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Preface

This book is based on lecture notes for the econometrics courses I taught at UCLA.
New York University and, in more recent vears, at the Universities of Udine, Pescara
and Rome “Tor Vergata”.

The book is divided into three parts. The first part (Chapters 1 3) contains review
material on statistical modeling (Chapters 1-3) and statistical inference (Chapters 4
and 5). These five chapters provide basic concepts and results used in the rest of
the book. They also introduce in a simplified setting some of the ideas developed
later. In particular, Chapters 1 and 2 present the clements of statistical models
constructed by combining a model for the variability of the population of interest
with a model for the sampling process. These kind of models are typically used to
analyze cross-section and panel data. Chapter 3 discusses a number of models for
time series data. Chapter 4 discusses various methods for estimating the parameters
of a statistical model (mmethod of moments, least squares, least absolute deviations,
maximum likelihood. Bayes methods), whereas Chapter 5 is devoted to confidence
intervals and hypothesis testing, distinguishing between classical. bootstrap and Bayes
methods.

The second part (Chapters 6-14) covers lincar methods. It begins with the
classical linear model and ordinary least squares (OLS). and then examines various
departures from the ideal conditions for OLS. Generalized least squares and linear
instrumental variables procedures are introduced, along with various generalizations
of the linear model (linear panel data models, linear simultaneous equation models)
and nonparametric regression. The results presented in Chapters 6-9 are exact but
tend to rely on the assumptions of the Gaussian linear model. Chapters 10 13 go
bevond the Gaussian case but the results presented here tend to be valid only in large
samples. Chapter 14 discusses in some detail nonparametric methods that free the
researcher from the need for assuming a parametric model for the regression function.

The third part (Chapters 15-18) covers nonlinear methods. After a discussion
of the general class of M-estimators and their large sample properties (consistency,
asymptotic normality. robustuess), I present nonlinear estimators for the linear model
(Chapter 16), methods for categorical data and generalized linear models (Chapter 17),
and methods for truncated and censored data (Chapter 18).

With respect to other textbooks, the main novelties of this book are as follows.

1. A unified approach to statistical estimation emphasizing the analogy (or
bootstrap) principle.
2. An introduction to bootstrap and jackknife methods for assessing the
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accuracy of an estimator.

3. An extensive discussion of nonparametric methods for estimating density and
regression functions.

4. Emphasis on diagnostic procedures (residuals, influence, etc.) and on
prediction criteria for evaluating the results of a statistical analysis.

5. Enough references to linear exponential family models to make the treatment
of generalized linear models in Chapter 17 fairly straightforward.

6. Some room for Bayvesian methods and methods based on statistical decision
theory.

7. A careful discussion of robustness in the statistical sense.

The book is at the level of an advanced undergraduate or a first-year graduate
econometrics course. The prerequisites are fairly standard. I only assume some
background in probability and familiarity with calculus and linear algebra. Most of the
linear algebra and the probability used in the book is contained in the Appendices A.
C and D. The style of the presentation is sometimes a little dry, but I felt that this
was necessary in order to keep the size of the hook under control.

The book is suitable for econometric courses emphasizing problems related to
the analyvsis of cross-section and panel data (sampling schemes, sample selection,
heterogeneity, nonparametrics. ete.). The book does contain some material on the
analysis of time series data. but this is definitely not its main focus.

To conclude, I would like to thank all the people, colleagues and students, who made
comments on the various drafts of the book, with a very special thank you to Carlo
Giannini.

Franco Peracchi



Notation

Unless stated otherwise, vectors are always interpreted as column vectors. Thus, to
denote an m-dimensional column vector we simply write - = (ay....,r,,) instead of
r = (r1...., ) 7. If y is an n-dimensional vector, we write z = (.r.y) instead of
2= (2" .y7)" todenote the (i + n)-dimensional column vector obtained by stacking
r and y on top of each other.

Random variables or random vectors are denoted by upper-case letters (for example
Z). Realizations of a random variable or a random vector are denoted by lower-case
letters (for example ).

A data set is represented either as a vector or matrix. in which case bold-face letters
are used (for example Z), or as a list of elements (for example Zy....,2Z,).

The conclusion of a proof, a definition or an example is marked by the symbol O.
Theorems or corollaries for which no proof is presented are left to the reader as an
exercise.

The remainder of this section lists the symbols and abbreviations most frequently
used.

MATHEMATICAL SYMBOLS

= approximately equal to

x proportional to

Kronecker product

AxB Cartesian product of sets 4 and B

R the set of real numbers (the real line)
R+ the set of positive real numbers

RY real Euclidean p-dimensional space
foyu composition of two functions

g'(r). g"'(r). ete.
Ag(roy). ge(r.y)

e’ expr
In.r
sign.r
(]}

det 4

vector or matrix of first, second. ete.. derivatives of a
function g

vector or matrix of partial derivatives of a function
g(r.y) with respect to r

exponential of .r

natural logarithm of .r
sign of .

norm of a vector &
determinant of a matrix 4
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rank 4
tr 4

AT

4!
AT
diag[a,-;]
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rank of a matrix A4

trace of a matrix 4

transpose of a matrix 4

inverse of a matrix 4

inverse of the transpose of a matrix A

diagonal matrix with ith diagonal element equal to a;;
n-vector whose components are all equal to one

jth unit vector (its jth component is equal to one and
all the others are equal to zero)

identity matrix of order n

STATISTICAL SYMBOLS

~

F, f
1{4}
Pr{d}

f(u)

EZ, uz
Med Z
Var Z,0%

Corr(X,Y), pxy

Cov(X,Y), oxy

Er, Varg, Covy

Eg, Varg, Covy

1(6)
L(9)
7(9)
Po

Fe

B(a, )
Bi(m.8)
\i

X a
£(6)

F‘m.n
En.n.z\

g((l, ‘3)

is distributed as
distribution function and density of a probability

distribution .
indicator function of the event 4 (is equal to one or zero

depending on whether the event 4 is true or false)
probability of the event 4 with respect to the relevant
probability distribution

loss function

mean (expected value) of a random variable Z

median of a random variable Z

variance of a random variable Z

correlation between X and Y

covariance between X and Y

mean, variance, covariance with respect to a distribution
with distribution function F

mean, variance, covariance with respect to a distribution
with density function f(z2;6)

expected log-likelihood

sample log-likelihood

expected information about the parameter 8
parametric family of probability distributions with
parameter space

parametric family of density functions with parameter
space O

beta distribution with parameter (o, 3)

binomial distribution with index m and parameter
(central) chi-square distribution with n  degrees of
freedom

noncentral chi-square distribution with n degrees of

freedom and noncentrality parameter A

exponential distribution with parameter 6

(central) F-distribution with (m,n) degrees of freedom
noncentral  F-distribution  with  (m,n) degrees of
freedom and noncentrality parameter A

gamma distribution with parameter (a,.3)
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M(n.6)
Ny, o)

®(-). o(-)
N, E)

P(8)
th
fn.A

U(a,b)

{Xih Y} {2}
WN(0.02)
AR(p)

MA(q)
ARMA(p.q)

ms
—_

Y

0y, 0y

ABBREVIATIONS

AIC
ALAD
ARE
BLP
BLU
CLT
CMF
cv
CVF
GL)I
GLS
GMI
IF
i,
IV
LAD

xxi

multinomial distribution with index n and parameter 8
Gaussian  (normal) distribution with mean g and
variance o _ ) )

distribution and density function of a .\'(0.1)

distribution . o )
m-variate Gaussian (normal) distribution with mean

vector jt and variance matrix ¥

Poisson distribution with parameter #

(central) t-distribution with n degrees of freedom
noncentral ¢t-distribution with n degrees of freedom and
noncentrality parameter A

uniform distribution on the interval [a. b]

time series

white noise with mean zero and variance o>
autoregressive process of order p

moving average of order ¢

autoregressive moving average process of order (p. q)
sample size

sample averages

estitates or estimators of 8, F. f

other estimates or estimators of 8. F. f
asymptotic variance of an estimator sequence {é,,}
bias of an estimator 8

convergence in distribution

convergence in probability

nean square convergence

almost sure convergence

orders in probability

Akaike information criterion
asyvmmetric least absolute deviations
asvimptotic relative efficiency

best lincar predictor

best linear unbiased

central limit theorem

conditional mean funetion
cross-validation

conditional variance function
generalized linear model

generalized least squares

generalized method of moments
influence function

independently and identically distributed
instrumental variables

least absolute deviations
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LS least squares

\MD minimum distance

MISE mean integrated squared error

ML maximum likelihood

MM method of moments

MS maximum score

MSE mean squared error

n.d. negative definite

NLLS nonlinear least squares

n.n.d. non-negative definite

OLS ordinary least squares

p.d. positive definite

SLLN strong law of large numbers

SRS simple random sampling

SURE seemingly unrelated regression equations
UMVU uniformly minimum variance unbiased
WLLN weak law of large numbers

WLS weighted least squares
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1
Regression Models

Consider a data matrix z of order n x ¢. consisting of n observations on ¢ variables
that are numerical or can be represented as numerical. In tost cases, the data display
a certain degree of variability. In the theory of statistical inference, this is taken into
account by treating z as the outcome of a chance experiment. that is. as a realization
of a random n x ¢ matrix Z or, stacking the n rows of Z on top of each other. of a
random ng-vector.

The variables in Z are often treated asvimmetrically. in the sense that the
probabilistic behavior of one subset of them. called response variables. is related to
the values taken by another subset of variables. called covariates. The data matrix
may then be partitioned as Z = [X.Y]. where the n x & matrix X represents the
observations on the covariates and the # x m matrix Y (in = ¢ — &) represents the
observations on the response variables. The response variables are also called dependent
variables when their relationship with the covariates is interpreted in terms of causal
dependence. In this case, the covariates are also called ezplanatory variables. In broad
terms. regression analysis is the study of the conditional distribution of Y given X.

The generality of this definition raises a number of problems. Are we interested in
the whole conditional distribution or only in some aspects of it? In the first case. we
have to select the particular characterization of the distribution that we want to focus
on. Is it the cumulative distribution function. the density. the quantile function. or
the hazard? Looking only at certain aspects of the distribution may be simpler. but
we still have to decide which ones. Is it the center. the spread. or the skewness? And
what measure of center? What measure of spread? What measure of skewness?

The answers to these questions depend on the purposes of the analysis. Are we
interested in exploratory data analysis or in prediction? Or do we want instead to fit a
well defined model. possibly suggested by economic theory? The answer also depends
on the nature of the data. For example, if the response variable is a 01 random
variable. then its conditional distribution is entirely characterized by its conditional
mean. In other cases. the sample size. the accuracy of the data. ete.. may also be
relevant. Finally. the set of available statistical techniques may restrict our decisions.

A second set of issues has to do with how we want to model the functional
relationship between X and the aspects of the conditional distribution of Y which
are of interest. Do we want to leave this relationship essentially unrestricted, or do we
want to place restrictions on it, and if so, of what kind? The answer here depends on
the strength of our prior information (our past experience. theoretical knowledge of
the subject, results obtained by others, etc.). but also on the purposes of the analysis,
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the sample size, the available statistical techniques, etc.

If we are mainly interested in exploring or describing the data, we may want to
restrict the relationship of interest as little as possible. At the end of the study,
however, we ought to ask the question of how we go from data description to
interpretation and prediction. What kind of data do we need? What kind of restrictions
do we have to impose on the model?

On the other hand, when we choose a specific model we should always be aware
that the model assumptions are useful, because they simplify the problem and help
in organizing and interpreting the results, but they may also be straightjackets that
prevent us from seeing certain features of the data. Further, the choice of a specific
model is often dictated by mathematical tractability or simply by convention. In this
case, we are really dealing with an approximation problem, and this may change our
interpretation of the statistical results.

1.1 PARAMETRIC STATISTICAL MODELS

In the theory of statistical inference, the chance experiment that generates the
observed data vector z is formally represented by a random vector Z taking values in
a probability space (2, A, Py), where (2, 4) is a measurable space consisting of a set
Z of elementary events, called the sample space, and a suitable o-algebra A of subsets
of Z. In what follows, Z is a subset of the real Euclidean space R"9 of dimension nq
and the o-algebra A is the Borel field on R"9. The fundamental characteristic of Z is
its probability distribution Py defined on (Z. A).

In a statistical problem, the only thing that is known about P, is that it may belong
to a family P of probability distributions on (Z,.4). The triple (Z, A4,P) is called
the statistical model. When the reference to the underlying sample space is obvious, a
statistical model is simply indicated by P. Given the statistical model and the observed
data, one is required to draw certain inferences concerning Fp. A statistical model is
said to be correctly specified if Py € P. The choice of a statistical model depends both
on the available prior information, that is, the information available before the data
are observed (this information may come from previous studies, from the economic
theory, etc.), and the purposes for which the model is built.

The family P of distributions may sometimes be put in a one-to-one correspondence
with a subset @ of the real p-dimensional Euclidean space R and represented as a
parametric statistical model Pg = {Py.0 € ©}, where the index set © is called the
parameter space. A parametric statistical model is said to be correctly specified if
Py = Py, for some 6y € O. If the model is correctly specified, then the problem of
drawing inferences about the distribution Py reduces to that of drawing inferences
about the “true” parameter 6g.

A parametrization is generally not unique. To see this, let P be a family of
distributions indexed by the elements of a parameter space 0. If g: © — T is any one-
to-one function, then P and I are also in a one-to-one correspondence and therefore
the parameter space I’ may be used instead of © to index the elements of P. The
original parametrization of P in terms of # and the one in terms of v = g(f) are
equivalent in the sense that Py and P, represent the same element of P. The choice
of a particular parametrization may be justified on the grounds of its interpretability
or mathematical tractability. For example, the parameter § may be chosen such that
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it corresponds to interesting features of the distribution, or it may be chosen in order
to simplify some formal aspect of the statistical problem.

Under general conditions, a parametric statistical model Pg may be characterized
by a family Fo = {f(2:8),6 € O} of density functions defined on Z, where the term
“density function” is used, depending on the context, to denote either a probability
mass function or a probability density function. The statistical model is correctly
specified if the density fy of Z may be represented as fo(z) = f(z:60) for some 6y € O.
If there is no ambiguity, from now on, a parametric statistical model will simply be
called a parametric model and denoted by Fg. Probabilities and expectations with
respect to an element f(z:8) of Fg are denoted by Py and Eg respectively.

Example 1.1 Animportant example is when the observed data correspond to a single
cross-section. In this case, the data vector z = (zy,..., 2,) may often be viewed as the
outcome of n independent replications of the same chance experiment, that is, as n
distinct realizations of the same random variable. If the chance experiment that results
in a single data point is represented by the parametric model (2, A, {FP4.6 € O}), then
the statistical model for the data is the parametric model (2", A", {P§'.6 € O}), where
Z"=2Zx---xZ, A"=Ax---xAand P! = Py x--- x Py. If f(z;6) is the density
of Py. then the joint density of the data is f(z:0) =[], f(zi:6). m]

The previous example illustrates the fact that the statistical model is often obtained
by combining a model that describes the variability of the characteristic of interest
in the population under examination, or model of the statistical population, with one
that describes the way in which the data have been obtained, or model of the sampling
process. In our example, the former is represented by the density f(z;,0), whereas
the latter corresponds to the assumption that the data come from n independent
replications of the same chance experiment.

In this chapter, we leave aside the problem of how to represent the sampling
process and concentrate instead on some models of the statistical population that
are frequently used in the analysis of economic data.

1.1.1 EXAMPLES OF PARAMETRIC MODELS
We first review some important examples of parametric models.

Example 1.2 Let Z be a 0 1 random variable, that is. a binary random variable
taking value one (“success”) with probability 8 and value zero (“failure”) with
probability 1 — 6, where 0 < 8 < 1. The random variable Z is often the indicator of
the occurrence of a particular event, such as the decision by a consumer to purchase a
certain good, the decision by a bank to grant a loan to a customer. the decision by a
worker to accept a new job offer. The chance experiment corresponding to Z is called
a Bernoulli trial. The distribution of Z belongs to the family of Bernoulli distributions
with parameter 8 and probability function

L fe1—e) - ifa=0,1.
f(z:0) = {(), otherwise.

By standard results, EZ = Pr{Z =1} = § and Var Z = (1 — 8). Notice that VarZ
is a quadratic function of @ and attains its maximum of 1/4 when 8 = 1/2.
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Figure 1 Probability function of a hinomial distribution with index m = 20 and
parameter § = .20.
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Now let Zy,...,2Z, be independent random variables with a common Bernoulli
distribution with parameter 6. The random variable Z = ZT:] Z; is a discrete
random variable which can take the values 0,1,...,m and represents the number
of successes in m independent Bernoulli trials. Its distribution belongs to the family
{Bi(m,8),0 < 8 < 1} of binomial distributions with index m and parameter 8, with

probability function (Figure 1)

m : m-—z . —
£(2:0) = (-)0(1—9) , ifz=0,1....,m,

0, otherwise,

where (') = m!/[z!(m - z)!] is the binomial coefficient. In this case, E Z = m#6 and
Var Z = m6(1 — 8). A Bernoulli distribution is a binomial with index m = 1. 8]

Example 1.3 Let Z be a discrete random variable which can take the values 0,1, 2, ...
and represents the number of times that a particular event occurs during a specified
time period. For example. Z may represent the number of strikes in an industry during
a year, or the number of purchases of a given good by a housechold during a month,
or the number of patents registered by a firmm during a semester.

A possible parametric model for Z is the family {P(6),8 > 0} of Poisson
distributions with parameter 8 and probability function (Figure 2)

0:
£(2:0) = { —e o ifz=0,1.2...,

0, otherwise.

By standard results, EZ = VarZ = 6. O
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Figure 2 Probability function of a Poisson distribution with parameter 6 = 4.
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Example 1.4 If Z is a continuous non-negative random variable. then a possible
parametric model for Z is the family {£(0).8 > 0} of exponential distributions with
parameter § and probability density function (Figure 3)

f(=:0) = {"*“'”ﬂ if = >0,

0. otherwise.

The distribution function of Z is
F(z:ﬂ):/.f(u;ﬁ)du=l—r"0:. 2>0.
0

and its first two moments are E Z = 1/6 and Var Z = 1/8* = (E Z)*. The distribution
£(1) is called unit exponential.

An exponential distribution may be reparametrized by letting A = 1/6. In this case.
its probability density function becomes

flz:A) = %('":/)‘.

3}
v
<

and therefore EZ = A and Var Z = A2, O

Example 1.5 If Z is a continuous random variable that can take any value on the
real line R. then a possible parametric model for Z is the family {A(ye.0%). 0 € R.
) . . . - . . 2 e
a2 > 0} of Gaussian or normal distributions with mean g variance = and probability

density function (Figure 4)

~- _L ) _1 S : _ P
f(...())—a 2ﬂox]|: 2( p ):| 8= (o").
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Figure 3 Probability density functions of exponential distributions.

-

Alternative parametrizations are sometimes adopted where ¢ is replaced by o, 1/a?
or Ino. The A'(0,1) distribution is also called standard Gaussian. In what follows, its
distribution function and density will generally be denoted by & and ¢ respectively.
The use of the Gaussian model is often justified with reference to a central limit
theorem (Appendix D.5), for example as an approximation to the distribution of the
sum of a large number of independent random variables, none of which dominates the
others. a

When Z = (Z),...,2,) is a random vector, modeling each individual element in
isolation generally implies a loss of information, for it ignores the possible lack of
independence between the elements of Z. In this case, multivariate representations
are more adequate. Some of the models described in the previous examples are easily
generalized to the multivariate case.

Example 1.6 Let Z be a random g¢-vector whose elements are discrete randoimn
variables that add up to m and can take any of the values 0,1,...,m. A possible
parametric model for Z is the family {M,(m,8)} of multinomial distributions with
index m and parameter 8 = (6,,...,8,), with probability function

'
f(z;0)=:'m—'|0f‘---0;°, 2;=0,1,...,ny j=1,....q

Zleeezy)!
The parameter space © is the unit simplex in R7

q
O=((01,.--,0):0,>0 j=1.....: Y 6; =1,

=1
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Figure 4 Probability density functions of Gaussian distributions.
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that is. it consists of all g-vectors whose elements are positive and add up to one.
Formally, the multinomial distribution arises as the distribution by type of m elements
randomly drawn with replacement from a population consisting of ¢ types. where 8;
indicates the fraction of elements of type j in the population. The case when ¢ = 2.
6, =1~ and 6, = 7. corresponds to the Bi(m, m) distribution.

Because the marginal distribution of every element Z; of Z is Bi(in,6;), one has
EZ; = m#; and Var Z; = mf;(1 — §;) for every j. Further, because the distribution
of Z; + Z; is Bi(m,8; + 8;), it follows that Cov(Z;. Z;) = —m8,8; for all i # j. ]

Example 1.7 If Z is a random g-vector whose elements can take any value in . then
a possible parametric model for Z is the family {A} (5. )} of ¢-variate Gaussian or
normal distributions with mean p. variance £, and probability density function

fz:0) = (2m)¢*(det T) ™/ exp —%(z ) E (=)

where g is a g-vector and ¥ is a ¢ x ¢ symmetric p.d. matrix. In this case, 8 consists
of the vector g and the (¢ + 1)/2 distinct elements of the matrix £. The A(0. 1)
distribution. where I, is the unit matrix of order ¢, is also called standard g-variate
Gaussian distribution. )

1.1.2 LOCATION AND SCALE MODELS

Parametric models may often be interpreted as the result of certain transformations
applied to some basic distribution. This allows one to decompose the model into a
deterministic part, more closely related to specific knowledge of the problem under
examination. and a stochastic part.
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An important class of transformations is the class of affine transformations. Given
a random variable U, this class corresponds to all random variables that may be
represented as Z = pu+oU for some yt € R and o > 0. If F is the distribution function
of U, then the distribution function of any member Z of this class is

F(z;p,0) =Pr{Z <z} = Pr{U < z_“} =F(z_“).
o o

The parametric family F = {F(z;p,0),1 € R,0 > 0} is called a location and scale
model, u is called the location parameter, o is called the scale parameter, and we say
that U generates F. Clearly, F is the member of F corresponding to ¢ = 0 and
o = 1. In the special case when o = 1, the model is called a location model and
denoted by {F(2;p), 1t € R}. When p = 0, it is called a scale model and denoted by
{F(2;0),0 > 0}.

If U is a continuous random variable with density function f, then the density

function of Z is )
z—p
flamoy =17 (222).
o a

If U has finite variance, then EZ = p+ ¢ EU and VarZ = o VarU. If U has zero
mean and unit variance, then E Z = p and Var Z = ¢°. In general, however, i and o2
need not correspond to the mean and variance of Z.

The location and scale model F has an important property. If g(Z) = a+ 82 is an
affine transformation of Z and 3 > 0, then the distribution function of ¢(Z) is

) z2 -y
F(zip,0') =Pr{g(2) < 2} = F [ — ),

where ' = a + B and ¢’ = 0. Because the distribution of g(Z) also belongs to F,
we say that model F is fnvariant under the class of affine transformations.

Example 1.8 A location model is a typical model for measurement errors. Under
this interpretation, u represents the quantity to be measured, the random variable U
represents the probabilistic description of the accuracy of the measurement device,
and the random variable Z represents the probabilistic description of the variability
of the recorded measurements of . o

Example 1.9 The random variable Z has an £() distribution if and only if Z = U/6.
where U ~ £(1). The family {£(8)} is therefore a scale model generated by the unit
exponential distribution and 1/8 is the scale parameter. O

Example 1.10 The random variable Z has a A"(u,0°) distribution if and only if
Z = pu+olU, where 0 > 0 and U ~ A(0,1). The family {A(y1,0%)} is therefore a
location and scale model generated by the standard Gaussian distribution. Thus. if
Z ~ N(u,0?), its distribution function and density are respectively

oy z—p B _l -
F(a,())—<b< - ), f(..,0)—”¢( o ),

where 6 = (y,07). and @ and ¢ denote the distribution function and the density of
the A°(0, 1) distribution. 0
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An alternative parametrization of an affine transformation is sometimes useful. If
7 = pfa and d = 1/a. then Z may equivalently be represented as Z = (v+07) /4. Under
this parametrization. the distribution function and the density of Z are respectively
F(z:5.8) = F(0z —+) and f(2:5.48) =4 f(dz —=).

1.1.3 THE QUANTILE FUNCTION

The distribution function and the density function are mathematically equivalent
wayvs of representing the distribution of a random variable. Qther representations are
possible. however. and sometimes more convenient to work with.,
Given a real number p in the interval (0.1). a pth quantile of Z is any number ¢,
such that
Pr{Z < (,} <p<Pr{Z <(,}. (1.1)

It is easily verified that a solution to (1.1) alwayvs exists but need not be unique. and
that the set of solutions to (1.1) is a closed interval of the real line. Quantiles increase
monotonically with p. that is. (,» > (, whenever p' > p. Unlike probabilities. which
range between (0 and 1. they are on the same scale as Z.

Quantiles are often emploved to provide summaries of the distribution of a random
variable. A median. corresponding to p = .3. is a well known measure of location.
whereas the interquartile range IQR = (15 — (25 and the interdecile range IDR =
Con — Cho are well known measures of spread. A measure of syinmetry is the ratio
(C75 — C50)/(C a0 — C23). while a measure of tail weight is the ratio IDR/IQR. or some
normalized version of it.

If Z is a continwous random variable with distribution function F. then
Pr{Z < 2} =Pr{Z <z} = F(2) for every z, and a pth quantile is any number
(p such that

F(G) =p. (1.2)

If F is continuous and strictly increasing or. equivalently, Z has a strictly positive
density. then the inverse F~' exists and equation (1.2) has the unique solution
¢ = F=1(p). In this case (. viewed as a function of p. is called the quantile function
of Z. To stress the interpretation of the quantile function as a function defined on
(0.1). the notation {, = Q(p) is also used. The distribution function and the quantile
function of selected distributions are shown in Table 1.

The quantile function Q(p) has several interesting properties. First. if ¢ is any
monotonically increasing and left-continuous function. then

p=Pr{Z <Q(p)} =Pr{y(Z) < g(Q(p))}

for every p in the interval (0.1). Hence. the quantile function of the random variable
g(Z) is equal to g(Q(p)). In particular, if g(2) = a+ 3z with .3 > 0. then the quantile
function of g(Z) is equal to a + 3Q(p).

Example 1.11 If Z ~ &£(8). then the quantile function of Z is obtained from
the quantile function of the unit exponential distribution in Table 1 through the
relationship

Q(p:0) = ;l)-Q(p) = —% In(1 - p).
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Table 1 Distribution function F(z) and quantile function Q(p) of selected

distributions.
Distribution F(z2) Q(p)
Cauchy 3+ Larctanz tan[r(p — 3)]

Chi-square(1)
Exponential
Gaussian
Gumbel

Laplace

Logistic
Log-normal
Pareto

Uniform

Weibull

28(vz) -1

1+e
@(In 2)
1 - (af2)’
2

1 —exp(—~v2?)

[®~((p+ 1)/
—In(1 - p)
@' (p)
In[-In(1 - p)]
In2p,p< i

-In2(1-p),p2>

In
-p
exp(®~!(p))
a(l —p)~'/”

1 i1/a
—Lin(1 - p))/

(—

&
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If Z ~ N(jt,0%), then the quantile function of Z is obtained from the quantile function
of the standard normal distribution in Table 1 through the relationship

Qp;8) =p+0Q(P) =p+0® ' (p), 0= (uod?).

[m]

Next notice that, if U is a uniform random variable on [0,1] and u is any number
between 0 and 1 then, by the monotonicity of Q,

u = Pr{U < u} = Pr{Q(U) < Q(u)}.

Because Pr{Z < Q(u)} = u by the definition of quantile function, it follows that Z
and @Q(U) have the same distribution.

Finally, if Z has a continuous positive density f in a neighborhood of Q(p), then
it can be shown that the derivative of the quantile function at u exists and is
Q'(p) = 1/f(Q(p)). The slope Q' is known as the sparsity function or the quantile-
density function, whereas the composition f o is known as density-quantile function.
The quantile-density function is well defined whenever the density is strictly positive
and is strictly positive whenever the density is bounded.

1.1.4 HAZARD RATE MODELS

If Z is a continuous non-negative random variable with distribution function F and
density function f, then the following limit

Pr{z<Z<z+¢€|Z >z} i Pr{z < Z < z+¢}

Yim ¢ 0 T ePr{Z > 2)
exists and is equal to
__fz)
M) = TRy

called the hazard rate of Z at z. Hence, for sufficiently small ¢, the conditional
probability Pr{z < Z < z + €| Z > 2} is well approximated by €h(z).

In typical applications, Z represents the length of time between the occurrence of
two events. For example, Z may represent the survival time of a patient in a clinical
trial, the lifetime of a marriage, the length of an unemployment spell, or the duration
of a strike. With this interpretation, Z is often called the failure time or duration
of stay, and the hazard rate h(z) describes the instantaneous rate of failure or the
instantaneous rate of exit from a given state after = time units. The larger is h(2), the
more likely it is that failure or exit will occur immediately after time z.

Viewed as a function of z, h(z) is called the hazard function of Z. The hazard
function is necessarily non-negative and may be represented as h(z) = f(z2)/S(z2).
where S(z) = 1 — F(2) is called the survivor function of Z. Notice that S{0) = 1 since
Z is continuous and non-negative.

Under appropriate conditions, the hazard function completely characterizes the
distribution of Z, in the sense that knowledge of the hazard function is equivalent
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to knowledge of the distribution or the density functions of Z. To see this, notice that
if h(z) is the hazard function of Z, then it must satisfy the relationship

h(z) = _d_d; In S(2), 2> 0.

Solving this differential equation, using the initial condition S(0) = 1, gives
S(z) = e~ H(2), (1.3)

where the function H(z) = fo: h(u)du is called the integrated hazard. Obvious
candidates for the distribution and density functions of Z are therefore

F(Z) =1- e"H(:), f(z) — FI(Z) - h(Z)e_H(:),

Notice that F(oco) = 1 only if H(co) = oo. Also notice that, for F(z) to be a
nondecreasing function, H(z) must be nondecreasing in z and therefore the hazard
function must be non-negative.

Relationship (1.3), together with the fact that H(z) is nondecreasing, implies that

e M) = Pr{Z > 2} = Pr{H(Z) > H(2)}.

The integrated hazard H(Z), viewed as a transformation of Z, is therefore a random
variable with a unit exponential distribution.

There are several reasons why working with the hazard may be preferable to working
with the density or the distribution function. First, certain economic models make
predictions directly in terms of the hazard. Second, working with the hazard may
sometimes be mathematically more convenient than working with the density or the
distribution functions.

Example 1.12 Let 2),...,Z,, be independent non-negative continuous random
variables, let h; and S; denote respectively the hazard and the survivor function
of Z;, and consider the distribution of the random variable Z = min(Z,,...,Z,).
Because Z > z if and only if Z; > 2 for all j, the survivor function of Z is

S(z2)=Pr{Z>2}=Pr{Z,>2,...,.2n, 2 2} = ﬁSj(Z).
j=1

Since In S(2) = 3, In S;(2), the hazard function of Z is

m

h(z) = —Ed;lnS(z) = Z [—%lnSj(Z)] = Zhj(l).
i=1

Jj=1

The random variable Z may represent the duration of stay in a given state when exit
from that state may be due to m independent causes. With this interpretation, the
model is known as the competing risks model. @]

A third reason for working with the hazard function is that comparison with the
exponential distribution is particularly simple.
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Figure 5 Hazard functions of Weibull distributions.

L »- l ' l l l
a=.0 "o
‘,a :1 7
a=15  --- -
2 '—;. ./"./.,‘ 7
. /_/'/.
1 ——
b
e ‘~_
./ ~.~~
./ ----------
‘/ ------------------------------
e —
0 ' l ; l l
0 0.5 1 15 2 25 S
2

Example 1.13 If Z has an £(8) distribution, then its density and survivor function
are respectively f(z) = @e~% and S(z) = =9, z > 0. Hence, the hazard function of
Zis 9o-0
h(z) = —— =8,
e

9:
that is, the exponential distribution has a constant hazard. For this reason, it is
sometimes said that the exponential distribution is memoryless or shows no duration
dependence. It is easily verified that the converse is also true, that is, a continuous
non-negative random variable Z has an exponential distribution if it has a constant
hazard. Thus, the memoryless property characterizes the exponential distribution. O

Example 1.14 The exponential distribution, having a constant hazard, may be
inappropriate in some cases. For example, one may convincingly argue that for
an unemployed person the probability of finding a job depends on the length of
his unemployment spell. The Weibull distribution (see Appendix C.6) provides a
statistical model that allows for this possibility.

If Z has a Weibull distribution with parameter 8 = (a, ), then its density function
is

[ yaz®texp(~v2°), ifz2>0,
f(z) = {0, otherwise,

and its survivor function is

S(z) = exp(—~2?), 22> 0.

The Weibull distribution reduces to the £(y) when « = 1. The hazard function of a
Weibull distribution (Figure 3) is

h(z) = yaz®™!,
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which is constant if and only if a = 1. Because
h(z) = ya(a — 1)2°72

the Weibull hazard is monotonically increasing or decreasing, that is, the model

exhibits positive or negative duration dependence, depending on whether a > 1 or

0<ax<l. O

1.1.5 IDENTIFIABILITY

Let the random variable Z represent the variability of some numerical characteristic
of the population. Suppose that the investigator decides to parametrize the model for
the probability distribution of Z in terms of a finite-dimensional parameter § € O, and
let Fo denote the family of densities that comprise the model. It may happen that,
given the chosen parametrization, distinct parameter points in © are associated with
the same element of Fg. Formally, the mapping that associates with each element
of © an element of Fg is not invertible. In this case, one says that the model is not
identifiable because, even if the density of Z were known, it would be impossible in the
absence of further information to single out a unique element of ©. This difficulty is
due to the chosen parametrization and could be avoided by restricting the parameter
space.

Example 1.15 Let Fg be the parametric model generated by the random variable
U ~ N3(0, I,) through the class of linear transformations of the form g(U) = I'U,
where I' is a 2 x 2 p.d. matrix. This model does not ensure that distinct parameter
points in © are associated with distinct elements of Fg and so it is not identifiable in
general. For example, the two parameter points

w=[13] ne[ s ola

are associated with the same N,(0, ) distribution, with

2=r0r[{=r,r3=[z ‘;]

One way out, in this case, is to restrict the class of admissible transformations of U
by imposing the restriction that I' is a diagonal matrix. ]

More generally, a model is not identifiable if distinct parameter points in © are
associated with elements of Fg that only differ on a set having zero probability.

Definition 1.1 Given a parametric model Fg = {f(2;6),0 € O}, a parameter point
G0 € © is said to be identifiable if, for every other parameter point 6 € O,
f(Z;60)
Po{z: ;6 ;0)} = L #£1 , .

o{z: f(z:00) # £(2:6)) Eol{f(z;o) #1150 (1.4)
where Py and Eg respectively denote probability and expectations with respect to the
density function f(z;60) and 1{A} is the indicator function of the event 4 (1{A} is
equal to one or zero depending on whether the event 4 is true or false). Model Fg is
said to be identifiable if all its parameter points are identifiable. g
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Checking the identifiability of a parameter point on the basis of the above definition
may look like a hard task. Consider, however, as a measure of dissimilarity between
the density f(z;8p) and any other density f(z;6) in Fg, the expectation with respect
to f(z;6g) of the logarithm of the ratio of the two densities, or likelihood ratio,

F(Z;60)
f(Z;6)

If the expectation does not exist, put K(6,6p) = oco. This index of dissimilarity between
densities is known as the Kullback -Leibler indez.

K(6,60) = Eo1In = Eo[In f(Z;60)] — Eo[In f(Z;8)].

Theorem 1.1 (Kullback-Leibler inequality) Given a parametric model Fo =
{f(z;6),6 € O}, for any 8,80 € O one has:

(1) K is well defined;
(ii) 0 <K < ooy
(iii) K(8,600) = 0 if and only if Po{z: f(z;60) = f(2;6)} = 1.

Proof. Part (i) is trivial. Because the logarithmic function is strictly concave, Jensen
inequality implies
f(Z;6) f(Z;06)
-K(8,63) = Egln <lIn ,
(6.00) = Eoln £ Z:00) <" 7(Z:60)

with equality if and only if f(Z;600)/f(Z;6) is a degenerate random variable, that
is, f(Z;00)/f(Z;6) = ¢ with probability one for some ¢ > 0. Because densities
must integrate to one, one has that ¢ = 1 and so equality holds if and only if
Po{z: f(z;60) = f(2;6)} = 1. Finally,

lEo

1Zfzj, =0

when Z is discrete, and

f(Z;8)
lnEof(Z ) =In /sz)dz—

when Z is continuous. O

Since K(6o,60) = 0, as a corollary we obtain the following.

Corollary 1.1 Given a parametric model Fe, a parameter point 8y € O is identifiable
if and only if K(6,00) attains its unique minimum on © at § = 6.

Proof. 1t follows from Theorem 1.1 that, if § # 6, then K(6,6p) > 0 if and
only if Po{z: f(z;600) = f(2;0)} = 1 — Po{z: f(z:60) # f(2;0)} < 1, that is, if
and only if (1.4) holds. Hence, the parameter point 6§, is identifiable if and only if
0 = K(6p,600) < K(8,80) for all § # 6,. a

The function In f(2;8), viewed as a function of 8 for given z, is called the log-
likelihood of 9. More generally, we call log-likelihood any function that differs from
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Figure 6 Expected log-likelihood of a A (u, 0?) distribution.

In f(2;60) up to an additive constant. Searching for a minimum of the Kullback-Leibler
index is therefore equivalent to searching for a maximum of the expected log-likelihood

1(6) = c + Eoln £(Z;0),

where c is an arbitrary constant. We conclude that a parameter point 8 is identifiable
if and only if it corresponds to the unique point of maximum of ! on ©. For example,
if the parameter space O is a convex set and the expected log-likelihood ! is a strictly
concave function, then [ attains a unique maximum on © and we only have to verify
that it coincides with 6.

Example 1.16 Let Fg be the family of A/(u,0?) distributions, with 4 € ® and
0? > 0, and let 8y = (p9,028) and = (u,0?) be distinct parameter points in ©.
Because the logarithm of the density function is

1 1(z-p\?
111f(z;9)=—§ln02—§( 0”) ,

the expected log-likelihood is of the form

2 — )2
10) = - > [lng? 4 8+ (o — 0
2 o2

(Figure 6), where ¢ is an arbitrary constant and we used the fact that Eo(Z — p)? =
g + (1o — p)*.

For ¢2 > 0 fixed, maximizing the expected log-likelihood with respect to u is
equivalent to minimizing (uo — u)2. Hence, u = p1o is the unique point of maximum of
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[ for all 02 > 0. Substituting g = o in the expected log-likelihood gives
2
l.(a"’)=l(,uo,02):c.—l no?+ %0 ,
2 o?

where ¢, is an arbitrary constant. It is easily verified that the function /,(c?) attains
a unique maximum on (0, o0) at the point where

. 10%-0?
2 0
0= l’. (0 ) = _5 P )
whose solution is 0? = o2. Because 8, whatever its value, is the unique maximum of
1(8) on B, the model is identifiable. D

1.1.6 REGULAR PARAMETRIC MODELS

It is often easier to check that a parametric model is identifiable in a weaker sense
than the one discussed in the previous section.

Definition 1.2 Given a parametric model Fg, a parameter point §y € O is said to
be locally identifiable if there exists an open neighborhood O C © of 6y such that
1(8p) > 1(8) for every other § € O. Model Fg is said to be locally identifiable if all its
parameter points are locally identifiable. a

Thus, a parameter point 8y is locally identifiable if it corresponds to a unique local
maximum of the expected log-likelihood.

We now give sufficient conditions for local identifiability of a wide class of parametric
models. This class consists of models that are smooth in the following sense.

Definition 1.3 A parametric model Fg is said to be smooth if:

(i) © is an open subset of R?;

(i) the set S = {z: f(2;8) > 0} does not depend on 6;

(iit) the density f(z;6) is twice continuously differentiable with respect to 6 for
almost all z € S;

(iv) Eg|In f(Z;6)] < oo for every 6 € O;

(v) if g(2) is any function of Z such that Eg|g(Z)| < oc for every 6 € ©, then
the operations of integration and differentiation with respect to 8 can be
interchanged in [ g(2)f(z;6) dz, that is,

2 [s@0d = [ g 2 j0)ae

a
If a parametric model is smooth, then its log-likelihood is differentiable with respect
to 8. The function 8 F(:0)
Z;
8(z;08) = % In f(2;0) = F(2:0)
is called the likelihood score, and plays a fundamental role in statistics. Some of its

properties are collected in Theorem 1.2. Here and in what follows, f'(2:6) denotes the
gradient of f(z;6) with respect to 8.
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Example 1.17 The family of M (u,0?) distributions, with 4 € ® and 02 > 0, is a
smooth parametric model. The components of the likelihood score are, in this case,

6 —_
su(z0) = 5o [(2:0) = =5

(z - w)? _1]_

o2

0 1
802(2;6) = &Tlnf(z,()) = F [
a

Theorem 1.2 (Information equality) If Fg is a smooth parametric model, then:

(i) Egs(Z;60) =0;
(ii) if g(z;0) is any function that is continuously differentiable with respect to
8 for almost all 2 € S and such that Eg g(Z;6) = 0 for every § € O, then

Covslg(Z;6),3(Z;8)] = — Eg ¢'(Z;6);
(iii) Varyg S(Z;O) = —E 3/(2;9).

Proof. We only give the proof for the case when Z is a continuous random variable.
The proof for the case when Z is discrete is left to the reader as an exercise.
Differentiating with respect to 8 both sides of the identity 1 = [ f(z;0)dz gives

_9 : _ [ ['(z8) ., . _ _
=38 /f(z.f)) dz = H2:0) f(2;0)dz = Eg3(Z;9).

Further differentiating with respect to 8 both sides of the identity 0 = Ey g(Z; 6) gives

0=2 / 9(z:6) f(2;6) d
_ /g'(z;@)f(z;()) dz+/g(z 8) [f (z; 9)] £(2;6) dz

f(z;0) '
=Esg'(Z;0) + Eg g(Z;0)s(Z;6)"
=Egg'(Z;6) + Covy[g(Z;0),5(Z;06)),

from which we immediately get conclusion (ii). Given (i) and (ii), one obtains (iii) by
simply putting g(z;6) = s(z;9). O

The p x p matrix
1(6) =Eps(Z;0)s(Z;0)" = Vary s(Z;6)

is called the expected or Fisher information on 6. By Theorem 1.2
52
6060T
Thus, the Fisher information is also equal to (minus) the expectation of the Hessian
of the log-likelihood, that is, Z(#) is also a measure of the average curvature of the
log-likelihood at 8.
If Fg is a smooth parametric model, then the expected log-likelihood [(8) is twice

continuously differentiable on ©. Because © is an open set, the following conditions
are necessary and sufficient for the parameter point 6 to be locally identifiable:

I(8) = —Eps'(Z;6) = ———1n f(Z;6).
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1. I'(6y) = 0;

2. the Hessian matrix ! () is finite and n.d.

Since Fg is sufficiently smooth, we have

vy _ [ F(z0) _ .
') —/ 7(2.0) f(2;60)dz = Eg 8(Z;8).

Part (i) of Theorem 1.2 implies that I'(6y) = Eg 8(Z;60) = 0, and so the first condition
is always satisfied. Further,

1"(6) = 5% Eo3(Z;8) = Eo s'(Z:6)

is a finite p x p matrix. Evaluating {"(8) at the point 8 = 8y gives
I"(60) = Eqs'(Z;60) = —Z(60).

Except for the sign, the Fisher information is therefore equal to the Hessian of the
expected log-likelihood. This result establishes an important relationship between
the rank of the Fisher information of a smooth parametric model and the local
identifiability of a point 6 in the parameter space. In particular, if Z(6p) is a p.d.
matrix, then there exists an open neighborhood of 6y on which the expected log-
likelihood [(@) attains its unique maximum at the point 6. that is, g is locally
identifiable. Further. if © is a convex set and Z(8) is p.d. on ©, then {(8) is a strictly
concave function and all points in © are identifiable.

A parametric model Fg is called regular if it is sufficiently smooth and the Fisher
information is continuous and p.d. on O. If a parametric model is regular, then every
parameter point is locally identifiable.

Example 1.18 To illustrate the above results, consider again the smooth parametric
model {N(j,0%),u € R,0? > 0}. The expected log-likelihood has been derived in
Example 1.16 and the components of the likelihood score in Example 1.17. It is easy
to verify that
ol po—p
o~ o2

= Eo Sy (Z: 9)

and ) )
A1 [ad 4+ (po—n)?*
do?2 ~ 202 o2

Because the components of the likelihood score have mean zero when 8 = 6, such

a parameter point solves the equation I'(§) = 0. The elements of the Hessian of the
log-likelihood are

0*In f 1 Pnf  z-p &Inf 1 [1 (z—p)"’]

1] = Eg 8,2(Z;6).

oz~ o? duda? ~ o'’ o' 204 |2 o?
and it is easy to verify that the expectation of the Hessian of the log-likelihood is
equal to the Hessian ["(8) of the expected log-likelihood. Evaluating I"(6) at the point
0 = g, we get

11 0
I" 0p) = - P = —I(6y).
=5 |0 1y | = -z
Since the Hessian of the expected log-likelihood is n.d. at g, such a parameter point
corresponds to a local maximum of { and is therefore locally identifiable. O
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1.1.7 EXPONENTIAL FAMILIES

An important class of smooth parametric models is the one characterized by density
functions of the form

P
f(z:0) =exp | D a;(0)T;(z) + b(6) + c(2)

Jj=1
= exp [a(8) " T(2) + b(8) + c(2)),

at all points in the support of the distribution, where a: # — RP is an invertible
function, b: ®» — R is a concave function, both functions are twice continuously
differentiable, and the vectors a(8) and T(z) have the same number p of components.
For the model to be regular, the parameter space © must be an open subset of ®?
and the support of the distribution corresponding to f(z;8) must not depend on 8. A
model in this class is called a p-parameter (linear) ezponential family.

All parametric models considered in Section 1.1.1 belong to this class.

Example 1.19 For the binomial distribution with index m and parameter § we have

f(z6) = (7:)0:(1 —@)" " =exp |zln l—f—o +min(l -8) +1In (1:)] .

The family of Bi{m, 6) distributions is therefore a one-parameter exponential family
with a(6) = In[8/(1 - 0)], T(z) = z, b(8) = min(1 — ) and c(z) = In (7).
For the Poisson distribution with parameter 8 we have

f(z;0) = g-e_o =exp(zlnf — § —In2!).

The family of P(8) distributions is therefore a one-parameter exponential family with
a(f) =1In@, T(2) = 2, b(8) = —6 and c(z) = —In(2!).
For the exponential distribution with parameter 8§ we have
f(2;60) = 8e7% = exp(—6z + In#).

The family of £(8) distributions is therefore a one-parameter exponential family with
a(f) = -0, T(z) =z, b(0) =In8 and ¢(z) = 0.
For the Gaussian distribution with mean u and variance o?, letting 8 = (u,0), we

have )
1. 1 (z—u)‘
X _—
oV2r P 2 o

2 2
_ nz z 1 {p” 2
_exp{g—2 5273 [; +In(270 )]}
The family of N'(y,02) distributions is therefore a two-parameter exponential family
with a;(0) = p/0?, a:2(8) = —1/(20?), T (z) = z, Tx(z) = 22, ¢(z) = 0 and

b(8) = —% [u—z + ln(27ra2)].

o2
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It can be shown that the family of beta and gamma distributions are both two-
parameter exponential families. The family {M,(m,8)} of multinomial distributions
is an exponential family with p = ¢—1 parameters, whereas the family {5 (2, )} of ¢-
variate Gaussian distributions is an exponential family with p = ¢(¢+3)/2 parameters.
Thus, for example, the bivariate Gaussian distribution is a five-parameter exponential
family.

An important and useful reparametrization of an exponential family is obtained by
putting 7 = a(@). With this parametrization, the exponential family is said to be in
canonical form and the parameter 7 is called the canonical or natural parameter. The
density function of a model in canonical form is

f(zm) = exp[n" T(2) +d(n) + c(2)],

where d(n) = b(a™'(n)). The main advantage of the canonical form is that the log-
density

In f(z;n) = 0" T(2) + d(n) + ¢(2)

is a concave function of the parameter 7, whereas the likelihood score takes the simple
form

s(zyy) = 561—’ In f(z;7) = T(z) + d'(). (1.5)

Regularity of a p-parameter exponential family is easy to verify when the model
is in canonical form. Because the Hessian of the log-likelihood is the p x p matrix
s'(z;n) = d"(n), which does not depend on z, the Fisher information is simply
I(n) = —d"(n). If d is a strictly concave function, then —d” is a p.d. matrix for
all 7 and so the parametric model is regular.

Example 1.20 The canonical form of the Bi(m,8) distribution is

f(zin) =expnz — mIn(l + ") + ¢(2)],
where the canonical parameter = In[8/(1 —8)] is the logarithimn of the odds-ratio, that
is, the logarithm of the ratio between the probability of success and the probability of
failure. Thus, the log-likelihood is

In f(z;n) =nz —mn(l + "),

where we omitted the arbitrary constant, the likelihood score is

el

s(zig) =2 —m ——,
(z:m) 1+e"

and the Fisher information is

which is positive for all . m]
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Figure 7 Log-likelihood (solid line) and likelihood score (broken line) of a binomial
model with index m = 20 and of a Poisson model. Both models are in canonical form
and z = 10 in both cases. The log-likelihood is shown up to an additive constant.
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Example 1.21 The canonical form of the P(8) distribution is
f(zin) = exp[nz — e" — In(2!)],
where 7 = In§. Thus, the log-likelihood is
In f(2in) =nz —¢",

where we omitted the arbitrary constant, the likelihood score is 8(2;7) = z — ", and
the Fisher information is Z{n) = e”, which is positive for all . The log-likelihood and
the likelihood score for this and the previous model are shown in Figure 7. ]

If the model is in canonical form, two important relationships may be derived which
connect the moments of T(Z) to the derivatives of the function d. The first two
moments of the likelihood score (1.5) are

E,s(Z;n) =E,T(Z) + d'(n), Var, s(Z;n) = Var, T(Z).
The fact that the likelihood score has mean zero implies
E,T(Z) = -d'(n),
whereas the information equality (Theorem 1.2) implies
Var, T(Z) = —d"(n).

In the case of a one-parameter exponential family with T(z) = z, it then follows that
E,Z = —-d'(n) and Var, Z = —-d" (7).
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Figure 8 Bivariate Gaussian density corresponding to (6% ,0%,0xv) = (1,1,0).
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1.2 CONDITIONAL PARAMETRIC MODELS

The ¢ variables under study are often treated asymmetrically, in the sense that the
probabilistic behavior of a subset of them, called the response variables and denoted
by Y = (11,...,Y,), is related to the values taken by the other k = ¢ — m variables,
called the covariates and denoted by X = (Xj,...,.\). In this case. the statistical
problem typically consists of drawing inferences about the conditional distribution
of ¥ given X. A parametric model for this conditional distribution, or conditional
parametric model, is a family of conditional distributions of 1" given .\' = r indexed

by a finite-dimensional parameter 8. We now consider ways of constructing models of
this kind.

1.2.1 CONDITIONING

The first method is to start directly from the joint distribution of Z = (X, 1"). Given
a family {f(2:8),0 € O} of joint density functions, a conditional parametric model for
Y is a family {f(y]x;8),6 € O} of density functions such that

f(r,y;6)
P = —— 2 7
flyla:6) J f(a,u;8) du
Example 1.22 Let the random vector Z = (XX,}") have a bivariate Gaussian

distribution with mean j and variance (dispersion matrix) £, where

= Hx T = U:"\' oxy
= . == 2 .
Hy oxy 7y
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and 0%y < oio%. If 0% > 0, then the conditional distribution of ¥ given X = z is
also Gaussian with mean

oxYy oy
wz) = py + —5—(z — px) = py + pxy —(z - px), (1.6)
9x ax
where pxy = Corr(X,Y’), and variance

2
: p Oxy 2 2
o*(z) =0y — e oy (1 - pky) < of-.
X

If pxy = 0 (Figure 8), then X and Y are independent and the conditional distribution
of ¥ given X = r is equal to the marginal distribution of ¥". If pxy = %1, then X
and Y are perfectly correlated and the conditional distribution of Y given X = z is
degenerate for it gives all its mass to the point y = u(x).

The conditional mean u(x) is linear in «, that is, of the form u(z) = a + Az
(Figure 9), with

oxy ay
a=puy — pux, f=—— =pxy —,
U_\, agx

whereas the conditional variance o2(x) does not depend on z. Notice that the three
parameters of the conditional distribution of Y, namely a, 8 and 02 = 0% (1 - p%y),
are functions of the five parameters of the joint distribution of X and Y".

These results generalize to the case when Y and X are random vectors of order m
and k = ¢ — m respectively and

¥xx Zxy
2 — N
[ Lyx Zyy }

is a ¢ x ¢ matrix with Ly x = E}y. If ¥xx is nonsingular, then the conditional
distribution of ¥ given X = r is Gaussian with mean

u(z) = py + EyxE¥ (z - px)

and variance
£(z) = Zyy - Zxy Ex Exy

The conditional mean of Y is again linear in r, that is, of the form u(z) = a + Bz,
where @ = py — BT pux and B = E}‘XZXY are an m-vector and a k x m matrix
respectively, whereas the conditional variance £(z) does not depend on z. a

1.2.2 EXOGENEITY

Focusing attention on the conditional model for Y, as is often done in econometrics,
is justified when the relationship between X and Y is stable, in the sense that the
conditional distribution of ¥ given .X' does not change with changes in the marginal
distribution of X.

To formalize this idea, consider a regular parametric model Fg for the joint
distribution of Z = (X,Y"). The joint density f(z;0) may always be decomposed
as

f(2:0) = f(y|2:0) fx (r;0),
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Figure 9 Level curves of bivariate Gaussian densities corresponding to
(6%,0%,0xy) =(1,1,.5) and (6%,0%,0xy) = (1,1, —.5). The dotted line denotes
the conditional mean of 1" given X = z.

p=.9 p=-.9

I | 1 | I I I I | !

2+ = 2 -

1+ " 1 —

> 0 - s 0 —

-1F-- - -1 -7
2 - 2

] 1 | | 1 | | 1 1 |

where f(y|x;0) is the conditional density of Y given X = z and fx(z;6) is the
marginal density of .X'. Corresponding to this decomposition, we have the following
decomposition of the log-likelihood

In f(2:0) =In f(y|z;0) + In fx(z;0).

Suppose that the parameter 8 consists of two functionally unrelated components, that
is, 8 = (0,,0,) with 8, € O, 8, € O, and © = O, x O,. In this case it is sometimes
said that 8, and 6, are variation free. If

Inf(z;8) =1In f(y|z;0:) + In fx(x;6.),

then the random vector X is said to be ancillary or ezxogenous for 8,. From now on,
we shall follow the econometric practice of using the term exogeneity for this case.

Exogeneity of X for 8, corresponds to a decomposition of the log-likelihood into
two separate parts: the conditional log-likelihood In f(y|z;8,) of 8, given X = z and
the log-likelihood In fx (x:82) of 6., with no functional relationship linking 6, and ..
A sufficient condition is invariance of the conditional distribution of ¥" given X to
changes in the marginal distribution of .X'.

Example 1.23 Consider again Example 1.22. The conditional distribution of }” given
X is N(a + AX,0%), where

oxy 2 2 Oxy
p=23r

7 g =0y 2

a=py — fBux,
Ox Ox
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Exogeneity of X for the parameter §, = (a, 3,02) in the conditional distribution of ¥’
requires the absence of any functional relationship between 6, and the parameter
8, = (px,0%) in the marginal distribution of X. This means that changes in
6, can only affect the parameters py and o} of the marginal distribution of Y’
and the covariance oxy between X and Y through the relations uy = o + Bux,
0% = f%0% + 0%, and oxy = Bo%. a
If the random vector X is exogenous for 8, then the elements of the likelihood score

are

7] o

—1 1) = —1 1601),

557 10 1(2360) = 75-1n f(y] =:6))
3] 0
— 0) = —1 -6,),
0, In f(2;6) 56 n fx(z;62)

which we denote by s(y|z;68,) and s(x;0,) respectively. The function s(y|z;8;) is
called the conditional likelihood score, while the matrix

I(6:|z) = Eg,[s(Y | X;0))s(Y | X;6,)7

X =1,

where the expectation is with respect to the conditional distribution of }" given X = z,
is called the Fisher information on 8, given X = z.

Under exogeneity, the cross-derivatives of the log-likelihood are equal to zero, which
implies that the two components of the likelithood score are uncorrelated.

Theorem 1.3 Suppose that the distribution of the random vector Z = (X, Y") belongs
to a regular parametric model with parameter 8 = (6,,0;) and parameter space
O =0, x 0,. If X is erogenous for 6,, then the Fisher information on 6 is block
diagonal with respect to 8, and 8, that is,

_[n® o
1(9"[ 0 12(92)]’

where Z,(0) = [ I(0, | z) fx(x;62) dx is the expectation of I(6) | X) with respect to the
maryginal distribution of X.

Thus, if X' is exogenous for §;, then no information about 6, is lost by focusing
attention on the conditional model for 1" disregarding the marginal model for X.

1.2.3 CONDITIONAL LOCATION AND SCALE MODELS

If the joint distribution of (X, Y") is unknown, one may sometimes assume, on the basis
of specific knowledge of the problem under study, that there exist transformations
#(X) and o(X) > 0 of X and a random variable U distributed independently of X
such that }" = pu(.X')+0o(X) U. The interpretation of the random variable U depends on
the nature of the problem. A comnmon interpretation is that U represents measurement
errors in Y.

Because U generates the conditional distribution of Y given X = z through a
location and scale transformation, the conditional density of ¥ given X =z is

_ 1 y — plz)
fle) = =1 (52,
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where f denotes the density of U. If EU = 0 and VarU =1, then E(Y | X) = u(X)
and Var(} | X) = o(X).

When u(z) = h(z;8) and o(z) = s{r;¥) are known parametric functions of r,
letting 8 = (8, v) gives a conditional parametric model for Y. In this context, it is quite
natural to assume that X is exogenous for 6. The special case when h(z; 3) = B, + 3.z,
B = (B1,52), is an example of a linear model. Notice that one should always check
whether the chosen parametrization of o(.t) is admissible, that is, satisfies the condition
o(z) > 0 for all z.

Example 1.24 If Y} is a continuous random variable that can take values on the
whole real line, then a conditional parametric model for Y may be generated by the
standard Gaussian distribution by letting u(z) = 81 + B2z and o(x) = exp(¥; + ¥az),
where the exponential function is used to ensure that o(x) > 0. )

1.2.4 CONDITIONAL PARAMETRIZATIONS

A third method of constructing a conditional parametric model is to start from a
parametric family Fg = {f(y;9),0 € ©} of densities of ¥ and generate a parametric
family {f(y|x;3),3 € B} of conditional densities of ¥ given .\' = x by specifying 6
as a known parametric function 8(z; ) of x. The choice of the parametric family Fg
depends on the nature of the problem. In any case, it is important to check that the
chosen parametrization is admissible, that is, does not violate the admissible range

of 6.

Example 1.25 Let }" be a continuous non-negative random variable that represents
the duration of stay in a given state. One way of generating a conditional parametric
model for Y is to consider the family of exponential distributions with parameter 6
and specify 6 as a known parametric function of X'. Letting 8(r; 3) = 1 + 2z, where
B = (B, 3,), is not appropriate in this case for it violates the condition that 8 > 0. An
admissible parametrization is obtained instead by letting In8(z;3) = 3, + $2x, which
is equivalent to the assumption that E(Y | X = r) = exp(—5, — #27). Because

0 -
b—;ln E() I‘\ :.’L’) = —ﬁ-z,

the parameter J» may be interpreted as the proportional effect of a unit change in z
on the conditional mean of Y. a

Example 1.26 Consider the family of Weibull distributions with parameter § =
(a, ¥). Parametrizing the non-negative parameter -y as y(z; 8) = exp(3; + B2r), where
A = (3, 72), gives the conditional hazard function h(y|z;8) = ay®~'exp(B; + B2x).
This model retains the proportional effect of the covariate on the hazard, but it allows
for dependence on the duration y through the term ay®~!. ]

1.3 NONPARAMETRIC AND SEMIPARAMETRIC PROBLEMS

A statistical model P for the probability distribution Py of Z is called nonparametric
when it is impossible to index the elements of P by a finite-dimensional parameter.
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An example is the case when the only known thing about Py is that it belongs to the
family of continuous distributions on R.

A statistical problem is called nonparametric when one is required to draw inferences
about some function associated with the distribution Py and this function belongs to
a class of functions that cannot be indexed by a finite number of parameters.

Example 1.27 Consider the problem of drawing inferences about the density of a
distribution Fy. The statistical problem is nonparametric when the only known thing
about Py is that it belongs to the family of probability distributions defined on R that
are continuous and have a twice continuously differentiable density. a

A statistical problem is called semiparametric when one is required to draw
inferences about a finite-dimensional parameter §; € © which does not characterize the
distribution Fy. The parameter point 8, can generally be represented as 6y = T(F),
that is, as the value corresponding to Py of a noninvertible transformation T: P — 0,
called the statistical functional.

Example 1.28 Consider the problem of drawing inferences about the mean and the
variance of a distribution Py with density function fo. The statistical problem is
semiparametric if the only thing which is known about Py is that it belongs to the
family P of probability distributions on R that are continuous and have finite variance.
In this case, the parameter of interest is the value corresponding to fy of the statistical
functional T = (T, T,) defined on P by

Ty(f) = / f(D)dz,  Talf) = / 2 f(2)dz — (6, ().
a

Semiparametric statistical problems often arise when one is only interested in certain
aspects of a distribution and the available information is not sufficient to restrict Py
to a parametric family. In a predictive context, which are the interesting aspects of a
distribution ultimately depends on the way in which the consequences of prediction
error are evaluated.

1.3.1 UNCONDITIONAL PREDICTION PROBLEMS

Consider the problem of predicting a random variable Z knowing its probability
distribution. A predictor is simply a number ¢ € R which is used to approximate
the value taken by Z. The difference z — c is the error made when z is the realized
value of Z and c is the chosen predictor. Given ¢, the variability of the prediction error
is represented by the random variable U = Z — c.

In order to choose a predictor optimally, let the loss or negative utility when c is
the predictor and 2 is a particular realization of Z be represented by the number
¢(z — c), where € is a non-negative function, called the loss function, which satisfies
the following conditions:

(L.1) £(0) = 0;
(L.2) if 0 < u < o', then £(0) < £(u) < £(u') and £(0) < €(~u) < €(—u');
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(L.3) ¢: R — R, is integrable with respect to the distribution of Z.

Condition (L.1) is only an innocuous normalization. Condition (L.2) requires the loss
function to be nondecreasing for u > 0 and nonincreasing for u < 0. The integrability
condition (L.3) is satisfied if the loss function is bounded from above, but otherwise
restricts the class of problems that may be considered. Notice that the loss function
is not required to be continuous, nor convex, nor symmetric, nor differentiable.

For a given c, the loss ¢(Z — ¢) is a transformation of the random variable Z. The
expected loss r(¢) = E€(Z — ¢) is called the risk associated with the predictor c. A
best predictor of Z is a number c¢. € R such that r(c.) < r(c) for all other ¢. Notice
that we do not require c. to coincide with one of the possible values of Z.

Clearly, a best predictor depends on both the distribution of Z and the particular
loss function adopted. The next result characterizes the best predictor under two
different loss functions: the quadratic loss function #(u) = u? and the absolute loss
function ¢(u) = |u|. Figure 10 shows the difference between the two loss functions.
Notice that the quadratic loss is smooth, whereas the absolute loss is not differentiable
at the origin. The absolute loss exceeds the quadratic loss for |u| < 1, whereas the
opposite is true for Ju| > 1. Finally, the absolute loss weights the errors proportionally
to their size, whereas the quadratic loss penalizes larger errors proportionally more
than smaller errors. The risk of a predictor under the quadratic loss is also called its
mean squared error (MSE), whereas its risk under the absolute loss is also called its
mean absolute error (MAE).

Theorem 1.4 Let Z be a random variable with mean u and variance 0 < 0% < 00. If
¢(u) = u?, then the unique best predictor of Z is equal to u and its associated risk is
equal to 0>. If €(u) = |u|, then a best predictor of Z is equal to a median of Z and its
associated risk is equal to the mean absolute deviation from the median.

Proof. If é(u) = u?, then the risk of a predictor c is r(c) = E(Z — ¢)? = 0% + (i - ¢)%.
Because 02 does not depend on ¢, the function r(c) attains its minimum value of o2
when ¢ = p.

If ¢{u) = |u], then the risk of a predictor ¢ is

E|Z-c|=E(Z-c|Z>c)Pr{Z>c}+E(c-Z|Z<¢)Pr{Z<c}.

Recall now that the set of medians of Z is a closed interval {mg,m,]. If ¢ is a median
of Z and ( <m; < ¢, then

E(Z-c|Z>c)Pr{Z>c}=E(Z-c|Z>() Pr{Z > (}
~E(Z-¢|(<Z<)Pr{{(<Z <},

whereas

E(c-Z|Z<)Pr{Z<¢}=E(c-2|(<Z<c)Pr{(<Z<c}
+E(c-Z|Z <) Pr{Z <}

Letting d(¢c) = E|Z — ¢| - E|Z — (], we get

d(c) = (¢ = O[Pr{Z < ¢} = Pr{Z > (}] +2E(e - Z|( < Z < ¢) Pr{( < Z < c},
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Figure 10 Quadratic and absolute loss functions.
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and therefore d(c) > d(¢) = 0 for all ¢ > m,. By a similar argument, d(c) > d(¢) =0
for all ¢ < mg, which completes the proof. m]

If Z has a continuous and symmetric distribution with finite mean and strictly
positive density, then the median is unique and coincides with the mean. More
generally, one can show that, if the distribution of Z is symmetric about u, then
it is a best predictor of Z for every loss function that is convex and symmetric about
zero (see e.g. Lehmann 1983, p. 55).

The quadratic and absolute loss functions are convex and symmetric about zero. A
loss function that is convex but not symmetric is

€p(u) = [p 1{u 20} + (1 - p) 1{u < O}]|u[ = [p - 1{u < O}]u,

with 0 < p < 1, called the asymmetric absolute loss function. This loss function is
shown in Figure 11 for various values of p. Unless p = 1/2, which corresponds to
symmetric absolute loss, prediction errors are now penalized differently depending
on whether they are positive (underprediction) or negative (overprediction). When
p > 1/2, positive errors are penalized more heavily, and increasingly so as p increases.
When p < 1/2, negative errors are penalized instead mnore heavily. By an argument
similar to that used for the symmetric absolute loss, one can show that a best predictor
of Z is in this case a pth quantile of Z.

1.3.2 CONDITIONAL PREDICTION PROBLEMS

Let Z = (X,Y’), where Y is a random variable and X is a random k-vector. If X
and Y are not independent and X is observable, then it is reasonable to predict Y
through a transformation of X, that is, through a rule A: £ — R which associates
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Figure 11 Asymmetric absolute loss functions.

with each realization r of X a number h(z). Because the predictor is now a random
variable h(.X), its associated risk is r(h) = E ¢(}" — h(XX)), where the expectation is
with respect to the joint distribution of X and Y. A best conditional predictor of
Y given X is a function h. such that r(h.) < r(h) for every other function h. In
particular, because this must be true if g is a constant function, the risk of a best
conditional predictor cannot exceed that of an unconditional predictor.

In order to construct a best conditional predictor notice that, by the law of iterated

expectations,
E (Y - h(X)) = E{E[¢(Y - h(X))| X = z]},

where the first expectation on the right-hand side is with respect to the marginal
distribution of X" and the second is with respect to the conditional distribution of }
given .\" = x. Therefore, a function h. is a best conditional predictor if, for every z in
the support of X, h.(z) solves the problem

min E[f(}Y —¢)| X = a].

min E[6()" - )| X = 7]
We can now use the results of Section 1.3.1. For example, conditionally on X =z, a
minimum MSE predictor of ¥ is a solution to the problem

’,2‘;’% E[(}Y ~¢)*| X =12].

If ¥ has finite variance a'{., the unique solution to this problem is the mean
u(x) = E(Y | X = r) of the conditional distribution of }" given X = z, and the
risk associated with u(r) is equal to the variance o’(x) = Var(}'|X = z) of the
conditional distribution of Y given X = x. Because this must hold for all r in the
support of X, the minimum MSE predictor of Y conditionally on .Y is the random
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variable u(X) = E(Y | X), and its associated risk is equal to E 0?(X). By the law of

total variance
Eo?(X) =0} — Varu(X) < o%. (1.7)

This is a direct proof of the fact that the risk associated with u(.X') cannot exceed that
associated with the best unconditional predictor py . Notice that the gain, in terms of
reduced risk, from using p{X') increases with its variability.

The prediction error U = Y — p(.X) necessarily satisfies

E(U|X)=E(Y|X) - pu(X) =0,

which implies that U is mean independent of .X. Thus, by the law of iterated
expectations,

Eg(X)U = E{E[g(X)U| X]} = E[g(X) E(U] X)] = 0

for every function g: ® — R, that is, the prediction error U must be uncorrelated with
every function of X. In particular, EU =0, EXU =0 and E u(X)U =0, that is, U
must have mean zero and be uncorrelated with X and p(X). Further

Var(U | X) = Var[}" — u(X)| X] = ¢%(X),

and so VarU = E[Var(U | X)] = E 0*(X).

By a similar argument one can show that a minimum MAE conditional predictor
of ¥ given X is a median of the conditional distribution of ¥" given X, denoted by
¢(X) or by Med(} | X), whereas a best conditional predictor under the asymmetric
absolute loss function ¢, is a pth quantile (,(.X') of the conditional distribution of ¥’
given X, where (,(z) is a number such that

Pr{Y < G(2)| X =2} < p < Pr{Y < ()| X = z).

There is no necessary relationship between all these conditional predictors. For
example, u(.X') may be linear in X even when (,(.X') is not, or they can both be linear
in X but have a different slope. It is even possible that one is increasing in X and the
other decreasing.

1.3.3 MODELS OF THE CONDITIONAL MEAN

Classical regression analysis focuses on pu(z) = E(} | X = z). Viewed as a function of
z, this is called the conditional mean function (CMF) or (mean) regression function
of ¥". We have seen that, in a predictive context, interest in the CMF of 1" may be
justified with reference to quadratic loss. Of course, using loss functions different from
quadratic loss leads us to emphasize other aspects of the conditional distribution of
Y given X, such as the median or a set of quantiles.

A regression model assumes that the CMF of Y belongs to a known family H of
functions of z. A regression model is called parametric or nonparametric depending
on whether or not the family H can be put in a one-to-one correspondence with a
subset © of the real Euclidean space R and represented as He = {h(z;6),6 € ©}. A
parametric regression model Hg is said to be correctly specified if there exists a y € ©
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such that p(-) = h(-;6o) or, equivalently, E[Y" — h(z;60))? = E0?(X). A parameter
point 6y is said to be identifiable if E[Y — h(z;6)]2 > E[Y — h(z;80)]? for any other
6 € O. Thus, 6, is identifiable if E[Y" — h(z;6)]? attains its unique minimum on @ at
0 = 6.

An important class of parametric regression models specifies h(r;0) as a linear
function of a finite-dimensional parameter 8. Thus, u(z) is assumed to be of the form

h(z;0) = a + Bihi(z) + - - + Byhe(z),

where hy,...,hq are known functions of r and 6 = (a,B,,...,5;). A model of this
kind is called a linear regression model. An important special case is when h(zx;0) is
linear in both 8 and x, that is, of the form

h(z;0) =a+B/izi+- -+ Bz =a+ B z.

Example 1.29 Let X be a scalar random variable. A model that is linear in both
0 and r is the simple regression model h(z;0) = a + 8z, 8 = (a,B). The model
parameters have a simple interpretation as a = p(0) and 8 = u'(z). In fact, this
model is equivalent to the assumption that the derivative of the CMF with respect to
z is constant and equal to 8. From Example 1.22, this model is perfectly appropriate
when the joint distribution of (X, Y") is Gaussian.

A model that is linear in 8 but not in x is h(x;8) = a+ Bz + 272, 6 = (o, 81, B2),
which corresponds to the assumption that the derivative of the CMF with respect to «
varies linearly with z. This model allows for more flexibility in the shape of the CMF
and reduces to the previous model when £, = 0. If 82 # 0, the function mn is strictly
concave or convex in r depending on 3> < 0 or ; > 0, and has a unique inflexion
point at x = —f,/20,. =

There are cases when using a linear regression model implies no loss of generality
from the statistical viewpoint.

Example 1.30 If D is a discrete random variable that can only take a finite number
of values, then it is always possible to represent the conditional mean Y given D

by a linear regression model. Specifically, if 0,1,...,k are the possible values of
D and pu; = E(Y|D = j). then one may represent E(} | D) either by the vector
(0, 415 - - - » 11:), or by the linear regression model E(Y | D) = a + Zle B;X;, where

a = o, Bj = pj — po, and X is a 0-1 random variable that takes value one when
D = j and value zero otherwise.

If C and D are 0-1 random variables and us; = E(Y |C = h,D = j), then
E(Y | C, D) may be represented either by the matrix

[ Hoo Hor }
Mo pnn |’
or by the linear regression model E(Y |C,D) = a + 51X, + f2.X2 + B3.X3, where
a = poo and
B = p10 — Moo, X, =C,
B‘Z = Ho1 — Ho00, ‘\"2 = Dv
B3 = p11 — pio — Ho1 + Koo, X3 =CD.
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Restrictions on the conditional mean E(Y" | C, D) imply restrictions on the parameters
of the linear model, and vice versa. For example, E(Y |C,D) = E(Y | D) (that is, Y
is mean independent of C given D) if and only if 8y = 83 =0, E(Y |C,D) = E(Y |C)
(that is, Y is mean independent of D given C) if and only if 8, = 3 = 0, whereas
the difference E(Y |C,D = 1) — E(Y | C, D = 0) does not depend on C if and only if
B3 = 0. a

There are also cases when a linear regression model may be justified on the basis of
some economic theory. This has two main advantages: the restrictions on the behavior
of the CMF are theoretically grounded and the model parameters have an economic
interpretation.

Example 1.31 Consider a household that maximizes preferences represented by a
utility function of the form v(q,...,qs) = H};l(qj - '71-)"1, under the linear budget
constraint 3 jPit < T, where g; denotes the quantity consumed of the jth good,
p;j denotes its market price and r denotes money income. It can be shown that, if
x > 3, Px7vk, then expenditures on each good must satisfy the set of relationships

Pig =P+ Bi(x =Y pem),  i=1,...,J,
k

called the linear ezpenditure system. If all households face the same set of prices, then

the variability of expenditures across households may be entirely attributed to the

variability of income and tastes. Treating = as a realization of a random variable X

and setting Y; = p;q; and v; = p; + U;, where U; is a random variable such that

E(U;j| X) = 0, gives a system of J linear regression equations of the form

EQY;|X)=a; +8;X, j=1,...,J,
where a; = pjp; — B; 3\ Prst- o

A linear regression model is convenient because it simplifies considerably the
statistical problem and makes it easy to interpret the results of an analysis. If however,
as sometimes happens, such a model is only chosen because of convenience, then it is
important to ask whether it makes sense given the nature of the statistical problem.

Example 1.32 Let the random variable }” be an indicator of labor force participation
and let the random vector X represent personal characteristics such as age, schooling
level, etc. Specifically, let Y = 1 if a person is in the labor force and " = 0 otherwise.
A simple probabilistic model for the conditional distribution of }" given X = z
is the Bernoulli model where u(z) = E(Y |X = z) = Pr{} = 1|X = z} and
0%(z) = Var(Y | X = z) = u(z)[1 — u(z)]. Since u(z) coincides with a conditional
probability, we must have that 0 < pu(z) < 1 for all z in the support of X, with strict
inequality if the conditional distribution of Y is nondegenerate. Further, it is easily
seen that 0 < o%(z) < 1/4 for all r in the support of X.

Specifying u(r) as linear gives the so-called linear probability model. Although
sometimes used in practice, this model is inadmissible because it violates the conditions
on the range of u(z) and o?(x). An admissible model is obtained by assuming that
the CMF is of the form

h(z;8) = Gla + B z), 8 = (a,B), (1.8)
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Figure 12 Comparison between the probit ®(a + 8z) and the logit model
A(m(a + 31)//3) for a = B = 1. The reparametrization of the logit model is
necessary because the standard logistic distribution has variance equal to n%/3.

1 T 1 1 T
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where G is some monotonic function mapping R into the unit interval (0,1). Mono-
tonicity is important for it guarantees that the model is identifiable. Notice that h(x;8)
depends on r and 6 only through the linear combination or “index” a + 8" z. This
implies that, although nonlinear in 4, model (1.8) has two properties in common with
linear models. First, since the function G is non-negative, 3; and dh(z;8)/dz; have
the same sign. Second, the ratio of partial derivatives

Oh(x;0)/0z;
Oh(r;60)/0z;’
is constant and equal to 3;/8;. Models of this kind are called single-index models.
When G = &, where ® is the distribution function of the A°(0, 1) distribution, we

obtain the probit model. When G = A, where A\ is the distribution function of the
standard logistic, we obtain the logit model

Gl=1,...k

R T
h(z;0) = Ma + 87 z) = 1;"::;’(: f ;T)r), 8 = (a,B).

As shown in Figure 12, the logistic distribution is very similar to the Gaussian except
in the tails, which are slightly thicker. If

p(x)

1)(.’[) =In 1_—ﬂ(1‘)

denotes the log-odds, then the logit model implies that n(x) = a + 87z, that is, the
log-odds are linear in z. This parametrization is admissible because 7)(z) can take any
value on the real line. O
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Nonlinear regression models arise quite naturally when a random variable with a
linear CMF is subject to censoring or truncation.

Example 1.33 Let the random variable Y* be distributed as AN(a + Bz, 0?)
conditionally on X = z, and consider the distribution of the random variable
Y = max(0,Y*), which coincides with Y'* when Y* > 0 and is equal to zero otherwise.
The random variable Y is called the left-censored version of Y* with fixed censoring
at zero, whereas the random variable which coincides with ¥Y* when Y* > 0 but is
otherwise undefined is called the left-truncated version of ¥'* with fixed truncation at
zero. For example, Y* may represent desired expenditure on a particular good by a
household, while Y may represent actual expenditure, which cannot be negative. With
this interpretation, the model is known in the economic literature as the tobit model,
after Tobin (1958) who first applied this model to the demand for cars in the USA.
First notice that the conditional distribution of Y given X = z is of the mixed
continuous-discrete type, for the conditional probability of the event that Y = 0 is

Pr{Y =0|X =z} =Pr{Y" <0|X=2}=1-9 (atﬂx) > 0.
Now let D = 1{Y > 0} be the binary indicator of the event that ¥ > 0 and notice
that the CMF of Y is
p(z) = po(z) Pr{iD=0|X =z} + uy(z) Pr{D =1| X =z},

where p4(z) = E(Y|X = z,D = d), d = 0,1. Because uo(z) is identically equal to
zero, it follows that p(z) = p(z) Pr{D = 1| X = z}, where

a+ﬂz)

g

Pr{D=1|X=z}=<b(

In order to compute pu;(z), it is convenient to exploit the representation Y* =
a + BX + oU, where U is distributed independently of X as N(0,1). Using this
representation, the event that D = 1 is equivalent to the event that U > —(a+8X)/o.
Putting c¢(z) = (a + Bz)/o, we therefore obtain

wm(z)=a+Pr+cEU|U > —c(z)).

Next notice that, for any constant c,

E(U1U>—c)=/°°uMdu L7 sydu = Mo),

() @) /).
where A(c) = ¢(c)/®(c) is called the inverse Mill’s ratio and we exploited the fact
that ¢'(u) = —u¢(u) and ¢(—c) = ¢(c). Thus

m(z) = a + Bz + 0 Mc(z)),
whereas

1(z) = pi () ¥(c(z)) = (a + Bz) $(c(z)) + 0 ¢(c()).

Because p;(z) and p(z) depend on z only through the linear combination a + Bz,
both are examples of single-index models. Notice that both CMFs are greater than

that of Y'* and both are nonlinear in z, as shown in Figure 13. Also notice that, for a
fixed o2, their difference from the CMF of Y* tends to zero as a + 8z — . D
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Figure 13 Comparison between u*(z) = E(Y" | X =1z), p(z) = E(Y|X = z) and
m(z)=E(Y|Y >0,X =) in Example 1.33. The conditional distribution of ¥*
given X =z is N(1+1z,1).

1.3.4 MODELS OF THE CONDITIONAL VARIANCE

Classical regression analysis is often concerned also with o%(z) = Var(} | X = z).

Viewed as a function of z, this is called the conditional variance function (CVF) of Y'.

We have seen that, under quadratic loss, the CVF of Y measures the risk associated

with the best conditional predictor u(z). Further, because of (1.7), the ratio
Eo?(X) _ Varp(X)

2 —
Myx =1- a2 oz

measures how much the variability of (X) helps explain the total variance of Y.
Of course, using alternative loss functions leads us to emphasize other measures of
dispersion of the conditional distribution of Y, such as the mean absolute deviation
from the median.

In many cases, o%(x) is assumed to belong to a known family V of non-
negative functions of x. We distinguish between parametric and nonparametric models
depending on whether or not the family ¥ can be put in a one-to-one correspondence
with a subset ¥ of a finite-dimensional Euclidean space and represented as Vg =
{v(ziv),v € ¥}.

A common parametric assumption is homoskedasticity, that is, v(r;v) is assumed
to be a constant function v(z;v) = ¥? > 0. A class of parametric models that allows
for conditional heteroskedasticity, that is, for dependence of o?(x) on r, consists of
models of the form

v(zy) =g(y+d8Tx),  ¥=(1.9),

where g is a non-negative function, such as the quadratic or the exponential.



38 ECONOMETRICS

Although the Gaussian model in principle excludes any relationship between the
CMF and the CVF, this is not true for other models. In addition to the Bernoulli
model in Example 1.32, where 0%(z) = p(z)[1 — p(z)], other important examples
where there exists an explicit relationship between the CVF and the CMF are the
Poisson model, where 0%(z) = u(z), and the exponential model, where o?(z) = u(z)?.
More complicated types of dependence between the CVF and the CMF may arise
when a random variable is subject to censoring or truncation.

Example 1.34 Continuing with Example 1.33, the CVF of Y is

o*(z) = E(Y?| X = z) - p(z)?,

where

EY?|X=z)=E(}Y?|X=z,D=1)Pr{D=1|X =z},
with D = 1{Y > 0}. Using the fact that p(z) = m(z) Pr{D = 1{X = z} and
rearranging terms gives

o?(z) = o¥(z) E(D| X = z) + u(z)? Var(D | X = 1),

where
o¥(z) =Var(Y|X =z,D = 1) = 0? Var(U | U > —c(z))

is the CVF of the truncated version of }* and ¢(z) = (a + 8z)/o. Next notice that,
for any constant c,

Var(U |U > —¢) = E(U?|U > —¢) = E(U |U > —¢)2.
Integrating by parts,
EWU?|U > -¢) = /_c u? %du = —gz?) /:C ud'(u)du =1 - cX(c),
with A(c) = ¢(c)/®(c), whereas E(U |U > —c) = A(c) from Example 1.33. Hence,
at(z) = o*[1 ~ c(z)Mc(z)) — Ale(z))?).

The CVFs of the censored and the truncated version of Y* are both smaller than the
CVF of Y* and both depend on z, as shown in Figure 14. However, their difference
from the CVF of Y"* tends to zero as ¢ = oo.

There is an interesting relationship between the CMF u;(z) and the CVF o?(z).
The slope of u;(z) is

o} (z)
o?

1y (z) = B[1 — e(x)A(c(z)) = AMc(z))?] = B

Since

oi(z) Var(Y|Y >0,X =z) <1

02 = Var(Y*|X=2z) ~7
it follows that |u}(z)| < |8, a result which is sometimes referred to as the attenuation
bias due to censoring. a

0<
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Figure 14 Comparison between o?(r) = Var(} | X = z) and
ol(z) = Var(Y'|Y > 0,X = x) in Example 1.34. The conditional distribution of }**
given X =z is A(1+1z,1).
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1.3.5 MODELS OF CONDITIONAL QUANTILES

Under the asymmetric absolute loss function €y, a best predictor of ¥ given X =z
is a pth conditional quantile {,(x). If {,(z) is unique then, viewed as a function of =
for p fixed, it is called the pth conditional quantile function (CQF) or the pth quantile
regression of Y. The conditional quantile function corresponding to p = 1/2 is also
called the median regression function of Y.

A quantile regression model assumes that the CQF of 1" is well defined and belongs
to a known family Q of functions of z. As usual, we distinguish between parametric
and nonparametric models depending on whether or not the family Q can be put in a
one-to-one correspondence with a subset O of a finite-dimensional Euclidean space and
represented as Qg = {q(;6),6 € O}. For example, if X is a scalar random variable, a
simple parametric model for quantile regression is the linear model ¢(r;8) = a + 3z,
0 = (a,B).

We say that a parametric quantile regression model Qg is correctly specified if
(p(r) = q(z:6o) for some Gy € O, and is identifiable if the problem

min Ert,(Y —q(z:0)), 0<p<]l

has a unique solution at 8 = 6.

Which model is appropriate for a set of conditional quantiles depends on the nature
of the statistical problem. Consider, for example, the case when Y is a continuous
random variable whose conditional distribution given X' = z depends on z only
through a location parameter pu(z), that is, the conditional distribution function of
Y is of the form F(y|z) = F(y — p(r)), where F is some univariate distribution



40 ECONOMETRICS
function with strictly positive density. By definition, {,(z) is such that
p = F(G(z) | z) = F(Gp(z) — p(z))-

Inverting this relationship gives (,(z) = (, + p(z), where {, = F~!(p) is the pth
quantile of F. Hence, for any q # p, (;(z) — {p(z) = (g — {p, that is, the vertical
distance between any pair of conditional quantiles does not depend on z. In particular,
if u(z) = a + Bz, then ((z) = (a + {p) + Bz, and so the conditional quantiles of ¥
form a family of parallel lines with a common slope equal to 5.

Now consider the case when the conditional distribution of ¥ given X = =z is
symmetric, with location parameter that is linear in r and scale parameter that also
depends on z, that is

Fula=F(L5252) 0 o@ >0,

o(x)

where F(0) = 1/2 and therefore (;/, = 0. Because now (,(z) = a + o(z)(, + Bz,
the conditional quantiles of ¥ are no longer parallel and, with the exception of the
conditional median, not even linear in z. Figure 15 illustrates the difference between
the homoskedastic and the heteroskedastic case.

1.4 STATISTICAL MODELS AS APPROXIMATIONS

It is often more appropriate to consider a statistical model as an approximation to
a particular aspect of a distribution, rather than a complete characterization of it.
For example, economic theory may sometimes provide qualitative information about
the CMF, such as monotonicity, convexity or concavity, homogeneity, etc., while it is
much less likely to provide “credible” parametric specifications. If the assumed model
is not correctly specified, how can we interpret the problem of statistical inference?

1.4.1 PARAMETRIC MODELS AS APPROXIMATIONS

Let Z be a random vector with density function fy. A parametric model Fg =
{f(2;6),0 € B} for the distribution of Z is said to be incorrectly specified, or simply
misspecified, if fo does not belong to Fg, that is, fo(Z) # f(Z;8) with probability one
for all 8 € O.

As a measure of discrepancy between fo and any element f(z;0) of Fg, consider
again the Kullback-Leibler index K(8, fo) = Eo[ln fo(Z) — In f(Z;8)], where the
expectation is with respect to the density fo. It is easy to verify, by the same argument
used in Theorem 1.1, that X(6, fo) > 0 for every 8 € O, with equality if and only if
there exists a parameter point 8y € © such that fo(Z) = f(Z;6y) with probability
one, that is, if and only if Fg is correctly specified.

If Fe is misspecified, suppose that there exists a parameter point 6. at which
K(8, fo) attains its minimum on 6. Such a parameter point is also a point of maximum
of the expected log-likelihood ¢(8) = c+Eq In f(Z;8), where c is an arbitrary constant.
If 4. is unique, it is called the pseudo true parameter and the associated density f(z;6.)
is called the best Kullback-Leibler approzimation to fo. In this case, we may interpret
the statistical problem as one of drawing inferences about the element of the assumed
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Figure 15 Family of conditional quantiles of ¥ given X = r. The conditional
distribution is Gaussian with CMF u(z) = 1 + z. The top part of the figure shows
the homoskedastic case when the CVF is constant. The bottom part shows the
heteroskedastic case when o?(z) = 1 + .5z°.
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model Fg that best approximates, in the Kullback-Leibler sense, the density of Z.
Except for this interpretation, the pseudo true parameter 8, may not correspond to
any interesting or meaningful aspect of the distribution of Z.

If Fo is a smooth parametric model, then K(6, fp) has a unique local maximum at
the point 8. if and only if K'(6., fo) = 0 and K" (6., fo) is a finite p.d. matrix. Because

K0 f0) =~ [ LED 1oz) s = - Eos(2:6),
the pseudo true parameter . must be a root of the equation E s(Z;6) = 0. However,
the information equality no longer holds because K" (8., fo) = — Eos'(Z;6.) is in
general different from Varg s(Z;46.).

Now consider the case when Z = (X,Y), and let u(z) and o%(z) denote,
respectively, the CMF and the CVF of Y given X. A parametric regression model
Ho = {h(r;6),0 € O} is said to be misspecified if E(Y — h(z;0)]? > Eo?(X) for
every 6 € O. If the model Hg is misspecified, consider the problem of approximating
the CMF of ¥ by an element of Hg. Under quadratic loss such a problem becomes

géig E[u(X) - h(X;8)]%. (1.9)

If problem (1.9) has a unique solution 8,, then the function h(z;8.) is called the
minimum MSE approzimation to p(z). In this case, we may interpret the statistical
problem as one of drawing inferences about the parameter 6. which characterizes the
best approximation, in the MSE sense, to the CMF of Y.

The minimum MSE approximation h(z;6.) may also be regarded as the minimum
MSE predictor of 1" in the class Hg.

Theorem 1.5 Problem (1.9) is equivalent to the problem
. . -, 2
min E[Y - h(X;0))°. (1.10)

Proof. By Theorem C.1, the MSE of h(X;8) is
E[Y — h(X;8))? = Eo*(X) + E[u(X) — h(X;0))%
Because E 6%(.X) does not depend on 6, problems (1.10) and (1.9) are equivalent. O

The next section presents a characterization of 8, when the class Hg consists of
functions which are linear in z.

1.4.2 LINEAR PREDICTION

If the joint distribution of X and Y is not Gaussian, then the CMF of Y is not
necessarily linear and may be complicated to compute. In this case one may still give
a meaningful interpretation to a linear regression model.

A linear predictor of Y given X is a random variable of the form h(X) = a + 8X.
Given a loss function ¢, we say that a linear predictor h.(X) = a. + 8..X is optimal,
and we call it a best linear predictor (BLP), if a. and 3. solve the problem

(ﬂgl)lélm E{(}Y —a—-B8X).
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We say that the parameter point (a.,f.) is tdentifiable if it represents the unique
solution to the above problem. Clearly, for any given loss function, the risk associated
with a BLP is necessarily intermediate between the ones associated, respectively, with
the best unconditional predictor and the best conditional predictor.

The characterization of a, and S. depends on the particular loss function adopted.
For example, under quadratic loss, a. and /. solve the minimum MSE linear prediction
problem

min _ E(}Y —a - AX)% (1.11)
(a.d)ER?
Quadratic loss is usually preferred because, as we shall see immediately, it leads to
a simple closed form solution that only requires knowledge of the first two moments
of the joint distribution of X and Y. From now on, by BLP we always mean the
minimum MSE linear predictor.

Theorem 1.6 If the joint distribution of X and Y has finite second moments, then
the function Q(a,3) = E(Y — a — 3X)? attains a minimum on R>. Necessary and
sufficient conditions for (a.,3.) to be a point of minimum of Q(a,3) are

0=E(} —-a, - 3.X), (1.12)
0=EX(Y —-a.-5.X). (1.13)

Proof. Write the function Q(a, 3) as
Q(a,8) =EY?-2aEY —28E XY + o’ +2aB3EX + f°E X2,
The function Q attains a minimum on R because it is quadratic and its Hessian

v 1 EX
Q (e, f) =2 [ EX ELX? ]

is a n.n.d. matrix for all (a, 3), The minimum is attained at the point («., 3.) if and
only if
0= ;%Q(a.,/i.) =-2EY +2a.+28.EX,

0= %Q(a.,ﬂ.) = 2EXY +2a.EX +23.E X2,
f
that is, if and only if (1.12) and (1.13) hold. a)

The linear equations (1.12) and (1.13) are called normal equations of the linear
prediction problem. From (1.12) we have

a. = py — Bapx.
Substituting this expression back into (1.13) gives
0=EX(} - [I.y) -B.EX(X - ;tx) =0xy — ,’1.6:’)\’.

If 6% > 0, solving the above equation with respect to 3. gives the unique solution

3 oxy P oy
= 5 =pxy —.
* 0% ox
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Thus, if 6% > 0, the intercept a. and the slope 8. of the BLP are both identifiable.

Notice that, if 0% > 0, then 8, and pxy have the same sign. In particular, 8. = 0 if
pxy = 0, in which case the BLP does not depend on X and coincides with the mean
of Y. If X and Y are perfectly correlated then, except for the sign, 8. is equal to the
ratio of the standard deviations of ¥ and X. Also notice that the expressions obtained
for a. and . when 0% > 0 exactly coincide with those derived in Example 1.22. This
should not be surprising, for the BLP coincides with the CVF whenever the latter is
linear in X.

Now let E*(Y | X) = a. + 8.X denote the BLP of ¥ given X and consider the
stochastic properties of the associated prediction error

V=Y -E(Y|X)=(Y - py) - B.(X — px).

The normal equations show that EV = 0and E XV = 0, that is, V has mean zero and
is uncorrelated with X. These two conditions together imply that V and E*(Y | X)
are uncorrelated. The conditional mean of V' given X is instead

E(V

X)=E(Y —a. - B.X|X) = p(X) -E*(Y | X),

which is different from zero, unless the CMF of Y is linear in X. Hence, the stochastic
properties of V are generally different from the ones of the regression error, that is,
the error associated with the best conditional predictor.
Using the fact that Y = E*(Y' | X) + V, where E*(Y | X) and V are uncorrelated,
we also get
VarV = g% — Var[E*(Y | X)] = 0% - B20%. (1.14)

If 0% >0, then

2
VarV = of - 2L = 0} (1~ ),
X

that is, the variance of the prediction error V is a fraction equal to 1 — p%, of the
variance of Y. Notice that the normal equations imply nothing about the conditional
variance of V given X. In particular, Var(V | X') may well depend on X.

The above results generalize without difficulty to the case when X or Y are random
vectors. Suppose first that Y is a random variable and X = (X,,..., X)) is a random
k-vector. A BLP of Y given X is any random variable

EY|X)=a.+) BiXj=a.+B]X

J

such that the scalar a, and the k-vector 8. solve the problem

i E(Y —a-8TX)%
(o jemeer B T A X)

Instead of a pair of normal equations, a. and 8. must now satisfy the system of k + 1
normal equations

0=E}Y -a-8"X),
0=EX(Y -a-8"X).
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Since a. = py — B, px, we get
X(Y —a. =47 X) = X(¥ - py) = X(X - px)" B..
Substituting back into the normal equations gives the system of k linear equations
0 = Cov(X,Y) — (Var X)8..
If Var X is a nonsingular matrix, we obtain the unique solution
B. = (Var X)~! Cov(X,Y).

Suppose next that ¥ = (¥3,...,Y) and X = (X;,..., X;) is a random k-vector.
A BLP of ¥ given X is any random vector E*(} | X) = a. + B..X such that the
m-vector a. and the m x k matrix B, solve the problem

min E(} —a - X)T(¥Y —a - BX). (1.15)

a,B
The elements of a. and B. must now satisfy the system of m(k + 1) normal equations

0=E(Y —-a- BX),
0=EX;(}Y — a - BX), i=1,... k.
Because necessarily a. = py — B.px, substituting back into the normal equations

gives
0= Cov(X,Y) - (VarX)B/.

If Var X is a nonsingular matrix, we obtain the unique solution
Bl = (Var X)™! Cov(X,Y).
The jth element of the vector a. and the jth row of the matrix B. are respectively
aj. =EY; - BL(EX), Bj.=(VarX)'Cov(X,Y;), j=1,...,m,

and therefore coincide with the coefficients that define the BLP of the random variable
Y; given X.

1.4.8 RELATION BETWEEN THE BLP AND THE CMF

We first look at the relationship between the regression error U = Y — u(X) and
the prediction error V' = Y — E*(}" | X') associated with the BLP. The latter may be
decomposed as

V=U+[pX)-EY}|X))=U+E(V}X), (1.16)

where both U and the approximation error u(X)—E*(} | X) have zero mean. Because
the approximation error depends only on X, it is necessarily uncorrelated with U. This
shows that the two components in (1.16) are orthogonal. If the CMF is linear in X,
then the approximation error is identically equal to zero and so 1" and U coincide.
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Using (1.16) and (1.14), we obtain the following decomposition of the variance of Y’
0% = Var[E* (Y| X)] + Var{E(V" | X)] + Var U,

where Var[E*(}"| X)] is the variance of the BLP and Var[E(V' | X)] is the variance of
the approximation error E(1" | X') = u(X) - E* (Y| X).

Now suppose, for simplicity, that " and X are scalar random variables and consider
the following question. If the CMF is nonlinear, what is the relation between its
gradient and the slope 3. of the BLP? The next theorem shows that, if u(z) is a
smooth function, then 8. may be viewed as a weighted average of the gradient p'(x)
of the CMF at all points in the support of X.

Theorem 1.7 Let Fx denote the distribution function of X. If X has finite variance
and p{x) = E(Y | X = x) is continuously differentiable, then

Ba = /u'(:r)w(:r) dz,

where P
w(z) = ;jzi"’ lux - E(X| X < 2)

is a non-negative function such that [ w(z)dz = 1.

Proof. By the law of iterated expectations

oxy = B{EN(X —px) |1 X =2} = [ ula)(e - ) fx(@)da.

Letting .
w@) = [ (- mfx(t)dt = Fx@[ECX | X < 2) - pux]

and integrating by parts gives
o o]
oxy = [u(z)v(z)]Z, ~/ ' (z)v(z) dzx,
where [u(z)v(z)]>, = 0. Therefore
oxy = [ W(@) Fx(@lux ~ B(X| X < 2)]dz.
The fact that u'(x) = 1 when Y = X also gives
o% = Cov(X,X) = / Fx(@)lux - E(X| X < 2)]dz.

Hence, 8. = oxy /0% = [ p'(x)w(z)dz, where

Fx(z)lpx —E(X|X < 7)]

®) = TR @l ~E(X1 X < 9 &z
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is a function that integrates to one. Because ux > E(X|X < z), w(z) is a non-
negative function. a

By Theorem 1.7, if the CMF p(z) is nonlinear in z, then the intercept and the slope
of the BLP are generally different from those of a first-order Taylor series expansion of
u(z) about any point in the support of X'. For this reason, the BLP does not necessarily
provide reliable information on the local properties (derivatives, elasticities, etc.) of
an unknown CMF.
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The Kullback-Leibler index was introduced by Kullback and Leibler (1951). For
a detailed discussion of its properties see Bahadur (1971). For other measures of
dissimilarity between probability distributions see Maasumi (1993). The relevance of
the properties of the Kullback-Leibler index for identification of parametric models
is discussed in Bowden (1973). On the relationship between local identifiability and
nonsingularity of the Fisher information matrix also see Rothenberg (1971).

A nice introduction to exponential families is the book by McCullagh and Nelder
(1989). A more advanced treatment is in Barndorff-Nielsen {1978) and Brown (1986).

For an interpretation of regression as a conditional prediction problem see Manski
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approximations see Sawa (1978), White (1982a) and Gourieroux, Monfort and Trognon
(1984a,b).

On the difference between the BLP and the CMF of Y given X see White (1980b).

PROBLEMS

1.1 In a sequence of independent Bernoulli trials with probability = of success, what is the
probability that there are r successes before the kth failure?

1.2 Let Z, and Z, be independent Poisson random variables with parameters 8, and 62
respectively. Show that the distribution of Zy + Z2 is also Poisson with parameter 6, + 6.
and that the conditional distribution of Z; given Z, + Z; = m is binomial with index m and
parameter 6 = 6, /(61 + 62).

1.3 Given a continuous random variable U with distribution function F and density function
f, compute the distribution function and the density function of the random variable
Z =p—oU, where p € R and 0 > 0.

1.4 Let .
(1+az)/2, f-1<z<1,
0

f(z) = { , otherwise,
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where —1 < a < 1. Show that f is a density and find the associated distribution function.
Compute the quantiles of the distribution in terms of a.

1.5 Let X and Y be independent £(\) random variables. The distribution of the random
variable Z = Y — X is called Laplace. Compute the mean, the variance and the density of Z.

1.6 Show that if Z ~ £()), then the conditional probability Pr{z < Z < 2z +¢€|Z > z}
depends on € but not on z. Interpret this result.

1.7 Let Z be a continuous non-negative random variable. Show that

{o o]
EZ= / e H g,
0

where H(z) is the integrated hazard of Z.
1.8 Show that the distribution of a memoryless random variable is necessarily exponential.

1.9 Let Z be a non-negative random variable with log-logistic distribution, that is, the
distribution of In Z is logistic with distribution function

_ _exp[(p—z)/0]
F(z) = 1+ expl(p — 2)/0]’

Derive the survivor function, the density and the hazard function of Z, and show that the
hazard function is nonmonotone in z.

o>0.

1.10 Show that the Kullback-Leibler index is not a proper distance between two
distributions.

1.11 Let Fo be a smooth parametric model and let © be a subspace of R defined by a set
of q linear equality restrictions, that is,

6={0eR":RI=r},

where R is a ¢ X p matrix and r is a g-vector. Derive conditions under which a parameter point
in © is identifiable (Hint: Consider the problem of maximizing the expected log-likelihood
subject to the restriction that Rf = r).

1.12 Prove the information equality (Theorem 1.2) for the case when Z is a discrete random
variable.

1.13 Write the density of A (g,0?) distribution in canonical form and check that the
resulting log-likelihood is a concave function of the canonical parameter.

1.14 Suppose that the distribution function of ¥ given X = z is of the form F(y — u(z)),

where F is any distribution function which has finite mean and is symmetric about zero.
Show that Med(Y | X) = E(Y | X).

1.15 Let Z be a continuous random variable with density function f and consider the
asymmetric absolute loss function

b(u)=[p H{u20}+(1~-p) H{u<O0}ul, O0<p<l

Show that the best predictor of Z is unique and coincides with the pth quantile of Z.
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1.16 (Newey & Powell 1987) Study the properties (continuity, differentiability, convexity)
of the loss function

Gw)=[pl1{u>0}+(1-p) 1{u<0}u?’, O0<p<l
Given a continuous random variable Z with density function f, show that a best predictor
4. under the above loss function satisfies the relationship
[TE-p)f@d: 1y

[ —2)f(2)dz P

What happens if p = .57

1.17 (Lee 1989) Study the properties (continuity, differentiability, convexity) of the loss
function €,(u) = 1{ju| > a}, where a > 0. Given a continuous random variable Z with
density function f, show that a best predictor u. under the above loss function is equal to
the midpoint of the interval of length 2a which contains most of the probability mass of Z.
What is the relationship between p. and the mode of Z7? Given Z = (X, Y’), what is the best
predictor of ¥ given X7

1.18 Given two predictors ¢, and c2 of a random variable Z and a loss ¢; = |Z — ¢;]?,
j =1,2, with ¢ > 0, show that ¢, is preferred to ¢ whenever

P(ci,c2) E(ly - €282 < &)
P(C’z,cl) E(l?“f] lf] <e2)‘

where P(ci,c;) = Pr{|Z — ¢i| < |Z - ¢;]}, i,j = 1,2. Comment on the appropriateness of
P(c1,c2) as an alternative to risk as a criterion for comparing two predictors.

1.19 Derive the following result, which led to the expression “regression towards the mean”,
coined last century by Sir Francis Galton. Let (X, Y’) have a joint Gaussian distribution with
positive correlation coefficient and let u(z) = E(Y |X = z). If X and Y have the same
marginal distribution with mean g and variance o, then

p<p(z)<z, ifz2y,
r<px)<p, fz<p

1.20 Let C and D be 0--1 random variables and let ys; = E(Y |C = h,D =j), h,j =0,1.
Represent E(Y |C, D) as a double array and as a linear regression model, and derive the
restrictions on the linear regression model implied by the following assumptions:

(i) E(Y|C,D) =E(Y|C),
(i) E(Y|C,D) = E(Y|D);
(iii) E(Y|C,D=1)—E(Y|C,D = 2) is constant.

1.21 Compare the derivative with respect to zr of the CMF of the linear probability model
with those of the logit and probit models.

1.22 Consider Example 1.33 and compute the derivative of E(Y | X = r) with respect to r.

1.23 Show that the ratio '7:'|x = Var u(X)/o? satisfies:
M) 0<nfx <L
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(ii) n3x = 0if ¥ is mean independent of X;
(iii) n§x = 0if Y = h(X) for some function h.

Interpret these results.

1.24 Let X and Y be binary random variables with mean zero, and let U be the prediction
error associated with the BLP of ¥ given X. Show that U is mean independent of X. Are U
and X independent?

1.25 A fair die is rolled. Let Y be the face number showing and define X by the rule

Y = {Y, if Y is even,

710, ifY isodd.
Find the minimum MSE predictor and the minimum MSE linear predictor of Y based on X
and compare their MSE.

1.26 Consider the random variable ¥ = X? + U, where X and U are independent A(0,1)
random variables. Compute the conditional mean and the BLP of ¥ given X and compare
their MSE.

1.27 Use the classical projection theorem (Theorem A.8) to prove Theorem 1.6.

1.28 Define Ri—lx = Var[E*(Y | X))/o% and show that:
(i) 0S Ry x <1
(i) R} x < n§x, where nj,x = Varp(X)/o} is the coefficient introduced in
Problem 1.23;
(iti) n§x — Ry x <1- R} \x;
(iv) R} \x = pkvy-
Interpret these results.
1.29 Let E*(Y | X) = a. + (.Y be the BLP of ¥ given X and let E*(X |Y) = v. +4.Y be

the BLP of X given Y. Show that 8. and §. must have the same sign, which is that of oxy.
Also show that |8.| < 1/|4.].

1.30 Given jointly distributed random variables (X,Y), a best kth order polynomial
approzimation E°(17| X) to E(}" | X), in the MSE sense, is a solution to the problem

a.By.....

Find conditions on the joint distribution of (X, }") under which E*(}" | X) exists. IfE*(Y | X)
exists, find its characterization and derive the properties of the prediction error U =
Y —-E*(Y|X).

1.31 Let X, Y and Z be jointly distributed random variables with finite second moments.
Show that
oxy = E[Cov(X,Y | Z)] + Cov[E(Y | Z),E(X | Z)}.

1.32 Suppose that the CMF of Y is quadratic
pu(z) = a + Br +~zi.

Let p.(x) denote a first-order Taylor series expansion of u(zr) about the mean of X and let
E*(Y | X) = a. + 3. X denote the BLP of }" given X. Compare 4. with the slope of u.(z).



2
Sampling

Most of statistical inference amounts to describing the relationship between a sample
and the population from which the sample is drawn. We typically rely on a sample
because obtaining information about a large population by complete enumeration of
its units, as in the case of a census, may be very costly or even impossible. Sampling
usually costs less and the quality of the data can be more easily controlled.

What can be learned about a population characteristic of interest ultimately
depends on the sampling scheme, that is, the way in which the data are gathered.
When the sampling scheme is known, it is usually possible to assess how well a certain
sample statistic does in estimating a given population parameter and to estimate the
error due to sampling.

A variety of sampling schemes are available. In this chapter, we consider only
sampling schemes that are probabilistic, that is, may be represented as the result of a
chance experiment. Among them, a central role is played by simple random sampling
(SRS), in which all population units receive the same probability of being selected
into the sample. SRS makes it especially easy to use the sample information to draw
valid inferences about the population under study. Although many sampling schemes
of practical importance deviate from SRS, the latter remains the natural yvardstick to
consider when evaluating the properties of a statistical procedure.

2.1 SAMPLING FROM A FINITE POPULATION

Consider a finite population consisting of N units and let z),..., 25 denote the values
of a single numeric characteristic for each of the N population units. Define the
population mean and variance, respectively, as

1 & 1 &
=5 Yoz, o= N Y (2w
= =

The parameters p and o? are examples of population parameters.
A sample of size n is an unordered set of n units drawn from the population. In
what follows, the sample size n is assumed to be fixed at the outset and the sample

is identified with the values z,....,z, of the numeric characteristic for the n sample
units. Under probabilistic sampling, the sample observations may be represented as
a realization of a collection Z,.....Z, of random variables whose properties depend

on the sampling scheme. The issue discussed in this section is how the nature of the
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sampling scheme affects the information carried by the sample about the population
parameters x and o2.

2.1.1 SRS WITH REPLACEMENT

SRS with replacement corresponds to n independent random draws, with replacement,
of a single unit from the finite population.

Let the random variable T; represent the number of times that the jth unit is
selected in a sample of size n. Clearly, T; may take any of the values 0,1,...,n.
Because in any given draw each population unit has probability N ! of being selected
and because the n draws are independent, the distribution of T} is Bi{n, N™!) for all
j- Therefore, the probability of sample selection, or first-order inclusion probability, is

l n
Pr{Tj>0}=1—Pr{Tj=0}=l-(l—ﬁ) , j=1,...,N,
and is the same for all population units. This probability tends to one as n — oo and
to zero as N — oo.
The next result records some properties of the sample values Z,,...,Z,.

Theorem 2.1 Under SRS with replacement:

(i) EZ; = p for all 3;
(ii) Var Z; = o2 for all i;
(iil) Cov(Zi,Z;) =0 for alli # j.

If the population parameters g and ¢? are unknown, one may try to estimate them
using some statistic, that is, some function T(Z,,...,Z,) that depends only on the
data. Viewed as a transformation of the random variables Z,,..., Z,, a statistic T is
itself a random variable. Its probability distribution, induced by the sampling process,
is called the sampling distribution of T and the characteristics of such a distribution
(e.g. its moments or quantiles) are called the sampling characteristics of T.

Natural statistics to consider, in our case, are the sample mean Z = n~! b ; Zi and
the sample mean squared deviation 6 = n=!Y".(Z; — Z)2. The next corollary derives
the sampling mean of Z and 62 and the sampling variance of 62, that is, the average
values of Z and 62 and the variance of Z over all possible samples of size n from the
given population.

Corollary 2.1 Under SRS with replacement

‘ =% we=a (1)
EZ =4, VarZ = —, Eé°=0°{1--]).
n n

This corollary implies that, no matter what the population mean u is, the sampling
mean of Z is equal to pu. For this reason, Z is said to be an unbiased estimator of
u. The corollary also implies that the sampling variance of Z tends to vanish as the
sample size increases. Because the sampling distribution of Z becomes more and more
concentrated around the target parameter u as the sample size increases, Z becomes an
increasingly precise estimator of u. It then follows from the results in Appendix D.1
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that the sequence of estimators {Z,} = {Z),Z,...}, corresponding to increasing
sample sizes, converges in mean square and therefore in probability to u, that is, the
sample mean is a consistent estimator of the population mean p.

When o2 is unknown, a simple way of obtaining information about the sampling
variance of Z consists of dividing by n an estimate of the population variance, such
as the mean squared deviation 2. Notice however that E 62 # ¢? for any o2, that is,
6% is a biased estimator of o2. In turn, this implies that 62/n is a biased estimator of
the sampling variance of Z. The difference

is called the bias of 67 as an estimator of g% and is denoted by Biasd?. Since the bias
of 62 is negative, 6 is said to be downward biased for o>. It is clear from Corollary 2.1
that an unbiased estimator of o2 is the sample variance
n 1 u
$? =6° = > (zi-2)%

n—-1 n-14¢4
i=1

Hence, an unbiased estimator of the sampling variance of Z is given by s?/n.

2.1.2 SRS WITHOUT REPLACEMENT

Under sampling with replacement, the same population unit may be included more
than once in a sample of size n > 1. For this reason, more frequently used in practice is
SRS without replacement, corresponding to the random draw of a set of n < N distinct
population units or, equivalently, to n successive random draws, without replacement,
of a single population unit.

Since we disregard the order of the elements in a sample, the number of samples of
size n that can be obtained in this way is equal to the number of combinations of N

elements taken n at a time
N\ N!
n)  ni(N-n)

All these samples have the same probability n!(N — n)!/N! of being drawn. Thus,
under SRS without replacement, the probability of selecting a sample, or sampling
design, is described by a uniform distribution on the set of possible samples. Since the
Jth population unit shows up in (’,\:__1‘ of the possible samples, all population units
have first-order inclusion probabilities equal to

N -1
(n—l) _n

N N
()

where n/N is called the sampling fraction and its reciprocal N/n is called the inflation
factor. Unlike SRS with replacement, however, the sample observations are no longer
uncorrelated.



54 ECONOMETRICS

Theorem 2.2 Under SRS without replacement:

(i) EZ;, = pu for alli;
(i) Var Z; = o? for all i;
(iti) Cov(Zi,Z;) = —a?/(N = 1) foralli # j.

Corollary 2.2 Under SRS without replacement

_ e (N- ., N 1
EZ =y, VarZ=%<N_711), E&Z:UZN_I(I—;).

The sample mean Z remains an unbiased estimator of . However, because the ratio
(N =n)/(N — 1), called finite population correction, is less than one for n > 1, the
sampling variance of Z is smaller than under sampling with replacement. The bias of
»2 .

G% is now

and an unbiased estimator of o2 is

.o an(N=-1) . 1
az—ozm—sz(l N)

An unbiased estimator of the sampling variance of Z is therefore

—_ &2 (N-n 82 n
V”Z—’,:(N_l)-;(l‘ﬁ)-

Notice that, for a fixed sample size n, the sampling variance of Z declines linearly with
the sampling fraction n/N and is equal to zero when n = N. If the sampling fraction
is very small, then Var Z =~ ¢?/n, which depends only on the population variance o2
and the sample size n, but not on the population size N.

2.1.3 UNEQUAL PROBABILITY SAMPLING

SRS, with or without replacement, is an example of equal probability sampling, that
is, a sampling design whose first-order inclusion probabilities are the same for all
population units. In practice, however, decisions by the survey statisticians as well as
self-selection or nonresponse decisions by the economic agents being studied, or both,
may lead to sampling schemes that differ from equal probability sampling. In these
cases, ignoring the nature of the sampling process may lead to estimates of the target
parameters that are biased no matter how large the sample size.

Let D; be a random variable that takes value one if the jth population unit is
included in the sample and value zero otherwise. The random variable D; is called the
sample membership indicator of the jth population unit. Clearly, n; = Pr{D; = 1}
is its first-order inclusion probability. The probability 7jx = Pr{D; = 1,D; = 1}
that the jth and kth population units are hoth included in the sample is called their
second-order inclusion probability. In practice, a sampling design is often chosen to
attain certain desired first- and second-order inclusion probabilities.

The next result gathers some properties of the sample membership indicators.
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Theorem 2.3 For an arbitrary sampling design and for all j,k=1,... N:

(i) EDj =m;;
(ii) VarDj = m;(1 — m;);
(iii) Cov(Dj,Dy) = mj — mjmi, j # k.

Proof. Conclusions (i) and (ii) follow from the fact that D; is a Bernoulli random
variable. Conclusion (iii) follows from the fact that Cov(D;,Dy) = ED;D; —
(E Dj)(E Dk), where EDjDk = PI‘{DJ- = l,Dk = 1} = 71’_“-. a

Now consider the problem of estimating the population total 7 = Zf;l zj. The
sample total nZ = i, Zi is clearly downward biased for 7. Intuitively, since the
sample contains fewer units than the population, an expansion is required to reach
the level of the whole population. When the N population units have positive but
possibly different first-order inclusion probabilities, an alternative to the sample total

is the Horvitz-Thompson estimator

N

I

i
)
i

n
7=y
i=1

where the ith sample unit represents 1/m; population units. The Horvitz - Thompson
estimator may also be written as a linear combination of the sample membership

indicators
N 2
7= E D; iy
: mj
J=1

This is the key to establishing its sampling properties.

Corollary 2.3 For an arbitrary sampling design, E7 = 7 and

N N
Var? = 33 Cov(D;, Dy) 2225

T
j=lk=1 Jk

Since the Horvitz -Thompson estimator is unbiased for the population total, ji =
7/N is unbiased for the population mean yu. This need not be true for the sample
mean, however, because E Z = n~! E?':n 7jz; may differ from p if 7; # n/N, that is,
the sampling scheme differs from SRS.

2.1.4 STRATIFIED SAMPLING

We now consider the case when a survey is stratified, that is, the population units have
inclusion probhabilities that differ depending on what population subgroup or stratum
they belong to. Specifically, we discuss the case of stratified random sampling with
replacement, where a finite population of size N is first partitioned into § > 1 strata
Al,....As, each containing N, > 1 units, and then a simple random sample of size
n, > 1 is separately drawn, with replacement, from each stratum. Thus, first-order
inclusion probabilities are equal for units belonging to the same stratum but may differ
for units belonging to different strata.
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Partition of the population into strata is carried out before collecting the data and is
generally based on the value of some known characteristic of the sample units. Notice,
however, that the presence of stratification need not imply heterogeneity across strata.
For example, the population may be completely homogeneous and the strata simply
reflect the branches or administrative divisions of the agency running the survey.

Let m, = N,/N denote the relative importance of the sth stratum in the population,
or sth population stratum weight, and let u, and o2 denote, respectively, the population
mean and variance for the sth stratum. Qur parameter of interest is the overall
population mean, defined as the weighted sum p, = 2;9:1 mwspts Of the population
stratum means, where the weights 7, are such that }_, m, = 1. If all strata have the
same mean, that is, g, = u for all s, then u. = pu.

The sth sample stratum weight is defined as p, = n,/n, where n = Y n,. If
ws = n, /N, denotes the sampling fraction for the sth stratum, then the relationship
between the sample stratum weights and the population stratum weights is

Ng we N, “)s(Na/N)
Ps = 3 = =3 = =35 = Wy Ty,
Zj-_—lnj Zj:leNj Zj:le(Nj/N)
where w
Wg = S—‘——-.
D= Wi

We want to compare the sampling properties of the simple average Z = n~! > Zi,
where Z, =n;' .. .. Zi is the sth sample stratum mean, with those of the stratified
average Z. = Zle 752, which is based on the knowledge of the population stratum
weights. The next result gives the essential properties of the sample stratum means.
The proof follows immediately from Theorem 2.2 and the fact that sampling is carried
out separately across strata.

Theorem 2.4 Under stratified random sampling:

(i) EZ, —ua,‘s-l O
(ii) VarZ, = 02/n,, s —1 S
(iii) Zi,...,Zs are uncorrelated

We can now compare the sampling properties of Z and Z,.

Corollary 2.4 Under stratified random sampling:

() EZ =3, pstts;

(ll) EZ —[[a;

(iii) VarZ —n"‘z p,J
(iv) VarZ, = 3, n? /n,R

Proof. Immediate from the definition of Z, and the fact that Z = Z 1 PsZs. a
This shows that knowledge of the population stratum weights is essential in order to

obtain good estimates of the p., the population parameter of interest. More precisely,
while the stratified average Z. is an unbiased estimator of p., the simple average Z
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is biased unless all strata have the same mean or the sampling scheme is such that
ps = T, for all strata, in which case Z = Z,. When the latter condition holds, which
is equivalent to the fact that the sampling fractions w, are the same for all strata, we
say that there is self-weighting or probability proportional to size (PPS).

It is worth stressing that, in order to obtain an unbiased estimator of the target
parameter u., three conditions are necessary: (i) the stratification A,,..., As must
correspond to a partition of the population, that is, 3, 7, = 1; (ii) the population
stratum weights m, must all be known; and (iii) the sampling scheme must be such
that n, > 0 for each stratum, so that Z, can be computed for all s.

Example 2.1 Consider a heterogeneous population consisting of S = 2 strata and
suppose that data are available for the first stratum but not for the second, that
is, n; > 0 but ny = 0. In this case, the sample mean Z; for the first stratum is
a biased estimator of the population mean u, = myu; + mpy. Its bias is equal to
EZ, — p. = uy — pto = m(py ~ p12), which increases with the population weight of
the second stratum and with the difference g, — p, between the population stratum
means. a

2.1.5 OPTIMAL SAMPLE ALLOCATION

Why not always using PPS? The answer depends on both the cost differentials in data
collection and the presence of heterogeneity across strata.

Suppose that the cost of a sample survey consists of a fixed cost ¢o and variable
unit costs ¢; > 0, which may differ across strata. We want to determine an optimal
sample allocation, that is, a set nj,...,ngs of sample sizes, one for each stratum, such
that the sampling variance of the stratified average Z. is minimized subject to a total
budget C to carry out the survey. Formally, the problem is

S 2 2
. . Tl
min V= Z 28
{n,} Ng

s=1

s
such that co + Z csng, < C.

s=1

If the budget constraint is satisfied with equality, then minimizing the sampling
variance of the stratified average is equivalent to minimizing the product 1°(C — ¢g)
with respect to the choice of the n,. Given two vectors a, b € ®°, the Cauchy- Schwarz

inequality implies that
s 2 s S
s=1 s=1 s=1

with equality if and only if there exists a constant k such that a, = kb,, s =1,...,S.
Letting -

2 25 1/2
a,s = (esns)'/2, b,=(m) . s=1,...,5,

g
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it then follows that the function V'(C — ¢p) attains its 1. .imum if and only if

2.2\ 1/2
(c,n,) ~k(ﬂa) , s= ...,S.

Mg

Solving for n, gives the optimal sample allocation

% r,, s=1,...,85, (2.1)

where the constant k may be obtained by substituting into the budget constraint.

If the variances o2 and the unit costs c, are the same for all strata, then we obtain
PPS. Otherwise, the optimal sample allocation oversamples the strata with higher
variance or lower unit costs, and undersamples the strata with lower variance or higher
unit costs. In particular, even when the population stratum variances are all the same,
PPS may not be optimal in the presence of cost differentials across strata.

Now suppose that all strata have the same mean p and the same unit costs, but there
are differences in the population stratum variances. We want to quantify the advantage
of using the optimal sampling allocation instead of PPS. Under the optimal sample
allocation

1]
=
®

Tg0g TsOg

- = = s=1,...,8
- s - b b 1 1
nooyiamo; 0
where i = 37 A, and & = }°; m;0;. In this case
2 ~ 52
5 o 12 2 o T Z o
VarZ. = ﬂ'f‘.—s = = 71" T— = — —.
n, 1 iy g, 1
8 8

Under self-weighting, one instead has that Z. = Z. If the total sample size is equal to
7, then
Varz =Y w2 % = 157002
—~ ' n, < s
because n, = niw, in this case. Hence
Ty 7 Ty 7 1 2 =2
VarZ - VarZ. = = Zn,a, -5
—er, 02 ~ 20,6 +6%) = - Zn, o, —5)2 >0,

with equality if and only if all strata have the same variance.

2.2 SAMPLING FROM AN INFINITE POPULATION

The distinction between SRS with and without replacement disappears when the size
of a finite population is very large. In this case, it simplifies matters considerably
to treat the population as infinite, for we can drop any reference to the individual
population units and represent the variability of a numeric characteristic of the
population by a random variable Z defined on a suitable probability space (2, A, P).



SAMPLING 59

In the infinite population case, SRS may be formalized by representing the data as
n independent realizations of the parent random variable Z or, equivalently, as one
of the possible realizations of a collection Z),..., Z, of independently and identically
distributed (i.i.d.) random variables (or vectors), whose common distribution is equal
to that of Z. In this case we also say that the data are a sample from the distribution
of the random variable Z. The probability distribution of Z is also called the parent
distribution and its distribution function is also called the parent distribution function.

2.2.1 PROPERTIES OF THE SAMPLE MEAN AND VARIANCE

This section reviews well known properties of the sample mean Z and the sample
variance s* under sampling from a probability distribution.

Theorem 2.5 If Zy,...,Z, is a sample from a distribution with mean p and variance
0 < 0? < 00, then:

(i)

(ii) = 2/71

(iii) o? for alln > 1;

(iv) (Gauss—-Markov theorem) Z has smallest sampling variance in the
class of estimators of yu that are unbiased and linear, that is, of the form
b= }::':1 ¢;Z;, where the c¢; are constant.

EZ
Var
Ez

1 ‘\" Il

By properties (i) and (iii), the sample mean and variance are unbiased estimators
of the population mean and variance. By property (ii), the precision of the sample
mean increases as the sample size increases. Because convergence in mean square
implies convergence in probability, this implies that the sequence of estimators
{Z,.} = (2, 2,...). corresponding to increasing sample sizes, is consistent for p.
Further, because of property (iv), the sample mean is said to be a minimum variance
linear unbiased or simply a best linear unbiased (BLU) estimator of u.

Theorem 2.5 gives information only on the first and second moments of the
sampling distribution of Z and the first moment of the sampling distribution of s.
In the important special case when the population is well described by a Gaussian
distribution, it is possible to completely characterize the sampling distribution of Z
and s°.

Theorem 2.6 If Z,,....Z, is a sample from a N'(u,0?) distribution, then:

(i) Z~ /\/(u,a' /n);
(ii) (n—l) /a ~x2_, foralln>1;
(iii) Z and s* are indepedent,
(iv) Z and $? have smallest sampling variance in the class of estimators that
are unbiased for u and o?;
(V) T= \/7-7'(2 - “)/s ~th-1y
(vi) F = T? ~ Finoa.

Result (iv) of Theorem 2.6 is stronger than the Gauss-Markov theorem. We shall
refer to this result by saying that, under sampling from a Gaussian population
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with finite variance, the sample mean and the sample variance are best unbiased or
minimum variance unbiased (MVU) estimators of the population mean and variance.
The next result shows that, even without the normality assumption, Theorem 2.6
provides a good approximation to the sampling properties of the sample mean and
variance when the sample size is very large. We denote by {Z,}, {s2}, {Tn}, {Fn}
sequences of estimators and test statistics corresponding to increasing sample sizes.

Theorem 2.7 If Z,,...,Z, is a sample from a distribution with mean pu and variance
0 < 0% < o0, then:

() V7 (2, —mﬁN(o a?);
(i) vn(s —)/\/(0 204);
(iii) Zn and 82 are asymptotically independent;
(iv) T = VA (Zn = 1)/5n 3N, 1);
(v) Fp = TZ = x}.

2.2.2 THE EMPIRICAL DISTRIBUTION FUNCTION

Let Z,,...,Z, be a sample from the distribution of a random variable Z with
distribution function F, and consider the problem of estimating F' and not just some
of its characteristics such as the mean and the variance. Estimating F is usually the
first step in the exploratory analysis of the data and is often an essential component
of more complex statistical procedures.

If the population distribution function belongs to a known parametric family Fg
of distributions, then the problem reduces to estimating a point in the parameter
space O. This problem is discussed in Section 4.4. Here we consider the case when the
available information is not enough to restrict F to a particular parametric family.
How can F be estimated in this case? The solution to this problem is not only of
practical importance but, as we shall see in Chapter 4, also helps in clarifying the
common nature of apparently different approaches to statistical estimation.

The key to estimating F is the fact that, for any 2, F(2) = Pr{Z < 2} = E1{Z < 2z},
that is, F(z) is just the mean of the Bernoulli random variable 1{Z < z}. This suggests
estimating F(z) by its sample counterpart

n

F(z)=n"! Z 1{Z; < z}, (2.2)

i=1

namely the fraction of sample points for which Z; < 2. Viewed as a function of z, F
is called the empirical or sample distribution function. Figure 16 shows the empirical
distribution function of a sample of size 50 from the A(0, 1) distribution.

It is easy to verify that F is the distribution function of a discrete probability
measure, called the empirical measure of Z;, which assigns to a set A a probability
equal to the fraction of sample points contained in 4. In particular, each distinct
sample point receives probability equal to 1/n, whereas each sample pomt repeated
m < n times receives probability equal to m/n. '

Suppose that all the observations are distinct and let Zj;) < -+ < Z,) be the ordered
sample values, or sample order statistics. Then the empirical distribution function may
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Figure 16 Empirical distribution function F of a sample of size 50 from the
N(0,1) distribution. The population distribution function is denoted by ¢.

also be written

0, le < Z[]],
F(z): i/n, ifZ[,‘]SZ(Z[H.]], i=1,...,7l—1,
1 if z > Z(,).

This shows that the empirical distribution function contains all the information carried
by the sample, except the order in which the observations are arranged.

The fact that F(2) is just an average of n i.i.d. random variables with a common
Bernoulli distribution is also the key to establishing its sampling properties.

Theorem 2.8 If Z,,...,Z, is a sample from a distribution with distribution function
F, then for all z:

i) nﬁ(z) Bi(n, F(z));

(ii) E F(z) = F(2);
(iii) \/arF( ) =n"tF(2)[1 - )];
(iv) Cov[F(z), F(2")] = n™'F(2){1 — F(2")] for any 2' > .

Hence, for any 2, F(z) is an unbiased estimator of F(z). Notice that, because of
the correlation between F(z) and F(z'), some care is needed in drawing inference
about the shape of F. As the sample size increases, however, the sampling variance of
F(z) and the correlation between 13'(2) and F(z') both tend to vanish. As a result, the
sequence {I:“ n(2)} of estimators, corresponding to increasing sample sizes, is consistent
for F(z). while F(z) and F(2') are asymptotically uncorrelated. Being the average of
n i.i.d. random variables with finite variance, F,(z) also satisfies the standard CLT
and is therefore asymptotically normal.
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Theorem 2.9 If Z,,...,Z, is a sample from a distribution with distribution function
F, then ﬁ‘,,(z) 2, F(z) for all z. Further, given any two distinct points zj <z, letF =
(F(2;), F(2k)) and ¥, = (Fn(z;), Fu(z1)). Then, asn = oo, v (F, — F) 4 N30, %)
with £ = [oji], where gjx = F(z;)[1 — F(zx)] can be estimated consistently by
5’jk = I:",,(zj)[l - Fn(zk)]‘

A much stronger result is that, as the sample size increases, convergence of F to
F is uniform in the following sense. As a measure of distance between the random
function F and F consider the Kolmogorov-Smirnov statistic

Dn,= sup |F(z) - F(2)|.

—oo<i<0

Since F depends on the data, D, is itself a random variable. A fundamental result,
known as the Glivenko- Cantelli theorem (sce e.g. van der Vaart 1998), shows that if
Z\,..., 2y, are i.i.d. with distribution function F, then D,, 30 as n — oo, that is, the
event that D, does not converge to zero as the sample size increases without bounds
occurs with zero probability under repeated sampling. This implies that the entire
probabilistic structure of Z can almost certainly be uncovered from the sample data
provided that the sample size is large enough.

The definition of empirical distribution function and its sampling properties are
easily generalized to the case when Z is a random vector. In particular, if Z; = (X}, }7),
then the joint empirical distribution function is defined as

n n
Fe,y)=n"'Y) H{Xi<z,Yi<y}=n"') H{Xi<z}l{¥i<y}, (23)

i=1 =1

that is, £ (z,y) is the fraction of sample points such that X; is at most equal to z and
Y; is at most equal to y. The empirical marginal distribution function of, say, X may
be obtained from F(z,y) through the relationship F(z) = limy F(z,y).

When X is discrete and z is one of its possible values, the conditional distribution
function of Y given X = z is defined as

Pr{Y <y, X =z}

Flyle) =PrY’ <y|X =z} = —5

If O(x) = {i: Xi = z} is the set of sample points such that X; = z and n(z) is their
number, then the sample counterpart of Pr{X = z} is the fraction n(z)/n of sample
points such that X; = z. Hence, if n(x) > 0, a reasonable estimate of F(y|z) is the
fraction of sample points in O(zx) such that }; <y

Flylz) =n(@)™' Y 1{Yi<y,Xi=z}=n@)" 3 1{¥i<y)  (24)

i=1 i€0(x)

Viewed as a function of y for z fixed, I:"(ylx) is called the conditional empirical
distribution function of Y; given X; = x.
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2.3 SELECTIVE SAMPLING

SRS is of fundamental importance in theoretical statistics, because it guarantees
perfect coincidence between the model that represents variability at the population
level and the one that represents variability at the sample level. As already seen,
however, many sampling schemes of practical importance are quite far from this ideal.

To formalize the distinction between the models of variability at the population and
the sample level, we represent the population by a random variable (or vector) Z with
density function f and the sample by a collection Z,,..., Z, of i.i.d. random variables
(or vectors) with commmon density function g(z)} = w(z) f(2), where w(z) is a non-
negative function that represents the sampling scheme. Because the density function
g must integrate to one, the weight function w must satisfy the further restriction that
E w(Z) = 1. In order to incorporate this restriction, w(z) may also he represented as

w(z)

Ew(Z)'

w(z) =

where w(z) is a non-negative function with a finite mean.

This formulation assumes that the sampling scheme consists of n independent
replications of the same chance experiment, but allows the model of variability to
be different at the sample and the population level. SRS corresponds to the case when
w(z) = 1. A more general sampling scheme introduces a systematic difference between
the probability distribution of a single sample observation and that of the population.
When this occurs, we say that sampling is selective. In particular, values of Z such
that w(z) > 1 are oversampled, values such that 0 < w(z) < 1 are undersampled,
whereas values such that w(z) = 0 are systematically missing in the data.

Suppose that the following three conditions are met:

the support of Z is known;

. the weight function w is known and different from zero;

3. the density function g is known or may accurately be estimated from the
available data.

N =

Under these conditions, the population density f can be recovered from the knowledge
of w and g through the relationship

g(z)
w(z)

f(z) =

. (2.5)

Condition 2. may be weakened by allowing w(z) to be equal to zero on a set of
points with zero probability. In this case, the relationship (2.3) allows the population
density f to be recovered at essentially any point z on the support of Z. When
Pr{w(Z) = 0} > 0, however, knowledge of w and g is no longer sufficient to recover f.
If neither the support of Z nor the function w are known, then one cannot determine
whether the absence of a set. of values in the sample is due to the sampling scheme or
instead to the fact that this set of values is impossible at the population level.

Now consider the case when Z = (X,Y’), where Y is the response variable and
X is a vector of covariates, and let w(z) = w(r,y). A sampling scheme is called
ezogenously stratified when the weight function w depends on r but not on y, that
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is, w(z,y) = w(z) for all y. U..der exogenously stratified sampling, sample selection
depends only on the value of the variables in X. Sampling schemes of this kind are
routinely applied in controlled experiments, where one first selects a value z of the
covariate vector and then observes the value of the response variable that results from
a chance experiment represented by the conditional distribution of ¥ given X = z.
Exogenously stratified sampling enjoys the following important property.

Theorem 2.10 Let f(y|z) denote the population conditional density of Y given
X = z and let g(y|z) denote the conditional density of Y; given X; = z. Then,
under exogenously stratified sampling g(y|z) = f(y|z).

Proof. Because the weight function w depends only on z, the marginal density of a
sample value X; is

gxwr=/gumﬁw=wuy/fumnw=wuuxux

where fx(z) = [ f(z,y)dy is the population marginal density of X. The conditional
density of Y; given X; = z is therefore

_9(z,y) _ w(x)f(z,y)
=@~ w@ixe )

9(y|z)

O

Because the conditional density of a sample observation coincides with the
population conditional density of ¥ given X, exogenously stratified sampling schemes
are said to preserve the regression of ¥ on X. In particular, if Y possesses a CMF and
a CVF, then both coincide with those of the sampled data. Of course, the population
joint distribution of X" and Y and the population marginal distributions of X and Y
need not coincide with those of the sampled data.

A sampling scheme is said to be endogenously stratified when the weight function
w depends on y, or on both r and y. In general, endogenously stratified sampling
does not preserve the regression of ¥ on X. In the remainder of this section we
consider a few important examples of endogenously stratified sampling. In all these
examples, the key problem is one of identifiability: knowledge of the distribution of the
sample observations is generally not enough to recover, or “identify”, the population
distribution.

2.3.1 CENSORED AND TRUNCATED SAMPLING

In this section we consider sampling schemes that systematically exclude a fraction of
the population depending on the value of Z, that is, w(Z) = 0 with positive probability.
This may reflect design decisions by the survey statisticians as well as self-selection or
nonresponse by the population units under investigation.

Let D be a binary random variable that takes value zero if w(Z) = 0 and value one
otherwise, that is, D is the indicator of the event that w(Z) > 0. The fraction of the
population that is subject to sampling is equal to Pr{D = 1} = E D. We say that
sampling is censored if Pr{D = 1} is known or may accurately be estimated from the
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available data, otherwise we say that sampling is truncated. In the case of a censored
sample, we further distinguish between fixed and random censoring. Censoring is said
to be fized if D = 0 over a fixed range, and is said to be random if the set of points
for which D = 0 is itself random. The next two examples illustrate these concepts.

Example 2.2 To guarantee anonymity in a household survey, income data are often
subject to top-coding, that is, the actual income amount is recorded if it falls below a
certain threshold ¢ > 0, otherwise the survey only contains a flag indicating that the
household income is at least equal to ¢. If the population proportion of households with
income below c¢ is known or may be accurately estimated, then sampling is censored,
otherwise it is truncated.

Let the variability of income in the population be represented by a continuous
latent random variable Z* with distribution function F, and let D = 1{Z* < c}. The
fraction of the population for which the actual income amount may be observed is
equal to Pr{D = 1} = Pr{Z" < ¢} = F(c). Although the actual income amount is
unobservable when it exceeds ¢, we may conventionally set measured income equal
to c in this case. With this convention, measured income may be represented by the
random variable Z = min(Z*, ¢), corresponding to a right-censored version of Z* with
fized censoring at the point c.

Let the data (Z,,D,),...,(Z,, D,) correspond to n independent observations on
(Z,D). A truncated sample only contains households whose income is below the
threshold ¢, that is, D; = 1. Conditionally on D; = 1, the distribution function of
a single observation Z; is equal to F(z]|Z* < ¢) = F(z)/F(c) whenever 2z < ¢ and is
equal to one otherwise (Figure 17), that is,

F(z)
F(c)

G(z|Di=1)=1{z< ¢} +1{z>¢}. (2.6)

Since F(c) is unknown, it is generally impossible to identify F on the basis of
a truncated sample. Thus, for example, the empirical distribution function of the
observed data provides a good estimate of the ratio F(z)/F(c) for z < ¢, but not of
F(z).

A censored sample instead contains households with income both below and above
the threshold c. Although in the latter case we only know that the income is not less
than ¢, the data provide sufficient information for estimating Pr{D = 1}, for example
by D = n~!' ¥, D;. The conditional distribution function of Z; given D; = 1is equal to
(2.6), while the distribution of a top-coded observation is degenerate with all its mass
concentrated at the point c. Hence G(z | D; = 0) = 1{z > c}. Because the marginal
distribution of D is

Pr{D; =d} = F(c)![1 - F(c))'™%, d=0,1,
the joint distribution function of (Z;, D;) is

G(z,d) = G(z| D; = d) Pr{D; = d}

_ [ Yz > c}[1 - F(c)], ifd=0,
T 1Yz <e¢}F(z)+1{z > c}F(c), ifd=1.



66 ECONOMETRICS

Figure 17 Distribution function G(z| D; = 1) of a single observation under
censored sampling from a A(0, 1) distribution with fixed censoring at the point
c=..

0.8 |~

06~

04

0.2

The marginal distribution function of a single observation Z; is therefore

_ _JF(2), iffz<e,
G(z)—G(z,0)+G(z,1)_{l’ TN
This is the distribution function of a mixed (continuous-discrete) distribution
assigning probability mass 1 — F(c) to the single point z = ¢ and spreading the
remaining mass over the interval (—oo, ¢) according to the distribution function F(z).
It is easily seen that, if y = E Z* exists, then the mean of Z; is

Bz = [ sf@ds+dl-FE)=u- [ [1-F@lde<p

Notice that a censored sample provides the investigator with enough information
to identify F(z) for z < ¢, but with no information to identify the shape of the
population distribution function for income values above ¢. Although knowledge of
F(z) for z < c is generally insufficient to identify the mean of Z*, it is nevertheless
sufficient to recover all the quantiles {, of Z* for which p < F(c). In particular, it is
enough to identify the median of Z* whenever F(c) > 1/2, that is, less than half of
the observations are censored. a

Example 2.3 Following Gronau (1973) and Heckman (1974), let Z* and ' be latent
continuous non-negative random variables representing, respectively, a person’s offered
wage and her reservation wage, that is, the wage at which she is indifferent between
working and not working. Also let D be a binary indicator representing the person’s



SAMPLING 67

decision whether or not to work. The person works (D = 1) if the offered wage exceeds
her reservation wage, that is, ' = W™* — Z* < 0, in which case her offered wage is
observable and coincides with the measured wage Z. The probability of this event
is Pr{D = 1} = Pr{C < 0}. Although wage data are unavailable for those who
do not work (D = 0), wages are conventionally set equal to zero in this case. With
this convention, measured wage is represented by the non-negative random variable
Z = D Z*. Notice that Z is just a left-censored version of Z*. Unlike the fixed censoring
case, however, the range of censored values of Z* is now random since it depends on the
unobservable reservation wage 1. Denoting by F(z,¢) the joint distribution function
of (Z*,C), the distribution function of Z for those who work is

Pr{Z* <2,C <0} F(z,0)
Pr{C < 0} T Fe(0)

Giz|D=1)=Pr{Z" <:z|D=1}= (2.7)
where F¢(0) = lim,_, » F(z,0). Let the data (Z,,D,),...,(Z,,D,) correspond to n
independent observations on (Z, D). A truncated sample only contains people who
work, that is, D; = 1 for all i. A censored sample contains instead both people who
work and people who do not work, and therefore provides enough information to
estimate Pr{D = 1}. The distribution function of Z; for those who work is equal to
(2.7), whereas for those who do not work is degenerate with all its mass concentrated
at zero, that is,

G(z|D;=0)=Pr{Z; < 2|D; =0} = 1{z > 0}.
The joint distribution function of (Z;, D;) in a censored sample is therefore
G(z2,d) = G(z| D; = d) Pr{D; = d} = 1{z > 0} F(2,0)9[1 — Fc(0)]' .

Given G(z,d), one can easily compute the marginal distribution of measured wages in a
censored sample and compare it with the marginal distribution F(2) = lim. « F(z,¢)
of offered wages. This model is an example of the economic models of self-selection
discussed in Chapter 18. )

2.3.2 THE KAPLAN-MEIER ESTIMATOR

If the data are uncensored, then all the sample information about the population
distribution function is contained in the empirical distribution function F(z). It is
easily verified that the associated empirical survivor function is

n—1
n—i+1’

S(2)=1-F(z) = H

itZ;)<:

where Z|; denotes the ith sample order statistic. For censored data, the analogue of
the empirical survivor function is the product limit or Kaplan-Meier (KM) estimator.

Assume that the observed data Z; are randomly right-censored, that is Z; =
min(Z;,C;), where C; is a random variable distributed independently of the latent
random variable Z;. Fixed censoring (Example 2.2) corresponds to the case when C;
has a degenerate distribution with all its mass concentrated at c. Let D; be a censoring
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Table 2 Censored data (Basu 1984).

obs. Z; D; Zm Dm
1 4 1 4 1
2| 90 0 9 1
3| 55 1 9 0
4| 15 1 15 1
5|1 20 0 20 0
6| 3 0 35 0
7 9 1 45 1
8 9 0 55 1
9| 45 1 90 0

10 | 100 1 100 1

indicator that takes value zero if the observation is censored and value one otherwise,
let Z;) denote the ordered sample values of Z; and let Dy;) denote the associated values
of the censoring indicator. The KM estimator of the survivor function is defined as

Sa) = H (n_:l_;il)mn.

2, <z

Notice that S is discrete, taking jumps only at the values of the uncensored Z;. If
there is no censoring, then S reduces to the empirical survivor function. If the largest
Z; is censored, then S'(z) will not tend to 0 as z = o0. In this case, the convention is
to set S(z) =0 for z > Zin)-

Example 2.4 Consider the data in Table 2, which is taken from Basu (1984). The
Kaplan-Meier estimator is given by

(1, if 0 <z <4,
$(0) (1 - 1/10) = ifa<z<9,
S(4)(1-1/9)=8, if9<z<15
$(z) =4 5(9)(1-1/7) = .69, if15< z < 45,
5(15) (1 - 1/4) = 52, if 45 < z < 55,
5(45)(1—1/3) = .35, if55< z < 100,
\ 0, otherwise.

Assuming no ties, the sampling variance of S(z) may be estimated by
Dy
(n-i+1)’

Va.rS(z) S(2)? Z )

IZ[]<'

which is known as Greenwood’s formula. Asymptotic confidence bands for S(z) have
been obtained by Hall and Wellner (1980). These confidence bands reduce to the
standard bands in the uncensored case.
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2.3.3 BOUNDS ON THE REGRESSION FUNCTION UNDER CENSORING

Being a case of endogenously stratified sampling, censored sampling does not generally
preserve the regression of Y on .X. It is interesting, however, to ask what information
it carries about the CMF of Y.

To answer this question notice that, if it exists, the CMF of Y can always be
decomposed as

u(z) = po(z)(1 = m(z)] + pi(z)7 (),

where po(z) = E(Y | X =«,D =0) and uy(z) = E(Y | X = z,D = 1) are respectively
the CMF of Y for the censored and the uncensored data, n(z) = Pr{D = 1[{X =z} =
E(D| X = z) is the fraction of the population, in the stratum corresponding to X = z,
for which Y° is observable. Censored samples provide direct information on u,(z) and
w(z), but no information on po(z). Because of this, the sample information is not
sufficient to recover u(zr).

In order to deal with this problem, nonsample or prior information must be available.
One assumption is clearly sufficient to identify u(z), namely that uo(z) = py(z). This
assumption is very restrictive, however, for it corresponds to independence between Y
and D conditionally on X.

An alternative, proposed by Manski (1989), is to exploit prior information about the
support of Y. Assume, specifically, that the available prior information restricts the
support of Y, conditionally on X = z and D = 0, to the closed interval [a(z), b(z)],
that is, a(z) < po(z) < b(z). This implies that

m(@)n(z) + a(z)(1 - 7(z)) < m(z)n(x) + po(z)(1 - n(z))

and
p(z)m(z) + po(l — m(z)) < m(z)m(z) + b(z)(1 - n(z)),

that is, the population CMF pu(r) must necessarily belong to the closed interval
[pL(z), pu(z)), where

pue(z) = m(z)7(z) + a(z)(1 - 7(z)),

uo(2) = i (2)r(z) + b(z)(1 - 7(z)). 28)

The lower bound g (z) is the value that pg(z) would take if ¥ was always equal
to a(z) for the censored population, while the upper bound py(z) is the value that
po(z) would take if ¥ was always equal to b(z). The length of the interval is equal
to [b(z) — a(z)][1 ~ n(z)] and may be interpreted as a measure of how informative a
censored sample can be about u(z). The smaller is the range of pg(z), or the censoring
probability 1 — #(x), the more informative are the data.

An important special case is when } is a 0-1 random variable, and therefore
p(z) = Pr{Y = 1|X = z} and pq(z) = Pr{Y = 1|X = z,D =d},d = 0,1
Because natural bounds for pg(z) are in this case a(z) = 0 and b(z) = 1, we obtain

pL(z) = m(@)r(z),  pu(z) = m(e)n(z) +1 - 7(2). (2.9)

Notice that the length of the interval (up(z), pu(z)] is now equal to the censoring
probability 1 — w(z).
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Figure 18 Bounds on the conditional median of a random variable " under
censoring. The conditional median of Y is equal to zero, the censoring probability is
20 percent, and the conditional distribution of ¥ is (0, 1) for the uncensored
population and A(0,1.5) for the censored one.

F(y —_
Fry) ------
Fuly) - —-
1 1
Cu 1 2 3

Example 2.5 If 1{}" € A4} is the indicator function of the event {} € A}, then
(2.9) gives an interval to which the conditional probaility Pr{}" € A| X = z} must
necessarily belong. In particular, putting A = (—o0,y] gives bounds for F(y|z) =
Pr{Y <y|X =z}, namely F(y|z) < F(y|z) < Fu(y|z), where

Fr(ylz) = F(ylz)n(z), Fulylz) = F(y|o)n(z) +1-n(z),

and F(y]|z) is the conditional probability that ¥ < y for the uncensored population
(D = 1). By varying y, one obtains bounds for the conditional distribution function
of Y given X = z.

Manski (1995) noticed that, if ¥ is a continuous random variable, then the bounds
for the conditional distribution function may be inverted to obtain bounds for the
conditional quantile {,(z) of }". The key is the fact that, since F((,(z)|z) = p, the
conditional quantile {,(z) must lie in the interval [(,.(z), (pu(z)], where the lower
bound (1 (z) satisfies

Fy(Gpr(z) [ 2) = Fi(Gr(z) | 2) m(z) + 1~ 7(z) = p,

and the upper bound (i (z) satisfies

Fr(Gu(z)| ) = Fi(u(z) |z) (z) = p.

Gou(z) = F{! (’L”‘x’ Iz) . Gule) = B (L |x)

7(z)

Thus
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(Figure 18). Notice that the bounds for the population quantile are well defined only
if 1 -7(z) < p < n(x). O

The interval (2.8) may also be used to obtain information from a censored sample
about the effect on p(x) of a finite variation in z. Let £ and ' be distinct points in
the support of X, and consider the difference u(z) — p(z'). Because the inequalities
a<y<band c <y <dimply the inequality a ~d < y — ¢y’ < b — ¢, the difference
p(z) — p(z') must necessarily belong to an interval whose lower bound is equal to

() - 9(z') +ale)[1 - n(2)] - ()1 - m(z')],
where y(z) = u(z)7(zr), and whose upper bound is equal to
Y(z) — ¥(z') + b(z)[1 — n(z)] — a(z")[1 — w(z"))].

The length of this interval is equal to the sum of the length of the intervals for p(z)
and p(r').

2.3.4 RESPONSE-BASED SAMPLING

Let Z = (X, Y') be a vector of discrete random variables, where }” may take the values
1,...,S, and let A, = {(z,y): y = s} be the population stratum for which }" = s.
Response-based sampling consists in drawing at random n, units from each stratum
A, and recording the associated value of X.

A typical situation is when the response Y} represents the choice of alternative modes
of transportation (automobile, bus, train, etc.) and A, is the population stratum that
chooses the sth mode. Sampling bus riders at a bus stop, train riders at a train
station or car drivers at a parking lot is often simpler and much less expensive than
interviewing people at their homes. More generally, whenever the population units are
physically clustered on the basis of the alternative that they choose. response-based
sampling offers economies of scale that may not be possible under random sampling.

Denoting by w(s) the sampling fraction from the sth population stratum, the
probability that }" = y in the data is

o) = =W _ ) ),

Yo w(e)fyl(s)

where the weight function

w(y)
S
P a1 w(s)fy(s)
is generally different from one, unless the sampling fraction is the same for all strata,

which corresponds to PPS. Because the probability that X = z conditionallyon} =y
is equal to f(z|y), the joint probability of Y =y and X =z is

w(y)f(z|y) fy(y)
Yo w(s)fy(s)

w(y) =

g(r,y) = f(zly)gv(y) = = w(y)f(z,y),
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while the probability that X =z is

S S
9x() = _glx,y) = Y_w(s)f(s,z).
8=1

s=1
The probability that Y = y conditionally on X = z is therefore

9lylz) = 9(z,y) _ _w@f(ylz)
gx(@) ~ X,w(s)f(s|z)’

where we used the fact that f(z,y) = f(y|z) fx(z). Because w(y) = gy (y)/fr(v),
this probability may equivalently be written

_ flz) gy )/ fy(v)
9W19) = S F G ) oy () v ()

Therefore, unless there is self-weighting, the regression of ¥ on X is not preserved
under response-based sampling. The hypothesis that A,,..., As form a partition of
the support of Y is crucial. When this is not true, g(y|z) may differ from f(y|z)
even when w(s) is the same for all strata. If g(y|z) # f(y|z), then the knowledge of
g(y| z) enables one to identify f(y|z) provided that the union of A,,..., As is equal
to the support of Y and the marginal probabilities fy(s) are known.

2.3.5 FLOW AND STOCK SAMPLING

Let Z be a non-negative continuous random variable with distribution function F and
density function f. For concreteness, let Z represent the duration of an unemployment
spell.

There are two ways of gathering information about the distribution of Z. The first,
called flow sampling, consists in drawing a random sample from the population of
those who become unemployed during a specified period of time. The other, called
stock sampling, consists in drawing a random sample from the population of those
who are unemployed at a given point in time.

Let Z,,...,Z, be the observed data on unemployment duration. For simplicity,
assume that they correspond to completed unemployment spells. It is easy to show
that, under flow sampling, Z; has the same distribution as Z.

The case of stock sampling is a little more complicated. The completed duration of
an unemployment spell for the ith person included in the survey may be decomposed
as Z; = U; + V;, where U; denotes the elapsed duration, that is, duration up to the
time of the survey, and V; denotes the successive duration. For an interviewed person
to be registered as unemployed it is necessary that U; > 0, that is, observed duration
must be left-censored. If U; = u and t = 0 denotes the time of the survey, then the
person must have entered unemployment at time t = —u.

To compute the distribution of elapsed duration U; in the sample data, suppose that
the rate of entry into unemployment is constant and equal to A > 0. Of those who
entered into unemployment at time ¢t = —u, only the fraction for whom Z > u remains
unemployed at time ¢ = 0. This fraction is equal to Pr{Z > u} = 1 — F(u). Therefore,
aggregating over the different cohorts of unemployed people and integrating by parts,
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the fraction of the population that is unemployed at time t = 0 is

Po=/\/:°[1—F(u)]du=z\/owuf(u)du=/\p,

under the additional assumption that Z has a finite mean y. On the other hand, the
fraction of the population that, at the time of the survey, has been unemployed for a
period not greater than u is

u
)‘/ [1 - F(2)]d=.
0
The distribution function of elapsed duration U; is therefore

Ay 1= F(2)]dz _ [)'[1 - F(2)]dz
Po B M '

Gu(u) =Pr{U; <u} =

whereas its density function is gy (u) = Gy (u) = [1 - F(u)]/u. Because the conditional
density of Z; given U; = u is f(z|u) = f(2)/{1 — F(u)], 0 < u < 2, the joint density
of Z; and U; in the sampled data is

f(z) 1-F(u) _ f(2)
1-F(u) p [T

Integrating the joint density with respect to u and using the fact that u < z, one
obtains the density of the completed duration of an unemployment spell in the sample

data . .
g(z)=/0 g(z,u)du=%/o du=¥_

This distribution is known as the first moment distribution corresponding to f(z).
Notice that g(z) = w(z)f(z) with w(z) = z/pu, that is, sampling from those who
are unemployed at the time of the survey leads to oversampling the longer spells
and undersampling the shorter spells. For this reason, stock sampling is said to be
length-biased. This may lead to incorrect inferences about the distribution of Z at the
population level. For example, the mean of the observed durations is

x L2 2
EZ,~=/ md2=p(l+a—2)>u,
(] u ©

where 0? = Var Z. Thus, stock sampling leads to an upward biased measure of mean
unemployment duration and the relative bias (E Z; — p)/p is simply proportional to
the squared coefficient of variation of Z.

9(z,u) = f(z|u) gu(u) =

2.4 UNOBSERVED HETEROGENEITY AND MIXTURE MODELS

Conditioning on observed covariates is a way of controlling for heterogeneity in
observed response across sample units. In general, however, the available covariates
represent at best only a partial list of the many factors that influence the variability
of the phenomenon under investigation. In these cases, failure to adequately control
for unobservable sources of heterogeneity may produce severe biases in estimates of
the population characteristics of interest.
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Example 2.6 Let h;(z) be the hazard of leaving unemployment for the ith member
of a population of unemployed people. Suppose that the individual hazards exhibit no
duration dependence but are not all the same. Specifically, let h;(z) = AU;, where U;
reflects unobservable differences across individuals. The individual survivor function
is then S;(z) = exp(—AzU;). The variability of the hazard in the population may be
modeled by treating the U; as i.i.d. random variables with a common £(v) distribution.
The population survivor function is then

S(z) = ESi(2) = / e MU ye M du
0

°° (Az+9) 1
= e : “du = ——C.
/o ! 7z +1

Therefore, the population hazard is

d Ay
= ——1 S = —_— ),
hz) = -3 05 = 7
where the numerator is the conditional hazard evaluated at the mean 1/ of the
distribution of U;. Hence

Ay 2
T 1] 0

that is, the population hazard exhibits negative duration dependence despite the
absence of duration dependence at the individual level. Intuitively, the individuals
with the highest hazards exit first, and so the population hazard falls as the fraction
of low hazard members increases. O

h(z) = - [

Unobserved heterogeneity is typically dealt with by letting certain parameters of
the model vary across sample units. This variability may be modeled explicitly by
assuming that the individual parameters come from a common distribution, either
discrete or continuous, called the mizing distribution. The case of a discrete mixing
distribution corresponds to a countable number of “types” in the population. After
specifying a parametric model for the conditional distribution of the observables given
the unobservables, the model for the marginal distribution of the observables may be
obtained by integrating out the unobservables using the mixing distribution.

Thus, let {F(z]|u;8)} be the model for the conditional distribution function of
Z; given U; = u, where U; is a scalar random variable which represents unobserved
heterogeneity. For simplicity we ignore the presence of observed covariates. If the
distribution of U; (the mixing distribution) were known, then the unconditional
distribution of Z; would be

G(2;8) = EF(z|Ui; B),

where the expectation is taken with respect to the mixing distribution. Models of this
kind are known as mizture models or random coefficient models.

Since the mixing distribution is generally unknown, a common approach is to
assume that it belongs to some known parametric family {p(u;~y)}. Coupled with
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the parametric model for the conditional distribution of Z; given U;, this assumption
leads to a parametric model for the unconditional distribution function of Z;, namely

G(z:6) = ) | F(z|u 8) p(ui7) (2.10)

if U; is discrete, and
G(z:0) =/F(z|u;ﬁ)p(1z;7)du (2.11)

if U; is continuous. In either case, 8 = (B,7). The choice of model for the mixing
distribution is important. This choice is often justified on the basis of computational
simplicity or by appeal to familiarity with special functional forms. While economic
theory can sometimes suggest a parametric model for the conditional distribution of
Z; given the unobservables, it rarely offers guidance on the appropriate parametric
model for the distribution of the unobservables. Further, estimates obtained by the
above strategy are often very sensitive to the essentially arbitrary assumptions made
about this distribution.

The key problem with mixture models is one of identifiability: from the knowledge
of G, is it possible to solve (2.10) or (2.11) for unique F(z|u) and p(u)? The example
below shows that, in general, the answer is negative.

Example 2.7 Heckman and Singer (1984) produce two different models which
generate the same exponential distribution of observed duration. Suppose first that
Z; ~ E(u), with distribution function Fy(z|u) = 1 — e~%*, 2 > 0. If there is no
population heterogeneity, that is, the mixing distribution has all its mass concentrated
at the point u = 7, then the distribution function of the ohserved duration is
G1(2) =1 — e~ 7, that is, exponential with parameter 7.

Now suppose that

z
VvV2u

where & denotes the A(0,1) distribution function. If U; ~ £(n?) with density
p(u) = n2e”"2“, u > 0, then it is easy to verify that

Fg(z|u):24’( )—1, z >0,

Gi(z2) = /Ooo F(zlu)plu)dv=1-e"" =G (2). (2.12)

Although they imply the same distribution for the observed data, the two models are
quite different. The first exhibits no duration dependence at the individual level, and
no population heterogeneity. The second model is characterized by positive duration
dependence at the individual level which, contaminated by population heterogeneity,
generates a distribution of observed durations which exhibits no duration dependence.
Without further identifying assumptions, one cannot choose between these two
observationally equivalent explanations of the same data. @)

2.5 MEASUREMENT ERRORS

We have assumed so far that the data correspond to exact measurements of certain
characteristics of a population. In practice, however, the data may be subject
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to measurement errors or can be contaminated in various ways. The nature of
the measurement errors or the form of the contamination process may affect the
information contained in the data about the aspects of interest of the population.

2.5.1 THE CLASSICAL MEASUREMENT ERROR MODEL

In the classical measurement error model, the data are regarded as realizations of
a random vector Z = Z* + U, where Z* and U are independent random vectors
that represent, respectively, the correct measurement or “signal” and a measurement
error. The assumption of independence between Z* and U implies that VarZ =
Var Z* + Var U, that is, the data tend to display larger variability than the correct
measurements. This model is often motivated with reference to the inaccuracy of the
instruments with which Z* is measured. The additional assumption that U has mean
zero implies that E(Z | Z*) = Z*, that is, the measurements of Z* are inaccurate but
not systematically distorted.

If f and h denote the densities of Z* and U respectively, then the density g of Z
is the convolution of f and h, that is, g(2) = ffzo f(z — u) h{u) du. In particular,
if Z=(X,Y),Z2* = (X",Y*) and U = (Ux,Uy), where Ux has a nondegenerate
distribution, then the conditional distribution of ¥ given X = z is generally different
from the conditional distribution of Y'* given X* = z.

Example 2.8 Let the random vector Z* = (X*,Y*) have a Gaussian distribution
with mean (ux,py) and variance matrix

02Y gXYy
r= ’ 2 )
oxXyYy Oy

and let U be a measurement error vector that is distributed independently of Z* as
Gaussian with mean zero and variance matrix

2
_|wx O
=[5 &)

The distribution of the random vector Z = Z* + U is therefore Gaussian with mean
(nx,py) and variance matrix

2 2 .
2+9=["X+“’X S, ]
oxy 0% +uw}

Thus, Z and Z* have a Gaussian distribution with the same mean but different
variance matrix. The assumption that the random vector U has a distribution of
the continuous type implies that Pr{Z # Z*} = 1, that is, measurement errors occur
almost surely.
If 0% > 0, then the conditional distribution of Y'* given X* = z is M (a. + 8.z, 02),
where
= Ixv 2_ g2 _ Ixy

Qe = py — B‘,‘Xy B‘ = 2 O, =0y — 2 -
Ox Ox
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The conditional distribution of ¥ given X = r is instead A'(a + Bz, 0?), where

a=puy —fux =a.— (8- B.)pux,

2
8= oxy _ Ox
0% +wk ‘ot +wd’
2 2 2
2 _ 2 2 Oxy Oxy ¥
g =0y+w,‘—%=af+#—x—+w,'.
a.‘r +wX U.Y a\r +w¥

Thus, the classical measurement error model preserves the CMF of Y* only in two
cases. The first is when X'* and Y * are uncorrelated, the other is when w_?,( = 0, that
is, X'* is observed without error. While 3 and 3. have the same sign, we have

18] < 1B.], (2.13)

that is, 3 is smaller than 3. in absolute value. If ux # 0, then |a| > |a.|. Thus, the
presence of measurement errors in X* biases 3 towards zero and a away from zero.
Further, it makes o2 larger than o2. The effect on 3 is sometimes referred to as the
attenuation bias caused by measurement error.

Notice that (2.13) is not the only information that the data contain about the
parameter 3,. Consider the conditional mean of X given Y. This is of the form
E(X|Y) = v+ 6Y, where

_ Cov(X,Y)  oxy _ o%
T VarY ol +wd: ol +wi’

If X* and Y* are correlated, then 0%, < 0% 03 and therefore 82 < o%. /0% . Hence

1 i+ wid wi
== ___ > B, + —1—
s [3.0\, . B.o%

that is, [1/d] > |B.|. Combining this result with inequality (2.13) gives
1
1 < 151 <] (2.19)

Thus, although the classical measurement error model does not preserve the CMF of
Y, it nevertheless provides some information about the parameter 5. through the
inequality (2.14). O

2.5.2 OTHER MEASUREMENT ERROR MODELS

The classical measurement error model is widely used but it may be inappropriate
in certain situations. For example, the assumption that the “signal” Z* and the
measurement error U are independent is inappropriate when Z* is a discrete random
variable. In this case, a different model should be considered.

Example 2.9 Consider the following model of classification errors. Let Z* be a
binary random variable that takes values zero and one with probability 1 — 7 and
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m respectively, where 0 < m < 1. The observed value of Z* is another 0-1 random
variable Z that depends on Z* through the relationships

Pr{Z=0|2"=1} =y, Pr{Z=1|Z2"=0}=v.
This model may also be written Z = Z* + U, where U = Z — Z*. Because

E(Z|Z"=0)=Pr{Z=1|2Z2"=0} =,
E(Z|Z"=1)=P{Z=1|2"=1}=1-1,
we have

v, if z=0,

E(UlZ‘=z)=E(Z|Z‘=z)—Z‘={_7)’ i

The mean of U is therefore

EU=E(U|Z2* =0)Pr{Z* =0} +E(U | 2* = 1)Pr{Z" = 1}

=V(1""7l')—7]7'l',

whereas

EUZ' =E(U|Z" =1)Pr{Z" = 1} = 9.

Hence
Cov(U,Z2*")=EUZ" - (EU)E Z*) = —n(1 — )(n + v).

Thus, the measurement error U is not independent of Z*. In particular, the
measurement error U is negatively correlated with Z* and its conditional mean given
Z* is different from zero. o

2.5.3 CONTAMINATED SAMPLING

The contaminated sampling model regards the data as realizations of a random variable
Z which is equal to the “signal” Z* with probability 1 — ¢, and with probability ¢ is
equal to some extraneous random variable 1¥". Formally

Z=(Q1-U)Z"+UW =2+ U(W - Z7),

where U is an unobservable binary random variable, distributed independently of Z*
and 1", which takes the values zero and one with probability 1 — ¢ and ¢ respectively
(0 < € < 1). Realizations of Z such that U = 0 correspond to error-free measurements
of Z*. Of some importance, especially for the theory of robust statistics discussed in
Chapter 13, is the special case when W is a degenerate random variable giving unit
mass to some point in the sample space. This is known as the gross-error model.

The contaminated sampling model is often motivated with reference to coding errors,
such as digit transposition, and may be useful in situations where measurement errors
occur with positive probability but not always. Alternatively, this model may be used
to represent the fact that a statistical model is only an approximation to the actual
data generation process. As such, it may be good for the bulk of the data but not for
the whole sample.
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If F and H are the distribution functions of Z* and W respectively, then the
distribution function of Z is

G(z)=(1—¢€)F(z) +eH(2), 0<e<l

The distribution of Z is therefore a mixture of the distributions of Z* and 11", with
mixing parameter € that is equal to the probability of measurement error. If both Z*
and 11" have finite mean, then the mean of an observed data point is

EZ=(1-¢EZ" +¢EW.

If both Z* and W’ have finite variance, then the variance of an observed data point
can be shown to be

VarZ = (1 —€) Var(Z*) + e VarW + ¢(1 — €)(E Z° — EW)2.
If Z* and W have the same mean, then
VarZ = (1 —€¢)VarZ* + e Var If"

Thus, unless both ¢ and the distribution of 11" are known, contaminated sampling
does not enable one to identify the distribution of Z* or interesting aspects of this
distribution, such as the mean and the variance.

The contaminated sampling model assumes that the occurrence of errors is
independent of the sampling realization of the population of interest, that is,

Pr{Z* <z|U =u} =Pr{Z" < z}, u=0,1. (2.15)

The corrupted sampling model corresponds to the case when (2.15) does not hold. This
model permits arbitrary corruption of an arbitrary selected fraction of the data and
underlies most of the literature on high-breakdown estimation discussed in Chapters 15
and 16.

BIBLIOGRAPHIC NOTES

A standard reference on sampling methods is Cochran (1977). Another useful reference
is Wolter (1985), while a more technical one is Sdrndal, Swensson and Wretman (1992).

For a generalization of the Kaplan -Meier estimator to the case of double censoring
(both left and right), see Turnbull (1974). The asymptotic properties of the Kaplan -
Meier estimator are surveyed in Basu (1984).

For a general discussion of response-based sampling see Manski and Lerman (1977)
and Manski and McFadden (1981). For a nice introduction to the general problem of
identification in the social sciences see Manski (1995).

On the problems posed by various aspects of economic data see Griliches (1986).
Lessler and Kalsbeek (1992) and Deaton (1997) provide excellent introductions to
sources and implications of nonsampling errors in surveys. On the statistical problems
that arise in the presence of missing data see Little and Rubin (1987) and Schafer
(1997).

For an extensive treatment of the theory and applications of measurement error
models, see Aigner et al. (1984) and Fuller (1987). On general approximations to the
distribution of data subject to measurement error see Chesher (1991).

On the contaminated sampling model and its connection to robust statistics sce
Huber (1981) and Hampel et al. (1986).
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PROBLEMS

2.1 Given a sample of size n drawn at random with replacement from a population of N
units, show that the probability that the sample contains no repetition is equal to

n-1 ;
I (%)

2.2 Prove Theorem 2.1.

2.3 Prove Corollary 2.1.

2.4 Prove Theorem 2.2,

2.5 Prove Corollary 2.2.

2.8 Consider a finite population consisting of N units and let 2),...,2n~ denote the values
of a numeric characteristic for each of the NV population units. Given a sample of size n, the

sample mean Z can be represented as Z = n~! Z,N=1 T;z;, where Ti,...,Tn are random
variables.

(i) Show that, under SRS with replacement, the distribution of the random vector
(T1,...,Tn) is multinomial with index n and parameter (N~!,...,N~!), and
therefore

n

ET’—N’ va,-szL_l) n

s Cov(T, Th) =~ h#
(ii) Show that, under SRS without replacement, T,...,Tn are 0-1 random variables
such that

n(N - n)
N2

n(N —n)

Cov(T,,Th) = NN 1)

ET,-=%, VarT; = h# j.

(iii) Use the above results to prove Corollaries 2.1 and 2.2.

2.7 Compare the sampling properties of the sample mean Z and the Horvitz-Thompson
estimator 4 = N™' )" (Zi/m) in the case of SRS with replacement.

2.8 Determine the value of the constant k in (2.1).

2.9 Determine sample sizes nj,...,ns to minimize the total cost of a stratified random
survey, C = co+ Zle CsT,, under the constraint that the sampling variance of the stratified
average Z* = ) m,Z, does not exceed a given number V" > 0.

2.10 Consider a heterogeneous population consisting of two strata, each with weight equal
to 7; (m + m2 = 1), mean equal to u; and variance equal to o (j = 1,2). Suppose that
sample data are only available for the first stratum and not for the second. Compute the bias
of the sample variance s? for the first stratum as an estimator of the population variance.

2.11 Prove Theorem 2.5.

2.12 Prove Theorem 2.6.



SAMPLING 81
2.13 Prove Theorem 2.7.

2.14 Let F be the empirical distribution function for a sample of size n. Show that F is also
the empirical distribution function of every permutation of the elements of the sample.

2.15 Let Z° be a random variable with finite mean u and distribution function F, and let
Z =min(Z°,c). Show that EZ = p — fcx[l - F(z)]d=.

2.16 Show that the survivor function associated with the empirical distribution function is

& n-—i
Sa= 11 7o

uZ<:
where Z};) denotes the ith sample order statistic.

2.17 Prove Theorem 2.8.

2.18 Show that if a sampling scheme preserves the regression of ¥ on X, then it generally
does not preserve the regression of X on Y.

2.19 Compare the marginal distribution of offered wages in Example 2.3 with the marginal
distribution of measured wages in a censored sample.

2.20 Show that the bounds (2.8) may equivalently be written
pe(z) =E(YD|X = 1) +a(@(l - n(z)},  pu(z) = EQ'D|X = 1)+ b(x)(1 - n(2)}.

2.21 Consider a population where everybody chooses between two mutually exclusive modes
of transportation: bus and train. Let Y = 1,2 be an indicator of choice between the two
modes and let q,, y = 1,2, denote the population frequency with which mode y is chosen.
The statistical problem is to draw inference about the conditional probability f(y|z) that
mode y is chosen given that X = z, where X is a discrete random variable, such as a person's
sex or age. Consider the following sampling strategies.

(i) Data on (X,Y’) are collected for a large sample of size n drawn at random from
the population. Is it possible to obtain good estimates of f(y|r) on the basis of
the information obtained in this way?

(i1) Dataon (Y =1, X) are collected by interviewing n, persons chosen at random at
the bus stops, and on (}' = 2, X) by interviewing n, persons chosen at random
at the train station, with n; + n, = n, where n is the same sample size as in
(i). Is it now possible to obtain good estimates of f(y|z)? May it help to have
information about the distribution of X in the population?

(iii) Discuss the costs and benefits of the sampling schemes described in (i) and (ii).

2.22 (Flinn & Heckman 1982) Show that if Z has a Gaussian distribution, then it is possible
to identify its distribution function on the basis of a censored or truncated sample. Show that
this is no longer true if Z has a Pareto distribution with density

B3-1

f(2)="71—_dz_ﬂ, ZZ7>01 ﬂ22

2.23 Verify formula (2.12) in Example 2.7.
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2.24 Consider a sample of size n = ¢S, which consists of ¢ observations drawn at random
from each of the S regions into which a country is divided. Let Y, be the number of employed
people sampled from the sth region and let ¥ = Zf=l Y, be the total number of employed
people in the sample.

(i) Compute the mean and the variance of Y when all regions have the same
employment rate.

(i) Compute the mean and the variance of Y when the employment rates differ across
regions.

(iii) Suppose that the regional employment rates m,...,ns are realizations of a
random variable with mean = and variance r?x(1 — ), where 0 < 72 < 1.
Show that Y has mean equal to nw and variance equal to nw?n(1 — ), where
Wwi=14(g-1)7%

(iv) Discuss the implications of this result for the problem of estimating the
dependence of m on a vector X of covariates.

2.25 Let Z be a random variable which is equal to Z* with probability 1 — ¢ and is equal to
W with probability ¢, where Z° and W are random variables with finite variance. Compute
the mean and variance of Z.



3
Time Series

A time series consists of a collection of observations, made sequentially through time,
on a variable that is or may be represented as numerical. Examples of economic time
series include the series of a country’s national income accounts, the time series of a
company’s sales, the time series of prices and returns on a financial asset, etc.

Three important aspects make the analysis of time series somewhat different from
the sampling situations considered in the previous chapter. First, usually one can only
observe a single history of a given time series. Second, the elements of a time series
are naturally ordered by the value of a time index. Third, most observed time series
exhibit a certain degree of regularity or persistence. Many concepts in the statistical
analysis of time series are a simnple consequence of these three observations.

3.1 UNIVARIATE TIME SERIES

We begin by considering the case of a single time series. In a multivariate context this
corresponds to the case when a particular time series is analyzed in isolation of all the
others.

3.1.1 STOCHASTIC PROCESSES

A convenient mathematical representation of a time series is through the notion of
stochastic processes.

Definition 3.1 A stochastic process is a function Z defined on a space 2 x T, such
that, for every t € T, Z(-,t) is a random variable defined on a probability space
(2, A4, P). @]

A stochastic process is therefore a collection {Z{-,t),t € T} of random variables
defined on a common probability space (2, A, P). The range of Z(-,¢t) is called the
state space of the process. Given an event w € 2, Z(w.t) is simply a function of ¢
and the set {Z(w,t),t € T} is called the realization or sample path of the process. To
simplify the notation, an element of a stochastic process is henceforth simply denoted
by Z; = Z(-,t) and the stochastic process by {Z,,t € T'}.

One may distinguish between various classes of stochastic process depending on the
nature of their state space and their index space 7. A process whose state space is a
subset of the real line R and whose index space is the set of the integers 0, £1, £2.. .,
or a subset of it. is called a real valued, discrete time, equally spaced time series, or
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simply a time series. The index space of a time series corresponds to points in time that
are equally spaced with respect to a given time unit. Unless otherwise indicated, a time
series is assumed to have started in the infinite past and to continue indefinitely into
the future. In this case, it is simply represented as {Z,;} = (..., 2-1, 2o, Z1, Z2, . . .)-

Example 3.1 A Markov process is a stochastic process such that the knowledge of
its current state contains all the information needed to determine the probabilities of
its future states. Formally, {Z,,t € T} is a Markov process if

Pr{Zi€ A|Z, = 2,...,21, = 22} = Pr{Z, € A| Z,, = z,},

for every subset A of the state space and every subset of indices {t,...,t,} such that
h<---<tp <t

A Markov chain is a Markov process whose index space is the set of the integers and
whose state space is discrete. Thus, a Markov chain is a time series whose elements are
discrete random variables. In typical applications, the random variable Z; represents
the particular state in which the process is at time ¢. For example, Z; may represent
the labor force status (employed, looking for a job, not in the labor force) of a person
at a given point in time.

Given a Markov chain {Z;}, the probability that the process occupies state i at
time t is called the ith state probability and denoted by m;, = Pr{Z; = i}. Clearly,
> ; mit = 1 for every t. The probability that the process occupies state j at time t + 1,
conditionally on occupying state 7 at time {, is called instead the one-step transition
probability and denoted by Ay = Pr{Z;4+, = j| Z; = i}. Clearly, 2; Aije =1 for all i
and every ¢.

State probabilities at adjacent points in time are linked through the relationship

i1 = _;_ Aijt Wit
i

If there is a finite number J of states, the above relationship may be written more
compactly as
T
T = Af mp,

where m, = (my4,..., 7)) is a J-vector and
Alie o Age
A= :
A At

is a J x J matrix, called the transition probability matriz of the process, with the
property that its rows add up to onc. State probabilities at time t + h, h = 2,3,.. .,
are simply computed by repecatedly substituting backwards

A
_ T AT T —_ _ T
Terh = Aeno1Tern-1 = Alp (A poamian—2) = - = ([ Aleay) me.
j=1

If transition probabilities are time-invariant, that is, A, = A does not depend on t,
then i p = (AT)R . )
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Besides discrete time series, other classes of stochastic process are of some
importance in the analysis of economic data.

Example 3.2 Let {Z;,t € R} be a continuous time, continuous state space, stochastic
process with the following properties:
(i) for any h, the increment Z, ., — Z; is distributed as \(0,02h), where o2
is finite and positive;
(i) for any pair of disjoint time intervals [¢1,t2], [ts, 4], with t) < t, < t3 < ty,
the increments Z,, — Z;, and Z,, — Z,, are uncorrelated random variables;
(iii) Zo = 0 and Z; is continuous at t = 0.

This process is called Brownian motion with variance 0°>. When o® = 1, the process
is called standard Brownian motion or the Wiener process. Because of (ii), Brownian
motion is another example of a Markov process. Notice that, because of (i) and (iii),
the variance of Z; is equal to a?t.

It is not difficult to see that, given arbitrary points ¢; < ... < t,, the joint density
of Zy,,....Z;, given the initial condition Z; = 0 is equal to the joint density of
Zy Ly — 2oy 2y, — 2y, _,, Which is

flziyo o za) = plzr t) plza — 21,8t — 1) -« p(2a L),

where

(2.1) 1 22

z )= ——exp| ——— | .

b oV2nt P\ 72021

Further, for any t, < t < t», the conditional density of Z, given Z;, = z, and Z,, = 2,
is Gaussian with mean equal to

22 — 2
T

Z (t - tl)v
and variance equal to
otz =)t =t)
th — £
O

Example 3.3 Consider an cvent that repeats itself through time and let B be the
family of intervals of the positive half-line R, . These intervals are interpreted as time
intervals. Given B € B. let Zy be a discrete random variable representing the number
of times that the given event occurs during the time interval B. The stochastic process
{Zg,B € B} is called a point process. The state space of this process is the discrete
set 0,1,2,....

A point process {Zg, B € B} is called a Poisson process with intensity A > 0 if:

(i) for every B € B, the random variable Zg has a Poisson distribution with
parameter Aup. where g denotes the length of the interval B:

(ii) for every finite collection B, ...., B, of disjoint intervals of R, . the random
variables Zp,,..., Zp, are independent.
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By the properties of the Poisson distribution, (i) implies that E Zgp = A up, that is,
the expected number of events in the interval B is proportional to the length of B.
There exists an important relationship between the Poisson process and the
exponential distribution. Consider an event that repeats itself through time according
to a Poisson process with intensity A, and suppose that an event occurred at time ¢p.
Denoting by H the length of the time interval until a second event occurs, we have

Pr{H > h} = Pr{no event in the interval [to,to + h)} = e~ %, h >0,

where we used the assumption that the number of events occurring in a time interval
of length h follows a Poisson distribution with parameter Ah. The random variable H
therefore has an exponential distribution with parameter A.

Now suppose that the second event occurred at time ¢,. Proceeding as before, it can
be shown that the length of the time interval until a third event occurs also has an
exponential distribution with parameter A. Hence, given a Poisson process, the length
of the time interval until the next event occurs has a distribution that does not depend
on the origin of the time scale. Further, given assumption (ii), the length of the time
interval until the next event occurs is independent of the length of the time interval
between any two consecutive events. The time intervals between successive events in
a Poisson process are therefore a collection of i.i.d. exponential random variables. O

3.1.2 STATIONARITY

A stochastic process {Z;,t € T} is characterized by the relationships between its
component random variables. In particular, under appropriate regularity conditions,
a stochastic process is completely characterized by prescribing, for each integer n > 1
and every set t,...,t, of n distinct time indices, the joint distribution function

'n(Zl,...,Z")ZPl‘{Zh Szly"len SZ"} (31)

.....

of a finite subset Z;,,..., Z;, of its elements.
Given the joint distribution function of any pair (Z;, Z,) of elements of a process,
one may define the first moments g, = E Z; and p, = E Z,, and the second moments

or autocovariances
COV(Z,,Zs) = E(Zl - uf)(ZB - ltu)a

provided that the appropriate integrals converge. These moments, if they exist, contain
important information about the structure of a process. In particular, the set of first
and second moments completely characterizes a Gaussian process, that is, one for
which (3.1) is Gaussian for each integer n > 1 and every set ¢;,...,t, of time indices.

Analyzing the collection of distribution functions (3.1) may be quite complicated.
This task is simplified considerably if we assume that (3.1} satisfies the following form
of time homogeneity.

Definition 3.2 A stochastic process {Z,t € T} is called strictly stationary if

E|+h ..... I"+'l(z]7'-~12n) =E|.....ln(zla"'!zll) (32)

for all h > 0 and ecvery finite set of indices ¢;,...,t,. ]
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Figure 19 Three sample paths of a Gaussian random walk starting at time t =0
with Z, = 0.

0 20 40 60 80 100

If a process is strictly stationary then the joint distribution of any finite set
Zy,y..., 2y, of its elements is invariant under translation of the time indices. In
particular, the marginal distribution of Z, is the same for all t and therefore the
mean and the variance of Z;, if they exist, do not depend on t. Analogously, strict
stationarity implies that the bivariate distribution of Z; and Z, and the autocovariance
Cov(Zy, Z,), if it exists, depend on the two time indices only through their distance
|t — si.

Example 3.4 Consider a time series starting at time ¢t = 0 with Z; = 0 and evolving
through time according to the relationship

Z’:Zf_[-f-[/", t=1,2,...,

where U,,Us,... are uncorrelated random variables with mean zero and variance
o2 > 0. Such a time series is called a random walk and represents a classical model for
the behavior of the logarithm of the price of an asset in an efficient asset market. Since
U, =2, — Z,_, a random walk is a process with uncorrelated increments. Figure 19
shows three different sample paths of the same random walk.

Repeated backward substitution gives

=1

Z =) U, (3.3)
J=0

Thus, a random walk may be represented as a sequence of partial sums.

It follows from (3.3) that, although the unconditional mean of Z, is equal to zero
and therefore does not depend on t, a random walk is not a stationary process for
Var Z, = o2t, that is, the variability of a component of a random walk increases
linearly with its distance from the time origin, implying that VarZ, — oc as t — oc.
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It also follows from (3.3) that E Z;_;U; = 0 for all j > 1, that is, U, is uncorrelated
with all past values of Z;, which implies that Z;_, is the BLP of Z; given the entire
past history of the process and Uy is the associated prediction error.

When U,,U,,... are either Gaussian or independent, we obtain the stronger

conclusion
E(Z’ | Z'_.l, ooy Zo) = Zp._l.

A process with the latter property is called a martingale.

Suppose now that U,,U,,... are Gaussian, and consider partitioning the time
interval into m equally spaced subintervals defined by t —1,t —1+1/m,...,t—1/m,t.
Let Zi—1,Zi_141/ms---+Z1—1/m»Z; be the value of the process at this finer grid of
dates and assume that

Zl—l+j/m =Zf—l+(j—l)/m+UjU j=l7'-'ym1

where the Uj; are i.i.d. with a common N(0,02/m) distribution. It is easily verified
that the process retains its original properties on the finer grid of dates. In particular,
for any h, the increment Z,,, — Z, is distributed as A (0,02h) and, for any pair of
disjoint time intervals [ty, t2], (t3, t4], with t; < ¢, < t3 < t4, the increments Z;, — Z,,
and Z;, — Z;, are uncorrelated. Letting m — oo gives a continuous time, continuous
state process which satisfies properties (i)-(iii) in Example 3.2 and is therefore a
Brownian motion. Thus, a random walk may be viewed as a Brownian motion sampled
at equally spaced dates. )

A property that, in a sense, is weaker than strict stationarity is the following.

Definition 3.3 A stochastic process {Z;,t € T} is called weakly stationary, or
simply stationary, if its first and second moments are finite, and pg; = u, and
Cov(Zy, Zi4n) = Cov(Zg, Ze41) for every pair of indices (t,s) and all h. a

There is no necessary relationship between weak and strict stationarity. In fact,
neither does strict stationarity imply the existence of second moments, nor weak
stationarity guarantee that (3.2) holds. An important special case when these two
notions of stationarity are equivalent is the case of a Gaussian process.

3.1.83 AUTOCOVARIANCES AND AUTOCORRELATIONS

Given a stationary time series {Z;}, the number v, = Cov(Z;, Zy4p) is called the
hth autocovariance of {Z;}. The sequence {v,}, viewed as a function defined on the
integers, is called the autocovariance function of {Z,}.

If v9 > 0, the standardized version of vy, defined as

Ph = ’Y_h = COI‘I'(Z’, Zl+h)1
Y0

is called the hth autocorrelation of {Z,}. Clearly, pp = 1 and |pp| < 1 for all h. The
sequence {pp}, viewed as a function defined on the integers, is called the autocorrelation

function of {Z,}. Autocorrelations are convenient to work with because they are scale-
invariant.



TIME SERIES 89

Figure 20 Sample path of a Gaussian white noise with ¢ = 1.
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Example 3.5 A time series {Z;} consisting of uncorrelated random variables with
mean zero and variance o > 0 is stationary with autocovariance function

_{a{ if h=0,
Yh =

0, otherwise,

and autocorrelation function

_[1, ifh=0,
Ph = 0, otherwise.

This time series is called a white noise, written {Z;} ~ WN(0,0?), and represents the
extreme case of a purely random process. If the elements of {Z;} are i.i.d., then the
time series is strictly stationary and we write {Z,} ~ IID(0,0?). The two definitions
coincide in the case of a Gaussian white noise (Figure 20). A process {Z;} is a white
noise with mean u if {Z; ~ p} ~ WN(0, 0?). o

A white noise, defined in the previous example, is the building block of many time
series models.

Example 3.6 A time series {Z,;} such that
Zy =U-8U_y, {Ut} ~ WN(0, 02), (3.9)

where 8 # 0, is called a first-order moving average, written {Z;} ~ MA(1) (Figure 21).
This time series is stationary for every value of 8, with zero mean, autocovariance
function
(1+6%0%, ifh=0,
Y =< —60?, if |h| = 1, (3.5)
0, otherwise,
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Figure 21 Sample paths of Gaussian MA(1) processes.
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and autocorrelation function

1, if h=0,
Pr = { —-0/(1+6%), if|h|=1,
0, otherwise.

Unlike the case of a white noise, the autocovariance and the autocorrelation functions
of an MA(1) process do not vanish immediately but only after one lag. It is not difficult
to show that [p;| < .5.

An MA(1) process is the simplest example of a linear filter. Filtering the white
noise {U;} through the moving average operator produces a time series {Z;} that
differs from {U;} because of its larger variance and the fact that adjacent elements of
the process are correlated. u)

Example 3.7 A time series {Z,} that satisfies the relationship
Zy = ¢Zy_y + Uy, {U:} ~ WN(0,0%), (3.6)

where ¢ # 0, is called a first-order autoregressive process, written {Z;} ~ AR(1).
The relationship (3.6) is an example of a stochastic difference equation, that is, a
nonhomogeneous difference equation “driven” by a stochastic process, in this case a
white noise. The existence and the nature of a stationary solution to (3.6) depend on
the value of the parameter ¢. We distinguish three cases, depending on whether ¢ is
equal to, smaller or greater than one, in absolute value.

First notice that, when |¢| = 1, no stationary solution exists because the process is
a random walk. Next notice that repeated backward substitution in (3.6) gives

h—1
Zy =p(@Zy—2 + U )+ Uy =+ = " Z_n + ZW'Uf—j-
J=0
If |¢| < 1 and the process started in the infinite past then
2
h=1 _ .
Jim B (2, - ZO(;;JU,_,- = hli’rr;d)”‘ EZ?=0.
}:

On the other hand, because Z; = ¢~ 1(Z;4+, — Ui41), repeated forward substitution in
(3.6) gives

h
Zy=¢" "o (Ziy2 — Uty2) = Upga] = --- = ¢ "Zyn — Z¢_jUr+j'

J=1
If |¢| > 1 and the process continues indefinitely into the future then
2

h
. —j o —~2h 2 _
hllx’xolC E{ Z +jz—| o UL | = hh_?elcd) EZ} =0.
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Figure 22 Sample paths of Gaussian AR(1) processes.
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This justifies two alternative representations of Z;, depending on whether |¢| < 1 or
|¢| > 1. If |¢| < 1, then Z; may be represented as

< .
= Ztﬁ'Ul—jy
Jj=0

where the sequence of weights {¢’} is absolutely summable, that is. 3¢ =0 |¢’| < oo.
This representation is a stationary solution to (3.6) for it satisfies equation (3.6) and
is such that

x

J=0 ¢
and

Cov(Zy,Zssp) = gfzquyﬂhl = o2glhl Z¢“ _ 2 ol
ty f+h 1 ¢) .
J=0 j=0
The autocovariance function of {Z;} is therefore
!l
m=0t iy R=012. (3.7)

while its autocorrelation function, shown in Figure 23, is
pr=9¢", =012,

Notice that autocovariances and autocorrelations tend to zero exponentially fast as
[h] increases. Figure 22 shows the sample paths of Gaussian AR(1) processes for
different values of 8, whereas Figure 23 shows the autocorrelation functions of two
AR(1) processes, respectively with ¢ = .8 and ¢ = —.8.

If |¢| > 1. then Z, may instead be represented as

x
== § QJU"+_['|
e

where a = ¢~ ! and the sequence of weights {a’} is absolutely summable, that is,
X laf| < oc. This representation is a stationary solution to (3.6) for it satisfies
j=1 p A

equation (3.6) and is such that E Z; = 0 and

alhl

x x

. . . . N .

Cov(Zy, Zyon) = 0° E :anJ'HhI — g2t Zaz, = o’a? 1 .
—a?

=1 j=0

In this case, the autocovariance function of {Z;} is

[hi ~1hl
9 9 QO 2 (b
7h=o“a'l_a,2=a'¢2_l, hl =0,1.2,...,

while the autocorrelation function is p, = ¢~ 1, |h| = 0,1,2,.... a
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Figure 23 Autocorrelation functions of AR(1) processes.
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The autocovariance and autocorrelation functions contain important information
about the nature of a time series. In particular, the speed at which the autocorrelation
function p, tends to zero as |h| increases may be used to measure the degree of
“persistence” or “memory” of a process. Thus, a white noise has no memory, an MA(1)
process has a short memory, since p, vanishes after one time period, while a stationary
AR(1) process has an infinite memory which, however, declines exponentially fast
and is effectively zero after a number of time periods that depends on the size of ¢.
These persistence properties are important when it comes to deciding how to model
a particular time series.

If pp — 0 as |h| = o0, as in the white noise, MA(1) and stationary AR(1) cases,
then elements of the process far apart in time from each other are approximately
uncorrelated. It is important to notice that stationarity, by itself, is not sufficient to
guarantee this property.

Example 3.8 Consider a time series {Z,} such that
Zy=p+V +U, {Ui} ~ WN(0,07%),

where 1 is a zero-mean random variable with variance w? > 0. Suppose further that
V" and {U,} are uncorrelated. The time series {Z;} is stationary with mean pu and
autocorrelation function
1, if h =0,
2
Ph = w

————, otherwise.
o? +w?’

This process therefore has an infinite memory that never dies out. 0

The next theorem collects some properties of the autocovariance function of a
stationary time series. Analogous properties hold for the autocorrelation function.

Theorem 3.1 If {v,} is the autocovariance function of a stationary time series,
then:

(i) 0 < |ynl < vo for all h;
(ii) the autocovariance function is an even function of h, that is, vy = y_p;
(iii) the autocovariance function is n.n.d., that is,

n n

Zzahaj Yh-ji 20

h=1y =1
for alln =1,2,... and every set of constants a,,...,a,.

Proof. Property (i) follows from the fact that v = Var Z, > 0 and the Cauchy -Schwarz
inequality ' X
Ival = | Cov(Zy, Zean)| < (Var Z¢)'/*(Var Zi4n)'/? = 10

Property (ii) follows from the symmetry of covariances, while property (iii) follows
from the fact that

n n n
0 < Var (Z (tht+h) = Zzahaj RILES]

h=1 h=1 j=1
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for all n = 1,2,... and every set of constants a,,...,a,. a

It may be shown that properties (ii) and (iii) of Theorem 3.1 completely characterize
the autocovariance function of a stationary time series (see for example Brockwell &
Davis 1987, Theorem 1.5.1).

If {Z,} is a stationary time series, the n x n matrix

Yo 7 Tt -1
M Yo ctt o Tn-2
Fn = . . .
Tn-1 Tn-2 -*° Yo
is called the autocovariance matriz associated with a finite portion Z;,1,...,Zs4n of

the time series. If 7o > 0, the matrix

1 P ctr Pn-1
1 P1 1 o Pn=2
Rn = _Fn = . . .
Yo : : :
Pn-1 Pn-2 - 1
is called the autocorrelation matriz associated with Z;,,,..., Z;;,. The matrices I';,

and R, are symmetric and have a band diagonal structure, that is, the elements
along the same diagonal are all equal, and therefore contain only n distinct elements.
Matrices of this kind are also called Toeplitz matrices. Further, by conclusion (iii) of
Theorem 3.1, they are n.n.d. The latter property places a number of constraints on
these two matrices, namely the fact that, for every n, the determinant and all the
principal minors must be non-negative.

We now give sufficient conditions for the matrices I', and R,, to be nonsingular for
every n.

Theorem 3.2 If an autocovariance function {y,} is such that vo > 0 and vy, — 0 as
[h| = o0, then the autocovariance matriz [',, and the autocorrelation matriz R,, are
nonsingular for every n.

Proof. See Brockwell and Davis (1987), Proposition 5.1.1. ]

3.1.4 STABILITY AND INVERTIBILITY

We have seen that every stationary time series has a mean and an autocovariance
function associated with it. Without loss of generality, we now consider the class of
zero-mean stationary time series and ask the following question which is crucial for
identifiability of a process: Given an autocovariance function {v,}, is there a unique
time series that has {y,} as its autocovariance function?

Example 3.9 If § # 0, then the following MA(1) processes

Xy =U - 0U, 4, {U;} ~ WN(0,0?),

V=ti-gVin, {1}~ WN(@,8%2),
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both have autocovariance function equal to (3.5). o

Example 3.10 From Example 3.7, if |¢| < 1, then the following stationary AR(1)
processes
X =¢Xi21 + Uy, {Us} ~ WN(0,0?),

Y= -ty 41 v, (0.2
(=-3 -1+ V1, {7} ~WN O’F ,

both have autocovariance function equal to (3.7). a

Thus, it is generally impossible to establish a one-to-one correspondence between
the class of stationary time series with a given mean and the class of autocovariance
functions. The typical solution to this problem consists of restricting attention to
stationary time series that possess the following additional properties.

Definition 3.4 A time series {Z,} is said to be invertible if it satisfies the relationship

o
Zﬂjzt—j = U, {U1} ~ WN(0,0%), (3.8)

Jj=0
where {7;} is a sequence of constants such that mp = 1 and ij:o |7j| < oo. o

Definition 3.5 A time series {Z,} is said to be stable or future -independent if it
possesses the representation

Zi = Zd’jUt—j, {Ui} ~ WN(0,07), (3.9)
J

j =0
where {y;} is a sequence of constants such that ¥ = 1 and 3°72, || < oc. 0

The representations (3.8) and (3.9) are called, respectively, the infinite
autoregressive or AR(oc) representation or the infinite moving average or MA(oc)
representation of a time series.

The notion of stability seems appropriate for time series produced by mechanisms
where the future cannot influence the present and the past. In fact, if {Z,} is stable,
then

xX
Cov(Utsp, Z4) = Cov U’*"‘Z YU | =0, h=1,2,....

Jj=0

It is easy to verify that a stable process is stationary. The sequence of weights
(1,¢y,¢,,...), viewed as a function defined on the integers. is called the impulse
response function of {Z;} in terms of {U;}. The impulse response function may be
interpreted as a sequence of dynamic multipliers that describe the effect of a unit
changc in U[ on Z(, ZH—h ZH.-_)_, e

An AR(1) process is always invertible, but is stable only if |¢| < 1. This is equivalent
to the condition that the root of the equation 1— ¢z = 0 is greater than one in absolute
value, that is, 1 — ¢z # 0 for all |z| < 1. After imposing this condition, there exists a
unique zero-mean AR(1) process with autocovariance function equal to (3.7).



98 ECONOMETRICS

On the contrary, an MA(1) process is always stable. To establish conditions under
which it is also invertible, substitute backwards in (3.4) to obtain

Zy=Uy —0(Zy-1 + 60U _2),
that is,

Ui — 2y — 0Z-y = 8*U,_».
Repeated backward substitution gives

h-1
U =Y 02 =6"Ups.

J=0

If |6] < 1 and the process started in the infinite past, then

2
h-1
: _ izl = Lim g2he2 —
Jim E { Uy ;09 Zj Jim 6267 = 0.
In this case, {Z;} may be represented as
Rt .
> 02 =0,

Jj=0

where the sequence of weights {6/} is absolutely summable. This representation is not
available when [0] > 1 or, equivalently, when the root of the equation 1 — 8z =0 is
less than one in absolute value. Thus, after imposing the condition that |6] < 1, there
exists a unique zero-mean MA (1) process with autocovariance function equal to (3.5).

3.1.5 PREDICTION

Let {Z;} be a stationary time series with mean p and autocovariance function {4},
and consider the problem of predicting Z; given quadratic loss.

From Chapter 1, the unconditional predictor of Z; is E Z; and its associated risk or
MSE of prediction is just Var Z; = vp. If the elements of the process are correlated,
then the unconditional predictor is generally inefficient, for it neglects the information
contained in the past history of Z;. This information should instead be exploited in
order to reduce the MSE of prediction. Notice a distinctive feature of time series: the
set of conditioning variables (namely the past values of Z;) grows with time.

From Section 1.4.2, the BLP of Z, given Z,_,,..., Z;_, exists and is of the form

EYZi|Zi-1v.. s Z¢ k) =k + BraZe—1 + -+ + Brw Zy -k,
where

k
ar =EZ =BuEZiy - —BuEZik = (1-)_Bij)n,
Jj=1

and the coefficients Sy, ..., Bxi satisfy the system of k linear equations

Bri Cov(Zi—j, Zi—r) + - - + Bri Cov(Zi_j, Zu_i) = Cov(Z_, Zy), (3.10)
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forj =1,...,k. Clearly, ay = 0if the process has zero mean. If the process is Gaussian,
then the BLP coincides with the conditional mean of Z; given Z;_,,...,Z;_4.
The set of equations (3.10) may be represented more compactly as

L=,
where 8 = (Bs1,.--,B8kk), ¥ = (Mm,--., ) and Iy is the autocovariance matrix
associated with Z;_,,...,Z;_s. If 'y is nonsingular, solving for the vector 3 gives

the unique solution
B=Ti'v=Rg'p,

where p = (p1,...,px). The kth element of 3 is called the kth partial autocorrelation
of {Z:} and denoted by 1. The sequence {n:}, viewed as a function defined on the
integers, is called the partial autocorrelation function of {Z,}.

Example 3.11 If {Z,} is a zero-mean stationary time series, then the BLP of Z,
given Zg_l is E.(Z( lZl—l) = ﬁnZ,_l, where ﬁ“ =pi1. If Rz is p.d., then the BLP of
Zy given Zy_, and Z,_, is

E*(Z¢| Zi-1,2i-2) = B Zi—1 + P22 -2,

(521 ):R-l(pl)= 1 (Pl—plpz)
B22 2 p2 1-p? p2 — p? '

Hence, the first two elements of the partial autocorrelation function are

where

_ 2
T = P1, h = 812—_7’?-
For an MA(1) process, p» = 0 and so ny = —p?/(1 — p?) # 0. For a stationary AR(1)
process, p» = p? and so 72 = 0. In fact, in this case, nx = 0 for all k > 2. ]
The risk associated with the BLP Z; = E*(Z,| Z;_1,...,Zi—4) is
r(Z;)=E(Zy —a=BrZi-y — - ~ B Zo—x)?

=e-a 35 ()

=% — 2’7TB + ﬂTrkB.

Since 8 = I‘;l‘y, the risk difference between the unconditional and the conditional
predictors is

Y -1(Z;)=7"T'y >0,

with equality only if all elements of the vector v are equal to zero, as in the white
noise case.
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3.1.6 THE LAG OPERATOR

It is often convenient to translate the time indices of a time series {Z;} forward or
backward. The lag or backward shift operator L operates on the entire time series {Z; }
shifting back each time index by one unit, that is,

LZy = 7,
for all t. Because Z,_» = LZ,_, = L(LZ,), we define
L*Z, = Z,_4, k=1,2,...,

and put L°Z, = Z,. It is easily verified that L is a linear operator, that is, if {Y;} and
{X:} are time series defined on the same probability space, then

L(aY; + bX;) =a LYy + bLX,.
One may therefore define the polynomial lag operator of degree s as
B(L)=by+b;L +---+b,L%,
which operates on the entire time series {Z;} by transforming Z, into
B(LYZy =bpZt + b1 24—y + -+ - + by Zy_s.

If the operator B(L) is applied to a time series that always assumes the constant value
¢, then B{L)c = c(by + by + --- + b,).

It may be shown that there is a one-to-one correspondence between the space of
polynomial lag operators of degree s and the space of polynomial functions of the same
degree B(z) = bg+b,2+- - -+b,2°. Because of this correspondence, common operations
such as the sum, multiplication and division of polynomials, and their expansion in
convergent series, may all be extended to polynomial lag operators.

Example 3.12 Using the lag operator notation, a stable AR(1) process may be
represented either as

®(L) Zy = Uy, {Ut} ~ WN(0,0?),
where (L) = 1 — ¢L, or as

Zy = ¥(L) Uy, {Ut} ~ WN(0,0%),
where

Y(L) = oL,
Jj=0

with ¥; = ¢, j = 0,1,2,..., and Y320 lil < co. The fact that |¢| < 1 implies
that ®(z) # 0 for all |z| < 1. It also implies that the infinite-degree polynomial ¥(z)
converges (is finite) for all |z| < 1. Because the following identity holds

(L) ¥ (L) Uy = Uy,
we formally define

_ 1
(L) = ¢(L)~" = e
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Two related operators are the first difference operator A, defined by the relationship
AZy =2y -2, =(1-L)Z,,
and the forward shift operator L~!, defined by the relationship L~=!Z, = Z,, . Because
A-LYZ+Zi 0+ 2Z424--1) =1

if the process started in the infinite past, we formally define (1-L)~! = 1+L+L%+---.

3.1.7 GENERATING FUNCTIONS

Generating functions offer a compact and convenient way of recording the information
contained in a sequence. Let {a;} be a (possibly doubly-infinite) sequence of real
numbers and let z be a (possibly complex) number. If the limit

n
lim E a;z!
n—oc |

j=-n

is finite for all z with modulus less than or equal to one, then we write

a(z) = i ajzj

j==nc

and call a(z) the generating function of the sequence. The generating function exists
if the sequence is absolutely summable, that is, Z‘fz_w laj} < oc. If the generating
function exists, then the individual elements of the sequence can easily be recovered
from the coefficients associated with the powers of z. Further, putting 2 =0and z = 1
gives respectively a(0) = ao and a(l) = ch:_oo a;. If z is a complex number, then
the modulus of a(z) is the real number

la(2)] = {a(z) a(2™")]"/*.
Two useful properties of generating functions are:

1. if {c;} is the sum of {a;} and {b;}, then c(z) = a(z) + b(2);
2. if {c;} is the convolution of {a;} and {b;}, that is, ¢; = Y_p2 ___ anbj_n, then
c(z) = a(z) b(z).

We now consider an important example of a generating function. If {Z,} is a
stationary time series with absolutely summable autocovariance sequence {5}, then

o
)= D mt =+ Y mE+27h)
h=-2 h=1

exists for all z with modulus less than or equal to one and is called the autocovariance
generating function of {Z,}.
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Example 3.13 If {Z;} ~ WN(0,0?), then its autocovariance and autocorrelation
generating functions are y(z) = 0% and p(z) = 1 respectively. If {Z;} ~ MA(1), then

Y(z) =d?[1+6% - 6(z+27")], P(Z)=1—1—f'ﬁ(z+z_l)'
0

The concept of a generating function may be extended to sequences of random
variables. Given a finite segment Z,, ..., Z, of a time series, its associated z-transform
is defined as

Zn(Z) = Z ZlZ'.
t=1

There exists a simple relationship between the autocovariance generating function
and the z-transform of a zero-mean stationary time series {Z;}. Because

E|Za(2) = Y (n = [h]) 2",

h=-n

we have that

ez = Y (1= B) st o000 (3.11)

h=-n

as n — 00.

3.1.8 LINEAR PROCESSES

A time series {Y;} is said to be obtained from a time series {Z;} by applying a linear
filter with a finite set of weights ¥;, ¥s41,..., P if

m
Yo=> v;Z_;.
j=s

A simple example, which we already encountered, is the MA(1) process. Using the lag
operator, a linear filter may be written Y; = ¥(L) Z;, where the polynomial

m

¥(z) =Z1/’J‘zj
Jj=s

is called the transfer function of the filter. The modulus |¥(2)] is called the gain of
the filter, whereas the squared modulus |¥(2)|? is called its power transfer function.
The time series {};} is clearly stationary if {Z;} is stationary and m and s are finite.
A linear filter is called two-sided if s < 0 < m, backward looking or future independent
if 0 < 8 < m, and forward looking if s <m < 0.

Let {Z,} be a stationary time series with autocovariance generating function ~(z).
The next theorem gives the autocovariance generating function of any time series {¥;}
obtained from {Z,} through linear filtering.
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Theorem 3.3 Given a stationary time series {Z;} 4with autocovariance generating
function y(z) and transfer function ¥(z) = Z;" s ¥jz’, the autocovariance generating
function of the time series Y; = ¥(L) Z; is v*(2) = |¥(2)|2v(2)

Proof. By the convolution property of generating functions, the z-transform of a
finite sequence Y1,...,Y,, is given by Y,(z) = ¥(z) Z,(z). Therefore, from (3.11),
the autocovariance generating function of {1}} is

¥*(2) = lim n'E[¥(2) Z,(2)]?
n—oc
= |\IJ(z)|2 lim n~'E |Z,,(z)|2 = I‘Il(z)|2 v(2).
n—>x
O

Theorem 3.3 generalizes to the case when the transfer function of the filter is of
the form ¥(z) = Z,—-m ¥;27, where the doubly-infinite sequence {4} is absolutely
summable.

Example 3.14 The transfer function of a stable AR(1) process is equal to

247’21 l—d)z

for all |z| < 1. Because the sequence {¢’} is absolutely summable whenever |¢| < 1,
the autocovariance generating function of {Z,} is

e o?
TS T aE T r et e

To check that this is indeed the autocovariance generating function of the process.
notice that

o2

0+ ¢2)1 + ¢2-1)

and so the coefficient on the hth power of z is

*(1+¢z+¢°2"+-- )1 +¢z7 + 0’277 +--),

2/ 4h h+1 h+2 42 a*¢"
o’(¢" +¢" o+ 0" e +-")=m,
which corresponds to the hth autocovariance of the process. 0O

We now introduce a general class of stationary processes obtained from an i.i.d. noise
sequence by applying a two-sided linear filter with a doubly-infinite set of weights.

Definition 3.6 A time series {Z,} is said to be a linear process if it satisfies the
relationship

<
Zi=p+ Y U, {U} ~1ID(0,0%),
j=—o¢

where {y;} is a sequence of constants such that 1o =1 and Z;‘:_x |} < oc. 0
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Clearly, a linear process is stable if 1; = 0 for all j < 1. The fact that, for a linear
process, the sequence {1} is absolutely summable implies

> ¥ < oo, S ¥l <o

j=-00 j=—00

Hence, a linear process {Z;} has mean p and autocovariance function

Th = E( Z ¥;Ur-;) ( Z UeUryn-i) = o? Z Yi¥jtal-

j=-0o0 k=-o00 j=-—o00

In particular, v = VarZ; = o2 Zj‘;_m 1/1,2 Since both the mean and the auto-
covariances of {Z;} are finite and independent of ¢, a linear process is stationary.
Absolute summability of the sequence {1;} also implies that the autocovariance
generating function of {Z;} exists and is

7(2) = 0® [¥(2)]* = 0 ¥(2) ¥(-2).

3.1.9 THE SPECTRAL DENSITY

Let {Z;} be a stationary time series with absolutely summable autocovariance
sequence {7y} and autocovariance generating function v(z), and consider the case
when z is a complex number with modulus equal to one. Recall that the exponential
form of such a complex number is z = ™, where i = /=1 and w is an angular
frequency in the interval [—m, 7]. Also recall that the conjugate of " is €' and that
e’ + e”" = 2cosw. The real function

— 1 —iw) — L - —iwh
f@) = g™ = 5 3 me
1 >, . )
— g [,),0 + Z'Yh(e_wm + ewh)]
h=1

1 o o]
=5 (v + 2%7;. coswh),

defined on the interval [—7,n], is called the spectral density of the time series and
corresponds to the Fourier transform of its autocovariance sequence {v;}. It is easy
to verify that f(w) is bounded and continuous, which implies that its integral on
the interval [—x,n] is finite. Further, f(w) = f(~w), that is, the spectral density is
symmetric about zero, and

f(0) = -21; dom= % (o +2)_ ), (3.12)
—o0 h=1

that is, the value of the spectral density at the origin is proportional to the sum of the
autocovariances. Finally, the spectral density function can be shown to be non-negative
(see e.g. Fuller 1976, Theorem 3.1.9).
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It follows from Theorem 3.3 that, if {Z;} is a stationary time series with spectral
density f(w), then the spectral density of the filtered time series Y; = ¥(L) Z;, where

U(2) = 3L, w520, is
frlw) =¥ ™) fw), -m<w<m.

This result generalizes to the case when the transfer function ¥(z) is absolutely
summable.

Example 3.15 The spectral density of a white noise with variance o2 is the constant

function )

o
= — - <w<m.
flw) 9 n<w<m
Hence, the spectral density of an MA(1) process is
. R 2 5
fflw)=1-0e " f(w) = g; (14 6% — 20 cosw), -r<w<m.

Notice that f*(w) is finite at all frequencies. At w = 0, the spectral density is

o?

10 = - (1-9".

This corresponds to the global maximum of the spectral density when § < 0, and to
its global minimum when 8 > 0. If § = 1, then f*(0) = 0. At w = =+, the spectral
density is

a? .

frxm)= —(1+6)>2

2r
This corresponds to the global minimum of the spectral density when 8 < 0 and to its
global maximum when 8 > 0. If § = —1, then f*(£7) =0.

Now consider an AR(1) process with |¢| < 1. Because ¥(z) = (1 — ¢2)~! in this
case, the spectral density of such a process is

flw) a?
[1-¢e~i]2 7 2n(1 + ¢* - 2¢cosw)’ T=esm

frlw) =

which is just the reciprocal of the spectral density of an MA(1) process with parameter
¢. Notice that f*(w) is strictly positive at all frequencies. At w = 0, the spectral density
is

2

iy o
f1(0) = (=9

This corresponds to the global maximum of the spectral density when 0 < ¢ < 1, and
to its global minimum when —1 < ¢ < 0. At w = £, the spectral density is

02

2n(1 + @)%~

This corresponds to the global minimum of the spectral density when 0 < ¢ < 1 and
to its global maximum when —1 < ¢ < 0. Notice that f*(0) is unbounded when ¢ =1,
whereas f*(£m) is unbounded when ¢ = —1.

Figure 24 shows examples of spectral density functions of MA(1) and AR(1)
processes. =]

fr(£m) =
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Figure 24 Spectral densities of MA(1) and AR(1) processes.

MA(1)
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Given a spectral density f, the individual autocovariances may be obtained by
integration. First notice that

- 2m, ifh=k=0,
/ cos(wh) cos(wk) dw = { m, ifh=k#0,
0, ifh#k

—-m

In particular, since cos(wk) = 1 whenever k& = 0, we have that f_"n cos(wh)dw = 0
whenever h # 0. Thus, integrating the function f(w)cos(wh) over the interval [, ]
gives

/:( f(w) cos(wh)dw = _’; 2_17rh° +2 kg Yk cos(wk)] cos(wh) dw

Y [T 1 &
=2 cos(wh) dw + - Z'yk/ cos(wk) cos(wh) dw

—-n k=1 -7

= Th

that is, the hth autocovariance is the inverse transform of the spectral density. In
particular

vo=/_:f(w)dw,

which provides a decomposition of the variance of the process into the contribution of
the different angular frequencies in the interval [—m, 7).

3.2 ARMA PROCESSES

This section introduces an important class of stochastic processes which is frequently
used to model a stationary time series.

Definition 3.7 A time series {Z;} is a mized autoregressive-moving average process
of order (p, q), written {Z,} ~ ARMA(p, q), if it satisfies the relationship

Zy— 012y — =Gl p=U —01U_y ~ - = 0,U,_g, {U} ~ WN(0,0?),

where ¢, # 0 and 6, # 0. A process {Z;} is ARMA(p, q) with mean p if {Z; — p} is
an ARMA(p, g) process. m]

An ARMA(p, q) process may be represented more compactly as

&(L) Z, = 6(L) Uy, {Ui} ~ WN(0,0?), (3.13)
where ®(L) = 1— ¢ L —--- — ¢,LP is a polynomial lag operator of degree p, called
the autoregressive polynomial, and O(L) =1 -6,L —--- — §,L9 is a polynomial lag

operator of degree g, called the moving average polynomial. An ARMA(p,q) process
with mean u may also be represented as

®(L)Z; = a+O(L) Uy, {Ur} ~ WN(0,0?),
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where a = p(1— ¢y —--- — ¢,) = p(1).

The autoregressive and moving average polynomials are often factorized in terms
of the roots of the associated characteristic equations. Thus, for example, the
autoregressive polynomial may also be written

P
®(L) = [Ja - A1),
ij=1

where Aj,..., A; are the roots of the characteristic equation 0 = 2 —y2P - — op-
These roots are just the reciprocal of the roots of the polynomial equation 0 = ®(z) =
1-¢1z2—...— ¢p2P. We say that the autoregressive polynomial contains unit roots if

some of the A; are equal to one in modulus. In particular, if one such root is equal to one
then ®(1) = 0, which implies that Z?:l ¢; = 1. We also say that the autoregressive
and moving average polynomials have no root in common if their ratio ®(z)/0(z)
cannot be reduced to the ratio ®*(2)/0*(z) of polynomials of lower degree.

We now consider two important special cases in the general ARMA class.

Example 3.16 An ARMA(0,q) or MA(q) process is a simple generalization of the
MA(1) process introduced in Example 3.6. Thus, a time series {Z;} is an MA(q)
process if it satisfies the relationship

Zy=U -0 Uy — - = 0,Ui_q,  {U} ~WN(0,0?),

where 6, # 0. We say that {Z;} is an MA(q) process with mean p if {Z; — u} is an
MA(q) process. An MA(q) process is stable with autocovariance function

o*(1+67 +---+62), if h =0,
Yo = 0%(~0h +610h41 + - +64-00,), if|hl=1,...,q,
0, otherwise,

where 6y = 1. Since v, vanishes for all h such that |h| > ¢, elements of the process
farther apart than ¢ periods are uncorrelated. ]

Example 3.17 An ARMA(p,0) or AR(p) process is a simple generalization of the
AR(1) process introduced in Example 3.7. Thus, a time series {Z;} is an AR(p) process
if it satisfies the relationship

Zy— 9124y — = Pply_p =Uy, {U:} ~ WN(0,0?),

where ¢, # 0. We say that {Z,} is an AR(p) process with mean p if {Z; — p} is an
AR(p) process. O

ARMA processes often arise by aggregating lower order processes. If {¥;} and {X,}
are independent stationary processes, respectively ARMA(p,q) and ARMA(p',¢'),
then it can be shown that Z, = Y; + X, is a stationary ARMA(r, ) process with

r<p+p, s<max(p+q,p +q).

In particular, if {Y;} ~ AR(p) and {X,} ~ WN(0,02), then {Z,} ~ ARMA(p,p). If
{Y:} ~ AR(p) and {X;} ~ AR(p'), where p > p/, then {Z,;} ~ ARMA(p + p,p). If
{Y:} ~ MA(g) and {X;} ~ MA(q’), where ¢ > ¢', then {Z;} ~ MA(q).
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3.2.1 STATIONARITY, STABILITY AND INVERTIBILITY

For an ARMA process to be stationary, stable or invertible, the autoregressive and
moving average polynomials must satisfy certain restrictions.

Theorem 3.4 If {Z:} is an ARMA(p, q) process such that the polynomials ®(z) and
©O(z) have no roots in common, then:

(1) {Z:} is stationary if and only if ®(2) # 0 for all |z| = 1;
(ii) {Z,} 1s stable if and only if ®(z) # 0 for all [z| < 1, and the coefficients
{¥;} in its MA(oo) representation are determined by the relationship

¥ =3 u = g LIS
j=0

(i) {Z:} is invertible if and only if ©(2) # 0 for all |z| < 1, and the coefficients
{m;} in its AR(oc0) representation are determined by the relationship

II(z) = Zﬂ’, J = (1,(2 )’ |z] < 1.

Proof. See e.g. Brockwell and Davis (1987), pp. 85-87. m]

Theorem 3.4 implies that, for a stable invertible ARMA process, the transfer
function ¥(z) and the AR(oco) polynomial II(z) are both rational, that is, they can be
represented as the ratio of finite-degree polynomials. This is one of the main practical
advantages of ARMA models, for it allows approximation of complicated transfer
functions simply by the ratio of two polynomials of low degree.

Corollary 3.1 If {Z,} is a stable ARMA(p, q) process, then:

(i) its autocovariance generating function is

. 0O(2)?
Y=o BP0 BEE i<
(ii) its spectral density function is
—iw)|2 |® —iw |2 —r < <
flw)= |‘I’( )NE = 277 —_—_|<1>(e i T<w<m.

Being the ratio of two trigonometric polynomials, the spectral density of a stable
ARMA process is often called a rational spectral density.

Example 3.18 A time series {Z,} is an ARMA(1,1) process if it satisfies the
relationship
Zy — 9Zy—y = Uy — Uy, {Ui} ~ WN(0, 0?), (3.14)

where ¢ # 0 and 8 # 0 (Figure 25). Suppose that the autoregressive and the moving
average polynomials have no root in common, that is, ¢ # 0. Since ®(z) = 1 — ¢z and
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Figure 25 Sample paths of Gaussian ARMA(1,1) processes.
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Figure 26 Impulse response functions of ARMA(1,1) processes for different values
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©(z) = 1 — 8z, the process is stationary if and only if |¢| # 1, stable if and only if
|¢| < 1, and invertible if and only if |§] < 1.

If {Z,} is stable, its autocovariance function may be obtained through multiplying
(3.14) by Zi4n, b = 0,1,2...., and then taking expectations of the resulting
expressions. This gives the equation system

Yo — ¢ = 0’ (1+6° — ¢6),
Y1 — ¢y0 = —0%6,
Yh — ¢vn-1 =0, h>2.

The last equation of this system is a homogeneous first-order linear difference equation
with solution

Yh :C¢hv hZL

where the constant ¢ is determined by solving with respect to v and v, the first two
equations of the system. The autocovariance function of {Z,} is therefore

2 _
G210~ 200 if h=0,
_ 1-¢?
Yh = R -1

The impulse response function of the process, that is, the sequence of coefficients
{#;} in its MA(oc) representation, may be obtained by equating the coefficients of
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powers of z of the same order on both sides of the identity
1-62z=(1-¢2)(%o + vz +922% +--°)
= o + (Y1 — Yo)z + (Y2 — ¢)2” + .

This method, known as the method of indeterminate coefficients, results in the
equation system

¢'0 = 11 1/11 - ¢1l10 = _01 (3'15)

Notice that (3.16) is the same difference equation which determines the
autocovariances of {Z,} for all |h| > 1. Solving for {v;,j7 > 2}, given the initial
conditions ¥y = 1 and ¥, = ¢ — @ obtained from (3.15), we get

[, if j =0,
Vi= N (p-8), ifj>1

(Figure 26).
Analogously, the coefficients {7;} in the AR(o0) representation may be obtained by
equating the coefficients of powers of z of the same order on both sides of the identity

1-¢2=(1-6z)(mo+mz+mz2+--")
=7 + (1 — Omp)z + (m — Om )22 + - -.
This results in the equation system
m =1, m —Omg = — ¢, (3.17)

LY 07!'_,'_1 = 0, J 2 2. (318)
Solving the difference equation (3.18) for {m;,7 > 2}, given the initial conditions
mo = 1 and m; = 6 — ¢ obtained from (3.17), we get

_ if j =0,
TT166-¢), ifj>1.

Finally, if the process is stable, its spectral density is

0% |1 -0e 2 02 146°%—-20cosw
w) = _ — —a < <.
fw) 2r |1 —¢pe~|2 27 1+ ¢% — 2¢pcosw’ TswsT

The spectral density is finite at all frequencies if |¢| # 1, and strictly positive at all
frequencies if |6 # 1. O

3.2.2 PREDICTION

This section provides the general solution to the linear prediction problem for a stable
invertible ARMA process. In what follows, we indicate with Z, the information about
the process accumulated up to time ¢, that is, 2, = {Z,,s < t}.
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Theorem 3.5 If {Z;} is a stable invertible ARMA(p, q) process, then

E*(Ziyn|2)) = - Zﬂ’) (Ze+n- jlzf)_zw]Ul+h—jv h=12,...,
Jj=1 Jj=h

where E*(Zyyn_j | 21) = Zyynj for j > h. Further

h—1
E[Zsn —E(Zesn | 20 =02 ) 91 (3.19)

j=0

Proof. Since {Z,} is stable and invertible, we have

x> o0
Ziyph = ijUl+h-js Uigh = Zpn + Zﬂ'jZH-h—j-
Jj=0 j=1

Hence E*(Uy4n | Z2;) = 0 for all h > 1, and therefore

o0
0=E"(Zisn|Z2)+ Y _mE(Zipn_j| Zr),
Jj=1

where E'(Zg+h_j | Zg) = Z¢+h_j fOI’j Z h. Further, since E.(UH.h_j I Z() = Ul+h—j
for any j > h, we get

o o4
E*(Ze+n|20) = ) $Uienos,
J=h
and therefore
Ziyvh —EY(Zisn | 2) Z YiUtvh-j,
i=
from which (3.19) follows immediately. a

The risk (3.19) of the BLP Z;, , = E*(Zi+n|Z2;) cannot exceed that of the
unconditional predictor g = E Z;4p, for which r(u) = VarZiyp = o2 Z, 01/)2
The risk difference between the two predictors decreases as the predictive honzon
h increases and tends to zero as h — oo.

Example 3.19 If {Z,} ~ AR(p) then

—-¢;, ifj=1,...,p,
7!')':{0"’ .

otherwise.
Hence
E'(Ztnl|l20) =2t + -+ 0pZt—pt1 =E(Z141 | Ze-1y - - Zi—pir)-

This has three important implications. First, the BLP of Z,, given Z,,...,Z;_p41
coincides with that based on the whole history of the process up to time t. Second,
U;+1 may be interpreted as the prediction error associated with the BLP of Z;,;.
Third, the partial autocorrelation function of an AR(p) process vanishes for k > p. O
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3.2.3 ARMA-ARCH PROCESSES

The main interest for ARMA processes as models for stationary time series is due
to the fact that they provide a simple and parsimonious way of approximating the
conditional mean of Z;, given the information contained in the history of the process
2, = {Z,,8 < t} up to time t. As shown by Theorem 3.5, conditioning on this past
history is useful because it leads to a lower prediction error variance with respect to
the unconditional prediction case.

Theorem 3.5 also reveals an important limitation of ARMA models, namely the
fact that, while allowing for a flexible dependence of the conditional mean of Z;44
on Z,, they treat the conditional variance of Z;;, too rigidly, by letting it depend
only on the predictive horizon h and not on the accumulated information. The class of
ARMA processes with autoregressive conditional heteroskedasticity or ARMA-ARCH
processes allows the conditional variance of Z; to depend on the past history of the
process. This class of models, and its generalizations, have been applied extensively
to the analysis of financial data, where predicting the variability of a time series is as
important as predicting its level.

A zer-mean time series {Z;} is a pure ARCH(1) process, written {Z;} ~ ARCH(1),
if

Zy =0, Uy, {Ut} ~ IID(O, 1),
where o4, called the stochastic volatility, is an element of a stochastic process that
obeys the relationship
o} =wt+aZl |,

with w # 0 and a > 0 (Figure 27). Since {U,} is an i.i.d. sequence with unit variance
we have

E(Z2|2i-)) =0 =w? +aZl .

Thus, an ARCH(1) process for Z; corresponds to an AR(1) process for Z2.

If 0 < a < 1, then an ARCH(1) process is stationary and its unconditional
variance is equal to > = w?/(1 — a). The difference between the conditional and
the unconditional variance is

2

w a
2 _ -2 _ 2 2 = 72 2 _ 2 =2
0 —0° =w +aZ,_l—1_a—aZ,_l—l_aw =a(Z{_, - %),

which is proportional to the difference between the squared prediction error at time
t — 1 (equal to Z2 | in this case) and its unconditional expectation. By the law of
iterated expectations,

E(Z} | 2121) =8 = E(0},, — 3% Zy)
= E[a(Z} - %) | Z¢-1]

= a(o} - 3?).
Repeatedly applying this recursive formula gives
E(Zh| 2i-1) - 6% = aMt1(22, - 5?), h=1,2,.... (3.20)

ThUS, E(Z'2+h | Zg_l) - 6%2as h o .
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Figure 27 Sample paths of Gaussian ARCH(1) processes.
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Another interesting property of this process is that its marginal distribution exhibits
fatter tails than its conditional distribution. To see this, assume that Z, is stationary
with finite fourth moments and notice that, conditionally on Z;_,, the coefficient of

kurtosis of Z; is

_E(Z4|Z.) _ EUR o
M1 = E(Z2 2 - (BURE DUt

On the other hand, the unconditional coefficient of kurtosis of Z; is

EZ{ _ (Eq)(EU}) _(Eo})*(EU}) _ (EZ})*(EUY) _
(E 212)2 - (E Z;z)2 > ( 22)2 (E 22)2 = Kt|t—1»

Kt =

where we used Jensen’s inequality and the fact that, by the law of iterated
expectations, E Z2 = E o}.
A simple generalization of the pure ARCH(1) process is the pure ARCH(m) process,

where

=2+ +anZl,,,

witha; >0,j=1,...,m—1, and a, > 0, which corresponds to an AR(m) process
for Z2.
A time series {Z;} is called an ARMA(p,q)-ARCH(m) process if it satisfies the
relationship
®(L)Z, = () Uy, {Ui} ~ ARCH(m),

where ®(L) and O(L) are polynomials in the lag operator of order p and g respectively.

Example 3.20 A time series {Z,} is a stationary AR(1)-ARCH(1) process if it
satisfies the relationship

=¢Zi_,+U,  {U} ~ARCH(1),
where |¢| < 1. In this case
E(Zi41]21) = 924, Var(Zi1 | Z1) = W’ + a(Zy - ¢Z;-1)*.
Since Zy4n = ch:o & Ui +n-j, we have

h—-1

Zeen —E(Zen| 2) = ) #Un-jy  h=12....
j=0

Hence, by the recursive formula (3.20), the conditional variance of Z;, is

h-1
Var(Ziin | 24) = Z ¢ E(UP4h_ —il20

h-1
=2 ¢Zj+ah(U2_—2)Z¢2)a—J
j=0

which depends on both the predictive horizon h and the deviation of the quadratic
error U? = (2y — $Z;-1)? from 2. o
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A further generalization is a process exhibiting generalized autoregressive conditional
heteroskedasticity (GARCH) of order (r.m), where

o} =wr+8i0f, + -+ 8 0) i Z ++ a2}

t—m>»

with é,,a;n > 0,8, >0, h=1,...,r—1,anda; >0,j=1,...,m—1. An ARCH(m)
process corresponds to a GARCH(0,m). If ; = Z? — 0? denotes the forecast error in
predicting Z} using its conditional predictor o7, then a GARCH(r,m) process may be
written

Z=w+mZl 42 Vi —aVio - —ar iy,

where p = max(m,r), 7; = a;j + 4, a; = 0 for j > m and §; = 0 for j > r. Thus,
a GARCH(r,m) process for Z, corresponds to an ARMA(p,r) process for Z?, with
p = max(mn,r).

A time series {Z;} is called an ARMA(p, q)-GARCH(r, m) process if it satisfies the
relationship

(L) Z, =60 U,, {Ut} ~ GARCH(r, m),
where (L) and O(L) are polynomials in the lag operator of order p and ¢ respectively.

3.3 MULTIVARIATE TIME SERIES

Very often, the data consist of observations on multiple time series. Thus consider the
case when {Z;} is an m-variate time series, that is, Z; = (Z1,...,Z) is a random
m-vector. If there is correlation between the component series of {Z;}, modeling each
of them separately is likely to be inefficient for it ignores the information contained in
these correlations. This suggests modeling the elements of {Z,} jointly.

3.3.1 STATIONARITY AND AUTOCOVARIANCES

The definitions of weak and strong stationarity are the same as in the univariate case.
Because y4 = E Z; is now an m-vector and

Cov(Zi,Zs) = E(Z) — m)(Zs — p1s) "

is now an m x m matrix, the multivariate process {Z,} is stationary if all elements
of y; do not depend on t and all elements of the autocovariance matrix Cov(Zy, Z,)
depend on the time indices ¢ and s only through their distance |t — s|. Clearly, if {Z,}
is stationary, then all its components are also stationary. The converse is not true in
general, for stationarity of all components of {Z,;} does not guarantee by itself that
the cross-covariances, that is, the off-diagonal elements of Cov(Z;, Z,), depend only
on |t — s|.

If {Z,} is a stationary m-variate time series with mean p, then the m x m matrix

Th=E(Zi = u)(Zisn — 1) = [7ijn)

is called the hth autocovariance matriz. The ith diagonal element v;;, of 'y is the
hth autocovariance of the ith component of {Z,}, while 7,5 is the cross-covariance
between Zy; and Zi,n,;. Because

Yijh = E(Z1i — Ili)(Zl+h.j —pj) =E(Zij — i) (Zi-ni — 1) = Yji~h»



18 ECONOMETRICS

the autocovariance matrix I is not an even function of h. We have instead T_, =T .

Example 3.21 An m-variate time series {Z,;} consisting of uncorrelated random
vectors with mean zero and variance matrix ¥ = [o};] is stationary and its
autocovariance matrix is
¥, ifh=0,
Th= X
0, otherwise.

This time series is called a m-variate white noise, written {Z;} ~ WN,,(0, Z). Notice
that ¥ need not be diagonal, that is, the components of a multivariate white noise
may be contemporaneously correlated. a

A multivariate white noise, defined in the previous example, is the building block
of many multivariate time series models.

Example 3.22 An m-variate time series {Z;} is called multivariate MA(1) process,
written {Z;} ~ MA, (1), if

Zp = U¢ - OU,_l, {U;} ~ WNm(O, 2), (321)

where © = [6;;] is an m x m matrix. An MA,,(1) process is stationary with mean zero
and autocovariance matrix

£+0X07, ifh=0,

T, = -0zx, ifh=1,
h -xoT, if h=-1,
0, otherwise.

Repeated backward substitution in (3.21) gives

x
—

©'z_; =U - 0"U,_,.

<.
I]
(=]

Assume, for simplicity, that the eigenvalues of the matrix © are all distinct. If A
is the diagonal matrix whose diagonal elements are the eigenvalues of ©, and Q
is the orthonormal matrix of the associated eigenvectors, then © = QAQT and
Q* = QA*QT. Hence, limy_0 ©F = 0 if and only if all eigenvalues of © are less
than one in modulus. In this case

k-1
H _ J 12 =
Jim E|| U, ,—-Zo@ Zi;|? =0,

which justifies the representation
oC
Z (‘)J Z(_j = Up,
Jj=0

called the infinite autoregressive or AR,,(00) representation of {Z;}.
An MA,,(1) process is therefore invertible, namely possesses an AR,,(oc)
representation, if and only if all eigenvalues of © are less than one in modulus. This is
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equivalent to the condition that all roots of the equation det[I,, — ©z] = 0 are greater
than one in modulus, that is, det[I,, — ©z] # 0 for all |z| < 1. In such a case we have
that the infinite-degree polynomial matrix

z) =Y Mj2) = (I, - ©z]7!
=0

converges for all |z| < 1. O

Example 3.23 An m-variate time series {Z,} is called a multivariate or vector AR(1)
process, written {Z;} ~ AR,,(1), if it satisfies the relationship

Z—9Z,=U, {U} ~WNy,(0,%), (3.22)

where ¢ = [¢,;] is an m x m matrix. The existence and the nature of a stable solution
to (3.22) depend on the eigenvalues of the matrix ®. Proceeding as in Example 3.22,
it can be shown that, if all eigenvalues of ¢ are less than one in modulus, then the
only stable solution to (3.22) is

= i ¢jljf—j‘r
j=1

where Z°° ®iz) = (I, — 2)! converges for all [z| < 1. If all eigenvalues of &
are greater than one in modulus, then (3.22) possesses the stationary but nonstable

solution
o o]
Z, = - z Q_"Ug.h,'.
j=1

If some eigenvalue of ¢ is equal to one in modulus, then neither representation exists
and {Z,} is nonstationary. Hence, the unique stable multivariate AR(1) processes are
those for which all eigenvalues of ® have modulus less than one. This is equivalent to
the condition that all roots of the equation det(l,, — $z) = 0 are greater than one in
modulus, that is, det(I,, — ®z) #0 for all |z| < 1.

If {Z/} is stable, postmultiplying both sides of (3.22) by Z,_, and taking
expectations gives

r, -er,_,=EUZ ,, h=0,1,2,....
For h > 1, we obtain the matrix difference equation
Iy —&ry_, =0,
whose solution is
Iy ="y, h>1,
where [y is determined by the initial condition
=00 +Z=8[d" +X.
Using the fact that vec (4 + B) = vec.d + vec B and vec (ABC) = (4% CT)vec (B)
(see Appendix A.8), an explicit solution for Iy is
vec ([g) = [Im2 — (@ %0 ®)]7! vec (T).

When m = 1, this coincides with formula (3.7) for a univariate AR(1) process. 0
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3.3.2 MULTIVARIATE ARMA PROCESSES

An m-variate time series {Z,} is called a multivariate ARMA(p, q) process, written
{Z:} ~ ARMA,,(p, q), if it satisfies the relationship

Z, - Q]Z(._l — = QpZ,_p = U[ - G)]Up_l —_— = Gqu_q, {U[} ~ WNm(O,Z),

where ®,,...,%, and O,,...,0, are n x m matrices, with &, # 0 and O, # 0. We
say that {Z,} is an ARMA,(p, q) process with mean p if {Z; — p} ~ ARMA,,(p,q).
An m-variate ARMA(p, q) process may be represented more compactly as

®(L)Z, =0(L)Ur,  {Ut} ~WNn(0,X), (3.23)

where ®(L) = I,y — L —--- —®,LPand O(L) =, — O, L —--- —OQ LY arem xm
matrices whose elements are polynomial lag operators of degree at most equal to p and
g respectively. If the matrices £, ®(L) and ©(L) are all diagonal, then an m-variate
ARMA process reduces to a collection of m unrelated univariate ARMA processes of
order not greater than (p,q).

Two important special cases in the general multivariate ARMA class are the class of
multivariate MA(q) processes, with ®(z) = I,, for all 2, and the class of multivariate
AR(p) processes, with ©(z) = I,, for all z. These are simple generalizations of the
multivariate MA(1) and AR(1) processes introduced in Examples 3.22 and 3.23.

In fact, Example 3.23 is more general than it may seem at first, since every AR(p)
process, univariate or multivariate, may be represented as a multivariate AR(1). For
example, putting

YA U, ¢, - &, @
Ziy 0 I, - 0 0

Zl = . ] Ul = . ] ¢ = . . . . )
Zi—pt1 0 o - Iy 0

an AR,,(p) process may be represented as the mp-variate AR(1) process
Z, -%7Z,_, =1,,

where {U,} is an mp-variate white noise with singular variance matrix equal to

00 --- 0
Q= . . .

In particular, every univariate AR(p) process may be represented as a p-variate AR(1).
It can be shown that an m-variate ARMA process is stationary if all roots of the
equation

0 =det &(z) = det(l,,, — P12 — -+ — $,2P)

are different from one in modulus, that is, det ®(z) # 0 for all z such that |z| = 1.
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An m-variate ARMA process is stable if all roots of the equation 0 = det ®(z) are
greater than one in modulus, that is, det ®(z) # 0 for all |z| < 1. In this case, {Z;}
possesses the MA,,(oc) representation

Zi =Y (L) Uy,
where

¥(2) = i‘lljzj =& 1(2)0(2)
j=0

converges for all [z] < 1. The sequence of matrices {¥;} is the impulse response
function of the multivariate process, and its elements may be computed by applying
the method of indeterminate coefficients to the identity &(z) ¥(z) = O(z).

Finally, an m-variate ARMA process is invertible if all roots of the equation

0 =det©(z) = det(I,, — 1z — -+ — ©,27)

are greater than one in modulus, that is, det ©(z) # 0 for all z such that |z|] < 1.In
this case, {Z;} possesses the AR,,(c0) representation

(L) Z, = Uy,
where o
M(z) =) M2 = 07'(2) ¥(2)
Jj=0

converges for all {z| < 1. The coefficients in II(z) may be computed by applying the
method of indeterminate coefficients to the identity ®(2) = 0(z) I1(z).

Given a stable ARMA,, (p, ¢) process, the inverse of the autoregressive polynomial
$(z) exists for all 2| <1 and is equal to

& (2) = o7 (2) " (2),

where ¢(2) = det ®(2) is a polynomial of degree mp and $*(z) denotes the adjoint
matrix of ®(z). The process may therefore be represented in the equivalent form

(L) Z, =07 (L) Uy, (3.24)

where O*(L) = (L) O(z) is a matrix whose elements are polynomial lag operators
of degree at most equal to p+ q. Representation (3.24) is called the autoregressive final
form of {Z;}.

The term on the right side of (3.24) is a vector of n components, each consisting of
a linear combination of univariate MA processes of order at most equal to p+ ¢. From
Section 3.2, each of these linear combinations may be represented as a univariate \IA
process of order at most equal to p + q. Each component of {Z;} may therefore be
represented as a univariate ARMA process of order at most equal to (mp, p + g), that
is,

(L) Zi; = 65(L) Uy, j=1,...,m,

where {Uy;} is a univariate white noise. Unless ¢(L) and 8;(L) have some root in
common, the autoregressive operator ¢(L) is the same for each component of {Z,},
whereas the moving average operators 6} (L) depend on all the parameters in ®(L) and
O(L). Further, the white noise processes {U;;} driving each component are correlated
with each other.
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3.3.3 IMPULSE RESPONSE ANALYSIS

Let {Z;} be a stable ARMA, (p, q) process. It follows from its MA, (00) representation
that

oo
Ziyh = CoUipn + W1Upn—r + -+ Yp U + Z Y;Upyn—j, h=1,2,...,
j=h

where Yo = Inp, ¥x = [¥ijx] and {U:} ~ WN,,(0,Z). By a straightforward
generalization of Theorem 3.5, the BLP of Z,,, given the information Z; = {Z,,s < t}
accumulated up to time t is

oo
E'(Zeen| 20 =D UUiin-j.
j=h

The associated prediction error is therefore

h-1

Vien = Zisn —EN(Zeyn | 20) = Z ViUpyh—k.
k=0

Clearly, V;+, has mean zero and variance equal to :;(1, \I'kE\I!I.

Without loss of generality, suppose that all components of the vector U; have unit
variance and consider the special case when ¥ = I, that is, the elements of U, are
contemporaneously uncorrelated. In this case, the fact that ¥o = I,, implies that
U:; may be regarded as the shock specific to the jth variable at time t. The generic
element ;% of the matrix ¥, may therefore be interpreted as the effect on Z;; of a
unit shock to the jth variable at time ¢t — k. Further, the ratio

h-1
Zk:o w?]k
h—1
Z;n:l Zk:o wizsk

measures how much of the risk associated with the BLP of Z, 4 ; is due to the sequence
of shocks Uy ,j, . . ., Upsn,j specific to the jth variable. The impulse response functions
{¥ijx} and the variance decompositions of the form (3.25) are important tools for
studying the dynamic properties of a multivariate time series {Z,}. In particular, they
enable one to analyze the mechanisms through which shocks to a specific variable are
transmitted to all the other variables in the system.

The possibility of identifying {U,;} as the sequence of shocks specific to the jth
variable is lost when the components of U; are contemporaneously correlated. Notice
however that, if H = [h;;] is a nonsingular matrix such that HTH = £-! and we
put Vi = HUy, then the process {V;} is also a white noise, but its components are
contemporaneously uncorrelated for

(3.25)

VarV, = HXHT = HHHTH)'HT = I,,.
The MA(oo) representation of Z; in terms of the transformed white noise {V;} is

Zy =0 (L)V;,  {Vi} ~ WNn(0, 1),
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where ¥°(2) = W(z)H~'. The impulse response functions and the variance
decompositions based on this new representation may now be interpreted without
ambiguity.

The problem with this approach is that, since H is not unique in general, the
conclusions obtained about the dynamic properties of {Z,;} may depend crucially on
the particular choice of H. It can be shown that H is unique if it is restricted in some
way. A common approach is to select a particular ordering of the components of the
process and require H to be a lower triangular matrix with diagonal elements all equal
to one. This corresponds to requiring H to be a Cholesky factorization of X. In this
case we have

Va =Uy,
Vie = haiUn + e,

Vim = hmIUtl + hm')Ut? + 4+ hm.m—lUt,m—l + Utm.

In other words, Uy, affects the current value of all components of {Z;}, Uy, affects the
current value of all components except the first, and so on. The last component Uy,
of U, affects only the current value of Z;,,. A system with such a property is called
recursive.

In practice, the dynamic properties of {Z;} may be quite sensitive to the way in
which the components of Z; are ordered. If Z; is an m-vector, then its components
may be ordered in m! distinct ways. It is clear that choosing between these different
recursive models requires some prior information about the structure of the system
represented by {Z;}.

3.3.4 GRANGER NONCAUSALITY

Let {X;} and {};} be any two components of a multivariate time series {Z;}. Define
211 ={2,,s<t-1}, X1 ={X,,s<t -1}, Y1 ={Ys,s <t -1}
Denote by E*(Y; | Z;—1) the BLP of Y; given Z;_, and by

02(Yy| Zi21) = EY; = E* (Y2 | Ze21))?

the associated MSE of prediction. If {Z;} is a Gaussian process, then E*(}} | Z,_,) =
E(Z:| 2¢-1) and 62(Y¢ | Z,-1) = Var(Y: | 2,-1).

Definition 3.8 (Granger) {X,} does not cause {};}, relative to {Z,}, if

o2 (Ye| 2i-1) = 2 (Ve | Zemr — Xica).

It does not instantaneously cause {Y1}, relative to {Z;}, if

A (Ye| X, Ze1) = o> (i | Zi-0).
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Thus, {X} does not (Granger) cause {Y:}, rela’ -e to {Z;}, if the information
contained in the past of {X,} does not help to bet - predict Y; one period ahead.
Similarly, {X;} does not instantaneously (Granger) cause {Y;}, relative to {Z,}, if
knowledge of the current value of X; does not help to better predict the current value
of ;.

Example 3.24 Let {Z,} = {(Y:, X¢)} be the stable bivariate AR(1) process
1-¢nl —¢12L Y: ) _ < U )
—¢aL 11— ¢22L Xy Vi )’

where {(U;, V;)} is a bivariate white noise with variance matrix
-1 ° P oo
2 _— 2 -
U] 2 0-2

Zio1) = onYio + 12X,

and so { X} does not (Granger) cause {};} if and only if ¢;2 = 0. On the other hand,
the BLP of Y; given X; and Z,_, is

The BLP of Y; given Z;_, is
E*(Y;

E* (Y,

- . - o .
Xty 2i-1) = duYe-1 + ¢r2 X1 + 0;22 Vi,
2
and so {X;} does not instantaneously (Granger) cause {};} if and only if o;2 = 0,
that is, U; and 1; are uncorrelated. O

Granger’s definitions of noncausality are based on the assumption that the future
has no influence on the past. Further, they are entirely in terms of predictability and
this must be taken into account in the interpretation.

Notice that (Granger) noncausality is defined with reference to a given “universe”
{Z:}. Adding or subtracting components to Z, may therefore modify the relationships
of noncausality between {};} and {.X,}.

Example 3.25 Let X; = Uy, Y; = 17— and Wy = Uy + V%, where {U;} and {1}} are
independent white noises. If Z, = (XX}, Y}), then {X,} does not (Granger) cause {Y;},
for

E(Yt | Yi-1) =E(Y: | 21-1) = 0.
This is no longer true if instead Z; = (X4, Y3, W}), for then
COV()", “'1_1) _ I’V(._] U!—l + ‘/(_1

Var W, _, Wiy = 2 2 ’

whereas E(Y; | 2¢) = Yi-) = V. 0

E(Y; | X, W) =

Also notice that there is no necessary relationship between the concepts of
noncausality and instantaneous noncausality.

Example 3.26 If {X;} and {}}} are correlated white noises and Z; = (X, }?), then
{X:} (Granger) causes {};} but only instantaneously. If instead Z; = (}3,W;), with
W, = X,_,, then {Y;} causes {W¥,} although not instantaneously. o
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3.3.5 EXOGENEITY

The concept of exogeneity of a random vector X for the parameters of the conditional
distribution of }" given X' was introduced in Section 1.2.2. We now extend this
definition to the case when {X,} and {};} are time serics defined on the same
probability space.

A regular parametric model for a multivariate time series {Z,} = {(X,,}})} is
generally defined by a parametric family Fg of conditional densities of Z; given Z,_,.
Under general conditions, every density in Fg may be decomposed as

f(Ze| 2e-150) = f(Y

Xty Z2-1;0) f(X¢ | 20-156), 6€O.
The corresponding decomposition of the log-likelihood is
Inf(Z¢| 2¢-150) =In f(Y; | Xy, Z42150) +In f(X, ]| 2,1, 0), feO.

If the parameter 6 consists of two functionally unrelated components, that is, § =
(6,,0:), where 8, € ©,, 6, € ©, and © = O, x O,, and if

Inf(Z;| 21-1;0) =In f(Y; | Xy, 24-1561) + In f(X, | 2,_1;62) (3.26)

for all t, then the time series {X,} is said to be weakly ezogenous for ,. Thus, weak
exogeneity of {X,} for 6, corresponds to a decomposition of the log-likelihood of 6
into two separate parts: the conditional log-likelihood In f(Y; | X, Z,_;;8,) of 8, given
X and Z,_1, and the conditional log-likelihood In f(.X, | Z,_;62) of 8, given Z,_,,
with no functional relationship between 8, and 8,. Given 2Z,_,, a sufficient condition is
invariance of the conditional distribution of }; given X to changes in the distribution
of ‘\’g .

If the process { X;} is weakly exogenous for 6, then the components of the likelihood
score are

] A 0 I
a—gllnf(}d-\nzt—l;e)‘—‘(Tollnf(}t X, Zi-1:01),
O (X1 Z00:8) = 2 In f(X, | Z1-1:0)
88-_) Y t—1, = 602 A t—1,092).

Because the second cross-derivatives of the log-likelihood vanish, the components of
the likelihood score relative to 8, and 6. are uncorrelated conditionally on Z;_,. The
proof is completely analogous to that of Theorem 1.3.

Even when {.X;} is weakly exogenous for 8;, the conditional density of .X; given
Z,_1 depends on the whole past history of };. In order to be able to treat X; as
“fixed” in the conditional model for 1} it is therefore necessary to have the stronger
condition that

FX ) Zim1362) = F(X | Xio1562) (3.27)

for all ¢t. This condition, which represents an adaptation to the parametric case of the
notion that {}?} does not (Granger) cause {.X;}, makes it possible to predict .X; using
only its past history and then predict }; conditionally on the predicted value of X,.

Definition 3.9 Given the parametric model (3.26), the time series { .Y, } is said to be
strongly ezogenous for 6, if it is weakly exogenous and condition (3.27) is satisfied. O
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Verifying the definition of strong exogeneity requires knowledge not only of the
conditional distribution of Y; given (X, Z;_;), but also of the conditional distribution
of X, given Z,_,.

Example 3.27 Consider again the case of Example 3.24, but now assume that
{(U, V})} is a Gaussian white noise. The conditional distribution of Y¥; given X, and
Zi_1is N(aYi_, + BX, + vX(-1, 0?), where

a = ¢11 — B¢, B = %‘-2—2, ¥ = ¢12 — B2z, o = ol - B%a2,
2
while the conditional distribution of X, given Z,_; is N(¢21Yi—1 + ¢22 X1, 02).
Exogeneity of {X,} for 8, = (a,B,7v,0?) requires this parameter to be functionally
unrelated to the parameter 6, = (¢21,¢22,a.§) which characterizes the conditional
distribution of X, given Z,_;. This means that changes in 8, can only affect the
parameters @11, ¢12, 0 and 2 through the relationships

611 = a+ Béa, d12 =7 + B2, o} = B%a3 + 0%, 012 = Bol.

In order to be able to treat X; as “fixed” in the conditional model for Y3, it must be
the case that {Y;} does not (Granger) cause {X;}, that is, we must have ¢, = 0. The
process {X:} is therefore strongly exogenous for 8, if it is weakly exogenous and the
conditional distribution of X; given Z,_, is N(¢22 Xy—1, 03). m]

3.4 MODELS FOR NONSTATIONARY TIME SERIES

From the practical viewpoint, the assumption of stationarity is very strong. Many
observed time series, such as a country’s GDP, capital stock, aggregate consumption,
etc., display trends or seasonal components in the levels and sometimes also in their
variability. Figure 28 shows an example of a time series with a strong trend in the
levels, whereas Figure 29 shows an example of one with both a trend and a strong
seasonal component.

3.4.1 DETERMINISTIC COMPONENT MODELS

Nonstationarity in the levels of a time series {Z;} may be modeled in various ways.
In the univariate case, the classical approach assuines the following decomposition

Zy =Ty + St + Uy,

where T; and S; are deterministic functions representing, respectively, the “trend”
and the “scasonality”, and {U,} is a zero-mean stationary process representing the
irregular component of {Z,}. Because Z; — T, — S; follows a stationary process, {Z;}
is sometimes said to be trend stationary.

The trend T, is often modelled as a polynomial or an exponential function of ¢, while
the seasonal component S; is often taken to be a periodic function of period h, namely
such that S,y jn = Sy, |§| = 1,2,.... For example, in the case of monthly data with a
seasonal pattern that repeats itself every year, one may put h = 12. Once the trend



TIME SERIES

Figure 28 Logarithm of real GDP at market prices, Italy. Quarterly data,
1970:1-1998:1.
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Figure 29 Logarithm of the industrial production index, Italy. Monthly data,
1980:1-1998:12.
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and the seasonality have been removed, the resulting time series Uy = Z; — T} — S,
may be analyzed using any of the models discussed in the previous sections.

Although these kind of models are widely used and may provide useful descriptive
summaries of the data, the lack of flexibility limits considerably their usefulness for
prediction purposes.

Example 3.28 Let {Z,} be a time series such that
Zl =n +Uh {Uf}~WN(0102)9

where T is a deterministic function. If T, = a + St, the time series is said to contain
a deterministic linear trend. In this case

Ziyk =a+ B(t + k) + Upsr, k > 0.

Since E Z;;xU; = 0 for £ > 0, the BLP of Z;, given the information contained in
the history of the process up to time ¢ is

E*(Zt4x | Z¢) = (a + Bt) + Bk = oy + Bk, k>1,

where the intercept a; = a + 3t is a deterministic function of ¢. This model is not well
suited for prediction, because it implies that

E*(Ztsx | Z2e41) = EX( 214k | 20), k>1,

that is, the arrival of the new information contained in Z;;, does not lead to any
revision of the BLP of Z, 4. m]

3.4.2 INTEGRATED PROCESSES

Let the time series {Z;} be nonstationary in the levels. A more flexible alternative to
deterministic trend models consists of modeling as stationary the time series obtained
by applying to {Z;} the first difference operator A = 1 — L a finite number of times.

Definition 3.10 A time series {Z,} is said to be integrated of order d, written
{Z:} ~ I(d), if {AZ;} is a stationary time scries. 0

Thus, a random walk is I(1), while a stationary time series is I1(0). For simplicity, we
shall only consider the case when the order of integration d is a non-negative integer.
Because A?Z, follows a stationary process whenever {Z;} ~ I(d), {Z;} is sometimes
said to be difference stationary.

Notice that if Z; = In X; then

X, ( X — .\’1_1) X - X,
AZj=In——=In|1+ ~ = — .
! X Xia X

Thus, the first difference of the logarithm of a time series (see Figure 30 for an example)
has a natural interpretation as an approximation to the growth rate of the series over
the given time interval. In particular, if a time series represents the price of an asset,
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Figure 30 Time series obtained by applying the first difference operator A =1-1L
to the data in Figure 28. It is approximately equal to the quarterly growth rate of
real GDP at market prices in Italy.
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then taking the first difference of its logarithm gives the continuously compounded
rate of return on the asset.

Of particular practical importance is the class of autoregressive integrated moving
averages or ARIMA processes, that is, processes that may be represented as stationary
ARMA processes after applying the first difference operator a finite number of times.

Definition 3.11 A time series {Z,;} is called an ARIMA process of order (p.d,q),
written {Z;} ~ ARIMA(p,d, q), if it satisfies the relationship

(L)(A'Z, —p) = O(L)U;,  {Ur} ~WN(0,0%),

whered=1,2,...,®(z)=1—-¢12— - —¢pzPand O(z) =1 -0,z — .- — 6,27, with
¢p,0, # 0 and ®(z) #0 for all |z] = 1. 0

Hence, {Z,} ~ ARIMA(p,d,q) if {A9Z,} is a stationary ARMA(p,¢) process with
mean . The inclusion of a constant g allows for a deterministic polynomial trend of
degree d. If u = 0, then an ARIMA(p, d, ¢) process may equivalently be represented as
a nonstationary ARMA(p + d.q) process, where the autoregressive operator is equal
to ®(L)(1 — L)* and therefore contains d unit roots.

Example 3.29 A time series {Z;} such that
Zy=Zi + 53+ Uy, {Ui} ~ WN(0,0?)

is called a random walk with drift 8. This is an ARIMA(0, 1,0) process since {AZ,}
is a white noise with mean 3 and variance o?. Repeated backward substitution gives
k
Zt+k=Z¢+ﬁk+ZU,+h, k>0.
h=1
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Figure 31 Sample paths of a Gaussian ARIMA(0, 2,0) process starting at time
t =0 with Zo = 0.
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Hence, the process {Z;} contains a deterministic linear trend. The BLP of Z;, given
the information available up to time ¢ is

E‘(ZH.;; I Z() = a; + Bk, k>0,

where a; = Z;. Thus, the model corresponds to a linear trend model with an intercept
a; that follows a random walk with drift. In this case, the arrival of the new information
contained in Z;,, leads one to revise the BLP of Z;,, which becomes

E*(Zesk| Z2e41) = ag41 + Bk - 1), k>1,

with a;41 = Zy41. This model is an example of a stochastic linear trend model. O

Example 3.30 A time series {Z;} such that
Zy—2Zy_\+ Zi_o = Uy, {U(} ~ WN(0,0’z)

is an ARIMA(0, 2,0) process, for applying the difference operator twice produces a
white noise with variance o? (Figure 31). Repeated backward substitution gives

k
Zigk =2+ (2o - Zia)k+ Y (k—h+ D) Un, k>0
h=1

Hence
E*(Ziyr | 20) = Z¢ + (2t — 241 )k = oy + Bik, k>0,

where §; = Z; — Z,_, and a; = Z,. This process therefore corresponds to a linear
trend where both the intercept and the slope evolve stochastically. ]
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Figure 32 Time series obtained by applying the seasonal difference operator
(1 — L%) to the data in Figure 28. It is approximately equal to the annual growth
rate of real GDP at market prices in Italy.
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Figure 33 Time series obtained by applying the seasonal difference operator
(1 — L'?) to the data in Figure 29. It is approximately equal to the annual growth
rate of the Italian index of industrial production.
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By analogy, a more flexible alternative to models with deterministic seasonal
components of period k is the class of seasonal ARIMA processes, where the difference
operator A¢ is replaced by the seasonal difference operator (1 — L*)4. Figures 32 and
33 show examples of time series obtained by applying seasonal difference operators.

In general, given an ARIMA process, the variance of the time series obtained
after repeated application of the difference operator first tends to decrease, reaches
a minimum when a stationary and invertible process is obtained, and then increases
again. This suggests some care is required in applying the first difference operator:
overdifferencing may introduce a noninvertible MA component that increases the
variance of the series and may create problems at the estimation stage.

Example 3.31 Applying the difference operator to a random walk {Z,} gives AZ, =
U,, with Var AZ, = o2%. Applying the difference operator further, gives

A*Z, = AU, Var A*Z, = ko?, k>1.

Although {A*Z,} is an MA(k—1) process, and therefore stationary, it is not invertible
since all roots of the moving average polynomial (1 — 2)* are equal to one. a

An m-variate time series {Z,} is a multivariate ARIMA(p,d,q) process, written
{Z:} ~ ARIMA,(p,d, @), if it satisfies the relationship

®(L)DZ, =O(L)U;,  {Us} ~WNn(0,%),

with
A
Dd — .. ,
Adn

where d = max(d,...,dn) and det ®(z) # 0 for all z such that |z| = 1. Hence, {Z,}
is an ARIMA,(p,d, q) process if {A%Z,} is a stationary ARMA,,(p, q) process. Since
the order of differentiation needed to achieve stationarity may be different for each of
the components of {Z,}, applying the difference operator the same number d of times
to all series in {Z;} may result in a noninvertible process, unless d, = --- = dp,.

3.4.3 COINTEGRATION

In practice, one often faces the problem of modeling a set of time series which, although
individually nonstationary, tend nevertheless to move together, in the sense that they
tend deviate little from each other. One example is shown in Figure 34.

Definition 3.12 An m-variate time series {Z,} is called a cointegrated system of order
(d,b), written {Z,} ~ CI(d,b), if all its components are I(d) and there exists a vector
a # 0 such that a” Z; ~ I(d — b), with b > 0. The vector a is called the cointegrating
vector. 0

If a random walk is a model for a drunkard’s walk, a cointegrated system of order
(1,1) is a model for the walk of a drunkard and his dog.
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Figure 34 Logarithm of real consumption (C) and real GDP ('), Italy. Quarterly
data, 1970:1-1998:1.
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Example 3.32 Consider the bivariate time series {(X¢,Y;)}, where both {X;} and
{}:} are I(1) processes. If

Y, =8X,+ Uy, {Ut} ~ MA(q),

where 3 # 0, then {Y;} and {XX;} form a cointegrated system of order (1,1) with
cointegrating vector equal to (1, —3). 0

Under what conditions is {Z;} a cointegrated system? Suppose, for simplicity that
all components of {Z,} are I(1) and that {AZ} is a stable ARMA process. In this
case, AZ; possesses the MA(oc) representation

AZ =¥ (L)U,,  {U} ~WNy,L(0,X),

where ¥(z) = 3°72,%,27 = &7'(2)/6(z) converges for all |z| < 1. The latter
condition implies that ¥(1) = 2, ¥; exists and therefore allows us to define the
polynomial operator B(z) = ¥(2) — ¥(1). Since B(1) = 0, such an operator may also
be written as B(z) = (1 — L)B*(z), where B*(1) # 0, and therefore

P(z) = ¥(1) + B(2) = ¥(1) + (1 — 2)B*(2).
Hence, an alternative representation of AZ; is

1-L)Z,=¥(1) U+ (1 - L)B*(L) Uy, {U} ~WN,(0, %), (3.28)

Suppose that the matrix ¥(1) is singular. Then there exists a vector a # 0 such
that a” ¥(1) = 0. Premultiplying (3.28) by a' gives

(1-L)a"Z,=(1-L)a'B*(L) Uy,
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which implies that {a'Z;} is a stationary process provided that {B*(L) U} is
stationary. Since {AZ,} is a stable ARMA process, the latter condition is satisfied and
we conclude that {Z,} is a cointegrated system of order (1,1) whenever the matrix
¥(1) is singular, that is, has rank k < m. Because the dimension of the null space of
(1) is in this case equal to m — k, there exists a matrix A of order m x k, whose
columns are the eigenvectors associated with the zero eigenvalues of ¥(1), such that
X; = A7 Z, is a k-variate stationary process. The columns of A are the k cointegrating
vectors of the process {Z,}.

From the practical viewpoint, an important consequence of the property of being a
cointegrated system is that {Z;} possesses the representation

C(LYAZ, =GA"Z,_, + U;, (3.29)

called an error correction model, where the expressions for the m x k matrices C(2) and
G, the latter of rank k, may be found in Engle and Granger (1987). The representation
(3.29) establishes a relationship between the short-term dynamics of the system
and the deviations GA" Z,_, + U, from the long-run equilibrium relationship. This
relationship is excluded by a simple m-variate AR model for AZ,, which is therefore
incompatible with the assumption that {Z;} is a cointegrated system.
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The concept of cointegration has been introduced by Granger (1981). Some
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and Granger (1991).

PROBLEMS

3.1 Let {Z:} be a sequence of independent random variables such that Z; has an £(1)
distribution if ¢ is even and a A(1,1) distribution if ¢ is odd. Show that the process {Z,} is
stationary but not strictly stationary.

3.2 Let {X:} and {};} be stationary time series that are uncorrelated with each other.
Show that {X; + }:} and {X, — }}} are also stationary and determine their autocovariance
functions.

3.3 Show that a time series that starts at time ¢ = 0 with Zy = 0 and evolves through time
according to the relationship Z; = —Z,_, + U, where {U1} ~ WN(0,0?), is nonstationary.

3.4 Let {Z:} be a random walk. Compute the correlation between Z; and Z;+» and show
that Cov(Z;, Zy4+n) = 0 as h = oo with t fixed and Cov(Z;, Zi4n) — 1 as t = oc with h
fixed.

3.5 Give sufficient conditions for stationarity of the time series Z; = acos(At) + Asin(At),
where @ and 3 are random variables with zero mean and finite variance.

3.6 Determine the constraints that the stationarity hypothesis places on the autocovariance
matrix ', when n =2 and n = 3.

3.7 Consider a time series {Z,} that satisfies the relationship
Zy=p+V+U,  {U}~WN(0,0}),

where the random variable V" has mean zero, finite variance and is uncorrelated with the
process {U;}. Given a finite segment Z,,...,Z, of the time series, is the sample mean
Z=n" Z: Z, unbiased for u? Compute the variance of Z and study its behavior as n = co.
Comment on this result.

3.8 Check that the AR(oc) representation of an invertible MA(1) process satisfies (3.4).
3.9 Verify that the MA(oo) representation of a stationary AR(1) process satisfies (3.6).

3.10 Show that |p| < .5 for an MA(1) process and that |p;| < cos[r/(g + 2)] for an MA(q)
process.

3.11 Compare the autocovariance functions of the following processes:
X =U = 61Ui-1 — 02U, -2, {U} ~ WN(0,0?),
Y, =¢1Yio + @Y+ U, {Ur} ~ WN(0,07).

3.12 Determine which of the following processes is stable or invertible:
(l) Ziy+ 22y, — 482,_, = Uy;
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(ll) Z¢+192Z,., + 8822 =U; + .2U;-1 + .7U¢_2;
(lll) Zy+ 6292 =Up +1.2U; -,

(iv) Z+182Z,_, — 8122 =Uy;

(V) 2y +16Z_ + .88Z1_2 = Uy — .4U;_ + .4U;—o.

3.13 Verify formula (3.12) for an MA(1) and an AR(1) process.

3.14 Verify that the second-order polynomial $(z) = 1 — ¢12 — ¢22z° may equivalently be
written as
®(z) = (1 - A\ L)(1 - AL),

where A; and A; are the roots of the characteristic equation 0 = 22 — ¢,z — ¢2.

3.15 Study the behavior of the autocovariance function and the sequence of coefficients {1);}
and {m;} of a stable invertible ARMA(1, 1) process if, alternatively, # =0, ¢ = 0, and 6 = ¢.

3.16 An investigator assumes that the observed data have been generated by a stationary
AR(6) process and, using an appropriate procedure, obtains the following parameter estimates

br=4, $2=-.36 $3=.32, Pa=-.29, ¢5=.26, = —.23.

Show that these six parameters could as well be represented in terms of the two parameters
of an ARMA(1,1) model. Discuss the relative advantages of the two models.

3.17 Using the parameters computed for the ARMA(1,1) model of the previous problem,
calculate its first autocorrelations. What feature of the estimated autocorrelations would lead
you to immediately reject an AR(1) specification for the process?

3.18 Compute the coefficients {;} in the AR(oo) representation of the process
Zy — 5241+ 4245 = Ug + .25U;,, {Ug} ~ WN(O, 02).
3.19 Given a zero-mean stationary process {Z,}, define the processes

Xt =2y ~252Z, Ye =21 — 421

(i) Express the autocovariance functions of {X.} and {Y:} in terms of that of {Z:}.
(i) Show that {X.} and {Y:} have the same autocovariance function.
(iii) Show that the process U, = — ;’il(.4)’ZH._, satisfies the relationship U, —
2.5U¢-1 = Z.

3.20 Show that instantaneous (Granger) noncausality is necessarily symmetric, that is, { X}
does not instantaneously cause {Y;} if and only if {};} does not instantaneously cause {X.}.

3.21 Draw the autocorrelation function of the first difference of an AR(1) process with
¢ =.5.

3.22 Show that if m, is a polynomial in t of degree p, that is, m, = 2;.’:0 cjt!, t =0,%1,...,
then Am; is a polynomial in t of degree p — 1, and therefore that AP*!'m, = 0.
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3.23 Consider the time series
Ze=p+S+U, {U}~WN(©O,0%,

where S is a periodic function with period h, that is, S(t + jh) = S, for |j| = 1,2,.... Show
that the time series X, = (1 — L") Z, contains no periodic component but is noninvertible.

3.24 Suppose that the time series {Z,} satisfies
Z0=Y) U-,,  {U}~WN(©0,0%).
=0

Define
1 val‘(Zg+h+1 —Zg)

h+1 Var(Zi41 — 2) '
and consider the following measures of persistence of the series

Vi =

A= lim s, V = lim V.
h—oc h

Show that:

(i) if {Z.} is a stationary process, then A =V = 0;
(ii) if {Z,} is a random walk, then 4 =V = 1;
(iii) if AZy = Z, — Z,_1 is a stationary process, then 4; = Z;l:o ¢hr, where o, is the
jth coefficient in the MA(oo) representation of AZ,, and

where p; is the jth autocorrelation of AZ;.



4
Point Estimation

The problem of point estimation is one of using the sample information in order to
obtain a plausible approximation to some aspect of the population from which the
sample has been drawn. Once the population aspect of interest is defined, various
estimation methods are often available. Given a statistical model, we distinguish
between two broad classes of method. The first class consists of methods that are
based only on the sample information and the assumed statistical model. The second
class consists of Bayes methods, which combine the sample information with prior
information that goes beyond that contained in the specification of the statistical
model.

4.1 THE ANALOGY PRINCIPLE

The empirical distribution function introduced in Section 2.2.2 is the basis of a
wide class of methods for point estimation. These methods share the feature of
approximating a population aspect of interest by its sample counterpart, obtained
by substituting the population distribution function F' with the empirical distribution
function F in the definition of the population aspect of interest. This idea, simple
and extremely fruitful, is known as the analogy principle (Manski 1988b, 1994), or
the bootstrap principle (Hall 1992, 1994), or the plug-in principle (Efron & Tibshirani
1993).

More precisely, suppose that the population aspect of interest is a parameter
@ = T(F), defined as the value corresponding to F of a statistical functional T'(-).
If the data are a sample from the population, then the analogy principle suggests
estimating §(F) by the value corresponding to F of the statistical functional T(.),
namely 6 = T(F). Because, as n — oc, F converges to F under general conditions
(Section 2.2.2), 6 may be cxpected to converge to the target parameter 8 provided
that T(-) is a continuous functional.

It is important to observe that, while the analogy principle provides a general
method for constructing plausible estimators, it does not ensure by itself that an
estimator obtained in this way has particular desirable properties, except the obvious
one that computing the estimator using the population distribution function F instead
of the empirical distribution function F gives the population parameter 6. This
property is sometimes called Fisher consistency. Formally, a statistical functional
is Fisher consistent for a parameter § = T(F) if 86(F) = T(F). If 8 is a continuous
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functional, then Fisher consistency implies consistency, that is, (F") 5 6(F).

In what follows we shall sometimes use the notation of the Stieltjes integral (see
e.g. Apostol 1974). Given a distribution function F and an integrable function g, we
define

Er9(2) = / o(z) dF(z) = [ o(2)f(2) dz

if F is continuous with probability density function f(z), and
Er9(2) = [ 9(:)dF(:) = ¥ 921 (2)
J

if F is discrete with probability mass function f(z;). In particular, because the
empirical distribution function F is discrete, with a probability function that assigns
probability mass 1/n to each distinct sample point, we have

B 9(2) = [ 9()dF(z) =n" Y o(2).
i=1

If § = T(F) = Erg(Z) is the target parameter and § = T(F) = E;g(Z) is an
estimate of # based on the analogy principle, then the estimation error is equal to

6-6=T(F) -T(F) = [ g(a) aF(e) - aF(a))

which shows that the estimation error ultimately depends on how close F is to F.
The next sections discuss various applications of the bootstrap principle.

4.2 ESTIMATING MOMENTS AND QUANTILES

The estimation of moments or quantiles often represents one of the first steps of a
statistical analysis. It is an important step, both for exploratory purposes and because
it may suggest a particular parametric model for the data. Further, estimated moments
and quantiles may be used to derive simple estimates of the parameters of a parametric
model.

4.2.1 SAMPLE MOMENTS

Given a random variable Z with distribution function F and a positive integer k, the
kth (noncentral or raw) moment of Z is defined as

ur =Ep 2k = /z"dF(z),

assuming that the integral is finite. The moment corresponding to k = 1 is just
the mean of Z. If Z,,...,Z, is a sample from the distribution of Z, then the
analogy principle suggests estimating u, by the corresponding moment of the empirical
distribution function, namely

jix =Ep 2% = /z"di‘(z) =n! z zk,
i=1
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called the kth (noncentral or raw) empirical or sample moment.
It follows from Chapter 1 that, if Z has finite moments up to order 2k, then its kth
moment g is also the unique solution to the prediction problem
min Ex(Z* - ¢)%. (4.1)
ceR

It is easily verified that the kth sample moment /i is the unique solution to the sample
counterpart of problem (4.1), that is,

: 7k _ 2 o] k_ )2
min Ef(Z% —c)" =n ; (Z§ —o)*.
This problem is called a least squares (LS) problem.

Two of the sampling properties of ji, are immediate. First,

n
Er iy =n"" Z Er ZF = u,

i=1

that is, fix is an unbiased estimator of ui. Second, if Z has finite moments up to order
2k, then the sampling variance of fi; is

Varg ji, = n~" Varg Z¥,

where
Varg ZF = Ep Z2* — (EF Z})? = pax — 11},

which shows that the precision of jix increases with the sample size n. This implies that
the sequence of estimators {fin« } corresponding to increasing sample sizes is consistent
for pg.

Except in special cases, exact results on the shape of the sampling distribution of
empirical moments are not available and one typically relies on approximations valid
for large samples, such as the theorem below.

Theorem 4.1 Let Z,,...,2Z, be a sample from a distribution with finite moments up
to order 2k. Let pu = (py,...,px) and let f1,, be the corresponding vector of sample

moments. Then /a (i1, — 1) > Nx(0,AV(i,,)), where

Var Z; Cov(Z;,22) ... Cov(Z;,Z})
) Cov(22,Z)  VarZ? ... Cov(Z?Z¥)
Av(p'n) = : : .
Cov(Zk,Z;) Cov(ZF,Z2) ... Var Z¥

4.2.2 ESTIMATING THE MOMENTS OF A STATIONARY TIME SERIES

Estimating the mean and the autocovariances or autocorrelations is often the first
step in the process of specifying a model for a time series that appears stationary,
possibly after differencing or some other transformation. For example, if the estimated
autocorrelations are all approximately equal to zero after g lags, then it seems
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reasonable to consider an MA(q) model. If the estimated autocorrelations decline
exponentially starting from the origin, then an AR(1) model may be considered. If
the exponential decline starts from the first lag, then an ARMA(1,1) model may be
considered instead. In this section we discuss estimates based on the analogy principle.

If {Z,} is a strictly stationary time series, then its mean and its hth autocovariance
are defined respectively as

p=EpZ = /zdF(z),
Y =Ep(Zt — 1)(Z4n — 1) = /(z - u)(2' = p)dFy(z,2'),

where F denotes the marginal distribution function of Z; and F}, denotes the bivariate
distribution function of Z; and Z;, . Under the strict stationarity assumption, F does
not depend on ¢ and F} only depends on the distance h between the two time indices.

If Z\,...,Zy is a finite segment of this time series, then the sample counterpart of
F is the empmcal distribution function F(z) = 15 1{Z; < z}. If n > h, the sample
counterpart of F}, is

) ’ 1 n—h ,
Fi(z,2) = — > 1{Z < 2,Zn < 2'),
t=1

that is, the fraction of pairs (Z;, Z,;+) of sample observations (there are n —h of them)
such that Z; < z and Z;4, < 2’. The analogy principle then gives, as estimates of u
and -y, the following time averages

Z:%ZZ,,

Z(z, WZisn—2),  h=0,1,...,n-1

=
Because py, = /70, the hth autocorrelation may be estimated by

pn = I _ _n ZI’;"(Z: - Z)(Zt_+h -2)
Yo n—h Z?:l(zl - 2Z)? ,

h=1,...,n—-1.

Alternatively, v, and p, may be estimated by

Y =

B

i - 2)(Zin - 2),

I o_ M2 - Z)(Zt_+h -2)
Yo 1=1(Z — 2)?

pn =

Now consider some of the sampling properties of these estimates. The sample mean Z
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is clearly unbiased for u. Its sampling variance is
. s 1
VarZ=— 3 S v,
1
= 5o+ (=D +7-0) + -+ (s +71-0)]

1 n-1 ( Ihl)
- Z - ] Yh»
n n

h=1-n

where we used the fact that the autocovariance matrix I, associated with Z,....,Z,
is band diagonal. To guarantee that Var Z — 0 as n = oc, implying that the precision
of Z increases with the length n of the observed time series, some restrictions must
be placed on the behavior of the autocovariance function {vs}.

Because VarZ < n~! Zz;:_n vh, a sufficient condition is 3 ;2 ___ y» < oc, that
is, the autocovariance function must decline fast enough. If this condition is satisfied,
as in the case of a stationary ARMA process, then the mean . may be estimated to
an arbitrary degree of accuracy by the time average of a single sample path, and the
process {Z;} is said to be ergodic. Ergodicity ensures that increasing the number of
periods for which the time series is observed gives increasingly precise estimates of u
even when we cannot observe different sample paths of the process.

Example 4.1 Let the data consist of n consecutive observations on the stationary
process introduced in Example 3.8, namely

Zy=pu+V +U, {Ut} ~ WN(0,0?),

where 1" is a zero-mean random variable with variance w? > 0and EVU; =0 for all
t. In this case, the sampling variance of the sample mean Z is

ez 1 2, 2 2 2, 0
VarZ = E[n(w +0°) +n(n - 1w’] =w* + et

Because Var Z — w? > 0 as n — oc this process is not ergodic. u]
Turning to the sample autovariances, assume first that g is known and without loss
of generality let u = 0. In this case

n—-h
Y EZiZisn = m,

=1

1
n-nh

E:ﬁh =

that is, 9, is unbiased for 4. Since 4, = [1 — (h/n)] 4a, the estimator ¥, is instead
biased for 4, unless h = 0 or v, = 0, and its bias is equal to —(h/n)y,. When h is
large relative to n, this downward bias is sizeable. For this reason, Box and Jenkins
(1977) recommend using 4, only when n > 50 and h/n < 1/4. Although biased, ¥,
has one advantage over ¥, namely the fact that the sample autocovariance matrix

-~

T

-1 - Yo
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is n.n.d., and is nonsingular if 49 > 0.
The sample autocovariances are quadratic forms in random variables that are
correlated in general. This creates a number of problems:

1. for the variance of a quadratic form to be finite, the fourth order moments
of the elements of {Z;} must exist, but the (weak) stationarity assumption
is not enough to guarantee this;

2. even if the fourth moments of {Z;} exist and agree with strict stationarity,
the expressions for the second moments of the sample autocovariances are
quite complicated (see e.g. Anderson 1971, Section 8.2);

3. because the sample autocovariances and autocorrelations are generally
correlated, interpreting a sample autocovariance or autocorrelation function
requires some care.

Things become even more complicated when g is unknown and must be estimated
by Z, as is usually the case in practice. It can be shown that 4, and 9, are now both
biased for <y, in general, although 4, may have a smaller bias than 4, for all h # 0 for
which the two estimators are defined (Percival 1993).

Important simplifications are obtained if we consider the behavior of 4, and 44 in
large samples, where they are essentially equivalent. The next result provides a large
sample approximation to the joint distribution of a finite set of sample autocovariances
when the underlying time series is 2 Gaussian linear process. The result is independent
of whether u is estimated by Z or is known.

Theorem 4.2 If Z,,...,Z, is a finite segment of a Gaussian linear process {Z;}
then, as n — oo, the (m + 1)-vector Vn[(%0 — %), (71 = M)s---» (hm — Ym)] has a
limiting multivariate Gaussian distribution with mean zero and covariance matriz £
= [onk], where

oo
onk = 3 (ViVith-k + VisnViok)-

j=—00

Proof. See Anderson (1971), Theorem 8.3.2. m]

It follows from Theorem 4.2 that the asymptotic variance of ¥y, is

[ o]
one =D (2 +Visnvion)-
j=-o0

If {Z,} is not Gaussian, vs, has a slightly more complicated expression which involves
the fourth moments of {Z,}.

We now present a result on the limiting distribution of the sample autocorrelations
An = n/%o-
Theorem 4.3 Let Z),...,Z, be a finite segment of a linear process {Z;} whose
sequence of weights {1} satisfies 372 |j|$? < oco. Then, as n — oo, the m-
vector \/n[(p1 — p1),-..,(P1 — pm)] has a limiting multivariate Gaussian distribution
with mean zero and covariance matriz Q = [whx], where

o0
Whi = Z (Pi+hPi+k + Pi-hPj+k — 2PnPjPj+k — 2PkPjPj+n + 2/’th/’3)~ (4.2)

Jj=-oc
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Proof. See Anderson (1971), Theorem 8.4.6. O

Expression (4.2) is often referred to as the Bartlett formula. It implies that the
asymptotic variance of p, is given by

> &)
Whh = Z (03 = pj-npj+h — 4PnP;Ph+j + 20405).

j==

Notice that, unlike the case of sample autocovariances, we require neither {Z,} to be
Gaussian nor conditions on its fourth moments.

For a time series with a correlation function that approaches zero rapidly, convenient
approximations to (4.2) are available. For large values of h, the asymptotic covariance
between j, and gy may be approximated by

x
Whe = Z PjPj+|h—k|:

j==o0

The corresponding approximation to the asymptotic variance of py is

0 <
Whp = z pf=1+2z:pf~.
j=1

j=—

4.2.3 THE METHOD OF MOMENTS

It may sometimes be known that certain population moments are themselves functions
of a p-dimensional parameter § € ©. One may then construct an estimate of 8 by first
inverting the relationship between 8 and the selected population moments, and then
replacing the latter by estimates based on the analogy principle. This method is called
the method of moments (MM).

Example 4.2 Let Z,,...,Z, be a sample from the distribution of a random variable
Z with finite mean p. If Z has an exponential distribution with parameter #, then
8 = 1/u. Provided that Z > 0, a MM estimate of 8 is therefore § = 1/Z. Although Z
is an unbiased estimator of u = 1/6, Jensen inequality gives

- 1
E0=E — =40
>E R

N —
N

that is, 6 is an upward biased estimator of 4. In the exponential case, the variance of
Z is 02 = 1/6? and so another M) estimate of 8 is § = 1/, where 6? is the sample
mean squared deviation of Z;. Which estimate should one pick?

We have a similar problem if Z has a Poisson distribution with parameter 6. Because
6 = 4 = o* in this case, both the sample mean and the sample variance may be used
to estimate 6. a

The two problems raised in the last example are typical of the MM. First, this
method does not guarantee that the proposed estimator of 8 is unbiased. Second, the
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method may suggest more than one estimator for the same parameter. Chapter 11
discusses generalized MM estimators for the case when the number of restrictions on
the population moments is greater than the number of parameters to be estimated.

We now present two examples of MM estimators of the parameters of a stationary
time series model.

Example 4.3 Suppose that the data consist of n consecutive observations on the
MA(1) process
Zy=U - 8U,_y, {U} ~WN(0,0%),

where  and 0% are unknown parameters. Given estimates 9o and 4; of 7y and v,
respectively, MM estimates of the unknown parameters may be obtained by solving
with respect to 6 and o2 the pair of nonlinear equations

;)'0—02(14-92) =0,
00 +60% = 0.

If the invertibility condition is imposed, then this method gives unique estimates of 8
and o2. o

Example 4.4 Suppose that the data consist of n consecutive observations on the
stable AR(p) process

Zy =2y + -+ ¢pli_p + Uy, {Ui} ~ WN(0,0?), (4.3)

where ¢y,...,¢, and 0% are unknown parameters. Multiplying both sides of (4.3)
by Zi_n, h = 1,2,...,p, and taking expectations using the fact that EU,Z,_, = 0,
gives the following set of relationships between the autocovariances and the model
parameters

7h=¢l7h-—l+"'+¢p7h—pv h=1a2s'-'1p'

Viewed as a system of p linear equations in the p-vector ¢ = (¢1,...,¢y), these
relationships are called Yule-Walker equations. Replacing the autocovariances v, by
the sample autocovariances 4, gives the equation system

Yo o0 Ap-1 o %)
:Yp—l e '5’0 ¢p :Yp
whose solution provides a MM estimate ¢ = (él,...,é)p) of ¢. Using the biased

estimator 9, guarantees that the matrix on the left-hand side is p.d. whenever 4 > 0.
Further, because

o’ = -d1m - — dpp,
the variance of the white noise process {U;} may be estimated by
6% =% — 1 = = $pp.
It can be shown that the AR(p) process corresponding to these estimates, namely

Zie=$iZioi+ -+ pZi_p+ U, {U} ~ WN(0,62),
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is stable and its autocovariances coincide, for h = 0,1,...,p, with the sample
autocovariances.

The simplicity with which the parameters of an AR(p) model may be estimated and
the fact that, for sufficiently large p, such a model provides a good approximation to
any invertible ARMA process, explain its widespread use in empirical applications. O

Obtaining the sampling properties of a function 6= h(f1) of a k-vector of sample
moments is straightforward when h: R% — RP is a linear function, that is, h(2) = C
for some p x k matrix C. In this case, if E 1 = p and Var i = &, then Ef =Cp and
Varf = CECT. Further, if & ~ Ni(pt, E), then § ~ Np(Cu, CECT).

The following result is useful when the function h is nonlinear but smooth, or we
can only assess the large sample behavior of a sequence {f1,,} of empirical moments.

Theorem 4.4 Let the function h: R* — RP be differentiable at the point . If
the Jacobian matriz h'(u) has rank p < k and (i, — p) LN N(0,X), then

VA [A(f,) = h(R)]) S Ny (0,1 (1) SR (1) T).

Proof. Immediate using Theorem D.21. ]

Example 4.5 To appreciate the condition on the rank of the gradient matrix h'(u),
consider the limiting distribution of h(Z,) = Z2 when /7 (Zn — ) S A(0,02). Because

K'(z) = 2z, Theorem 4.4 gives \/n (22 — p?) 5 N(0,4%02) for all p except i = 0, for
which h(0) = 0. o

4.24 SAMPLE QUANTILES

Recall that a pth quantile of a random variable Z, with 0 < p < 1, is any number ¢,
such that

Pr{Z < (} <p<Pr{Z <(}

If Z\,..., Zn is asample from the distribution of Z, then the analogy principle suggests
estimating (, by the corresponding empirical or sample quantile, that is, a number (,
such that

n n
n'S HZi< Gy <p<nTt Y 1{Zi< G}
i=1 i=1

or, equivalently,
n

Z 1{Z <ép} S"PSi {Z; Sép}'

i=1 i=1

It is easily verified that such a (,:p always exists, and is unique if np is not an integer.
In particular, the sample quantile corresponding to p = 1/2 is the sample median,
denoted here by f In fact, if Zj;) < --+ < Zj, are the sample order statistics, then
the sample median is equal to Zy), with k = (n +1)/2, when n is even, and is a point
in the closed interval [Z(4}, Z[x41)], With k = n/2, when n is odd.
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Figure 35 Criterion function of a LAD problem. The vertical bars on the r-axis
denote the data points. The figure shows how the criterion function changes by
adding to the first five observations the point Zg = 2.5.

12 T T T T T T
n=5 ——
n=6------

Recall from Section 1.3.1 that a pth quantile of Z may equivalently be defined as a
solution to the problem

i (2 —
min Er €5( ), 0<p<l,

where ¢, is the asymmetric absolute loss function. In particular, a median of Z
corresponds to p = 1/2. A pth sample quantile of Z; may therefore also be defined as
a solution to the problem

n
rcréigr% E,;J’,,(Z—(.'):n"'zt’p(zi—c), 0<p<l,

i=1

called an asymmetric least absolute deviations (ALAD) problem. In particular, a
sample median may be defined as a solution to the problem

n
min n~! Z |Z; — ¢l
ceR pa—

called a least absolute deviations (LAD) problem. Figure 35 shows an example of a
criterion function for a LAD problem.
To verify the equivalence between the two definitions of sample median, notice that,
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if n is odd and k = (n + 1)/2. then the function

n k=1

S 1Zi—e =D (12 — o + | Zpnivr) — ) + [ Zug — o
i=1 i=1
k=1

= Z(Z[n—i+l] = Zu) + e = Zy|

i=1

attains its minimum at the point ¢ = Zj;). If instead n is even and k = n/2, then

n k-1
S 1zZi— ol =D 02 — ol +1Zjn-iv1) = o) + 1235 = ] + 1241y — ]
i=1 i=1

k-1

= Z(Z[..—m] = 21) 12 — ol + | Z[kyry — ¢l

i=1

attains its minimum at any point in the closed interval [Zm, Z[A-+1]]'

To illustrate how to derive the sampling distribution of an empirical quantile, we
focus on the sample median ( for a sample Zy,...,Z, from a continuous distribution
with distribution function F. Consider first the case when n is odd and therefore
¢ = Zj), where k = (n + 1)/2. In this case, the event { < a is equivalent to the
event that exactly k observations do not exceed a. Because Pr{Z; < a} = F(a), the
probability of the latter event is equal to the probability of k successes in n independent
Bernoulli trials where the probability of success is equal to F(a). Hence,

Pr{C <a} = Pr{Zy <a} =Pr{X =k} = (' | F(a)*[1 - F(a)]""*,
[¥] k

where X ~ Bi(n, F(a)). If n is even,  is any point in the interval [Z(k) Zjk+1))- In this

case, the event ¢ < a is equivalent to the event that at least k = n /2 and not more
than k + 1 observations do not exceed a. Hence,

Pr{(<a}=Pr{k < X <k+1}=Pr{X =k +1}

n ' '
= (k N 1) F(a)**'[1 ~ F(a))"~*"1.

Interest often centers not just on a single quantile, but on a set of them. This is
typically the case when we seek a detailed description of the shape of a probability
distribution, or we are interested in constructing some L-estimate, that is, a linear
combination of sample quantiles such as the interquartile range or a trimmed mean. It
is clear that sample quantiles corresponding to different values of p must be dependent.
Hence, from a practical point of view, what matters is their joint distribution, or some
approximation thereof. We now present an approximation valid for the case when the
data are a sample from a continuous distribution whose density is continuous and
strictly positive in a neighborhood of the population quantiles of interest.

Theorem 4.5 Let Z,,...,Z, be a sample from a continuous distribution whose
density f(z) is continuous and strictly positive in a neighborhood of the quantiles (p,
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Table 3 Asymptotic efficiency of the sample median relative to the sample mean
for t-distributions with m > 3 degrees of freedom. The t-distribution converges to the
N(0,1) as m — oo.

m 3 4 ) 8 00
ARE | 162 1.12 96 .80 .64

and (p,, with 0 < pr,ps < 1. Let { = ((p,,Cp,) and let (:,, be the corresponding vector

of sample quantiles. Then /n ((, — C) N N2(0,92), where Q is a matriz with generic

element )
_ min(py, ps) — PrPs

Wrs =
F(Gp.) £(Gp,)
Proof. See, for example, Ferguson (1996), pp. 87-91. a

From Theorem 4.5, the asymptotic variance of a pth sample quantile is equal to
p(1=p)/[f(¢p))?. In particular, the asymptotic variance of the sample median is equal

to [4(C1/2)?] 7"

Example 4.6 In order to compare the large sample properties of the sample mean and
the sample median, assume that the population distribution is symmetric about zero
with variance 0 < 02 < oo0. Let Z,, and (,, denote the sample mean and the sample

median for a sample of size n. Under our assumptions, \/n Z, SN (0,0?%) whereas
Viéa SN, [4£(0)?]71). Because the two estimators are asymptotically normal and
have the same asymptotic mean, a comparison between them may be based on the
ratio of their asymptotic variances

A = AV Z,,
ARE(,, Za) = AV((C.))

called the asymptotic efficiency of the sample median relative to the sample mean.
Because VarZ, ~ nAV(Z,) and Var(, ~ nAV((,), ARE((,, Z,) is equal to the
ratio of the sample sizes needed for the two estimators to have approximately the
same sampling variance.

The asymptotic relative efficiency of the sample median increases with the
“peakedness” of the density f at the origin. It is easy to verify that ARE((,, Z,) =
2/m = .64 for the Gaussian distribution, whereas ARE(fn, Z,) = n%/12 ~ .82 for the
logistic one. The higher relative efficiency of the sample median in the logistic case
reflects the fact that this distribution has somewhat heavier tails than the Gaussian
case. Table 3 shows the asymptotic efficiency of (, relative to Z, for t-distributions
with m > 3 degrees of freedom, for which the variance exists. a

= [2£(0)o]?,

In practice, the asymptotic variance of sample quantiles has to be estimated from the
data. This requires estimating the density f at (p. A consistent estimator of [f({p)] ™!
(see e.g. Cox & Hinkley 1974, p. 470) is given by

Z(np)+ha) = Zi[npl=ha)
2h, /n ’
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where [z] denotes the integer part of z and k,, is a bandwidth parameter that goes to
Zero as n — 0.

4.3 ESTIMATING CONDITIONAL MOMENTS AND QUANTILES

This section considers the case when Z = (X,Y’), where X" and Y} are scalar random
variables, and introduces the problem of estimating the conditional mean function
(CMF), the conditional variance function (CVF) and the pth conditional quantile
function (CQF) of Y given a sample (X},}7),...,(X,,}%) from the distribution of
(X,Y). We assume, of course, that the CMF, the CVF and the CQF are all well
defined.

4.3.1 NONPARAMETRIC METHODS

If ¥ is a continuous random variable and X is a discrete random vector, then the
analogy principle suggests estimating the CMF p(z) = E(}Y | X =) by

i(z) = / ydF(y| ).

where F(y | z) is the conditional empirical distribution function (2.4). By the definition
of F(y|z) we have
) > v,

i€O(r)

that is, g(z) is the average of the n(z) sample values of Y corresponding to X = z.
Because E[i(z)] = p(z), the estimator f(z) is unbiased. If the conditional variance
o%(z) is finite, then Vari(z) = o°(z)/n(z), that is, the precision of ji(x) increases
with n(z). Notice that ji(z) = ), wi(x) Y7, where

{ I/n(x), if i€ O(x),
0,

wilz) = otherwise,

that is, fi(x) is a “local” weighted average of the sample values of Y, with weights
that add up to one and are equal to zero for observations outside O(r). An analogous
approach based on “local” sample quantiles may be adopted for the estimation of
conditional quantiles.

Turning to the problem of estimating the CVF o?(r) = Var(} |X = 1), two
alternative approaches may be followed. If 6%(x) is known to depend on r, then one
may consider the “local” estinrate

& (x D DN Ve TEo)

1€eO(r)

If it is known that o?(x) does not depend on z, then one may instead consider the
“global” estimate

Z=n 12 Z[Y—ﬁ '=zl(:—)&2(:r).

roieQ(r)
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Although fully nonparametric, the approach sketched here has some drawbacks.
First, one cannot estimate the CMF, the CVF or a CQF for values of X that do not
correspond to sample values. Second, the estimates are only sensible when the number
of sample points for which X' = z is sufficiently large. Hence, if X is a continuous
random vector, this approach breaks down.

If X is continuous, the analogy principle again leads to a simple way of proceeding.
Because the CMF of Y is defined as

u(z) = /yf(ylr) dy = /yff(:(’j)) dy,

where fy denotes the marginal probability density of X, a nonparametric estimate
of pu(z) may be obtained by rop]acmg the populatlon densities f(z,y) and fx(z) by

empirical densities f(z, y) and f\r ff(:r y) dy. This gives
. fz,y)
= — dy. 44
a(z) y o) y (4.4)

Further, because the CVF of Y is defined as o%(z) = E(Y?|X = z) — pu(z)?, a
nonparametric estimate of o%(z) is easily obtained from nonparametric estimates of
the CMF of " and Y2. This approach is further developed in Chapter 14.

4.3.2 PARAMETRIC METHODS

The parametric approach to estimating a CMF starts by restricting u(z) to a known
parametric family He = {h(z;8)} of functions of z, indexed by a p-dimensional
parameter § € © C RP. Recall from Chapter 1 that, if the model is correctly specified
and identifiable, then there exists a unique solution 8y € © to the problem

. - -, 2
nin Er[Y - h(X;6))°.

Given a sample from the distribution of (X,Y’), replacing the parent distribution
function F by the bivariate empirical distribution function (2.3) gives the LS problem

n
rgéig E;Y — h(X;0))> =n"! ; [Y; - hi(8))?, (4.5)
where h;(8) = h(.X;;6). This is a simple generalization of the problem introduced in
Section 4.2.1. If problem (4.5) admits a solution, this is called a LS estimate of 6.
Given a LS estimate §, a parametric estimate of u(z) is jr = h(z; 0) If the parameter

space O is an open set and h;(8) is a smooth function of 6, then a LS estimate 6 is a
root of the normal equations

=n-! 2":[)',- — hi(8)] K(8).
i=1

When the model includes an intercept, these normal equations equate to zero the
sample correlation between the estimated gradient h}(8) of the CMF and the regression
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residuals U; = Y; — h;(8). Unless the function h;(8) is linear, it may be complicated
or even impossible to obtain a closed form solution to (4.5) and numerical methods
become necessary (see Appendix B.3.4). When h;(8) is nonlinear, we shall refer to (4.5)
as a nonlinear least squares (NLLS) problem and to its solution as a NLLS estimate
of 6.

The special case when 8 = (a, ) and h(z;0) = a + Bz (simple linear regression)
corresponds to the ordinary least squares (OLS) problem

n
. R r_ . 2 — -1 [ _ - 2
i E;(Y ~a-8X)2=n ; (Y; — a — BX;)2 (4.6)
The OLS problem is just the sample counterpart of problem (1.11) which defines the
BLP of Y given X. As we shall see in the next section, the QLS problem admits a
simple closed form solution.

A similar approach may be followed to estimate conditional quantiles. Recall from

Chapter 1 that, if a parametric quantile regression model Qg = {g(z;8)} is correctly
specified and identifiable, then there exists a unique solution 8y € © to the problem

min Er 6,(Y — ¢(z;0)), O<p<l

Given a sample from the distribution of (X,Y"), replacing the parent distribution
function F by the bivariate empirical distribution function (2.3) gives the ALAD
problem

n
min E €(} ~ g(X;6)) =n”" Z} £o(Y; ~ 4i(6)). (4.7)
1=
where ¢;(8) = ¢(X;8). This is a simple generalization of the problem introduced in

Section 4.2.4. Given a solution 8, to (4.7), a parametric estimate of (,(x) is g(x; ép).
When p = 1/2, problem (4.7) is equivalent to the LAD problem

n
. -1 B

E: Y; — qi(8)],
min n 2. [Yi — qi(6)]

and the corresponding estimate of {,/,(r) is also called a median regression estimate.
In the special case when a quantile regression model is linear, problem (4.7) becomes

n
. -1 - -
E (Y —a—-BX,).
(r‘];l.ls?) " i=1 p( l : [3 l)

As shown in Chapter 16, this problem has a nice representation as a linear program
for which simple and fast computational algorithms are available. Chapter 16 also
discusses the sampling properties of the resulting estimates.

A linear combination ¥(z) = }:j c;j Cp, (z) of conditonal quantiles is easily estimated

by ¥(z) = ¢ fpj (z). If the estimated conditonal quantiles are linear in z, that is,

(pjlz) = Gp; + B,,,:r, then we get

P(z) = Z ¢jGp, + (Z ¢j By,
J j
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For example, the conditional interquartile range is simply estimated by

IQR = (.75 — G.25) + (Brs — Buas)z.

4.3.3 ORDINARY LEAST SQUARES

Recall from Chapter 1 that the BLP of }" given X may equivalently be characterized
through the normal equations (1.12) and (1.13). When Varg X > 0, these equations
have the unique solution

Covr(X,Y)

a=EpY -BErX, fB= Varp X

(4.8)

Given a sample from the distribution of (X, Y’), estimates of the parameters a and
B are obtained by solving the OLS problem (4.6). Replacing the parent distribution
function F with the empirical distribution function (2.3) shows that these estimates,
called OLS estimates and denoted by & and 3, must also satisfy the normal equations

n
0=Ep(Y -6-BX)=n"'D (¥i-a~ X)),
=1
- n -~
0=EpX(¥Y -a-BX)=n"") X(Y;-a-BX,).
i=1
These normal equations require the OLS residuals U; = Y;~&—BX; to mimic the basic
properties of the underlying regression errors, that is, both their sample mean and their

sample correlation with the X; must vanish. When Var X =n=!' ¥_,(X; - X)2 > 0,
the normal equations have the unique solution

a= EF"Y—BEF“-X = }—'—B)—(,
Covp(X,Y) _n7 '3, (Xi - X)(¥i - Y)

b= Var, X a1y (Xi— X)?

In this case, the OLS estimates & and 3 coincide with the estimates of a. and B.
based on the analogy principle applied directly to (4.8).

The properties of the OLS estimates will be discussed in detail in Chapters 6, 7 and
10. The rest of this section deals with their sampling properties under two simplifying
assumptions: (i) (X1,Y7),...,(X,,Yy) is a sample from the distribution of (X,Y);
and (ii) the conditional mean and variance of ¥ given X are equal, respectively, to
a+ BX and o2.

First notice that, if we condition on the observed values of the covariates, namely
on the n-vector X = (X},..., Xy), then E(};|X) = E(};| X;) = a + 8X;. Hence

YiXi = X)(a+BX) _ 8 T Xi - X)Xi 3
Yi(Xi - X)? T rXi-x) T

where we used the fact that 3, (X; — X) = 0. Therefore

E(8]1X) =

E(@|X)=E(Y|X)-EB|X)X =a+B8X -fX =a.
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Since the conditional means of & and 8 do not depend on X, we conclude that Ea = o
and E f# = 8, that is, & and /3 are both unbiased under assumptions (i) and (ii).

To derive the sampling variance of & and § and their sampling covariance, notice
that the two estimators may equivalently be written a = ZL, a;Y; and B8 =
Yo, biYi, where

a,~=l(l—‘\i.;‘\ X’), b,‘=l(‘\iA; ‘\)’
n o% n 0%

with 6% = n~! 3 .(X; — X)2. Thus, both & and B are weighted averages of the Y;.
Because of random sampling and the assumption that Var(};| X) = o2, we have

n n n
Var(B|X) =0*Y e,  Var(@|X)=0?) b,  Cov(a,B|X)=0)_ aiby,

i=1 i=1 i=1

where
n n LS — —
1 - X)2 _, Xi—-X _ 1 X2
Z —2[1+—,4 ) X?-2 'A.Z .']:—(1+T),
i=1 o Ox X n Ox
"L, e 1 (X - X)2 1
= e T
i=1 i=1 X X
and
- N1 (x-X . X
Z aibi = = n? 44 T el
i=1 i=1 X X
Therefore , %2 ,
X - 1
Var(a]X) = = (1 + _z) . Var(B1X) = %
n % n 6%
and 2 o
Cov(a,B|X) = - — =
n 6%

For a given sample size, ¢ and B are correlated and this correlation has opposite sign to
X.If X =0, then & and B are uncorrelated and the sampling variance of & attains its
minimum. Notice that the sampling variance of & and /3 and their sampling covariance
are all proportional to the variance of the Y; and inversely related to the sample size
n and the sample variability of the X;, as measured by 6%.

The second moments of the unconditional sampling distribution are obtained by
applying the law of total variance. This gives

2 v2 . 2
Vard=0—-(1+E‘}7), Var5=”—(}3%>,
n 0.\’ n GX

and

-~ 2 ¢
Cov(a, B) = —% (E %) .
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4.4 MAXIMUM LIKELIHOOD ESTIMATION

Maximum likelihood (ML) is a general method of estimation for parametric problems.
Application of this method requires the specification of a parametric model {Py, 6 € 6}
for the probability distribution Py of the data. In what follows, we assume that such
a model is correctly specified and identifiable, that is, Py = Py, for a unique §, € ©.
The term pseudo or quast marimum likelihood will be used to denote the application
of the ML method in situations where the assumed parametric model is not correctly
specified.

Because the ML method requires information that goes beyond what is needed by
the methods discussed in Sections 4.2 and 4.3, we should expect the method to produce
estimators that are more precise when all the model assumptions are correct, but also
less robust, that is, more sensitive to deviations from the model assumptions.

4.4.1 ML ESTIMATES

To simplify the presentation, suppose first that the observed data Z = (Z,,...,Z,)
are a sample from the distribution of a random vector Z whose density belongs to a
known parametric family Fo = {f(z;0),0 € O}, with © a subset of R”. Recall from
Section 1.1.5 that a parameter point 8y € © is identifiable if and only if it corresponds
to the unique maximum on O of the expected log-likelihood I(f) = ¢ + EgIn f(Z;6),
where c is an arbitrary constant and Eq denotes expectations with respect to f(z;6o).
Because this condition implicitly defines the target parameter g, the analogy principle
suggests estimating 6y by a point in © that maximizes the sample counterpart of I(8),
namely the average log-likelithood

(0 =c+ EsIn f(Z;6) = c+n! z": In f(Z;;9),
i=1

where ¢ is an arbitrary constant. Such a point, if it exists, is called a global mazimum
likelihood estimate or, for short, a ML estimate.

Example 4.7 If Z,,...,Z, is a sample from a Bi(1,8) distribution, with 0 < 8 < 1,
then

n'Y Inf(Zi;6) =n"'Y [Zilnf+ (1 - Z;)In(1 - 6)).
i=1 i=1
Hence, an average log-likelihood is any function of the form
[(8) =c+plnd+(1-p)in(1 —9),

where ¢ is an arbitrary constant and p = n~!'}", Z; is the sample proportion of
successes. If § maximizes 1(6) on (0, 1), then necessarily

0=[’(é)=£— 1_13= Ap—g. )
6 1-6 6(1-0)
whose unique solution is § = p. This is indeed the ML estimate, for

- 1- 1
I'(p) = - :

P _ -
P (1-p)? p(l-p)
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is negative whenever 0 < p < 1. a

It is often convenient to work with a monotone transformation of [, namely
L(8) = nl(6), called the sample log-likelihood. Of course, maximizing L on © is
equivalent to maximizing [. More generally, given a parametric model {f(z;8),0 € ©}
for the data Z, a sample log-likelihood is any function L(#) that is equal to In f(Z;6)
up to an additive constant. Given a conditional parametric model {f(y |x;8),6 € ©}
for the data Z = (X,Y), a (conditional) sample log-likelihood is any function L(6)
that is equal to In f(Y | X:6) up to an additive constant.

By standard results, a ML estimate exists if the function L is bounded above on ©
or L is a continuous function and the parameter space © is compact, that is, closed
and bounded. Even in this case, however, a ML estimate need not be unique.

Example 4.8 Let Z),...,Z, be a sample from a Laplace distribution with density

1 -
f(Z;o) = %(’.X}) (—u) ) 0= (l‘va)s

o
where 8 € © = R x R,. The sample log-likelihood is
L) =c—nlno —o7'Q(pn),

where ¢ is an arbitrary constant and Q(u) = Y_,|Z; — ). For o fixed, maximizing the
sample log-likelihood with respect to u is equivalent to minimizing Q(y). Because this
is just the LAD problem introduced in Section 4.2.4, a ML estimate of u always exists
and corresponds to a sample median ¢, which is clearly not unique.

Putting 2 = ¢ in L(8) gives the function

L.(c) =L, 0) =c—nlno - a"'Q((),

called the concentrated or profile sample log-likelihood of o (Figure 36). If Q({) = 0,
then no ML estimate of o exists because the function L,(¢) = ¢—nlno is unbounded.
This occurs when n = 1, or whenn > 1but Z, =--- = Z,,. If Q(f) > 0, then L,
attains a unique maximum on the interval (0, 00). Such a maximum is characterized

by the equation

n (

0=-14 90

o o

whose unique solution is = n“Q(é) =n"'Y,1Zi - ([ The ML estimates of u and
o are therefore, respectively, a sample median and the average absolute deviation from

a median. D

If L is a strictly concave function and © is a convex set, then a ML estimate is
unique. An important special case is when the sample log-likelihood is quadratic,
namely of the form

LO)=c~ 5(b-6)7Q(b-0), (4.9)

where the scalar ¢, the p-vector b and the p x p matrix @ may be functions of the
data. It is easily seen that § = b is a ML estimate if @ is a n.n.d. matrix, and is the
unique ML estimate if @ is p.d.
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Figure 36 Profile sample log-likelihood L.(c) of the Laplace location and scale
model for n = 10 and Q(¢{) = 5.
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Example 4.9 Given a sample Z,,...,Z, from a A(y,0?) distribution, the sample

log-likelihood is
e Mg L En: )2 = 2
L) =c 5 Ino 52 2 (Z; — p)*, 0 = (p,0°),

where c is an arbitrary constant. Because n™! ¥ ,(Z; — u)? = 6% + (Z — p)?, where Z
and 62 are respectively the sample mean and the sample mean squared deviation of
Z;, the sample log-likelihood may be written

L(0)—c—§lna ——[a +(Z - p)?).

Since L(#) is quadratic in u for o2 fixed, the sample mean Z is the unique ML estimate
of u for this model. Now putting u = Z in L(8) gives the profile sample log-likelihood

L.(0%) = L(Za)—('—E(lna +(—7—2)

If 62 > 0, then L. attains a unique maximum on the interval (0, 00) at o2 = 2.

To check that the function L(#) attains its maximum at § = (Z,4?), provided that
6% > 0, consider the Hessian of the sample log-likelihood

w7 1 (Z - w/o*
L) = —0—2[ (Z - p)/o® (6% +(Z - w)?)/o* - 1/(20?) ]

Evaluating L" at the point § gives

L"(6) = ‘nz [ (IJ 1/(2&2) ]
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Since L"() is n.d. if 6 > 0, § is indeed the ML estimate of 6. ]

As will be shown in the proof of Theorem 4.14, a quadratic log-likelihood provides
a good approximation to the shape of a smooth log-likelihood for sufficiently large
n. Further, quadratic approximations of some sort are often very useful when exact
calculations are tedious or even impossible.

Example 4.10 Let Z = (Z,,...,Z,) be a finite segment of the Gaussian AR(1)
process
(1 - pL)Z; = Uf,

where |p| < 1 and {U,} is a Gaussian WN(0,02) process. Because the conditional
distribution of Z, given Z,_,,Z,_,,...is N(pZ;_1,0?) and the marginal distribution
of Z; is N(0,79), with 49 = 0%/(1 — p?), the joint density of Z may be factorized as

(2;6) = f(2:36) Hf(Z: | Zi-1;6)

(B2 i (2

where § = (p,0?) and ¢(-) denotes the A'(0,1) density. The sample log-likelihood of
the Gaussian AR(1) model is therefore

n . - 1 I n .
L) =c- 511102 +1Iny/1-p% - 53 [(1 -p9)Z + Z(Z, - pz,_,)l} ,

t=2

where ¢ is an arbitrary constant. Notice that, through the presence of the term
In /1 — p2, the log-likelihood explicitly incorporates the restriction that |p| < 1.
Letting

9p)=V1-p2 QP =)_(Zi-pZi1)’, Glp)=(1-p)Z] +Q(p),
=2

one may write L(f) more compactly as
L) =c- %ing? + Ing(p) — LG‘(p). (4.10)
2 202

For p fixed, L(f) attains its maximum at the point 0?(p) = n~'G(p). Substituting
back into L(8) gives the profile sample log-likelihood

Y n n

L.(p) = L(p,0%(p)) = ¢ = 5(InG(p) —Inn] +Ing(p) - 5

(Figure 37). This is a function of p only, although not a quadratic one due to the

presence of the term In g(p). A necessary condition for a maximum of L. is

nG'(p)  9'(p)
)

0=L=-3G0m " 90’
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Figure 37 Profile sample log-likelihood L.(p) and its approximations Ly and L¢
based on n = 8 consecutive observations of a Gaussian AR(1) process with p = .5.
The approximations considered correspond, respectively, to the unconditional and

the conditional LS estimates.
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which can be shown to be a cubic equation in p with a unique real root in the interval
(=1,1). An explicit expression for such a root may be obtained from the formulae for
the roots of cubic equations (see, for example, Beach & MacKinnon 1978).

The calculations required to estimate p by the ML method may be reduced
substantially if one considers certain approximations to L.. Observe first that, if
n is sufficiently large and |p| is not too close to one, then the contribution to the
log-likelihood of the term In g(p) is negligible. Maximizing L. ignoring this term is
equivalent to minimizing with respect to p the quadratic function G. A necessary

condition for a minimum of G is
n
0=G'(p) = =202} -2 (Zt ~ pZ1-1)Zi-1.
t=2
If 17 Z? > 0, the above equation has the unique solution

Sy Zi i
SraZiy

called the unconditional LS estimate of p.

p=

If the first term in G is also ignored (or, equivalently, Z; = 0), then the problem
reduces to minimizing Q(p). If Z?:z Z} |, > 0, we get the unique solution

Sy ZtZi

ﬁ = n 2 k]
=2 Zl—l
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called the conditional LS estimate of p. In large samples, the ML estimate and the LS
estimates § and p should all be very close to each other, although in small samples
they may differ considerably.

If po denotes the true value of p, then all three estimators are biased for go. This is
more easily seen in the case of the conditional LS estimator, for

o Sl T,
Y22t T

where Ty = Y0 ,UiZ;_y and T» = Y_;_, Z} ,. Although ET} = 0, the fact that
E(T\/T;) # (ET))/(E T;) implies that E § # po in general. Analytical approximations
to the bias of p may be obtained by the d-method (Section 5.1.3). On the other
hand, by the strong law of large numbers for linear processes (Theorem D.13),
n Ty BEUZ_, =0and n™'T, BEZ2 |, # 0as n — oc. Hence, p — pg 30,
that is, p is a strongly consistent estimator of the autoregressive parameter. .|

The above example shows that if the sample log-likelihood is unimodal and bounded
above but not quadratic, then it may be complicated or even impossible to obtain a
closed form solution to a ML problem. In this case, finding a ML estimate requires
numerical methods, such as those reviewed in Appendix B.

In all the examples discussed so far, the sample log-likelihood was constructed
starting from either the probability mass function or the probability density function.
There is no conceptual difficulty in constructing the log-likelihood for cases where the
distribution of the data is of the mixed (continuous-discrete) type.

Example 4.11 Consider again the model of top-coding in Example 2.2. If the latent
random variable Z* is distributed as A’ (g, 0?), with 6 > 0, then the fraction of the
population for which income is unobserved is equal to Pr{Z* > ¢} = 1 - ®((c — u)/0)
and the distribution function of a top-coded value Z = min(Z~,¢) is

z—p .
F(z) = Q( - ), ifz<ec,
1, ifz>ec

The sample log-likelihood of this model is the sum of two components, one
corresponding to the continuous part of the distribution and the other to the discrete
part with mass point at ¢. Up to an additive constant, the log-likelihood for a sample
Zy,...,2Z, from the distribution of Z is therefore

L(9) :Zln [%(})(%)] +ngln [1 —@(C;”ﬂ L 0= (p0?),

where ), denotes summation over the uncensored observations and no denotes the
number of censored (top-coded) observations. Since L is smooth and bounded and the
parameter space is an open subset of 2, a ML estimator 8 = (j1,5%) must necessarily
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satisfy the pair of equations

oL Z,'—;l no cC— U
= — = —h
0 ou 21: 2 g ( o )’

_ oL 1 Zi —p\? npc—p _c—p)
O‘W‘F;[( ) R (),

where A(—u) = ¢(~u)/®(-u) = ¢(u)/[1 — ®(u)]. The first equation shows that j is

implicitly defined by i
ﬂ=21+a@,\<—c'.“),
ny

o

where Z, is the average of the n; = n — ng uncensored observations. Because

_ Pr{Z; > ¢} c— [
E(Zi|Zi<c)=u aPr{Z,-(c}/\( - >,

where the ratio Pr{Z; > c}/ Pr{Z; < c} may simply be estimated by no/n;, the ML
estimator of u may be interpreted as a way of correcting Z, for its bias. Multiplying
the first equation by (c — p)/(202%) and subtracting the result from the second one
gives

o2

_ 1 (Zi —w)(Zi —¢)
0= %57 Xl: [—— 1].
Therefore, evaluating at u = fi, the ML estimator of o2 is
. 1 .
6 = — > (Zi- p)(Zi-c).
1
]

It should be clear from all the examples presented in this section that the ML
method does not necessarily produce unbiased estimators of the target parameter.
As shown in Section 4.6, the main justification for this method lies in its statistical
properties when the sample size is large.

4.4.2 LIKELIHOOD EQUATIONS AND LOCAL ML ESTIMATES

The examples in the previous section show that if the parameter space © is an open
set and the sample log-likelihood L is smooth and bounded, then a ML estimate may
be obtained as follows:

1. compute the derivative L’ of L;
2. solve with respect to @ the system of likelthood equations L'(8) = 0.

Unless L(0) is strictly convex, this method does not guarantee that a root of the
likelihood equations corresponds to a ML estimate, for L may have several local
maxima, as well as local minima and saddlepoints. Any root of the likelihood equations
corresponding to a local maximum of L is called a local ML estimate. A sufficient
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condition for 6 to be a local ML estimate is that the Hessian of L, evaluated at the
point §, is a n.d. matrix.

Notice the complete analogy between these conditions and the results in
Section 1.1.6. Given a regular parametric model Fg = {f(z;6),8 € 0} for a random
vector Z, the likelihood score

s(Z;6) = (%lnf(Z;O)

has mean zero. If Z;,...,Z, is a sample from the distribution of Z, then the sample
log-likelihood is L(8) = ¢+ )_;In f(Z;;0), where ¢ is an arbitrary constant, and the
sample counterpart of the above condition is the system of likelihood equations

n
0=Ezs(Z;0)=n""Y si(8) =n"'L'(6),
i=1
where 3;,(6) = 3(Z;;6). Recall that a parameter point 8 is locally identifiable if the

Fisher information is a p.d. matrix at the point §. The sample counterpart of this
condition requires the matrix

-1"@) = -n"'Y " si(0) = -n"'L"(6)
i=1
to be p.d. at the point 8, which guarantees that  is a local ML estimate. The matrix

—n~1L"(8) is sometimes called the observed information (Efron & Hinkley 1978).

Example 4.12 Let Z,,...,Z, be a sample from a p-parameter exponential family.
In terms of the canonical parameter 7, the sample log-likelihood is

L(n) = Z 1" T(Z;) + nd(n z

and therefore the likelihood equations are
0= Z T(Z:) + nd'(n).

Solving this equation may require numerical methods. Notice that the Hessian of L(8)
is L"(n) = nd"(n) = —nZ(n), where Z(n) is the Fisher information on 7. Because Z(7)
is p.d. since the model is regular, the sample log-likelihood is strictly concave and so
the ML estimate is unique.

The form of the likelihood equations for this class of models suggests an interesting
interpretation of the ML estimator. Since the likelihood score s;(n) = T(Z;) + d'(n)
has mean zero, we have d'(1) = — E, T(Z;). Hence, the likelihood equations may also

be written n N
=n7'Y sit) =n7t Y T(Z) - ByT(Z:).
i=1 i=1

This relationship provides an interpretation of the ML estimate 7 as a MM estimate
obtained by equating the sample mean of T'(Z;) with its expectation under 7. 0
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4.5 MINIMUM VARIANCE UNBIASEDNESS

Let Z be a data vector (or matrix) and let 6 = 6(Z) be some estimator of a p-
dimensional parameter § € ©. The classical criterion for judging an estimator is the
degree of concentration of its sampling distribution about the population parameter
6. The most common scalar measure of such a degree of concentration is the mean
squared error (MSE) Eg(6 —6) T (6 — 8), which coincides with the risk 7(6,86) of 6 under
the quadratic loss function €(u) = u' u, where u is a p-vector. Another measure of the

degree of concentration of the sampling distribution of 6 is the p x p matrix
R(9,0) = Eg(6 — 6)(6 — 0)T = Vary § + (Biasg 6)(Biasg §) 7,

called the risk matriz of the estimator. The two measures are related, for

44
r(8,0) =Y _r(6;,6) = tr R(,6).

J=1

Clearly, r(,8) = R(6,0) if 6 is a scalar parameter.

In what follows, given two matrices A and B, we denote by A — B > 0 the fact that
the difference A — B is a n.n.d. matrix. If 8 = §(Z) is any other estimator of § such
that R(é 6) — (5 #) > 0 for all 8 € O, then the MSE of any linear combination of
the elements of § cannot be smaller than that of the corresponding linear combination
of the elements of §. We say in this case that 6 is efficient relative to 6. Notice that,
while the risk matrix only provides a partial ordering of estimators, the MSE criterion
gives a complete ordering. }

Because 8 is unknown, an ideal estimator € on the basis of the above criterion
should have minimum risk matrix uniformly on O, that is, should be such that
R(6,6) — R(8,0) > 0 for all 6 € O and every other estimator §. Because an estimator
that takes the constant value 8y for all Z has zero risk matrix when 8 = 6y, the ideal
estimator should have zero risk matrix for all 8 € ©, which is generally impossible.
By the same argument, to have minimum MSE uniformly on 6, an estimator should
have zero MSE for all 4, which is also generally impossible.

One way to circumvent this problem is to confine our attention to a smaller class of
estimators that satisfy certain requirements. A popular choice is the class of unbiased
estimators, whose risk matrix coincides with the sampling variance. If the class of
unbiased estimators of § is nonempty and contains more than one estimator, and if
6 is an unbiased estimator such that Var90 — Varg§ > 0 for all 6 € © and every
other unbiased estimator 8, then 6 is said to be uniformly minimum variance unbiased
(UMVU). In what follows, we look at criteria for finding UMVU estimators.

Notice that the unbiasedness criterion, although popular, may be criticized on
several grounds. First, there are cases when the class of unbiased estimators
is empty or contains only one element. Second, as shown in Example 4.2, the
property of unbiasedness is not preserved under nonlinear transformations. Third, the
unbiasedness criterion may rule out estimators that are quite respectable, or select
estimators that are hardly recommendable.
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4.5.1 SUFFICIENCY

In the next two sections we assume that the density of the data belongs to a parametric
family Fo = {f(2:8),6 € O} of densities on the sample space.

It is intuitively clear that, in drawing inferences about the population parameter 6,
nothing is lost by neglecting those aspects of the data that provide no information on
8. This idea may be formalized as follows.

Definition 4.1 A statistic T = T(Z) is said to be sufficient for a parameter 8 if and
only if the conditional distribution of Z given T = t does not depend on 8. O

Theorem 4.6 (Factorization criterion) Given a parametric model Fg for the
data, a statistic T(Z) is sufficient if and only if f(z;0) = g(T(z);0) h(z) for all § € ©.

Proof. See for example Lehmann (1988). m|

If a parametric model for the data admits a sufficient statistic T(Z), then the
factorization criterion implies that the ratio between the value of the density at two

sample points z # 2z

f(z:0) _ g(T(z);8) h(z)

f(z':6)  g(T(2');6) h(z')
does not depend on 8 whenever T(z) = T'(z'). Intuitively, once the value of T is known,
the data contain no additional information on 6.

In general, a sufficient statistic is not unique. Further, the data vector Z is always

sufficient. It is therefore interesting to ask whether there exist sufficient statistics that
provide the greatest possible reduction of the data. Formally, a sufficient statistic T is

called minimal if, for every other sufficient statistic T, = T.(Z), there exists a function
h such that T = h(T.).

Example 4.13 Let Z = (Z,,...,2Z,) be a sample from a A(u,0?) distribution.
Writing the joint density of the data as

1 \" 1 .
f(z;6) = (Tg) €xp I:—F(sz ‘2#zi:li +ny2)] )

it is clear that the statistics
T| = (21,. ..,Zn),

T, Zz., Z z,,f:zf, z": z-),

Jj=m+1 =1 j=m+1

T3

1]
N
M:
i
N,
S—

with z = n=! Y, 2;, are all sufficient for 8 = (u,0?), although only T3 and T are
minimal sufficient. a
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Example 4.14 Let Z = (Z,,...,Z,) be a sample from a distribution in a p-parameter
exponential family. The joint density of the data is of the form

f(2:8) = exp {a(6) "T(z) + b(6) + c(2)}, (4.11)

where T'(z) = >, T(z;) is a p-vector and c(z) = 3_, ¢(z;). Thus, for any n, the joint
distribution of the data belongs to the same exponential family as the distribution of
a single observation.

The statistic T(2) is sufficient, for we can identify the terms exp{a(8) " T'(z) + b(8)}
and exp c(z) with, respectively, g(T'(z);8) and h(z) in Theorem 4.6. In fact, T(Z) is
minimal sufficient and is called the natural sufficient statistic for §. The dimension of
this statistic is equal to p and does not change with the sample size, thus affording a
considerable reduction of the data. a

It is easy to verify that, if a parametric model admits a minimal sufficient statistic
T and the ML estimate is unique, then the latter must be a function of T'. This result
represents one justification for the ML method.

The relevance of the concept of sufficiency in searching for UMVU estimators of a
parameter 8 is due to the fact that an estimator # may be improved upon, in the MSE
sense, by conditioning on a sufficient statistic.

Theorem 4.7 (Rao-Blackwell) Let Fg be a parametric model that admits a

sufficient statistic T If 6 is an estimator with finite sampling variance and 0.A=
E¢(6|T), then R(8,6) — R(8,6) > 0 for all € @, with equality if and only if 6 = 8.

Proof. By the law of iterated expectations Eg § = E¢[E¢ (6| T)] = E 6, and by the law
of total variance

Varf — Varg§ = Varé — Varg[Eg(é |T)] > 0.

Hence R(6,6) — R(6,6) = Varp6 — Varg§ > 0. o

Unless 6 = Eg(6|T) is unique, one cannot conclude from the Rao-Blackwell theorem
that 8 has minimum MSE. For this conclusion to be true, one needs to verify that the
family of distributions of T', obtained by varying 6 over ©, satisfies a further property.

Definition 4.2 Given a parametric model Fg for the data, a statistic T is called
complete if the only function g that satisfies Eg g(T') = 0 for all § € © is such that
Pry{g(T) =0} = 1. a

Theorem 4.8 (Lehmann-Scheffe) Let Fo be a parametric model that admits a
complete sufficient statistic T and let 6 be an unbiased estimator of 8. If § has finite
sampling variance, then 6 = E¢(6|T) is the unique UVMU estimator of 6.

Proof. By the law of iterated expectations, if 6 is unbiased and has finite variance

then 8§ = Ey(f|T) is also unbiased and has finite sampling variance. Further

Varg § — Vary 6 > 0 by the Rao- Blackwell theorem, with equality if and only if 6 = 4.
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We now show that 8 is unique, that is, 6 does not depend on which_particular
unbiased estimator we started from. Thus suppose that 8, = ¢,(T') and 6, = ¢,(T)
are both unbiased for 8. Then

Ep[91(T) = 92(T)} = Eg 91(T) — Eg g2(T) = 0.

Because the statistic T is complete, Prg{g,(T) — g2(T) = 0} = 1, that is, g,(T) =
92(T). 0

In particular, if T is a complete sufficient statistic and § = h(T) is unbiased for 6
and has finite sampling variance, then 6 is UMVU since E(6 |T) = 6 in this case.

The next theorem provides a wide class of models for which there exists a complete
sufficient statistic.

Theorem 4.9 If the distribution of Z belongs to a p-parameter erponential family
whose parameter space has a nonempty interior, then the natural sufficient statistic
T(Z) is complete.

Proof. See for example Lehmann (1988). o

Example 4.15 Let Z;,...,Z, be a sample from a N(u,0?) distribution. The
Gaussian model is a two-parameter exponential family whose parameter space © =
R x R, has a nonempty interior. It then follows from Theorem 4.9 that the natural
sufficient statistic T = (3, Z;,Y; Z?) is complete. Because the sample mean Z and
the sample variance s*> = (n — 1)™! }°,(Z; — Z)? are functions of T and are unbiased,
they are UMVU by the Lehmann-Scheffé theorem. 0

4.5.2 THE CRAMER-RAO BOUND

When a sufficient statistic does not exist, or it exists but is not complete, one can
establish a lower bound for the sampling variance of unbiased estimators which may
be used to show that a given estimator is UMVU. Although this approach is less
powerful than the previous one, it is important in the asymptotic optimality theory
discussed in Section 4.6.

If the parametric model for the data is regular, then the likelihood score

S(0) = > in f(Z:6)

has mean zero and variance I(8) = Varg S(6), called the ezpected total information on
@ contained in the sample. In particular, given a sample Z,,..., Z, from a distribution
in a regular parametric family {f( z;0) 6 € O}, the likelihood score is

5(6) = Z Inf(Zi;6) =) _ si(6),
t
where s;(8) = s(Z;;8) is the likelihood score for the ith observation, and the
expected total information is I(8) = Y, Varg 8;(6) = nZ(8), where Z(8) is the Fisher
information contained in a single observation.
The next theorem shows that, under appropriate regularity conditions, there exists
a lower bound for the sampling variance of an estimator of a scalar parameter 6.
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Theorem 4.10 (Cramér—Rao inequality) Let Fg be a regular parametric model
with © C R. If 0 is an estimator whose sampling variance is finite for all § € © and
whose bias b(0) = Eg 6 — 0 is continuously differentiable on O, then

[ +b(6)2

Varg 6 > 0

Proof. Let S = S(Z;6). Differentiating with respect to 8 both sides of the identity
8 + b(8) = E4 8, using the fact that E4(S) = 0, gives

1+ b(8) = / 6(z) f'(z;0) dz = E¢(8S) = Cove(4, S),

The conclusion of the theorem then follows from the Cauchy-Schwarz inequality
[1+4b'(8)]? = [Cove( @, S))? < (Vary 6) (Vary S)

and the fact that Varg S = I(6) # 0 since the model is regular. 0

If § is unbiased, then &'(6) = 0 and we have the following result.

Corollary 4.1 Let Fo be a regular parametric model with © C R. If § is unbiased
and has finite sampling variance for all 8 € ©, then

1
TB).

The generalization of the above corollary to the case of a vector-valued parameter
is straightforward. If 8 is an unbiased estimator of a p-dimensional parameter 6 and
its sampling variance is finite for all § € ©, then Varg — I(8)~! > 0 (for a proof, see
e.g. Silvey 1975, Section 2.12). The sampling variance of an unbiased estimator of the
Jjth element of @ is therefore bounded below by the jth diagonal element of the inverse
matrix of I(6). In particular, if I(6) is a diagonal matrix, the lower bound is equal to
the jth diagonal element of I(9).

Corollary 4.1 and its generalization to the vector parameter case imply that, if 6 is
unbiased and such that Var§ = I (87!, then it is UMVU. Notice that this approach is
less powerful than the one in Section 4. 5 1 because a UMVU estimator may exist even
if a parametric model is not regular. Even worse, a model may be regular and a UMVU
estimator exist, but its sampling variance need not be equal to the Cramér-Rao bound.

Vargé >

Example 4.16 Given a sample of size n from a A (g, 0?) distribution, the Cramér-
Rao bound for unbiased estimation of (u,0?) is

ot =z =2 Y o]

The bound is attained by the sample mean Z but not by the unbiased estimator s2,
whose sampling variance is equal to 202 /(n —1). This estimator is nevertheless UMVU
for o2 as seen in Example 4.15. a
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In fact, the Cramér-Rao bound is attained only in special cases.

Theorem 4.11 Suppose that the conditions of Theorem 4.10 are satisfied. Then there

erists an unbiased estimator 6 that attains the Cramér-Rao bound if and only if
S(8) = 1(8) (6 —6).

Proof. Consider for simplicity the scalar parameter case. The crucial step in the proof
of the Cramér-Rao bound is the fact that

Covg(8, S)? < (Varg 6) (Varg S).

If § and S are not constant, equality holds if and only if 6 and S are linearly related,
that is, if and only if there exists a function .4(8) such that S—Ey S = A(8) (6§ — Eg 6)
or, since Eg $ = 0 and 6 is unbiased for 6, if and only if S = .4(0) (é —6). In this case,
1 = Covg(6, S)? = Vary S/.4(8) and therefore A(8) = Varg S = I(6). 0o

As a consequence of Theorem 4.11, if there exists an unbiased estimator § that
attains the Cramér-Rao bound, then the ML estimator must coincide with it. This is
because the likelihood score for the sample must be of the form S(8) = I(8) (6 — 6).
Since I(f) is a p.d. matrix, the likelihood equation S(8) = 0 has the unique solution
0=24.

Because the conditions of Theorem 4.11 are very special, the Cramér-Rao lower
bound may not look particularly useful. As shown in Section 4.6, however, the bound
is typically attained by ML estimators in large samples. This result provides one of
the most important justifications for the ML method.

4.6 ASYMPTOTIC PROPERTIES OF ML ESTIMATORS

We now derive approximations to the sampling properties of a ML estimator. These
approximations are valid for the case when the data Z,,...,Z, consist of a large
sample from a distribution whose density fo(z) is known to belong to a regular
parametric family Fo = {f(2;6),0 € O}, that is, fo(z) = f(2:60) for some 6, € O.
For simplicity we only consider the case when 6, is a scalar parameter. More general
results, also valid for the case when the assumed model is misspecified, are discussed
in Chapter 15.

In what follows, we denote the likelihood score by s;(8), the Fisher information on
6 by Z(8) = Varg 5,(), and the sample log-likelihood by L, (6) = c+ Y., In f(Z;:6),
where c is an arbitrary constant. Probabilities and expectations taken with respect to
8o are denoted by Py and Eg respectively.

4.6.1 CONSISTENCY

We first show that if 8y is identifiable then, with probability approaching one as
n — 00, the sample log-likelihood attains its maximum at 6,.

Theorem 4.12 Let Z,,...,Z, be a sample from a distribution whose density f(z;60)
belongs to a parametric family Fo. If 6y is identifiable then, for all other § € O,
Po{Lp(60) > Ln(8)} = 1 as n = oc.
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Proof. For all 8 € B, {In f(Z;;0)} is a sequence of i.i.d. random variables with finite
mean. Therefore, by Khinchine WLLN,

_ Zi;6o) f(Zi; 60)

n"'Ln(6o) — La(6)) = n~! in L{Zi300) » gy .
{nlGo) = £ @) Z 10 " 1z

The conclusion of the theorem then follows from the fact that, since 6y is identifiable,
Eoln f(Zi;80) > Eoln f(Z;;0) for all 8 # 6. a

In the light of the above result, one may conjecture that a ML estimator, which
maximizes the sample log-likelihood, ought to converge as n — oo to the “true” value
8o of 8, which maximizes the expected log-likelihood. The next result gives a simple
set of conditions under which this conjecture is valid.

Theorem 4.13 Let Z,,...,2Z, be a sample from a distribution whose density belongs
to a regqular parametric family { f(z;6),0 € O} and suppose that the likelihood equation

n

0=L,6) =) sif)

i=1

has a unique root 6, € © with probability approaching one as n — co. Then 6, is the
ML estimate with probability approaching one as n — oo. If 8 € O is the true value
of 8, then 6,, 5 6.

Proof. Let € > 0 be any number such that the open neighborhood O = (8 — €,80 + €)
of y is contained in O, and let C,, be the set of points in the sample space such that
Ln(60) > L,(6g — €) and L,,(6o) > Ln(6o + ¢). For each point in C,, there exists a
parametric point é,, € O at which L, attains a local maximum. Under our set of
assumptions, 8, is necessarily a root of the likelihood equation and is unique with
probability approaching one as n — oo. Theorem 4.12 implies that Po{C,} — 1 as
n — 00, and therefore the sequence {8} of roots must satisfy Po{|f, — o) < €} = 1
as n — oc. Since € is arbitrary, we have that én 2 9.

Now suppose that the probability that 6, is the ML estimate does not approach one
as n — oo. Since §,, is a local maximum of the log-likelihood L, then, with positive
probability as n — oo, L, must also possess a local minimum, which contradicts
the assumption that the root of the likelihood equation is unique with probability
approaching one. ]

4.6.2 ASYMPTOTIC NORMALITY

We now show that a consistent sequence of roots of the likelihood equation has a
limiting Gaussian distribution. In addition to regularity of the parametric model, we
assume that the density f(z;6) is three times differentiable with respect to  and that
its third derivative is uniformly bounded by an integrable function, that is, for every
0o € O there exist a number € > 0 and a function M (z) with Eg A (Z;) < oo such that

5°
26° lnf(z;O)I < M(z2)
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for all z in the support of Z; and every 8 € (8y —¢,0¢ +¢). This condition is used in the
proof of the next theorem to bound the remainder in a second-order Taylor expansion
of L} (8,) about g.

Theorem 4.14 Let Z,,...,Z, be a sample from a distribution whose density f(z;6,)
belongs to a regular parametric family {f(2:6),0 € O}. If f(2;6) is three times
differentiable with respect to 6, with third derivative that is uniformly bounded in 2
by an integrable function, then any consistent sequence {8, } of roots of the likelihood

equation satisfies /1t (6, — 6o) < N'(0,1/Z(6o)).

Proof. Expanding Lﬁ,(é,,) in Taylor series about g givos
0= L}(84) = L,(60) + Lt (80) (6 ~ b0) + = L'"(9‘) (B, — 60)?,

where 8}, is a point between 6y and é,,. The random variable /n (é,. — 8p) may then
be represented as the ratio X,/ Y, of two random variables, where

= L) = =3 s, oLy = Lo
.x,.-ﬁL,,(oo)—ﬁ?;s.wo). Yo == Lii(60) = - L(6;) (Bn = 60).

Now consider the behavior of the sequences {X,} and {}},} as n = 0. Since {s,(6o)}
is a sequence of random variables with mean zero and variance equal to Z(6p), the

Lindeberg-Lévy CLT implies that X, 4 X, where X ~ A(0,Z(6)). On the other
hand, since — Eg s}(6¢) = Z(6o) is finite, Khinchine WLLN implies

——L" = Z (80) B Z(8o).

Further, because
1 m —l
~Ly(0) = Z 35 lnf(Z,,G)

it follows that, with probability appr oa,(.hmg one as n — 00,

In='L"(8) < n~! Z M(Z

i=1

for every 6 sufficiently near 6p. Since n='3y, M(Z;) ) B Eo M(Z;), we have that
n~'L"(07) = Op(1) and so n"Lﬁ’(G,‘,)(é,, —6o) = Op(1)op(1) = o0p(1) by the
consistency of 6,,. Hence, Y, = —n~'L"(8o) + 0p(1) 5 I(8o), where Z(6o) # 0 since
the parametric model is regular. The conclusion of the theorem then follows from
Slutzky’s lemma (Corollary D.4). a

It is clear from the proof of Theorem 4.14 that the difference between é,, and 6,
may be represented as

n

0, -6 =n"" Z v(Zi;600) + Rn, (4.12)

i=1
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where ¥(Z;;60) = ZI(60)!si(fo) and the remainder term R, is op,(1/y/n). The
sequence {¥(Z;;6o)} is a sequence of i.i.d. random variables that have zero mean, finite
variance equal to the inverse of the Fisher information, and satisfy all the conditions
for the Lindeberg-Lévy CLT. The representation (4.12) is called the linear asymptotic
representation of 9,,, and the function ¥(z;8y), viewed as a function of z for fixed
8o, is called the influence function of 6, Its role will be discussed in more detail in
Chapter 15.

Theorem 4.14 is one of the main justifications for the ML method because it shows
that, under appropriate regularity conditions, the asymptotic variance of a consistent
root of the likelihood equation attains the Cramér-Rao lower bound for unbiased
estimators of 4. In this sense, a ML estimator is said to be asymptotically efficient.

Notice the difference with respect to Corollary 4.1, which states that if 6, is an
unbiased estimator with finite variance then Varg 8, > I(6p)~!, where I(8y) = nZ(6y)
is the expected total information. Theorem 4.14 refers instead to the asymptotic
variance of #, and only requires the estimator to be consistent. Also notice that the
variance Z(fp)~! of the limiting distribution of the rescaled difference /n (6, — 6o)
need not coincide with the limit of its sampling variance.

For a generalization of Theorems 4.13 and 4.14 to the case when 8 is a p-dimensional
parameter, see for example Lehmann (1983).

4.7 BAYES METHODS

The elements of a Bayesian statistical model are: (i) a parametric model Fg on
the sample space, and (ii) a probability distribution p on the parameter space
©. The distribution p, called the prior distribution, is introduced to represent the
information available about the target parameter 6 before observing the data. This
prior information may come from previous studies, economic theory, etc.

The Bayesian inference problem is to determine how the assignment of probability
to the parameter space © changes after the data z have been observed. Bayes
theorem provides a way of combining the sample information and the prior information
contained in a Bayesian statistical model. The result is a new assignment p(8|z) of
probability to the parameter space O, called the posterior distribution of 6, which
represents the uncertainty about 8 after the data z have been observed. The posterior
distribution is the solution to the Bayesian inference problem.

Because the prior distribution may be difficult to specify and it is generally different
for different subjects, a Bayesian analysis based on particular prior distribution is of
limited interest. Whenever possible, the analysis should instead report the mapping
from the space of prior distributions to the space of posterior distributions induced by
the statistical model and the observed data. This mapping is ultimately the “message”
of a Bayesian analysis.

4.7.1 BAYES THEOREM

To stress the fact that the target parameter 6 is now regarded as a realization of a
random vector with values in O, the density of the data is denoted by f(z|8). The
density of the prior distribution on @ is simply called the prior density of 8 and
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denoted by p(6). According to Bayes theorem, the conditional density of 6 given the
observed data Z = z, or posterior density of 0, is
f(z]8) p(6)
p(6]z) = L2 P
| 1@
where f(z|8) is interpreted as the sample likelihood, that is, as a function of § for z
fixed, and

ﬂn=Lﬂﬂwmmw

is the marginal density of Z, also called the marginal likelihood or prior predictive
density of Z. In a Bayesian analysis, p(@ | z) represents what can be inferred from the
observed data about the parameter 8. The posterior density is simply proportional to
f(z|8) p(8) and depends on the data only through the likelihood f(z|8).

Bayes theorem may be interpreted as a model of sequential learning. For example,
if z; and z, are two independent samples from the same population and z = (z;, z,),
repeated application of Bayes theorem gives

p(0|z) x f(z1,22|0) p(0) = f(z20) f(z:6) p(F)
= f(z216) p(6]z1).

Hence, p(8|z) may be interpreted as the result of updating the posterior density
p(8]2z,) in the light of the information on 6 contained in the new sample z,.

A measure of the gain of information provided by the observed data z is the
logarithm of the ratio of the posterior and the prior densities

p(f|z)
p(6) -

Because 6 is regarded as a realization of a random vector, a summary measure of the
information contained in the data is the Fisher information gain

16|z) = In

Eumm=Lumnmmw,

which is simply the Kullback-Leibler index of dissimilarity between the prior and the
posterior density.

Bayes theorem is only a consequence of the definition of conditional probability
and, as such, its validity is without discussion. What has been discussed, however,
is its applicability to problems of statistical inference. The main difficulties have to
do with two problems. The first one is the interpretation of prior probabilities, in
particular when one cannot appeal to the concept of repeated sampling. The second
is the elicitation and representation of prior probabilities.

Without going into details. it appears of limited usefulness to rely on an objective
interpretation of prior probabilities as the limit of frequency distributions generated
by a stable mechanism. As an alternative, prior probabilities have been interpreted
either as rational degrees of belief given an initial state of ignorance about a target
parameter (see e.g. Jeffreys 1961), or as degrees of belief held by a particular subject
at a given point in time (see e.g. Raiffa & Schlaifer 1961, Savage 1972 and Leamer
1978).
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4.7.2 CONJUGATE PRIORS

A subject is rarely able to specify every detail of her prior assignment of probability
to the parameter space and, in any case, a Bayesian analysis based on a particular
prior distribution would be of limited interest. These considerations suggest restricting
attention to some suitable parametric family Pr = {p(8;v),7 € I'} of distributions
on O, and then selecting the particular element of Pr that better represents the
available prior information. Proceeding in this way offers yet another advantage. Given
a parametric family of prior distributions, it now becomes possible to investigate
the general properties of the family of posterior distributions on © generated by the
application of Bayes theorem.

In selecting a parametric family Pr of prior distributions, it seems reasonable to
require the following:

1. Pr should be mathematically tractable, that is, the posterior density should
be easily determined given the prior density and the likelihood. Further, if
the prior density belongs to Pr, then the posterior density should also belong
to Pr;

2. the family Pr should be rich enough to contain an element capable of
accurately representing the available prior information;

3. the parametrization of Pr should be easy to interpret.

Taking these requisites into account, consider a parametric model {f(z|6)} for the
data that admits a sufficient statistic T = T'(z). By Theorem 4.6 we have f(z|8)
9(T(z) | 8), which implies that the posterior density p(f|z) must be proportional to
9(T (z)|8) p(6). If the prior density of 8 depends on a parameter v in such a way that

p(6;7) x g(716), (4.13)

then the posterior density of 6 is proportional to g(T'(z)|6) g(v|4). If g(-|8) belongs
to a class of functions that is closed with respect to the product of its elements, then
the posterior and the prior density will have the same form.

Definition 4.3 Let Fg = {f(z|6)} be a parametric model for the data that admits
the factorization f(z]0) = g(T(z)|6) h(z), where {g(-]0)} is a class of functions
that is closed with respect to the product of its elements. A parametric family
Pr = {p(6;7),7 € T} of densities on O is said to be conjugate with respect to Fg
if each of its elements satisfies (4.13), with the proportionality factor depending on vy
but not on 6. m]

The condition (4.13) requires the prior density of 8 to have the same functional
form of g(T'|8), but with the parameter v replacing the sufficient statistic T. The
parameter v may therefore be interpreted as the value of the sufficient statistic for a
preliminary sample drawn from the same statistical model.

Example 4.17 Given a sample of size n from a A(u,0?) distribution, the sample
likelihood may be written

f(z]0) = (2n0?)~ "% exp {-2}7[1157'2 +n(z - ;1)2]} . 0= (0%,
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If 02 is known, then
n o 2
f@lw) xexp [~555(: - w7,
where the proportionality factor depends on Z and n, but not on u. Because T(z) =
(z,n) is sufficient for y, a family of distributions that is conjugate with respect to the
Gaussian location model consists of densities of the form

1 N .
p(p; ) o exp [—573(# - ﬁ)‘} , oy = ().

namely the {N(j,v?)} family of distributions on the parameter space. The parameters
of the prior density may in this case be interpreted as the values of the sample mean
and variance for a preliminary sample of size from a A'(y, 0?) distribution. O

4.7.3 DIFFUSE PRIORS

Consider now the problem of selecting a noninformative prior distribution, that is, a
prior distribution that represents an initial state of “complete ignorance” about the
target parameter 6. In the case of a scalar parameter, Jeffreys (1961) proposed the
following rule:

1. if 8 can take any real value, then sclect as noninformative prior for 8 the
uniform distribution on the whole real line;

2. if @ can only take positive values. then select as noninformative prior for In 8
a uniform distribution on the whole real line.

A uniform distribution on the whole real line is not a proper distribution because the
integral of its density over the interval (—o0o,0c) is not finite. In a sense, Jeffrevs is
using oc rather than 1 to represent the probability of the sure event {—00 < 8 < oc}.
Prior distributions of this type are called improper.

Box and Tiao (1973) interpret the use of an improper prior density as a local
approximation to the behavior of a proper prior density that is dominated by the
likelihood, that is, varies very little on the region of © where the likelihood is
appreciable and assumes negligible values outside that region. Formally, a prior density
p is dominated by the likelihood if

f210)p6) _ _ f(z19)
Jo fzINptydt — [o fz|t)at’

Using improper priors to represent a state of complete ignorance raises yet another
problem. If the prior distribution for a scalar parameter 8 is uniform. then the
distribution of In, 1/6, or any other nontrivial reparametrization g(8) is not uniform
in general. Not taking this into account and using the same uniform prior for
alternative parametrizations of the model results in posterior distributions for 8 which,
although based on the same sample information and the same initial state of complete
ignorance, are inconsistent with each other. Consistency requires that if, for some
reason. one chooses p(@) as prior density for 8 and g is a continuously differentiable
function, then the prior distribution of a = g(8) should satisfy

a0
da

p(b|z) =

g(a) = p(g~(a))
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To reduce the effects of the arbitrariness of the parametrization in terms of which
a prior is assumed to be noninformative, Jeffreys (1961) introduced the following
principle.

Jeffreys’ invariance principle The prior distribution of a scalar parameter 6 is
approrimately noninformative if its density is proportional to the square root of the
Fisher information on 6, that is, p(8) is proportional to I(6)'/2.

We now show that Jeffreys’ invariance principle guarantees consistency between
alternative parametrizations of the same model. First notice that the relationship
between the Fisher information for the model parametrized by a and that for the
model parametrized by 6 is

T(a) = E (alnf @)" _109) (60)2'

96 da da
If the prior distributions of a and 8 are chosen following Jeffreys’ principle, then

08

. a6
1/2 _ 1/2
gla) x I(a)'/* = I(0) % 3a |

]  p(6)

Consistency of the prior distributions in turn implies consistency of the posterior
distributions corresponding to alternative parametrizations of the model.

Example 4.18 Given a sample from a N(u,0?) distribution, Jeffreys’ invariance
principle leads us to select a uniform prior for the conditional distribution of y given
o, and a density proportional to 0~! for the marginal distribution of . The latter is
nothing but a uniform prior for Ing. a

4.7.4 THE BINOMIAL MODEL

To illustrate the Bayes method, suppose that one is interested in the probability 6
of success in a single Bernoulli trial and one observes the number z of successes in n
independent trials. In this case, an appropriate parametric model for the data is the
family {Bi(n,6),0 < 8 < 1} of binomial distributions. The prior distribution on the
parameter space © = (0,1) is represented by a B(a,b) distribution (Appendix C.5),
whose mean and variance are

a ab

Eg= 2 far6 = .
ars VT e

By Bayes theorem, the posterior density on O is
p(g I z) x 0a+:—1(1 _ 9)b+n—:—l,

which corresponds to a B(a + 2,0 + n — 2) distribution. Thus, the class of beta
distributions forms a conjugate family with respect to the binomial model. The effect
of the observed data on the uncertainty about 8 is illustrated in Figure 38.
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Figure 38 The solid curve is the density of a prior B(2, 2) distribution for the
probability of success § in a single Bernoulli trial. The broken curve is the posterior
B(3,6) density based on z = 1 successes in n = 5 independent trials. The prior mean
and variance are equal to 1/2 and 1/20 respectively, whereas the posterior mean and

variance are equal to 1/3 and 1/90 respectively.
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The posterior mean and variance of 8 are

a+:z . _ (z+a)(n—2z+b)
n+a+bd’ \arwlz)‘(n+a+b)2(n+a+b+l)'

E(8]z) =

The posterior mean of § is a convex combination of the prior mean and the fraction
of “successes” z/n in the n trials, that is,
2z
E(@|z) =AEf8+(1 - A);,
where A = (a+b)/(n+a+b) is a number between 0 and 1. In particular, if the sample
fraction of successes is greater than the prior mean, then E(8|2) > Ef.

If 2 and n both tend to infinity at the same rate, then A 5> 0 and so E(6|z) = 2/n
and Var(f|z) — 0, that is, the posterior distribution becomes more and more
concentrated about the observed fraction of successes, which is the classical estimate
of the success probability 8. From the Bayesian viewpoint, therefore, the classical
result corresponds to the case when, because of the large sample size, the likelihood
completely dominates the prior density.

If a = b = 1, then the prior density is uniform on the interval (0, 1), while the
posterior density becomes p(f|z) x 6°(1 —8)"~*. In this case, the posterior mean and
variance are

E(f]z) = Zi; Var(8|z) = ,-l% (2)(1-3).
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We get instead the classical results if a and b both tend to zero, that is, the prior
distribution tends to [#(1 — )], corresponding to a uniform distribution on the
whole real line for the logarithm of the odds-ratio, n = In[8/(1 — 6)], which is the
canonical parameter for the binomial model.

4.7.5 BAYES POINT ESTIMATES

Although the posterior distribution represents the complete solution to a Bayesian
inference problem, point estimates of the parameter of interest are often required.
Given a posterior density p(@ | z) on the parameter space © and a loss function ¢(¢,8), a
Bayes point estimate is a parameter point 6 € © that minimizes the posterior expected
loss, that is, the expected loss with respect to the posterior distribution given Z = z.
Formally, a Bayes point estimate § = 6(z) is a solution to the problem

min /e (t,6) p(6z) db,

provided that the integral is finite. Given the posterior density, a Bayes point estimate
depends on the choice of loss function. For example, if £(¢,8) = (t — 8)? (quadratic
loss), then 6 is the posterior mean of 8, whereas if €(t,0) = |t — 8] (absolute loss),
then @ is a posterior median. If the problem does not have an analytic solution, then
numerical integration techniques can be used.

Example 4.19 Suppose that 8 = R and let p(8|z) «x f(z|8), that is, the prior
distribution is noninformative. When the loss function is €(¢,8) = 1{|t—6] > c}, where
¢ > 0 is a sufficiently small number, a Bayes point estimate is a mode of the posterior
distribution. Since a posterior mode is obtained by maximizing the likelihood f(z|#6)
with respect to 6, a Bayes point estimate coincides in this case with a ML estimate.

Under quadratic loss, a Bayes point estimate # is the mean of the posterior
distribution, that is,

Jx0f(z]6)do
Js f(z|6)dd "’
which is also known as the Pitman estimate of 8. If the family of distributions Fg

admits a sufficient statistic T = T'(z), that is, f(z|8) = g(T | 8) h(z), where h(z) does
not depend on 8, then

0=/;0p(9|z)d9=

J299(T|6)d6

6 = ,
fn 9(T|6)do
that is, 6 is a function of the sufficient statistic T. 0

The sampling properties of a Bayes estimator § = é(Z) may be analyzed just like
those of a classical estimator. In particular, for 6 fixed, the risk associated with @ is

r(8,6) =/ze(é(z),o)f(z|9) dz.
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Since f(z|6)p(8) = p(8]2) f(z), integrating the risk of @ with respect to the prior
distribution over © gives the Bayes risk of 8 relative to p

p(6.p) = /e +(6.6) p(6) df = /9 [ /Z f(é(z>,e)f(z|e>dz] p(6) db

-/ { [ té@.0p012) de] f(2) dz,
zZ (S]

where we assumed regularity conditions sufficient to interchange the order of
integration. Because the term in square brackets is the posterior expected loss 8 given
Z = z, a Bayes estimator has, by definition, smallest Bayes risk among all estimators
of 6.

4.7.6 THE GAUSSIAN LOCATION MODEL

Let Z be a random sample of size n from a N (s, 02) distribution with y unknown and
0% known. The sample likelihood for this model is

> 2
J(Z1 1) o exp [-g (%) ]

where the sample mean Z is a sufficient statistic for pu. If the prior density of y is
N(jz,v?), then the posterior density of ;¢ conditionally on the observed data is

p(u| Z) ocexp{—% [(";’7)2 +n (2;“)2} }

In order to evaluate the expression in square brackets we use the identity

AB )
Tpla-b7 (4.14)

Az—a)?+B(z-b?=(1+B)(z-¢c)* +

where ¢ = (da + Bb)/(4 + B). Thus we obtain

(“_’7)'+n (5;—’) = (ho + ha)(p — f2)* + d,

v

where hg = 1/v2, h,, = n/o?, d is a constant that does not depend on u, and

. 1 _ 5
1= . (hojt + hnZ).

>~

The parameters ho and h,,, called the prior and sample precision respectively, are the
reciprocal of the prior variance v? and the sampling variance of Z. Because d does not

depend on p, we have
1 /p—f 2
p(uIZ)aexp[ 2( = )]
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Figure 39 Risk of the sample mean Z and the posterior mean /i given n = 4
observations from a A(0, 1) distribution, with a prior A(0, 1) distribution for p.
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where 72 = (hg + h,)~!, that is, the posterior distribution of u is M(f,72). Notice
that the posterior mean /i may be written i = A+ (1~ \)Z, where A = ho/(ho + hy)
is a number between 0 and 1. Thus, the posterior mean £ is a convex combination
of the prior mean & and the sample mean Z, with weights equal to their relative
precision. Also notice that the posterior precision 1/72 is just the sum of the prior and
the sample precision.

The posterior mean /i is the Bayes estimator under a quadratic loss function. In fact,
because the posterior distribution of p is Gaussian, ft is the Bayes estimator for every
symmetric and convex loss function. If A = 0 or, equivalently, ho/h, — 0, then the
posterior mean tends to the sample mean. This occurs in two cases. The first is when
the sample size n is fixed and hy — 0, that is, the prior information on g becomes
more and more vague. The second is when v* is fixed and n — oco. These results are
not surprising because in both cases the prior density is completely dominated by the
likelihood. Thus, the sample mean may be viewed either as a Bayes estimator relative
to a noninformative prior or as the limit, as n — oc, of a sequence of Bayes estimators
relative to a proper prior.

Because Z ~ N(p,0%/n), the risk associated with the posterior mean fi under the
quadratic loss function is

o?

r(ip) = E(p— )" = N (- )’ +(1-2)° —,
and assumes its minimum of (1 — A)?/h,, when g is equal to the prior mean j. The

expectation of 7(f, u) with respect to the prior distribution, or Bayes risk of f, is

(i) = A2+ (1-ap L= 1
n ho+h,,
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The risk associated with the sample mean is instead

2

rZu)=Eu-2)2=2 = 1

The risk of these two estimators is shown in Figure 39. Since r(Z.y) is constant, it
coincides with the Bayes risk p(Z) of the sample mean. Hence p(Z) > p(ji). with
equality only if hg/h, = 0. Although there are regions in the parameter space where
the sample mean has a smaller risk than the Bayes estimator, these regions receive
very low prior probability.

4.8 STATISTICAL DECISION PROBLEMS

The theory of statistical decisions provides a general formulation of the problem of
finding inference procedures with desirable properties. Despite its relatively abstract
character, such a formulation has two advantages. On the one hand, it makes it possible
to treat in a unified way the problems of statistical estimation and hypothesis testing.
On the other hand, its reliance on classical noncooperative game theory and the Pareto
criterion should make it quite natural for a public of economists.

4.8.1 STATISTICAL GAMES

The theory of statistical decisions represents the statistical problem as a sequential
noncooperative game hetween two players: the statistician and chance or Nature.
Nature moves first by choosing both a point 6 in a state space @ and a sample z, that
is, a realization of a random variable (vector) Z which takes values in a probability
space (Z,B, Py). A point 8 is also called a state. Then, after observing z but not
knowing 6, the statistician chooses an action a out of a set A of available actions.

A parametric estimation problem corresponds to the case when © is a finite-
dimensional Euclidean space and A = 0. Classical hypothesis testing, discussed in
Chapter 5, corresponds instead to the case when © and A consist only of two points:
given a hypothesis Hg, the elements of O are the events “Hy is true” and “Hp is false”,
while the elements of A are the actions “reject Ho” and “do not reject Hq".

In deciding on how to move, the statistician evaluates the consequences of every
available action on the basis of a loss function ¢ defined on 4 x . The function ¢ is
non-negative and normalized in such a way that, given a state 8§ € O, there always
exists an action a(f) € A for which ¢(a(8),0) = 0. Given an action ¢ € A and a state
8, the loss to the statistician is a number ¢(a,8) that is interpreted as the negative
utility she obtains from the game. A statistical decision problem is a triple (0, A, ¥)
associated with the chance experiment represented by the random vector Z, whose
probability distribution Py depends on the state 6.

In addition to the game form just described, called extensive form, a statistical
decision problem has another equivalent representation. Since the action of the
statistician depends in general on the observed sample, varying z gives a deciston
function §: Z — A, which specifies what action the statistician will choose for each
of the possible samples. Thus, the statistician’s problem becomes one of selecting,
before actually observing the data, a decision function d (for example, an estimator
of 8). Given a decision function d, the loss is now represented by the random variable
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¢(d(Z),8). For a fixed 8 € O, one may associate with a decision function d the non-
negative number

r(d,0) = /Zf(d(z),O)f(zlﬂ) dz,

where f(z|#) is the conditional density of Z given 6. The number r(d, ) is called the
expected loss or risk of d conditional on 8. In what follows, we shall confine ourselves
to the class D of decision functions for which the risk r(d,8) is well defined for all
# € ©. In this case, varying  over © gives a non-negative function r(d,-), defined
on O and called the risk function of d, which represents the negative utility of the
statistician when d is the decision function selected. The extensive form (9, A, £) of
the game can now be replaced by the new form (O, D,r), called the normal form,
where r is a non-negative function defined on D x  and the structure of D and r
depend on A, € and the distribution of Z.

In both game forms, the strategy set of Nature is the state space O. The strategy
set of the statistician is the set A of actions in the extensive form of the game, and
the set D of decision functions in the normal form. The problem for the statistician is
to choose a “best” strategy, either an action or a decision function.

Notice that in the extensive form of the game the statistician need not plan ahead
what the best action should be for each possible sample. It is enough that she chooses
the best action given the particular sample z at hand. This consideration is of a certain
importance in cases where the statistician cannot repeat or has no control over the
chance experiment that generated the data.

4.8.2 THE MINIMAX AND BAYES PRINCIPLES

Uniformly best strategies for the statistican, that is, strategies that are best for all
8 € O, do not exist in general. The reason is essentially the same as why no uniformly
minimum MSE estimator exists, namely the fact that, given a state 6y and an action
a such that ¢(a,8p) > 0, one can always find an action ag such that £(ag,8y) = 0.

To circumvent this problem, two general methods have been proposed. The first
method consists of restricting the strategy set to a smaller class of strategies which
satisfy certain requirements, such as unbiasedness. The second method consists of
introducing some principle for ordering strategies. Two such principles are the minimax
and the Bayes principles. Both lead to a complete ordering of the statistician’s strategy
set.

The minimax principle assumes that the statistician has no prior knowledge of the
state 6 chosen by Nature. The statistician is supposed to proceed in the following way.
First she considers, for all § € O, the maximal loss that results from each strategy. She
then selects a strategy that gives the smallest maximal loss. Such a strategy, called
minimaz, has the feature of preparing the statistician against all conceivable states,
particularly the worst.

Definition 4.4 A decision function dy € D is said to be minimaz if
sup r(dy,8) = inf supr(d,6),
0€O ( ) dEDoeg (d.6)

where the number on the right-hand side is called the minimaz or upper value of the
game. O
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Thus, a decision function dg is minimax if and only if r(do,8') < supgcg r(d,8) for
alld € D and every 8’ € ©. The definition of a minimax action is completely analogous.
There are situations where a minimax strategy does not exist or is not unique. Methods
for finding a minimax strategy are discussed, for example, in Ferguson (1967). One of
them is presented in Theorem 4.16 below.

The second principle assumes that there is pre-play information available to the
statistician. Formally, Nature is supposed to follow a mixed strategy, that is, choose
randomly according to a probability distribution defined on ©. Nature’s mixed strategy
is assumed to be known to the statistician, for whom it represents a prior distribution
on O. For simplicity, we shall consider the case when such a distribution is absolutely
continuous with density function p.

In the normal form of the game, the statistician is assumed to know only the mixed
strategy p chosen by Nature. She exploits this information by computing the expected
loss or Bayes risk resulting from any available decision function d, where the Bayes
risk of d relative to the prior density p is defined as

l’(d,P)=/8r(d,0)p(0)d0.

She then selects a decision function that minimizes Bayes risk.

Definition 4.5 A decision function dy € D is said to be Bayes relative to a prior
density p on O if
pldo,p) = inf pld,p),

where the number on the right-hand side is called the minimum Bayes risk. a

In the extensive form of the game, besides knowing the mixed strategy p followed
by Nature, the statistician observes a sample z. She first combines the prior and the
sample information on 6 by computing the posterior density p(8|z). She then selects
an action that minimizes the posterior expected loss or posterior Bayes risk

o(a.p(-2)) = /e €(a,6) p(6]2) db.

Definition 4.6 An action ay € A is said to be Bayes relative to a posterior density
p(8|z) on © if o(ao, p(-|2)) = infaca o(a, p(- | 2)). S|

Of course, Bayes strategies need not exist nor, if they exist, be unique. However,
if Bayes solutions to both the normal and the extensive form of the game exist. then
they are essentially equivalen:.

Theorem 4.15 For dy to be a Bayes decision function relative to a prior density p, it
is enough that do(z) = ag for almost every z € Z, where ag is a Bayes action relative
to the posterior density p(-|z).

Proof. Consider minimizing

pld,p) =/9r(d,9)p(0)(10=/;9 [/z 0(d(z),6) f(z|0)dz| p(d)db
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over the class D of decision functions. Since f(z|0)p(8) = p(6|z)f(z), we have

pld,p) = /z [ /e e(a,a)p(olz)de] f(z) dz = /Z ola, p(: | 2)) £(2) dz,

where we assumed regularity conditions sufficient to allow interchanging the order of
integration. To minimize p(d,p) with respect to d it is therefore enough to minimize
o(a,p(-| z)) with respect to a for alimost every z € 2. O

One important advantage of the Bayes principle over the minimax or other principles
is that it often leads to solutions that are relatively easy to compute.

When is a Bayes strategy minimax? A minimax strategy, by minimizing the
maximum risk, tries to do as well as possible in the worst case. One might therefore
expect a minimax strategy to be Bayes relative to the prior distribution on © that
causes the statistician the greatest Bayes risk.

Definition 4.7 A prior density pp on O is said to be least favorable if
;ggp(d,po) = St;p ‘;g;‘)p(d,p),

where the number on the right-hand side is called the mazimin or lower value of the
game. ]

A density po is least favorable if and only if, for all prior densities p,
. S .
(;lelgp(d,po) > (;ggp(d,p)

Theorem 4.16 Let dy be a Bayes decision function relative to the prior density pg.
If dy is such that p(dy, po) = supyeer(do,8), then dy is minimaz and py is the least
favorable prior density. If dy is unique, then it is also the unique minimaz decision
function.

Proof. For every d € D

supr(d,6) > p(d, po) > p(do, po) = supr(do,6).
€0 e

Hence dy is minimax. If dy is unique, then the second inequality is strict. Finally, since
inf p(d, p) < p(do, p) < supr(do,8) = p(do, po)
€D 6€0
for every other prior p, py is least favorable. 0O

Theorem 4.16 may be generalized to the case when a decision function dy can be
represented as the limit, as n — oo, of a sequence {d,} of Bayes decision functions
relative to prior distributions of the proper type.

Theorem 4.17 Let dy be the limit, as n — oo, of a sequence {d,} of Bayes decision
functions relative to a sequence {p,} of prior densities on ©. If p(d,,pn) — ¢ as
n = oc and r(dy,8) < ¢ for all § € O, then dy is minimaz.
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Proof. If d € D is any other decision function then, for every n,

supr(d,8) > p(d,pn) > p(dy,pn).
fe6

Taking the limit as n — oc gives that supycg 7(d,8) > ¢ > supycg r(do, 0). 0

An important special case where the conditions of Theorems 4.16 or 4.17 are satisfied
is when dg has constant risk, that is, r(dp,0) = ¢ for all 8 € ©. Thus. if a decision
function with constant risk is Bayes or is the limit, as n = oc, of Bayes decision
functions relative to a sequence of proper priors, then it is minimax.

Example 4.20 Let Z be the sample mean of a random sample of size n from a
N (u,0?) distribution with g2 € ® unknown and o2 known. The risk of Z under the
quadratic loss function is 7(Z, u) = E(u — Z)? = 0?/n. Because the risk of Z does not
depend on p, it coincides with the Bayes risk. We have seen in Section 4.7.6 that the
sample mean is the limit, as n — 00, of Bayes decision functions relative to a sequence
of proper priors. Hence Z is minimax. 0O

4.83 THE COMPLETE CLASS THEOREM

We first introduce a weak principle of optimality that corresponds to the classical
Pareto criterion.

Definition 4.8 Let r be a risk function defined on D x ©. A decision function d € D
is said to be strictly dominated by another decision function dy € D if r(d,8) > r(dp.8)
for all 8 € O, with strict inequality for some 8 € ©. A decision function d € D is said
to be admissible if it is not strictly dominated by another decision function in D. A
subset D C D of decision functions is said to form a complete class if every decision
function d € D — D is strictly dominated by one in D. A complete class D is said to
be minimal if no proper subset of D is a complete class. 0

Thus, a minimal complete class coincides with the class of decision functions that
are admissible, that is, cannot be dominated in the sense of Pareto. Because of this,
there is no disadvantage in restricting attention to a minimal complete class.

We now show that, under appropriate conditions, a Bayes decision function is
admissible. This result represents an important justification for Baves methods. In
this section we shall consider two cases. The first case is straightforward.

Theorem 4.18 Given a prior distribution, if a Bayes decision function is unique,
then it is admissible.

The second case is when the state space is a finite set @ = {6,,...,6,n}. In this
case, the risk function associated with a decision function d may be represented by an
m-vector r(d) = (r1(d),...,rm(d)), where 7;(d) = 7(d,8;). The set R = {r(d): d € D}
of all risk functions is a subset of ™. It can be shown that if R is closed and bounded
below, then any point on its lower boundary is an admissible decision function.

A prior distribution on the finite set ® may also be represented as an m-vector
p=(p1,-..,Pm), where p; is the prior probability assigned to the state §;. The vector
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p represents a valid assignment of probabilities to the elements of © if all its elements
are non-negative and such that 3 ;pi=1L Given a decision function d and a prior
distribution p, the Bayes risk p(d,p) = p' r(d) is the value of the hyperplane through
the point r(d) with normal equal to p.

Theorem 4.19 Let © be a finite state space and let p be a prior distribution on ©
such that p; > 0 for all j =1,...,m. If dy € D is a Bayes decision function relative
to p, then it is admissible.

Proof. Suppose, on the contrary, that dp is inadmissible. Then there exists a decision
function d € D such that r;(d) < rj(do) for all j = 1,...,m, and r;(d) < r;(do) for
some j. Since p; > 0 for all j, we have

p(d,p) =Y _pjri(d) < Y_ pjrj(do) = p(do, p),
J J

which is a contradiction. O

The converse of Theorem 4.19 is the following.

Theorem 4.20 If dy is an admissible decision and O is a finite state space, then dop
is a Bayes decision function relative to a proper prior distribution on ©.

Proof. See Ferguson (1967), Theorem 2.10.1. a

The next theorem gives conditions under which the class of Bayes decision functions
is minimal complete.

Theorem 4.21 (Complete class theorem) If © is a finite set and the set R =
{r(d): d € D} is closed and bounded below, then the class of Bayes decision functions
18 complete and the class of admissible Bayes decision functions is minimal complete.

Proof. See Ferguson (1967), Section 2.10. o

BIBLIOGRAPHIC NOTES

On the concept of Fisher consistency see Cox and Hinkley (1974). For a detailed
discussion of statistical estimation based on the analogy principle see Vapnik (1982)
and Manski (1988a, 1994). Standard references for the classical theory of point
estimation are Cox and Hinkley (1974) and Lehmann (1983).

Estimation of conditional quantiles by least absolute deviations was first proposed by
Koenker and Bassett (1978). On efficient algorithms for estimating quantile regression
models see Koenker and d'Orey (1987).

For a thorough discussion of the concepts of sufficiency and UMVU see Lehmann
(1983). On the comparison of estimators using criteria other than MSE see Keating,
Mason and Sen (1993).

The classical proof of the consistency of the ML estimator goes back to Wald (1949).
A general reference for the results in Section 4.6 is Ferguson (1996). These results
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may be generalized along several directions. First, one may relax the assumption that
the log-likelihood is smooth. A general method is discussed in Chapter 15. Further,
Theorems 4.13 and 4.14 may be generalized to the case of observations that are
independent but not identically distributed (Hoadley 1971) or dependent (Crowder
1976). In both cases, a crucial condition is that the expected total information must
become arbitrarily large as n = oc.

Classical introductions to Bayes methods are Zellner (1971), Lindley (1972) and
Box and Tiao (1973). Zellner (1988) presents an interesting interpretation of Bayes
theorem as an optimal rule for information processing.

Wald (1950) was the first to point out the close connection between game theory
and statistical theory. The proof of the complete class theorem for the case when the
parameter space is discrete may be found in Ferguson (1967). A very general complete
class theorem may be found in LeCam (1986).

PROBLEMS
4.1 Prove Theorem 4.1.

4.2 Gnven n consecutiw observations on a stationary time series {Z:}, let 4, =
n~! Zt \ (Z. — Z)(Z14+r — Z). Show that the associated sample autocovariance matrix I,
is n.d.d., and is nonsingular if 40 > 0.

4.3 Given n consecutne observations on a stationary time series {Z;} with mean zero, let
I = (n—h)"! Z¢Z¢+h Show that the associated sample autocovariance matrix [n
need not be n.n.d

4.4 (Percival 1993) Given n consecutive observations on a stationary time series {Z;}, let
Yo = Var Z; and 40 = n~' )" ,(Z/ — Z). Show that 0 < E %0 < 7o.

4.5 Use Bartlett’s formula to approximate the sampling variances and covariances of sample
autocorrelations from a stable AR(1) process.

4.6 Use Bartlett's formula to approximate the sampling variances and covariances of sample
autocorrelations fromm an MA(1) process.

4.7 Derive MM estimates of the parameters of MA(2) and ARMA(1,1) processes.
4.8 Show that if 6 is a ML estimate of 6, then & = g(d) is a ML estimate of a = g(6).

4.9 Given a sample from a N (u,o?) distribution, show that the sample log-likelihood is
concave over the region of the parameter space for which o? < 262, where % is the sample
mean squared deviation.

4.10 Consider the problem of estimating the parameter ¢ of the Gaussian AR(1) model. Let
#, ¢ and @ denote, respectively, the unconditional LS estimate, the conditional LS estimate
and that obtained by solving the Yule-Walker equations. Show that [¢| <1 and # > ¢ > ¢.

4.11 Write down the sample log-likelihood of the Gaussian AR(p) model and derive the
unconditional and the conditional LS estimates. Compare these estimates with those obtained
by solving the Yule-Walker equations.
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4.12 Show that if the sample log-likelihood is quadratic, that is, of the form (4.9) where Q
is a p.d. matrix, then the Newton-Raphson algorithm converges to the ML estimate in one
iteration, no matter what the starting point is.

4.13 Show that, if the parametric model belongs to a linear exponential family in canonical
form, then the Newton-Raphson and the scoring algorithm coincide.

4.14 Let Z be the indicator of success in a Bernoulli trial with probability of success =.
Show that § = Z is the unique unbiased estimator of 7.

4.15 Let Z,,...,Z, be indicators of success in n independent Bernoulli trials with
probability of success w. Show that there exists no unbiased estimator of the logarithm of the
odds-ratio 8 = In{[x /(1 — =)).

4.16 An estimator éﬁwith a continuous sampling distribution is called median unbiased for
a parameter 0 if Prg{6 < 6} = Prg{6 > 6} for every 8. This property is distinct from (mean)
unbiasedness. Assume that Z ~ £(A) and show that:

(i) although 0: = Z is (mean) unbiased for § = 1/A, it is not median unbiased;

(ii) although § = Z/(In2) is median unbiased for # = 1/A, it is not (mean) unbiased.

4.17 Suppose that Z ~ P(A) and consider the problem of estimating the parameter
6 = exp(—3A). Show that § = (—2)7 is unbiased for 8 and discuss whether this is a reasonable
estimator.

4.18 Show that, if a parametric model admits a sufficient statistic T and the ML estimate
of 8 is unique, then it must be a function of T.

4.19 Given a sample Zy,...,Z, from an exponential distribution with density
1 _. T
f(Z;T)=;€ * ’ ZZO)

show that the ML estimator of 7 is unbiased. Compute its sampling variance and compare
it with the Cramér-Rao lower bound.

4.20 Given a sample Z,,...,2Z, from an £(8) distribution, determine the Cramér-Rao
lower bound for an unbiased estimator of . As an estimator of 8, consider the statistic
6=(n- 1)/(3°; Zi). Is it sufficient for 67 Is it unbiased for 67 Determine whether 6 attains
the Cramér-Rao bound.

4.21 Let Z be a random variable with a Bi(n, 8) distribution, where 0 < @ < 1. Use Jeffreys’
invariance principle to select a noninformative prior distribution for §. Compute the posterior
distribution of 8 and compare the properties of the posterior mean and mode of 8 with the
sampling properties of the classical estimator of 6.

4.22 Let the observed data consist of sample frequencies z = (z1,...,2J), with z; =
0,1,...,n and E,- z; = n. As a model for the data consider the family of multinomial
distributions with density

J
fEo o I8, o=(0,....60,
j=1
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where 0 < 6; <1 and Z 8, = 1. Let the prior distribution on the parameter space be a
Dirichlet distribution, wnth density

F(Z -
(3)1—[ g 1

and mean 3
JJ ’1 j=19"‘1']|

Zr:l a
where T' is the gamma function (Appendix C.3) and 8, > 0 for all j. This family of
distributions generalizes the beta family. Show that the Dirichlet family is conjugate with
respect to the multinomial model and compute the posterior mean of 8,.

Ef, =



3

Statistical Accuracy and
Hypothesis Testing

Given an estimate 6 of a parameter of interest 6, two problems often arise. The first
is assessing the accuracy of our estimate of 8. The second is determining whether or
not certain hypotheses about 6 are inconsistent with the sample evidence.

5.1 ASSESSING VARIABILITY AND BIAS

Important measures of the statistical accuracy of an estimator are its sampling
variability and its bias. The most common measure of an estimator’s sampling
variability is its sampling variance, either the exact one or some large sample
approximation to it. In the scalar case, the (positive) square root of an estimator’s
sampling variance is called its standard error. The most common measure of the bias
of an estimator @ is the difference Biasf = E § — 6, where 8 is the target parameter.

5.1.1 ASSESSING VARIABILITY

Except in special cases, the sampling variance of an estimator ] depends on
unknown parameters and must therefore be estimated. The classical approach relies
on knowledge of the form of Var#. We shall distinguish two cases.

The ﬁrst case is when 6 is a ML estimator. Recall from Theorem 4.14 that if
Zi,...,Z, is a large sample from a distribution whose density f(z;68o) belongs to
a regular parametric family then, under some conditions, the sampling variance of 6 is
well approximated by nZ(6y), where Z(6p) is the Fisher information on 8 evaluated at
the true parameter 6p. Thus, if the assumed parametric model is correctly specified,
the problem of estimating Var# reduces to the problem of estimating Z(6y).

One possibility is the “plug-in” estimator obtained by evaluating the Fisher
information matrix at §. A second possnblllty is to estlmate Z(6y) by the sample
variance of the score evaluated at 6, that is, Z = n~! ;s (0)T A third possibility
exploits the fact that, by the information equality, (90) —E[n~'L"(6,)], where
L"(8) is the Hessian of the log-likelihood. Dispensing with the expectation operator,
Z(6y) may then be estimated by the observed information I = —n~'L"(f). When
the parametric model is correctly specified, all three estimators can be shown to be
consistent for Z(8p). This result, however, does not provide a basis for choosing between



192 ECONOMETRICS

the various alternatives. In practice, the choice largely depends on computational ease,
with more refined asymptotic arguments also playing some role. On the basis of these
arguments, the third estimator is usually considered as more precise than the other
two (Efron & Hinkley 1978).

The second case is when 8 can be represented as § = h(T), where T is a vector-valued
statistic with mean g and variance X, and there exists an unbiased (or consistent)
estimator ¥ of £. If h is a linear function, that is, h(T) = CT for some matrix C,
then the sampling variance of 6 may be estimated unbiasedly (or consistently) by
Vard = CECT.

When the function h is nonlinear but sufficiently smooth over a region that contains
most of the probability distribution of T, then one may approximate # by a linear
function of T and the sampling variance of § by the sampling variance of this
linear approximation. This method is known as the delta method. Specifically, if h
is differentiable in a neighborhood of g with first derivative h'(u) at p, then a first-
order Taylor series expansion about u gives

h(t) = h(p) + R’ (1) T (t — p).
Hence, to a first approximation,
Varf ~ h'(p) TE A ().

One may then estimate the sampling variance of § by replacing g with T and ¥ with
its estimate X. For a precise statement of the necessary regularity conditions, see e.g.
Oehlert (1992).

Example 5.1 Let § = T, /T,, where

T, I T o} o1
E = s Vi = ! p ]
( T, ) ( B2 "\ o2 03
with u, # 0. For example, 9 may be the empirical correlation coefficient between two
random variables X and Y, or the estimated slope of the regression of Y on X. If

f2 # 0, then
1/u2 )
R (p) = ( ) a= ().
() —n [ B = (1, p2)
Hence, to a first approximation,

2 2
i Z “ 2 B
Varf ~ -1 - 20,5 + 02 2L,
#3 3 m

One may now estimate the sampling variance of § replacing uj by T;, 7 =1,2, and
o2, 02 and o), by appropriate estimates. w

Despite its conceptual simplicity, the delta method may lead to very complicated
calculations. As a result, classical econometric and statistical theory have traditionally
focused on a rather limited class of problems for which relatively tractable results
are available. Things have changed substantially in the last two decades due to the
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introduction of a variety of computer-based methods for assessing the accuracy of
an estimator. The payoff from these methods is a considerable increase in the type of
statistical problems that can be analyzed. a reduction in the assumptions required, and
the elimination of routine but tedious theoretical calculations. The two basic methods
are presented in the next sections.

5.1.2 THE NONPARAMETRIC BOOTSTRAP

Let Z = (Z2,,...,Z,) be a sample from a distribution with distribution function F, let
6 = 6(Z) be an estimator that does not depend on the order in which the observations
are arranged, and let the precision of 6 be measured by its sampling variance, which we
write as 0>(F) = Varg 6 to stress its dependence on the parent distribution function F.

If F is unknown, then the analogy principle suggests estimating o°(F) by replacing
F with some estimate. When F is estiinated by the empirical distribution function
F, the resulting estimate of o*(F) is 02(13') = Var 6. Because F is a nonparametric
estimate of F, 02(F) is a nonparametric estimate of 02(F).

Example 5.2 Let Z = (Z,,...,Z,) be a sample from a distribution with distribution
function F and finite moments up to order 2k. The sampling variance of the kth
empirical moment fi; is o ( ) = n~!'Varg Z¥. Because Varg ZF = py — pid, a
nonparametric estimate of g%(F) is

o} (F) = n=' Varp ZF = 0™ (o — 1)
By Jensen’s inequality, /12 is an upward biased estimator of puf and so Varg fi is

a downward biased estimator of the sampling variance of jfi, although the bias is
negligible for large enough n. a

More gen('rall), if the functional ¥(F) describes some aspect of the sampling
distribution of @ under F, then a nonparametric estimate of {(F) is just v(F ) Because
F converges to the parent distribution function F under general conditions, W(F)
ought to converge to ¥(F) provided that ¢ is a continuous functional.

Unfortunately, except in special cases such as Example 5.2, evaluating w(F) is
complicated and some form of approximation becomes necessary.

Example 5.3 Let Z be a sample from a distribution with distribution function F.
The analogy principle suggests estimating

W(F)=Efrf = /~~~/é(zl,...,z,,)dF(z.) o dF(zy)
by its sample counterpart
wF) =Epb= [ [ 8z dE ) - dF()

Because the empirical distribution function F is the distribution function of a discrete
distribution that gives probability mass n~! to each of the n sample values 2y, ..., Z,,

we get
0= nnz 29(2,,, W Zi),s (5.1)

Hh=1 in=1
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which is generally complicated to compute because the number of terms in the
summation is equal to n". This number becomes rapidly astronomical. For example,
if n = 5 then n™ = 3,125, if n = 10 then n" = 10, 000, 000, 000, and so on.

The generic term 6(Z;, ..., Z;,) on the right-hand side of (5.1) corresponds to the
value of the estimator 6 for one of the n™ samples that may be obtained by randomly
drawing with replacement n elements from the original data Z. Thus, an alternative to
(5.1) consists in randomly selecting B of the possible samples obtained by drawing with
replacement n elements from the set Z. Donotmg these samples by Z:,...,Z%, one
may then approximate E 6 by 9( y=B7'Yy, 0,,, where 9,, = O(Z ). It can be shown
that this approximation to the nonparametric estimate EFH becomes increasingly
accurate as B increases. Of course, this does not necessarily mean that E F-é is a good
approximation to Eg 6. 0O

Given asample Z = (Z,,...,Z,),aresample Z* = (Z},...,Z;) is arandom sample
of size n drawn with replacement from Z, so that Z; has probability n=! of being
equal to any distinct element of Z and probability m/n of being equal to any element
of Z that is repeated m times. A resample is therefore a sample of size n from the
empirical distribution function F. Even when all elements of Z are distinct, a resample
may contain repeats. R . A

Given a resample Z*, the estimate 8* = 6(Z"*) is called a replicate of §. Because the
estimator is assumed not to depend on the order in which the data are arranged, some
of the n™ possible resamples are really indistinguishable. It can be shown (Hall 1992)
that the chance of drawing the same unordered resample more than once is less than
$B(B - 1)n!/n".

The argument in Example 5.3 motivates the following algorithm, called
nonparametric bootstrap, for numerically approximating the nonparametric estimate
of any aspect of the sampling distribution of 6.

Algorithm 5.1

(1) Compute the empirical distribution function F of the sample Z.

(2) Draw a sample Z* of size n from F.

(3) Compute 6 = 6(Z*).

(4) Repeat steps (2) and (3) a sufficiently large number B of times, obtaining
bootstrap replicates é,‘, cee ,5;3.

(5) Use the empirical distribution of él‘,...,éb to estimate any aspect of the
sampling distribution of 6.

Thus, the estimate of Er based on Algorithm 5.1 is é(.) = B! Z,?:l é;, the
estimate of Varpé is

B
Vaisd= B S (0 01,
b=1

while the estimate of Prg{ < c} is

B
Prp{f <c}=B~' Y 1{6; <c}.
b=1
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It can be shown that é(.) - Eg 6, (':i\r;;é - \’ar,:é and ﬁg{é <c} - Pr,;.{é <c¢}
as B = .

The amount of computer time required by Algorithm 5.1 depends linearly on the
number B of resamples. According to Efron and Tibshirani (1993), if one seeks
estimates of Varg 6, then: (i) a number of resamples as small as B = 25 is usually
informative, whereas B = 50 is often enough for a good estimate; (ii) very seldom is
it necessary to draw more than 200 resamples.

5.1.3 THE PARAMETRIC BOOTSTRAP

Let Z be a sample from a distribution whose distribution function is known to belong
to a parametric family {F(2:8),6 € O}, and let § = 6(Z) be a ML estimate of
6. In this case, instead of using the empirical distribution function F, which is a
nonparametric estimate of the parent distribution function, the bootstrap may be
based on the parametric estimate F(z;6). This leads to the following algorithm.

Algorithm 5.2 )

(1) Compute the parametric estimate F(z;0).

(2) Draw a sample Z* of size n from F(z;0).

(3) Compute * = 6(Z").

(4) Repeat steps (2) (3) a sufficiently large number B of times obtaining
bootstrap replicates é{, e ,ék.

(5) Use the empirical distribution of é,’, e ,9;3 to estimate any aspect of the
sampling distribution of 6.

5.1.4 JACKKNIFE ESTIMATES OF VARIANCE

We now present another method that may be used to estimate the sampling variance
of an estimator #. This method, which may be interpreted as an approximation to the
nonparametric bootstrap, works well for estimators that are not far from being linear
in the data.

Given a sample Z),..., Z,, the ith jackknife sample is the subset of n — 1 elements
obtained by excluding the ith data point Z;. Let §(;, denote the value of the estimator

6 for the ith jackknife sample and let §,.,, = n~! > é(i, be the average of ;) over the
n jackknife samples. Tukey (1958) suggested estimating the sampling variance of 6 by

— n-—1 n.o. N - A
Vary § = —— > 18y = 6056 — 6]
i=1

called the jackknife estimate of the sampling variance of 6.
The motivation for this method is easiest to see by considering the problem of
estimating the sampling variance of the sample mean.

Example 5.4 Let Z be the mean of a sample Z,,...,Z, from a distribution with
finite variance. The value of the sample mean for the ith jackknife sample is

Z(,’) = (n - l)‘l(nz - Z,)
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Because Z.) = Z, we have Z(;) — Z(,) = (n — 1)7!(Z — Z;). The jackknife estimate of
the sampling variance of Z is therefore

G,é:nr‘llz";(i_f) z(z 2y =

i=1

In this case, the jackknife estimate exactly coincides with the unbiased estimate of
Var Z. O

When the sample size is small, the jackknife estimate is generally easier to compute
than that based on the bootstrap, because it only requires n evaluations. Further, for
estimators that are linear in the data, 6(;) may usually be computed through simple
recursive formulae.

The jackknife suffers, however, from some limitations. First, it tends to be
conservative, that is, the expectation of VarJ 6 tends to exceed the actual variance
of 6 (Efron & Stein 1981). Second, it may give poor answers when § is a highly
nonlinear function of the data. One example is its failure to correctly estimate the
sampling variance of the sample median (Efron 1982).

A way of improving the quality of the jackknife estimates is to use the delete-d
jackknife, which excludes not a single data point but subsets of d > 1 data points.
Because the number of jackknife samples is in this case equal to (), the method tends
to lose its simplicity, especially when the sample size is large. Instead of computing 6
for each of the possible jackknife samples, an alternative is to randomly select a subset
of them. With this modification, the jackknife tends to resemble more the bootstrap.

5.1.5 ASSESSING BIAS

Although unbiasedness plays an important role in statistical theory, unbiased
estimators are rather rare. Given a biased estimator 8 of a target parameter 6,
an important measure of statistical accuracy is the magnitude of its (mean) bias
Biasd = E§ — 6. When 8 = h(y) and 6 = h(T), where h is a nonlinear function and T
is a vector-valued statistic with mean 1 and variance X, the first-order approximation
discussed in Section 5.1.1 would give as a result Bias@ = h(u) — 8 = 0, which is
clearly incorrect. If h is twice differentiable in a neighborhood of p, then the bias of
6 may be approximated by carrying out the delta method up to the second order. A
second-order Taylor expansion about u gives

h(E) ~ 8+ K ()T (¢ = ) + 50t = ) A" (k) (¢ = ).
Hence, up to second order,
Bias§ = BA(T) ~ 0 ~ 2 E((t — ) Th"(1) (¢~ )] = 5 th"(4) ),
where we used the fact that £ Az = trz' Az = tr(Azz"). In the scalar parameter

case, the bias of 9 is approximately proportional to the sampling variance of T. Given
an estimate Bias# of the bias of 8, a bias corrected estimate of 0 is 6 = § — Biasé.
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Example 5.5 In the case of Example 5.1 we get

0 —1/p3 ]
R () = 2 |,
() [—1/;13 2u1 /183

Hence, up to second order, the bias of § = T, /T, as an estimator of 8 = y, /uy is
-1 2
Biast-(2”—‘i 22‘i)=o(—”‘2+°—§).
2 1 1 Mip2 4y
A bias corrected estimate of 8 is therefore
~ ~ &12 02
=011
( YT T )

where ,, and 63 are estimates of 0;2 and o2 respectively. If u; = 0, then Biasf ~
—012/p3 and a bias corrected estimate of 8 is simply 6 = 6 + 6%,/T7. O

When theoretical bias calculations are analytically complicated, one may rely on
the nonparametric bootstrap. Because the bootstrap estimate of Ef 8 is Ez 6, the

bootstrap estimate of the bias of 6 is

Biaspd = Ez 6 — .

A bias corrected estimate of § is therefore

Another alternative is the jackknife estimate of bias
Biasy 6 = (n — 1)(6,, - 6).
In this case, the bias corrected estimate of 6 is
5= 6 — Bias, 6 = b, +n(6— 6,).

As for variance estimation, using the jackknife is problematic when fis a highly
nonlinear estimator.

5.2 CONFIDENCE SETS

Let Z be a data matrix and let © be a parameter space. A particular realization z of
Z divides © into two disjoint subsets: a “plausible” set given the observed data z and
its complement. Rather than focusing attention on just a point estimnate of §, one may
want to determine what this plausible set is. We shall consider two alternative ways
of formalizing this idea: the classical and the Bayesian.
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5.2.1 CLASSICAL CONFIDENCE SETS

Let {Py,6 € ©} be a parametric family of probability distributions on a sample space
Z. If there exists a family {C(z),z € Z} of subsets of © with the property that, for
allg € O,

Pg{z: 0 € C(2)} >1—a, 0<ac<l,

then the random subset C(Z) is called a confidence set for 6 with coverage level 1 — a
or, for short, a (1 — a)-level confidence set for 6. The interpretation of a confidence
set is as follows. Suppose that one can draw repeated samples from the probability
distribution Pj. If for each sample z one computes a (1 — a)-level confidence set C(z)
for 8, then approximately 1 — a percent of these sets cover the true value of 6.

Example 5.6 Let Z,,...,Z, be a sample from a continuous distribution with
distribution function F', and let Z;) denote the kth sample order statistic. To derive
a confidence set for the pth population quantile {, (0 < p < 1) of F, notice that the
relation Z;) < (p < Zj), for 1 <r < s < n, is satisfied if and only if the number of
sample observations that are not greater than (, is at least r but not more than s.
Because Pr{Z; < (,} = F((p) = p, the probability that exactly k observations are not
greater than (, is equal to the probability of k successes in n independent Bernoulli
trials where the probability of success is equal to p. Thus

Pr{Ziy < G} =Pr{X =k} = (Z)P*(l -p)" 7k,

where X ~ Bi(n,p). Hence
Pr{Z[r] <G < Z[,]} =Pr{r < X <s}, (5.2)

which provides the basis for constructing confidence sets for ¢, of a given level. Given
(n,p,T,3), the value on the right-hand side of (5.2) is easily computed from the tables
of the binomial distribution. For the population median (s, we simply get

8 1 n
Pr{Z;,) < (s < Z} =Y (:) (5) .

k=r

When n is large, the Gaussian normal approximation to binomial probabilities may
be used instead. ]

Construction of a confidence set simplifies considerably if one can find a scalar
statistic T(Z;8) whose sampling distribution does not depend on 6 and has the
property that, for all 8 € O,

Pe{z: T(z;0) <c} >1-a (5.3)

for some c. Such a statistic is sometimes called a pivot. Given a pivot T(Z; ), consider
the family of subsets of © of the form C(z) = {# € ©: T(z;6) < c}. Because the
event that 8 € C(Z) is equivalent to the event that T(Z;8) < ¢, which by (5.3) has
probability at least equal to 1 —a, the random subset C(Z) is a (1 — a)-level confidence
set for 6.
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In the special case when 6 is a scalar parameter, it is often possible to find a finite
interval [a, b] such that

Po{z: a <T(z;60)<b} >1- .

If the pivot T(Z;6) is strictly monotone in 8, inverting the above relationship gives
the following two-sided (1 — a)-level confidence interval for 6

C(Z)={0€©:6,(Z) <0 <bu(Z)),
where 8, = T~'(a) and 6y = T~} (b).

Example 5.7 Let Z be a sample of size n from a A'(y,0?) distribution, and let Z
and s? be the sample mean and the sample variance. As a pivot, consider the statistic

7 -
T(Z; ) = 3/\/711‘,

which is known to have a t-distribution with n —1 degrees of freedom. In fact, without
knowing p and o2, one can always find a finite interval [a, b] such that

Z-pn
< < =1-
pg{a_s/\/ﬁ_b} 1 (,

where 0 < a < 1. Inverting the above relationship using the fact that T-'(y) =

Z — pus/\/n gives

_ 8 — S
—-bh—<pu<Z-a—;p=1-aq.
Po{Z T <p< a\/r_z} a
The random interval
_ 8 - S
= 7 —b—<pu<Z-a— )
C(Z) {;tE?RZ b\/,_l_u_Z aﬁ} (5.4)

covers the population mean g with probability 1—a and is therefore a two-sided (1-a)-
level confidence interval for p. Its length (b — a)s/\/n is an increasing transformation
of the random variable s> and is a decreasing function of the sample size n. Because
of the symmetry of the t-distribution, the shortest of these confidence intervals is the
one that is symmetric about Z. This is obtained by choosing b = #(,/2) and a = —b.
where t(,/») denotes the upper (a/2)th quantile of the t-distribution with n—1 degrees
of freedom, that is, G(t(a/2)) = 1 — a/2, where G is the distribution function of the
t-distribution with n — 1 degrees of freedom.

The length of a symmetric (1 — a)-level confidence interval is equal to 2t(4 28/
and is a decreasing function of a. Thus, a symmetric 99%-level confidence interval
always contains a 95%-level one. a
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5.2.2 BOOTSTRAP CONFIDENCE INTERVALS

Since its introduction, a major use of the nonparametric bootstrap has been in the
construction of confidence intervals. In this section we consider three alternative
methods for constructing bootstrap confidence intervals for a scalar parameter 6.

The first method assumes that a pivotal or approximately pivotal statistic
T = T(Z;0) is available. In typical situations, the pivot is of the form

T(Z;6) = %’@—"

where 6 is an estimator of 6 and §}\3(é) is some estimate of the standard error of .
For each resample Z*, construct the replicate

T =126 = &2,
SE (6)
where SE () denotes the estimated standard error of §. Given replicates Ty, . . Tg,

one may approximate a two-sided (1—a)-level confidence interval for 8 by the bootstrap

interval o .
[0~ $1-a/2 SEB), 6 — i/ SEO)),

where £, denotes a pth quantile of the empirical distribution of T;. This method is
called the T-method. Because «a is usually very small, for example a = .01 or a = .05,
to attain sufficiently accurate estimates of the tail probabilities, many more replicates
are needed than for a bootstrap estimate of variance. The T-method tends to produce
a confidence interval whose coverage probability is close to 1 —a on average but whose
behavior is rather erratic.

The second method constructs confidence intervals directly from the bootstrap
distribution of the estimator § of 6. Given B replicates ;,...,8}, it is reasonable
to consider, as an approximate (1 — a)-level confidence mterval for 6, the interval
[fa /25 t—a /2), where f,, now denotes a pth quantile of the empirical distribution of éb‘.
This method, called the percentile method, tends to be less erratic than the previous
one but also less accurate.

The third method (Efron 1987) is an attempt to improve upon the previous two.
As an approximate (1 — a)-level confidence interval for 8, this method suggests the
interval

[tan t1~02]v (55)

where {,, and £;_,, are quantiles of the empirical distribution of é;, with

R 20 + 24
=® -
o (Z” 1—&(éo+zo))’

. 20+ 21-q
ar =%+ —m——— ),
: (“ 1—a(zo+z1_a))

and ® and 2z, = ®7!(a) denote respectively the distribution function and the ath
quantile of the M(0,1) distribution. When @ = 2, = 0, the confidence interval (5.5)
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coincides with that obtained from the percentile method. The number % is a bias
correction such that Prg{6* < 8} = ®(2). Clearly, the correction is equal to zero when

the distribution of 6* is symmetric about , in which case ﬂg{é‘ < 6} = 1/2. The
number 4, called the acceleration, is an estimate of the rate of change of the standard
error of @ as the population parameter 8 varies. Efron (1987) suggests computing a as

Y (0 —6i)°
6(X ) (O — 0()23/%

where §;, denotes the value of  obtained from the ith jackknife sample and 4., =

a=

n~' 3, 6,;). This method, called the bias corrected and accelerated percentile method
or BC, method, has several theoretical advantages discussed in Efron (1987) and Efron
and Tibshirani (1993).

5.2.3 BAYESIAN CONFIDENCE SETS

Given a posterior distribution p(6]z) on the parameter space O, it is always possible
to find a family C = {C(z)} of subsets of © such that

Pr{6 € C(z)|z} =1-a, 0<axl

for every C(z) € C. Each element of C contains a fraction equal to 1 —a of the posterior
probability on © and may therefore be interpreted as a Bavesian confidence set with
coverage level equal to 1 — a.

The family C generally contains an infinite number of elements. In order to choose
one of them, it seems reasonable to further require the posterior density at any point
inside the set to be higher than the posterior density at any point outside it or,
equivalently, the chosen set to occupy the smallest volume of © for a given probability
content. Formally

Definition 5.1 Let p(6|z) be a posterior density on a parameter space 0. A subset
C(z) of O such that:

(i) Pr{f € C(z) |2z} =1 - a;
(ii) p(6,|z) > p(#2]2) for all 8, € C(z) and 6, g C(z)

is called a mazimal posterior density set with probability content 1 — a. a

Example 5.8 Given a sample Z of size n from a A(u,0?) distribution, the sample

likelihood may be written in the form

f(Z2]0) x ;lgexx){—i%[vsz +n(p - 2)2]}, 0 = (p,0),

where v = n — 1 > 0. Assume that g and ¢ are independent and, following Jeffreys’
invariance principle, that g and lno have a uniform distribution on the whole real
line. The two assumptions together imply that the prior density of 8 is of the form
p(f) x 1/o, and is therefore an improper density. By Bayes theorem, the posterior
density of § is

p012) x —iz exp { - o lus? + - 27} (55)
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Inspection of (5.6) reveals that the conditional posterior density of u given o is
1 n 512
Plul i) o ~exp [~ 575 (u - 2)?].

which is the density of a A'(Z,a2/n) distribution. Given the relationship p(8|Z) =
p(|0;Z) p(o | Z), the marginal posterior density of o is

_pmol?) 1 (s
PO = Juloz) < 71 P\ T207)

which is the density of an inverted gamma distribution with parameter (v/2,vs%/2).
The marginal posterior density of u is obtained by integrating the joint density p(8|Z)
with respect to o

p(uIZ)=/0 P, 0| Z) do.

To compute this integral, we use the following formula

e 1 m
—(m+1) o= — S amm/A .
/(; T exp(—az~")dr 3¢ r (_A ) , (5.7)

where [() is the gamma function. Putting m = v+ 1 = n, A = 2 and a equal to the
term in square brackets in the exponential part of (5.6) gives

_7\2 -n/2
p(i|Z) x [u+ M] .

Finally, after a change of variable from p to t = \/n(u — Z)/s, we get

t2 —71/2
p(tlZ)o<(1+;) ,

which is the density of a t-distribution with v = n — 1 degrees of freedom. A maximal
posterior density set with probability content 1 — a is therefore

_ 8 — 8
C(Z) = {lti Z - t(o/z)—ﬁ <u<Z +t(o/2)ﬁ} ,

where t(,/2) denotes the upper ath quantile of a ¢ distribution with n — 1 degrees of
freedom. This interval has exactly the same form as the classical confidence interval
(5.4), although its interpretation is completely different. a

5.3 HYPOTHESIS TESTING

A statistical hypothesis is a statement about the probability distribution of the data
Z. A statistical hypothesis that completely specifies the probability distribution of Z
is called simple, otherwise it is called composite.

The theory of hypothesis testing is concerned with the problem of determining
whether or not a statistical hypothesis is inconsistent with the sample evidence. The
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particular hypothesis to be tested is called the null hypothesis and is denoted by
Ho. In addition to Hp, one may also be interested in a particular set of deviations
from Hy, called the alternative hypothesis and denoted by H,. Usually, the null and
the alternative hypotheses are not on an equal footing: Hg is clearly specified and of
intrinsic interest, whereas H, serves only to indicate what types of departure from Hg
are of interest.

In a parametric context, such as that considered in the remainder of this chapter, a
hypothesis implies that the distribution of Z belongs to a proper subset of a parametric
family { Py, 6 € O} of distributions on the sample space or, equivalently, that the target
parameter belongs to a proper subset of the parameter space Q. Thus, Hy and H; can
be represented by two disjoint subsets, Qg and Oy, of @. When @, = © — Qg, we
sometimes say that the null hypothesis is nested within the alternative one.

Example 5.9 Given a paramctric model {Py, 8 € 0}, an example of a simple null is
the hypothesis Hg: § = 6y that the target parameter is equal to 8y, while an example
of a composite alternative is the hypothesis Hy: 8 # 8y that the target parameter is
different from 6g. In this case, Og = {6} and O, = {# € Q: 0 # 0y} =O — 0. If b is
a scalar parameter, the composite hypothesis that 8 > 6 is called one-sided, whereas
the composite hypothesis that § # 6y is called two-sided. a

5.3.1 STATISTICAL TESTS

A statistical test is a partition of the sample space into two regions: the set K of
observations that are regarded as inconsistent with Hg, called the critical or rejection
region, and its complement K, called the nonrejection region. Associated with a
statistical test, is a decision rule that rejects Hg as inconsistent with the data if the
realized value z of Z falls in the critical region I', and does not reject Hp if z belongs
to K¢. Clearly, there are as many statistical tests of a given hypothesis Hg as there are
ways of partitioning the sample space into two subsets. In simple situations, however,
there is often a small class of tests which seem intuitively reasonable.

A statistical test is often defined through a scalar statistic T(Z), called the test
statistic, whose sampling distribution under Hg is known, at least approximately. In
this case, a typical critical region is of the form K = {z: T(z) > k}, where the constant
k > 0 is called the critical value of the test.

Example 5.10 Given a sample Z of size n from a A (u,0?) distribution, consider
the problem of testing the simple hypothesis that the population mean g is equal
to up against the two-sided alternative that u is different from . In this case, it
is reasonable to consider the class of tests that reject Hp for large values of the
statistic T(Z) = |Z — jio]. The critical region of this class of test is of the form
K = {z: |z — po| > k}, where k is the critical value of the test and Z is the value of
the sample mean for a particular realization z of Z. a

For any test of Hg, two types of error are possible:

1. reject Ho when it is true, that is, when 8 € O ( Type I error);
2. do not reject Hy when it is false, that is, when 8 € O, (Type II error).

If K is the critical region of a test, the probability of both types of error may be
described by the single function w(6) = Ps{K}, 6 € O, called the power function of
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Figure 40 Power function of a two-sided 10%-level test of the hypothesis
Ho: 4 = 0 in the (g, 1) model for increasing sample sizes. The test is based on the
critical region {|Z] > z(.05)/V/n}.

0.2

the test, which gives the probability of rejecting Hy as a function of 8. If § € Oy,
then 7(6) describes the probability of Type I error. The maximal probability of Type
I error

sup m(6)

€60
is called the size of the test. A test is said to be of level a if its size does not exceed
a. On the other hand,

1-7n(8) =1- Py{K} = Ps{K°}, 0e6,
describes the probability of Type II error.

Example 5.11 Consider again the class of tests introduced in Example 5.10. Because
Z ~ N(u,0?/n), their power function is

m(1) = Pu{lZ — pol > k}

o () e (55,

This power function has the following properties:

1. it is symmetric about pg, that is, m(po + p) = w(uo — p);

2. it is strictly increasing in |4 — po| and tends to one as |u — po| = oo, that
is, the test rejects Hp with a probability that increases with the distance
between the population mean g and the hypothesis g, rejection becoming
almost certain when pu is far enough from po;
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3. it attains its minimum at the point g = pg, where
kyn\1.

a 1

4. it becomes more and more concentrated about ug as the sample size n
increases.

Tr(po)=2[l—-<1>(

When o? is known, an a-level test is obtained by choosing a critical value k such

that
emafi-s (BE)].

_ o o
ko =@7'(1~a/2) Tr T e
where 2(,/2) denotes the upper a/2th quantile of the A(0,1) distribution, that is,
®(2(a/2)) = 1 — af2. Since z(41j2) > 2(o/2) When a’ < e, the critical region of an
a-level test always contains that of a test of level @’ < a. The power function of an
a-level test (Figure 40) is

V1 (po — ) +Z(o/2)) + o (\/7—1(110 —p) - z(o/2)).

Solving for k gives

ag o

Tr(#)=1—¢<
]

Consider a test that rejects Hq for large values of some statistic T(Z). If T(z) is the
value of the test statistic for a realization z of Z, then the number

p(z) = sup Py{T(Z) > T(z)}
0€6g

is called the observed significance level or p-value of the test. Because p(z) is the
maximal probability of Type I error if one rejects Hy on the basis of the observed data
z, the p-value may be interpreted as a measure of the strength of the sample evidence
against Ho: the smaller is p(z), the stronger is the evidence against Hy.

If Hp is a simple hypothesis and F denotes the distribution function of the statistic
T(Z) under Hg, then p(z) = 1 — F(T(2)). If F is of the continuous type, then the
distribution of the random variable p(Z) under Hy is

Pr{p(Z) < c¢|Ho} = Pr{l - F(T(Z)) < c|Ho}
=Pr{T(Z) > F~'(1 - ¢)|Ho}
=1-F(F'1-¢)=c
Since, under Hg, the p-value therefore has a uniform distribution on the interval (0, 1),
an a-level test rejects Ho whenever p(Z) is less than a.

Example 5.12 The p-value of the class of tests introduced in Example 5.10 is

) = PuliZ - ol > |z = al) =2 |1 - & (£l )].

Viewed as a function of z, the p-value has the following properties:
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1. it is symmetric about uo;
2. it attains its maximum of one at ti.e point z = pg;
3. it is decreasing in n and |u — uo|, and tends to zero as n — oo or |z —pp| = 0.

0

5.3.2 DUALITY BETWEEN CONFIDENCE SETS AND CRITICAL REGIONS

There is complete duality between confidence sets and critical regions, in the sense
that families of confidence sets can always be used to construct critical regions and
vice versa.

Given a family {C(z)} of (1 — a)-level confidence sets for 8, we necessarily have

Pp{z: 0 € C(z)} >1-a.
For a fixed 6 € O, define the region in the sample space
K(6) = {z: 6 ¢ C(z)}.
For any 8 € 6, we then have
Pp{K(0)} =1-P{z:60eC(z)} <1-(1-0a)=a.

Hence, K(6) is the critical region of an a-level test of the hypothesis Hop: 8 = 6,
against the alternative that 8 # 6. One may therefore reject Ho: 6 = 6y whenever 6g
lies outside a (1 — a)-level confidence set for 8.

Now consider the opposite case. Given a family {K(8)} of a-level critical regions,
let K(8o) be the critical region of an a-level test of the hypothesis Hy: 8 = 6 against
the alternative that 8 # 6. Clearly Py, {K(69)} < a. For a fixed z, define the subset
of ©

C(z) = {0 € 0:z¢K(0)},

which corresponds to the set of hypotheses that could not be rejected if we observed
Z = z and used the given family of critical regions. Clearly

Py{z: 0 € C(z)} = Pa{z:2¢ K(0)} =1 - Py{z: z€ K(0)} >1-a.
Hence, C(Z) is a (1 — a)-level confidence set for 6.

Example 5.13 Let Z be a sample of size n from a A(u,1) distribution. From
Example 5.10, the critical region of an a-level test of the hypothesis Ho: p = po
against the alternative Hy: u # po is

2(al:
K(uo) = {zr |2~ po| > (\/:—:’ }

where Z is the value of the sample mean for Z = z. The random interval

c(z) = {ur 1Z -yl < Z‘Tfj%}

is therefore a (1 — a)-level confidence interval for u. a



STATISTICAL ACCURACY AND HYPOTHESIS TESTING 207
5.3.3 OPTIMALITY IN TESTING

In this section we introduce the problem of optimally choosing a test of a given
hypothesis Hg. From the abstract viewpoint of statistical decision theory (Section 4.8),
this problem may be represented as a sequential noncooperative game between the
statistician and Nature.

Nature moves first by selecting a sample z, that is, a realization of a random vector
Z, and one of two possible states, namely “Hp is true” and “Hp is false”. Then, after
observing the sample z but not knowing the state of Nature, the statistician chooses
between two possible actions, namely ag = “do not reject Hp” and a; = “reject Hp”.
The consequences of each action under the different states of Nature are described by

the 2 x 2 matrix
0 I
b 5:8)

where the rows correspond to the actions and the columns to the states of Nature.
The payoffs from taking the correct action are normalized to zero, whereas !, and [y
are positive numbers representing the losses associated with Type I and Type II errors
respectively.

Since the action of the statistician depends in general on the observed sample,
varying z gives a decision function, that is, a mapping from the sample space into the
set {ag,a;}, which specifies what action the statistician will choose for each of the
possible samples. Given a decision function d, its risk is

r(d) = {ll Pr{d(Z) = a; |Ho}, if Ho is true,
! loPr{d(Z) = ap|H,}, if H; is true,
where Pr{d(Z) = a, |Ho} and Pr{d(Z) = ao|H,} are the probabilities of Type I and
Type Il error, respectively. In general, for a given sample size, the probability of Type
I error can only be made smaller by increasing the probability of Type II error, and
vice versa.

To be specific, let Z be a sample of size n from a N (u,1) distribution, and
consider the problem of testing the simple hypothesis Hqg: yt = ji9 against the two-
sided alternative Hy: u # po- The class of tests introduced in Example 5.10 rejects Hg
whenever | Z —puo| > k. The power function of an a-level test in this class was derived in
Example 5.11. Rearranging such an expression gives the following relationship between
the level a of the test and the probability 8 of Type II error

B=a(vVn(po — 1) + 2(ay2)) — B(Vn (o — 1) — 2(ay2))- (5.9)

The form of this relationship is shown in Figure 41 for a fixed alternative p and
increasing values of n. Each point corresponds to a particular test, that is, a particular
choice of the critical value.

We may now formulate the problem of selecting an optimal test within this class in
a manner that is familiar to economists. Let g, (a,8) = 0 represent the relationship
(5.9) between the probabilities of the two error types for a fixed sample size n, and
let the function u(a, ) represent the preferences of a researcher about the likelihood
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Figure 41 Trade-off between Type I (a) and Type II error probability (3) for a
fixed alternative and increasing sample sizes. The test considered is a two-sided test
of the hypothesis Ho: p = o in the A'(i,1) model and is based on the critical region

{1Z = pol > z(ay2y/V/n}.
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of the two error types. We may define an optimal test as a solution to the problem

max u(a,
0<a,8<1 ( ﬂ)

s.t. gnla, B) = 0.
If u and g, are smooth functions, then an optimal test (a.,.) must satisfy the

condition

Ou/0a  08gn/0a

Ou/08  Ogn/0B
Unless preferences are of a special form, we would expect an optimal test to depend
on the sample size n. In particular, we would expect tests of smaller and smaller size
to be selected as n increases.

To choose an optimal test in a given class, various principles may be adopted. Each
of them may be regarded as a particular specification of the preferences over the
probabilities of the two error types. In the rest of this chapter we discuss two such
principles.

1. Classical hypothesis testing corresponds to lexicographic preferences, with
Type I error considered as the most important.

2. Bayesian hypothesis testing corresponds to preferences that can be
represented in terms of the Bayes risk

p(d,m) =1, Pr{d(Z) = a, |Ho} 7 + lg Pr{d(Z) = ao | H, } (1 — =),
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where 7 is the prior probability assigned to Ho.

Because p(d, 7) = lyam +lp(1 — 3)(1 — ), Bayesian hypothesis testing corresponds to
preferences represented by a function u(a, ) which is linear.

5.3.4 THE NEYMAN-PEARSON THEOREM

The classical theory of hypothesis testing suggests controlling for Type I error by
restricting attention to tests of a given level a, usually a small number such as a = .01
or a = .05. An optimal test in this class is one, if it exists, for which the probability
of Type II error is uniformly minimized on O, or, equivalently, the power 7(8) is
uniformly maximized on ©,. Such a test is called uniformly most powerful (UMP).

Consider a parametric family {P,0 € O} of distributions on the sample space
and the problem of testing a simple hypothesis Hg: § = 65. We consider two cases,
depending on whether the alternative hypothesis is simple or composite. The case of
a composite alternative will be discussed in the next section.

When the alternative is simple, that is, ©; = {6, }, the existence of a most powerful
test is guaranteed by the following result.

Theorem 5.1 (Neyman-Pearson) Let {Py,6 € O} be a parametric family of
distributions on the sample space, with density function f(z;8), and let K be a region
of the sample space such that Py, {K} < a. If there ezists a region K* of the form

o ={s foa 4}

and such that Py, {K*} = «, then Py {K*} > P5, {K}.

Proof. Suppose that f(z;#) is a probability density function. If f(z;8) is a probability
function, simply replace integration with summation.

Notice first that K is the union of the disjoint sets X N X* and K — K*, while K*
is the union of the disjoint sets XN K* and K* — K. Since a = P, {K*} > Py, {K},
subtracting from both sides of this inequality the integral of f(z;6,) over KNK* gives

/ f(z;60) dz > / f(z;60) dz. (5.10)
c-k K-K*

Next notice that f(z;6,) > kf(z;6o) for all z in the subset K* — K, while f(z;6,) <
kf(z;6p) for all z in the subset K — K*. Multiplying (5.10) by k and using the above
two inequalities we get

/ f(z:6,)dz > / f(2:6:) dz. (5.11)
'

K-K-

Finally, adding to both sides of (5.11) the integral of f(z;6,) over X N K* gives the
desired result

Pttt = [ fa6nde> [ faide =P {K).
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The region K* is the critical region of a most powerful a-level test of the hypothesis
Ho: § = 8y against the alternative Hy: § = ;. This provides a basis for choosing a
critical value k, namely choose k such that, if possible, Py, {A(Z) > k} = a, where the

statistic
- f(Z;6,)
f(Z;6)

AZ)

is called the likelihood ratio.

5.3.5 COMPOSITE ALTERNATIVES

When the alternative hypothesis is composite, a UMP a-level test exists if and only
if the critical region is the same for each of the simple alternatives that make up H;.
This is sometimes the case for one-sided alternatives, but not when alternatives in
more than one direction are of interest, as in the case of two-sided tests or composite
hypotheses about a parameter vector.

Example 5.14 Let Z he a sample of size n from a A(y,0?) distribution. Because

fan = (=) e {-glo? + G- w1},

where z denotes the value of the sample mean corresponding to Z = z, the likelihood
ratio for two distributions with the same variance but different means pg # y, is

Mz) = % = exp [:—f(un - po) + %(u'é - /t'f)] :

Suppose now that 2 is known and consider two cases, depending on whether p; > po
or 4; < po-. In the first case, A(z) > k if and only if z > ¢, where the critical value ¢
is such that

C— o
o/vn

and therefore ¢ = p1 + 2(5)0/+/n . Thus, a most powerful a-level test of the hypothesis
Ho: it = po against the simple alternative H;: g =y, is based on the critical region

~ g
K] ={z:z—u0>z(a)ﬁ}.

Since this critical region does not depend on g, it is also the critical region of a UMP
a-level test of Hp against the one-sided alternative Hy: pu > po.

When p9 < py, an analogous argument shows that a UMP a-level test of the
hypothesis Hy against the one-sided alternative H,: < pq is based on the critical

region
= g
K'z = {ZZ 22— < _z(ﬂ)ﬁ} .

Hence

=& (1 - ) = 2(q),
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The fact that K, # K, implies that, even when ¢? is known, there exists no UMP
a-level test of Hp against the two-sided alternative Hy: pu # ug. In particular, the test
that rejects Hy whenever

_ g -
,Z - [l()' > Z(o/g,ﬁ, (0.12)
although quite reasonable, is not UMP. 0O

When a UMP test does not exist, optimal tests may sometimes be found by
restricting the class of tests. A widely used criterion is to require that P{K} > P, {K}
for every 8 € O, and all g € Oy, that is, the probability of Type I error cannot exceed
the power of the test under any alternative in ©,. A test satisfying this criterion is
called unbiased. In the case of Example 5.10, with 6% known, the critical region (5.12)
can be shown to define a UNMP unbiased «-level test of the hypothesis Ho: 1 = o
against the two-sided alternative H,: p # po (see e.g. Lehmann 1988).

Another possibility when a UMP test cannot be found is to consider alternatives
that represent small deviations from the null hypothesis and look for a test that
maximizes the power locally in a neighborhood of Hg. Given a regular parametric
model {f(z;8),0 € O}, where © is an open subset of the real line, let L(8) = In f(Z;8)
and let $(8) = L'(0) be the likelihood score. By the Neyman - Pearson theorem, a most
powerful test of Hy: 8 = 6, against the simple alternative H;: 8 = 6, where 6, = 6+
and ¢ is a small number, rejects Ho for large values of the logarithm of the likelihood
ratio

InA(Z) =In f(Z;60 + 3) — In f(Z;60) = 6 S(6s).

Thus, for § positive and sufficiently small, a critical region consists of large positive
values of the likelihood score S(6g), whereas for § negative and sufficiently small, it
consists of large negative values of S(6p). It can be shown that the resulting test is
locally most powerful, in the sense that it maximizes the slope of the power function

at @ = 6y (see e.g. Cox & Hinkley 1974).

5.4 LIKELIHOOD-BASED TESTS

We have seen that UMP tests of a given level exist only for a limited class of problems,
namely when 6 is a scalar parameter and the set of alternatives is one-sided. In the
case of two-sided alternatives or when @ is a parameter vector, no UMP test exists. We
now introduce three testing principles which, although not UMP, have the advantage
of general applicability.

Assume that the distribution of the observed data Z belongs to a regular parametric
model {f(z;0),6 € ©}, where O is an open subset of R?, and that the null hypothesis
restricts the parameter 8 to a subset ©g of O defined by a set of ¢ < p linear equality
constraints of the form R = r, that is

Oy = {0 € ©: RO =r}, (5.13)
where
RlT ™
R = ) T =
R;r Tq
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are, respectively, a known ¢ X p matrix of rank ¢ and a known g¢-vector. The alternative
hypothesis is Hy: R§ # r.

Example 5.15 The formulation (5.13) encompasses many important cases. If R = I,
and r = 6, where I, denotes the unit matrix of order p, then (5.13) corresponds to
the simple hypothesis Hy: 6 = 6.

If g < p, then (5.13) does not specify the distribution of Z completely. An important
special case is when Hp only restricts some components of 8 leaving the others
completely unrestricted. For example, if § = (8,v), where the vectors 3 and v are
functionally independent, with dimension ¢ and p— g respectively, then the hypothesis
Ho: B = o may be written in the form (5.13) after putting R = (I, 0] and r = S,
where 0 denotes here the null matrix of order ¢ x (p — q). a

Let L(8) = ¢ + In f(Z;8), where ¢ is an arbitrary constant, be the sample log-
likelihood, let S(8) = L'(#) be the likelihood score, and suppose that a ML estimator
6 = 6(Z) exists, is unique and corresponds to the unique root of the likelihood equation
S(0) = 0. Imposing the constraint (5.13) on the estimation problem leads to the
constrained ML estimate, defined as a solution § = 6(Z) to the problem of maximizing
L(8) over ©g or, equivalently, to the problem

g L)

s.t. R =r.
By Lagrange theorem, if 6 is a constrained ML estimate, then there exists a non-
negative vector # = (¥,,...,%,) of Lagrange multipliers such that # and & together
satisfy the constrained likelihood equations

0=S(@)-R"p, (5.14)

0=R6-r.

Under our set of assumptions, 6 and & are the unique solutions to this equation system.

Notice that L(8) > L(8), with equality if and only if the unconstrained ML estimate
6 satisfies the constraints exactly or, equivalently, the Lagrange multiplier vector 7 is
identically equal to zero. This suggests three plausible measures of “distance” between
Hp and the sample evidence, namely:

1. the difference between L(8) and L(6);

2. the norm of the vector R — r;

3. the norm of the likelihood score vector S(8) or, equivalently given (5.14), the
norm of the vector R7 .

These three measures, illustrated in Figure 42, represent the basis for three
alternative testing principles: the likelihood ratio, the Wald, and the score or Lagrange
multiplier principles.

5.4.1 THE LIKELIHOOD RATIO PRINCIPLE
A likelihood ratio test rejects Hy for large values of the statistic

eR =2[L(6) - L(H)).
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Figure 42 The likelihood ratio (LR), Wald (W) and score (S) principles. The null
hypothesis is Ho: § = 8o, and so the constrained ML estimnator is 6= 60, whereas
RO —r =60 — 6.

Example 5.16 Consider a population partitioned in S strata, let =, denote the
unemployment rate for the sth stratum and let # = (7),...,7s). Suppose that the
data consist of the S-vector Z = (Z,,...,Zs), where Z, is the number of unemployed
in a random sample of size n, from the sth stratum. Then the sample log-likelihood
is

S
L(r)=c+ Y [ZsInm, + (n, — Z,)In(1 - m,)],
8=1

where ¢ is an arbitrary constant, the likelihood score is an S-vector with generic

element
OL _Z,—mem s
Ty me(1 — m,)
the ML estimate of w is # = (py,...,ps), where p, = Z,/n, is the sth stratum sample
unemployment rate, and the maximized value of the sample log-likelihood is
S
L(#) =c+ Y _[ZsInp, + (ns —~ Z,) In(1 — p,)].
s=1
Under the hypothesis Hg: m; = --- = ws of population homogeneity, the constrained
ML estimate is # = (p,...,p), wherep = Z/n,with Z =3 Z,and n = __n,. Notice
that p = 3 ,(n,/n)p, is a weighted average of the stratum sample unemployment
rates p,, with weights equal to the sample stratum weights n,/n. The value of the
log-likelihood at 7 is therefore

L(#)=c+Znp+ (n - Z)In(1 — p).
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Hence, a likelihood ratio test rejects Hg for large values of the statistic

S

R = 9[L(7) - 7r)]—2Z[Z 1n—+ Z,)lnl_p’

1-p

5.4.2 THE WALD PRINCIPLE

Given a random m-vector Z with mean zero and finite nonsingular variance matrix
¥, the random variable
d(Z) = (2" z)!/?
is called the Mahalanobis norm of Z or the Mahalanobis distance of Z from the origin.
If Z ~ Npn(u,Z), then d(Z — p)? ~ x2,.
An estimate of the Mahalanobis norm of the vector R — r represents the basis of
a Wald test of Hy. This test rejects Hp for large values of the statistic

&Y = (R6 - r)"[R(Var§)RT)" (RO — 1),
where Varf is a p.d. estimate of the sampling variance of 6.

Example 5.17 Continuing with Example 5.16, the hypothesis of population
homogeneity may be represented as Ho: Rm = 0, where R is the (S — 1) x S matrix

-1 1 0

R= -1 0 1
0
-1 0 1

Because the sampling variance of the ML estimator # is a diagonal matrix whose
diagonal elements 7,(1 —m,)/n, may be estimated by V, = p,(1-p,)/ns, 8=1,...,S,
the Wald test statistic is €W = #T RT[R(Var#)R"]~' R#, where

W+ W 1

P ¥ Vi + V% v

" . e NN T 1 1

R = : , R(Var®)R' = . .
brops v i 0+ V;

5.4.3 THE SCORE PRINCIPLE

An estimate of the Mahalanobis norm of the vector S(6) represents the basis of a score
test of Hg. This test rejects Hg for large values of the statistic

€5 =87i3,
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where S§ = S(6) and I = I(f) are, respectively, the likelihood score and the expected
total information, both evaluated at the constrained ML estimate. Because S = R i
from the constrained likelihood equations, the test statistic may equivalently be
represented as

& =0"RIT'R" 5.
For this reason, score tests are also called Lagrange multiplier tests.

Example 5.18 In the case of Example 5.16, the likelihood score evaluated at the
constrained ML estimate 7 is an S-vector with generic element

OL(7)  Zs—n,p
om, p(1 —p) '
Because the expected total information is diagonal with diagonal elements equal to

Iss(m) = Re

s=1,...,8.

the score test statistic is

5.4.4 PARTITIONED PARAMETERS

An important special case is when the null hypothesis only constrains a subset of the
model parameters. Thus consider the case when 8 = (3,~), where 3 is a vector with
k < p elements, and Ho: RS = r, where R is a ¢ x k matrix of rank ¢ < k and r
is a g-vector. Partition the unconstrained and the constrained ML estimates of 6 as
6 = (B,%) and 8 = (f3,7) respectively. Also partition the likelihood score and the
expected total information, both evaluated at the constrained ML estimate, as as

s_ [ Ss ) i [ s Iy ]
S= & ) I = 5 = .
( S, L I,

In this case, a Wald test rejects Hy for large values of the statistic
€V = (R3 - )T [R(Var B)RT)" (RB ~ 1),

where Var Bisa p.d. estimate of the sampling variance of B.
Since + is unconstrained, 57 = 0 and a score test rejects Hg for large values of the
statistic
& = 57175,
where 39 denotes the top-left block of /=!. By the forinulae for the inverse of a
partitioned matrix (see Appendix A.7), we have that

P2 = (I3 - I, 070 L) 70

If the two components of the likelihood score are uncorrelated, then I3, = 0 and the
score test statistic simplifies to

¢ =5]13;8s.
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5.4.5 SAMPLING DISTRIBUTION

An important consideration in choosing between the three principles is the ease with
which the relevant test statistics can be constructed. The Wald test statistic only
requires computing the unconstrained ML estimator, the score test statistic only
requires computing the constrained one, while the likelihood ratio test statistic requires
computing both.

Usually, the difficult task is determining the distribution of the various test statistics
and therefore the critical region of a test of a given level.

Example 5.19 Let Z be a sample of size n from a AN(u,0?) distribution with
6 = (u,0%) unknown, and consider the problem of testing the hypothesis Hp: 4 = po
against the two-sided alternative Hj: u # po. Because the parameter o? is left
unconstrained, Hg is of the form (5.13) with R = (1,0) and r = po. The sample
log-likelihood is

where c is an arbitrary constant and 6 = (Z,4?) is the unconstrained ML estimate of
. The constrained ML estimate of 8 is § = (uo,5%), where

n
6’2 :7’],—1 Z(Z, —/.1.0)2 = 52 + (Z—'[Lo)z Z (}2.
i=1
Hence, a likelihood ratio test rejects Hy for large values of the statistic
. . =2 7 — )2
R = 2(L(6) - L(H)] =nIn % =nln [1 + (—;2#.;)] .
o o
The critical region of a likelihood ratio test corresponds to large values of the statistic
(Z — po)? __1 (Z — po)? _F2)
G2 n-1 s2/n n-1

where F(Z) = n(Z — uo)?/s*. Because under Hy the statistic F(Z) has a (central)
F-distribution with (1,n—1) degrees of freedom, an a-leve! likelihood ratio test rejects
Ho whenever F(Z) > F|,), where F{,, denotes the upper ath quantile of the Fy ,_;
distribution. One may also construct a one-sided test because, under Hy, the statistic
T(Z) = \/F(Z) has a t-distribution with n — 1 degrees of freedom.

Next observe that

RO—r=2-p;, R(Var§)R" = VarZ = ¢*/n.
Hence, a Wald test rejects Hp for large values of the statistic

_(Z - o)
T 6%n T n

€W

n
S F(2).

A Wald and a likelihood ratio test therefore have the same critical regions. Finally,

snee S(é) _ n(Z - [10)/62 I 0- _ Tl/&?' 0
- 0 ) ’ ( ) - [ 0 n/(za.d) ’
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the score test statistic is

_Z — o)? _ &
a?/n 1+n-1gW’

Because £ is a strictly monotone transformation of £, all three principles lead in

this case to critical regions based on the F),_; distribution. 0O

Exact sampling results are generally not available, except for the important special
case when the sample log-likelihood is quadratic.

Theorem 5.2 lf the sample log-likelihood L is quadratic, that is, of the form L(0) =
c——(b 6)TQ'(b—~6), where Egb =6 and Vargb = Q, then:

(i) the likelihood ratio, Wald and score statistics for testing the hypothesis
Ho: RO = r are all equal to € = (R — )T (RQRT)" (RO — r);

(ii) if b~ ANp(0,Q), then the sampling distribution of £ is noncentral chi-square
with q degrees of freedom and noncentrality parameter

A= (R6-r)"(RQR")" (RO - r).

Proof. Observe first that S(8) = L'(#) = Q~'(b—6) and —L"(#) = Q' = I(). Since
the unconstrained ML estimate 8 is equal to b, a Wald test rejects Ho for large values
of the statistic R X

£E=(RO~7)"(RQR") (RO - ).

If 6 and 7 are the roots of the constrained likelihood equations, then
0=Q'(b-6)-R"p,
0=RE-r

Solving with respect to (8, 7) gives

6=6-QR"(RQR")™"(R - 1),
= (RQR")"" (R~ 1),
S(é)z T(RQR™)"" (RO — ).

i

Hence, a score test is also based on €. Substituting the expression for 6 into the sample
log-likelihood gives

1 N

L@)=c-=(b-6)TQ '(b-8) = (R6 — r)T(RQR™)"Y(R6 - r).

l\)
N)I»—-

Because L(é) = ¢, a likelihood ratio test is also based on €. Finally, if b ~ N,(6,Q),
then R — r ~ N(R8 — h, RQR™), and so part (ii) follows. o

If the log-likelihood is quadratic and the statistic b is normally distributed, then
Theorem 5.2 gives the sampling distribution of the test statistic £ under the null
hypothesis and any fixed alternative. Under Hpg, the statistic £ is a pivot because its
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distribution is (central) chi-square with ¢ degrees of freedom and therefore does not
depend on the parameter §. This result is the basis for constructing critical regions of
tests of a given level. Thus, an a-level test rejects Hg whenever £ > c(,), where ¢(,) is
the upper ath quantile of the x;‘;-distribution.

Under Hy, the sampling distribution of £ is noncentral chi-square with ¢ degrees
of freedom and noncentrality parameter A. The noncentrality parameter is equal to
the squared norm of the vector Rf — r in the metric of the matrix (RQR")~! and is
therefore a measure of the distance between the null and the alternative hypotheses.
Because the probability that £ exceeds the critical value c(,) is an increasing function
of A, the power of the test is greater than a under any alternative, that is, the test
is unbiased. Further, the test rejects the null hypothesis with probability close to one
for alternatives that are very far from Hp.

If the log-likelihood is not quadratic, then the likelihood ratio, Wald and score test
statistics are no longer identical and their sampling distribution tends to be quite
complicated. As is clear from the proof of Theorem 4.14, however, for sufficiently
large n the sample log-likelihood L, () is approximately quadratic in a neighborhood
of én, that is,

Ln(6) ~ Lu(Ba) + 5 (B — 6)TZ(B0) (B ~ 6) 5 0.

It therefore seems plausible that, in large samples, an analogue of Theorem 5.2 may
hold. In fact, one can show the following.

Theorem 5.3 Suppose that the assumptions of the multivariate generalization of
Theorem 4.14 hold. If €, €% and € are, respectively, the likelihood ratio, Wald and
score test statistics for testing the hypothesis Ho: RO = r, where R is a ¢ X p matriz
of rank q, then:

(i) the likelihood ratio, Wald and score test statistics are asymptotically
equivalent, that is, 8 — W B0 and 7 - €5 5 0;

(ii) the limiting distribution of any of the three test statistics is noncentral chi-
square with q degrees of freedom and noncentrality parameter

A= (RO —7)"[RI(60)"'R"]"" (RO — 7).

Thus, for large samples and under appropriate regularity conditions, the chi-square
distribution still provides a good approximation in all three cases. One important
regularity condition requires the parameter space to be an open subset of R?. This
implies that Theorem 5.3 is not applicable in cases involving parameters on the
boundary of the parameter space.

5.4.6 BOOTSTRAP HYPOTHESIS TESTING

If the sampling distribution of a test statistic is not known exactly, then the bootstrap
provides an alternative to approximate tests based on the assumption of a large sample
size. This section considers two approaches to the bootstrap.

The first is applicable when 0 is a scalar parameter and Hy is a simple hypothesis of
the form Ho: 8 = 6. Given the duality between confidence sets and critical regions, an



STATISTICAL ACCURACY AND HYPOTHESIS TESTING 219

approximate a-level test may be obtained by first constructing a bootstrap (1—a)-level
confidence interval for § and then rejecting Hp if such an interval does not contain 6.

This method is easily generalized to the case when 6 is a vector of parameters and
the null hypothesis constrains a specific linear combination AT of the parameters,
that is, Ho: AT@ = h, where h is a known constant. In this case, an approximate a-
level test is obtained by first constructing a bootstrap (1 — a)-level confidence interval
for AT and then rejecting Hy if such an interval does not contain the value h.

While the first approach may be based on the nonparametric bootstrap, that
discussed now requires the parametric bootstrap. Suppose that Z is a sample of size n
from a distribution in a parametric family { F(2;8),0 € ©} and that the null hypothesis
consists of a set of linear equality constraints of the form Rf = r. Let £(Z) denote a
test statistic that is pivotal or approximately so, such as the likelihood ratio, Wald or
score test statistics. We have seen that, when the sampling distribution of £(Z) under
Hg is known, an a-level test may be based on the p-value

p(z) = Pr{§(Z) > £(z) | Ho},

and rejects Hy whenever p(z) < a. When the sampling distribution of §(Z) under
Hp is unknown, a test may be based on an estimate of the p-value obtained from
the parametric bootstrap. Algorithm 5.2 is inappropriate in this case because the ML
estimate 6 does not satisfy Hy in general and therefore does not give a good estimate
of the distribution function of Z under Hq. The following modification of the bootstrap
algorithm may be used instead.

Algorithm 5.3 N

(1) Compute the parametric estimate F(z;0) wusing the constrained ML
estimate. N

(2) Draw a sample Z* of size n from F(z;8).

(3) Compute £€* = £(Z°).

(4) Repeat steps (2) and (3) a sufficiently high number B of times, obtaining
bootstrap replicates 7, ...,€q.

(3) Use the empirical distribution of £7,...,€y to approzimate the p-value by

pe(z) = Prp{€* > €(2)).

The bootstrap Algorithm 5.3 resamples from the parametric estimate F(z| 5) of the
parent distribution function under Hq in order to compute an estimate of the p-value.
This estimate is just the fraction of bootstrap replicates £* that exceed the observed
value of the test statistic for the given sample Z = z.

5.5 BAYESIAN HYPOTHESIS TESTING

What characterizes Bayesian hypothesis testing is the fact that prior probabilities are
assigned to the hypotheses to be compared. These prior probabilities summarize the
information available to the investigator before the data are observed.
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5.5.1 SIMPLE HYPOTHESES

Consider first the case when there are only two simple hypotheses, Ho and H,,
each specifying an alternative probability model for the data. If = denotes the prior
probability assigned to Hy, then the prior odds-ratio in favor of H, is equal to (1-7) /7.
Suppose that the investigator can only take one of two actions: agp = “accept Hp” or
a; = “reject Hy”. Given the loss matrix (5.8), the prior expected loss from each action
is
_ Io(l—7l’), ifa=ao,
p(a,”)_{llﬂ, ifa:a].

By Bayes theorem, the posterior probability of Hg is
f(z|Ho)mw
fz)
where f(z) = f(z|Ho)m + f(z|H,)(1 — 7). The posterior odds-ratio in favor of H; is
then
1-7(z) _1-7 f(z|H)
m(z) 7 f(z|Ho)
Thus, the posterior odds-ratio is the product of the prior odds-ratio and the likelihood

ratio f(z|Hi)/ f(z| Ho). Given the loss function and the posterior probabilities for the
two hypotheses, the posterior expected loss associated with the two actions is

m(z) = Pr{Ho |2z} =

_ [b(l-n(z)), ifa=ay,
pla,m(z)) = {,?,r(z), ifa = a?-

The investigator will therefore reject Ho whenever p(a,,n(z)) < p(ao,7(2)), that is,

whenever
1-7n(z) 1

w(z) "l

or, equivalently, whenever

f(z|H) > hn

f(z|Ho) = lo(1 —m)’
where the likelihood ratio is compared with the ratio of prior expected losses. Thus,
the Bayesian approach provides a justification for tests based on the likelihood ratio.
At the same time, it indirectly solves the problem of choosing the significance level of
a test, a problem left unresolved by the classical approa