters

problem
• Inclusive value
• Independence from

irrelevant alternatives
• Index function model
• Individual data
• Initial conditions

• Kernel density estimator
• Kernel function
• Lagrange multiplier test
• Latent regression
• Likelihood equations
• Likelihood ratio test
• Limited information ML
• Linear probability model
• Logit
• Marginal effects
• Maximum likelihood
• Maximum score estimator
• Maximum simulated

likelihood
• Mean-squared deviation
• Minimal sufficient statistic
• Minimum chi-squared

estimator
• Multinomial logit
• Multinomial probit
• Multivariate probit
• Negative binomial model
• Nested logit
• Nonnested models
• Normit
• Ordered choice model

• Overdispersion
• Persistence
• Poisson model
• Probit
• Proportions data
• Quadrature
• Qualitative choice
• Qualitative response
• Quasi-MLE
• Random coefficients
• Random effects model
• Random parameters model
• Random utility model
• Ranking
• Recursive model
• Robust covariance

estimation
• Sample selection
• Scoring method
• Semiparametric estimation
• State dependence
• Unbalanced sample
• Unordered
• Weibull model

Exercises

1. A binomial probability model is to be based on the following index function model:

y∗ = α + βd + ε,

y = 1, if y∗ > 0,

y = 0 otherwise.

The only regressor, d, is a dummy variable. The data consist of 100 observations
that have the following:

y

0 1
0 24 28

d
1 32 16

Obtain the maximum likelihood estimators of α and β, and estimate the asymptotic
standard errors of your estimates. Test the hypothesis that β equals zero by using a
Wald test (asymptotic t test) and a likelihood ratio test. Use the probit model and
then repeat, using the logit model. Do your results change? [Hint: Formulate the
log-likelihood in terms of α and δ = α + β.]
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2. Suppose that a linear probability model is to be fit to a set of observations on a
dependent variable y that takes values zero and one, and a single regressor x that
varies continuously across observations. Obtain the exact expressions for the least
squares slope in the regression in terms of the mean(s) and variance of x, and
interpret the result.

3. Given the data set

y 1 0 0 1 1 0 0 1 1 1
x 9 2 5 4 6 7 3 5 2 6

,

estimate a probit model and test the hypothesis that x is not influential in determin-
ing the probability that y equals one.

4. Construct the Lagrange multiplier statistic for testing the hypothesis that all the
slopes (but not the constant term) equal zero in the binomial logit model. Prove
that the Lagrange multiplier statistic is nR2 in the regression of (yi = p) on the xs,
where P is the sample proportion of 1s.

5. We are interested in the ordered probit model. Our data consist of 250 observations,
of which the response are

y 0 1 2 3 4
n 50 40 45 80 35

.

Using the preceding data, obtain maximum likelihood estimates of the unknown pa-
rameters of the model. [Hint: Consider the probabilities as the unknown
parameters.]

6. The following hypothetical data give the participation rates in a particular type of
recycling program and the number of trucks purchased for collection by 10 towns
in a small mid-Atlantic state:

Town 1 2 3 4 5 6 7 8 9 10

Trucks 160 250 170 365 210 206 203 305 270 340
Participation% 11 74 8 87 62 83 48 84 71 79

The town of Eleven is contemplating initiating a recycling program but wishes to
achieve a 95 percent rate of participation. Using a probit model for your analysis,
a. How many trucks would the town expect to have to purchase in order to achieve

their goal? [Hint: See Section 21.4.6.] Note that you will use ni = 1.
b. If trucks cost $20,000 each, then is a goal of 90 percent reachable within a budget

of $6.5 million? (That is, should they expect to reach the goal?)
c. According to your model, what is the marginal value of the 301st truck in terms

of the increase in the percentage participation?
7. A data set consists of n = n1 + n2 + n3 observations on y and x. For the first n1

observations, y = 1 and x = 1. For the next n2 observations, y = 0 and x = 1. For the
last n3 observations, y = 0 and x = 0. Prove that neither (21-19) nor (21-21) has a
solution.
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8. Data on t = strike duration and x = unanticipated industrial production for a
number of strikes in each of 9 years are given in Appendix Table F22.1. Use the
Poisson regression model discussed in Section 21.9 to determine whether x is a
significant determinant of the number of strikes in a given year.

9. Asymptotics. Explore whether averaging individual marginal effects gives the same
answer as computing the marginal effect at the mean.

10. Prove (21-28).
11. In the panel data models estimated in Example 21.5.1, neither the logit nor the probit

model provides a framework for applying a Hausman test to determine whether
fixed or random effects is preferred. Explain. (Hint: Unlike our application in the
linear model, the incidental parameters problem persists here.)
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LIMITED DEPENDENT
VARIABLE AND DURATION

MODELS

Q
22.1 INTRODUCTION

This chapter is concerned with truncation and censoring.1 The effect of truncation
occurs when sample data are drawn from a subset of a larger population of interest. For
example, studies of income based on incomes above or below some poverty line may be
of limited usefulness for inference about the whole population. Truncation is essentially
a characteristic of the distribution from which the sample data are drawn. Censoring
is a more common problem in recent studies. To continue the example, suppose that
instead of being unobserved, all incomes below the poverty line are reported as if they
were at the poverty line. The censoring of a range of values of the variable of interest
introduces a distortion into conventional statistical results that is similar to that of
truncation. Unlike truncation, however, censoring is essentially a defect in the sample
data. Presumably, if they were not censored, the data would be a representative sample
from the population of interest.

This chapter will discuss four broad topics: truncation, censoring, a form of trunca-
tion called the sample selection problem, and a class of models called duration models.
Although most empirical work on the first three involves censoring rather than trun-
cation, we will study the simpler model of truncation first. It provides most of the
theoretical tools we need to analyze models of censoring and sample selection. The
fourth topic, on models of duration—When will a spell of unemployment or a strike
end?—could reasonably stand alone. It does in countless articles and a library of books.2

We include our introduction to this subject in this chapter because in most applications,
duration modeling involves censored data and it is thus convenient to treat duration
here (and because we are nearing the end of our survey and yet another chapter seems
unwarranted).

22.2 TRUNCATION

In this section, we are concerned with inferring the characteristics of a full population
from a sample drawn from a restricted part of that population.

1Five of the many surveys of these topics are Dhrymes (1984), Maddala (1977b, 1983, 1984), and Amemiya
(1984). The last is part of a symposium on censored and truncated regression models. A survey that is
oriented toward applications and techniques is Long (1997). Some recent results on non- and semiparametric
estimation appear in Lee (1996).
2For example, Lancaster (1990) and Kiefer (1985).

756
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22.2.1 TRUNCATED DISTRIBUTIONS

A truncated distribution is the part of an untruncated distribution that is above or below
some specified value. For instance, in Example 22.2, we are given a characteristic of the
distribution of incomes above $100,000. This subset is a part of the full distribution of
incomes which range from zero to (essentially) infinity.

THEOREM 22.1 Density of a Truncated Random Variable
If a continuous random variable x has pdf f (x) and a is a constant, then

f (x | x > a) = f (x)

Prob(x > a)
.3

The proof follows from the definition of conditional probability and amounts
merely to scaling the density so that it integrates to one over the range above a.
Note that the truncated distribution is a conditional distribution.

Most recent applications based on continuous random variables use the truncated
normal distribution. If x has a normal distribution with mean µ and standard deviation
σ, then

Prob(x > a) = 1 − 	

(
a − µ

σ

)
= 1 − 	(α),

where α = (a − µ)/σ and �(.) is the standard normal cdf. The density of the truncated
normal distribution is then

f (x | x > a) = f (x)

1 − 	(α)
= (2πσ 2)−1/2e−(x−µ)2/(2σ 2)

1 − 	(α)
=

1
σ

φ

(
x − µ

σ

)

1 − 	(α)
,

where φ(.) is the standard normal pdf. The truncated standard normal distribution, with
µ = 0 and σ = 1, is illustrated for a = −0.5, 0, and 0.5 in Figure 22.1. Another truncated
distribution which has appeared in the recent literature, this one for a discrete random
variable, is the truncated at zero Poisson distribution,

Prob[Y = y | y > 0] = (e−λλy)/y!
Prob[Y > 0]

= (e−λλy)/y!
1 − Prob[Y = 0]

= (e−λλy)/y!
1 − e−λ

, λ > 0, y = 1, . . .

This distribution is used in models of uses of recreation and other kinds of facilities
where observations of zero uses are discarded.4

For convenience in what follows, we shall call a random variable whose distribution
is truncated a truncated random variable.

3The case of truncation from above instead of below is handled in an analogous fashion and does not require
any new results.
4See Shaw (1988).
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FIGURE 22.1 Truncated Normal Distributions.

22.2.2 MOMENTS OF TRUNCATED DISTRIBUTIONS

We are usually interested in the mean and variance of the truncated random variable.
They would be obtained by the general formula:

E [x | x > a] =
∫ ∞

a
x f (x | x > a) dx

for the mean and likewise for the variance.

Example 22.1 Truncated Uniform Distribution
If x has a standard uniform distribution, denoted U (0, 1) , then

f ( x) = 1, 0 ≤ x ≤ 1.

The truncated at x = 1
3 distribution is also uniform;

f

(
x | x >

1
3

)
= f ( x)

Prob
(
x > 1

3

) = 1(
2
3

) = 3
2

,
1
3

≤ x ≤ 1.

The expected value is

E

[
x | x >

1
3

]
=

∫ 1

1/3

x

(
3
2

)
dx = 2

3
.

For a variable distributed uniformly between L and U , the variance is (U − L ) 2/12.
Thus,

Var
[
x | x > 1

3

] = 1
27 .

The mean and variance of the untruncated distribution are 1
2 and 1

12 , respectively.
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Example 22.1 illustrates two results.

1. If the truncation is from below, then the mean of the truncated variable is greater
than the mean of the original one. If the truncation is from above, then the mean
of the truncated variable is smaller than the mean of the original one. This is
clearly visible in Figure 22.1.

2. Truncation reduces the variance compared with the variance in the untruncated
distribution.

Henceforth, we shall use the terms truncated mean and truncated variance to refer to
the mean and variance of the random variable with a truncated distribution.

For the truncated normal distribution, we have the following theorem:5

THEOREM 22.2 Moments of the Truncated Normal Distribution
If x ∼ N[µ, σ 2] and a is a constant, then

E [x | truncation] = µ + σλ(α), (22-1)

Var[x | truncation] = σ 2[1 − δ(α)], (22-2)

where α = (a − µ)/σ, φ(α) is the standard normal density and

λ(α) = φ(α)/[1 − �(α)] if truncation is x > a, (22-3a)

λ(α) = −φ(α)/�(α) if truncation is x < a, (22-3b)

and

δ(α) = λ(α)[λ(α) − α]. (22-4)

An important result is

0 < δ(α) < 1 for all values of α,

which implies point 2 after Example 22.1. A result that we will use at several points below
is dφ(α)/dα = −αφ(α). The function λ(α) is called the inverse Mills ratio. The function
in (22-3a) is also called the hazard function for the standard normal distribution.

Example 22.2 A Truncated Lognormal Income Distribution
“The typical ‘upper affluent American’ . . . makes $142,000 per year. . . . The people surveyed
had household income of at least $100,000.”6 Would this statistic tell us anything about the
“typical American”? As it stands, it probably does not (popular impressions notwithstanding).
The 1987 article where this appeared went on to state, “If you’re in that category, pat yourself
on the back—only 2 percent of American households make the grade, according to the
survey.” Since the degree of truncation in the sample is 98 percent, the $142,000 was
probably quite far from the mean in the full population.

Suppose that incomes in the population were lognormally distributed—see Section B.4.4.
Then the log of income had a normal distribution with, say, mean µ and standard devia-
tion σ . We’ll deduce µ and σ then determine the population mean income. Let x = income

5Details may be found in Johnson, Kotz, and Balakrishnan (1994, pp. 156–158).
6New York Post (1987).
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and let y = ln x. Two useful numbers for this example are ln 100 = 4.605 and ln 142 = 4.956.
Suppose that the survey was large enough for us to treat the sample average as the true
mean. Then, the article stated that E [y | y > 4.605] = 4.956. It also told us that Prob[y >
4.605] = 0.02. From Theorem 22.2,

E [y | y > 4.605] = µ + σφ (α)
1 − 	(α)

,

where α = (4.605−µ)/σ . We also know that 	(α) = 0.98, so α = 	−1(0.98) = 2.054. We infer,
then, that (a) 2.054 = (4.605−µ)/σ . In addition, given α = 2.054, φ (α) = φ (2.054) = 0.0484.
From (22-1), then, 4.956 = µ + σ (0.0484/0.02) or (b) 4.956 = µ + 2.420σ . The solutions to
(a) and (b) are µ = 2.635 and σ = 0.959.

To obtain the mean income, we now use the result that if y ∼ N[µ, σ 2] and x = ey, then
E [x] = E [ey] = eµ+σ2/2. Inserting our values for µ and σ gives E [x] = $22,087. The 1987
Statistical Abstract of the United States listed average household income across all groups for
the United States as about $25,000. So the estimate, based on surprisingly little information,
would have been relatively good. These meager data did indeed tell us something about the
average American.

22.2.3 THE TRUNCATED REGRESSION MODEL

In the model of the earlier examples, we now assume that

µi = x′
iβ

is the deterministic part of the classical regression model. Then

yi = x′
iβ + εi ,

where

εi | xi ∼ N[0, σ 2],

so that

yi | xi ∼ N[x′
iβ, σ 2]. (22-5)

We are interested in the distribution of yi given that yi is greater than the truncation
point a. This is the result described in Theorem 22.2. It follows that

E [yi | yi > a] = x′
iβ + σ

φ[(a − x′
iβ)/σ ]

1 − 	[(a − x′
iβ)/σ ]

. (22-6)

The conditional mean is therefore a nonlinear function of a, σ, x and β.
The marginal effects in this model in the subpopulation can be obtained by writing

E [yi | yi > a] = x′
iβ + σλ(αi ), (22-7)

where now αi = (a − x′
iβ)/σ . For convenience, let λi = λ(αi ) and δi = δ(αi ). Then

∂E [yi | yi > a]
∂xi

= β + σ(dλi/dαi )
∂αi

∂xi

= β + σ
(
λ2

i − αiλi
)
(−β/σ)

= β
(
1 − λ2

i + αiλi
)

= β(1 − δi ).

(22-8)

Note the appearance of the truncated variance. Since the truncated variance is between
zero and one, we conclude that for every element of xi , the marginal effect is less than
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the corresponding coefficient. There is a similar attenuation of the variance. In the
subpopulation yi > a, the regression variance is not σ 2 but

Var[yi | yi > a] = σ 2(1 − δi ). (22-9)

Whether the marginal effect in (22-7) or the coefficient β itself is of interest depends on
the intended inferences of the study. If the analysis is to be confined to the subpopulation,
then (22-7) is of interest. If the study is intended to extend to the entire population,
however, then it is the coefficients β that are actually of interest.

One’s first inclination might be to use ordinary least squares to estimate the param-
eters of this regression model. For the subpopulation from which the data are drawn,
we could write (22-6) in the form

yi | yi > a = E [yi | yi > a] + ui = x′
iβ + σλi + ui , (22-10)

where ui is yi minus its conditional expectation. By construction, ui has a zero mean,
but it is heteroscedastic:

Var[ui ] = σ 2(1 − λ2
i + λiαi

) = σ 2(1 − δi ),

which is a function of xi . If we estimate (22-10) by ordinary least squares regression of
y on X, then we have omitted a variable, the nonlinear term λi . All the biases that arise
because of an omitted variable can be expected.7

Without some knowledge of the distribution of x, it is not possible to determine
how serious the bias is likely to be. A result obtained by Cheung and Goldberger
(1984) is broadly suggestive. If E [x | y] in the full population is a linear function of y,
then plim b = βτ for some proportionality constant τ . This result is consistent with
the widely observed (albeit rather rough) proportionality relationship between least
squares estimates of this model and consistent maximum likelihood estimates.8 The
proportionality result appears to be quite general. In applications, it is usually found
that, compared with consistent maximum likelihood estimates, the OLS estimates are
biased toward zero. (See Example 22.4.)

22.3 CENSORED DATA

A very common problem in microeconomic data is censoring of the dependent variable.
When the dependent variable is censored, values in a certain range are all transformed
to (or reported as) a single value. Some examples that have appeared in the empirical
literature are as follows:9

1. Household purchases of durable goods [Tobin (1958)],
2. The number of extramarital affairs [Fair (1977, 1978)],
3. The number of hours worked by a woman in the labor force [Quester and Greene

(1982)],
4. The number of arrests after release from prison [Witte (1980)],

7See Heckman (1979) who formulates this as a “specification error.”
8See the appendix in Hausman and Wise (1977) and Greene (1983) as well.
9More extensive listings may be found in Amemiya (1984) and Maddala (1983).
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5. Household expenditure on various commodity groups [Jarque (1987)],
6. Vacation expenditures [Melenberg and van Soest (1996)].

Each of these studies analyzes a dependent variable that is zero for a significant fraction
of the observations. Conventional regression methods fail to account for the qualitative
difference between limit (zero) observations and nonlimit (continuous) observations.

22.3.1 THE CENSORED NORMAL DISTRIBUTION

The relevant distribution theory for a censored variable is similar to that for a truncated
one. Once again, we begin with the normal distribution, as much of the received work
has been based on an assumption of normality. We also assume that the censoring point
is zero, although this is only a convenient normalization. In a truncated distribution,
only the part of distribution above y = 0 is relevant to our computations. To make the
distribution integrate to one, we scale it up by the probability that an observation in
the untruncated population falls in the range that interests us. When data are censored,
the distribution that applies to the sample data is a mixture of discrete and continuous
distributions. Figure 22.2 illustrates the effects.

To analyze this distribution, we define a new random variable y transformed from
the original one, y∗, by

y = 0 if y∗ ≤ 0,

y = y∗ if y∗ > 0.

The distribution that applies if y∗ ∼ N[µ, σ 2] is Prob(y = 0) = Prob(y∗ ≤ 0) =
	(−µ/σ) = 1 − 	(µ/σ), and if y∗ > 0, then y has the density of y∗.

This distribution is a mixture of discrete and continuous parts. The total probability
is one, as required, but instead of scaling the second part, we simply assign the full
probability in the censored region to the censoring point, in this case, zero.

FIGURE 22.2 Partially Censored Distribution.

Capacity Seats demanded

Capacity Tickets sold
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THEOREM 22.3 Moments of the Censored Normal Variable
If y∗ ∼ N[µ, σ 2] and y = a if y∗ ≤ a or else y = y∗, then

E [y] = 	a + (1 − 	)(µ + σλ)

and

Var[y] = σ 2(1 − 	)[(1 − δ) + (α − λ)2	],

where

	[(a − µ)/σ ] = 	(α) = Prob(y∗ ≤ a) = 	, λ = φ/(1 − 	)

and

δ = λ2 − λα.

Proof: For the mean,

E [y] = Prob(y = a) × E [y | y = a] + Prob(y > a) × E [y | y > a]

= Prob(y∗ ≤ a) × a + Prob(y∗ > a) × E [y∗ | y∗ > a]

= 	a + (1 − 	)(µ + σλ)

using Theorem 22.2. For the variance, we use a counterpart to the decomposition
in (B-70), that is, Var[y] = E [conditional variance] + Var[conditional mean],
and Theorem 22.2.

For the special case of a = 0, the mean simplifies to

E [y | a = 0] = 	(µ/σ)(µ + σλ), where λ = φ(µ/σ)

	(µ/σ)
.

For censoring of the upper part of the distribution instead of the lower, it is only neces-
sary to reverse the role of 	 and 1 − 	 and redefine λ as in Theorem 22.2.

Example 22.3 Censored Random Variable
We are interested in the number of tickets demanded for events at a certain arena. Our
only measure is the number actually sold. Whenever an event sells out, however, we know
that the actual number demanded is larger than the number sold. The number of tickets
demanded is censored when it is transformed to obtain the number sold. Suppose that
the arena in question has 20,000 seats and, in a recent season, sold out 25 percent of the
time. If the average attendance, including sellouts, was 18,000, then what are the mean and
standard deviation of the demand for seats? According to Theorem 22.3, the 18,000 is an
estimate of

E [sales] = 20,000(1 − 	) + [µ + σλ]	.

Since this is censoring from above, rather than below, λ = −φ (α)/	(α) . The argument of 	, φ,
and λ is α = (20,000−µ)/σ . If 25 percent of the events are sellouts, then 	 = 0.75. Inverting the
standard normal at 0.75 gives α = 0.675. In addition, if α = 0.675, then −φ (0.675)/0.75 = λ =
−0.424. This result provides two equations in µ and σ , (a) 18, 000 = 0.25(20, 000) +0.75(µ−
0.424σ ) and (b) 0.675σ = 20,000 − µ. The solutions are σ = 2426 and µ = 18,362.
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For comparison, suppose that we were told that the mean of 18,000 applies only to the
events that were not sold out and that, on average, the arena sells out 25 percent of the time.
Now our estimates would be obtained from the equations (a) 18,000 = µ − 0.424σ and (b)
0.675σ = 20,000 − µ. The solutions are σ = 1820 and µ = 18,772.

22.3.2 THE CENSORED REGRESSION (TOBIT) MODEL

The regression model based on the preceding discussion is referred to as the censored
regression model or the tobit model. [In reference to Tobin (1958), where the model
was first proposed.] The regression is obtained by making the mean in the preceding
correspond to a classical regression model. The general formulation is usually given in
terms of an index function,

y∗
i = x′

iβ + εi ,

yi = 0 if y∗
i ≤ 0, (22-11)

yi = y∗
i if y∗

i > 0.

There are potentially three conditional mean functions to consider, depending on the
purpose of the study. For the index variable, sometimes called the latent variable,
E [y∗

i |xi ] is x′
iβ. If the data are always censored, however, then this result will usu-

ally not be useful. Consistent with Theorem 22.3, for an observation randomly drawn
from the population, which may or may not be censored,

E [yi | xi ] = 	

(
x′

iβ

σ

)
(x′

iβ + σλi ),

where

λi = φ[(0 − x′
iβ)/σ ]

1 − 	[(0 − x′
iβ)/σ ]

= φ(x′
iβ/σ)

	(x′
iβ/σ)

. (22-12)

Finally, if we intend to confine our attention to uncensored observations, then the
results for the truncated regression model apply. The limit observations should not
be discarded, however, because the truncated regression model is no more amenable
to least squares than the censored data model. It is an unresolved question which of
these functions should be used for computing predicted values from this model. Intu-
ition suggests that E [yi | xi ] is correct, but authors differ on this point. For the setting
in Example 22.3, for predicting the number of tickets sold, say, to plan for an upcoming
event, the censored mean is obviously the relevant quantity. On the other hand, if the
objective is to study the need for a new facility, then the mean of the latent variable y∗

i
would be more interesting.

There are differences in the marginal effects as well. For the index variable,

∂E [y∗
i | xi ]

∂xi
= β.

But this result is not what will usually be of interest, since y∗
i is unobserved. For the

observed data, yi , the following general result will be useful:10

10See Greene (1999) for the general result and Rosett and Nelson (1975) and Nakamura and Nakamura
(1983) for applications based on the normal distribution.
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THEOREM 22.4 Marginal Effects in the Censored
Regression Model

In the censored regression model with latent regression y∗ = x′β+ε and observed
dependent variable, y = a if y∗ ≤ a, y = b if y∗ ≥ b, and y = y∗ otherwise, where a
and bare constants, let f (ε) and F(ε) denote the density and cdf of ε. Assume that ε
is a continuous random variable with mean 0 and variance σ 2, and f (ε | x) = f (ε).
Then

∂E [y | x]
∂x

= β × Prob[a < y∗ < b].

Proof: By definition,

E [y | x] = a Prob[y∗ ≤ a | x] + b Prob[y∗ ≥ b | x]

+ Prob[a < y∗ < b | x]E [y∗ | a < y∗ < b | x].

Let α j = ( j − x′β)/σ, Fj = F(α j ), f j = f (α j ), and j = a, b. Then

E [y | x] = aFa + b(1 − Fb) + (Fb − Fa)E [y∗ | a < y∗ < b, x].

Since y∗ = x′β + σ [(y∗ − β ′x)/σ ], the conditional mean may be written

E [y∗ | a < y∗ < b, x] = x′β + σ E
[

y∗ − x′β
σ

∣∣∣∣
a − x′β

σ
<

y∗ − x′β
σ

<
b − x′β

σ

]

= x′β + σ

∫ αb

αa

(ε/σ ) f (ε/σ )

Fb − Fa
d
(

ε

σ

)
.

Collecting terms, we have

E [y | x] = aFa + b(1 − Fb) + (Fb − Fa)β
′x + σ

∫ αb

αa

(
ε

σ

)
f
(

ε

σ

)
d
(

ε

σ

)
.

Now, differentiate with respect to x. The only complication is the last term, for
which the differentiation is with respect to the limits of integration. We use
Leibnitz’s theorem and use the assumption that f (ε) does not involve x. Thus,

∂E [y | x]
∂x

=
(−β

σ

)
a fa −

(−β

σ

)
bfb + (Fb − Fa)β + (β ′x)( fb − fa)

(−β

σ

)

+ σ [αb fb − αa fa]
(−β

σ

)
.

After inserting the definitions of αa and αb, and collecting terms, we find all terms
sum to zero save for the desired result,

∂ E [y | x]
∂x

= (Fb − Fa)β = β × Prob[a < y∗
i < b].

Note that this general result includes censoring in either or both tails of the distribu-
tion, and it does not assume that ε is normally distributed. For the standard case with
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censoring at zero and normally distributed disturbances, the result specializes to

∂E [yi | xi ]
∂xi

= β	

(
β ′xi

σ

)
.

Although not a formal result, this does suggest a reason why, in general, least squares
estimates of the coefficients in a tobit model usually resemble the MLEs times the
proportion of nonlimit observations in the sample.

McDonald and Mofitt (1980) suggested a useful decomposition of ∂E [yi | xi ]/∂xi ,

∂E [yi | xi ]
∂xi

= β × {
	i [1 − λi (αi + λi )] + φi (αi + λi )

}
,

where αi = x′
iβ, 	i = 	(αi ) and λi = φi/	i . Taking the two parts separately, this result

decomposes the slope vector into

∂ E [yi | xi ]
∂xi

= Prob[yi > 0]
∂ E [yi | xi , yi > 0]

∂xi
+ E [yi | xi , yi > 0]

∂ Prob[yi > 0]
∂xi

.

Thus, a change in xi has two effects: It affects the conditional mean of y∗
i in the positive

part of the distribution, and it affects the probability that the observation will fall in
that part of the distribution.

Example 22.4 Estimated Tobit Equations for Hours Worked
In their study of the number of hours worked in a survey year by a large sample of wives,
Quester and Greene (1982) were interested in whether wives whose marriages were statisti-
cally more likely to dissolve hedged against that possibility by spending, on average, more
time working. They reported the tobit estimates given in Table 22.1. The last figure in the
table implies that a very large proportion of the women reported zero hours, so least squares
regression would be inappropriate.

The figures in parentheses are the ratio of the coefficient estimate to the estimated asymp-
totic standard error. The dependent variable is hours worked in the survey year. “Small kids”
is a dummy variable indicating whether there were children in the household. The “education
difference” and “relative wage” variables compare husband and wife on these two dimen-
sions. The wage rate used for wives was predicted using a previously estimated regression
model and is thus available for all individuals, whether working or not. “Second marriage” is a
dummy variable. Divorce probabilities were produced by a large microsimulation model pre-
sented in another study [Orcutt, Caldwell, and Wertheimer (1976)]. The variables used here
were dummy variables indicating “mean” if the predicted probability was between 0.01 and
0.03 and “high” if it was greater than 0.03. The “slopes” are the marginal effects described
earlier.

Note the marginal effects compared with the tobit coefficients. Likewise, the estimate of
σ is quite misleading as an estimate of the standard deviation of hours worked.

The effects of the divorce probability variables were as expected and were quite large. One
of the questions raised in connection with this study was whether the divorce probabilities
could reasonably be treated as independent variables. It might be that for these individuals,
the number of hours worked was a significant determinant of the probability.

22.3.3 ESTIMATION

Estimation of this model is very similar to that of truncated regression. The tobit model
has become so routine and been incorporated in so many computer packages that
despite formidable obstacles in years past, estimation is now essentially on the level of
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TABLE 22.1 Tobit Estimates of an Hours Worked Equation

White Wives Black Wives

Coefficient Slope Coefficient Slope
Least
Squares

Scaled
OLS

Constant −1803.13 −2753.87
(−8.64) (−9.68)

Small kids −1324.84 −385.89 −824.19 −376.53 −352.63 −766.56
(−19.78) (−10.14)

Education −48.08 −14.00 22.59 10.32 11.47 24.93
difference (−4.77) (1.96)

Relative wage 312.07 90.90 286.39 130.93 123.95 269.46
(5.71) (3.32)

Second marriage 175.85 51.51 25.33 11.57 13.14 28.57
(3.47) (0.41)

Mean divorce 417.39 121.58 481.02 219.75 219.22 476.57
probability (6.52) (5.28)

High divorce 670.22 195.22 578.66 264.36 244.17 530.80
probability (8.40) (5.33)

σ 1559 618 1511 826
Sample size 7459 2798
Proportion working 0.29 0.46

ordinary linear regression.11 The log-likelihood for the censored regression model is

ln L =
∑
yi >0

−1
2

[
log(2π) + ln σ 2 + (yi − x′

iβ)2

σ 2

]
+

∑
yi =0

ln
[

1 − 	

(
x′

iβ

σ

)]
. (22-13)

The two parts correspond to the classical regression for the nonlimit observations and
the relevant probabilities for the limit observations, respectively. This likelihood is a
nonstandard type, since it is a mixture of discrete and continuous distributions. In a
seminal paper, Amemiya (1973) showed that despite the complications, proceeding in
the usual fashion to maximize log L would produce an estimator with all the familiar
desirable properties attained by MLEs.

The log-likelihood function is fairly involved, but Olsen’s (1978) reparameterization
simplifies things considerably. With γ = β/σ and θ = 1/σ , the log-likelihood is

ln L =
∑
yi >0

−1
2

[ln(2π) − ln θ2 + (θyi − x′
iγ )2] +

∑
yi =0

ln[1 − 	(x′
iγ )]. (22-14)

The results in this setting are now very similar to those for the truncated regres-
sion. The Hessian is always negative definite, so Newton’s method is simple to use
and usually converges quickly. After convergence, the original parameters can be re-
covered using σ = 1/θ and β = γ /θ . The asymptotic covariance matrix for these esti-
mates can be obtained from that for the estimates of [γ , θ ] using Est.Asy. Var[β̂, σ̂ ] =
Ĵ Asy. Var[γ̂ , θ̂ ]Ĵ′, where

J =
[
∂β/∂γ ′ ∂β/∂θ

∂σ/∂γ ′ ∂σ/∂θ

]
=

[
(1/θ)I (−1/θ2)γ

0′ (−1/θ2)

]
.

11See Hall (1984).
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Researchers often compute ordinary least squares estimates despite their incon-
sistency. Almost without exception, it is found that the OLS estimates are smaller in
absolute value than the MLEs. A striking empirical regularity is that the maximum
likelihood estimates can often be approximated by dividing the OLS estimates by the
proportion of nonlimit observations in the sample.12 The effect is illustrated in the last
two columns of Table 22.1. Another strategy is to discard the limit observations, but we
now see that just trades the censoring problem for the truncation problem.

22.3.4 SOME ISSUES IN SPECIFICATION

Two issues that commonly arise in microeconomic data, heteroscedasticity and nonnor-
mality, have been analyzed at length in the tobit setting.13

22.3.4.a Heteroscedasticity

Maddala and Nelson (1975), Hurd (1979), Arabmazar and Schmidt (1982a,b), and
Brown and Moffitt (1982) all have varying degrees of pessimism regarding how in-
consistent the maximum likelihood estimator will be when heteroscedasticity occurs.
Not surprisingly, the degree of censoring is the primary determinant. Unfortunately, all
the analyses have been carried out in the setting of very specific models—for example,
involving only a single dummy variable or one with groupwise heteroscedasticity—so
the primary lesson is the very general conclusion that heteroscedasticity emerges as an
obviously serious problem.

One can approach the heteroscedasticity problem directly. Petersen and Waldman
(1981) present the computations needed to estimate a tobit model with heteroscedastic-
ity of several types. Replacing σ with σi in the log-likelihood function and including σ 2

i
in the summations produces the needed generality. Specification of a particular model
for σi provides the empirical model for estimation.

Example 22.5 Multiplicative Heteroscedasticity in the Tobit Model
Petersen and Waldman (1981) analyzed the volume of short interest in a cross section of com-
mon stocks. The regressors included a measure of the market component of heterogeneous
expectations as measured by the firm’s BETA coefficient; a company-specific measure of
heterogeneous expectations, NONMARKET; the NUMBER of analysts making earnings fore-
casts for the company; the number of common shares to be issued for the acquisition of
another firm, MERGER; and a dummy variable for the existence of OPTIONs. They report the
results listed in Table 22.2 for a model in which the variance is assumed to be of the form
σ 2

i = exp(x′
i α) . The values in parentheses are the ratio of the coefficient to the estimated

asymptotic standard error.
The effect of heteroscedasticity on the estimates is extremely large. We do note, however,

a common misconception in the literature. The change in the coefficients is often misleading.
The marginal effects in the heteroscedasticity model will generally be very similar to those
computed from the model which assumes homoscedasticity. (The calculation is pursued in
the exercises.)

A test of the hypothesis that α = 0 (except for the constant term) can be based on the
likelihood ratio statistic. For these results, the statistic is −2[−547.3 − (−466.27) ] = 162.06.
This statistic has a limiting chi-squared distribution with five degrees of freedom. The sample
value exceeds the critical value in the table of 11.07, so the hypothesis can be rejected.

12This concept is explored further in Greene (1980b), Goldberger (1981), and Cheung and Goldberger (1984).
13Two symposia that contain numerous results on these subjects are Blundell (1987) and Duncan (1986b).
An application that explores these two issues in detail is Melenberg and van Soest (1996).
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TABLE 22.2 Estimates of a Tobit Model (Standard errors
in parentheses)

Homoscedastic Heteroscedastic

β β α

Constant −18.28 (5.10) −4.11 (3.28) −0.47 (0.60)
Beta 10.97 (3.61) 2.22 (2.00) 1.20 (1.81)
Nonmarket 0.65 (7.41) 0.12 (1.90) 0.08 (7.55)
Number 0.75 (5.74) 0.33 (4.50) 0.15 (4.58)
Merger 0.50 (5.90) 0.24 (3.00) 0.06 (4.17)
Option 2.56 (1.51) 2.96 (2.99) 0.83 (1.70)
Log L −547.30 −466.27
Sample size 200 200

In the preceding example, we carried out a likelihood ratio test against the hypoth-
esis of homoscedasticity. It would be desirable to be able to carry out the test without
having to estimate the unrestricted model. A Lagrange multiplier test can be used for
that purpose. Consider the heteroscedastic tobit model in which we specify that

σ 2
i = σ 2eα′wi . (22-15)

This model is a fairly general specification that includes many familiar ones as special
cases. The null hypothesis of homoscedasticity is α = 0. (We used this specification
in the probit model in Section 19.4.1.b and in the linear regression model in Section
17.7.1.) Using the BHHH estimator of the Hessian as usual, we can produce a Lagrange
multiplier statistic as follows: Let zi = 1 if yi is positive and 0 otherwise,

ai = zi

(
εi

σ 2

)
+ (1 − zi )

(
(−1)λi

σ

)
,

bi = zi

((
ε2

i /σ
2 − 1

)

2σ 2

)
+ (1 − zi )

(
(x′

iβ)λi

2σ 3

)
, (22-16)

λi = φ(x′
iβ/σ)

1 − �i (x′
iβ/σ)

.

The data vector is gi = [ai x′
i , bi , bi w′

i ]
′. The sums are taken over all observations, and

all functions involving unknown parameters (ε, φ, x′
iβ, λi , etc.) are evaluated at the

restricted (homoscedastic) maximum likelihood estimates. Then,

LM = i′G[G′G]−1G′i = nR2 (22-17)

in the regression of a column of ones on the K + 1 + P derivatives of the log-likelihood
function for the model with multiplicative heteroscedasticity, evaluated at the estimates
from the restricted model. (If there were no limit observations, then it would reduce to
the Breusch–Pagan statistic discussed in Section 11.4.3.) Given the maximum likelihood
estimates of the tobit model coefficients, it is quite simple to compute. The statistic has
a limiting chi-squared distribution with degrees of freedom equal to the number of
variables in wi .
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22.3.4.b Misspecification of Prob[y* < 0]

In an early study in this literature, Cragg (1971) proposed a somewhat more general
model in which the probability of a limit observation is independent of the regression
model for the nonlimit data. One can imagine, for instance, the decision on whether or
not to purchase a car as being different from the decision on how much to spend on the
car, having decided to buy one. A related problem raised by Lin and Schmidt (1984) is
that in the tobit model, a variable that increases the probability of an observation being
a nonlimit observation also increases the mean of the variable. They cite as an example
loss due to fire in buildings. Older buildings might be more likely to have fires, so that
∂ Prob[yi > 0]/∂ agei > 0, but, because of the greater value of newer buildings, older
ones incur smaller losses when they do have fires, so that ∂ E [yi | yi > 0]/∂ agei < 0. This
fact would require the coefficient on age to have different signs in the two functions,
which is impossible in the tobit model because they are the same coefficient.

A more general model that accommodates these objections is as follows:

1. Decision equation:

Prob[y∗
i > 0] = 	(x′

iγ ), zi = 1 if y∗
i > 0,

Prob[y∗
i ≤ 0] = 1 − 	(x′

iγ ), zi = 0 if y∗
i ≤ 0.

(22-18)

2. Regression equation for nonlimit observations:

E [yi | zi = 1] = x′
iβ + σλi ,

according to Theorem 22.2.

This model is a combination of the truncated regression model of Section 22.2 and
the univariate probit model of Section 21.3, which suggests a method of analyzing it.
The tobit model of this section arises if γ equals β/σ . The parameters of the regres-
sion equation can be estimated independently using the truncated regression model of
Section 22.2. A recent application is Melenberg and van Soest (1996).

Fin and Schmidt (1984) considered testing the restriction of the tobit model. Based
only on the tobit model, they devised a Lagrange multiplier statistic that, although a
bit cumbersome algebraically, can be computed without great difficulty. If one is able
to estimate the truncated regression model, the tobit model, and the probit model
separately, then there is a simpler way to test the hypothesis. The tobit log-likelihood
is the sum of the log-likelihoods for the truncated regression and probit models. [To
show this result, add and subtract

∑
yi =1 ln 	(x′

iβ/σ ) in (22-13). This produces the log-
likelihood for the truncated regression model plus (21-20) for the probit model.14]
Therefore, a likelihood ratio statistic can be computed using

λ = −2[ln LT − (ln LP + ln LTR)],

where

LT = likelihood for the tobit model in (22-13), with the same coefficients,

LP = likelihood for the probit model in (19-20), fit separately,

LTR = likelihood for the truncated regression model, fit separately.

14The likelihood function for the truncated regression model is considered in the exercises.
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22.3.4.c Nonnormality

Nonnormality is an especially difficult problem in this setting. It has been shown that
if the underlying disturbances are not normally distributed, then the estimator based
on (22-13) is inconsistent. Research is ongoing both on alternative estimators and on
methods for testing for this type of misspecification.15

One approach to the estimation is to use an alternative distribution. Kalbfleisch and
Prentice (1980) present a unifying treatment that includes several distributions such as
the exponential, lognormal, and Weibull. (Their primary focus is on survival analysis
in a medical statistics setting, which is an interesting convergence of the techniques in
very different disciplines.) Of course, assuming some other specific distribution does not
necessarily solve the problem and may make it worse. A preferable alternative would be
to devise an estimator that is robust to changes in the distribution. Powell’s (1981, 1984)
least absolute deviations (LAD) estimator appears to offer some promise.16 The main
drawback to its use is its computational complexity. An extensive application of the
LAD estimator is Melenberg and van Soest (1996). Although estimation in the nonnor-
mal case is relatively difficult, testing for this failure of the model is worthwhile to assess
the estimates obtained by the conventional methods. Among the tests that have been
developed are Hausman tests, Lagrange multiplier tests [Bera and Jarque (1981, 1982),
Bera, Jarque and Lee (1982)], and conditional moment tests [Nelson (1981)]. The con-
ditional moment tests are described in the next section.

To employ a Hausman test, we require an estimator that is consistent and efficient
under the null hypothesis but inconsistent under the alternative—the tobit estimator
with normality—and an estimator that is consistent under both hypotheses but ineffi-
cient under the null hypothesis. Thus, we will require a robust estimator of β, which
restores the difficulties of the previous paragraph. Recent applications [e.g., Melenberg
and van Soest (1996)] have used the Hausman test to compare the tobit/normal estima-
tor with Powell’s consistent, but inefficient (robust), LAD estimator. Another approach
to testing is to embed the normal distribution in some other distribution and then use
an LM test for the normal specification. Chesher and Irish (1987) have devised an LM
test of normality in the tobit model based on generalized residuals. In many models,
including the tobit model, the generalized residuals can be computed as the derivatives
of the log-densities with respect to the constant term, so

ei = 1
σ 2

[zi (yi − x′
iβ) − (1 − zi )σλi ],

where zi is defined in (22-18) and λi is defined in (22-16). This residual is an estimate
of εi that accounts for the censoring in the distribution. By construction, E [ei | xi ] = 0,
and if the model actually does contain a constant term, then

∑n
i=1 ei = 0; this is the first

of the necessary conditions for the MLE. The test is then carried out by regressing a
column of 1s on di = [ei x′

i , bi , e3
i , e4

i − 3e4
i ]′, where bi is defined in (22-16). Note that the

first K + 1 variables in di are the derivatives of the tobit log-likelihood. Let D be the
n× (K +3) matrix with ith row equal to d′

i . Then D = [G, M], where the K +1 columns

15See Duncan (1983, 1986b), Goldberger (1983), Pagan and Vella (1989), Lee (1996), and Fernandez (1986).
We will examine one of the tests more closely in the following section.
16See Duncan (1986a,b) for a symposium on the subject and Amemiya (1984). Additional references are
Newey, Powell, and Walker (1990); Lee (1996); and Robinson (1988).
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of G are the derivatives of the tobit log-likelihood and the two columns in M are the
last two variables in ai . Then the chi-squared statistic is nR2; that is,

LM = i′D(D′D)−1D′i.

The necessary conditions that define the MLE are i′G = 0, so the first K + 1 elements
of i′D are zero. Using (B-66), then, the LM statistic becomes

LM = i′M[M′M − M′G(G′G)−1G′M]−1M′i,

which is a chi-squared statistic with two degrees of freedom. Note the similarity to
(22-17), where a test for homoscedasticity is carried out by the same method. As emerges
so often in this framework, the test of the distribution actually focuses on the skewness
and kurtosis of the residuals.

22.3.4.d Conditional Moment Tests

Pagan and Vella (1989) [see, as well, Ruud (1984)] describe a set of conditional moment
tests of the specification of the tobit model.17 We will consider three:

1. The variables z have not been erroneously omitted from the model.
2. The disturbances in the model are homoscedastic.
3. The underlying disturbances in the model are normally distributed.

For the third of these, we will take the standard approach of examining the third and
fourth moments, which for the normal distribution are 0 and 3σ 4, respectively. The
underlying motivation for the tests can be made with reference to the regression part
of the tobit model in (22-11),

y∗
i = x′

iβ + εi .

Neglecting for the moment that we only observe y∗
i subject to the censoring, the three

hypotheses imply the following expectations:

1. E [zi (yi − x′
iβ)] = 0,

2. E
{

zi [(yi − x′
iβ)2 − σ 2]

} = 0,
3. E [(yi − x′

iβ)3] = 0 and E [(yi − x′
iβ)4 − 3σ 4] = 0.

In (1), the variables in zi would be one or more variables not already in the model. We
are interested in assessing whether or not they should be. In (2), presumably, although
not necessarily, zi would be the regressors in the model. For the present, we will assume
that y∗

i is observed directly, without censoring. That is, we will construct the CM tests
for the classical linear regression model. Then we will go back to the necessary step and
make the modification needed to account for the censoring of the dependent variable.

17Their survey is quite general and includes other models, specifications, and estimation methods. We will
consider only the simplest cases here. The reader is referred to their paper for formal presentation of these
results.

Developing specification tests for the tobit model has been a popular enterprise. A sampling of the
received literature includes Nelson (1981); Bera, Jarque, and Lee (1982); Chesher and Irish (1987); Chesher,
Lancaster, and Irish (1985); Gourieroux et al. (1984, 1987); Newey (1986); Rivers and Vuong (1988); Horowitz
and Neumann (1989); and Pagan and Vella (1989). Newey (1985a,b) are useful references on the general
subject of conditional moment testing. More general treatments of specification testing are Godfrey (1988)
and Ruud (1984).
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Conditional moment tests are described in Section 17.6.4. To review, for a model
estimated by maximum likelihood, the statistic is

C = i′M[M′M − M′G(G′G)−1G′M]−1M′i,

where the rows of G are the terms in the gradient of the log-likelihood function, (G′G)−1

is the BHHH estimator of the asymptotic covariance matrix of the MLE of the model
parameters, and the rows of M are the individual terms in the sample moment conditions.
Note that this construction is the same as the LM statistic just discussed. The difference
is in how the rows of M are constructed.

For a regression model without censoring, the sample counterparts to the moment
restrictions in (1) to (3) would be

r1 = 1
n

n∑
i=1

zi ei , where ei = yi − x′
i b and b = (X′X)−1X′y,

r2 = 1
n

n∑
i=1

zi
(
e2

i − s2), where s2 = e′e
n

,

r3 = 1
n

n∑
i=1

[
e3

i
e4

i − 3s4

]
.

For the positive observations, we observe y∗, so the observations in M are the same as
for the classical regression model; that is,

1. mi = zi (yi − x′
iβ),

2. mi = zi [(yi − x′
iβ)2 − σ 2],

3. mi = [(yi − x′
iβ)3, (yi − x′

iβ)4 − 3σ 4]′.

For the limit observations, these observations are replaced with their expected values,
conditioned on y = 0, which means that y∗ ≤ 0 or ei ≤ −x′

iβ. Let qi = (x′
iβ)/σ and λi =

φi/(1 − �i ). Then from (22-2), (22-3b), and (22-4),

1. mi = zi E [(y∗
i − x′

iβ) | y = 0] = zi [(x′
iβ − σλi ) − x′

iβ] = zi (2σλi ).
2. mi = zi E [(y∗

i − x′
iβ)2 − σ 2 | y = 0] = zi [σ 2(1 + qiλi ) − σ 2] = zi (σ

2qiλi ).

E [ε2
i | y = 0, xi ] is not the variance, since the mean is not zero.) For the third and

fourth moments, we simply reproduce Pagan and Vella’s results [see also Greene (1995a,
pp. 618–619)]:

3. mi = σ 3λi
[ − (

2 + q2
i

)
, σqi

(
3 + q2

i

)]′.

These three items are the remaining terms needed to compute M.

22.3.5 CENSORING AND TRUNCATION IN MODELS FOR COUNTS

Truncation and censoring are relatively common in applications of models for counts
(see Section 21.9). Truncation often arises as a consequence of discarding what appear
to be unusable data, such as the zero values in survey data on the number of uses of
recreation facilities [Shaw (1988) and Bockstael et al. (1990)]. The zero values in this
setting might represent a discrete decision not to visit the site, which is a qualitatively
different decision from the positive number for someone who had decided to make at
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least one visit. In such a case, it might make sense to confine attention to the nonzero
observations, thereby truncating the distribution. Censoring, in contrast, is often em-
ployed to make survey data more convenient to gather and analyze. For example, survey
data on access to medical facilities might ask, “How many trips to the doctor did you
make in the last year?” The responses might be 0, 1, 2, 3 or more.

Models with these characteristics can be handled within the Poisson and negative
binomial regression frameworks by using the laws of probability to modify the likeli-
hood. For example, in the censored data case,

Pi ( j) = Prob[yi = j] = e−λi λ
j
i

j!
, j = 0, 1, 2

Pi (3) = Prob[yi ≥ 3] = 1 − [Prob(yi = 0) + Prob(yi = 1) + Prob(yi = 2)].

The probabilities in the model with truncation above zero would be

Pi ( j) = Prob[yi = j] = e−λi λ
j
i

[1 − Pi (0)] j!
= e−λi λ

j
i

[1 − e−λi ] j!
, j = 1, 2, . . . .

These models are not appreciably more complicated to analyze than the basic Poisson
or negative binomial models. [See Terza (1985b), Mullahy (1986), Shaw (1988), Grogger
and Carson (1991), Greene (1998), Lambert (1992), and Winkelmann (1997).] They do,
however, bring substantive changes to the familiar characteristics of the models. For
example, the conditional means are no longer λi ; in the censoring case,

E [yi | xi ] = λi −
∞∑
j=3

( j − 3)Pi ( j) < λi .

Marginal effects are changed as well. Recall that our earlier result for the count data
models was ∂ E [yi | xi ]/∂ xi = λiβ. With censoring or truncation, it is straightforward in
general to show that ∂ E [yi | xi ]/∂xi = δiβ, but the new scale factor need not be smaller
than λi .

22.3.6 APPLICATION: CENSORING IN THE TOBIT AND POISSON
REGRESSION MODELS

In 1969, the popular magazine Psychology Today published a 101-question survey on
sex and asked its readers to mail in their answers. The results of the survey were dis-
cussed in the July 1970 issue. From the approximately 2,000 replies that were collected
in electronic form (of about 20,000 received), Professor Ray Fair (1978) extracted a
sample of 601 observations on men and women then currently married for the first
time and analyzed their responses to a question about extramarital affairs. He used the
tobit model as a platform. Fair’s analysis in this frequently cited study suggests several
interesting econometric questions. [In addition, his 1977 companion paper in Econo-
metrica on estimation of the tobit model contributed to the development of the EM
algorithm, which was published by and is usually associated with Dempster, Laird, and
Rubin (1977).]

As noted, Fair used the tobit model as his estimation framework for this study. The
nonexperimental nature of the data (which can be downloaded from the Internet at
http://fairmodel.econ.yale.edu/rayfair/work.ss.htm) provides a fine laboratory case that
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we can use to examine the relationships among the tobit, truncated regression, and
probit models. In addition, as we will explore below, although the tobit model seems to
be a natural choice for the model for these data, a closer look suggests that the models
for counts we have examined at several points earlier might be yet a better choice.
Finally, the preponderance of zeros in the data that initially motivated the tobit model
suggests that even the standard Poisson model, although an improvement, might still
be inadequate. In this example, we will reestimate Fair’s original model and then apply
some of the specification tests and modified models for count data as alternatives.

The study was based on 601 observations on the following variables (full details on
data coding are given in the data file and Appendix Table F22.2):

y = number of affairs in the past year, 0, 1, 2, 3, 4–10 coded as 7, “monthly, weekly, or
daily,” coded as 12. Sample mean = 1.46. Frequencies = (451, 34, 17, 19, 42, 38).

z1 = sex = 0 for female, 1 for male. Sample mean = 0.476.

z2 = age. Sample mean = 32.5.

z3 = number of years married. Sample mean = 8.18.

z4 = children, 0 = no, 1 = yes. Sample mean = 0.715.

z5 = religiousness, 1 = anti, . . . , 5 = very. Sample mean = 3.12.

z6 = education, years, 9 = grade school, 12 = high school, . . . , 20 = Ph.D or
other. Sample mean = 16.2.

z7 = occupation, “Hollingshead scale,” 1–7. Sample mean = 4.19.

z8 = self-rating of marriage, 1 = very unhappy, . . . , 5 = very happy. Sample
mean = 3.93.

The tobit model was fit to y using a constant term and all eight variables. A restricted
model was fit by excluding z1, z4, and z6, none of which was individually statistically sig-
nificant in the model. We are able to match exactly Fair’s results for both equations. The
log-likelihood functions for the full and restricted models are 2704.7311 and 2705.5762.
The chi-squared statistic for testing the hypothesis that the three coefficients are zero
is twice the difference, 1.6902. The critical value from the chi-squared distribution with
three degrees of freedom is 7.81, so the hypothesis that the coefficients on these three
variables are all zero is not rejected. The Wald and Lagrange multiplier statistics are
likewise small, 6.59 and 1.681. Based on these results, we will continue the analysis
using the restricted set of variables, Z = (1, z2, z3, z5, z7, z8). Our interest is solely in
the numerical results of different modeling approaches. Readers may draw their own
conclusions and interpretations from the estimates.

Table 22.3 presents parameter estimates based on Fair’s specification of the normal
distribution. The inconsistent least squares estimates appear at the left as a basis for
comparison. The maximum likelihood tobit estimates appear next. The sample is heavily
dominated by observations with y = 0 (451 of 601, or 75 percent), so the marginal effects
are very different from the coefficients, by a multiple of roughly 0.766. The scale factor
is computed using the results of Theorem 22.4 for left censoring at zero and the upper
limit of +∞, with all variables evaluated at the sample means and the parameters equal
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TABLE 22.3 Model Estimates Based on the Normal Distribution (Standard Errors
in Parentheses)

Tobit Truncated Regression

Least Marginal Scaled Marginal
Squares Estimate Effect by 1/σ Estimate Effect

Variable (1) (2) (3) (4)

Probit

Estimate
(5) (6) (7)

Constant 5.61 8.18 — 0.991 0.997 8.32 —
(0.797) (2.74) — (0.336) (0.361) (3.96) —

z2 −0.0504 −0.179 −0.042 −0.022 −0.022 −0.0841 −0.0407
(0.0221) (0.079) (0.184) (0.010) (0.102) (0.119) (0.0578)

z3 0.162 0.554 0.130 0.0672 0.0599 0.560 0.271
(0.0369) (0.135) (0.0312) (0.0161) (0.0171) (0.219) (0.106)

z5 −0.476 −1.69 −0.394 −0.2004 −0.184 −1.502 −0.728
(0.111) (0.404) (0.093) (0.484) (0.0515) (0.617) (0.299)

z7 0.106 0.326 0.0762 0.0395 0.0375 0.189 0.0916
(0.0711) (0.254) (0.0595) (0.0308) (0.0328) (0.377) (0.182)

z8 −0.712 −2.29 −0.534 −0.277 −0.273 −1.35 −0.653
(0.118) (0.408) (0.0949) (0.0483) (0.0525) (0.565) (0.273)

σ 3.09 8.25 5.53
log L −705.5762 −307.2955 −329.7103

to the maximum likelihood estimates:

scale = 	

[
+∞ − x̄′β̂ML

σ̂ML

]
−	

[
0 − x̄′β̂ML

σ̂ML

]
= 1−	

[
0 − x̄′β̂ML

σ̂ML

]
= 	

[
x̄′β̂ML

σ̂ML

]
= 0.234.

These estimates are shown in the third column. As expected, they resemble the least
squares estimates, although not enough that one would be content to use OLS for
estimation. The fifth column in Table 22.3 gives estimates of the probit model estimated
for the dependent variable qi = 0 if yi = 0, qi = 1 if yi > 0. If the specification of the
tobit model is correct, then the probit estimators should be consistent for (1/σ)β from
the tobit model. These estimates, with standard errors computed using the delta method,
are shown in column 4. The results are surprisingly close, especially given the results
of the specification test considered later. Finally, columns 6 and 7 give the estimates
for the truncated regression model that applies to the 150 nonlimit observations if the
specification of the model is correct. Here the results seem a bit less consistent.

Several specification tests were suggested for this model. The Cragg/Greene test for
appropriate specification of Prob[yi = 0] is given in Section 22.3.4.b. This test is easily
carried out using the log-likelihood values in the table. The chi-squared statistic, which
has seven degrees of freedom is−2

{−705.5762 − [−307.2955 + (−392.7103)]
} = 11.141,

which is smaller than the critical value of 14.067. We conclude that the tobit model is
correctly specified (the decision of whether or not is not different from the decision of
how many, given “whether”). We now turn to the normality tests. We emphasize that
these tests are nonconstructive tests of the skewness and kurtosis of the distribution of ε.
A fortiori, if we do reject the hypothesis that these values are 0.0 and 3.0, respectively,
then we can reject normality. But that does not suggest what to do next. We turn to
that issue later. The Chesher–Irish and Pagan–Vella chi-squared statistics are 562.218
and 22.314, respectively. The critical value is 5.99, so on the basis of both of these
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values, the hypothesis of normality is rejected. Thus, both the probability model and
the distributional framework are rejected by these tests.

Before leaving the tobit model, we consider one additional aspect of the original
specification. The values above 4 in the observed data are not true observations on the
response; 7 is an estimate of the mean of observations that fall in the range 4 to 10,
whereas 12 was chosen more or less arbitrarily for observations that were greater than
10. These observations represent 80 of the 601 observations, or about 13 percent of the
sample. To some extent, this coding scheme might be driving the results. [This point was
not overlooked in the original study; “[a] linear specification was used for the estimated
equation, and it did not seem reasonable in this case, given the range of explanatory
variables, to have a dependent variable that ranged from, say, 0 to 365” [Fair (1978),
p. 55]. The tobit model allows for censoring in both tails of the distribution. Ignoring
the results of the specification tests for the moment, we will examine a doubly censored
regression by recoding all observations that take the values 7, or 12 as 4. The model is thus

y∗ = x′β + ε,

y = 0 if y∗ ≤ 0,

y = y∗ if 0 < y∗ < 4,

y = 4 if y∗ ≥ 4.

The log-likelihood is built up from three sets of terms:

ln L =
∑
y=0

ln 	

[
0 − x′

iβ

σ

]
+

∑
0<y<4

ln
1
σ

φ

[
yi − x′

iβ

σ

]
+

∑
y=4

ln
[

1 − 	

(
4 − x′

iβ

σ

)]
.

Maximum likelihood estimates of the parameters of this model based on the doubly
censored data appear in Table 22.4. The effect on the coefficient estimates is relatively
minor, but the effect on the estimates of the marginal effects is very large; they are
reduced by about 50 percent, which makes sense. With the original data, increases in
the index were associated with increases in y that could be from 3 to 7 or from 3 to 12. But
with the data treated as censored, y cannot increase past 4. Thus, the range of variation
is greatly reduced. The numerical results are also suggestive. Recall that the scale factor
for the singly censored data was 0.2338. For the doubly censored variable, this factor
is 	[(4 − β ′x)/σ ] − 	[(0 − β ′x)/σ ] = 0.8930 − 0.7701 = 0.1229. The regression model

TABLE 22.4 Estimates of a Doubly Censored Tobit Model

Left Censored at 0 Only Censored at Both 0 and 4

Standard Marginal Standard Marginal
Variable Estimate Error Effect Estimate Error Effect

Constant 8.18 0.797 — 7.90 2.804 —
z2 −0.179 0.079 −0.0420 −0.178 0.080 −0.0218
z3 0.554 0.135 0.130 0.532 0.141 0.0654
z5 −1.69 0.404 −0.394 −1.62 0.424 −0.199
z7 0.326 0.254 0.0762 0.324 0.254 0.0399
z8 −2.29 0.408 −0.534 −2.21 0.459 −0.271
σ 8.25 Prob(nonlimit) = 0.2338 7.94 Prob(nonlimit) = 0.1229
E [y | x = E [x]] 1.126 0.226
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for y∗ has not changed much, but the effect now is to assign the upper tail area to the
censored region, whereas before it was in the uncensored region. The effect, then, is to
reduce the scale roughly by this 0.107, from 0.234 to about 0.123.

By construction, the tobit model should only be viewed as an approximation for
these data. The dependent variable is a count, not a continuous measurement. (Thus,
the testing results obtained earlier are not surprising.) The Poisson regression model,
or perhaps one of the many variants of it, should be a preferable modeling framework.
Table 22.5 presents estimates of the Poisson and negative binomial regression model.
There is ample evidence of overdispersion in these data; the t-ratio on the estimated
overdispersion parameter is 7.014/0.945 = 7.42, which is strongly suggestive. The large
absolute value of the coefficient is likewise suggestive.

Before proceeding to a model that specifically accounts for overdispersion, we can
find a candidate for its source, at least to some degree. As discussed earlier, responses
of 7 and 12 do not represent the actual counts. It is unclear what the effect of the first
recoding would be, since it might well be the mean of the observations in this group. But
the second is clearly a censored observation. To remove both of these effects, we have
recoded both the values 7 and 12 as 4 and treated this observation (appropriately) as a
censored observation, with 4 denoting “4 or more.” As shown in the third and fourth sets
of results in Table 22.5, the effect of this treatment of the data is greatly to reduce the
measured effects, which is the same effect we observed for the tobit model. Although
this step does remove a deficiency in the data, it does not remove the overdispersion;
at this point, the negative binomial model is still the preferred specification.

The tobit model remains the standard approach to modeling a dependent variable
that displays a large cluster of limit values, usually zeros. But in these data, it is clear that

TABLE 22.5 Model Estimates Based on the Poisson Distribution

Poisson Regression Negative Binomial Regression

Standard Marginal Standard Marginal
Variable Estimate Error Effect Estimate Error Effect

Based on Uncensored Poisson Distribution

Constant 2.53 0.197 — 2.19 0.859 —
z2 −0.0322 0.00585 −0.0470 −0.0262 0.0180 −0.00393
z3 0.116 0.00991 0.168 0.0848 0.0400 0.127
z5 −0.354 0.0309 −0.515 −0.422 0.171 −0.632
z7 0.0798 0.0194 0.116 0.0604 0.0908 0.0906
z8 −0.409 0.0274 −0.0596 −0.431 0.167 −0.646
α 7.01 0.945
log L −1427.037 −728.2441

Based on Poisson Distribution Right Censored at y = 4

Constant 1.90 0.283 — 4.79 1.16 —
z2 −0.0328 0.00838 −0.0235 −0.0166 0.0250 −0.00428
z3 0.105 0.0140 0.0754 0.174 0.0568 0.045
z5 −0.323 0.0437 −0.232 −0.723 0.198 −0.186
z7 0.0798 0.0275 0.0521 0.0900 0.116 0.0232
z8 −0.390 0.0391 −0.279 −0.854 0.216 −0.220
α 9.39 1.36
log L −747.7541 −482.0505
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FIGURE 22.3 Histogram for Model Predictions.

the zero value represents something other than a censoring; it is the outcome of a discrete
decision. Thus, for this reason and based on the preceding results, it seems appropriate to
turn to a different model for this dependent variable. The Poisson and negative binomial
models look like an improvement, but there remains a noteworthy problem. Figure 22.3
shows a histogram of the actual values (solid dark bars) and predicted values from the
negative binomial model estimated with the censored data (lighter bars). Predictions
from the latter model are the integer values of E [y | x] = exp(β ′x). As in the actual data,
values larger than 4 are censored to 4. Evidently, the negative binomial model predicts
the data fairly poorly. In fact, it is not hard to see why. The source of the overdispersion
in the data is not the extreme values on the right of the distribution; it is the very large
number of zeros on the left.

There are a large variety of models and permutations that one might turn to at
this point. We will conclude with just one of these, Lambert’s (1992) zero-inflated Pois-
son (ZIP) model with a logit “splitting” model discussed in Section 21.9.6 and Exam-
ple 21.12. The doubly censored count is the dependent variable in this model. (Mullahy’s
(1986) hurdle model is an alternative that might be considered. The difference between
these two is in the interpretation of the zero observations. In the ZIP formulation, the
zero observations would be a mixture of “never” and “not in the last year,” whereas
the hurdle model assumes two distinct decisions, “whether or not” and “how many,
given yes.”) The estimates of the parameters of the ZIP model are shown in Table 22.6.
The Vuong statistic of 21.64 strongly supports the ZIP model over the Poisson model.
(An attempt to combine the ZIP model with the negative binomial was unsuccessful.
Since, as expected, the ancillary model for the zeros accounted for the overdispersion
in the data, the negative binomial model degenerated to the Poisson form.) Finally,
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TABLE 22.6 Estimates of a Zero-Inflated Poisson Model

Poisson Regression Logit Splitting Model Marginal Effects

Variable 1.1Estimate
Standard

Error Estimate
Standard

Error ZIP Tobit (0) Tobit (0, 4)

Constant 1.27 0.439 −1.85 0.664 — —
Age −0.00422 0.0122 0.0397 0.0190 −0.0252 −0.0420 −0.0218
Years 0.0331 0.0231 −0.0981 0.0318 0.0987 0.130 0.0654
Religion −0.0909 0.0721 0.306 0.0951 −0.288 −0.394 −0.199
Occupation 0.0205 0.0441 0.0677 0.0607 0.0644 0.0762 0.0399
Happiness −0.817 0.0666 0.458 0.0949 −0.344 −0.534 −0.271

the marginal effects, δ = ∂ E [y | x]/∂x, are shown in Table 22.6 for three models: the
ZIP model, Fair’s original tobit model, and the tobit model estimated with the doubly
censored count. The estimates for the ZIP model are considerably lower than those
for Fair’s tobit model. When the tobit model is reestimated with the censoring on the
right, however, the resulting marginal effects are reasonably close to those from the ZIP
model, though uniformly smaller. (This result may be from not building the censoring
into the ZIP model, a refinement that would be relatively straightforward.)

We conclude that the original tobit model provided only a fair approximation to
the marginal effects produced by (we contend) the more appropriate specification of
the Poisson model. But the approximation became much better when the data were
recorded and treated as censored. Figure 22.3 also shows the predictions from the ZIP
model (narrow bars). As might be expected, it provides a much better prediction of the
dependent variable. (The integer values of the conditional mean function for the tobit
model were roughly evenly split between zeros and ones, whereas the doubly censored
model always predicted y = 0.) Surprisingly, the treatment of the highest observations
does greatly affect the outcome. If the ZIP model is fit to the original uncensored
data, then the vector of marginal effects is δ = [−0.0586, 0.2446, −0.692, 0.115, −0.787],
which is extremely large. Thus, perhaps more analysis is called for—the ZIP model can
be further improved, and one might reconsider the hurdle model—but we have tortured
Fair’s data enough. Further exploration is left for the reader.

22.4 THE SAMPLE SELECTION MODEL

The topic of sample selection, or incidental truncation, has been the subject of an
enormous recent literature, both theoretical and applied.18 This analysis combines both
of the previous topics.

Example 22.6 Incidental Truncation
In the high-income survey discussed in Example 22.2, respondents were also included in the
survey if their net worth, not including their homes, was at least $500,000. Suppose that

18A large proportion of the analysis in this framework has been in the area of labor economics. The results,
however, have been applied in many other fields, including, for example, long series of stock market returns
by financial economists (“survivorship bias”) and medical treatment and response in long-term studies by
clinical researchers (“attrition bias”). The four surveys noted in the introduction to this chapter provide fairly
extensive, although far from exhaustive, lists of the studies. Some studies that comment on methodological
issues are Heckman (1990), Manski (1989, 1990, 1992), and Newey, Powell, and Walker (1990).
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the survey of incomes was based only on people whose net worth was at least $500,000.
This selection is a form of truncation, but not quite the same as in Section 22.2. This selection
criterion does not necessarily exclude individuals whose incomes at the time might be quite
low. Still, one would expect that, on average, individuals with a high net worth would have a
high income as well. Thus, the average income in this subpopulation would in all likelihood
also be misleading as an indication of the income of the typical American. The data in such
a survey would be nonrandomly selected or incidentally truncated.

Econometric studies of nonrandom sampling have analyzed the deleterious effects
of sample selection on the properties of conventional estimators such as least squares;
have produced a variety of alternative estimation techniques; and, in the process, have
yielded a rich crop of empirical models. In some cases, the analysis has led to a reinter-
pretation of earlier results.

22.4.1 INCIDENTAL TRUNCATION IN A BIVARIATE DISTRIBUTION

Suppose that y and z have a bivariate distribution with correlation ρ. We are interested
in the distribution of y given that z exceeds a particular value. Intuition suggests that if y
and z are positively correlated, then the truncation of z should push the distribution of
y to the right. As before, we are interested in (1) the form of the incidentally truncated
distribution and (2) the mean and variance of the incidentally truncated random vari-
able. Since it has dominated the empirical literature, we will focus first on the bivariate
normal distribution.19

The truncated joint density of y and z is

f (y, z | z > a) = f (y, z)
Prob(z > a)

.

To obtain the incidentally truncated marginal density for y, we would then integrate z
out of this expression. The moments of the incidentally truncated normal distribution
are given in Theorem 22.5.20

THEOREM 22.5 Moments of the Incidentally Truncated Bivariate
Normal Distribution

If y and z have a bivariate normal distribution with means µy and µz, standard
deviations σy and σz, and correlation ρ, then

E [y | z > a] = µy + ρσyλ(αz),

Var[y | z > a] = σ 2
y [1 − ρ2δ(αz)],

(22-19)

where

αz = (a − µz)/σz, λ(αz) = φ(αz)/[1 − 	(αz)], and δ(αz) = λ(αz)[λ(αz) − αz].

19We will reconsider the issue of the normality assumption in Section 22.4.5.
20Much more general forms of the result that apply to multivariate distributions are given in Johnson and
Kotz (1974). See also Maddala (1983, pp. 266–267).



Greene-50240 book June 28, 2002 17:5

782 CHAPTER 22 ✦ Limited Dependent Variable and Duration Models

Note that the expressions involving z are analogous to the moments of the truncated
distribution of x given in Theorem 22.2. If the truncation is z< a, then we make the
replacement λ(αz) = −φ(αz)/	(αz).

As expected, the truncated mean is pushed in the direction of the correlation if the
truncation is from below and in the opposite direction if it is from above. In addition,
the incidental truncation reduces the variance, because both δ(α) and ρ2 are between
zero and one.

22.4.2 REGRESSION IN A MODEL OF SELECTION

To motivate a regression model that corresponds to the results in Theorem 22.5, we
consider two examples.

Example 22.7 A Model of Labor Supply
A simple model of female labor supply that has been examined in many studies consists of
two equations:21

1. Wage equation. The difference between a person’s market wage, what she could
command in the labor market, and her reservation wage, the wage rate necessary to
make her choose to participate in the labor market, is a function of characteristics such
as age and education as well as, for example, number of children and where a person
lives.

2. Hours equation. The desired number of labor hours supplied depends on the wage,
home characteristics such as whether there are small children present, marital status,
and so on.

The problem of truncation surfaces when we consider that the second equation describes
desired hours, but an actual figure is observed only if the individual is working. (In most
such studies, only a participation equation, that is, whether hours are positive or zero, is
observable.) We infer from this that the market wage exceeds the reservation wage. Thus,
the hours variable in the second equation is incidentally truncated.

To put the preceding examples in a general framework, let the equation that deter-
mines the sample selection be

z∗
i = w′γ i + ui ,

and let the equation of primary interest be

yi = x′
iβ + εi .

The sample rule is that yi is observed only when z∗
i is greater than zero. Suppose as

well that εi and ui have a bivariate normal distribution with zero means and correlation
ρ. Then we may insert these in Theorem 22.5 to obtain the model that applies to the
observations in our sample:

E [yi | yi is observed] = E [yi | z∗
i > 0]

= E [yi | ui > −w′γ i ]

= x′
iβ + E [εi | ui > −w′γ i ]

= x′
iβ + ρσελi (αu)

= x′
iβ i + βλλi (αu),

21See, for example, Heckman (1976). This strand of literature begins with an exchange by Gronau (1974) and
Lewis (1974).
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where αu = −w′
iγ /σu and λ(αu) = φ(w′

iγ /σu)/	(w′
iγ /σu). So,

yi | z∗
i > 0 = E [yi | z∗

i > 0] + vi

= x′
iβ + βλλi (αu) + vi .

Least squares regression using the observed data—for instance, OLS regression of hours
on its determinants, using only data for women who are working—produces inconsistent
estimates of β. Once again, we can view the problem as an omitted variable. Least
squares regression of y on x and λ would be a consistent estimator, but if λ is omitted,
then the specification error of an omitted variable is committed. Finally, note that the
second part of Theorem 22.5 implies that even if λi were observed, then least squares
would be inefficient. The disturbance vi is heteroscedastic.

The marginal effect of the regressors on yi in the observed sample consists of two
components. There is the direct effect on the mean of yi , which is β. In addition, for a
particular independent variable, if it appears in the probability that z∗

i is positive, then
it will influence yi through its presence in λi . The full effect of changes in a regressor
that appears in both xi and wi on y is

∂ E [yi |z∗
i > 0]

∂xik
= βk − γk

(
ρσε

σu

)
δi (αu),

where

δi = λ2
i − αiλi .

22

Suppose that ρ is positive and E [yi ] is greater when z∗
i is positive than when it is negative.

Since 0 < δi < 1, the additional term serves to reduce the marginal effect. The change
in the probability affects the mean of yi in that the mean in the group z∗

i > 0 is higher.
The second term in the derivative compensates for this effect, leaving only the marginal
effect of a change given that z∗

i > 0 to begin with. Consider Example 22.9, and suppose
that education affects both the probability of migration and the income in either state.
If we suppose that the income of migrants is higher than that of otherwise identical
people who do not migrate, then the marginal effect of education has two parts, one
due to its influence in increasing the probability of the individual’s entering a higher-
income group and one due to its influence on income within the group. As such, the
coefficient on education in the regression overstates the marginal effect of the education
of migrants and understates it for nonmigrants. The sizes of the various parts depend
on the setting. It is quite possible that the magnitude, sign, and statistical significance of
the effect might all be different from those of the estimate of β, a point that appears
frequently to be overlooked in empirical studies.

In most cases, the selection variable z∗ is not observed. Rather, we observe only
its sign. To consider our two examples, we typically observe only whether a woman is
working or not working or whether an individual migrated or not. We can infer the sign
of z∗, but not its magnitude, from such information. Since there is no information on
the scale of z∗, the disturbance variance in the selection equation cannot be estimated.
(We encountered this problem in Chapter 21 in connection with the probit model.)

22We have reversed the sign of αµ in (22-19) since a = 0, and α = γ ′w/σM is somewhat more convenient. Also,
as such, ∂λ/∂α = −δ.



Greene-50240 book June 28, 2002 17:5

784 CHAPTER 22 ✦ Limited Dependent Variable and Duration Models

Thus, we reformulate the model as follows:

selection mechanism: z∗
i = w′

iγ + ui , zi = 1 if z∗
i > 0 and 0 otherwise;

Prob(zi = 1 | wi ) = �(w′
iγ ) and

Prob(zi = 0 | wi ) = 1 − �(w′
iγ ).

regression model: yi = x′
iβ + εi observed only if zi = 1,

(ui , εi ) ∼ bivariate normal [0, 0, 1, σε, ρ].

(22-20)

Suppose that, as in many of these studies, zi and wi are observed for a random sample
of individuals but yi is observed only when zi = 1. This model is precisely the one we
examined earlier, with

E [yi | zi = 1, xi , wi ] = x′
iβ + ρσeλ(w′

iγ ).

22.4.3 ESTIMATION

The parameters of the sample selection model can be estimated by maximum like-
lihood.23 However, Heckman’s (1979) two-step estimation procedure is usually used
instead. Heckman’s method is as follows:24

1. Estimate the probit equation by maximum likelihood to obtain estimates of γ . For
each observation in the selected sample, compute λ̂i = φ(w′

i γ̂ )/	(w′
i γ̂ ) and

δ̂i = λ̂i (λ̂i − w′
i γ̂ ).

2. Estimate β and βλ = ρσe by least squares regression of y on x and λ̂.

It is possible also to construct consistent estimators of the individual parameters ρ

and σε. At each observation, the true conditional variance of the disturbance would be

σ 2
i = σ 2

ε (1 − ρ2δi ).

The average conditional variance for the sample would converge to

plim
1
n

n∑
i=1

σ 2
i = σ 2

ε (1 − ρ2δ̄),

which is what is estimated by the least squares residual variance e′e/n. For the square
of the coefficient on λ, we have

plim b2
λ = ρ2σ 2

ε ,

whereas based on the probit results we have

plim
1
n

n∑
i=1

δ̂i = δ̄.

We can then obtain a consistent estimator of σ 2
ε using

σ̂ 2
ε = 1

n
e′e + ˆ̄δb2

λ.

23See Greene (1995a).
24Perhaps in a mimicry of the “tobit” estimator described earlier, this procedure has come to be known as
the “Heckit” estimator.
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Finally, an estimator of ρ2 is

ρ̂2 = b2
λ

σ̂ 2
ε

,

which provides a complete set of estimators of the model’s parameters.25

To test hypotheses, an estimate of the asymptotic covariance matrix of [b′, bλ] is
needed. We have two problems to contend with. First, we can see in Theorem 22.5 that
the disturbance term in

(yi | zi = 1, xi , wi ) = x′
iβ + ρσeλi + vi (22-21)

is heteroscedastic;

Var[vi | zi = 1, xi , wi ] = σ 2
ε (1 − ρ2δi ).

Second, there are unknown parameters in λi . Suppose that we assume for the moment
that λi and δi are known (i.e., we do not have to estimate γ ). For convenience, let
x∗

i = [xi , λi ], and let b∗ be the least squares coefficient vector in the regression of y on
x∗ in the selected data. Then, using the appropriate form of the variance of ordinary
least squares in a heteroscedastic model from Chapter 11, we would have to estimate

Var[b∗] = σ 2
ε [X′

∗X∗]−1

[
n∑

i=1

(1 − ρ2δi )x∗
i x∗′

i

]
[X′

∗X∗]−1

= σ 2
ε [X′

∗X∗]−1[X′
∗(I − ρ2�)X∗][X′

∗X∗]−1,

where I − ρ2� is a diagonal matrix with (1 − ρ2δi ) on the diagonal. Without any other
complications, this result could be computed fairly easily using X, the sample estimates
of σ 2

ε and ρ2, and the assumed known values of λi and δi .
The parameters in γ do have to be estimated using the probit equation. Rewrite

(22-21) as

(yi | zi = 1, xi , wi ) = β ′xi + βλλ̂i + vi − βλ(λ̂i − λi ).

In this form, we see that in the preceding expression we have ignored both an additional
source of variation in the compound disturbance and correlation across observations;
the same estimate of γ is used to compute λ̂i for every observation. Heckman has
shown that the earlier covariance matrix can be appropriately corrected by adding a
term inside the brackets,

Q = ρ̂2(X′
∗�̂W)Est.Asy. Var[γ̂ ](W′�̂X∗) = ρ̂2F̂V̂F̂ ′,

where V̂ = Est.Asy. Var[γ̂ ], the estimator of the asymptotic covariance of the probit
coefficients. Any of the estimators in (21-22) to (21-24) may be used to compute V̂. The
complete expression is

Est.Asy. Var[b, bλ] = σ̂ 2
ε [X′

∗X∗]−1[X′
∗(I − ρ̂2�̂)X∗ + Q][X′

∗X∗]−1.26

25Note that ρ̂2 is not a sample correlation and, as such, is not limited to [0, 1]. See Greene (1981) for discussion.
26This matrix formulation is derived in Greene (1981). Note that the Murphy and Topel (1985) results for
two-step estimators given in Theorem 10.3 would apply here as well. Asymptotically, this method would give
the same answer. The Heckman formulation has become standard in the literature.
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TABLE 22.7 Estimated Selection Corrected Wage Equation

Two-Step Maximum Likelihood Least Squares

Estimate Std. Err. Estimate Std. Err. Estimate Std. Err.

β1 −0.971 (2.06) −0.632 (1.063) −2.56 (0.929)
β2 0.021 (0.0625) 0.00897 (0.000678) 0.0325 (0.0616)
β3 0.000137 (0.00188) −0.334d − 4 (0.782d − 7) −0.000260 (0.00184)
β4 0.417 (0.100) 0.147 (0.0142) 0.481 (0.0669)
β5 0.444 (0.316) 0.144 (0.0614) 0.449 (0.449)
(ρσ ) −1.100 (0.127)
ρ −0.340 −0.131 (0.218) 0.000
σ 3.200 0.321 (0.00866) 3.111

Example 22.8 Female Labor Supply
Examples 21.1 and 21.4 proposed a labor force participation model for a sample of
753 married women in a sample analyzed by Mroz (1987). The data set contains wage and
hours information for the 428 women who participated in the formal market (LFP = 1). Fol-
lowing Mroz, we suppose that for these 428 individuals, the offered wage exceeded the
reservation wage and, moreover, the unobserved effects in the two wage equations are cor-
related. As such, a wage equation based on the market data should account for the sample
selection problem. We specify a simple wage model:

wage = β1 + β2 Exper + β3 Exper 2 + β4 Education + β5 City + ε

where Exper is labor market experience and City is a dummy variable indicating that the indi-
vidual lived in a large urban area. Maximum likelihood, Heckman two-step, and ordinary least
squares estimates of the wage equation are shown in Table 22.7. The maximum likelihood
estimates are FIML estimates—the labor force participation equation is reestimated at the
same time. Only the parameters of the wage equation are shown below. Note as well that
the two-step estimator estimates the single coefficient on λi and the structural parameters σ
and ρ are deduced by the method of moments. The maximum likelihood estimator computes
estimates of these parameters directly. [Details on maximum likelihood estimation may be
found in Maddala (1983).]

The differences between the two-step and maximum likelihood estimates in Table 22.7
are surprisingly large. The difference is even more striking in the marginal effects. The effect
for education is estimated as 0.417+0.0641 for the two step estimators and 0.149 in total for
the maximum likelihood estimates. For the kids variable, the marginal effect is −.293 for the
two-step estimates and only −0.0113 for the MLEs. Surprisingly, the direct test for a selection
effect in the maximum likelihood estimates, a nonzero ρ, fails to reject the hypothesis that ρ
equals zero.

In some settings, the selection process is a nonrandom sorting of individuals into
two or more groups. The mover-stayer model in the next example is a familiar case.

Example 22.9 A Mover Stayer Model for Migration
The model of migration analyzed by Nakosteen and Zimmer (1980) fits into the framework
described above. The equations of the model are

net benefit of moving: M∗
i = w′

i γ + ui ,

income if moves: I i 1 = x′
i 1β1 + εi 1,

income if stays: I i 0 = x′
i 0β0 + εi 0.

One component of the net benefit is the market wage individuals could achieve if they move,
compared with what they could obtain if they stay. Therefore, among the determinants of
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TABLE 22.8 Estimated Earnings Equations

Migrant Nonmigrant
Migration Earnings Earnings

Constant −1.509 9.041 8.593
SE −0.708 (−5.72) −4.104 (−9.54) −4.161 (−57.71)
�EMP −1.488 (−2.60) — —
�PCI 1.455 (3.14) — —
Age −0.008 (−5.29) — —
Race −0.065 (−1.17) — —
Sex −0.082 (−2.14) — —
�SIC 0.948 (24.15) −0.790 (−2.24) −0.927 (−9.35)
λ — 0.212 (0.50) 0.863 (2.84)

the net benefit are factors that also affect the income received in either place. An analysis
of income in a sample of migrants must account for the incidental truncation of the mover’s
income on a positive net benefit. Likewise, the income of the stayer is incidentally truncated
on a nonpositive net benefit. The model implies an income after moving for all observations,
but we observe it only for those who actually do move. Nakosteen and Zimmer (1980) applied
the selectivity model to a sample of 9,223 individuals with data for 2 years (1971 and 1973)
sampled from the Social Security Administration’s Continuous Work History Sample. Over
the period, 1,078 individuals migrated and the remaining 8,145 did not. The independent
variables in the migration equation were as follows:

SE = self-employment dummy variable; 1 if yes,

�EMP = rate of growth of state employment,

�PCI = growth of state per capita income,

x = age, race (nonwhite = 1), sex (female = 1),

�SIC = 1 if individual changes industry.

The earnings equations included �SIC and SE. The authors reported the results given in
Table 22.8. The figures in parentheses are asymptotic t ratios.

22.4.4 TREATMENT EFFECTS

The basic model of selectivity outlined earlier has been extended in an impressive variety
of directions.27 An interesting application that has found wide use is the measurement
of treatment effects and program effectiveness.28

An earnings equation that accounts for the value of a college education is

earningsi = x′
iβ + δCi + εi ,

where Ci is a dummy variable indicating whether or not the individual attended college.
The same format has been used in any number of other analyses of programs, experi-
ments, and treatments. The question is: Does δ measure the value of a college education

27For a survey, see Maddala (1983).
28This is one of the fundamental applications of this body of techniques, and is also the setting for the most
longstanding and contentious debate on the subject. A Journal of Business and Economic Statistics symposium
[Angrist et al. (2001)] raised many of the important questions on whether and how it is possible to measure
treatment effects.
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(assuming that the rest of the regression model is correctly specified)? The answer is
no if the typical individual who chooses to go to college would have relatively high
earnings whether or not he or she went to college. The problem is one of self-selection.
If our observation is correct, then least squares estimates of δ will actually overestimate
the treatment effect. The same observation applies to estimates of the treatment effects
in other settings in which the individuals themselves decide whether or not they will
receive the treatment.

To put this in a more familiar context, suppose that we model program participation
(e.g., whether or not the individual goes to college) as

C∗
i = w′

iγ + ui ,

Ci = 1 if C∗
i > 0, 0 otherwise.

We also suppose that, consistent with our previous conjecture, ui and εi are correlated.
Coupled with our earnings equation, we find that

E [yi | Ci = 1, xi , zi ] = x′
iβ + δ + E [εi | Ci = 1, xi , zi ]

= x′
iβ + δ + ρσελ(−w′

iγ )
(22-22)

once again. [See (22-19).] Evidently, a viable strategy for estimating this model is to use
the two-step estimator discussed earlier. The net result will be a different estimate of δ

that will account for the self-selected nature of program participation. For nonpartici-
pants, the counterpart to (22-22) is

E [yi | Ci = 0, xi , zi ] = x′
iβ + ρσε

[ −φ(w′
iγ )

1 − 	(w′
iγ )

]
.

The difference in expected earnings between participants and nonparticipants is, then,

E [yi | Ci = 1, xi , zi ] − E [yi | Ci = 0, xi , zi ] = δ + ρσε

[
φi

	i (1 − 	i )

]
.

If the selectivity correction λi is omitted from the least squares regression, then this
difference is what is estimated by the least squares coefficient on the treatment dummy
variable. But since (by assumption) all terms are positive, we see that least squares over-
estimates the treatment effect. Note, finally, that simply estimating separate equations
for participants and nonparticipants does not solve the problem. In fact, doing so would
be equivalent to estimating the two regressions of Example 22.9 by least squares, which,
as we have seen, would lead to inconsistent estimates of both sets of parameters.

There are many variations of this model in the empirical literature. They have been
applied to the analysis of education,29 the Head Start program,30 and a host of other
settings.31 This strand of literature is particularly important because the use of dummy
variable models to analyze treatment effects and program participation has a long

29Willis and Rosen (1979).
30Goldberger (1972).
31A useful summary of the issues is Barnow, Cain, and Goldberger (1981). See also Maddala (1983) for a long
list of applications. A related application is the switching regression model. See, for example, Quandt (1982,
1988).



Greene-50240 book June 28, 2002 17:5

CHAPTER 22 ✦ Limited Dependent Variable and Duration Models 789

history in empirical economics. This analysis has called into question the interpretation
of a number of received studies.

22.4.5 THE NORMALITY ASSUMPTION

Some research has cast some skepticism on the selection model based on the normal
distribution. [See Goldberger (1983) for an early salvo in this literature.] Among the
findings are that the parameter estimates are surprisingly sensitive to the distributional
assumption that underlies the model. Of course, this fact in itself does not invalidate the
normality assumption, but it does call its generality into question. On the other hand,
the received evidence is convincing that sample selection, in the abstract, raises serious
problems, distributional questions aside. The literature—for example, Duncan (1986b),
Manski (1989, 1990), and Heckman (1990)—has suggested some promising approaches
based on robust and nonparametric estimators. These approaches obviously have the
virtue of greater generality. Unfortunately, the cost is that they generally are quite
limited in the breadth of the models they can accommodate. That is, one might gain
the robustness of a nonparametric estimator at the cost of being unable to make use of
the rich set of accompanying variables usually present in the panels to which selectivity
models are often applied. For example, the nonparametric bounds approach of Manski
(1990) is defined for two regressors. Other methods [e.g., Duncan (1986b)] allow more
elaborate specification.

Recent research includes specific attempts to move away from the normality
assumption.32 An example is Martins (2001), building on Newey (1991), which takes
the core specification as given in (22-20) as the platform, but constructs an alternative
to the assumption of bivariate normality. Martins’ specification modifies the Heckman
model by employing an equation of the form

E [yi | zi = 1, xi , wi ] = x′
iβ + µ(w′

iγ )

where the latter, “selectivity correction” is not the inverse Mills ratio, but some other
result from a different model. The correction term is estimated using the Klein and
Spady model discussed in Section 21.5.4. This is labeled a “semiparametric” approach.
Whether the conditional mean in the selected sample should even remain a linear index
function remains to be settled. Not surprisingly, Martins’ results, based on two-step
least squares differ only slightly from the conventional results based on normality. This
approach is arguably only a fairly small step away from the tight parameterization of
the Heckman model. Other non- and semiparametric specifications, e.g., Honore and
Kyriazidou (1999, 2000) represent more substantial departures from the normal model,
but are much less operational.33 The upshot is that the issue remains unsettled. For
better or worse, the empirical literature on the subject continues to be dominated by
Heckman’s original model built around the joint normal distribution.

32Again, Angrist et al. (2001) is an important contribution to this literature.
33This particular work considers selection in a “panel” (mainly two periods). But, the panel data setting for
sample selection models is more involved than a cross section analysis. In a panel data set, the “selection” is
likely to be a decision at the beginning of Period 1 to be in the data set for all subsequent periods. As such,
something more intricate than the model we have considered here is called for.
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22.4.6 SELECTION IN QUALITATIVE RESPONSE MODELS

The problem of sample selection has been modeled in other settings besides the linear
regression model. In Section 21.6.4, we saw, for example, an application of what amounts
to a model of sample selection in a bivariate probit model; a binary response variable
yi = 1 if an individual defaults on a loan is observed only if a related variable zi equals one
(the individual is granted a loan). Greene’s (1992) application to credit card applications
and defaults is similar.

A current strand of literature has developed several models of sample selection for
count data models.34 Terza (1995) models the phenomenon as a form of heterogeneity
in the Poisson model. We write

yi | εi ∼ Poisson(λi ),

ln λi | εi = x′
iβ + εi .

(22-23)

Then the sample selection is similar to that discussed in the previous sections, with

z∗
i = w′

iγ + ui ,

zi = 1 if z∗
i > 0, 0 otherwise

and [εi , ui ] have a bivariate normal distribution with the same specification as in our
earlier model. As before, we assume that [yi , xi ] are only observed when zi = 1. Thus, the
effect of the selection is to affect the mean (and variance) of yi , although the effect on the
distribution is unclear. In the observed data, yi no longer has a Poisson distribution. Terza
(1998), Terza and Kenkel (2001) and Greene (1997a) suggested a maximum likelihood
approach for estimation.

22.5 MODELS FOR DURATION DATA35

Intuition might suggest that the longer a strike persists, the more likely it is that it will
end within, say, the next week. Or is it? It seems equally plausible to suggest that the
longer a strike has lasted, the more difficult must be the problems that led to it in the
first place, and hence the less likely it is that it will end in the next short time interval.
A similar kind of reasoning could be applied to spells of unemployment or the interval
between conceptions. In each of these cases, it is not only the duration of the event, per
se, that is interesting, but also the likelihood that the event will end in “the next period”
given that it has lasted as long as it has.

Analysis of the length of time until failure has interested engineers for decades.
For example, the models discussed in this section were applied to the durability of
electric and electronic components long before economists discovered their usefulness.

34See, for example, Bockstael et al. (1990), Smith (1988), Brannas (1995), Greene (1994, 1995c, 1997a), Weiss
(1995), and Terza (1995, 1998), and Winkelmann (1997).
35There are a large number of highly technical articles on this topic but relatively few accessible sources for
the uninitiated. A particularly useful introductory survey is Kiefer (1988), upon which we have drawn heavily
for this section. Other useful sources are Kalbfleisch and Prentice (1980), Heckman and Singer (1984a),
Lancaster (1990) and Florens, Fougere, and Mouchart (1996).
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Likewise, the analysis of survival times—for example, the length of survival after the
onset of a disease or after an operation such as a heart transplant—has long been a
staple of biomedical research. Social scientists have recently applied the same body of
techniques to strike duration, length of unemployment spells, intervals between con-
ception, time until business failure, length of time between arrests, length of time from
purchase until a warranty claim is made, intervals between purchases, and so on.

This section will give a brief introduction to the econometric analysis of duration
data. As usual, we will restrict our attention to a few straightforward, relatively uncom-
plicated techniques and applications, primarily to introduce terms and concepts. The
reader can then wade into the literature to find the extensions and variations. We will
concentrate primarily on what are known as parametric models. These apply familiar
inference techniques and provide a convenient departure point. Alternative approaches
are considered at the end of the discussion.

22.5.1 DURATION DATA

The variable of interest in the analysis of duration is the length of time that elapses
from the beginning of some event either until its end or until the measurement is taken,
which may precede termination. Observations will typically consist of a cross section of
durations, t1, t2, . . . , tn. The process being observed may have begun at different points
in calendar time for the different individuals in the sample. For example, the strike
duration data examined in Example 22.10 are drawn from nine different years.

Censoring is a pervasive and usually unavoidable problem in the analysis of
duration data. The common cause is that the measurement is made while the process is
ongoing. An obvious example can be drawn from medical research. Consider analyzing
the survival times of heart transplant patients. Although the beginning times may be
known with precision, at the time of the measurement, observations on any individuals
who are still alive are necessarily censored. Likewise, samples of spells of unemployment
drawn from surveys will probably include some individuals who are still unemployed at
the time the survey is taken. For these individuals, duration, or survival, is at least the
observed ti , but not equal to it. Estimation must account for the censored nature of the
data for the same reasons as considered in Section 22.3. The consequences of ignoring
censoring in duration data are similar to those that arise in regression analysis.

In a conventional regression model that characterizes the conditional mean and
variance of a distribution, the regressors can be taken as fixed characteristics at the
point in time or for the individual for which the measurement is taken. When measuring
duration, the observation is implicitly on a process that has been under way for an
interval of time from zero to t. If the analysis is conditioned on a set of covariates (the
counterparts to regressors) xt , then the duration is implicitly a function of the entire
time path of the variable x(t), t = (0, t), which may have changed during the interval.
For example, the observed duration of employment in a job may be a function of the
individual’s rank in the firm. But their rank may have changed several times between
the time they were hired and when the observation was made. As such, observed rank
at the end of the job tenure is not necessarily a complete description of the individual’s
rank while they were employed. Likewise, marital status, family size, and amount of
education are all variables that can change during the duration of unemployment and
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that one would like to account for in the duration model. The treatment of time-varying
covariates is a considerable complication.36

22.5.2 A REGRESSION-LIKE APPROACH: PARAMETRIC MODELS
OF DURATION

We will use the term spell as a catchall for the different duration variables we might
measure. Spell length is represented by the random variable T. A simple approach to
duration analysis would be to apply regression analysis to the sample of observed spells.
By this device, we could characterize the expected duration, perhaps conditioned on a
set of covariates whose values were measured at the end of the period. We could also
assume that conditioned on an x that has remained fixed from T = 0 to T = t, t has a
normal distribution, as we commonly do in regression. We could then characterize the
probability distribution of observed duration times. But, normality turns out not to
be particularly attractive in this setting for a number of reasons, not least of which is
that duration is positive by construction, while a normally distributed variable can take
negative values. (Lognormality turns out to be a palatable alternative, but it is only one
among a long list of candidates.)

22.5.2.a Theoretical Background

Suppose that the random variable T has a continuous probability distribution f (t),
where t is a realization of T. The cumulative probability is

F(t) =
∫ t

0
f (s) ds = Prob(T ≤ t).

We will usually be more interested in the probability that the spell is of length at least
t, which is given by the survival function,

S(t) = 1 − F(t) = Prob(T ≥ t).

Consider the question raised in the introduction: Given that the spell has lasted until
time t , what is the probability that it will end in the next short interval of time, say �t?
It is

l(t, �t) = Prob(t ≤ T ≤ t + �t | T ≥ t).

A useful function for characterizing this aspect of the distribution is the hazard rate,

λ(t) = lim
�t→0

Prob(t ≤ T ≤ t + �t | T ≥ t)
�t

= lim
�t→0

F(t + �t) − F(t)
�t S(t)

= f (t)
S(t)

.

Roughly, the hazard rate is the rate at which spells are completed after duration t , given
that they last at least until t . As such, the hazard function gives an answer to our original
question.

The hazard function, the density, the CDF and the survival function are all related.
The hazard function is

λ(t) = −d ln S(t)
dt

36See Petersen (1986) for one approach to this problem.
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so

f (t) = S(t)λ(t).

Another useful function is the integrated hazard function

�(t) =
∫ t

0
λ(s) ds,

for which

S(t) = e−�(t),

so

�(t) = −ln S(t).

The integrated hazard function is generalized residual in this setting. [See Chesher and
Irish (1987) and Example 22.10.]

22.5.2.b Models of the Hazard Function

For present purposes, the hazard function is more interesting than the survival rate
or the density. Based on the previous results, one might consider modeling the hazard
function itself, rather than, say, modeling the survival function then obtaining the density
and the hazard. For example, the base case for many analyses is a hazard rate that does
not vary over time. That is, λ(t) is a constant λ. This is characteristic of a process that
has no memory; the conditional probability of “failure” in a given short interval is the
same regardless of when the observation is made. Thus,

λ(t) = λ.

From the earlier definition, we obtain the simple differential equation,

−d ln S(t)
dt

= λ.

The solution is

ln S(t) = k − λt

or

S(t) = Ke−λt ,

where K is the constant of integration. The terminal condition that S(0) = 1 implies that
K = 1, and the solution is

S(t) = e−λt .

This solution is the exponential distribution, which has been used to model the time
until failure of electronic components. Estimation of λ is simple, since with an expo-
nential distribution, E [t] = 1/λ. The maximum likelihood estimator of λ would be the
reciprocal of the sample mean.

A natural extension might be to model the hazard rate as a linear function, λ(t) =
α + βt . Then �(t) = αt + 1

2βt2 and f (t) = λ(t)S(t) = λ(t) exp[−�(t)]. To avoid a nega-
tive hazard function, one might depart from λ(t) = exp[g(t, θ)], where θ is a vector of
parameters to be estimated. With an observed sample of durations, estimation of α and
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TABLE 22.9 Survival Distributions

Distribution Hazard Function, λ(t) Survival Function, S(t)

Exponential λ, S(t) = e−λt

Weibull λp(λt)p−1, S(t) = e−(λt)p

Lognormal f (t) = (p/t)φ[p ln(λt)] S(t) = 	[−p ln(λt)]
[ln t is normally distributed with mean −ln λ and standard deviation 1/p.]

Loglogistic λ(t) = λp(λt)p−1/[1 + (λt)p], S(t) = 1/[1 + (λt)p]
[ln t has a logistic distribution with mean −ln λ and variance π2/(3p2).]

β is, at least in principle, a straightforward problem in maximum likelihood. [Kennan
(1985) used a similar approach.]

A distribution whose hazard function slopes upward is said to have positive duration
dependence. For such distributions, the likelihood of failure at time t , conditional upon
duration up to time t , is increasing in t . The opposite case is that of decreasing hazard
or negative duration dependence. Our question in the introduction about whether the
strike is more or less likely to end at time t given that it has lasted until time t can be
framed in terms of positive or negative duration dependence. The assumed distribution
has a considerable bearing on the answer. If one is unsure at the outset of the analysis
whether the data can be characterized by positive or negative duration dependence,
then it is counterproductive to assume a distribution that displays one characteristic
or the other over the entire range of t . Thus, the exponential distribution and our sug-
gested extension could be problematic. The literature contains a cornucopia of choices
for duration models: normal, inverse normal [inverse Gaussian; see Lancaster (1990)],
lognormal, F , gamma, Weibull (which is a popular choice), and many others.37 To
illustrate the differences, we will examine a few of the simpler ones. Table 22.9 lists
the hazard functions and survival functions for four commonly used distributions. Each
involves two parameters, a location parameter, λ and a scale parameter, p. [Note that in
the benchmark case of the exponential distribution, λ is the hazard function. In all other
cases, the hazard function is a function of λ, p and, where there is duration dependence,
t as well. Different authors, e.g., Kiefer (1988), use different parameterizations of these
models; We follow the convention of Kalbfleisch and Prentice (1980).]

All these are distributions for a nonnegative random variable. Their hazard func-
tions display very different behaviors, as can be seen in Figure 22.4. The hazard function
for the exponential distribution is constant, that for the Weibull is monotonically in-
creasing or decreasing depending on p, and the hazards for lognormal and loglogistic
distributions first increase and then decrease. Which among these or the many alterna-
tives is likely to be best in any application is uncertain.

22.5.2.c Maximum Likelihood Estimation

The parameters λ and p of these models can be estimated by maximum likelihood.
For observed duration data, t1, t2, . . . , tn, the log-likelihood function can be formulated
and maximized in the ways we have become familiar with in earlier chapters. Censored
observations can be incorporated as in Section 22.3 for the tobit model. [See (22-13).]

37Three sources that contain numerous specifications are Kalbfleisch and Prentice (1980), Cox and Oakes
(1985), and Lancaster (1990).
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FIGURE 22.4 Parametric Hazard Functions.

As such,

ln L(θ) =
∑

uncensored
observations

ln f (t | θ) +
∑

censored
observations

lnS(t | θ),

where θ = (λ, p). For some distributions, it is convenient to formulate the log-likelihood
function in terms of f (t) = λ(t)S(t) so that

ln L =
∑

uncensored
observations

λ(t | θ) +
∑

all
observations

ln S(t | θ).

Inference about the parameters can be done in the usual way. Either the BHHH estima-
tor or actual second derivatives can be used to estimate asymptotic standard errors for
the estimates. The transformation w = p(ln t + ln λ) for these distributions greatly facil-
itates maximum likelihood estimation. For example, for the Weibull model, by defining
w = p(ln t + ln λ), we obtain the very simple density f (w) = exp[w − exp(w)] and sur-
vival function S(w) = exp(−exp(w)).38 Therefore, by using ln t instead of t , we greatly
simplify the log-likelihood function. Details for these and several other distributions
may be found in Kalbfleisch and Prentice (1980, pp. 56–60). The Weibull distribution is
examined in detail in the next section.

38The transformation is exp(w) = (λt)p so t = (1/λ)[exp(w)]1/p. The Jacobian of the transformation is
dt/dw = [exp(w)]1/p/(λp). The density in Table 22.9 is λp[exp(w)]−(1/p)−1[exp(−exp(w))]. Multiplying by
the Jacobian produces the result, f (w) = exp[w − exp(w)]. The survival function is the antiderivative,
[exp(−exp(w))].
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22.5.2.d Exogenous Variables

One limitation of the models given above is that external factors are not given a role
in the survival distribution. The addition of “covariates” to duration models is fairly
straightforward, although the interpretation of the coefficients in the model is less so.
Consider, for example, the Weibull model. (The extension to other distributions will be
similar.) Let

λi = e−x′
i β,

where xi is a constant term and a set of variables that are assumed not to change from
time T = 0 until the “failure time,” T = ti . Making λi a function of a set of regressors
is equivalent to changing the units of measurement on the time axis. For this reason,
these models are sometimes called accelerated failure time models. Note as well that
in all the models listed (and generally), the regressors do not bear on the question of
duration dependence, which is a function of p.

Let σ = 1/p and let δi = 1 if the spell is completed and δi = 0 if it is censored. As
before, let

wi = p ln(λi ti ) = (ln ti − x′
iβ)

σ

and denote the density and survival functions f (wi ) and S(wi ). The observed random
variable is

ln ti = σwi + x′
iβ.

The Jacobian of the transformation from wi to ln ti is d wi/d ln ti = 1/σ so the density
and survival functions for ln ti are

f (ln ti | xi , β, σ ) = 1
σ

f
(

ln ti − x′
iβ

σ

)
and S(ln ti | xi , β, σ ) = S

(
ln ti − x′

iβ

σ

)

The log-likelihood for the observed data is

ln L(β, σ | data) =
n∑

i=1

[δi ln f (ln ti | xi , β, σ ) + (1 − δi ) ln S(ln ti | xi , β, σ )],

For the Weibull model, for example (see footnote 38)

f (wi ) = exp(wi − ewi )

and

S(wi ) = exp(−ewi ).

Making the transformation to ln ti and collecting terms reduces the log-likelihood to

ln L(β, σ | data) =
∑

i

[
δi

(
ln ti − x′

iβ

σ
− ln σ

)
− exp

(
ln ti − x′

iβ

σ

)]
.

(Many other distributions, including the others in Table 22.9, simplify in the same way.
The exponential model is obtained by settingσ to one.) The derivatives can be equated to
zero using the methods described in Appendix E. The individual terms can also be used
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to form the BHHH estimator of the asymptotic covariance matrix for the estimator.39

The Hessian is also simple to derive, so Newton’s method could be used instead.40

Note that the hazard function generally depends on t , p, and x. The sign of an
estimated coefficient suggests the direction of the effect of the variable on the hazard
function when the hazard is monotonic. But in those cases, such as the loglogistic, in
which the hazard is nonmonotonic, even this may be ambiguous. The magnitudes of
the effects may also be difficult to interpret in terms of the hazard function. In a few
cases, we do get a regression-like interpretation. In the Weibull and exponential models,
E [t | xi ] = exp(x′

iβ)�[(1/p) + 1], whereas for the lognormal and loglogistic models,
E [ln t | xi ] = x′

iβ. In these cases, βk is the derivative (or a multiple of the derivative)
of this conditional mean. For some other distributions, the conditional median of t
is easily obtained. Numerous cases are discussed by Kiefer (1988), Kalbfleisch and
Prentice (1980), and Lancaster (1990).

22.5.2.e Heterogeneity

The problem of heterogeneity in duration models can be viewed essentially as the result
of an incomplete specification. Individual specific covariates are intended to incorpo-
rate observation specific effects. But if the model specification is incomplete and if
systematic individual differences in the distribution remain after the observed effects
are accounted for, then inference based on the improperly specified model is likely to
be problematic. We have already encountered several settings in which the possibility
of heterogeneity mandated a change in the model specification; the fixed and random
effects regression, logit, and probit models all incorporate observation-specific effects.
Indeed, all the failures of the linear regression model discussed in the preceding chap-
ters can be interpreted as a consequence of heterogeneity arising from an incomplete
specification.

There are a number of ways of extending duration models to account for het-
erogeneity. The strictly nonparametric approach of the Kaplan–Meier estimator (see
Section 22.5.3) is largely immune to the problem, but it is also rather limited in how
much information can be culled from it. One direct approach is to model heterogeneity
in the parametric model. Suppose that we posit a survival function conditioned on the
individual specific effect vi . We treat the survival function as S(ti |vi ). Then add to that
a model for the unobserved heterogeneity f (vi ). (Note that this is a counterpart to the
incorporation of a disturbance in a regression model and follows the same procedures
that we used in the Poisson model with random effects.) Then

S(t) = Ev[S(t | v)] =
∫

v

S(t | v) f (v) dv.

The gamma distribution is frequently used for this purpose.41 Consider, for example,
using this device to incorporate heterogeneity into the Weibull model we used earlier.
As is typical, we assume that v has a gamma distribution with mean 1 and variance

39Note that the log-likelihood function has the same form as that for the tobit model in Section 22.3. By just
reinterpreting the nonlimit observations in a tobit setting, we can, therefore, use this framework to apply a
wide range of distributions to the tobit model. [See Greene (1995a) and references given therein.]
40See Kalbfleisch and Prentice (1980) for numerous other examples.
41See, for example, Hausman, Hall, and Griliches (1984), who use it to incorporate heterogeneity in the
Poisson regression model. The application is developed in Section 21.9.5.



Greene-50240 book June 28, 2002 17:5

798 CHAPTER 22 ✦ Limited Dependent Variable and Duration Models

θ = 1/k. Then

f (v) = kk

(k)
e−kvvk−1

and

S(t | v) = e−(vλt)p
.

After a bit of manipulation, we obtain the unconditional distribution,

S(t) =
∫ ∞

0
S(t | v) f (v) dv = [1 + θ(λt)p]−1/θ .

The limiting value, with θ = 0, is the Weibull survival model, so θ = 0 corresponds to
Var[v] = 0, or no heterogeneity.42 The hazard function for this model is

λ(t) = λp(λt)p−1[S(t)]θ ,

which shows the relationship to the Weibull model.
This approach is common in parametric modeling of heterogeneity. In an important

paper on this subject, Heckman and Singer (1984b) argued that this approach tends
to overparameterize the survival distribution and can lead to rather serious errors in
inference. They gave some dramatic examples to make the point. They also expressed
some concern that researchers tend to choose the distribution of heterogeneity more
on the basis of mathematical convenience than on any sensible economic basis.

22.5.3 OTHER APPROACHES

The parametric models are attractive for their simplicity. But by imposing as much
structure on the data as they do, the models may distort the estimated hazard rates.
It may be that a more accurate representation can be obtained by imposing fewer
restrictions.

The Kaplan–Meier (1958) product limit estimator is a strictly empirical, nonpara-
metric approach to survival and hazard function estimation. Assume that the obser-
vations on duration are sorted in ascending order so that t1 ≤ t2 and so on and, for
now, that no observations are censored. Suppose as well that there are K distinct sur-
vival times in the data, denoted Tk; K will equal n unless there are ties. Let nk denote
the number of individuals whose observed duration is at least Tk. The set of individuals
whose duration is at least Tk is called the risk set at this duration. (We borrow, once
again, from biostatistics, where the risk set is those individuals still “at risk” at time Tk).
Thus, nk is the size of the risk set at time Tk. Let hk denote the number of observed spells
completed at time Tk. A strictly empirical estimate of the survivor function would be

Ŝ(Tk) =
k∏

i=1

ni − hi

ni
= ni − hi

n1
.

42For the strike data analyzed earlier, the maximum likelihood estimate of θ is 0.0004, which suggests that at
least in the context of the Weibull model, heterogeneity does not appear to be a problem.
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The estimator of the hazard rate is

λ̂(Tk) = hk

nk
. (22-24)

Corrections are necessary for observations that are censored. Lawless (1982),
Kalbfleisch and Prentice (1980), Kiefer (1988), and Greene (1995a) give details. Susin
(2001) points out a fundamental ambiguity in this calculation (one which he argues ap-
pears in the 1958 source). The estimator in (22-24) is not a “rate” as such, as the width
of the time window is undefined, and could be very different at different points in the
chain of calculations. Since many intervals, particularly those late in the observation
period, might have zeros, the failure to acknowledge these intervals should impart an
upward bias to the estimator. His proposed alternative computes the counterpart to
(22-24) over a mesh of defined intervals as follows:

λ̂
(

Ib
a

) =
∑b

j=a h j∑b
j=a n j bj

where the interval is from t = a to t = b, h j is the number of failures in each period in
this interval, nj is the number of individuals at risk in that period and bj is the width of
the period. Thus, an interval [a, b) is likely to include several “periods.”

Cox’s (1972) approach to the proportional hazard model is another popular, semi-
parametric method of analyzing the effect of covariates on the hazard rate. The model
specifies that

λ(ti ) = exp(−x′
iβ)λ0(ti )

The function λ0 is the “baseline” hazard, which is the individual heterogeneity. In prin-
ciple, this hazard is a parameter for each observation that must be estimated. Cox’s
partial likelihood estimator provides a method of estimating β without requiring esti-
mation of λ0. The estimator is somewhat similar to Chamberlain’s estimator for the logit
model with panel data in that a conditioning operation is used to remove the hetero-
geneity. (See Section 21.5.1.b.) Suppose that the sample contains K distinct exit times,
T1, . . . , TK. For any time Tk, the risk set, denoted Rk, is all individuals whose exit time
is at least Tk. The risk set is defined with respect to any moment in time T as the set of
individuals who have not yet exited just prior to that time. For every individual i in risk
set Rk, ti ≥ Tk. The probability that an individual exits at time Tk given that exactly one
individual exits at this time (which is the counterpart to the conditioning in the binary
logit model in Chapter 21) is

Prob[ti = Tk | risk setk] = eβ ′xi

∑
j∈Rk

eβ ′x j
.

Thus, the conditioning sweeps out the baseline hazard functions. For the simplest case
in which exactly one individual exits at each distinct exit time and there are no censored
observations, the partial log-likelihood is

ln L =
K∑

k=1


β ′xk − ln

∑
j∈Rk

eβ ′x j


 .
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TABLE 22.10 Estimated Duration Models (Estimated Standard
Errors in Parentheses)

λ p Median Duration

Exponential 0.02344 (0.00298) 1.00000 (0.00000) 29.571 (3.522)
Weibull 0.02439 (0.00354) 0.92083 (0.11086) 27.543 (3.997)
Loglogistic 0.04153 (0.00707) 1.33148 (0.17201) 24.079 (4.102)
Lognormal 0.04514 (0.00806) 0.77206 (0.08865) 22.152 (3.954)

If mk individuals exit at time Tk, then the contribution to the log-likelihood is the sum
of the terms for each of these individuals.

The proportional hazard model is a common choice for modeling durations because
it is a reasonable compromise between the Kaplan–Meier estimator and the possibly
excessively structured parametric models. Hausman and Han (1990) and Meyer (1988),
among others, have devised other, “semiparametric” specifications for hazard models.

Example 22.10 Survival Models for Strike Duration
The strike duration data given in Kennan (1985, pp. 14–16) have become a familiar standard
for the demonstration of hazard models. Appendix Table F22.1 lists the durations in days of
62 strikes that commenced in June of the years 1968 to 1976. Each involved at least 1,000
workers and began at the expiration or reopening of a contract. Kennan reported the actual
duration. In his survey, Kiefer, using the same observations, censored the data at 80 days
to demonstrate the effects of censoring. We have kept the data in their original form; the
interested reader is referred to Kiefer for further analysis of the censoring problem.43

Parameter estimates for the four duration models are given in Table 22.10. The estimate
of the median of the survival distribution is obtained by solving the equation S( t) = 0.5. For
example, for the Weibull model,

S( M) = 0.5 = exp[−(λM) P ]

or

M = [( ln 2) 1/p]/λ.

For the exponential model, p= 1. For the lognormal and loglogistic models, M = 1/λ. The
delta method is then used to estimate the standard error of this function of the parameter
estimates. (See Section 5.2.4.) All these distributions are skewed to the right. As such, E [t] is
greater than the median. For the exponential and Weibull models, E [t] = [1/λ]�[(1/p) +1]; for
the normal, E [t] = (1/λ) [exp(1/p2) ]1/2. The implied hazard functions are shown in Figure 22.4.

The variable x reported with the strike duration data is a measure of unanticipated ag-
gregate industrial production net of seasonal and trend components. It is computed as the
residual in a regression of the log of industrial production in manufacturing on time, time
squared, and monthly dummy variables. With the industrial production variable included as
a covariate, the estimated Weibull model is

−ln λ = 3.7772 − 9.3515 x, p = 1.00288
(0.1394) (2.973) (0.1217) ,

median strike length = 27.35(3.667) days, E [t] = 39.83 days.

Note that the Weibull model is now almost identical to the exponential model ( p = 1) . Since
the hazard conditioned on x is approximately equal to λi , it follows that the hazard function
is increasing in “unexpected” industrial production. A one percent increase in x leads to a
9.35 percent increase in λ, which since p ≈ 1 translates into a 9.35 percent decrease in the
median strike length or about 2.6 days. (Note that M = ln 2/λ.)

43Our statistical results are nearly the same as Kiefer’s despite the censoring.
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The proportional hazard model does not have a constant term. (The baseline hazard is an
individual specific constant.) The estimate of β is −9.0726, with an estimated standard error
of 3.225. This is very similar to the estimate obtained for the Weibull model.

22.6 SUMMARY AND CONCLUSIONS

This chapter has examined three settings in which, in principle, the linear regression
model of Chapter 2 would apply, but the data generating mechanism produces a nonlin-
ear form. In the truncated regression model, the range of the dependent variable is re-
stricted substantively. Certainly all economic data are restricted in this way—aggregate
income data cannot be negative, for example. But, when data are truncated so that plau-
sible values of the dependent variable are precluded, for example when zero values for
expenditure are discarded, the data that remain are analyzed with models that explicitly
account for the truncation. When data are censored, values of the dependent variable
that could in principle be observed are masked. Ranges of values of the true variable
being studied are observed as a single value. The basic problem this presents for model
building is that in such a case, we observe variation of the independent variables without
the corresponding variation in the dependent variable that might be expected. Finally,
the issue of sample selection arises when the observed data are not drawn randomly
from the population of interest. Failure to account for this nonrandom sampling pro-
duces a model that describes only the nonrandom subsample, not the larger population.
In each case, we examined the model specification and estimation techniques which
are appropriate for these variations of the regression model. Maximum likelihood is
usually the method of choice, but for the third case, a two step estimator has become
more common. In the final section, we examined an application, models of duration,
which describe variables with limited (nonnegative) ranges of variation and which are
often observed subject to censoring.

Key Terms and Concepts
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• Censored variable
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• Hazard rate
• Heterogeneity
• Heteroscedasticity
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• Lagrange multiplier test
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• Risk set
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• Semiparametric model
• Specification error
• Survival function
• Time varying covariate
• Tobit model
• Treatment effect
• Truncated bivariate normal
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• Truncated distribution
• Truncated mean
• Truncated random variable
• Truncated variance
• Two step estimation
• Weibull model
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Exercises

1. The following 20 observations are drawn from a censored normal distribution:

3.8396 7.2040 0.00000 0.00000 4.4132 8.0230
5.7971 7.0828 0.00000 0.80260 13.0670 4.3211
0.00000 8.6801 5.4571 0.00000 8.1021 0.00000
1.2526 5.6016

The applicable model is

y∗
i = µ + εi ,

yi = y∗
i if µ + εi > 0, 0 otherwise,

εi ∼ N[0, σ 2].

Exercises 1 through 4 in this section are based on the preceding information. The
OLS estimator of µ in the context of this tobit model is simply the sample mean.
Compute the mean of all 20 observations. Would you expect this estimator to over-
or underestimate µ? If we consider only the nonzero observations, then the trun-
cated regression model applies. The sample mean of the nonlimit observations is the
least squares estimator in this context. Compute it and then comment on whether
this sample mean should be an overestimate or an underestimate of the true mean.

2. We now consider the tobit model that applies to the full data set.
a. Formulate the log-likelihood for this very simple tobit model.
b. Reformulate the log-likelihood in terms of θ = 1/σ and γ = µ/σ . Then derive

the necessary conditions for maximizing the log-likelihood with respect to θ

and γ .
c. Discuss how you would obtain the values of θ and γ to solve the problem in

Part b.
d. Compute the maximum likelihood estimates of µ and σ .

3. Using only the nonlimit observations, repeat Exercise 2 in the context of the trun-
cated regression model. Estimate µ and σ by using the method of moments esti-
mator outlined in Example 22.2. Compare your results with those in the previous
exercises.

4. Continuing to use the data in Exercise 1, consider once again only the nonzero
observations. Suppose that the sampling mechanism is as follows: y∗ and another
normally distributed random variable z have population correlation 0.7. The two
variables, y∗ and z, are sampled jointly. When z is greater than zero, y is reported.
When z is less than zero, both zand y are discarded. Exactly 35 draws were required
to obtain the preceding sample. Estimate µ and σ. [Hint: Use Theorem 22.5.]

5. Derive the marginal effects for the tobit model with heteroscedasticity that is
described in Section 22.3.4.a.

6. Prove that the Hessian for the tobit model in (22-14) is negative definite after
Olsen’s transformation is applied to the parameters.


