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ECONOMETRIC MODELS IN
MARKETING: EDITORS’
INTRODUCTION '

Philip Hans Franses and Alan L. Montgomery

INTRODUCTION

This volume of the research annual, Advances in Econometrics, considers the
application of econometric methods in marketing. The papers were selected
from submissions provided by authors in response to a call for papers after
undergoing a peer-reviewed process. Although these papers represent only a
small fraction of the work that is currently in progress in the field of marketing,
they are representative of the types of problems and methods that are used
within marketing. It is our hope that this volume will help to educate
econometricians and marketers about the application of econometric methods
that can both further the discipline of econometrics and the study of marketing.
Furthermore, we hope that this volume helps foster communication between
these two areas, and through this interaction advance the study of each
discipline.

Marketing focuses on the interaction between the firm and the consumer.
Economics encompasses this interaction as well as many others. Economics,
along with psychology and sociology, provides a theoretical foundation for
marketing. Given the applied nature of marketing research, measurement and
quantitative issues arise frequently. Quantitative marketing tends to rely heavily
upon statistics and econometrics. There is a rich history of marketing bringing
in ideas from econometrics as exemplified by the recent special issue of the
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Journal of Econometrics (Wansbeek & Wedel, 1999). For good introductions to
marketing models see Leeflang et al. (2000), Lilien et al. (1992), and Hanssens
et al. (2001). However, quantitative marketing can place a different emphasis
upon the problem than econometrics even when using the same techniques.
Consider the recent flurry of work in Bayesian modeling (for a survey see Rossi
& Allenby, 2000). The focus of much of this work has been measuring
heterogeneity, which in econometrics tends to be treated as a nuisance
parameter; while in marketing can form the basis for personalized marketing
strategies.

A basic difference between quantitative marketing research and econo-
metrics tends to be the pragmatism that is found in many marketing studies.
While theory is important and a guiding influence in research due to the
discipline it can bring to a problem, at the heart of most marketing problems is
a managerial problem that is foremost in the researchers mind. Therefore
theory often is balanced against empirical concerns of being able to translate
the research into managerial decision making. This pragmatism can benefit
theory, since it can highlight deficiencies of the current theory and serve as a
guide to developing new ones.

Another important motivating factor in marketing research is the type of data
that is available. Applied econometrics tends to rely heavily on data collected
by governmental organizations. In contrast marketing often uses data collected
by private firms or marketing research companies. Table 1 provides a listing of
various types of data and examples of each. Observational and survey data are
quite similar to those that are used in econometrics. However, the remaining

Table 1. Types of Data that are Commonly Used in Marketing Research and

Examples of Each Type.
Description Examples
Observational Advertising exposure data, Nielsen People meter used to monitor

television viewing, Store Audit, Pantry Audit

Interview and Survey  Personal interviews, Computer aided interviews, Telephone interviews,
Mail surveys

Panel Commercial panels that monitor television usage (ACNielsen’s
Homescan), retail purchases (IR1), purchase and attitude (NPD), web
usage (Jupiter Media Metrix)

Transactional Point-of-sale purchases collected using bar codes scanners, Salesperson
call reports, Warranty registration cards, Clickstream or Web access
trom server logs or ISP requests
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types of data, panel and transactional, can look quite different from what may
be familiar to econometricians. The automation and computerization of much
of the sales transaction process leaves an audit trail that results in huge
quantities of data. A popular area for study is the use of scanner data collected
at the checkout stand using bar code readers. These datasets can easily run into
hundreds of millions of transactions for moderately sized retailers. Often
techniques that work well for small datasets da not scale well for these larger
datasets. Therefore scalability is a practical concern that is frequently
overlooked.

Nor is technology likely to abate any time soon, as the recent wave of
e-commerce applications has resulted in new sources of data such as
clickstream data, that may be magnitudes of size larger than scanner datasets.
Clickstream data provides a record of the movement of a consumer through a
web site, which can be associated with their choice and purchase information
(Montgomery, 2001). This is analogous to recording not just what a consumer
purchases, but everything they considered, along with a record of the
information shown to the consumer. It requires that we must think more
integratively about consumer behavior, incorporating elements of knowledge,
search, learning, and choice. The ability of this new technology provides a rich,
potential resource for developing new insights into consumer behavior, as well
as representing a new challenge to quantitative marketers and econome-
tricians.

OVERVIEW OF THE VOLUME

The chapters in this volume reflect current research in marketing research. We
provide a listing of the chapters in Table 2, along with a description of the type
of data used, methodology employed, and application considered. To help
group the papers we choose the first dimension, the type of data employed, to
order the papers. Starting with the finest level of data at the individual level,
and ending with the most aggregate data. Within these segments the papers are
in alphabetical order. We briefly discuss each of the papers in this volume.,
Stated Preferences and Revealed Choices: Two key questions that marketers
face are: what consumers want (or say they want) and what they effectively do.
The research problem is that the answers to these two questions can diverge.
Additionally, there are measurement issues about which design to use to
analyze stated preferences and which type of marketing performance measure
should be used to understand revealed preferences (say, sales versus frequency
of purchase, for example). The recent explosion of available data also started
serious thinking about how all these data should be captured in ready-to-use
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Table 2. Summary of Data, Methods, and Applications Considered by the
Papers in-this Volume.

Author(s) Data Type Methodology Application
Hsiao, Sun, and Stated Preferences Discrete Choice New Product Sales
Morwitz and Revealed Model
Choices
Morikawa, Ben- Stated Preferences Discrete Choice Travel Mode
Akiva, and and Revealed Model and Linear
McFadden Choices Structual Equation
Chib, Seetharaman, Individual Purchase Multivariate Probit Cross category

and Strijnev

GroB8mann, Holling,
and Schwabe
Muus, van der
Scheer, and
Wansbeek

Racine

Bemmaor and
Wagner
Chintagunta, Dubé,
and Singh

Fok, Franses, and
Paap

Montgomery

Bass and Srinivasan
Parsons

Incidence from Store
Scanner

Individual Choice
from Survey
Individual Choice
from Transactions

Individual Choice
from Transactions
Aggregate Store
Scanner
Aggregate Store
Scanner
Aggregate Store
Scanner
Aggregate Store
Scanner
Aggregate Sales
Aggregate Sales -

Model

Optimal
Experimental Design
Probit Model

Non-parametric
Models
Multiplicative
Modeling
Aggregation of Logit
Choice Model
Market Share
Attraction Model
Hierarchical
Bayesian Modeling
Nonlinear Modeling
Stochastic Frontier
Analysis

pricing and
promotion
Conjoint Analysis

Direct Marketing

Direct Marketing
Sales Promotion
Brand Mapping

Pricing and Sales
Promotion

Pricing and Sales
Promotion

New Product Sales
Salesforce
Management

and, perhaps more importantly, read-to-understand models. Indeed, it turns out
that many marketing questions, combined with available marketing data,
require the development of new methods and techniques. The first two chapters
deal with questions related to reconciling stated preferences and revealed

choices.

The need to forecast customer attitudes are quite prevalent in new product
sales, where established trends and relationships cannot be observed. A direct
technique to assess the potential sales of a product is to survey customers and
ask their intention to purchase. Cheng Hsiao, Baohong Sun, and Vicki G.
Morwitz consider several models that relate purchased intention to actual
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purchase behavior in “The Role of Stated Intentions in New Product Purchase
Forecasting”. They show that stated intentions can be biased and need to be
scaled and modeled appropriately to achieve unbiased estimates of product
purchases.

Taka Morikawa, Moshe Ben-Akiva, and Daniel McFadden consider the
combination of stated and revealed preferences in “Discrete Choice Models
Incorporating Revealed Preferences and Psychometric Data”. The framework
consists of discrete choice models which models reveal and stated preferences
and a linear structural model that identifies latent attributes from psychometric
perceptual indicators. The model is illustrated using choices of travel modes.

Individual Choice: A common theme in the next four chapters is the use of
individual choice or incidence. All of the data considered come from
transactions that the company engages in with the consumer, whether it is a
purchase at a register or a record of shipment from a mail catalog. At the same
time the methodologies employed are diverse reflecting the managerial
application.

Siddhartha Chib, P. B. Seetharaman, and Andrei Strijnev present an
“Analysis of Multi-Category Purchase Incidence Decisions Using IRI Market
Basket Data”. Typically, product choice within a category is considered
independently. However, a purchase in one category may reduce the chance of
purchase in a substitute category (e.g. refrigerated juice will reduce the chance
of buying frozen juice), while purchasing in a complementary category may
increase the chance of purchase (e.g. purchasing cake mix may increase the
chance of purchasing cake frosting). The authors present an analysis of a high-
dimensional multi-category probit model. They find that existing models
underestimate cross-category effects and overestimate the effectiveness of the
marketing mix. Additionally, their measurement of household heterogeneity
shows that ignoring unobserved heterogeneity can have the opposite effect.

The chapter by Heiko GroBman, Heinz Holling and Rainer Schwabe is about
“Advances in Optimum Experimental Design for Conjoint Analysis and
Discrete Choice Models”. Marketing studies often have the ability to collect
primary data through experiments, which is less common in econometrics. The
authors review new developments in the area of experimental design and
provide methods to compare these designs. This chapter gives a good overview
of the material and rightfully draws attention to the importance of formally
comparing designs.

Lars Muus, Hiek van der Scheer, and Tom Wansbeek present “A Decision
Theoretic Framework for Profit Maximization in Direct Marketing”. The
managerial problem is to decide which addresses to select for a future mailing
from a mailing list. In this problem the analyst must estimate the probability of
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a consumer responding. Often analysts ignore the decision context of the
estimation problem, which can result in sub-optimal decisions. In this chapter
the authors derive an optimal Bayes rule that considers parameter uncertainty
when formulating a mailing strategy. This research illustrates the importance of
the decision context.

Jeffrey S. Racine proposes a non-parameteric technique for predicting who
will purchase from a direct mail catalog in “‘New and Improved’ Direct
Marketing: A Non-parametric Approach” choosing who to send a catalog.
Racine discusses and compares parametric, semi-parametric, and non-
parametric techniques in this chapter. He finds that conventional logit and
probit models perform quite poorly, while nonparametric techniques perform
better.

Aggregate Store Scanner Data: The most common type of transactional data
available to a retailer or manufacturer is sales data that is aggregated through
time and reported at a store or market level. The next four chapters deal with
issues related to modeling data derived from these sources. The general theme
is that managers wish to extract information to make better pricing and
promotional decisions.

The applied nature of many marketing problems brings the data to the
forefront. Often data is not in a form that is consistent with economic theory.
In “Estimating Market-Level Multiplicative Models of Promotion Effects with
Linearly Aggregated Data: A Parametric Approach”, Albert C. Bemmaor and
Udo Wagner consider the estimation of market level data when the models are
postulated at a store-level. Market level data is frequently encountered in
practice, yet many researchers focus on finer level analyses. They propose a
technique for creating aggregate level data that is consistent with multiplicative
sales response models. This chapter addresses the aggregation problem that
plagues many econometric models by suggesting that more appropriate indices
and data measures may help to alleviate aggregation issues, rather than
focusing upon the models themselves.

The chapter entitled “Market Structure Across Stores: An Application of a
Random Coefficients Logit Model with Store Level Data” by Pradeep
Chintagunta, Jean-Pierre Dubé, and Vishal Singh presents an econometric
model based upon the logit brand choice model. They consider the aggregation
of this model to the store level while accounting for price endogeneity. Their
estimation approach yields parameters similar to those from household data
unlike other aggregate data studies. The reason for this methodology is the easy
availability of aggregate level data to retailer managers. This paper illustrates
the emphasis that marketers place on visualization of the model to
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communicate the results to managers, such as the creation of brand maps to
illustrate market structure.

A popular approach in the analysis of sales is through the analysis of market
shares using an attraction model. Dennis Fok, Philip Hans Franses, and Richard
Paap present an “Econometric Analysis of the Market Share Attraction Model”.
The authors consider issues concerning the specification, diagnostics, estima-
tion, and forecasting of market share attraction-models. They illustrate this
model with an application to supermarket scanner data.

In “Reflecting Uncertainty about Economic Theory when Estimating
Consumer Demand”, Alan L. Montgomery explicitly considers the fact that
most economic theory is uncertain. Frequently an analyst will pretest a theory.
[f the test is accepted, the analyst proceeds under the assumption that the
restrictions from the theory hold exactly. However, this procedure overstates
the confidence in the estimates. On the other hand if the theory is rejected, even
if it is approximately correct, then all information from the theory is discarded.
Montgomery proposes a Bayesian model that allows the analyst to shrink a
consumer demand model towards a prior centered over an economic theory.
Both the analyst who holds to theory dogmatically or agnostically can be
represented as extreme cases. More importantly, when prior beliefs fall
somewhere in between, the model can borrow information from the theory even
if it is only approximately correct, in essence the estimates are “shrunk”
towards the theory.

Aggregate Sales: The final two chapters conclude by considering aggregate
sales data. This data may occur at a very broad level, for example all the sales
of clothes dryers in a given year, or monthly sales for a given market. The
common theme in both of them is the desire to predict and control the
underlying process.

Time series econometricians have been intently focused on the issue of
spurious regression and the effects of cointegration. Frequently the cumulative
sales of a new product follow an S-shaped trend. The Bass Model describes this
commonly observed curve using a diffusion argument. Along with sales, price
and advertising generally have a trend also. In “A Study of ‘Spurious
Regression” and Model Discrimination in the Generalized Bass Model”, Frank
M. Bass and Shuba Srinivasan consider the problem that coincident trends can
have in identifying a nonlinear model. They compare different nonlinear
models and consider how nonlinearity can acerbate the problems in model
selection.

Leonard J. Parsons’ chapter on “Using Stochastic Frontier Analysis For
Performance Measurement and Benchmarking” is different from the other
papers in this volume, in the sense that it is trying to bring existing econometric
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methods to bear on an important problem in marketing, namely how to assess
performance. This chapter also illustrates the slow speed with which some
econometric ideas take to be adopted into common marketing practice.
Although refined over the years, stochastic frontier analysis originated in the
1960s and 1970s. The benchmarking problem is how to focus on the frontier or
best performance and not the average performance of the salesforce. A key
point is that standard regression techniques do not work well since the error
term is truncated.

CONCLUSIONS

The last two decades have witnessed an increasing interest in marketing to use
quantitative data to address substantive questions using quantitative models.
This interest arouses from a firm’s ability to easily collect and store data on the
actual and stated behavior of their current and prospective customers. Hence, it
has become possible to identify causes and effects of marketing instruments
and environmental variables.

The essential gain of combining marketing problems with econometric
methods is that marketing problems might get solved using serious and well-
thought methods, while on the other hand the econometrics discipline benefits
from new methodological developments due to the specific problems. Hence,
this combination is a two-sided sword, and we expect to see many more such
developments in the future.
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THE ROLE OF STATED INTENTIONS IN
NEW PRODUCT PURCHASE
FORECASTING '

Cheng Hsiao, Baohong Sun and Vicki G. Morwitz

ABSTRACT

In this paper, we develop four models to investigate the role of intentions
(stated and true) and explanatory variables in forecasting purchase based
on the social psychology view that true intentions determine purchase
behavior. We found that a weighted average of stated intentions together
with the complementary FED variables are powerful indicators of future
purchase behavior. For intention survey designers, these results imply that
a conversion scale is needed to convert stated intentions to true intentions
and intentions questions would vyield more useful information if it is
formulated in terms of probabilities rather than in terms of yes/no
answers.

INTRODUCTION

It is routine for market research to collect purchase intention information.
However, the relationship between purchase intention and subsequent purchase
behavior has been controversial. On the one hand, Manski (1990, p. 940)
maintains that “researchers should not expect too much from intentions data”.
On the other hand, Fishbein and Ajzen (1975, p. 30) claim that “intentions
should always predict behavior, provided that the measure of intention
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corresponds to the behavioral criterion and that the intention has not changed
prior to performance of the behavior”. Indeed, studies by Adams and Juster
(1974), Gormley (1974), Juster (1966), Kalwani and Silk (1982), McNeil
(1974), Morwitz and Schmittlein (1992), Penny, Hunt and Twyman (1972),
Tauber (1975), Warshaw (1980), Morrison (1979), Infosino (1986), Bemmaor
(1995), Fitzsimons and Morwitz (1996), Morwitz (1997), Young, DeSarbo and
Morwitz (1998), Hsiao and Sun (1999), Sun and Morwitz (2000), etc. have
shown positive associations between purchase intention and actual purchase
with varying strength. Tobin (1959) has also examined whether intentions
supplement or merely repeat the explanatory information contained in
financial, economic, and demographic variables. His regression results show
that intentions do contain information about future purchases, but they are not
an adequate substitute for the demographic and economic variables.

In order to better use stated intentions collected from survey research for
forecasting purchase, it is important to understand the role of intentions (stated
and true) and explanatory variables in forecasting purchase. In other words,
there is a need for studying whether intentions supplement or merely repeat the
explanatory information contained in financial, economic and demographic
(FED) variables. In this paper we use a panel survey of intention to buy a home
PC data to empirically investigate the link between the stated purchase
intentions and actual purchase behavior at the micro level.

In Section 2 we construct various models linking stated purchase intentions
with actual purchase behavior. Section 3 describes the data and estimation of
various models using PC panel data. Section 4 provides an empirical estimation
of purchase intention model. Conclusions are in Section 5.

THE MODELS

In this section we present a basic framework that links various observed
phenomenon between stated purchase intentions and actual purchase behavior.
Obviously, there are many more possibilities than the ones considered here.
Our main concerns are the consistency with known psychological models and
the simplicity to estimate models which are capable of generating good
predictions.

Model 1

In the first model, we follow Fishbein and Ajzen (1975) and assume that
behavior is determined by intentions alone and intentions are determined by
attitudes and social norms. In other words, if S; denotes the information
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available for consumer i, /¥ denotes the latent true intentions, and y¥ denotes
the latent response, then

S—IT—yt (1)
If the relationships are linear, then we have
yr=a+Blt+u, )
and
I*=vy+8'x,+v, (3)

where x, denotes thc observed social demographic variables and «; and v, denote
the effects of all other omitted factors which are assumed to be uncorrelated
with I* and x;.

Let y; be the observed binary variable indicating whether actual purchase
happens (y;=1) or not (y;=0). Suppose

1, if y*>0,
= 4
Y {0, if y*<0. )

Then the probability that y,=1 given jx; and I¥ equals
Prob(y;= 11T, x)=P(y;=11I)=F(a+ BI'Y), &)

where F is determined by the probability distribution function of u. If the
observed stated intentions, I, equal the latent true intentions /%, then

Prob(y;= 111, x,)=Prob(y,=111*= F(a + BI). (6)

Model 2

Sometimes, respondents may not report their true intentions. For instance, one
may be asked to give a degree of intention such as “How likely are you to buy
product X in the next six months” on a 5-point intentions scale (definitely will
buy=35; definitely will not buy =1) or on an 11-point scale (certain or
practically certain=11; no chance or almost no chance=1; e.g. Kalwani &
Silk, 1982). Or one may be asked to give a timed intent measures such as intend
to buy in the next six months, in the next seven to 12 months, etc. There are
findings indicating that there could be tendencies to overstate the high stated
intentions and understate the low stated intentions at the time of the survey (e.g.
Duncan, 1974; Lord & Stocking, 1976) in the multi-level intention measures.
In the second model, we incorporate the existence of measurement bias and
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construct a true intentions index from stated multiple intentions measures
L=, -, I;). Suppose that the true intentions are a weighted average of
some stated intentions scale 7,
J
14=> 81, 7
j=1

then

J
P(y,-=1|l,~)=F<a+2 B;*‘f,j), (8)

j=1

where B¥=35,.
Model 3

In the third model, we will recognize the imperfection of the constructed true
intentions index in a binary response framework and combine the constructed
intentions index with FED variables to predict the outcome. Sometimes, the
survey questions elicit binary response to the intentions as opposed to scaled
measures. For instance, the question may be “Do you wish to buy a certain
product in the next so many months?”. Juster (1966, p. 664) notices that
“consumers reporting that they ‘intend to buy within X months’ can be thought
of as saying that the probability of their purchasing A within X months is high
enough so that some form of ‘yes’ answer is more accurate than a ‘no’ answer”.
In other words, a consumer facing. an intentions question responds as would a
statistician asked to make a best-point prediction of a future event. If the
observed intentions, I, take the form

Lo i 110, ©
‘710, if 1*<0 )

then even though P(y,=111% x)=P(y;=11I%, P(y,= 11, x)=P(y,=11l,) and
P(y,=111, x)# P(y,=l1x,) since even under the assumption that ¥, and v, are
independent,

E(yFI)=a+BEUTII)
=a+B-fIT~f(1j‘lIJd1’f

#E(yHIT) (10)
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and
E(yfly, I)=o+By+Bo5+ECIy, 1)

#E(yTlx). (1)

The last two inequalities in (10) and (11) follow from E(vlx,1)#0 even
though E(v;1x,)=0. Suppose instead of a single measure /, but a muitiple
intentions measure /,} are available, we may approximate the nonlinear relation
of E(y*lx,, I) by a stepwise function, we have

J
Prob(y,=1lx,. [,):F(a*+[3* 2 fi/+'y*’5i). (12)

j=1
Model 4

In addition to the issue of the presence of possible differences between stated
intentions and actual intentions, many things can also happen between the time
of survey and the time of actual purchase. Therefore, it may not be just actual
intentions at the time of survey determine behavior, the shocks during the time
frame of interest also determine the actual purchase. In the fourth model, we
allow true intentions to shift over time. Suppose that because of the shock
during the time frame of interest, there is a probability mr; that an individual will
buy and with probability (1 — ;) that an individual has no change in his
purchasing probability given the intentions, then

J J
P(y,-=1>=w,-+<1—w,)EF<a*+E Bfﬁ,>, (13)
j=1 j=1

where 7, may or may not be predictable from observed socio-demographic
variables, x,. If they are, then we may write, m,= (0 5).

All these models ((6), (8), (12) and (13)) postulate that true intentions
determine purchase behavior ((1)). The difference in associations between the
stated intentions and actual purchase found in empirical studies are attributed
to the different behavioral relations between the stated intentions and the true
intentions, i.e. intention response bias and shift of true intentions over time.
Table 1 summarizes the various assumptions underlying our purchase decisions
and observed variables. There is nested structure in the first three models, but
not for Model 4. Model 1 is nested within Model 2; Model 2 is nested within
Model 3. However, the models are not nested within Model 4. although
technically it is possible by also including x; as additional explanatory variables
in F(-).
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DATA AND ESTIMATION

In this section we use a panel survey of PC data to empirically investigate
which of the above models ((6), (8), (12) and (13)) is more likely to describe
the discrepancy between stated intentions and actual intentions in the new
product survey.

The panel survey collected information about intentions to buy a home PC,
a relatively new durable good. The survey took place approximately every six
months from July 1986 (wave 1) to January 1989 (wave 7). The panel
assembled was designed to be representative of U.S. households. During each
wave the panel household were asked their timed intent to buy a PC in the
future. Because the specific intent questions in the first 2 waves were different
from the last five and because wave 3 (July 1986) and wave 4 (July 1987) were
one year apart rather than six months apart we only analyze data of wave 4 to
wave 7.

The intent question during waves 4-7 reads:

“Do you or does anyone in your household plan to acquire a (another) personal
computer in the future for use at home?

Yes, in the next 6 months

Yes, in the next 7 to 12 months

Table 2. Variable Description.

Variable Name Variable Descriptions Mean or
Frequency
intention 1 intend to purchase PC in the next 6 months 7.28
intention 2 intend to purchase PC in the next 7 to 12 months 13.49
intention 3 intend to purchase PC after a year 29.9
cars number of cars 1.64
young age <= 30 32.53
education household education 4.19
new-household new household 14.51%
upscale upscale families 21.93%
mid age-no kids mid age with no children 23.14%
professional professional 23.66%
clerical clerical 27.59%
working-hours number of working hours of householder 2.77
male-head household head is male 78.58%

white-collar household head is white collar 34.62
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Yes, in the next 13 to 24 months ‘
Yes, sometime, but not within 24 months
No, but have considered acquiring one
No, will not acquire one”

In addition to the intent question, extensive demographic information such as
the size of household, annual household income, age of head of household,
marital status, home ownership, household stage of life, occupation, education
of head of household, race, number of cars owned, regional dummy, whether
any household members had ever used a PC at work or at school, etc, were also
collected.

The survey did not ask for actual purchase. However, it contained a question
of whether households owned a PC previously. Using this information, we
construct a new PC purchase data by comparing whether a household switched
from being a non-owner to an owner from one survey wave to the next among
those households that had not previously owned a PC at home.' Then the actual
purchases are the purchases made within six months after each survey. Since
the measurements are more noisy when a respondent states s’he will make a
purchase of PC after a year, we focus on the first two intention measures, i.e.
intend to purchase within six months and seven to twelve months.

Our criteria of the choice of the models are the stability of the relationship
and good predictive power. Stability is important because a major function of
any econometric model is to sustain inferences from observed regularities to
conjectured causal dependencies. Theoretical models consist of the logically
valid implications. The empirical relevance of a theory follows from the
correspondence conditions (or measurement equations) mapping latent rela-
tions onto observable relations (e.g. Hendry & Richard, 1982). Good predictive
power is also important in any modeling process. In fact, Klein (1988, p. 21)
argues that “a severe test for an economic theory, the only test and the ultimate
test is its ability to predict” (see also Friedman, 1957; Geisser, 1980; Zellner,
1988). “The real proof of the pudding is whether it produces a satisfactory
explanation of data not used in baking it — data for subsequent or earlier years”
(Friedman & Schwarz, 1991).

Our modeling strategy for converting time intent measures to the true
intention measure and the use of socio-demographic variables to predict
intentions or to predict the probability that an individual has a change on his
intentions is based on the availability of relevant measures and a progressive
general-to-specific approach of Hendry and Mizon (1990) and Hendry and
Richard (1982). We start with specifications of most general models allowed in
the light of the data, and subject them to a sequence of econometric estimation
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and tests of significance, and end with a model that achieves the maximum of
explanation with the minimum of factors that are consistent with theory.
Assuming that F(-) has a logit form, the cross-sectional maximum
likelihood estimates for waves 4 to 6 and the pooled estimates are presented in
Table 3.> These estimates use all available social demographic variables and
treating the true intention as a weighted average of the intention to buy within
six months (intention 1), the next seven to twelve months (intention 2) and
more than a year (intention 3) from now. As one can see, many of the socio-

Table 3. Estimation Results with Longer-term Intentions and More FED
Variables (Based on Pooled Data).

Parameters Model | Model 2 Model 3 Model 4

constant -2.905(22.27) 3221(10.45) -4.915(1.27) 3.358(7.69)
intention 1 2.254(9.26) 2.954(5.66) 4.039(5.25) 0.398(0.39)
intention 2 0.037(0.034) 0.1331(0.10) -1.96(0.34)
intention 3 -0.699(0.66) -1.069(0.92) —0.987(0.84)
cars -0.142(0.49) 0.267(0.85)
baby —0.068(0.04)

young 1.311(0.86)

old 0.729(0.66)

large size 0.745(2.47)

household head 0.147(0.49)

income -0.049(0.59)

new household -2.85(0.93) 0.734(1.21)
new baby boomers —56.341(0.000)

low/mid income -0.465(0.39)

upscale family 0.962(0.85)

low/mid income 0.611(0.39) 0.976(0.64)
elderly -0.909(0.31)

professional -0.82(0.27)

managers —0.876(0.28)

clerical 0.204(0.18)

sales 1.32(2.48)

other professions ~(.829(0.53)

work-hours 0.070(0.05)

white 1.260(0.52) 1.680(1.02)
male head 0.296(0.32)

own 0.681(1.56) 0.152(0.98)
Log-likelihood -311.259 -299.965 -238.609 -338.532

{-statistics are reported in the parenthesis.
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demographic variables are not statistically significant. So are the weights of
intention 3. Moreover, the weight coefficients of the intention 3 variables are
negative, contradicting one’s prior conjecture. Given the highly unreliable
longer term intention measurement, in what follows we shall focus on models
using intention 1 and intention 2 dummies.

Tables 4-7 presents the cross-sectional maximum likelihood estimates for
wave 4 to 6 and the pooled estimates of the models 1 to 4 using only intention

Table 4. Estimation Results of Model 1.

parameters Wave 4 Wave 5 Wave 6 Pooled
(518) (397) (384) (1299)

o, constant -2.651(14.26%) —2.953(12.22) -3.287(11.64) -2.905(22.27)

B.: intention 1 1.957(5.47) 2.078(4.64) 3.025(5.97) 2.254(9.26)

log-likelihood -144.788 -92.216 -71.720 -311.259

Table 5. Estimation Results of Model 2.

parameters Wave 4 Wave 5 Wave 6 Pooled
(518) 397) (384) (1299)

o, constant -3.010(12.80) -3.123(22.44) -3.296(11.21) -3.128(20.54)

B,: intention 1 2.316(6.00) 2.248(4.83) 3.033(5.91) 2.477(9.68)

B,: intention 2 1.505(3.80) 1.213(2.02) 0.118(0.11) 1.307(4.32)

log-likelihood -138.474 -90.544 -71.714 -303.486

Table 6. Estimation Results of Model 3.

parameters Wave 4 Wave 5 Wave 6 Pooled
(518) (397) (384) (1299)
o constant —4.394(5.04) —3.400(5.60) —4.356(5.54) -4.034(9.87)
B*: intention 1 2.402(5.91) 2.275(4.85) 3.112(5.84) 2.513(9.65)
3% intention 2 1.560(3.68) 1.265(2.05) 0.163(0.15) 1.339(4.37)
¥ upscale 1.242(3.37) 0.702(1.35) 0.102(0.16) 0.870(3.28)
v%: clerical 0.930(1.29) 0.341(0.37) -0.078(0.07) 0.510(1.10)
v%: male-head 1.159(1.43) 0.149(0.24) 1.193(1.49) "0.808(2.03)

log-likelihood -130.232 ~89.552 -70.282 -295.042
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Table 7. Estimation Results of Model 4.

parameters Wave 4 Wave 5 Wave 6 Pooled
(518) 397) (384) (1299)
o constant -3.479(15.53)  -5.862(14.20) —45.267(12.28)  -3.864(27.81)
a*: intention 1 2.067(5.81) 4.472(9.12) 3.921(8.89) 0.734(2.72)
o intention 2 1.235(3.21) 3.344(4.19) 0.716(0.68) -2.036(1.26)
B% constant -5.724(6.03) -3.729(6.03) -5.422(2.97) -2.610(3.11)
B¥: cars 0.620(4.27) 0.502(3.22) -0.041(0.15) 0.474(1.34)
B% new-household 3.633(6.98) 4.468(8.90) 0.950(0.87) 2.660(1.06)
B%: upscale 2.668(6.61) 3.195(8.10) 0.062(0.07) 1.115(1.14)
p* working-hours -0.417(2.70) -0.675(5.05) 0.521(1.02) —0.356(1.23)
f*% male-head 1.184(1.52) 0.752(1.32) 0.859(0.76) 0.185(0.11)
log-likelihood -138.971 —133.695 -70.170 -346.572

1 and intention 2 and statistically significant socio-demographic variables. The
coefficients of intention | and intention 2 are positive and significant (except
intention 2 of wave 6 in Model 2, 3 and 4) indicating that respondents who state
intentions of purchasing in the near future are more likely to purchase. And
those who show intention to buy within 6 months are more likely to buy than
those who show interest to buy within 6 to 12 months. A test of parameter
constancy restriction yields a chi-square statistic of 5.0698 with four degrees of
freedom for Model 1, 5.5082 with eight degrees of freedom for model 2,
10.685 with twelve degrees of freedom for model 3, and 7.0192 with eighteen
degrees of freedom for Model 4. None of them are significant at 15% level. That
is, we find that there is a remarkable stability between the relations of actual
purchasing behavior and purchase intentions over time and the stated intentions
variables are statistically highly significant. Thus, we conclude that intentions
predict actual purchase.

With regard to the relations between the stated intentions and true intentions,
the likelihood ratio test between pooled Model | and 2 yields a chi square value
of 16.2 with one degree of freedom which is highly significant. In other words,
the true purchase intentions to buy in the next six months is not completely
represented by the stated purchase intentions to buy in the next six months. A
better representation of the true intentions to buy for the next six months should
be a weighted average of timed interest in the next six months and in the next
seven to 12 months.

The likelihood ratio test statistics between models 2 and 3 has a chi-square
value of 16 with 3 degrees of freedom which is significant at 1% level. That is,
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we do find complementarities between the intentions variables and socio-
demographic variables, namely, having an upscale family, having a clerical job
and having a male household head increase the probability of purchase.
However, as argued in Section 2, the complementarities between the intentions
and socio-demographic variables are because the response to an intentions
questions is binary. Respondents will think as a statistician and state “yes”
when they feel their intentions of purchasing the personal computer within X
months is high enough. Then as shown by (12) intentions are not the single best
predictors of actual purchase. FED variables are needed as supplementary
information to predict purchase.

Model 4 and Model 1, 2 and 3 are not nested. In Model 4, we are not able
to find socio-demographic variables that are highly significant in predicting the
future shocks within the time frame of interest.” The socio-demographic
variables that appear to be related to future shocks between the time of survey
and actual purchase are number of cars owned, life cycle 1 (new household),
life cycle 4 (upscale families), and number of working hours of householder
employment. New households and upscale households are more likely to
purchase. Families with cars and/or male household head are also more likely
to purchase. The negative coefficient of working hours indicating people who
do not spend a lot of time at home are less likely to purchase a PC for home
use. However, the average estimated probability 1 is about 0.05145 using wave
6 socio-demographic variables. It appears too high and contributes to an
exaggerated projection of the actual purchase percentage in wave 7. If no socio-
demographic variable is used, the estimated probability of w is only 0.0015,
indicating that if there is any shock- during the time of frames of interest that
had led to a change in behavior, it is extremely small.

We also compare the predictive performance of all four models. We use
waves 4 and 5 to estimate the models. Then we use the wave 6 data with the
estimated coefficients to predict the market average of actual purchase

No
1 2 ~
N Z P(y=111, %6 0). 1)

where Ny denotes the total number of observations in wave 6, and § are the
estimated values of 8 based on waves 4 and 5.

The average percentage of households that purchased new PCs between
wave 6 and 7 is 5.9896%. Model 1 predicts 7.4292%, model 2 predicts
6.8963%, model 3 predicts 6.7181%, and model 4 predicts 18.832%. Models 1
and model 4 predict poorly. Models 2 and 3 predict the market outcome within
one percentage of error, with a slight edge for model 3. These results appear to
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support the hypothesis that intentions are powerful indicators of future
purchase behavior. However, a conversion scale is needed to convert stated
intentions to true intentions. Intentions questions formulated in terms of
probabilities rather than in terms of yes/no answers are likely to be a more
reliable indicator of true intentions.

PURCHASE INTENTIONS MODELS

In this section, we try to relate observed purchase intentions with socio-
demographic variables based on the assumption that the true intention is a
function of these variables as postulated in (3).* Let I, denote intentions to buy

Table 8. Estimation Results of Intention Model.

parameters Wave 4 Wave 5 Wave 6 Pooled

(518) 397) (384) (1299)
intention 1
constant -2.479(9.50) —2.245(6.54) —2.544(7.33) —2.433(13.69)
cars 0.135(1.30) -0.028(0.19) 0.259(2.08) 0.128(1.84)
young 0.829(2.75) 0.776(1.92) -0.007(0.02) 0.601(2.84)
mid age-no kids 0.314(1.15) 0.863(2.73) 0.390(1.20) 0.505(2.93)
intention 2
constant -2.022(5.05) -1.532(3.48) -2.675(4.85) -2.055(7.98)
cars -0.097(0.93) —0.160(1.27) 0.032(0.28) -0.078(1.20)
young 0.439(1.70) 0.068(0.20) 0.625(2.12) 0.393(2.35)
education 0.153(2.02) 0.138(1.51) 0.252(2.44) 0.175(3.52)
upscale -2.265(1.15) -0.616(2.19) -0.475(1.59) -0.425(2.79)
intention 3
constant -1.490(4.61) -1.467(3.76) -2.699(5.54) ~1.807(8.28)
young 0.829(3.93) 1.044(4.15) 0.712(2.77) 0.855(6.28)
education 0.053(0.67) 0.070(0.77) 0.372(3.41) 0.146(2.85)
upscale -0.460(2.15) —0.222(0.91) —0.135(0.53) ~0.291(2.16)
professional 0.332(1.44) 0.388(1.42) -0.182(0.68) 0.200(1.37)
white-collar -2.273(1.29) -0.460(1.81) -0.291(1.17) -0.330(2.44)
intention 4
constant —0.820(7.92) 0.518(5.61) 0.453(5.00) 0.093(1.78)
young 0.960(5.19) 0.704(3.75) 0.414(2.35) 0.648(6.35)
upscale -0.587(3.22) ~0.548(3.64) -0.146(0.99) -0.380(4.38)

log-likelihood -1527.27

-1423.92 -1398.51 ~4484.83
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within the jth six months, 1, 2, 3 and 4. Since J; if formulated in terms of ‘yes’

or ‘no’ format as postulated in (4), we assume a conditional logit model

'
Wi i

Prob(l;=11x)=-———, (15)

1+ E et

p=1

p=1,---,4 represents the first four scaled intentions measures.’” The
maximum likelihood estimates of cross-sectional waves 4, 5, 6 and the pooled
data are reported in Table 5. The likelihood ratio test for parameter constancy
has a chi square value of 270.26 with 36 degrees of freedom, which is
significant at the 1% level. We also use waves 4 and 5 data to estimate the
coefficients and combine them with the wave 6 socio-demographic variables to
predict the intentions response in wave 7. The actual percentages of those
responding to purchase within six months, the next 7 to 12 months, 12 to 18
months, 19 to 24 months, sometime in the future and do not intend to buy are
3.2801%, 3.9894%, 4.9645%, 7.6241% and 71.365%, respectively. The pre-
dicted percentages are 5.4964%, 8.8652%, 12.81%, 34.885% and 37.493%,
respectively. The prediction errors of intentions using socio-demographic
variables are much bigger than the prediction errors of actual purchase using
intentions data. This lack of stability between purchase intentions and the
observed socio demographics variables could be because factors affecting
individual purchase intentions are numerous and the observed variables fail to
capture all of them. In other words, it is much more difficult to model purchase
intentions behavior than to model actual purchase as a function of purchase
intentions. The relations between actual purchase and intentions are much more
stable and predictable than the relations between actual purchase and socio-
demographics variables.

CONCLUSIONS

In this paper, we develop four models to investigate the link between the stated
intentions and purchase at the micro level based on the social psychology view
that true intentions determine purchase behavior. We argue that the different
strength of association between stated intentions and purchase or the com-
plementarities between stated intentions and FED variables found in the
empirical literature can be attributed to the discrepancy between the stated
intentions and true intentions. The first model assumes stated intentions
perfectly predict purchase. The second model takes into account measurement
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bias and uses true intentions to predict purchase. The third model is a binary
intention response model in which the prediction power of FED variables are
examined. The last model allows true intention to change over time due to the
shift of FED variables. We then rely on the stability of estimation and good
predictive power to select the model that can best describes the discrepancy
between stated intentions and purchase.

We use a survey panel data of PC intentions to investigate the relationship
between stated intentions and actual purchase at the micro level. (1) We find a
remarkably stable relationship between intentions and purchase over time
which indicates that intentions are powerful predictor of actual purchase. (2)
The true intentions are not accurately represented by stated intentions. A better
representation of the true intentions should be a weighted average of stated
intentions. Thus, we find support of the psychometric literature that stated
intention should be transformed into an estimate of the true intention. A
converted stated intentions to true intention remains to be most reliable
predictor of actual purchase behavior. (3) In addition, when stated intentions
are measured in binary form, FED variables such as upscale family, clerical and
male-head are complementary to intentions in predicting purchase. However,
the complementarities between the stated intentions and socio-demographic
variables can be attributed to a consumer facing an intentions question
responding as would a statistician asked to make a best point prediction of a
future event. (4) We have not found significant evidence of exogenous events
that lead to change intention or behavior within the time frame of interest. In
fact, if there are exogenous events that lead to a change in behavior between the
time of survey and actual purchase, they cannot be predicted by the observed
socio-demographic variables. (5) It is much more difficult to model intentions
as function of socio-demographic variables than to model actual purchase as a
function of intentions. In summary, we found that intentions are powerful
indicators of future purchase behavior. True intention converted from stated
intentions together with the complementary FED variables remains to be the
most reliable predictor of actual purchase behavior for the data set we use here.
Intentions questions would yield more useful information if it is formulated in
terms of probabilities rather than in terms of yes/no answers.

When collecting intentions to predict purchase, it is probably advisable for
the marketing researchers to formulate the intention questions in terms of
probabilities instead of in terms of yes/no answers as this will probably reduce
the discrepancy between stated intentions and true intentions. Our empirical
analysis appears to confirm that the most powerful predictor of purchase is true
intentions converted from stated intentions.
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NOTES

1. We have excluded repeated purchase because we cannot detect the purchase of an
additional PC given the available information. The constructed measures obviously
contain errors. Therefore, the conclusion we will draw is based on the assumption that
measurement errors are independent of explanatory variables.

2. The logit model makes specific assumption about the probability density function
u. Although non-parametric methods are available to estimate the parameters up to a
scale (e.g. Manski, 1985), they cannot be used to generate prediction, which is our main
focus. However, empirical analysis comparing parametric vs. non-parametric
approaches appear to indicate the difference is minor (e.g. Newey, Powell & Walker,
1993).

3. As pointed out by a referee that the shocks that interfere with the intentions —
behavior relation are more likely to come from externalities (e.g. new information
regarding the category). However, if they affect all households in the same way, then =
will be a constant for all households in a given time, though may vary over time.

4. The impact of these variables may contain the impact of excluded socio-
demographic variables that are collinear with the included variables. Excluding relevant
collinear variables may create the problem of interpretation of the estimated
coefficients, but will have negligible impact on prediction (e.g. Intriligator, Bodkin &
Hsiao, 1996). Our interest here is in predicting the outcome rather than identifying
individual impact of included explanatory variables.

5. As suggested by a referee, an alternative approach to model true intentions as a
function of social-demographic variable is to employ a hierarchical Bayes approach and
model the response parameters of intentions on behavior (B or 8*) as a function of
socio-demographic variable in the second level.
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This paper proposes a methodology for incorporating psychometric data
such as stated preferences and subjective ratings of service attributes in
econometric consumer’s discrete choice models. Econometric formulation
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practical submodels. The first submodel combines revealed preference
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1. INTRODUCTION

Discrete choice models have been extensively used to analyze consumer’s
choice behavior in market research (e.g. Green et al., 1977; Gensh & Recker,
1979; Guadagni & Little, 1983; Carpenter & Lehmann, 1985; Winter, 1986;
Gupta, 1988; Chintagunta, 1993). About 15 years ago we began to work on the
idea of combining discrete choice with conjoint analysis and latent variable
models (e.g. McFadden, 1986; Ben-Akiva & Boccara, 1987). The underlying
idea is that consumer behavior could be analyzed in more detail using
subjective data on preferences, perceptions and attitudes. This approach con-
trasts with the traditional treatment of consumer behavior, which regards the
consumer as an “optimizing black box.”

One way of describing the consumer decision process is shown in Fig. 1. In
this diagram, ovals refer to unobservable or latent variables, while rectangular
boxes represent observable variables. The relationship between the actual
attributes of alternatives and observed behavior is represented by three groups
of intervening factors: perceptions, attitudes and preferences. Perceptions are
consumer’s perceived values of attributes of alternatives which are usually
influenced by his or her socioeconomic characteristics and market information,
while attitudes are his or her subjective importance of attributes. Preference is
also a latent factor and represents desirability of alternative choices, which is
usually expressed by a utility function. Traditionally, the latent factors enclosed
by the dashed line have been treated as the black box. Recently, Ben-Akiva
et al. (1999) proposed an extended framework that includes more psycho-

Decision-Maker Characteristics,
Attributes of Alternatives

Aftitudinal Perceptual
Indicators Indicators

Stated |

Situational ~---=se-e-xeeo-
onstraints

Market Behavior
(Revealed Proferences)

Fig. I. Framework for Analysis of Consumer Behavior.
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logical factors such as motivation, perceptions, tastes and attitudes and their
indicators.

Market researchers have attempted to analyze explicitly the latent psycho-
logical factors and have relied on various indicators of perceptions, attitudes
and preferences (Hauser & Koppelman, 1979; Louviere, 1988a; Lichtenstein
et al., 1993; Meyer & Johnson, 1995). Attitudjnal and perceptual indicators
usually represent the level of satisfaction or importance of attributes on a
semantic scale. Stated preference (SP) data are collected by presenting
hypothetical scenarios to the respondents and asking for their preferences. In
contrast to this type of data, measurements based on actual market behavior are
termed revealed preference (RP) data.

In econometrics, however, the traditional view has been that valid choice
data result only from actual choices having been made. Therefore, most
econometric demand models are estimated using revealed preferences,
measured attributes of alternatives and objective socio-economic character-
istics of the decision maker. SP data, on the other hand, have been extensively
used in market research (Green & Rao, 1971; Green & Srinivasan, 1978; Cattin
& Wittink, 1982; Louviere, 1988b). These include the applications of conjoint
analysis methods and more recently the discrete choice modeling techniques
(e.g. Louviere, 1988a; Erlod et al., 1992; Louviere et al., 2001). SP data, which
are collected in a fully controlled experimental environment, have the
following advantages in contrast with RP data that are generated in natural
experiments:

(i) they can elicit preferences for non-existing attributes and alternatives;
(ii) the choice set is prespecified;
(iii) multicollinearity among attributes can be avoided; and
(iv) range of attribute values can be extended.

Despite these advantages, SP data are not always considered to be valid for
model estimation due to uncertain reliability of the elicited information under
hypothetical scenarios. SP data may contain biases and large random errors if
the decision making protocol exercised in a hypothetical situation differs from
that exercised in a real choice context. Decision protocols for stating prefer-
ences about hypothetical scenarios can be observed in the following contexts:

(i) the respondent considers only the most important attribute of the
alternatives (the prominence hypothesis);

(i1) the response is influenced by an “inertia” of the current actual choice (e.g.
justification of the current choice);
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(iii) the respondent uses the questionnaire as an opinion statement for his or
her own benefit (e.g. overstating usage of a new transportation system to
promote its construction);

(iv) the respondent does not consider situational constraints; and

(v) the respondent misinterprets or ignores an attribute if the attribute value
lacks reality.

In addition, the reliability of SP data also depends on the quality of the
questionnaire or the settings of the experiment. The response format such as
“rating,” “ranking,” or “matching” in SP experiments also affects the reliability
of the elicited preferences (For a more detailed discussion of these issues, see
Ben-Akiva et al., 1991.)

Thus, SP and RP data have complementary characteristics. Simultaneously
using both types of data with explicit consideration of unknown reliability of
SP data may yield more reliable and useful consumer behavior models as
exemplified in the following contexts. It is often the case that the trade-offs
among certain attributes cannot be estimated accurately from the available RP
data. For instance, high correlation between package size and price per unit in
RP data may yield insignificant parameter estimates for their coefficients.
However, SP surveys with a design based on low or zero correlation between
these attributes may provide additional information on their trade-offs.
Although the SP responses may not be valid for forecasting actual behavior due
to their unknown bias and error properties, they often contain useful infor-
mation on trade-offs among attributes. Another context where SP data add
critically important information on preferences is the introduction of new
attributes and new products. RP data alone cannot provide enough information
to assess the impact of those drastic changes in services.

Other types of psychometric data such as attitudinal data have also been used
in the choice modeling (Recker & Golob, 1976; Koppelman & Pas, 1980). It
has been argued that consumer’s choice behavior is determined by latent factors
such as “quality” as well as manifest ones such as “size” and “price.” Per-
ceptual ratings of quality measures of alternatives, for instance, could be used
as explanatory variables instead of their objective values in order to obtain
better fit of the observed choice. However, this approach has always been
criticized for little predictive validity when it is used for policy analysis.

The study presented in this paper is motivated by a question: How can we
benefit from incorporating psychometric data, namely, stated preferences,
perceptual and attitudinal data, in economic demand modeling? Our basic
strategy is to use those psychometric data as indicators of the latent variables
such as utility, attitudes, and perceptions in the behavioral framework depicted
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in Fig. 1. An answer to the criticism mentioned in the previous paragraph, for
instance, is to use such perceptual data only as “indicators” of latent variables
which themselves are the function of objective variables. In other words,
incorporating such latent qualitative variables in econometric demand models
requires some indicators of those variables as.well as the assumed causal
relationship among them. In this sense, market behavior, or RP data, can be
viewed as an indicator of a latent variable, i.e. utility, but market behavior is
also the target variable to be recovered or predicted by the model.

This paper, hence, aims to propose a general framework for incorporating
RP, SP, and other psychometric data in discrete choice models and to provide
its practical estimation methods. Econometric formulation of the general
framework is presented in the next section, which is followed by the two
submodels with practical estimation techniques: the combined estimation from
RP and SP data and the choice models with latent attributes. The paper also
focuses on empirical analyses to assure the practicality of the methodology
proposed. Sections 3 and 4 show the empirical works on the methodology
developed in Section 2. An integrated model of the two submodels is estimated
in Section 5. Concluding remarks are addressed in Section 6.

2. FRAMEWORK FOR COMBINING RP, SP, AND
PERCEPTUAL DATA

2.1. Framework for Incorporating Psychometric Data in a
Discrete Choice Model

This section presents a general framework for incorporating psychometric data
such as SP and perceptual data and econometric RP data in a discrete choice
model. For the sake of simplicity, we use for presentation a binary choice
model in which attributes are measured in terms of the differences of the two
alternatives. Different response formats such as multinomial choice, ranking,
and pairwise comparison will not change the general framework presented
below as long as they are described by utility maximization behavior.

Suppose the following measurements are available from a questionnaire
survey and/or an SP experiment:

(i) binary RP choice results;
(i) binary SP responses;
(ii1) perceptual indicators of some latent attributes of alternatives; and
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(iv) observed attributes of alternatives and decision-maker’s socio-economic
characteristics.

The framework consists of two parts: a discrete choice model and a linear
structural equation model; each part is composed of structural and measure-
ment equations. RP and SP responses are described by the discrete choice
models such as logit and probit while the relationship between perceptual
indicators and latent attributes is described by the linear structural equation
model.

Structural equations specify relationship between cause-and-effect variables.
Since some cause-and-effect variables are not directly observable (e.g. quality
and comfort), or latent, identifying these latent variables requires observable
indicators. Measurement equations relate latent variables and their indicators.
A typical latent variable is the utility in a discrete choice model. The framework
proposed in this paper also allows latent attributes or perceptions in the
diagram of Fig. 1. Latent attributes, for example, include “brand loyalty” and
“quality” in brand choice applications and “convenience” or “comfort” in travel
mode choice applications. In the equations below, asterisks (*) are attached to
latent variables and superscripts “RP” and “SP” denote the corresponding
data.

Structural Equations

W = a' xR 4+ b’ wRP 4+ ¢/ wHRP 4 RP (1)
u*SP - a!XSP + e!zSP + vSP (2)
w*RP = BSRP + gRP (3)

where

w* = latent utility;

X, w, Z=vectors of observable explanatory variables;
w* =vector of latent explanatory variables;

s = vector of observable variables that influence w*;
a, b, ¢, e, B=arrays of unknown parameters;
v=random component of utility; and

{ = vector of normally distributed disturbances.

L3
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Measurement Equations

1, if u*®* >0
dRP: ’ 4
{—l,ifu*RP<O “)

) 1, if u*$*>0
a%=1" 5
{—l,ifu*SP<0 (3)
yF = Aw*RF 4 g®F (6)

where

y = vector of observed indicators of w*;

A =matrix of unknown parameters; and

€ = vector of normally distributed disturbances.
Equations (1), (3) and (4) construct the RP choice model and (2) and (5) form
the SP choice model. The linear structural equation model is composed of (3)
and (6).

This framework has two aspects from the viewpoint of statistical estimation.
The first one is the combined estimation with RP and SP data (Morikawa,
1989; Ben-Akiva & Morikawa, 1990a,b) and the other aspect is the
identification of latent variable w* through a covariance structure model
(Morikawa, 1989; Morikawa et al., 1990). These estimation methods are
described as submodels in the following subsections.

2.2. Submodel 1: Combined Estimation with RP and SP Data

This submodel shown in Fig. 2 assumes two different data generating
processes: The RP model represents actual behavior, while the SP responses are

Decision-Maker Characteristics

Attributes of Alternatives
]
Stated
@enoes "™ Preferences
—» RP Model
Market Behavior | = > SP Model

(Revealed Preferences)

Fig. 2. RP/SP Combined Estimation.
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modeled by the SP model. SP surveys are often conducted to obtain explicit
and clear-cut information of trade-offs among attributes as well as direct
preferences of non-existing services. One of the fundamental assumptions in
conducting SP surveys is that the trade-off relationship among major attributes
is common to both revealed and stated preferences. Otherwise, SP surveys
themselves would have little meaning. In travel mode choice analyses, for
instance, such attributes usually include line-haul travel time, terminal travel
time, travel cost, and the number of transfers. We will denote these common
attributes by the attribute vector x and its coefficient by the vector a.

The other factors affecting revealed and stated preferences are assumed to
have different coefficients in RP and SP models. It is found from travel mode
choice case studies that alternative-specific constants are likely to have
significantly different values in both models (Ben-Akiva & Morikawa,
1990a, b). We denote such attribute vectors by w for the RP model and z for the
SP model and their coefficient vectors b and e, respectively. The choice in the
real market often affects SP as described in the previous section. It is
sometimes called the justification bias or inertia effect and is captured by
including the RP choice indicator d®* and its coefficient f in the SP utility
function.

The models used for the following presentation are also binary choice
models and the latent attribute w* is omitted for simplicity.

The RP Model
Wt =a'x® + h'wrP + fF €))
1, if wR?>0
RP _ ?
d ‘{—1,ifu*“’<0 ®)
The SP Model
u*SP=a/XSP+erzSP+ dRP+vSP (9)
1, if u**>0
SP __ 4
d “{—1,ifu*sp<0 (1

In the above modeling structure, sharing a in both models and estimating it by
jointly using RP and SP data provides statistical efficiency. The terms
represented by e'z*" and fd*" are specific to the SP model and may include SP
biases. e'z™ also includes effects of hypothetical services that are included only
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in the SP survey. SP biases can be corrected from prediction by discarding from
the fitted utility function the part of e'z* and fd®" that represent the biases. If
a part of e'z* includes the effect of the new service included only in the SP
questions, that part should be included in the fitted utility function for
prediction.

Since the effect of unobserved factors may well be different between
revealed and stated preferences, there is no reason for assuming that 1" and v**
have an identical distribution, or more specifically, have the same variance.
Here we introduce a scale parameter p that represents the ratio of standard
deviations of v and v**, or

Var(v®?) = W Var(v"). (1D

If SP data contain more random noise than RP data, p. will lie between 0 and
1. p is also known to represent the “scale” of the model coefficients. The scale
of the model is set by arbitrarily fixing the variance of the random utility term
in order to identify the coefficients of a discrete choice model. For instance,
assuming that v** and v** are normally distributed, the scale of the probit RP
model is set to one (i.e. Var(v’") = 1), and the RP and SP models are:

P(d® =1)=®(@@'x™ +b'w™), (12)
and
P =1)=®(p(a'x" + &'z + %)), (13)

where ®() denotes the CDF of the standard normal.

If we can assume that unobserved factors are statistically independent
between revealed and stated preferences, the joint estimators of a, b, e, f and
jr are obtained by maximizing the joint log-likelihood:

NRP

L(a b. e, £, p)= >, log(®[d™@'x™ +b'wi)])

n=1
NSP

+2 log{®[d¥ua’ s pa’'xF + ez}, (14)
n=1

where N®* and N are the numbers of observations of RP and SP data sets,
respectively.

Under the assumption of statistical independence of *
equivalently:

P SP
.

and v, or

Prob(d®, d°")=Prob(d*") Prob(d "), (15)
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then joint estimation yields consistent and asymptotically efficient and normal
estimators. If this assumption does not hold, the joint estimators are still
consistent and asymptotically normal but not fully efficient. In this case, a
variance-covariance matrix of the maximal likelihood estimates calculated as
the inverse of the information matrix will be biased. The joint estimation
procedure requires special (but not complicated) programming due to the non-
linearity in parameters. Hensher and Bradley (1993) proposed an estimation
technique that utilizes a nested logit estimation software by creating an
artificial nesting structure between RP and SP.

All the parameters can also be estimated sequentially. The sequential
estimation procedure described in Ben-Akiva and Morikawa (1990b) avoids the
non-linearity problem and can be carried out by MNL estimation software
packages. The sequential estimators are consistent but not fully efficient.

The assumption of independence between the RP and SP error terms within
the same individual may often be too strong. Furthermore, if the SP model has
the RP choice indicator as an explanatory variable (as shown in (9)) and
correlation between the error terms exists, there will be a problem of “state
dependence and serial correlation” and, consequently, all the parameter
estimates will be inconsistent. Morikawa (1994) proposed two approaches to
remedy this problem. The first one is to include in the SP utility function the
dummy variable that represents the RP choice. Such dummy captures
unobserved preference factors for the specific alternative and, consequently, the
remaining error term is less correlated with explanatory variables. The second
is to explicitly consider serial correlation between the RP and SP utilities by
splitting the error term into the alternative-and-individual-specific error and the
white noise. Although this requires integrating the choice probabilities in
computing the likelihood, the full information maximum likelihood estimator
can be obtained.

2.3. Submodel 2: Discrete Choice Model with Latent Attributes

The idea of this submodel is to use psychometric data and the choice data as
the indicators of some latent constructs. Using psychometric data as the
indicators of latent variables is not new in psychology where the factor analysis
is the most famous and basic approach (Johnson & Wichern, 1988). Structural
equation models later made it possible to represent cause-and-effect relation-
ship by using observable variables as covariates of the latent factors and have
been widely applied in social and behavioral sciences (e.g. Goldberger, 1972;
Duncun, 1975; Bielby & Hauser, 1977; Joreskog & Soérbom, 1979; Bentler,
1980). Joreskog and Sorbom (1984) developed computer software for
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Fig. 3. Choice Model with Latent Attributes.

specifying and estimating structural equation models, known as LISREL
(Linear Structural Relationships).

Submodel 2 is the combination of the structural equation model and discrete
choice model. As shown in Fig. 3, the model system contains two types of
latent variables and associated indicators. The first one is the intangible or
latent attributes such as “beauty” and “novelty” that affect the choice behavior
of interest. The indicators of these latent variables could be subjective answers
of perceptual questions about the alternatives in the choice context. The utilities
that represent latent preferences of the alternatives are the second type of
latent variables. Their indicators are the choice in the real market or stated
preferences.

This system can be formulated by combining the two existing modeling
schemes: a discrete choice model and a structural equation model. Equations
(16)—(19) are extracted for this system from the general framework presented
in Section 2. We can see the two models there; one is a binary discrete choice
model with latent attributes that consists of a structural Eq. (16) and a
measurement Eq. (18), and the other is a linear structural equation model with
latent variables that is composed of a structural Eg. (17) and a measurement Eq.
(19). In the following presentation the SP model is omitted for simplicity.

Structural Equations
w¥F=a'x+c'wH+v (16)

w¥=Bs+{ 173
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Measurement Equations

Lifu*=20
= 1
d {—1,ifu*<0 (18)
y=Aw*+¢ (19)

where

v=random component of utility where v~ N(0, 1);
z=vector of normally distributed disturbances where { ~ MVN (0, W), and
€ = vector of normally distributed disturbances where € ~ MVN(Q, ©).

2.3.1. Sequential Estimation Method
Assuming all the variables are normally distributed, the choice probability is
derived as follows. The joint distribution of y, w* and u* is

y
w*| ~-MVN(M,, Q)), 20)
u*
where
ABs T {APA'+O AT AW
M, = Bs and Q= YA’ A Ye .
a’'x+x'Bs WA’ ¥ 1+c¢'We

Here, given the observable variables y, x, s, the conditional distribution of w*
and u* is

*

e MVNM,, ), (2D

where

Bs+ WA (AWA')Y'(W — ABs)
a'x+¢'{Bs+WA'(AWA' +OY' (¥ — ABs)} |’

2=
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and, defining @ =¥ — WA'[AWA' +O]'AW,

(O] (01

=

o l+c'we

Hence, the choice probability of the discrete choice model given y, x and s is

a'x+c¢' {Bs+WA'[AWA' +O]'(y — ABs)}
Pdly, x.8)=®| d — —- . (22)
Y ( V1+c' we

Since the measurement equation of the choice model, (18), is non-linear, the
whole system of equations (16) — (19) cannot be estimated simultaneously with
an existing program such as LISREL (Joreskog & Sorbom, 1984) but requires
programming the likelihood. Instead, the two step estimation method described
below will yield consistent but not fully efficient estimators.

Step 1: Use a LISREL type estimator to estimate (17) and (19) and calculate
the fitted values:

wh=Bs+ WA'[AWA’ + O] '(y — ABs), 23)
o= - FA'[ATA +O'AY. (24)

Step 2: Use a probit MLE to estimate the model of (22) using w* and ®,
namely, estimate a and ¢ using the following choice probability:

AN
a'x+c'w*
Ply, x,s)=®{ d ————|. (25)
Vi+c'dce
2.3.2. Simultaneous Estimation Method
Assuming again all the variables are normally distributed, the choice
probability can be derived as follows. The joint distribution of y, x, and u* is
the same as (20). Given w¥*, the conditional distribution of y and u* is

[ y*] ~MVNM,, ), (26)
u
where
Aw* 6 0
M;= w, and €= .
a'x+c'w* 0 1
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Then the joint probability of y and u* can be calculated by taking the
mathematical expectation with respect to w*:

yi — (Aw¥)
0

j=1

Pr(d, y)=w*®{d(a'x +¢'w*)} - H ¢

27

where ¢ denotes the PDF of the standard normal. In the above equation, we
assume that the dimensions of y and w* are n and m, respectively, and that the
components of y and w* are independent among others. The maximum
likelihood method is used to estimate the parameters to obtain consistent and
asymptotically efficient estimates.

3. APPLICATION OF THE RP/SP COMBINED
ESTIMATION

In this section an empirical analysis of the RP/SP combined estimation
(submodel 1) is presented. The case is about intercity travel mode choice.

The survey was conducted during 1987 by the Hague Consulting Group for
the Netherlands Railways to assess factors which influence the choice between
rail and car for intercity travel. The City of Nijmegen, in the eastern part of the
Netherlands, was selected as the data collection site. This city has rail
connections with the major cities in the western metropolitan area called the
Randstad which contains Amsterdam, Rotterdam and The Hague. Traveling
from Nijmegen to the Randstad takes approximately two hours by both rail and
car.

The home interview survey consisted of three parts:

(1) the characteristics of an intercity trip to the Randstad made within the
previous three months (RP data);

(2) SP experiment of a choice between two different rail services (SP1 data);
and

(3) SP experiment of a choice between rail and car (SP2 data).

The home interview survey was administered using lap-top micro-computers
and the respondents replied to the questions appearing on the computer screen.
The main advantage of a computer administered survey is that a desirable SP
experimental design can be generated on site based on the service levels of the
actual trip.

The RP data have 228 observations each including level-of-service attributes
(e.g. travel time and cost), socio-economic characteristics (e.g. age and sex),
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and subjective ratings of latent travel characteristics (e.g. relaxation, reliabil-
ity).

The SP experiments were framed in the context of the actual trip observed
in the RP data and used the full-profile pairwise comparison method. The
respondent was shown two hypothetical alternatives (two different rail services
in the SP1 experiment and rail versus car in the SP2 experiment) at a time, each
of which was described by the following four attributes: travel cost, travel time,
the number of transfers (only for rail), and luxury level of the train (only for
rail). Then, the respondent was asked which mode would be chosen for the
particular intercity trip reported in the RP question in terms of a five point
rating scale: (1) definitely choose alternative 1; (2) probably choose alternative
1; (3) not sure; (4) probably choose alternative 2; and (5) definitely choose
alternative 2. Each respondent was presented with several pairs in SP1 and SP2
experiments. SP1 data (rail vs. rail) contain 2,875 comparisons (an average of
12-13 comparisons per respondent), while SP2 data (rail vs. car) include 1,577
comparisons (an average of 7 comparisons per respondent).

All the explanatory variables are in terms of differences between rail and car,
more specifically, the values for rail minus the values for car. Socio-economic
variables are included in the rail utility function.

A binary probit model estimated from the RP data is shown in the first
column of Table 1. The second and third columns report the SP1 (rail vs. rail)
and the SP2 (rail vs. car) models, respectively. The ordered probit models are
applied to the ordered categorical responses described above with two
threshold parameters, 0, and 6,, representing four threshold values which are
set to be symmetric with respect to zero.

The SP2 experiment was designed to collect information on mode switching
behavior (from rail to car, or vice-versa) by presenting to the respondents
hypothetical rail and car modes which are described by line-haul travel time
and travel cost. However, since the respondent was instructed to refer to the trip
reported in the RP questions, he or she may have considered additional
attributes such as terminal time and the number of transfers that would have
been required for the trip in evaluating the hypothetical alternatives. These
additional attributes have the same values as reported in the RP questions.
Thus, the model estimated from SP2 data inciudes these additional trip attribute
variables which do not vary in the SP experiment. Characteristics of the traveler
and the trip such as sex and purpose are also included. There may also be a bias
in the stated preferences toward the mode actually used, reflecting the inertia
effect, justification of past behavior, or omitted attributes that are not captured
by the included variables. This bias can be estimated by including a dummy
variable which indicates the actual choice.
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Table 1. Estimation Results of Submodel 1 (¢-Statistics in Parentheses).

RP SP1 SP2 RP+SP1  RP+SP2 RP+SPI1

+SP2

Rail constant (RP) 0.501 0.455 0.702 0.718
(1.8) (1.8) 3.0 3.4)

Rail constant (SP) -0.970 -3.82 -3.82
(-9.8) (-4.0) (—4.0)

Cost per person -0.0270  -0.0828 -0.0111 -0.0279  -0.0338  -0.0337
(4.4) (-25.4) (-5.6) (-5.2) (-6.5) (-6.8)

Line-haul time -0.342 -0967 -0.156 -0.327 -0.401 -0.394
(-1.4) (-11.6) (-1.9) (-4.9) -2.1) (-6.1)

Terminal time -1.61 -0.272 -1.60 -1.46 -1.47
(—4.83) (-1.9) (4.9) (-4.63) (-4.77)

Number of transfers -0.139 -0.140 0.0433 -0.0478  -0.0348 —0.0569
(-1.0) (-4.3) 0.8) (-3.4) (-0.3) (-3.8)

Comfort 0.493 0.166 0.201
(14.4) 4.9 (6.24)

Business trip dummy 0.902 -0.115 0.887 0.358 0.363
32) (-1.2) (3.2) (1.74) (1.78)

Female dummy 0.488 -0.102 0.488 0.230 0.232
2.49) (~1.5) 2.4) (1.4) (1.5)

Inertia dummy 1.60 5.68 5.70
(18.7) 4.7 4.8)

0, 0.0176 0.0176 0.0176
5.9 (5.9) (5.9

0,, 0.271 0.271 0.271
(25.3) (25.3) (25.3)

0, 0.0829 0.0827 0.0827
(8.3) (8.4) (8.4)

6,, 0.485 0.484 0.484
(21.3) (21.6) 21.7)

™ 297 2.45
(5.05) (6.5)

I 0.259 0.258
4.9 4.9

p’ 0.243 0.321 0.377 0.319 0.368 0.339

Now, the RP data are combined with the SP1 data. The likelihood for the RP
model is expressed by an ordinary binary probit model, while that for the SP1
model is expressed by the ordered probit model with threshold parameters. The
fourth column of Table | shows the joint estimation results. All the estimates
have the expected signs and have small standard errors. The scale parameter .,
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is estimated to be greater than 1, which indicates that SP1 data have less
random noise than the RP data.

Then, the SP2 data are combined with the RP data. Note that the rail specific
constants are separately estimated for each data, and the coefficient of the
inertia variable is only estimated for the SP2 data. The fifth column of Table 1
shows the results of the joint estimation. All the coefficients have the expected
signs. The scale parameter p, is estimated between O and 1, which indicates a
greater variance of the random utilities in the SP2 data.

Lastly, the RP data are combined with the two SP data and all the parameters
are jointly estimated. As shown in the sixth column of Table I, all the
parameters are accurately estimated with the expected signs.

The first step in evaluating the usefulness of the combined estimator is to
inspect the estimated coefficients of the separate RP, SP1 and SP2 models. A
comparison of equivalent coefficients among these three models reveals large
differences in the scales of the estimated utilities; the scale of the SP1 model
is about 2.5 times greater than the scale of the RP model and the scale of the
RP model is about four times greater than the scale of the SP2 model. This
observation is verified by the results of the combined estimators. The ratio of
the scale parameters of the SP1 and the RP models is given by w, with an
estimated value of about 2.5. The ratio of the scales of the SP2 and the RP
models is given by ., with an estimated value of about 0.26. These results
indicate that the respondents were able to sharply discriminate between
alternative rail services in the SP1 experiment. On the other hand, the stated
choices between rail and car alternatives in the SP2 experiment were subject to
significantly greater unexplained variance. Thus, a simple SP experiment such
as SP1, may yield reliable information about trade-offs among attributes.

The most convincing demonstration of the important role that SP data can
play in model estimation is provided by the estimated coefficient of the line-
haul travel time variable. In the RP model this coefficient is too small and not
significantly different from zero. (This is not an unusual occurrence in the
estimation of mode choice models from RP data and may be due to the limited
variability of the difference between car and train line-haul time.) In the SP
models the coefficients of line-haul time have reasonable values and are
significantly different from zero. Thus, a combined estimator that controls for
the difference in scales yields a usable negative coefficient of approximately
-0.4 which can now be used to predict the effects of changes in line-haul travel
times.

The preference bias in the SP2 data toward the mode actually chosen was
detected by the inertia variable. In the RP + SP1 + SP2 model, for example, the
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rail specific constant estimated from the SP data is -3.82 for car users and 1.88
(=-3.82 +5.70) for rail users. Thus, rail users have an SP rail constant of 1.88,
which is greater than the RP value of 0.50, while for car users the SP rail
constant is —3.82 and this is significantly smaller than the RP value. This
indicates that car users have a greater preference bias toward their current mode
than rail users. In other words, car users have a greater inertia or exhibit a
greater justification bias than rail users.

4. APPLICATION OF THE CHOICE MODEL WITH
LATENT ATTRIBUTES

This section presents an empirical case study for the second submodel: choice
models with latent attributes. The Netherland travel survey data described in
the previous section include the following subjective evaluation of trip
attributes for both chosen and unchosen modes and they are used as perceptual
indicators:

(1) relaxation during the trip (relax);

(ii) reliability of the arrival time (relia);
(iii) flexibility of choosing departure time (flex);
(iv) ease of traveling with children and/or heavy baggage (ease);

(v) safety during the trip (safety); and
(vi) overall rating of the mode (overall).
The first five perceptual indicators, (i)—(v) are described by five point ratings
such as: (1) very poor; (2) poor; (3) neutral; (4) good; and (5) very good, and
the overall evaluation of the mode is rated by a 10 point scale. These serve as
y in (5) and are included in terms of the differences between rail and car.

Two latent variables, ride comfort and convenience, denoted by w* in (1) and
(16) are specified as follows:

ride comfort:
wk=Baged + B, first + B;lhtime + B,aged x lhtime + {,, (comfort) (28)
convenience:

wh=B.aged + Botrmtime + Bxfern + By freepark + (,, (convenience) (29)
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where
aged 1 if the traveler is 40 years old or older, 0 otherwise;
first: 1 if the traveler uses the first class by rail, 0 otherwise;
lhtime: line-haul travel time by rail less line-haul travel time by car (hours);
trmtime: terminal time by rail less terminal time-by car (hours);
xfern: the number of transfers by rail; and
freepark: 1 if free parking is available by car, 0 otherwise.

Since all the observable variables are measured in terms of the differences
between rail and car, the two latent variables should also be interpreted as the
differences between rail and car.

The relationship between these two latent variables and psychometric
indicators, y, is described by the following measurement equations:

[y (relax) | D VP €
yrelia) Ay | €2
y4(flex) 0 Ay wi €3
: R (30)
y4(ease) 0 Ay || W3 &y
ys(safety) Asi Asp €5
| yeloverall) | | A, A | [ & ]

The utility function that is the structural equation of the choice model part is
specified as follows:

u* =a,+a,costpp + a,lhtime + atrmtime + axfern + asbusiness
+agfemale + c,wh+ c,wi+v, (31)
where
costpp: travel cost per person (Guilder);
business: 1 if the trip purpose is on business, 0 otherwise; and
female: 1 if female, 0 otherwise.

This model represents the binary RP choice of rail vs. car as described in the
previous section.

First conducted is the sequential estimation method described in Section 2
utilizing available software for linear structural equation estimation. Parameter
estimates of the linear structural equation model are shown in Table 2. All the
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Table 2. Estimates of the Linear Structural Equation Model
Sequential Estimation (¢-Statistics in Parentheses).

wh (%)) T r -
wh W
-0.232(-1.4)  0.406(3.3) (aged)
-0.292(-1.3) 0 (htime) 1 017008)  (rela
., 0.772(1.8) 1 (relia)
B = 0 -0.522(-2.1) (trmtime) A= 0 14943) (A

= = . ) ex)

0.286(1.0) 0 (first) 0 L16(52) (ease)

8 4)6?14621((14;)6) (fg’;f;’;'zk) 0.686(3.1) 0.329(2.0) (safe)
~_0.0405(_0_1) 0 (aged x lhtime) | 1.64(2.6) 2.43(5.9) (overall)_

parameters in the measurement equations have positive signs as expected and
sufficiently large f-statistics. Although some estimates are not significant in the
structural equations, most of them have expected signs.

Then the fitted values of the latent variables are used as explanatory variables
in the rail/car binary choice model with the scale correction as shown in (25).
The estimation results of the choice model with and without the latent variables
are shown in the first and second columns of Table 4, respectively. Both the
latent variables have significantly positive coefficients and raise the goodness-
of-fit substantially. Since the variable of line-haul travel time is used in both the
structural equation model and the choice model, its coefficient in the choice
model becomes insignificant probably due to multicollinearity. The alternative
specific constant (rail constant) becomes also less significant because the two
latent variables capture much of the intangible factors specific to the travel
mode. In other words, the choice model without the latent variables might have
suffered from the omitted variable problem.

Simultaneous estimation is then conducted by using the likelihood given by
(27). Parameter estimates of the linear structural equation part is shown in
Table 3. Most of the parameters have the same tendency in terms of sign and
magnitude as in the sequential estimation result. More parameters are observed
statistically significant in the simultaneous estimation result. The choice model
part shown in the third column of Table 4 demonstrates similar results to the
sequential estimation model. Both the latent attributes have significantly
positive parameter estimates. ]

When the policy analysis is conducted with the future values of the
explanatory variables, only the structural equations can be used because we
usually do not know the future values of the subjective ratings (perceptual
indicators) of the latent attributes. In that sense, having more significant
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Table 3. Estimates of the Linear Structural Equation Part
Simultaneous Estimation (z-Statistics in Parentheses).
wh wh i
wh W%
~04271(-24) 037824 (aged) 0433(7.6) 0280(32) (relax)
~0.323(-1.7) 0 (Ihtime) )
0 _198(-90)  (rmiime) _0.527(12.5) 0.661(10.2) (relia)
B= : ) ' A= 0 0.815(14.7)  (flex)
0.281(0.9) 0 (first)
0 0.794(14.2) (ease)
0 —0.396(-3.7) (xfern)
0.462(11.6) 0311(52) (safe)
0 0482(3.3)  (freepark) 0.784(8.5) 1.76(14.1) (overall)
| -0.339(-1.3) 0 (aged x Ihtime) | ) : : ‘

Table 4. Choice Models with Latent Attributes (z-Statistics in Parentheses).

Model w/o Sequential Estimation  Simultaneous Estimation

Latent Attributes Model Model

Rail constant 0.583 0.322 -1.81
(2.0) (1.0 -0.9)

Cost per person -0.0268 -0.0338 -0.0379
(4.2) (-4.1) (—4.3)

Line-haul time -0.405 0.0751 0.379
(-1.6) 0.2) 0.9)

Terminal time -1.57 ~-1.18 ~-0.818
(—4.2) (-2.6) (-2.3)

Number of transfers —-0.195 -0.316 -0.230
(-1.3) -1.7) (-1.2)

Business trip dummy 0.942 1.33 1.28
(3.6) (3.6) (3.3)

Female dummy 0.466 0.652 0.700
2.3) (2.6) (2.9

w¥ (comfort) 0.882 1.29
2.1 (1.8)

w¥ (convenience) 1.39 1.10
4.1) 4.7)
0.201*

p?

0.242

0.352

Note: * goodness-of-fit measure for both the structural equation and choice models.
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parameters in the structural equations, the simultaneous estimation result is
more useful in this particular case study.

5. ESTIMATION OF THE INTEGRATED MODEL

Integrating the two estimation schemes demonstrated in the two submodels, we
could estimate a choice model with latent attributes using RP, SP and
perceptual data. Table 5 shows an example of such models. Here, the two latent
attributes, ride comfort and convenience, are included in the RP utility
function, and RP data and the two types of SP data are simultaneously used to
estimate coefficients of the utility functions. The linear structural equation
model and the choice model are estimated in the sequential way.

The two latent attributes show the significant explanatory power to the RP
data as also demonstrated in the previous section. Line-haul travel time in the
utility function has a significant coefficient in the utility function. In the
previous section this coefficient lost the explanatory power due to the
multicollinearity between the latent attributes and line-haul travel time. By

Table 5. Estimation Result of the Integrated Model (RP+ SP1 + SP2 + Latent

Variables).
Coefficient t-statistic
Rail constant (RP) 0.526 2.3
Rail constant (SP) : -3.97 -3.8
Cost per person -0.0352 -5.7
Line-haul time -0.407 -53
Terminal time -1.20 -3.6
Number of transfers -0.0590 -35
Business trip dummy 0.404 1.8
Female dummy 0.262 1.5
Inertia dummy 5.76 44
w¥ (comfort) 0.615 23
w¥ (convenience) 0.973 34
0 0.0176 5.9
8,5 0.271 25.3
6, 0.0827 8.4
0,, 0.484 21.7
W, 2.35 5.6
O 0.257 4.5

p* 0.341
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combining RP and SP data, this key variable recovered significance in the
utility function.

Coefficients of the other variables and the scale parameters have similar
estimated values to the ones shown in Table 1. This empirical analysis can be
seen as a demonstration of efficacy of the methodology presented in the

paper.
6. CONCLUSIONS

This paper presents a methodology for incorporating psychometric data such as
stated preferences and subjective ratings of attributes into the discrete choice
modeling framework. The framework is composed of discrete choice models
which describe discrete responses of revealed and stated preferences and a
linear structural equation or covariance structure model which identifies latent
attributes from psychometric perceptual indicators.

Empirical case studies on travel mode choice analysis have demonstrated the
effectiveness of this methodology. Combined estimation of RP and SP models
helped identify coefficients of important variables such as line-haul travel time
and detected SP specific biases. Latent attributes identified by the linear
structural equation model significantly improved the goodness-of-fit of the
discrete choice model.

In the case study of the RP/SP combined estimation method, three combined
models were estimated: RP data combined with SP1 (rail vs. rail) data, RP data
combined with SP2 (rail vs. car) data, and RP data combined with both SP1 and
SP2 data. These combined models were compared against the three models that
were separately estimated from the three data sets. The RP model could not
successfully identify an important parameter (the coefficient of line-haul travel
time), which is a typical problem encountered in estimating models from RP
data. This is usually caused by lack of variation in the data and/or
misspecification of the model. However, obtaining an acceptable model
specification is often very difficult because the actual behavior is influenced by
related attributes while the available data are limited. Furthermore, even if the
correct model specification was known, estimation of model parameters could
fail because of data limitations. SP experiments present simplified hypothetical
choice contexts and, therefore, may provide useful information on trade-offs
among attributes.

The case study provided a clear demonstration of the usefulness of the
combined estimation method. Specifically, the coefficient of the line-haul travel
time variable was successfully estimated by combining RP and SP data. The
SP1 experiment for rail vs. rail choice provided information on the trade-offs
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among attributes with the least random noise. On the other hand, SP data are
often not reliable because of the oversimplified hypothetical circumstances.
This problem was mitigated by using additional variables from the RP data in
estimating the SP model.

A potential bias in the SP data was captured by the introduction of the inertia
variable. This variable captured the preference bias toward the mode actually
chosen. As discussed above, it was found that car users had a greater inertia or
habitual effect in choosing a travel mode.

Thus, these case studies successfully demonstrated the key features of the
RP/SP combined modeling method (Ben-Akiva & Morikawa, 19904, b):

(i) efficiency: joint estimation of preference parameters from all the
available data;
(ii) bias correction: explicit response models for SP data that include both
preference and bias parameters; and
(iii) identification: estimation of trade-offs among attributes and the effects
of new services that are not identifiable from RP data.

This methodology of combining different preference data sources has recently
been widely applied in various contexts not only in demand forecasting but also
in environment valuation (e.g. Hensher & Bradley, 1993; Swait & Louviere,
1993; Adamowicz et al.,, 1994; Ortuzar & lacobelli, 1998; Hensher et al.,
1999).

The paper also proposed a method for incorporating attitudinal data such as
subjective ratings of latent attributes. The framework is composed of discrete
choice models which describe discrete responses of revealed choices and a
linear structural equation model which identifies latent attributes from
psychometric perceptual indicators. It is totally different in concept from the
traditional methods in which psychometric indicators are directly used as
explanatory variables. The key feature of the proposed method is that we can
calculate the latent attributes from the observable variables once parameters are
estimated. This implies that the models described in this paper can be used for
forecasting demand in conjunction with changes in product attributes, level-of-
service, and consumer’s characteristics.

The empirical case study demonstrated the effectiveness of this methodology
by showing that inclusion of the latent attributes significantly improved
goodness-of-fit measure of the discrete choice model. Two estimators were
presented: sequential and simultaneous estimation. The sequential method can
utilize existing linear structural equation estimation software such as LISREL,
but provides not fully efficient estimators. The simultaneous full information
maximum likelihood method yields efficient estimators although it requires
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programming the likelihood. The empirical analysis showed that the two
methods yielded similar estimation results both in the choice model part and in
the linear structural equation model part. But the more effective result was
obtained by the simultaneous estimation in the sense that more significant
parameter estimates were found in the structural equations that are used for
forecasting.

An estimation result of the model that integrates the two submodels is
exhibited in Chapter 5. This particular empirical analysis shows strong
explanatory power of the latent attributes that are identified by a structural
equation model and significance of key variables such as travel time and cost
in the utility function, which demonstrates effectiveness of combining RP and
psychometric data in a general and consistent framework.

In the general framework of consumer behavior analysis depicted in Fig. 1,
focused on in this paper are incorporating stated preferences and perceptual
indicators to better identify latent preferences and perceptions. The method-
ology proposed in this paper seems to be well supported by the case studies.
More empirical works, however, are called for in order to justify it in a more
conclusive way. Some of the other aspects of the general framework have also
been worked by the authors. Discrete choice models with explicit consideration
of situational constraints and choice set formation are proposed by Ben-Akiva
and Boccara (1995) and Morikawa (1996). Preliminary work on incorporating
attitudinal indicators has been done by Sasaki et al. (1999).
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ANALYSIS OF MULTI-CATEGORY
PURCHASE INCIDENCE DECISIONS
USING IRI MARKET BASKET DATA

Siddhartha Chib, P. B. Seetharaman and Andrei Strijnev

ABSTRACT

Empirical studies in Marketing have typically characterized a household’s
purchase incidence decision, i.e. the household’s decision of whether or
not to buy a product on a given shopping visit, as being independent of the
household’s purchase incidence decisions in other product categories.
These decisions, however, tend to be related both because product
categories serve as complements (e.g. bacon and eggs) or substitutes (e.g.
colas and orange juices) in addressing the household’s consumption
needs, and because product categories vie with each other in attracting
the household’s limited shopping budget. Existing empirical studies have
either ignored such inter-relationships altogether or have accounted for
them in a limited way by modeling household purchases in pairs of
complementary product categories. Given the recent availability of IRI
market basket data, which tracks purchases of panelists in several product
categories over time, and the new computational Bayesian methods
developed in Albert and Chib (1993) and Chib and Greenberg (1998),
estimating high-dimensional multi-category models is now possible. This
paper exploits these developments to fit an appropriate panel data
multivariate probit model to household-level contemporaneous purchases
in twelve product categories, with the descriptive goal of isolating
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correlations amongst various product categories within the household’s
shopping basket. We provide an empirical scheme to endogenously
determine the degree of complementarity and substitutability among
product categories within a household’s shopping basket, providing full
details of the methodology. Our main findings are that existing purchase
incidence models underestimate the magnitude of cross-category correla-
tions and overestimate the effectiveness of the marketing mix, and that
ignoring unobserved heterogeneity across households overestimates
cross-category correlations and underestimate the effectiveness of the
marketing mix.

1. MOTIVATION

Over the past decade, marketing researchers have devoted a lot of attention to
the problem of modeling household purchase incidence at the category level
(see, for example, Chiang, 1991; Bucklin & Lattin, 1991; Chintagunta, 1993).
One reason for modeling category purchase incidence, in addition to brand-
choices within the product category, is that such a model provides improved
estimates of brand-choice elasticities with respect to marketing mix variables,
properly accounting for not just the direct impact but also the indirect impact
on brand-choice via category purchase incidence (Chiang, 1991). A second
reason stems from the researcher’s desire to understand what factors drive
category purchase incidence and what impact, if any, marketing-mix variables
at the brand level have on category purchase incidence. A third reason is the
purely descriptive goal of isolating correlations amongst various product
categories within the household’s shopping basket, thereby providing a scheme
to determine which categories are complements and which are substitutes.
Previous studies have largely focused on the first issue, i.e. obtaining
improved estimates of brand-choice elasticities. The second issue, i.e.
estimating the impact of brands’ marketing variables on category purchase
incidence, and the third issue, i.e. estimating cross-category correlations, have
been incompletely addressed at best. While the former is in part due to the
difficuity of formulating appropriate models of category purchase incidence,
the latter is largely due to the computational problems of fitting realistic
household-level category purchase incidence models on scanner panel data. For
example, if a household buys thirty different product categories during a visit
to the store, a model that estimates cross-category correlations must simul-
taneously model houschold decisions in thirty different product categories, an
onerous task by any standards. The purpose of this paper, which is part of a
two-stage research agenda, is to explicitly address the third issue, i.e. estimate
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cross-category correlations within the household’s shopping basket. We study
what information is contained in category purchase incidence data when, not
just two or three, but a large number of category purchase incidence decisions
(twelve in our case) are modeled simultaneously. The success of our fitting
enterprise, based on the work of Albert and Chib (1993) and Chib and
Greenberg (1998), and summarized in this paper, makes us hopeful that we
will be able to scale-up our model to include all the twenty or so categories
in the typical shopping basket. The second-stage of our research, described
in a companion paper, addresses all three issues simultaneously, i.e. jointly
modeling category purchase incidence and brand choice when the number of
categories is large.

2. OBJECTIVES OF THIS STUDY

Households make purchase decisions in several product categories when they
visit the supermarket. For example, a household’s regularly scheduled trip to
the grocery store may involve the purchase of soft drinks, chips, ketchup,
cookies, peanut butter, ice cream, laundry detergents, etc. To the extent that
product categories serve different consumption needs of the household,
household purchase decisions may appear to be independent across product
categories within the household’s shopping basket. For example, a household’s
decision to purchase laundry detergents may be independent of the household’s
decision to purchase bacon or soft drinks since each product serves a
fundamentally different consumption need. On the basis of this independence
assumption, empirical researchers typically estimate household purchase
incidence decisions separately for each product category, i.e. whether or not a
household will buy ketchup during a visit to the store is modeled independently
of whether or not it will purchase other products in the store (see, for example,
Bucklin & Lattin, 1991; Chiang, 1991). This 1s also referred to as the weak
separability assumption.

It is unlikely that the weak separability assumption applies to all product
categories within a household’s shopping basket. For example, some products
may serve as consumption complements of each other (say, bacon and eggs)
while others may serve as consumption substitutes of each other (say, cola and
orange juice).! Researchers have accounted for this by identifying pairs of
products, a priori, that are obvious complements of each other and estimating
bivariate models of household purchase incidence decisions across the two
product categories (Chintagunta & Haldar, 1998; Manchanda, Ansari &
Gupta, 1999). Such a framework is applicable only when one can identify a
priori relationships among product categories. In general. however, one must
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endogenously infer the relationships between product categories within the
household’s shopping basket using purchase data. For example, one must
estimate a high-dimensional model of household purchase incidence decisions
across all product categories within the household’s shopping basket (also
referred to as a basket-level model henceforth). Such a basket-level model will
endogenously estimate correlations across all pairs of product categories rather
than across predefined product categories only. Even if the focus is on
estimating correlations among and/or marketing mix elasticities within
predefined pairs of product categories (as in Chintagunta & Haldar, 1998;
Manchanda, Ansari & Gupta, 1999), it is important to estimate these
correlations and elasticities using a basket-level model to eliminate the effects
of misspecification bias. This is the first objective of this study, and we
summarize it below:

Objective 1: We estimate a basket-level model of household purchase
incidence decisions to obtain estimates of pair-wise correlations across all
product categories within the household’s shopping basket and estimates of
marketing mix elasticities in each product category.

Cross-category correlations are of interest to retailers seeking to maximize
store profits by jointly coordinating marketing activities across product
categories within the store. Cross-category correlations are also of interest to
database marketers interested in undertaking cross-selling initiatives across
product categories (Berry & Linoff, 1997). A complete basket-level model of
household purchase incidence decisions, as proposed in this study, has not been
estimated thus far in the marketing literature. We estimate our basket-level
model using scanner panel data, which tracks the purchases of a fixed number
of households across twelve different product categories in the store over
time.

While using scanner panel data, it is important to investigate how sensitive
the estimated cross-category correlations are to the panel structure of the data.
In other words, one must assess the impact of (ignoring or accommodating)
unobserved heterogeneity across households on the estimated cross-category
correlations. To the extent that cross-category correlations may proxy for the
effects of unobserved heterogeneity if the latter is ignored, it is possible that
cross-category correlations may be overstated (and hence “spurious”) in the
absence of unobserved heterogeneity. Also, the estimated marketing mix
elasticities in each product category may be sensitive to the inclusion of
unobserved heterogeneity across households. Explicitly investigating this issue
is the second objective of this study, and we sumrmarize it below:
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Objective 2: We estimate the basket-level model of household purchase
incidence decisions both with and without accommodating the effects of
unobserved heterogeneity across households in order to investigate the
consequences of ignoring unobserved heterogeneity on the estimated cross-
category correlations and households’ responsweness to marketing variables
in each product category.

Disentangling cross-category correlations from unobserved heterogeneity is
important to retailers since the two phenomena imply different marketing
strategies. For example, if cross-category correlations are observed to be
simply proxies for unaccounted-for heterogeneity across households, the
marketer could develop marketing programs separately for each product
category taking into account the estimated heterogeneity distribution. In such a
case, separately maximizing the profits from each category is tantamount to
maximizing overall store profits.

To summarize, we propose a basket-level model of household purchase
incidence decisions and estimate the proposed model using scanner panel data
on household purchases across twelve product categories. The proposed model
has a multivariate probit panel structure and is used to estimate pair-wise
correlations in households’ random utilities across the twelve product
categories. We employ an extension of a recently developed Bayesian method
(Albert & Chib, 1993; Chib & Greenberg, 1998) to estimate model parameters.
Our main findings are that either ignoring or incompletely accounting for cross-
category correlations within household shopping baskets overestimates the
effectiveness of marketing variables in driving purchase incidence decisions.
We also find that ignoring unobserved heterogeneity across households
overstates cross-category correlations and understates the effectiveness of
marketing variables. The rest of the paper is organized as follows. In the next
section we propose the multivariate probit panel model and discuss estimation
issues. In Section 4, we provide details of the Markov Chain Monte Carlo
sampling scheme. In Section 5, we give a detailed description of the data. In
Section 6, we present our empirical results. We conclude with a summary and
directions for future research in Section 7.

3. MODEL AND ESTIMATION

Notation

Suppose we observe binary responses of H households in J product categories
over time. We refer to this collection of responses as {y,, (0, {): h=1... .. H.
t=1,...,T,; j=1,...,J} where subscripts A, t and j refer to household
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shopping occasion and product category respectively. We define v, = (V15 Vi
s )y Y= Ohts Yoo - - > Yir)' @nd y=(y}, ¥3, . . ., yp)". Note that y,, is a
scalar, y,, is a J-dimensional vector, y, is a J *T,-dimensional vector and y is a
3, J*T,-dimensional vector.
We also observe values of k marketing variables for each product category
at each shopping occasion for each household. We refer to this collection

of k-dimensional covariate vectors as {X,:h=1,... H;t=1,...,T;
j=1,...,J}. We define X,, as
X O ... 0
0 X, ... O
X, = , 1
" 0 0 ... 0 )
0 0 ... X

and define X, =(X};, X700 -+ ., X))’ and X=(X}, X3, ..., Xg)'. Note that X,,
is a (J)*(k*J)-dimensional matrix, X, is a (J *Th)*(k*J)-dimensional matrix and
X is a (%, J*T,) * (k*J)-dimensional matrix.

We assume that y,, not only depends on X, but also is correlated with y,,
(for k#j). In other words, a household’s response in a product category
depends both on category-specific marketing variables and on the household’s
responses in other product categories. This is a multivariate choice problem for
the household. Previous work has either completely ignored dependencies
across yy,; S, thereby assuming univariate choice problems for the household for
each product category (Chiang, 1991; Chintagunta, 1993), or accounted for
dependencies across a limited number of obviously related product categories
(Chintagunta & Haldar, 1998; Manchanda, Ansari & Gupta, 1999). In our
framework we pose the multivariate choice problem in the context of the
household’s shopping basket, and therefore in its fullest generality. Next we
present the model that explains the observed response vector y.

Multivariate Probit Model with Unobserved Heterogeneity
Let household A’s latent utility at shopping occasion ¢ for product category j be
given by
2y =X 1B+ by + ¢+ €4y, 2)

where X, is a k-dimensional vector of marketing variables pertaining to
product category j facing household h at shopping occasion 1, B; is the
corresponding k-dimensional parameter vector (B, By, . . . , By). b, represents
a household-specific random effect that is distributed N(O, 4), c,; represents a



Analysis of Multi-Category Purchase Incidence Decisions 63

household/category-specific random effect such that ¢,=(c,;, € ..., Cpy)' 18
distributed Ny(0,C), and &, is a random component such that
£, =&, - - - - E4y)" is distributed N0, %), where 2. is a J*J covariance matrix
given by
1 o, ... oy

1 ... ¢

2: . . (3)
Gy
1

This covariance matrix is in correlation form for identifiability reasons and
contains p=J*(J — 1)/2 free parameters (see Chib & Greenberg, 1998 for

details) given by 0 = (05, 03, . . ., 0, ).
It is also helpful to rewrite the model in (2) for all J categories as
Z,=XuB+i,b,+1,c,+ey, (4)
where Z,=(Zy ... Zw) . X, is the (J)*(k*J)-dimensional matrix of

marketing variables facing the household at shopping occasion 7 (as given by
Eq.(1)), B is the corresponding k*J/-dimensional parameter vector
(Bis By - - - By) where B=(B;;, B, - - - » By, i; is a J-dimensional vector of
ones, I, is a J*J identity matrix, b, is a household-specific (scalar) random
effect that is distributed N(0, d), and ¢, is a J-dimensional household-specific
random effect vector that is distributed N, (0, C). Observed responses y,,; are
determined by the unobserved latent variables Z,, as:

Yui=11Z;,;> 0], (5)

where [ is the indicator function. This completes the specification of our model.
The total number of parameters in the proposed model is equal to
J*k+(J — D2+ 1] (i.e. k*J covariate coefficients, plus J*(J — 1)/2 correla-
tion coefficients, plus J*1 random effects parameters).” If the number of
product categories J is small (say, 2—4) we obtain the cross-category model of
Manchanda, Ansari and Gupta (1999). If the random effects are restricted to be
the same across product categories, i.e. ¢, is ignored, we obtain a restricted
version of our proposed model that assumes the unobserved heterogeneity
distribution to be common across product categories. If the effects of
unobserved heterogeneity are ignored altogether (i.e. b, and ¢, are ignored), we
obtain a cross-sectional version (as opposed to a panel version) of our proposed
multivariate probit model (as in Chib & Greenberg, 1998). If correlations
across product categories are ignored in the common random effects model, i.e.
3=/ (a diagonal matrix of ones), we obtain J independent category models
with a common unobserved heterogeneity distribution. If the unobserved
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heterogeneity distributions are assumed to be independent across product
categories, we obtain single-category heterogeneous models as in Chiang
(1991), Bucklin and Lattin (1991), Chintagunta (1993) etc.

We can estimate marketing mix elasticities for each product category based
on our proposed model and compare these elasticities to those obtained using
a model that ignores cross-category correlations 2. This allows us to
understand the effects of ignoring cross-category correlations on measures of
managerial relevance such as price elasticities (our research objective no. 1).
We can also compare the correlation matrix %, estimated using our proposed
model with that estimated using a restricted version of the model that ignores
household-specific random effects (i.e. b, and c,). This allows us to understand
the effects of ignoring unobserved heterogeneity across households on the
estimated cross-category correlations (our research objective no. 2).

Given J product categories and T, observations for a given household h,
likelihood-based estimation of our proposed model requires the computation of
the likelihood contribution

Pr(y,IB, o, d, C)
T,
=f[ﬂf J J d),(Z,,,IX,,,B+i,b,,+I,c,,,2)dZ,,,>]
=1 JBuy JBu-1, By,
- &(b,10, d)d(c, 10, C)db,dc,, (6)

for each household 2=1, . . ., H, where &,(.|p, 2) is the density of a J-variate
normal distribution with mean p and covariance matrix X, By, is the interval
(0, %) if y,;, = 1 and the interval (-, Q) if y,;, =0. This likelihood contribution is
quite difficult to compute even using simulation techniques. Given the
computational intractability of likelihood-based estimation, we adopt a
simulation-based Bayesian approach to estimate model parameters.

Bayesian Approach to Model Estimation

Given the response vector y, the matrix of covariates X, and a prior density on
model parameters given by (B, o, d, C), Bayes rule yields

(P, o,d, Cly)xw(, o,d, CY*Pr(yIB, 0,d, C), (7

where

) |
Pr(y|B, 0.d, C)= (ﬂ Pr(y, B, o, d, C)> *UloeQl, @)
h=1
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and Pr(v,I1B, 0, d, C) is given by Eq. (6) and Q is a convex solid body in the
hypercube [-1, 1]” that leads to a proper correlation matrix. This form of the
posterior density is not particularly useful for Bayesian estimation since it
involves the evaluation of the complicated likelihood function (just as in
likelihood-based estimation). Instead of attempting to directly evaluate the joint
posterior density we invoke the data augmentation framework of Albert and
Chib (1993) and Chib and Greenberg (1998). This framework is based on
taking a sampling-based approach, in conjunction with Markov Chain Monte
Carlo (MCMC) techniques (Tanner & Wong, 1987; Gelfand & Smith, 1990;
Tierney, 1994; Chib & Greenberg, 1995), based on the conditional distributions
given by

v, B,o,d, Cyt=1,...,T:h=Y, ... H

Bly, Z,,0,d,C

b\yy, 24, B,0,Ch=1,...,H

clyy 2, B, o, d;h=1,.. . H

oly, 2, B, d, C

&'y, Z,,B, 0, C

C'ly, Z2,B,0,d

Each of these distributions (except that of o) is of known form and can be
sampled directly. Details are provided in the next section. The key
simplification that data augmentation provides in our context is that it allows us
to bypass the computation of the likelihood.

4. MARKOV CHAIN MONTE CARLO (MCMC)
SAMPLING

Prior Distributions

For the purposes of our analysis, we assume that our prior information can be
represented by the distributions

B~Niy (B,, B,),

0~ Ny (80 G,) *HoeQl,
d'~Gn,, ¥,),

C"'~ Wishy(p,, R,),
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where the hyperparameters are as follows: B, is a k*J-dimensional vector of
zeros, B, is a (k*J)*(k*J) diagonal-matrix, with its diagonal elements equal to
0.1 implying a variance of 10 for each component of 3, g, is a p-dimensional
vector with all its elements equal to 0.5, G, is a p*p identity matrix, m,=1,
X,=3, p,=1+4, R,=3*1,,,. The choice of these priors is intended to represent
vague prior information.

MCMC Algorithm

We are interested in simulating from the posterior distribution of
({Z,}, B, 0. {b,}, {c,},d7', C™"), where Z, is a J*T,-dimensional vector given
by (Z1Z42- - - Ziz)'. While it is difficult to sample from the joint posterior, it
is possible to simulate from the conditional distributions f(Z,|8, o,d™', C™"),
w(BHZ,), o, d”, C, w(by, ¢,1{Z,}, B, 0, CT), m(@{Z,}, B, {by}, {au},
d',CYand w(D'1{Z,}, B, o, {b,}, {c,}). The MCMC sampling algorithm
works as follows.

Step 0: Initialize B to B, o to 0, set g=1

Step 1: Draw Z* from f(Z,ly, ¥~ ", ¢% ", d7'¢" ", C'*" ") h=1,...,H.
Step 2: Draw B® from w(Bly, {Z®}, g® D, g7'¢~b C-'e7Y),

Step 3: Draw b from m(b,ly, {ZP}, B®, cf™", ¥~ ", g '®¢~ ", Ce

h=1,...,H.
Step 4: Draw c‘g’ from w(c,ly, {Z¥}, B®, b, a®~ ", d7'€ " CTeED),
h=1,...,H.

Step 5: Draw ¢ from w(aly, {Z¥}, B®, (bF), (¥}, d71€ D, Cc1e™ D),
Step 6: Draw d™'® from w(d'ly, {Z?}, B®, o, {b#}, {c®}, C'¢ ),

Step 7: Draw C™'® from w(C'ly, {Z¥'}, B¥, o (3’ (B}, (c¥},d e ).
Step 8: g=g+1.

Step 9: Go to step 1.

The above cycle of seven steps is repeated a large number of times (in
our example, the entire simulation is run for 10,000 cycles). From the
theory of MCMC simulations, it follows that the draws on
0=({Z,}, B, {by}. {c,},0.d',C™"), beyond a bumn-in period of say 500
iterations, may be taken as draws from the posterior distribution of 6.
Therefore, on the basis of the simulated sample, we are able to obtain point and
interval estimates of the parameters and other summaries of the posterior
distribution. Next, we provide the form of each of the five cond1t10nal
distributions given in steps 1-7.

- Zyly, B, o, d™, C'x N, (Z 1 X8, iJThd+(iJTh®II)C(iJTh®IJ)/ +15,®2)*
H,H,{I(Z,,,,>O)*I(yh(,= D+1(Z,,<0)*1(yv=0)}, where iy, is a J*T;-
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dimensional vector of ones, I, is a J*/J identity matrix, and [, is a JT,*JT,
identity matrix. This is a truncated multivariate normal distribution. This
distribution is sampled through a Gibbs cycle (see Geweke, 1991). This
representation of the conditional posterior of Z, follows from Albert and
Chib (1993).

2. By, (Zy), 0, d', C"'~Nuy(BIB, B), where B=(B,+X;(I5®%)'X,)"
B= B(B_an+2hXh(ITh®2) 'Z,).

3. b0y, {Z,), B, o, d", C", c,~N,(b,|b,, B), where B,=(dL)y" +311,)y",
b,=B, C,1,(Z, — X,,,B Lec)), h=1,... H.

4. ¢,ly, {Z,), B, 0, d”", C, bh~N,(c,,|l3,,, B), where B.=(C'+3,11,)"
b.=B.CIZ,— X,B—i,b)), h=1,... H.

5.0ly, {Zu), B, b {an) d”, CW‘NN!*(J*I)/z 8, G)*lloeQ]*
ILIIN,(Z, | X,.B+i,b,+1,c,, 2). We use the Metropolis-Hastings algorithm
to sample from this non-standard distribution (details given in the next sub-
section), following Chib and Greenberg (1998).

6. d 'y, B, {b,,} {c,}, o ~1G(m,+H, X), where x = (x;' + 2, b, b))

7. C'ly, B, (b}, {c,}, o~W,(p,+H, R), where R=(R,' +3,c,c)) .

Metropolis-Hastings (M-H) Algorithm

The only distribution in the set above that cannot be sampled directly is the

distribution of o, i.e. w(aly, {Z,}, B, {b,}, {c4}, d!, C™"). To sample this

distribution we use the M-H algorithm (see Chib & Greenberg, 1995 for a

detailed exposition). Suppose q(alo’, y, {Z,}, B, (b}, {c;,}, D) is a

candidate generating density. Then to draw o we proceed as follows.

Step 1: Sample a proposal value ¢’ given ¢ from ¢ (¢ 'y, {Z,}, B, {b,}, {¢,}).
D).

Step 2: Move to o’ with probability a(o, o) and stay at o with probability
| —a(o, '), where

a(o,0')=

7@ 13,2 B B (), D) (@107, 5. 2, B (B (), D7)
W01, Z, B, ). {6), D7) g0 10, 7. Z,, B, (b)) ,{ } D)

We use the tailored chain as our choice of candidate generating density. as in
Chib and Greenberg (1998). It is specified as

og'=p+g,
where . is a p-dimensional vector, taken to be the mode of log w(oly, {Z,}.
B, {b.}, {¢,}, d', C™") and g ~MVt(0, 7V, v), where V is the negative of the
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second derivative of log w(a'ly, {Z,}, B, {b,}, {4}, d™', C™") evaluated at the
mode. This approach leads to a well mixing Markov chain.

5. DESCRIPTION OF DATA

We employ IRI’s scanner panel database on household purchases in twenty-five
product categories in a metropolitan market in a large U.S. city. For our
analysis, we pick twelve product categories: bacon, butter, coffee, cola,
crackers, detergent, hot dogs, ice cream, non-cola beverages, sugar, toilet tissue
and paper towels. These product categories’ have been identified in the
literature as being representative of the household’s “shopping basket” (see
Bell & Lattin, 1998). The dataset covers a period of two years from June 1991
to June 1993 and contains shopping visit information on 494 panelists across
four different stores in an urban market. For each product category, the dataset
contains information on marketing variables — price, in-store displays, and
newspaper feature advertisements — at the SKU-level for each store/week.

Choosing households that bought at the two largest stores in the market (that
collectively account for 90% of all shopping visits in the database) yields 488
households. From these households, we pick a random sample of 300
households making a total of 39,276 shopping visits at the two largest stores.
This is done to keep the size of the dataset manageable. For those shopping
visits when a household visits the store but does not purchase a particular
product category, we compute marketing variables as share-weighted average
values across all SKUs in the product category, where shares are household-
specific and computed using the observed purchases of the household over the
study period. Computing marketing variables using such share-weighting has
precedence in the empirical marketing literature on category purchase
incidence* (see, for example, Manchanda, Ansari & Gupta, 1999). Descriptive
statistics pertaining to the marketing variables are provided in Table 1.

From Table 1 we can see that average display and feature activity is higher
for purchase visits than for non-purchase visits, as expected, for all product
categories. In terms of the magnitude of the difference in display and feature
activity between purchase and non-purchase visits, the largest magnitude is
observed for toilet tissue, suggesting that store merchandising activities
strongly influence household purchase incidence for this product category. The
smallest magnitudes are observed for ice-cream and non-cola beverages for
display and feature respectively. Average prices are lower for purchase visits
than for non-purchase visits, as expected, for ten out of the twelve product
categories. By and large, these descriptive statistics are consistent with the
economic notions of positive own-advertising elasticities, negative own-price
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Table 1. Descriptive Statistics on Marketing Variables
Number of households = 300, Number of shopping visits =39,276.

A. Purchase visits

Product Price ($/RP) Display Feature No. of Purchases
Bacon 1.7915 0.2078 0.5338 2473
Butter 1.0425 0.1910 0.3079 5787
Coffee 1.9107 0.3174 0.3439 3022
Cola 0.6033 0.3999 0.4749 5099
Crackers 2.9236 0.2093 0.1280 4214
Detergent 0.8991 0.3550 0.2840 3159
Hot dogs 2.0753 0.1564 0.3832 3847
Ice cream 0.7196 0.0019 0.3964 4334
Non-cola 0.6654 0.1963 0.1340 5922
Sugar 0.4565 0.3681 0.3820 2275
Tissue 0.3041 0.4084 0.4457 5534

Towels 0.7386 0.3561 0.3544 4482

B. Non-purchase visits

Product Price ($/RP) Display Feature No. of Visits
Bacon 2.2949 0.0739 0.2333 36,803
Butter 1.1089 0.0686 0.1169 33,489
Coffee 2.0284 0.1074 0.0998 36,254
Cola 0.7080 0.1392 0.2306 34,177
Crackers 2.6717 0.1003 0.0569 35,062
Detergent 1.1150 0.0937 0.0547 36,117
Hot dogs 2.4145 0.0461 0.1612 35,429
Ice cream 0.8042 0.0008 0.1585 34,942
Non-cola 0.6736 0.1086 0.0779 33,354
Sugar 0.4456 0.1193 0.1197 37,001
Tissue 0.3369 0.1236 0.1345 33,742

Towels 0.8081 0.1159 0.1060 34,794

elasticities etc. From the last column of Table 1, we can see that the most
frequently purchased product category is non-cola beverages (with butter
coming second), while the most infrequently purchased product category is
sugar (with bacon coming second).

In Table 2a, we report, in matrix form, the purchase frequencies for cach
product category along the diagonal and pair-wise purchase frequencies for
each pair of product categories (i.e. the number of times each pair of product
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categories is purchased together) along the off-diagonal. For example, bacon is
purchased on 2473 shopping visits, of which 710 are associated with the joint
purchase of butter. This means that 28.7% of all bacon purchases are associated
with joint purchase of butter. We report bivariate rank correlations, based on
these purchase frequencies, in the lower half (i.e. below the main diagonal) of
Table 2b. Cross-category correlations are fairly evident, with high magnitades
observed for two pairs: tissue and towels (0.2913), non-cola and cola beverages
(0.2026).

All the observed correlations in Table 2b are positive. The reason for this is
the large number of “zeros” that characterizes the vector of purchase outcomes
for each product category. For example, among the 39,276 store visit
observations in the dataset, only 5922 resulted in the purchase of non-cola
beverages, 5534 resulted in the purchase of tissue, etc. This means that product
categories appear to be complements for no reason other than the fact neither
was purchased on a large number of purchase occasions. One way to “correct”
for this is to recompute bivariate correlations for each pair after ignoring
observations that resulted in a purchase of neither (let us call these “zero
observations”). But this creates a problem of the opposite kind, i.e. all pairs of
product categories appear to be substitutes on account of our ignoring a large
number of outcomes when neither is purchased. However, the amount of
distortion observed in the bivariate correlation for a given pair of product
categories when its zero observations are ignored, is almost identical to the
distortion observed for any other pair of product categories when their zero
observations are ignored. This means that comparing bivariate correlations
across pairs of product categories is meaningful, regardless of how we compute
the correlations. For example, toilet tissue and towels have a much higher
bivariate correlation than bacon and coffee regardless of whether or not we
ignore each pair’s zero observations. Armed with these preliminary findings,
we next estimate our proposed econometric model on the basket data in order
to estimate cross-category relationships after accommodating the effects of
covariates, panel structure of the data etc. While estimating the proposed
model, we include the following variables in the household-specific vector X,,
(see Eq. 2) for each of the twelve product categories in the shopping basket.

1. Price

2. Feature
3. Display
4. Inventory

Price is a continuous variable, operationalized in dollars per ounce. Feature and
display are indicator variables, that take the value 1 if the product is on feature
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or display respectively, and 0 otherwise. Inventory is a continuous variable
(measured in ounces per week), which is computed using the household’s
product consumption rate which, in turn, is computed by dividing the total
product quantity purchased by the household over the study period by the
number of weeks in the data. For the first week in the data, each household is
assumed to have enough inventory for that week, i.e. the inventory variable for
a household at r=1 is assumed to be the household’s weekly product
consumption rate. We incorporate random effects in the intercept terms for each
product category.

6. EMPIRICAL RESULTS

We estimate the proposed basket-level model of purchase incidence decisions
as well as five benchmark models, as shown below, in order to investigate the
consequences of ignoring either cross-category correlations or unobserved
heterogeneity across households.

Model 1: Multivariate Probit — Full twelve categories

Model 2: Multivariate Probit with unobserved heterogeneity restricted to be
common across categories — Full twelve categories

Model 3: Multivariate Probit — Four categories only

Model 4: Multivariate Probit — Two categories only

Model 5: Independent Univariate Probits

Model 6: Multivariate Probit without unobserved heterogeneity

Comparing model 1 vs. model 2 allows one to investigate the consequences of
restricting the unobserved heterogeneity distribution to be the same across
product categories. For models 3 and 4, we retain the assumption of common
unobserved heterogeneity distribution across product categories (as in model
2). Comparing model 2 vs. models 3 and 4 will demonstrate the consequences
of modeling households’ purchase incidence decisions only across subsets of
the twelve product categories. For model 5, we assume the unobserved
heterogeneity distribution to be different across product categories (as in model
1). Comparing model 1 vs. model 5 will demonstrate the consequences of
modeling purchase incidence decisions jointly as opposed to separately across
product categories. Comparing models 1 or 2 vs. model 6 will demonstrate the
consequences of ignoring unobserved heterogeneity across households in a
multivariate probit model.

First we look at the estimated inter-category correlation matrix based on the
proposed multivariate probit model, allowing the unobserved heterogeneity
distribution to be different across product categories (i.c. model 1). This is
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summarized in Table 3. The lower triangle reports the posterior means, while
the upper triangle reports the 95% posterior credibility intervals (symmetric
about the posterior mean). The off-diagonal terms in this table indicate that
inter-category correlations are non-zero in general, with the correlations being
quite large for specific pairs of product categories. For example, the estimated
correlation in purchase incidence outcomes between cola and non-cola
beverages has a mean of 0.4216 and a credibility interval of (0.40, 0.45). This
indicates that households, rather than viewing cola and non-cola beverages as
consumption substitutes, buy them together for complementary consumption
needs, i.e. to maintain variety in their “beverage pantry.” The estimated
correlation is also large for hot dogs and bacon (0.3812), another possible
consequence of the household’s need for variety in the kitchen, this time among
the meat products in their refrigerator. A third pair of product categories for
which the estimated correlation is high is tissue and detergents (0.3744). This
finding is especially interesting since there is little opportunity for a sheer
coincidence effect, i.e. the two product categories frequently co-occurring in
the household’s shopping basket on account of having short inter-purchase
cycles. In fact, inter-purchase times in these product categories are much larger,
on average, than for other product categories in the data. One possible
explanation for the large value of the estimated correlation is that since
detergents and tissue are typically shelved close to each other in the grocery
store, frequently in the same aisle, households have a propensity to pick up
both products at the same time. One managerial implication of this “shelf
effect” phenomenon is that the retailer may improve store profitability by
shelving high-margin product categories close to products with short inter-
purchase cycles so that every time a consumer picks up the latter off store
shelves, she faces an opportunity to pick up the nearby high-margin product as
well.

In Table 4, we report the estimated cross-category correlations using model
2 that assumes the unobserved heterogeneity distribution to be common across
product categories. A comparison of Tables 3 and 4 indicates that cross-
category correlations are, by and large, understated in Table 4 (i.e. model 2). To
the extent that the common unobserved heterogeneity distribution across
product categories captures correlations in households’ purchase outcomes
across categories,” one would indeed expect any remaining cross-category
correlations in purchase outcomes to decrease after accounting for such
unobserved heterogeneity.

In Table 5, we report the estimated cross-category correlations using model
3 that looks at four product categories at a time (as in Manchanda, Ansari &
Gupta, 1999). A comparison of Tables 4 and 5 indicates that ignoring the
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remaining eight product categories within the shopping basket understates the
estimated correlation in purchase incidence decisions across the included four
product categories. In fact, for two pairs of product categories (fcola & bacon]
and [cola & coffee]), the estimated correlations are negative in the four-variate
probit model even though they are positive in the twelve-variate probit model.
For example, the posterior mean and credibility interval of the correlation for
the pair [cola & bacon], based on model 3, are —0.0289 and (-0.0683, 0.0100)
respectively. The corresponding measures based on model 2 are 0.0381 and
(-0.0099, 0.0735) respectively. Similarly, the posterior mean and credibility
interval of the correlation for the pair {cola & coffee], based on model 3, are
-0.0077 and (-0.0446, 0.0264) respectively. The corresponding measures
based on model 2 are 0.0665 and (0.0345, 0.1031) respectively. This indicates
that if one were to use model 3, instead of model 2, one may falsely conclude,
for example, that cola and coffee substitute for each other within the
household’s shopping basket when, in fact, they do not!

In Table 6, we report the estimated cross-category correlations using model
4 — that looks at pairs of product categories only (as in Chintagunta & Haldar,
1998) - for nine different pairs of product categories. A comparison of Tables
4 and 6 indicates that ignoring the remaining ten product categories within the
shopping basket understates the estimated correlation in purchase incidence
decisions for each pair of product categories. In fact, for three pairs of product
categories — [cola & sugar], [cola & coffee], [cola & crackers] — the estimated
correlations are negative in the bivariate probit model even though they are
positive in the twelve-variate probit model. For example, the posterior mean
and credibility interval of the correlation for the pair [cola & coffee], based on
model 4, are -0.0733 and (-0.1100, -0.0367) respectively. The corresponding
measures based on model 2 are 0.0665 and (0.0345, 0.1031) respectively. This
indicates that if one were to use model 4, instead of model 2, one may falsely
that cola and coffee, substitute each other within the household’s shopping
basket when, in fact, they do not! We summarize this finding below.

Empirical Finding [: A limited operationalization of the multivariate probit
model with panel structure, using a subset of the full set of product
categories within the household’s shopping basket (as in Chintagunta &
Haldar, 1998; Manchanda, Ansari & Gupta, 1999), leads one to under-
estimate correlations in households’ purchase incidence decisions across
product categories. The estimated correlations even change signs (from
positive to negative) in a few cases.

In Table 7, we report the estimated cross-category correlations using model 6
that ignores unobserved heterogeneity across households, i.e. a cross-sectional
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MVP model. A comparison of either Tables 3 or 4 vs. Table 7 indicates that
ignoring unobserved heterogeneity across households overstates the estimated
inter-category correlations. This finding is in the same spirit as findings in the
brand choice literature that ignoring unobserved heterogeneity across house-
holds overstates the estimated serial correlation in the error terms in
households’ random utilities for brands (Allenby & Lenk, 1994; Keane, 1997).
We summarize this finding below.

Empirical Finding 2: 1gnoring the effects of unobserved heterogeneity across
households in the proposed multivariate probit model leads one to
overestimate correlations in households’ purchase incidence decisions across
product categories.

In Tables 8 and 9 we summarize the estimated covariate effects for the twelve
product categories based on the six model specifications. While the posterior
means are reported in Table 8, the posterior credibility intervals are reported in
Table 9. The second column in each table lists the results based on the proposed
model estimated on the full set of twelve product categories (i.e. model 1). The
estimates of the marketing mix coefficients and product inventory are signed as
expected for all twelve categories. Specifically, the coefficients of price are
always negative, the coefficients of display and feature are always positive and
the coefficients of inventory are always negative. Among the twelve categories,
cola beverages show maximum responsiveness to price (posterior mean of
—2.1378), ice cream shows maximum responsiveness to store displays
(posterior mean of 1.3978), while ceffee shows maximum responsiveness to
newspaper feature advertising (posterior mean of 1.0471).

The third column of Tables 8 and 9 lists the results based on the proposed
model with the unobserved heterogeneity distribution restricted to be common
across the twelve product categories (i.e. model 2). A comparison of the
estimates in columns 2 and 3 (i.e. model 1 vs. model 2) indicates that
household sensitivity to price and display are, by and large,® understated in
model 2. In other words, restricting the unobserved heterogeneity distribution
to be common across product categories leads one to conclude that households
are less responsive to pricing and display activities. The feature coefficient,
however, shows mixed results, i.e. it is understated for five categories and
overstated for the remaining seven categories.

The fourth column of Tables 8 and 9 lists the results based on the proposed
model estimated on three mutually exclusive subsets of four product categories
(i.e. model 3). A comparison of the estimates in columns 3 and 4 (i.e. model 2
vs. model 3) indicates that household sensitivity to price, display and feature is,
by and large,” overstated in model 3. Taken together with our earlier findings

I3
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that model 3 understates correlations across product categories, this means that
the marketing mix variables bear the burden of explaining purchase incidence
decisions in product categories that are, in part, due to inter-category
correlations (that are incompletely accounted for in the model).

The fifth column in Tables § and 9 lists the resuits from a bivariate version
of the proposed model estimated separately on seven different pairs of product
categories (i.e. model 4). A comparison of the estimates in columns 3 and S (i.e.
model 2 vs. model 4) indicates that household sensitivity to price, display and
feature is, by and large,’ overstated in modei 4. This finding is consistent with
that obtained from comparing models 2 and 3, as discussed in the previous
paragraph.

The sixth column in Tables 8 and 9 lists the results from univariate binary
probit models estimated separately for the twelve product categories (i.e. model
5). A comparison of the estimates in columns 3 and 6 (i.e. model 2 vs. model
5) indicates that household sensitivity to price, display and feature is, by and
large,” overstated in model 5. This finding, consistent with the findings obtained
by comparing either models 2 and 3 or models 2 and 4, is summarized below.

Empirical Finding 3: A limited operationalization of the proposed multi-

variate probit model, using a subset of the full set of product categories

within the household’s shopping basket (as in Chintagunta & Haldar, 1998;

Manchanda, Ansari & Gupta, 1999), leads one to overestimate the effects of

marketing variables on households’ purchase incidence decisions within

each product category.

The seventh column in Tables 8 and 9 lists the results from a purely cross-
sectional version — one that ignores unobserved heterogeneity across
households — of the proposed multivariate probit model (i.e. model 6). A
comparison of the estimates in columns 3 and 7 (i.e. model 2 vs. model 6)
seems to indicate that household sensitivity to price, display and feature are
overstated in model 6. However, such an interpretation must be kept in check
on account of a scale incompatibility problem while comparing models 2 and
6, since the cross-sectional probit (i.e. model 6) does not accommodate random
effects across households.

7. SUMMARY

We propose a multivariate probit model with unobserved heterogeneity to
explain households’ purchase incidence decisions simultaneously across all
product categories within their shopping baskets. We estimate the proposed
model using basket-level purchase data on a scanner panel of 300 households.
We find that a limited operationalization of the proposed model. using a subset
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of the full set of product categories within the household’s shopping basket,
leads one to underestimate inter-category correlations and overestimate the
effectiveness of marketing variables. We also find that ignoring unobserved
heterogeneity across households leads one to overestimate inter-category
correlations and underestimate the effectiveness of marketing variables.

One obvious managerial benefit of our proposed model is that retailer can
design optimal prices simultaneously across all product categories, taking
cross-category correlations into account, in order to maximize store profits.
When cross-category correlations exist, ignoring their effects and maximizing
category profits independently across product categories will lead to sub-
optimal profits. While the findings of this paper are of managerial interest in
and of themselves, the implications of these findings on related household
decisions, such as brand choice, are of managerial interest. We are currently
extending our proposed model to accommodate households’ brand choice
decisions within each product category. In this framework, we employ a
multinomial logit model for households’ conditional brand choices within each
product category, coupled with a multivariate probit model of households’
purchase incidence decisions across product categories. Whether our reported
findings about cross-category correlations in purchase incidence decisions in
this paper generalize to such a fully specified framework is an area of ongoing
investigation.

Last, but not the least, it will be useful to accommodate unobserved hetero-
geneity along multiple dimensions (instead of in the intercept term only) and
model correlations not only in the error terms but also in household response
parameters across product categories.-This will allow us to investigate whether
households exhibit similar sensitivities to the marketing variables in different
product categories using a basket-level analysis (Seetharaman, Ainslie &
Chintagunta, 1999 investigate this issue using conditional brand choice data on
a panel of households in five product categories).

NOTES

1. To the extent that product categories within a household’s shopping basket vie for
a limited shopping budget of the household, the budget constraint induces cross-
category dependencies as well.

2. In our application, J=12, k=5 which makes the total number of estimated
parameters 138. )

3. The excluded product categories are barbecue sauce, cat food, cereals, cleansers,
cookies, eggs, nuts, pills, pizza, snacks, soap, softener, yogurt.

4. In a companion paper, in which we model both category purchase incidence and
brand choice, we explicitly investigate the consequences of such aggregation on model-
based inferences.
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5. We thank an anonymous reviewer for alerting us to this issue.

6. Except for display coefficients for hot dogs and ice cream, and price coefficients
for non-cola and sugar, this holds for the remaining twenty coefficients.

7. Except for bacon’s feature coefficient and the price coefficients for coffee, non-
cola and towels, this holds for the remaining thirty-two marketing mix coefficients.

8. This holds for forty-eight out of the fifty-four marketing mix variables in tables
8-11. :

9. The overstatement holds for twenty-eight out of thirty-six coefficients.

10. Lower and upper halves of the matrix contain posterior means and credibility
intervals respectively.

11. Lower and upper halves of the matrix contain posterior means and credibility
intervals respectively.

12. Lower and upper halves of the matrix contain posterior means and credibility
intervals respectively.

13. Credibility Interval

14. Lower and upper halves of the matrix contain posterior means and credibility
intervals respectively.

15. The estimates of bacon and butter are based on hot dogs and sugar as the
respective second categories.

16. The four sets of estimates for cola are based on sugar, non-cola, coffee and
crackers respectively as the second category. The estimates for crackers are based on
cola as the second category. The two sets of estimates for detergents are based on tissue
and towels respectively as the second category.

17. The estimates of hot dogs and non-cola are based on bacon and cola as the
respective second categories.

18. The two sets of estimates of sugar are based on butter and cola respectively as
the second category. The two sets of estimates for tissue are based on detergents and
towels respectively as the second category. The two sets of estimates for towels are
based on detergents and tissue respectively as the second category.

19. The estimates of bacon and butter are based on hot dogs and sugar as the
respective second categories.

20. The four sets of estimates for cola are based on sugar, non-cola, coffee and
crackers respectively as the second category. The estimates for crackers are based on
cola as the second category. The two sets of estimates for detergents are based on tissue
and towels respectively as the second category.

21. The estimates of hot dogs and non-cola are based on bacon and cola as the
respective second categories.

22. The two sets estimates of sugar are based on butter and cola respectively as the
second category. The two sets of estimates for tissue are based on detergents and towels
respectively as the second category. The two sets of estimates for towels are based on
detergents and tissue respectively as the second category.

ACKNOWLEDGMENTS

We thank marketing seminar participants at the John M. Olin School o
Business at Washington University for their comments on an carlier version of
this paper.



92 SIDDHARTHA CHIB, P. B. SEETHARAMAN AND ANDREI STRIINEV

REFERENCES

Albert, J., & Chib, S. (1993). Bayesian Analysis of Binary and Polychotomous Response Data.
Journal of the American Statistical Association, 88, 669-679.

Allenby, G. M., & Lenk, P. J. (1994). Modeling Household Purchase Behavior with Logistic
Normal Regression. Journal of the American Statistical Association, 89(428), 1-14.

Ashford, J. R., & Sowden, R. R. (1970). Multivariate Probit Analysis. Biometrics, 26, 535-546.

Bell, D. R., & Lattin, J. (1998). Shopping Behavior and Consumer Preference for Store Price
Format: Why ‘Large Basket” Shoppers Prefer EDLP. Marketing Science, 17(1), 66-88.

Berry, J. A., & Linoff, G. (1997). Data Mining Techniques. Wiley and Sons.

Bucklin, R. E., & Lattin, J. (1991). A Two-State Model! of Purchase Incidence and Brand Choice.
Marketing Science, 10(1), 24--39.

Chiang, J. (1991). A Simultaneous Approach to the Whether, What and How Much to Buy
Questions. Marketing Science, 10(4), 297-315.

Chib, S, & Greenberg, E. (1995). Understanding the Metropolis-Hastings Algorithm. The
American Statistician, 49(4), 327-335.

Chib, S., & Greenberg, E. (1998). Analysis of Multivariate Probit Models. Biometrika, 85(2),
347-361.

Chintagunta, P. K., & Haldar, S. (1998). Investigating Purchase Timing Behavior in Two Related
Product Categories. Journal of Marketing Research, 35(1), 43-53.

Gelfand, A. E., & Smith, A. F. M. (1990). Sampling-Based Approaches to Calculating Marginal
Densities. Journal of the American Statistical Association, 85(410), 398-409.

Gonul, F,, & Sninivasan, K. (1993). Modeling Multiple Sources of Heterogeneity in Multinomial
Logit Models: Methodological and Managerial Issues. Marketing Science, 12(3),
213-229.

Keane, M. P. (1997). Modeling Heterogeneity and State Dependence in Consumer Choice
Behavior. Journal of Business and Economic Statistics, 15(3), 310-327.

Manchanda, P, Ansari, A., & Gupta, S. (1999). The Shopping Basket: A Model for Multicategory
Purchase Incidence Decisions. Marketing Science, 18(2), 95-114.

Seetharaman, P. B., Ainslie, A. K., & Chintagunta, P. K. (1999). Investigating Household State
Dependence Effects Across Product Categories. Journal of Marketing Research, 36(4),
488-500.

Tanner, M. A., & Wong, W. H. (1987). The Calculation of Posterior Distributions by Data
Augmentation. Journal of the American Statistical Association, 82(398), 528-540.
Tierney, L. (1987). Markov Chains for Exploring Posterior Distributions. Annals of Statistics, 22.

1701-1762.



ADVANCES IN OPTIMUM
EXPERIMENTAL DESIGN FOR
CONIJOINT ANALYSIS AND DISCRETE
CHOICE MODELS

Heiko GroBmann, Heinz Holling and Rainer Schwabe

ABSTRACT

The authors review current developments in experimental design for
conjoint analysis and discrete choice models emphasizing the issue of
design efficiency. Drawing on recently developed optimal paired compar-
ison designs, theoretical as well as empirical evidence is provided that
established design strategies can be improved with respect to design

efficiency.
1. INTRODUCTION

The modeling of consumer preferences and choice behavior is one of the most
prosperous areas of research in marketing (Carroll & Green, 1995; Ben-Akiva
et al., 1997). Over the years a wealth of models has emerged for describing the
joint effect of multiple attributes on consumers’ product evaluations and
choices. Among these models the most prominent approaches are conjoint
analysis (Green & Srinivasan, 1978, 1990) and discrete choice (Ben-Akiva &
Lerman, 1985). The development of conjoint analysis was inspired by the
invention of conjoint measurement in psychology (Luce & Tukey, 1964), which
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was introduced to a larger audience in marketing by Green and Rao (1971). The
roots of discrete choice models can be traced back to several previous
approaches to utility measurement like Thurstone’s law of comparative
judgment (Thurstone, 1927), the choice model of Luce (1959), and also to
random utility theory (Manski, 1977).

Conjoint analysis and discrete choice models differ with respect to the
response formats and the statistical models they use for collecting and
analyzing data. In a traditional decompositional conjoint analysis task, attribute
profiles usually have to be rank ordered with respect to preference or to be rated
on a preference scale. Also, as another mode of data collection in conjoint
analysis graded paired comparisons are in widespread use. In contrast, choices
from sets of attribute profiles are observed in discrete choice models. As far as
statistical models are concerned, conjoint analysis draws on the general linear
model whereas discrete choice models are non-linear and usually of the logistic
type.

When implementing a conjoint analysis or discrete choice study it has to be
decided how many and which profiles are to be presented for evaluation. This
task of selecting a number of settings from an experimental domain represents
a typical problem of experimental design. Traditionally, marketing researchers
have primarily been concerned with modeling issues. Much effort has been
devoted to the development of realistic and apparently complex discrete choice
models. For example, a number of models have been proposed that incorporate
consumer segments or cross effects of brands on each other. The primary
design concern with these complex models has been to choose the profiles in
such a way that the model parameters can be estimated.

If there are many attributes or levels in the conjoint analysis or discrete
choice model the number of profiles that have to be evaluated soon becomes
large. To reduce the number of evaluations required from respondents, standard
principles from linear model design theory like orthogonality and balance have
been used routinely to construct designs for conjoint analysis as well as discrete
choice models. When the reduction is to be performed in such a way that the
model parameters can be estimated in the most efficient way techniques from
optimum experimental design theory can be used. From time to time the issue
of optimum design has received some attention in the econometric literature
(see e.g. Aigner, 1979; Miiller & Ponce de Leon, 1996). However, most of the
developments in this growing field of statistics are only scarcely recognized by
researchers in economics. ’

The aim of this contribution is to review basic principles of, and recent
developments in, optimum experimental design theory that can be applied to
conjoint analysis and discrete choice models. In the next section we give an



Advances in Optimum Experimental Design 95

overview of the statistical theory. This will be followed by a review of the
literature on conjoint analysis and discrete choice designs in marketing. In the
subsequent two sections a theoretical as well as an empirical comparison of
designs will be provided.

2. OPTIMAL AND EFFICIENT DESIGNS

For the observational outcome of a random event one has to distinguish
between active and passive observations. The latter situation occurs in
observational studies where usually the investigator has no possibility to take
influence on the outcome by adjusting explanatory variables.

In contrast to that, these explanatory variables are often called exogenous
quantities for which it seems reasonable that different values or levels may be
chosen. These active experimental situations bear the great advantage that the
performance of the statistical inference can be substantially improved by a
smart design for the settings of the exogenous variables. For example, the slope
of a regression line can be estimated with a three times higher precision when
an optimal design is used compared to uniform spacing.

The theory of optimal designs has been extensively developed during the last
fifty years for various forms of a functional relationship Y(x) =n(x, 8)+¢. In
this formula m is a known response function describing the structural
dependence of the endogenous variable (response) Y on the exogenous
quantities x. Here 6=(0,,..., OP)T is a vector of unknown parameters
specifying the shape m(-, 0) of the response and the exogenous quantities
x=(P, ... x"®) consist of k different components x”, ..., x*. Finally, the
observation is disturbed by a random vector € whose distribution may depend
on both x and 6. The most prominent functional relationship is the general
linear model setting Y(x)=f(x)" 0 +& where the response m(x, 8)=f(x)" 6=
37 f{x)0, is a linear function in the parameters ® with known regression
functions f=(f;, . .. ,fp)T. These models cover both regression and analysis of
variance models where for the latter some dummy coding is required. Also
more complicated models are included like analysis of covariance models in
which both discrete and continuous exogenous quantities may be present.

The size n of an experiment is the number of outcomes Y, ..., Y, to be
observed. The design of an experiment is the corresponding setting of the
exogenous quantities x,,...,x,. Replications are allowed such that these
settings are not necessarily all distinct. Usually, homoscedasticity is assumed
for the error term & in a linear model, Var(e)= o . Then the performance of the
statistical inference is measured in terms of the information matrix
M(x,, ..., x)=3" f(x)f(x)" or. more intuitively, in terms of its inverse
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M(x,, ..., x,)" which is proportional to the covariance matrix of the least
squares estimator 8, Cov(®) =o’M(x,, ..., x,)"".

Optimization of an experiment can be divided into two separate steps: First,
optimize the information matrix with respect to a properly chosen criterion for
a given size of the experiment. In this context the most popular criterion is the
so-called D-criterion which aims at minimizing the determinant of the
covariance matrix, det M(x,,...,x,)"', a quantity which is often called
erroneously the generalized variance. This is equivalent to maximizing the
determinant of the information matrix

max det M(x,,...,x,)

X, X,

where the exogenous variables x,, ..., x, may range independently over a
given design region X of possible settings. For Gaussian errors the determinant
of the covariance matrix is proportional to the volume of the confidence
ellipsoid for the parameter vector 0. Moreover, the popularity of the D-criterion
arises from its computational ease and from the fact mentioned below that
it is equivalent to the minimization of the prediction variance f(x)'
M(x,, ..., x,)" f(x) under certain regularity conditions. It is worthwhile noting
that, in fact, the optimal settings and their corresponding proportions of
replications do not vary much if the size of the experiment is changed. In a
second step the size is determined in order to meet the needs of the experiment.
For example, the size of the experiment will be influenced by the required
precision of the estimates, by the power of a statistical test to be performed, but
also by cost considerations. The recent monograph by Cox and Reid (2000)
may serve well as an introductory text to the topic.

In agreement with the literature on optimal design theory we will focus on
the first step of finding optimal settings for the exogenous variables. The first
paper which was explicitly devoted to efficient designs was written by Smith
(1918) before any general concepts had been developed. In the beginning of the
twentieth century practical needs for optimal or efficient designs arose from
agricultural experiments. At that time it was the merit of Fisher (1935) to define
the basic concepts of experimental design: repeatability, blocking, and
randomization. For analysis of variance settings which are typical for
agricultural experiments optimization leads mostly to combinatorial problems
(for a survey see Shah & Sinha, 1989).

For general settings Kiefer (1959) introduced the notion of "generalized
designs for which the proportions of the replications are detached from the
sample size. According to this concept € denotes a generalized design when it
is a finitely supported normalized measure on the possible settings x. For a
design & that describes an experiment of size n the quantities &(x;) = n;/n denote
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the proportions of replications n; at the distinct settings x,, 2 &(x,)=1. The
corresponding normalized information matrix is defined by

ME)= > 6x)f0)fx)T

Note that M(§) =n"! M(x,, . . ., x,). If the requirement is dropped that &(x,) is a
multiple of 1/n then the designs can be embedded into a convex optimization
framework (see also Kiefer, 1974). Hence, standard methods of convex
optimization can directly be applied to optimal design theory by taking
directional derivatives leading to equivalence theorems based on the saddle-
points for minimax solutions. For example, the celebrated Kiefer-Wolfowitz
equivalence theorem (Kiefer & Wolfowitz, 1960) states that the D-optimality of
a design £* is equivalent to the minimax optimality of £* with respect to the
prediction variance on the design region, i.e.

det M(£*)=max, det M(§) if and only if
max,f(x)" M(£*)" f(x) = min, max,f(x)" M(£)" f(x).

For every design its efficiency is the quality of its performance compared to
the benchmark of the optimal design, i.e. the quantity 1/efficiency(£)-100%
gives the factor for the number of observations required when the design is
used to obtain the same amount of information as contained in the optimal
design. Accordingly, for the D-criterion, the D-efficiency is defined as
eff,, (£) = (det M (£)/det M(£*))"? where £* denotes the D-optimal design.
Based on the properties of directional derivatives, suitable efficiency bounds
can be computed for the performance of arbitrary designs (see Dette, 1996).

In the sequel various concepts of statistics were applied to evolve solutions
of the optimization problem like invariance or equivariance with respect to
certain natural transformations of the design region (Giovagnoli, Pukelsheim &
Wynn, 1987) which, in a way, generalizes the concept of randomization. These
topics are treated in full generality in Pukelsheim (1993).

Due to the variety of possible structural dependencies in the general linear
model a vast amount of approaches has been developed for solving particular
problems. In the present setting special interest lies in multi-factor models
(Schwabe, 1996) with a reasonable number of exogenous variables and in the
peculiarities of paired comparisons (van Berkum, 1987a, b, 1989).

It should be noted that often, as in paired comparisons, the linear model only
serves as a rough approximation to some non-linear relationship. If the non-
linearity can be explicitly specified, large sample behavior is available tor the
performance of a design. Denote by f,(x)=(f, (¥), . .. ,/;,‘/,(x))T the vector ot



98 HEIKO GROSMANN, HEINZ HOLLING AND RAINER SCHWABE

locally linearized regression functions, if 0 is the true value of the parameter.
Here the local regression functions f,,=(8/96;) n(x, ) -are the partial
derivatives of the response function m(x, 8) with respect to the components of
the parameter 8. Then My(£) =3 £(x) fo(x) fe(x)T is the asymptotic information
matrix of the design £ at 8. Unlike in linear models the quality depends on the
unknown parameters. Hence, only locally optimal designs can be generated or
such which are related to a Bayesian or minimax loss function ( for surveys see
Chaloner & Verdinelli, 1995; Fedorov & Hackl, 1997). For generalized linear
models a promising approach has been proposed by Ford, Torsney and Wu
(1992) which is based on a canonical transformation.

In the situation of generalized linear models the response m is linked by a
mapping, say g, to a linear regression approach, i.e. n(x, 8)=g(fix)" 0) (see
McCullagh & Nelder, 1989). The inverse g™ of this mapping is traditionally
called the link function of the generalized linear model. By the chain rule the
linearized regression functions equal f(x)=g'(fix)" 6)f(x). In the particular
case 0=0, the linearized regression functions fy=f, and the inherent linear
relationship f coincide up to a multiplicative constant g'(0) independent of x.
Thus the corresponding information matrices are related by My(£) = g’'(0)* M(£)
and the optimization with respect to the generalized linear model reduces
to the optimization with respect to the corresponding linear relationship.
Hence, the linear model Y(x) =f(x)"0 + & may serve well as a surrogate for the
corresponding generalized linear model Y(x) = g(fix)"8) +& when the hypoth-
esis 8 =0 is to be tested.

As an additional complication the error terms & are commonly hetero-
scedastic in  generalized linear models with variance function
a%(x, 8)=h(fx)" 8). For example, in case of binary response m(x, 6) denotes
the probability of success and o %(x, 8) =m(x, 0)(1 — 1(x, 8)), i.e. h=g(1 — g).
The variance function has an influence on the performance and must be
included in the (asymptotic) information matrix

M®)= D Ko x 0f0A.

However, for 8=0 the variance o’(x, 8)=h(0) is independent of x and the
optimization of the information matrix My(&)=g'(0)*(0)' M(£) coincides
again with the linear case.

In the present setting of choice models one is mainly concerned with
multinomial logistic models where g '(z)=Inz—1In(1 —z) is the logit link

L3
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function. In particular, for paired comparisons the response n(x, 8) is given by
the generalized linear model

n((ay, a,), 0)=g(fla))™8 — f(a)) 8) =g((fla,) — f(ay))'0)

where x=(a,, a,) is the pair of alternatives presented. The condition 68=0 is
related to the situation of no preference for either of the alternatives, i.c.
M(x,0)=1/2 is independent of x. Moreover, o’(x,0)=1/4=g'(0) and the
(asymptotic) information matrix becomes

1
M©)=, D) Ean a)(fa) - fa)fa) = fa)’.

More generally, for the presentation of larger choice sets (q,, . . .. a,) with m

1

alternatives, say, the (asymptotic) information matrix can be derived as

M(©= &ay,....a,)

xm [f(a.-) ap) f(a,-)] [f(ai apy f(a,)]

i

h

(see e.g. Bunch, Louviere & Anderson, 1996).

If no explicit solution of the optimization problem is available, algorithms
can be used like the Fedorov-Wynn algorithm (Fedorov, 1972; Wynn, 1970)
which are based on a steepest descent approach for the directional derivatives.
Some of these algorithms are implemented in the OPTEX module of the SAS
statistical software package. For a survey on the whole scope of experimental
design we refer to Atkinson (1988, 1996) and Ghosh and Rao (1996).

3. DESIGNS FOR CONJOINT AND DISCRETE CHOICE
MODELS

When developing an experimental design for a particular conjoint or discrete
choice model the investigator has to consider a number of issues. First, the
attribute levels for the profiles to be presented have to be chosen in such a way
that the corresponding model parameters are estimable. This amounts to
ensuring that the model’s design matrix is of full rank. Second, it has to be
decided whether levels of each attribute are presented for all profiles or it some
attributes are left unspecified and profiles are only constructed from a subset ot
attributes. For example, with a large number of attributes to be presented. the
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evaluation of, or choice among, profiles that are made up of all attributes, so-
called full profiles, is much more demanding than the respective task for
profiles that are only described by some of the attributes. Third, the number of
profiles to be presented in a single evaluation or choice trial has to be settled.
Here, large sets of profiles might cause the respondents to focus on only a
subset of the attributes or to employ some other kind of simplifying strategy to
arrive at their choices or evaluations.

These considerations are in line with the classification system for choice
experiments* proposed by Green (1974). He suggests a number of strategies
for dealing with the issues outlined. In particular, for linear main-effects-only
models he proposes the use of orthogonal arrays which can be constructed as
regular fractions of full factorial designs when the model is symmetric, i.e.
when the number of levels is equal for all attributes. To illustrate, we consider
a slight modification of Green’s original 4 x 3 x 27 airline example where trans-
Atlantic flights are characterized by nine attributes with two, three, or four
levels. Instead of employing different numbers of levels we will only use two
levels for each attribute, i.e. we consider a 2° model. A symmetrical orthogonal
array for this model is shown in Table 1.

For asymmetric models, orthogonal arrays can be obtained from regular
fractions of full factorial designs by collapsing certain columns (Addelman,
1962). If the investigator wants to include selected interactions in the model
equation fractional factorial designs can be used.

As strategies for dealing with the second and third issues above Green
(1974) proposed two different two-stage design approaches using balanced
incomplete block (BIB) designs and partially incomplete block (PBIB) designs,
respectively (for exact definitions of these designs, see Green, 1974;
Raghavarao, 1971). When the investigator has decided to use only profiles
described on four of the nine attributes the two-stage approach proceeds as
follows: First, a BIB design is constructed to assign sets of four attributes to
profiles and second, a small design, e.g. an orthogonal array if estimation of
main effects suffices, with four-component profiles drawn from the 2° full
factorial plan is chosen. The set of profiles then consists of

number of blocks in the BIB design x number of rows in the second design

profiles. As Green (1974) demonstrated for the example a BIB design with
eighteen blocks and four-component orthogonal arrays with eight rows exist
so that the profile set comprises 18 x 8=144 profiles in comparison to

* It should be noted that the choice models considered by Green (1974) are actually linear models.
That is, they are conjoint analysis models in the terminology used in the present paper.
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Table 1. Orthogonal Array for a 2° Model.

Attributes and Levels

Profile A B C D E F G H [
1 1 1 1 1 1 .1 1 1 I
2 1 i 1 1 0 0 | 0 0
3 1 1 1 0 1 0 0 I 0
4 1 1 1 0 0 1 0 0 |
5 I 0 0 1 1 1 1 0 1]
6 1 0 0 1 0 0 1 1 1
7 1 0 0 0 i 0 0 0 !
8 1 0 0 0 0 ] 0 1 0
9 0 1 0 1 1 1 0 | 0

10 0 | 0 1 0 0 0 0 I
11 0 1 0 0 1 0 1 | 1
12 0 1 0 0 0 i 1 0 0
13 0 0 i I 1 1 0 0 |
14 0 0 1 1 0 0 0 1 0
15 0 0 1 0 1 0 1 0 0
16 0 0 1 0 0 I I 1 1

126 x 8 =1008 profiles which would be obtained if an orthogonal array with
cight runs was used for each of the 126 attribute combinations involving only
four attributes.

The two-stage approach for constructing designs where in every evaluation
trial only a subset of the profiles is presented relics on PBIB designs. Again, for
purposes of illustration we consider the example. If the investigator wants to
present pairs of profiles for evaluation then he chooses a subset of the profiles
in the first step from the 2° full factorial design, e.g. by means of an orthogonal
fraction. Here, we assume that the 16 profiles in Table 1 have been chosen. In
the second step these profiles are arranged in pairs according to a PBIB design.
The 16 pairs derived from the PBIB design with block size k=2 given by Green
(1974) are shown in Table 2.

By using this design the number of paired comparisons for the 16 profiles
can be reduced from 120 to 48 as compared to the round robin design in which
each profile is paired once with every other profile. With different values of the
block size k choice designs with sets of size k can be generated, e.g. for k=3
we obtain triples of profiles.

In sum, Green'’s proposed strategies are effective for constructing parsimoni-
ous designs. Moreover, the principles that underly his approach. namely: (@) the
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Table 2. Pairs Derived from PBIB Design.

Pairs
1,2 5,6 9, 10 13, 14 1,5 2,6 3,7 4,8
1,3 5,7 9,11 13,15 1,9 2,10 3,11 4,12
1,4 58 9,12 13, 16 1,13 2,14 3,15 4,16
2,3 6,7 10, 11 14,15 59 6, 10 7,11 8,12
2,4 6,8 10, 12 14, 16 5,13 6, 14 7,15 8,16
3,4 7,8 9,13 10, 14 11, 15 12,16

11, 12 15,16

reduction of the set of alternatives by choice of a suitable subset drawn from a
full factorial plan; and (b) the combination of these profiles in sets for
evaluation by use of an experimental design that neglects the factorial structure
of the profiles, have permeated the literature on experimental designs for
conjoint analysis and discrete choice models in marketing to a large extent. For
example, Louviere and Woodworth (1983), Batsell and Louviere (1991), as
well as Bunch et al. (1996) have adhered to these principles. In general, not
much is known about the efficiency of these designs (Carson et al., 1994,
p. 361). In Section 4 we will demonstrate for Green’s paired comparison design
that the principles outlined above may produce designs which are far from
optimal in terms of efficiency.

Some authors have argued in favor of shifting emphasis from classical
design principles such as orthogonality and balance to design efficiency.
Kuhfeld, Tobias and Garratt (1994) recommended the use of the algorithms
mentioned at the end of Section 2 and showed for a number of conjoint and
discrete choice models how efficient designs can be constructed with the SAS
procedure OPTEX. For the latter models they assumed that the parameter
vector in the model is equal to zero so that the information matrix for the
multinomial model coincides with the one of the general linear model up to
constant factor. In a similar vein for conjoint analysis experiments Steckel,
DeSarbo and Mahajan (1991) presented a combinatorial optimization proce-
dure for maximizing the determinant of the information matrix in situations
where there exist natural correlations among the attributes, e.g. maximum
speed and mileage when cars are of concern. In this situation the approach of
Kuhfeld et al. (1994) is applicable as well. »

The design problem for correlated attributes has also been treated by
Louviere and Woodworth (1988). They proposed to construct choice sets by
first obtaining ratings for a set of profiles on the correlated attributes. These
ratings are then arranged in matrix form where each row of the matrix



Advances in Optimum Experimental Design 103

corresponds to one of the profiles. Subsequently, a second matrix is constructed
by adding an orthogonal matrix to the initial one. Every row in this second
matrix represents the second profile in a choice set. Designs with larger choice
sets can be generated by continuing this procedure. The efficiency of such
designs as compared to the approaches of Kuhfeld et al. (1994) and Steckel et
al. (1991) is not known.

Another issue that has received attention is the Constructlon of designs which
enable the estimation of attribute or availability cross effects on the choice
probabilities (Louviere & Woodworth, 1983; Anderson & Wiley, 1992). Lazari
and Anderson (1994) presented a model where both types of cross effects can
be estimated simultaneously for situations where m brands are described by a
single attribute. Moreover, in their model as well as in the model considered by
Louviere and Woodworth (1983) violations of the independence of irrelevant
alternatives assumption of the multinomial logistic model can be tested. To
generate designs, Lazari and Anderson applied the technique of Louviere and
Woodworth (1983) for constructing choice sets. As an illustration, we consider
the situation where the attribute that characterizes the m brands has § — |
levels. An orthogonal main effects plan is drawn from the $™ full factorial
design and the levels are coded consecutively 0, ..., S — 1. Every row of this
design then represents a choice set. The level 0 in the ith position of a row
indicates that the ith brand is not present in the choice set whereas a larger
number indicates that the brand is present in the set with the attribute adjusted
to the respective level.

The approaches considered so far all assumed that the vector of parameters
6 equals zero or in other words that the choice probabilities for the alternatives
in a choice set are all the same. As was detailed in Section 2, under this
assumption, the optimization problem for the determinant of the information
matrix in the discrete choice model remains the same as the corresponding
problem in a linear model framework. However, Huber and Zwerina (1996)
argued that in most practical marketing research situations some kind of prior
knowledge on the parameters is available, for example, when a pretest of a
survey is conducted. Therefore, they proposed a method for designing multi-
attribute choice experiments that incorporates the use of such prior information.
The strategy adopted proceeds by first generating a so-called seed design by
use of either an orthogonal array or the SAS procedure OPTEX. Each row in
this design represents the first profile of a particular choice set, i.e. the first row
in the design matrix for that set. The remaining profiles are constructed from
the first one by subsequently incrementing the attributes’ levels columnwisce
and cycling back to one when a level’s value exceeds the number of levels of
that attribute. Every choice set generated in this way is an instance of what i~
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called a cyclic design (see e.g. John & Williams, 1995) in the statistical
literature on experimental designs. In a subsequent optimization step which
utilizes the available prior information on the vector 0 the efficiency of the
complete choice design formed by concatenating the designs for the single sets
is further improved. This improvement is achieved by using one out of two
techniques, swapping and relabeling, of what Huber and Zwerina have called
utility balancing. With swapping, in every choice set transpositions (swaps) of
pairs of levels are examined for every attribute, i.e. every column, in turn.
Every swap is tested and the information matrix for the multinomial logistic
model in Eq. 1 where the prior information is substituted for 6 is computed. If
the swap improves the determinant of the information matrix it is performed.
With the relabeling technique permutations of the attribute levels that increase
efficiency are investigated. If, for example, the assignment of a | to the first
level of a three level attribute, a 3 to the second level, and a 2 to the third level
in all choice sets instead of a consecutive numbering increases the determinant
of the information matrix this relabeling is performed. Huber and Zwerina
demonstrated for a number of models ranging from simple to complex that
substantial efficiency gains can be accomplished. Moreover, these gains are
relatively robust with respect to fallible prior information. However, the nature
of the utility balancing principle underlying the Huber and Zwerina approach
is essentially heuristic. No analytical results are available whether the proposed
procedure reaches the global optimum or how close it comes.

Recently, Sdndor and Wedel (in press) have amplified the idea of utilizing
prior information in the design construction process for the multinomial logit
model. They extended the results by Huber and Zwerina (1996) in three
main directions. First, they apply anesian design techniques (Chaloner &
Verdinelli, 1995) and replace the unknown parameters in the D-criterion by
prior distributions. Second, they determine the prior distribution by eliciting
prior information from respondents based on the methods developed by van
Lenthe (1993). Third, they develop further the heuristic algorithms relabeling
and swapping to an algorithm called cycling that searches in a larger design
space and hence potentially yields designs with higher statistical efficiency.
Based on Monte Carlo studies as well as an empirical illustration Sdndor and
Wedel (in press) provide evidence that the Bayesian approach produces designs
that are more efficient than those generated according to Huber and Zwerina
(1996). ,

The idea of utility balancing is also part of the design heuristic for paired
comparisons implemented in the most popular software ACA (1994) for
adaptive conjoint analysis. Adaptive conjoint analysis is a so-called hybrid
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conjoint analysis technique because it combines compositionai aud deconposi-
tional measures. Compositional part-worth utilities for attribute levels are
obtained through direct preference assessments of the levels and attribute
importance ratings. In the decompositional phase of an ACA interview,
respondents have to perform a number of graded paired comparisons and to
state their relative preferences for one or the other profile in a pair. Usually, the
profiles are described by only a subset of the attributes that varies from pair to
pair. Pairs are chosen subsequently according to an adaptive algorithm. When
choosing the next pair to be presented, this algorithm pursues the following
objectives: First, attributes are combined that have occurred together fewest
before. Second, levels of these attributes are selected by application of a similar
logic. Third, levels are arranged in profiles in order to maximize utility balance.
To achieve maximum utility balance, the vector of parameters is estimated after
each paired comparison and the utilities of the profiles in a pair are computed
by summing the respective parameter estimates for every possible arrangement
of the chosen levels into pairs. The pair for which the profiles are most equal
in utility then is actually presented. From a statistical point of view this
adaptive strategy is dispensable because the information matrix does not
depend on the true parameter vector. In Section 5 we will report results from
an empirical investigation in which the adaptive design heuristic of ACA is
compared to an optimal design that has been constructed according to the
principles which are described in the next section.

4. SOME OPTIMAL PAIRED COMPARISON DESIGNS

Recently, a new approach for constructing multi-factor paired comparison
designs has been proposed by GraBhoff, GroBmann, Holling and Schwabe
(2000). They proved the D-optimality of a certain type of designs in a linear
model setting where the interest lies in the estimation of main effects. All
attributes are assumed discrete with the same number of levels. These designs
are also optimal for the corresponding discrete choice models under the
assumption 8 =0. Furthermore, GraBhoff et al. proved the optimality of their
designs for situations where the so-called profile strength, i.e. the number of
attributes which are allowed to vary in every comparison, is restricted. The
construction of the optimal designs relies on general principles for multi-factor
models (see Schwabe, 1996) as well as on Hadamard matrices (see e.g.
Raghavarao, 1971).

For the airline example with nine attributes each at two levels considered in
the previous section, the construction of a D-optimal paired comparison design
is particularly simple. Instead of first choosing a subset of profiles trom the 2°
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Design Matrix for Green’s Paired Comparison Design.

Table 3.
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Table 4. Optimal Paired Comparison Design.

Attributes

Number of —- e S
Pair A B C D E F G H 1
1 1 1 i 1 -1 I | 1 1
2 -1 1 -1 -1 -1 <1 -1 1 -1
3 -1 -1 -1 1 1 1 -1 1 1
4 1 -1 1 1 -1 -1 -1 i —i
5 1 -1 -1 i i 1 | I |
6 -1 -1 I 1 -1 1 -1 -1 1
7 -1 1 1 1 1 1 1 -1 -1
8 1 1 -1 1 -1 ! ~1 - i
9 -1 1 1 1 1 -1 i i i
10 -1 1 -1 1 -1 -1 1 { -1
11 1 1 -1 1 ] -1 | -1 1
12 -1 -1 -1 1 -1 -1 1 -1 1
13 1 1 1 -1 1 -1 -1 -1 -1
14 -1 I -1 1 1 -1 1 -1 I
15 -1 -1 -1 -1 -1 -1 1 ~1 -1
16 1 -1 1 -1 1 1 1 ~1 1
17 1 -1 -1 -1 -1 -1 -1 ~1 1
18 -1 -1 1 -1 i -1 1 I 1
19 -1 1 1 -1 -1 -1 —1 1 i
20 1 1 -1 -1 | -1 1 1 -
21 -1 1 1 -1 -1 1 1 -1 -1
22 -1 1 -1 -1 1 1 -1 -1 |
23 1 1 -1 -1 -1 1 1 i |
24 -1 -1 -1 -1 1 1 -1 1 -1

full factorial plan and then assigning these profiles to pairs according to Table 2
which yields the design matrix shown in Table 3, the profiles and pairs are
constructed simultaneously.

This is done by choosing nine columns from a suitable Hadamard matrix.
Table 4 shows the design matrix obtained in this way from the Hadamard
matrix H,, of order 24. Every row in the table represents a paired comparison.
A one in the ith column indicates that the jth attribute of the first profile in a
pair is at the high level and the second profile is at the low level of that attribute.
Similarly, a minus one indicates that the first profile is at the low and the second
profile is at the high level.

The determinant of the normalized information matrix of the design £
constructed according to Green (1974) in Table 3 equals det M (£)=0.0004
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Table 5. Optimal Paired Comparison Design with Profile Strength Four.
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compared to the value of det M (£ *)=1 for the determinant of the normalized
information matrix of the optimal design £* in Table 4. As a result, a D-
efficiency of eff, (&)= (det M(£))”/(det M(£#))'”=0.42 obtains. In other
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words the model parameters can be estimated more precisely with the optimal
design using 24 pairs than with the design using twice as many comparisons.

A closer look at Table 3 reveals that the profiles in every pair do actually vary
on only four of the nine attributes, i.e. the design employs comparisons with a
profile strength of four. A D-optimal design for this profile strength which uses
only 36 instead of the 48 paired comparisons in Table 3 can be constructed by
arranging the columns of a Hadamard matrix of order four in a cyclic manner.
The resulting design £’ is shown in Table 5. Here, the entries | and -1 are
interpreted in the same way as for the optimal design in Table 4. The additional
zeros in every row indicate that the corresponding profiles in a pair do not differ
with respect to the respective attributes. For example, a zero in the ith position
of a row means that both profiles in a pair are characterized by the same level
of the ith attribute.

In the restricted class of designs with a profile strength of four the design &
in Table 3 performs much better as compared to the class of designs where the
profiles in a pair are permitted to differ on all attributes. This is reflected by the
D-efficiency of eff,(£)=(det M(£))""/(det M(£'))*=0.94. In sum, large
efficiency gains may be accomplished with an optimal design when the
researcher intends to use a high profile strength. In this situation the number of
paired comparisons necessary to achieve a certain precision of the parameter
estimates can be substantially reduced. However, with a low profile strength
efficiency gains may only be marginal.

5. AN EMPIRICAL COMPARISON OF DESIGNS

From a statistical viewpoint D-optimal designs outperform less efficient
designs that use the same number of observations. As has been noted before
(see e.g. Bunch et al., 1996) statistical efficiency is only one of many criteria
for judging the quality of an experimental design. One of the non-statistical
criteria is the cognitive difficulty of an evaluation or choice task that has to be
taken into account. For example, the information processing requirements of
full profile designs are usually assumed to be too demanding when there are
many attributes (but for some contradicting evidence, see Pullman, Dodson &
Moore, 1999). Hence, the question remains whether the statistical superiority
of optimal designs with respect to efficiency translates into empirical benefits.

In order to investigate this issue we chose the adaptive design heuristic of
ACA which was described in Section 3 as a benchmark. To the best of our
knowledge, up to now this procedure has never been compared empirically to
D-optimal designs. Furthermore, we adopted the principal-agent paradigm (see
e.g. West, 1996, and the references therein) for our experiment which has been
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employed successfully in recent research on conjoint analysis (Teichert, 2000,
Huber, Ariely & Fischer, 2001). According to this paradigm the participants
(agents) have to perform some action on behalf of a principal. Before being
exposed to the task they therefore have to learn the criteria the principal would
use when performing the action by herself/himself.

5.1. Design of the Experiment

The participants in our experiment had to act as notebook purchasers for a
company. Notebooks were described by six attributes with two levels each. The
attributes and their levels are given in Table 6. Additionally, the table contains
the true part-worth values of the levels the participants had to learn. These part-
worth utilities represent a monetary surplus of how much Deutsche Mark (DM)
a notebook with the better level of an attribute is valued higher by the principal
than a notebook with the alternative level of that attribute given that both
notebooks are identical with respect to the other attributes. For example, the
principal would be willing to pay 500 DM more for a notebook with a
750 MHz instead of a 500 MHz processor.

The participants were told to purchase notebooks at an online-retailer’s.
Each participant had to identify the more valuable notebook and to estimate the
surplus value on a continuous DM-scale subsequently.

The empirical study took place in two blocks of 45 minutes on two
consecutive days. Fifteen undergraduate students were recruited as participants.

Table 6. Attributes, Levels and True Part-Worth Utilities in the Empirical

Study.
Attribute Level Part-worth
utility
Processor 500 MHz 0
750 MHz 500
Screen size 12" Screen 0
14" Screen 400
Hard disk 10 GB Hard disk 0
20 GB Hard disk 300
Memory 64 MB Ram 0
128 MB Ram 250
CD-Rom/DVD CD-Rom 0
DVD 100
Modem no modem 0

modem 50
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In order to provide an adequate consolidation of the prescribed utility structure,
the survey was split up in such a way that the training of the part-worth utilities
extended over two days. The complete design of the study is summarized in
Table 7.

On the first day the scenario was explained to the participants. As a next step,
a training phase for the consolidation of the part-worth utilities followed in
which the participants worked on different exercises. At the end of Block A the
learning success was tested with a paper-pencil test. On the second day the
training phase continued. After the last exercise had been completed the
success of the training was tested again. After a short break, the data acquisition
which consisted of 48 paired comparisons followed.

All exercises and paired comparisons were conducted computerized with the
software ALASCA (Holling, Jiitting & Gromann, 2000). This program allows
to administer paired comparisons according to an adaptive ACA-like as well as
a D-optimal design. The participants were aiready acquainted with the handling
of this program. A reward was announced for the “best™ purchaser to promote
a high motivation. The profiles in the paired comparisons were described by
three attributes and a DM-scale was used for responses. All tasks were
presented under time limitations in order to prevent an exact calculation of

Table 7. Design of the Empirical Study.

Block Phase Task
A Introduction to the scenario -
Learning phase Exercise 1: 4 utility evaluations of full profiles

Exercise 2: 10 paired comparisons with profiles
described by two attributes

Learning test

B Learning phase Exercise 3: 4 utility evaluations of full profiles
Exercise 4: Rank ordering of 10 full profiles
Exercise 5: 10} paired comparisons with profiles

described by two attributes

Learning test

Data acquisition 48 paired comparisons with profiles described
by three attributes
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utility differences of the objects presented. The time limitation was fixed to 10
seconds for each paired comparison. The remaining processing time for each
task was displayed in the upper half of the screen. Each participant responded
to 24 paired comparisons according to a D-optimal design and to the same
number of comparisons according to an adaptive design. Seven respondents
first worked on the D-optimal pairs and on the adaptive ones thereafter and vice
versa for the other eight persons.

For each of the 15 participants a vector of utilities based on the adaptive
design and a vector of utilities based on the D-optimal design was estimated
separately by multiple regression using differences of dummy coded attributes
excluding an intercept. Thus, regression coefficients correspond to the surplus
values.

5.2. Results

Part-worth utilities were learned by all participants quite well. The relative
efficiencies of the 15 adaptive designs ranged from 0.84 to 0.96 with mean of
0.88. For each participant the following criteria were computed based on
responses under the D-optimal as well as the adaptive design:

* root mean squared error V52, (8,—0)° (RMSE) of the part-worth
estimates, where 0, denotes the true part-worth utility of the second row level
of the ith attribute in Table 6 and 8, the corresponding estimate,

« mean absolute difference ¢ 3¢, 18, — 0,1 (MADP) between true and estimated
part-worth values, .

* mean absolute difference 3 32, |y, — y,J (MADR) between actual and true
responses on the paired comparison task, where y; denotes the response of the
participant and y,, the response expected to be given by the principal on the
ith comparison

* standard errors for the six estimated regression coefficients @i (SE1 to SE6).

Table 8 reports means and standard deviations for these criteria as well as
results of t-tests for dependent samples. In order to stabilize the variances the
criterion values were log transformed prior to testing.

The D-optimal designs perform better with respect to every criterion. The
mean absolute difference between actual and true responses amounts to 128.02
DM for the D-optimal designs and is 19% smaller in comparison to adaptive
designs. Furthermore, the confidence intervals are considerably smaller.
Summarizing the above results there is remarkable evidence that the theoretical
advantages of D-optimal designs also manifest themselves empirically.
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Table 8. Resuits of the Empiricai Study.

D-optimal Adaptive

Criterion M SD M 5D i P

RMSE 51.35 28.22 81.94 58.57 1.82 0.05
MADP 43.70 26.62 68.82 '48.01 1.73 0.05
MADR 128.02 60.04 157.73 80.93 1.69 0.06
SE1 50.10 24.80 7111 34.66 3.19 0.03
SE2 50.10 24.80 67.03 34.51 2.30 0.02
SE3 50.10 24.80 72.40 38.39 278 0.01
SE4 50.10 24.80 70.55 38.95 2.49 0.01
SES 50.10 24.80 73.14 35.52 3.26 0.00

SE6 50.10 24.80 70.50 38.3 247 0.01

Note: N=15, p-values according to one-sided test. For abbreviations of criteria, see text.

6. SUMMARY AND CONCLUSIONS

We presented a review of the statistical theory of optimum experimental
designs and the approaches that have been proposed in the marketing literature
for the design of conjoint analysis and discrete choice experiments. Drawing on
recently developed optimal paired comparison designs we demonstrated that
the well-known approach of Green (1974) to the design of multi-attribute
choice experiments may yield to inefficient designs that can be substantially
improved.

Furthermore, in an empirical study we compared the adaptive design
heuristic employed in adaptive conjoint analysis and an optimal paired
comparison design. The results showed that the optimal design performed
better with respect to a variety of criteria than adaptive designs. This provides
preliminary first empirical evidence for the superiority of optimal designs in the
context of conjoint analysis.

Although our findings are limited with respect to the number of attribute
levels used and the structure of the model, because only the estimation of main
effects was considered, we conjecture that design approaches for discrete
choice models that have followed the logic of Green’s approach (e.g. Louviere
& Woodworth, 1983) can be improved with respect to efficiency by explicitly
recognizing the factorial structure of the profiles when choice sets are
composed.
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In typical applications of conjoint analysis or discrete choice models the
attributes are usually taken to be discrete, i.e. only a finite number of levels is
used for each attribute. This entails that for continuous attributes some of the
infinite possible levels have to be chosen for inclusion in the model while all
others have to be neglected. Modeling the influence of such continuous
attributes on evaluations or choices by some kind of known functional
relationship, e.g. linear, quadratic or logarithmic, seems to be attractive because
fewer parameters have to be estimated. Moreover, these models are likely to
yield more reliable parameter estimates. Therefore, future research should
consider the design problem for conjoint analysis and discrete choice models
that incorporate both discrete as well as continuous attributes. Finally, further
empirical research is needed to assess the practical benefits that can be
achieved by the implementation of efficient designs.
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ABSTRACT

One of the most important issues facing a firm involved in direct marketing
is the selection of addresses from a mailing list. When the parameters of
the model describing consumers’ reaction to a mailing are known,
addresses for a future mailing can be selected in a profit-maximizing way.
Usually, these parameters are unknown and have to be estimated. These
estimates are used to rank the potential addressees and to select the best
targets.

Several methods for this selection process have been proposed in the
recent literature. All of these methods consider the estimation and
selection step separately. Since estimation uncertainty is neglected, these
methods lead to a suboptimal decision rule and hence not to optimal
profits. We derive an optimal Bayes decision rule that follows from the
firm’s profit function and which explicitly takes estimation uncertainty into
account. We show that the integral resulting from the Bayes decision rule
can be either approximated through a normal posterior, or numerically
evaluated by a Laplace approximation or by Markov chain Monte Carlo
integration. An empirical example shows that indeed higher profits result.
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1. INTRODUCTION

Consider a firm engaged in direct marketing, which has to decide which
households within a large population to send a mailing. In order to decide
which households to target, it is of crucial importance for the firm to assess how
the household’s response probability depends on its characteristics (demo-
graphic variables, attitudes, etc.) known to the firm. If the effect of the
characteristics on the response probability are known, potential addressees can
be ranked and the most promising ones can be selected.

Of course, these effects are unknown and have to be estimated. Typically, a
firm specifies and estimates a response model based on a test mailing to get to
know the effects of the characteristics on the response probability. Given the
zero-one nature of the response variable in the simplest case, the logit model
(and, to a lesser degree, the probit model) is frequently used for the purpose.

Given the growing importance of direct marketing, there has been an upsurge
in research in the field to extend the basic methodology. Roberts and Berger
(1999) provide a recent overview of a wide variety of techniques for the
purpose. More in particular, recent research includes the following.

One issue is model selection. In the frequently occurring context of
databases containing hundreds of variables, model selection is non-trivial.
Levin, Zahavi and Olitsky (1995) propose an expert system, called AMOS, for
the selection of variables to be optimally included in a model to predict
customer behavior.

Many papers have addressed the use of more sophisticated methods beyond
logit or probit. Bult and Wansbeek (1995) explore the use of a non-parametric
alternative (i.c., the Cosslett estimator) for the usual discrete choice model in
order to obviate undue parametric assumptions. Another kind of flexibility is
offered by a number of relatively new statistical techniques whose potential for
target selection is increasingly explored, like neural networks, e.g. Zahavi and
Levin (1995, 1997), genetic algorithms, e.g. Ratner (1998) and Coates, Doherty
and French (1999), and fuzzy logic, e.g. Openshaw (1996). Given the high
noise-to-signal ratio in the typical direct marketing database, it is not yet clear
whether the high level of sophistication offered by these methods will after all
pay off in the field of target selection.

An important but methodologically difficult aspect concerns the dynamics of
customer relations. In most cases, a firm involved in direct marketing wishes to
establish a lasting relation with its customers, calling for methods that
somehow optimize over time. The most profound contribution here is by Goniil
and Shi (1998), who use dynamic programming methods to optimize mailings
to a database over time. Goniil, Kim and Shi (2000) employ a hazard function
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approach to model intertemporal behavior of customers being sent catalogs,
taking observed and unobserved heterogeneity into account.

Often, the outcome of a mailing has a quantity component in addition to the
zero-one-component, calling for an extension of selection methods such that
some quantity of the order is taken into account, like the number of items
ordered or the amount of donation made. This topic has, e.g. been researched
by Bult and Wittink (1996), Otter, van der Scheer and Wansbeek (1999), and
Jonker, Paap and Franses (2000). By way of other extensions, Bult, van der
Scheer and Wansbeek (1997) and Spring, Leeflang and Wansbeek (1999)
investigate various aspects of offer design on response. Koning, Spring and
Wansbeek (2001) model selection taking secondary action (pay or not, return
or not) into account after the primary action of ordering items after being
triggered by direct mail.

Anyhow, what most of these approaches have in common is essentially a
model with estimates of the effects of variables on behavior. The estimates are
used to formulate a decision rule to select households from a mailing list.
However, this separation of parameter estimation and formulation of decision
rules does not, in general, lead to optimal profits since a suboptimal decision
rule is specified (Klein et al., 1978).

The reason for this suboptimality is that estimation usually takes place by
considering (asymptotic) squared-error loss, which puts equal weight at over-
and under-estimating the parameters. However, while a squared-error loss
function may be useful when summarizing properties of the response function,
it completely ignores the economic objectives ‘of the marketing firm. Rather,
the inferential process should be embedded in the firm’s decision-making
framework, taking explicitly into account the firm’s objective of maximizing
expected profit. Put differently, the decision maker should take the estimation
risk into account when formulating a decision rule regarding which households
to solicit. The loss resulting structure is, in general, asymmetric in contrast
to the traditional squared-error loss structure. Consequently, the traditional
methods thus yield suboptimal decision rules.

The purpose of this paper is to formulate a strict decision theoretic
framework for a marketing firm engaged in direct marketing. In particular, we
derive an optimal Bayes rule deciding when to send a mailing to a household
with a given set of characteristics. This formal approach has a number of
advantages. First of all, a rigorous decision theoretic framework clarifies the
essential ingredients entering the marketing firm’s decision problem. By
deriving the optimal Bayes rule based on an expected profit loss function, the
present framework yields admissible decision rules with respect to the
marketing firm’s economic objective. Furthermore, the estimation uncertainty
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resulting from the firm’s assessment of the characteristics of the population of
potential targets is explicitly taken into account as an integral part of the
optimal decision procedure. Thus, the decision theoretic procedure provides a
more firm theoretical foundation for optimal decision making on the part of the
firm. Equally important, the present framework provides decision rules
yielding higher profits to the firm.

Integration of the estimation and decision step has been studied thoroughly
in statistics (e.g. Berger 1985, DeGroot 1970). This formal decision theoretic
framework has been applied in a number of economic decision-making
situations, including portfolio selection (cf. Bawa, Brown & Klein, 1979), real
estate assessment (Varian, 1975), and agricultural economics (e.g. Lence &
Hayes, 1994). For further economic applications see Cyert and DeGroot
(1987). To the best of our knowledge, only one paper on optimal decision
making under uncertainty has been applied to marketing questions (Blattberg &
George, 1992). These authors consider a firm whose goal it is to maximize
profits by determining the optimal price. They conclude that the firm is better
off by charging a higher price than the price resulting from traditional methods,
which are based on the estimated price sensitivity parameter. However, in
contrast with our approach, they consider a loss function that results from a
rather ad-hoc specified model, with only one unknown parameter.

The paper is organized as follows. In the next section we formulate the
decision theoretic framework and derive the optimal Bayes decision rule. We
show that the decision rule crucially depends on the estimation uncertainty
facing the firm. The estimation uncertainty can be incorporated through a
posterior density. In Section 3 we derive a closed f