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ECONOMETRICMODELSIN 
MARKETING:EDITORS' 
INTRODUCTION ' 

Philip Hans Franses and Alan L. Montgomery 

INTRODUCTION 

This volume of the research annual, Advances in Econometrics, considers the 
application of econometric methods in marketing. The papers were selected 
from submissions provided by authors in response to a call for papers after 
undergoing a peer-reviewed process. Although these papers represent only a 
small fraction of the work that is currently in progress in the field of marketing, 
they are representative of the types of problems and methods that are used 
within marketing. It is our hope that this volume will help to educate 
econometricians and marketers about the application of econometric methods 
that can both further the discipline of econometrics and the study of marketing. 
Furthermore, we hope that this volume helps foster communication between 
these two areas, and through this interaction advance the study of each 
discipline. 

Marketing focuses on the interaction between the firm and the consumer. 
Economics encompasses this interaction as well as many others. Economics, 
along with psychology and sociology, provides a theoretical foundation for 
marketing. Given the applied nature of marketing research, measurement and 
quantitative issues arise frequently. Quantitative marketing tends to rely heavily 
upon statistics and econometrics. There is a rich history of marketing bringing 
in ideas from econometrics as exemplified by the recent special issue of the 
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Journal of Econometrics (Wansbeek & Wedel, 1999). For good introductions to 
marketing models see Leeflang et al. (2000) Lilien et al. (1992), and Hanssens 
et al. (2001). However, quantitative marketing can place a different emphasis 
upon the problem than econometrics even when using the same techniques. 
Consider the recent flurry of work in Bayesian modeling (for a survey see Rossi 
& Allenby, 2000). The focus of much of this work has been measuring 
heterogeneity, which in econometrics tends to be treated as a nuisance 
parameter; while in marketing can form the basis for personalized marketing 
strategies. 

A basic difference between quantitative marketing research and econo- 
metrics tends to be the pragmatism that is found in many marketing studies. 
While theory is important and a guiding influence in research due to the 
discipline it can bring to a problem, at the heart of most marketing problems is 
a managerial problem that is foremost in the researchers mind. Therefore 
theory often is balanced against empirical concerns of being able to translate 
the research into managerial decision making. This pragmatism can benefit 
theory, since it can highlight deficiencies of the current theory and serve as a 
guide to developing new ones. 

Another important motivating factor in marketing research is the type of data 
that is available. Applied econometrics tends to rely heavily on data collected 
by governmental organizations. In contrast marketing often uses data collected 
by private firms or marketing research companies. Table 1 provides a listing of 
various types of data and examples of each. Observational and survey data are 
quite similar to those that are used in econometrics. However, the remaining 

Table 2. Types of Data that are Commonly Used in Marketing Research and 

~ ~~ 
Description 

Observational 

Interview and Survey 

Panel 

Transactional 

Examples of Each Type. 

Examples 
..- ~~___~ __~~-~ 

Advertising exposure data, Nielsen People meter used to monitor 
television viewing, Store Audit, Pantry Audit 
Personal interviews, Computer aided interviews, Telephone interviews, 
Mail surveys 
Commercial panels that monitor television usage (ACNielsen’s 
Homescan), retail purchases (IRI), purchase and attitude (NPD), web 
usage (Jupiter Media Metrix) 
Point-of-sale purchases collected using bar codes scanners. Salesperson 
call reports, Warranty registration cards. Clickstream or Web access 
from server logs or ISP requests 
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types of data, panel and transactional, can look quite different from what may 
be familiar to econometricians. The automation and computerization of much 
of the sales transaction process leaves an audit trail that results in huge 
quantities of data. A popular area for study is the use of scanner data collected 
at the checkout stand using bar code readers. These datasets can easily run into 
hundreds of millions of transactions for moderately sized retailers. Often 
techniques that work well for small datasets da not scale well for these larger 
datasets. Therefore scalability is a practical concern that is frequently 
overlooked. 

Nor is technology likely to abate any time soon, as the recent wave of 
e-commerce applications has resulted in new sources of data such as 
clickstream data, that may be magnitudes of size larger than scanner datasets. 
Clickstream data provides a record of the movement of a consumer through a 
web site, which can be associated with their choice and purchase information 
(Montgomery, 2001). This is analogous to recording not just what a consumer 
purchases, but everything they considered, along with a record of the 
information shown to the consumer. It requires that we must think more 
integratively about consumer behavior, incorporating elements of knowledge, 
search, learning, and choice. The ability of this new technology provides a rich, 
potential resource for developing new insights into consumer behavior, as well 
as representing a new challenge to quantitative marketers and econome- 
tricians. 

OVERVIEW OF THE VOLUME 

The chapters in this volume reflect current research in marketing research. We 
provide a listing of the chapters in Table 2, along with a description of the type 
of data used, methodology employed, and application considered. To help 
group the papers we choose the first dimension, the type of data employed, to 
order the papers. Starting with the finest level of data at the individual level, 
and ending with the most aggregate data. Within these segments the papers are 
in alphabetical order. We briefly discuss each of the papers in this volume. 

Stated Preferences and Revealed Choices: Two key questions that marketers 
face are: what consumers want (or say they want) and what they effectively do. 
The research problem is that the answers to these two questions can diverge. 
Additionally, there are measurement issues about which design to use to 
analyze stated preferences and which type of marketing performance measure 
should be used to understand revealed preferences (say, sales versus frequency 
of purchase, for example). The recent explosion of available data also started 
serious thinking about how all these data should be captured in ready-to-use 
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Table 2. Summary of Data, Methods, and Applications Considered by the 
Papers in this Volume. 

Author(s) 

Hsiao, Sun, and 
Morwitz 

Morikawa, Ben- 
Akiva, and 
McFadden 
Chib, Seetharaman, 
and Strijnev 

Grol3mann, Helling, 
and Schwabe 
Mutts, van der 
Scheer, and 
Wansbeek 
Racine 

Bemmaor and 
Wagner 
Chintagunta, Dub& 
and Singh 
Fok, Frames, and 
PaaP 
Montgomery 

Bass and Srinivasan 
Parsons 

Data Type 

Stated Preferences 
and Revealed 
Choices 
Stated Preferences 
and Revealed 
Choices 
Individual Purchase 
Incidence from Store 
Scanner 
Individual Choice 
from Survey 
Individual Choice 
from Transactions 

Individual Choice 
from Transactions 
Aggregate Store 
Scanner 
Aggregate Store 
Scanner 
Aggregate Store 
Scanner 
Aggregate Store 
Scanner 
Aggregate Sales 
Aggregate Sales 

Methodology 

Discrete Choice 
Model 

Discrete Choice 
Model and Linear 
Structual Equation 
Multivariate Probit 
Model 

Optimal 
Experimental Design 
Probit Model 

Non-parametric 
Models 
Multiplicative 
Modeling 
Aggregation of Logit 
Choice Model 
Market Share 
Attraction Model 
Hierarchical 
Bayesian Modeling 
Nonlinear Modeling 
Stochastic Frontier 
Analysis 

Application 

New Product Sales 

Travel Mode 

Cross category 
pricing and 
promotion 
Conjoint Analysis 

Direct Marketing 

Direct Marketing 

Sales Promotion 

Brand Mapping 

Pricing and Sales 
Promotion 
Pricing and Sales 
Promotion 
New Product Sales 
Salesforce 
Management 

and, perhaps more importantly, read-to-understand models. Indeed, it turns out 
that many marketing questions, combined with available marketing data, 
require the development of new methods and techniques. The first two chapters 
deal with questions related to reconciling stated preferences and revealed 
choices. 

The need to forecast customer attitudes are quite prevalent in new product 
sales, where established trends and relationships cannot be observed. A direct 
technique to assess the potential sales of a product is to survey customers and 
ask their intention to purchase. Cheng Hsiao, Baohong Sun, and Vicki G. 
Morwitz consider several models that relate purchased intention to actual 
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purchase behavior in “The Role of Stated Intentions in New Product Purchase 
Forecasting”. They show that stated intentions can be biased and need to be 
scaled and modeled appropriately to achieve unbiased estimates of product 
purchases. 

Taka Morikawa, Moshe Ben-Akiva, and Daniel McFadden consider the 
combination of stated and revealed preferences in “Discrete Choice Models 
Incorporating Revealed Preferences and Psychometric Data”. The framework 
consists of discrete choice models which models reveal and stated preferences 
and a linear structural model that identifies latent attributes from psychometric 
perceptual indicators. The model is illustrated using choices of travel modes. 

Z&vi&al Choice: A common theme in the next four chapters is the use of 
individual choice or incidence. All of the data considered come from 
transactions that the company engages in with the consumer, whether it is a 
purchase at a register or a record of shipment from a mail catalog. At the same 
time the methodologies employed are diverse reflecting the managerial 
application. 

Siddhartha Chib, P B. Seetharaman, and Andrei Strijnev present an 
“Analysis of Multi-Category Purchase Incidence Decisions Using IRI Market 
Basket Data”. Typically, product choice within a category is considered 
independently. However, a purchase in one category may reduce the chance of 
purchase in a substitute category (e.g. refrigerated juice will reduce the chance 
of buying frozen juice), while purchasing in a complementary category may 
increase the chance of purchase (e.g. purchasing cake mix may increase the 
chance of purchasing cake frosting). The authors present an analysis of a high- 
dimensional multi-category probit model. They find that existing models 
underestimate cross-category effects and overestimate the effectiveness of the 
marketing mix. Additionally, their measurement of household heterogeneity 
shows that ignoring unobserved heterogeneity can have the opposite effect. 

The chapter by Heiko GroBman, Heinz Holling and Rainer Schwabe is about 
“Advances in Optimum Experimental Design for Conjoint Analysis and 
Discrete Choice Models”. Marketing studies often have the ability to collect 
primary data through experiments, which is less common in econometrics. The 
authors review new developments in the area of experimental design and 
provide methods to compare these designs. This chapter gives a good overview 
of the material and rightfully draws attention to the importance of formally 
comparing designs. 

Lars Muus, Hiek van der Scheer, and Tom Wansbeek present “A Decision 
Theoretic Framework for Profit Maximization in Direct Marketing”. The 
managerial problem is to decide which addresses to select for a future mailing 
from a mailing list. In this problem the analyst must estimate the probability of 
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a consumer responding. Often analysts ignore the decision context of the 
estimation problem, which can result in sub-optimal decisions. In this chapter 
the authors derive an optimal Bayes rule that considers parameter uncertainty 
when formulating a mailing strategy. This research illustrates the importance of 
the decision context. 

Jeffrey S. Racine proposes a non-parameteric technique for predicting who 
will purchase from a direct mail catalog in “‘New and Improved’ Direct 
Marketing: A Non-parametric Approach” choosing who to send a catalog. 
Racine discusses and compares parametric, semi-parametric, and non- 
parametric techniques in this chapter. He finds that conventional logit and 
probit models perform quite poorly, while nonparametric techniques perform 
better. 

Aggregate Store Scanner Data: The most common type of transactional data 
available to a retailer or manufacturer is sales data that is aggregated through 
time and reported at a store or market level. The next four chapters deal with 
issues related to modeling data derived from these sources. The general theme 
is that managers wish to extract information to make better pricing and 
promotional decisions. 

The applied nature of many marketing problems brings the data to the 
forefront. Often data is not in a form that is consistent with economic theory. 
In “Estimating Market-Level Multiplicative Models of Promotion Effects with 
Linearly Aggregated Data: A Parametric Approach”, Albert C. Bemmaor and 
Udo Wagner consider the estimation of market level data when the models are 
postulated at a store-level. Market level data is frequently encountered in 
practice, yet many researchers focus on finer level analyses. They propose a 
technique for creating aggregate level data that is consistent with multiplicative 
sales response models. This chapter addresses the aggregation problem that 
plagues many econometric models by suggesting that more appropriate indices 
and data measures may help to alleviate aggregation issues, rather than 
focusing upon the models themselves. 

The chapter entitled “Market Structure Across Stores: An Application of a 
Random Coefficients Logit Model with Store Level Data” by Pradeep 
Chintagunta, Jean-Pierre Dub& and Vishal Singh presents an econometric 
model based upon the logit brand choice model. They consider the aggregation 
of this model to the store level while accounting for price endogeneity. Their 
estimation approach yields parameters similar to those from household data 
unlike other aggregate data studies. The reason for this methodology is the easy 
availability of aggregate level data to retailer managers. This paper illustrates 
the emphasis that marketers place on visualization of the model to 
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communicate the results to managers, such as the creation of brand maps to 
illustrate market structure. 

A popular approach in the analysis of sales is through the analysis of market 
shares using an attraction model. Dennis Fok, Philip Hans Franses, and Richard 
Paap present an “Econometric Analysis of the Market Share Attraction Model”. 
The authors consider issues concerning the specification, diagnostics, estima- 
tion, and forecasting of market share attraction.models. They illustrate this 
model with an application to supermarket scanner data. 

In “Reflecting Uncertainty about Economic Theory when Estimating 
Consumer Demand”, Alan L. Montgomery explicitly considers the fact that 
most economic theory is uncertain. Frequently an analyst will pretest a theory. 
If the test is accepted, the analyst proceeds under the assumption that the 
restrictions from the theory hold exactly. However, this procedure overstates 
the confidence in the estimates. On the other hand if the theory is rejected, even 
if it is approximately correct, then all information from the theory is discarded. 
Montgomery proposes a Bayesian model that allows the analyst to shrink a 
consumer demand model towards a prior centered over an economic theory. 
Both the analyst who holds to theory dogmatically or agnostically can be 
represented as extreme cases. More importantly, when prior beliefs fall 
somewhere in between, the model can borrow information from the theory even 
if it is only approximately correct, in essence the estimates are “shrunk” 
towards the theory. 

Aggregate Sales: The final two chapters conclude by considering aggregate 
sales data. This data may occur at a very broad level, for example all the sales 
of clothes dryers in a given year, or monthly sales for a given market. The 
common theme in both of them is the desire to predict and control the 
underlying process. 

Time series econometricians have been intently focused on the issue of 
spurious regression and the effects of cointegration. Frequently the cumulative 
sales of a new product follow an S-shaped trend. The Bass Model describes this 
commonly observed curve using a diffusion argument. Along with sales, price 
and advertising generally have a trend also. In “A Study of ‘Spurious 
Regression’ and Model Discrimination in the Generalized Bass Model”, Frank 
M. Bass and Shuba Srinivasan consider the problem that coincident trends can 
have in identifying a nonlinear model. They compare different nonlinear 
models and consider how nonlinearity can acerbate the problems in model 
selection. 

Leonard J. Parsons’ chapter on “Using Stochastic Frontier Analysis For 
Performance Measurement and Benchmarking” is different from the other 
papers in this volume. in the sense that it is trying to bring existing econometric 
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methods to bear on an important problem in marketing, namely bow to assess 
performance. This chapter also illustrates the slow speed with which some 
econometric ideas take to be adopted into common marketing practice. 
Although refined over the years, stochastic frontier analysis originated in the 
1960s and 1970s. The benchmarking problem is how to focus on the frontier or 
best performance and not the average performance of the salesforce. A key 
point is that standard regression techniques do not work well since the error 
term is truncated. 

CONCLUSIONS 

The last two decades have witnessed an increasing interest in marketing to use 
quantitative data to address substantive questions using quantitative models. 
This interest arouses from a firm’s ability to easily collect and store data on the 
actual and stated behavior of their current and prospective customers. Hence, it 
has become possible to identify causes and effects of marketing instruments 
and environmental variables. 

The essential gain of combining marketing problems with econometric 
methods is that marketing problems might get solved using serious and well- 
thought methods, while on the other hand the econometrics discipline benefits 
from new methodological developments due to the specific problems. Hence, 
this combination is a two-sided sword, and we expect to see many more such 
developments in the future. 
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THEROLEOFSTATEDINTENTIONSIN 
NEWPRODUCTPURCHASE 
FORECASTING 

Cheng Hsiao, Baohong Sun and Vicki G. Morwitz 

ABSTRACT 

In this puper we develop four models to investigate the role of intentions 
(stated and true) und explanatory variubles in forecasting purchase based 
on the socicll psychology view that true intentions determine purchase 
behavior: We found that a weighted average of stated intentions together 
with the complementuty FED variubles ure powerfiil indicators of future 
purchase behavior For intention survey designers, these results imply that 
a conversion scale is needed to convert stated intentions to true intentions 
and intentions questions would yield more useful information if it is 
formulated in terms of probabilities rather than in terms of yes/no 
answers. 

INTRODUCTION 

It is routine for market research to collect purchase intention information. 
However, the relationship between purchase intention and subsequent purchase 
behavior has been controversial. On the one hand, Manski ( 1990, p. 940) 
maintains that “researchers should not expect too much from intentions data”. 
On the other hand, Fishbein and Ajzen (1975, p. 50) claim that “intentions 
should always predict behavior, provided that the measure of intention 
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corresponds to the behavioral criterion and that the intention has not changed 
prior to performance of the behavior”. Indeed, studies by Adams and Juster 
(1974), Gormley (1974), Juster (1966), Kalwani and Silk (1982), McNeil 
(1974), Morwitz and Schmittlein (1992), Penny, Hunt and Twyman (1972), 
Tauber (1975), Warshaw (1980), Morrison (1979), Infosino (1986), Bemmaor 
(1995), Fitzsimons and Morwitz (19%), Morwitz (1997), Young, DeSarbo and 
Morwitz (1998), Hsiao and Sun (1999), Sun and Morwitz (2OOQ etc. have 
shown positive associations between purchase intention and actual purchase 
with varying strength. Tobin (1959) has also examined whether intentions 
supplement or merely repeat the explanatory information contained in 
financial, economic, and demographic variables. His regression results show 
that intentions do contain information about future purchases, but they are not 
an adequate substitute for the demographic and economic variables. 

In order to better use stated intentions collected from survey research for 
forecasting purchase, it is important to understand the role of intentions (stated 
and true) and explanatory variables in forecasting purchase. In other words, 
there is a need for studying whether intentions supplement or merely repeat the 
explanatory information contained in financial, economic and demographic 
(FED) variables. In this paper we use a panel survey of intention to buy a home 
PC data to empirically investigate the link between the stated purchase 
intentions and actual purchase behavior at the micro level. 

In Section 2 we construct various models linking stated purchase intentions 
with actual purchase behavior. Section 3 describes the data and estimation of 
various models using PC panel data. Section 4 provides an empirical estimation 
of purchase intention model. Conclusions are in Section 5. 

THE MODELS 

In this section we present a basic framework that links various observed 
phenomenon between stated purchase intentions and actual purchase behavior. 
Obviously, there are many more possibilities than the ones considered here. 
Our main concerns are the consistency with known psychological models and 
the simplicity to estimate models which are capable of generating good 
predictions. 

Model I 

In the first model, we follow Fishbein and Ajzen (1975) and assume that 
behavior is determined by intentions alone and intentions are determined by 
attitudes and social norms. In other words, if S, denotes the information 
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available for consumer i, ZT denotes the latent true intentions, and yf denotes 
the latent response, then 

S,- Ip+-yT. (1) 

If the relationships are linear, then we have 

yT=cY+pzT+u. - I) (2) 

and 

zT=y+lj’x;+vi, (3) 

where x, denotes the observed social demographic variables and U, and V, denote 
the effects of all other omitted factors which are assumed to be uncorrelated 
with IT and li. 

Let y, be the observed binary variable indicating whether actual purchase 
happens ( yi= 1) or not ( yi=O). Suppose 

1 1, if yT>O, 

“= 0, if ~750. (4) 

Then the probability that yi = 1 given di and ZT equals 

Prob(yi=lIZ~,~i)=P(yi=lIZ~)=~(ol+~Z~), (5) 

where F is determined by the probability distribution function of U. If the 
observed stated intentions, I,, equal the latent true intentions IT, then 

Prob(y,= 1 IZ,, ai)=Prob(yi= 1 IZ~)=F(cx+pZi). (6) 

Model 2 

Sometimes, respondents may not report their true intentions. For instance, one 
may be asked to give a degree of intention such as “How likely are you to buy 
product X in the next six months” on a 5-point intentions scale (definitely will 
buy =5; definitely will not buy = 1) or on an 1 l-point scale (certain or 
practically certain = 11; no chance or almost no chance = 1; e.g. Kalwani & 
Silk, 1982). Or one may be asked to give a timed intent measures such as intend 
to buy in the next six months, in the next seven to 12 months, etc. There are 
findings indicating that there could be tendencies to overstate the high stated 
intentions and understate the low stated intentions at the time of the survey (e.g. 
Duncan, 1974; Lord & Stocking, 1976) in the multi-level intention measures. 
In the second model, we incorporate the existence of measurement bias and 
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construct a true intentions index from stated multiple intentions measures 
I;=(&, . . . , &). Suppose that the true intentions are a weighted average of 
some stated intentions scale l, 

1: = c s,[,, 
j=l 

then 

(7) 

where Pj+ = PS,. 

Model 3 

In the third model, we will recognize the imperfection of the constructed true 
intentions index in a binary response framework and combine the constructed 
intentions index with FED variables to predict the outcome. Sometimes, the 
survey questions elicit binary response to the intentions as opposed to scaled 
measures. For instance, the question may be “Do you wish to buy a certain 
product in the next so many months?‘. Juster (1966, p. 664) notices that 
“consumers reporting that they ‘intend to buy within X months’ can be thought 
of as saying that the probability of their purchasing A within X months is high 
enough so that some form of ‘yes’ answer is more accurate than a ‘no’ answer”. 
In other words, a consumer facing. an intentions question responds as would a 
statistician asked to make a best-point prediction of a future event. If the 
observed intentions, Z,, take the form 

I, = 
i 

I, if ZT>O, 
0, if ZTlO (9) 

theneventhoughP(y,=lIZ~,~,)=P(~i=llZ~),P(y~=lIZ,,~i)fP(~,=lIZ,)and 
P ( y, = 1 I Z,, x,) + P( y, = I Ix,) since even under the assumption that U, and v, are 
independent, 

E(y~IZ;)=cY+&qZ~IZ,) 

=a+p. ZT.f(ZTlZ,)dZT 
I 

#E(yTIz;) (IO) 
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and 

E(yTIz,, I,)=~+Pr+ps’x,+E(~ld,, I,) 

f E( yy I Xi). (11) 

The last two inequalities in (10) and (11) follow from E(v, Ix,, I,) # 0 even 
though E(v, Ix,) =O. Suppose instead of a single measure I,, but a multiple 
intentions measure 5, are available, we may approximate the nonlinear relation 
of E(yTlg,, L) by a stepwise function, we have 

J 

Prob(y;= 1 Ix,.[)=F o*+p* c [,+~*‘J, . 
]=I 

(12) 

Model 4 

In addition to the issue of the presence of possible differences between stated 
intentions and actual intentions, many things can also happen between the time 
of survey and the time of actual purchase. Therefore, it may not be just actual 
intentions at the time of survey determine behavior, the shocks during the time 
frame of interest also determine the actual purchase. In the fourth model, we 
allow true intentions to shift over time. Suppose that because of the shock 
during the time frame of interest, there is a probability IT; that an individual will 
buy and with probability (1 - ni) that an individual has no change in his 
purchasing probability given the intentions, then 

zyy,= l)=~,+(l -IT,) (13) 

where ni may or may not be predictable from observed socio-demographic 
variables, xi. If they are, then we may write, n, = IT(-~‘&J. 

All these models ((6) (8), (12) and (13)) posiulate that true intentions 
determine purchase behavior (( 1)). The difference in associations between the 
stated intentions and actual purchase found in empirical studies are attributed 
to the different behavioral relations between the stated intentions and the true 
intentions, i.e. intention response bias and shift of true intentions over time. 
Table 1 summarizes the various assumptions underlying our purchase decisions 
and observed variables. There is nested structure in the first three models, but 
not for Model 4. Model 1 is nested within Model 2; Model 2 is nested within 
Model 3. However, the models are not nested within Model 4. although 
technically it is possible by also including x, as additional explanatory variables 
in F(. ). 
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DATA AND ESTIMATION 

Jn this section we use a panel survey of PC data to empirically investigate 
which of the above models ((6), (8), (12) and (13)) is more likely to describe 
the discrepancy between stated intentions and actual intentions in the new 
product survey. 

The panel survey collected information about intentions to buy a home PC. 
a relatively new durable good. The survey took place approximately every six 
months from July 1986 (wave 1) to January 1989 (wave 7). The panel 
assembled was designed to be representative of U.S. households. During each 
wave the panel household were asked their timed intent to buy a PC in the 
future. Because the specific intent questions in the first 2 waves were different 
from the last five and because wave 3 (July 1986) and wave 4 (July 1987) were 
one year apart rather than six months apart we only analyze data of wave 4 to 
wave 7. 

The intent question during waves 4-7 reads: 

“Do you or does anyone in your household plan to acquire a (another) personal 
computer in the future for use at home? 
Yes, in the next 6 months 
Yes, in the next 7 to 12 months 

Table 2. Variable Description. 

Variable Name Variable Descriptions Mean or 
Frequency 

intention 1 
intention 2 
intention 3 
GUS 

young 
education 
new-household 
upscale 
mid age-no kids 
professional 
clerical 
working-hours 
male-head 
white-collar 

intend to purchase PC in the next 6 months 
intend to purchase PC in the next 7 to 12 months 
intend to purchase PC after a year 
number of cars 
age <= 30 
household education 
new household 
upscale families 
mid age with no children 
professional 
clerical 
number of working hours of householder 
household head is male 
household head is white collar 

7.28 
13.49 
29.9 

1.64 
32.53 
4.19 

14.51% 
21.93% 
23.14% 
23.66% 
27.59% 

2.77 
78.58% 
34.62 
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Yes, in the next 13 to 24 months 
Yes, sometime, but not within 24 months 
No, but have considered acquiring one 
No, will not acquire one” 

In addition to the intent question, extensive demographic information such as 
the size of household, annual household income, age of head of household, 
marital status, home ownership, household stage of life, occupation, education 
of head of household, race, number of cars owned, regional dummy, whether 
any household members had ever used a PC at work or at school, etc, were also 
collected. 

The survey did not ask for actual purchase. However, it contained a question 
of whether households owned a PC previously. Using this information, we 
construct a new PC purchase data by comparing whether a household switched 
from being a non-owner to an owner from one survey wave to the next among 
those households that had not previously owned a PC at home.’ Then the actual 
purchases are the purchases made within six months after each survey. Since 
the measurements are more noisy when a respondent states s/he will make a 
purchase of PC after a year, we focus on the first two intention measures, i.e. 
intend to purchase within six months and seven to twelve months. 

Our criteria of the choice of the models are the stability of the relationship 
and good predictive power. Stability is important because a major function of 
any econometric model is to sustain inferences from observed regularities to 
conjectured causal dependencies. Theoretical models consist of the logically 
valid implications. The empirical relevance of a theory follows from the 
correspondence conditions (or measurement equations) mapping latent rela- 
tions onto observable relations (e.g. Hendry & Richard, 1982). Good predictive 
power is also important in any modeling process. In fact, Klein (1988, p. 21) 
argues that “a severe test for an economic theory, the only test and the ultimate 
test is its ability to predict” (see also Friedman, 1957; Geisser, 1980; Zellner, 
1988). “The real proof of the pudding is whether it produces a satisfactory 
explanation of data not used in baking it - data for subsequent or earlier years” 
(Friedman & Schwarz, 1991). 

Our modeling strategy for converting time intent measures to the true 
intention measure and the use of socio-demographic variables to predict 
intentions or to predict the probability that an individual has a change on his 
intentions is based on the availability of relevant measures and a progressive 
general-to-specific approach of Hendry and Mizon (1990) and Hendry and 
Richard (1982). We start with specifications of most general models allowed in 
the light of the data, and subject them to a sequence of econometric estimation 
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and tests of significance, and end with a model that achieves the maximum of 
explanation with the minimum of factors that are consistent with theory. 

Assuming that F( .> has a logit form, the cross-sectional maximum 
likelihood estimates for waves 4 to 6 and the pooled estimates are presented in 
Table 3.’ These estimates use all available social demographic variables and 
treating the true intention as a weighted average Of the intention to buy within 
six months (intention l), the next seven to twelve months (intention 2) and 
more than a year (intention 3) from now. As one can see, many of the socio- 

Parameters Model I Model 2 Model 3 Model 4 

constant 
intention 1 
intention 2 
intention 3 
cars 
baby 

young 
old 
large size 
household head 
income 
new household 
new baby boomers 
low/mid income 
upscale family 
low/mid income 
elderly 
professional 
managers 
clerical 
sales 
other professions 
work-hours 
white 
male head 
own 

-2.905(22.27) 3.221(10.45) 11.915(1.27) 
2.254(9.26) 2.954(5.66) 4.039(5.25) 

0.037(0.034) 0.1331(0.10) 
-0.699(0.66) -1.069(0.92) 

-0.142(0.49) 
-0.068(0.04) 

1.311(0.86) 
0.729(0.66) 
0.745(2.47) 
0.147(0.49) 

-0.049(0.59) 
-2.85(0.93) 

-56.341(0.000) 
X).465(0.39) 

0.962(0.85) 
0.61 l(O.39) 

-O.909(0.3 1) 
-0.82(0.27) 

-0.876(0.28) 
0.204(0.18) 

1.32(2.48) 
-u.829(0.53) 

0.070(0.05) 
1.260(0.52) 
0.296(0.32) 
0.681(1.56) 

3.358(7.69) 
0.398cO.39) 
-1.96(0.34) 

-0.987(0.84) 
0.267(0.85) 

0.734(1.21) 

0.976(0.64) 

I .6X0( I .02) 

0. I Q(O.98) 

Log-likelihood -311.259 

!-statistics are reported in the parenthesi\ 

-299.965 -238.609 m-338.532 

Table 3. Estimation Results with Longer-term Intentions and More FED 
Variables (Based on Pooled Data). 
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demographic variables are not statistically significant. So are the weights of 
intention 3. Moreover, the weight coefficients of the intention 3 variables are 
negative, contradicting one’s prior conjecture. Given the highly unreliable 
longer term intention measurement, in what follows we shall focus on models 
using intention 1 and intention 2 dummies. 

Tables 4-7 presents the cross-sectional maximum likelihood estimates for 
wave 4 to 6 and the pooled estimates of the models 1 to 4 using only intention 

Table 4. Estimation Results of Model 1. 

parameters Wave 4 
(518) 

Wave 5 
(397) 

Wave 6 
(384) 

Pooled 
(1299) 

a,: constant 
p,: intention 1 

log-likelihood 

-2.651(14.26*) -2.953(12.22) -3.287( 11.64) -2.905(22.27) 
1.957(5.47) 2.078(4X%) 3.025(5.97) 2.254(9.26) 

-144.788 -92.216 -7 1.720 -311.259 

parameters 

Table 5. Estimation Results of Model 2. 

Wave 4 Wave 5 Wave 6 Pooled 
(518) (397) (384) (1299) 

a,: constant 
p,: intention 1 
p2: intention 2 

log-likelihood 

-3.010(12.80) -3.123(22/U) -3.296(11.21) -3.128(20.54) 
2.3 16(6.00) 2.248(4.83) 3.033(5.91) 2.477(9.68) 
1.505(3.80) I .213(2.02) 0.118(0.11) 1.307(4.32) 

-138.474 -90.544 -71.714 -303.486 

Table 6. Estimation Results of Model 3. 

parameters Wave 4 
(518) 

Wave 5 
(397) 

a;: constant 4.394(5.04) 
PT: intention 1 2.402(5.91) 
PT: intention 2 l.SO(3.68) 
yf: upscale 1.242(3.37) 
yf: clerical 0.930( 1.29) 
yf: male-head 1.159(1.43) 

log-likelihood - 130.232 

-3.400(5.60) 
2.275(4.85) 
1.265(2.05) 

0.702( 1.35) 
0.341(0.37) 
0.149(0.24) 

-89.552 

Wave 6 
(384) 

--1.356(5.54) 
3.112(5.84) 
0.163(0.15) 
0.102(0.16) 

-0.078(0.07) 
1.193(1.49) 

-70.282 

Pooled 
(1299) 

-4.034(9.87) 
2.5 13(9.65) 
I .339(4.37) 
0.87q3.28) 
0.51q1.10) 

.0.808(2.03) 

-295.042 
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Table 7. Estimation Results of Model 4. 

21 

parameters Wave 4 Wave 5 
(518) (397) 

Wave 6 
(384) 

Pooled 
(1299) 

0;: constant 
0:: intention 1 
0:: intention 2 
p;: constant 
PT: cars 
P;: new-household 
Of: upscale 
p:: working-hours 
p:: male-head 

-3.479(15.53) 
2.O67(5.81) 
1.235(3.21) 

-5.724(6.03) 
0.620(4.27) 
3.633(6.98) 
2.668(6.61) 

9.417(2.70) 
1.184(1.52) 

-5.862(14.20) 
4.472(9.12) 
3.344(4.19) , 

-3.729(6.03) 
0.502(3.22) 
4.468(8.90) 
3.195(8.10) 

-0.675(5.05) 
0.752( 1.32) 

45.267(12.28) 
3.921(8.89) 
0.7 16(0.68) 

-5.422(2.97) 
O.O41(0.15) 

0.950(0.87) 
O.O62(0.07) 
0.521(1.02) 
0.859(0.76) 

-3.864(27.81) 
0.734(2.72) 

-2.036(1.26) 
-2.610(3.11) 

0.474( 1.34) 
2.660( 1.06) 
1.115(1.14) 

O.356( 1.23) 
O.l85(0.11) 

log-likelihood -138.971 -133.695 -70.170 -346.572 

I and intention 2 and statistically significant socio-demographic variables. The 
coefficients of intention 1 and intention 2 are positive and significant (except 
intention 2 of wave 6 in Model 2, 3 and 4) indicating that respondents who state 
intentions of purchasing in the near future are more likely to purchase. And 
those who show intention to buy within 6 months are more likely to buy than 
those who show interest to buy within 6 to 12 months. A test of parameter 
constancy restriction yields a chi-square statistic of 5.0698 with four degrees of 
freedom for Model 1, 5.5082 with eight degrees of freedom for model 2, 
10.685 with twelve degrees of freedom for model 3, and 7.0192 with eighteen 
degrees of freedom for Model 4. None of them are significant at 15% level. That 
is, we find that there is a remarkable stability between the relations of actual 
purchasing behavior and purchase intentions over time and the stated intentions 
variables are statistically highly significant. Thus, we conclude that intentions 
predict actual purchase. 

With regard to the relations between the stated intentions and true intentions, 
the likelihood ratio test between pooled Model I and 2 yields a chi square value 
of 16.2 with one degree of freedom which is highly significant. In other words, 
the true purchase intentions to buy in the next six months is not completely 
represented by the stated purchase intentions to buy in the next six months. A 
better representation of the true intentions to buy for the next six months should 
be a weighted average of timed interest in the next six months and in the next 
seven to 12 months. 

The likelihood ratio test statistics between models 2 and 3 has a chi-square 
value of 16 with 3 degrees of freedom which is significant at 1% level. That is, 
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we do find complementarities between the intentions variables and socio- 
demographic variables, namely, having an upscale family, having a clerical job 
and having a male household head increase the probability of purchase. 
However, as argued in Section 2, the complementarities between the intentions 
and socio-demographic variables are because the response to an intentions 
questions is binary. Respondents will think as a statistician and state “yes” 
when they feel their intentions of purchasing the personal computer within X 
months is high enough. Then as shown by (12) intentions are not the single best 
predictors of actual purchase. FED variables are needed as supplementary 
information to predict purchase. 

Model 4 and Model 1, 2 and 3 are not nested. In Model 4, we are not able 
to find socio-demographic variables that are highly significant in predicting the 
future shocks within the time frame of interest.3 The socio-demographic 
variables that appear to be related to future shocks between the time of survey 
and actual purchase are number of cars owned, life cycle 1 (new household), 
life cycle 4 (upscale families), and number of working hours of householder 
employment. New households and upscale households are more likely to 
purchase. Families with cars and/or male household head are also more likely 
to purchase. The negative coefficient of working hours indicating people who 
do not spend a lot of time at home are less likely to purchase a PC for home 
use. However, the average estimated probability n is about 0.05145 using wave 
6 socio-demographic variables. It appears too high and contributes to an 
exaggerated projection of the actual purchase percentage in wave 7. If no socio- 
demographic variable is used, the estimated probability of IT is only 0.0015, 
indicating that if there is any shock, during the time of frames of interest that 
had led to a change in behavior, it is extremely small. 

We also compare the predictive performance of all four models. We use 
waves 4 and 5 to estimate the models. Then we use the wave 6 data with the 
estimated coefficients to predict the market average of actual purchase 

Nh 
1 

c i i=, 
&Y, = 1 1 l,.6X& @. (14) 

where N6 denotes the total number of observations in wave 6, and 0 are the 
estimated values of Q based on waves 4 and 5. 

The average percentage of households that purchased new PCs between 
wave 6 and 7 is 5.9896%. Model 1 predicts 7.4292%, model 2 predicts 
6.8963%, model 3 predicts 6.7181%, and model 4 predicts 18.832%. Models 1 
and model 4 predict poorly. Models 2 and 3 predict the market outcome within 
one percentage of error, with a slight edge for model 3. These results appear to 
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support the hypothesis that intentions are powerful indicators of future 
purchase behavior. However, a conversion scale is needed to convert stated 
intentions to true intentions. Intentions questions formulated in terms of 
probabilities rather than in terms of yes/no answers are likely to be a more 
reliable indicator of true intentions. 

PURCHASE INTENTIONS MODELS 

In this section. we try to relate observed purchase intentions with socio- 
demographic variables based on the assumption that the true intention is a 
function of these variables as postulated in (3).4 Let Z, denote intentions to buy 

Table 8. Estimation Results of Intention Model. 
_- 

parameters 

intention 1 
constant 
cars 
young 
mid age-no kids 

intention 2 
constant 
cars 

young 
education 
upscale 

intention 3 
constant 
young 
education 
upscale 
professional 
white-collar 

intention 4 
constant 

young 
upscale 

log-likelihood 
-__~ 

Wave 4 
(518) 

-2.479(9.50) 
0.135(1.30) 
0.829(2.75) 
0.314(1.15) 

-2.022(5.05) 
-0.097(0.93) 

0.439( 1.70) 
0.153(2.02) 

-2.265(1.15) 

-1.490(4.61) 
0.829(3.93) 
0.053(0.67) 

-0.460(2.15) 
0.332( 1.44) 

-2.273(1.29) 

4).820(7.92) 
0.96q5.19) 

4.587(3.22) 

-1527.27 

Wave 5 
(397) 

-2.245(6.54) 
X).028(0.19) 

0.776( 1.92) 
0.863(2.73) 

-1.532(3.48) 
4.160( 1.27) 

0.068(0.20) 
0.138(1.51) 

4.616(2.19) 

-1.467(3.76) 
1.044(4.15) 
0.070(0.77) 

4).222(0.91) 
0.388(1.42) 

-0.460(1.81) 

0.518(5.61) 
0.704(3.75) 

9.548(3&t) 

-1423.92 

Wave 6 
(384) 

-2.544(7.33) 
0.259(2.08) 

-0.007(0.02) 
0.390(1.20) 

-2.675(4.85) 
0.032(0.28) 
0.625(2.12) 
0.252(2&t) 

4.475( 1.59) 

-2.699(5.54) 
0.712(2.77) 
0.372(3.41) 

-0.135(0.53) 
4.182(0.68) 
-0.291(1.17) 

0.453(5.00) 
0.414(2.35) 

--0.146(0.99) 

-1398.51 

Pooled 
(1299) 

-2.433(13.69) 
0.128(1.84) 
0.601(2.84) 
0.505(2.93) 

-2.055(7.98) 
-0.078(1.20) 

0.393(2.35) 
0.175(3.52) 

-0.425(2.79) 

- 1.807(8.28) 
0.855(6.28) 
0.146(2.85) 

-0.291(2.16) 
0.200( 1.37) 

-0.330(2/M) 

0.093( 1.78) 
0.648(6.35) 

-0.380(4.38) 

484.83 
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within the jth six months, 1, 2, 3 and 4. Since Zj if formulated in terms of ‘yes’ 
or ‘no’ format as postulated in (4). we assume a conditional logit model 

pzl,... ,4 represents the first four scaled intentions measures.’ The 
maximum likelihood estimates of cross-sectional waves 4, 5, 6 and the pooled 
data are reported in Table 5. The likelihood ratio test for parameter constancy 
has a chi square value of 270.26 with 36 degrees of freedom, which is 
significant at the 1% level. We also use waves 4 and 5 data to estimate the 
coefficients and combine them with the wave 6 socio-demographic variables to 
predict the intentions response in wave 7. The actual percentages of those 
responding to purchase within six months, the next 7 to 12 months, 12 to 18 
months, 19 to 24 months, sometime in the future and do not intend to buy are 
3.2801%, 3.9894%, 4.9645%, 7.6241% and 71.365%, respectively. The pre- 
dicted percentages are 5.4964%, 8.8652%, 12.81%, 34.885% and 37.493%, 
respectively. The prediction errors of intentions using socio-demographic 
variables are much bigger than the prediction errors of actual purchase using 
intentions data. This lack of stability between purchase intentions and the 
observed socio demographics variables could be because factors affecting 
individual purchase intentions are numerous and the observed variables fail to 
capture all of them. In other words, it is much more difficult to model purchase 
intentions behavior than to model actual purchase as a function of purchase 
intentions. The relations between actual purchase and intentions are much more 
stable and predictable than the relations between actual purchase and socio- 
demographics variables. 

CONCLUSIONS 

In this paper, we develop four models to investigate the link between the stated 
intentions and purchase at the micro level based on the social psychology view 
that true intentions determine purchase behavior. We argue that the different 
strength of association between stated intentions and purchase or the com- 
plementarities between stated intentions and FED variables found in the 
empirical literature can be attributed to the discrepancy between the stated 
intentions and true intentions. The first model assumes stated intentions 
perfectly predict purchase. The second model takes into account measurement 
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bias and uses true intentions to predict purchase. The third model is a binary 
intention response model in which the prediction power of FED variables are 
examined. The last model allows true intention to change over time due to the 
shift of FED variables. We then rely on the stability of estimation and good 
predictive power to select the model that can best describes the discrepancy 
between stated intentions and purchase. . 

We use a survey panel data of PC intentions to investigate the relationship 
between stated intentions and actual purchase at the micro level. (1) We find a 
remarkably stable relationship between intentions and purchase over time 
which indicates that intentions are powerful predictor of actual purchase. (2) 
The true intentions are not accurately represented by stated intentions. A better 
representation of the true intentions should be a weighted average of stated 
intentions. Thus, we find support of the psychometric literature that stated 
intention should be transformed into an estimate of the true intention. A 
converted stated intentions to true intention remains to be most reliable 
predictor of actual purchase behavior. (3) In addition, when stated intentions 
are measured in binary form, FED variables such as upscale family, clerical and 
male-head are complementary to intentions in predicting purchase. However, 
the complementarities between the stated intentions and socio-demographic 
variables can be attributed to a consumer facing an intentions question 
responding as would a statistician asked to make a best point prediction of a 
future event. (4) We have not found significant evidence of exogenous events 
that lead to change intention or behavior within the time frame of interest. In 
fact, if there are exogenous events that lead to a change in behavior between the 
time of survey and actual purchase, they cannot be predicted by the observed 
socio-demographic variables. (5) It is much more difficult to model intentions 
as function of socio-demographic variables than to model actual purchase as a 
function of intentions. In summary, we found that intentions are powerful 
indicators of future purchase behavior. True intention converted from stated 
intentions together with the complementary FED variables remains to be the 
most reliable predictor of actual purchase behavior for the data set we use here. 
Intentions questions would yield more useful information if it is formulated in 
terms of probabilities rather than in terms of yes/no answers. 

When collecting intentions to predict purchase, it is probably advisable for 
the marketing researchers to formulate the intention questions in terms of 
probabilities instead of in terms of yes/no answers as this will probably reduce 
the discrepancy between stated intentions and true intentions. Our empirical 
analysis appears to confirm that the most powerful predictor of purchase is true 
intentions converted from stated intentions. 
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NOTES 

1. We have excluded repeated purchase because we cannot detect the purchase of an 
additional PC given the available information. The constructed measures obviously 
contain errors. Therefore, the conclusion we will draw is based on the assumption that 
measurement errors are independent of explanatory variables. 

2. The logit model makes specific assumption about the probability density function 
u. Although non-parametric methods are available to estimate the parameters up to a 
scale (e.g. Manski, 1985), they cannot be used to generate prediction, which is our main 
focus. However, empirical analysis comparing parametric vs. non-parametric 
approaches appear to indicate the difference is minor (e.g. Newey, Powell & Walker, 
1993). 

3. As pointed out by a referee that the shocks that interfere with the intentions - 
behavior relation are more likely to come from externalities (e.g. new information 
regarding the category). However, if they affect all households in the same way, then r 
will be a constant for all households in a given time, though may vary over time. 

4. The impact of these variables may contain the impact of excluded socio- 
demographic variables that are collinear with the included variables. Excluding relevant 
collinear variables may create the problem of interpretation of the estimated 
coefficients, but will have negligible impact on prediction (e.g. Intriligator, Bodkin & 
Hsiao, 1996). Our interest here is in predicting the outcome rather than identifying 
individual impact of included explanatory variables. 

5. As suggested by a referee, an alternative approach to model true intentions as a 
function of social-demographic variable is to employ a hierarchical Bayes approach and 
model the response parameters of intentions on behavior (B or B*) as a function of 
socio-demographic variable in the second level. 

ACKNOVLEDGMENTS 

We wish to thank editors and two anonymous referees for helpful suggestions. 

REFERENCES 

Bemmaor, A. C. (1995). Predicting Behavior From Intention-to-Buy Measures: The Parametric 
Case. Journul of Marketing Research, 32, 176191. 

Gerard, A. F., & Thomas, J. F. (1974). Commentaries on Mcneil, Federal Programs To Measure 
Consumer Purchase Expectations. Journal of Consumer Research, I(3), 1 l-15. 

Duncan, G. T. (1974). An Empirical Bayes Approach to Scoring Multiple Choice Tests in the 
Misinformation Model. Journal of the American Statistical Association, 69, 50-57. 

Fishbein, M., & Ajzen, I. (1975). Belief Attitude, Intention, and Behavior: An Introduction to 
Theory and Research. Reading, MA: Addison-Wesley. 

Fitzsimons, G. J., & Motwitz, V. G. (19%). The effect of measuring intent on brand-level purchase 
behavior. Journal qf’Consumer Research. 23. I-l I 



The Role of Stated Intentions in New Product Purchase Forecasting 27 

Friedman, M. (1957). A Theory of the Consumptiorr Function. Princeton: Princeton University 
Press. 

Friedman, M., & SchwarL, A. (1991). An Econometric Analysis of U.K. Money Demand. In: M. 
Friedman & A. J. Schwartz (Eds), Monetary Trends in the United States and the United 
Kingdom; Alternative Approaches to Analyzing Economic Data. American Economics 
Review, 81 (I ). 849. 

Geisser, S. (1980). A Predictivistic Primes in Bnyesian Analysis in Econometrics and Stati.stic.\. 
E,s.wys in Honor of Harold Jeflrevs (pp. 363-382). Amsterdam: North Holland. 

Gormley, R. (1974). A Note on Seven Brand Rating Scales and Subsequent Purchase. Journal CJ/ 
the Market Research Society, 16, 242-244. 

Hendry, D. F., & Mizon, G. E. (1990). Procrustean Econometrics: Or Stretching and Squee.@ 
Data. in: C. W. J. &anger (Ed.), Modeling Economic Seriehc Reading.\ in Gwwmrtrrt 
Methodology (pp. 12 I - 136). Oxford: Clarendon Press, 

Hendry, D. F., & Richard, J. F. (1982). On the Formulation of Empirical Model\ in Dynamic 
Econometrics. Journal of Econometrics, 20, 3-33. 

Hsiao, C., & Sun, B. (1999). Modeling Response Bias with an Application to High-tech Product 
Survey Data. Journal of Econometrics, 89, 1-2, 15-39. 

Infosino, W. J. (1986). Forecasting New Product Sales From Likelihood of Purchase Ratings 
Marketing Science, 5 (Fall). 372-384. 

Intriligator, M. D., Bodkin, R. G., & Hsiao, C. (1996). Econometric Models. Technique. trrttf 
Applications (2nd ed.). Englewood Cliffs: Prentice-Hall. 

Juster, T. (1966). Consumer Buying Intentions and Purchase Probability: An Experiment in Survey 
Design. Journal of the American Statistical Association, 61, 658-696. 

Kalwani, M. U., & Silk, A. J. (1982). On the Reliability and Predictive Validity of Purchase 
Intention Measures. Marketing Science, I, 243-286. 

Klein, L. R. (1988). The Statistical Approach to Economics. Journal of Econometrics, 37, 7-26. 
Lord, F. M., & Stocking, M. L. (1976). An Interval Estimate for Making Statistical Inference< 

about True Scores. Psychometrika, 41,79-87. 
Manski, C. F. (1985). Semiparametric Analysis of Discrete Response: Asymptotic Properties of the 

Maximum Score Estimator. Journal of Econometrics, 27(3), 3 13-333. 
Manski, C. F. (1990). The Use of Intentions Data to Predict Behavior: A Best-Case Analysis. 

Journal of the American Statistical Association, 85, 934-940. 
McNeil, J. M. (1974). Federal Programs to Measure Consumer Purchase Expectations. 

19461973: A Post Mortem. Journal of Consumer Research, I, l-10. 
Morwitr. V. G. (1997). It Seems Like Only Yesterday: The Nature and Consequences of 

Telescoping Errors in Marketing Research. Journal of Consumer P.\ycho/o,qJ, 6( I). I-30 
Morwitz. V. G., & Schmittlein. D. (1992). Using Segmentation to Improve Sale Forecasts Based 

on Purchase Intent: Which “Intenders” Actually Buy‘? Journal of MtrrketinSy Rerrtrrt h. ZY. 
391405. 

Morrison, D. G. (1979). Purchase Intentions and Purchase Behavior. Journal c!f Markcrirl,y. -1.f 
(Spring), 65-74. 

Newey. W. K, Powell, J. L., & Walker. J. R. (1990). Semiparametric Estimatiun of Selection 

Models: Some Empirical Results. American Economic Retiew, RO, 324-328. 
Penny, J. C., Hunt, I. M.. & Twymay. W. A. (1972). Product Te\ting Methodology in Relation t,a 

Marketing Prohlems. Journal of the Market Research Sorien: 4.3. 65--74. 
Tauber. E. M. (1975). Predictive Validity in Consumer Research. Jou~~rrl of’.&/\ c’i’ti\o~q K~\<~(IJ., f/ 

15,17l-191. 



28 CHENG HSIAO, BAOHONG SUN AND VICKI G. MORWITZ 

Tobin, J. (1959). On the Predictive Value of Consumer Intentions and Attitudes. Review of 
Economics and Statistics, 41, l-1 1. 

Warshaw, P. R. (1980). Predicting Purchase and Other Behaviors From General and Contextually 
Specific Intentions. Journal of Marketing Research, I7,26-33. 

Young, M., DeSarbo, W. S., & Morwitz, V. G. (1998). The Stochastic Modeling of Purchase 
Intentions and Behavior. Management Science, 44(2), 188-202. 

Zellner, A. (1988). Bayesian Analysis in Econometrics. Journal ofEconometrics, 37, 27-50. 



DISCRETECHOICEMODELS 
INCORPORATINGREVEALED 
PREFERENCESANDPSYCHOMETRIC 
DATA 

Taka Morikawa, Moshe Ben-Akiva and 
Daniel McFadden 

ABSTRACT 

This paper proposes a methodology for incorporating psychometric data 
such as stated preferences and subjective ratings of service attributes in 
econometric consumer’s discrete choice models. Econometric formulation 
of the general framework of the methodology is presented, followed by two 
practical submodels. The first submodel combines revealed preference 
(RP) and stated preference (SP) data to estimate discrete choice models. 
The second submodel combines a linear structural equation model with a 
discrete choice model to incorporate latent attributes into the choice 
model using attitudinal data as their indicators. Empirical case studies on 
travel mode choice analysis demonstrate the effectiveness and practicality 
of the methodology. 
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1. INTRODUCTION 

Discrete choice models have been extensively used to analyze consumer’s 
choice behavior in market research (e.g. Green et al., 1977; Gensh & Reeker, 
1979; Guadagni & Little, 1983; Carpenter & Lehrnann, 1985; Winter, 1986; 
Gupta, 1988; Chintagunta, 1993). About 15 years ago we began to work on the 
idea of combining discrete choice with conjoint analysis and latent variable 
models (e.g. McFadden, 1986; Ben-Akiva & Boccara, 1987). The underlying 
idea is that consumer behavior could be analyzed in more detail using 
subjective data on preferences, perceptions and attitudes. This approach con- 
trasts with the traditional treatment of consumer behavior, which regards the 
consumer as an “optimizing black box.” 

One way of describing the consumer decision process is shown in Fig. 1. In 
this diagram, ovals refer to unobservable or latent variables, while rectangular 
boxes represent observable variables. The relationship between the actual 
attributes of alternatives and observed behavior is represented by three groups 
of intervening factors: perceptions, attitudes and preferences. Perceptions are 
consumer’s perceived values of attributes of alternatives which are usually 
influenced by his or her socioeconomic characteristics and market information, 
while attitudes are his or her subjective importance of attributes. Preference is 
also a latent factor and represents desirability of alternative choices, which is 
usually expressed by a utilityfunction. Traditionally, the latent factors enclosed 
by the dashed line have been treated as the black box. Recently, Ben-Akiva 
et al. (1999) proposed an extended framework that includes more psycho- 

Fig. 1. Framework for Analysis of Consumer Behavior. 
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logical factors such as motivation, perceptions, tastes and attitudes and their 
indicators. 

Market researchers have attempted to analyze explicitly the latent psycho- 
logical factors and have relied on various indicators of perceptions, attitudes 
and preferences (Hauser & Koppelman, 1979; Louviere, 1988a; Lichtenstein 
et al., 1993; Meyer & Johnson, 1995). Attitudinal and perceptual indicators 
usually represent the level of satisfaction or importance of attributes on a 
semantic scale. Stated preference (SP) data are collected by presenting 
hypothetical scenarios to the respondents and asking for their preferences. In 
contrast to this type of data, measurements based on actual market behavior are 
termed revealed preference (RP) data. 

In econometrics, however, the traditional view has been that valid choice 
data result only from actual choices having been made. Therefore, most 
econometric demand models are estimated using revealed preferences, 
measured attributes of alternatives and objective socio-economic character- 
istics of the decision maker. SP data, on the other hand, have been extensively 
used in market research (Green & Rao, 197 1; Green & Srinivasan, 1978; Cattin 
& Wittink, 1982; Louviere, 1988b). These include the applications of conjoint 
analysis methods and more recently the discrete choice modeling techniques 
(e.g. Louviere, 1988a; Erlod et al., 1992; Louviere et al., 2001). SP data, which 
are collected in a fully controlled experimental environment, have the 
following advantages in contrast with RP data that are generated in natural 
experiments: 

(i) they can elicit preferences for non-existing attributes and alternatives; 
(ii) the choice set is prespecified; 
(iii) multicollinearity among attributes can be avoided; and 
(iv) range of attribute values can be extended. 

Despite these advantages, SP data are not always considered to be valid for 
model estimation due to uncertain reliability of the elicited information under 
hypothetical scenarios. SP data may contain biases and large random errors if 
the decision making protocol exercised in a hypothetical situation differs from 
that exercised in a real choice context. Decision protocols for stating prefer- 
ences about hypothetical scenarios can be observed in the following contexts: 

(i) the respondent considers only the most important attribute of the 
alternatives (the prominence hypothesis); 

(ii) the response is influenced by an “inertia” of the current actual choice (e.g. 
justification of the current choice); 
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(iii) the respondent uses the questionnaire as an opinion statement for his or 
her own benefit (e.g. overstating usage of a new transportation system to 
promote its construction); 

(iv) the respondent does not consider situational constraints; and 
(v) the respondent misinterprets or ignores an attribute if the attribute value 

lacks reality. 

In addition, the reliability of SP data also depends on the quality of the 
questionnaire or the settings of the experiment. The response format such as 
“rating,” “ ranking,” or “matching” in SP experiments also affects the reliability 
of the elicited preferences (For a more detailed discussion of these issues, see 
Ben-Akiva et al., 1991.) 

Thus, SP and RP data have complementary characteristics. Simultaneously 
using both types of data with explicit consideration of unknown reliability of 
SP data may yield more reliable and useful consumer behavior models as 
exemplified in the following contexts. It is often the case that the trade-offs 
among certain attributes cannot be estimated accurately from the available RP 
data. For instance, high correlation between package size and price per unit in 
RP data may yield insignificant parameter estimates for their coefficients. 
However, SP surveys with a design based on low or zero correlation between 
these attributes may provide additional information on their trade-offs. 
Although the SP responses may not be valid for forecasting actual behavior due 
to their unknown bias and error properties, they often contain useful infor- 
mation on trade-offs among attributes. Another context where SP data add 
critically important information on’ preferences is the introduction of new 
attributes and new products. RP data alone cannot provide enough information 
to assess the impact of those drastic changes in services. 

Other types of psychometric data such as attitudinal data have also been used 
in the choice modeling (Reeker & Golob, 1976; Koppelman & Pas, 1980). It 
has been argued that consumer’s choice behavior is determined by latent factors 
such as “quality” as well as manifest ones such as “size” and “price.” Per- 
ceptual ratings of quality measures of alternatives, for instance, could be used 
as explanatory variables instead of their objective values in order to obtain 
better fit of the observed choice. However, this approach has always been 
criticized for little predictive validity when it is used for policy analysis. 

The study presented in this paper is motivated by a question: How can we 
benefit from incorporating psychometric data, namely, stated preferences, 
perceptual and attitudinal data, in economic demand modeling? Our basic 
strategy is to use those psychometric data as indicators of the latent variables 
such as utility, attitudes, and perceptions in the behavioral framework depicted 
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in Fig. 1. An answer to the criticism mentioned in the previous paragraph, for 
instance, is to use such perceptual data only as “indicators” of latent variables 
which themselves are the function of objective variables. In other words, 
incorporating such latent qualitative variables in econometric demand models 
requires some indicators of those variables as .well as the assumed causal 
relationship among them. In this sense, market behavior, or RP data, can be 
viewed as an indicator of a latent variable, i.e. utility, but market behavior is 
also the target variable to be recovered or predicted by the model. 

This paper, hence, aims to propose a general framework for incorporating 
RP, SP, and other psychometric data in discrete choice models and to provide 
its practical estimation methods. Econometric formulation of the general 
framework is presented in the next section, which is followed by the two 
submodels with practical estimation techniques: the combined estimation from 
RP and SP data and the choice models with latent attributes. The paper also 
focuses on empirical analyses to assure the practicality of the methodology 
proposed. Sections 3 and 4 show the empirical works on the methodology 
developed in Section 2. An integrated model of the two submodels is estimated 
in Section 5. Concluding remarks are addressed in Section 6. 

2. FRAMEWORK FOR COMBINING RP, SP, AND 
PERCEPTUAL DATA 

2.1. Framework for Incorporating Psychometric Data in a 
Discrete Choice Model 

This section presents a general framework for incorporating psychometric data 
such as SP and perceptual data and econometric RP data in a discrete choice 
model. For the sake of simplicity, we use for presentation a binary choice 
model in which attributes are measured in terms of the differences of the two 
alternatives. Different response formats such as multinomial choice, ranking. 
and pairwise comparison will not change the general framework presented 
below as long as they are described by utility maximization behavior. 

Suppose the following measurements are available from a questionnaire 
survey and/or an SP experiment: 

(i) binary RP choice results; 
(ii) binary SP responses; 
(iii) perceptual indicators of some latent attributes of alternatives: and 
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(iv) observed attributes of alternatives and decision-maker’s socio-economic 
characteristics. 

The framework consists of two parts: a discrete choice model and a linear 
structural equation model; each part is composed of structural and measure- 
ment equations. RP and SP responses are described by the discrete choice 
models such as logit and probit while the relationship between perceptual 
indicators and latent attributes is described by the linear structural equation 
model. 

Structural equations specify relationship between cause-and-effect variables. 
Since some cause-and-effect variables are not directly observable (e.g. quality 
and comfort), or latent, identifying these latent variables requires observable 
indicators. Measurement equations relate latent variables and their indicators. 
A typical latent variable is the utility in a discrete choice model. The framework 
proposed in this paper also allows latent attributes or perceptions in the 
diagram of Fig. 1. Latent attributes, for example, include “brand loyalty” and 
“quality” in brand choice applications and “convenience” or “comfort” in travel 
mode choice applications. In the equations below, asterisks (*) are attached to 
latent variables and superscripts “RP” and “SP” denote the corresponding 
data. 

Structural Equations 

u*sP = a’xsP + e’ZSP + $P 

W”RP = B,$P + CR’ 

(1) 

(2) 

(3) 

where 

U* = latent utility; 
x, w, z = vectors of observable explanatory variables; 
w* = vector of latent explanatory variables; 
s = vector of observable variables that influence w*; 
a, b, c, e, B = arrays of unknown parameters; 
v = random component of utility; and 
5 = vector of normally distributed disturbances. 
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Measurement Equations 

(4) 

where 
(6) 

y = vector of observed indicators of w*; 
A = matrix of unknown parameters; and 
E = vector of normally distributed disturbances. 

Equations (l), (3) and (4) construct the RP choice model and (2) and (5) form 
the SP choice model. The linear structural equation model is composed of (3) 
and (6). 

This framework has two aspects from the viewpoint of statistical estimation. 
The first one is the combined estimation with RP and SP data (Morikawa, 
1989; Ben-Akiva & Morikawa, 1990a, b) and the other aspect is the 
identification of latent variable w* through a covariance structure model 
(Morikawa, 1989; Morikawa et al., 1990). These estimation methods are 
described as submodels in the following subsections. 

2.2. Submodel 1: Combined Estimation with RP and SP Data 

This submodel shown in Fig. 2 assumes two different data generating 
processes: The RP model represents actual behavior, while the SP responses are 

Fig. 2. RP/SP Combined Estimation 
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modeled by the SP model. SP surveys are often conducted to obtain explicit 
and clear-cut information of trade-offs among attributes as well as direct 
preferences of non-existing services. One of the fundamental assumptions in 
conducting SP surveys is that the trade-off relationship among major attributes 
is common to both revealed and stated preferences. Otherwise, SP surveys 
themselves would have little meaning. In travel mode choice analyses, for 
instance, such attributes usually include line-haul travel time, terminal travel 
time, travel cost, and the number of transfers. We will denote these common 
attributes by the attribute vector x and its coefficient by the vector a. 

The other factors affecting revealed and stated preferences are assumed to 
have different coefficients in RP and SP models. It is found from travel mode 
choice case studies that alternative-specific constants are likely to have 
significantly different values in both models (Ben-Akiva & Morikawa, 
1990a, b). We denote such attribute vectors by w for the RP model and z for the 
SP model and their coefficient vectors b and e, respectively. The choice in the 
real market often affects SP as described in the previous section. It is 
sometimes called the justification bias or inertia effect and is captured by 
including the RP choice indicator dRP and its coefficient f in the SP utility 
function. 

The models used for the following presentation are also binary choice 
models and the latent attribute w* is omitted for simplicity. 

The RP Model 
U*RP = a’xm + b’wRP + vRP 

dRP= 1, if u*“20 
- 1, if z.4*RP<0 

(7) 

(8) 

The SP Model 

(9) 

(10) 

In the above modeling structure, sharing a in both models and estimating it by 
jointly using RP and SP data provides statistical efficiency. The terms 
represented by e’zSP and fdRP are specific to the SP model and may include SP 
biases. e’z”’ also includes effects of hypothetical services that are included only 
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in the SP survey. SP biases can be corrected from prediction by discarding from 
the fitted utility function the part of e’zsp and,fdRP that represent the biases. If 
a part of e’zSP includes the effect of the new service included only in the SP 
questions, that part should be included in the fitted utility function for 
prediction. 

Since the effect of unobserved factors may well be different between 
revealed and stated preferences, there is no reason for assuming that vRP and vsp 
have an identical distribution, or more specifically, have the same variance. 
Here we introduce a scale parameter l.r that represents the ratio of standard 
deviations of uRP and us’, or 

Vur(uRP) = &4zr(usp). (11) 

If SP data contain more random noise than RP data, F will lie between 0 and 
1. p is also known to represent the “scale” of the model coefficients. The scale 
of the model is set by arbitrarily fixing the variance of the random utility term 
in order to identify the coefficients of a discrete choice model. For instance, 
assuming that vRP and vsp are normally distributed, the scale of the probit RP 
model is set to one (i.e. kr(vRP) = l), and the RP and SP models are: 

P(dW= l)=@(a’xW+b’wRP), (12) 

and 

P(dSP = 1) = a,( p(a’xsP + e’zSP +fdsp)), (13) 

where @( ) denotes the CDF of the standard normal. 
If we can assume that unobserved factors are statistically independent 

between revealed and stated preferences, the joint estimators of a, b, e, f and 
IA are obtained by maximizing the joint log-likelihood: 

NR’ 

L(a, b, e, J p,) = c log{ @[dfP(a’xy + b’wtp)] ) 
n= I 

+ 
c 

log{Q,[d~Pp(a’x~P~(a’x~P+e’z~)J], (14) 
n=I 

where N RP and Nsp are the numbers of observations of RP and SP data sets, 
respectively. 

Under the assumption of statistical independence of uRP and v”, or 
equivalently: 

Prob(dRp, dsp) = Prob(dRP) Prob(dsP), (IS, 
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then joint estimation yields consistent and asymptotically efficient and normal 
estimators. If this assumption does not hold, the joint estimators are still 
consistent and asymptotically normal but not fully efficient. In this case, a 
variance-covariance matrix of the maximal likelihood estimates calculated as 
the inverse of the information matrix will be biased. The joint estimation 
procedure requires special (but not complicated) programming due to the non- 
linearity in parameters. Hensher and Bradley (1993) proposed an estimation 
technique that utilizes a nested logit estimation software by creating an 
artificial nesting structure between RP and SP. 

All the parameters can also be estimated sequentially. The sequential 
estimation procedure described in Ben-Akiva and Morikawa (1990b) avoids the 
non-linearity problem and can be carried out by MNL estimation software 
packages. The sequential estimators are consistent but not fully efficient. 

The assumption of independence between the RP and SP error terms within 
the same individual may often be too strong. Furthermore, if the SP model has 
the RP choice indicator as an explanatory variable (as shown in (9)) and 
correlation between the error terms exists, there will be a problem of “state 
dependence and serial correlation” and, consequently, all the parameter 
estimates will be inconsistent. Morikawa (1994) proposed two approaches to 
remedy this problem. The first one is to include in the SP utility function the 
dummy variable that represents the RP choice. Such dummy captures 
unobserved preference factors for the specific alternative and, consequently, the 
remaining error term is less correlated with explanatory variables. The second 
is to explicitly consider serial correlation between the RP and SP utilities by 
splitting the error term into the alternative-and-individual-specific error and the 
white noise. Although this requires integrating the choice probabilities in 
computing the likelihood, the full information maximum likelihood estimator 
can be obtained. 

2.3. Submodel 2: Discrete Choice Model with Latent Attributes 

The idea of this submodel is to use psychometric data and the choice data as 
the indicators of some latent constructs. Using psychometric data as the 
indicators of latent variables is not new in psychology where the factor analysis 
is the most famous and basic approach (Johnson & Wichem, 1988). Structural 
equation models later made it possible to represent cause-and-effect relation- 
ship by using observable variables as covariates of the latent factors and have 
been widely applied in social and behavioral sciences (e.g. Goldberger, 1972; 
Duncun, 1975; Bielby & Hauser, 1977; Joreskog & S&born, 1979; Bentler, 
1980). Joreskog and S&born (1984) developed computer software for 
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Structural Relationship 
Measurement Relationship 

Fig. 3. Choice Model with Latent Attributes. 

specifying and estimating structural equation models, known as LISREL 
(Linear Structural Relationships). 

Submodel 2 is the combination of the structural equation model and discrete 
choice model. As shown in Fig. 3, the mode1 system contains two types of 
latent variables and associated indicators. The first one is the intangible or 
latent attributes such as “beauty” and “novelty” that affect the choice behavior 
of interest. The indicators of these latent variables could be subjective answers 
of perceptual questions about the alternatives in the choice context. The utilities 
that represent latent preferences of the alternatives are the second type of 
latent variables. Their indicators are the choice in the real market or stated 
preferences. 

This system can be formulated by combining the two existing modeling 
schemes: a discrete choice model and a structural equation model. Equations 
(16)-( 19) are extracted for this system from the genera1 framework presented 
in Section 2. We can see the two models there; one is a binary discrete choice 
model with latent attributes that consists of a structural Eq. (16) and a 
measurement Eq. (IQ, and the other is a linear structural equation model with 
latent variables that is composed of a structural Eq. ( 17) and a measurement Eq. 
(19). In the following presentation the SP mode1 is omitted for simplicity. 

Structural Equations 

u*=a’x+c’w*+v 

w*=Bs+c 

(lb) 

i 171 
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Measurement Equations 

where 

d= 1, if u*20 

1 -l,ifu*<O (18) 

y=hw”+E (19) 

u = random component of utility where v - N(0, 1); 
z = vector of normally distributed disturbances where J - MVN(0, Yr); and 
E = vector of normally distributed disturbances where E - MVN(0, e). 

2.3.1. Sequential Estimation Method 
Assuming all the variables are normally distributed, the choice probability is 
derived as follows. The joint distribution of y, w* and U* is 

Y 
W* - MVNM,, W, 

U* 

where 

ABs ” h’PA’+0 A’P A’Pc 
M,= Bs and a,= 9A’ vr YC 

a’x + x’Bs cWA’ C’W 1 +c’Wc 

Here, given the observable variables y, x, s, the conditional distribution of w* 

(20) 

and u* is 

- MVN(M,, 

where 

M2= 
Bs + ‘PA’(AWA’)m’(W - ABs) 

a’x + c’ { Bs + YrA’(AYrA’ + 8)m’(9 - ABs)] 

(21) 
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and, defining o = W - Vh’[AQA’ + e]-‘A*, 

Hence, the choice probability of the discrete choice model given y, x and s is 

a’x + c’ (Bs + VA’[ATA’ + @I-‘(y - ABs)} 

- 
(22) 

Since the measurement equation of the choice model, (18), is non-linear, the 
whole system of equations (16) - (19) cannot be estimated simultaneously with 
an existing program such as LISREL (Joreskog & S&born, 1984) but requires 
programming the likelihood. Instead, the two step estimation method described 
below will yield consistent but not fully efficient estimators. 

Step I: Use a LISREL type estimator to estimate (17) and (19) and calculate 
the fitted values: 

ia = Bs + SrA’[MA’ + &‘(y - ASS,, (23) 
6.i = 9r - @A’[A@frK~ + Q-‘A9. (24) 

Step 2: Use a probit MLE to estimate the model of (22) using 6% and 6, 
namely, estimate a and c using the following choice probability: 

P(dly, x, s)=@(d y$). (25) 

2.3.2. Simultaneous Estimation Method 
Assuming again all the variables are normally distributed, the choice 
probability can be derived as follows. The joint distribution of y, x, and u* is 
the same as (20). Given w*, the conditional distribution of y and u* is 

where 

M,= 

- MVNM,, W 
Aw* 

a’x + c’w* 

(26) 
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Then the joint probability of y and U* can be calculated by taking the 
mathematical expectation with respect to w*: 

Pr(d, y)=w*@{~(a’x+c’w*)J.fi $ yi-(x’w*) 
i=l 

1 8i / .fpp<y)&*, 

(27) 

where + denotes the PDF of the standard normal. In the above equation, we 
assume that the dimensions of y and w* are n and m, respectively, and that the 
components of y and w* are independent among others. The maximum 
likelihood method is used to estimate the parameters to obtain consistent and 
asymptotically efficient estimates. 

3. APPLICATION OF THE RP/SP COMBINED 
ESTIMATION 

In this section an empirical analysis of the RP/SP combined estimation 
(submodel 1) is presented. The case is about intercity travel mode choice. 

The survey was conducted during 1987 by the Hague Consulting Group for 
the Netherlands Railways to assess factors which influence the choice between 
rail and car for intercity travel. The City of Nijmegen, in the eastern part of the 
Netherlands, was selected as the data collection site. This city has rail 
connections with the major cities in the western metropolitan area called the 
Randstad which contains Amsterdam, Rotterdam and The Hague. Traveling 
from Nijmegen to the Randstad takes approximately two hours by both rail and 
car. 

The home interview survey consisted of three parts: 

(1) the characteristics of an intercity trip to the Randstad made within the 
previous three months (RP data); 

(2) SP experiment of a choice between two different rail services (SPI data); 
and 

(3) SP experiment of a choice between rail and car (SP2 data). 
The home interview survey was administered using lap-top micro-computers 
and the respondents replied to the questions appearing on the computer screen. 
The main advantage of a computer administered survey is that a desirable SP 
experimental design can be generated on site based on the service levels of the 
actual trip. 

The RP data have 228 observations each including level-of-service attributes 
(e.g. travel time and cost), socio-economic characteristics (e.g. age and sex), 
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and subjective ratings of latent travel characteristics (e.g. relaxation, reliabil- 
ity). 

The SP experiments were framed in the context of the actual trip observed 
in the RP data and used the full-profile pairwise comparison method. The 
respondent was shown two hypothetical alternatives (two different rail services 
in the SPI experiment and rail versus car in the SP2 experiment) at a time, each 
of which was described by the following four attributes: travel cost, travel time, 
the number of transfers (only for rail), and luxury level of the train (only for 
rail). Then, the respondent was asked which mode would be chosen for the 
particular intercity trip reported in the RP question in terms of a five point 
rating scale: (1) definitely choose alternative 1; (2) probably choose alternative 
I; (3) not sure; (4) probably choose alternative 2; and (5) definitely choose 
alternative 2. Each respondent was presented with several pairs in SP 1 and SP2 
experiments. SPl data (rail vs. rail) contain 2,875 comparisons (an average of 
12-13 comparisons per respondent), while SP2 data (rail vs. car) include 1,577 
comparisons (an average of 7 comparisons per respondent). 

All the explanatory variables are in terms of differences between rail and car, 
more specifically, the values for rail minus the values for car. Socio-economic 
variables are included in the rail utility function. 

A binary probit model estimated from the RP data is shown in the first 
column of Table 1. The second and third columns report the SP 1 (rail vs. rail) 
and the SP2 (rail vs. car) models, respectively. The ordered probit models are 
applied to the ordered categorical responses described above with two 
threshold parameters, 0, and 02, representing four threshold values which are 
set to be symmetric with respect to zero. 

The SP2 experiment was designed to collect information on mode switching 
behavior (from rail to car, or vice-versa) by presenting to the respondents 
hypothetical rail and car modes which are described by line-haul travel time 
and travel cost. However, since the respondent was instructed to refer to the trip 
reported in the RP questions, he or she may have considered additional 
attributes such as terminal time and the number of transfers that would have 
been required for the trip in evaluating the hypothetical alternatives. These 
additional attributes have the same values as reported in the RP questions. 
Thus, the model estimated from SP2 data includes these additional trip attribute 
variables which do not vary in the SP experiment. Characteristics of the traveler 
and the trip such as sex and purpose are also included. There may also be a bias 
in the stated preferences toward the mode actually used, reflecting the inertia 
effect, justification of past behavior, or omitted attributes that are not captured 
by the included variables. This bias can be estimated by including a dummy 
variable which indicates the actual choice. 
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Table 1. Estimation Results of Submodel 1 (t-Statistics in Parentheses). 

Rail constant (RP) 

Rail constant (SP) 

Cost per person 

Line-haul time 

Terminal time 

Number of transfers 

Comfort 

Business trip dummy 

Female dummy 

Inertia dummy 

4, 

0 I* 

0 21 

0 22 

v-1 

RP SPl SP2 RP+SPl RP+sP2 RP+SPl 
+SP2 

0.501 
(1.8) 

0.455 
(1.8) 

-0.0270 
(4.4) 

a.342 
(-1.4) 
-1.61 

(-4.83) 
-0.139 

(-1 .O) 

0.902 
(3.2) 

0.488 
(2.4) 

-0.970 
(-9.8) 

-0.0828 -0.0111 
(-25.4) (-5.6) 
Xl.967 4kl.56 

(-11.6) (-1.9) 
-0.272 

(-1.9) 
-0.140 0.0433 

(-4.3) (0.8) 
0.493 

(14.4) 
-0.115 

(-1.2) 
-0.102 

(-1.5) 
1.60 

(18.7) 
0.0176 

(5.9) 
0.271 

(25.3) 
0.0829 

(8.3) 
0.485 
(21.3) 

a.0279 
(-5.2) 

-0.327 
(4.9) 
-1.60 

(-4.9) 
XM478 

(-3.4) 
0.166 

(4.9) 
0.887 

(3.2) 
0.488 

(2.4) 

0.0176 
(5.9) 

0.271 
(25.3) 

2.97 
(5.05) 

0.243 0.321 0.377 0.319 

0.702 
(3.0) 

-3.82 
(4.0) 

a.0338 
(-6.5) 

4l.401 
(-2.1) 
-1.46 

(-4.63) 
-0.0348 

(4.3) 

0.358 
(1.74) 
0.230 

(1.4) 
5.68 
(4.7) 

0.0827 
(8.4) 

0.484 
(21.6) 

0.259 
(4.9) 

0.368 

0.718 
(3.4) 

-3.82 
(-4.0) 

4.0337 
C-4.8) 

-0.394 
(4.1) 
-1.47 

(-4.77) 
-0.0569 

(-3.8) 
0.201 

(6.24) 
0.363 

(1.78) 
0.232 

(1.5) 
5.70 

(4.8) 
0.0176 

(5.9) 
0.271 

(25.3) 
0.0827 

(8.4) 
0.484 

(21.7) 
2.45 
(6.5) 

0.258 
(4.9) 

0.339 

Now, the RP data are combined with the SPl data. The likelihood for the RP 
model is expressed by an ordinary binary probit model, while that for the SPl 
model is expressed by the ordered probit model with threshold parameters. The 
fourth column of Table 1 shows the joint estimation results. All the estimates 
have the expected signs and have small standard errors. The scale parameter u2 
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is estimated to be greater than 1, which indicates that SPl data have less 
random noise than the RP data. 

Then, the SP2 data are combined with the RP data. Note that the rail specific 
constants are separately estimated for each data, and the coefficient of the 
inertia variable is only estimated for the SP2 data. The fifth column of Table 1 
shows the results of the joint estimation. All the coHficients have the expected 
signs. The scale parameter p2 is estimated between 0 and 1, which indicates a 
greater variance of the random utilities in the SP2 data. 

Lastly, the RP data are combined with the two SP data and all the parameters 
are jointly estimated. As shown in the sixth column of Table 1, all the 
parameters are accurately estimated with the expected signs. 

The first step in evaluating the usefulness of the combined estimator is to 
inspect the estimated coefficients of the separate RP, SPl and SP2 models. A 
comparison of equivalent coefficients among these three models reveals large 
differences in the scales of the estimated utilities; the scale of the SPl model 
is about 2.5 times greater than the scale of the RP model and the scale of the 
RP model is about four times greater than the scale of the SP2 model. This 
observation is verified by the results of the combined estimators. The ratio of 
the scale parameters of the SPl and the RP models is given by )I, with an 
estimated value of about 2.5. The ratio of the scales of the SP2 and the RP 
models is given by p2 with an estimated value of about 0.26. These results 
indicate that the respondents were able to sharply discriminate between 
alternative rail services in the SPl experiment. On the other hand, the stated 
choices between rail and car alternatives in the SP2 experiment were subject to 
significantly greater unexplained variance. Thus, a simple SP experiment such 
as SPl , may yield reliable information about trade-offs among attributes. 

The most convincing demonstration of the important role that SP data can 
play in model estimation is provided by the estimated coefficient of the line- 
haul travel time variable. In the RP model this coefficient is too small and not 
significantly different from zero. (This is not an unusual occurrence in the 
estimation of mode choice models from RP data and may be due to the limited 
variability of the difference between car and train line-haul time.) In the SP 
models the coefficients of line-haul time have reasonable values and are 
significantly different from zero. Thus, a combined estimator that controls for 
the difference in scales yields a usable negative coefficient of approximately 
-0.4 which can now be used to predict the effects of changes in line-haul travel 
times. 

The preference bias in the SP2 data toward the mode actually chosen was 
detected by the inrr-tkr variable. In the RP + SPl + SPZ model, for example. the 
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rail specific constant estimated from the SP data is -3.82 for car users and 1.88 
( = -3.82 + 5.70) for rail users. Thus, rail users have an SP rail constant of 1.88, 
which is greater than the RP value of 0.50, while for car users the SP rail 
constant is -3.82 and this is significantly smaller than the RP value. This 
indicates that car users have a greater preference bias toward their current mode 
than rail users. In other words, car users have a greater inertia or exhibit a 
greater justification bias than rail users. 

4. APPLICATION OF THE CHOICE MODEL WITH 
LATENT ATTRIBUTES 

This section presents an empirical case study for the second submodel: choice 
models with latent attributes. The Netherland travel survey data described in 
the previous section include the following subjective evaluation of trip 
attributes for both chosen and unchosen modes and they are used as perceptual 
indicators: 

(i) relaxation during the trip (relax); 
(ii) reliability of the arrival time (r&u); 
(iii) flexibility of choosing departure time (flex); 
(iv) ease of traveling with children and/or heavy baggage (ease); 
(v) safety during the trip (safety); and 
(vi) overall rating of the mode (overall). 

The first five perceptual indicators, (i)-(v) are described by five point ratings 
such as: (1) very poor; (2) poor; (3) neutral; (4) good; and (5) very good, and 
the overall evaluation of the mode is rated by a 10 point scale. These serve as 
y in (5) and are included in terms of the differences between rail and car. 

Two latent variables, ride comfort and convenience, denoted by w* in (1) and 
(16) are specified as follows: 

ride comfort: 

wT= P,aged + &first+ P,lhtime + PAaged x lhtime + c,, (comfort) (28) 

convenience: 

wq = &aged + p,trmtime + &xfern + &freepark + <2, (convenience) (29) 
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where 

aged 1 if the traveler is 40 years old or older, 0 otherwise; 

first: 1 if the traveler uses the first class by rail, 0 otherwise; 

lhtime: line-haul travel time by rail less line-haul travel time by car (hours); 

trmtime: terminal time by rail less terminal time-by car (hours); 

xfern: the number of transfers by rail; and 

freepark: 1 if free parking is available by car, 0 otherwise. 

Since all the observable variables are measured in terms of the differences 
between rail and car, the two latent variables should also be interpreted as the 
differences between rail and car. 

The relationship between these two latent variables and psychometric 
indicators, y, is described by the following measurement equations: 

y,(reW 
y2( relia) 

h(Jie.4 

y&a=) 

Y&afety) 

y,(overaZl) 

The utility function that is the structural eql 
specified as follows: 

uat 

WT [ 1 WT + 
ion of the choice model part is 

u* = a,, + a,costpp + a,lhtime + a,trmtime + a,xfem + asbusiness 

+a,&emale+c,w~+c,w$+v, (31) 

where 

costpp: travel cost per person (Guilder); 

business: I if the trip purpose is on business, 0 otherwise; and 

female: 1 if female, 0 otherwise. 

This model represents the binary RP choice of rail vs. car as described in the 
previous section. 

First conducted is the sequential estimation method described in Section 2 
utilizing available software for linear structural equation estimation. Parameter 
estimates of the linear structural equation model are shown in Table 2. All the 
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Table 2. Estimates of the Linear Structural Equation Model 
Sequential Estimation (t-Statistics in Parentheses). 

- Ml cwn 
-0.232(-1.4) 0.406(3.3) (wed ) cwn cw:.) 

-0.292(-1.3) 0 (lhtime) 
1 0.170(0.8) (relax) 

fir= O 4.522(-2.1) (owlrime) 
0.772(1.8) 1 (r&z) 

0.286( 1 .O) 0 ViM 
A= 0 1.49(4.3) (jlex) 

0 -0.0471(-0.6) (sk-4 
0 1.16(5.2) (ease) 

0 0.164(1.6) (freepark) 
0.686(3.1) 0.329(2.0) (safe) 

-0.0405(~. 1) 0 (aged x lhtime) 
lH(2.6) 2.43(5.9) (overall) 

parameters in the measurement equations have positive signs as expected and 
sufficiently large r-statistics. Although some estimates are not significant in the 
structural equations, most of them have expected signs. 

Then the fitted values of the latent variables are used as explanatory variables 
in the rail/car binary choice model with the scale correction as shown in (25). 
The estimation results of the choice model with and without the latent variables 
are shown in the first and second columns of Table 4, respectively. Both the 
latent variables have significantly positive coefficients and raise the goodness- 
of-fit substantially. Since the variable of line-haul travel time is used in both the 
structural equation model and the choice model, its coefficient in the choice 
model becomes insignificant probably due to multicollinearity. The alternative 
specific constant (rail constant) becomes also less significant because the two 
latent variables capture much of the intangible factors specific to the travel 
mode. In other words, the choice model without the latent variables might have 
suffered from the omitted variable problem. 

Simultaneous estimation is then conducted by using the likelihood given by 
(27). Parameter estimates of the linear structural equation part is shown in 
Table 3. Most of the parameters have the same tendency in terms of sign and 
magnitude as in the sequential estimation result. More parameters are observed 
statistically significant in the simultaneous estimation result. The choice model 
part shown in the third column of Table 4 demonstrates similar results to the 
sequential estimation model. Both the latent attributes have significantly 
positive parameter estimates. 

When the policy analysis is conducted with the future values of the 
explanatory variables, only the structural equations can be used because we 
usually do not know the future values of the subjective ratings (perceptual 
indicators) of the latent attributes. In that sense, having more significant 
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TubZe 3. Estimates of the Linear Structural Equation Part 
Simultaneous Estimation (t-statistics in Parentheses). 

- (wf) (WD 
4.427(-2.4) 0.378(2.4) (aged ) 

(w:) (4 

-0.323(-l .7) 0 (lhfime) 0.433(7.6) 0.280(3.2) (rekzx) 

jy= 9 -1.98(-9.0) (frmtime) 0.527(12.5) 0.661(10.2) (relia) 

0.281(0.9) 0 UW 
A= 0 0.815(14.7) (j2e.r) 

0 X).396(-3.7) &fern) 
0 0.794( 14.2) (ease) 

0 0.482(3.5) (jiieepark) 0.462(11.6) 0.31 l(5.2) (safe) 

-0.339(-l .3) 0 (aged x lhfime) 0.784(8.5) 1.76( 14.1) (overall) 

Table 4. Choice Models with Latent Attributes (t-Statistics in Parentheses). 
-. 

Model w/o Sequential Estimation Simultaneous Estimation 
Latent Attributes Model Model 

Rail constant 0.583 0.322 -1.81 
(2.0) (1.0) (-0.9) 

Cost per person -0.0268 a.0338 a.0379 
(4.2) C-4.1) (4.3) 

Line-haul time -0.405 0.075 1 0.379 
(-1.6) (0.2) (0.9) 

Terminal time -1.57 -1.18 -0.818 
(-4.2) (-2.6) (-2.3) 

Number of transfers XI.195 -0.316 -0.230 
(-1.3) (-1.7) (-I .2) 

Business trip dummy 0.942 1.33 1.28 
(3.6) (3.6) (3.3) 

Female dummy 0.466 0.652 0.700 
(2.3) (2.6) (2.9) 

wt (comfort) 0.882 1.29 
(2.7) (1.81 

wr (convenience) 1.39 1.10 
(4.1) (4.7) 

-* P 0.242 0.352 0.201* 

Note: * goodness-of-fit nvxwrc for both rhe structural equation and choice modek 
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parameters in the structural equations, the simultaneous estimation result is 
more useful in this particular case study. 

5. ESTIMATION OF THE INTEGRATED MODEL 

Integrating the two estimation schemes demonstrated in the two submodels, we 
could estimate a choice model with latent attributes using RP, SP and 
perceptual data. Table 5 shows an example of such models. Here, the two latent 
attributes, ride comfort and convenience, are included in the RP utility 
function, and RP data and the two types of SP data are simultaneously used to 
estimate coefficients of the utility functions. The linear structural equation 
model and the choice model are estimated in the sequential way. 

The two latent attributes show the significant explanatory power to the RP 
data as also demonstrated in the previous section. Line-haul travel time in the 
utility function has a significant coefficient in the utility function. In the 
previous section this coefficient lost the explanatory power due to the 
multicollinearity between the latent attributes and line-haul travel time. By 

Table 5. Estimation Result of the Integrated Model (RP + SP 1 + SP2 + Latent 
Variables). 

Coefficient t-statistic 

Rail constant (RP) 
Rail constant (SP) 
Cost per person 
Line-haul time 
Terminal time 
Number of transfers 
Business trip dummy 
Female dummy 
Inertia dummy 
M’T (comfort) 
wf (convenience) 
01, 
0 12 
0 21 
0 22 
CL1 
l-2 

0.526 2.3 
-3.91 -3.8 

-0.0352 -5.1 
4.407 -5.3 

-1.20 -3.6 
-0.0590 -3.5 

0.404 1.8 
0.262 1.5 

5.16 4.4 
0.615 2.3 
0.973 3.4 

0.0176 5.9 
0.27 1 25.3 

0.0827 8.4 
0.484 21 .I 

2.35 5.6 
0.257 4.5 

0.34 I 

R  
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combining RP and SP data, this key variable recovered significance in the 
utility function. 

Coefficients of the other variables and the scale parameters have similar 
estimated values to the ones shown in Table 1. This empirical analysis can be 
seen as a demonstration of efficacy of the methodology presented in the 
paper. 

6. CONCLUSIONS 

This paper presents a methodology for incorporating psychometric data such as 
stated preferences and subjective ratings of attributes into the discrete choice 
modeling framework. The framework is composed of discrete choice models 
which describe discrete responses of revealed and stated preferences and a 
linear structural equation or covariance structure model which identifies latent 
attributes from psychometric perceptual indicators. 

Empirical case studies on travel mode choice analysis have demonstrated the 
effectiveness of this methodology. Combined estimation of RP and SP models 
helped identify coefficients of important variables such as line-haul travel time 
and detected SP specific biases. Latent attributes identified by the linear 
structural equation model significantly improved the goodness-of-fit of the 
discrete choice model. 

In the case study of the RP/SP combined estimation method, three combined 
models were estimated: RP data combined with SPl (rail vs. rail) data, RP data 
combined with SP2 (rail vs. car) data, and RP data combined with both SPl and 
SP2 data. These combined models were compared against the three models that 
were separately estimated from the three data sets. The RP model could not 
successfully identify an important parameter (the coefficient of line-haul travel 
time), which is a typical problem encountered in estimating models from RP 
data. This is usually caused by lack of variation in the data and/or 
misspecification of the model. However, obtaining an acceptable model 
specification is often very difficult because the actual behavior is influenced by 
related attributes while the available data are limited. Furthermore, even if the 
correct model specification was known, estimation of model parameters could 
fail because of data limitations. SP experiments present simplified hypothetical 
choice contexts and, therefore. may provide useful information on trade-offs 
among attributes. 

The case study provided a clear demonstration of the usefulness of the 
combined estimation method. Specifically, the coefficient of the line-haul travel 
time variable was successfully estimated by combining RP and SP data. The 
SPl experiment for rail vs. rail choice provided information on the trade-(off< 
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among attributes with the least random noise. On the other hand, SP data are 
often not reliable because of the oversimplified hypothetical circumstances. 
This problem was mitigated by using additional variables from the RP data in 
estimating the SP model. 

A potential bias in the SP data was captured by the introduction of the inertia 
variable. This variable captured the preference bias toward the mode actually 
chosen. As discussed above, it was found that car users had a greater inertia or 
habitual effect in choosing a travel mode. 

Thus, these case studies successfully demonstrated the key features of the 
IWSP combined modeling method (Ben-Akiva & Morikawa, 1990a, b): 

(i) efficiency: joint estimation of preference parameters from all the 
available data; 

(ii) bias correction: explicit response models for SP data that include both 
preference and bias parameters; and 

(iii) identification: estimation of trade-offs among attributes and the effects 
of new services that are not identifiable from RP data. 

This methodology of combining different preference data sources has recently 
been widely applied in various contexts not only in demand forecasting but also 
in environment valuation (e.g. Hensher & Bradley, 1993; Swait & Louviere, 
1993; Adamowicz et al., 1994; Ortuzar & Iacobelli, 1998; Hensher et al., 
1999). 

The paper also proposed a method for incorporating attitudinal data such as 
subjective ratings of latent attributes. The framework is composed of discrete 
choice models which describe discrete responses of revealed choices and a 
linear structural equation model which identifies latent attributes from 
psychometric perceptual indicators. It is totally different in concept from the 
traditional methods in which psychometric indicators are directly used as 
explanatory variables. The key feature of the proposed method is that we can 
calculate the latent attributes from the observable variables once parameters are 
estimated. This implies that the models described in this paper can be used for 
forecasting demand in conjunction with changes in product attributes, level-of- 
service, and consumer’s characteristics. 

The empirical case study demonstrated the effectiveness of this methodology 
by showing that inclusion of the latent attributes significantly improved 
goodness-of-fit measure of the discrete choice model. Two estimators were 
presented: sequential and simultaneous estimation. The sequential method can 
utilize existing linear structural equation estimation software such as LISREL, 
but provides not fully efficient estimators. The simultaneous full information 
maximum likelihood method yields efficient estimators although it requires 
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programming the likelihood. The empirical analysis showed that the two 
methods yielded similar estimation results both in the choice model part and in 
the linear structural equation model part. But the more effective result was 
obtained by the simultaneous estimation in the sense that more significant 
parameter estimates were found in the structural equations that are used for 
forecasting. 

An estimation result of the model that integrates the two submodels is 
exhibited in Chapter 5. This particular empirical analysis shows strong 
explanatory power of the latent attributes that are identified by a structural 
equation model and significance of key variables such as travel time and cost 
in the utility function, which demonstrates effectiveness of combining RP and 
psychometric data in a general and consistent framework. 

In the general framework of consumer behavior analysis depicted in Fig. 1, 
focused on in this paper are incorporating stated preferences and perceptual 
indicators to better identify latent preferences and perceptions, The method- 
ology proposed in this paper seems to be well supported by the case studies. 
More empirical works, however, are called for in order to justify it in a more 
conclusive way. Some of the other aspects of the general framework have also 
been worked by the authors. Discrete choice models with explicit consideration 
of situational constraints and choice set formation are proposed by Ben-Akiva 
and Boccara (1995) and Morikawa (1996). Preliminary work on incorporating 
attitudinal indicators has been done by Sasaki et al. (1999). 
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ANALYSIS OF MULTI-CATEGORY 
PURCHASE INCIDENCE DECISIONS 
USING IRI MARKET BASKET DATA 

Siddhartha Chib, P. B. Seetharaman and Andrei Strijnev 

ABSTRACT 

Empirical studies in Marketing have typically churacterized a household’s 
purchase incidence decision, i.e. the household’s decision of whether or 
not to buy a product on a given shopping visit, as being independent of the 
household’s purchase incidence decisions in other product categories. 
These decisions, however; tend to be related both because product 
categories serve as complements (e.g. bacon and eggs) or substitutes (e.g. 
colas and orange juices) in addressing the household’s consumption 
needs, and because product categories vie with each other in attracting 
the household’s limited shopping budget. Existing empirical studies have 
either ignored such inter-relationships altogether or have accounted for 
them in a limited way by modeling household purchases in pairs of 
complementary product categories. Given the recent availability of IRI 
market basket data which tracks purchases of panelists in several product 
categories over time, and the new computational Bayesian methods 
developed in Albert and Chib (1993) und Chib and Greenberg (1998), 
estimuting high-dimensional multi-category models is now possible. This 
paper exploits these developments to fit an appropriate panel duta 
multivariate probit model to household-level contemporaneous purchases 
in twelve product categories, with the descriptive goal of isoluting 
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correlations amongst various product categories within the household’s 
shopping basket. We provide an empirical scheme to endogenously 
determine the degree of complementarity and substitutability among 
product categories within a household’s shopping basket, providing full 
details of the methodology. Our muin @dings are that existing purchase 
incidence models underestimate the magnitude of cross-category correla- 
tions and overestimate the effectiveness of the marketing mix, and that 
ignoring unobserved heterogeneity across households overestimates 
cross-category correlations and underestimate the effectiveness of the 
marketing mix. 

1. MOTIVATION 

Over the past decade, marketing researchers have devoted a lot of attention to 
the problem of modeling household purchase incidence at the category level 
(see, for example, Chiang, 1991; Bucklin & Lattin, 1991; Chintagunta, 1993). 
One reason for modeling category purchase incidence, in addition to brand- 
choices within the product category, is that such a model provides improved 
estimates of brand-choice elasticities with respect to marketing mix variables, 
properly accounting for not just the direct impact but also the indirect impact 
on brand-choice via category purchase incidence (Chiang, 1991). A second 
reason stems from the researcher’s desire to understand what factors drive 
category purchase incidence and what impact, if any, marketing-mix variables 
at the brand level have on category purchase incidence. A third reason is the 
purely descriptive goal of isolating correlations amongst various product 
categories within the household’s shopping basket, thereby providing a scheme 
to determine which categories are complements and which are substitutes. 

Previous studies have largely focused on the first issue, i.e. obtaining 
improved estimates of brand-choice elasticities. The second issue, i.e. 
estimating the impact of brands’ marketing variables on category purchase 
incidence, and the third issue, i.e. estimating cross-category correlations, have 
been incompletely addressed at best. While the former is in part due to the 
difficulty of formulating appropriate models of category purchase incidence, 
the latter is largely due to the computational problems of fitting realistic 
household-level category purchase incidence models on scanner panel data. For 
example, if a household buys thirty different product categories during a visit 
to the store, a model that estimates cross-category correlations must simul- 
taneously model household decisions in thirty different product categories, an 
onerous task by any standards. The purpose of this paper, which is part of a 
two-stage research agenda. is to explicitly address the third issue, i.e. estimate 
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cross-category correlations within the household’s shopping basket. We study 
what information is contained in category purchase incidence data when, not 
just two or three, but a large number of category purchase incidence decisions 
(twelve in our case) are modeled simultaneously. The success of our fitting 
enterprise, based on the work of Albert and Chib (1993) and Chib and 
Greenberg (1998), and summarized in this paper, makes us hopeful that we 
will be able to scale-up our model to include all the twenty or so categories 
in the typical shopping basket. The second-stage of our research, described 
in a companion paper, addresses all three issues simultaneously, i.e. jointly 
modeling category purchase incidence and brand choice when the number of 
categories is large. 

2. OBJECTIVES OF THIS STUDY 

Households make purchase decisions in several product categories when they 
visit the supermarket. For example, a household’s regularly scheduled trip to 
the grocery store may involve the purchase of soft drinks, chips, ketchup, 
cookies, peanut butter, ice cream, laundry detergents, etc. To the extent that 
product categories serve different consumption needs of the household, 
household purchase decisions may appear to be independent across product 
categories within the household’s shopping basket. For example, a household’s 
decision to purchase laundry detergents may be independent of the household’s 
decision to purchase bacon or soft drinks since each product serves a 
fundamentally different consumption need. On the basis of this independence 
assumption, empirical researchers typically estimate household purchase 
incidence decisions separately for each product category, i.e. whether or not a 
household will buy ketchup during a visit to the store is modeled independently 
of whether or not it will purchase other products in the store (see, for example, 
Bucklin & Lattin, 1991; Chiang, 1991). This is also referred to as the weuk 
separability assumption. 

It is unlikely that the weak separability assumption applies to ull product 
categories within a household’s shopping basket. For example, some products 
may serve as consumption complements of each other (say, bacon and eggs) 
while others may serve as consumption substitutes of each other (say, cola and 
orange juice).’ Researchers have accounted for this by identifying pairs of 
products, a priori, that are obvious complements of each other and estimating 
bivariate models of household purchase incidence decisions across the two 
product categories (Chintagunta & Haldar, 1998; Manchanda, Ansari & 
Gupta, 1999). Such a framework is applicable only when one can identify ;I 
priori relationships among product categories. In general. however. one I~LI\I 
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endogenously infer the relationships between product categories within the 
household’s shopping basket using purchase data. For example, one must 
estimate a high-dimensional model of household purchase incidence decisions 
across all product categories within the household’s shopping basket (also 
referred to as a basket-level model henceforth). Such a basket-level model will 
endogenously estimate correlations across all pairs of product categories rather 
than across predefined product categories only. Even if the focus is on 
estimating correlations among and/or marketing mix elasticities within 
predefined pairs of product categories (as in Chintagunta & Haldar, 1998; 
Manchanda, Ansari & Gupta, 1999), it is important to estimate these 
correlations and elasticities using a basket-level model to eliminate the effects 
of misspecification bias. This is the first objective of this study, and we 
summarize it below: 

Objective 1: We estimate a basket-level model of household purchase 
incidence decisions to obtain estimates of pair-wise correlations across all 
product categories within the household’s shopping basket and estimates of 
marketing mix elasticities in each product category. 

Cross-category correlations are of interest to retailers seeking to maximize 
store profits by jointly coordinating marketing activities across product 
categories within the store. Cross-category correlations are also of interest to 
database marketers interested in undertaking cross-selling initiatives across 
product categories (Berry & Linoff, 1997). A complete basket-level model of 
household purchase incidence decisions, as proposed in this study, has not been 
estimated thus far in the marketing literature. We estimate our basket-level 
model using scanner panel data, which tracks the purchases of a fixed number 
of households across twelve different product categories in the store over 
time. 

While using scanner panel data, it is important to investigate how sensitive 
the estimated cross-category correlations are to the panel structure of the data. 
In other words, one must assess the impact of (ignoring or accommodating) 
unobserved heterogeneity across households on the estimated cross-category 
correlations. To the extent that cross-category correlations may proxy for the 
effects of unobserved heterogeneity if the latter is ignored, it is possible that 
cross-category correlations may be overstated (and hence “spuriaus”) in the 
absence of unobserved heterogeneity. Also, the estimated marketing mix 
elasticities in each product category may be sensitive to the inclusion of 
unobserved heterogeneity across households. Explicitly investigating this issue 
is the second objective of this study, and we summarize it below: 
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Objective 2: We estimate the basket-level model of household purchase 
incidence decisions both with and without accommodating the effects of 
unobserved heterogeneity across households in order to investigate the 
consequences of ignoring unobserved heterogeneity on the estimated cross- 
category correlations and households’ responsiveness to marketing variables 
in each product category. 

Disentangling cross-category correlations from unobserved heterogeneity is 
important to retailers since the two phenomena imply different marketing 
strategies. For example, if cross-category correlations are observed to be 
simply proxies for unaccounted-for heterogeneity across households, the 
marketer could develop marketing programs separately for each product 
category taking into account the estimated heterogeneity distribution. In such a 
case, separately maximizing the profits from each category is tantamount to 
maximizing overall store profits. 

To summarize, we propose a basket-level model of household purchase 
incidence decisions and estimate the proposed model using scanner panel data 
on household purchases across twelve product categories. The proposed model 
has a multivariate probit panel structure and is used to estimate pair-wise 
correlations in households’ random utilities across the twelve product 
categories. We employ an extension of a recently developed Bayesian method 
(Albert & Chib, 1993; Chib & Greenberg, 1998) to estimate model parameters. 
Our main findings are that either ignoring or incompletely accounting for cross- 
category correlations within household shopping baskets overestimates the 
effectiveness of marketing variables in driving purchase incidence decisions. 
We also find that ignoring unobserved heterogeneity across households 
overstates cross-category correlations and understates the effectiveness of 
marketing variables. The rest of the paper is organized as follows. In the next 
section we propose the multivariate probit panel model and discuss estimation 
issues, In Section 4, we provide details of the Markov Chain Monte Carlo 
sampling scheme. In Section 5, we give a detailed description of the data. In 
Section 6, we present our empirical results. We conclude with a summary and 
directions for future research in Section 7. 

3. MODEL AND ESTIMATION 

Notation 

Suppose we observe binary responses of H households in J product categories 
over time. We refer to this collection of responses as (yhrr E (0, 1): h = I, . H: 
t=l,..., Th; j=l,... , J] where subscripts h, t and j refer to hou~&c~ltl 



We also observe values of k marketing variables for each product category 
at each shopping occasion for each household. We refer to this collection 
of k-dimensional covariate vectors as {Xhti: h = 1, . . . , H, t = 1, , . . , T,,; 
j=l,... , J ) . We define X,, as 

XL,, 0 . . . 0 

X- 
0 x;,, . . . 0 

hr - 

l 1 

0 0 . . . 0 ’ (1) 

0 0 . . . x;, 
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shopping occasion and product category respectively. We define y,,, = (yh,,, yhrZ, 
. . . , YhtJ)‘, yh = ($,,, Yh . . . , yh,)’ and y= (yi, y;, . . . , yk)‘. Note that yhrj is a 
scalar, yhr is a J-dimensional vector, y,, is a J*T,,-dimensional vector and y is a 
2, J*T,-dimensional vector. 

and define X,,=(X;,, X&, . . . , XL,)’ and X=(X:, X;, . . . , XL)‘. Note that X,, 
is a (J)*(k*J)-dimensional matrix, X, is a (J*Th)*(k*J)-dimensional matrix and 
X is a (&, J*T,J * (k*J)-dimensional matrix. 

We assume that Y,,,~ not only depends on Xhti but also is correlated with yhtk 
(for k#j). In other words, a household’s response in a product category 
depends both on category-specific marketing variables and on the household’s 
responses in other product categories. This is a multivariate choice problem for 
the household. Previous work has either completely ignored dependencies 
across y&s, thereby assuming univariate choice problems for the household for 
each product category (Chiang, 1991; Chintagunta, 1993), or accounted for 
dependencies across a limited number of obviously related product categories 
(Chintagunta & Haldar, 1998; Manchanda, Ansari & Gupta, 1999). In our 
framework we pose the multivariate choice problem in the context of the 
household’s shopping basket, and therefore in its fullest generality. Next we 
present the model that explains the observed response vector y. 

Multivariate Probit Model with Unobserved Heterogeneity 

Let household h’s latent utility at shopping occasion t for product category j be 
given by 

Zhrj = X &Pj + bh + chl+ Ehrj 7 (2) 

where Xh,, is a k-dimensional vector of marketing variables pertaining to 
product category j facing household h at shopping occasion t, l3, is the 
corresponding k-dimensional parameter vector (Qj,, Pj2, . . . , pjk), b, represents 
a household-specific random effect that is distributed N(0, d), chj represents a 
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household/category-specific random effect such that ch = (c,,, c,,*, . . . , cIJ)’ is 
distributed N,(O, C), and E,,~ is a random component such that 
&hl =(Ehr,, . . . , E~,~)’ is distributed NXO, C), where 2 is a J*J covariance matrix 
given by 

(3) 

This covariance matrix is in correlation form for identifiability reasons and 
contains p =J*(J - 1)/2 free parameters (see Chib & Greenberg, 1998 for 
details) given by u = (a,,, u,~, . . . , uJm ,,J). 

It is also helpful to rewrite the model in (2) for all J categories as 

zh, =xh# + i, bh + Ijch + Ehf, (4) 

where Z,, = (Zhr,, . . , Zh,,,)‘, X,, is the (J)*(k*J)-dimensional matrix of 
marketing variables facing the household at shopping occasion t (as given by 
Eq. (1)) p is the corresponding k*J-dimensional parameter vector 
(PI? P27 . . . , P,,) where Pj=(PjIy Pp . . . , p,,.), i, is a J-dimensional vector of 
ones, ZJ is a J*J identity matrix, b, is a household-specific (scalar) random 
effect that is distributed N(0, d), and ch is a J-dimensional household-specific 
random effect vector that is distributed N,(O, C). Observed responses yh,, are 
determined by the unobserved latent variables Zh,, as: 

Yhlj=z[Z,,,j>Ol, (5) 

where I is the indicator function. This completes the specification of our model. 
The total number of parameters in the proposed model is equal to 
J*[k+(J- 1)/2+ l] (i.e. k*J covariate coefficients, plus J*(J- 1)/2 correla- 
tion coefficients, plus J*l random effects parameters).2 If the number of 
product categories J is small (say, 2-4) we obtain the cross-category model of 
Manchanda, Ansari and Gupta (1999). If the random effects are restricted to be 
the same across product categories, i.e. c,, is ignored, we obtain a restricted 
version of our proposed model that assumes the unobserved heterogeneity 
distribution to be common across product categories. If the effects of 
unobserved heterogeneity are ignored altogether (i.e. b, and ch are ignored), we 
obtain a cross-sectional version (as opposed to a panel version) of our proposed 
multivariate probit model (as in Chib & Greenberg, 1998). If correlations 
across product categories are ignored in the common random effects model. i.e. 
c=I (a diagonal matrix of ones), we obtain J independent category models 
with a common unobserved heterogeneity distribution. If the unobserved 
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heterogeneity distributions are assumed to be independent across product 
categories, we obtain single-category heterogeneous models as in Chiang 
(1991) Bucklin and Lattin (1991), Chintagunta (1993) etc. 

We can estimate marketing mix elasticities for each product category based 
on our proposed model and compare these elasticities to those obtained using 
a model that ignores cross-category correlations 2. This allows us to 
understand the effects of ignoring cross-category correlations on measures of 
managerial relevance such as price elasticities (our research objective no. 1). 
We can also compare the correlation matrix I: estimated using our proposed 
model with that estimated using a restricted version of the model that ignores 
household-specific random effects (i.e. 6, and c,,). This allows us to understand 
the effects of ignoring unobserved heterogeneity across households on the 
estimated cross-category correlations (our research objective no. 2). 

Given J product categories and Th observations for a given household h, 
likelihood-based estimation of our proposed model requires the computation of 
the likelihood contribution 

Wy, I P, u, 4 C> 

.W,z 10, d Mch IO, C W,dc,, (6) 

for each household h = 1, . . . , H, where +A. I p., C) is the density of a J-variate 
normal distribution with mean F and covariance matrix C, B,, is the interval 
(0, w) if yhj, = 1 and the interval (a, 0) if yhj, - - 0. This likelihood contribution is 
quite difficult to compute even using simulation techniques. Given the 
computational intractability of likelihood-based estimation, we adopt a 
simulation-based Bayesian approach to estimate model parameters. 

Bayesian Approach to Model Estimation 

Given the response vector y, the matrix of covariates X, and a prior density on 
model parameters given by rr(& u, d, C’), Bayes rule yields 

n(P, a, d Cly) x@, u, d, C)*PrgllP, u, d, 0, (7) 

where 
H 

Pr(yIP, u, 4 C)= n pr(v,,Ip, u, d, c) (8) 
I,= I 
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and Pr(y, I B, u, d, C) is given by Eq. (6) and Q is a convex solid body in the 
hypercube [-1 , l] p that leads to a proper correlation matrix. This form of the 
posterior density is not particularly useful for Bayesian estimation since it 
involves the evaluation of the complicated likelihood function (just as in 
likelihood-based estimation). Instead of attempting to directly evaluate the joint 
posterior density we invoke the data augmentation framework of Albert and 
Chib (1993) and Chib and Greenberg (1998). This framework is based on 
taking a sampling-based approach, in conjunction with Markov Chain Monte 
Carlo (MCMC) techniques (Tanner & Wong, 1987; Gelfand & Smith, 1990; 
Tierney, 1994; Chib & Greenberg, 1995), based on the conditional distributions 
given by 

Zh,Iyh, f3, u, d, C; t= 1,. , T,,; h= 1,. , H 

Ply,, Z,,, u, d, C 

b,ly,, Z,, p, u, C; h= 1,. . . , H 

c,ly,, Z,,, p, u, d; h= 1,. . , H 

uly,,, Z,, P, d, C 

Lf’ IY,, z,, p, u, c 

C-’ IY,, Z,,, P, u, d 

Each of these distributions (except that of a) is of known form and can be 
sampled directly. Details are provided in the next section. The key 
simplification that data augmentation provides in our context is that it allows us 
to bypass the computation of the likelihood. 

4. MARKOV CHAIN MONTE CARLO (MCMC) 
SAMPLING 

Prior Distributions 

For the purposes of our analysis, we assume that our prior information can be 
represented by the distributions 

P - N,v (I%~ BoL 
u - N, *,J - , y&or Go) * 1 [a E Ql> 
d-’ - (XI-L, +A 
C ~’ - WiWp,, R,), 
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where the hyperparameters are as follows: PO is a k*J-dimensional vector of 
zeros, B, is a (k*J)*(k*J) diagonal-matrix, with its diagonal elements equal to 
0.1 implying a variance of 10 for each component of l3, g, is a p-dimensional 
vector with all its elements equal to 0.5, G, is a p*p identity matrix, qO= 1, 
x,=3, p,=J+4, R,=3*IJ,,. The choice of these priors is intended to represent 
vague prior information. 

MCMC Algorithm 

We are interested in simulating from the posterior distribution of 
((Z,), p, u, (b,}, (c~), d-‘, C’), where Z, is a J*T,-dimensional vector given 
by (Zi, ZL2 . . . Zl,j’. While it is difficult to sample from the joint posterior, it 
is possible to simulate from the conditional distributions f(Z,‘I l3, u, d-‘, C ‘), 
~(PliZ,l, u, d-‘, C-l), ~@,n c,l{Z,), P, u, C-‘1, ~(uIIZ,t), P, {b,,l, 1~1, 
d-‘, C-‘) and ~F(P’I {Z,,), l3, u, (bh), (c~)). The MCMC sampling algorithm 
works as follows. 

Step 0: Initialize l3 to p”“, u to a’“‘, set g = 1 
Step I: Draw ZF’ from f (Z,, ly, p’“-‘), &-‘1 &“X-‘I, C-1(X-“), h= 1, . . . ,H. 

Step 2: Draw p’“) from ~~(ply, (Zf’), u’“~‘;, d-““-‘), C-“8-“). 
Step 3: Draw bjp’ from n(b,Iy, (Zjp’), pcx’, cl-“, ucn-“, d-““-‘), CicR-“), 

h=l,. . . ,H. 
Step 4: Draw cp’ from n(c,ly, (Zf’), pcy’, bf’, &-“, d-‘@‘), C-“xm ‘I), 

h=l,...,H. 
Step 5: Draw u@) from ~~(uly, (Zjp’), f3@, (bjp’), (cf’), d-‘(R-“, C-‘@‘)). 
Step 6: Draw d-l(“) from m(d-’ ly, (z’$‘), p@), u@), {blp’), (I$‘), C’@“). 
Step 7: Draw C-“p’ from IT(C-‘Iy, (Zjp’), PcR), &), (bf’), (cf”), d-““-‘I). 
Step& g=g+ 1. 
Step 9: Go to step 1. 

The above cycle of seven steps is repeated a large number of times (in 
our example, the entire simulation is run for 10,000 cycles). From the 
theory of MCMC simulations, it follows that the draws on 
O=((Z,), P, (b,l, (c,J, u, d-‘, C-l), b eyond a bum-in period of say 500 
iterations, may be taken as draws from the posterior distribution of 8. 
Therefore, on the basis of the simulated sample, we are able to obtain point and 
interval estimates of the parameters and other summaries of the posterior 
distribution. Next, we provide the form of each of the five conditional 
distributions given in steps l-7. 

1. Z,ly, P, u, d-‘, Cm’ “N,,hT,,(ZhIXhP, iJrhd+(iJn,~IJ)C(iJn~‘IJ)‘+IT,~~C)* 
FIJI, [I (Z,,,, > 0) * I (yhr, = 1) + I (Zhri IO) * I (v = 0)), where i,,,? is a J *7’,,- 
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dimensional vector of ones, ZJ is a J*J identity matrix, and f,,, is a JT,,“JT,, 
identity matrix. This is a truncated multivariate normal distribution. This 
distribution is sampled through a Gibbs cycle (see Geweke, 1991). This 
representation of the conditional posterior of Z, follows from Albert and 
Chib (1993). 

2. ply, {Zh,}, u, d-l, C-‘-N,*,(PIfi B), where B=(B,,+X;,(Z,,~C)~‘X,) ‘. 
~=B(B,‘p,+~~;u(zTh~‘C)~‘Zh). 

3. b*ly, {Z,,l, (3, u, d-‘, P, Ch - N,(b, I b,,, B,J, where B, = ((dl,)-’ + X,,I \I,)-‘. 
g,=B,(C,Z;(Z,,-X,,P-Z,c,)),h=l,..., H. 

4. !hly,e (Zh,), p, o, d-l, C-‘, b,,-N,(c,Ib,,, B,), where ~,=(C’+C,I;Z,) ‘. 
b,=B,(~,Z;(Z,, -X,$ - iJbh)), h= 1,. . . , H. 

5. u/y, iz,,), p, (hi, (c,), d-‘, ~‘-NJ~(J-,,,> (K,>> G,,)*1[(JEQl” 
II,II,N,(Z,,I X,,,p + i,h, +Z,c,, C). We use the Metropolis-Hastings algorithm 
to sample from this non-standard distribution (details given in the next sub- 
section), following Chib and Greenberg (1998). 

6. dm’Iy, (3, (bh), (c,), a-IG(q)+H, X), where X=(X;‘+&,h,hA)-‘. 
7. C’ly, l3, (h,,), (c,},u--W,(p,+H,R), whereR=(Ra’+C,c,c~)-‘. 

Metropolis-Hastings (M-H) Algorithm 

The only distribution in the set above that cannot be sampled directly is the 
distribution of u, i.e. IT (a ly, (Z,,), l3, (b,), (c,), d-‘, C-l). To sample this 
distribution we use the M-H algorithm (see Chib & Greenberg, 1995 for a 
detailed exposition). Suppose q(uIu’, y, (Z,,), f3, (b,,), (c,), D-l) is a 
candidate generating density. Then to draw u we proceed as follows. 

Step 1: Sample a proposal value u ’ given u from q (a ’ ly, ( Zh,), l3, ( bh), ( ch), 
0-l). 

Step 2: Move to u ’ with probability c;u(u, u ‘) and stay at u with probability 
1 - a(u, u ‘), where 

a(u, u’)= 

mm ~(u’!y;~+, P, IhI, ((.,,I, D-‘)*qWd y, Z,m P, (&,I, {c/,1. D-‘1 rTT(ul Y, Z,,,, P, IhI, (c,,), D-‘) q(u’lu, y, Z,,,, P, IhI, Ic,,l> D ‘) ’ 

We use the tailored chain as our choice of candidate generating density. as in 
Chib and Greenberg (1998). It is specified as 

u’=/J,+g, 

where lt is a /T-dimensional vector, taken to be the mode of log n (o I y, (Z,,, ) . 
& (h,), (c,,,), de’, Cm’) and g- MVt(0, TV, u), where V is the negative of the 
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second derivative of log IT (a I y, {Z,,), l3, (b,,), ( ch), d-l, C-‘) evaluated at the 
mode. This approach leads to a well mixing Markov chain. 

5. DESCRIPTION OF DATA 

We employ IRIS scanner panel database on household purchases in twenty-five 
product categories in a metropolitan market in a large U.S. city. For our 
analysis, we pick twelve product categories: bacon, butter, coffee, cola, 
crackers, detergent, hot dogs, ice cream, non-cola beverages, sugar, toilet tissue 
and paper towels. These product categories3 have been identified in the 
literature as being representative of the household’s “shopping basket” (see 
Bell & Lattin, 1998). The dataset covers a period of two years from June 199 1 
to June 1993 and contains shopping visit information on 494 panelists across 
four different stores in an urban market. For each product category, the dataset 
contains information on marketing variables - price, in-store displays, and 
newspaper feature advertisements - at the SKU-level for each store/week. 

Choosing households that bought at the two largest stores in the market (that 
collectively account for 90% of all shopping visits in the database) yields 488 
households. From these households, we pick a random sample of 300 
households making a total of 39,276 shopping visits at the two largest stores. 
This is done to keep the size of the dataset manageable. For those shopping 
visits when a household visits the store but does not purchase a particular 
product category, we compute marketing variables as share-weighted average 
values across all SKUs in the product category, where shares are household- 
specific and computed using the observed purchases of the household over the 
study period. Computing marketing variables using such share-weighting has 
precedence in the empirical marketing literature on category purchase 
incidence4 (see, for example, Manchanda, Ansari & Gupta, 1999). Descriptive 
statistics pertaining to the marketing variables are provided in Table 1. 

From Table 1 we can see that average display and feature activity is higher 
for purchase visits than for non-purchase visits, as expected, for all product 
categories. In terms of the magnitude of the difference in display and feature 
activity between purchase and non-purchase visits, the largest magnitude is 
observed for toilet tissue, suggesting that store merchandising activities 
strongly influence household purchase incidence for this product category. The 
smallest magnitudes are observed for ice-cream and non-cola beverages for 
display and feature respectively. Average prices are lower for purchase visits 
than for non-purchase visits, as expected, for ten out of the twelve product 
categories. By and large, these descriptive statistics are consistent with the 
economic notions of positive own-advertising elasticities, negative own-price 
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Table 1. Descriptive Statistics on Marketing Variables 
Number of households = 300, Number of shopping visits = 39,276. 

A. Purchase visits 

Pruduct Price ($/RP) 
___--~ 
Bacon I .7915 
Butter I .0425 
Coffee 1.9107 
Cola 0.6033 
Crackers 2.9236 
Detergent 0.8991 
Hot dogs 2.0153 
Ice cream 0.7196 
Non-cola 0.6654 
sugar 0.4565 
Tissue 0.3041 
Towels 0.7386 

B. Non-purchase visits 

Product Price ($/RP) 

Display Feature 

0.2078 0.5338 
0.1910 0.3079 
0.3174 0.3439 
0.3999 0.4749 
0.2093 0.1280 
0.3550 0.2840 
0.1564 0.3832 
0.0019 0.3964 
0.1963 0.1340 
0.3681 0.3820 
0.4084 0.4457 
0.3561 0.3544 

-. ~___-~ 

Display Feature 

No. of Purchases 

2473 
5787 
3022 
5099 
4214 
3159 
3847 
4334 
5922 
2275 
5534 
4482 

No. of Visits 

Bacon 2.2949 0.0739 0.2333 36,803 
Butter 1.1089 0.0686 0.1169 33,489 
Coffee 2.0284 0.1074 0.0998 36,254 
Cola 0.7080 0.1392 0.2306 34,177 
Crackers 2.6717 0.1003 0.0569 35,062 
Detergent 1.1150 0.0937 0.0547 36,117 
Hot dogs 2.4145 0.0461 0.1612 35,429 
Ice cream 0.8042 0.0008 0.1585 34,942 
Non-cola 0.6736 0.1086 0.0779 33,354 
sugar 0.4456 0.1193 0.1197 37,001 
Tissue 0.3369 0.1236 0.1345 33,742 
Towels 0.808 1 0.1159 0.1060 34,794 

elasticities etc. From the last column of Table 1, we can see that the most 
frequently purchased product category is non-cola beverages (with butte1 
coming second), while the most infrequently purchased product category i\ 
sugar (with bacon coming second). 

In Table 2a, we report, in matrix form, the purchase frequencies for each 
product category along the diagonal and pair-wise purchase frequencies fat 
each pair of product categories (i.e. the number of times each pair of product 
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categories is purchased together) along the off-diagonal. For example, bacon is 
purchased on 2473 shopping visits, of which 710 are associated with the joint 
purchase of butter. This means that 28.7% of all bacon purchases are associated 
with joint purchase of butter. We report bivariate rank correlations, based on 
these purchase frequencies, in the lower half (i.e. below the main diagonal) of 
Table 2b. Cross-category correlations are fairly evident, with high magnitudes 
observed for two pairs: tissue and towels (0.29 13), non-cola and cola beverages 
(0.2026). 

All the observed correlations in Table 2b are positive. The reason for this is 
the large number of “zeros” that characterizes the vector of purchase outcomes 
for each product category. For example, among the 39,276 store visit 
observations in the dataset, only 5922 resulted in the purchase of non-cola 
beverages, 5534 resulted in the purchase of tissue, etc. This means that product 
categories appear to be complements for no reason other than the fact neither 
was purchased on a large number of purchase occasions. One way to “correct” 
for this is to recompute bivariate correlations for each pair after ignoring 
observations that resulted in a purchase of neither (let us call these “zero 
observations”). But this creates a problem of the opposite kind, i.e. all pairs of 
product categories appear to be substitutes on account of our ignoring a large 
number of outcomes when neither is purchased. However, the amount of 
distortion observed in the bivariate correlation for a given pair of product 
categories when its zero observations are ignored, is almost identical to the 
distortion observed for any other pair of product categories when their zero 
observations are ignored. This means that comparing bivariate correlations 
across pairs of product categories is meaningful, regardless of how we compute 
the correlations. For example, toilet tissue and towels have a much higher 
bivariate correlation than bacon and coffee regardless of whether or not we 
ignore each pair’s zero observations. Armed with these preliminary findings, 
we next estimate our proposed econometric model on the basket data in order 
to estimate cross-category relationships after accommodating the effects of 
covariates, panel structure of the data etc. While estimating the proposed 
model, we include the following variables in the household-specific vector X,, 
(see Eq. 2) for each of the twelve product categories in the shopping basket. 

1. Price 
2. Feature 
3. Display 
4. Inventory 

Price is a continuous variable, operationalized in dollars per ounce. Feature and 
display are indicator Lariablea, that take the value 1 if the product it on fcaturc 
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or display respectively, and 0 otherwise. Inventory is a continuous variable 
(measured in ounces per week), which is computed using the household’s 
product consumption rate which, in turn, is computed by dividing the total 
product quantity purchased by the household over the study period by the 
number of weeks in the data. For the first week in the data, each household is 
assumed to have enough inventory for that week, i.e. the inventory variable for 
a household at t= 1 is assumed to be the household’s weekly product 
consumption rate. We incorporate random effects in the intercept terms for each 
product category. 

6. EMPIRICAL RESULTS 

We estimate the proposed basket-level model of purchase incidence decisions 
as well as five benchmark models, as shown below, in order to investigate the 
consequences of ignoring either cross-category correlations or unobserved 
heterogeneity across households. 

Model 1: Multivariate Probit - Full twelve categories 
Model 2: Multivariate Probit with unobserved heterogeneity restricted to be 

common across categories - Full twelve categories 
Model 3: Multivariate Probit - Four categories only 
Model 4: Multivariate Probit - Two categories only 
Model 5: Independent Univariate Probits 
Model 6: Multivariate Probit without unobserved heterogeneity 

Comparing model 1 vs. model 2 allows one to investigate the consequences of 
restricting the unobserved heterogeneity distribution to be the same across 
product categories. For models 3 and 4, we retain the assumption of common 
unobserved heterogeneity distribution across product categories (as in model 
2). Comparing model 2 vs. models 3 and 4 will demonstrate the consequences 
of modeling households’ purchase incidence decisions only across subsets of 
the twelve product categories. For model 5, we assume the unobserved 
heterogeneity distribution to be different across product categories (as in model 
I). Comparing model 1 vs. model 5 will demonstrate the consequences of 
modeling purchase incidence decisions jointly as opposed to separately across 
product categories. Comparing models 1 or 2 vs. model 6 will demonstrate the 
consequences of ignoring unobserved heterogeneity across households in a 
multivariate probit model. 

First we look at the estimated inter-category correlation matrix based on the 
proposed multivariate probit model, allowing the unobserved heterogeneity 
distribution to be different across product categories (i.e. model 1). This is 
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summarized in Table 3. The lower triangle reports the posterior means, while 
the upper triangle reports the 95% posterior credibility intervals (symmetric 
about the posterior mean). The off-diagonal terms in this table indicate that 
inter-category correlations are non-zero in general, with the correlations being 
quite large for specific pairs of product categories. For example, the estimated 
correlation in purchase incidence outcomes between cola and non-cola 
beverages has a mean of 0.4216 and a credibility interval of (0.40, 0.45). This 
indicates that households, rather than viewing cola and non-cola beverages as 
consumption substitutes, buy them together for complementary consumption 
needs, i.e. to maintain variety in their “beverage pantry.” The estimated 
correlation is also large for hot dogs and bacon (0.38123, anvthcl pobhible 
consequence of the household’s need for variety in the kitchen, this time among 
the meat products in their refrigerator. A third pair of product categories for 
which the estimated correlation is high is tissue and detergents (0.3744). This 
finding is especially interesting since there is little opportunity for a .she~~r. 
coincidencr effect, i.e. the two product categories frequently co-occurring in 
the household’s shopping basket on account of having short inter-purchase 
cycles. In fact, inter-purchase times in these product categories are much larger, 
on average, than for other product categories in the data. One possible 
explanation for the large value of the estimated correlation is that since 
detergents and tissue are typically shelved close to each other in the grocery 
store, frequently in the same aisle, households have a propensity to pick up 
both products at the same time. One managerial implication of this “shelf 
effect” phenomenon is that the retailer may improve store profitability by 
shelving high-margin product categories close to products with short inter- 
purchase cycles so that every time a consumer picks up the latter off store 
shelves, she faces an opportunity to pick up the nearby high-margin product as 
well. 

In Table 4, we report the estimated cross-category correlations using model 
2 that assumes the unobserved heterogeneity distribution to be common across 
product categories. A comparison of Tables 3 and 4 indicates that cross- 
category correlations are, by and large, understated in Table 4 (i.e. model 2j. To 
the extent that the common unobserved heterogeneity distribution across 
product categories captures correlations in households’ purchase outcomes 
across categories,s one would indeed expect any remaining cross-category 
correlations in purchase outcomes to decrease after accounting for such 
unobserved heterogeneity. 

In Table 5, we report the estimated cross-category correlations using model 
3 that looks at four product categories at a time (as in Manchanda, Ansari & 
Gupta, 1999). A comparison of Tables 3 and 5 indic,ate\ that iporiny t!w 



Ta
bl

e 
3.

 
Es

tim
at

ed
 

Pa
ir-

W
is

e 
C

or
re

la
tio

ns
 

ac
ro

ss
 P

ro
du

ct
 

C
at

eg
or

ie
s 

- 
M

VP
 

on
 

12
 C

at
eg

or
ie

s 
w

iti
 

D
iff

er
en

t 
8 

U
no

bs
er

ve
d 

H
et

er
og

en
ei

ty
 

ac
ro

ss
 C

at
eg

or
ie

s 
(M

od
el

 
l).

” 
5 

.--
__

 
1 

Q
 

Ba
co

n 
Bu

tte
r 

co
ffe

e 
Co

la
 

Cr
ac

ke
rs 

De
te

rg
. 

Ho
t 

do
gs

 
Ice

 
cr

ea
m

 
No

n-
co

la
 

Su
ga

r 
Ti

ss
ue

 
To

we
ls 

F 

B
X

O
ll 

I 
0.

19
, 

0.
24

 
0.

15
, 

0.
24

 
0.

15
, 

0.
25

 
0.

12
, 

0.
21

 
0.

13
, 

0.
24

 
0.

35
, 

0.
41

 
0.

10
.0

.1
9 

0.
15

,0
.2

2 
v 

0.
19

.0
.2

9 
0.

31
.0

.3
8 

0.
20

,0
.3

0 
Bu

tte
r 

0.
21

77
 

0.
18

, 
0.

23
 

0.
20

, 
0.

26
 

0.
23

, 
0.

29
 

0.
19

, 
0.

26
 

0.
27

, 
0.

33
 

0.
18

,0
.2

4 
0.

15
,0

.2
1 

0.
31

,0
.3

8 
0.

29
,0

.3
5 

0.
24

,0
.3

1 
.a

 

CO
ff‘

X 
0.

19
36

 
0.

20
68

 
0.

14
.0

.1
9 

‘0
.1

8,
 

0.
26

 
0.

18
, 

0.
27

 
0.

19
. 

0.
26

 
0.

19
30

.2
6 

0.
12

,0
.2

0 
0.

22
,0

.3
2 

0.
27

,0
.3

4 
0.

23
,0

.3
2 

g 
Co

la
 

0.
20

67
 

0.
22

91
 

0.
16

40
 

1 
0.

16
, 

0.
20

 
0.

17
.0

.2
6 

0.
19

, 
0.

25
 

0.
15

, 
0.

24
 

0.
40

.0
.4

5 
0.

10
,0

.2
1 

0.
22

, 
0.

30
 

0.
24

.0
.3

1 
Cr

ac
ke

rs 
0.

16
98

 
0.

26
12

 
0.

21
83

 
0.

18
20

 
0.

16
,0

.2
0 

0.
17

, 
0.

23
 

0.
16

, 
0.

23
 

0.
20

, 
0.

27
 

0.
16

,0
.2

4 
0.

23
, 

0.
30

 
0.

24
.0

.3
1 

2 

De
te

rg
. 

0.
19

38
 

0.
22

23
 

0.
22

46
 

0.
21

44
 

0.
17

91
 

0.
15

.0
.2

2 
0.

11
,0

.2
1 

0.
16

.0
.2

3 
0.

24
.0

.3
1 

0.
34

.0
.4

1 
0.

30
,0

.3
7 

9 
Ho

t 
do

gs
 

0.
38

12
 

0.
29

64
 

0.
22

26
 

0.
21

94
 

0.
19

92
 

0.
18

72
 

1 
0.

12
, 

0.
17

 
0.

19
, 

0.
26

 
0.

22
, 

0.
32

 
0.

25
, 

0.
32

 
0.

20
, 

0.
29

 
E 

Ice
 c

re
am

 
0.

14
14

 
0.

20
89

 
0.

22
67

 
0.

19
30

 
0.

19
07

 
0.

16
09

 
0.

14
47

 
1 

0.
12

,0
.1

6 
0.

10
,0

.2
0 

0.
15

,0
.2

3 
0.

16
.0

.2
5 

No
n-

co
la

 
0.

18
16

 
0.

17
93

 
0.

16
51

 
0.

42
16

 
0.

23
55

 
0.

19
3 

1 
0.

22
53

 
0.

14
19

 
I 

0.
12

, 
0.

17
 

0.
23

.0
.2

9 
0.

20
.0

.2
6 

5 
su

ga
r 

0.
23

62
 

0.
34

23
 

0.
27

09
 

0.
15

12
 

0.
19

99
 

0.
27

00
 

0.
26

67
 

0.
15

28
 

0.
14

76
 

1 
0.

22
.0

.2
7 

0.
28

,0
.3

7 
Ti

ss
ue

 
0.

34
49

 
0.

31
99

 
0.

30
64

 
0.

25
76

 
0.

26
54

 
0.

37
44

 
0.

29
00

 
0.

18
70

 
0.

25
92

 
0.

24
71

 
I 

0.
27

, 
0.

3 
1 

To
we

ls 
0.

25
32

 
0.

27
42

 
0.

27
79

 
0.

27
56

 
0.

26
95

 
0.

33
51

 
0.

24
62

 
0.

20
04

 
0.

23
26

 
0.

32
14

 
0.

29
15

 
E 

1 
u %

 

s E 3 t: 3 c 



2 
Ta

bl
e 

4.
 

Es
tim

at
ed

 
Pa

ir-
W

is
e 

Co
rre

la
tio

ns
 

ac
ro

ss
 P

ro
du

ct
 

Ca
te

go
rie

s 
- 

M
VP

 
on

 
12

 C
at

eg
or

ie
s 

wi
th

 
Co

m
m

on
 

3 
Un

ob
se

rv
ed

 
He

te
ro

ge
ne

ity
 

ac
ro

ss
 C

at
eg

or
ie

s 
(M

od
el

 
2)

.” 
4 2 

BX
W

II 
Bu

tte
r 

C&
X 

CO
12

3 
Cr

ac
ke

rs 
De

te
rg

. 
Ho

t 
do

gs
 

Ice
 

cr
ea

m
 

No
n-

co
la

 
Su

ga
r 

Ti
ss

ue
 

To
we

l<
 

f 
Ba

co
n 

I 
0.

19
.0

.2
4 

0.
11

,0
.2

0 
-0

.0
1,

0.
07

 
0.

04
,0

.1
2 

0.
11

,0
.2

0 
0.

35
.0

.4
1 

0.
09

,0
.1

5 
-..

 
-_

__
_ 

Bu
tte

r 
0.

12
. 

0.
19

 
0.

23
. 

0.
34

 
0.

20
.0

.2
7 

0.
06

.0
.1

5 
0.

22
05

 
I 

0.
18

. 
0.

23
 

0.
14

, 
0.

19
 

0.
22

, 
0.

26
 

0.
17

, 
0.

25
 

0.
21

, 
0.

27
 

0.
13

, 
0.

18
 

Co
ffe

e 
0.

08
. 

0.
13

 
0.

28
, 

0.
33

 
0.

27
, 

0.
32

 
0.

22
, 

0.
27

 
g 

0.
14

75
 

0.
20

71
 

1 
0.

03
, 

0.
10

 
0.

16
,0

.2
2 

0.
17

,0
.2

3 
0.

12
.0

.1
9 

0.
14

,0
.2

0 
Co

la
 

0.
02

,0
.0

8 
0.

14
.0

.2
3 

0.
21

,0
.2

8 
0.

24
.0

.3
3 

@
 

0.
03

81
 

0.
16

27
 

0.
06

65
 

I 
0.

06
.0

.1
4 

0.
12

,0
.1

9 
0.

08
.0

.1
4 

-0
.0

3.
0.

05
 

0.
29

.0
.3

3 
0.

00
.0

.0
8 

0.
16

,0
.2

3 
0.

21
.0

.2
7 

2 
Cr

ac
ke

rs 
0.

08
96

 
0.

24
01

 
0.

19
22

 
0.

10
20

 
I 

0.
23

, 
0.

29
 

0.
12

. 
0.

 I7
 

0.
14

. 
0.

20
 

0.
13

.0
.1

9 
I).

Il.
O.

I8
 

0.
18

,0
.2

4 
0.

21
,0

.2
X 

D&
er

g.
 

0.
15

19
 

0.
20

77
 

0.
20

55
 

0.
15

18
 

0.
25

50
 

1 
0.

12
, 

0.
19

 
0.

06
. 

0.
13

 
0.

09
.0

.1
5 

0.
18

, 
0.

25
 

0.
30

, 
0.

36
 

0.
32

.0
.3

7 
i 

Ho
t 

do
gs

 
0.

38
 1

9 
0.

23
97

 
0.

14
86

 
0.

11
23

 
0.

14
08

 
0.

15
29

 
1 

0.
13

.0
.1

9 
0.

14
.0

.2
1 

0.
22

,0
.2

9 
0.

15
.0

.2
2 

0.
12

,0
.1

8 
Ice

 c
re

am
 

0.
12

24
 

0.
15

36
 

0.
17

24
 

0.
01

72
 

0.
17

09
 

O.
oY

lO
 

C’
 

0.
16

12
 

I 
No

n-
co

la
 

0.
15

54
 

0.
10

58
 

O.
l’,O

.1
7 

0.
08

,0
.1

5 
0.

06
.0

.1
2 

0.
08

,0
.1

4 
5.

 
0.

05
38

 
0.

31
07

 
0.

15
82

 
0.

12
69

 
0.

 I7
58

 
0.

14
79

 
I 

Su
ga

r 
0.

12
.1

J.
18

 
*0

.1
5,

0.
20

 
0.

15
.0

.2
1 

2;
1 

0.
28

21
 

0.
30

85
 

0.
19

41
 

0.
03

79
 

0.
15

13
 

0.
22

05
 

0.
25

10
 

0.
11

45
 

O
.lS

?l
 

I 
0.

22
, 

0.
28

 
0.

18
, 

0.
25

 
Ti

ss
ue

 
0.

23
40

 
0.

29
53

 
0.

24
64

 
0.

19
36

 
0.

21
05

 
0.

33
44

 
0.

18
75

 
0.

09
07

 
0.

 I7
07

 
0.

24
YO

 
I 

To
we

ls 
0.

50
, 

0.
54

 
0.

11
29

 
0.

24
91

 
0.

28
45

 
0.

23
54

 
0.

24
42

 
0.

34
67

 
0.

14
91

 
0.

11
25

 
0.

17
27

 
0.

21
04

 
0.

52
39

 
1 



Ta
bl

e 
5.

 
Es

tim
at

ed
 

Pa
ir-

W
is

e 
Co

rre
la

tio
ns

 
ac

ro
ss

 P
ro

du
ct

 
Ca

te
go

rie
s 

- 
M

VP
 

on
 4

 C
at

eg
or

ie
s 

wi
th

 
Co

m
m

on
 

Un
ob

se
rv

ed
 

He
te

ro
ge

ne
ity

 
ac

ro
ss

 C
at

eg
or

ie
s 

(M
od

el
 

3)
.” 

.- 
3 

BC
iC

lJn
 

Bu
tte

r 
CO

fft
X 

CO
lti 

Cr
ac

ke
rs 

De
te

rg
. 

Ho
t 

do
gs

 
Ice

 c
re

am
 

No
n-

co
la

 
Su

ga
r 

Th
su

e 
To

we
ls 

Ba
co

n 
Bu

tte
r 

co
ffe

e 
Co

la
 

Cr
ac

ke
rs

 
De

te
rg

. 
Ho

t 
do

gs
 

Ice
 c

re
am

 
No

n-
co

la
 

Su
ga

r 
Ti

ss
ue

 
To

we
ls 

1 
0.

16
, 

0.
22

 
0.

09
.0

.1
8 

4.
07

, 
0.

01
 

0.
19

27
 

1 
0.

14
, 

0.
21

 
0.

06
,0

.1
2 

0.
13

88
 

0.
17

29
 

1 
-0

.0
5,

 
0.

03
 

. 
X1

.0
28

9 
0.

08
77

 
-O

.(x
)7

7 
1 

1 
0.

18
,0

.2
4 

0.
06

.0
.1

3 
0.

06
,0

.1
3 

0.
21

14
 

1 
0.

08
, 

0.
16

 
-0

.0
1,

 
0.

06
 

0.
09

85
 

0.
11

97
 

1 
0.

06
, 

0.
13

 
0.

10
02

 
0.

02
%

 
0.

09
82

 
I 

1 
0.

07
,0

.1
4 

0.
07

,0
.1

3 
0.

06
,0

.1
3 

0.
10

44
 

1 
0.

16
.0

.2
4 

0.
14

, 
0.

21
 

0.
09

49
 

0.
20

36
 

I 
0.

45
,0

.5
1 

0.
09

54
 

0.
17

61
 

0.
48

04
 

I 



Analysis of Multi-Category Purchase Incidence Decisions 77 

remaining eight product categories within the shopping basket understates the 
estimated correlation in purchase incidence decisions across the included four 
product categories. In fact, for two pairs of product categories ([cola & bacon] 
and [cola & coffee]), the estimated correlations are negative in the four-variate 
probit model even though they are positive in the twelve-variate probit model. 
For example, the posterior mean and credibility interval of the correlation for 
the pair [cola & bacon], based on model 3, are -0.0289 and (-0.0683, 0.0100) 
respectively. The corresponding measures based on model 2 are 0.0381 and 
(-0.0099, 0.0735) respectively. Similarly, the posterior mean and credibility 
interval of the correlation for the pair [cola & coffee], based on model 3, are 
-0.0077 and (-0.0446, 0.0264) respectively, The corresponding measures 
based on model 2 are 0.0665 and (0.0345, 0.103 1) respectively. This indicates 
that if one were to use model 3, instead of model 2, one may falsely conclude, 
for example, that cola and coffee substitute for each other within the 
household’s shopping basket when, in fact, they do not! 

In Table 6, we report the estimated cross-category correlations using model 
4 - that looks at pairs of product categories only (as in Chintagunta & Haldar, 
1998) - for nine different pairs of product categories. A comparison of Tables 
4 and 6 indicates that ignoring the remaining ten product categories within the 
shopping basket understates the estimated correlation in purchase incidence 
decisions for each pair of product categories. In fact, for three pairs of product 
categories - [cola & sugar], [cola & coffee], [cola & crackers] - the estimated 
correlations are negative in the bivariate probit model even though they are 
positive in the twelve-variate probit model. For example, the posterior mean 
and credibility interval of the correlation for the pair [cola & coffee], based on 
model 4, are -0.0733 and (-0.1100, -0.0367) respectively. The corresponding 
measures based on model 2 are 0.0665 and (0.0345,O. 1031) respectively. This 
indicates that if one were to use model 4, instead of model 2, one may falsely 
that cola and coffee, substitute each other within the household’s shopping 
basket when, in fact, they do not! We summarize this finding below. 

Empirical Finding I: A limited operationalization of the multivariate probit 
model with panel structure, using a subset of the full set of product 
categories within the household’s shopping basket (as in Chintagunta & 
Haldar, 1998; Manchanda, Ansari & Gupta, 1999), leads one to under- 
estimate correlations in households’ purchase incidence decisions across 
product categories. The estimated correlations even change signs (from 
positive to negative) in a few cases. 

In Table 7, we report the estimated cross-category correlations using model 6 
that ignores unobserved heterogeneity across households, i.e. a cross-sectional 
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MVP model. A comparison of either Tables 3 or 4 vs. Table 7 indicates that 
ignoring unobserved heterogeneity across households overstates the estimated 
inter-category correlations. This finding is in the same spirit as findings in the 
brand choice literature that ignoring unobserved heterogeneity across house- 
holds overstates the estimated serial correlation in the error terms in 
households’ random utilities for brands (Allenby & Lenk, 1994; Keane, 1997). 
We summarize this finding below. 

Empirical Finding 2: Ignoring the effects of unobserved heterogeneity across 
households in the proposed multivariate probit model leads one to 
overestimate correlations in households’ purchase incidence decisions across 
product categories. 

In Tables 8 and 9 we summarize the estimated covariate effects for the twelve 
product categories based on the six model specifications. While the posterior 
means are reported in Table 8, the posterior credibility intervals are reported in 
Table 9. The second column in each table lists the results based on the proposed 
model estimated on the full set of twelve product categories (i.e. model 1). The 
estimates of the marketing mix coefficients and product inventory are signed as 
expected for all twelve categories. Specifically, the coefficients of price are 
always negative, the coefficients of display and feature are always positive and 
the coefficients of inventory are always negative. Among the twelve categories, 
cola beverages show maximum responsiveness to price (posterior mean of 
-2.1378), ice cream shows maximum responsiveness to store displays 
(posterior mean of 1.3978), while ceffee shows maximum responsiveness to 
newspaper feature advertising (posterior mean of 1.047 1). 

The third column of Tables 8 and 9 lists the results based on the proposed 
model with the unobserved heterogeneity distribution restricted to be common 
across the twelve product categories (i.e. model 2). A comparison of the 
estimates in columns 2 and 3 (i.e. model 1 vs. model 2) indicates that 
household sensitivity to price and display are, by and large,6 understated in 
model 2. In other words, restricting the unobserved heterogeneity distribution 
to be common across product categories leads one to conclude that households 
are less responsive to pricing and display activities. The feature coefficient, 
however, shows mixed results, i.e. it is understated for five categories and 
overstated for the remaining seven categories. 

The fourth column of Tables 8 and 9 lists the results based on the proposed 
model estimated on three mutually exclusive subsets of four product categories 
(i.e. model 3). A comparison of the estimates in columns 3 and 4 (i.e. model 2 
vs. model 3) indicates that household sensitivity to price, display and feature is, 
by and large,’ overstated in model 3. Taken together with our earlier findings 

f 
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that model 3 understates correlations across product categories, this means that 
the marketing mix variables bear the burden of explaining purchase incidence 
decisions in product categories that are, in part, due to inter-category 
correlations (that are incompletely accounted for in the model). 

The fifth column in Tables 8 and 9 lists the results from a bivariate version 
of the proposed model estimated separately on seven different pairs of product 
categories (i.e. model 4). A comparison of the estimates in columns 3 and 5 (i.e. 
model 2 vs. model 4) indicates that household sensitivity to price, display and 
feature is, by and large,8 overstated in model 4. This finding is consistent with 
that obtained from comparing models 2 and 3, as discussed in the previous 
paragraph. 

The sixth column in Tables 8 and 9 lists the results from univariate binary 
probit models estimated separately for the twelve product categories (i.e. model 
5). A comparison of the estimates in columns 3 and 6 (i.e. model 2 vs. model 
5) indicates that household sensitivity to price, display and feature is, by and 
large,’ overstated in model 5. This finding, consistent with the findings obtained 
by comparing either models 2 and 3 or models 2 and 4, is summarized below. 

Empirical Finding 3: A limited operationalization of the proposed multi- 
variate probit model, using a subset of the full set of product categories 
within the household’s shopping basket (as in Chintagunta & Haldar, 1998; 
Manchanda, Ansari & Gupta, 1999), leads one to overestimate the effects of 
marketing variables on households’ purchase incidence decisions within 
each product category. 

The seventh column in Tables 8 and 9 lists the results from a purely cross- 
sectional version - one that ignores unobserved heterogeneity across 
households - of the proposed multivariate probit model (i.e. model 6). A 
comparison of the estimates in columns 3 and 7 (i.e. model 2 vs. model 6) 
seems to indicate that household sensitivity to price, display and feature are 
overstated in model 6. However, such an interpretation must be kept in check 
on account of a scale incompatibility problem while comparing models 2 and 
6, since the cross-sectional probit (i.e. model 6) does not accommodate random 
effects across households. 

7. SUMMARY 

We propose a multivariate probit model with unobserved heterogeneity to 
explain households’ purchase incidence decisions simultaneously acrosc all 
product categories within their shopping baskets. We estimate the proposed 
model using basket-level purchase data on a scamrer panel of 300 household\. 
We find that a limited operationalization of the proposed model. using :I 4~1bwf 
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of the full set of product categories within the household’s shopping basket, 
leads one to underestimate inter-category correlations and overestimate the 
effectiveness of marketing variables. We also find that ignoring unobserved 
heterogeneity across households leads one to overestimate inter-category 
correlations and underestimate the effectiveness of marketing variables. 

One obvious managerial benefit of our proposed model is that retailer can 
design optimal prices simultaneously across all product categories, taking 
cross-category correlations into account, in order to maximize store profits. 
When cross-category correlations exist, ignoring their effects and maximizing 
category profits independently across product categories will lead to sub- 
optimal profits. While the findings of this paper are of managerial interest in 
and of themselves, the implications of these findings on related household 
decisions, such as brand choice, are of managerial interest. We are currently 
extending our proposed model to accommodate households’ brand choice 
decisions within each product category. In this framework, we employ a 
multinomial logit model for households’ conditional brand choices within each 
product category, coupled with a multivariate probit model of households’ 
purchase incidence decisions across product categories. Whether our reported 
findings about cross-category correlations in purchase incidence decisions in 
this paper generalize to such a fully specified framework is an area of ongoing 
investigation. 

Last, but not the least, it will be useful to accommodate unobserved hetero- 
geneity along multiple dimensions (instead of in the intercept term only) and 
model correlations not only in the error terms but also in household response 
parameters across product categories:This will allow us to investigate whether 
households exhibit similar sensitivities to the marketing variables in different 
product categories using a basket-level analysis (Seetharaman, Ainslie & 
Chintagunta, 1999 investigate this issue using conditional brand choice data on 
a panel of households in five product categories). 

NOTES 

I. To the extent that product categories within a household’s shopping basket vie for 
a litnited shopping budget of the household, the budget constraint induces cross- 
category dependencies as well. 

2. In our application, J= 12, k= 5 which makes the total number of estimated 
parameters 138. 

3. The excluded product categories are barbecue sauce, cat food, cereals, cleansers, 
cookies, eggs, nuts, pills, pizza, snacks, soap, softener, yogurt. 

4. In a companion paper, in which we model both category purchase incidence and 
brand choice, we explicitly investigate the consequences of such aggregation on model- 
based inferences. 
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5. We thank an anonymous reviewer for alerting us to this issue. 
6. Except for display coefficients for hot dogs and ice cream, and price coefficient5 

for non-cola and sugar, this holds for the remaining twenty coefficients. 
7. Except for bacon’s feature coefficient and the price coefficients for coffee, non- 

cola and towels, this holds for the remaining thirty-two marketing mix coefficients. 
8. This holds for forty-eight out of the fifty-four marketing mix variables in table\ 

8-I 1. 
9. The overstatement holds for twenty-eight out of thirty-six coefficients. 
10. Lower and upper halves of the matrix contain posterior means and credihllq 

intervals respectively. 
11. Lower and upper halves of the matrix contain posterior means and credibilit! 

intervals respectively. 
12. Lower and upper halves of the matrix contain posterior means and credlblht! 

intervals respectively. 
13. Credibility Interval 
14. Lower and upper halves of the matrix contain posterior means and credihilit) 

intervals respectively. 
15. The estimates of bacon and butter are based on hot dogs and sugar as the 

respective second categories. 
16. The four sets of estimates for cola are based on sugar, non-cola, coffee and 

crackers respectively as the second category. The estimates for crackers are hased on 
cola as the second category. The two sets of estimates for detergents are based on tissue 
and towels respectively as the second category. 

17. The estimates of hot dogs and non-cola are based on bacon and cola as the 
respective second categories. 

18. The two sets of estimates of sugar are based on butter and cola respectively as 
the second category. The two sets of estimates for tissue are based on detergents and 
towels respectively as the second category. The two sets of estimates for towels are 
based on detergents and tissue respectively as the second category. 

19. The estimates of bacon and butter are based on hot dogs and sugar as the 
respective second categories. 

20. The four sets of estimates for cola are based on sugar, non-cola, coffee and 
crackers respectively as the second category. The estimates for crackers are based on 
cola as the second category. The two sets of estimates for detergents are based on tissue 
and towels respectively as the second category. 

21. The estimates of hot dogs and non-cola are based on bacon and cola a\ the 
respective second categories. 

22. The two sets estimates of sugar are based on butter and cola rqectively ah the 
second category. The two sets of estimates for tissue are bahed on detergents and towel\ 
respectively as the second category. The two sets of estimares for towel> arc based on 
detergents and tissue respectively as the second category. 
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ADVANCES IN OPTIMUM 
EXPERIMENTAL DESIGN FOR 
CONJOINT ANALYSIS AND DISCRETE 
CHOICE MODELS 

Heiko GroBmann, Heinz Holling and Rainer Schwabe 

ABSTRACT 

The authors review current developments in experimental design ,for 
conjoint analysis and discrete choice models emphasizing the issue of 
design ejliciency. Drawing on recently developed optimal paired compar- 
ison designs, theoretical as well as empirical evidence is provided that 
established design strategies can be improved with respect to design 
efJiciency. 

1. INTRODUCTION 

The modeling of consumer preferences and choice behavior is one of the most 
prosperous areas of research in marketing (Carroll & Green, 1995; Ben-Akiva 
et al., 1997). Over the years a wealth of models has emerged for describing the 
joint effect of multiple attributes on consumers’ product evaluations and 
choices. Among these models the most prominent approaches are conjoint 
analysis (Green & Srinivasan, 1978, 1990) and discrete choice (Ben-Akiva & 
Lerman, 1985). The development of conjoint analysis was inspired by the 
invention of conjoint measurement in psychology (Lute & Tukey, 1964), which 
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was introduced to a larger audience in marketing by Green and Rao (1971). The 
roots of discrete choice models can be traced back to several previous 
approaches to utility measurement like Thurstone’s law of comparative 
judgment (Thurstone, 1927), the choice model of Lute (1959), and also to 
random utility theory (Manski, 1977). 

Conjoint analysis and discrete choice models differ with respect to the 
response formats and the statistical models they use for collecting and 
analyzing data. In a traditional decompositional conjoint analysis task, attribute 
profiles usually have to be rank ordered with respect to preference or to be rated 
on a preference scale. Also, as another mode of data collection in conjoint 
analysis graded paired comparisons are in widespread use. In contrast, choices 
from sets of attribute profiles are observed in discrete choice models. As far as 
statistical models are concerned, conjoint analysis draws on the general linear 
model whereas discrete choice models are non-linear and usually of the logistic 
type. 

When implementing a conjoint analysis or discrete choice study it has to be 
decided how many and which profiles are to be presented for evaluation. This 
task of selecting a number of settings from an experimental domain represents 
a typical problem of experimental design. Traditionally, marketing researchers 
have primarily been concerned with modeling issues. Much effort has been 
devoted to the development of realistic and apparently complex discrete choice 
models. For example, a number of models have been proposed that incorporate 
consumer segments or cross effects of brands on each other. The primary 
design concern with these complex models has been to choose the profiles in 
such a way that the model parameters can be estimated. 

If there are many attributes or levels in the conjoint analysis or discrete 
choice model the number of profiles that have to be evaluated soon becomes 
large. To reduce the number of evaluations required from respondents, standard 
principles from linear model design theory like orthogonality and balance have 
been used routinely to construct designs for conjoint analysis as well as discrete 
choice models. When the reduction is to be performed in such a way that the 
model parameters can be estimated in the most efficient way techniques from 
optimum experimental design theory can be used. From time to time the issue 
of optimum design has received some attention in the econometric literature 
(see e.g. Aigner, 1979; Mtiller & Ponce de Leon, 1996). However, most of the 
developments in this growing field of statistics are only scarcely recognized by 
researchers in economics. 

The aim of this contribution is to review basic principles of, and recent 
developments in, optimum experimental design theory that can be applied to 
conjoint analysis and discrete choice models. In the next section we give an 
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overview of the statistical theory. This will be followed by a review of the 
literature on conjoint analysis and discrete choice designs in marketing. In the 
subsequent two sections a theoretical as well as an empirical comparison of 
designs will be provided. 

2. OPTIMAL AND EFFICIENT DESIGNS 

For the observational outcome of a random event one has to distinguish 
between active and passive observations. The latter situation occurs in 
observational studies where usually the investigator has no possibility to take 
influence on the outcome by adjusting explanatory variables. 

In contrast to that, these explanatory variables are often called exogenous 
quantities for which it seems reasonable that different values or levels may be 
chosen. These active experimental situations bear the great advantage that the 
performance of the statistical inference can be substantially improved by a 
smart design for the settings of the exogenous variables. For example, the slope 
of a regression line can be estimated with a three times higher precision when 
an optimal design is used compared to uniform spacing. 

The theory of optimal designs has been extensively developed during the last 
fifty years for various forms of a functional relationship Y(X) = n(x, 0) + E. In 
this formula q is a known response function describing the structural 
dependence of the endogenous variable (response) Y on the exogenous 
quantities X. Here 8 = (t3,, . . . , 8JT is a vector of unknown parameters 
specifying the shape -q(. ,9) of the response and the exogenous quantities 
x=(x(‘), . . . , .x(~)) consist of k different components x(‘), . . . , .xCk). Finally, the 
observation is disturbed by a random vector E whose distribution may depend 
on both x and 8. The most prominent functional relationship is the general 
linear model setting Y(X) =fl.~)~ 8 + E where the response q(x, Q) =f(~)~ 8 = 
c~=,J(x)O, is a linear function in the parameters 0 with known regression 
functions f= (f,, . . ,,b)‘. These models cover both regression and analysis of 
variance models where for the latter some dummy coding is required. Also 
more complicated models are included like analysis of covariance models in 
which both discrete and continuous exogenous quantities may be present. 

The size II of an experiment is the number of outcomes Y,, . . , Y,, to be 
observed. The design of an experiment is the corresponding setting of the 
exogenous quantities x,, . . . , x,,. Replications are allowed such that these 
settings are not necessarily all distinct. Usually, homoscedasticity is assumed 
for the error term E in a linear model, Vcrr(&) = CT ‘. Then the performance of the 
statistical inference is measured in terms of the information matrix 
wx,, . x,,) = z::I=, .f(s,).f’(x,)’ or. more intuitively, in terms of it\ invcr\c 
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M(x,, . . . ) x,)-l which is proportional to the covariance matrix of the least 
squares estimator 6, &v(6) = ~*M(x,, . . . , x,)-l. 

Optimization of an experiment can be divided into two separate steps: First, 
optimize the information matrix with respect to a properly chosen criterion for 
a given size of the experiment. In this context the most popular criterion is the 
so-called D-criterion which aims at minimizing the determinant of the 
covariance matrix, det M(x,, . . . , x,J ‘, a quantity which is often called 
erroneously the generalized variance. This is equivalent to maximizing the 
determinant of the information matrix 

max det M(x,, . . , x,) x1... .xn 
where the exogenous variables x,, . . . , x, may range independently over a 
given design region X of possible settings. For Gaussian errors the determinant 
of the covariance matrix is proportional to the volume of the confidence 
ellipsoid for the parameter vector 8. Moreover, the popularity of the D-criterion 
arises from its computational ease and from the fact mentioned below that 
it is equivalent to the minimization of the prediction variance f(~)~ 
w-q, . . . 7 xJ’f(x) under certain regularity conditions. It is worthwhile noting 
that, in fact, the optimal settings and their corresponding proportions of 
replications do not vary much if the size of the experiment is changed. In a 
second step the size is determined in order to meet the needs of the experiment. 
For example, the size of the experiment will be influenced by the required 
precision of the estimates, by the power of a statistical test to be performed, but 
also by cost considerations. The recent monograph by Cox and Reid (2000) 
may serve well as an introductory text to the topic. 

In agreement with the literature on optimal design theory we will focus on 
the first step of finding optimal settings for the exogenous variables. The first 
paper which was explicitly devoted to efficient designs was written by Smith 
( 1918) before any general concepts had been developed. In the beginning of the 
twentieth century practical needs for optimal or efficient designs arose from 
agricultural experiments. At that time it was the merit of Fisher (1935) to define 
the basic concepts of experimental design: repeatability, blocking, and 
randomization. For analysis of variance settings which are typical for 
agricultural experiments optimization leads mostly to combinatorial problems 
(for a survey see Shah & Sinha, 1989). 

For general settings Kiefer (1959) introduced the notion of generalized 
designs for which the proportions of the replications are detached from the 
sample size. According to this concept 5 denotes a generalized design when it 
is a finitely supported normalized measure on the possible settings x. For a 
design k that describes an experiment of size n the quantities .$(.x,) = II, ln denote 
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the proportions of replications n, at the distinct settings x,, C &x,) = 1. The 
corresponding normalized information matrix is defined by 

Note that M(s) = n-’ M(x,, . , x,,). If the requirement is dropped that <(x,) is a 
multiple of l/n then the designs can be embedded into a convex optimization 
framework (see also Kiefer, 1974). Hence, standard methods of convex 
optimization can directly be applied to optimal design theory by taking 
directional derivatives leading to equivalence theorems based on the saddle- 
points for minimax solutions. For example, the celebrated Kiefer-Wolfowitz 
equivalence theorem (Kiefer & Wolfowitz, 1960) states that the D-optimality of 
a design 5 * is equivalent to the minimax optimality of t * with respect to the 
prediction variance on the design region, i.e. 

det M(t *) = max< det M(t) if and only if 

max,f(x)T M([ *) ‘f(x) = mine maxJ(x)TM(CJ’f(x). 

For every design its efficiency is the quality of its performance compared to 
the benchmark of the optimal design, i.e. the quantity llefJiciency(EJ. 100% 
gives the factor for the number of observations required when the design is 
used to obtain the same amount of information as contained in the optimal 
design. Accordingly, for the D-criterion, the D-efficiency is defined as 
eff,,([) = (det M(c)/det M(c *))I@ where .$* denotes the D-optimal design. 
Based on the properties of directional derivatives, suitable efficiency bounds 
can be computed for the performance of arbitrary designs (see Dette, 1996). 

In the sequel various concepts of statistics were applied to evolve solutions 
of the optimization problem like invariance or equivariance with respect to 
certain natural transformations of the design region (Giovagnoli, Pukelsheim & 
Wynn, 1987) which, in a way, generalizes the concept of randomization. These 
topics are treated in full generality in Pukelsheim (1993). 

Due to the variety of possible structural dependencies in the general lineal 
model a vast amount of approaches has been developed for solving particular 
problems. In the present setting special interest lies in multi-factor nwdcls 
(Schwabe, 1996) with a reasonable number of exogenous variables and in the 
peculiarities of paired comparisons (van Berkum, 1987a, b, 1989). 

It should be noted that often, as in paired comparisons, the linear model only 
serves as a rough approximation to some non-linear relationship. If the non- 
linearity can be explicitly specified, large sample behavior i\ available for the 
performance of a design. Denote by j&r)=(& ,(.r), .,/;, ,,( r))‘. the \t‘ctol- 01 
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locally linearized regression functions, if 8 is the true value of the parameter. 
Here the local regression functions &, i= (a/~%~) q(x, 0) are the partial 
derivatives of the response function ~(x, 0) with respect to the components of 
the parameter 8. Then M&Q = ‘c &~)f~(x)f&) T is the asymptotic information 
matrix of the design 6 at 8. Unlike in linear models the quality depends on the 
unknown parameters. Hence, only locally optimal designs can be generated or 
such which are related to a Bayesian or minimax loss function (for surveys see 
Chaloner & Verdinelli, 1995; Fedorov & Ha&l, 1997). For generalized linear 
models a promising approach has been proposed by Ford, Torsney and Wu 
(1992) which is based on a canonical transformation. 

In the situation of generalized linear models the response -q is linked by a 
mapping, say g, to a linear regression approach, i.e. q(x, 0) = gCfTx)T 0) (see 
McCullagh & Nelder, 1989). The inverse g-’ of this mapping is traditionally 
called the link function of the generalized linear model. By the chain rule the 
linearized regression functions equal f&x) = g’(flx)T e)f(x). In the particular 
case 6 = 0, the linearized regression functions fe =fO and the inherent linear 
relationship f coincide up to a multiplicative constant g’(0) independent of x. 
Thus the corresponding information matrices are related by M,(t) = g’(O)* M(e) 
and the optimization with respect to the generalized linear model reduces 
to the optimization with respect to the corresponding linear relationship. 
Hence, the linear model Y(x) =f(~)~fl+ E may serve well as a surrogate for the 
corresponding generalized linear model Y(x) = g@x)TO) + E when the hypoth- 
esis 8 = 0 is to be tested. 

As an additional complication tlie error terms E are commonly hetero- 
scedastic in generalized linear models with variance function 
u ‘(x, 0) = ~Mx)~ 0). For example, in case of binary response ~(x, 8) denotes 
the probability of success and a*(~, 0) = q(x, 0)( 1 - q(x, e)), i.e. h = g( 1 - g). 
The variance function has an influence on the performance and must be 
included in the (asymptotic) information matrix 

However, for f3 = 0 the variance u *(x, 0) = h(O) is independent of x and the 
optimization of the information matrix M,(c) = g’(O)*h(O)-’ M(c) coincides 
again with the linear case. 

In the present setting of choice models one is mainly concerned with 
multinomial logistic models where g ‘(z)=ln z - ln( 1 - :) is the logit link 
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function. In particular, for paired comparisons the response q(.r, 0) is given by 
the generalized linear model 

where x= (a,, a*) is the pair of alternatives presented. The condition 8 =0 is 
related to the situation of no preference for eittier of the alternatives, i.e. 
q(x, 0) = l/2 is independent of x. Moreover, o*(x, 0) = 1/4=g’(O) and the 
(asymptotic) information matrix becomes 

W,(S) = ; c EC a,, uJ(.fla,) -f(U*))(f(q) -f(dT. 

More generally, for the presentation of larger choice sets (a,, . tr,,,) with VT 
alternatives, say, the (asymptotic) information matrix can be derived as 

M,(S)=C Sht . . . f %I 

(I) 

x m-’ 
c[ 

fC”i> - mm’ C fC"j) IL fC”t - mm1 ; = 1 f’(q) T i I 
(see e.g. Bunch, Louviere & Anderson, 1996). 

If no explicit solution of the optimization problem is available, algorithms 
can be used like the Fedorov-Wynn algorithm (Fedorov, 1972; Wynn, 1970) 
which are based on a steepest descent approach for the directional derivatives. 
Some of these algorithms are implemented in the OPTEX module of the SAS 
statistical software package. For a survey on the whole scope of experimental 
design we refer to Atkinson (1988, 1996) and Ghosh and Rao (1996). 

3. DESIGNS FOR CON JOINT AND DISCRETE CHOICE 
MODELS 

When developing an experimental design for a particular conjoint or discrete 
choice model the investigator has to consider a number of issues. First. the 
attribute levels for the profiles to be presented have to be chosen in such a way 
that the corresponding model parameters are estimable. This amounts to 
ensuring that the model’s design matrix is of full rank. Second, it has to be 
decided whether levels of each attribute are presented for all profile\ or if some 
attributes are left unspecified and profiles are only constructed from ;I \ubhet 01 
attributes. For example, with a large number of attribute\ to be prevnttd. tht. 
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evaluation of, or choice among, profiles that are made up of all attributes, so- 
called full profiles, is much more demanding than the respective task for 
profiles that are only described by some of the attributes. Third, the number of 
profiles to be presented in a single evaluation or choice trial has to be settled. 
Here, large sets of profiles might cause the respondents to focus on only a 
subset of the attributes or to employ some other kind of simplifying strategy to 
arrive at their choices or evaluations. 

These considerations are in line with the classification system for choice 
experiments* proposed by Green (1974). He suggests a number of strategies 
for dealing with the issues outlined. In particular, for linear main-effects-only 
models he proposes the use of orthogonal arrays which can be constructed as 
regular fractions of full factorial designs when the model is symmetric, i.e. 
when the number of levels is equal for all attributes. To illustrate, we consider 
a slight modification of Green’s original 4 x 3 x 2’ airline example where trans- 
Atlantic flights are characterized by nine attributes with two, three, or four 
levels. Instead of employing different numbers of levels we will only use two 
levels for each attribute, i.e. we consider a 29 model. A symmetrical orthogonal 
array for this model is shown in Table 1. 

For asymmetric models, orthogonal arrays can be obtained from regular 
fractions of full factorial designs by collapsing certain columns (Addelman, 
1962). If the investigator wants to include selected interactions in the model 
equation fractional factorial designs can be used. 

As strategies for dealing with the second and third issues above Green 
(1974) proposed two different two-stage design approaches using balanced 
incomplete block (BIB) designs and partially incomplete block (PBIB) designs, 
respectively (for exact definitions of these designs, see Green, 1974; 
Raghavarao, 1971). When the investigator has decided to use only profiles 
described on four of the nine attributes the two-stage approach proceeds as 
follows: First, a BIB design is constructed to assign sets of four attributes to 
profiles and second, a small design, e.g. an orthogonal array if estimation of 
main effects suffices, with four-component profiles drawn from the 29 full 
factorial plan is chosen. The set of profiles then consists of 

number of blocks in the BIB design x number of rows in the second design 

profiles. As Green (1974) demonstrated for the example a BIB design with 
eighteen blocks and four-component orthogonal arrays with eight rows exist 
so that the profile set comprises 18 x 8 = 144 profiles in comparison to 

:$ It should be noted that the choice models considered by Green (1074) are actually linear models. 
That is, they are conjoint analysis model!, in the terminology used in the present paper. 
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Table 1. 

Profile 

1 
2 
3 
4 
5 
6 
I 
8 
9 

10 
11 
12 
13 
14 
15 
16 

A 
-- 

1 
I 
1 
1 
1 
1 
I 
I 

0 
0 
0 
0 
0 
0 
0 
0 

B 

1 
1 
1 
I 

0 
0 
0 
0 
1 
1 
1 
1 

0 
0 
0 
0 

Orthogonal Array for a 2’ Model. 

c 

1 
1 
I 
I 

0 
0 
0 
0 
0 
0 
0 
0 
1 
1 
1 
1 

Attributes and Levels 

D 

1 
1 
0 
0 
1 
1 
0 
0 
1 
I 

0 
0 
1 
1 
0 
0 

E 

1 
0 
1 
0 
I 
0 
I 

0 
1 
0 
1 

0 
1 
0 
1 
0 

F G H 1 

. 1 I I I 
0 I 0 0 

0 0 I 0 
I 0 0 I 
I 1 0 0 

0 1 I I 
0 0 0 ! 

I 0 I 0 
I 0 I 0 

0 0 0 I 
0 1 I I 
1 1 0 0 
1 0 0 I 
0 0 I 0 
0 I 0 0 
1 1 I I 

126 x 8 = 1008 profiles which would be obtained if an orthogonal array with 
eight runs was used for each of the 126 attribute combinations involving only 
four attributes. 

The two-stage approach for constructing designs where in every evaluation 
trial only a subset of the profiles is presented relies on PBTB designs. Again, for 
purposes of illustration we consider the example. If the investigator wants to 
present pairs of profiles for evaluation then he chooses a subset of the profiles 
in the first step from the 29 full factorial design, e.g. by means of an orthogonal 
fraction. Here, we assume that the 16 profiles in Table 1 have been chosen. In 
the second step these profiles are arranged in pairs according to a PBIB design. 
The 16 pairs derived from the PBIB design with block size k = 2 given by Green 
(1974) are shown in Table 2. 

By using this design the number of paired comparisons for the 16 profiles 
can be reduced from 120 to 48 as compared to the round robin design in which 
each profile is paired once with every other profile. With different values of the 
block size k choice designs with sets of size k can be generated. e.g. for k = 3 
we obtain triples of profiles. 

In sum, Green’s proposed strategies are effective for constructing parsirnon~- 
ous designs. Moreover, the principles that underly hi\ approach. namely (~1) thy, 
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Table 2. Pairs Derived from PBIB Design. 

Pairs 

1,2 5, 6 9, 10 13, 14 1, 5 236 3,7 4, 8 
1, 3 5, 7 9, 11 13, 15 I,9 2, 10 3, 11 4, 12 
I,4 5, 8 9, 12 13, 16 1, 13 2, 14 3, 1s 4, 16 

2.3 6,l 10,lI 14, 15 x9 6, 10 7, 11 8, 12 
2.4 6, 8 10, 12 14, 16 5, 13 6, 14 7, 15 8, 16 
3,4 7,8 II,12 15, 16 9. 13 IO, 14 11, IS 12, 16 

reduction of the set of alternatives by choice of a suitable subset drawn from a 
full factorial plan; and (b) the combination of these profiles in sets for 
evaluation by use of an experimental design that neglects the factorial structure 
of the profiles, have permeated the literature on experimental designs for 
conjoint analysis and discrete choice models in marketing to a large extent. For 
example, Louviere and Woodworth (1983), Batsell and Louviere (1991), as 
well as Bunch et al. (1996) have adhered to these principles. In general, not 
much is known about the efficiency of these designs (Carson et al., 1994, 
p. 361). In Section 4 we will demonstrate for Green’s paired comparison design 
that the principles outlined above may produce designs which are far from 
optimal in terms of efficiency. 

Some authors have argued in favor of shifting emphasis from classical 
design principles such as orthogonality and balance to design efficiency. 
Kuhfeld, Tobias and Garratt (1994) recommended the use of the algorithms 
mentioned at the end of Section 2 and showed for a number of conjoint and 
discrete choice models how efficient designs can be constructed with the SAS 
procedure OPTEX. For the latter models they assumed that the parameter 
vector in the model is equal to zero so that the information matrix for the 
multinomial model coincides with the one of the general linear model up to 
constant factor. In a similar vein for conjoint analysis experiments Steckel, 
DeSarbo and Mahajan (1991) presented a combinatorial optimization proce- 
dure for maximizing the determinant of the information matrix in situations 
where there exist natural correlations among the attributes, e.g. maximum 
speed and mileage when cars are of concern. In this situation the approach of 
Kuhfeld et al. (1994) is applicable as well. 

The design problem for correlated attributes has also been .treated by 
Louviere and Woodworth (1988). They proposed to construct choice sets by 
Hurst obtaining ratings for a set of profiles on the correlated attributes. These 
ratings are then arranged in matrix form where each row of the matrix 
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corresponds to one of the profiles. Subsequently, a second matrix is constructed 
by adding an orthogonal matrix to the initial one. Every row in this second 
matrix represents the second profile in a choice set. Designs with larger choice 
sets can be generated by continuing this procedure. The efficiency of such 
designs as compared to the approaches of Kuhfeld et al. ( 1994) and Steckel et 
al. (1991) is not known. 

Another issue that has received attention is the construction of designs which 
enable the estimation of attribute or availability cross effects on the choice 
probabilities (Louviere & Woodworth, 1983; Anderson & Wiley, 1992). Lazari 
and Anderson (1994) presented a model where both types of cross effects can 
be estimated simultaneously for situations where m brands are described by :I 
single attribute. Moreover, in their model as well as in the model considered by 
Louviere and Woodworth (1983) violations of the independence of irrelevant 
alternatives assumption of the multinomial logistic model can be tested. To 
generate designs, Lazari and Anderson applied the technique of Louviere and 
Woodworth (1983) for constructing choice sets. As an illustration, we consider 
the situation where the attribute that characterizes the m brands has S - I 
levels. An orthogonal main effects plan is drawn from the s”’ full factorial 
design and the levels are coded consecutively 0, . . . , S - 1. Every row of this 
design then represents a choice set. The level 0 in the ith position of a row 
indicates that the ith brand is not present in the choice set whereas a larger 
number indicates that the brand is present in the set with the attribute adjusted 
to the respective level. 

The approaches considered so far all assumed that the vector of parameters 
0 equals zero or in other words that the choice probabilities for the alternatives 
in a choice set are all the same. As was detailed in Section 2, under this 
assumption, the optimization problem for the determinant of the information 
matrix in the discrete choice model remains the same as the corresponding 
problem in a linear model framework. However, Huber and Zwerina (1996) 
argued that in most practical marketing research situations some kind of prior 
knowledge on the parameters is available, for example, when a pretest of a 
survey is conducted. Therefore, they proposed a method for designing multi- 
attribute choice experiments that incorporates the use of such prior information. 
The strategy adopted proceeds by first generating a so-called seed design by 
use of either an orthogonal army or the SAS procedure OPTEX. Each row in 
this design represents the first profile of a particular choice set, i.e. the first row 
in the design matrix for that set. The remaining profiles are constructed from 
the first one by subsequently incrementing the attributes’ levels columnwise 
and cycling back to one when a level’s value exceeds the number of levels ot 
that attribute. Every choice set generated in this way is an in\~ancr of I& ha1 i\ 
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called a cyclic design (see e.g. John & Williams, 1995) in the statistical 
literature on experimental designs. In a subsequent optimization step which 
utilizes the available prior information on the vector 8 the efficiency of the 
complete choice design formed by concatenating the designs for the single sets 
is further improved. This improvement is achieved by using one out of two 
techniques, swapping and relabeling, of what Huber and Zwerina have called 
utility balancing. With swapping, in every choice set transpositions (swaps) of 
pairs of levels are examined for every attribute, i.e. every column, in turn. 
Every swap is tested and the information matrix for the multinomial logistic 
model in Eq. 1 where the prior information is substituted for 0 is computed. If 
the swap improves the determinant of the information matrix it is performed. 
With the relabeling technique permutations of the attribute levels that increase 
efficiency are investigated. If, for example, the assignment of a 1 to the first 
level of a three level attribute, a 3 to the second level, and a 2 to the third level 
in all choice sets instead of a consecutive numbering increases the determinant 
of the information matrix this relabeling is performed. Huber and Zwerina 
demonstrated for a number of models ranging from simple to complex that 
substantial efficiency gains can be accomplished. Moreover, these gains are 
relatively robust with respect to fallible prior information. However, the nature 
of the utility balancing principle underlying the Huber and Zwerina approach 
is essentially heuristic. No analytical results are available whether the proposed 
procedure reaches the global optimum or how close it comes. 

Recently, Sandor and Wedel (in press) have amplified the idea of utilizing 
prior information in the design construction process for the multinomial logit 
model. They extended the results by Huber and Zwerina (1996) in three 
main directions. First, they apply Bayesian design techniques (Chaloner & 
Verdinelli, 1995) and replace the unknown parameters in the D-criterion by 
prior distributions. Second, they determine the prior distribution by eliciting 
prior information from respondents based on the methods developed by van 
Lenthe (1993). Third, they develop further the heuristic algorithms relabeling 
and swapping to an algorithm called cycling that searches in a larger design 
space and hence potentially yields designs with higher statistical efficiency. 
Based on Monte Carlo studies as well as an empirical illustration Sandor and 
Wedel (in press) provide evidence that the Bayesian approach produces designs 
that are more efficient than those generated according to Huber and Zwerina 
(1996). 

The idea of utility balancing is also part of the design heuristic for paired 
comparisons implemented in the most popular software ACA (1994) for 
adaptive conjoint analysis. Adaptive conjoint analysis is a so-called hybrid 
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conjoint analysis technique because it combines composilionai aud &CUIII~U~~- 

tional measures. Compositional part-worth utilities for attribute levels are 
obtained through direct preference assessments of the levels and dttributz 
importance ratings. In the decompositional phase of an ACA interview, 
respondents have to perform a number of graded paired comparisons and to 
state their relative preferences for one or the other profile in a pair. Usually, the 
profiles are described by only a subset of the attributes that varies from pair to 
pair. Pairs are chosen subsequently according to an adaptive algorithm. When 
choosing the next pair to be presented, this algorithm pursues the following 
objectives: First, attributes are combined that have occurred together fewest 
before. Second, levels of these attributes are selected by application of a similar 
logic. Third, levels are arranged in profiles in order to maximize utility balance. 
To achieve maximum utility balance, the vector of parameters is estimated after 
each paired comparison and the utilities of the profiles in a pair are computed 
by summing the respective parameter estimates for every possible arrangement 
of the chosen levels into pairs. The pair for which the profiles are most equal 
in utility then is actually presented. From a statistical point of view this 
adaptive strategy is dispensable because the information matrix does not 
depend on the true parameter vector. In Section 5 we will report results from 
an empirical investigation in which the adaptive design heuristic of ACA is 
compared to an optimal design that has been constructed according to the 
principles which are described in the next section. 

4. SOME OPTIMAL PAIRED COMPARISON DESIGNS 

Recently, a new approach for constructing multi-factor paired comparison 
designs has been proposed by GraBhoff, Groomann, Holling and Schwabe 
(2000). They proved the D-optimality of a certain type of designs in a linear 
model setting where the interest lies in the estimation of main effects. All 
attributes are assumed discrete with the same number of levels. These designs 
are also optimal for the corresponding discrete choice models under the 
assumption 0 = 0. Furthermore, GraBhoff et al. proved the optimality of rhcir 
designs for situations where the so-called profile strength, i.e. the number ot 
attributes which are allowed to vary in every comparison, is restricted. The 
construction of the optimal designs relies on general principles for multi-factor 
models (see Schwabe, 1996) as well as on Hadamard matrices (see e.g. 
Raghavarao, 197 1). 

For the airline example with nine attributes each at two levels considered 111 
the previous section, the construction of a D-optimal paired comparison design 
is particularly simple. Instead of first choosing a subset of profiles from the 2 
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Table 3. Design Matrix for Green’s Paired Comparison Design 

Number of Pair 

I 
2 
3 
4 
5 
6 
I 
8 
9 

10 
11 
12 
13 
14 
I5 
16 
17 
18 
19 

20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 

A 

0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
1 
1 
I 
1 
0 
0 
1 
I 
1 
1 
0 
0 
1 
1 
1 
I 

0 
0 
I 
I 
1 
I 
0 

B 

0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
1 

0 
1 

-1 
0 
1 
1 

0 
I 

-I 
0 
I 
I 
0 
1 

-I 
0 
I 
I 
0 
1 

-I 
0 
I 

C D E 

0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
I 
I 
0 
0 

-1 
-1 

1 
1 
0 
0 

-I 
-I 

1 
I 
0 
0 

-I 
-1 

I 
I 

0 
0 

-1 
-1 

F G H 

0 
1 
I 
1 
I 

0 
0 
1 
1 
1 
1 
0 
0 
I 
I 
I 
1 
0 
0 
1 
1 
1 
1 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

1 
0 
I 

-1 
0 
1 
I 
0 
1 

-1 
0 
1 
I 
0 
I 

-I 
0 
I 
I 
0 
1 

-1 
0 
1 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

I 
I 
0 
0 

-I 
-I 

I 
I 
0 
0 

-1 
-1 

1 
1 
0 
0 

-I 
-1 

1 
1 
0 
0 

-1 
-1 

0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

0 
I 
1 
1 
1 
0 
0 
I 
I 
I 
1 
0 
0 

-1 
-1 
-1 
-1 

0 
0 

-1 
-1 
-1 
-1 

0 
0 
1 
1 
1 
1 
0 
0 
I 
I 
I 
I 
0 
0 

-I 
-1 
-1 
-1 

0 
0 

-1 
-1 
-1 
-I 

0 

1 
0 
I 

-1 
0 
1 

-1 
0 

-1 
1 
0 

-1 
I 
0 
1 

-I 
0 
1 

-1 
0 

-1 
1 
0 

-1 
1 
0 
I 

-I 
0 
1 

-1 
0 

-I 
1 
0 

-I 
I 
0 
I 

-I 
0 
I 

-1 
0 
1 
1 
0 

-1 

I 

1 
1 
0 
0 

-1 
-I 
-1 
-1 

0 
0 
1 
1 

-1 
-1 

0 
0 
I 
1 
1 
I 

0 
0 

-1 
-1 

1 
1 

0 
0 

-1 
-1 
-1 
-1 

0 
0 
1 
I 

-1 
-I 

0 
0 
I 
I 
I 
1 
0 
0 

-I 
-I 
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Table 4. Optimal Paired Comparison Design 

Number of 

Pair 

1 
2 
3 
4 
5 
6 
7 
8 
9 

IO 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 

A 

1 
-1 
-1 

1 
1 

-1 
-1 

I 
-I 
-1 

I 
-1 

1 
-1 
-1 

1 
1 

-I 
-1 

1 
-1 
-1 

1 
-1 

B 

1 
1 

-1 
-1 
-1 
-1 

I 
1 
1 
1 
1 

-1 
1 
I 

-1 
-1 
-1 
-1 

1 
1 
1 
1 
1 

-1 

C 

1 
-1 
-1 

I 
-1 

I 
1 

-1 
1 

-1 
-1 
-1 

1 
-1 
-1 

1 
-1 

1 
1 

-1 
1 

-1 
-1 
-1 

D 

1 
-1 

1 
I 
1 
1 
I 
I 
1 
I 
1 
I 

-I 
1 

-1 
-1 
-1 
-1 
-1 
-1 
-1 
-I 
-1 
-1 

Attributes 

E F 

-I 1 
-1 .I 

I 1 
-1 -1 

1 1 
-1 I 

I 1 
-I I 

I -I 
-I -1 

I -I 
-1 -I 

1 -1 
I -1 

-I -1 
1 1 

-1 -1 
1 -1 

-1 -1 
I -1 

-I 1 
1 1 

-1 1 
1 1 

G 

I 
-I 
-. 1 
-I 

I 
-I 

I 
-1 

I 
I 

-1 
1 

-I 
1 
1 
I 

-1 
1 

-1 
1 
1 

-1 
1 

-1 

107 

ti I 

I 1 
I -I 
I I 
! ! 

I I 
-I I 
-1 -I 

I I 
I I 
I -I 
I I 

-I I 
-I -I 

I I 
-I I 

-I I 
-I I 

I I 
I 1 
I -I 

-I -I 
-I I 

1 I 
I -I 

full factorial plan and then assigning these profiles to pairs according to Table 2 
which yields the design matrix shown in Table 3, the profiles and pairs are 
constructed simultaneously. 

This is done by choosing nine columns from a ktable Hadamard matrix. 
Table 4 shows the design matrix obtained in this way from the Hadamard 
matrix H,, of order 24. Every row in the table represents a paired comparison. 
A one in the ith column indicates that the ith attribute of the first profile in a 
pair is at the high level and the second profile is at the low level of that attribute. 
Similarly, a minus one indicates that the first profile is at the low and the second 
profile is at the high level. 

The determinant of the normalized information matrix of the design E 
constructed according to Green (1974) in Table 3 equals det M(t) =0.0004 
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Table 5. Optimal Paired Comparison Design with Profile Strength Four. 

Factors 
Number of 

Pair A C D E F G H I 

1 1 1 1 0 0 0 0 0 
2 1 1 -1 0 0 0 0 0 
3 1 -1 -1 0 0 0 0 0 
4 1 -1 1 0 0 0 0 0 
5 0 I 1 1 0 0 0 0 
6 0 -I 1 -I 0 0 0 0 
7 0 1 -1 -1 0 0 0 0 
8 0 -1 -I 1 0 0 0 0 
9 0 1 1 1 1 0 0 0 

10 0 1 -1 1 -1 0 0 0 
11 0 1 1 -1 -1 0 0 0 
12 0 1 -1 -1 1 0 0 0 
13 0 0 1 1 I 1 0 0 
14 0 0 1 -1 I -1 0 0 
15 0 0 1 1 -I -1 0 0 
16 0 0 1 -1 -1 1 0 0 
17 0 0 0 1 1 1 I 0 
18 0 0 0 1 -1 1 -1 0 
19 0 0 0 1 1 -1 -1 0 
20 0 0 0 1 -1 -1 1 0 
21 0 0 0 0 1 1 1 1 
22 0 0 0 0 1 -1 I -1 
23 0 0 0 0 1 1 -1 -1 
24 0 0 0 0 1 -1 -1 1 
25 I 0 0 0 0 1 1 I 
26 -1 0 0 0 0 1 -1 1 
27 -1 0 0 0 0 1 1 -1 
28 1 0 0 0 0 1 -1 -1 
29 1 0 0 0 0 0 1 1 
30 1 0 0 0 0 0 1 -I 
31 -I 0 0 0 0 0 I I 
32 -1 0 0 0 0 0 I -I 
33 1 I 0 0 0 0 0 1 
34 -1 -I 0 0 0 0 0 I 
35 1 -1 0 0 0 0 0 I 
36 -I I 0 0 0 0 0 I 

B 

1 
-1 

1 
-1 

1 
1 
1 
1 

0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
1 

-1 
-1 

1 
I 
1 

-1 
-1 

compared to the value of det M(e *) = 1 for the determinant of the normalized 
information matrix of the optimal design c* in Table 4. As a result, a D- 
efficiency of e&,(e) = (det M(e))“‘/(det M(t *))lN = 0.42 obtains. In other 
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words the model parameters can be estimated more precisely with the optimal 
design using 24 pairs than with the design using twice as many comparisons. 

A closer look at Table 3 reveals that the profiles in every pair do actually vary 
on only four of the nine attributes, i.e. the design employs comparisons with a 
profile strength of four. A D-optimal design for this profile strength which uses 
only 36 instead of the 48 paired comparisons in Table 3 can be constructed by 
arranging the columns of a Hadamard matrix of order four in a cyclic manner. 
The resulting design 5 ’ is shown in Table 5. Here, the entries 1 and -I are 
interpreted in the same way as for the optimal design in Table 4. The additional 
zeros in every row indicate that the corresponding profiles in a pair do not differ 
with respect to the respective attributes. For example, a Lero in the ith position 
of a row means that both profiles in a pair are characterized by the same level 
of the ith attribute. 

In the restricted class of designs with a profile strength of four the design 5 
in Table 3 performs much better as compared to the class of designs where the 
profiles in a pair are permitted to differ on all attributes. This is reflected by the 
D-efficiency of eff,(<) = (det M(t))“9/(det M(c ‘))“9 = 0.94. In sum, large 
efficiency gains may be accomplished with an optimal design when the 
researcher intends to use a high profile strength. In this situation the number of 
paired comparisons necessary to achieve a certain precision of the parameter 
estimates can be substantially reduced. However, with a low profile strength 
efficiency gains may only be marginal. 

5. AN EMPIRICAL COMPARISON OF DESIGNS 

From a statistical viewpoint D-optimal designs outperform less efficient 
designs that use the same number of observations. As has been noted before 
(see e.g. Bunch et al., 1996) statistical efficiency is only one of many criteria 
for judging the quality of an experimental design. One of the non-statistical 
criteria is the cognitive difficulty of an evaluation or choice task that has to be 
taken into account. For example, the information processing requirement% ot 
full profile designs are usually assumed to be too demanding when there are 
many attributes (but for some contradicting evidence, see Pullman, Dodson & 
Moore, 1999). Hence, the question remains whether the statistical superiority 
of optimal designs with respect to efficiency translates into empirical benefits. 

In order to investigate this issue we chose the adaptive design heuristic ot 
ACA which was described in Section 3 as a benchmark. To the best of our 
knowledge, up to now this procedure has never been compared empirically to 
D-optimal designs. Furthermore, we adopted the principal-agent paradigm (<et’ 
e.g. West, 1996, and the references therein) for our experiment lvhich ha\ hcc>rj 
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employed successfully in recent research on conjoint analysis (Teichert, 2000; 
Huber, Ariely & Fischer, 2001). According to this paradigm the participants 
(agents) have to perform some action on behalf of a principal. Before being 
exposed to the task they therefore have to learn the criteria the principal would 
use when performing the action by herself/himself. 

5.1. Design of the Experiment 

The participants in our experiment had to act as notebook purchasers for a 
company. Notebooks were described by six attributes with two levels each. The 
attributes and their levels are given in Table 6. Additionally, the table contains 
the true part-worth values of the levels the participants had to learn. These part- 
worth utilities represent a monetary surplus of how much Deutsche Mark (DM) 
a notebook with the better level of an attribute is valued higher by the principal 
than a notebook with the alternative level of that attribute given that both 
notebooks are identical with respect to the other attributes. For example, the 
principal would be willing to pay 500 DM more for a notebook with a 
750 MHz instead of a 500 MHz processor. 

The participants were told to purchase notebooks at an online-retailer’s 
Each participant had to identify the more valuable notebook and to estimate the 
surplus value on a continuous DM-scale subsequently. 

The empirical study took place in two blocks of 45 minutes on two 
consecutive days. Fifteen undergraduate students were recruited as participants. 

Table 6. Attributes, Levels and True Part-Worth Utilities in the Empirical 
Study. 

Attribute Level Part-worth 
utility 

Processor 

Screen size 

Hard disk 

Memory 

CD-RomIDVD 

Modem 

500 MHz 
750 MHz 
12” Screen 
14” Screen 
10 GB Hard disk 
20 GB Hard disk 
64MBRam 
128 MB Ram 
CD-Rom 
DVD 
no modem 
modem 
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In order to provide an adequate consolidation of the prescribed utility structure, 
the survey was split up in such a way that the training of the part-worth utilities 
extended over two days. The complete design of the study is summarized in 
Table 7. 

On the first day the scenario was explained to the participants. As a next step, 
a training phase for the consolidation of the part-worth utilities followed in 

which the participants worked on different exercises. At the end of Block A the 
learning success was tested with a paper-pencil test. On the second day the 
training phase continued. After the last exercise had been completed the 
success of the training was tested again. After a short break, the data acquisition 
which consisted of 48 paired comparisons followed. 

All exercises and paired comparisons were conducted ;ornputcri~~cc! ;: it!: t!:; 
software ALASCA (Holling, Jutting & GroBmann, 2000). This program allows 
to administer paired comparisons according to an adaptive ACA-like as well as 
a D-optimal design. The participants were already acquainted with the handling 
of this program. A reward was announced for the “best” purchaser to promote 
a high motivation. The profiles in the paired comparisons were described by 
three attributes and a DM-scale was used for responses. All tasks were 
presented under time limitations in order to prevent an exact calculation of 

Block Phase 

Table 7. Design of the Empirical Study. 

Task 

A Introduction to the scenario - 
-____. 

Learning phase Exercise I: 4 utility evaluations of full profiles 
Exercise 2: IO paired comparisons with profiles 

described by two attributes 
-__ .~ ~~ 

Learning test 
_____ ~~ ~~~ _.__ ~~~ _._~. ~~_ . 

B Learning phase Exercise 3: 4 utility evaluations of full profile\ 
Exercise 4: Rank ordering of IO full protiies 
Exercise 5: 10 paired comparisons with profile\ 

described by two attributes 

~~~ __~ 
Data acquisition 

Learning test 
~~.~ 

38 paired comparisons with profiles described 
by three attributes 
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utility differences of the objects presented The time limitation was fixed to 10 
seconds for each paired comparison. The remaining processing time for each 
task was displayed in the upper half of the screen. Each participant responded 
to 24 paired comparisons according to a D-optimal design and to the same 
number of comparisons according to an adaptive design. Seven respondents 
first worked on the D-optimal pairs and on the adaptive ones thereafter and vice 
versa for the other eight persons. 

For each of the 15 participants a vector of utilities based on the adaptive 
design and a vector of utilities based on the D-optimal design was estimated 
separately by multiple regression using differences of dummy coded attributes 
excluding an intercept. Thus, regression coefficients correspond to the surplus 
values. 

5.2. Results 

Part-worth utilities were learned by all participants quite well. The relative 
efficiencies of the 15 adaptive designs ranged from 0.84 to 0.96 with mean of 
0.88. For each participant the following criteria were computed based on 
responses under the D-optimal as well as the adaptive design: 

l root mean squared error I& X7=, (6; - fli)* (RMSE) of the part-worth 
estimates, where Oi denotes the true part-worth utility of the second row level 
of the ith attribute in Table 6 and 6, the corresponding estimate, 

l mean absolute difference f Zy=, lbi - Oi I (MADP) between true and estimated 
part-worth values, 

l mean absolute difference & Zfl, I yi L yi,J (MADR) between actual and true 
responses on the paired comparison task, where yi denotes the response of the 
participant and yi,e the response expected to be given by the principal on the 
ith comparison 

l standard errors for the six estimated regression coefficients 6, (SE1 to SE6). 

Table 8 reports means and standard deviations for these criteria as well as 
results of t-tests for dependent samples. In order to stabilize the variances the 
criterion values were log transformed prior to testing. 

The D-optimal designs perform better with respect to every criterion. The 
mean absolute difference between actual and true responses amounts to 128.02 
DM for the D-optimal designs and is 19% smaller in comparison to adaptive 
designs. Furthermore, the confidence intervals are considerably smaller. 
Summarizing the above results there is remarkable evidence that the theoretical 
advantages of D-optimal designs also manifest themselves empirically. 



Table R. Results of tie Empiricai 3mciy. 

D-optimal Adaptive 

Criterion M SD h‘i SD , P 

RMSE 51.35 28.22 81.94 58.57 1.82 0.05 
MADP 43.70 26.62 68.82 ‘48.01 I .73 0.05 
MADR 128.02 60.04 157.73 80.93 I .69 II ((Ml 
SE1 50.10 24.80 71.11 34.66 3.19 0.03 
SE2 50.10 24.80 67.03 34.5 1 2.30 0.02 
SE3 50.10 24.80 72.40 38.39 2.78 0.01 
SE4 50.10 24.80 70.55 38.95 2.49 0.01 
SE5 50.10 24.80 73.14 35.52 3.26 0.00 
SE6 50.10 24.80 70.50 38.3 2.47 0 01 

Now N= 15, p-values according to one-sided test. For abbreviations of’ criteria, see text. 

6. SUMMARY AND CONCLUSIONS 

We presented a review of the statistical theory of optimum experimental 
designs and the approaches that have been proposed in the marketing literature 
for the design of conjoint analysis and discrete choice experiments. Drawing on 
recently developed optimal paired comparison designs we demonstrated that 
the well-known approach of Green (1974) to the design of multi-attribute 
choice experiments may yield to inefficient designs that can be substantially 
improved. 

Furthermore, in an empirical study we compared the adaptive design 
heuristic employed in adaptive conjoint analysis and an optimal paired 
comparison design. The results showed that the optimal design performed 
better with respect to a variety of criteria than adaptive designs. This provides 
preliminary first empirical evidence for the superiority of optimal designs in the 
context of conjoint analysis. 

Although our findings are limited with respect to the number of attribute 
levels used and the structure of the model, because only the estimation of main 
effects was considered, we conjecture that design approaches for discrete 
choice models that have followed the logic of Green’s approach (e.g. Louviere 
& Woodworth, 1983) can be improved with respect to efficiency by explicitly 
recognizing the factorial structure of the profiles when choice sets are 
composed. 
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In typical applications of conjoint analysis or discrete choice models the 
attributes are usually taken to be discrete, i.e. only a finite number of levels is 
used for each attribute. This entails that for continuous attributes some of the 
infinite possible levels have to be chosen for inclusion in the model while all 
others have to be neglected. Modeling the influence of such continuous 
attributes on evaluations or choices by some kind of known functional 
relationship, e.g. linear, quadratic or logarithmic, seems to be attractive because 
fewer parameters have to be estimated. Moreover, these models are likely to 
yield more reliable parameter estimates. Therefore, future research should 
consider the design problem for conjoint analysis and discrete choice models 
that incorporate both discrete as well as continuous attributes. Finally, further 
empirical research is needed to assess the practical benefits that can be 
achieved by the implementation of efficient designs. 
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is the selection of addresses fronz a mailing list. When the parameters of 
the model &scribing consumers’ reaction to a mailing are known, 
addresses for a future mailing can be selected in a profit-maximizing way. 
Usually, these parameters are unknown and have to be estimated. These 
estimates are used to rank the potential addressees ana’ to select the best 
targets. 

Several methods for this selection process have been proposed in the 
recent literature. All of these methods consider the estimation and 
selection step separately. Since estimation uncertainty is neglected these 
methods lead to a suboptimal decision rule and hence not to optimal 
prv#ts. We derive an optimal Bayes decision rule that fbllows from the 
firm’s profitjimction and which explicitly takes estimation uncertainty into 
account. We show that the integral resulting fivm the Bayes decision rule 
can be either approximated through a normal posteriol; or numerically 
evaluated by a Laplace approximation or by Markov chain Monte Carlo 
integration. An empirical example shows that indeed higher profits result. 
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1. INTRODUCTION 

Consider a firm engaged in direct marketing, which has to decide which 
households within a large population to send a mailing. In order to decide 
which households to target, it is of crucial importance for the firm to assess how 
the household’s response probability depends on its characteristics (demo- 
graphic variables, attitudes, etc.) known to the firm. If the effect of the 
characteristics on the response probability are known, potential addressees can 
be ranked and the most promising ones can be selected. 

Of course, these effects are unknown and have to be estimated. Typically, a 
firm specifies and estimates a response model based on a test mailing to get to 
know the effects of the characteristics on the response probability. Given the 
zero-one nature of the response variable in the simplest case, the logit model 
(and, to a lesser degree, the probit model) is frequently used for the purpose. 

Given the growing importance of direct marketing, there has been an upsurge 
in research in the field to extend the basic methodology. Roberts and Berger 
(1999) provide a recent overview of a wide variety of techniques for the 
purpose. More in particular, recent research includes the following. 

One issue is model selection. In the frequently occurring context of 
databases containing hundreds of variables, model selection is non-trivial. 
Levin, Zahavi and Olitsky (1995) propose an expert system, called AMOS, for 
the selection of variables to be optimally included in a model to predict 
customer behavior. 

Many papers have addressed the use of more sophisticated methods beyond 
logit or probit. Bult and Wansbeek (1995) explore the use of a non-parametric 
alternative (i.c., the Cosslett estimator) for the usual discrete choice model in 
order to obviate undue parametric assumptions. Another kind of flexibility is 
offered by a number of relatively new statistical techniques whose potential for 
target selection is increasingly explored, like neural networks, e.g. Zabavi and 
Levin (1995,1997), genetic algorithms, e.g. Ratner (1998) and Coates, Doherty 
and French (1999), and fuzzy logic, e.g. Openshaw (1996). Given the high 
noise-to-signal ratio in the typical direct marketing database, it is not yet clear 
whether the high level of sophistication offered by these methods will after all 
pay off in the field of target selection. 

An important but methodologically difficult aspect concerns the dynamics of 
customer relations. In most cases, a firm involved in direct marketing wishes to 
establish a lasting relation with its customers, calling for methods that 
somehow optimize over time. The most profound contribution here is by G&nil 
and Shi (1998), who use dynamic progr amming methods to optimize mailings 
to a database over time. G&nil, Rim and Shi (2000) employ a hazard function 
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approach to model intertemporal behavior of customers being sent catalogs, 
taking observed and unobserved heterogeneity into account. 

Often, the outcome of a mailing has a quantity component in addition to the 
zero-one-component, calling for an extension of selection methods such that 
some quantity of the order is taken into account, like the number of items 
ordered or the amount of donation made. This topic has, e.g. been researched 
by Bult and Wittink (19%), Otter, van der Scheer and Wansbeek (1999), and 
Jonker, Paap and Franses (2ooO). By way of other extensions, Bult, van der 
Scheer and Wansbeek (1997) and Spring, Leeflang and Wansbeek (1999) 
investigate various aspects of offer design on response. Koning, Spring and 
Wansbeek (2001) model selection taking secondary action (pay or not, return 
or not) into account after the primary action of ordering items after being 
triggered by direct mail. 

Anyhow, what most of these approaches have in common is essentially a 
model with estimates of the effects of variables on behavior. The estimates are 
used to formulate a decision rule to select households from a mailing list. 
However, this separation of parameter estimation and formulation of decision 
rules does not, in general, lead to optimal profits since a suboptimal decision 
rule is specified (Klein et al., 1978). 

The reason for this suboptimality is that estimation usually takes place by 
considering (asymptotic) squared-error loss, which puts equal weight at over- 
and under-estimating the parameters. However, while a squared-error loss 
function may be useful when summarizing properties of the response function, 
it completely ignores the economic objectives *of the marketing firm. Rather, 
the inferential process should be embedded in the firm’s decision-making 
framework, taking explicitly into account the firm’s objective of maximizing 
expected profit. Put differently, the decision maker should take the estimation 
risk into account when formulating a decision rule regarding which households 
to solicit. The loss resulting structure is, in general, asymmetric in contrast 
to the traditional squared-error loss structure. Consequently, the traditional 
methods thus yield suboptimal decision rules. 

The purpose of this paper is to formulate a strict decision theoretic 
framework for a marketing firm engaged in direct marketing. In particular, we 
derive an optimal Bayes rule deciding when to send a mailing to a household 
with a given set of characteristics. This formal approach has a number of 
advantages. First of all, a rigorous decision theoretic framework clarifies the 
essential ingredients entering the marketing firm’s decision problem. By 
deriving the optimal Bayes rule based on an expected profit loss function, the 
present framework yields admissible decision rules with respect to the 
marketing firm’s economic objective. Furthermore, the estimation uncertainty 
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resulting from the firm’s assessment of the characteristics of the population of 
potential targets is explicitly taken into account as an integral part of the 
optimal decision procedure. Thus, the decision theoretic procedure provides a 
more firm theoretical foundation for optimal decision making on the part of the 
firm. Equally important, the present framework provides decision rules 
yielding higher profits to the firm. 

Integration of the estimation and decision step has been studied thoroughly 
in statistics (e.g. Berger 1985, DeGroot 1970). This formal decision theoretic 
framework has been applied in a number of economic decision-making 
situations, including portfolio selection (cf. Bawa, Brown & Klein, 1979), real 
estate assessment (Varian, 1975), and agricultural economics (e.g. Lence & 
Hayes, 1994). For further economic applications see Cyert and DeGroot 
(1987). To the best of our knowledge, only one paper on optimal decision 
making under uncertainty has been applied to marketing questions (Blattberg & 
George, 1992). These authors consider a firm whose goal it is to maximize 
profits by determining the optimal price. They conclude that the firm is better 
off by charging a higher price than the price resulting from traditional methods, 
which are based on the estimated price sensitivity parameter. However, in 
contrast with our approach, they consider a loss function that results from a 
rather ad-hoc specified model, with only one unknown parameter. 

The paper is organized as follows. In the next section we formulate the 
decision theoretic framework and derive the optimal Bayes decision rule. We 
show that the decision rule crucially depends on the estimation uncertainty 
facing the firm. The estimation uncertainty can be incorporated through a 
posterior density. In Section 3 we derive a closed form expression for the 
integral resulting from the optimal decision rule by approximating the posterior 
by the asymptotically normal density of the maximum likelihood (probit) 
estimator. In Section 4 we discuss the Laplace approximation and Markov 
chain Monte Carlo integration, which can be used to calculate the integral of 
interest. In Section 5 we discuss an empirical example, using data provided by 
a charity firm. Applying the formal decision framework appears to generate the 
higher profits indeed. We conclude in Section 6. 

. 

2. THE DECISION THEORETIC FRAMEWORK 

Consider a direct marketing firm that has the option of mailing or not mailing 
to potential targets. In case a mail is sent to a given household the profit to the 
firm, IT, is given by 

n=rR-c, 
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where r is the revenue from a positive reply, c is the mailing cost, and R is a 
random variable given by 

1 R = if the household responds 
0 if the household does not respond. 

Clearly, c < r if the firm has to obtain positive profits at all. We assume that the 
response is driven by a probit model. Hence, the response probability of a 
household is I 

P(R = 1 IX, B) = @(x’B), 

where @( a) is the standard normal integral, x is a k x 1 vector of regressors and 
B is a k x 1 vector of regression coefficients (B E ??~I?). In case a mail is sent, 
the expected profit given x and B is 

E(nlx, B)=rE(RIx, B) - c=~@(x’B) -c. (1) 

With an unknown B, the firm has to make a decision whether to send a mail 
(d = 1) or not (d = 0) to a given household. The loss function considered in the 
following is given by 

m, PW= 
1 

r@(x’p)-c if d=l 
o if d=O. (2) 

Notice, that the above loss function is naturally induced by the firm’s economic 
profit maximization objective. In this sense, the present decision theoretic 
framework naturally encompasses the phenomena of estimation uncertainty, 
without introducing rather ad hoc statistical criteria. 

Inference on the parameter vector B is obtained through a test mailing, 
resulting in the sample 

Sn= Itx,,R,), . . . 1 t-~&)1. 
The posterior density, using Bayes’ rule, is given by 

where L(B I S,) is the likelihood function corresponding to the sample, 

(3) 

I;(p I S”) = J-J @(T@)“f 1 - @(x$3))’ -R,, 
i=l 
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and f@ IO) denotes the prior density, 0 EB@’ is a p x 1 vector of 
hyperparameters. Finally, f(S, I f3) denotes the predictive density given by 

f(S.lW= UP 1 TJf (B I@ 43. 

The posterior risk corresponding to the loss function (2) is then given by 

R(d I x) = E(L(d, l3 Ix) I S,) 

rJ@(x’P)f(PISn, f3) dp -c if d=l = 
0 if d=O. 

(4) 

(5) 

The Buyes decision rule corresponding to the posterior risk (5) is the decision 
variable d maximizing 2I(d I x). It is easily seen that this decision rule is given 
by 

d=l if and only if WP)f ((3 I Sn, 0) dP 2;. (6) 

Notice that this decision rule explicitly takes into account the estimation 
uncertainty inherent when the firm does not know the parameter vector p. In 
general, we denote by the mailing region a subspace of Rk containing vectors 
x corresponding with households to whom a mailing should be sent. According 
to the above, the Bayes optimal mailing region is given by 

The structure of the mailing region may, in general, be quite complicated. 
It is often recommended m base the firm’s mailing decision on the point 

estimates obtained from the test mailing. These point estimates are typically 
derived by implicitly assuming a squared-error loss function, resulting from the 
use of standard estimation procedures. As this squared-error loss does not 
reflect the actual loss suffered by the firm, using the point estimate motivated 
by squared-error loss will be inappropriate. If the firm neglects the estimation 
uncertainty it would specify a decision rule based on a point estimate of p, say 
@, e.g. the probit estimator based on S,. The point estimate then is used as if 
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it is the true parameter value (e.g. Bult and Wansbeek, 1995). The resulting 
decision rule, which we call the naive decision rule, is thus given by 

d=l if and only if (7) 

This rule evidently ignores the estimation uncertainty surrounding 0. Indeed, 
by a second order Taylor series expansion of @(x’B), we obtain 

wa) =@(x$) + (p - wxwg> - ; x’&(x’&.xyp - &p - fl)‘x, 
using the fact that the derivative of 4(t) is - t+(f), where c$( a) is the standard 
normal density. Hence, an approximate Bayes decision rule is given by, 

where M = E@ - p)(o - B)’ denotes the mean square error matrix of the 
estimator 0. The major difference between the (approximate) Bayes rule (8) 
and the naive rule (7) is that estimation uncertainty is explicitly taken into 
account in the former. Evidently, if the estimation uncertainty is small, i.e. A4 
is small, the approximate Bayes rule (8) is adequately approximated by the 
naive decision rule (8). Notice that the mailing region for the naive rule is the 
half space given by 

The result of applying the naive decision rule is thus to approximate the 
mailing region LMri by the halfspace L&. As will be demonstrated below this 
approximation may be rather crude, resulting in a suboptimal level of profits. 

In order to implement the optimal decision rule (6), we need to evaluate the 
expectation of @(x’B) over the posterior density of @. If the posterior admits a 
closed form solution and is of a rather simple analytical form, this expectation 
can be solved analytically. Otherwise, numerical methods need to be 
implemented in order to assess the decision rule (6). In Section 4 we explore 
various numerical strategies for evaluating the decision rule. However, it is 
instructive to consider the case where the posterior density is normal, in which 
case we can fully characterize the mailing region. 
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3. THE CASE OF A NORMAL POSTERIOR 

If the posterior density is normal with mean u and covariance matrix Q we can 
obtain a closed form expression’for (6), namely* 

= E,(@(x’P)) where l3 - N(~.L, a) 

= E,(@(x’Q”% +x’ p)) where b = C’“(p - p) - N(0, Ik) 

= Wz4a,.w~~+.~,&) with z -MO, l), independent of b 

=W4L~p, (z - x’#‘*b) 

= P(z - x’@“b c x’ II) 

=@( (l+::&,*). 
Hence, the mailing region is given by 

(9) 

where 

Since in any practical situation CT&-, we assume y < 0 whenever the sign of y 
is relevant. Notice that, when Sz, > Sz,, 1 + x’R,x > 1 + x’&.x. Thus, since y c 0, 
greater uncertainty as to p implies that the mailing region expands. 

* We are indebted to Ton Steerneman for bringing the resultto our attention, and for providing this 
derivation. 



A Decision Theoretic Framework for Prvjit Maximization in Direct Marketing 127 

Expression (9) enables us to show explicitly that the Bayes decision rule 
generates higher expected profits than the naive decision rule. The expected 
profit (cf. (l)), in case mail is sent, is 

For all x in 5Va there holds, by definition, that q(x) >O. Since .%fG%t, it 
follows that the expected profit is lower for the naive decision rule. 

We consider this mailing region in somewhat more detail. The boundary of 
the mailing region .P& is given by 

[x~lw~lx’~=y(l’+x’~)~~] (11) 
We assume that R>O. By squaring and rewriting the argument of (11) we 
obtain 

x’(pp’ - y2n)x = y*, (12) 

which can be written as 
xlfpz(~-‘“pcLlfp/2 _ r2rk) f11/2X = 9. (13) 

Let 
. 

*,z 1nPP’~-1’2 
p’ cl-’ p 

A2=Ik-A I 

A s p’Q-‘p - y*; 

A, and A, are idempotent matrices of rank 1 and k - 1, respectively, A,A, = 0, 
and A, + A, = Zk. Hence, we can write (13) as 

~‘fl”~(hA, - y2A2)R1’% = y*. 

Let A, = z,z! and A, =.Z,Z;, so (z,, ZJ is orthonormal. Then 

G=AA, -y2A2 

= Az,z; - y2zzz; 
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Hence, the eigenvalues of G are - y* with multiplicity k - 1, and X with 
multiplicity one. The sign of X depends on fl, Informally speaking, for small 
values of Q X > 0, and for large values, X < 0. In the first case G has one positive 
and k - 1 negative eigenvalues. Due to ‘Sylvester’s law of inertia’ (e.g. 
Lancaster & Tismenetsky, 1985, p. 188), the same holds for p+’ - y*R. Hence, 
the matrix is indefinite and the boundary is a hyperboloid in the x-space. When 
the uncertainty as to Q is so large that A < 0, all eigenvalues of G are negative 
and (12) does not have a solution. Hence, all households should be included in 
the mailing campaign. 

We illustrate the mailing region is for k = 2, p’ = (1, l), y = -1, and 

Cl= u2 u12 

( 1 012 cr2 * 

Then, from (lo), the mailing region is 

.312,=(x,,x*lx,+x2~-~l+a*(x,+x2)+2a,~*x2), 
which reduces to the halfspace X, +x2 2-l if u* = uu = 0. The matrix in (12) 
becomes 

1 1 
=z1 ( 

-1 
I( 

2 - u* - u,* 0 1 1 
1 0 - (u2- u,2) I( -1 1 i (14) 

Hence, the matrix p+’ - y2R has one negative eigenvalue, - (a* - a,,), and 
one eigenvalue that is positive if u* + u,* c 2. Using (14), (12) can be rewritten 
as 

(2 - u* - u&X, +x*)2 - (02 - u,*)(x, - x2)2 = 2, 
which is a hyperbola in R2. Its asymptotes are found by putting the left-hand 
side equal to zero. On letting 

these asymptotes are found to be 

(9(x, + $1 = f (x, - -4, 
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Fig. 1. The naive and Bayes optimal mailing region’compared. The area to the north- 
east of the straight line is 3f,, and the ellipsoids bound 3M, for various values of u*. 

or 

x2-1-4 and x2 l+cp 

Xl I+(9 
x,=l-cp. 

Figure 1 illustrates the boundary for (T,* = 0, and a* = 0, 0.5, 1 S, and 1.95, 
respectively. If o2 = 0 we have a straight line. This bounds the mailing region 
of the naive method or the mailing region increases as aZ increases; the arrows 
indicate the direction of the increase. When u2 2 2, the mailing region is simply 
IL!‘. The distance between the straight line corresponding with 02=0 and the 
hyperbola is larger when the x-value is larger. This reflects the fact that the 
uncertainty as to x’I3 increases by the (absolute) value of x. 
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4. NUMERICAL EVALUATION OF THE OPTIMAL 
BAYES RULE 

Numerical implementation of the optimal Bayes decision rule (6) requires the 
evaluation, for each value of X, of the integral 

(16) 

using (3) and (4) in the last step. We will now explore various methods for 
evaluating this integral. Henceforth, we denote the probit estimate of p, based 
on S,,, by b, and covariance matrix by fi (e.g. the inverse of the Fisher 
information matrix evaluated in fi). 

Normal Posterior Approximation 

It is well known that the posterior density converges under suitable regularity 
conditions to a normal distribution, with mean 0 and covariance matrix a 
when the sample size is sufficiently large (Jeffreys, 1967, p. 193, Heyde & 
Johnstone, 1979). Obviously, the approximation may be rather crude, since it 
is solely based on the asymptotic equivalence of the Bayes and maximum 
likelihood estimator. Thus, this approximation completely ignores the prior 
distribution f(p I t3). However, as we showed in Section 3, this property appears 
to be very valuable since it enables us to obtain a closed form expression for 
(1.5), which is given in (9) by substitution of b for p. and fi for fl Moreover, 
Zellner and Rossi (1984) showed that, for moderate sample sizes (n = lOO), the 
normal posterior approximation works well for the logit model. 

L&place Approximation 

A more refined asymptotic approximation is the Laplace approximation 
proposed by Tiemey and Kadane (1986) (see also Kass et al., 1988, and Tiemey 
et al., 1989). The Laplace approximation of (16) is given by 
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where &, and 0, are the maximizers of q,,(. ) and W,( . ), respectively, and 
*o(P) = UP 1 S”MP I@ 

*l(P) = ~ww@ 1 SMP 1 WY 
and 

fMP) = - a2 ln To(P) 
ww 

H,(P) = - a* ln WP> 
apap' . 

By means of the Laplace approximation, the integral Q(X) is thus evaluated 
without any need for numerical integration. Instead the Laplace approximation 
requires maximization, in order to determine &, and PI, and differentiation, in 
order to find H,,( a) and H,(a). For &, and 8, we use the values obtained by a 
single Newton-Raphson step from fi when maximizing In q,,(p) and In *r(p), 
which does not affect the rate at which the approximation error vanishes. As 
demonstrated by Tiemey and Kadane (1986), Kass et al. (1988), and Tiemey et 
al. (1989), the general error of the approximation vanishes at rate n-*. As these 
authors demonstrate, this approximation is often very accurate. 

We apply this approximation for an informative prior and an uninformative 
prior. As to the former we choose for f( p I 0) the normal density with mean fi 
and covariance matrix fi Since, a In f(P I@/@ = - &‘(p - b), we have 
p,, = 0, and in the Appendix we show that 

I%= B + sobY3(B)-1~~ (17) 
where c(. ) is a scalar function defined in (18). 

For the uninformative prior we use Jeffreys’ prior (e.g. Berger, 1985, pp. 82- 
89, and Zellner 1971, pp. 41-53) given by 

Notice that no hyperparameters are involved here. Within the context of binary 
response models this prior has been examined by, among others, Ibrahim and 
Laud (199 1). and Poirier (1994). These authors support the use of Jeffreys’ 
prior as an uninformative prior but notice that it can be quite cumbersome to 
work with analytically as well as numerically. 

Monte Carlo Integration 

The recent development of Markm chain Monte Carlo (MCMC) procedures 
has revolutionized the practice of Bayesian inference. See, for example, 
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Tiemey (1994), and Gilks et al. (1995) for expositions of basic Markov chain 
Monte Carlo procedures. These algorithms are easy to implement and have the 
advantage that they do not require evaluation of the normalizing constant of the 
posterior density, given by (4). As a candidate density it is natural to select the 
asymptotic approximation, q(p) -IV@, 0). The density of interest, the so- 
called target density, is given by 

w = GP 1 SMP 10). 
The independence sampler (Tiemey 1994) a special case of the Hastings- 
Metropolis algorithm, is used to generate random variates p,, j = 1, . . . , .I, from 
the (unnormalized) density h(P) through the following algorithm, where PO is 
arbitrarily selected: 

(1) draw a candidate point, pj*, from q( .) 
(2) draw uj from the uniform density on (0, 1) 
(3) if uj I o(pj- ,, p>, then pi = p: else pi = p,-, . 

Here 

else. 

The generated pj’s, j = 1, . . . , J are used to evaluate the integral by 

We use this algorithm instead of more advanced MCMC procedures, like the 
Gibbs sampler (e.g. Albert & Chib, 1993), since we have a candidate density 
that is a good approximation of the target distribution (Roberts, 1995). Again, 
we apply this algorithm for the (informative) normal prior and for the 
(uninformative) Jeffreys’ prior. 

. 

5. ILLUSTRATION 

We illustrate our approach with an application based on data from a charitable 
foundation in the Netherlands. This foundation heavily rests on direct mailing. 
Every year it sends mailings to almost 1.2 million households in the 
Netherlands. The dependent variable is the response/non-response in 199 1. The 
explanatory variables are the amount of money (in NLG) donated in 1990 
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(A90) and 1989 (A89), the interaction between these two (INT), the date of 
entry on the mailing list (ENTRY), the family size (FS), own opinion on 
charitable behavior in general (CHAR; four categories: donates never, donates 
sometimes, donates regularly, and donates always). The data set consists of 
40,000 observation. All the households on the list donated at least once to the 
foundation since entry on the mailing list. As a result, the data set does not 
constitute a random sample. It is not clear whether this induces any distortion 
in comparing methods. 

In order to have a sufficiently large validation sample we used 1,000 
observations for estimation. The response rate in the estimation sample is 
31.8%. This rather high response rate is not surprising since charitable 
foundations have in general high response rates (Statistical Fact Book 
1994-1995), and the mailing list consists of households that responded to this 
particular foundation before. The average amount of donation in the estimation 
sample is NLG 14.56, the cost of a mailing is NLG 3.50. We use the average 
amount of donation for household selection and to determine the profit 
implications. Table 1 gives the probit estimates and the average of the 
coefficients based on the independence sampler with the normal and Jeffreys’ 
prior, respectively. The donation in 1990 and 1989 are, as expected, positively 

Table 1. F’robit Estimates and Results of the Independence Sampler. 

Probit Estimates’ 
I  

Independence Sampleti 
Normal prior Jeffreys’ prior 

Constant -0.3938 
(0.45 11) 

A90 0.0052 
(0.0014) 

A89 0.0074 
(0.0030) 

INT -0.0056 
(0.0029) 

ENTRY -0.0063 
(0.0048) 

FS -0.1526 
(0.1408) 

CHAR 0.0683 
(0.0537) 

-0.3964 
(0.3120) 
0.0053 

(0.0010) 
0.0074 

(0.0021) 
-0.0057 
(0.0019) 

~.0063 
(0.0033) 

-0.1503 
(0.1003) 

0.0680 
(0.0371) 

-0.3948 
(0.4539) 

0.005 1 
(0.0014) 

0.0072 
(0.0030) 

-0.0053 
(0.0027) 

-0.wKi3 
(0.0048) 

-0.1513 
(0.1397) 
0.0685 

(0.0530 

’ Asymptotic standard errors in parentheses 
’ Standard deviation, based on J= 10,000, in parentheses 
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related with the response probability. The negative sign of the interaction term 
can be interpreted as a correction for overestimation of the response probability 
if a household responded in 1990 and 1989. The other three coefficients do not 
significantly differ from zero. As expected, the average value of the coefficients 
for the independence sampler are similar to the probit estimates. The standard 
deviations, however, of the normal prior are much smaller. 

The basic difficulty in MCMC procedures is the decision when the generated 
sequence of parameters has converged to a sample of the target distribution. 
Many diagnostic tools to address this convergence problem have been 
suggested in the recent literature (see Cowles & Carlin, 1996 for an extensive 
overview). Following the recommendations of these authors, we generated six 
parallel sequences of parameters with starting points systematically chosen 
from a large number of drawings from a distribution that is overdispersed with 
respect to the target distribution. We inspected the sequences of each parameter 
by displaying them in a common graph and in separate graphs. We used the 
Gelman-Rubin statistics (Gelman & Rubin, 1992) to quantitatively analyze the 
sequences. The results of these diagnostics are satisfying, indicating an almost 
immediate convergence of the sample. 

Table 2 shows the profit implications for the various approaches to determine 
the posterior risk function and the naive approach for the validation sample. As 
a benchmark we also give the situation in which the foundation sends all the 
households a mailing. Of these 39,000 households, 13,274 responded, 
generating a net profit of NLG 56,784. If the foundation would have used the 
naive selection approach they would have selected 87.03% (33,946) of the 
households, with a net profit of NLG 59,345. Using the Bayes decision rule, the 
foundation would have selected more households, as expected. This ranges 

Table 2. Target Selection and Profit Implications. 

No selection 
Naive approach 
Normal posterior 
Laplace approximation: 

Normal prior 
Jeffreys’ prior 

Independence sampler: 
Normal prior 
Jefkeys’ prior 

Number selected Response Actual profit (NLG) 

. 39ooo 13 274 56 7%4 
33 946 12 236 59 345 
34240 12 337 59 787 

34 018 12 250 59 297 
34 256 12 341 59 789 

34 153 12 310 59 698 
34 271 12 347 59 824 
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from 34,018 of the Laplace approximation with the normal prior to 34,27 1 of 
the independence sampler with Jeffreys’ prior. Except for the Laplace 
approximation with the normal prior, the additional selected households 
generate sufficient response to increase the net profits, reinforcing the 
importance of the Bayes decision rule. Net profits increase with 4.5% if the 
naive selection is used instead of selecting all the households. This percentage 
increases to 5.3% if we apply the normal posterior approximation, and to 5.4% 
when using the independence sampler with Jeffreys’ prior. Given that the 
foundation’s database contains 1.2 million targets, these increases turn out to be 
quite substantial. Notice that the figures of the Laplace approximation and 
independence sampler with the normal prior are much closer to those of the 
naive approach than those with Jeffreys’ prior. This makes intuitive sense since 
informative priors put more weight to values of l3 near fi. In the case of the 
posterior density degenerating at 8, i.e. perfect prior information on p, the 
decision rule is equivalent to the naive rule. 

6. DISCUSSION AND CONCLUSION 

In order to select addresses from a list for a direct mailing campaign, a firm can 
build a response model and uses the (consistently) estimated parameters for 
selection. The decision rule for selection is often defined on the basis of the 
estimated parameters taken as the true parameters. This paper shows that this 
leads to suboptimal results. The reason for this is that the estimation 
uncertainty resulting from the firm’s assessment of the characteristics of the 
potential targets is not taken into account. Put differently, both steps of a target 
selection process, estimation and selection, should be considered simultane- 
ously. We formulated a rigorous theoretic framework, based on the firm’s profit 
maximizing behavior, to derive an optimal Bayes decision rule. We demon- 
strated theoretically as well as empirically that this approach generates higher 
profits. 

An important aspect of our approach is the evaluation of the integral 
resulting from the Bayes decision rule. We used a normal posterior, Laplace 
approximation, and Monte Carlo integration to evaluate the Bayes rule 
numerically. Although the normal posterior approach may be rather crude it has 
the advantage that a closed form expression can be derived, and, moreover, it 
performs quite well in the empirical illustration. As a consequence of the 
former, we do not need the computational intensive methods. Moreover, we 
obtain a transparent expression for the .expected profit, which explicitly shows 
the effect of estimation risk. It has to be realized, however, that the empirical 
results indicate that the decision rule is affected by the chosen prior density. 
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Since the normal posterior approximation ignores the prior density, it has to be 
used with caution when prior information is available. 

This paper has some limitations. First, we considered only the question of 
selecting households for one direct mailing campaign. That is, we did not 
consider the long-term impact of the selection process. Second, we solely 
considered the binary response choice to the mailing and not the amount of 
money donated. Third, we made the implicit assumption that the parameters are 
constant across households. This assumption may be unrealistic in practice. It 
runs, for example, counter to the idea of trying to customize promotions 
through direct marketing. A company could deal with this kind of heterogeneity 
by using, for example, latent class analysis (DeSarbo & Ramaswamy, 1994; 
Wedel et al., 1993). We want to stress, however, that these assumptions are 
commonly made in direct marketing research. Furthermore, our method results 
from a general decision theoretic framework that can be extended, in principle, 
to situations that do suffer from these limitations, in a straightforward manner. 
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APPENDIX: ON THE LAPLACE APPROXIMATION 

We first prove (17), then we give the derivatives of Jeffreys’ prior. Let 

~3 In qO(p) 

where 4 E +(x’p), Q, = @(x’p), and 5 = - is the inverse of Mills’ ratio. Notice . a 
that g,( fi) = 0. Further, 

H,(p) t qJ+ +em 
a2 xx’ + WP) = 4x5 +x’P)n’ +&J(P). 
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Then fi, follows from the Newton-Raphson step 

8, = s +mwg,(~) 
= s + <&% +x’ fw’ + Kdw’sl(ls) 

1 = S+ 1 + g(g +x’~)x’H,@)-‘x Kl(fb’g,(cj) 

where g denotes 5 evaluated in 8, and 

SW = 
5 

1 + [(& +x’p>x’H,(p>)‘X (18) 

We will now derive the first and second derivative of Jeffreys’ prior, given by 

where 

with & = +(x#) and Di = ai( 1 - ai), where ai = @(x#). Using some well 
known properties of matrix differentiation (e.g. Balestra, 1976), we obtain the 
logarithmic first derivative 

61 In IA I”* 1 

w 
=$ ((vet A-‘)‘@ZI,)vec $ 

0 
Let 

M= vet IkG31k, 
then we can write, using the product rule for matrices, the second derivative 
as 
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Finally, to complete the derivatives we need an expression for aA/ap and a2A/ 
apap’, which are given by 

q&%$3)2 - 1) 5x#+:( 1 - 2q) + + 2+4 244 1 - + 2@$ 

Di D’ 

which enables us to calculate the derivatives of Jeffreys’ prior. 
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ABSTRiCT 

In this paper we consider a recently developed non-parametric econo- 
metric method which is i&ally suited to a wide range of marketing 
applications. We demonstrate the usefulness of this method via an 
application to direct marketing using data obtained from the Direct 
Marketing Association. Using independent hold-out data, the benchmark 
parametric model (Logit) correctly predicts 8% of purchases by those who 
actually make a purchase, while the non-parametric method correctly 
predicts 39% of purchases. A variety ot competing estimators are 
considered, with the next best moa& being semiparametric imiex and 
Neural Network models both of which turn in 36% correct prediction 
rates. 

1. INTRODUCTION 

Direct marketing is one of the myriad of ways in which firms attempt to get the 
highest return from their marketing dollar. This is achieved by targeting 
individuals who, on the basis of observable characteristics such as demograph- 
ics and their past purchase decisions, are most likely to be repeat customers. 
For example, one might think of mailing catalogs only to those who are highly 
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likely to be repeat customers or who most ‘closely resemble’ repeat customers.’ 
The success or failure of direct marketing, however, hinges directly upon the 
ability to identify those consumers who are most likely to make a purchase. 
This ‘identification’ typically takes the form of the statistical modeling of the 
‘likelihood’ or, strictly speaking, the probability that an individual makes a 
positive purchase decision. 

Parametric methods constitute the traditional statistical approach towards 
modeling the likelihood of a purchase decision. Simply put, parametric 
methods require one to specify the functional form of the model prior to 
estimation. However, the functional form which generated the observed data is 
unknown. If the parametric model you use is ‘close to the truth’ (i.e. is 
functionally close to the unknown process that generated the observed data) 
then your predictions will be good; however, if you choose an inappropriate 
parametric model then your predictions may be no better than an unconditional 
guess. Common parametric approaches towards modeling a purchase decision 
would include the Logit and Probit models, for example, and these models are 
often referred to as ‘parametric index models’. 

Recent semipurumetric developments such as the semiparametric single- 
index model of Ichimura (1993) (see also the related papers by Ichimura & 
Lee, 1991 and Ichimura & Thompson, 1998) extend parametric index models 
by combining a parametric index function with a data-driven estimator of the 
probability function, while earlier semiparametric index-based methods such as 
Manski’s (1975) Maximum Score method take a robust ‘least-absolute- 
deviation’ approach to this problem. While more flexible than their fully 
parametric counterparts, the need to specify a parametric component leaves 
semiparametric approaches susceptible to the same critique that is levied 
against fully parametric approaches. 

Non-parametric methods, on the other hand, allow the data themselves to 
fully determine the model. They make fewer assumptions and are more 
complex than their parametric counterparts, while they typically require more 
data if they are to attain the same degree of precision as a correctly spec$ed 
parametric model. However, when non-parametric methods are applied to a 
number of datasets they often yield better predictions than those obtained from 
commonly applied parametric models which is simply a reflection of the 
presence of some degree of parametric misspecification. 

Unfortunately, traditional non-parametric methods do not handle categorical 
variables in a satisfactory manner, and marketing databases frequently contain 
a mix of categorical and continuous variables.* Fortunately, recent develop- 
ments in non-parametric methods permit one to handle categorical variables in 
a natural manner and frequently beat common parametric models when gauged 
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by their predictive ability again reflecting the presence of some degree of 
parametric misspecification. 

In this paper we assess the predictive performance of a variety of models 
which are commonly used to predict consumer choice relative to the recently 
developed non-parametric method of Racine and Li (2001). This latter non- 
parametric approach allows one to directly model the purchase decision 
probability without requiring specification of a parametric model, while it 
admits mixed data types and is fully data-driven. The comparison group of 
models includes parametric, semiparametric, and also Neural Network 
models. 

We use an industry-standard database obtained from the Direct Marketing 
Association3 This database contains data on a reproduction gift catalog 
company, “an upscale gift business that mails general and specialized catalogs 
to its customer base several times each year”. The base time period covers the 
period December 1971 through June 1992. Data collected included orders, 
purchases in each of fourteen product groups, time of purchase, and purchasing 
methods. Then a three month ‘gap’ occurs in the data after which customers in 
the existing database are sent at least one catalog in early Fall 1992. Then from 
September 1992 through December 1992 the database was updated. This 
provides an ideal database on which models can be constructed for the base 
time period and then evaluated on the later time period. We randomly select 
4,500 individuals from the first time period, and we focus on predicting the 
likelihood of a consumer purchase using a var$ty of modeling strategies. We 
then evaluate the predictions of the various models on the independent hold-out 
sample consisting of 1,500 randomly selected individuals drawn from the later 
time period. The use of separate estimation and evaluation datasets permits 
us to gauge the predictive ability of each of the various approaches. We 
demonstrate how the new non-parametric econometric method is capable of 
outperforming a variety of methods which have been used to model consumer 
choice thereby enabling firms to get the highest possible return from their 
marketing dollar. 

Parametric models for the prediction of binary outcomes have been applied 
in the marketing literature for such things as the prediction of brand choice 
(Bunch & Batsell, 1989) and the testing for market structure (Kannan & 
Wright, 1991). In line with the application considered in this paper, Bult (1993) 
has considered semiparametric classification models using Manski’s (1975) 
approach and has assessed their performance in the context of direct marketing, 
while related issues such as profit ‘maximization in a direct marketing 
framework are addressed in Bult and Wansbeek (1995), Gijntil and Shi (1998) 
and Muus, van der Scheer and Wansbeek (2001), and the references therein. 
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The success or failure of any approach towards profit maximization depends on 
ones’ ability to identify those most likely to make purchases, hence the 
approach considered herein has important implications for such lines of 
inquiry. 

The remainder of the paper proceeds as follows. Section 2 outlines the 
conventional parametric models which are often used to predict consumer 
choice, while Sections 3-6 outline the semiparametric, Neural Network, and 
nonparametric estimators applied in this paper. Section 7 contains a discussion 
of the pros and cons of parametric vs. non-parametric approaches. Section 8 
presents the details of the application including descriptions of the two 
datasets, summaries of model performance, and a discussion of the results, 
while Section 9 concludes with a brief discussion of the broader utility of the 
non-parametric approach considered herein. Estimation summaries for all 
models appear in the appendices. 

2. PARAMETRIC MODELS 

We briefly summarize two common parametric models which are frequently 
used to predict consumer choice. For an excellent survey on this literature we 
direct the interested reader to Ameniya (198 1) and McFadden (1984) and the 
references therein. Of course, those familiar with these models may wish to 
skip this section and proceed directly to Section 6. 

Let YE R be a random variable whose outcome will be conditioned on the 
random variables X’ = (Xi, . . . , X,) E Rp. For the present case Y represents the 
purchase decision and X the observed factors that may influence this decision. 
Interest lies in the conditional prediction of Y where 

Y= 
1 if a purchase is made, 
0 otherwise. 

We define the conditional probabilities associated with Y as 

PrfY= 1 Ix] = F(X, p) 

Pr[Y=OIX] = 1 - F(X, p), 

where F( .) is a particular parametric distribution function and l3 a vector of 
unknown parameters. This model is often summarized by the probability 
function 

f0) =m PI-Y1 - m P))’ -y, YE{@ 11, 
where y and x are realizations of the random vectors Y and X respectively. 
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The standard model for this setting is the binomial probability model which 
is often called a binary choice model since the dependent variable takes on only 
two values (non-purchase/purchase). The binomial probability model is usually 
written as 

yi = E[yi I Xi] + (yi - E[yj I Xi]) (1) 
= F(& PI + &jr i= 1,2, . . . , n, 

where the subscript i denotes a particular individual of which we observe n and 
where E[ . I a] denotes a conditional expectation. 

The parametric approach to estimating such probability models requires that 
one specify both the probability function F( .) and the nature of the relationship 
between the variables X, the parameters p, and the variable being predicted, I! 
The typical parametric specification is linear and additive in X, hence we 
express this as the linear combination given by the scalar ‘index’ X’p ER, 
while the most popular probability functions are the ‘Gaussian’ (‘Normal’) 
leading to the ‘Probit’ model and the ‘Logistic’ leading to the ‘Logit’ model. 

The F’robit model uses the normal cumulative distribution function defined 
as 

I 

4B 
F(x$3) = +fW & 

where F(xj.3) represents the normal cumulative distribution function (CDF) and 
where . 

1 ~ -?I2 f(O=6e , 

which is the standard normal density function. 
The Logit model, on the other hand, uses the Logistic distribution given by 

1 
F(x$3) = ~ 1 +e-“:B’ 

These models are typically estimated via the method of ‘maximum 
likelihood’. Having estimated the model’s parameters which we denote by & 
we can then generate a prediction of the probability that an unseen individual 
with characteristics $ will make a purchase by simply computing F($b) 
which represents the estimated probability that individual i makes a purchase. 
If F(.$fi)>OS then the model predicts that it is more likely than not that a 
purchase will be made, and of course one may well use a higher decision 
threshold if so desired. 
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3. SEMIPARAMETRIC INDEX MODELS 

As was the case for the Probit and Logit models, Ichimura’s (1993) 
semiparametric single-index estimator is also based on the model outlined in 
Eq. (I), though at first glance the estimator models a conditional expectation 
and not a conditional probability. However, for the application at hand where 
YE { 0, 1 ), the conditional expectation (ELy, IX;, B]) is also equal to the 
conditional probability (F(x,, B)) since, by definition, for discrete outcomes 

E[y,Ix,, B]=OxPrly,=OIx,]+l xPrlyi=lIxi] 

= 0 x (1 - F(x,, B)) + 1 x F(& B) 

=F(xi, PI* 

(3) 

Motivated in part by the desire to reduce the dimensionality of the conditioning 
information, Ichimura (1993) proceeds by assuming that F(x,, B) = F(xj3) as is 
done for linear index parametric models! Motivated also by the non-parametric 
literature on the estimation of conditional expectations (see Pagan and Ullah 
(1999, Ch. 6)), Ichimura (1993) proposes estimating Ely,Ix]B] (F(xj3)) by 
kernel methods. The kernel estimator is given by 

” 

c Yifa’P, X’P, h) 
&ylx’p] = i=I, 

c K(xi'P9 xP,  h, 

i=l 

(4) 

where K( .) is simply a function that satisfies particular ‘regularity’ conditions 
such as that in Eq. (9) below. 

Having estimated the semiparametric index model defined in Eq. (4), we 
observe that, in this setting, ,!Q Ix”B] is a non-parametric probability estimate 
which is again analogous to F(xp’p) outlined in Section 2, and again, as in 
Section 2, if &V IxO’B] > 0.5 then the model predicts that it is more likely than 
not that a purchase will be made. 

For the application in Section 8, we shall use the cross-validation approach 
outlined below to select both the smoothing parameter h and the index 
coefficients B (see Section 6 for details). 

4. SEMIPARAMETRIC MAXIMUM SCORE MODELS 

Bult (1993) considered the performance of a parametric Logit model relative to 
Manski’s (1975) Maximum Score method, and is the first article in direct 
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marketing that uses semiparametric methods. The maximum score approach 
considered by Bult (1993) uses a robust ‘least-absolute-deviation’ semipara- 
metric index estimator. Assuming the existence of a linear index, ~$3, the model 
assumes that 

xj3 = 
> 0 if the probability of a purchase > 0.5, 
< 0 otherwise. 

(see Bult (1993, p. 382)). The method involves first creating a new variable 
taking on the value yT = 1 if a purchase is made and yT = -1 otherwise, and then 
maximizing the score function defined as 

S(P) = i siCP) = i YT w@lP) (5) 
i=l i=l 

where sgn(z) takes on the value 1 if z>O and -1 otherwise. It can be seen that 
incorrectly classified predictions will yield yT sgn(xJ3) = -1 while correctly 
classified ones will yield y7 sgn(Q3) = 1, hence this score function explicitly 
attempts to maximize the number of correctly classified cases in the training 
sample and minimize the number of incorrectly classified ones subject to the 
limitations of the parametric index function x$. 

Having estimated the parameter vector fi, wecan then generate a prediction 
that an unseen individual with characteristics $’ will make a purchase by simply 
computing $‘fi. If sgn(xyp)>O then the model predicts that it is more likely 
than not that a purchase will be made. 

Due to the well-known potential for this approach to become ensnared by the 
presence of local minima, 10s restarts of the search algorithm were conducted 
based on different random parameter values in an attempt to avoid their 
presence. 

5. NEURAL NETWORK MODELS 

Neural Network models have been used to successfully model a wide range of 
phenomena (see, for example, White & Racine, 2001) for an application to 
modeling exchange rates and the references therein). As was the case for the 
semiparametric index model, we shall use the Neural Network to estimate 
the conditional mean defined in IQ. (3) which, as noted, coincides with the 
conditional probability in this instance. We consider a single hidden layer feed- 
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forward network with u hidden neurons in the ‘middle’ layer, p inputs in the 
‘input’ layer, and one output in the output layer which can be expressed as 

where Jr( .) is known as a ‘transfer function’ while (Y and p are known as the 
‘network weights’. 

For our application we use the Logistic CDF transfer function frequently 
found in applied work which is defined in Eq. (2). We refer the reader to Chen, 
Racine & Swanson (2001) and the references therein for examples of other 
transfer functions which are used in applied work. Letting 6.1 = (a, p), we train 
the network using a least-squares method by solving the supervised learning 
problem 

min c 01 -fcG w>Y, 0 + 

and the weights which solve this problem are denoted by 6 (see White (1989) 
for further details). We select the appropriate number of hidden units u using 
the Schwarz Information Criterion (SIC) (Schwarz (1978), Judge, Hill, 
Griffiths, Liitkepohl & Lee (1988, p. 848-849)). 

Having determined the appropriate network architecture (i.e. number of 
hidden units, U) and having solved Eq. (7) to obtain the weights for this 
network, we can interpret@‘, &) in this setting as a non-parametric probability 
estimate which is again analogous to F($‘b) outlined in Section 2, and again, 
as in Section 2, if f(p, Q) > 0.5 then the model predicts that it is more likely 
than not that a purchase will be made. 

6. NON-PARAMETRIC MODELS 

The appeal of non-parametric estimation methods stems from the fact that they 
allow the data to model the relationships among variables, are robust to 
functional form specification, and have the ability to detect structure which 
sometimes remains undetected by traditional parametric estimation techniques. 
We briefly present an outline of the nonparametric estimator of a conditional 
density with mixed data types in a general framework as is done in Racine & 
Li (2001). The difference between the general estimator described below and 
that used in this paper will lie in the dimensionality of Y which, for the 
application considered in this paper is a scalar, and in the specific data types 
found in the Direct Marketing Association database. 
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Let Y’=(Y,, . . . , Y,) EIW~ be random variables whose outcomes will be 
conditioned on the random variables X’ =(X,, . . . , X,) E l??. We let qd and qC 
denote the number of categorical and continuous variables in Y respectively 
with qd + qC = q. We arrange the data with the qd categorical data types appearing 
first followed by the qC continuous ones so that yl=(yi,, . . . , yiq) = 
bil, . * . 1 Yiq,g Yiq,+I* * * . 9 YQd+qr)’ with corresponding smoothing parameters 
I(=(&, . . . , h$=(h;, . . . , hY,, &,+,, . . . , l$d+qc). Again we let y’= 
6% * . . 7 Yq)‘6b . . . 7 Yqg Yqd+l, . . . 9 ye+3 denote a vector-valued point at 
which an object is to be estimated. Finally, let h: = (4, . . . , 5,) = (h;, . . . , hxpd, 
qd+,, . . . , /$+,) be the smoothing parameters associated with X and let 
h’ = v$ u = (h, . . . 7 hpd+p,+qd+q) 

A multivariate product kernel for the random variables (Y, X)’ = (Y,, . . . , Y,, 
XI,..., X,) consisting of mixed categorical and continuous data types would 
be given by 

e %i+qc Pd Pd+PL = n ‘6’~ Yj, y) I-J K(Y,, Yj, v) n K(+ xj, hJ n K(x,, ~1, II;), 
j=l j=q,+l j=l j=pd+ I 

where the kernel functions appearing in the first and third products are 
categorical and those in the second and fourth products are continuous, while 
one for the random variables X ’ = (XI, . . . , X,) consisting of mixed categorical 
and continuous data types would be given by 

c 

K(Xi9 Xv h,) = fi K(X@ Xj, 4) ‘fi K(Xij, Xj, &), 

j=l j=p,+ I 
(8) 

where the kernel functions appearing in the first product are categorical and 
those in the second are continuous. 

These kernel functions are simply functions that satisfy particular ‘reg- 
ularity’ conditions. For unordered categorical variables we use the kernel 
function of Aitchison and Aitken (1976) given by 

1 -h if lxi-xjl=O, 
&Xi, xj, h) = 

i- 

h 
c-1 

if Ix,-~~121, 
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where c is the number of ‘categories’ that X can assume, while for ordered 
categorical variables we use the kernel that can be found in Ahmad and Cerrito 
(1994) given by 

[l-h if hi--xjl=O, 

For continuous variables we use the Epanechnikov kernel function5 given by 

&xi, xi, h) = 

10 
otherwise. 

Letting K( .) be the kernel function defined in Eq. (8), the kernel estimator of 
the conditional probability density function (PDF) of Y given X denoted fO, Ix) 
is given by 

n 

c Kofiv Xir Yv & hy h.J 
jyylx)= i=’ ” , 

c K(xi, x, hJ 
i=l 

with the same vector of smoothing parameters h, used in both the numerator 
and denominator. Properties of this estimator including rates of convergence 
and asymptotic normality can be found in Racine and Li (2001), while for a 
general recent treatment of a host of issues concerning non-parametric kernel 
estimators we highly recommend Pagan and Ullah (1999). 

When Y is a univariate binary variable as is the case in this paper, f(y I x) is 
simply an estimate of the probability associated with the realization y in light 
of the observable characteristics x. That is, 30, lx) is a non-parametric 
probability estimate which is analogous to F(xp’B) outlined in Section 2. One 
difference is that, by construction, the parametric estimate F(xyB) repre- 
sents the probability that Y= 1, while the non-parametric estimates ](Olx’) 
measure the probability that Y= 0 and J( 1 Ix) the probability that y = 1. But 
again, as was the case in Section 2, if f( 1 I x0) > 0.5 then it is more likely than 
not that a purchase will be made. 

It is well known in the non-parametric literature that one can use any kernel 
function satisfying the required regularity conditions, while the choice of the 
smoothing parameters is the crucial factor underlying the estimator’s 
performance. 
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6. I. Smoothing Parameter Selection 

The judicious selection of the smoothing parameters is the most important 
factor underlying the estimator’s performance. We elect to use a fully automatic 
method of smoothing parameter selection that has a number of desirable 
features. This is the so-called ‘cross-validation’ method. Essentially, cross- 
validation methods are used to select models which should perform well on 
unseen data. For the case where all variables are continuous, the interested 
reader is referred to Silverman (1986, p. 52) and the references therein, while 
for mixed data types the interested reader is referred to Racine and Li (2001) 
and the references therein. 

7. PARAMETRIC vs. NON-PARAMETRIC METHODS: 
DISCUSSION 

Non-parametric kernel-based techniques do not presume that one knows or can 
correctly guess the unknown functional form of the object being estimated, in 
this case a conditional probability. Rather than presuming that the functional 
form of this object is known up to a few unknown parameters, we instead 
substitute less restrictive assumptions such as existence and ‘smoothness’ for 
the assumption that the parametric form of, say, a density function is known 
and equal to, say, (~Tu*)-‘~ exp( - (X - p)*/2a*) which happens to be one of 
the parametric assumptions underlying the Rrobit model given in Section 2. 
The advantage of non-parametric methods is that they are ‘consistent’, meaning 
that, as your ‘information’ (data) grows, you will continue to get closer to the 
true model. This feature is not shared by common parametric models, that is, 
if your parametric model is incorrect then no amount of data will overcome this 
deficiency. Of course, if you know the functional form up to a few unknown 
parameters (say, j.r, and a2) then you will always do better by using parametric 
techniques. However, in practice these forms are rarely if ever known, and the 
unforgiving consequences of parametric misspecification are well known 
having been mentioned in Section 1. 

Since non-parametric techniques assume that less is known about the object 
of interest being estimated, they are therefore slower to converge to the 
unknown object being estimated than a correctly speci$ed parametric model. 
However, as is the case here, it is often surprising how non-parametric 
approaches reveal structure in the data which is missed when one uses popular 
parametric specifications found in the applied literature. Non-parametric kernel 
methods are therefore best suited to situations in which one knows nothing 
about the functional form of the object being estimated, and the researcher is 
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not constrained by a limited number of data points, i.e. an unreasonably small 
sample. Both of these conditions are met by a variety of marketing databases, 
hence this would appear to be an almost ideal setting for the successful 
application of non-parametric methods. 

8. ‘NEW AND IMPROVED’ DIRECT MARKETING 

8.1. Data Description 

We have two independent estimation and evaluation datasets of sizes n, = 4,500 
and n2 = 1,500 respectively having one record per customer. We restrict our 
attention to one product group and thereby select the middle of the fourteen 
product groups, group eight. The variables involved in the study are listed 
below, while their properties are summarized in Tables 1 and 2. 

Table 1. Summary of the Estimation Dataset (n, = 4,500). 

Variable Mean Std Dev Min MaX 

Response 0.09 0.28 0 1 
LTDFallOrders 1.36 1.38 0 15 
LastPurchSeason 1.62 0.53 -1 2 
Orders4YrsAgo 0.26 0.55 0 5 
LTDPurchGrp8 0.09 0.31 0 4 
DateLastPurch 37.31 27.34 0 117 

Table 2. Summary of the Evaluation Dataset (n2 = 1,500). 

Variable *Mean Std Dev Min MaX 

Response 0.08 0.27 0 1 
LTDFallOrders 1.32 1.38 0 14 
LastPurchSeason 1.63 0.51 -1 2 
Orders4YrsAgo 0.25 0.52 0 4 
LTDPurchGrp8 0.08 0.29 0 3 
DateLastPurch 36.44 26.95 0 116 
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(1) Response - whether or not a purchase was made 
(2) LTDFallOrders - life-to-date Fall orders 
(3) LastPurchSeason - the last season in which a purchase was made6 
(4) Orders4YrsAgo - orders made in the latest five years 
(5) LTDPurchGrp8 - life-to-date purchases 
(6) DateLastPurch - the date of the last purchase7 

A quick look at Tables 1 and 2 reveals that both the estimation and evaluation 
datasets are similar in terms of their moments. For example, 8% of individuals 
in the evaluation dataset make a purchase which is similar to the 9% for those 
in the estimation dataset. It is important to note that the data summarized in 
Table 2 is not used to estimate models, therefore a comparison of the 
performance of various models on the evaluation data is exucrly the comparison 
that is of interest to practitioners. 

8.2. An Unconditional ‘Benchmark’ Model 

We begin with an ‘unconditional’ model in which we simply examine 
predictions based on the unconditional purchase probabilities for the estimation 
data. This model will serve as a benchmark by which we can assess the value- 
added by the ‘conditional’ approaches outlined in Sections 2-6. 

Unconditionally, the likelihood that an individual makes a purchase is 8.8%, 
so the unconditional prediction for an individual drawn at random from the 
evaluation dataset would be that they would not make a purchase which would 
yield a correct prediction 92.2% of the time. The ‘confusion matrix’ ’ for this 
unconditional model is given in Table 3. We also report the measure of 
predictive performance suggested by McFadden et al. (1977) which was also 

Table 3. Confusion Matrix and Classification Rates for the Unconditional 
Model. 

Predicted Non-purchase Predicted Purchase 

Actual Non-purchase 1383 0 
Actual Purchase 117 0 

Predictive Performance: (McFadden et al. (1977)) 
CCR: Overall correct classification rate 
CCR(N): Correct non-purchase classification rate 
CCR(P): Correct purchase classification rate 

91.59% 
92.20% 

100.00% 
0.00% 
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analyzed by Veal1 and Zimmermann (1992 ) and found to have good predictive 
performance defined as pl, +p2* - pi, - p:, where pij is the ijth entry in the 2 x 2 
confusion matrix expressed as a fraction of the sum of all entries. 

As can be seen from Table 3, though the model might appear to be doing 
well according to the overall classification rate (CCR = 92.2%), this is not what 
a direct marketer would be interested in. Unconditionally (i.e. ignoring the 
explanatory variables 6-5), if you were to make a guess about whether or not 
a given individual would make a purchase, you would guess that they would 
not, that is, you would predict zero sales! Of course, a direct marketer would 
be primarily interested in the accurate prediction of those who actually make a 
purchase which is given by the ‘Actual Purchase’ row (117 0). That is, in 
addition to the overall correct classification rate, one is interested in the 
question “how many of our actual customers did we foresee making 
purchases?’ Given that the diagonal element of this row (0) tells us that we do 
not correctly predict a single purchase and the off-diagonal element (117) tells 
us that we incorrectly predicted every actual purchase, then this conditional 
model is of limited practical use. That is, though this unconditional model has 
a 92.2% overall classification rate, it has a ‘correct classification rate’ of 0% for 
purchases (CCR(P) = 0%). 

Conditional models, on the other hand, make use of variables 6-5 when 
forming their predictions. We expect, if the conditional models are adding 
value, that they would not only have higher overall correct classification rates, 
but would of course also have higher correct classification rates. We therefore 
begin with standard parametric models which have often been applied to the 
prediction of consumer purchases. 

8.3. Logit and Probit Parametric Models 

The Logit and Probit models outlined in Section 2 are perhaps the most widely 
used models for the prediction of categorical outcomes such as consumer 
purchases. The within-sample parameter estimates and summary information 
for each model can be found in Appendix A, while their confusion matrices are 
presented in Tables 4 and 5. 

As can be seen from examining Tables 4 and 5, these models fare better than 
the unconditional model in terms of their overall correct classification rates and 
their correct purchase classification rates, but perhaps not by as much as one 
might have expected. In particular, the Probit model correctly predicts only 3 
out of 117 purchases (2.6%) while the Logit model correctly predicts 9 out of 
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Table 4. Confusion Matrix and Classification Rates for the Probit Model. 

Actual Non-purchase 
Actual Purchase 

Predicted Non-purchase 

1383 
114 

Predicted Purchase 

0 
3 

Predictive Performance: (McFadden et al. (1977)) 
CCR: Overall correct classification rate 
CCR(N): Correct non-purchase classification rate 
CCR(P): Correct purchase classification rate 

91.82% 
92.40% 

100.00% 
2.56% 

117 purchases (7.7%). We now examine the predictive ability of a semipara- 
metric index model. 

8.4. Semiparametric Index Models 

We apply the approach of Ichimura (1993) outlined in Section 3 and present the 
confusion matrix in Table 6. Summary estimation information can be found in 
Appendix A.3. 

As can be seen from examining Table 6, this model fares much better than 
the Probit and Logit models in terms of its overall and correct purchase 
classification rates correctly predicting 42 out of 117 purchases (35.9%). 
model. 

8.5. Semiparametric Maximu; Score Models 

We apply the maximum score model outlined in Section 3. Summary 
estimation information can be found in Appendix A.4, while Table 7 presents 
the confusion matrix. 

Table 5. Confusion Matrix and Classification Rates for the Logit Model. 

Predicted Non-purchase Predicted Purchase 

Actual Non-purchase 1378 1 
Actual Purchase 108 9 

Predictive Perfornuutce: (McFadden et al. (1977)) 
CCR: Overall correct classification rate 
CCR(N): Correct non-purchase classification rate 
CCR(P): Correct purchase classification rate 

91.95% 
92.47% 
99.64% 

7.69% 
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Table 6. Confusion Matrix and Classification Rates for the Semiparametric 
Index Model. 

Predicted Non-purchase Predicted Purchase 

Actual Non-purchase 1361 22 
Actual Purchase 15 42 

Predictive Performance: ((McFadden et al. (1977)) 
CCR: Overall correct classification rate 
CCR(N): Correct non-purchase classification rate 
CCR(P): Correct purchase classification rate 

93.26% 
93.53% 
98.41% 
35.90% 

As can be seen from examining Table 7, this semiparametric maximum score 
model turns in a rather mixed performance. Its overall classification rate is the 
lowest among all models considered; however, it does a decent job of correctly 
predicting purchases. 

8.6. Neural Network Models 

We apply the Neural Network outlined in Section 5. Summary estimation 
information can be found in Appendix A.5, while Table 8 presents the 
confusion matrix. 

As can be seen from examining Table 8, this model fares a bit worse than the 
semiparametric index model summarized in Table 6 as it has a lower overall 
correct classification rate, though it clearly performs much better than the 

Table 7. Confusion Matrix and Classification Rates for the Maximum Score 
Model. 

. Predicted Non-purchase Predicted Purchase 

Actual Non-purchase 
Actual Purchase 

1342 41 
II 40 

Predictive Performance: ((McFadden et al. (1977)) 
CCR: Overall correct classification rate 
CCR(N): Correct non-purchase classification rate 
CCR(P): Correct purchase classification rate 

91.80% 
92.13% 
97.04% 
34.19% 
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Table 8. Confusion Matrix and Classification Rates for the Neural Network 
Model. 

Predicted Non-purchase Predicted Purchase 

Actual Non-purchase 1356 21 
Actual Purchase 75 42 

Predictive Petfortnauce: (McFadden et al. ( 1977)) 
CCR: Overall correct classification rate 
CCR(N): Correct non-purchase classification rate 
CCR(P): Correct purchase classification rate 

92.92% 
93.20% 
98.05% 
35.90% 

parametric models. Finally, we turn to a non-parametric kernel model to see 
whether or not moving to a fully non-parametric framework can further 
improve upon our ability to predict consumer purchases. 

8.7. Non-parametric Models 

We apply the non-parametric estimator outlined in Section 6. Table 9 presents 
the confusion matrix, and summary estimation information can be found in 
Appendix A.6. 

As can be seen from examining Table 9, this new non-parametric method has 
a higher overall and correct purchase classification rate than any of the 
competing approaches, and it correctly predicts 46 out of 117 (39.3%) of 
purchases. 

Table 9. Confusion Matrix and Classification Rates for the Non-parametric 
Model. 

Predicted Non-purchase Predicted Purchase 

Actual Non-purchase 1358 25 
Actual Purchase 71 46 

Predictive Petfornn-mce: (McFadden et al. (1977)) 
CCR: Overall correct classification rate 
CCR(N): Correct non-purchase classification rate 
CCR(P): Correct purchase classification rate 

93.35% 
93.60% 
98.19% 
39.32% 
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8.8. Discussion 

JEFFREY S. RACINE 

An examination of the performance of the parametric, semiparametric, and 
non-parametric approaches (Tables 4-9) reveals the following ranking of 
models in terms of their out-of-sample performance based upon the measure of 
McFadden et al. (1977) arranged from highest to lowest (correct purchase 
classification rates appear in parentheses); 

(1) Non-parametric (39.3%) 
(2) Semiparametric Index Model (35.9%) 
(3) Neural Network Model (35.9%) 
(4) Logit Model (7.7%) 
(5) Probit Model (2.6%) 
(6) Semiparametric Maximum Score Model (34.2%) 

For this application it is clear that the parametric models lag far behind the 
semiparametric index and non-parametric models in terms of their out-of- 
sample performance, thus a few words on the specification of parametric 
models are in order. In Section 1 we emphasized the fact that no model can 
outperform a correctly specijied parametric model. However, locating the 
correct parametric model for a given dataset remains an unsettled art, and we 
refer the interested reader to Learner (1978) and Manski and McFadden (1986) 
for further discussion. We wish to be clear that in no way are we claiming that 
non-parametric estimators will always outpelrform parametric models. How- 
ever, as we demonstrate here, non-parametric estimators may often outperform 
common parametric specifications which clearly reflects the presence of some 
degree of misspecification of the parametric models. Does a better parametric 
model exist? Almost certainly! How does one select the correct parametric 
model? Suffice it to say at this point that this issue remains unsettled, and in 
this light the appeal of non-parametric approaches is clear. 

The semiparametric index model performs better than the Logit and Probit 
models as expected as they all share a common linear index function, but the 
semiparametric model is more flexible in terms of the the assumptions that it 
makes regarding Pr[ Y= 11x1 (the conditional expectation in this case). The 
semiparametric index model performs better than the Neural Network model 
as it has a higher overall classification rate but the same correct classification 
rate. The non-parametric model, however, turns in the strongest performance in 
terms of its predictive performance (McFadden et al., 1977), overall correct 
classification rate, and its correct purchase classification rate, all of which 
exceed those for all models considered. The semiparametric maximum score 
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model, which has been used to model direct marketing (Bult, 1993) does not 
turn in a strong performance in this setting. 

Linear-index parametric approaches such as the Logit and Probit models 
remain the most commonly applied statistical methods in this setting, but we 
hope that the reader is convinced that the performance of a wide range of 
estimators including semiparametric index, Neural Network, and non- 
parametric approaches admits them as appealing alternatives for the prediction 
of consumer choice. 

We emphasize that many marketing application are ideally suited to non- 
parametric analysis. This is so since, first, we generally have no priors on 
functional forms that have generated consumer choice which places parametric 
methods at a bit of a disadvantage. Second, marketing databases often contain 
an abundance of data, and non-parametric methods are in their element when 
this is the case. Therefore, it is not surprising that, in this setting, we can 
outperform standard parametric methods, while it may be surprising to some 
that we even outperform powerful semiparametric and Neural Network 
methods when judged by their out-of-sample predictive ability. 

9. CONCLUSION 

We apply recently developed non-parametric methods to the prediction of 
consumer purchase behavior. It is seen how ,the new methods can result in 
significantly improved out-of-sample purchase prediction relative to standard 
parametric, semiparametric, and Neural Network methods. A few words on the 
potential applicability of this approach are in order. It is evident that any profit 
maximization strategy on the part of a direct marketer hinges on the ability to 
identify those most likely to make a purchase. Bult and Wansbeek (1995) 
consider how such predictions could be instrumental for profit maximization, 
while Gontil and Shi (1998) consider how such predictions could be used in a 
utility/profit maximization framework for potential customers/firms. Though 
such an exercise lies beyond the scope of the current paper, the non-parametric 
approach used herein may prove highly valuable in these settings. 

However, the non-parametric methods have a broader utility for the 
marketing community than even that presented herein and may be valuable in 
a wide range of settings not addressed in this paper. It is our sincere hope that 
these semiparametric and non-parametric methods spark the curiosity of all 
those interested in obtaining the highest possible return from their marketing 
dollar. 
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NOTES 

1. Bult and Wansbeek (1995), in a profit maximization framework, point out that in 
fact one might want to do the opposite thereby saving costs by avoiding repeated 
mailings to those who in fact are highly likely to make a purchase. Regardless of the 
objective, it is the ability to identify those most likely to make a purchase that has 
proven problematic in the past and is the focus of this paper. 

2. Examples of categorical variables would include preferences (like, indifferent, 
dislike), purchase decisions (buy, don’t buy), number of children and so on, while 
examples of continuous variables would include income, net wealth and the like. 

3. This database contains customer buying history for about 100,000 customers of 
nationally known catalog and non-profit database marketing businesses. 

4. Ichimura (1993) considers index functions of a general nature, but in practice the 
linear index is almost universally applied, hence we adopt this index specification for 
what follows. 

5. Note that we subsume the multiplicative (inverse) bandwidth l/h in the definition 
of the kernel function itself. 

6. This is recorded in the database as 1 if the purchase was made in January through 
June, 2 if the purchase was made in July through December, and -1 if no purchase was 
made. 

7. 12/71 was recorded as ‘O’, l/72 as ‘1’ and so on. 
8. A ‘confusion matrix’ is simply a tabulation of the actual outcomes versus those 

predicted by a model. The diagonal elements contain correctly predicted outcomes 
while the off-diagonal ones contain incorrectly predicted (confused) outcomes. A 
method that performs well relative to another could be detected by examining their 
respective confusion matrices; (i) the better performer would have a stronger diagonal 
(sum of the diagonal elements would be higher) and therefore a higher overall correct 
classification rate (CCR), and (ii) the better performer’would in addition be expected to 
show more ‘balance’ in both the diagonal and off-diagonal elements. 
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APPENDIX: MODEL ESTIMATION SUMMARY 

A. 1. Probit Model Estimation Summary 

PROBIT ESTIMATION 
Number of observations = 4500.00 R-squared = 0.126302 
Number of positive obs. = 393.000 Kullback-Leibler R-sq = 0.148880 

Mean of dep. var. = 0.087333 Log likelihood = -1134.93 
Sum of squared residuals = 3 13.82 1 

Fraction of Correct Predictions = 0.913556 

Parameter 
C 
Xl 
x2 
x3 
x4 
x5 

Standard 
Estimate Error 
-0.640230 0.096342 

0.178449 0.019207 
-0.315028 0.060194 

0.010375 0.053897 
0.011419 0.077655 

-0.017793 O.l4413OE-02 

t-statistic P-value 
-6.64536 ww 

9.29101 ww 
-5.23355 ww 

0.192492 [0.847] 
0.147045 [0.883] 

-12.3453 m-Jw 

A.2. Logit Model Estimation Summary 

LOGIT ESTIMATION 
Choice Frequency Fraction 
0 4107 . 0.9127 (coefficients normalized to zero) 
1 393 0.0873 

Number of observations = 4500.00 R-squared = 0.135567 
Number of positive obs. = 393.000 Kullback-Leibler R-sq = 0.1557 11 

Mean of dep. var. = 0.087333 Log likelihood = -1125.82 
Sum of squared residuals = 310.353 

Number of Choices = 9000 
Fraction of Correct Predictions = 0.914444 
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Parameter Estimate 
Cl -0.844080 
x11 0.308135 
x21 -0.58936 1 
x31 0.038611 
x41 0.021875 
x51 -0.041433 

Standard 
Error 
0.1816090 
0.0350990 
0.1202130 
0.105474 
0.144698 
0.345309E-02 

t-statistic 
-4.64778 

8.77910 
-4.90264 

0.366068 
0.151179 

-11.9989 

P-value 
[O.@-m 
ww 
ww 
[0.7 141 
[0.880] 
@.~I 

A.3. Semiparametric Index Model Estimation Summary 

Kernel function: Second Order Epanechnikov Kernel 
Number of observations: 4500 
Smoothing parameter: 0.912’8 
Coefficient for regressor 1: -0.0069 
Coefficient for regressor 2: 4.0755 
Coefficient for regressor 3: 0.0348 
Coefficient for regressor 4: -0.0043 
Coefficient for regressor 5: 2.0205 
MSE: 0.0527 
MAE: 0.1071 

A.4. Maximum Score Model Estimation Summary * 

Number of observations: 4500 
Intercept -0.023 1 
Coefficient for regressor 1: 0.1420 
Coefficient for regressor 2: 0.9814 
Coefficient for regressor 3: -0.0715 
Coefficient for regressor 4: 0.1785 
Coefficient for regressor 5: -0.3630 

A.5. Neural Network Model Estimation Summary 

Number of inputs: 5 
Number of training observations: 4500 
Number of neurons (SIC-optimal): 3 
Number of weights: 22 
MSE: 0.0527 
MAE: 0.1055 
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A.6 Non-parametric Model Estimation SummaT 

Kernel for ordered variables: Ahmad & Cerrito Kernel 
Number of observations: 4500 
smoothing parameter 1: 0.001 
smoothing parameter 2: 0.547 
smoothing parameter 3: 0.003 
smoothing parameter 4: 0.529 
smoothing parameter 5: 0.999 
smoothing parameter 6: 0.012 
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ABSTRACT 

Marketing researchers may be confronted with biases when estimating 
response coeficients of multiplicative promotion models based on linearly 
aggregated data. This paper demonstrates how to recover the parameters 
obtained with data which are aggregated irl a compatible way with such 
models. It provides evidence that the geometric means of sales and of 
prices across stores can be predicted with accuracy from their arithmetic 
means and standard deviations. Employing these predictions in a market- 
level model results in parameter estimates which are consistent with those 
obtained with the actual geometric means and fairly close to coeficients 
derived at the individual store level, 
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1. INTRODUCTION 

Much recent research has dealt with the measurement of promotion effects on 
retail sales (see, e.g. Blattberg & Neslin, 1990). Typically, these studies are 
based on the analysis of store-level weekly sales data (see, e.g. Blattberg & 
Wisniewski, 1989; Montgomery, 1997). However, the client companies of 
marketing research firms such as A. C. Nielsen or IRI do not usually have 
access to store-level sales and promotion data but rather to cumulative data 
such as sales at the market level and mean prices across stores. These linearly 
aggregated data are incompatible with the estimation of multiplicative models 
of sales response because nonlinear relations postulated at the individual (store) 
level do not extend alike to more comprehensive levels (e.g. chain, market) if 
basically a summing-up procedure to create the new variables is employed. In 
the case of a multiplicative model, one would need the geometric means of the 
variables to obtain parameters which are in accordance with the store-level 
model. 

Since such data are not available in general nor can be calibrated from 
sources at hand, market researchers frequently take on a more pragmatic point 
of view and postulate the same multiplicative model, e.g. the SCAN*PRO 
model (Wittink et al., 1988), at the aggregate level. The issue then arises to 
estimate the biases induced therefrom. Recently, Christen et al. (1997) 
analyzed these biases when the “true” model is a multiplicative model with 
constant slope coefficients across stores but with varying intercepts. They 
showed that the impact of promotion can be inflated substantially with market- 
level data, thereby falsely encouraging managers to run more promotions; they 
provided empirical evidence for these biases and developed a means to correct 
them based on simulations. The disadvantage of their correction method is the 
potential lack of generalizability. 

Instead of carrying out an ex-post correction of the parameters, the study at 
hand suggests: 

(i) predicting aggregated sales and price data which are compatible with the 
estimation of multiplicative store-level models; and 

(ii) subsequently employing these variables to estimate the model’s parameters 
at the market level. 

This is accomplished on the basis of market-level data and additional 
descriptive information about the variability of sales and prices across cross- 
sections. Dealing with the aggregation problem in such a way, the contribution 
of this study is two-fold: 
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(1) It shows that the actual geometric means of variables can be predicted with 
accuracy from their arithmetic means and their corresponding standard 
deviations when they are lognormally distributed. 

(2) It demonstrates that the parameter estimates of the response model 
obtained with the use of these predicted geometric means are consistent 
with those obtained when using actual geometric means. 

Empirical evidence is provided by analyzing scanning data on six brands 
belonging to two product categories in two European countries. 

The remainder of this article is organized as follows: The second section 
presents the issue and the proposed methodology, the third section reports the 
empirical analysis and the last one concludes the paper. 

2. THE ISSUE 

2.1. Relationships Between Multiplicative Models at Different Levels of 
Aggregation 

2.1.1. Model at the Store Level 
The issue of linear aggregation in a linear model has been discussed by Theil 
(1974). However, linear models have found limited applications in marketing; 
instead, marketing practitioners and academics have extensively used multi- 
plicative models of sales response to price changes and promotional activities 
due to their enhanced face validity. The SCAN*PRO model (Wittink et al., 
1988), for example, was developed by A. C. Nielsen to estimate price and 
promotion effects at the store level. In order to pinpoint the aggregation issue 
we make use of a simplified version of this model by concentrating on a single 
brand only, thereby neglecting potential cross-effects; further, we do not 
account for seasonal@. Thus the model takes on the following form: 

J 

sk,=LYk.P&.n yf;ll Vk, t 
j=l 

(1) 

Sk, : sales in store k in week t; 

Pk, : price relative to regular price in store k in week t; 

Fj!ir : dummy variable which takes on a value of 1 when store k runs 
merchandising supportj in week t (e.g. display, feature) and 0 
otherwise; 

CQ: parameter, varying across stores but constant over time, which may be 
interpreted as baseline sales in store k (0~~ > 0); 
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P? ‘/I: response parameters assumed constant across stores and time; 
l3 may take on any value, but is expected to be negative; it is 
interpreted as a price elasticity. 
~~20, but is expected to be greater than unity; it represents a sales 
increase due to promotional activity j. 

For presentational convenience we will assume J= 1 in the sequel and drop the 
index j since the consideration of more than one promotional variable does not 
add to the complexity of the problem. 

The SCAN*PRO model has been extensively applied (Bucklin & Gupta, 
1999). It assumes that the price elasticity l3 and the merchandising support 
multiplier y are constant across stores but that the intercepts ok vary across 
stores. Store-level data are required for parameter calibration which might 
easily be carried out by means of a “pooled” regression analysis (over stores 
and time). For the subsequent discussion, we implicitly assume that (1) is the 
“true” model. We will compare this formulation with corresponding alter- 
natives using aggregated data. Keep in mind, however, that when analyzing 
empirically observed markets the “true” model is unknown. 

2.1.2. Model at the Market Level with Arithmetic Means as Input Data 
From the manufacturer’s point of view, the brand manager does not concentrate 
on a single store k but rather on a more general level (e.g. chain or market). 
Furthermore, the data at hand usually do not provide detailed store information 
but have been aggregated by the provider by taking arithmetic means, i.e.: 

where K represents the total number of stores. (Instead of mean sales, 
cumulative sales may be reported as well; this would basically make no 
difference with respect to our derivations.) Such a procedure results in 
significant data reduction: Cross-sectional information is reduced to a single 
value of central tendency per period instead of looking at a variety of 
observations. Generalizing’ (1) to hold at market level and replacing the 
variables by their arithmetic means and the response parameters by o’, l3 ‘, y ‘, 
respectively, one ends up with: 

~,=a~.~~‘.y’Fi Qt (2) 

Looking at (2) from a marketing perspective, homogeneous parameters and 
homogeneous marketing activities across the different stores are postulated. 
Geweke (1985) called such a perspective the “representative agent approach”, 
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i.e. theory is developed at the micro unit level, model building and estimation 
are conducted with aggregate data. 

Taking logarithms, (2) becomes: 

lnS,=lna’+l3’~lnP,+F,~ln~’ Vt (3) 
Marketing researchers usually find (3) computationally very attractive since the 
response parameters may be estimated by an ordinary least-squares procedure. 
In more general terms, S,, P, and P, may be interpreted as an estimator of Z&Y,), 
E(P,), E(F,), respectively if we regard S,, P, and F, as random variables varying 
across stores. Thus (3) can be written as: 

lnE(S,)=lna’+~‘~lnE(P,)+F~~lny’ Vt (4) 

As will be seen shortly, the aggregation problem arises only with respect to the 
variables which are subject to a logarithmic transformation; therefore we kept 
Ft in (4). 

2.1.3. Model at the Market Level with Geometric Means as Input Data 
Christen et al. (1997) show that the estimation of (2) is inconsistent with the 
estimation of (l), the reason being essentially due to linear aggregation. 
However, this problem can - at least in theory - be dealt with by using 
geometric means instead of arithmetic means in (2). In this case one calibrates 
the same model as in (1) but at a different level of aggregation, given the 
assumptions of constant response parameters across stores (for a formal proof 
and the relationship between the parameters (IX;, . . . , oK - o’; l3 - l3 ‘; y - y ‘) 
see Leetlang et al., 2000, p. 274). Consequently we define: 

and replace the arithmetic means in (2) by their corresponding geometric 
equivalents: 

g,=a.gfar*y” vt (5) 
Once again we take logarithms and arrive at: 

In g,,=ln cx+p=lng,,+F,.ln y Vt (6) 

Arguing along the same lines as above, one finds 
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and thus it may be seen as an estimator of E(ln S,): the logarithm of the 
geometric mean of sales corresponds to the expected value of log sales. We 
define E(ln P,) analogously and rewrite (6): 

E(lnS,)=lno+~~E(lnP,)+~;lny Vr (7) 

2.1.4. Comparison Between Models at the Market Level 
Starting from the same model at the store level, the preceding sub-sections 
presented the effects of different aggregation schemes. We now focus on the 
consequences resulting therefrom. In particular we compare (4) with (7) and 
put emphasis on the following: 

l Relationship between In E(X) and E(ln X) 
In some sense we are confronted with a basic econometric problem, i.e. the 
relation between In E(X) and E(ln X) (where X denotes a random variable). 
It is well known (c.f. Judge et al., 1985, p. 147 f.) that these two expressions 
are not equal, in general. 

l Errors in variables 
Since (7) is consistent with the “true” model (l), we therefore notice that (4) 
includes errors in both the dependent variable and one independent variable. 
This error can be approximated by means of a Taylor expansion. For 
example, in the case of S,, we expand E(ln S,) at S, = E(S,) and obtain: 

K 

E(ln ,‘j’,) z k c (8) 
k=l 

ln 3, + F - ‘“*;. ysf)* 

f I 1 = In E(S,) - :. CV:, 

where CVs, represents the coefficient of variation of sales (standard deviation/ 
mean) in period t. Therefore, one would need a measure of the coefficient of 
variation of the variables across stores to obtain a more accurate prediction 
of the logarithm of the geometric mean. 

l Identification problem 
We use (8) to illustrate another problem encountered when employing (4), 
i.e. arithmetic means, for estimation. Keeping in mind that (7) is consistent 
with the SCAN*PRO model (l), we replace E(ln X) by their approximations 
(8) and get: 

lnE(S,)-~CVS=lna+P.(lnE(P,)-~CV~~+~~.lny Vt (9) 

Hence, the comparison of (4) with (9) shows that the parameters of (9) are 
not identified when one has no information on the variation of the variables 
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across stores; CV, and CV, change over time. This fact is very much in line 
with standard results of econometric theory with respect to errors-in- 
variables‘models (c.f, Judge et al., 1985, p. 735). 

l Additional information required 
In order to predict E(ln S,) and E(ln P,) from their arithmetic means, one 
needs additional information such as the standard deviation. This will permit 
one to approximate E(ln S,) and E(ln P,) in the way outlined above. As an 
alternative procedure, we propose a parametric approach, i.e. to postulate an 
assumption on the distribution of the variables across stores in order to obtain 
an exact expression for E(ln S,) and E(ln P,). 

2.1.5. Limitations of the Considered Model 
As mentioned above, we decided to use a rather simple model since we want 
to concentrate on the aggregation issue. If, on the other hand, a researcher is 
more interested in trying to describe a certain market as realistically as 
possible, he/she would have to take care of cross-effects between competing 
brands or stores as well as lead and lag effects of promotional activities or 
the existence of threshold or saturation effects when running marketing com- 
munication programs (for a recent discussion of these impacts within a 
SCAN*PRO scenario see van Heerde, Leeflang & Wittink, 2000, 2001). 
Moreover, these phenomena may cause additional problems when aggregating 
data, e.g. cross-effects between promotional campaigns are probably more 
pronounced at the store than at the market level (i.e. promotional variables are 
expected to be correlated negatively at the store level but almost uncorrelated 
at the market level - if a brand is on special offer in a certain store in a certain 
week, one is unlikely to find simultaneously a promoted competitive brand in 
the same store and the same product category; this competitor is more likely to 
run a merchandising support at a different store at the same time). 

We do not consider these effects or others due to omitted variables here but 
focus on the bias which originates from linear aggregation of the data. In 
particular, we compare arithmetic and geometric means and expose the 
differences using the parsimonious model (1). Our results hold for multi- 
plicative models in general and, therefore, can also be applied to the 
comprehensive version of SCAN*PRO (Wittink et al., 1988) which does 
account for crossreffects. If lead or lagged variables are considered by means 
of some multiplicative functional formulation, our method might still be 
employed. The modeling of threshold or saturation effects usually require other 
kinds of nonlinear response functions (e.g. of exponential type) or a 
semiparametric analysis, which are both not compatible with our approach. In 
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order to reduce the complexity of the general aggregation problem, we thus 
assumed that (1) is the “true” model (c.f. sub-section 2.1.1). 

2.2. Predicting Geometric Means 

2.2. I. Appropriate Distributions to Describe the Variability Across Stores 
As already noticed in sub-section 2.1.4. we propose to make use of statistical 
distributions in order to describe sales and prices varying across stores as well 
as to approximate E(ln S,) and E(ln PJ. Concentrating on sales first, we note 
that they are not negative by definition. Moreover, empirical data usually 
exhibit skewed distributions reflecting a larger number of small outlets and a 
small number of large stores. This pattern extends to a wide range of cases in 
other areas known as the “80/20 rule” (i.e. for the example above, about 20% 
of stores account for around 80% of sales). Lawrence (1988) shows that for 
such a situation the lognormal distribution is the natural choice. He further 
provides an extensive overview of various applications of the lognormal 
distribution in economics and business, e.g. sales in an industry. 

In principle, several other density functions might be capable to reflect this 
property as well, e.g. the Weibull or the gamma distribution. From a more 
pragmatic point of view, we will demonstrate in the next sub-section that one 
obtains a very simple closed form solution for E(ln S,) if S, is lognormally 
distributed. We studied the relevant behavior of the other two distributions and 
derived analytical expressions which turned out to be computationally less 
attractive because they require the evaluation of Gamma and Digamma 
functions respectively; these functions cannot be easily processed by statistical 
standard software packages like SPSS. In line with relation (8) these 
approximations depend on In E(S,) and on CV,, differing with respect to CV, 
only. Therefore, the choice of the appropriate distribution is a more relevant 
issue for more dispersed data (i.e. with increasing CVs,). 

Lawrence (1988) also presents some examples from the literature dealing 
with the modeling of price perceptions by means of lognormal distributions. 
We admit, however, that the theoretical and empirical support for lognormality 
of the price variable is limited. Keep in mind that our purpose is to estimate the 
geometric mean of price indices rather than to describe accurately their 
distribution, which certainly is a less demanding task. Moreover, price indices 
fluctuate around one and do not vary substantially so that rather small 
coefficients of variation have to be expected. 

Therefore, we regard the variables of interest, i.e. sales and prices, to be 
random across stores in the sequel and assume that S, and P, independently 
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follow a lognormal distribution in each time period t. This is a flexible two- 
pameter (14~ xy uln x ) distribution with the following mean and variance: 

E(X)=exp(CL,,X+0.5.u:,X) (10) 

VW = exp(2 - (14, x + dx 1) - exp(2. h x + 4 x) (11) 
where X denotes a positive random variable (i.e. sales or prices in our case). 

2.2.2. A Proposed Methodology 
Since: 

(i) the logarithm of a lognormally distributed random variable varies 
according to a normal distribution with the same parameters (this is the 
reason for our notation with respect to the parameters of the lognormal 
distribution, i.e. E(ln X) = l,~~,,x) and _ 

we employ the method of moments and obtain estimates for the parameters of 
the lognormal distribution: 

If we use S, and P, respectively, instead of X in (lo), we find a convenient way 
to determine In E(S,) and In E(P,). Therefore, parameter calibration is 
performed via (12) and (13). This is the very point where the additional 
information required by our methodology comes into play (i.e. 

1 K 
if c x:9 

k=l 

a descriptive measure about the variability of sales and prices across stores per 
period). Finally, we substitute (10) in (4) and arrive at: 

&,ns,+0.5.6&=ln ol’+p’.(a,,+0.5.6:,,$+E.lny’ Vt (14) 

When S, and P, follow a lognormal distribution, in E(S,) and In E(P,) 
overestimate the logarithms of the geometric mean of sales and prices, i.e. CL,” s,, 
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~1” p, by 0.5 . ds,, 0.5 . u:,P,, respectively. Moreover, the squared coefficient 
of variation of a lognormally distributed random variable equals 
CVi= exp(ai,) - 1 which can be approximated by at, (i.e. linear Taylor 
expansion at zero). These results are consistent with (8) and (9). 

If the variances across stores I?;,~ and St,, are constant over time, (14) 
becomes similar to (7) (except for the intercept).‘Thus, arithmetic means permit 
the identification of the parameters B and y of (7). Also, (14) shows that when 
the prices remain the same across stores (homogeneous marketing activities) in 
a given week, but the variances of sales across stores differ over time, the 
parameters B and y are again unidentified. This result might apply at the chain 
level: A chain manager may decide in favor of identical marketing mix 
activities in all of his outlets. Nevertheless, sales will still fluctuate according 
to store-specific circumstances. 

Again, one might think of this issue in rather general econometric terms: the 
errors-in-variables model. In our case, the arithmetic means may be regarded as 
proxy variables for their true but generally unavailable geometric counterparts. 
In accordance with the literature (e.g. Judge et al., 1985, p. 705 ff.), we have 
demonstrated that this deficiency results in identification problems. In 
particular, we have explained that the identification of the store-level 
parameters from the market-level model depends on the variation of the 
variances of the variables over time. This identification problem disappears 
when: 
(1) we know these variances, and 
(2) we assume that the variables are lognormally distributed across stores. 

3. EMPIRICAL APPLICATION 

In this section, we will apply the methodology proposed above to empirical 
data and demonstrate that it is possible to determine parameters which are 
consistent with those derived with the use of actual geometric means in a 
multiplicative market-level model. 

* 3.1. The Data 

The data consist of two product categories in two European countries: 
dishwasher detergent in Austria and a chocolate product in France. Both 
products are frequently bought consumer goods with a nationwide distribution. 
There is intensive competition in both markets in terms of marketing efforts 
(i.e. pricing and promotional activities) and data are collected on a regular basis 
by means of scanning equipment. We use data provided by the A. C. Nielsen 
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Company at the store level. This enables us to compare the results of models’ 
estimates at different levels of aggregation. This situation is exceptional for the 
marketing manager of a single brand since he usually has information at his 
disposal which refers only to the overall market, or sometimes to the chain 
level. As stated above, the SCAN*PRO model is frequently applied under such 
circumstances. 

We study three national brands in each market (Brands 1,2 and 3 in Austria; 
Brands A, B and C in France). For each brand, we use weekly sales data over 
52 weeks and a price index which is calculated as the ratio between the price 
actually paid for the brand analyzed and the corresponding regular price. 
Thereby, one takes into account the effects of price cuts and the like. For ease 
of presentation, we will use the term ‘price’ in the sequel although ‘relative 
price’ would probably be more appropriate. Consistent with (l), we will not 
include cross-effects of marketing activi6es due to the varying distribution of 
brands across stores. 

The consideration of promotional variables is case specific. For some brands 
we use ‘display’ or ‘feature’ variables; for others ‘bonus pack’, ‘leaflet’ or a 
combination of them. All of these are dummy variables defined such that, for 
example, the variable ‘bonus pack only’ is set to one if the brand under 
consideration was offered by providing some add-up during the relevant time 
period; if, simultaneously, the brand was on display or featured or the like, or 
was not promoted at all, the variable is set to zero. The selection of which 
promotional activity per brand to include in th9 SCAN*PRO model was based 
on the individual marketing policy and on the econometric analysis at the store 
level. Once selected, we kept all variables for subsequent computations and 
report on the estimated response coefficients. 

Since the main purpose of our research aims to demonstrate potential 
aggregation effects when analyzing marketing data rather than trying to 
describe the market under study in detail, we concentrate our investigation on 
stores which report sales for the relevant brands every week. This results in a 
number of stores fluctuating between 18 and 34. The data set for the chocolate 
product has been previously analyzed by Bemmaor, Franses and Kippers 
t 19% 

3.2. Preliminary Analysis 

Figures 1 and 2 depict the nature of the data at hand. They exhibit the two main 
marketing variables, sales and prices. respectively, varying according to time 
and cross-section. In order to present the facts more clearly, we do not show the 
raw data but the distributions of sales and prices (approximated by lognormal 



ALBERT C. BEMMAOR AND UDO WAGNER 

Fig. 1. Distribution of Sales Across Stores for Varying Time Periods (Brand 1, Austrian 
dishwasher detergent, 52 weeks). 

density functions) for each of the 52 weeks for Brand 1 in the dishwasher 
detergent market. Simultaneously, we include mean sales and mean prices per 
period (averaged across cross-sections) using bar charts. For presentational 
reasons, different scales are used to display the density functions and the bar 
charts respectively for the two variables. Looking at averages instead of an 
ensemble of observations corresponds to the kind of data reduction encoun- 
tered within the aggregation process from store to market level. 

The sales distributions are highly skewed; their variances change from one 
period to the next. This pattern is in line with postulating lognormality. In fact, 
a Kolmogorov-Smimov test performed on cross-sectional sales of Brand 1 per 
week could never reject this distributional assumption at the 5% level. Keep in 
mind that this is the more critical assumption (c.f. sub-section 2.2.1). The price 
distributions are much closer to symmetry because we are looking at indices, 
i.e. prices paid relative to regular prices (the latter have been calculated as the 
average prices paid in non-promoted stores for this data set). Therefore the 
lognormal distribution does not fit so well here with Kolmogorov-Smimov tests 
rejecting this hypothesis in about 70% of the cases. As we used this 
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Table 1. Correlation Coefficients Between Actual and Predicted Logarithms 
of Geometric Means. 

Product category/Brand Sales Prices 

Dishwasher 
detergent 

Brand I 
Brand 2 
Brand 3 

Chocolate product 
Brand A 
Brand B 
Brand C 

0.94 0.99 
0.97 1.0 
0.97 1.0 

0.96 1.0 
0.99 1.0 
0.96 1.0 

approximation mainly for presentational purposes in Figs 1 and 2, we are not 
substantially concerned about this mismatch. The distributional assumption is 
required to predict geometric means and we will analyze the accuracy of their 
forecasts later (c.f. Table 1). 

As with sales data, the variances of prices differ in the course of time. 
Although the scaling effects outlined above should be considered, it is obvious 
that mean sales are characterized by more distinct fluctuations than mean 
prices. When reflecting the data as the realization of some stochastic process, 
the two figures illustrate another point. It is not possible to estimate ensemble 
variability by utilizing time series information, i.e. the stochastic process does 
not possess ergodic properties (e.g. Parzen, 1962, p. 72 f.). In fact, if we 
compare standard deviations over time to standard deviations across stores, the 
latter are typically much larger. 

Postulating lognormal distributions for sales and prices, we used (12) to 
estimate the logarithm of their geometric means for every time period. In 
order to determine the goodness-of-fit between the actual and the predicted 
logarithms of the geometric means, we ran a correlation analysis over the 52 
weeks first. The results are summarized in Table 1. Subsequently we checked 
for correspondence in magnitude by means of simple regression analyses; in all 
cases intercepts near zero and slope coefficients of about one were calculated. 
Clearly, the forecasts utilizing the lognormal distribution approximation are 
very accurate, both for sales and prices. The applicability in the case of sales 
was already claimed by Lawrence (1988); as expected, the fit for prices is even 
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better, probably because their coefficients of variation are always much smaller 
(c.f. sub-section 2.2.1 and relation (8), Figs 1 and 2). 

3.3. The Results 

3.3.1. Response Coeflcients at the Store Level 
First, we estimate the linearization of (1) by taking logarithms over all stores 
by means of ordinary least-squares in order to achieve a benchmark for 
subsequent comparisons. The number of observations (c.f. Table 2) varies 
across brands due to the different number of stores which carry them over the 
52-week period. The Durbin-Watson statistic diagnosed first-order autocorrela- 
tion, which is frequently the case when calibrating market response functions 
over a time domain. Since our sample sizes were rather large, we used the 
Durbin-Watson statistic to estimate the first-order autocorrelation coefficient 6 
(Johnston, 1984, p. 315), thereby assuming p to be constant across stores (this 
premise is analogous to the invariant response coefficients p and rj). 
Subsequently, we performed the appropriate transformation of our variables 
and once again applied ordinary least-squares. For the results see Table 2, 
column ‘Store-level model’. 

We do not report the store-specific intercepts B, since they are of minor 
relevance here; in all cases they meet the condition of being positive and are 
highly significant most of the time. Although this model may not be the “true” 
one, we nevertheless feel that incorporating sJore-level information backs up 
the validity of the results. As can be seen, all parameters are highly significant 
and face valid, i.e. they possess the correct sign and the estimated influences of 
the promotional variables increase with intensified marketing efforts (e.g. 
Brand B’s bonus pack only vs. bonus pack + leaflet, etc.). Please note that we 
actually report In r;. in Table 2, which means that a value of 0.18 (Brand B, 
bonus pack only) implies an estimated sales increase of about 20%. 

3.3.2. Response Coeficients at the Market Level 
The next step consists of testing how well we can recover the parameters of the 
store-level model by means of three alternatives at the market level. For each 
brand in the two product categories, Table 2 displays the following types of 
results: 

(1) the estimates obtained with the use of the actual geometric means 
(see sub-section 2.1.3. and espeoially Eq. (6); Table 2, column ‘Actual 
geometric means’); 

(2) the estimates obtained with the use of the predicted geometric means 
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Table 2. Comparing the Estimates Across Aggregation Levels.* 

ZP ~ 
Market-level model 

10 
-82 

5 Marketing Store- 

zz 
i ’ 

a ll l iX level Actual geometric Predicted Arithmetic 
variable model means geometric means means 

-2.97 
(0.14) 

Q Display + feature 
0.37 

-3 
5 

(0.0% 

s First-order 0.42 
autocorrelation 
Number of 
observations 

-3.65 
(0.15) 

m Display + feature 
0.44 

m 
B 

(0.10) 

2 
First-order 0.30 
autocorrelation 
Number of 
observations 

Price 

Display only 

-1.64 
(0.25) 
0.58 

(0.12) 

u Feature only 
0.73 

P 
5 

(0.11) 

ii Display + feature 0.99 
(0.10) 

First-order 
autocorrelation 
Number of 
observations 

0.30 

936 

-3.10 -3.24 -1.86 
(0.57) (0.62) (0.98) 
0.71”” 0.81”’ 2.09 
(0.46) (0.50) (0.91) 
0.82 0.80 0.44 

(0.W (0.W (0.14) 

52 52 52 

-2.93 -3.53 -4.73 
(0.57) (0.66) (0.92) 
0.89 0.49” 1.39”” 

(0.51) (0.62) (0.83) 
0.74 0.67 0.60 

(0.10) (0.11) (0.12) 

52 52 52 

-2.45 -2.71 -0.06”” 
(1.12) (1.05) (1.27) 
1.03”” 1.17 1.18”” 
(0.65) (0.62) (0.74) 
0.93”” 1.05 1.32 
(0.56) (0.52) (0.W 
0.88 1.12 1.69 

(0.40) (0.38) (0.48) 
0.54 0.56 0.42 

(0.14) (0.13) (0.14) 

52 52 52 

* We report the estimates and the standard errors in parentheses corrected for first-order 
autocorrelation for all models. For the store-level model, we used the Durbin-Watson statistic of 
the model with the original variables to estimate the first-order autocorrelation coefficient 
(Johnston, 1984, p. 315); subsequently, we calibrated the coefficients by means of ordinary least- 
squares using the transformed variables. For the market-level models. we used nonlinear 
least-squares to estimate the full set of parameters (Johnston, 1984, p. 323). 
“’ not significant at the 5% level (one-tailed test, c.f. comments subsequent to Eq. (I)) 
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Table 2. (Continued). 

181 

Marketing 
tlliX 

variable 

Market-level model 
Store- 
level Actual geometric Predicted Arithmetic 

model means geometric means means 

Price 

Bonus pack 

< 
+ display 

a Bonus pack+ 
3 display +lea!let 
m Fist-order 

autocorrelation 
Number of 
observations 

-2.53 
(0.19) 
0.84 

(0.07) 
1.10 

(0.11) 
0.50 

1768 

Price 

Bonus pack only 

Bonus pack I co + leaflet 

H 
Bonus pack 
+ display 
Bonus pack + 
display + leaflet 
Fit-order 
autocorrelation 
Number of 
observations 

-1.84 
(0.20) 
0.18 

(0.W 
0.51 

(0.12) 
0.94 

(0.08) 
1.12 

(0.15) 
0.45 

1768 

-2.66” -3.27 
(1.78) (1.83) 
1.30”” 0.68”” 
(0.81) (0.83) 
1.W” 2.62 
(1.26) (1.29) 
0.63 0.63 

(0.11) (0.11) 

‘52 52 

-3.36”” 
(3.00) 
0.43” 
(0.42) 
1.68”” 
(1.33) 
1.54”” 
(0.94) 
0.91”” 
(1.81) I 
0.75 

(0.10) 

-3 14”” 
(2:79) 
0.38”” 
(0.39) 
1.11” 
(1.22) 
1.66 

(0.86) 
1.33”” 
(1.67) 
0.75 

(0.10) 

52 52 

-2.78”” 
(2.57) 
1.60” 
(1.W 
5.40 

(1.61) 
0.68 

(0.11) 

52 

-4.85”” 
(4.05) 
0.35”” 
(0.52) 
0.99”” 
(1.60) 
2.93 

(1.14) 
2.95”” 
(2.21) 
0.78 

(0.10) 

52 

Price -2.18 -2.47”” -200” 
(0.W (1.89) (1:98) 

-0.83” 
(1.82) 

2 Bonus pack only 

g First-order 
autocorrelation 
Number of 
observations 

0.27 0.67”” 0.60” 0.60” 
(0.W ww (0.47) (0.W 
0.42 0.61 0.63 0.63 

(0.12) (0.14) (0.12) 

1404 52 52 52 

(see sub-section 2.2.2. and once again Eq. (6) using (12) as approximation 
for the geometric means g, and g,<; Table 2, column ‘Predicted geometric 
means’); 
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(3) the estimates obtained with the use of the arithmetic means 
(see sub-section 2.1.2. and especially Eq. (3); Table 2, column ‘Arithmetic 
means’). 

As above we have to account for first-order autocorrelation, which is achieved 
by using a nonlinear least-squares procedure (Johnston, 1984, p. 323). As 
expected, we find significant first-order autocorrelations in all cases. Once 
again we do not report the intercept CY for a similar reason; in all cases they are 
positive and highly significantly different from zero. We first notice that for all 
the brands, the parameters of the store-level model (1) can be quite distinct (and 
frequently smaller in absolute terms) from those obtained from the market-level 
model estimated with the use of the actual geometric means (6). Although the 
market-level model (5) follows consistently from the store-level model (l), the 
equivalence between both equations applies if and only if (1) is the “true” 
model. Actual data shows that this might not be the case and calibrating (5) vs. 
(1) can lead to different estimates (for other potential reasons of this 
discrepancy see sub-section 2.1.5). On the whole, results based on (6) seem to 
be closer to the ones based on (1) than those employing (3). 

Table 2 further reveals that the market-level estimates typically coincide with 
larger standard errors (shown in parentheses) than their store-level counter- 
parts. This may in part be due to the loss of degrees of freedom but is mainly 
inherent in the aggregation process, i.e. larger sample sizes coincide with 
smaller variances. Consequently, we observe a large number of insignificant 
coefficients at the market level, especially for the chocolate product. Probably 
this effect is even more pronounced, since we allow for first-order autocotrela- 
tion: ordinary least-squares computations are expected to produce smaller 
standard errors (c.f. Johnston, 1984, p. 312). It is interesting to note that, e.g. 
Christen et al. (1997) neither report on first-order autocorrelations nor on 
significance levels at all, which is very much in line with common practice in 
marketing. A manager tends to evaluate response coefficients mainly on the 
basis of personal experience rather than on significance levels: he/she would 
not doubt, for example, that pricing activities do influence purchase behavior in 
(price-) competitive markets (Brands A, B, C); he/she would, however, look 
critically at the magnitude of the inferred elasticities. A statistician probably 
would be more conservative on this aspect. 

Comparing the estimates obtained with the actual geometric means with 
those emerging from the predicted geometric means, we find that the calibrated 
coefficients are consistent in most cases. All significant parameters are face 
valid at a first glance but arithmetic means estimation results in substantially 
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inflated coefficients in some cases (e.g. Brand A, bonus pack + display + leaf- 
let). 

3.3.3. Promotion Multipliers 
We want to expand further on this point and calculate the promotion multipliers 
qj. As stated above, Table 2 actually reports In 9j and therefore we need to 
(back-) transform the response coefficients. Since we employed (3) and (6) for 
estimation purposes, we applied Kennedy’s (1981) formula to compute the 
implied promotion effects: they are presented in Table 3 for each model. In 
some cases (e.g. Brand B, bonus pack+ display + leaflet), we ended up with 
multipliers which were less than one. Since this would not make sense from a 
marketing point of view and because the estimates (In 9,) were not significantly 
different from zero in all those instances, we set these multipliers equal to 
one. 

Consistent with Christen et al. (1997), the response coefficients indicated by 
the model based on arithmetic means tend to be larger than the store-level 
multipliers. For this model, we sometimes obtain results which are far out from 
plausibility (e.g. Brand B, bonus pack + display); again, this is in line with the 
findings of Christen et al. (1997). Regarding the average impact of a 
promotional activity as inferred by the four alternative formulations, we 
observe that taking arithmetic means results in effects which are 95% larger for 
dishwasher detergent and 426% larger for the chocolate product when 
compared with the store-level scores. The effect becomes even more 
pronounced when computing the averages on’significant response coefficients 
only. These percentages clearly underline the apparent deficiency resulting 
from employing arithmetic means within the SCAN*PRO model. If a 
marketing manager, who typically does not have access to store-level 
information as a benchmark for comparison, uses such figures, he clearly runs 
the risk of erroneously overstating the efficiency of promotional efforts. 

The multipliers based on the predicted geometric means are fairly close to 
those obtained from the actual geometric means and both in turn roughly 
conform with the values achieved at the store level. Furthermore, the former do 
not exhibit a distinct pattern when compared with the latter ones. 

3.3.4. Alternative Approaches to Correct for the Aggregation Bias 
Being aware of this fundamental deficiency of the SCAN*PRO model, Christen 
et al. (1997) introduced a debiasing procedure derived from simulated data. 
Having full knowledge of the underlying market at the store level, they 
generated a large number of different market conditions and promotional 
strategies, aggregated the data to market level, and systematically compared the 
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estimated response coefficients with their true counterparts. They identified 
several determinants affecting the magnitude of the bias (e.g. average size of 
price cut,.proportion of stores with promotions, R2 of the regression at market 
level) and finally calibrated equations which can be used to approximate these 
biases for the SCAN*PRO response coefficients depending on the situation at 
hand. Unfortunately, we could not employ this procedure. As described above 
(c.f. Table 2) we had to deal with autocorrelated errors, which clearly 
influenced our parameter estimates. This type of environmental factor has not 
been considered by Christen et al. (1997) thus preventing the application of 
their method for our data. 

An alternative debiasing procedure was proposed by Link (1995). Since bias 
occurs essentially when aggregating heterogeneous variables, subsets of stores 
for each time period are built that are close to homogeneous with respect to 
marketing activities. Contrary to the situation usually encountered in practice, 
this method implies, however, that data is available which has not yet been 
completely aggregated to market level. Christen et al. (1997) chose to group 
stores according to display and feature variables. This procedure is in line with 
the strategy Krishnamurthi, Raj and Selvam (1990) recommended to build 
groups of stores on the similarity of the explanatory variables. They proposed 
using an aggregate distance measure between cross-sections calculated from all 
marketing-mix variables and subsequently employing average linkage or 
Ward’s minimum distance method for clustering. 

Since the number of stores is rather limited for our data sets (between 18 and 
34) and promotional activities have not be& performed all the time, the first 
type of clustering is not feasible for us because it would result in empty groups. 
On the other hand, distance measures are expected to be dominated by the price 
variable in our case and, therefore, we decided to simply categorize according 
to the price indices, i.e. whether the brands have been offered below or above 
the regular price. We do not show the results in detail here because this 
procedure did not correct for the bias in the price elasticity in our case. As an 
example we report the estimates for Brand 1 (Price: -4.38; Display+feature: 
1.99; First-order autocorrelation: 0.37). All coefficients are highly significant. 
When compared to the store level model (c.f. Table 2) we find a clear 
discrepancy. 

3.4. Further Comments 

The improvement of the parameter,estimates when employing the proposed 
methodology can be attributed to two facts (c.f. sub-section 2.2.2.): 

(1) the availability of additional information (i.e. variances across stores); and 
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(2) the assumption that the variables follow a certain distribution (i.e. 
lognormal). 

Can we still correct for the biases when standard deviations are not known ? In 
fact, this is the case analyzed by Christen et al. (1997). A way to overcome this 
problem might be maximum entropy estimation. It provides “. . . a criterion for 
setting up probability distributions on the basis of partial knowledge . . .” and 
“ . . . it is the least biased estimate possible on the given information” (Jaynes, 
1957, p. 620). Assuming that the variables are lognormally distributed across 
stores and that we know their arithmetic means fi only, we derive the maximum 
entropy estimators I;:, X, 61, X of the parameters of the lognormal distribution 
and obtain (Wagner & Geyer, 1995): 

bln,=ln X - 0.5 

--fi u ,“X= 1.0 

(15) 

(16) 

As shown in (15), the entropy estimator of the logarithm of the geometric mean 
@p,, is consistent (except for the constant 0.5) with the procedure proposed by 
Christen et al. (1997), which involves taking the logarithm of the means In x to 
estimate (4). However, empirical evidence shows that standard deviations vary 
over time (see Fig. 1), which is not in line with the constant Sp,, in (16). 
Therefore, knowledge of the means only is regarded as insufficient to identify 
both parameters of a lognormal distribution. Nevertheless, we thereby provided 
an additional interpretation of the estimation procedure recommended by 
Christen et al. (1997). 

If managers find the proposed methodology useful to improve the reliability 
of response coefficients of the SCAN*PRO model estimated at the market 
level, they will probably ask their data providing marketing research firms to 
supply the necessary information additionally. This can be accomplished easily 
by, e.g. Nielsen or IRI since the required data are collected anyhow. 
Furthermore, standard deviations represent descriptive measures on an 
aggregate level and thus commonly observed reservations of data providing 
companies about giving away individual store-level figures does not apply in 
this case. It is interesting to note that Krishnamurthi, Raj and Selvam (1990) 
also addressing the aggregation problem but employing quite a different 
methodology conclude that a closer cooperation between data providers and 
their clients will be necessary because “. . . it will not be possible to assess the 
extent of aggregation bias if all one has is aggregate data and no information 
on how the data were aggregated.” 
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4. CONCLUSION 

This study illustrates that we can obtain good predictions of the geometric 
means of sales and prices from their arithmetic means and variances under the 
assumption that these variables are lognormally distributed across stores. 
Moreover, these forecasts can be calculated very easily when using statistical 
standard software packages. Consequently, we may employ these predictions in 
a market-level multiplicative sales response model. Tested on six brands in two 
product categories, this methodology leads to parameter estimates which are 
consistent with those obtained with the use of the actual geometric means. 
Compared to store-level parameters, the coefficients achieved with the use of 
the predicted geometric means do not exhibit a definite pattern and are 
comparable in most cases. 0bviously;this result is preliminary due to the 
limited empirical evidence so far. Consistent with previous work, the estimates 
of the promotion multipliers based on the use of arithmetic means exhibit 
substantial overestimation when compared with store-level results. Finally, the 
paper exemplifies that knowledge of the means (or sums) of the variables only 
is insufficient to identify the parameters of the store-level model unless their 
variances across stores are constant over time. 

The paper has predominantly aimed to address a very basic marketing 
modeling problem: the effects of aggregation over cross-sections on the 
estimates of response coefficients for a given (i.e. “true”) model. We raised the 
issue from a more formal perspective and pr6posed a parametric methodology 
to partly overcome the problems involved. We are aware of the fact that there 
are still a lot of open questions and identify the following areas for further 
research: 

l The method of moments to calibrate the parameters of the lognormal 
distribution should be replaced with a more efficient estimation principle (i.e. 
maximum likelihood). 

l The proposed methodology could be extended to use alternative flexible 
distributions such as the Weibull, gamma or inverse gaussian. 

l Alternative kinds of information might be employed in order to solve the 
identification problem differently, e.g. additional moments or other assump- 
tions on the relationship between moments. 

l Possibly, empirical regularities between the parameters of a lognormal or of 
alternative distributions for sales and prices might be detected. In such a case 
the requirement to refer to standard deviations might then not be necessary 
any more. 
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ABSTRACT 

Market structure analysis continues to be a topic of considerable interest 
to marketing researchers. One of the most common representations of the 
manner in which brands compete in a market is via market maps that show 
the relative locations of brands in multi-attribute space. In this paper we 
use logit brand choice models to estimate c+ heterogeneous demand system 
capable of identifying such brand maps. Unlike the previous literature, we 
use only aggregate store-level data to obtain these maps. Aa’ditionally, by 
recognizing that there exists heterogeneity in consumer preferences both 
within a store’s market area as well as across store market areas, the 
approach allows us to identifi store-specific brand maps. The method- 
ology also accounts for endogeneity in prices due to possible correlation 
between unobserved factors, such as shelf space and shelf location that 
aflect brand sales, and prices. We provide an empirical application of our 
methodology to store level data from a retail chain for the laundry deter- 
gents product category. From a manager’s perspective, our model enables 
micromarketing strategies in which promotions are targeted to those stores 
in which a brand has the most favorable, differentiated, position. 

hmometric Models in Marketing, Volume. 16, pages 191-221. 
Copyright 8 2802 by Elsevier !Science Ltd. 
AU rights of reproduction in any form reserved. 
mBN: 0-7623-0857-J 

191 



I93 PKADEEP CHINTAGUNTA. JEAN-PIERRE DUB6 AND VISHAL SINGH 

1. INTRODUCTION 

The analysis of market structure (Day, Shocker & Srivastava, 1979) continues 
to be an important area of research in marketing. The basic endeavor of this line 
of research is to identify, from consumer data, the extent to which different 
brands in a pre-defined product market compete with each other (Grover & 
Srinivasan, 1987; DeSarbo & Rao, 1986; Jain, Bass & Chen, 1990). The extent 
of inter-brand competition is characterized in one of two ways. Allenby (1989) 
for example, uses the matrix of price elasticities as the basis for identifying 
market structure. The idea here is that the greater the cross-price elasticities 
between two brands, the higher is the level of competition. An alternative 
measure of competition that has also been used by researchers is the extent to 
which preferences for two brands are correlated with one another in the 
marketplace, after controlling for the effects of marketing activities such as 
price. In this case, higher levels of correlation are associated with more intense 
levels of competition. The key advantage of this latter approach is that the 
representation of the market is not contaminated by short term (marketing) 
activities of firms and represents a more stable feature of the marketplace. We 
focus on the latter approach in developing our model of market structure in this 
paper. 

While early work focused on identifying the pattern of inter-brand rivalry 
from stated preference data, the majority of the more recent literature has done 
so using revealed preference data. Researchers have also proposed hierarchical 
(Urban, Johnson & Hauser, 1984; Kannan & Wright, 1991; Ramaswamy & 
DeSarbo, 1990) as well as non-hierarchical approaches to understanding 
market structure (Elrod, 1988; Elrod & Keane, 1995; Chintagunta, 1998). In 
the hierarchical approach, consumers are assumed to be making a sequential set 
of decisions. By uncovering this sequence, researchers can obtain insights into 
the nature of perceived similarities across brands in a category. For example, 
consider the coffee category. Consumers can first decide to purchase either 
ground coffee or instant coffee. If they decide to choose ground coffee, they 
need to choose the kind of bean - Robusta or Arabica. Having made this 
decision, they have a choice of roasts. Finally, they can select a particular brand 
- Maxwell House, Folgers, etc. This indicates that two brands of ground coffee 
made with Arabica beans and French roast compete more closely with one 
another than do an Arabica bean brand and a Robusta bean brand. The non- 
hierarchical approach on the other hand allows for a general pattern of 
similarity across all brands in the product market considered. Our focus in this 
paper is on non-hierarchical approaches to market structure analysis that use 
revealed preference data. 
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A popular approach to understanding inter-brand similarity and rivalry using 
revealed preference data (usually scanner data) has been to construct market 
maps that pictorially depict the locations of brands in multi-attribute space 
(Elrod, 1988). The basic idea behind this approach is intuitively appealing. If 
consumers perceive two brands to be similar to one another, then these brands 
are likely to compete closely for that consumer’s purchases. While this assumes 
that consumers are primarily inertial rather than variety seeking, most studies 
(with the possible exception of Kannan & Sanchez, 1994; Erdem, 1996) have 
found this to be the case. The appealing aspect of representing brands in multi- 
attribute space is that it relates quite closely with the notion of a perceptual 
map. Perceptual maps are regarded as fundamental building blocks for 
positioning analyses undertaken by marketers. Hence, approaches to depicting 
brands in multi-attribute space have become increasingly popular of late. We 
propose one such approach in this paper. 

Researchers have proposed several approaches to depicting brands in multi- 
attribute space using consumer (revealed preference) data. Broadly, these 
approaches can be categorized based on the level of aggregation in the data 
used for the analysis. Specifically, previous studies have used either household 
level panel data or store level scanner data to uncover the underlying 
relationships among brands in the marketplace. This broad categorization nests 
several specific model formulations that lead to brand maps as an end result. 
For example, studies using store data have either exploited the structure of the 
cross-price elasticity matrix (as noted previgusly) in identifying the relative 
locations of brands in multi-attribute space (e.g. Allenby, 1989), or they have 
used the nature of price-quality tradeoffs made by consumers that are inherent 
in DEFENDER (Hauser & Shugan, 1983; Hauser & Wernerfelt, 1988) type 
models to identify brand locations along (or sometimes within) the price- 
quality frontier prevailing in the marketplace (Shugan, 1987; Waarts et al., 
1991). The former approach allows researchers to account for the effects of 
other marketing activities (such as advertising and promotions) on brand sales, 
but is nevertheless focused on brand interactions along one specific marketing 
activity - price. The latter approach does not easily account for time-varying 
factors other than price as drivers of consumer choices. Further, as the model 
specification does not fall into the general class of discrete choice models 
(logit, probit, etc.), the approach has seen limited application in the marketing 
literature. 

Household data on the other hand, have been used to locate brands in multi- 
attribute space by exploiting how heterogeneous consumers’ preferences for 
brands in the marketplace are correlated across those brands. The basic idea 
here is that if intrinsic preferences for two brands are correlated across 
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households, then these brands are going to be located close to one another 
in attribute space. The appealing feature of this approach is that the maps 
are obtained after controlling for the effects of marketing activities. At the 
same time, one can also study the effects of specific marketing activities on the 
inter-brand relationship in addition to the intrinsic brand similarities. As a 
consequence, models based on household data have abounded in the more 
recent marketing literature. The household level models that have been used to 
derive such maps have been choice models such as the multinomial logit model 
(Elrod, 1988; Chintagunta, 1994; Erdem, 1996) and the multinomial probit 
model (Elrod & Keane, 1995; Chintagunta & Honore, 1996) whose parameters 
are estimated using panel data from a group of households. In the estimation of 
these models, the covariance matrix of brand preferences that is estimated from 
the data is decomposed to provide the brand maps. This is accomplished by 
imposing a factor structure on the covariance matrix of preferences. The 
number of factors corresponds to the number of attributes and the parameters 
for the brands along those factors represent the brand locations along the 
attributes. 

In this paper, we propose a methodology for obtaining brand maps from 
store level scanner data. Unlike extant approaches with such data however, we 
obtain these maps by decomposing the covariance matrix of brand preferences 
much like the methods using household level data. Such an approach requires 
us to be able to accommodate heterogeneity across consumers while using store 
level data as it is this heterogeneity in preferences across consumers that 
generates the covariance matrix which is decomposed as described for 
household data above. To accomplish this, we follow the recent literature in 
economics that treats store data as the aggregation of choices made by 
heterogeneous consumers in that market area (see Berry, Levinsohn & Pakes, 
1995, hereafter referred to as BLP; Nevo, 2001). Brand choice decisions of 
individual consumers are modeled using a logit demand model - consistent 
with utility maximizing behavior and also with the models used in conjunction 
with household data to obtain market maps. Using this approach, we are able 
to recover the heterogeneity distribution across consumers in that store’s 
market area. Hence, we are’ able to exploit the decomposition of the covariance 
matrix as has been done by researchers using household level scanner panel 
data. Accounting for heterogeneity with aggregate data therefore, allows us to 
derive market maps with store level data. Previous research using data at this 
level of aggregation (Shugan, 1987; Allenby, 1989) has also attempted to 
control for heterogeneity in the analysis. However, by imposing the structure 
that we do in this paper, we are able to obtain maps that correspond to those 
obtained from household data. 
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More interestingly, we demonstrate how we are able to obtain implications 
for market structure above and beyond what researchers have been able to 
accomplish with household level data. Specifically, we show that by making the 
distribution of heterogeneity in a particular store’s market area a function of the 
demographic characteristics of consumers in that store area, we are able to 
recover market maps specific to each store in a retail chain. In other words, we 
are able to say whether or not two brands of soap - Ivory and Dove that are 
perceived to be similar by consumers in the market area of a store located in a 
northern suburb of Chicago, are perceived to be similar by consumers of a store 
(from the same chain) located in downtown Chicago. Hence, we are able to 
account for heterogeneity not only across consumers within a store area, but 
also across different store areas. 

The key advantages of store data relative to household data are the following. 
First, store data are widely available to marketing managers and are used as a 
key resource for decision making. By contrast household data require a lot 
more computational resources to deal with and also tend to be more expensive 
for firms to acquire. Second, store level brand maps are useful for managerial 
decision making. Knowledge of differences in brand perceptions across stores 
has implications for managers at both manufacturer as well as retailer levels. 
Consider a manufacturer dealing with two retail chains in a market area - one 
with 10 stores and the other with 15. The manufacturer is concerned about a 
competitive threat from one particular rival brand. Prima facie, the manu- 
facturer might be using the number of %tores as a basis for allocating 
promotional money and so allocates more money to the chain with 15 stores. 
However, the manufacturer may be better able to allocate promotional moneys 
across the retailers if it knew that it was competing (perceptually) with the rival 
brand in only 2 of 15 stores from the larger retail chain whereas it was doing 
so in 8 of 10 stores from the smaller chain. Our methodology and model results 
would be a useful input to this allocation problem. With household panel data 
on the other hand, one does not typically have access to a large enough number 
of purchases in each store to be able to derive market maps for each store area. 
Similarly, there are important implications for the retailer as well. Knowledge 
of variations in inter-brand rivalries across stores will enable the retailer to 
better adjust shelf location, shelf space allocation etc. in order to maximize its 
category profits. An aggregate market structure analysis across all stores in the 
chain that does not allow for relative brand perceptions to vary across stores 
may not be very useful in this regard. 

Our discussion above is not intended to imply that store data are to be 
preferred to household data under all circumstances. If one is interested, for 
example, in decomposing the impact of marketing activities into their effects 
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on purchase incidence, brand choice, brand switching and purchase quantity 
decisions, this can best be accomplished using household level data. However, 
there might be certain situations in which one can get a richer set of 
managerially relevant information using store data. 

Another important feature of our model and analysis is that we allow for 
factors other than observed marketing variables (i.e. prices and promotions) to 
impact the individual choices that are aggregated to the store level. At the store 
level, there are factors like shelf space, shelf location and store coupons that 
will affect the choices made by consumers in that store’s market area. However, 
as researchers we do not observe these factors. We therefore account for them 
in a manner similar to how various observed factors such as price are included 
in logit brand choice models. Specifically, we include a brand specific and time 
varying unobserved “attribute” that influences brand utility and consequently, 
the consumer’s choices. Further, as the unobserved attribute for a brand can be 
correlated with price, we account for this correlation by instrumenting for 
prices in the estimation. In this way we address the issue of price endogeneity 
in the estimation (see also Besanko, Gupta & Jain, 1998, hereafter referred to 
as BGJ). Additionally, our approach offers the same advantages as a mixed 
logit mode1 (Kamakura & Russell, 1989) estimated with household data in that 
aggregate elasticities are free from the IlA restriction. 

We provide an empirical illustration of our proposed approach using data 
from the liquid laundry detergent category. Our results indicate that brand 
locations vary substantially across stores. In particular, we find that certain 
brands may have more favorable conditions in some stores than others. In one 
store, the brand may be fairly differentiated from competitors, whereas in other 
stores the same brand is tightly packed in a cluster of brands, We use store-level 
characteristics to explain these differences. 

The rest of this paper is organized as follows. In the next section, we describe 
the mode1 formulation. This is followed by a section on the data. The 
penultimate section provides the results from the empirical applications. The 
final section concludes. 

. 
2. MODEL 

2.1. Utility and Demand 

In this section, we describe the underlying consumer choice mode1 generating 
the observed aggregate purchases in each store-week. We use the increasingly 
popular mixed logit specification (McFadden & Train, 2000). For a more 
genera1 discussion of discrete choice models and their aggregation we refer the 
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reader to BLP (1995). Formally, we assume that on a given shopping trip in 
weekt(t= 1,. . . , Z’),M, consumers each select one of .Z brands in the category 
or opt for’ the no-purchase alternative, whose utility is normalized to 0. In a 
store-week t, the brand j-specific factors are the attributes: (nj,, cj,). The vector 
n includes brand-specific fixed-effects as well as an indicator for the incidence 
of a deal. This vector also includes the variable p which denotes the brand’s 
shelf-price. Finally, F; encompasses the effects of unobserved (to the 
econometrician) in-store product attributes, such as advertising, shelf-space 
and coupon availability that vary across store-weeks (BLP, 1995; BGJ, 
1998)’ 

For a shopping trip during week t, the conditional utility consumer h derives 
from purchasing product j is given by: 

h=l,..., ZZ,j=O I..., .Z,t=l,..., T. 

The coefficients Ph capture consumer h’s tastes for attributes, n, which includes 
prices and marketing mix variables. The parameter oh, captures household h’s 
idiosyncratic perception of brand j. The term ehj, is an i.i.d. mean-zero 
stochastic term capturing consumer h’s idiosyncratic utility for alternative j 
during week t. We assume that ~~~~ has a type Z extreme value distribution. Since 
we do not observe the true distribution of consumer preferences, we assume 
tastes and brand perceptions are drawn from a multivariate normal distribution. 
For simplicity, we treat the taste parameters qs i.i.d: 

ph=f3+h’vh, v,-N(0, z) 

where the vectors of means, 6, and the standard deviations, h, are parameters 
to be estimated. 

We do allow for a richer covariance structure for the vector of brand 
perceptions: 

ah - N(ii, x). 

In theory, we could estimate the full (Jx .Z) matrix C directly. To recover our 
perceptual map, we could use a multi-dimensional scaling procedure. In 
practice, as the number of product alternatives grows, z becomes increasingly 
difficult to identify. Instead, we use the factor structure: 

~=L6m’L’, o-N(0, I). 

One interpretation for this structure is that L is a (.Zx ZC) matrix of latent 
attributes for each of the .Z brands, and w is a (Kx 1) vector of tastes for these 
attributes that is consumer-specific. The vector for each consumer is a draw 
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from the standard multivariate normal distribution. The vector of mean brand 
perceptions, (Y, and the matrix of latent attributes, L, consist of parameters to be 
estimated. In addition to its parsimony, this approach allows us to estimate 
standard errors for the latent attributes. In the current context, we assume K= 2. 
For identification purposes, we do the following: (1) The outside or “no 
purchase” option is located at the origin of the map (translational invariance); 
(2) One of the brands is located along the horizontal axis (rotational 
invariance); and (3) We set the variances of o above to 1 in the estimation 
(scale invariance). 

We simplify our notation by re-writing the consumer’s indirect utility in 
terms of mean tastes and deviations from the mean: 

uhjt = &jr + phjr + & h,r 

where S,, = cr, + xj$ + Ej, is common to all consumers and p+,,, =x,,hvh + Ljq, is 
consumer-specific and L, denotes the jth row of the 15 matrix. After mixing the 
normally-distributed taste shocks with the extreme value disturbance, the 
probability q,, that a consumer chooses a particular productj in week t has the 
following form: 

(1) 

where $( .) is the pdf of a standard normal. From the store manager’s 
perspective, (1) represents the share of consumers entering the store in week t 
that purchase a unit of product j. Thus, the manager’s expected demand for 
product,; in store-week t is : 

Qjt = qjflr. (2) 

We have two primary motivations for using this random coefficient’s 
specification, as opposed to a simpler conditional logit (or homogeneous logit). 
The heterogeneity provides a means by which to recover the underlying brand 
maps. However, heterogeneity also provides a layer of flexibility in consumer 
responses which will be important in various other applications using the same 
demand model. The conditional logit’s restrictive IIA property (the independ- 
ence of irrelevant alternatives property) at the consumer level would manifest 
itself into our aggregate analysis in several ways. First, it can be shown that the 
assumption of homogeneous tastes leads to aggregate cross-elasticities that are 
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driven by market shares (see BLP, 1995 for a thorough discussion). For 
instance, products with similar market shares are predicted to be close 
substitutes. In addition to the potentially unrealistic predicted substitution 
patterns, the cross-elasticities also restrict the implied retailer behavior in 
equilibrium. Multiproduct firms are restricted to set a uniform margin for each 
of the products in their line (Besanko, Dub6 & Gupta, 2001). In an analysis of 
category management, this property would imply that all of the products in a 
category have the same mark-up over their wholesale prices. We solve this 
problem by allowing for consumer-specific deviations from mean tastes that are 
distributed normally. McFadden and Train (1998) show that the mixture of 
normals with, the type I error, the mixed logit, is sufficiently flexible to 
approximate a broad set of parametric indirect utility functions, including the 
multinomial probit. Nonetheless, one could easily use alternative, non-Normal, 
distributions if desired.’ 

One of the complications of the mixed logit specification (1) is the lack of 
an analytic form for the multidimensional integral. While it is true that for a 
simple model with fewer than three random parameters one could solve the 
expression numerically (Hausman & Wise, 1978), most categories consist of 
more than three alternatives. Instead, we use direct Monte Carlo simulation, as 
in Nevo (2001). 

2.2. Local Interactions 

Other than marketing mix variables, we have’not yet discussed store-specific 
covariates that allow expected demand to vary across stores. In practice, we do 
not expect each store in a chain to face the same distribution of consumers. 
Stores in different neighborhoods typically face different demographic 
distributions of consumers. Moreover, the presence of local competitors could 
alter a store’s levels of demand in various categories. We expect differences in 
both the distribution of consumer types and the presence of local competitors 
to alter the the derived demand for goods facing each store. Figures 1 and 2 
demonstrate differences in the strategic role of brands across stores. The share 
of sales for the category leader, Tide, and the brand Wisk show considerable 
heterogeneity across the various store areas. While Tide’s shares vary from 0.08 
to 0.24, Wisk’s vary within the tighter interval of 0.1 to 0.2. Since wholesale 
prices are the same across stores, these share patterns must reflect differences 
in the derived demand for a product in a given store. Note however, that there 
do apprear to be significant outliers for both brands. 

To account for differences in demand across stores, we introduce variables 
specific to each store area into the model formulation. Specifically, these 
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variables are intoduced in two different ways. First, we include a store-specific 
category intercept that is a function of these store characteristics. Formally, this 
intercept will shift the size of the category share (relative to the no purchase 
share) across stores. Operationally, this involves shifting each of the brand 
intercepts by an equal amount. Second, we interact store characteristics with 
the latent attributes for each brand j, L,. This allows consumers’ inter-brand 
preference correlations to vary across stores. It is this variation in preference 
correlations across stores that gives us store-specific perceptual maps (recall 
our discussion in the introduction about preference correlations being used as 
a measure of market structure). We use a detailed set of variables that proxy for 
both differences in the mean demographic profiles and levels of competition 
facing each store. By including these variables in the formulation, the indirect 
utility expression that a consumer h in store s has for brandj in week t is given 
by the following: 

Uhsjt = &hsj + DRY + Xjt Ph + Ssjt + E hsjty 

ahsj = Ljwh + LphDsOj, 

In the above expression, D,y is the row vector of characterisitcs for store area s 
and k is the dimension of the latent attribute vector. The term D,y which has a 
common effect across all brands except the outside good shifts category 
demand up or down. The term D$lj on the other hand interacts with L, to 
generate store-specific preference correlations. Using this approach, we are 
able to estimate all the demand parameters including the effects of store 
characteristics jointly in a single stage estimation process. This is in contrast 
with other studies (e.g. Hoch et al., 1995) that first estimate the demand 
elasticities and then regress these elasticities on store characteristics. 

An alternative approach to the one proposed above is that used by Nevo 
(2001). He captures differences in consumer profiles across city-markets by 
sampling from the empirical joint distribution of demographics collected by the 
Census. One of the disadvantages of our disaggregate data is that comparable 
joint-demographic distributions are not available at the individual store’s 
market-level (e.g. zip code or city block). Only marginal distributions are 
reported by the census. So-we use mean demographics instead. To the best of 
our knowledge, no empirical study has explicitly modeled store competition in 
determining aggregate demand for a retai1er.j Most applications of store-level 
data treat retailers as local monopolists (e.g. Slade, 1995; BGJ, 1998). Our 
telephone interviews with local store managers suggest that stores do condition 
on their competitors’ action. Since we do not observe competitors’ prices in our 
data, we cannot model competition explicitly. Instead, we assume that local 
market power is captured, on average, by proximity to competitors. 
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3. ESTIMATION 

We now outline the estimation procedure for the mixed logit. Since one of our 
objectives in this analysis is the determination of the level of aggregation at 
which stores determine prices, we estimate demand alone. Unlike BLP (1995) 
we do not require additional supply-side moments for identification as we 
observe the exogenous wholesale prices and use these as instruments. This 
approach also ensures that our demand-side estimates are not subject to 
specification error from incorrectly assuming static category management by 
retailers. Since our estimation methodology is quite similar to that used by BLP 
(1995), we only provide an outline. We refer the more interested reader to BLP 
(1995) for a more technical description and to Nevo (2001) for a more thorough 
discussion of the implementation of the methodology. 

A primary concern in empirical papers using similar discrete choice models 
is the potential for estimation bias due to correlation between prices and the 
unobserved product attribute, 5. Using weekly store-level data, our primary 
concern lies in unmeasured store-specific covariates that influence demand and 
also shift prices. Several papers have documented evidence of an estimation 
bias in models that do not control for this problem using weekly supermarket 
data (BGJ, 1998; Chintagunta, 2001; Villas-Boas & Winer, 1999). For instance, 
we do not observe shelf-space; however, increasing shelf-space allocation 
typically incurs costs that raise prices, such as allocation fees and opportunity 
costs. At the same time, it is well known that,shelf-space influences consumer 
brand choices (Dreze, Hoch & Pm-k, 1994). While characterizing the precise 
nature of measurement error in our data is beyond the scope of the paper, we 
use standard instrumental variable techniques to avoid estimation biases. 

In order to facilitate the direct instrumentation of prices, we use the inversion 
procedure proposed by Berry (1994). We begin by partitioning the observed 
product characteristics as X,, = [x,,, p,], where by assumption E(x& I x,,) = 0 and 
ECpQ, Ip,,) # 0. Following Berry (1994), we invert ( 1) to recover the vector S,(G) 
of mean utilities as a function of the parameter vector 8, and we set up the 
estimation procedure in terms of 6,. Since the inverse of (1) does not have a 
simple analytical form, we resort to numerical inversion. In particular, we use 
the contraction-mapping of BLP (1995). The approach requires, for each I, 
picking some initial guess of the mean utility vector 6, and iterating (4) until the 
following J expressions converge: 

6;: ’ = Sj: + ln(qj,) - In[qjr(X,, S:; Cl)], j = 1, . . . , J (4) 

where the superscript n refers to an iteration, and qj, is the observed market 
share for brand j in period t. 
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The advantage of using S,, for estimation is that the prediction error, 
6,, - XJ3, is simply the unobserved product characteristic, 5,. The fact that &, 
enters (4) linearly facilitates instrumentation. Moreover, with some intuition for 
the source of the unobserved attribute, we are able to impose reasonable 
covariance restrictions to set up our method of moments procedure. 

We now set up a generalized method of moments (GMM) procedure to 
estimate the system of mean utilities. Let 5, be the (J x 1) matrix of unobserved 
attributes for each of the products in store-week f. Similarly, we define our 
instruments, Z,, an Z-dimensional vector including the exogenous product 
characteristics as well as other potential covariates that may be correlated with 
P,~, but not with Q, (We describe these variables in the data section). Our 
key identifying condition is the conditional mean-independence assumption 
E(& @Z, I Z,) = 0 and E(F;&I Z,) = 1I’ a finite (J x J) matrix. We are now able to 
construct our moment conditions: 

MW = 5, @Z,, 

where at the true parameter values, 9,, E(h,(G,>) =O. For estimation, we 
compute the corresponding sample analogue of these moment conditions: 

h& E&@Z,. (5) 
El 

Our goal is to find values of 8 close enough to 8, to set the sample moments 
as close as possible to zero. We estimate 8 by minimizing the following 
quadratic expression: 

G(Q) = (M~))‘WM@). 

The matrix W is a (./TX J7J weight matrix. Hansen (1982) shows that the most 
efficient choice of W is a consistent estimate of the inverse of the variance of 
the moment conditions: 

. =EtStS:@w:). 

We obtain such an estimate by first estimating with homoscedastic errors to 
compute W. 

While we assume (&I, is i.i.d. for estimation purposes, misspecifying its 
dependence structure will only affect the efficiency, not the consistency of our 
estimates.4 We should also point out that in simulating the market shares (l), 
we effectively simulate the moments used for estimation, (5). McFadden 
( 1989) and Pakes and Pollard (1989) both show that the method of simulated 
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moments (MSM) still produces consistent estimates. However, the efficiency of 
these estimates is reduced due to simulation error. Only with sufficiently many 
simulation draws can one reach asymptotic efficiency with MSM. We use 30 
draws and assume this number is sufficient to eliminate any noticeable 
simulation noise. Alternatively, one could implement variance-reducing 
simulation methods as in BLP (1995). 

4. DATA 

We use data from Dominick’s Finer Foods (DFF), which is the second largest 
supermarket chain in the Chicago metropolitan area. DFF operates close to 100 
stores in the Chicago area. The data consist of weekly sales, prices, promotions, 
and profit margins at the individual UPC-level for the liquid laundry detergent 
category. We focus on 52 weeks of data&in the year 1992. Our data are for 83 
weeks for which data on all 52 weeks are available. We present descriptive 
statistics for those products included in the analysis in Table 1. These data 
consist of means across store-weeks. We also report the standard deviation of 
prices across store weeks.5 Note that the variable WP denotes wholesale prices 
- the prices paid by Dominicks to its suppliers. There are five brands included 
in the analysis. Three of these brands (Wisk, Surf & All) are marketed by Lever 
Brothers. The other two, Tide and Cheer are marketed by Procter & Gamble. 
Tide is the largest brand in the category. The table also indicates that brands are 
sold in different sizes - most typically 64 #ounces and 128 ounces. In the 
analysis, instead of having a separate intercept for each brand-size combina- 
tion, we include 5 brand dummies (one each for Surf, Wisk, All, Cheer & Tide 
with the outside good serving as the base) and one size dummy to account for 

Table I. Descriptive Statistics (Laundry Detergent). 

Product 

surf 
Wisk 
Wisk 
All 
All 
Cheer 
Cheer 
Tide 
Tide 

Size Unit Share Std Price/unit wP/unit Prom 

64 6.2% 4.09 0.31 3.01 0.27 
128 7.0% 8.10 0.89 6.62 0.13 

64 14.1% 4.14 0.45 3.53 0.17 
64 12.8% 3.11 0.18 2.41 0.24 

128 10.9% 5.72 0.51 4.37 0.13 
64 6.3% 4.20 0.23 3.62 0.16 

128 5.3% 8.20 0.50 6.83 0.25 
128 18.9% 8.27 0.74 7.03 0.41 

64 18.4% 4.39 0.38 3.79 0.24 
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size differences (1 =64 ounces, 0 otherwise). Interestingly, we find that while 
Tide is the largest share brand (units-wise), it is also the highest priced brand 
and is promoted most often from among the set of brands analyzed. The 
promotion variable is an indicator for whether the given product had an in-aisle 
display or newspaper feature that week. In the appendix, we provide a precise 
description of how we construct the relevant brands for analysis. 

We supplement our store data with an extensive set of descriptive variables, 
from Spectra (see Hoch et al., 1995) characterizing the underlying consumer 
base and local competition associated with each store. ZIP code level 
demographic data was obtained from the 1990 census. The following four 
criteria were used in selecting the demographic variables - prior research, 
significance in the homogenous models, multicollinearity, and managerial 
relevance. For example, while we had data on the median income in the ZIP 
code, we chose the variable HVAL150 (percent of homes with a value over 
$150,000) as a proxy for income because income was highly correlated with 
other included variables. Of the five demographic variables that were used, 
only SHOPINDX (ability to shop - percent of population with car and single 
family house) and ETHNIC (percent of population that are Black or Hispanic) 
have a correlation of over 0.5. AGE60 (percent of population over age 60) also 
represents the retired variable (correlation of 0.88). The final demographic 
variable included HHLARGE is the percentage of households with five or more 
members. The two competitive variables used in the study are distance from the 
nearest Jewel (the largest supermarket in the area) and minimum of the distance 
from the nearest Cubfoods and Omni (the two main EDLP operations). Our 
initial models had also included variables on competitor volume but these had 
limited explanatory power and were dropped in the final models. 

Recall that our estimation accounts for price endogeneity by instrumenting 
for prices. The set of instruments we use are as follows. We use the brand 
specific intercepts, the store characteristics, the promotional variables (that are 
assumed to be exogenous) and the wholesale prices of the various brands. 
Assuming promotions to be exogenous may appear to be counter-intuitive. 
However, our conversations with the store managers revealed that promotional 
decisions are typically made in advance of the weekly pricing decisions, 
thereby providing some support for our assumption that promotions are 
exogenous. Wholesale prices are likely to be correlated with retail prices. 
However. they are unlikely to be correlated with store specific factors such as 
store coupons, etc. As these latter factors are what we believe affect the Q,, 
using wholesale prices as instruments appears to be a reasonable assumption. 

Summary statistics for the demographic and competitive variables are 
provided in Table 2. We find considerable variation in the demographic and 
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Table 2. Demographic and Competitive Variables. 

201 

Variable Mean Std Dev Minimum Maximum 

AGE60 
ETHNIC 
HHLARGE 
HVAL150 
SHOPINDX 
JEWELDIST 
EDLPDIST 

17% 6% 6% 31% 
15% 19% 2% 99% 
12% 3% 1% 22% 
34% 24% 0.40% 92% 
74% 24% 0% 99% 

1.29 (mi) 0.86 0.06 3.96 
5.03 (mi) 3.48 0.13 17.85 

competitive characteristics across stores. For example, DFF stores cater to 
market areas with Black and Hispanic representation ranging from 2 to 99% of 
the population. In terms of consumer wealth, the proportion of consumers in 
DFF markets with houses valued over $150,0 ranges from below 1% to 92%. 
In terms of competition, some stores are located right next to both rival 
supermarkets and warehouse stores. Others locate over 4 miles from the nearest 
Jewel and 18 miles from the nearest EDLP store. We expect these differences 
to generate noticeable variation in the nature of demand across stores. 
Moreover, we expect these differences to generate variation in the perceived 
distance between brands across stores’ markets. 

5. RESULTS 

We now present our estimates for the demand parameters along with the 
resulting perceptual maps. Recall that our model formulation consists of the 
following sets of parameters. (a) The 5 brand specific intercepts and one size 
dummy. (b) The mean price effect and promotion effect (c) The heterogeneity 
in price sensitivity parameter (A). (d) The effects of store characteristics on the 
category purchase shares (y in equation (3)). (e) The mean values of the latent 
brand attributes, Lj for brand j. (f) The interaction effects between the latent 
attributes and the store characteristics (0 in equation (3)) that allow for store 
specific inter-brand preference correlations. We discuss these sets of parameter 
estimates in turn. We estimate two model specifications. In the first, we assume 
that the variance in tastes, and hence the perceptual maps, are constant across 
stores. In the second, we allow for the variation in tastes to vary across stores. 
Model 1 therefore, only includes effects (a) through (e). Model 2 accounts for 
effects (a) through (f). 

We summarize the estimation results for the set of parameters (a) through (d) 
for both model specifications in Table 3. The rank ordering of the mean brand 
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Variable 

Table 3. Taste Parameters (Laundry Detergent). 

Model I Model II 
Param se PaKUtl se 

SUti -0.948192 0.2107 4.299 0.223 
Wisk a.231744 0.117 0.352 0.250 
All -1.824576 0.0802 -1.541 0.298 
Cheer -0.411774 0.1717 0.030 0.218 
Tide 0.964308 0.0934 1.516 0.221 
Size (64 oz) 0.7356 0.0079 0.752 0.008 

Price 
Price std 
Prom 
AGE60 
ETHNIC 
HHLARGE 
HVALISO 
SHOPINDX 
JEWDIST 
DISTEDLP 

-12.144 0.0891 -13.925 0.583 
1.7224 0.1664 2.205 0.395 

0.1153 0.009s 0.08s 0.011 
1.0993 0.0826 1.070 1.093 

-0.4839 0.0422 -0.680 0.169 
0.771 0.2148 0.173 1.245 
0.5596 0.0241 0.140 0.378 
0.160s 0.0317 -0.156 0.206 
0.0327 0.0054 0.044 0.016 
0.0204 O.cOlS 0.02s 0.004 

intercepts appear to be fairly robust to the specification of variance. The 
coefficients for prices and promotions have the usual sign. We find that Tide is 
the highest-valued brand, on average, consistent with our earlier observation 
that it has the highest unit share while being the highest priced brand. We also 
find that overall category demand levels are lower in markets with a higher 
proportion of ethnic households. Further, levels of demand appear to be higher 
for stores farther away from competing chains’ prime stores regardless of 
whether these are EDLP or high/low pricing stores (Jewel). Note that these 
results do not tell us whether proximity to a competitor will make the store 
more or less profitable. To assess the impact of proximity on market power, we 
would need to compute marginal effects subject to a model of category 
management.” . 

Next, we turn to the mean values of the latent brand attributes across stores. 
We assume that there are 2 latent attributes so the values corresponding to each 
brand can be interpreted as locations on a two-dimensional map. In Table 4, we 
present the set of parameters corresponding to these latent attributes (i.e. the set 
of parameters (e) above). We report only the results from Model 2 here. Note 
that Tide has been constrained to lie along attribute or dimension 1 to ensure 
rotational invariance of the derived map. First, we find that a brand’s location 
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Table 4. Common Component across stores for Latent Factors (Laundry 
Detergent). 

Brand Dim 1 se Dim 2 se 

surf a.153 0.322 4.774 0.272 
Wisk 0.239 0.28 1 -0.645 0.286 
All -1.030 0.250 4mi4 0.180 
Cheer -1.066 0.206 -0.311 0.166 
Tide -0.806 0.143 - 

does differ along the two dimensions. This implies that a one-factor or a single 
latent attribute would not have sufficed for these data to capture the nature of 
inter-brand correlations. On average, we find that All, Cheer and Tide are 
perceived to be similar along attribute 1, with Surf and Wisk being perceived 
similarly along this attribute (they are not statistically distinguishable from 
zero). Along dimension 2, we find Tide and All perceived as being similar. Surf 
and Wisk once again are close together with Cheer taking an intermediate 
location in between the two sets of brands. The results from this table therefore 
indicate that on average, consumers differ in the way they perceive the brands 
along the two attributes. 

Having discussed the mean attribute locations, we now turn to the 
interactions between the latent attributes and the demographic variables 
(parameters identified as set (f) above). Agaifi, these results are from Model 2 
(model 1 does not incorporate these effects). Recall that the interactions allow 
us to obtain store-specific perceptual maps. Note that statistical significance in 
the interaction effects provide evidence of varying brand perceptions across 
store areas. In Table 5 we provide the parameter estimates and the standard 
errors of the brand-specific interaction effects. We find that the manner in 
which store characterisitics influence the latent attributes varies considerably 
across brands. The most significant interactions appear to be for the Tide brand. 
Here we find that three store characterisitics play a role in influencing latent 
attributes across stores. These variables are the proportion of large households 
in the store area, the proportion of houses with values exceeding $150,000 as 
well as the ability of consumers in the store area to shop. We also find some 
statistically significant effects for Cheer for the proportion of high-value 
households and the proportion of ethnic households and for All, the proportion 
of large households. Interestingly, consistent with our previous finding we do 
not find statistically significant effects for the large Lever brothers brands, Wisk 
and Surf. 
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Next, to fix our ideas about across store heterogeneity in perceptions, we plot 
the perceptual maps for 4 stores (identified as stores 62, 74, 89 and 103). The 
plots are provided in Figs 3,4, 5 and 6. These stores were chosen because they 
varied along specific store characteristics. Store 62 has the highest proportion 
of households with residences valued over $150,000. Store 74 has the highest 
proportion of ethnic households. Store 89 is the opposite of store 62, it has the 
lowest proportion of families with homes valued over $150,000. Finally, store 
103 has the lowest proportion of ethnic households. Our choice of these two 
variables is based on the significant interaction effects obtained in Table 4. In 
other words, we are interested in demonstrating that store differences in 
perceptions can be attributed to store characteristics. 

Table 5. Store-Specific Component for Latent Factors (Laundry Detergent). 

Wi\h 

All 

Brand Param se t-stat 

Surf AGE60 1.603 1.704 0.941 
ETHNIC -2.872 2.138 -1.343 

HHLARGE -0.416 1.511 a.275 
HVALl.50 0.913 1.121 0.814 

SHOPINDX -0.422 2.026 -0.208 

AGE60 1.395 1.006 1.388 
ETHNIC 0.876 0.656 1.336 

HHLARGE 0.172 0.666 0.258 
HVAL 150 0.404 0.906 0.445 

SHOPINDX -0.263 0.996 -0.265 

AGE60 -0.142 2.841 4050 
ETHNIC 2.663 4.035 0.660 

HHLARGE -5.492 2.399 -2.290 
HVALISO 4.296 2.859 1.503 

SHOPINDX -0.062 5.283 a.012 

AGE60 0.155 0.533 0.291 
ETHNIC -1.161 0.591 -1.967 

HHiARGE 0.364 0.425 0.855 
HVALlSO a.713 0.350 -2.038 

SHOPINDX -0.682 0.507 -1.344 

Tide AGE60 a.370 1.080 -0.343 
ETHNIC 0.387 0.843 0.459 

HHLARGE -2.120 0.540 -3.926 
HVAL 150 -0.984 0.548 -1.795 

SHOPINDX -3.198 0.741 -4.313 
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Looking at Fig. 4 which provides the map for store 62, we find the following. 
First, the Procter & Gamble brands Tide and Cheer are perceived as being quite 
similar to one another, whereas the positioning of the Lever brothers brands is 
a lot more diffuse. Specifically, each of All, Surf and Wisk appear to have 
unique perceptions in the marketplace. Further, they seem to be perceived 
differently from the P&G brands. This store could be problematic for P&G as 
switching is most likely to occur within its own portfolio of brands. 

We find that a similar pattern emerges when we look across two stores that 
differ in their proportions of ethnic households. Store ‘74, whose map is 
depicted in Fig. 6 has the highest propotion of ethnic households. Store 103 has 
the lowest proportion (Fig. 5). We find that for store 74, there are two distinct 
groupings of brands - one consisting of Tide, Cheer and All and the other with 
Surf and Wisk. In some sense for such neighborhoods, All seems to be working 
as a good fighter brand for Lever BrothersWhen the proportion of ethnic 
households is small as in store 103 (Fig. 5), we find that preferences are a lot 
more diffuse in nature with all brands having fairly unique locations. 

To summarize our findings from the various maps, statistically significant 
effects of interactions between the latent attributes and store characteristics do 
appear to translate into differences in perceptions of the brands along these 
attributes. 

Next, we try to assess whether brand locations along the attributes are 
statistically significantly different across stores. In other words, is the location 
along an attribute, after including the effects of store characteristics, different 
across stores? To address this issue, we focug on the Tide brand. According to 
Table 5, this brand shows the most interactions with store characteristics. In 
Fig. 7, we plot the locations of the Trde brand in the 4 stores considered above 
- 62, 74, 89 and 103. Around each location, we provide the 95confidence 
region (i.e. two-dimensional confidence interval). The figure shows that while 
there is some overlap in these regions for pairs of stores, there are other store 
pairs for which there is no overlap. This implies that the locations of the brand 
is statistically significantly different at least across some store pairs. 

6. CONCLUSION 

We use standard choice models to estimate demand curves for a given category. 
By decomposing the covariance in consumer tastes for brands, we are able to 
recover perceptual maps. Unlike the existing literature, we use aggregate store- 
level data, treating weekly market s shares as an aggregation of individual 
choices. The advantage of using aggregate data is that we are able to recover 
store-specific maps that allow for perceived brand locations to vary across local 
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markets. Given the increasing emphasis on category management (Zenor, 
1994) and micro-marketing (Hoch et al., 1995; Montgomery, 1997) store- 
specific perceptual maps enable retailers and manufacturers to target 
promotions to those markets in which they have the strongest positioning. 
Alternatively, one might target promotions to those markets in which the brand 
has the least perceived differentiation in a brand-building effort. 

Applying the model to weekly sales of laundry detergents, we recover the 
demand system. From the parameters of the estimated demand system, we are 
able to plot the maps across stores. Our main finding is that the maps do vary 
substantially across stores. These differences could allow managers to consider 
targeting specific stores with promotions and pricing. 

In the current work, we focus entirely on aggregate data. Despite our efforts 
to allow for taste distributions to vary across stores, we are limited to the use 
of mean Zip-code level data. Recently, stores are increasingly collecting their 
own microdata sets using loyalty cards, tracking individual purchases within 
specific stores. Future work might consider combining these micro data with 
the aggregate data into an integrated estimation framework (BLP, 1998 and 
Petrin, 2000). The combination of both data sources could allow for more 
sophisticated treatments of the store-specific brand locations and, in turn, the 
brand maps. 

NOTES 

1. Since we estimate a full set of product f&d-effects, we do not need to worry 
about unmeasured physical product attributes, as in BLP 1995. We are concerned with 
unobserved weekly in-store product-specific effects. 

2. For instance, Besanko, DUG and Gupta (2001) use a finite-mixture model using 
comparable aggregate weekly store data. 

3. One exception is Pesendorfer (2001), who models the timing of sales in a category 
as the outcome of inter-store competition. 

4. We programmed the code for this estimation routine in MATLAB version 5.3. 
5. Although not reported, we find that cross-store variation explains, on average, 

15% of a brand’s total price variation. For 64 oz Cheer, we find that cross-store variation 
explains over 45% of the total price variation. Thus, we expect our data to be. capable 
of identifying significant cross-store effects. 

6. We are currently working on this issue regarding the impact of proximity to 
competitors to store profitability. 
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APPENDIX 

The Laundry Detergent Category 

The laundry detergent category is dominated by brands from two manu- 
facturers (P&G and Unilever) that account for 84% of category sales. Tide is 
the market leader with a market share of 32%, followed by Wisk with a share 
of 16%. The store brand has a limited presence in this category and thus we 
omit it from our analysis. Although detergents are sold in a number of sizes, 64 
and 128 oz account for over 80% category volume. 

Despite the dominance by two manufacturers, the detergent category is 
highly competitive with over 100 UPCs and 15 brands. Such large number 
products dictate some aggregation across products. Further, selecting brands 
for empirical analysis requires a balance between category representation and 
aggregation bias. Our approach was to run a correlation of prices across stores 
and weeks, and bundling those UPCs within a brand-size that had a price 
correlation of over 0.8. In other words, we only aggregate across UPCs whose 
prices co-move highly enough to believe they are priced jointly. To be more 
concrete, we present the UPCs, their sizes, category shares, prices, and the 
price correlation for Wisk in Table 6. The items in bold appear in our empirical 
analysis. Overall, our empirical analysis uses data on 19 UPCs and 9 brand-size 
combinations. The included products account for 61% of the category sales. 
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ECONOMETRICANALYSISOFTHE 
MARKETSHAREATTRACTION 
MODEL 

Dennis Fok, Philip Hans Frames and Richard Paap 

ABSTRACT 

Market share attraction models are useful tools for analyzing competitive 
structures. The models can be used to infer cross-e$ects of marketing-mix 
variables, but also the own effects can be adequately estimated while 
conditioning on competitive reactions. Important features of attraction 
models are that they incorporate that market shares sum to unity ana’ that 
the market shares of individual brands ag in between 0 and 1. Next to 
analyzing competitive structures, attraction models are also often con- 
sidered for forecasting market shares. 

The econometric analysis of the market share attraction model has not 
received much attention. Topics as specification, diagnostics, estimation 
and forecasting have not been thoroughly discussed in the academic 
marketing literature. In this chapter we go thtwugh a range of these topics, 
an& along the lines, we indicate that there are ample opportunities to 
improve upon present-day practice. We also discuss an alternative 
approach to the log-centering method of linearizing the attraction moakl. 
This approach leads to easier inference and interpretation of the model. 

Eeonometrk Models in Marketing, Volume, 16, pages 223-256. 
copyright 8 2002 by Elsevier !kience Ltd. 
AH rights of mpodnction in my form reserved. 
BBN: &762348!57-5 

223 



724 DENNIS FOK. PHILIP HANS FRANSES AND RICHARD PAAP 

1. INTRODUCTION 

The implementation of econometric models has become increasingly fashion- 
able in marketing research. The main reason for this is that nowadays 
marketing research can involve the analysis of large amounts of data on 
revealed preferences, such as sales, market shares, brand choices and 
interpurchase times, and stated preferences such as opinions, attitudes and 
purchase intentions. Many firms collect data on these performance measures 
for their current and their prospective customers, and they usually try to relate 
these measures with individual-specific characteristics and marketing-mix 
efforts. See Leeflang et al. (2000) and Franses and Paap (2001a) for recent 
surveys on quantitative models for revealed preference data. The main reason 
for considering econometric models is that in many cases the number of data 
points and the number of variables is rather large, and hence simply performing 
a range of bivariate analyses seems impractical. 

The econometric analysis of a certain model for the above mentioned 
measures usually involves a range of steps. The first step amounts to specifying 
a model given the available data, the relevant explanatory variables, and the 
marketing problem at hand. Once the model has been specified, one needs to 
estimate the parameters and their associated confidence regions. Third, one 
usually considers the empirical validity of the model by performing diagnostic 
tests on its adequacy, where one typically focuses on the properties of the 
unexplained part of the model. Given the potential availability of two or more 
adequate rival models, one seeks to compare these models either on within- 
sample fit or on out-of-sample forecasting performance. Finally, one can use 
the ultimately obtained model for forecasting or for policy analysis. It should 
he noted that the focus in econometric textbooks tends to be on parameter 
estimation, but it is by no means the single most important issue. Indeed, in 
practice it is often difficult to specify the model and to compare it with 
alternatives. 

In this chapter we will consider the econometric analysis of a popular model 
in marketing research, which is the market share attraction model. This model 
is typically considered for data on market shares, where the data have been 
collected at a weekly or monthly interval. Market share attraction models are 
seen as useful tools for analyzing competitive structures, see Cooper and 
Nakanishi (1988) and Cooper (1993), among various others. The models can be 
used to infer cross-effects of marketing-mix variables, but one can also learn 
about the effects of own efforts while conditioning on competitive reactions. 
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Important features of attraction models are that they rightfully assume that 
market shares sum to unity and that the market shares of individual brands are 
in between 0 and 1. This complicates the econometric analysis, as we will see 
below. Typically, an attraction model can be written as a system of equations 
concerning all market shares, and the parameters can be estimated using 
standard methods, see for example Cooper (1993) and Bronnenberg et al. 
ww. 

Interestingly, a casual glance at the relevant marketing literature on market 
share attraction models indicates that there seem to have been little attention on 
how to specify the attraction model, how to estimate its parameters, how to 
analyze its virtues in the sense that the models capture the salient data 
characteristics, and about how to use the models for forecasting. In sum, it 
seems that an (empirical) econometric view in these models is lacking. 
Therefore, in this chapter we aim to contribute to this view by addressing these 
issues concerning attraction models when they are to be used for describing and 
forecasting market shares. The first issue concerns the specification of the 
models. A literature check immediately indicates that many studies simply 
assume one version of an attraction model to be relevant and start from there. 
In this chapter we first start with a fairly general and comprehensive attraction 
model, and we show how various often applied models fit into this general 
framework. We also indicate how one can arrive from the general model at the 
more specific models, thereby immediately suggesting a general-to-simple 
testing strategy. Second, we discuss the estimation of the model parameters. We 
show that a commonly advocated method is unnecessarily complicated and that 
a much simpler method yields equivalent estimates. Along these lines, we also 
propose a few diagnostic measures, which to our knowledge have rarely been 
used, but which really should come in handy. Finally, we address the issue of 
generating forecasts for market shares. As the market share attraction model 
ultimately gets analyzed as a system of equations for (natural) log transformed 
shares, generating unbiased forecasts is far from trivial. We discuss a 
simulation-based method which yields unbiased forecasts. 

The outline of this chapter is as follows. In Section 2, we first discuss the 
basics of the attraction model by reviewing various specifications of the model. 
We discuss the interpretation of the model in Section 3, and we discuss 
parameter estimation of the model in Section 4. We discuss diagnostic 
measures in Section 5. We touch upon the topic of model selection in Section 
6. Forecasting in the attraction model is discussed in Section 7. In Section 8, 
we illustrate some of the techniques using scanner data. We conclude in Section 
9 with suggestions for further research. 
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2. REPRESENTATION 

In this section we start off with discussing a general market share attraction 
model and we deal with various of its nested versions which currently appear 
in the academic marketing literature. We first start with the so-called fully 
extended attraction model in Section 2.1. This model has a flexible structure as 
it includes many variables. Naturally this increases the empirical uncertainty 
about the relevant parameters. Therefore, in practice one may want to consider 
restricted versions of this general model. In Section 2.2, we discuss some of the 
restricted versions, where we particularly focus on those models which are 
often applied in practice. 

2.1. A General Market Share Attraction Model 

Let A,, be the attraction of brand i at time t, t = 1, . . . , T, given by 

Ai,,=exp(p++q,) fi fi x2; fori=l,...,Z, (1) 
j=l k=l 

where xkJ,, denotes the k-th explanatory variable (such as price level, 
distribution, advertising spending) for brandj at time t and where Pkj,i is the 
corresponding coefficient for brand i. The parameter pi is a brand-specific 
constant. Let the error term (E ,,,, . . . , E[,J’ be normally distributed with zero 
mean and Z as a possibly non-diagonal covariance matrix, see Cooper and 
Nakanishi (1988). As we want the attraction to be non-negative, xkj,, has to be 
non-negative, and hence rates of changes are usually not allowed. The variable 
.YA ,,I may be a O/l dummy variable to indicate promotional activities for brand 
,j at time t. Note that for this dummy variable, one should transform x,,,, to 
exp(x,,,,) to avoid that A,,, becomes zero in case of no promotional activity. 

The attraction specification in (1) is known as the Multiplicative Competitive 
Interaction [MCI] specification. A more general version of the attraction model 
uses a transformation of the explanatory variables; that is, it usesf(x,,,) instead 
of x,,,,. When f(. ) is t&en to be the exponential function one obtains a 
specification known as the Multinomial Logit [MNL] specification. The 
difference between the MCI and the MNL specification is the assumed pattern 
of the elasticity of marketing instruments. The MCI specification assumes that 
the elasticity declines with increasing values of the explanatory variable, while 
the MNL specification assumes the elasticity increases up to a specific level 
and then decreases. The ultimate choice of a specification therefore depends on 
the marketing instruments used. The MNL specification seems to be 
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appropriate for advertising spending, while the MCI specification would better 
fit pricing, see Cooper (1993) or Cooper and Nakanishi (1988) for elaborate 
discussions on the choice of f( . ). In order not to complicate matters, we only 
consider the MCI specification, but note that all results can be extended to the 
MNL specification. 

The market shares for the I brands follow from the, what is called, Market 
Share Theorem, see Bell et al. (1975). This theorem states that the market share 
of brand i is equal to its attraction relative to the sum of all attractions, that is, 

4, Mi,, = ( I fori=l,...,Z. (2) 

c Aj.r 
j=l 

The model in (1) with (2) is usually called the market share attraction model. 
Notice that the definition of the market share of brand i at time t given in (2) 
implies that the attraction of the product category is the sum of the attractions 
of all brands and that Ai,, =AS, results in Mi, = M ,,,. 

The interesting aspect of the attraction model is that the Ai,t in (1) is 
unobserved. As we will see below, this implies that neither ~~ nor & is 
identified. Another consequence is that the market researcher should make a 
decision on the specification of A,,, prior to empirical analysis. As we will 
indicate, there are many possible specifications. For example, to describe 
potential dependencies in market shares over time, which describe purchase 
reinforcement effects, one may include lagged attractions A,,, in (1). For 
example, one may consider 

I K 

(3) 

However, due to the fact that we do not observe A,,,, it turns out only possible 
to estimate the parameters in this model if the lag parameter yi is assumed to 
be the same across brands, see Chen et al. (1994). As this may be viewed as too 
restrictive, an alternative strategy to account for dynamics is to include lagged 
values of the observed variables M,,, and &j,, in (1). The most general 
autoregressive structure follows from the inclusion of lagged market shares and 
lagged explanatory variables of all brands. In that case, the attraction 
specification with a P-th order autoregressive structure becomes 
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where the CK,,~,,, parameters represent the effect of lagged market shares on 
attraction and where the p,,L,,i parameters represent the effect of lagged 
explanatory variables. To illustrate, this model allows that the market share for 
brand 1 at r - 1 has an effect on that of brand 2 at t, and also that there is a 
relationship between brand 2’s market share and the price of brand 1 at t - 1. 
The lagged endogenous variables capture dynamics in purchase behavior that 
cannot be attributed to specific marketing instruments. For example, consider 
state dependence in behavior. If brand i is purchased at time t by consumers 
who act state dependent, there will be a higher probability that they will 
purchase brand i again at time t + 1. Whether the brand was chosen at time t 
because it was promoted or just by chance does not influence the dynamics in 
the behavior. On the other hand, part of the dynamics in the behavior can be 
attributed to specific marketing instruments. As an example, consider price 
promotions. A well-known feature of promotions is the post-promotional dip, 
see Van Heerde et al. (2000). In the period after a promotion it is often observed 
that sales or market shares decrease temporarily, as due to the promotion there 
has been stock piling by the consumers. To capture such dynamic patterns we 
include lagged exogenous variables in our attraction specification. 

The flexibility of this general specification is reflected by the potentially 
large number of parameters. For example with I = 4 brands, K= 3 explanatory 
variables and P = 2 lags, there are over 150 parameters to estimate (although 
they are not all identified, see below). It is however not necessary that the order 
P for the lagged market shares and lagged explanatory variables is the same. To 
obtain a different lag order for the explanatory variables, one can restrict the 
corresponding P,,,kj,r parameters to be zero. 

The model that consists of Eqs (4) and (2) is sometimes called the fully 
extended multiplicative competitive interaction [FE-MCI] model, see Cooper 
(1993). To enable parameter estimation, one can linearize this model in two 
steps. First, one can take one brand as the benchmark brand. Choosing brand 
I as the base brand leads to 

M “‘= 

M,,, 

exp( k + q,) 

exp(h + EL,) 

/ K P 

(5) 

In Section 4.2, we will discuss another approach to linearizing the model, but 
we will show that both transformations lead to the same parameter estimates, 
while the estimation procedure based on (5) is much simpler. Next, one can 
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take the natural logarithm (denoted by log) of both sides of (5). Together, this 
results in the (I - 1)-dimensional set of equations given by 

1% Mt., - log w,= (P; - i-4 + i 9 (Pk,,i - Pk,.,) 1% XA,,, 
j=I k=l 

K 

(%j,i - %j.,) log M].r-p + c (f$.kJ,i - Pp.kj.1) log xkj., mP + q;.,. 

k=l 

(6) 
fori=l,... , Z - 1. Note that not all pi parameters (i = 1, . . . , I) are identified. 
Also for each k and p, one of the Pkj,i and Pp,kj,i parameters is not identified. In 
fact, only the parameters Pi = Fi - lb 6kJ.i = Pkj.i - Pkj,, Bp,k j,i = Pp,kj,i - Pp,kJ,~ are 

identified. This is however sufficient to completely identify elasticities, see 
Section 3 below and Cooper and Nakanishi (1988, p. 145). Finally, one can 
only estimate the parameters &pj,i = o~~,~ - a,j,l. 

The error variables in (6) are q,,, = tsi,, - E,,, i = 1, . . . , Z - 1. Hence, given the 
earlier assumptions on E~,~, (Q . . . , q,- ,,,)’ is normally distributed with mean 
zero and ((I- l)x(Z- 1)) covariance matrix s=L%,‘, where L=(I,_,ii,m,) 
with I,-, an (I - 1)-dimensional identity matrix and where i,-, is an (I - l)- 
dimensional unity vector. Note that therefore only i Z(Z - 1) parameters of the 
covariance matrix 2 can be identified. 

In sum, the general attraction model can be written as a (I - I)-dimensional 
P-th order vector autoregression with eiogenous variables [sometimes 
abbreviated as VARX(P)], given by 

I K 

log M,,, - log A.&, = l& + cc Sk,,, log Xk,/,t 
j=l k=i 

K 

Q,t 1% Mi,rmp+ C pp,kj,i log Xkj.r-p +“lw C7) 
k=l 

i=l,..., Z - 1, wh_ere the covariance matrix of the error variables 
(r),,,r . . * ? q,-,,J is 2 Note that the model is only valid for the observations 
starting at time t = P + 1. For inference, it is common practice to condition on 
the first P initial values of the log market shares and the explanatory variables 
as is also done in vector autoregressions, see Ltitkepohl (1993). For further 
reference, we will consider (7) as the general attraction specification. We will 
take it as a starting point in our within-sample model selection strategy, which 
follows the general-to-specific principle, see Section 6 below. 
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It is not possible to write the log market shares in (7) as a function of current 
and lagged explanatory variables and disturbances only. It is even not possible 
to solve (7) for log M,,, - log M,,T. This is mainly due to the complex dynamic 
structure. This means that it is difficult to derive restrictions for stationarity of 
the log market shares themselves. In practice, this may not be a serious 
problem. Indeed, Srinivasan and Bass (2000) and Franses et al. (2001) consider 
testing for unit roots in market shares in a different model and their results 
suggest that generally market shares appear to be stationary. In Section 2.2, we 
show that if the dynamic specification is somehow restricted, it does become 
possible to solve (7) for log relative market shares. 

2.2. Various Restricted Models 

As can be understood from (7), the general attraction model contains many 
parameters and in practice this will absorb many degrees of freedom. 
Therefore, one usually assumes a simplified version of this general model. 
Obviously, the general model can be simplified in various directions, and, 
interestingly, the academic marketing literature indicates that in many cases 
one simply assumes some form without much further discussion. Selecting an 
appropriate model may be a non-trivial exercise, as there are many possible 
simpler models. One can for example impose restrictions on the l3 coefficients, 
on the covariance structure C, and on the autoregressive parameters 01. In this 
section we will discuss a few of these potentially empirically relevant 
restrictions on the attraction specification in (4). 

Restricted Covariance Matrix [RCM] 
If the covariance matrix of the error variables a,,, in (4) is a diagonal matrix, 
where each a,., has its own variance af, that is, C = diag(a:, . . . , a:), then the 
covariance matrix for the (I - 1)-dimensional vector Q, in (7) becomes 

diag(a:, . . . , ai- ,) + u$- ,ii- ,, (8) 

where i, , denotes a (I - 1)-dimensional unity vector. In Section 6 we discuss 
how one can examine the-validity of (8). If this restriction holds, the errors in 
the attraction specifications are independent, implying that the unexplained 
components of the attraction equations are uncorrelated. 

Restricted Competition [RC] 
One can also assume that the attraction of brand i only depends on its own 
explanatory variables. This amounts to the assumption that marketing effects of 
competitive brands do not have an attraction effect, see for example Kumar 
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(1994) among others. For (4), this corresponds to the restriction Pkj,, = 0 (and 
&L,,, = 0) .for jf i. More precisely, this RC restriction implies that (4) reduces 
to 

Ai,,=exPt~i+Et,r) fi 
&=I 

fori=l,...,l, 

(9) 
where we write P&,, for 13k,i,r and &,&.[ for &,k,i,r. Consequently, the linearized 
multiple equation model in (7) becomes 

K K 

log Mi,t - log MI,, = pi + c Pk.; 1% Xk,i,t - c Pk., log Xk,l,r 
&=I &=I 

K I K 

4j.i log Mj,t-p+C Pp,k,i log xk.i.r-p - c pp.k.1 log xk,l,f-p + rli,r 
&=I &=I 

(10) 
for i= 1, . . . , I - 1. Notice that this means that the coefficients &, are equal 
across the (I - 1) equations and that these restrictions should be taken into 
account when estimating the parameters. The RC assumption in (9) imposes 
K(P+ l)I(Z - 2) restrictions on the parameters in the general model in (7), 
which amounts to a substantial increase in the degrees of freedom. In Section 
6 we will discuss how this restriction can bec‘tested. 

Restricted Effects [RE] 
An even further simplified model arises if we assume, additional to RC, that the 
p parameters are the same for each brand, that is, l& = pk (and &,k,i = &&), see 
Danaher (1994) for an implementation of this combined restrictive model. This 
model assumes that marketing efforts for brand i only have an effect on the 
market share of brand i, and also that these effects are the same across brands. 
In other words, price effects, for example, are the same for all brands. It should 
be noted here that these similarities do not hold for elasticities, as will become 
apparent in Section 3. One may coin this model as an attraction model with 
restricted effects. Based on (4), the attraction for brand i at time t then further 
simplifies to 

Ai,,=exp(~i+ci,,) fi xpx k.,,, 0 fj (M:.l, fi x%-P) fori=l,...,Z, 
&=I 

(11) 
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and the linearized multiple equation model (7) simplifies to 
K 

log M, I - log ML, = ,% + c PktlOg xk ,r,, - log +d,r) 
k-l 

K 

Ep,,.i log Mj.f p + c Pp,k(log xk,,,t -,I - log Xk.l,r --,I) + %.I ( 1 2, 
k=l 

for i= 1,. . . , I - 1. This RE assumption imposes an additional K(P + l)(Z - 1) 
parameter restrictions on the p coefficients of (7). Of course, it may occur that 
the restrictions only hold for a few and not for all PkJ,; parameters, that is, for 
only a few marketing variables. In that case, less parameter restrictions should 
be imposed. 

Restricted und Common Dynamics [RD, CD] 
Finally, one may want to impose restrictions on the autoregressive structure in 
(4) implying that the purchase reinforcement effects are the same across 
brands. For example, the restriction that the attraction of brand i at time t only 
depends on its own lagged market shares M,,, corresponds with the restriction 
ci ,‘J,, = 0 for j f i in (4). The corresponding multivariate model, representing an 
attraction model with Restricted Dynamics [RD], then becomes 

I K 

log Mt., - log M,,r = I&+ C C ok,,, log Xkj.r 
j=l k=l 

K 

ap.i log M,,r-,> - ap,l log M,,, -,, + 
c i$~,k,/,t log xk,, ,I + %,r> 
k=l 

(13) 

for i = 1, . . , I - 1, where we again save on notation by using tip,, instead of 
(Y ,,,,,,. Note that now the cx,,, parameters are the same across the (I - 1) equations 
and hence that these restrictions should be imposed when estimating the model 
parameters. To illustrate, Chen et al. (1994) additionally impose that P = 1 and 
a,,, = y, which yields the estimable version of the attraction model in (3) which 
assumes that the purchase reinforcement effects are the same across brands. For 
further reference, we will call this last restriction the Common Dynamics [CD] 
restriction. 

To illustrate the common dynamics model we consider a simple attraction 
model with P= 1 and restricted effects, that is, 

A,,I=exp(~i+Ei,r)X~~Xlt:-,~,-I fori=l,...,Z, (14) 
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with (E,,,, . . . , q,)’ w NID(0, C). This attraction specification corresponds to 
the following set of I - 1 linear equations 

log Mi.f -  log M,,t= bi+ ff(log Mi,r- I -  log M,.r- I) + Pdl"g x,,r -  log xI.~) 

+ Ml% Xi.,- I -  1% Xl,,- I) + Ill,,. (15) 

This equation is basically an Autoregressive Distributed Lag model for the 
variable (log IV,,* - log M,,,). To determine the dynamic effects of lagged x,,, and 
x,,~ on the market shares we solve (15) for (log M,,, - log M,,,) 

1-l 

log 4, - log M,, - - au’(lOg Mi.0 - log M,,d + C a’( I?;i + ~~(log Xi,, - 7 - log xl.1 - 7) 
7=0 

+Pl(lOg 4,r-r-1 -  log ',,t-,- I> +rli,r-7) (16) 

for i=l,... , I - 1. It is easy to see that the relative log market shares are 
stationary if I (Y I < 1 as under this restriction the influence of the market shares 
at time 0 vanishes for t- ~0. Under stationarity, the effect of lagged explanatory 
variables on current log market shares decreases exponentially. 

The above discussion shows that various attraction models, which are 
considered in the relevant literature and in practice for modeling and 
forecasting market shares, are nested within the general attraction model in (4). 
The fact that these models are nested automr$ically suggests that an empirical 
model selection strategy can be based on a general-to-simple strategy, see 
Franses and Paap (2001 b). 

3. INTERPRETATION 

As the market shares get modeled through the attraction specification, and as 
this implies a reduced form of the model where parameters represent the impact 
of marketing efforts on the logarithm of relative market shares, the parameter 
estimates themselves are not easy to interpret. To facilitate an easier 
interpretation, one usually resorts to elasticities. In fact, it turns out that the 
reduced-form parameters are sufficient to identify these (cross-)elasticities. 

For model (4), the instantaneous elasticity of the k-th marketing instrument 
of brand j on the market share of brand i is given by 

(17) 
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see Cooper (1993). To show that these elasticities are identified, one can rewrite 
them such that they only depend on the reduced-form parameters, that is, 

I- I 
aM/., Xh ,,I ax b =(I% .I.! - Pk:i.N - M,J - c w.t(Pk,,,r - Pkj.,h (18) hJ.1 I.! Clhrfi 

see (6). Under Restricted Competition, these elasticities simplify to 

(19) 

where S,=, is the Kronecker 6 which has a value of 1 if i equals j and 0 
otherwise. Under Restricted Effects, we simply have 

(20) 

It is easy to see that the elasticities converge to zero if a market share goes 
to 1. From a marketing perspective, this seems rather plausible. If a brand 
controls almost the total market, its marketing efforts will have little if any 
effect on its market share. Secondly, in case the market share is an increasing 
function of instrument X, then if X goes to infinity the elasticity will go to 0. 
These two properties may seem straightforward, but among the best known 
market share models, the attraction model is the only model satisfying these 
properties, see also Cooper (1993). Whether the above two properties hold in 
a practical attraction model depends on the specific transformation of variables 
used. although the MCI and the MNL specification both lead to elasticities 
satisfying these properties. 

4. PARAMETER ESTIMATION 

In this section we discuss iwo methods for parameter estimation, and we show 
that they are equivalent. The first method is rather easy, whereas the second 
(which seems to be commonly applied) is more difficult. 

4.1. Using a Base Brand 

To estimate the parameters in attraction models, we consider the (I- l)- 
dimensional set of linear equations which results from log-linearizing the 
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attraction model given in (7). In general, these equations can be written in the 
following form 

YIJ =4,th +&a +111., 
Y2.r =w;,,bz +&a +r)z,t 

: =i +i +i 
(21) 

Y!-I,, =w;-,,rb,-1 +&1.~ +qr-1.13 

where y,,, = log M,,, - log M ,,,, q,= (7),,rr . . . , -II- ,,r)’ - NID(0, %), and where wi,, 
are k,-dimensional vectors of explanatory variables with regression coefficient 
vector bi, which is different in each equation, and where zi,, are n-dimensional 
vectors of explanatory variables with regression coefficient vector a which is 
the same across the equations, i = 1, . . . , Z - 1. Each (restricted) version of the 
general attraction model discussed in Section 2.2 can be written in this format, 
see Franses and Paap (2OOlb). 

To discuss parameter estimation, it is convenient to write (21) in matrix 
notation. We define yi= (yi,,, . . . , yi,r)‘, Wi= (wi.,, . . . , w&‘, Zi= (z,,, . . . , zi,r)’ 
and vi=(-ni,,, . . .,-Q)’ for i=l,. . . , Z - 1. In matrix notation, (21) then 
becomes 

Yl (4 Y2 = 

Y/-I 

w, 0 . . . 0 z, 
0 w, . . . 0 z, 

. . . . . . . 
0 0 . . . w,-, z,-, 

or 

y=n+rl (23 

with q - N(0, (2 @I*)), where @ denotes the familiar Kronecker product. 
One method for parameter estimation of (23) is ordinary least squares 

[OLS]. Generally, however, this leads to consistent but inefficient estimates, 
where the inefficiency is due to the (possibly neglected) covariance structure of 
the disturbances. Only if the explanatory variables in each equation are the 
same, or in the unlikely case that I: is a diagonal matrix, and provided that there 
are no restrictions on the regression parameters (w~,~=O for all i, t). OLS 
provides efficient estimates, see Judge et al. (1985, Chapter 12), among others. 
Therefore, one should better use generalized least squares [GLS] methods to 
estimate the model parameters. As the covariance matrix of the disturbances is 
usually unknown, one has to opt for a feasible GLS procedure, where we use 
the OLS estimator of the covariance matrix of the disturbances. This procedure 
is known as Zellner’s (1962) seemingly unrelated regression [SUR] estimation 
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method. Under the assumption of normality, an iterative SUR estimation 
method will lead to the maximum likelihood [ML] estimator of the model 
parameters, see Zellner (1962). 

To estimate the parameters in attraction models, and to facilitate comparing 
various models. we favor ML estimation. The log of the likelihood function of 
(33) is given by 

e-y, 3, = - 7“1; I) log(2n) + ; log 1% -- ’ I - ; (v - Xr)‘(% - ’ @17)(y - Xy). 

(24) 

The parameter values which maximize this log likelihood function are 
consistent and efficient estimates of the model parameters. 

For the FE-MCI model without any parameter restrictions in (7), the ML 
estimator corresponds with the OLS estimator, as the explanatory variables are 
the same across equations. In that case, 

n you = (X’x) ‘x ’ y 

such that q,,,.s = (g,,,,, . . . , goLs,,- ,, aO,J, see (22), and 

(25) 

(26) 

where q, consists of stacked $,=y,,, - w;,boLs,I - ~:,,a,,. 
For the attraction models with restrictions on the regression parameters, that 

is, for the RC model in (IO), the RE model in (12), and the RD model in (13), 
one can opt for the iterative SUR estimator which converges to the ML 
estimator. Starting with the OLS-based estimator for C in (26), one constructs 
the feasible GLS estimator 

%“R = (x~(~~‘~I,)x)-‘x’(~~‘~I,)y, (27) 

that is the SUR estimatgr, see Zellner (1962). Nest, we replace the estimate of 
the covariance matrix 2 by the new estimate of 2, that is (26), where ?t, now 
consists of stacked +t;., =yi,, - w:,fisuR,; - z$~,, to obtain a new SUR estimate 
of y. This routine is repeated until the estimates for y and $ have converged. 
Under the assumption of normally distributed disturbances, the final estimates 
are the ML estimates of the model, that is, they maximize the log likelihood 
function (24). 

A little more involved are the restrictions on the 2 matrix. To estimate the 
attraction model under the restriction (8), one can either directly maximize the 
log likelihood function (24) with 2 = diag(a:, . . . , cr- ,) + a:i,- ,ii-, using a 
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numerical optimization algorithm like Newton-Raphson or one can again use 
an iterative SUR procedure. In the latter approach, the new estimate of 3 is 
obtained by maximizing 

T(Z- 1) 
e(z) = - 7- log (2?r)+;logl%-‘l -f?~~(~-%DI*).il. (28) 

where 9 are the residuals from the previous SUR regression. Again, we need 
a numerical optimization routine to maximize (28). Especially in cases where 
there are many brands, the optimization of (28) can become cumbersome. It 
can however be shown, see Appendix A, that the optimization can be reduced 
to numerically maximizing a concentrated likelihood over just a: where one 
uses 

,~jvli 62 
‘T’ 

fori=l,...,I-1, 

where $,=(+&, . . . , +hT)‘. Given an estimate of a:, this relationship can be 
used to obtain estimates of a:, . . . , a:- ,. 

Finally, in all the above cases the standard errors for the estimated regression 
parameters y are to be estimated by 

v(~,=(x’(~-’ @I&x)-‘, (30) 
where one should include the appropriate ML estimator for 2. When taking the 
square roots of the diagonal elements of this matrix, one obtains the appropriate 
standard errors. II 

4.2. An Alternative Estimation Method 

The above estimation routine is based on the reduced-form model, which is 
obtained from reducing the system of equations using the base-brand approach. 
An alternative method is the, what is called, log-centering method advocated by 
Cooper and Nakanisbi (1988). We will now show that this method is equivalent 
to the above method, although a bit more complicated. 

The log-centering approach is based on the following transformation. After 
taking the natural logs for the I model equations, the log of the geometric mean 
market share over the brands is subtracted from all equations. The reduced- 
form model is now specified relative to the geometric mean. So instead of 
reducing the system of equations by using a base brand, this methodology 
reduces the system by the “geometric average brand”. Note that the reduced- 
form model in this case still contains I equations. 

To demonstrate the equivalence of parameters obtained through the log- 
centering technique of Cooper and Nakanishi (1988) and those using the 
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base-brand approach, we show that there exists an exact relationship between 
these sets of parameters. The parameters for the base-brand specification can 
uniquely be determined from the parameters for the log-centering specification 
and vice versa. Given the 1 -to- 1 relationship the likelihoods are the same, that 
is, the discussed feasible GLS estimator yields the same maximum value of the 
likelihood as we can use the invariance principle of maximum likelihood, see 
for example Greene (1993, p. 115). All that needs to be shown is the l-to-l 
relationship between the parameters in the two specifications. 

Consider a general attraction specification, that is 
I K 

(31) 

where zId,, may contain any kind of explanatory variable, such as lagged market 
shares, promotion and price. The market shares are again defined by 

Ai, Mi,, = ’ I 

Written in a vector notation the model for the natural logarithm of attraction 
becomes 

K 

= p,+ 
c 4 1% Zk., + cr. 

(33) k=l 

The definition of market share in (32) implies that log M,,,= log A,,, - 
log I$, A,,,. In a vector notation this gives 

1% Ml,, 

i I 

I 

logM,:= i = log A, - i, log c A,,,, 

log Mu 
j=l 

where i, denotes a (Ix 1) unity vector. 
As the model in (34) cannot be estimated directly due to the nonlinear 

dependence of log(E:,, Ai,,) on the model parameters, a reduced-form model 
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should be considered. The log-centering method now subtracts the average of 
the log market shares from the equations to give a reduced-form specification. 
The dependent variable in this system of equations is now 

= Kc log M,, (35) 

where H,, with rank I - 1, denotes the transformation matrix corresponding to 
the log-centering approach. The reduced-form model then becomes 

H,, log M, = H,, log A, - H,,i, log c Al,,, (36) 
j=l 

which equals 
K 

HI, 1% M, =&CL + c W4 log zk, + HP% 
k-l 

(37) 

as HLJ,=O,,p Due to the reduced rank of H,,, the system in (37) contains I 
equations, but it only has I - 1 independent equations. 

Alternatively, the base-brand approach in Section 4.1 gives as the dependent 
variables in the reduced-form model 

= f&b log M,, 
with Hbb as the relevant transformation matrix. As H&=0,-, x,r the reduced- 
form model becomes 

K 

(39) 

which is to be compared with (37). This system contains only I - 1 equations. 
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The I -to- I relation between the parameters in the two approaches follows 
from the fact that the equation CH,, = H,,,, yields a unique solution C, given by 

C= 

1 0 . . . 0 -1 
0 1 . . . 0 -1 
: : . . . . 
0 0 . . . 1 -1 
1 1 . . . 1 1 

(40) 

Hence. the matrix C relates the “log-centered” parameters to the “base-brand” 
parameters. The inverse transformation from the base-brand specification to the 
log-centered specification follows from applying the Moore-Penrose inverse of 
C, denoted by C’, that is, 

1-f -5 ... -+ 
-f 1-f ... -f 

c+= . . 

Note that the matrix C’ satisfies H,,, = C'H,,. 

(41) 

The above shows that the transformations yield equivalent parameters. For 
example, assume that the log-centered form of the model is estimated, giving 
estimates of H,‘p, HJ, and HJHI,. By multiplying the estimated system of 
equations by C we get CH,cp,, CH,‘Bk and CH,,XH$ ’ as model coefficients. 
Using the invariance principle of maximum likelihood and the relation 
CH, = H,,,, these coefficients are the maximum likelihood estimates of Hhhp, 
H,,,B, and H,,,XHI,,. These coefficients are exactly the same as the coefficients 
used in the base-brand specification, see (39). Using the inverse of C, the 
procedure can be used the other way around. We can also obtain estimates of 
the coefficients in a log-centered specification from the estimates in a base- 
brand specification by multiplying them with C’. 

In our opinion, the main reason to prefer taking a base brand to reduce 
the model is that the statistical analysis of the resulting model is more 
straightforward as compared to the log-centering technique. Recall that the log- 
centered reduced-form model contains I equations whereas the base brand 
reduced-form model only has I - 1 equations. One of the equations in the log- 
centered specification is however redundant. This redundancy leads to some 
difficulties in the estimation and interpretation, as estimation usually requires 
the (inverse) covariance matrix of the residuals. In the log-centering case the 
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residuals are linearly dependent, and the covariance matrix is therefore non- 
invertible. Further, direct interpretation of the coefficients obtained from the 
base-brand approach is easier as each coefficient only concerns two brands, 
while a coefficient in the log-centering approach always involves all brands. 

Another advantage of using the base-brand approach concerns markets 
where the number of brands changes over time. In this case the “geometric 
average” brand may consist of a different number of brands across weeks. The 
variability in the market share of this average brand will fluctuate with the 
numbers of brands available. Using this average brand as a base brand, as 
proposed in the log-centering approach, will therefore introduce complicated 
forms of heteroscedasticity. If a brand is available during the entire sample 
period, the base-brand approach can be straightforwardly applied without 
introducing heteroscedasticity. If such a brand is not available, a different base 
brand can be considered for different ‘weeks. This will also introduce some 
heteroscedasticity, but of a more manageable form than would be the case for 
the log-centering approach. 

5. DIAGNOSTICS 

In this section we present some basic diagnostics for the market share attraction 
model. First of all we present a test on the normality assumption in the 
attraction specification. Next, we discuss tests for outliers and tests for 
structural breaks. c 

5.1. Normality 

An important assumption made in the development of the attraction model is 
the normality of the unexplained attractions. Much of the inference is based on 
this assumption. For example, significance tests of parameters are based on the 
normality assumption. Therefore, as in every model, it is important to test the 
distributional assumption. 

One can test the normality of each of $i, . . . , +j-, separately using the 
familiar normality test b Bowman and Shenton (1975) which is based on the 
skewness, denoted by # b,, and the kurtosis, denoted by b,, of the residuals for 
every brand. However, Doornik and Hansen (1994) argue that this test is 
unsuitable except in very large samples. Instead, they propose to use the sum 
of squared transformed skewness and kurtosis measures, where the transforma- 
tion involved is as in D’ Agostino (1970). The resultant test statistic equals 

(42) 
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where z,(. ) and z?(. , .) are the relevant transformation functions. Under the 
hypothesis of normally distributed IJ,, i= 1, . . . , I - 1, the test statistic is 
asymptotically x’(2) distributed. Note that the normality of Q depends on the 
normality of both E, and E,. It is however not possible to test the normality of 
the individual F,. Therefore, it is easier to use a joint test on the normality of 
all disturbances. Doornik and Hansen (1994) show that a joint test statistic for 
multivariate normality can easily be obtained by summing the individual test 
statistic\. The resulting statistic has a x*(2(1- 1)) distribution under the null 
hypothesis of joint normality. 

5.2. Outliers 

As Franses et al. (1999) suggest, scanner data may contain several aberrant 
observations. Therefore, it is important to check for such observations as they 
may have a large influence on the parameter estimates. 

Testing for outliers in market shares is not straightforward. A sudden event 
in the market share of one brand is by definition accompanied by an opposite 
effect in the remainder of the market. Outliers in market shares can therefore 
not be attributed to a single brand. It is then easier to test for an outlier in 
attractions. To test for this in the attraction of brand j at time T,,, we simply 
include exp(D,) in the attraction specification of brand j. The dummy variable 
n, is defined as 

(43) 

Note that due to the multiplicative specification of attraction we need the 
exponential transformation to ensure that the new variable does not affect the 
attraction if t#T,. For the specification of the reduced-form model it matters 
whether the brand with the aberrant observation is the base brand or not. In case 
i < I. so that brand j is not the base brand, we just add the variable D, to the 
reduced-form equation for log M,,, - log M,,,. In case the brand with the 
aberrant observation happens to be the base brand the variable - D, is added 
to the equations for log M,,, - log M ,,,, i = 1, . . . , I - 1, where the correspond- 
ing coefficients are restricted to be equal across the equations. 

Whether the observation at T, actually corresponds with an outlier in the 
attraction of brand j can now easily be tested by testing the significance of D, 
in the reduced-form model. In case the observation does turn out to be an 
outlier, one can opt to remove the observations at Tb from the data set to prevent 
the outlier from influencing the estimation results. One can also choose to 
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include the above introduced variable into the model and base the interpretation 
of the model on the resulting specification. In fact, the inclusion of D, 
“removes” the influence of the market share at time T,, of brand j. 

5.3. Structural Breaks 

Brand introductions or brand/line extensions can change the entire market 
structure. Less radical changes like brand repositioning can also change (part 
of) the market structure. These changes can cause only average market share to 
change, which corresponds to changes in brand intercepts in the attraction 
model, but it can also change the competitive structure on specific 
instruments. 

Testing for a structural break is much like testing for outliers. To test for a 
structural break in the attraction of brand j starting from time T,,, one can just 
add the variable exp(DT) to the attraction specification of brand j, with 

(44) 

Using the same reasoning as above, the reduced-form specifications can be 
obtained. The significance of 0: in the reduced-form model indicates whether 
there has been a break at time Tb 

The above methodology only considers a bf”ak in the level of the attraction. 
The structural break can also be in the effect of one of the marketing 
instruments. For example, due to a repositioning of brand j, the price elasticity 
of this brand may change. To test for this, one can add the variable 
exp[DT log(Pj,,)] to the attraction specification of brand j, and correspondingly 
to the reduced-form equations. 

6. MODEL SELECTION 

Attraction models are often considered for forecasting market shares. It is 
usually assumed that, by imposing in-sample specification restrictions, the out- 
of-sample forecasting accuracy will improve. Exemplary studies are Brodie 
and Bonfrer (1994), Danaher (1994) Naert and Weverbergh (1981) Leeflang 
and Reuyl (1984), Kumar (1994) and Chen et al. (1994), among others. A 
summary of the relevant studies is given in Brodie et al. (2001). A common 
characteristic of these studies, an exception being Chen et al. (1994), is that 
they tend to compare one or two specific forms of the attraction model with 
various more naive models. In this section we consider the question of 
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obtaining the best (or a good) choice for the specification from the wide range 
of possible attraction specifications. 

There are of course many possible approaches to obtain a suitable attraction 
specification. One could consider a set of popular specifications and select the 
optimal model using an information criterion, like the BIC (Schwarz, 1978) or 
use statistical tests to determine the “best” model. In a Bayesian setting one 
could even derive posterior probabilities for the proposed models. One may 
select the model with the highest posterior probability or one can combine 
several models. For example, to construct forecasts, one can use the posterior 
probabilities to weight forecasts generated by the different models. Another 
strategy is to start with a general model and try to simplify it using statistical 
tests. In this chapter we opt for this general-to-simple model selection strategy, 
following Hendry (1995). In Franses and Paap (2001b) it is shown that this 
strategy tends to work well in empirical applications. 

The starting point of the model selection strategy is the most extended 
attraction model, that is, model (7) without any restrictions. Of course, in 
practice the size of the model is governed by data availability and sample size. 
The first step of a model selection strategy concerns fixing the proper lag order 
P of the model. It is well known that an inappropriate value of P leads to 
inconsistent and inefficient estimates. To perform valid inference on the 
restrictions on the explanatory variables and covariance matrix it is therefore 
necessary to first determine the appropriate lag order. Furthermore, imposing 
incorrect restrictions on the explanatory variables and covariance matrix may 
lead to selecting an incorrect lag order. Lag order selection may be based on the 
BIC criterion. Another strategy may be a sequential procedure, where one starts 
with a large value of P and tests for the significance of the o,,,,,,, and 6,,,, 
parameters and imposes these restrictions when they turn out to be valid. These 
tests usually concern many parameter restrictions and may therefore have little 
power. Instead, one may therefore base the lag order determination on 
Lagrange Multiplier [LM] tests for serial correlation in the residuals, see 
Liitkepohl (1993) and Johansen (1995, p. 22). The advantage of these tests is 
that they concern less parameter restrictions and hence have more power. We 
would recommend to start with a model of order 1 and increase the order with 
1 until the LM tests do not indicate the presence of any serial correlation. 

Once P is fixed, we propose to test the validity of the various restrictions on 
(7) as proposed in Section 2.2. We test for the validity of restriction (8) on the 
covariance matrix 2 [RCM] in model (7). Additionally, we test in model (7) for 
restricted dynamics [RD], common dynamics [CD], and, for each explanatory 
variable k, for restricted competition [RC], for restricted effects [RE] (12) and 
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even for the absence of this variable. Finally, we propose to test for the 
significance of the lagged explanatory variables in the general model. 

Next, tie recommend to perform an overall test for all restrictions which 
were not rejected in the individual tests. If this joint test is not rejected, all 
restrictions are imposed, and this results in a final model that can be used for 
forecasting. However, if the joint test indicates rejection, one may want to 
decide to relax some restrictions, where the p-values of the individual tests can 
be used to decide which of these restrictions have to be relaxed. Note that apart 
from the lag order selection stage we perform the individual tests in the general 
model and that we do not directly impose the restrictions if not rejected. Hence, 
the model selection approach‘in this stage does not depend on the sequence of 
the tests. Furthermore, as we use a general-to-specific strategy, we do not a 
priori exclude model specifications. 

To apply our general-to-simple mode! selection strategy, we have to test for 
restrictions on the covariance matrix 2 and on the other model parameters 
(collected in y) in (7). To test these parameter restrictions, we opt for 
Likelihood Ratio [LR] tests, see for example Judge et al. (1985, p. 475). 
Denpting the ML estimates of the parameters under the null hypo@esis by 
(~,,,Z,) and the ML estimates under the alternative hypothesis by (%,&), then 

LR = - 2(t(%, 2,) - [(?a, 5,)) a~” x2(4, (45) 

where e( .) denotes the log-likelihood function as defined in Section 4 and 
where v is the number of parameter restrictions. t 

7. FORECASTING 

There has been considerable research on forecasting market shares using the 
market share attraction model. Most studies discuss the effect of the estimation 
technique used in combination with the parametric model specification on the 
forecasts, see for example Leeflang and Reuyl (1984) Brodie and de Kluyver 
(1984) and Ghosh et al. (1984) among others. More recent interest has been on 
the optimal model specification under different conditions, see, for example, 
Kumar (1994) and Brodie and Bonfrer (1994). The available literature, 
however, is not specific as to how forecasts of market shares should be 
generated. In this section we show that forecasting market shares turns out not 
to be a trivial exercise and that in order to obtain unbiased forecasts one has to 
use simulation methods. 

Furthermore, in empirical applications it should be recognized that 
parameter values are obtained through estimation. The true parameter values 
are usually unknown, and parameter values are at best obtained through 
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unbiased estimators of the true values. In a linear model this parameter 
uncertainty can be ignored when constructing unbiased forecasts. However, in 
nonlinear models this may not be true, see for example Hsu and Wilcox 
( 2000). 

7. I. Forecasting Market Shares 

To provide some intuition why forecasting in a market share attraction model 
is not a trivial exercise, consider the following. The attraction model ensures 
logical consistency, that is, market shares lie between 0 and 1 and they sum to 
1. These restrictions imply that the model parameters can be estimated from a 
multivariate reduced-form model with I - 1 equations. The dependent variable 
in each of the I - 1 equations is the natural logarithm of a relative market share. 
More formally, it is log m,,, = log ?$ for i= 1,2, . . . , I - 1. The base brand I 
can be chosen arbitrarily. 

Of course, one is usually interested in predicting M,,[ and not in the logs of 
the relative market shares. It is then important to recognize that, first of all, 
exp(E[log mJ> is not equal to E[m;,,] and that, secondly, E[M,,,/M,,,] is not equal 
to E[M,,,]/E[M,,J, where E denotes the expectation operator. Therefore, 
unbiased market share forecasts cannot be obtained by routinized data 
transformations, see also Fok and Franses (2001 b) for similar statements. 

To forecast the market share of brand i at time t, one needs to consider the 
relative market shares 

q., = MJM,,, forj=1,2 ,..., I, 

as m ,.,. . , m, ,., form the dependent variables (after log transformation) in the 
reduced-form model (7). As M,.,= 1 - Xjj’r,’ IV,,,, we have that 

M,,t = 
1 

I- I 

1 + C mj,, 
j=l 

M,,, = M,,PL = F; fori=l,2,. . . ,I- 1. 

’ 1 + C m,,l 
j=l 

Note that m,,, = M,,,/M,,, = 1 and hence (47) can be summarized as 

M,,r = mirnz fori=1,2 ,..., I. 

c mj., 
j=l 

(47) 

(48) 
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As the relative market shares q,, i = 1, . . . , I - 1 are log-normally distributed 
by assumption, see (7), the probability distribution of the market shares 
involves the inverse of the sum of log-normally distributed variables. The exact 
distribution function of the market shares is therefore complicated. Moreover, 
correct forecasts should be based on the expected value of the market shares, 
and unfortunately, for this expectation there is no simple algebraic expression. 
Appropriate forecasts therefore cannot be obtained from the expectations 
directly. 

If we ignore parameter uncertainty for the moment, we need to calculate the 
expectations of the market shares given in (48). This cannot be done 
analytically. However, we can calculate the expectations using simulations. The 
relevant procedure works as follows. We use model (7) to simulate relative 
market shares for various disturbances q randomly drawn from a multivariate 
normal distribution with mean 0 and covariance matrix 2. In each run, we 
compute the market shares where parameter values and the realization of the 
disturbance process are assumed to be given. The market shares averaged over 
a number of replications now provide their unbiased forecasts. Notice that we 
only need the parameters of the reduced-form model in the simulations. 

To be more precise about this simulation method, consider the following. 
The one-step ahead forecasts of the market shares are simulated as follows, first 
draw r)l(‘) from N(0, %), then compute 

i=l,...,Z-I. (49) 

with rn$ = 1 and finally compute 

rni:' M!')=' 1-f I fori=l,...,Z, 

c m!” JJ 
j=l 

(50) 

where I= 1, . . . , f, denotes the simulation iteration and where the FE-MCI 
specification is used, see (4). Every vector (M’& . . _ , Ml:)’ generated this way 
amounts to a draw from the joint distribution of the market shares at time t. 
Using the average over a sufficiently large number of draws we calculate the 
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expected value of the market shares. By the weak law of large numbers we 
have 

(51) 

For finite IA the mean value of the generated market shares is an unbiased 
estimator of the market share. The estimate may differ from the expected 
market share, but this difference is only due to simulation error and this error 
will rapidly converge to zero if L gets large. Of course, the value of L can be 
set at a very large value, depending on available computing power. 

The lagged market shares in (7) are of course only available for one-step 
ahead forecasting and not for multiple-step ahead forecasting. Hence, one has 
to account for the uncertainty in the lagged market share forecasts. One can 
now simply use simulated values for lagged market shares, thereby automat- 
ically taking into account the uncertainty in these lagged variables. Note that 
we do assume that the marketing efforts of all market players are known. It is 
possible to also model these efforts and use the estimated model to obtain 
forecasts that also account for that uncertainty. The models describing the 
marketing efforts can be used to simulate future values of the levels of the 
marketing instruments. To take into account the uncertainty of future marketing 
efforts for forecasting market shares, we use the simulated efforts instead of 
forecasted efforts to obtain draws from the joint distribution of market shares 
tn (49) and (SO). 

7.2. Pururweter Uncertuinty 

i’ilr, Illotirai prilrnrtrr\. including those in 2, usually have to be estimated from 
;+!z .Cntk implie\ that the parameter estimators are random variables. If 
.Tct;:i;~:tJ.,! n.i?-‘I I..I...I..LIU ,,,.,meter:; are used for forecasting in combination with a nonlinear 
“1LI111,. ‘a; 4i~ld 4~ t&e into account the uncertainty of these estimates. To 
;.;A~ ,;c;rriiiit iif the htochabtic nature of the estimator, we explicitly take the 
expectation of the markel shares over the unknown parameters. 

C;nfortunately, the relevant distribution of the parameters is not known. To 
Il-v~l-c-l-~~i-~~ tilt\ dittlculty. we propose to use parametric bootstrapping to draw 
:::::::::x~c:-, :‘rc):n :hcir distribulion. Summarizing all parameters in 0, we sample 
i i LO\~!!V iik CU;iiowillg ~cllellie. 

-. ..:, j.:c L ;.~m;lt~d p~ramitcrs 6, the realizations of the exogenous variables 
I~-_ :h: 5rct I’ observed realizations as starting values to generate artificial 
..--i: : r-~!!.‘.~!ir:!!‘. 0 f the market shares. 
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l Re-estimate the model based on this artificial data. 

The thus obtained parameters &“, 1= 1, . . . , L, where L denotes the number of 
draws, can be seen as draws from the small sample distribution of 6. Based on 
these draws we calculate E(M,,*) as t Zf= i E[M,,< I @]. 

In the market share attraction model the forecasting scheme becomes more 
complicated as the market shares do not depend linearly on the disturbances. 
From (7), (46) and (48) we have M,,, = g,(X,, . . . , X,mp, M,- ,, . . . , LV!-~, qr, 8) 
where X, contains all exogenous variables at time t, M,= (M ,,,, . . . , M,,,)‘, and 
gi( .) is a nonlinear function. As-in this case M,,, also nonlinearly depends on the 
model disturbances E[M,,,l8]#g,(X,, . . . ,XtmP,It4-,, . . . ,MrmP,O, 6). To 
obtain unbiased forecasts, we therefore have to take the expectation of gi(. ) 
with respect to q, and 8, that is 

where +(q, IO) denotes the distribution function of the (normally) distributed 
disturbances given the parameters and f(0) denotes the distribution of the 
parameters. Again we choose to calculate the complex integral using 
simulation. The parameter vectors are simulated using the bootstrap method- 
ology described above. For every bootstrap realization of 0”’ we calculate 
E[M,,,I &‘)I, i= 1, . . . , I using the simulation technique in Section 7.1. The 
average of the forecasts over all generated parameter vectors constitutes 
unbiased forecasts of the market shares udder uncertain parameters. It is not 
necessary to use many simulation rounds conditional on the parameters. 
Theoretically it suffices to use one round for every &“. 

In a classical setting we have to rely on bootstrapping techniques to account 
for parameter uncertainty. A Bayesian analysis of market share models has the 
advantage that it provides a more natural approach to account for parameter 
uncertainty. To obtain the posterior distribution of the parameters of the market 
share attraction model, one can rely on Markov chain Monte Carlo [MCMC] 
methods, see Casella and George (1992) for a simple introduction and Paap 
(2002) for a recent survey. As byproduct of this sampler we can obtain forecasts 
which account for parameter uncertainty. 

8. AN ILLUSTRATION 

TO illustrate some of the methods -put forward in this chapter, we consider a 
data set containing market shares, prices and two O/l dummy variables (feature 
and display). The market at hand concerns four brands of peanut butter. Three 
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of these brands are large national brands, the fourth one aggregates smaller 
brands and private labels. The data set is part of the so-called ERIM data base 
of the University of Chicago. The data we consider are collected from July 
1986 until December 1988 by ACNielsen in Sioux Falls, South Dakota. 

We first apply our model selection strategy to this market to obtain a suitable 
model specification. Next, we use some statistical tests to assess the validity of 
the model. For model selection we use 111 of the 124 available observations. 
The remaining 13 observations, corresponding to a quarter of a year, are used 
as out-of-sample data to demonstrate our forecasting strategy. Along the way 
-we siloi\/ that this strategy performs better than constructing market share 
forecasts from forecasts of log relative market shares. We also compare the 
forecasting performance of the selected model to various attraction specifica- 
trons proposed in the literature. 

For model selection, we first select the appropriate lag order to capture the 
dynamics in this market. An LM test for serial correlation in the residuals of an 
attraction model, where all variables are also included with one lag, indicates 
that it is not necessary to increase the lag order (p-value 0.2291). For this 
market, we can therefore fix P= 1. Next we test whether we can impose 
restrictions on the parameters in (7). First, we test the validity of the restricted 
covariance matrix restriction. An LR test on this restriction indicates that it 
cannot be rejected (p-value 0.0905). Additionally, we use the same type of test 
to assess the validity of restricted forms of competition on every marketing 
instrument separately, again in (7). For price and display, the p-values are not 
distinguishable from 0, for feature this value is 0.2393. Further testing shows 
that we cannot restrict the competition on feature as restricted elasticities (p- 
value 0.0016). The LR test on restricted dynamics indicates that this restriction 
can be imposed (p-value 0.0844) however common dynamics is rejected (p- 
value 0.0148). 

Summarizing, in this market we can impose restricted dynamics and the 
restricted competition assumption on the use of display. Tests concerning the 
inclusion of lagged prices, feature and display show that the coefficients for 
these variables cannot be restricted to zero. Finally, we end up with a model 
with lag order one, a restricted covariance matrix, and restricted competition on 
feature and restricted dynamics. A joint test of all restrictions does not get 
rejected. Therefore we continue with this attraction specification. 

In the resulting model we test for normality of the residuals. The test for 
multivariate normality does not indicate significant deviations from the normal 
distribution. Finally, we test for a structural break in the mean attractions. As 
for our data set, we do not have information on a relevant point in time of a 
possible break, we test for a break halfway in our sample, that is a break at 
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week 75. Such a break could correspond to a change in the market structure. 
The p-value of the corresponding LR test is 0.5 164 indicating that there seems 
to be no break. The market appears to have been quite stable during the 
observational period. 

We use the selected attraction model to compare forecasts, made using our 
simulation technique, to forecasts obtained with a naive method, that constructs 
market share forecasts from forecasts of log relative market shares. To illustrate 
the performance of our model selection strategy, we also use attraction 
specifications often encountered in the literature to generate forecasts. In the 
relevant literature, we have found 5 types of attraction specifications. Table 1 
presents the specification of these models together with some references. Note 
that none of the models uses lagged exogenous variables whereas our model 
selection procedure did indicate these variables to be important. Furthermore in 
all models the same competitive structure is assumed for every marketing 
instrument. We consider 13 one-step ahead forecasts, where the current and 
future levels of the marketing instruments are assumed to be known. Two sets 
of forecasts are made using simulations, one set while ignoring parameter 
uncertainty and one where we account for such uncertainty. These forecasts are 

Model Lag 
Dyn. 

Restrictions on* si Literature 
cov. Exo. Lag. Exo. 

I 

II 

III 

IV 

V 
-- 

1 RD NR RC NI Leeflang and Reuyl ( 1984) 
Danaher ( 1994) 

1 CD NR RC NI Naert and Weverbergh ( 198 1) 
Brodie and Bonfrer (1994) 
Brcdie and de Kluyver (1984) 
Chen et al. (1994) 
Kumar ( 1994) 

0 - NR RC NI Chen et al. (1994) 
Ghosh et al. (1984) 

1 CD NR RE NI Naert and Weverbergh ( 198 1) 
Brodie and de Kluyver (1984) 
Leeflang and Reuyl(1984) 
Chen et al. (1994) 
Kumar (1994) 

0 - NR RB NI Chen et al. (1994) 

* RD = restricted dynamics, CD = common dynamics, RC = restricted competition, RE = restricted 
effects, NR = no restrictions, NI = not included 

Table 1. Model Specifications Used in the Literature. 
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Tuble 2. Forecasting accuracy on 13 one-step ahead forecasts, measured by 
the log of the determinant of the residual covariance matrix. 

hlOdC1 Naive Simulated Bootstrap 

I 9.51 9.58 9.63 
!! 9.99 9.95 9.97 
Ill 10.51 10.43 10.42 
I \’ 9.82 9.80 9.80 
v 10.32 10.24 10.24 

VI 9.13 9.05 9.05 

::: Model\ I to V are specified in Table I, model VI is the model according to our model 
specificatiort strategy. 

referred to as “Simulated” and “Bootstrap”, respectively. Both sets of forecasts 
are based on 25,000 replications. To measure the predictive accuracy of the 
models one could use the Root Mean Squared Prediction Error [RMSPE] per 
brand summed over all brands. However, the sum of the forecast errors over all 
brands is zero as market shares sum up to 1. Simply adding up the RMSPE over 
the brands is therefore not a good criterion of forecasting accuracy. As an 
alternative measure we consider the log of the determinant of the covariance 
matrix of the forecast errors for the first I- 1 brands, see also Clements and 
Hendry (1993). This measure is independent of the chosen base brand, due to 
properties of the determinant operator. 

In Table 2 we present the forecasting performance of the models in Table 1 
together with the model suggested by our selection strategy. For all but one 
model, the forecasts obtained through simulation are more accurate than those 
from the naive method. Comparing the “Simulated” to the “Bootstrap” one sees 
that, for this market, correcting for parameter uncertainty does not seem to add 
much to the forecasting accuracy. Finally note that our model selection 
procedure seems to perform quite well as it yields the best forecasts for this 
market. . 

9. CONCLUDING REMARKS 

In this chapter we have gone through part of the econometrics involved in 
analyzing market share attraction models. We believe that a systematic strategy 
enhances the possibility to compare various empirical findings and to 
understand deficiencies in case model forecasts turn out to be inaccurate. 
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There are a few more issues that need concern in future work. One of these 
involves the analysis of possibly differing short-run and long-run effects of 
marketing efforts, see Dekimpe and Hanssens (1995) and Paap and Franses 
(2000), among others. In Fok et al. (2001) we provide a first attempt in the 
context of a market share attraction model. Next, one may want to allow for the 
event of new brands entering the market or old brands leaving it. In Fok and 
Franses (2OOla) we discuss techniques for doing so. Finally, one would want 
to allow for endogenous marketing efforts, like pricing strategies, which 
originate from attraction models. 
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APPENDIX 

Estimation of Restricted Covariance Matrix 

Recall the log likelihood function (28) 

log(27i)+;logltll -;q(mq.)+j, (53) 

where I$ = diag(a:, . . . , a:-,)+afi,_,i~-,. For i= 1,. . . ,Z- 1 it holds that 
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and 

d”ec(S - ‘) aui -=“ec( -2-l g f-1) = - (C-l):e,,,-, 

at(%) 1 91 
-=z tr[ - ZS(C’)~ei,,-, 

au, 
i i 

i (ii,,.. . v 91-r>6-‘)~q-,1 
91-I 

=; [ - T(2)& - ‘)2;i + ~;~,(~ - ‘$1 

=; (%‘>;[+j;$ - T(cr;+o:)], (55) 

where ei,r, is a zero vector of size (k x 1) with the i-th element equal to 1. 
Solving the last equation gi&n 6; yields 

(56) 

The concentrated likelihood is obtained by inserting (56) into the likelihood 
(53). The concentrated likelihood now has to be optimized over just one 
parameter, that is a,. 
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ABSTRACT 

Economic theory provides a great deal of information about demand 
models. Specifically, theory can dictate many relationships that expendi- 
ture and price elasticities shouldfil~ll. Unfortunately, analysts cannot be 
certain whether these relationships will hold exactly. Many analysts 
perform hypothesis tests to determine if the theory is correct. If the theory 
is accepted then the relationships are assumed to hold exactly, but if the 
theory is rejected they are ignored. In this paper we outline a hierarchical 
Bayesian formulation that allows us to consider the theoretical restric- 
tions as holding stochastically or approximately. Our estimates are shrunk 
towards those implied by economic theory. This technique can incorporate 
information that a theory is approximately right, even when exact 
hypothesis tests would reject the theory and ignore all information from it. 
We illustrate our model with an application of this data to a store-level 
system of demand equations using supermarket scanner data. 
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I. INTRODUCTION 

A basic goal of many marketing analysts and econometricjans is the estimation 
of consumer demand models. More specifically analysts might be interested in 
estimating price and promotional elasticities that can be used in developing 
better marketing strategies. Economics provides a large body of theory to guide 
an analyst in constructing a consumer demand model. Unfortunately, the 
analyst can never be entirely confident that this theory is correct. In practice 
many marketing analysts may assume that nothing is known about expenditure 
and price elasticities due to their uncertainty about whether all theoretical 
assumptions are met. However, even if the assumptions of these theories are not 
met exactly the theory might still be approximately correct. It is this notion of 
approximation that we formalize in this paper. 

The focus of many econometric studies is to determine the extent that the 
data supports a particular $heory. Classical approaches to testing lead the 
analyst to an all or nothing approach. If the data provides strong confirmatory 
evidence then the analyst usually proceeds under the assumption the theory is 
correct and estimates the model. However, if the theory is rejected then the 
analyst simply rejects the theory and ignores all information from the theory. 
Sharp tests of null hypotheses in large datasets frequently lead to rejection if 
the tolerance for type I errors is not increased with the sample size. Large 
datasets can result in very precise tests that often miss the fact that the theory 
may not be perfect but provides a reasonable approximation to the true 
process. 

In this paper we propose a Bayesian framework in which uncertainty about 
a theory is directly represented in the model. Our procedure prescribes treating 
the theory as a prior and follows recent work by Montgomery and Rossi (1999). 
The prior is centered over the theory, so the mean is what would be expected 
under a restricted model in which the theory holds exactly. The variance of the 
prior is allowed to vary depending upon the analyst’s confidence about the 
theory. For example, Slutsky symmetry may require equating two parameters. 
In our methodology we can represent these two parameters as two draws from 
a common distribution, which we call the hyper-prior. If we are certain that the 
theory holds exactly then the variance of this hyper-prior is zero, and the 
restrictions are implicitly fulfilled. However, we wish to entertain the notion 
that the theory may only be approximately correct. Hence we allow the 
variance of the hyper-prior to vary, perhaps substantially. We may be uncertain 
about the exact values of the parameters of this distribution and place a prior 
on the parameters of this hyper-prior. 
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The analyst can incorporate prior beliefs about the adequacy of the theory 
and gain useful information even if the theory is technically wrong, but is 
approximately right. It is this notion of approximation that we are especially 
interested in representing. The estimator proposed results in adaptive shrinkage 
towards the theory. Adaptivity refers to the ability of the model to decrease the 
amount of shrinkage if the data disagrees with the prior. As more information 
or data is observed less shrinkage occurs and we can learn more about how 
good an approximation the theory provides to the observed data. Our 
framework allows the flexibility to mimic the estimates of a model achieved by 
an economist who holds to theory dogmatically, an analyst who ignores theory 
entirely, or an analyst’s whose beliefs fall in between by choosing the prior 
appropriately. Qur framework 1 a so contrasts with statistical formulations of 
shrinkage estimators in marketing that move estimates towards one another due 
to empirical similarities without any theoretical justification (Blattberg & 
George, 199 1; Montgomery, 1997). 

Economic theory provides many possible sources of information. First, it can 
provide information about relationships that elasticities should satisfy, such as 
adding up or Slut&y symmetry. Second, specific assumptions about utility may 
result in more parsimonious demand models. For example, the assumption of 
additive utility results in a very parsimonious model. Many marketing models, 
like logit choice models and conjoint models, are based upon the assumption 
of an additive utility model. Third, elasticity estimates for one economic agent 
may be similar to those of other agents. Finally, previous empirical research 
may enable us to directly postulate priors on the parameters, i.e. the elasticity 
matrix is made up of negative elements on the diagonal (negative own-price 
elasticities) and small positive cross-diagonal elements (modest direct 
substitution between products within a category). In this paper we show how 
these prior sources of information can be parameterized and incorporated into 
a hierarchical Bayesian framework. 

Previous research in marketing has considered economic restrictions in 
demand models (Berndt & Silk, 1993), restricted relationships between 
elasticities (Allenby, 1989) in the context of market structure, and the use of 
hierarchical models to shrink estimates across stores and households (Blattberg 
& George, 1991; Allenby & Rossi, 1993; Montgomery, 1997). Our framework 
provides a unifying treatment to these ideas. By evaluating these components 
together we can appreciate the significant gains in measuring demand that can 
be had by incorporating theory in a stochastic manner. 

The outline of this paper is as follows. First we present our demand model 
in Section 2 and the restrictions implied by economic theory. Section 3 goes on 
to show how these restrictions can be incorporated stochastically in a 
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hierarchical Bayesian model. A short example is given to illustrate these 
restrictions. The estimation of this Bayesian treatment is presented using the 
Gibbs Sampler in Section 4. Section 5 provides an empirical example of 
shrinkage of price elasticities towards those restrictions implied by an additive 
utility model. This example estimates store level demand systems using weekly 
UPC scanner data for the refrigerated orange juice category at Dominick’s 
Finer Foods (DFF), a major Chicago supermarket chain. Section 6 considers a 
furtber application of this framework by considering changes in market 
structures. We conclude the paper in Section 7 with a discussion of these results 
along with suggestions for implementing these techniques in other problems. 

2. SALES RESPONSE MODELING 

We begin not with a formal theory of consumer behavior from which we derive 
a model of demand as in customary in econometrics, but with a sales response 
model. Both models try to capture the relationship between quantity and price, 
the essential difference is in f&ms of interpretation. A sales response model is 
a model motivated by statistical considerations, for example a logarithmic 
relationship between quantity and price is commonly observed by marketing 
researchers, and is not justified on theoretical grounds. For a discussion of sales 
response modeling from a marketing perspective see Blat&erg and Neslin 
( 1990). On the other hand an econometric model places many restrictions upon 
tbe functional form and parameters. The strength of the econometric model is 
our ability to estimate more parsimonious forms, while its weakness is the 
requirement to make many assumptions that may be suspect or untestable. In 
contrast, these strengths are reversed for a sales response model. It makes fewer 
assumptions about demand, but’ this flexibility comes at tbe price of an 
increased number of parameters. 

To begin our analysis of demand we choose a double log functional form for 
our sales response model. This form is chosen since previous empirical work 
has shown it to be a good one that captures the logarithmic relationship 
between quantity and price. Our technique is quite general and does not rely 
upon a logarithmic functional form, in fact it could be applied to many demand 
models, such as the AIDS, translog, or Rotterdam model. Our sales response 
model can be written in vector form: 

W,,) = a, + P+ ln(x,> + I-4 ln(p,,) + es,, e,, ... MO, %I (1) 
Where there are M products in store s at week f, qst and pst are vectors of 
movement and price, and x,~, is store expenditures (~,~,=~~p~,~,q,.~,, the ith 
subscript denotes the ith product in the vector). Our framework is para- 
meterized by the store subscript s, although this index can be interpreted quite 
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generally as an index for different households, markets, or industries, 
depending upon the application. 

The basic problem one encounters in estimating model (1) is the large 
number of parameters. For example, if there are 10 products and 100 stores as 
would be found in one small category of a moderately sized retailer, this results 
in more than 10,000 parameters that must be estimated. In a typical 
supermarket retailing application perhaps two or three years of weekly 
observations would be available. While this is a large amount of data, if the 
retailer wishes to estimate demand for each store separately then it may be 
difficult to estimate store-level demand with any degree of statistical precision. 
This problem becomes acute if the retailer wishes to formulate an elasticity 
based pricing strategy, since the high degree of parameter uncertainty may 
result in strange pricing prescriptions. For example, positive own-price 
elasticities may result in undefined optimal prices, or erroneously signed cross- 
price elasticities may result in higher overall levels of prices. 

2.1. An Economic Interpretation of the Sales Response Model 

We can reinterpret our sales response model in (1) as a system of demand 
equations. The H represents uncompensated price elasticities and the l.~ are 
expenditure elasticities. Usually x would represent income, and demand would 
be defined over all products consumed. However, we do not have a measure of 
weekly income for consumers that shop at store s. Therefore, we use store 
expenditures’ and consider (1) as a subset demand model for the products in 
store s. Subset demand models possess all the usual properties of full demand 
models, although the income elasticities are now interpreted as store 
expenditure elasticities. For a further discussion of subset demand models see 
Deaton and Muellbauer (1983). 

A store expenditure elasticity states how product sales are effected as store 
shoppers purchase more groceries. Specifically p,I states the effect of an 
increase of store expenditures on the movement for product i. If ui<O then 
product sales decrease as expenditures grow (an inferior product), and when 
ki > 1 product sales gamer a larger share of overall sales. Since, this 
expenditure elasticity is conditional upon store sales, it cannot be used to 
determine how store traffic is affected by competition and cross-category 
promotions. 

The price elasticity matrix can be decomposed into expenditure and price 
effects: 
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Where the uncompensated cross elasticity (H,) for store s is the sum of a 
substitution effect, the compensated cross elasticity matrix (E,), and an income 
effect, which is the outer product of the income elasticities (p+) and the budget 
or market shares (w,). The ith element of the market share vector is defined as 
wis=pir,qis,/xst. We use the usual definition of substitutes ([E,], > 0), comple- 
ments ([E,], < 0), and independent products ([E,], = 0) that rely upon 
compensated elasticities. 

Substituting (2) into (1) yields a demand system in terms of compensated 
elasticities. We also augment this model with cross- feature and deal variables 
to control for other marketing mix effects. Finally, we assume that the category 
employed in our analysis is independent of other categories, so our system only 
uses the set of products within a category. The final form of the demand model 
that we employ in this paper is: 

lnh,,) = a, + A lnWP,J + EA, + Rfi, + *A + eJrr Q - NO, &I (3) 
Where P,y, = exp{ Z&w,, In@,,)} is a Divisia price index, f,, and & are the vectors 
of feature and display variafies for store s during week r. 

2.2. Economic Theory 

If we interpret (3) not as a sales response model, but as a system of demand 
equations then economic theory is very informative about the parameters or 
more specifically the conditions that the price elasticities must satisfy. These 
restrictions follow as a consequence of underlying assumptions about utility: 
reflextivity, completeness, transitivity, continuity, and nonsatiation. In our 
discussion we only express the consequences of these assumptions on demand 
and do not provide their derivations. For additional reference we refer the 
reader to Deaton and Muellbauer (1983, pp. 43-46). 

Adding-Up: The budget constraint imposes the following condition on 
demand: 

P14s =x3 (4) 

This equation can be differentiated with respect to price and expenditures to 
yield the following: 

w.hJ3 = 1 (5) 
and 

w:H, = w, * w:E, = 0 (6) 

These restrictions reduce our demand system by 1 and A4 parameters 
respectively. 
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Homogeneity: The assumption of homogeneity implies that if we double all 
prices and income then the budget shares remain unchanged (no money 
illusion): 

H,L=~,*E,L=O, where ~=(l 1 . 1. 1)’ (7) 
This restriction reduces our demand system by an additional M parameters. 

Symmetry: The symmetry restriction is derived from the double differ- 
entiability of the cost function or the symmetry of the Slut&y matrix (L),* and 
implies that the compensated elasticity matrix when weighted by the budget 
shares is symmetric: 

diug(w,)E, = Ej diug(w,) (8) 
Notice that symmetry results in a large reduction in the order of the demand 
system, specifically by -&(M - 1) terms or a 45% reduction in the cross-price 
elasticities with 10 products (M= 10). 

Many marketers may worry that Slut&y symmetry may be too restrictive. It 
is well established in marketing (Blattberg & Wiesniewski, 1989; Kamakura & 
Russell, 1989) that uncompensated price elasticity matrices are asymmetric. 
For example price changes of higher quality brands effect sales of lower quality 
brands, but price changes of lower quality brands have only small effects on 
high quality brands. These asymmetries are consistent with economic theory 
and can be explained by differences in market shares and expenditure 
elasticities, and do not require asymmetries in the compensated elasticity 
matrix. Consider an example with three brands (premium, national, and store 
brands) and the following parameters: 

p=[ k;], w=[ ii], I-E;;; 4;; ;;;i:] 

Employing (8) we find the uncompensated price elasticity matrix becomes: 

H= E!;; “1;; ;:;;I 

The asymmetry in the compensated elasticity matrix (E) between the premium 
and national brands is due to market share differences (w), while there is no 
assymetry between the national and store brands. However, upon evaluation of 
the uncompensated elasticity matrix (H), we find pronounced price asymme- 
tries between these three brands. The asymmetry in price elasticities is due to 
expenditure effects (p,), i.e. as expenditures grow people purchase higher 
quality brands. 
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Sign-Restricrions: Downward sloping demand curves require the Slutsky 
matrix to possess a negative semi-definite property: 

V6 6’Ls610 (9) 
In addition to the usual consequence that the own-price elasticities must be 
non-positive, it further implies that any linear bundle of products must also 
have a non-positive elasticity. A common concern in marketing is that price 
elasticities can frequently be of the wrong sign. 

2.3. Weak Separability and Market Structure 

Another component of economic theory that can induce relationships among 
price elasticities are ones about the relationships between products. Many 
marketing researchers have suggested a hierarchical structure for market 
competition (to name just a few see Allenby, 1989; Vilcassim, 1989; Srivastava 
et al., 1981). This hierarchy is illustrated in Fig. 1. For example, a consumer 
first decides whether to buy Squid or dry laundry detergent, and then considers 
which product to buy within the subcategory. Products at the same level within 
a branch are strong substitutes, while competition between items in different 
branches is weaker and have the same general pattern. 

At the heart of most research on market structure is weak separability of the 
utility function. Frequently these hierarchical structures are justified by 
assuming that consumers engage in some type of hierarchical budgeting 
process. Allocating budget shares to large groups of products like groceries, 
housing, transportation, etc., and then deciding upon allocations to individual 
products within each category. This broad budget allocation process allows us 
to break the problem into smallerunits by assuming groups of products within 

Fig. 1. Example of a Hierarchical Market Structure for Laundry Detergent with Dry 
and Liquid Subcategories. 
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a category can be weakly separated from one another. Categories can be 
partitioned into subcategories, until finally we reach the individual product 
level. The general form of the utility function for an individual household is of 
the form: 

uti&Y = ~Mq,), aq,), . . . 9 Mk)) (10) 

Where qi is the vector of quantities for all items in the ith category of which 
there are C categories. 

The hierarchy in the cost or utility functions naturally imposes a structure in 
the demand model. It can be shown that weak separability imposes the 
fullowing restriction on the elasticity matrix: 

Eiis = %.dd$sWjs ifiEGandhEH (11) 

where ziJS is the i, jth element of the matrix E, and KGH$ is a parameter that may 
depend upon x. In other words, the elasticities that capture substitution within 
a category can take on a general form, but those elasticities representing intra- 
category substitution must follow a restricted pattern that is common for all 
items in the subcategories. 

2.4. Strong Separability and Additive Utility 

The restrictions discussed in the previous subsection hold for many families of 
utility functions. If the analyst is willing to make stronger assumptions about 
a specific form of utility then this can also result in much simpler forms to 
demand. One possibility is to assume utility is additive or strongly separable 
across products: 

utility = v(& u,(q,)) (12) 

where qi is the quantity of the ith product consumed. Additivity has a long 
history in economic models (Lancaster, 1966) and empirical applications in 
marketing like logit modeling (Guadagni & Little, 1983) and conjoint analysis 
(Green & Rao, 197 1). Often additivity is argued at the attribute level in logit 
and conjoint applications and not the higher, product level as we have 
suggested. 

Additive utility models result in parsimonious - but restrictive - demand 
models: 

K = 4 dWt-4 - 4w&, 4 w.J’ (13) 

Notice that the cross-elasticity matrix is populated solely by the expenditure 
elasticities (u), market shares (w), and a general substitution parameter (+). 
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This restricted elasticity matrix has M+ 1 parameters, not including the market 
shares, as opposed to M*+M for the unrestricted form. Additionally, the 
elasticity matrix in (13) will satisfy the properties of demand models given in 
the previous subsections. However, the incredible parsimony of the additive 
model also comes a high penalty. Namely, either all products must be 
substitutes or complements, and the level of substitution or complementarity is 
dictated by a single parameter (+) and the expenditure elasticities. 

It might seem odd to many economists to propose an additive utility 
structure, since many econometric studies have rejected additivity (Bar-ten, 
1969; Deaton, 1974; Theil, 1976; Deaton, 1978). However, we are proposing 
an additive utility structure at a very low-level (e.g. similar products within a 
single category), while most have considered additivity at high levels in a 
hierarchical structure (food, clothing, housing). Additive utility implies that the 
utility gained from one product is unaffected by the utility of other products. 
For example, there is no interaction in utility from purchasing Minute Maid and 
Tropicana orange juice together. This makes a great deal of sense for products 
within a category, which at+! typically direct substitutes and not used together. 
However, additivity may not make sense across products from different 
categories that when combined together can interact, such as bread and peanut 
butter. 

2.5. Pooling and Heterogeneity 

The last set of restrictions that we propose are not really theoretical ones, but 
ones motivated from practice. It is quite common to observe multiple agents, 
either consumers or stores as in our case. A common assumption is to simply 
pool the observations across all agents and assume identical elasticities as in 
the following relationship: 

E,=E, ps=p (14) 

Recently there has been a great deal of research in marketing studying 
heterogeneity, for a recent review refer to Rossi and Allenby (2000). One 
technique is to capture heterogeneity in a random coefficient model: 

This specification has been studied extensively starting with the early work by 
Swamy (1970) from a frequentist perspective and by Lindley and Smith (1972) 
from a Bayesian interpretation as a hierarchical Bayesian model. 
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3. A BAYESIAN SPECIFICATION 

The economic theory proposed in Section 2 is simply that, a theory. As with 
any theory the assumptions upon which it is based are subject to question. One 
technique is to inject randomness into the axioms upon which the theory is 
constructed, namely reflexivity, completeness, transitivity, continuity, non- 
satiation, and convexity. However, our belief is that the theory is quite 
reasonable. But we also realize that there are many reasons to believe that this 
model may not be entirely correct. Our theory is at an individual level, but our 
data is at an aggregate level. We know that aggregate demand models will 
satisfy additivity and other economic properties only under certain conditions 
(set: Deaton & Muellabuer, 1983, pp. 148-166) for a discussion of the 
conditions for exact aggregation to hold). Additionally, these theoretical 
relationships are abstractions that omit certain effects (intertemporal substitu- 
tion, savings, nonlinear budget constraints, etc.) or be subject to measurement 
errors. 

Our’ belief is that the theory should be a reasonable approximation to the 
observed process, but will hold approximately or in a stochastic manner and not 
exactly. This contrasts with the usual pm-testing approach which would test 
whether these effects hold exactly and then totally discard them if they do not 
meet a specific p-value. An essential difference is that in our framework - even 
if the theory is not entirely supported by the data - the information implied by 
the theory will not be completely ignored. To explicitly incorporate tbe notion 
of approximation into our model follow the approach proposed by 
Montgomery and Rossi (1999). First, we assume that the price elasticities have 
the following prior distribution: 

where 

Ps= ux.7 P;, * * . P$l’t Pis= 1% l&s Ois *is]’ (17) 

This distribution will be centered around the restrictions implied by our theory, 
& and the variance around these restrictions represents our confidence in this 
approximation. A can be interpreted as the degree to which an approximation 
is valid. If A is small then these restrictions will effectively be enforced. 
Conversely large values of A will result in estimates that may bear little 
resemblance to the restricted parameter estimates, i.e. unrestricted parameter 
estimates. 

We are not able to assess the parameters of this prior directly, so we place a 
prior on this prior. To avoid confusion the prior in (16) is called the hyper-prior. 



268 ALAN L. MONTGOMERY 

Additionally, we assume that an elasticity matrix that conforms to an additive 
utility structure is reasonable, which implicitly satisfies all the relationships 
outlined in section 2. We propose the following relationship: 

e, = vec(E,), % = vet(%), & = 4, diag(vJ - 4w&,o~,)’ (18) 

We place the usual multivariate normal prior on the remaining store 
parameters: 

9, - w4, k$) (19) 

P, - QL 4 (20) 

An important reason for expressing the prior on E, conditionally upon p,, and 
+, is to avoid problems on nonlinearity. Notice that while E, is conditionally 
linear upon K, unconditionally our prior is nonlinear in IL,. Additionally the 
prior implies that the price elasticity elements will be correlated, which can 
help counter the effect of multicollinearity in a typical price dataset. 

Notice that our priors on I&, p,,, and 4, are exchangeable across stores. It is 
this exchangeability that will drive the shrinkage of one store’s parameter 
estimates towards another. The store to store variation of the expenditure 
elasticities (pJ is governed by A, and variation in the price elasticity matrix 
(E,) - both across store and deviations from the theory - is governed by the A 
matrix. If A and A are zero then there will be no random variation across stores 
and the cross elasticity matrix will be held to its restricted pattern, i.e. the 
estimates will be close to a pooled restricted model. If A and A are large then 
the information from the hyper-distribution will be discounted and the 
parameter estimates will be close to individual store models. 

Since we cannot directly evaluate A and A, we formulate a prior on these 
matrices, and use the data to make inferences about the variation present in the 
data. In our Bayesian framework we assume independent Wishart priors for 
each of these matrices: 

@- ’ - Wishart(v,, V, ‘), A- ’ - Wishzrt(v,, V, ‘) (21) 

We parameterize the prior on these priors as: VA = u,k,ii, and VA = v,,k,,v,,, so 
that these priors are centered over P, ‘/kA and P; Ilk,,, respectively. 

The use of independent priors on A and A as in Montgomery and Rossi 
(1999) provides an important point of divergence with previous work in 
marketing research that uses a single joint Wishart prior on these matrices 
(Blattberg & George, 1991; Montgomery, 1997). The problem with a single 
inverted Wishart prior on the variance of & and E, is a lack of flexibility. Once 
the mean of the distribution is set then the dispersion around this mean is 
controlled by a single scaling parameter. However, we want a prior that will 
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allow for differential degrees of freedom on how tight the prior should be on 
& and E,. Specifically in our problem we wish to have a prior that may allow 
differential amounts of shrinkage across stores and towards the theory. For 
example, we may wish to have more cross-store shrinkage than shrinkage 
towards the theory, i.e. A> A. 

To illustrate this problem consider Fig. 2 which illustrates the inverted 
Wishart prior for two diagonal elements in the corresponding panels. Once the 
dispersion is set for the first element, the dispersion for the second element is 
automatically fixed, as denoted by a solid line. If we wish to loosen up the prior 
on the first element to increase the amount of shrinkage (there is an inverted 
relationship), this would also increase the shrinkage of the second element, as 
denoted by the dashed line. However, we wish to have the ability to tighten up 
the prior on the first element without altering the second element, i.e. choose 
the dashed line for the first parameter and the solid line for the second 
parameter. The introduction of two independent priors allows for this type of 
differential shrinkage. 

Recent work by Barnard et al. (2000) on decomposing the prior on the 
covariance matrix into the standard deviations and correlation matrices can also 
allow differential shrinkage. 

3.1. An Example 

To illustrate the framework presented in the previous subsection consider an 
example with three products. We use our demand model from (3) without 
promotional variables: 

e I l.y 
+ 

[I 
e2,s , e -N(O, C> 

e3ts 

The hyper-parameters are: 

(22) 

1 8 
&= [I 1 , a= [I 7 , h=O.lZ,, A=O.OlZ,, c$=-3, X,= 1 

1 6 
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Suppose the draw for an individual store is: Suppose the draw for an individual store is: 

The restricted price elasticity implied by this specific model would be: 

&=-3,w,= [ ;:;;I 0.33 ,E,= E; 'i z] 

Notice that this restricted price elasticity reflects the high own-price sensitivity 
and small cross-price elasticities that is usually observed in empirical work. 

The price elasticity estimates for this individual store will be shrunk towards 
the restricted price elasticity matrix. This contrasts with Blattberg and George 
(1991) who propose shrinking all own price terms (deflated by relative prices) 
to a single value. Their structure would result in price terms being shrunk 
towards: 

-2.0 0.5 0.5 [ 1 0.5 -2.0 0.5 
0.5 0.5 -2.0 

Notice that Blat&erg and George (1991) can be thought of as a special case of 
our framework. The shrinkage pattern they suggested is the same as ours when 
market shares and expenditure elasticities are equal. However, market shares 
are rarely equal and we may expect some brands to benefit from category 
expenditures more than others (unequal expenditure elasticities). An advantage 
of our framework is that we can evaluate the shrinkage of the estimates in terms 
of theoretical properties of our model, and not rely upon empirical 
justifications. This is an important distinction since it permits evaluation of 
shrinkage in terms of utility and not ad hoc empirical justifications. 

4. ESTIMATION 

We rewrite our model in SUR form: 

In this case the s subscript denotes an individual store, and the dimension of the 
yF vector is M brands by T weeks. In rewriting the model we have implicitly 
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stacked the vector of observations for each brand on top of one another in the 
following manner: 

The second stage of our hierarchical model refers to the hyper-distribution 
from which the vector of parameters for each store is drawn: 

rc 
vec(E,) I p,,, +, - N(vec(E,), A) for s = 1, . . . , S, A-’ - W(u,, Vi) (29) 

where the expected price elasticity matrix is the restricted one implied by an 
additive utility model: 

Es = 4, ~&dPs) - +sPs(Ps~w,)’ 
The remaining parameters are drawn from: 

(30) 

p, -N@,, A) for s = 1, . . . , S, A-’ - W(v,, V-,‘) (31) 

The third stage of our model expresses the prior on the hyper-distribution: 

P -NC% VJ (32) 

4.1. Estimation Using the Gibbs Sampler 

Our goal is to compute the posterior distribution of the model parameters. The 
posterior distribution contains all the information from our sample given our 
distributional assumptions. From the posterior distribution we can compute the 
means, which are commonly used as point estimates, along with any other 
measures of the distribution that are of interest. The following data and 
parameters are supplied by the analyst: 
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The general procedure for finding the marginal posterior distribution is to 
compute the joint posterior and then integrate out all parameters except those 
of interest. In this case the joint distribution of our model can be written as: 

p(P,, . -. , I%, E,, . . . , E,, +,, . . . , b Z,, . . . , Zs, 8, A, A, h A.,ldata, priors) 

a 
I-I Zike(Ps, E,v &I A, Np@ 1 P,, . . . 9 IL A)P(A)P(A)P(~)P(~)P(A~) 
s=l . 

(34) 
If we wanted to find the marginal posterior distribution of 8 we would need to 
solve: 

p@ 1% v,, v.4, v,, VA, VA, Vf9 v,, “$9 VQ, $3 VqJ 

(35) 

The analytic solution to this integral is not known even with natural conjugate 
priors. To understand the difficulty in solving this integral, we refer the reader 
to the simpler case of trying to solve a single stage SUR model (Zellner, 1971, 
pp. 240-246) for which the analytic solution is not known either. Therefore we 
will have to rely upon numerical procedures to find the solution. Unfortunately 
the high dimension of the integral makes it difficult to find a solution using 
conventional numerical integration techniques. 

An alternate method is through the use the Gibbs sampler. The Gibbs 
sampler requires the solution of the conditional distributions, which can be 
easily derived due to the hierarchical structure of the model. For a good 
introduction to the Gibbs sampler see Casella and George (1992). We do not 
advocate the use of Gibbs sampler based on computational efficiency, instead 
we advocate its use because of its ease of implementation. The most desirable 
solution would be an analytical one, but given that this solution does not exist 
in closed form we satisfy ourselves with a numerical solution. 

The Gibbs sampler employed in this paper requires sequentially randomly 
sampling from each of the conditional distributions. It has been shown by 
Gelfand and Smith (1990) and Gelfand et al. (1990) that this draws converge 
to the posterior marginal distributions. The general outline of the procedure is: 
(1) Select starting values for the parameters of the marginal posterior 

distributions. In our practice the least squares estimates of these parameters 
provide good starting points. 

(2) Generate M, + M, sets of random numbers with each set being drawn in the 
following manner: 
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(1) Draw the parameter vector in the first-stage in two parts to avoid the 
nonlinearity induced by the additive separable prior: 

(4 Since we know the price elasticities, we can rewrite the model as 
below : 

[ 
M%J - C Eijs WjtJ 

I 
= % + I& W~~,J + ~&s + +i&d,rs + eit.s (45) 

i 

(b) 
The & vector can be drawn using the usual SUR result. 
Since we know the p, vector we can rewrite the model as below: 

p(“)‘dp(p IEY-‘) x(k-‘) . . .) 

E$;p(E,Ib~k’,‘Zr’“~~~k’“, . . .) 

for s= 1 . . . , S 

forsl1,. . . ,S 
(36) 

(37) 
+y’ v p(+ s I PC”) E@’ ST .YI a..) fors=l,...,S (38) 

2ck’ y (2 1 PC”) Eck’ P s sv s7**-> (39) 
(j(k) y p(fj 1 p’f’, . . . , ps.“‘, A(k- I), . . .> (40) 
6(k) y p($ l+(k) . . . , @‘, 1; - ‘1 . . .> I 7 

Ack) q@IE\k’, . . . , Ef’, PI”‘, . . . , f$‘, $J, . . . , +f’, . . .) 
(41) 

(42) 
A’“’ y p(A 1 p;“‘, . . . , pf’, p(k), . . .) (43) 
q y p( A, 1 (p, . . . , @‘, ;b’k’, . . .) (4.4 

Where the symbol x V p(x) means that the x is a simulated realization or 
draw from the density p(x) and k denotes the iteration number. The above 
conditional distributions are understood to also depend upon the prior 
parameters and the data. 

(3) Use the last M2 sets of draws to estimate the posterior marginal 
distributions. 

This means that’the problem reduces to solving the conditional distributions of 
each of the parameters in the posterior distribution. These solutions are readily 
available due to the hierarchical structure of our model and the affine nature of 
the normal and Wishart distributions. The solution of the conditional densities 
are: 

The E, matrix can be drawn using the usual multivariate regression 
result. 
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(2) Draw the + parameter. Notice that conditional upon E, and t.~~ we have the 
following univariate regression: 

E+ = (6, - P@wjs)pk 4s + uvs, ~8 - N(Ov A) (47) 
Hence, 9, can be drawn using the usual univariate regression result. 

(3) Xc, is drawn from an inverted Wishart distribution 

‘CT’ - W(u, + T,, (V, +&.&-‘X $[,i] =y, - X:,&, (48) 
(4) b is a multivariate regression 

p - N(H(qq3, + V,%), H), H= (SA-’ + Vi’)-’ (49) 
$ is a univariate regression 

(5) Since A and A are independent they can be drawn separately from inverted 
Wishart distributions: 

A-’ - W(v, + s, v* + Z,(B, - Bs>><Ps - P,>>‘> (51) 
A-’ w W(u, + S, VA + Z,(vec(E), - vec(E,))(vec(E), - vec(&))‘) (52) 

$’ - w (v+ + s, v, + u+s - 4m% - WI (53) 

5. APPLICATION TO SCANNER DATA FROM THE 
REFRIGERATED ORANGE JUICE CATEGORY 

We apply our methods to store level scanner data collected from 83 stores from 
Dominick’s Finer Foods chain in Chicago, IL. This data is collected from 
point-of-sale computers that record quantity and prices of purchased items. Our 
data is reported at the weekly level for each store. We have 120 weeks of data 
which is split for the purposes of model validation into a sample for estimation 
and another for out-of-sample predictive validation. We consider products in 
the refrigerated orange juice category. Table 1 lists the items under study, 
average price and market share. The 11 items represent well over 70% of the 
revenue in this category and cover the range from premium national brands to 
lower quality store brands. Our expenditure variable (x) is calculated from a 
subset of 26 store categories with over 5,000 UF’C’s. These categories account 
for over 25% of total store ACV. 

The settings of the priors are chosen to be relatively uninformative relative 
to the data except for priors on A and A. The prior on A controls the amount 
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Table I. Listing of the Items Used in the Study, Along with their Average 
Price and Market Share. 

Item Abbreviation Average Price Market Share 

Tropicana Premium 64 
Tropicana F’remium 96 
Florida’s Natural 64 
Tropicana 64 
Minute Maid 64 
Minute Maid 96 
Citrus Hill 64 
Tree Fresh 64 
Florida Gold 64 
Dominick’s 64 
Dominick’s 128 

TropP64 2.87 16.1 
TropP96 3.12 10.7 
FNata 2.86 4.0 
Tmp64 2.27 15.8 
MMaid64 2.24 16.9 
MMaid% 2.68 5.1 
CHi1164 2.32 5.1 
TFresh64 2.18 2.5 
FGold64 2.07 2.6 
Dom64 1 .I4 13.6 
Dom128 1.83 6.9 

of shrinkage towards the theory, and the prior on A controls the amount of 
shrinkage across the stores. A judicious choice of prior settings on these 
variables can result in estimates that closely proxy the restricted or unrestricted 
models, or fulfill our desire to fall somewhere in-between these estimates. We 
evaluate the impact of the prior over a range of settings. 

5.1. How Good is Our Theory? 

We remind the user that we can actually think of our model as providing two 
dimensions of restrictions. The first is to employ the restrictions on the price 
elasticity matrix implied by an additive utility model as described in Section 2. 
The second is to pool the observations across stores, which would restrict the 
estimates of one store to be equal to one another. A natural starting point is to 
perform a classical test to determine whether the restrictions hold exactly. We 
summarize the number of parameters, in- and out-of-sample MSE, log- 
likelihood, and Schwarz information criterion (SIC) in Table 2. The restrictions 
implied by an additive utility model, pooling assumption, or both are all 
overwhelming rejected 0, c 0.0001) by standard likelihood ration tests. Upon 
an initial evaluation it might appear that the neither the theory nor pooling is 
helpful. An alternative model selection criterion would be to use SIC as an 
asymptotic argument to justify the choice of models. Using the Schwarz 
information criterion (SIC) would lead to the choice of restricted store-level 
models. The out-of-sample predictions imply that the parameter bias induced 
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Table 2. Comparison of various estimators in terms of number of parameters, 
log-likelihood, Schwarzinformation criterion (SIC), and in-sample and out-of- 
sampie MSE estimates. The Bayes estimates forseveral prior settings that range 
between weak and moderate settings of the priors that control shrinkage across 
stores and towards the restrictions of the additive utility model are provided. 

Approach Model 
Number of Log- 
parameters likelilkd SIC 

Predictive 
MSE MSE 

Classical uNemicted store 12,865 49560.9 40778.2 0.170 0.379 
Restricted store 2,905 24798.1 -18005.8 0.247 0.318 
Unrestricted pooled 155 20850.9 -400f6.3 0.314 0.385 
Reatrbedpooled 35 1159&s -22816.4 0.358 0.402 

Shrinkage acms Stores Shrinkage Towards 
Additive 
Utility Restrictions 

Bayes Strong (k* = 0.0001) 
Strong (k, = 0.0001) 
weak (k, = 4900) 
weak (k, = 4900) 
Moderate (kh = 1) 

Strong (kJ = 0.0001) 0.251 0.318 
Weak (k*) = 10000) 0.209 0.301 
strong (k,) = 0.0001) 0.182 0.337 
weak (kJ = mooo) 0.177 0.350 
Moderate (4) = 1) 0.214 0.292 

by the restricted store model is well worth the reduced variance of the 
parameter estimates. 

Table 2 clearly shows that, either in terms of in-sample or out-of-sample fit, 
pooled models are inferior to more unrestricted models. This is because of the 
large heterogeneity in this population of stores. It is important to note that the 
out-of-sample validation results indicate that this is not just the result of over- 
fitting. The next most important conclusion is that the restrictions of the 
additive utility theory are useful in improving predictive accuracy. The Bayes 
model performs the best in out-of-sample predictive validation and offers the 
flexibility of store level models without the dangers of over-purameterization. 
In this data set, it appears that the restrictions of additive utility theory hold 
fairly well. In addition, there are large and detectable store d%Yerences so that 
the Bayes model adapts to something fairly close to the restricted store models. 
A more formal measure to determine the best model is to compute the posterior 
odds of our Bayesian models. We follow Newton and Rafter-y’s (1994) 
technique to compute the posterior odds and we find overwhelming support 
that a model with a strong prior on the theory and weak prior on commonalities 
across stores has the highest posterior probability. 
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5.2. Impact on Price Elasticity Estimates 

In Table 3 we illustrate the similarity and differences in the point estimates for 
the expenditure and price elasticities of four selected products. First, note the 
wide variation in the magnitude of the unrestricted store models. A common 
complaint amongst analysts is that a large number of elasticities may be 
incorrectly signed and even the magnitudes may be suspect. Notice four of the 
twelve parameters have unexpected signs and the magnitudes of the own-price 
elasticities vary widely from -2.2 to -3.7, given the similarity of the products 
we might expect more similar estimates. In contrast the restricted pooled model 
which implements pooling across the stores and the exact restrictions as 
prescribed by an additive utility model eliminates both of these criticisms. 
However, we have lost all heterogeneity in the estimates across the stores and 
the theoretical restrictions are rigidly enforced. Both of these assumptions are 
rejected by standard statistical tests. The estimates from the Bayes model offer 
a compromise solution in which the only on of the cross-price elasticity is 
incorrectly signed, and thgrange of the elasticities are reduced. A judicious 
choice of our prior can result in estimates that can mimic these restricted 
estimates, or result in estimates that fall in between these estimates. Again we 

Table 3. Expenditure and Cross-price Elasticity Estimates for Selected 
Products Using Various Estimators. 

Description Product 

Cross-Price Elasticity Matrix Estimates 
Expenditure 

Elasticity 
Estimate TropP64 TropR64 CHi1164 Dom64 

Unrestricted 
Store Model 

TropP64 1.1 -2.2 0.2 
Trop64 1.7 -0.4 -3.7 
CHill64 0.9 0.2 0.1 
Dom64 1.2 0.8 1.5 

Restricted TropP64 1.1 -3.1 0.4 
Pooled Model Trop64 1.0 0.4 -2.8 

cHi1164 1.0 0.4 0.4 
Dom64 1.0 0.4 0.4 

Bayes Model TropP64 1.1 -2.1 0.1 
TropR64 1.6 0.6 -3.2 
CHi1164 1.3 0.4 0.4 
Dom64 1.0 0.4 1.2 

0.2 0.0 
0.6 -0.2 

-3.1 -0.2 
-0.4 -2.3 

0.1 0.3 
0.1 0.3 

-3.0 0.3 
0.1 -2.8 

0.1 0.0 
0.7 0.1 

-2.6 AI.2 
0.2 -2.3 
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note that the data provides strong support that a compromise solution is 
superior both in the form of improved out-of-sample predictions and high 
posterior odds. 

6. INCORPORATING INFORMATION ABOUT MARKET 
STRUCTURE 

The analysis of the previous subsection which uses a prior based upon an 
additive prior may seem overly restrictive. One concern is that a category may 
have two subcategories that are only weakly related. For example, the laundry 
detergent category may consist of liquid and powder forms. Substitution within 
a subcategory may be high, but between these subcategories it may be weak. 
Additionally, in the orange juice category discussed in the previous section we 
may have premium orange juice that is fresh versus lower quality juice that is 
made from concentrate. An additive utility model would not be able to well 
represent the fact that those in the from concentrate segment would be willing 
to switch up to the fresh juices but fresh orange juice buyers may not be willing 
to switch down to orange juice concentrate. These asymmetry effects have long 
been noted in the marketing literature. To allow increased flexibility we 
consider combining the strong and weak separability arguments from Section 
2 into a single model. If we assume that utility is additive or strongly separable 
within a category but weakly separable across categories, then utility can take 
the following structure: 

utility = Gi u,i(qli)v Zi YZi(qli)r ’ ’ ’ 3 Zi uCiCqCi)) (54) 

where qEi is the quantity of the ith product in the cth category. This will result 
in the following restrictions on the price elasticities: 

i 

r& pis - t&- ki,pj8wjs if i E G and j E H, i #j 
Eiis = 4CC lhsPjswjs if iEG and jeG, i=j (55) 

4OIf Piswjs if iEG and jEH 

Notice one change from our previous formulation is that we have dropped the 
store subscript on 4. This change is necessitated by the increased computa- 
tional requirements of the model. However, we believe this is a sensible 
restriction, since the 4’s permit differences in market structures and we 
presume that the market structure in each store is the same. 

This structure permits more flexibility in the price elasticity matrix, but still 
is a fairly parsimonious structure, perhaps overly so for many analysts. If 
I& = 4 for all G and H then (55) will reduce to the restrictions induced by an 
additive utility structure in (13). While these structures can be similar, our hope 
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is that by incorporating models that are closer to the true generating process of 
the data this should result in better approximations and shrinkage patterns. On 
the other hand, the added flexibility may not be necessary since the model 
already permits substantial departures from the theory embedded within the 
prior. 

This type of structure has been considered previously in marketing in the 
context of market structures. Allenby (1989) proposed identifying market 
structures using a restricted additive utility model - albeit in nested logit form. 
If we assume that the expenditure elasticities within a market segment are 
constant, we can derive the same market structure proposed by Allenby. As an 
illustration suppose there are two submarkets each with 3 brands. The 
uncompensated elasticity matrix will be: 

H= (56) 

Where i = &wi - I.& t&,= - +IJ,J.L~ - pi, a and b denote the submarket for 
products i andj. The restricted elasticity matrix of (56) is the same as that given 
in Allenby’s (1989) figure 1. 

6.1. Constructirtg a Prior on Market Structure 

The first step in constructing a Bayesian model is to develop a prior assessment 
of the probability for each market structure. For example if we have a category 
with three products: A, B, and C, then there are five possible market structures: 
IGW,C)l, IUW,(C)J, ~@MB,C)l, ~(A,C),@)l, IW,(BMC)l. The most 
direct solution would be to assume a particular market structure and simply 
replace the used in (18), which was based upon an additive utility model with 
the model proposed in (55). In keeping with the theme of this paper we would 
like to allow some uncertainty about the market structure and allow deviations 
away from this market structure. Our prior must attach a probability to each of 
these possible market structures. As the number of products increases there is 
a combinatorial explosion of possible market structures, perhaps allowing 
millions of models. Computationally it is not possible to compute the posterior 
distribution if all these markets must be considered as would happen with a flat 
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prior. Therefore theory or some expertise must be used to guide in identifying 
likely market structures. If we are totally agnostic then we will not be able to 
find a solution. 

One technique used by Allenby (1989) is to simply enumerate category 
structures based upon the product attributes, like brand, size, flavor, etc. For 
example, choose a market structure induced by blocking all brands with the 
same size together. This technique resuk in a small number of market 
structures. Unfortunately, grouping upon individual attributes alone may not be 
satisfactory. We would like to propose a more flexible approach, that allows 
grouping based upon multiple attributes, say size and quality. Additionally, we 
would like to permit some deviations away from this structure. For example, 
one product that has the same size as those products in one subcategory should 
be placed with another subcategory due its similarity on quality. 

We use a conditional approach to specify our prior that a product belongs to 
a subcategory. The conditional approach assumes that we know the assign- 
ments of the N - 1 other items in the category and are interested in assigning 
one additional product. Our problem becomes one of predicting the probability 
that this unassigned product should be assigned to a new k+ 1 subcategory or 
one of the existing k subcategories. This conditional specification makes it easy 
to incorporate it into our Gibbs sampling algorithm. The marginal probabilities 
of each model can be computed using simulation. 

We begin by considering the probability that a new category should be 
created. We would like this probability to reflect the similarity of the existing 
groups. If the existing subcategories are quite similar then they will offer low 
discriminatory value, and we would argue that it is likely that a new category 
should be opened. On the other hand, if the unassigned product has a high 
probability of belonging to one subcategory versus the others then this 
indicates a high discriminatory power of the existing structure, and we would 
argue that it is less likely that a new category should be created. Additionally, 
as more categories are created we wish to decrease the probability that a new 
category should be opened. Another function of this conditional probability is 
to serve as a penalty function and avoid creating too many subcategories, which 
would result in an overparameterized model. 

Suppose there are k existing subcategories, and the conditional probability 
that a new product is assigned to subcategory g is pg and the probability that it 
is assigned to a new subcategory is P~+~. We begin by defining the probability 
of opening a new subcategory: 
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where y is a parameter that scales the overall probability and is positive, 6 is 
a function of the number of categories that currently existing, and is the entropy 
of the current subcategory classification probabilities. We define entropy as 
follows: 

o=- 
c Pg 1%2&J 
g=l 

(58) 

Entropy is a measure of how much disparity there is in the attributes of the 
existing categories. If all the probabilities are @,) are close then entropy is low, 
as the probabilities diverge entropy increases. Notice that entropy is always 
positive. Additionally, the scaling function of entropy () is defined as follows: 

I (59) 

where 6, and 6, are scaling parameters and are positive. 6, scales the entropy, 
and 6, increases this penalty as the number of existing categories grows. 

In constructing the probability that an unassigned item belongs to an existing 
category we wish to reflect the similarity of the unassigned product with the 
existing categories. If an attribute of an unassigned product matches those in an 
existing category then it is likely that this product belongs to this category. We 
begin by defining the probability that given attribute i the unassigned product 
belongs to category g: 

Psi = 
c,+w 
np+w (60) 

where cs is the number of products within subcategory g that have the same ith 
attribute and ng is the total number of products in the subcategory. The role of 
the parameter o is to prevent zero probabilities. If we assume that the M 
attributes of a product are independent of one another, then the probability that 
the new product belongs to gth group is proportional to: 

M 

Pg * IyI Pgi (61) 

It might seem like an independence assumption may be questionable, but since 
highly correlated attributes can be omitted independence may be a reasonable 
assumption. 

One further extension that we wish to incorporate is to place additional 
weight on one particular attribute. We modify (61) by raising the probability of 
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the correspond attribute by and raising the other attributes by l/r. In our 
problem a priori we are uncertain as to which attribute will be more important, 
therefore we consider a mixture prior in which an attribute has an equal 
probability of being the important attribute. In summary our model is: 

M M 

ql PZ 

p,=(l -Pn+J Ir -yy ) uij= 

CCnP;iJ 
i 

7 if i=j 
l/r otherwise 

(62) 

Where (1 - pk+ J reflects the probability that a new category is not created or 
one of the existing categorfes is selected. 

Exarmpifz Consider the following example to illustrate this prior. Our 
probIem is to determine whether the eleventh product, Minute Maid - Regular 
- 96 Ox, should be assigned to subcategory A, B, C, or a new subcategory D 
given the assigmnents of the other ten products as listed in Table 4. Notice 
su-bcitegory A appears to be premium produets, B is made up of regular 
produets of various brands and sizes, whiIe C is made up of store brands. We 
set the parameters of this prior as follows: 0 = 0.001, 8, = 0.25, 6, = 10, T = 2, 
and y = 100. The results indicate that there is a 99% probability that Minute 
Maid - Regular - 96 Oz. should be assigned to subcategory B, a 1% chance 
that it should be assigned to a new category, and a negligible probability of 

Table 4. The Attributes of Products and a Sample Market Structure and the 
Product Assignments to Each Subcategory. 

Product Brand Quality Size Subcategory 

I Tropicana Premium 64 A 
2 Tropicana Premium 96 
3 Florida Natural Premium 64 

4 Minute Maid Regular 64 B 
5 Tropicana Regular 64 
6 Florida Gold Regular 64 
7 Citrus Hill Regular 64 
8 Tree Fresh Regular 64 

9 Dominicks Regular 64 C 
10 Dominicks Regular 128 

11 Minute Regular 96 ? 
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being assigned to subcategory A or C. This conforms well with our intuition 
that subcategory B is made up of various national brands. Intuitively the prior 
strongly predicts that the product belongs to subcategory B because the quality 
attribute matches perfectly and there one match in the brand category, 
otherwise category C would have been highly favored. As the parameter is 
increased to 0.3 the odds of the product being assigned to subcategory C rise 
significantly to 4155, subcategory B’s probability drops to 58% and the odds 
of a new category drop to 0.7%. If the parameter is set to zero then unless there 
is at least one match of the unassigned attribute to the products in the 
subcategory there is no probability of the unassigned attribute being assigned 
to that subcategory. 

For the 11 products listed in Table 4 there are almost 40 million possible 
permutations of market structures. However, many of these permutations result 
in structures that are essentially the same except for the labeling of the 
subcategories. For example, the market structure {(A,B),(C)} is the same as 
((C),(A,B)}. To insure the igentifiability of the market structures we only allow 
those structures in which the lowest product rank as given in Table 1 is less than 
those of the subcategories that follow it. In the previous example, the 
permutation ((C),(A,B) 1 would not be allowed. This identifiability condition 
results in about 500,000 possible market structures. 

We simulate our prior using 100,000 iterations, and list the parameter 
settings and the number of subcategory structures identified in Table 5.3 Setting 
1 favors those category structures that allow more subcategories and includes 
the extreme case that all products are assigned to different subcategories. 
Settings 2 through 6 include most of the usual candidate structures that are 
blocked by attributes: brand, size, quality, and all products in the same 

Table 5. Number of Market Structures Generated by Various Settings of the 
Prior. 

Setting 

Parameter Values Number of 
Market 

Y 0 6 Structures 

1 0.6 0.005 2 3,120 
2 20 0.005 2 16,192 
3 20 0.005 1 6,669 
4 20 0.500 5 54,156 
5 100 0.005 2 6,168 
6 100 0.001 2 3,662 
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category. These priors tend to result in subcategories that have more products 
and result in those subcategories that have similar attributes. 

In our subsequent analysis we use the prior that corresponds with setting 6. 
To acquaint the reader with the types of structures that this model identifies we 
list the top ten models along with their prior probability in Table 6. A priori the 
best market structure is the one in which there are two subcategories. One with 
the store brands (which match on brand and quality) and all others. Many 
models are slight deviates from one another, in which one product will switch 
to a different subcategory. These top ten models account for 59% of the 
probability in the prior. The market structure in which all items are assigned to 
the same category was ranked 15th. 

To better demonstrate the association of the products using our prior we 
compute the conditional probability that each pair of products will be included 
in the same subcategory in Table 7. 

We readily acknowledge that this prior is only one out of the multitudes that 
could be constructed. For exam@, we could imagine using a flat prior, and 
enumerate all possible models and allow each to have an equal probability of 
being selected. However, this is computationally infeasible. Another suggestion 
would be to simply count the number of categories and piace a prior that would 
penalize models based upon the number of parameters. This may result in a 
prior that yields a penalty function that is that same as the Schwarz information 
criterion. The benefit of our prior is that it uses brand attribute information and 
results in model structures that seem plausible without eliminating too many 
combinations. We conducted many tests of the sensitivity of the prior and found 
that the information from the likelihood function tends to dominate the 
information in the prior. Therefore, the basic function of the prior is simply to 
identify which models are considered, so the censoring property of the prior is 
its most critical function (i.e. most market structures have zero probability). 

6.2. Estimating the Model 

To estimate this model we can create a Gibbs sampler to simulate draws from 
the marginal posterior distribution. The estimation structure we proposed in 
Section 4 can be readily adapted to this new structure. We divide the sampler 
into two components. The first is to simulate the model conditional upon the 
market structure. The second component is to simulate the market structure 
conditional upon the parameter estimates. Since this first component is similar 
to the algorithm described in Section 4, we will not discuss it in depth. The 
critical difference is that the mean of the hyper-distribution is based on the 
restrictions given weak separability across the subcategories as described in 
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Table 7. Prior Probability that a Pair of Products will be Assigned to the 
Same Subcategory. 

Trop Trop Fnat Trop MMai MMai CHill TFrsh FGol Dom Dom 
P64 P96 64 64 d64 d96 64 64 d64 64 128 

TropP64 1.00 0.95 0.86 0.85 0.47 
Tropp% 1.00 0.82 0.82 0.47 
FNW 1.00 0.77 0.45 
Trop64 1.00 0.55 
MMaid64 1.00 
MMaid% 
CHi1164 
TFrsl-64 
FGol64 
Dom64 
Dom128 

The product abbreviations are given in Table 1. 

0.49 0.45 0.45 0.74 
0.50 0.43 0.43 0.70 
0.45 0.50 0.50 0.86 
0.56 0.55 0.54 0.78 
0.94 0.67 0.67 0.51 
1.00 0.64 0.64 0.50 

1.00 0.75 0.59 
1.00 0.59 

1.00 

0.05 
0.06 
0.03 
0.03 
0.07 
0.08 
0.05 
O.OS 
0.03 
1.00 

0.05 
0.06 
0.03 
0.03 
0.07 
0.08 
0.04 
0.05 
0.03 
0.99 
1.00 

(55) and not the restrictions implied by an additive utility model as given in 
(13). Again our intent is to allow some variation around the restricted model, 
but induce strong shrinkage towards the theoretical restrictions. 

A new component of our algorithm is to simulate the market structure 
conditional upon the parameter values. The motivation is to randomly select 
one of the products, compute the probability that it should be remain in the 
same subcategory, be reassigned to another subcategory, or a new subcategory 
created. These probabilities form a multinomial distribution from which we 
simulate a value and reassign the product to the appropriate subcategory and 
then repeat the first part of the process again which re-estimates all the 
parameters conditional upon the market structure. 

To illustrate this algorithm, suppose that we have four products: A, B, C, and 
D. At iteration i the market structure is {(A),(B),(C,D)], and we wish to re- 
evaluate the assignment of product A. We need to compute the probability of 
the following models: { (A),(B),(C,D)], ((A,B),(C,D)], and { (B),(A,C,D)}. In 
other words, what is the chance of no change (i.e. product A staying as a 
separate subcategory) or product A being merged with one of the existing 
subcategories. The market assignment of product A at iteration i is defined as 
Mi. In our example Mj can take on one of three values: ((A),(B),(C,D)], 
{ (A,B),(C,D)}; and ((B),(A,C,D)}. Our problem is to compute the posterior 
probability of A4,: 

Pt”il @) “PCeIMJPCMi) (63) 
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where 8 is the set of all parameters in the model to be estimated, ~$0 I Mi) can 
be computed from the likelihood function given the market structure, and the 
prior p(M,) is the prior probability as defined in the previous subsection. 
Equation (63) will take on a multinomial distribution which can be sampled 
easily. 

We apply this estimation procedure to the same dataset described in 
Section 5. We evaluate the posterior using three different priors on the amount 
of shrinkage towards the theory, as captured by A, that should be done: strong 
(Us = dim(A) + 3 + 5*S, VA = 0.000025), moderate (v~ = dim(A) + 3, VA = O.Ol), 
and weak (ud. = dim(A) + 3, VA = 0.25). The purpose is to guage the sensitivity 
of the posterior to this prior specification. Table 8 provides the out-of-sample 
forecasting results. The moderate prior performs the best, but all the priors have 
superior out-of-sample forecasting results compared with the unrestricted 
models. In comparison to the market structure restricted models the predictive 
results are similar. However, there are substantial differences in the price 
elasticity estimates induceQ by the differences in market structures. Tables 9 
through 11 provide the posterior probability of the top ten market structures for 
the strong, moderate, and weak priors. The most likely market structure in the 
strong prior contains the 64 ounce cartons, 96 ounce cartons, Tree Fresh, and 
the store brands. Again it is unlikely that a priori an analyst would have guessed 
such a structure since this classification cannot be derived from a single 
attribute. The only question seems to be whether the subcategory with the 96 
ounce cartons should be split. As the prior on is weakened the posterior 
distribution becomes more diffuse and it is more difficult to identify a single 
market structure. This is quite important since it suggests that if the analyst is 
unwilling to be aggressive in stating his beliefs that the theory is correct, 
relying upon the data using a pre-testing method will lead to biased market 

Table 8. Comparison of various prior settings for the Bayes model described 
in Section 6 in terms of in-sampleand out-of-sample MSE estimates. The 
historical period is different than the previous example,and has in-sample MSE 

of 0.164 and predictive MSE of 0.395. 

Description MSE 
Predictive 

MSE 

Strong (v,=dim(A)+ 3 + 5*S, V,=0.000025) 0.268 0.330 
Moderate (v,=dim(A)+3, V,=O.Ol) 0.211 0.320 
Weak (v, = dim(A) + 3, V, = 0.25) 0.213 0.352 
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Table 12. Posterior Probability that a Pair of Products will be Assigned to the 
Same Subcategory Using a Weak Prior. 

Trop Trop Fnat Trop MMai MMai CHill TFrsh FGol Dom Dom 
P64 P96 64 64 d64 d96 64 64 d64 64 128 

TropP64 1.00 0.69 0.49 0.42 0.21 0.25 0.24 0.24 0.32 0.20 0.19 
TropP96 1.00 0.41 0.36 0.20 0.30 0.15 0.19 0.25 0.25 0.26 
FNat64 1.00 0.33 0.25 0.23 0.29 0.29 0.56 0.15 0.12 
Trop64 1.00 0.30 0.26 0.43 0.38 0.41 0.14 0.12 
MMaid64 1.00 0.60 0.39 0.49 0.36 0.17 0.13 
MMaid96 1.00 0.27 0.38 0.24 0.25 0.25 
CHill64 1.00 0.42 0.49 0.14 0.07 
TPrsh64 1.00 0.38 0.14 0.10 
FGol64 1.00 0.11 0.06 
Dom64 1.00 0.75 
Dom128 1.00 

The Product Abbreviations are givep in Table 1. 

structure estimates, and hence price elasticity estimates. Regardless of the 
analyst’s beliefs the data has quite a bit of information and can move the prior 
on the market structures significantly even with a weak prior as the posterior 
probabilities that pairs of products will be assigned in the same subcategory 
shows in Table 12. Table 12 can be contrasted with the prior probabilities given 
in Table 7. 

7. C6NCLUSIONS 

We have shown how economic theory can be incorporated into estimators of 
consumer demand. Our purpose is to represent the notion that a theory is 
approximately correct. Our estimates can be described as shrinking the 
unrestricted model estimates without the theory towards the restricted estimates 
implied by the theory. The amount of shrinkage is adaptive and modified by 
both an analyst’s prior beliefs and the amount of support the data has for the 
theory. Classical approaches to estimating demand by first pre-testing the 
adequacy of the theory and then proceeding conditionally upon these estimates 
will bias the estimates. This will either lead to overconfidence in the estimates 
when the theory is accepted or underconfidence when the theory is disregarded. 
An important facet of our shrinkage estimates is that the theory can contribute 
information even when it is rejected by classical testing procedures, since the 
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theory may be approximately correct. Another benefit of our approach is that 
it provides the analyst a method for understanding the impact of theoretical 
assumptions on parameter estimates by varying the degree of confidence in the 
prior. While we have illustrated our technique using logarithmic demand 
models, this approach can be applied to any functional form, such as an AIDS 
or Rotterdam model. Additionally, we hope that this research will encourage 
applications of Bayes methods to other problems like the estimation of supply 
and production functions. 

NOTES 

1. Our dataset in Sections 5 and 6 consists of 26 categories with over 5,000 UF’C’s. 
This dataset accounts for 25% of total store sales. it is this dataset that we use to 
compute store expenditures. While it would be desirable to have use all products in a 
store, many products are not scanned, like produce and meat which account for 50% of 
store sales. Therefore, our expenditure variable can be thought of largely as grocery 
sales. 

2. The (i, j)th element of the Slut&y matrix (L) is defined as 1, = 2 qj + 3. 
aPj 

3. If a market structure does not occur in the simulation we assume that its 
probability is zero. Effectively, we are truncating our prior. 
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A STUDY OF ‘SPURIOUS 
REGRESSION’ AND MODEL 
DI[SCRIMINATION IN THE 
GENERALIZED BASS MODEL 
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ABSTRACT 

Although opinions among time series econometricians vary concerning 
whether the variables in linear regression models need to be stationary, 
the majority view is that stationary variables are desirable, if not required, 
because of the dangers of “spurious regression,” (Enders, 1995). 
Trending, but independent, variables will likely be significantly correlated 
when combined in a regression analysis. The issue of “spurious 
regression ” and the appropriate manner of including explanatory 
variables in nonlinear models has not been extensively examined. In this 
study we examine the issue of model discrimination and “spurious 
regression ” between two nonlinear dimsion models. We use the 
Generalized Bass Model (GBM) proposed by Bass, Krishnan and Jain 
(1994) where explanatory variables are included as percentage changes 
and as logarithms in comparison with the Cox (1972) proportional hazard 
model with non-stationary variables included as levels. We use simula- 
tions to analyze estimation properties and model discrimination issues for 
the two models. 
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BACKGROUND AND INTRODUCTION 

The Bass model of the diffusion of innovations has become the foremost model 
for forecasting the sales growth of new products and technologies. The pattern 
of adoptions that it identifies have been observed with such frequency that the 
Bass model has been termed an empirical generalization (See Bass (1995) for 
a discussion of empirical generalizations in marketing and for examples of the 
Bass model and various extensions and applications.‘) The original paper by 
Bass (1%9), published in Munugement Science, “A New Product Growth 
Model for Consumer Durables” has been cited hundreds of times and has 
spawned a stream of research that has resulted in hundreds of publications. In 
addition, the Bass model has been applied and utilized for forecasting new 
product sales with substantial frequency (For a recent example of use of the 
model for forecasting the sales of a new technology prior to product launch see 
Bass, Gordon, Ferguson and G&ens (2001)). 

Robinson and Lakhani $1975) published a paper that modified the Bass 
model to include price effects on diffusion. Their work led to a series of papers 
that used a modified form of the Baas model to include demand influencing 
variables. Among these were papers by Bass (1980), Horsky and Simon (1983) 
Kalish (1985), Kamakura and Balasubramanian (1988), Jain and Rao (1990) 
and Horsky ( 1990).2 In 1994 Bass, Krishnan and Jain (1994) published a paper 
showing that earlier models that modified the Bass model to include demand 
influencing variables do not reduce to the Bass model unless prices and other 
variables are constant. In the same paper they developed a “higher level” model 
that reduces to the Bass model under conditions generally found in nature 
concerning the behavior of prices and other variables and that retains the 
essential desirable features of the Bass model. This model was termed the 
Generalized Bass Model (GBM). This model provides an explanation of why 
the Bass model is an empirical generalization even though it does not include 
the effects of prices and other demand influencing variables. In empirical 
studies the Generalized Bass Model provides good fits to the data and the 
estimated coefficients on the demand influencing variables are statistically 
significant. 

With the introduction of time series variables into nonlinear diffusion 
models, issues involving the potential for “spurious regression,” that have been 
extensively examined in time series econometrics studies in the context of 
linear models, arise for nonlinear models as well. Although opinions among 
time series econometricians vary concerning whether the variables in linear 
regression models need to be stationary, the majority view is that stationary 
variables are desirable, if not required, because of the dangers of “spurious 
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regression,” (Enders, 1995). Jointly trending, but independent, variables will 
likely be significantly correlated when combined in a regression analysis. In a 
well-known simulation study Granger and Newbold (1974) found that when a 
large number of cases were generated with independent variables and examined 
by regressions, at the 5% significance level, they were able to reject the null 
hypothesis of no correlation about 75% of the time. One would expect that the 
r&s of “spurious regression” in nonlinear models would not be unlike those in 
linearmodels. A model that includes non-trending explanatory variables would 
be at less risk than one with trending variables. 

In this study we examine the issue of model discrimination and “spurious 
regression” among two nonlinear diffusion models, the Generalized Bass 
Model (GBM) and the Cox (1972) proportional hazard model (RIM) as 
modified by Jain (1992) in the context of the Bass model to include explanatory 
variables as levels. We shall refer to this model as PHML. These two models 
have different properties and the explanatory variables enter the models in 
different ways. GBM has the “carry-through” property in that the impulse 
response of the model in a single period carries through to future periods, while 
PHML is a “current effects” model. Input variables in GBM are included as 
percentage changes and as logarithms of levels, while input variables are 
included as levels in PHML. 

As opposed to growth models that are S-shaped models of a cumulative 
nature, diffusion models are usually employed as derivatives of cumulative 
distributions and are bell-shaped. Diffusion models are models of &option 
purchases and are usually estimated on data that extend “just past the peak” in 
order to minimize the contamination of the data with repeat purchases while 
capturing the essential curvature in the data. A typical example of sales 
(adoptions) and price data for new products is shown in Fig. 1. The sales curve 
is generally trending upward with a downturn only in the last period, while 
prices are declining monotonically. 

Figure 2 shows a trending price series and a series of percentage changes in 
prices that is not trending. When data are generated by a model with trending 
output but with non-trending inputs, apart from time, and estimated by a “false” 
model with trending inputs, the general expectation would be that the 
“f&e” model would provide a good tit to the data and that the estimates of the 
coefficients of the explanatory variables would be significant. The trends in 
input variables and output variables would very likely produce these spurious 
results. On the other hand, when data are generated by a model with trending 
output and trending explanatory variables, other than time, and estimated by a 
model with non-trending inputs one would expect that the fit would not be good 
and that the estimates of the coefficients would not be significant. The 
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Fig. 1. Sales (Adoptions) and Price. 

non-trending explanatory variables would be unlikely to be related to the 
trending output. It would appear, then, that with nonlinear diffusion models the 
nature of the explanatory variables, non-trending or trending, has a bearing on 
model discrimination as related .to the likelihood of “spurious regression.” 

When the two models being examined have different properties other than 
the nature of the explanatory variabbs the importance of model discrimination 
is even greater than the case where the only difference between the models is 
the character of the explanatory variables because the differences in the policy 
implications of the two models will be influenced by their different properties. 
The two models that we shall examine here, GBM and PI&IL, do have very 
different properties. Each model can provide very good fits to the data, but the 
nature of response and the policy implications are quite different for the two 
models. 

THE BASS MODEL 

In order to lay the groundwork for the development of the GBM and PHML 
models we provide here the theoretical development of the Bass model. Unlike 
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Fig. 2. Price Level and Percent Change in Price by Period. 

older growth models as customarily applied, such as the Gompertz and 
Logistic, the purpose of diffusion models is to explain the timing of adoptions 
(initial purchases) of new products and technologies on the basis of behavioral 
assumptions that are explicit. 

The underlying behavioral assumption of the Bass Model is based largely on 
the work of Rogers (1962) who specified the following classes of adopters: (1) 
Innovators; (2) Early Adopters; (3) Early Majority; (4) Late Majority; (5) 
Laggards. This classification is based upon the timing of adoption by the 
various groups. A fundamental idea suggested by Rogers is that adopters, other 
than innovators, are influenced in adoption timing by earlier adopters. The 
basic idea is that as the number of previous adopters accumulates the pressure 
on the remaining non-adopters to adopt increases. The increasing pressure of 
the social system can be explained by “imitation” or “learning.” Behaviorally, 
the “imitation rationale” is similar in certain respects to assumptions employed 
by Katz and Lazarsfeld (1955) and Mansfield (1961) while the “learning” idea 
is t&ted to the ideas suggested by Rogers (1%2) and Bush and Mosteller 
(1955). In any case, whether by “imitation” or “learning” or by a combination 
of the two the pressure to adopt on non-adopters builds up as the number of 
earlier adopters increases. 
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Mathematically, the Bass model is related to microscopic models at the 
individual level such as contagion models that have been applied in 
epidemiology (Bartlett, 1960) and to personal communication (Taga & Isii, 
1959). The fundamental assumption of the Bass model is: The probability that 
an initial purchase will be mude at time t given that no purchase has yet been 
made is a linearfunction of the number of previous adopters. This assumption 
may be expressed as a hazard function: 

f(t)/{ 1 - WI = p + qW, (1) 
where f(t) is the likelihood of purchase at t and F(t) is the integral of f(x) from 
x = 0 to t. If m is defined as the number of initial purchases over the period of 
interest (“life of the product”) and Y(t), the cumulative number of adopters at 
time t, is defined as r@(t), the right hand side of Eq. (1) may be written as: 
p + (q/m)Y(t) to demonstrate the linear relationship between the conditional 
probability of adoption at time t and the number of previous adopters. The 
parameter p has been defined as the “coefficient of innovation” to represent the 
influence of innovators in’the adoption process (Note that at t =O, the 
conditional probability of adoption is p) and the parameter q has been termed 
the “coefficient of imitation” to reflect tbe imitation influence of previous 
adopters on those who have not yet adopted. 

Using Eq. (1) f(t) may be written as: 

f(t) = P + (q - p)F(t) - s[W>12. (2) 

Equation (2) is a differential equation and, under the condition that F(O)=O, 
may be solved for F(t) to find that: 

F(t) = (1 - e(.-(p+q))t)/( 1 + (q/p)e-‘P’9”). (3) 
Equation (3) may be differentiated to find: 

f(t) = ((p + q)2/p)e-(P+q)‘/( 1 + (q/p)e-(p+q”)2. (4) 
The sales rate will then be mf(t) or, 

S(t) = m((p + q)2/p)e-‘p+q”/( 1 + (q/p)e-‘P+q)‘)2. (3 
To find the time, t*, at which the sales rate reaches its peak, Eq. (5) may be 
differentiated and the result set equal to 0 to find: 

t* = l/(p + q) Ln(q/p). (6) 

Empirically q is usually much larger than p and an interior maximum ordinarily 
exists and sales curves similar to the one shown in Fig. 1 are typical of new 
product sales curves. For this reason the Bass model has been termed an 
empirical generalization. 
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It is worth noting that if p = 0 in the hazard function indicated in Eq. (l), the 
solution for F(t) will be the Logistic function employed by Mansfield (1961) 
and many others and if q = 0 the solution for F(t) implies that f(t) is the negative 
exponential distribution used as employed by Four-t and Woodlock (1960) in the 
study of the timing of first purchase of grocery products. Hence, the Logistic 
and negative exponential are special cases of the Bass model. 

Although there are many functional farms that could provide good fits to 
dataofthetypedepictedinFig. 1,theBaasmodelhasbecomethemodelof 
choice in forecasting sales of new durable products and technologies. The 
primary reason for this is that the underlying behavioral theory for the Bass 
model is intuitively appealing and the parameters of the model may be 
i tedaRdunderstoodat~i~~~.Inaddirion,theemphrica 
estimates of m’s, p’s, and q’s have been cataloged for hundreds of previously 
intmduced products permitting forecasting by the method of “guessing by 
analogy” under which analysts may try to guess p’s and q’s by comparing the 
new product of interest to an analogous product introduced earlier. 

THE GENERALIZED BASS MODEL 

The Generalized Bass Model (Bass, Krishnan & Jain, 1994) was developed for 
the purpose of explaining why the Bass model is an empirical generalization 
despite the absence of price and other demand influencing variables in the 
model. Underlying each of the sales curves that have been observed is a 
sequence of prices and other influences. These variables vary considerably 
from case to case, but the observed shape of the sales pattern is the same over 
the large number of products for which sales data have been observed. In order 
to provide the desired explanation it is necessary that the generalized model 
reduce to the Bass model under conditions on the explanatory variables that are 
commonly observed in nature. At the same time it is desirable that the 
generalized model retain the essential properties of “imitation” or “learning” of 
the Bass model as indicated in Eq. (1). 

The hazard function for GBM is: 

WE 1 - WI = WEp + qW1, (7) 
where x(t) is a dynamic function of dynamic control variables. For purposes of 
exposition we consider price and advertising although other variables could be 
easily accommodated. Notice that Eq (7) is observationally equivalent to Eq. 
(2) when x(t) is constant. 

The next problem is to find a specification for x(t) in such a way that x(t) is 
approximately constant under circumstances that are ordinarily found in nature. 
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It is often observed that prices of new technologies fall exponentially with time. 
The concept of declining costs and prices as expressed in the accumulated 
experience of a firm has been extensively developed and applied by the Boston 
Consulting Group (1%8). The marginal cost function utilized in experience 
curve theory is the same as the functional form utilized by Arrow (1962) in his 
famous paper ‘The Economic Implications of Learning by Doing.” Among 
others, Bass (1980) found empirical support for exponential price decline for 
several new product categories. Similar exponential behavior for other decision 
variables is often the pattern during the growth phase of the diffision process. 
Exponential behavior, of course, implies a constant percentage change in a 
variable. The specification of x(t) is such that exact exponential behavior of the 
decision variables will result in x(t) being exactly a constant and approximately 
exponential behavior will result in x(t) being approximately a constant. The 
choice of the functional form for x(t) is based upon the desire to capture the 
properties of the Bass model and at the same time, to have a closed form 
solution to the resulting *differential equation. For these reasons GBM 
proposed: 

x(t) = 1 + [AF’r(t)/Pr(t - l)]B, + [AADV(t)/ADV(t - l)]&, (8) 
where Pr(t) is price at time t and ADV(t) is advertising at time t. Summing x(t) 
with respect to t yields X(t) so that: 

x(t) = c X(T). 
so 

If time is treated as continuous, then Eq. (8) may be written as: 
x(t) = 1 + [dPr(t)/dt)fPr(t)]B, + [dADV(t)/ADV(t)]B,. (10) 

Similarly, if time is continuous Eq. (10) may be integrated to find X(t)3: 

X(t) = t + U-dPr(t)/Pr(O))lP, + [Ln(ADV(t)nnADV(O))lP,. (11) 
The adoption rate (Sales at time t) for the Generalized Bass Model is: 

S(t) = m((p + q)2/p)x(t)e-~p+q~X~‘~/( 1 + (q/p)e-(p+q’x”‘)2, (12) 
where x(t) and X(t) are given by Eqs (10) and (11) respectively. 

Equation (12) retains the essential properties of Eq. (5) and is observation- 
ally equivalent to Eq. (5) if x(t) is constant. Equation (12) is also capable of 
explaining deviations of the empirical sales data from the smooth curve 
produced by the Bass Model on the basis of variations in the decision variables. 
In an empirical analysis Bass, Krishnan, and Jain (1994) showed that the 
Generalized Bass Model produced better fits than the Bass Model and that 
parameter estimates of the B’s were statistically significant. 
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An essential property of both the Bass Model and the Generalized Bass 
Model stems from the behavioral rationale that underlies these models. The 
hazard function of these models indicate that the conditional probability of 
adoption among those who have not yet adopted is influenced by the number 
of previous adopters. Thus the greater the number of adopters today the greater 
will be the influence on the remaining potential adopters to adopt at each future 
time period. A price reduction today will have an influence on adoption today 
but will also have an impact on adoption in the future because of the way 
diffusion is captured by the model. 

For the Generalized Bass Model the hazard rate may be expressed as: 

X(t, x) = x(t)(p + q)/( 1 + (q/p)e-‘p+q’x”‘), (13) 

where x(t) and X(t) are defined by Eqs (8) and (9). An impulse in a decision 
variable at time t will have a permanent impact on X(t + T) because X(t +r) 
depends on all prior values of x through the summation operation on x that 
results in X. The hazatd rate for the Generalized Bass Model, then, will be 
permanently shifted by an impulse in a decision variable at time t. Because the 
hazard rate at t + T is influenced by an impulse at t the effect of the impulse will 
also carry through to the adoption rate at t + T. The impulse response for the 
Generalized Bass Model therefore reflects the “carry-through” property of the 
model. 

THE PROPORTIONAL HAZARD MODEL 

The proportional hazard modeling framework was introduced by Cox (1972). 
This framework was employed by Jain and Vilcassim (1991) in a marketing 
context in a study of household purchase timing for frequently purchased 
products. The proportional hazard model has also been studied in a diffision 
context in comparison with the Generalized Bass Model by Bass, Jain and 
Klishnan (2ooo). 

In its most basic form the proportional hazard function may be written as: 

UC Z) = hdwrzw1, (14) 

where h,(t) is the baseline hazard function and $[Z(t)] is a function of 
explanatory variables. Customarily +[Z(t)] is assumed to be EXP(Z,(t)B, + 
Z,(t)&), where Z,(t) is the price level at t, I%(t), and Z,(t) is the advertising 
level at t, ADV(t). If the Bass Model hazard function (Eq. (1)) is used in the 
baseline function and if the solution to the Bass Model differential equation, 
F(t) = (1 - e-(pc’@)/( 1 + (q/p)e -(P+@), is substituted into F(t) in the right hand 
side of Eq. (1) then h(t) may be written as: 
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h(t) = (p + q)/( 1 + (q/p)e-‘P+qN). (15) 
Writing Z(t) as: Pr(t)p, + ADV(t)& and Y(t) =cumulative sales at time 
t = mF(t) it is then possible to write the sales rate for the proportional hazard 
model as: 

S(t) = h,(t)(m - Y(t)k+“. (16) 

Equation (16) has parameters m, p, q, I& and & and corresponds to Eq. (12) 
for the sales rate of the Generalized Bass Model. Unlike x(t) in Eq. (12) the 
decision variables in Z(t) are included as levels in Eq. (16) and if these 
variables are trending Eq. (16) appears to be at greater risk of “spurious 
regression” than Eq. (12). It is also worth noting that Eq. (16), unlike Eq. (12), 
will reduce to the Bass model only if the decision variables are unchanging. 

For the proportional hazard model the hazard rate is: A(t, Z) = (p + q)/( 1 + (q/ 
Pk - (P+q)t)(p) where Z(t) = Pr(t)p, + ADV(t)&. The function Z(t +r) is not 
affected by an impulse in a decision variable at time t. For this model, then, the 
hazard rate at t + r is not acted by an impulse in Z at t. The proportional 
hazard model, therefore, does not have the “carry-through” property. 

In simulating and estimating the proportional hazard model we shall use the 
discrete version of the model that is suggested as appropriate for discrete data 
as suggested by Kalbdeisch and Prentice (1980) as appropriate for grouped 
data. The model development for this as applied to diffusion is discussed in 
Bass, Jain and Krishnan (2000). The equation is: 

S(t) = (m - Y,- ,)J(t - 1, t), (17) 

where Y,- , is the observed or simulated cumulative sales at t - 1 and where 

J@- lvt)=l -[Exp(-(p+q))I(l+(q/p) 
x Expt - (P + s)(t - 1 ))Y( I+ WpExp( - (P + s)t)) Hh(Z(t’. 

SIMULATION ANALYSIS OVERVIEW 

Although the Generalized Bass Model and the proportional hazard model are 
both based on the Bass Model they differ in important respects: percentage 
changes vs. levels in the decision variables and the presence and absence of the 
“carry-through” property. In our simulation analysis we shall simulate data for 
each of the models and explore the ability to discriminate between the models 
based on estimates of the simulated dam. In our simulation study of the two 
models we shall refer to the Generalized Bass Model as GBM and the 
proportional hazard model in levels of the decision variables as PHML. Nine 
parameters were manipulated for this study: 
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(i) p, the coefficient of innovation 
(ii) q, the coefficient of imitation 

(iii) m, the market potential 
(iv) PI, the price coefficient 
(v) &, the advertising coefficient 

(vi) the error variance for the price series 
(vii) the error variance for the adverusing series 

(viii) the error variance for the model 
(ix) the length of the simulated data series -just past peak versus well 

beyond peak. 
We want to ensure that the parameters selected for the simulation study bear 
clrtseness to v&es t&u occur in empirical studies. Hence, we choose for 
starting values of the parameters p, q, m, @, and & estimates obtained by Bass, 
Jain and Krishnan (2ooO) for room air-conditioners, color TVs and clothes 
dryers. The model parameters are estimated by the non-linear least squares 
procedm (Bass et al., 2000). We assess the performance of the models in terms 
of gocidness-of-fit (R2), parameter estimates, and standard errors. We generate 
multiple sets of data for different pammeter values with the underlying 
s-s given by GBM and PHML. In order to ensure robustness of our 
results, we perform 30 replications for each cell and report the mean vahres of 
the estimates and the standard error of the mean. 

The relative performance of the models is influenced by the model error and 
hence we manipulate the model error variance to obtain two treatment levels - 
low and high. Since not using the same error variance introduces a potential 
confound, we assume that the error distribution is uniform for both the high 
error variance and the low error variance conditions. Further, since the length 
of the simulated data series may affect the outcome, we control for this by 
manipulating the length to obtain two treatment levels -just past peak sales and 
well beyond peak sales. We will also generate sets of simulations in which the 
decision variables, price and advertising, behave in different ways. In the first 
set of simulations price and advertising are generated as exponential functions 
with error. To simulate the price series in levels, we use the following 
functional form: 

yRt = a, extiat) + +,, (18) 
where 0 < a c 1 and sr,, is the error term. To simulate the advertising series in 
levels, we use the following functional form: 

YAt = Ml - exp(Wl + &A,t (19) 
where 0 <b < 1 and E~,~ is the error term. Here too, since not using the same 
error variance introduces a potential confound, we assume that the error 
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distribution is uniform for both the price series and advertising series. While 
the price series is decreasing exponentially at the rate of - (1 - a) with 
stationary error, the advertising series is increasing exponentially to an 
asymptote of b, with a stationary error. Thus, the percentage change in price 
will be a constant plus stationary error. Similarly, the percentage change in 
advertising will be a constant plus stationary error. 

It then follows that the demand-influencing variable for GBM: 
x(t) = 1 + [dPr(t)/dt)/Pr(t)]B, + [dADV(t)/ADV(t)]B, (shown in Eq. 10) will be 
mean-stationary. In contrast, the proportional hazard model, depends solely on 
Z(t) = Pr(t)B, +ADV(t)& which is not mean-stationary as evident from the 
data-generating Eqs (18) and (19). Therefore, because the GBM has a 
stationary demand-influencing variable and the proportional hazard model does 
not, it would appear that the proportional hazard model would be more 
susceptible to “spurious regression” than GBM. We empirically investigate 
these time-series properties of x(t) and Z(t) by testing for the presence or 
absence of unit roots using @e Augmented Dickey Fuller tests (Dickey & 
Fuller, 1981). 

In the second set of simulations the price series is generated with a structural 
break, a single impulse in which price is sharply reduced in one period. This set 
of simulations permits us to examine the estimation properties of the two 
models under a condition in which the adoption curve for GBM is shifted while 
the position of the PHML curve is not changed. 

SIMULATION ANALYSIS-SMOOTHLY TRENDING 
DECISION VARIABLES 

The results of the simulation study when the decision variables are smoothly 
trending are summarized in Tables 1-3. Table 1 contains the estimates for a set 
of simulations with a low model error variance for both models while Table 2 
shows the estimates with higher model error variances; the length of the 
simulated data series is just past peak in both Tables 1 and 2. Table 3 shows the 
estimates with the length of the data series being longer and well beyond the 
peak sales. 

A summary of the comparisons of statistical results matched with the model 
generating the data is provided below. 

When the data are generated by GBM: 

l Estimates of the GBM model provide good fits and the parameter recovery 
is very good with high levels of significance, as expected, when the model 
error variance is small. When the model error variance is high the model also 
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produces good fits and good parameter estimates with low standard errors 
except for B2, the advertising coefficient. 

l Estimates of the PHML model provide good fits and all parameter estimates 
are significant except when the model error variance is high in which case the 
estimate of the advertising coefficient has larger standard errors. 

When the data are generated by PHML: 

l Estimates of the PHML model provide good fits and the parameter recovery 
is good with high levels of significance when the model error variance is 
small, as expected. However, when the model error variance is large, 
although the fits are fairly good, the estimates have higher error variances. 

l When the GBM model is estimated, the estimation routine does not 
converge. 

These results are valid even when the length of the data series is longer and 
well beyond the peak sales. Further, the results of the ADF unit root tests 
confirm that the demand%fluencing variables for the GBM given by 
x(t) = 1 + [dPr(t)/dt)/Pr(t)]B, + [dADV(t)/ADV(t)]B, are mean-stationary while 
this is not the case for the demand-influencing variables in the PHML (see 
footnote to Tables l-3). When the data are generated by smoothly trending 
decision variables PHML is highly susceptible to “spurious regression.” When 
the data are generated by GBM the PHML model fits the data well and with 
significant parameter estimates. This result stems from the high correlation of 
the trending levels of the decision variables with the model trend and is roughly 
analogous to the “spurious regression” found in linear regression models with 
trending variables. In contrast to the “spurious regression” of PHML, GBM 
estimates of data generated by PHML do not converge. The input variable in 
the GBM, x(t), is mean stationary and uncorrelated with the model trend. As a 
result GBM rejects the GBM model as being the “true” model when the data 
are generated by PHML. 

SIMULATION ANALYSIS-IMPULSE IN PRICE SERIES 

In order to study the estimation properties of the two models when there is a 
break in the smoothly trending decision variables we have simulated data in 
which there is a sharp decline in the price in one time period. The estimates for 
data simulated for the two models with a single impulse at period 4 (t = 4) are 
shown in Tables 4 and 5. 

A summary of the comparisons of statistical results matched with the model 
generating the data is provided below. 
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When the data are generated by GBM: 

l Estimates of the GBM model provide very good fits to the data and the 
parameter values are closely recovered with small standard errors. 

l The estimation routine for the PHML model does not converge. 

When the data are generated by PHML: 

l The estimation routine for the GBM model does not converge. 
l When the response coefficient for price, B,, is small the PHML model 

produces a good fit to the data and fairly good parameter estimates, but when 
B, is large the estimation routine for PHML does not converge. 

When the data are generated with an impulse in one period by the GBM model 
and estimated by GBM the fit is good and parameter recovery is good with 
small standard errors. This result is entirely expected because GBM easily 
accommodates choppy decision variables. On the other hand, when PHML is 
estimated with the same data the estimation routine does not converge. This is 
in sharp contrast to the case when decision variables are smoothly trending 
where PHML has good fits and parameter estimates with small standard errors. 
When data are generated by the PHML model and there is an impulse in price, 
convergence is not obtained by the estimation routine. Putting all this together 
it appears that the PHML model is not able to handle non-smooth data when 
there is a strong response to impulses in decision variables. GBM, on the other 
hand easily accommodates these conditions. 

SUMMARY AND CONCLUSIONS 

The issue of whether trending variables in linear regression models should be 
included as levels or differences is a subject of debate, but the majority view is 
that because of the dangers of “spurious regression” only stationary variables 
should be used. In this study we have examined the issue of stationary 
explanatory variables versus trending explanatory variables in the context of 
nonlinear models. We have examined the estimation properties of two 
nonlinear models that have similarities but which are structurally different in 
that one has a stationary demand-influencing variable and the other does not. 
One of these models, the Generalized Bass Model (GBM), has a “carry 
through’ property where the effects of a demand-influencing variable in any 
time period are felt in that time period but also have effects in all future time 
periods. The other model, the proportional hazard model (PHML), on the other 
hand, is a “current effects” model in that the effect of a demand-influencing 
variable in any period is felt only in the current period. 
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Our simulation analysis indicates that the PHML model is at serious risk of 
“spurious regression” when the explanatory variables are smoothly trending. 
When the data are generated by GBM and fitted by PHML the fits are good and 
the parameter estimates are significant. In contrast, when data are generated by 
PHML and fitted by GBM the fits are poor. When the data are generated with 
an impulse in a demand-influencing variable in one period GBM will easily 
accommodate the impulse and will produce good fits and estimates when GBM 
is the true model. PHML, however, is unable to recover the parameters when 
there is an impulse and a strong response to the impulse. 

The approach we have taken in this study suggests the possibility of 
examining the model discrimination properties and “spurious regression” 
susceptibiiities of nonlinear models more generally. 

NOTES 

1. For an older literature revipw of diffusion theory papers see Mahajan, Muller, and 
Bass (1990) and for a discussion of managerial applications of the Bass model and its 
extensions see Mahajan, Muller, and Bass (1995). For more recent developments see 
Mahajan, Muller, and Wind (Eds) (2000). 

2. For a review and evaluation of models that use a modified form of the Bass model 
to include demand influencing variables see Bass, Jain, and Krishnan (2000). 

3. When price and advertising are reasonably smooth functions of time x(t) may be 
approximated by equation (10) and X(t) by Eq. (11). However, when there are 
discontinuities such as an impulse at some time, the discrete functions indicated in 
equations (8) and (9) are appropriate. 
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ABSTRACT 

Historically standard regression has been used to assess peflormance in 
marketing, especially of salespeople and retail outlets. A model of 
performance is estimated using ordinary least squares, the residuals are 
computed, and the decision-making units, say store managers, ranked in 
the order of the residuals. The problem is that the regression line approach 
characterizes average performance. The focus should be on best 
pe@ormance. Frontier analysis, especially stochastic frontier analysis 
(SFA), is a way to benchmark such best performance. Deterministic 
frontier analysis is also discussed in passing. The distinction between 
conventional ordinary least squares analysis and frontier analysis is 
especially marked when hetetoscedasticity is present. Most of the focus of 
benchmarking has been on identifying the best performing units. The real 
insight, though, is from explaining the benchmark gap. Stochastic frontier 
analysis can, and should, model both phenomena simultaneously. 
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I. INTRODUCTION 

LEONARD J. PARSONS 

Evaluating performance is an important task for managers. For example, 
consider the evaluation of salespeople (Jackson, Schlacter &Wolfe, 1995). The 
evaluation process signals to salespeople those aspects of their jobs that are 
important and how they are doing on these dimensions. The performance 
appraisal process entails identifying those factors on which the salespeople will 
be evaluated, developing performance standards to express the level of 
performance desired on each factor, monitoring actual performance, and 
reviewing performance with each salesperson. Performance factors include 
both results (output) and effort (input) variables. 

An inadequate performance appraisal system can cause considerable costs to 
the firm (Vandenbosch & Weinberg, 1993, pp. 680482). For example, the 
system impacts salesforce motivation, morale, and turnover. Yet directly 
comparing salespeople is difficult to do in practice because territories are not 
balanced perfectly in termsaf environmental characteristics such as workload 
and potential. To address this, territory response functions have been 
constructed in which territory sales are a function of salesperson, company, and 
territory characteristics. These functions are typically estimated using multiple 
regressions; e.g. Parsons and Vanden Abeele (1981). Significant variables in an 
estimated response function identify factors that influence salesperson 
performance. The regression residuals provide an environmental-adjusted 
measure of differential performance among sales representatives (Vandenbosch 
& Weinberg, 1993, p. 681). 

Regression methods have focused attention on what an average salesperson 
might achieve in a territory but management may be more interested in what a 
top-performing salesperson could achieve. This is not an intrinsic problem with 
regression analysis, but rather a statement about how it is used. Regression 
models generally require that the functional form of the model and error 
distribution be correctly specified. If these assumptions are correct, then 
estimates about a top-performing salesperson could be generated directly from 
the distribution around the regression line. For example, one can predict what 
is the chance that a salesperson would exceed sales of a given level. This 
percentile can be predicted directly, instead of the usual point estimate. If the 
regression model is correctly specified, one can predict both the “best” the 
salesperson can do and what the average salesperson should do. Such a 
regression analysis can be misleading, however, if there is m&specification. 
The thrust of this chapter is that the error structure in the classical regression 
model is likely misspecified; in particular, by ignoring technical inefficiency. 
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This first section begins by looking at the historical approach to performance 
evaluation: ordinary least squares (OLS) residual analysis. Then it looks at 
recent developments using hierarchical Bayesian methods. Finally it concludes 
with coverage of benchmarking. The next section focuses on the concept of 
economic efficiency. The main section examines the methods for estimating the 
frontiers indicative of best performance and discusses related empirical 
marketing studies. The penultimate section addresses additional related 
methodological advances that should provide further insights into performance 
measurement in marketing. The last section provides concluding remarks. 

A. OLS Residual Analysis 

The performance of outlets in a retail chain, members of a sales force, and the 
like can be assessed using response models. This approach aliows the 
separation of factors under the control of the local store (e.g. employee hours) 
or sales representative (e.g. 4s) from factors not under their control (e.g. 
national advertising or market potential). The performance models have 
typically been estimated using conventional regression analysis. Let’s look at 
two prototypical examples of this approach to performance evaluation - one 
concerning members of a sales force and the other concerning outlets in a retail 
chain - that will help frame the issues addressed in this chapter. 

Salesperson Performance Example 
Twenty-five sales territories of the national sales force of a large manufacturer 
were analyzed in an early performance study (Cravens, Woodruff & Stamper, 
1972). These territories ranged from smaller, more congested territories to large 
territories. Each territory was assigned to a single salesperson. Total unit sales 
were the measure of performance. Based on a conceptual framework for sales 
territory performance, six factors were posited to impact territory performance. 
These were market potential, territory workload, salesperson experience, 
stipem motivation and effort, compauy experience, and compaay eRi3rt. 
Industry sales were used as a measure of market potential. There were two 
measures of workload: workload per account and number of assigned accounts. 
Average workload per account took into consi~ annual purchases by 
accounts and the concemmtion of accounts. Salesperson experience was the 
length of time employed by the company. !U~XHXI motivation aud effort 
was captured by having sales managers provide ratings of the salespeople 
under their supervision on eight dimensions of performance, which were 
distilled into one aggregate rating. Company experience also had two measures, 
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average market share and market share change. These were based on the prior 
four years. Company effort was advertising expenditures in the territory. Thus, 
there were a total of eight explanatory variables. 

A linear relationship was posited and estimated by stepwise regression.’ The 
R-square was 0.72. Five variables - number of accounts, industry sales, market 
share change, workload per account, and performance of the salesperson - 
were statistically significant. Predicted sales provided a benchmark and were 
used to analyze the performance level achieved in each territory. The difference 
between actual sales and predicted sales (the residual) was compared. In 
addition, the ratio of actual sales to sales predicted by the model was computed. 
Management indicated that the benchmarks yielded by multiple regression 
analysis conformed more closely to its beliefs about high- and low- 
performance territories than did assigned quotas. Indeed, a comparison of 
benchmarks to quota achievement indicated no significant relationship. The 
researchers observed “The methodology generates objective standards of 
performance in terms of w+t exists in the organization rather than what should 
exist” (Cravens, Woodruff & Stamper, 1972, p. 36).* 

Retail Store Pelfornmace Example 
The performance of IBM Product Centers in the mid-1980s serves as a second 
illustration. These retail stores served small businesses and individual 
consumers. Initially set up to sell electronic typewriters, they were undergoing 
a transition to selling computers at the time of the study. 

The original data contained information on 80 Product Centers. However, 
information on new product centers was considered atypical and analyses were 
done only on 72 established Product Centers (Parsons, 1992). The database 
contained information on over 50 variables or combinations of variables. One 
complication was employee sales. Since making a sale to a commercial 
customer requires a different level of effort than making a sale to one of IBM’s 
own employees and since IBM’s interest was in the commercial customer, 
employee sales were deducted from revenue. Correspondingly, traffic and total 
man months of representatives at each Product Center were deflated by the 
proportion of employee sales at that Product Center. 

The primary regression model assumed that revenue was a function of local 
market conditions and Product Center efforts. Local market conditions 
included information on potential and competitive activity. Product Center 
efkrts included total man months of representatives. Another key factor 
explaining sales were traffic, which itself was a function of local market 
conditions. 
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Adjusted traffic per month was explained by potential in the standard trade 
area, potential in the SMSA (Standard Metropolitan Statistical Area) but not in 
the standard trade area, density of the potential in proximity to the Product 
Center, whether or not the store was located in the Rast, and whether or not the 
store was an urban multiple. Thus, traffic was explained not only by raw 
potential, but how that potential was distributed across a store’s market. The 
R-square was 0.59. 

Adjusted annual revenue was explained by adjusted traflic, total man-months 
of sales representatives, density of potential in standard trade area, potential in 
SMSA but not in the standard trade area and Future Cumpuzing peaemtim. 
Thus, potential appears not only directly, but also indirectly because it drives 
tradffe.TheR- was 0.79. 

mm- of individual Product Centers were measured on both an 
almhate and a relative basis. Regression models indicated which fa&ors were 
salient in predicting performance. The parameter estimates gave the weights 
asrxigned to each factor. These weights represented avenge performance. 
Pmduct Centers that have much lower actual sales than pm&ted were 
candidates for the most attention. Here is where the largest g&s could be 
achieved through better efforts. The results implied that simply bringing 
Product Centers performing below expectation up to an average level of 
performance could yield significant increases in revenue. 

What might explain the differences in performance among Product Centers? 
The variances of actual revenue from predicted revenue were compared on the 
basis of the quality of sales effort. Potential sources of success were average 
sales skill in a Product Center, average skill on DOS, average skill on PCs, 
average skill on typewriters, percent employees trained in computers, percent 
employees trained in service, and percent employees trained in typewriters. 
Further analysis revealed that training employees in computers should improve 
seIling effectiveness. 

While IBM found the performance study usefuk3 one manager raised some 
questions “Why should the focus be on average performance? Why should 
product Centers above the regression line be left “off the hook?’ If the error 
distribution of the regression model is correctly specified, being over or under 
the regression line would not be the right question for managers to be asking, 
as this is uncontrollable random error. The only thing that managers should be 
focused on, if they believe the regression model, is how can they change the 
independent variables to control where they fall on the regression line. This is 
the market response modeler’s view of the world. Nonetheless, the questions 
raised by the IBM manager prompted a look into how to find the line that 
represents the frontier of best performance.4 
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B. Hierarchic& Bayesian Analysis 

A hierarchical Bayesian (HB) approach has been proposed to address territory 
and representative heterogeneity in sales force evaluation (Cain, 2001). The HB 
methodology allows population means to be expressed as functions of 
explanatory variables; in particular, individual representative effect parameters 
can be expressed as a function of representative characteristics, such as years 
of experience. This HB approach could also be used to evaluate store branches 
and store managers because of the similarity of the problem structure to that 
which we have already seen. 

One advantage of the HB approach over ordinary least squares is that 
exceptional performance over multiple products can be measured simultane- 
ously. The performance measure in regression models is usually aggregate 
sales as we have just seen. l’$n-eover, by generating posterior samples, the HI3 
approach cannot only provide an expected rank for a sales representative but 
also the probability that one sales rep is ranked higher than another. This could 
also be accomplished by OLS or maximum likelihood. Analytically deriving 
orders and ranks is generally difficult, if not impossible. However, simulation 
approaches such as Gibbs sampling that is used to implement many HB 
approaches are quite conducive to these calculations. 

The HB approach was applied to one of a large pharmaceutical company’s 
sales force. The sales force sold 5 well-established prescription products and 
was comprised of 488 sales representatives. Territories were uniquely assigned 
to individual sales representatives and covered between 2 and 341 zip codes. 
There were 6985 zip codes for which there was complete data. The dependent 
variable was the dollar-weighted number of prescriptions sold for each product 
in each zip code. The HI3 approach effectively shared information across sales 
people and products. Only factors that were beyond the control of the manager 
were included in the model.’ The proposed multi-product model had an 
improved fit over an OLS model and generated quite different parameters and 
rankings of the sales reps than did the OLS model. Ways to improve upon 
training decisions were also investigated. The focus was on individual level 
parameters for each territory characteristic. For example, was a sales rep good 
at converting market potential for some products and not for others? The 
researcher noted, “A key theoretical difference between various methods is the 
implied referent or referent group. In OLS and the proposed hierarchical 
Bayesian method, sales people are compared to the ‘average or typical’ 
representative, while DEA compares them to ‘best’ performer.” 
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C. Benchmarking 

Benchmarking is the search for the best practices that will lead to superior 
performance of an organization (Camp, 1989,1995). These best practices may 
be found within the organization (for example, among outlets of a retail chain), 
in the industry, or outside the industry. Our fqcus is on best practices within the 
organization - internal benchmarking. Benchmarking these best practices has 
two aspects: the practices themselves, i.e. the methods that are used, and the 
metrics, i.e. the quantified effect of these practices. Benchmark metrics permit 
identification of the benchmark gap: how much, where, and when; while 
btta&mark pmctices suggest how to close the gap: improved knowledge, 
improved practices, and improved processes. 

How do you identify which practice should be designated the best? One way 
is to look for situations in which the benchmark metric is significantly better, 
and then examine the practices that caused the exceptional achievement. This 
means that an operation under investigation first must be quantifie& An 
operation can be broken down into inputs, a work process with repeatable 
practices, and outputs. Then a metric can be constructed based on the analysis 
of outputs in relation to inputs. The benchmark metric will be based on the best 
performance among comparable operations (for example, among sales people). 
Further [perhaps qualitative, although here quantitative] investigation of the 
practices underlying the best performing operation (salesperson) should yield 
insight into the sources of success, which may come from process practices, 
management practices, or operational structure. These (sales) practices could 
then be spread throughout the firm. Thus, training is often key to implementing 
the findings from a benchmarking study. In addition, insights might be obtained 
into desirable characteristics of salespeople or retail managers. This informa- 
tion could be used to improve the selection process. 

Before proceeding further, let’s take a brief look at the language of economic 
efficiency. The following discussion of economic efficiency and methods draws 
heavily on Greene (1997) and, especially, Kumbhakar and Love11 (2000). Also 
see Coelli, Rao and Battese (1998). 

II. ECONOMIC EFFICIENCY 

Production is a process for transforming a set of inputs X into a set of outputs 
Y. For the most part, we will focus on a single output, I: The transformation 
process takes place in the context of a body of knowledge called the production 
function. An idealized production function is given by 

Ylf (X), (1) 
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where f(X) is the production frontier. Economic efficiency of production has 
two main components: technical efficiency and allocative efficiency. Technical 
efficiency (TE) focuses on the ability to obtain the maximum output from a 
given set of resources. Different methods of input application may have 
different effects on output. An output-bused Debreu-Farrell style measure of 
technical efficiency6 is 

z-E(Y, X)& (2) 

This ratio of actual output to the optimal value specified by the production 
function is called total factor productivity (TFP) in the case of a single output. 
Thus, for a similar bundie of inputs and te&n&gy, an m agoat,An 
called a decision making unit (DMU), that uses the best practice method 
achieves the maximum possible output, which will be superior to a DMU that 
does not do the same (Kalirajan, 1990).’ In our case, the DMUs are typically 
salespeople or managers of ytail outlets in a chain. 

Empirical measurement of technical efficiency starts with a model such as 

yi =.Rxj; BITEi, (3) 
where the technology parameters of the production frontier to be estimated are 
p (Greene, 199’7, p. 87P, Kumbhakar & Lovell, 2000, p. 64ff). The technical 
efficiency of DMU i, 

yi 

TE, -f(x,; fb)’ 

lies between zero and one. Technical efficiency equals one when observed 
output achieves its maximum feasible value; otherwise, it provides a measure 
of the extent to which observed output falls short of maximum feasible output. 
This entire shortfall is attributed to technical inefficiency since the production 
frontier is deterministic. The actual shortfall indicates the magnitude of the 
opportunity for improvement. Management will need to judge whether the 
potential gains indicated are worth pursuing. 

Output, however, is likely to be affected as by random shocks not under 
control of the DMU. A DMU-specific random shock exp(V,) can be added to 
the deterministic part (or kernel) f(X,; @) common to all DMUs to specify a 
stochastic production frontier. Now (3) can be rewritten as 

Yi =f(X,; f3) exp(Vi)TEi. (5) 
The observed output for a specific DMU will be greater than the deterministic 
portion of the frontier if the associated random error is greater than the 
corresponding inefficiency effect. 
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Allocative e&iency focuses on the ability to maximize profits by equating 
marginal revenue product with the marginal costs of inputs. Given the 
technology and price information, DMUs are expected to make adjustments in 
their levels of application of inputs to achieve allocative efficiency. Allocative 
efficiency is not addressed here; see Greene (1999, pp. 120-137). 

III. METHODOLOGY 

Econometric frontier analysis is proposed as one approach to measuring 
technical efficiency and establishing benchmarks. Another approach would be 
mathematical programming, in particular, data envelopment analysis (DEA).’ 
We first review the traditional response function that incorporates only equation 
error, next look at deterministic frontier models that incorporate only 
inefficiencies, and finally discuss stochastic frontier models that incorporate 
both inefficiencies and random error. 

A. Conventional Response Function 

In marketing, the focus is on the response function: 

Y= r(X; IN exp(V), (6) 

where V represents random error and is a given convenient representation. The 
most common market response model used is the multiplicative model, known 
as the constant elasticity model (Hanssens, Parsons & Schultz, 2001, pp. lOl- 
102). Economists call it the Cobb-Douglas production function. A [natural] 
log-log transformation of the structural model creates an estimation model that 
is linear in its parameters, 

K 

In Y=&+C &lnX,+V 
k=l 

(7) 

where Viid N(0, a$). This model is known as the double-log model or linear- 
in-the-logs model. As aheady noted, the problem for performance 
measurement is that this traditional regression model is inadequate because it 
ignores the truncated errors representing technical inefficiency. The model 
when estimated by GLS represents average performance; that is, it tits a line 
through the middle of the data. One would, however, like to benchmark best 
performance; that is, fit a line marking the frontier of the data. 
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B. Deterministic Frontiers 

Assuming that one will usually formulate the production function as linear in 
the natural logs of the variables, the empirical version of (3) is 

In Yi = In f(Xi: @) + In TE, . (8) 
Thus, to assess best performance, a deterministic frontier production function 
with one-sided errors representing ineflciency could be formulated: 

In Y, = In f(X, p) - Uj, (9) 
where U2 0 and is a measure of technical inefficiency. In this model, efficiency 
can be found as 

TE,=exp( - Ui). (10) 
Finding the deterministic frontier was first addressed, not econometrically, but 
by mathematical programming and applied to the Cobb-Douglas production 
function (Aigner & Chu, 1268). A linear programming (absolute deviations) 
formulation is 

N 

mp c I In Yi - In f(X, p) I 

subject to 
In f(X,, 8) = In Y6 2 In Yi 

A quadratic programming version has also been posited. The main problem 
with the mathematical programming approach is extreme sensitivity to 
outliers. 

In an attempt to make a more robust model, a probabilistic reformulation, 
P&Y,)>P, (12) 

in which one discards the top (1 - P)*lOO% of efficient observations was 
proposed (Timmer, 1971). The problem is that this is an ad hoc procedure. 

The mathematical programming approaches are not based on a statistical 
model and so no statistical inferences can be made. To address statistical issues, 
several tacks have been taken. One is to develop new maximum likelihood 
estimators. Another is to adjust the ordinary least squares estimators. 

Suppose the constant elasticity model (7) is reformulated as containing only 
technical inefficiency: 

K K 

In Y=&,+c &lnX~+lnTE,=&+~ &lnX,-U, (13) 
k=I k=l 
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where U 2 0. This formulation violates the usual regression assumption that the 
mean of the errors is zero. Maximum likelihood estimation (MLE) involves 
specifying a one-sided distribution for the inefficiencies. Usually U is u -half 
normal but could be U-general truncated normal, U-exponential, 
U - gamma, or other single-tailed distribution.’ 

The exponential distribution is 

1 U 
f(U)=- exp - - 

u ( ) cr , (14) 

where U2 0. MLE yields the same estimator as Aigner and Chu’s linear 
programming. The truncated half-normal distribution is 

2 U2 

( ) 
-- f(u)=s exp 2a2 (15) 

where U20. MLE yields the same estimator as Aigner and Chu’s quadratic 
programming (Schmidt, 1976). This linkage, however, does not endow the 
production functions calculated with mathematical programming with a 
statistical foundation. The problem is that regularity conditions for MLE are 
violated. Imprecisely speaking, the range of the random variable in question 
should be independent of parameters and this independence is invoked to prove 
the general result that ML estimators are consistent and asymptotically 
efficient. Here, however, the range is not independent of the parameters. 

The precise violation of the Aigner-Chu/Schmidt formulation of the above 
estimators is that the interchange of integration and differentiation of the 
gradient needed to obtain the asymptotic distributions for these likelihoods by 
familiar methods is not permissible (Greene, 1980). The non-zero root of the 
log-likelihoods is a consequence. Not all distributions suffer from this problem, 
most notably the gamma distribution: 

f(U)= ya ~ U”- ’ exp( - yU), 
Ua) 

(16) 

where U> 0, y > 0, and cx > 2. While the density is defined for o > 0, a > 2 is 
required for a well-behaved log-likelihood function for the frontier model. 
There is no known mathematical programming problem corresponding to a ML 
problem with inefficiency distributed as gamma. Moreover, the requirement 
that all sample residuals must be strictly positive for the resultant estimator to 
be computable can create practical difficulties for iterative search methods 
(Greene, 1997, p. 94). 
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market in which it is operating. Early empirical papers include Kalirajan ( 198 1) 
and Pitt and Lee (1981). 

A two-stage approach is thus adopted. The first stage involves the 
specification and estimation of the stochastic frontier production function and 
the estimation of technical inefficiency effects, assuming that these inefficiency 
effects are identically distributed. The second stage involves the specification of 
a regression model for predicted technical inefficiency effects. Since technical 
efficiency is bounded by zero and one, OLS is not the appropriate technique 
although it has been used in practice. One must either transform the dependent 
variable or use a limited dependent variable technique, such as tobit.15 For 
example, a semi-log relationship was used by Kalirajan (1990): 

ln(exp( - U))=a,+i a&+ V (25) 
k=l 

and a logistic model was use9 Mester (1997): 

ii‘(uiIvi+ui)= exp(Z’a) 
I+ exp(Z’ar0 ’ (26) 

in modeling cost efficiency. While the two-step approach seems reasonable, it 
contradicts the assumption of identically distributed inefficiency effects on the 
stochastic frontier. 

The solution is to estimate the parameters of the stochastic frontier and 
inefficiency models simulfuneously. The relevant technical literature includes 
Kumbhakar, Ghosh and McGucklin (1991), Reifschneider and Stevenson 
(1991), Huang and Liu (1994), and Battese and Coelli (1995). For example, the 
Battesse-Coelli model is 

K 

In Q=&,+c B,lnX,+V- U 
k=l 

where Viid N(0, o$), U iid N(p, I$,) with truncations at zero and 
K 

IL=%+C %Jk. 
k=l 

Implementation uses the reparameterizations 
2 

mu o*=u$+ui and?=---- 
u;+uy 

Additional information and references on incorporating exogenous influences 
on efficiency can be found in Kumbhaker and Love11 (2000, pp. 261-278). 
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Parsons (199 l), in introducing frontier analysis to marketing, illustrated this 
approach using sales force data from the inorganic products division of a major 
German manufacturer [described in Bijcker (1986)]. Its industrial cleaning 
products division was organized with a sales manager, 6 territory managers, 29 
representatives, and 6 sales engineers. Because of peculiar situations in some 
regions, data from the accounting department about the number of sales calls 
were only available for 19 sales representatives operating under “normal” 
condiiions. The territory managers, moreover, were in charge of all contacts 
with large customers. Consequently, sales to the giant buyers had to be 
eliminated to properly appraise the performance of field representatives. The 
constant elasticity model relating sales to sales effort, measured by calls, and 
account potential, measured by the number of inhabitants, was 

ln[Sales] = 1.45 + 0.59 ln[Calls] + 0.74 ln[Inhabitants] ii 2 = 0.57 

($1 (0.23) (0.17) (21) 

(P) (0.02) (0.005) 

The estimated sales call elasticity is similar to that generally found for 
salesforce-sensitive firms of around 0.5 (Hanssens, Parsons & Schultz, 2001, 
p. 348). The estimated OLS residuals are given in the fourth column of Table 1. 
Shifting the intercept to make the residuals non-negative yields the COLS 
solution, shown in the sixth column. 

Since only the intercept has shifted, the estimated production frontier is 
parallel to the OLS regression. However, there is no reason to expect that the 
structure of “best practices” production technology is the same as the structure 
of “central tendency” production technology (Pare, Grosskopf & Lovell, 1994, 
p. 3). But, while the COLS technique is easy to implement, it imposes this very 
restrictive property. 

C. Stochastic Frontiers 

The central problem is that the deterministic formation does not allow for the 
usual random errors or “noise” encountered with any model. In particular, a 
single unusual observation, that is, outlier, can have serious effects on the 
estimates. The solution is to build a composed error model: 

yi=f(xi; B> eXP(Vi -  uj), (22) 



330 

Rep 

Hamburg 
Bielefeld 
Krefeld 
Koln 
Dusseldorf 
Wuppertal 
Ludenscheid 
Kassel 
Frankfort 
Weisbaden 
Koblenz 
Mannheim 
Wurzburg 
Numberg 
Muncben 
Augsburg 
Stuttgart 
Karlsruhe 
West Berlin 

LEONARD J. PARSONS 

Table I. Dunker Residual Analysis. 

OLS 
PRED RESID 

COL 
LSALES PRED2 RESID2 

5.8889 
6.3936 
6.7901 
6.3716 
6.4600 
6.3491 
6.0777 
6.1485 
5.7269 
5.6956 
5.8319 
6.5294 
5.9864 
5.5294 
5.9454 
5.2523 
6.7719 
6.1570 
6.3802 

6.1551 
6.2105 
6.7899 
6.4453 
6.2953 
5.8148 
5.9757 
5.9991 
5.8954 
6.0939 
6.0768 

I 6.1554 
6.1463 
5.9555 
6.1901 
5.2553 
6.5992 
5.9640 
6.3376 

-0.2662 
0.1831 
0.0002 

-0.0737 
0.1646 
0.5343 
0.1019 
0.1493 

-0.1686 
-0.3287 
-0.2449 

0.3740 
-0.1598 
-0.426 1 
-4I.2447 
-0.0031 

0.1727 
0.1930 
0.0425 

- 
6.6894 a.8005 
6.7448 a.3512 
7.3242 -0.5341 
6.97% -0.6080 
6.8297 -0.3698 
6.3491 0.0000 
6.5101 -0.4324 
6.5335 -0.3850 
6.4297 -0.7029 
6.6282 -0.8630 
6.6111 -0.7792 
6.6898 -0.1603 
6.6806 -0.6942 
6.4899 -0.9605 
6.7244 -0.7790 
5.7897 -0.5374 
7.1335 a.3616 
6.4983 -0.3413 
6.8719 -0.4918 

Source: Parsons (1991). 

which incorporates both technical inefficiency and random error (Aigner, 
Love11 & Schmidt, 1977; Meeusen & van den Broeck, 1977). The random error 
V is assumed to be iid and symmetric and distributed independently of U. The 
most common empirical representation is 

K 

In Y=&+C p,InX,+V- U. 
k=l 

(23) 

Assuming that V and U are distributed independently of the regressors X, OLS 
estimation of (23) provides consistent estimates of the pl;s, but not & While 
OLS does not generate the desired estimates of DMU-specific technical 
efficiency, it does provide a basis for a simple test of the presence of technical 
inefficiency in the data, which is indicated by negative skewness of OLS 
residuals. Under the null hypothesis of zero skewness of the OLS residuals, the 
test statistic 
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M3T=*, 
r- 6m: 

(24) 

r N 

where m, and m3 are the second and third sample moments of OLS residuals, 
is asymptotically distributed as a standard normal random variable (Coelli, 
1995, p. 253; Kumbhakar & Lovell, 2000, p. 73).” Note that the Dunker OLS 
residuals in Table 1 have a positive skew. Positive skewness is nonsensical in 
a composed-error model and suggests that the model is misspecified. One 
woukl not proceed to estimate the stochastic frontier production function for 
Dunker. 

Dtrnker raises a more general issue: one’s ability to identify the frontier. 
Suppose most DMUs are inefficient and so are b&w the frontier. Perhaps a 
few are just slightly beIow, a few far below, and most somewhat below. If, as 
well might be the case, the distance between the frontier and estimated 
observations is approximately normally distributed, then the estimated frontier 
will be essentially identical to the OLS line (Haughton et al., 2000, fn. 2). 

If the test supports the existence of technical inefficiency, the maximum 
likelihood method is used to estimate all the parameters of the model.12 The 
random error component is assumed normahy distributed. The one-sided error 
component is usually distributed haIf normal but could be exponential, 
truncated normal, or gamma. Conditional on the maximum likelihood estimates 
of the parameters, technical efficiency is estimated for each DMU by 
decomposing the maximum likelihood residual term into a noise component 
and technical inefficiency component. The main computer programs for 
stochastic frontier estimation are LIMDEP and FBONTIER (Sena, 1999). The 
sample mean efficiencies will be sensitive to the distribution chosen for one- 
sided error; however, the ranking of DMUs by their individual technical 
in&iciencies are not particularly sensitive. The recommendation is to use a 
relatively simple distribution, such as the half norm& rather than a more 
flexible distribution, such as the gamma (Kumbhaka & Lo~eIl, 2000, p, 90).13 

BELGACOM, the state-owned Belgian telecommunications company, found 
itself undergoing privatization and facing competition from a number of private 
companies. In an attempt to stay close to its customers, BELGACGM opened 
outlets all over Belgium. These outlets were known as teleboutiques if they 
focused on the residential market (Fig. 1) or t&businesses if they focused on 
the small and medium-sized enterprise (SME) market. A performance 
monitoring system was developed assist BELGACOM to evaluate the relative 
efficiency of its network of about 100 teleboutiques (Sinigaglia, 1W7).14 
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Fig. I. Belgacom Teiebotique. 

A constant elasticity model with composed error was estimated. Two 
alternative measures of output were examined: total revenue and gross profit 
margin. Three controllable inputs were sales personnel, selling (product 
display) area, and number of opening hours. Uncontrollable factors included 
economic potential within a store’s trading area. All factors were significant 
and explained 78 to 88% of the variation in the performance factors. The results 
were compared to output-oriented DEA with non-discretionary inputs. The two 
techniques identified the same units as being top-performing and also 
converged in terms of detecting the less efficient units. 

Another study that compared a constant elasticity composed-error model to 
an output-oriented DEA model assessed advertising media spending ineffi- 
ciency (Luo & Donthu, 2001). The reported results assumed that technical 
inefficiency followed a half-normal distribution. The truncated-normal and 
exponential distributions were also tried but were said to generate similar 
results to the half-normal distribution. The sales revenues of 94 of the leading 
100 national advertisers were modeled as a function of three advertising 
spending variables: print, broadcast, and outdoors. The years 1997 and 1998 
were examined separately. The mean inefficiency scores from DEA and SFA 
were not significantly different and the two inefficiency scores were highly 
correlated in 1998. However, the opposite results were found for 1997. The 
mean inefficiency scores were significantly different while the inefficiency 
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scores were not correlated. These conflicting results led the researchers to 
conclude that both DEA and SFA should be used in all applications. 

D. Zncorporating Heteroscedasticity 

One complication is that the assumption of homoscedasticity of both error 
components in the stochastic production function may be violated. Either the 
systematic noise error component or the one-sided technical efficiency error 
component or both may be heteroscedastic. See Caudill and Ford (1993) and 
Caudill, Ford and Gropper (1995). In the case of retail outlets, the sources of 
noise and inefficiency might vary with the size of outlets. 

When the symmetric noise error component exhibits heteroscedasticity, one 
obtains unbiased estimates of the &S and a downward-biased estimate of PO 
(Kumbhakar & Lovell, 2000, pp. 116-l 18). The bias in the estimated intercept 
can be corrected once u. is estimated. The problem is that there are now two 
sources of variation in the estimated technical efficiency: (1) the residual itself 
and (2) the weight attached to the residual, which has a noise component with 
nonconstant variance. Suppose that a’,, does vary with the size of the DMU. 
Then the estimates of technical efficiency under the mistaken assumption of 
homoscedasticity will be biased upward for relatively small DMUs and 
downward for relatively large DMUs. The reason is that heteroscedasticity is 
improperly attributed to technical inefficiency. One cannot estimate DMU- 
specific variance parameters when one only has cross-sectional data. Instead 
one models ut, as a function of DMU-specific variables, such as size. 
Estimation can be done by maximum likelihood and then estimates of the 
technical efficiency of each DMU can be found. 

When the one-sided error component exhibits heteroscedasticity, both the 
estimates of the technology parameters describing the structure of the 
production function and the estimates of technical efficiency will be adversely 
affected by mistakenly assuming homoscedasticity (Kumbhakar & Lovell, 
2000, pp. 118-121). If heteroscedasticity varies with DMU size, then the 
estimates of technical efficiency under the mistaken assumption of homo- 
scedasticity will be biased downward for relatively small DMUs and upward 
for relatively large DMUs. Thus, the impact of ignoring heteroscedasticity in U 
is in the opposite direction of the impact of ignoring heteroscedasticity in V 
Once again maximum likelihood estimation can be done and technical 
efficiencies found. It is important to emphasize that, when the presence of 
heteroscedasticity is reflected in the inefficiency component of the error term, 
the MLE line will not be parallel to the OLS line. This is illustrated in Fig. 2. 
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Y 
I 

Fig. 2. Frontier and Regressibn Lines in the Presence of %teros&asticity. 

When there is heteroscedasticity in both error components, one can hope that 
ignoring heteroscedasticity’will result in a small overall bias because of 
offsetting impacts of heteroscedasticity in these two components (Kumbhakar 

Table 2. Estimating Prescription Frontier. 

Mean Value of 
MLE OLS Variable 

Dependent variable 
Log of mg prescribed per physician per year 

Independent variables 
Arteriosclerosis cases 5.183 6.460 4.760 (/loao) 
Congestive heart failure cases 0.128 0.394 505.1 (/lOOO) 
(Condition 1 prescriptions * Specialty A) squared 0.796 0.211 1132 (IlOOOOOO) 
(Condition 1 prescriptions * Specialty B) squared 5.950 0.327 4822 (/lOOOOOO) 
Index of oral contraceptive prescriptions (min 0, max 5) 0.250 0.308 1.45 
Pmscriptions, category 29 1.979 1.051 73.9 (/lOoO) 
Prescriptions, category 32 0.060 0.038 406441 (/lOOOOOO) 
Specialist in Specialty A? (Yes = 1) -0.760 -5.190 5411 (/lOOOOOO) 
Constant 2.907 2.322 0.033 
Log likelihood 2.122 1.389 

Adj. R-square -15731 0.31 
Number of observations 9994 9994 

Source: Haughton et al. 2000, p. 39. Republished with permission of John Wiley & Sons, Inc. and 
the Direct Marketing Educational Foundation from Journal of Interactive Marketing, 14, 2000. 
Copyright 0 John Wiley & Sons. 
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Table 3. Picking 1000 Target Physicians. 

335 

Does the frontier method 
pick the doctor for a 

direct marketing 
intervention? 

” No YeS Total 

Does the standard OLS model pick 
the doctor for a direct marketing 
intervention? 

No 8,558 436 8,994 

Yes 436 564 l,ooO 

Total 8,994 l,ooo 9,994 

Source: Haughton et al. 2000, p. 39. Republished with permission of John Wiley & Sons, Inc. and 
the Direct Marketing Educational Foundation from Journal of Interactive Marketing, 14, 2000. 
Copyright 0 John Wiley & Sons. 

& Lovell, 2000, pp. 121-122). A better approach would be to postulate a model 
that contains heteroscedasticity in both error components represented as 
functions and then to test the homoscedasticity assumptions. 

Stochastic frontier analysis has been applied to determine which physicians 
should be targeted for a direct mailing for a widely used antiviral drug 
(Haughton et al., 2000). A stepwise OLS regression was used to distib a large 
number of doctor characteristics, such as age, specialty, and general 
prescription behavior, and geo-demographic variables into a more succinct set 
of independent variables. Then the MLE procedure assuming heterogeneity in 
both error components was estimated. A comparison of the results for the OLS 
and MLE methods is given in Table 2. The two approaches give significantly 
different values and will lead one to target different doctors for a direct mailing 
or other intervention as shown in Table 3. 

E. Incorporating Exogenous Injluences on Eflciency 

Having benchmarked performance, the next step is to see if systematic 
departures from the frontier can be explained. Here one is looking for sources 
of success. The second stage model is technical inefficiency =g(explanatory 
variables). Technical efficiency for a salesperson could be based on the 
individual’s technical knowledge and the socioeconomic environment in which 
he is working. Technical efficiency for a retail outlet could be based on the size, 
age, and the other outlet characteristics as well as the characteristics of the 
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market in which it is operating. Early empirical papers include Kalirajan ( 198 1) 
and Pitt and Lee (1981). 

A two-stage approach is thus adopted. The first stage involves the 
specification and estimation of the stochastic frontier production function and 
the estimation of technical inefficiency effects, assuming that these inefficiency 
effects are identically distributed. The second stage involves the specification of 
a regression model for predicted technical inefficiency effects. Since technical 
efficiency is bounded by zero and one, OLS is not the appropriate technique 
although it has been used in practice. One must either transform the dependent 
variable or use a limited dependent variable technique, such as tobit.15 For 
example, a semi-log relationship was used by Kalirajan (1990): 

ln(exp( - U))=a,+i a&+ V (25) 
k=l 

and a logistic model was use9 Mester (1997): 

ii‘(uiIvi+ui)= exp(Z’a) 
I+ exp(Z’ar0 ’ (26) 

in modeling cost efficiency. While the two-step approach seems reasonable, it 
contradicts the assumption of identically distributed inefficiency effects on the 
stochastic frontier. 

The solution is to estimate the parameters of the stochastic frontier and 
inefficiency models simulfuneously. The relevant technical literature includes 
Kumbhakar, Ghosh and McGucklin (1991), Reifschneider and Stevenson 
(1991), Huang and Liu (1994), and Battese and Coelli (1995). For example, the 
Battesse-Coelli model is 

K 

In Q=&,+c B,lnX,+V- U 
k=l 

where Viid N(0, o$), U iid N(p, I$,) with truncations at zero and 
K 

IL=%+C %Jk. 
k=l 

Implementation uses the reparameterizations 
2 

mu o*=u$+ui and?=---- 
u;+uy 

Additional information and references on incorporating exogenous influences 
on efficiency can be found in Kumbhaker and Love11 (2000, pp. 261-278). 
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A pilot study was conducted for a particular strategic business unit of the 
American subsidiary of a leading European chemical company (Parsons & 
Jewell, 1998). Cross-sectional data were available on 18 salespeople. The 
dependent variable was sales. The explanatory variables were salesperson 
effort, firm support, and potential. The associated operational definitions were 
the number of sales calls per customer, promotional dollars spent per customer, 
and average customer size. Technical inefficiency was subsequently related to 
the number of contacts per customer. The Battesse-Coelli model and its 
parameters were statistically significant. The mean technical efficiency of the 
sales representatives was 0.79. 

IV. FUTURE DIRECTIONS 

Stochastic frontier analysis can be extended to incorporate multiple outputs, 
cost efficiency, panel data, Bayesian estimation, and allocative efficiency. 
These advances in econometric methodology provide promising avenues for 
further work on performance on performance measurement in marketing. 

A. Multiple Outputs 

Performance evaluation often involves multiple criteria. A nominal advantage 
of data envelopment analysis over stochastic frontier analysis has been the 
ability to handle multiple outputs. In a Special Issue of the International 
Journal of Research in Marketing on “Channel Productivity,” edited by A. 
Bultez and L. Parsons, DEA was used to assess the individual stores for a 
multi-store, multi-market retailer. The researchers noted “DEA is particularly 
appropriate for this evaluation because it integrates a variety of performance 
metrics . . .” (Thomas et al., 1998, pp. 487-488). Profit and sales were used as 
outcome measures. Similarly, in assessing outlets from a fast-food restaurant 
chain, one of the main advantages listed for DEA-based retail outlet 
productivity evaluations was “DEA accommodates multiple inputs and 
outputs” (Donthu & Yoo, 1998, p. 95). This work also stressed the importance 
of including behavioral output measures as well as financial output measures 
and used customer satisfaction along with sales. However, one does not have to 
move to DEA to handle multiple-output frontier situations. The single-output 
frontier model that allows estimation of frontier functions and technical 
efficiency can be generalized to handle multiple input, multiple output 
technologies. 



338 LEONARD J. PARSONS 

Shepard’s distance functions provide a characterization of the structure of 
production technology when multiple inputs are used to produce multiple 
outputs. 

Do(Xiv Yi; p> = exp(Vi - Ui), (27) 

An output distance function takes an output-expanding approach to the 
measurement of the distance from a DMU to. the frontier. One property of 
output distance functions is 

DO(xi, Ayj; PI = hD(?(Xi, yi; p>, w-4) 

where A >O. A suitable choice for the normalizing variable A leads to an 
estimable composed error regression model. One possibility is the Euclidean 
norm of the frontier output vector, h = I Y, I-’ = (C,,,YiJ1”, which Kumbhakar 
and Love11 (2000, p. 94) resommend because it is neutral with respect to 
outputs? Also see Liithgren (1997). Inserting (27) into (28) with this 
normalization and rearranging yields 

lYiI-‘=D, 
( ’ 

Xi, 2; (3 exp(U, - Vi) 
) 
I. (29) 

This is a reciprocal measure of output-oriented technical efficiency. The 
constant elasticity (Cobb-Douglas) functional form cannot accommodate 
multiple outputs without violating the requisite curvature properties of output 
space (Kumbhakar & Lovell, 2CKKl: p. 143). Since the constant elasticity model 
does not have the correct properties to represent D,, an appropriate flexible 
form must be selected. This is usually the translog, which provides a second- 
order approximation to any arbitrary function and thus can capture a wide 
variety of shapes (Hanssens, Parsons & Schultz, 2001, pp. 114-l 15). We will 
indicate shortly that translog might not be the best approximation to use when 
panel data are available. One potential problem with the distance function 
approach is that the normalized regressors may not be exogenous. If 
endogeneity is a serious issue, it should be addressed by a system of equations 
(Kumbhakar & Lovell, 2000, p. 95). 

B. Estimation of Cost EfJiciency 

Rather than focusing on the production frontier and taking an output-oriented 
approach, one could focus on the cost frontier and take an input-oriented 
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approach. Multiple outputs are more easily handled in the cost frontier 
framework than the production frontier one. A discussion of estimation and 
decomposition of cost efficiency is given in Kumbhakar and Love11 (2000, 
pp. 131-183). 

Econometric methods, although not stochastic frontier analysis, have been 
used in marketing to estimate cost functions for retail outlets within a chain. 
The most common functional form used has been the translog, which simply 
extends the log-log model by adding second-order terms.” The stochastic cost 
frontier can be expressed then as 

lnC=P,,+i a,ln Y,n+ 
m=l 

lK K 
K M 

+- 
2 

2 C pkk. In Pk In Prt + C C 6, In Pk In Y, + V+ U, (30) 
k=l k’=l k=I m=l 

where C is the total cost by outlet, Y, is the units of output m produced, and P, 
is the unit price of input k, and Z, is the units of allocative input j, an input 
which is not under the control of the store manager, used by the outlet, V is the 
two-sided random-noise component, and U is the nonnegative cost inefficiency 
component.‘* Note the plus sign in front of the cost inefficiency component - 
with the consequence that the composed error term will be positively skewed. 
Note further the different information requirements, especially the need to 
know input prices, for the estimation of cost efficiency. Thus there are two 
sources of cost inefficiency: input-oriented technical inefficiency and input 
allocative inefficiency. A single-equation cost frontier model such as (30) 
provides DMU-specific estimates of cost efficiency but does not permit the 
decomposition of this cost efficiency into its technical and allocative efficiency 
components. Such decomposition requires the use of input quantity or input 
cost share data and a simultaneous-equation model (Kumbhakar & Lovell, 
2000, pp. 146-166). Thus, estimation is improved by simultaneously consider- 
ing the cost-share equations that result if cost-minimizing levels of each input 
are selected: 

K M 

csk = Pk + c pkk’ ln Pk. + 2 ykm ln Ym + wk, 

v=, m=l 

(31) 
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where CS, is the cost share of input k out of the total cost for a particular outlet. 
Note that a behavioral objective - cost minimization - has been imposed on the 
DMU. 

In the estimation of a stochastic frontier production all inputs are treated the 
same. However, in the estimation of a cost frontier, one may exploit the 
differences between inputs that are variable and those that are quasi-fixed. In 
particular, one might use a variable cost frontier rather than a total cost 
frontier. 

To get an idea of the input-oriented approach, consider the estimation of 
three non-frontier cost functions for branches of banks.” The largest 
commercial bank in Greece had a domestic branch network amounting to over 
400 branches, of which 362 were studied (Pavlopoulos & Kouzelis, 1989). A 
third of the branches were situated in Greece’s three major cities. The bank was 
considered to produce three outputs: new accounts, loans granted, and ancillary 
services. Each was measuredp the number of transactions. Input prices were 
for capital, labor, and management. Capital was measured as the annual rental 
cost of office space while labor and management were operationalized as 
average annual salaries per employee. Two variables not under control of the 
branch were included. A ratio, constructed from the number of competing firms 
in the relevant market and their market shares, was designed to capture the 
influence of competition. A technology dummy variable was used to indicate 
whether or not a branch was connected with the on-line system of the bank. A 
measure of long-run total cost was approximated by the annual operating cost 
of each branch, interest paid to deposits excluded. A translog multiproduct 
function form with certain restrictions, such as linear homogeneity in input 
prices, was estimated by restricted OLS. The goodness of fit was high. The 
competition and technology variables proved not to be statistically significant. 
As part of the analysis, an appropriate Chow-type test showed that there was no 
statistically significant difference in the behavior of costs between those 
branches located in the three major cities and those in the rest of the country. 

A similar translog cost function was estimated for a major Canadian bank 
(Doukas & Switzer, 1991). Branches that were part of a hub and spoke type 
branch banking network as well as central administrative and marketing units 
were omitted, leaving a sample 563 branches. These sample branches spanned 
both urban and rural areas and included both retail and commercial banking 
operations. The focus was on operating expenditures using total staff costs, 
including part-time worker costs and benefits, premises expenses, and 
equipment expenses. Thus factor input prices included the price of labor, the 
price per physical area of premises employed, and the price of equipment. 
There were seven outputs covering both deposits and loans: (1) total consumer 
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lending, including consumer installment loans, credit card balances, and 
overdrafts, (2) mortgage loans, (3) total business credit, including business 
loans, loan equivalent securities and Banker’s Acceptances, (4) total personal 
demand and savings deposits, (5) total business demand and savings deposits, 
(6) total term deposits, and (7) total non-interest revenues. The explanatory 
power of the model was quite high. Further analysis revealed that retail- 
oriented branches enjoyed greater than average economies of scale but such 
benefits diminished more quickly as branch size increased. 

Performance comparisons among branches were a critical management issue 
for a commercial bank within a large metropolitan area in Latin America 
(Kamakura, Lenartowicz & Ratchford, 1996). Four outputs, expressed in 
monetary units, were (1) cash deposits, (2) other deposits, such as checks and 
money orders, (3) funds in transit in the branch, which already have their 
destination, such as tax collection, payment of bills, or pay checks, and (4) 
service fees charged to customers by the branch to pay for their transfers, 
checkbooks, statements, and so on. Two inputs were total number of man-hours 
of direct (clerks) labor allocated at the branch and floor area, the size (in square 
meters) of the customer services area. Floor area was treated as an allocative 
input, that is, under control of the bank but not the branch manager. Initially, 
another allocative input, the total number of teller stations, was also considered 
for inclusion in the model but it turned out to be highly collinear with floor 
area. 

The researchers noted, “If estimated with standard econometric methods, the 
translog cost function in (30) does not represent the ‘minimum’ cost frontier. 
Rather this function represents the ‘mean’ or expected cost for any combination 
of input prices and output volumes. Therefore, U must be viewed as the 
technical inefficiency (in log-cost) relative to the ‘average’ outlet operating at 
the same scale level. This view is compatible with our particular purpose of 
evaluating multiple retail outlets relative to each other. However, if one is 
interested in measuring technical inefficiency relative to the minimum cost 
frontier (see Ferrier & Lovell, 1990), U must be restricted to non-negative 
values, and assumed to be distributed across outlets as [a specific one-sided 
distribution].” They then proceeded to identify sets of retail outlets operating 
under similar conditions while simultaneously estimating multiple cost 
functions for these classes. Estimates were obtained using a fuzzy-clustering 
regression procedure, which required longitudinal data on inputs and outputs 
for each outlet, i.e. panel data. They conjectured that the clusterwise translog 
cost function approach represents a compromise between the flexible piece- 
wise linear deterministic frontier in DEA and the stochastic estimation of a 
single translog function. 
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There remains a need to employ stochastic frontier analysis to estimate 
minimum cost functions for retail outlets within a chain. Such an analysis may 
be enhanced if panel data are available. 

C. Panel Data 

Applications of stochastic frontier analysis in marketing have focused on cross- 
sectional data. Econornetricians have extended the technique to panel data; that 
is, repeated observations on DMUs (Kumbhakar & Love& 2000, pp. 95-115). 
Even conventional panel data analysis can provide insights that a single cross 
section cannot. In particular, technology is unlikely to remain constant over 
time. The longer the panel time horizon, the more probable it is that technical 
change occurs. The common practice is to include time among the explanatory 
variables as a proxy for technisal change. For example, panel data was used to 
estimate returns to scale and productivity change for a medium-sized nine-unit 
chain of retail book and office supply stores (Ratchford & Stoops, 1988). Data 
consisted of hours worked, shelf space, and quantity sold for each of four 
departments: books, office supplies, art supplies, and fine stationery. A non- 
frontier translog model was used to estimate labor ‘demand as a function of 
physical output of each department, shelf space, and time trend. All variables, 
except time (months), were expressed as natural logs. A separate trend term 
was included for each store. The translog model was found to be statistically 
su@rior to the embedded log-log model. The impact of time was negative 
indicating that less labor was needed as time went on. Although there were no 
major technological changes adopted by the chain, such as automated 
checkouts, there were changes in the way labor was organized within stores, 
including increased customer self-service. The empirical finding of productiv- 
ity gain was thus judged plausible. 

The translog represents a second-order Taylor series approximation of an 
arbitrary function at a point. However, OLS estimates of a second-order 
polynomial do not generally correspond to the underlying Taylor expansion of 
the underlying function at an expansion point and are biased estimates of the 
series expansion (White, 1980). This inadequacy of the translog is an issue in 
banking where scale and product mix are often far from the mean. What is 
needed is a global approximation. 

Empirical work on banking, e.g. Mitchell and Onvural (1996), has 
introduced the Fourier-flexible functional form, in which the translog is a 
special case, to model cost frontiers: 
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where the ym are adjusted values of Y, such that they span the interval 
[O.l x 27r, 0.9 x 27r], cutting 10% off of each end of the [0, 2~1 interval to 
reduce approximation problems near the endpoints (Berger, Leusner & Mingo, 
1997, p. 146). The Fourier-flexible form is a semi-nonparametric approach that 
uses data to infer the relationships among variables when the true functional 
form of the relation is not known. Specification error is minimized at the cost 
of approximation error, which arises from having to choose a subset of 
trigonometric terms to represent the cost function. 

The cost efficiency of over 760 branches of a large U.S. commercial bank for 
a three-year period was examined (Berger, Leusner & Mingo, 1997). Two 
alternate cost specifications - intermediation and production - were tried. In 
the intermediation specification, costs include total operating costs plus interest 
expenses, outputs are measured as the number of dollars intermediated, and 
both physical and financial input prices are included. In this particular 
intermediation analysis, there were four outputs: consumer transaction 
accounts, consumer nontransaction accounts, business transaction accounts, 
and business nontransaction accounts. Input prices included average wage rate 
and average rental rate on capital faced by the branch in its local market. In the 
production approach, costs included operating expenses only, outputs were the 
number of transactions completed, and only physical input prices were 
specified. In this empirical study, the six outputs were the numbers of deposit 
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accounts, debits, credits, accounts opened, accounts closed, and loans 
originated. 

While the intermediation approach is more inclusive and captures the 
essence of a financial intermediary and provides a good indicator of profit- 
ability, the production approach seems a more natural one from the point 
of view of analyzing branch performance. A branch is viewed as a producer of 
depositor services for the bank. The bank, in turn, then makes the decisions on 
how to intermediate the funds. The researchers go on to highlight a key 
consideration, the sensitivity of each approach to the number of transactions 
per dollar of deposits. Branches in affluent neighborhoods are likely to have 
customers with fewer transactions per dollar in their accounts, which makes 
costs per dollar of deposits lower. The intermediation approach might mis- 
takenly treat this as high efficiency. This is not a problem in the production ap- 
proach as the number of tram ctions is directly measured as a service output. 

Fourier-flexible and t trans og models were estimated separately for the 
intermediation and production approaches. The null hypothesis that the nested 
translog specification (the coefficients of all trigonometric terms were jointly 
zero) was correct was rejected. Both the intermediation and production results 
generated similar broad findings. Branch X-inefficiencies, variations in costs 
ascribed to differences in managerial ability, were much larger than branch 
scale inefficiencies. Moreover, branches appeared to be, on average, about half 
of the average-cost-minimizing size for their product mixes. This means that 
there were twice as many branches as would minimize costs. The dispersion of 
measured X-efficiency suggested that the bank’s management was not able to 
control fully the costs at its branch offices through its policies and procedures, 
incentives, and supervision. Thus, the quality of local management was 
important in determining the performance of branches. 

As already noted, the longer the panel, the more likely technical progress 
occurs and a time indicator should be included in any model. A long panel also 
means technical efficiency may well change and so a time-varying representa- 
tion of technical efficiency is required. Indeed, both phenomena must be 
included in the stochastic frontier production function model so as to be able 
to disentangle the effect of technical change from that of technical efficiency 
change (Kumbhakar & Lovell, 2000, pp. lOS-115). The importance of 
including both effects is illustrated by an empirical study by Battese and Coelli 
(1992). When the year of observation was excluded from the stochastic frontier, 
the technical efficiencies of the DMUs were time varying. However, when the 
time indicator was included, not only was it statistically significant, but the 
corresponding technical efficiencies were time invariant. Moreover, the 
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stochastic frontier was not significantly different from the traditional average 
response function in this case. 

Just as with cross-sectional models, heteroscedasticity can present in either 
or both error components in panel data models. Heteroscedasticity can be 
assessed for either the time-invariant or time-varying technical efficiency cases. 
See Kumbhakar and Love11 (2000, pp. 122-130). 

Panel data has several additional advantages when doing stochastic frontier 
analysis (Kumbhakar & Lovell, 2000, pp. 95-97). First, the strong distribu- 
tional assumptions on each error component can be relaxed. Second, the 
technical inefficiency error term need not be independent from the regressors. 
This is relevant because technical inefficiency might well be correlated with the 
input vectors DMUs choose. 

A distribution-free panel data approach can be used to disentangle 
inefficiency differences from random errors that temporarily give DMUs high 
or low costs. It does this by assuming inefficiencies are stable over time and 
that random error tends to average out over time. 

D. Bayesian Frontier Estimation 

Bayesian analysis of stochastic frontier models with composed error has been 
shown to be both theoretically and practically feasible (see, for example, van 
den Broeck et al., 1994; Osiewalski & Steel, 1998). The paradigm allows for 
direct posterior inference on DMU-specific efficiencies. The need to choose a 
particular sampling model for the inefficiency error term is avoided by mixing 
over different models. Thus, the Bayesian approach leads to the posterior 
probabilities of these models, indicating which of them is most favored by the 
data. Additional insights from a Bayesian perspective can be obtained using 
panel data (Kim & Schmidt, 2000). Work on applying the hierarchical Bayesian 
method in marketing, such as that by Cain (2001) might be well extended to 
cover the frontier case. 

E. Allocative Ejjkiency 

Technical efficiency has been addressed in isolation from allocative efficiency. 
Both the technique or manner of applying and the levels of application of 
inputs, however, determine the economic efficiency of production. Thus 
simultaneous estimation of the two components should provide more efficient 
estimates than estimating either the production function alone or the profit 
function alone (Kalirajan, 1990). 
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V. CONCLUDING REMARKS 

Management wants to set its expectations of performance based on the best that 
can bc achieved. A frontier production function that specifies the maximum 
output attainable at given levels of input is the key to understanding 
performance results and specifying performance standards. On occasion, 
marketing builds directly on the economic concept of production, that is, the 
process of transforming labor and capital into goods. This is true in the arca of 
assessing the performance of retail outlets. Other times, marketing is more 
interested in a more general transformation process that yields performance 
measures of interest to management. This is the case in sales force performance 
studies. Whatever the application area, the estimated stochastic frontier model 
provides a basis for comparing individual DMUs to each other or to the ideal 
production frontier. In sum, marketing productivity analysis holds the promise 
of a manager being able to asgss marketing pctformance and then to take steps 
to improve it. See Parsons (1994) for further discussion. 

NOTES 

1. Care should be exercised when extending the analysis to groups of saiespeople, 
such as at the district or region levels, instead of individual salespeople as in this model. 
The aggregation may not necessarily hold in taking the original model from the 
individual level to the aggregate level. Even a linear model may have heteroscedasticity 
if there are differing numbers of individuals in each district or region. 

2. Emphasis added. 
3. Shortly after completion of this. study, IBM decided that it was a technology 

company, not a retailer, and it sold its Product Centers to NYNEX, a regional Bell 
operating company arising from the then recent breakup of AT&T. 

4. Parsons (1992) reanalyzed the IBM Product Center data using DEA. 
5. This is not the case for other sales performance models that have been discussed. 

Indeed, the very purpose of these models has been to distinguish the impact of factors 
under control of the DMU from factors not under the control of the DMU. 

6. An output-based Debreu-Farrell style measure of technical efficiency focuses on 
equiproportionate expansion of all outputs and is a radial measure, which has desirable 
properties such as invariance to changes in units of measurement. A more exacting 
standard is an output-based Koopmans style measure of technical efficiency, which 
focuses on the increase in any output but unfortunately is a nonradial measure (Fare, 
Grosskopf & Lovell, 1994, pp. 7-9; Kumbhakar & Lovell, 2000, pp. 42-46). 

7. Operations management often focuses on minimizing inputs instead of maximiz- 
ing outputs. 

8. For information about DEA, see Coelli, Rao, and Battesse (1998) or Cooper, 
Seiford and Tone (ZOOO). 

9. Representative plots of these various distributions can be found in Kumbhakar and 
Love11 (2000). 
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10. A related procedure is modified ordinary least squares (MOLS). The distur- 
bances are assumed to follow an explicit one-sided distribution. After OLS estimation, 
the intercept is shifted up by the mean of the assumed one-sided distribution. However. 
this shift may not be large enough for the frontier to bound all DMUs from above. Thus, 
one or more DMUs may have technical efficiency scores greater than one! 

11. The asymmetry of the distribution is given by the third moment of the 
residuals: 

This quantity is estimable with OLS so long as the slope estimators are consistent 
(Greene, 1997, p. 99). 

12. An alternative procedure is the method of moments (Kumbhakar & Lovell, 2000, 
pp. 90-93). 

13. Note, however, that the half normal is rather inflexible and incorporates the 
assumption that most observations are clustered near full efficiency (i.e. zero mode), 
with larger values of inefficiency being decreasingly likely. More likely, the factors that 
relate to managerial efficiency, such as educational training, intelligence, and 
persuasiveness, are distributed non-monotonically with a non-zero mode. The 
truncated-normal and gamma have been posited as more plausible alternative models of 
inefficiency (Stevenson, 1980; Greene, 1980). Note further that the ML estimator 
should be used in preference to the COLS estimator whenever possible under the half- 
normal assumption, especially when the contribution of technical efficiency effects to 
the total variance term is large (Coelli, 1995). 

14. This work was done at the Centre for Research on the Economic Efficiency of 
Retailing under the direction of A. Bultez. See also Singaglia et al. (1995). 

15. In an interesting meshing of techniques, DEA was used to calculate radial 
technical efficiency scores of Indian commercial banks. Then SFA was employed to 
attribute variation in calculated efficiency scores to three sources: a temporal 
component, an ownership component, and a random noise component. Publicly-owned 
Indian banks were found to be more efficient than foreign-owned banks and privately- 
owned Indian banks (Bhattacharyya, Love11 & Sahay, 1997). 

16. One could simply choose an arbitrary output, such as the mth output, and set 
X= l/Y,,. See, for example, Coelli and Perelman (1999) or Fuentes, Grifell-Taje and 
Perelman (2001, p. 85). 

17. The multiplicative model does not admit U-shaped cost curves; consequently, the 
optimal size of a store cannot be determined from this model. 

18. The same distributional assumptions about the error terms can be made as those 
in the stochastic production frontier model. 

19. An early study, which developed and tested a multiplicative model of branch 
operating costs for a large bank operating in a relatively small country, provides another 
example (Murphy & Orgler, 1982). 
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