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CHAPTER 1

Finite-Sample Properties of OLS

ABSTRACT
The Ordinary Least Squares (OLS) estimator is the most basic estimation proce-
dure in econometrics. This chapter covers fihde- or small-sample properties
of the OLS estimator, that is, the statistical properties of the OLS estimator that are
valid for any given sample size. The materials covered in this chapter are entirely
standard. The exposition here differs from that of most other textbooks in its empha-
sis on the role played by the assumption that the regressors are “strictly exogenous.”
In the final section, we apply the finite-sample theory to the estimation of the
cost function using cross-section data on individual firms. The question posed in
Nerlove’s (1963) study is of great practical importance: are there increasing returns
to scale in electricity supply? If yes, microeconomics tells us that the industry should
be regulated. Besides providing you with a hands-on experience of using the tech-
niques to test interesting hypotheses, Nerlove’s paper has a careful discussion of why
the OLS is an appropriate estimation procedure in this particular application.

1.1 The Classical Linear Regression Model

In this section we present the assumptions that comprise the classical linear regres-
sion model. In the model, the variable in question (calleddbpendent vari-
able, theregressand or more generically thieft-hand [-side] variable) is related
to several other variables (called thegressors the explanatory variables or
the right-hand [-side] variables). Suppose we observevalues for those vari-
ables. Lety; be thei-th observation of the dependent variable in question and let
(Xi1, Xi2, .. ., Xik ) be thei -th observation of th& regressors. Theampleor data
is a collection of those observations.

The data in economics cannot be generated by experiments (except in experi-
mental economics), so both the dependent and independent variables have to be
treated as random variables, variables whose values are subject to chancdelA
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is a set of restrictions on the joint distribution of the dependent and independ-
ent variables. That is, a model is a set of joint distributions satisfying a set of
assumptions. The classical regression model is a set of joint distributions satisfy-
ing Assumptions 1.1-1.4 stated below.

The Linearity Assumption
The first assumption is that the relationship between the dependent variable and the
regressors is linear.

Assumption 1.1 (linearity):
Vi = BiXit + BoXiz + -+ BrXik +& (=212,...,n), (1.1.1)

where B’s are unknown parameters to be estimated, and &; is the unobserved error
term with certain properties to be specified below.

The part of the right-hand side involving the regressg{g1 + B2Xi>+- - - + Bk Xik »

is called theregressionor theregression function and the coefficientss(s) are

called theregression coefficientsThey represent the marginal and separate effects

of the regressors. For exampp, represents the change in the dependent variable
when the second regressor increases by one unit while other regressors are held
constant. In the language of calculus, this can be expressig/@si, = B,. The
linearity implies that the marginal effect does not depend on the level of regressors.
The error term represents the part of the dependent variable left unexplained by the
regressors.

Example 1.1 (consumption function): The simple consumption function
familiar from introductory economics is

CON = B1+ B.YD + ¢, (1.1.2)

where CON is consumption and&D is disposable income. If the data are
annual aggregate time-seri€QN andYD are aggregate consumption and
disposable income for year If the data come from a survey of individual
householdsCON is consumption by the-th household in the cross-section
sample ofn households. The consumption function can be written as (1.1.1)
by settingy; = CON, xj; = 1 (a constant), andi, = YD,. The error

term g represents other variables besides disposable income that influence
consumption. They include those variables — such as financial assets — that
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might be observable but the researcher decided not to include as regressors,
as well as those variables —such as the “mood” of the consumer —that are
hard to measure. When the equation has only one nonconstant regressor, as
here, it is called thaimple regression model

The linearity assumption is not as restrictive as it might first seem, because the
dependent variable and the regressors can be transformations of the variables in
guestion. Consider

Example 1.2 (wage equation): A simplified version of the wage equation
routinely estimated in labor economics is

log(WAGE) = B1 + B2S + BsTENURE + B4EXPR + ¢, (1.1.3)

where WAGE = the wage rate for the individua = education in years,
TENURE= years on the current job, artXPR = experience in the labor
force (i.e., total number of years to date on all the jobs held currently or pre-
viously by the individual). The wage equation fits the generic format (1.1.1)
with yi = log(WAGE). The equation is said to be in tleemi-log form
because only the dependent variable is in logs. The equation is derived from
the following nonlinear relationship between the level of the wage rate and
the regressors:

WAGE = exp(B1) exp(829) exp(B3TENURE) exp(B4EXPR) exp(e; ).
(1.1.4)

By taking logs of both sides of (1.1.4) and noting that[eagx(x)] = X, one
obtains (1.1.3). The coefficients in the semi-log form have the interpretation
of percentage changesot changes in levels. For example, a value of 0.05
for B, implies that an additional year of education has the effect of raising
the wage rate by 5 percent. The difference in the interpretation comes about
because the dependent variable is the log wage rate, not the wage rate itself,
and the change in logs equals the percentage change in levels.

Certain other forms of nonlinearities can also be accommodated. Suppose, for
example, the marginal effect of education tapers off as the level of education gets
higher. This can be captured by including in the wage equation the squared term
$? as an additional regressor in the wage equation. If the coefficient of the squared
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term isBs, the marginal effect of education is
B2+ 25S (= 3 l1og(WAGE/3S).

If Bs is negative, the marginal effect of education declines with the level of educa-
tion.

There are, of course, cases of genuine nonlinearity. For example, the relation-
ship (1.1.4) could not have been made linear if the error term entered additively
rather than multiplicatively:

WAGE = exp(81) exp(82S) exp(BsTENURE) exp(B4EXPR) + &;.

Estimation of nonlinear regression equations such as this will be discussed in
Chapter 7.

Matrix Notation

Before stating other assumptions of the classical model, we introduce the vector
and matrix notation. The notation will prove useful for stating other assumptions
precisely and also for deriving the OLS estimatorfof Define K-dimensional
(column) vectors andg as

Xi1 B1
Xi2 B2

i =| |, B =|""] (1.1.5)
(Kx1) (K x1) .
Xik Bk

By the definition of vector inner products, = B1Xi1 + BaXi2 + - - - + Bk Xik - SO
the equations in Assumption 1.1 can be written as

Vi =Xi/,3+8i i=22...,n). (1.1.7)
Also define
Y1 &1 X;_ X171 ... X1K
=], e =, x =|:|=]: ... :]| @18
(nx1) (nx1) (nxK) )
Yn €n Xn Xp1 --- Xnk

In the vectors and matrices in (1.1.6), there are as many rows as there are obser-
vations, with the rows corresponding to the observations. For this rgaaodX
are sometimes called ttdata vector and thedata matrix. Since the number of
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columns ofX equals the number of rows gf X andg are conformable an¥g is
annx1 vector. Itsi-th element is¢; 8. Therefore, Assumption 1.1 can be written
compactly as

y = X B + €.
(nx1) (nxK)(le) (nx1)
——

(nx1)

The Strict Exogeneity Assumption
The next assumption of the classical regression model is

Assumption 1.2 (strict exogeneity):

EG¢ |X)=0 (=12...,n). (1.1.7)

Here, the expectation (mean) is conditional on the regressosd|fobservations.
This point may be made more apparent by writing the assumption without using
the data matrix as

E(ei [X1,.... %) =0 (i=12...,n).

To state the assumption differently, take, for any given observatithre joint dis-
tribution of thenK + 1 random variablesf (¢, X1, . .., X,), and consider the con-
ditional distribution, f (¢; | X1, ..., X,). The conditional mean@; | X1, ..., Xn)

is in general a nonlinear function ¢fy, .. ., X,). The strict exogeneity assumption
says that this function is a constant of value Zero.

Assuming this constant to be zero is not restrictive if the regressors include a
constant, because the equation can be rewritten so that the conditional mean of the
error term is zero. To see this, suppose thé B X) is uw andx; = 1. The
equation can be written as

Vi = B1+ BaXio + -+ - + Bk Xik + &
= (B1+ w) + BoXio + - -+ + B Xik + (&i — ).

If we redefines, to bes; + u andg; to beg; — u, the conditional mean of the new
error term is zero. In virtually all applications, the regressors include a constant
term.

1some authors define the term “strict exogeneity” somewhat differently. For example, in Koopmans and Hood
(1953) and Engle, Hendry, and Richards (1983), the regressors are strictly exogenoigsiitiependent of;
for all i, j. This definition is stronger than, but not inconsistent with, our definition of strict exogeneity.
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Example 1.3 (continuation of Example 1.1): For the simple regression
model of Example 1.1, the strict exogeneity assumption can be written as

E(si | YDy, YD, ..., YDy) = 0.

Sincex; = (1, YD)’, you might wish to write the strict exogeneity assump-
tion as

E(ei [1,YDy, 1, YD,, ..., 1,YDy) =0.
But since a constant provides no information, the expectation conditional on
(1L, YD, 1,YDs,...,1,YDy)

is the same as the expectation conditional on

(YD1, YDy, ..., YDn).
Implications of Strict Exogeneity
The strict exogeneity assumption has several implications.

e Theunconditional mean of the error term is zero, i.e.,
EG)=0 (=12 ...,n). (1.1.8)

This is because, by the Law of Total Expectations from basic probability tReory,
E[E(si | X)] = E(&i).

¢ Ifthe cross moment &Yy) of two random variableg andy is zero, then we say
thatx is orthogonal to y (or y is orthogonal tok). Under strict exogeneity, the
regressors are orthogonal to the error termalbobservations, i.e.,

E(XjkEi):O (I,j :1,...,n;k:1,...,K)

or
E(Xj1&i)

E(Xj2&i)

E(xj-&) = = (K(Zl) (foralli, j). (1.1.9)

E(Xjk &)

2The Law of Total Expectations states thaEEy | X)] = E(y).
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The proof is a good illustration of the use of properties of conditional expecta-
tions and goes as follows.

PROOF. Sincex;i is an element oK, strict exogeneity implies
E(ei | Xjx) = E[E(ei | X) | Xjk] =0 (1.1.10)

by the Law of Iterated Expectations from probability thedrit follows from
this that

E(Xjkei) = E[E(Xjksi | Xjw)]  (by the Law of Total Expectations)
= E[Xjk E(&i | ;)] (by the linearity of conditional expectatidhs
=0. [ ]

The point here is that strict exogeneity requires the regressors be orthogonal not
only to the error term from the same observation (i.€xki) = O for all k),

but also to the error term from the other observations (i.&;kE) = O for all

k and forj #1i).

e Because the mean of the error term is zero, the orthogonality conditions (1.1.9)
are equivalent to zero-correlation conditions. This is because

CoVv(si, Xjk) = E(Xjkei) — E(Xj) E(gj)  (by definition of covariance)
= E(Xjkei) (since Hej) =0, see (1.1.8))
=0 (by the orthogonality conditions (1.1.9))

In particular, fori = j, Cov(Xix, &) = 0. Therefore, strict exogeneity implies
the requirement (familiar to those who have studied econometrics before) that
the regressors be contemporaneously uncorrelated with the error term.

Strict Exogeneity in Time-Series Models

For time-series models wherds time, the implication (1.1.9) of strict exogene-

ity can be rephrased as: the regressors are orthogonal to the past, current, and
future error terms (or equivalently, the error term is orthogonal to the past, current,
and future regressors). But for most time-series models, this conditiora(forel

tiori strict exogeneity) is not satisfied, so the finite-sample theory based on strict
exogeneity to be developed in this section is rarely applicable in time-series con-

3The Law of Iterated Expectations states theE® | X, 2) | X] = E(y | X).
4The linearity of conditional expectations states thit &)y | X] = f (x) E(y | X).
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texts. However, as will be shown in the next chapter, the estimator possesses good
large-sample properties without strict exogeneity.

The clearest example of a failure of strict exogeneity is a model where the
regressor includes thagged dependent variable Consider the simplest such
model:

Yi=BYi-1+ea (=1L12...,n). (1.1.11)

This is called thdirst-order autoregressive model(AR(1)). (We will study this
model more fully in Chapter 6.) Suppose, consistent with the spirit of the strict
exogeneity assumption, that the regressor for observatign,, is orthogonal to

the error term for so Ky;_1¢j) = 0. Then

E(yiei) = E[(BYi_1 +&)e]  (by (1.1.11))
= BE(Yi-18) + E(&))
= E(¢?) (since By;_i1&) = 0 by hypothesis)

Therefore, unless the error term is always zergy &) is not zero. Buty; is the
regressor for observationt+1. Thus, the regressor is not orthogonal to the past
error term, which is a violation of strict exogeneity.

Other Assumptions of the Model
The remaining assumptions comprising the classical regression model are the
following.

Assumption 1.3 (no multicollinearity): The rank of the nx K data matrix, X, is
K with probability 1.

Assumption 1.4 (spherical error variance):
(homoskedasticity) E(gi2 IX)=06?>0 (i=12...,n),° (1.1.12)

(no correlation between observations)
E(eigy | X)=0 (,]j=212,....,n;i #]). (1.1.13)

5When a symbol (which here isz) is given to a moment (which here is the second mome}q% E X)), by
implication the moment is assumed to exist and is finite. We will follow this convention for the rest of this book.
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To understand Assumption 1.3, recall from matrix algebra that the rank of a
matrix equals the number of linearly independent columns of the matrix. The
assumption says that none of thecolumns of the data matrix can be expressed
as a linear combination of the other columnsXof That is, X is of full column
rank. Since theK columns cannot be linearly independent if their dimension is
less tharK, the assumption implies that> K, i.e., there must be at least as many
observations as there are regressors. The regressors are sa{geddetly) mul-
ticollinear if the assumption is not satisfied. Itis easy to see in specific applications
when the regressors are multicollinear and what problems arise.

Example 1.4 (continuation of Example 1.2):If no individuals in the sam-

ple ever changed jobs, thdlENURE = EXPR for all i, in violation of the

no multicollinearity assumption. There is evidently no way to distinguish the
tenure effect on the wage rate from the experience effect. If we substitute this
equality into the wage equation to eliminal&ENURE, the wage equation
becomes

log(WAGE) = B1 + B2S + (B3 + BHEXPR + ¢,

which shows that only the sugy + 84, but nots; and 84 separately, can be
estimated.

The homoskedasticity assumption (1.1.12) says that the conditional second
moment, which in general is a nonlinear functionXafis a constant. Thanks to
strict exogeneity, this condition can be stated equivalently in more familiar terms.
Consider the conditional variance Var| X). It equals the same constant because

Var(e; | X) = E(e? | X) — E(g | X)? (by definition of conditional variance)
= E(ei2 | X) (since Eegj | X) = 0 by strict exogeneity)

Similarly, (1.1.13) is equivalent to the requirement that
COV(Si,Sj [ X)=0 (,j=21,2,...,ni #}).

That is, in the joint distribution ofe;, ;) conditional onX, the covariance is zero.
In the context of time-series models, (1.1.13) states that theresenad correla-
tion in the error term.
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Since the(i, j) element of thenxn matrix ee’ is ¢, Assumption 1.4 can be
written compactly as

E(ee' | X) = o2, (1.1.14)

The discussion of the previous paragraph shows that the assumption can also be
written as

Var(e | X) = ol,.

However, (1.1.14) is the preferred expression, because the more convenient mea-
sure of variability is second moments (such as?E X)) rather than variances.

This point will become clearer when we deal with the large sample theory in the
next chapter. Assumption 1.4 is sometimes calledgleerical error variance
assumption because thexn matrix of second moments (which are also variances
and covariances) is proportional to the identity maltfxThis assumption will be
relaxed later in this chapter.

The Classical Regression Model for Random Samples

The sampley, X) is arandom sampleif {y;, x;} isi.i.d. (independently and iden-
tically distributed) across observations. Since by Assumptiorg;ilid a function
of (yi, xi) and since(y;, ;) is independent ofy;, x;) for j # i, (&, X;) is inde-
pendent ok; for j #i. So

E(ei | X) = E(si | X)),
E(e | X) = E(e7 | %)),
and E(siej | X) = E(si | %) E(Sj | Xj) (fori # j). (1.1.15)

(Proving the last equality in (1.1.15) is a review question.) Therefore, Assumptions
1.2 and 1.4 reduce to

Assumption 1.2: & | ) =0 (i =12,...,n), (1.1.16)
Assumption 1.4: E?|x)=0%>0 (i =12...,n. (11.17)

The implication of the identical distribution aspect of a random sample is that
the joint distribution of(e;, x;) does not depend dn So theunconditional second
moment Ee?) is constant across(this is referred to asnconditional homoske-
dasticity) and the functional form of the conditional second mome@fE x;) is
the same across However, Assumption 1.4 —that thalue of the conditional
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second moment is the same acriossdoes not follow. Therefore, Assumption 1.4
remains restrictive for the case of a random sample; without it, the conditional sec-
ond moment E? | x;) can differ across through its possible dependencegn

To emphasize the distinction, the restrictions on the conditional second moments,
(1.1.12) and (1.1.17), are referred tocamditional homoskedasticity

“Fixed” Regressors

We have presented the classical linear regression model, treating the regressors as
random. This is in contrast to the treatment in most textbooks, wh&assumed

to be “fixed” or deterministic. I¥X is fixed, then there is no need to distinguish
between the conditional distribution of the error terfiig; | X4, ..., Xn), and the
unconditional distributionf (&), so that Assumptions 1.2 and 1.4 can be written as

Assumption 1.2: Ei) =0 (i =1,...,n), (1.1.18)
Assumption 1.4: B =02 (i=1,...,n);
Eeig) =0 (,j=1,...,mi #j). (1.1.19)

Although it is clearly inappropriate for a nonexperimental science like economet-
rics, the assumption of fixed regressors remains popular because the regression
model with fixedX can be interpreted as a set of statements condition&,on
allowing us to dispense with| “X” from the statements such as Assumptions 1.2
and 1.4 of the model.

However, the economy in the notation comes at a price. It is very easy to miss
the point that the error term is being assumed to be uncorrelated with current, past,
and future regressors. Also, the distinction between the unconditional and condi-
tional homoskedasticity gets lost if the regressors are deterministic. Throughout
this book, the regressors are treated as random, and, unless otherwise noted, state-
ments conditional oiX are made explicit by inserting X.”

QUESTIONS FOR REVIEW

1. (Change in units in the semi-log form) Inthe wage equation, (1.1.3), of Exam-
ple 1.2, if WAGEis measured in cents rather than in dollars, what difference
does it make to the equatiomint: log(x y) = log(x) + log(y).

2. Prove the last equality in (1.1.18)int: E(gigj | X) = Elgj E(si | X, €)) | X].
(si, Xi) is independent of (&j, X1, ..., Xi—1, Xi+1, ..., Xn) fori # J.
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3. (Combining linearity and strict exogeneity) Show that Assumptions 1.1 and
1.2 imply

Ey [ X)=xB (=12...n. (1.1.20)

Conversely, show that this assumption implies that there exist error terms that
satisfy those two assumptions.

4. (Normally distributed random sample) Consider a random sample on con-
sumption and disposable incom@&ON, YD) (i = 1,2,...,n). Suppose
the joint distribution of(CON, YD) (which is the same acrossbecause of
the random sample assumption) is normal. Clearly, Assumption 1.3 is satis-
fied; the rank ofX would be less thaiK only by pure accident. Show that the
other assumptions, Assumptions 1.1, 1.2, and 1.4, are satisfied. If two
random variables, y and X, are jointly normally distributed, then the conditional
expectation is linear in X, i.e.,

E(y | X) = B1+ B2X,

and the conditional variance, Var(y | x), does not depend on X. Here, the fact
that the distribution is the same across i is important; if the distribution differed
across i, B1 and B, could vary acrossii.

5. (Multicollinearity for the simple regression model) Show that Assumption 1.3
for the simple regression model is that the nonconstant regrégspis really
nonconstant (i.exj> # X2 for some pairs ofi, j),i # j, with probability
one).

6. (An exercise in conditional and unconditional expectations) Show that As-
sumptions 1.2 and 1.4 imply

Vargi) =02 (i=12,...,n)
and CovVej, &) =0 (@ #j;i,]=12...n). ()

Hint: Strict exogeneity implies E(gj) = 0. So (x) is equivalent to

E(?) =02 (i=12...,n)
and E(gigj)) =0 (1 #):0,j=12...,n).
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1.2 The Algebra of Least Squares

This section describes the computational procedure for obtaining the OLS estimate,
b, of the unknown coefficient vect@ and introduces a few concepts that derive
from b.

OLS Minimizes the Sum of Squared Residuals
Although we do not observe the error term, we can calculate the value implied by
a hypothetical valueg, of g as

Vi —Xfﬁ-

This is called theesidual for observatiori. From this, form thesum of squared
residuals (SSR):

SSRB) = Y (v —XB)? = (y — XB)'(y — XB).
i=1

This sum is also called therror sum of squares (ESS)or theresidual sum of
squares (RSS)It is a function of 8 because the residual depends on it. TheS
estimate b, of g is the g that minimizes this function:

b= argNminSSRﬁ). (1.2.1)
B

The relationship among (the unknown coefficient vector), (the OLS estimate of
it), andﬁ (a hypothetical value @8) is illustrated in Figure 1.1 foK = 1. Because
SSRp) is quadratic ing, its graph has the U shape. The valugdaforresponding
to the bottom id, the OLS estimate. Since it depends on the samplX), the
OLS estimaté is in general different from the true valy if b equalsg, it is by
sheer accident.

By having squared residuals in the objective function, this method imposes a
heavy penalty on large residuals; the OLS estimate is chosen to prevent large resid-
uals for a few observations at the expense of tolerating relatively small residuals
for many other observations. We will see in the next section that this particular
criterion brings about some desirable properties for the estimate.
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SSR

| |
b g P

Figure 1.1: Hypothetical, True, and Estimated Values

Normal Equations

A sure-fire way of solving the minimization problem is to derive the first-order
conditions by setting the partial derivatives equal to zero. To this end we seek a
K-dimensional vector of partial derivativea;SSRﬁ) /83.6 The task is facilitated

by writing SSRB) as

SSRB) = (y — XB)'(y — XB) (since the-th element ofy — XB is y; — X' B)
=y —BX)(y—XB) (since(XB)’ = B'X)
=yy—BXy—yXB+BXXB
=Yy - 2yXB+BXXB

(since the scalg8 X'y equals its transposgX B)
=yy—2d8 + B AB witha= X'y andA = X'X. (1.2.2)

The termy’y does not depend oﬂ and so can be ignored in the differentiation of
SSRp). Recalling from matrix algebra that

d@B (B AB ~
(a~ﬂ) =a and M =2AB for A symmetric,
B B

61f h: RX — Ris ascalar-valued function ofta-dimensional vectox, the derivative ofi with respect tox is
aK-dimensional vector whodeth element isih(x)/dxx wherexy is thek-th element ok. (This K -dimensional
vector is called thgradient.) Here, thex is 8 and the functiorn(x) is SSRf).
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the K-dimensional vector of partial derivatives is
9SSRA)

0B
The first-order conditions are obtained by setting this equal to zero. Recalling from

(1.2.2) thata here isX'y andA is X’X and rearranging, we can write the first-order
conditions as

=-—-2a+ ZAE

(&(Xﬁg)(KtﬁD = Xy. (1.2.3)
Here, we have replaceﬁl by b because the OLS estimdtes theﬁ that satisfies
the first-order conditions. Thed€ equations are called thermal equations
The vector of residuals evaluatedfat= b,

msl) =y — Xb, (1.2.4)
is called the vector ofOLS residuals Its i-th element is = y — Xx/b.

Rearranging (1.2.3) gives
X'(y—Xb) =0 or Xe=0 or

1< 1<
- .e =0 z (v —Xb)=0 123
r{g;m & orr{zgm (Yi —x{b) =0, (1.2.3)

which shows that the normal equations can be interpreted as the sample analogue
of the orthogonality conditions &; - ;) = 0. This point will be pursued more
fully in subsequent chapters.

To be sure, the first-order conditions are just a necessary condition for min-
imization, and we have to check the second-order condition to make sure that
achieves the minimum, not the maximum. Those who are familiar with the Hessian
of a function of several variablésan immediately recognize that the second-order
condition is satisfied because (as noted bel® is positive definite. There is,
however, a more direct way to show tleindeed achieves the minimum. It utilizes
the “add-and-subtract” strategy, which is effective when the objective function is
quadratic, as here. Application of the strategy to the algebra of least squares is left
to you as an analytical exercise.

7TheHessianof h(x) is a square matrix whosg, ¢) element iaazh(x)/axk Xy.
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Two Expressions for the OLS Estimator

Thus, we have obtained a systemKflinear simultaneous equations K un-
knowns inb. By Assumption 1.3 (no multicollinearity), the coefficient matkix

is positive definite (see review guestion 1 below for a proof ) and hence nonsingular.
So the normal equations can be solved uniquelpfoy premultiplying both sides

of (1.2.3) by(X'X)~1:

b = (X'X)"IXYy. (1.2.5)

Viewed as a function of the sampig, X), (1.2.5) is sometimes called tl@LS
estimator. For any given samplé¢y, X), the value of this function is th©LS
estimate In this book, as in most other textbooks, the two terms will be used
almost interchangeably.

Since(X’X)"IX'y = (X’X/n)~1X’y/n, the OLS estimator can also be rewrit-
ten as

b = S!Sy, (1.2.5)

where n
1 / 1 / /
Su==X'X==%"xx (sample average ofx;), (1.2.6a)
n n &

1 1
Sy = Hx’y == ;xi -yi (sample average of - y;).  (1.2.6b)
The data matrix form (1.2.5) is more convenient for developing the finite-sample
results, while the sample average form2(%') is the form to be utilized for large-
sample theory.

More Concepts and Algebra
Having derived the OLS estimator of the coefficient vector, we can define a few
related concepts.

e Thefitted value for observation is defined ag; = x;b. The vector of fitted
value,y, equalsXb. Thus, the vector of OLS residuals can be writtereas
y—y.

e Theprojection matrix P and theannihilator M are defined as

P =XXX)"IX/, (1.2.7)
(nxn)

=I,—P. (1.2.8)

(nxn)
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They have the following nifty properties (proving them is a review question):

Both P andM are symmetric and idempoteht, (1.2.9)
PX =X (hence the termrojection matrix), (1.2.10)
MX =0 (hence the termnnihilator). (1.2.11)

Sinceeis the residual vector a,ﬁ = b, the sum of squared OLS residuaBSR
equalsge. It can further be written as

SSR= €e = ¢'Me. (1.2.12)

(Proving this is a review question.) This expression, rela#&Rto the true
error terme, will be useful later on.

e The OLS estimate of ? (the variance of the error term), denotd is the sum
of squared residuals divided loy— K:
2 SSR €e

s = = . (1.2.13)
n—K n—K

(The definition presumes that> K ; otherwises? is not well-defined.) As will

be shown in Proposition 1.2 below, dividing the sum of squared residuals by
n — K (called thedegrees of freedomrather than by (the sample size) makes
this estimate unbiased for’. The intuitive reason is tha parametersf) have

to be estimated before obtaining the residual veetsed to calculate®. More
specifically,e has to satisfy th&K normal equations (2.3), which limits the
variability of the residual.

e The square root of?, s, is called thestandard error of the regression (SER)
or standard error of the equation (SEE). It is an estimate of the standard
deviation of the error term.

e Thesampling error is defined a® — B. It too can be related te as follows.
b—B=XX)"Xy-8 (by(1.25))
= (X'X)"IX'(XB +€) —B (sincey = XB + e by Assumption 1.1)
= X'X)"HXX)B + (X'X)X'e — B
=B+ X'X)"IX'e - g = X'X)Xe. (1.2.14)

8A square matrixA is said to bédempotentif A = AZ.
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e Uncentered R?. One measure of the variability of the dependent variable is the
sum of squaresy_ y? = y'y. Because the OLS residual is chosen to satisfy the
normal equations, we have the following decompositioy pf

yy= ( +8'(y+e (sincee=y-7Y)
Y+ 2ye+ €e
99+2bXe+e(e (sincey = Xb)

YV + €e (sinceX’'e = 0by the normal equations; see2B')).
(1.2.15)

Theuncentered R? is defined as

e(e
2 — 1 (1.2.16)
Ric vy

Because of the decomposition (1.2.15), this equals

/

<>
<>

4

<
<

Since bothy’y and€e are nonnegative, & R2. < 1. Thus, the uncenterel?
has the interpretation of the fraction of the variation of the dependent variable
that is attributable to the variation in the explanatory variables. The closer the
fitted value tracks the dependent variable, the closer is the uncemRétedne.

e (Centered) R?, the coefficient of determination If the only regressor is a
constant (so thak = 1 andx;; = 1), then it is easy to see from (1.2.5) thmat
equalsy, the sample mean of the dependent variable, which meang;thaty
foralli, 'y in (1.2.15) equaleiy?, ande'e equalsy_; (yi — ¥)2. If the regressors
also include nonconstant variables, then it can be shown (the proof is left as an
analytical exercise) thdt, (yi — ¥)? is decomposed as

Z(Yi —9)? = Z(y - 9)? +Zq with y = ZYi- (1.2.17)
i=1

The coefficient of determination, R?, is defined as

RR=1- % (1.2.18)



Finite-Sample Properties of OLS 21

Because of the decomposition (1.2.17), tRfsequals

Y —9)?
Zin=1(yi - y)z

Therefore, provided that the regressors include a constant so that the decompos-
ition (1.2.17) is valid, 0< R? < 1. Thus, thisR? as defined in (1.2.18) is a
measure of the explanatory power of the nonconstant regressors.

If the regressors do not include a constant but (as some regression software
packages do) you nevertheless calcuRtdy the formula (1.2.18), then tHe?
can be negative. This is because, without the benefit of an intercept, the regres-
sion could do worse than the sample mean in terms of tracking the dependent
variable. On the other hand, some other regression packages (notably STATA)
switch to the formula (1.2.16) for thR? when a constant is not included, in
order to avoid negative values for tiR¥. This is a mixed blessing. Suppose
that the regressors do not include a constant but that a linear combination of
the regressors equals a constant. This occurs if, for example, the intercept is
replaced by seasonal dummfeEhe regression is essentially the same when one
of the regressors in the linear combination is replaced by a constant. Indeed, one
should obtain the same vector of fitted values. But if the formula folRhés
(1.2.16) for regressions without a constant and (1.2.18) for those with a constant,
the calculatedR? declines (see Review Question 7 below) after the replacement
by a constant.

Influential Analysis (optional)
Since the method of least squares seeks to prevent a few large residuals at the
expense of incurring many relatively small residuals, only a few observations can
be extremely influential in the sense that dropping them from the sample changes
some elements df substantially. There is a systematic way to find thiofeien-
tial observations!® Let b be the OLS estimate ¢f that would be obtained if
OLS were used on a sample from which thilh observation was omitted. The key
equation is
. 1 B
b b= —(l—>(X’X) .6, (1.2.19)

9Dummy variables will be introduced in the empirical exercise for this chapter.
10see Krasker, Kuh, and Welsch (1983) for more details.
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wherex; as before is thé-th row of X, g is the OLS residual for observatian
andp; is defined as

pi =X (X' X)X, (1.2.20)

which is thei-th diagonal element of the projection matix (Proving (1.2.19)
would be a good exercise in matrix algebra, but we will not do it here.) It is easy
to show (see Review Question 7 of Section 1.3) that

n
0O<p<land) p=K. (1.2.21)
i=1

So p; equalsK /n on average.

To illustrate the use of (1.2.19) in a specific example, consider the relationship
between equipment investment and economic growth for the world’s poorest coun-
tries between 1960 and 1985. Figure 1.2 plots the average annual GDP-per-worker
growth between 1960 and 1985 against the ratio of equipment investment to GDP
over the same period for thirteen countries whose GDP per worker in 1965 was less
than 10 percent of that of the United Statést is clear visually from the plot that
the position of the estimated regression line would depend very much on the single
outlier (Botswana). Indeed, if Botswana is dropped from the sample, the estimated
slope coefficient drops from 0.37 to 0.058. In the present case of simple regres-
sion, it is easy to spot outliers by visually inspecting the plot such as Figure 1.2.
This strategy would not work if there were more than one nonconstant regressor.
Analysis based on formula (1.2.19) is not restricted to simple regressions. Table
1.1 displays the data along with the OLS residuals, the valugs, @fnd (1.2.19)
for each observation. Botswangis of 0.7196 is well above the average of 0.154
(= K/n = 2/13) and is highlyinfluential, as the last two columns of the table
indicate. Note that we could not have detected the influential observation by look-
ing at the residuals, which is not surprising because the algebra of least squares is
designed to avoid large residuals at the expense of many small residuals for other
observations.

What should be done with influential observations? It depends. If the influ-
ential observations satisfy the regression model, they provide valuable information
about the regression function unavailable from the rest of the sample and should
definitely be kept in the sample. But more probable is that the influential observa-
tions are atypical of the rest of the sample because they do not satisfy the model.

11The data are from the Penn World Table, reprinted in DeLong and Summers (1991). To their credit, their
analysis is based on the whole sample of sixty-one countries.
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Figure 1.2: Equipment Investment and Growth

In this case they should definitely be dropped from the sample. For the exam-
ple just examined, there was a worldwide growth in the demand for diamonds,
Botswana’s main export, and production of diamonds requires heavy investment
in drilling equipment. If the reason to expect an association between growth and
equipment investment is the beneficial effect on productivity of the introduction of
new technologies through equipment, then Botswana, whose high GDP growth is
demand-driven, should be dropped from the sample.

A Note on the Computation of OLS Estimates %2

So far, we have focused on the conceptual aspects of the algebra of least squares.
But for applied researchers who actually calculate OLS estimates using digital
computers, it is important to be aware of a certain aspect of digital computing

in order to avoid the risk of obtaining unreliable estimates without knowing it. The
source of a potential problem is that the computer approximates real numbers by
so-calledfloating-point numbers. When an arithmetic operation involves both
very large numbers and very small numbers, floating-point calculation can pro-
duce inaccurate results. This is relevant in the computation of OLS estimates when
the regressors greatly differ in magnitude. For example, one of the regressors may
be the interest rate stated as a fraction, and another may be U.S. GDP in dollars.
The matrixX’X will then contain both very small and very large numbers, and the
arithmetic operation of inverting this matrix by the digital computer will produce
unreliable results.

12 fuller treatment of this topic can be found in Section 1.5 of Davidson and MacKinnon (1993).



Table 1.1: Influential Analysis

Country GDP/worker  Equipment/ Residual o (12.2.19) (12.2.19)
growth GDP for B, for B,

Botswana D676 01310 00119 Q7196 00104 —-0.3124
Cameroon D458 Q0415 00233 Q0773 -0.0021 00045
Ethiopia 00094 00212 —0.0056 01193 00010 —-0.0119
India 00115 00278 —0.0059 00980 Q0009 —-0.0087
Indonesia 0345 00221 00192 01160 -0.0034 00394
Ivory Coast 00278 00243 00117 01084 -0.0019 00213
Kenya 00146 00462 —0.0096 Q0775 00007 00023
Madagascar —0.0102 00219 —0.0254 01167 00045 —-0.0527
Malawi 0.0153 00361 —0.0052 00817 00006  —0.0036
Mali 0.0044 00433 —0.0188 00769 00016  —0.0006
Pakistan 0295 00263 00126 Q1022 -0.0020 00205
Tanzania 0184 00860 —0.0206 02281 —-0.0021 00952
Thailand 00341 00395 00123 Q0784 —0.0012 00047
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A simple solution to this problem is to choose the units of measurement so that
the regressors are similar in magnitude. For example, state the interest rate in per-
cents and U.S. GDP in trillion dollars. This sort of care would prevent the problem
most of the time. A more systematic transformation of Xhmatrix is to subtract
the sample means of all regressors and divide by the sample standard deviations
before formingX’X (and adjust the OLS estimates to undo the transformation).
Most OLS programs (such as TSP) take a more sophisticated transformation of the
X matrix (called theQR decompositior) to produce accurate results.

QUESTIONS FOR REVIEW

1. Prove thatX’X is positive definite ifX is of full column rank. Hint: What
needs to be shown is that X’Xc > O for ¢ # 0. Define z = Xc. Then
CX'Xc =7z =YK, Z% If X is of full column rank, then z # O for any ¢ # O.

2. Verify that X'X/n = 3 xix andX'y/n = 3" x - y; as in (1.2.6).Hint:
The (k, £) element of X'X is Y i XikXi¢-

3. (OLS estimator for the simple regression model) In the simple regression
model,K = 2 andx;; = 1. Show that

1 Xo y
S)( =1 - , Sy =
" [XZ T Xi22j| ’ |:% Y Xi2Yij|

where

n

<

1 1
— Vi and X, = — Z Xio.
i3 i3
Show that
b I3 (X2 — %) (Vi — V)
= =

23 (X2 — X2)?

and bl = )_/ — )_(zbz.
(You may recognize the denominator of the expressiorbfoas the sample

variance of the nonconstant regressor and the numerator as the sample covar-
iance between the nonconstant regressor and the dependent vartdibte.)

1¢ 1¢
n Z X — ()% = - Z(Xiz — Xp)?
i=1 i=1
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and

1 1
— XioVi — Xoy = — Xip — X L — V).
n; Vi — X2 ¥ n;} i2 — %) (¥i — V)

You can take (1.2.5") and use the brute force of matrix inversion. Alternatively,
write down the two normal equations. The first normal equation is b; = y—X,hs.
Substitute this into the second normal equation to eliminate b, and then solve
for by.

Prove (1.2.9)—(1.2.11Hint: They should easily follow from the definition of P
and M.

(Matrix algebra of fitted values and residuals) Show the following:
(@) ¥y =Py, e= My = Me. Hint: Use (1.2.5).
(b) (1.2.12), namelySSR= ¢'Me.

(Change in units andR?) Does a change in the unit of measurement for the
dependent variable chandg®?? A change in the unit of measurement for
the regressors®int: Check whether the change affects the denominator and

the numerator in the definition for R2.

(Relation betweerR3. andR?) Show that
1-R2= (1+ nn'—y2_>(1— R2).
Yica (Vi = 9)?
Hint: Use (1.2.16), (1.2.18), and the identity >, (i — ¥)? = >, y? — n - y.
Show that

(Computation of the statistics) Verify thbf SSRs?, andR? can be calculated

from the following sample averageS;y, Sy, y'y/n, andy. (If the regressors
include a constant, thepis the element o$,, corresponding to the constant.)
Therefore, those sample averages need to be computed just once in order to
obtain the regression coefficients and related statistics.
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1.3 Finite-Sample Properties of OLS

Having derived the OLS estimator, we now examine its finite-sample properties,
namely, the characteristics of the distribution of the estimator that are valid for any
given sample siza.

Finite-Sample Distribution of b
Proposition 1.1 (finite-sample properties of the OLS estimator of3):

(a) (unbiasedness) Under Assumptions 1.1-1.3, E(b | X) = B.
(b) (expression for the variance) Under Assumptions 1.1-1.4, Var(b | X) = o2 -
X’X)~L.

(¢c) (Gauss-Markov Theorem) Under Assumptions 1.1-1.4, the OLS estimator is
efficient in the class of linear unbiased estimators. That is, for any unbiased
estimator B that is linear in 'y, Var(B | X) > Var(b | X) in the matrix sense.*®

(d) Under Assumptions 1.1-1.4, Cov(b, e | X) = 0, where e=y — Xb.

Before plunging into the proof, let us be clear about what this proposition means.

e The matrix inequality in part (c) says that the x K matrix Var(ﬁ | X) —
Var(b | X) is positive semidefinite, so

a[var( | X) — Var(b | X)Ja> 0 or & Var(8 | X)a> & Var(b | X)a

for any K-dimensional vectoa. In particular, consider a special vector whose
elements are all 0 except for theth element, which is 1. For this particulay
the quadratic forn& Aa picks up thek, k) element ofA. But the(k, k) element

of Var(8 | X), for example, is Va@x | X) wherepy is thek-th element off.
Thus the matrix inequality in (c) implies

Var(Bx | X) > Var(be | X) (k=12 ...,K). (1.3.1)

That is, for any regression coefficient, the variance of the OLS estimator is no
larger than that of any other linear unbiased estimator.

13| et A andB be two square matrices of the same size. We sayAhatB if A — B is positive semidefinite.
A K x K matrix C is said to be positive semidefinite (or nonnegative definit&)@x > 0 for all K-dimensional
vectorsx.



Chapter 1

As clear from (1.2.5), the OLS estimator is linearyin There are many other
estimators of8 that are linear and unbiased (you will be asked to provide one
in a review question below). The Gauss-Markov Theorem says that the OLS
estimator isefficient in the sense that its conditional variance matrix4arX)

is smallest among linear unbiased estimators. For this reason the OLS estimator
is called the Best Linear Unbiased Estimat8LUE).

The OLS estimatab is a function of the samplg/, X). Since(y, X) are random,

so isb. Now imagine that we fixX at some given value, calculatefor all
samples corresponding to all possible realizationg, @ind take the average of

b (the Monte Carlo exercise to this chapter will ask you to do this). This average
is the (population) conditional mean(lE| X). Part (a) (unbiasedness) says that
this average equals the true valfie

There is another notion of unbiasedness that is weaker than the unbiasedness of
part (a). By the Law of Total Expectations[Eb | X)] = E(b). So (a) implies
E(b) = B. (1.3.2)

This says: if we calculate@ for all possible different samples, differing not
only iny but also inX, the average would be the true value. This unconditional
statement is probably more relevant in economics because samples do differ in
bothy andX. The import of the conditional statement (a) is that it implies the
unconditional statement (1.3.2), which is more relevant.

The same holds for the conditional statement (c) about the variance. A review
guestion below asks you to show that statements (a) and (b) imply

Var(ﬁ) > Var(b) (1.3.3)

whereg is any linear unbiased estimator (so th&Bg X) = B).

We will now go through the proof of this important result. The proof may look

lengthy; if so, it is only because it records every step, however easy. In the first
reading, you can skip the proof of part (c). Proof of (d) is a review question.

PrROOF.

(@) (Proof that b | X) = B) E(b — B | X) = 0 whenever b | X) = B.

So we prove the former. By the expression for the sampling error (1.2.14),
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b — B = Ae whereA here is(X’X)"X’. So
E(b— B | X) =E(Ae | X) = AE(e | X).

Here, the second equality holds by the linearity of conditional expectatfons;
is a function ofX and so can be treated as if nonrandom. Sin@e|X) = 0,
the last expression is zero.

(b) (Proof that Vagb | X) = o2-(X’X)™ 1)

Var(b | X) = Var(b — B8 | X) (sincep is not random)
= Var(Ae | X) (by (1.2.14) andh = (X'X)~1X")
= A Var(e | X)A’ (sinceA is a function ofX)
= AE(ee’ | X)A" (by Assumption 1.2)
= A(o?l,)A’  (by Assumption 1.4, see (1.1.14))
= o 2AA’
=02 . (X'X)7! (sinceAA’ = (X'X)"IX'X(X'X)"L = (X'X)™D).

(c) (Gauss-Markov) Sincﬁ is linear iny, it can be written ag = Cy for some
matrix C, which possibly is a function oX. LetD=C - AorC=D+A
whereA = (X’X)~1X’. Then

o~

B=D+Ay
= Dy + Ay
=D(XB+¢e)+b (sincey =XB +eandAy = (X'X) X'y =b)
= DXB + De + b.

Taking the conditional expectation of both sides, we obtain
E(B | X) = DXB + E(De | X) + E(b | X).

Since bothb andﬁ are unbiased and sincdBe | X) = DE(e | X) =0, it
follows thatDX B = 0. For this to be true for any giveg, it is necessary that
DX = 0. So = De + b and

B—B=De+(b—p)
= (D +A)e (by(1.2.14))
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So

Var(B | X) = Var(g — B | X)
= Var[(D + A)e | X]
= (D +A) Var(e | X)(D' + A
(since bothD andA are functions oK)
=o2. (D+A)D +A’) (since Vate | X) = ¢2l,)
=o?. (DD’ + AD’ 4+ DA’ + AA").

But DA’ = DX(X’X)~! = 0sinceDX = 0. Also, AA’ = (X'X)~ ! as shown in
(b). So

Var(8 | X) = o2 [DD’ + (X'X)™1]
> o2 (X'X)"!  (sinceDD' is positive semidefinite)
—Var(b | X) (by (b)) n

It should be emphasized that the strict exogeneity assumption (Assumption
1.2) is critical for proving unbiasedness. Anything short of strict exogeneity will
not do. For example, it is not enough to assume th@at Ex;) = O for alli or
that Ex;-¢j) = O for all i. We noted in Section 1.1 that most time-series models
do not satisfy strict exogeneity even if they satisfy weaker conditions such as the
orthogonality condition E;-¢j) = 0. It follows that for those models the OLS
estimator is not unbiased.

Finite-Sample Properties of = S?
We defined the OLS estimator of in (1.2.13). It, too, is unbiased.

Proposition 1.2 (Unbiasedness of?): Under Assumptions 1.1-1.4, E(s? | X) =
o? (and hence E(S?) = ¢?), provided n > K (so that $° is well-defined).

We can prove this proposition easily by the use of the trace opéfator.

PROOF. Sinces? = €e/(n — K), the proof amounts to showing thatee | X) =
(n — K)o2. As shown in (1.2.12)¢e = ¢'Me whereM is the annihilator. The
proof consists of proving two properties: (1ljeEMe | X) = o2 tracgM), and

(2) tracéeM) = n — K.

14Thetrace of a square matrid is the sum of the diagonal elementsAaftracgA) = ) ajj .
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(1) (Proofthat Ee'Me | X) = o tracgM)) Sincee’Me =YL, > -1 mj & ¢
(this is just writing out the quadratic foraiM ), we have

n n
E(e'Me | X) = Z Z mij E(si ¢ | X) (becausen;;’s are functions oKX,
e E(mij i ¢ | X) = myj E(sigj | X))

n

=L (since He;j & | X) = Ofori # | by Assumption 1.4)
n
= (72 Z Mmij
i=1
= o2 - tracgM).
(2) (Proof that traceM) = n — K)

tracgM) = tracgl, — P) (sinceM = |, — P; see (1.2.8))
= tracgl,) — tracgP) (fact: the trace operator is linear)
= n — traceP),

and

traceP) = tracgX (X'X)"1X'] (sinceP = X(X'X)~!X’; see (1.2.7))
= tracd (X'X)"IX'X] (fact: trac€AB) = tracgBA))
= tracl k) = K.

SotracéM) = n — K. [

Estimate of Var(b | X)
If s? is the estimate of?, a natural estimate of VA | X) = o2 (X’X)"Lis

Var(b | X) = s2-(X'X)"L. (1.3.4)

This is one of the statistics included in the computer printout of any OLS software
package.

QUESTIONS FOR REVIEW

1. (Role of the no-multicollinearity assumption) In Propositions 1.1 and 1.2,
where did we use Assumption 1.3 that rékk = K? Hint: We need the
no-multicollinearity condition to make sure X’X is invertible.
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(Example of a linear estimator) For the consumption function example in
Example 1.1, propose a linear and unbiased estimat@p dat is different
from the OLS estimatoiint: How about Ez = (CON,—CON)/(YD,—YDy)?
Is it linear in (CONy, ..., CON,)? Is it unbiased in the sense that E(ﬁg |

YD, ..., YDy = B2?

(What Gauss-Markov does not mean) Under Assumptions 1.1-1.4, does there
exist a linear, but not necessarily unbiased, estimatg thfat has a variance
smaller than that of the OLS estimator? If so, how small can the variance be?
Hint: If an estimator of B is a constant, then the estimator is trivially linear in y.

(Gauss-Markov for Unconditional Variance)

(a) Prove: VarB) = E[Var(8 | X)] + Var[E(B | X)]. Hint: By definition,
Var(B | X) = E[(B — EB | X))(B —E®B | X)) | X]

and

Var[E(8 | X)] = E{[E(B | X) — E(B)IIEB | X) — E(B)]'}.
Use the add-and-subtract strategy: take /ﬂ\— E(/ﬂ\ | X) and add and subtract
EB).
(b) Prove (1.3.3).Hint: If Var(8 | X) > Var(b | X), then E[Var(8 | X)] >
E[Var(b | X)]
Propose an unbiased estimatorodfif you had data ore. Hint: How about

&’e/n? Is it unbiased?

Prove part (d) of Proposition 1.Hint: By definition,
Cov(b, €| X) = E{[b — E(b | X)lle— E(e| )1 | X }.

Since E(b | X) = B, we have b — E(b | X) = Ae where A here is (X'X)~1X’.
Use Me = e (see Review Question 5 to Section 1.2) to show that e — E(e |
X) = Me. E(Aee’'M | X) = AE(ee’ | X)M since both A and M are functions
of X. Finally, use MX = 0 (see (1.2.11)).

Prove (1.2.21)Hint: Since P is positive semidefinite, its diagonal elements are
nonnegative. Note that > |, pi = traceP).
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1.4 Hypothesis Testing under Normality

Very often, the economic theory that motivated the regression equation also speci-
fies the values that the regression coefficients should take. Suppose that the under-
lying theory implies the restriction that, equals 1. Although Proposition 1.1
guarantees that, on averagpe,(the OLS estimate of,) equals 1 if the restriction
is true,b, may not be exactly equal to 1 for a particular sample at hand. Obviously,
we cannot conclude that the restriction is false just because the eshyitters
from 1. In order for us to decide whether the sampling elpgor 1 is “too large”
for the restriction to be true, we need to construct from the sampling error some
test statistic whose probability distribution is known given the truth of the hypoth-
esis. It might appear that doing so requires one to specify the joint distribution of
(X, &) because, as is clear from (1.2.14), the sampling error is a functiox, af).
A surprising fact about the theory of hypothesis testing to be presented in this sec-
tion is that the distribution can be derived without specifying the joint distribution
when the conditional distribution @f conditional onX is normal; there is no need
to specify the distribution oX.

In the language of hypothesis testing, the restriction to be tested (such as
“B> = 1”) is called thenull hypothesis (or simply thenull). It is a restriction
on themaintained hypothesis a set of assumptions which, combined with the
null, produces some test statistic with a known distribution. For the present case
of testing hypothesis about regression coefficients, only the normality assumption
about the conditional distribution efneeds to be added to the classical regression
model (Assumptions 1.1-1.4) to form the maintained hypothesis (as just noted,
there is no need to specify the joint distribution(®f, £)). Sometimes the main-
tained hypothesis is somewhat loosely referred to as “the model.” We say that the
model iscorrectly specifiedif the maintained hypothesis is true. Although too
large a value of the test statistic is interpreted as a failure of the null, the interpreta-
tion is valid only as long as the model is correctly specified. It is possible that the
test statistic does not have the supposed distribution when the null is true but the
model is false.

Normally Distributed Error Terms

In many applications, the error term consists of many miscellaneous factors not
captured by the regressors. The Central Limit Theorem suggests that the error
term has a normal distribution. In other applications, the error term is due to
errors in measuring the dependent variable. It is known that very often measure-
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ment errors are normally distributed (in fact, the normal distribution was originally
developed for measurement errors). It is therefore worth entertaining the normality
assumption:

Assumption 1.5 (normality of the error term): The distribution of & conditional
on X is jointly normal.

Recall from probability theory that the normal distribution has several convenient
features:

e The distribution depends only on the mean and the variance. Thus, once the
mean and the variance are known, you can write down the density function.
If the distribution conditional orX is normal, the mean and the variance can
depend orX. It follows that, if the distribution conditional oK is normal and
if neither the conditional mean nor the conditional variance depends tren
the marginal (i.e., unconditional) distribution is the same normal distribution.

¢ In general, if two random variables are independent, then they are uncorrelated,
but the converse is not true. However, if two random variables are joint nor-
mal, the converse is also true, so that independence and a lack of correlation
are equivalent. This carries over to conditional distributions: if two random
variables are joint normal and uncorrelated conditionakepthen they are inde-
pendent conditional oK.

¢ A linear function of random variables that are jointly normally distributed is
itself normally distributed. This also carries over to conditional distributions. If
the distribution ofe conditional onX is normal, therAe, where the elements of
matrix A are functions o, is normal conditional oiX.

Itis thanks to these features of normality that Assumption 1.5 delivers the following
properties to be exploited in the derivation of test statistics:

e The mean and the variance of the distributiore @onditional onX are already
specified in Assumptions 1.2 and 1.4. Therefore, Assumption 1.5 together with
Assumptions 1.2 and 1.4 implies that the distributiore afonditional onX is
N, o21,):

e | X~ N(,0o?ly,). (1.4.1)

Thus, the distribution ok conditional onX does not depend oK. It then
follows thate and X areindependent Therefore, in particular, the marginal or
unconditional distribution o is N(0, o2 1,).
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e We know from (1.2.14) that the sampling erfor— B is linear ine given X.
Sincee is normal givenX, so is the sampling error. Its mean and variance are
given by parts (a) and (b) of Proposition 1.1. Thus, under Assumptions 1.1-1.5,

(b—B) | X ~ N(0, 2 (X'X)™). (1.4.2)

Testing Hypotheses about Individual Regression Coefficients
The type of hypothesis we first consider is aboutkkh coefficient

Ho: B« = Bk

Here, B, is some known value specified by the null hypothesis. We wish to test this
null against the alternative hypothesis:H« # By, at a significance level af.
Looking at thek-th component of (1.4.2) and imposing the restriction of the null,
we obtain

(b= B | X~ N(0,02- (%) 7),,).

where((X'X)™),, is the(k, k) element of X'X)~*. So if we define the ratia, by
dividing by — B, by its standard deviation
7= — P (1.4.3)
Vo2 (X0 1),

then the distribution of is N(0, 1) (the standard normal distribution).

Suppose for a second thaf is known. Then the statistin, has some desir-
able properties as a test statistic. First, its value can be calculated from the sample.
Second, its distribution conditional ofdoes not depend oX (which should not
be confused with the fact that th@lue of zx depends orX). Soz, and X are
independently distributed, and, regardless of the valug, dhe distribution ofz,
is the same as its unconditional distribution. This is convenient because different
samples differ not only ity but also inX. Third, the distribution is known. In
particular, it does not depend on unknown parameters (sugh).a@f the distri-
bution of a statistic depends on unknown parameters, those parameters are called
nuisance parameters) Using this statistic, we can determine whether or not the
sampling erroby — B, is too large: it is too large if the test statistic takes on a value
that is surprising for a realization from the distribution.

If we do not know the true value of?, a natural idea is to replace the nuisance
parameter? by its OLS estimates?. The statistic after the substitution st for
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o2 is called thet-ratio or thet-value. The denominator of this statistic is called
thestandard error of the OLS estimate gk and is sometimes written &&by):

SEb) = /2 - (X'X)Y),, = \/ (k, k) element ovar(b | X) in (1.3.4) (1.4.4)

Sinces?, being a function of the sample, is a random variable, this substitution
changes the distribution of the statistic, but fortunately the changed distribution,
too, is known and depends on neither nuisance parameteks. nor

Proposition 1.3 (distribution of the t-ratio): Suppose Assumptions 1.1-1.5 hold.
Under the null hypothesis Ho: fx = By. the t-ratio defined as

- B bk — B
[ =

- - (1.4.5)
SKby) - ((XX)7Y)

is distributed as t(n — K) (the t distribution withn — K degrees of freedom).

Proor. We can write

‘ b — B o? Z
K = . — =
Joz (), VS Ve
Zy Zy

\/ e’e/Efnz—K) \/ ﬁ
whereq = €e/o? to reflect the substitution af for o2. We have already shown
thatz, is N(0, 1). We will show:

(1) g X~ x*(n = K),
(2) two random variableg, andq are independent conditional &h

Then, by the definition of the distribution, the ratio o to /q/(h — K) is dis-
tributed ag with n — K degrees of freedort?,and we are done.

(1) Sinceee = ¢'Me from (1.2.12), we have

e €& e
o o o

I5eact: 1fx ~ N(0, 1),y ~ Xz(m) and ifx andy are independent, then the ratip,/y/m has the distribution
with m degrees of freedom.
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The middle matrixM, being the annihilator, is idempotent. Alsg/o | X ~
N(O, I,) by (1.4.1). Therefore, this quadratic form is distributedy&@swith
degrees of freedom equal to raik).*® But rankM) = tracgM), becausév!

is idempotent’ We have already shown in the proof of Proposition 1.2 that
tracgM) = n — K. Soq | X ~ x2(n — K).

(2) Bothb ande are linear functions of (by (1.2.14) and the fact that= Me),
so they are jointly normal conditional of. Also, they are uncorrelated con-
ditional onX (see part (d) of Proposition 1.1). $oande are independently
distributed conditional oiX. But z is a function ofb andq is a function ofe.
Soz andq are independently distributed conditional ¥t n

Decision Rule for the t-Test
The test of the null hypothesis based ontthratio is called theé-test and proceeds
as follows:

Step 1: Given the hypothesized valug,, of B, form thet-ratio as in (1.4.5). Too
large a deviation ofi from O is a sign of the failure of the null hypothesis.
The next step specifies how large is too large.

Step 2: Go to thet-table (most statistics and econometrics textbooks include the
table) and look up the entry for— K degrees of freedom. Find tleeitical
value, t,,2(n — K), such that the area in thedistribution to the right of
ty2(n — K) is «/2, as illustrated in Figure 1.3. (i — K = 30 and
a = 5%, for examplet, (N — K) = 2.042.) Then, since thedistribution
is symmetric around O,

Prob(—t,o(n — K) <t <typ(n—K)) =1—a.

Step 3: Accept Hy if —t,2(n — K) < tx < ty2(n — K) (that is, if [t < t,2(n —
K)), wherety is thet-ratio from Step 1 Reject K otherwise. Sincé ~
t(n — K) under H, the probability of rejecting fiwhen H, is true isc.
So the size (significance level) of the test is indeed

A convenient feature of thetest is that the critical value does not depend on
X; there is no need to calculate critical values for each sample.

16Fact: Ifx ~ N(O, In) andA is idempotent, ther’ Ax has a chi-squared distribution with degrees of freedom
equal to the rank oh.

I7Fact: IfA is idempotent, then rarR) = tracgA).
18Fact: Ifx andy are independently distributed, then so &) andg(y).
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density

density of
/ t distribution

o/2 o/2

| i i t
~tapp(n—K) 0 Ik to2(n—K)
Figure 1.3: t Distribution

Confidence Interval
Step 3can also be stated in terms lnf and SEby). Sincety is as in (1.4.5), you
accept H whenever

b — B

B
SE(bk) < ta/z(n — K)

—ty2(n = K) <
or
b — SEBK) - t/2(N — K) < By < b + SEDY) - ty2(n — K).
Therefore, we accept if and only if the hypothesized vayéalls in the interval:

[bx — SEby) - ty/2(n — K), b + SEby) - t/2(n — K)]. (1.4.6)

This interval is called théevel 1 = o« confidence interval It is narrower the
smaller the standard error. Thus, the smallness of the standard error is a measure
of the estimator’s precision.

p-Value
The decision rule of the-test can also be stated using thealue.

Step 1: Same as above.
Step 2: Rather than finding the critical valug,(n — K), calculate

p = Prot > |t]) x 2.
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Since thet distribution is symmetric around 0, Pragh> |t|) = Proht <
—|tl), so

Prob(—|t| <t < |t&[) =1—p. (1.4.7)

Step 3: Accept H if p > «. Reject otherwise.

To see the equivalence of the two decision rules, one based on the critical values
such ad,,»(n — K) and the other based on thevalue, refer to Figure 1.3. If
Prokt > |tk]) is greater tham/2 (as in the figure), that is, if thp-value is more
thanc, then|t,| must be to the left of, »(n — K). This means fronstep 3that the
null hypothesis is not rejected. Thus, whpns small, thet-ratio is surprisingly
large for a random variable from thealistribution. The smaller the, the stronger
the rejection.

Examples of the-test can be found in Section 1.7.

Linear Hypotheses

The null hypothesis we wish to test may not be a restriction about individual regres-
sion coefficients of the maintained hypothesis; it is often about linear combinations
of them written as a system of linear equations:

Ho: RB =, (1.4.8)

where values oR andr are known and specified by the hypothesis. We denote the
number of equations, which is the dimensiorr pby #. SoR is # x K. These

#r equations are restrictions on the coefficients in the maintained hypothesis. It is
called a linear hypothesis because each equation is linear. To make sure that there
are no redundant equations and that the equations are consistent with each other,
we require that ranlR) = #r (i.e.,R is of full row rank with its rank equaling the
number of rows). But do not be too conscious about the rank condition; in specific
applications, it is very easy to spot a failure of the rank condition if there is one.

Example 1.5 (continuation of Example 1.2):Consider the wage equation

of Example 1.2 wher&k = 4. We might wish to test the hypothesis that
education and tenure have equal impact on the wage rate and that there is no
experience effect. The hypothesis is two equations se 2):

B2 = B3 and By = 0.
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This can be cast in the formRB = r if R andr are defined as

r_l01-10] _Jo
“loo o 1" " |o|

Because the two rows of thR are linearly independent, the rank condition
is satisfied.
But suppose we require additionally that

B2 — B3 = Pa.

This is redundant because it holds whenever the first two equations do. With
these three equations; # 3 and

01 -1 0 0
R=(0 0 O 1|, r=]0
01 -1 -1 0

Since the third row oR is the difference between the first twi,is not of
full row rank. The consequence of adding redundant equations iRthat
longer meets the full row rank condition.

As an example of inconsistent equations, consider adding to the first two
equations the third equatiofy = 0.5. Evidently, 84 cannot be 0 and 0.5
at the same time. The hypothesis is inconsistent because thergdishiad
satisfies the three equations simultaneously. If we nevertheless included this
equation, theriR andr would become

01 -10 0
R=|0 0 0 1|, r=]|0
00 0 1 0.5

Again, the full row rank condition is not satisfied because the rarR isf 2
while #r = 3.

The F-Test
To test linear hypotheses, we look for a test statistic that has a known distribution
under the null hypothesis.

Proposition 1.4 (distribution of the F-ratio): Suppose Assumptions 1.1-1.5
hold. Under the null hypothesis Ho: R = r, where R is #f x K with rank(R) =
#r, the F -ratio defined as
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(Rb—r) [ROXX)"IR] ™ (Rb — ) /#r

F =

— (Rb —rY[RVar(b | X)RTX(Rb — r)/# (by (1.3.4)) (1.4.9)

is distributed as F (#r,n — K) (the F distribution with #r and n — K degrees of
freedom).

As in Proposition 1.3, it suffices to show that the distribution conditionaXon
is F(#r,n — K); because thé distribution does not depend of it is also the
unconditional distribution of the statistic.

PROOF. Sinces? = €e/(n — K), we can write

F_ w/Hr
q/(n—K)

where

w=Rb—-r)[oc? RXX)RT™Rb—-r) and q= e{—f
o

We need to show

(1) w | X ~ x2@#),

(2) g | X ~ x?(n — K) (this is part (1) in the proof of Proposition 1.3),
(3) w andq are independently distributed conditional Xn

Then, by the definition of th& distribution, theF-ratio ~ F #r, n — K).

(1) Letv=Rb —r. Under H, Rb —r = R(b — B). So by (1.4.2), conditional on
X, v is normal with mear®, and its variance is given by

Var(v | X) = Var(R(b — ) | X) = RVar(b — 8 | X)R' = 02 - R(X'X)" 'R,

which is none other than the inverse of the middle matrix in the quadratic form
for w. Hence,w can be written as’ Var(v | X)~'v. SinceR is of full row

rank andX’X is nonsingularg? - R(X’X)~*R’ is nonsingular (why? Showing
this is a review question). Therefore, by the definition of gfedistribution,

w | X ~ x2(#r).10

19Fact: Letx be anm dimensional random vector. xf~ N(p, ) with £ nonsingular, therix — w'E x—
2
) ~ x“(m).
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(3) w is a function ofb andq is a function ofe. Butb ande are independently
distributed conditional oiX, as shown in part (2) of the proof of Proposition
1.3. Sow andq are independently distributed conditional Xn |

If the null hypothesidRB = r is true, we expecRb — r to be small, so large
values ofF should be taken as evidence for a failure of the null. This means that
we look at only the upper tail of the distribution in trestatistic. The decision
rule of theF-test at the significance level afis as follows.

Step 1: Calculate thd--ratio by the formula (1.4.9).

Step 2: Go to the table of distribution and look up the entry for#the numera-
tor degrees of freedom) amd— K (the denominator degrees of freedom).
Find the critical valud=, (#r, n — K) that leavesx for the upper tail of the
F distribution, as illustrated in Figure 1.4. For example, when=# 3,
n — K = 30, andx = 5%, the critical valud-5(3, 30) is 2.92.

Step 3: Accept the null if the--ratio fromStep 1is less tharf, (#r, n—K). Reject
otherwise.

This decision rule can also be described in terms ofpthvalue:

Step 1. Same as above.
Step 2: Calculate

p = area of the upper tail of the distribution to the right of thd--ratio.

Step 3: Accept the null ifp > «; reject otherwise.

Thus, asmall pvalue is a signal of the failure of the null.

A More Convenient Expression for F

The above derivation of thE-ratio is by theWald principle, because it is based

on the unrestricted estimator, which is not constrained to satisfy the restrictions of
the null hypothesis. Calculating theratio by the formula (1.4.9) requires matrix
inversion and multiplication. Fortunately, there is a convenient alternative formula
involving two different sum of squared residuals: on&8R the minimized sum

of squared residuals obtained from (1.2.1) now denote8iSig, and the other is

the restricted sum of squared residuals, den8t8g, obtained from

minSSRA) s.t. R =. (1.4.10)
B
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density

density of
/ F(#r, n—K)

Fo(r, n—K)
Figure 1.4: F Distribution

Finding theﬁ that achieves this constrained minimization is calledrdstricted
regressionor restricted least squares It is left as an analytical exercise to show
that theF -ratio equals

- _ (SSR —SSR)/#
~ SSR/(n—K)

(1.4.11)

which is the difference in the objective function deflated by the estimate of the
error variance. This derivation of tHe-ratio is analogous to how the likelihood-
ratio statistic is derived in maximum likelihood estimation as the difference in log
likelihood with and without the imposition of the null hypothesis. For this reason,
this second derivation of thE-ratio is said to be by theikelihood-Ratio prin-

ciple. There is a closed-form expression for the restricted least squares estimator
of B. Deriving the expression is left as an analytical exercise. The computation of
restricted least squares will be explained in the context of the empirical example in
Section 1.7.

t versus F

Because hypotheses about individual coefficients are linear hypotheségeshe
of Ho: Bk = By is a special case of the-test. To see this, note that the hypothesis
can be written aRp = r with

(&):[o . 010 - o], r = Bi.
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So by (1.4.9) thd--ratio is
F = (b — Bo[s*- (k, k) element of(X’X)‘l]_l(bk — By,

which is the square of theratio in (1.4.5). Since a random variable distributed as
F (1, n — K) is the square of a random variable distributed @s— K), thet- and
F-tests give the same test result.

Sometimes, the null is that a set of individual regression coefficients equal
certain values. For example, assukie= 2 and consider

Hoiﬁ]_:l andﬁZ:O.

This can be written as a linear hypotheRif = r for R = I, andr = (1,0)’. So
the F-test can be used. It is tempting, however, to conduct-tiest separately for
each individual coefficient of the hypothesis. We might accepif Hoth restric-
tions 8, = 1 andB, = 0 pass thd-test. This amounts to using the confidence
region of

{(B1. B2) | b1 — SEby) - ty/2(n — K) < B1 < by 4+ SEby) - ty/2(n — K),
b, — SED,) - te/2(n — K) < B2 < by + SEby) - ty/2(n — K)},

which is a rectangular region in th@;, 8,) plane, as illustrated in Figure 1.5. If
(1, 0), the point in the(81, B») plane specified by the null, falls in this region, one
would accept the null. On the other hand, the confidence region fdf-tlest is

by — B

{(Br, B2) | (b1 — B1, by — Bo)(Var(b [ X))
b, — B2

} < 2F,(#r,n— K)}.

SinceVam)TX) is positive definite, thd--test acceptance region is an ellipse in
the (81, B2) plane. The two confidence regions look typically like Figure 1.5.

The F-test should be preferred to the test using taratios for two reasons.
First, if the size (significance level) in each of the ttvtests isx, then the overall
size (the probability thatl, 0) is outside the rectangular region) is motSecond,
as will be noted in the next section (see (1.5.19)), Fhtest is a likelihood ratio
test and likelihood-ratio tests have certain desirable properties. So even if the sig-
nificance level in each-test is controlled so that the overall sizevisthe test is
less desirable than tHe-test?®

20For more details on the relationship betweentthest and the--tests, see Scheffe (1959, p. 46).
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Figure 1.5: t- versus F-Tests
An Example of a Test Statistic Whose Distribution Depends on X

To place the discussion of this section in a proper perspective, it may be useful
to note that there are some statistics whose conditional distribution depeixds on
Consider the celebratddurbin-Watson statistic:

Yi(e —ea_1)?
Y €

The conditional distribution, and hence the critical values, of this statistic depend
on X, but J. Durbin and G. S. Watson have shown that the critical values fall
between two bounds (which depends on the sample size, the number of regres-
sors, and whether the regressor includes a constant). Therefore, the critical values
for the unconditional distribution, too, fall between these bounds.

The statistic is designed for testing whether there is no serial correlation in
the error term. Thus, the null hypothesis is Assumption 1.4, while the maintained
hypothesis is the other assumptions of the classical regression model (including the
strict exogeneity assumption) and the normality assumption. But, as emphasized
in Section 1.1, the strict exogeneity assumption is not satisfied in time-series mod-
els typically encountered in econometrics, and serial correlation is an issue that
arises only in time-series models. Thus, the Durbin-Watson statistic is not useful
in econometrics. More useful tests for serial correlation, which are all based on
large-sample theory, will be covered in the next chapter.
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QUESTIONS FOR REVIEW

1. (Conditional vs. unconditional distribution) Do we know from Assumptions
1.1-1.5 that the marginal (unconditional) distributiorba$ normal? [Answer:
No.] Are the statisticg, (see (1.4.3))t, andF distributed independently of
X? [Answer: Yes, because their distributions conditionaXodon't depend
onX.]

2. (Computation of test statistics) Verify th@Fby) as well ad, SSRs?, andR?
can be calculated from the following sample avera@gs.:s.y, y'y/n, andy.

3. For the formula (1.4.9) for th& to be well-defined, the matriR(X'X) 1R’
must be nonsingular. Prove the stronger result that the matrix is positive def-
inite. Hint: X’X is positive definite. The inverse of a positive definite matrix
is positive definite. Since R (#r x K) is of full row rank, for any nonzero #r
dimensional vector z, R’z # 0.

4. (One-tailedt-test) Thet-test described in the text is thevo-tailed t-test
because the significanee is equally distributed between both tails of the
distribution. Suppose the alternative is one-sided and writteryagH> B,.
Consider the following modification of the decision rule of thist.

Step 1: Same as above.

Step 2: Find the critical valud, such that the area in thedistribution to the
right of t, is «. Note the difference from the two-tailed test: the left
tail is ignored and the area afis assigned to the upper tail only.

Step 3: Accept ifty < t,; reject otherwise.

Show that the size (significance level) of thise-tailed t-testis «.

5. (Relation betweetfr (1, n — K) andt(n — K)) Look up thet andF distribu-
tion tables to verify thaF, (1, n — K) = (t,/2(n — K))? for degrees of freedom
and significance levels of your choice.

6. (tvs.F) “ltis nonsense to test a hypothesis consisting of a large number of
equality restrictions, because thest will most likely reject at least some of
the restrictions.” Criticize this statement.

7. (Variance ofs?) Show that, under Assumptions 1.1-1.5,

204
n—K’

Var(s? | X) =

Hint: If a random variable is distributed as x2(m), then its mean is m and vari-
ance 2m.
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1.5 Relation to Maximum Likelihood

Having specified the distribution of the error vecegrwe can use thenaximum
likelihood (ML) principle to estimate the model parametég, 2).2 In this
section, we will show that, the OLS estimator o8, is also the ML estimator, and
the OLS estimator of? differs only slightly from the ML counterpart, when the
error is normally distributed. We will also show thaachieves th&€ramer-Rao
lower bound.

The Maximum Likelihood Principle

As you might recall from elementary statistics, the basic idea of the ML principle

is to choose the parameter estimates to maximize the probability of obtaining the
observed sample. To be more precise, we assume that the probability density of the
sampley, X) is amember of a family of functions indexed by a finite-dimensional
parameter vectof: f(y, X; ¢). (This is described asarameterizing the density
function.) This function, viewed as a function of the hypothetical parameter vector
¢, is called thdikelihood function. At the true parameter vectgr, the density of

(y, X)is f(y, X; ¢). The ML estimate of the true parameter veads theZ that
maximizes the likelihood function given the data X).

Conditional versus Unconditional Likelihood
Since a (joint) density is the product of a marginal density and a conditional density,
the density ofly, X) can be written as

fly,X;8)=f(y | X;0)- f(X;9), (1.5.1)

whered is the subset of the parameter vectothat determines the conditional
density function andy is the subset determining the marginal density function.
The parameter vector of interestésfor the linear regression model with normal
errors,f = (B',02) and f (y | X; 0) is given by (1.5.4) below.

LetZ = (8, ') be a hypothetical value af = (', ¥')’. Then the (uncondi-
tional or joint) likelihood function is

foy,X; &) = f(y | X;0)-f(X; ). (15.2)

If we knew the parametric form of (X; ¥), then we could maximize this joint

21For a fuller treatment of maximum likelihood, see Chapter 7.
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likelihood function over the entire hypothetical parameter vegtoand the ML
estimate o would be the elements of the ML estimategof We cannot do this
for the classical regression model because the model does not spexify).
However, if there is no functional relationship betwdleandy (such as a subset
of ¥ being a function of)), then maX|m|Z|ng (1.5.2) with respect &ois achieved
by separately maX|m|Z|ng (y | X; 8) with respect t@ and maximizingf (X; ¥)
with respect toy. Thus the ML estimate of also maximizes theonditional
likelihood f(y | X; 6).

The Log Likelihood for the Regression Model

As already observed, Assumption 1.5 (the normality assumption) together with
Assumptions 1.2 and 1.4 imply that the distributioneafonditional onX is N (0O,

a?1,) (see (1.4.1)). But sincg = XB + e by Assumption 1.1, we have

y | X~ NXB,a%ln). (1.5.3)

Thus, the conditional density gfgiven X is??

(1% = @no?) " exp 1o~ XBYy ~XB)|. (154

Replacing the true parametey, o) by their hypothetical value(sﬁ , 62) and tak-
ing logs, we obtain théog likelihood function:

~ 1 ~ ~
l0gL (8. 53 = —Zlog(@r) — 2109(5%) — 5=y — XB)'(y ~ XB). (155)
(0}

Since the log transformation is a monotone transformation, the ML estimator of
(B, o) is the(B, 52) that maximizes this log likelihood.

ML via Concentrated Likelihood

It is instructive to maximize the log likelihood in two stages. First, maximize over
B for any givens2. The B that maximizes the objective function could (but does
not, in the present case of Assumptions 1.1-1.5) depercf o8econd, maximize
over 62 taking into account that thﬁ obtained in the first stage could depend on
&2. The log likelihood function in whictﬁ is constrained to be the value from

22Recall from basic probability theory that the density function fonarariate normal distribution with mean
 and variance matrix is

N2 s =1/2 oo Lo 1
@0 "2z ex] So-w'E Ny w.

To derive (1.5.4), just st = XB andX = oI,
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the first stage is called theoncentrated log likelihood function (concentrated
with respect tq§). For the normal log likelihood (1.5.5), the first stage amounts
to minimizing the sum of squarey — X8)'(y — X8). The 8 that does it is none
other than the OLS estimatbr and the minimized sum of squaresie. Thus, the
concentrated log likelihood is

1
concentrated log likelihoog: _n log(2r) — n log(6?) — — €e. (1.5.6)
2 2 252

This is a function o2 alone, and thé 2 that maximizes the concentrated likeli-
hood is the ML estimate af?. The maximization is straightforward for the present
case of the classical regression model, becaiesis not a function o2 and so
can be taken as a constant. Still, taking the derivative with respett, tcather
than with respect té, can be tricky. This can be avoided by denotigby 7.
Taking the derivative of (1.5.6) with respectjio(= 62) and setting it to zero, we
obtain the following result.

Proposition 1.5 (ML Estimator of (8, 0)): Suppose Assumptions 1.1-1.5 hold.
Then the ML estimator of § is the OLS estimator b and

1 SSR n-K
ML estimator of 0° = ﬁe(e: - = 2.

(1.5.7)

We know from Proposition 1.2 that is unbiased. Sincg? is multiplied by a factor
(n — K)/n which is different from 1, the ML estimator of? is biased, although
the bias becomes arbitrarily small as the samplersinereases for any given fixed
K.

For later use, we calculate the maximized value of the likelihood function.
Substituting (1.5.7) into (1.5.6), we obtain

- - n 21 n n
maximized log likelihood= ~3 Iog(T) ~57% log(SSR,

so that the maximized likelihood is

maxL (8, 52) = (27”)_”/2 : exp(—%) . (SSB™"2, (1.5.8)

B.52

Cramer-Rao Bound for the Classical Regression Model

Just to refresh your memory of basic statistics, we temporarily step outside the
classical regression model and present without proof the Cramer-Rao inequality for
the variance-covariance matrix of any unbiased estimator. For this purpose, define
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the score vectorat a hypothetical parameter val@go be the gradient (vector of
partial derivatives) of log likelihood:

dlogL(0)

7 (1.5.9)

score: s(0) =

Cramer-Rao Inequality: Let z be a vector of random variables (not necessarily
independent) the joint density of which is given by f(z;0), where 0 is an m-
dimensional vector of parameters in some parameter space ©. Let L (é) = f(z 6)
be the likelihood function, and Iet 9(2) be an unbiased estimator of @ with a finite
variance-covariance matrix. Then, under some regularity conditions on f(z;0)
(not stated here),

Var[é(z)] > I(6’)_1 (= Cramer-Rao Lower Bound),

(mxm)

where | (0) is the information matrix defined by
1(0) = E[s(6) S(6)']. (1.5.10)

(Note well that the score is evaluated at the true parameter value 6.) Also under the
regularity conditions, the information matrix equals the negative of the expected
value of the Hessian (matrix of second partial derivatives) of the log likelihood:

M] (1.5.11)

1(0) = — E[ —
20 90
This is called the information matrix equality .

See, e.g., Amemiya (1985, Theorem 1.3.1) for a proof and a statement of the regu-
larity conditions. Those conditions guarantee that the operations of differentiation
and taking expectations can be interchanged. Thus, for example,

E[9L(0)/36] = 3 E[L(0)]/36.

Now, for the classical regression model (of Assumptions 1.1-1.5), the likeli-
hood functionL (9) in the Cramer-Rao inequality is the conditional density (1.5.4),
so the variance in the inequality is the variance conditionaKoitt can be shown
that those regularity conditions are satisfied for the normal density (1.5.4) (see,
e.g., Amemiya, 1985, Sections 1.3.2 and 1.3.3). In the rest of this subsection, we
calculate the information matrix for (1.5.4). The parameter vegtisr (8', o).
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~ ~/ - . . . .
Sof# = (B, 7) and the matrix of second derivatives we seek to calculate is

92logL(8)  9%logL(d)

) aBag aB oy
Plogl) _ | i i (15.12)
08| oale) azlogL(ﬂ) o
ap op a%y
(K+Dx(K+1)) (1xK) (1x1)

The first and second derivatives of the log likelihood (1.5.5) with respeftt to
evaluated at the true parameter ve@&pare

dlogL@) 1

~— = —X'(y = XB), (1.5.13a)
B Y
dlogL(@) n 1 ,
a5 =2, T3,V XY= XB). (1.5.13b)

9’logL(6) 1

2507 X'X, (1.5.14a)
14

3%log L (0 1

T S~ S XYY - X, (1.5.14b)

3%logL (@ 1

;BLG);) = —;X/(y — XB). (1.5.14c)

Since the derivatives are evaluated at the true parameter waldeXg = ¢ in
these expressions. Substituting (1.5.14) into (1.5.12) and ugieg X) = 0
(Assumption 1.2), Ee’e | X) = no? (implication of Assumption 1.4), and recall-
ing y = o2, we can easily derive

1/
10) = [ﬁ§x i} (1.5.15)
204

Here, the expectation is conditional ¥rbecause the likelihood function (1.5.4) is
a conditional density conditional o%. This block diagonal matrix can be inverted
to obtain the Cramer-Rao bound:

(1.5.16)

2, / -1
Cramer-Rao boune: 1 ()™ = |:a (XX) 0 :| .

20*
o e
Therefore, the unbiased estimabgwhose variance is2 - (X'X)~1 by Proposition
1.1, attains the Cramer-Rao bound. We have thus proved
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Proposition 1.6 (b is the Best Unbiased Estimator (BUE)):Under Assumptions
1.1-1.5, the OLS estimator b of B is BUE in that any other unbiased (but not
necessarily linear) estimator has larger conditional variance in the matrix sense.

This result should be distinguished from the Gauss-Markov Theorerb thatin-
imum variance among those estimators that are unbi@seédnear iny. Proposi-
tion 1.6 says thab is minimum variance in a larger class of estimators that includes
nonlinear unbiased estimators. This stronger statement is obtained under the nor-
mality assumption (Assumption 1.5) which is not assumed in the Gauss-Markov
Theorem. Put differently, the Gauss-Markov Theorem does not exclude the possi-
bility of some nonlinear estimator beating OLS, but this possibility is ruled out by
the normality assumption.

As was already seen, the ML estimatorof is biased, so the Cramer-Rao
bound does not apply. But the OLS estimatbof o2 is unbiased. Does it achieve
the bound? We have shown in a review question to the previous section that

204
n—K

Var(s? | X) =

under the same set of assumptions as in Proposition 1.6. Thersfalegs not
attain the Cramer-Rao bound%/n. However, it can be shown that an unbiased
estimator ofo? with variance lower than@*/(n — K) does not exist (see, e.g.,
Rao, 1973, p. 319).

The F-Test as a Likelihood Ratio Test

Thelikelihood ratio test of the null hypothesis comparés;, the maximized like-
lihood without the imposition of the restriction specified in the null hypothesis,
with LR, the likelihood maximized subject to the restriction. If the likelihood ratio
A = Ly/Lris too large, it should be a sign that the null is false. TFhéest

of the null hypothesis kit R = r considered in the previous section is a likeli-
hood ratio test because tleratio is a monotone transformation of the likelihood
ratio A. For the present model, is given by (1.5.8) where th8SR the sum

of squared residuals minimized without the constraiptisltheSSR in (1.4.11).
The restricted likelihood.  is given by replacing thiSSRoy the restricted sum of
squared residual§Sk. So

~ 27\ —n/2 n
= 52) = (— . _0Y. “n/2
bR = E,ﬁr?se.iz(l-bl_(ﬂ,a )= ( n ) eXP( 2) (SSR) ™%, (1.5.17)

and the likelihood ratio is
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Ly (SSR\™?
A== (ﬁ) : (1.5.18)

Comparing this with the formula (1.4.11) for tikeratio, we see that thE-ratio is
a monotone transformation of the likelihood ratio

n—

K
p» 0" — 1), (1.5.19)

F =

so that the two tests are the same.

Quasi-Maximum Likelihood

All these results assume the normality of the error term. Without normality, there
is no guarantee that the ML estimatorfis OLS (Proposition 1.5) or that the OLS
estimatorb achieves the Cramer-Rao bound (Proposition 1.6). However, Proposi-
tion 1.5 does imply thab is aquasi- (or pseudo) maximum likelihood estima-

tor, an estimator that maximizes a misspecified likelihood function. The misspec-
ified likelihood function we have considered is the normal likelihood. The results
of Section 1.3 can then be interpreted as providing the finite-sample properties of
the quasi-ML estimator when the error is incorrectly specified to be normal.

QUESTIONS FOR REVIEW

1. (Use of regularity conditions) Assuming that taking expectations (i.e., taking
integrals) and differentiation can be interchanged, prove that the expected value
of the score vector given in (1.5.9), if evaluated at the true parameter #alue
is zero.Hint: What needs to be shown is that

/ 109 T @) ¢ gz =0,
90

Since f(z; 0) is a density, [ f(z 0)dz = 1 for any 6. Differentiate both sides
with respect to @ and use the regularity conditions, which allows us to change

the order of integration and differentiation, to obtain f[af (z; 0)/86] dz = 0.
Also, from basic calculus,

dlogf(z8) 1 0f(z6)
30 T f@ze) e

2. (Maximizing joint log likelihood) Consider maximizing (the log of) the joint
likelihood (1.5.2) for the classical regression model, whieke (ﬂ’, &2)" and
log f(y | X; ) is given by (1.5.5). You would parameterize the marginal like-
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lihood f (X; ¥) and take the log of (1.5.2) to obtain the objective function to
be maximized ovet = (6', ¥')’. What is the ML estimator of = (8', 62)'?
[Answer: It should be the same as that in Proposition 1.5.] Derive the Cramer-
Rao bound foiB. Hint: By the information matrix equality,

9%log L(c)]

I(C):_E|: ~ _~/
9% 3¢

Also, 32log L (¢)/ (90 99) = 0.

3. (Concentrated log likelihood with respect &) Writing 62 as 7, the log
likelihood function for the classical regression model is

~ 1 - -
logL(B. 7) = ~310g(27) — 2109(7) ~ 5=y — XB)'(y = X).
v

In the two-step maximization procedure described in the text, we first maxi-
mized this function with respect {®. Instead, first maximize with respecto
given 8. Show that the concentrated log likelihood (concentrated with respect
toy =462)is

n

_2[1 +log(2m)] — g ,og(<y — XB)'(y — XB) )

4. (Information matrix equality for classical regression model) Verify (1.5.11)
for the linear regression model.

5. (Likelihood equations for classical regression model) We used the two-step
procedure to derive the ML estimate for the classical regression model. An
alternative way to find the ML estimator is to solve for the first-order conditions
that set (1.5.13) equal to zero (the first-order conditions for the log likelihood
is called thelikelihood equations). Verify that the ML estimator given in
Proposition 1.5 solves the likelihood equations.

1.6 Generalized Least Squares (GLS)

Assumption 1.4 states that the< n matrix of conditional second momentsgéz’ |
X) (= Var(e | X)) is spherical, that is, proportional to the identity matrix. Without
the assumption, each element of the n matrix is in general a nonlinear function
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of X. If the error is not (conditionally) homoskedastic, the values of the diagonal
elements of e’ | X) are not the same, and if there is correlation in the error
term between observations (the case of serial correlation for time-series models),
the values of the off-diagonal elements are not zero. For any given positive scalar
o?, defineV(X) = E(ee’ | X)/o? and assum& (X) is nonsingular and known.
That is,

E(ee’ | X) =02V (X), V(X) nonsingular and known (1.6.2)

(nxn)

The reason we decomposésE’ | X) into the component? that is common to

all elements of the matrix e’ | X) and the remaining compone¥XtX) is that

we do not need to know the value of for efficient estimation. The model that
results when Assumption 1.4 is replaced by (1.6.1), which merely assumes that the
conditional second moment(&’ | X) is nonsingular, is called thgeneralized
regression model

Consequence of Relaxing Assumption 1.4
Of the results derived in the previous sections, those that assume Assumption 1.4
are no longer valid for the generalized regression model. More specifically,

e The Gauss-Markov Theorem no longer holds for the OLS estimator
b= (X'X)"1Xy.

The BLUE is some other estimator.

e Thet-ratio is not distributed as thiedistribution. Thus, the-test is no longer
valid. The same comments apply to thetest.

e However, the OLS estimatas still unbiased, because the unbiasedness result
(Proposition 1.1(a)) does not require Assumption 1.4.

Efficient Estimation with Known 'V

If the value of the matrix functioV (X) is known, does there exist a BLUE for the
generalized regression model? The answer is yes, and the estimator is called the
generalized least squares (GLS) estimatorhich we now derive. The basic idea

of the derivation is to transform the generalized regression model, which consists
of Assumptions 1.1-1.3 and (1.6.1), into a model that satisfies all the assumptions,
including Assumption 1.4, of the classical regression model.
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For economy of notation, we uséfor the valueV(X). SinceV is by construc-
tion symmetric and positive definite, there exists a nonsingulan matrix C such
that

v-l=cc. (1.6.2)

This decomposition is not unique, with more than one choic€fdiut, as is clear
from the discussion below, the choice@fdoesn’t matter. Now consider creating
a new regression model by transformifyg X, ¢) by C as

y=Cy, X=CX, &

Ce. (1.6.3)
Then Assumption 1.1 fogy, X, €) implies that(y, X, &) too satisfies linearity:
J=XB+é. (1.6.4)

The transformed model satisfies the other assumptions of the classical linear regres-
sion model. Strict exogeneity is satisfied because

E@ | X) = EG | X)
(sinceC is nonsingularX andX contain the same information)
= E(Ce | X)
= CE(e | X) (by the linearity of conditional expectations)
=0 (since Ee | X) = 0by Assumption 1.2).

BecauseV is positive definite, the no-multicollinearity assumption is also satisfied
(see a review guestion below for a proof). Assumption 1.4 is satisfied for the
transformed model because

E@& | X) = E(8&' | X) (sinceX andX contain the same information)
= C E(ee’ | X)C' (sincege’ = Cee'C)
=C-02.VC' (by(1.6.1))
= o?CVC’
=o2l, (since(C)'vlCl=1,0rCVC =1, by (1.6.2)

So indeed the variance of the transformed error vecisispherical. Finallyg | X

is normal because the distribution f X is the same a8 | X andé¢ is a linear
transformation ofe. This completes the verification of Assumptions 1.1-1.5 for
the transformed model.
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The Gauss-Markov Theorem for the transformed model implies that the BLUE
of B for the generalized regression model is the OLS estimator applied to (1.6.4):

/ﬂ\GLs = (X'X)"*X'y
= [(CX)'(CX)]"Y(CX)'Cy
= (X'c’cx)~Yx'c'cy)
=XV X)) IX'Vly (by(1.6.2) (1.6.5)

This is the GLS estimator. Its conditional variance is

Var(ﬁGLS | X)

= (X'VX)"IX'V 1 Vary | X))V IX(X'VIX)™?

= X'V X)XV Ho2V)VIX(X' VX)L (since Vaty | X) = Var(e | X))
=o2. (X'VIX)™L. (1.6.6)

Since replaciny by o2-V (= Var(e | X)) in (1.6.5) does not change the numerical
value, the GLS estimator can also be written as

Bois = [X' Var(e | X)_lX]_lx’Var(g | X)~ty.

As noted above, the OLS estimai@t’X)~1X'y too is unbiased without Assump-
tion 1.4, but nevertheless the GLS estimator should be preferred (provided
known) because the latter is more efficient in that the variance is smaller in the
matrix sense. The gain in efficiency is achieved by exploiting the heteroskedastic-
ity and correlation between observations in the error term, which, operationally, is
to insert the inverse of (a matrix proportional to) ¥ar X) in the OLS formula,

asin (1.6.5). The discussion so far can be summarized as

Proposition 1.7 (finite-sample properties of GLS):

(a) (unbiasedness) Under Assumption 1.1-1.3, E(ﬁGLS | X) = B.
(b) (expression for the variance) Under Assumptions 1.1-1.3 and the assumption
(1.6.1) that the conditional second moment is proportional to V (X),

Var(Be s | X) = o2 - (X'V(X)~X)™L.

(c) (efficiency of GLS) Under the same set of assumptions as in (b), the GLS
estimator is efficient in that the conditional variance of any unbiased estimator
that is linear in 'y is greater than or equal to Var(Bg s | X) in the matrix sense.
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A Special Case: Weighted Least Squares (WLS)

The idea of adjusting for the error variance matrix becomes more transparent when
there is no correlation in the error term between observations so that the Matrix

is diagonal. Let; (X) be thei-th diagonal element df (X). So

E(el | X) (= Var(e; | X)) =0 v;(X).

It is easy to see thal is also diagonal, with the square root ofvl(X) in thei-th
diagonal. Thus(y, X) is given by

§ = Yi g = XN
) T T i)

Therefore, efficient estimation under a known form of heteroskedasticity is first to
weight each observation by the reciprocal of the square root of the vanaiCe
and then apply OLS. This is called theeighted regression(or theweighted least
squares(WLS)).

An important further special case is the case of a random sample Whexeg
is i.i.d. across. As was noted in Section 1.1, the error is unconditionally homo-
skedastic (i.e., &2) does not depend dr), but still GLS can be used to increase
efficiency because the error can be conditionally heteroskedastic. The conditional
second moment &? | X) for the case of random samples depends only; pand
the functional form of Ifsl2 | X;) is the same across Thus

i=12...,n).

vi(X) = v(x) forrandom samples. (1.6.7)

So the knowledge o¥ (-) comes down to a single function &f variables,v(-).

Limiting Nature of GLS

All these sanguine conclusions about the finite-sample properties of GLS rest on
the assumption that the regressors in the generalized regression model are strictly
exogenougE(é | X) = 0). This fact limits the usefulness of the GLS proce-
dure. Suppose, as is often the case with time-series models, that the regressors
are not strictly exogenous and the error is serially correlated. So neither OLS
nor GLS has those good finite-sample properties such as unbiasedness. Neverthe-
less, as will be shown in the next chapter, the OLS estimator, which ignores serial
correlation in the error, will have some good large sample properties (such as “con-
sistency” and “asymptotic normality”), provided that the regressors are “predeter-
mined” (which is weaker than strict exogeneity). The GLS estimator, in contrast,
does not have that redeeming feature. That is, if the error is not strictly exogenous
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but is merely predetermined, the GLS procedure to correct for serial correlation can
make the estimator inconsistent (see Section 6.7). A procedure for explicitly taking
serial correlation into account while maintaining consistency will be presented in

Chapter 6.

If it is not appropriate for correcting for serial correlation, the GLS procedure
can still be used to correct for heteroskedasticity when the error is not serially
correlated with diagonaV/ (X), in the form of WLS. But that is provided that the
matrix functionV (X) is known. Very rarely do we hawve priori information spec-
ifying the values of the diagonal elements\6fX), which is necessary to weight
observations. In the case of a random sample where serial correlation is guaranteed
not to arise, the knowledge ®df(X) boils down to a single function df variables,
v(Xj), as we have just seen, but even for this case the knowledge of such a function
is unavailable in most applications.

If we do not know the functiorV (X), we can estimate its functional form
from the sample. This approach is called Heasible Generalized Least Squares
(FGLS). But if the functionV(X) is estimated from the sample, its valde
becomes a random variable, which affects the distribution of the GLS estimator.
Very little is known about the finite-sample properties of the FGLS estimator. We
will cover the large-sample properties of the FGLS estimator in the context of het-
eroskedasticity correction in the next chapter.

Before closing, one positive side of GLS should be noted: most linear estima-
tion techniques —including the 2SLS, 3SLS, and the random effects estimators to
be introduced later — can be expressed as a GLS estimator, with some liberal defi-
nition of data matrices. However, those estimators and OLS can also be interpreted
as a GMM (generalized method of moments) estimator, and the GMM interpreta-
tion is more useful for developing large-sample results.

QUESTIONS FOR REVIEW

1. (The no-multicollinearity assumption for the transformed model) Assumption
1.3 for the transformed model is that ra@X) = K. This is satisfied sinc€
is nonsingular an is of full column rank. Show thisHint: Since X is of full
column rank, for any K-dimensional vector ¢ # 0, Xc # 0.

2. (Generalized5SR Show '[hatﬁe'_S minimizes(y — XE)/V—l(y — Xﬁ).

3. Derive the expression for Vdy | X) for the generalized regression model.
What is the relation of it to VaBg s | X)? Verify that Proposition 1.7(c)
implies
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X X)IX'VX (X'X)™E > (X'v~ X)L

4. (Sampling error of GLS) Showgg s — B = (X'V1X)"IX'V1le.

1.7 Application: Returns to Scale in Electricity Supply

Nerlove’s 1963 paper is a classic study of returns to scale in a regulated indus-
try. It also is excellent material for illustrating the techniques of this chapter and
presenting a few more not yet covered.

The Electricity Supply Industry
At the time of Nerlove’s writing, the U.S. electric power supply industry had the
following features:

(1) Privately owned local monopolies supply power on demand.
(2) Rates (electricity prices) are set by the utility commission.

(3) Factor prices (e.g., the wage rate) are given to the firm, either because of perfect
competition in the market for factor inputs or through long-term contracts with
labor unions.

These institutional features will be relevant when we examine whether the OLS is
an appropriate estimation proceddfe.

The Data

Nerlove assembled a cross-section data set on 145 firms in 44 states in the year
1955 for which data on all the relevant variables were available. The variables in
the data are total costs, factor prices (the wage rate, the price of fuel, and the rental
price of capital), and output. Although firms own capital (such as power plants,
equipment, and structures), the standard investment theory of Jorgenson (1963)
tells us that (as long as there are no costs in changing the capital stock) the firm
should behave as if it rents capital on a period-to-period basis from itself at a rental
price called the “user cost of capital,” which is definedras- §) - p,, wherer here

is the real interest rate (below we will usdor the degree of returns to scalé)is

the depreciation rate, angl is the price of capital goods. For this reason capital

23Thanks to the deregulation of the industry since the time of Nerlove’s writing, multiple firms are now allowed
to compete in the same local market, and the strict price control has been lifted in many states. So the first two
features no longer characterize the industry.
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input can be treated as if it is a variable factor of production, just like labor and fuel
inputs.

Appendix B of Nerlove (1963) contains a careful and honest discussion of how
the data were constructed. Data on output, fuel, and labor costs (which, along
with capital costs, make up total costs) were obtained from the Federal Power
Commission (1956). For the wage rate, Nerlove used statewide average wages for
utility workers. Ideally, one would calculate capital costs as the reproduction cost
of capital times the user cost of capital. Due to data limitation, Nerlove instead
used interest and depreciation charges available from the firm’s books.

Why Do We Need Econometrics?

Why do we need a fancy econometric technique like OLS to determine returns to
scale? Why can’'t we be simple-minded and plot the average cost (which can be
easily calculated from the data as the ratio of total costs to output) against output
and see whether the AC (average cost) curve is downward sloping? The reason is
that each firm can have a different AC curve. If firms face different factor prices,
then the average cost is less for firms facing lower factor prices. That cross-section
units at a given moment face the same prices is usually a good assumption to make,
but not for the U.S. electricity industry with substantial regional differences in fac-
tor prices. The effect of factor prices on the AC curve has to be isolated somehow.
The approach taken by Nerlove, which became a standard econometric practice, is
to estimate a parameterized cost function.

Another factor that shifts the individual AC curve is the level of production
efficiency. If more efficient firms produce more output, then it is possible that
the individual AC curve is upward sloping but the line connecting the observed
combination of the average cost and output is downward sloping. To illustrate,
consider a competitive industry described in Figure 1.6, where the AC and MC
(marginal cost) curves are drawn for two firms competing in the same market. To
focus on the connection between production efficiency and output, assume that all
firms face the same factor prices so that the only reason the AC and MC curves
differ between firms is the difference in production efficiency. The AC and MC
curves are upward sloping to reflect decreasing returns to scale. The AC and MC
curves for firm A lie above those for firm B because firm A is less efficient than
B. Because the industry is competitive, both firms face the same pricgince
output is determined at the intersection of the MC curve and the market price, the
combinations of output and the average cost for two firms are points A and B in
the figure. The curve obtained from connecting these two points can be downward
sloping, giving a false impression mfcreasingreturns to scale.
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AC, MC

MCa

output

Figure 1.6: Output Determination

The Cobb-Douglas Technology
To derive a parameterized cost function, we start with the Cobb-Douglas produc-
tion function

Qi = A X X7 X5, (1.7.2)

whereQ; is firmi’s output,x;4 is labor input for firmi, x;, is capital input, anc;s

is fuel. Ay captures unobservable differences in production efficiency (this term is
often callediirm heterogeneity). The sunmx;+ao+a3 =t is the degree of returns

to scale. Thus, it is assumecdpriori that the degree of returns to scale is constant
(this should not be confused with constant returns to scale, which is taal).

Since the electric utilities in the sample are privately owned, it is reasonable to
suppose that they are engaged in cost minimization (see, however, the discussion
at the end of this section). We know from microeconomics that the cost function
associated with the Cobb-Douglas production function is Cobb-Douglas:

TG =1 - (Ao ag?ag®) ™ Q" pi/" piF/" pis/", (1.7.2)

whereTG is total costs for firm. Taking logs, we obtain the following log-linear
relationship:

1
I0g(TG) = 1 + = 10g(Q) + % log(piy) + % log(pi2) + ? log(pia).
(1.7.3)
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wherep; = loglr - (A of* 5% a3®)~Y"]. The equation is said to Heg-linear
because both the dependent variable and the regressors are logs. Coefficients in
log-linear equations arelasticities The log pi1) coefficient, for example, is the
elasticity of total costs with respect to the wage rate, i.e., the percentage change
in total costs when the wage rate changes by 1 percent. The degree of returns to
scale, which in (1.7.3) is the reciprocal of the output elasticity of total costs, is
independent of the level of output.

Now let u = E(ui) and defines; = uj — o so that Eg;) = 0. Thisg
represents the inverse of the firm’s production efficiency relative to the industry’s
average efficiency; firms with positivge are high-cost firms. With this notation,
(1.7.3) becomes

log(TG) = B1+ B2 109(Q;i) + B3 log(pi1) + Ba log(pi2) + Bs log(pis) + &i,
(1.7.4)

where

1 o o o
Br=p, B2= r_v B3 = Tl’ Ba = Tz’ and Bs = TS (175)

Thus, the cost function has been cast in the regression format of Assumption 1.1
with K = 5. We noted a moment ago that the simple-minded approach of plotting
the average cost against output cannot account for the factor price effect. What
we have shown is that under the Cobb-Douglas technology the factor price effect
is controlled for by the inclusion in the cost function of the logs of factor prices.
Because the equation is derived from an explicit description of the firm’s technol-
ogy, the error term as well as the regression coefficients have clear interpretations.

How Do We Know Things Are Cobb-Douglas?

The Cobb-Douglas functional form is certainly a very convenient parameterization
of technology. But how do we know that the true production function is Cobb-
Douglas? The Cobb-Douglas form satisfies the properties, such as diminishing
marginal productivities, that we normally require for the production function, but
the Cobb-Douglas form is certainly not the only functional form with those desir-
able properties. A number of more general functional forms have been proposed
in the literature, but the Cobb-Douglas form, despite its simplicity, has proved to
be a surprisingly good description of technology. Nerlove’s paper is one of the
relatively few studies in which the Cobb-Douglas (log-linear) form is found to be
inadequate, but it only underscores the importance of the Cobb-Douglas functional
form as the benchmark from which one can usefully contemplate generalizations.
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Are the OLS Assumptions Satisfied?

To justify the use of least squares, we need to make sure that Assumptions 1.1—
1.4 are satisfied for the equation (1.7.4). Evidently, Assumption 1.1 (linearity) is
satisfied with

yi =1log(TC),x = (1,109(Qi), log (pi1) , log (pi2) , log (piz))’.

There is no reason to expect that the regressors in (1.7.4) are perfectly multi-
collinear. Indeed, in Nerlove’s data set, rédk = 5 andn = 145, so Assumption
1.3 (no multicollinearity) is satisfied as well.

In verifying the strict exogeneity assumption (Assumption 1.2), the features of
the electricity industry mentioned above are relevant. It is reasonable to assume, as
in most cross-section data, thatis independent of; fori # j. So the question
is whethery; is independent of;. If it is, then Ee | X) = 0. According to the
third feature of the industry, factor prices are given to the firm with no regard for
the firm’s efficiency, so it is eminently reasonable to assume that factor prices are
independent of;.

What about output? Since the firm’s output is supplied on demand (the first
feature of the industry), output depends on the price of electricity set by the utility
commission (the second feature). If the regulatory scheme is such that the price is
determined regardless of the firm’s efficiency, then({@Q ande; are independ-
ently distributed. On the other hand, if the price is set to cover the average cost,
then the firm’s efficiency affects output through the effect of the electricity price
on demand and output in this caseeisdogenousbeing correlated with the error
term. We will very briefly come back to this point at the end, but until then we
will ignore the possible endogeneity of output. This certainly would not do if we
were dealing with a competitive industry. Since high-cost firms tend to produce
less, there would be megativecorrelation between lq@;) ande;, making OLS
an inappropriate estimation procedure.

Regarding Assumption 1.4, the assumption of no correlation in the error term
between firms (observations) would be suspect if, for example, there were tech-
nology spillovers running from one firm to other closely located firms. For the
industry under study, this is probably not the case.

There is naa priori reason to suppose that homoskedasticity is satisfied. Indeed,
the plot of residuals to be shown shortly suggests a failure of this condition. The
main part of Nerlove's paper is exploring ways to deal with this problem.
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Restricted Least Squares
The equation (1.7.4) isveridentified in that its five coefficients, being functions of
the four technology parameters (which asga», @z, andu), are not free parame-
ters. We can easily see that from (1.7.8):#+ 84+ B85 = 1 (recall:r = a1+ar+a3).
This is a reflection of the generic property of the cost function that it is linearly
homogeneous in factor prices. Indeed, multiplying total cd&tsand all factor
prices(pi1, pi2, Piz) by a common factor leaves the cost function (1.7.4) intact if
and only if B3 + B4 + Bs = 1.

Estimating the equation by least squares while impoaipgori restrictions on
the coefficient vector is the restricted least squares. It can be done easily by deriv-
ing from the original regression a separate regression that embodies the restrictions.
In the present example, to impose the homogeneity restrighon B4 + 85 = 1
on the cost function, we take any one of the factor prices, @ayand subtract
log(pi3) from both sides of (1.7.4) to obtain

log<T—Q> = B1+ B2 109(Qj) + B3 Iog(%) + Ba Iog(%) +é&i. (1.7.6)

i3 i3

There are now four coefficients in the regression, from which unique values of
the four technology parameters can be determined. The restricted least squares
estimate of(8,, ..., B4) is simply the OLS estimate of the coefficients in (1.7.6).
The restricted least squares estimatg©fs the value implied by the estimate of

(B1, ..., Ba) and the restriction.

Testing the Homogeneity of the Cost Function

Before proceeding to the estimation of the restricted model (1.7.6), in order to test
the homogeneity restrictiofs + 84+ 85 = 1, we will first estimate the unrestricted
model (1.7.4). If one uses the data available in printed form in Nerlove’s paper, the
OLS estimate of the equation is:

log(TG) = —35 + 0.72 log(Qi) + 0.44 log(pi1)

(1.8) (0.017 (0.29
— 0.22 log(piz) + 0.43 log(pi3)
(0.34) (0.10)
R? = 0.926 mean of dep. variable: 1.72,
SER=0.392 SSR= 21552 n =145 1.7.7)

Here, numbers in parentheses are the standard errors of the OLS coefficient esti-
mates. Sinced, = 1/r, the estimate of the degree of returns to scale implied
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by the OLS coefficient estimates is about 14 1/0.72). The OLS estimate of

Ba = a/r has the wrong sign. As noted by Nerlove, there are reasons to believe
that p;», the rental price of capital, is poorly measured. This may explain lyhy

is so imprecisely determined (i.e., the standard error is large relative to the size of
the coefficient estimate) that one cannot reject the hypothesigthat 0 with a
t-ratio of —0.65 (= —0.22/0.34).%*

To test the homogeneity restrictionyHBs + B4 + Bs = 1, we could write the
hypothesis in the forlRg = r with R = (0, 0, 1, 1, 1) andr = 1 and use the for-
mula (1.4.9) to calculate thie-ratio. The maintained hypothesis is the unrestricted
model (1.7.4) (that is, Assumptions 1.1-1.5 where the equation in Assumption 1.1
is (1.7.4)), so thd and the estimated variance loin the F-ratio formula should
come from the OLS estimation of (1.7.4). Alternatively, we can useé-thatio for-
mula (1.4.11). The unrestricted model producB®R is (1.7.4) and the restricted
model producingSSR is (1.7.6), which superimposes the null hypothesis on the
unrestricted model. The OLS estimate of (1.7.6) is

Iog(T—g) = —47 + 0.72loyQi)
Pis (0.88) (0.017)

+ 0.59 log(pi1/piz) — 0.007 log pi2/ pis)

(0.20) (0.19)
R? = 0.932 mean of dep. var= —1.48,
SER=0.39, SSR= 21640 n = 145 (1.7.8)

The F test of the homogeneity restriction proceeds as follows.
Step 1: Using (1.4.11), thdé--ratio can be calculated as

(21.640— 21552 /1
21552/(145— 5)

= 0.57.

Step 2: Find the critical value. The number of restrictions (equations) in the null
hypothesis is 1, and& (the number of coefficients) in the unrestricted
model (which is the maintained hypothesis) is 5. So the degrees of free-
dom are 1 and 14Q0= 145- 5). From the table of distributions, the
critical value is about 3.9.

Step 3: Thus, we can easily accept the homaogeneity restriction, a very comforting
conclusion for those who take microeconomics seriously (like us).

24The consequence of measurement error is not just that the coefficient of the variable measured with error is
poorly determined; it could also contaminate the coefficient estimates for all other regressors. The appropriate
context to address this problem is the large sample theory for endogeneous regressors in Chapter 3.
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Detour: A Cautionary Note on R?

The R? of 0.926 is surprisingly high for cross-section estimates, but some of the
explanatory power of the regression comes from the scale effect that total costs
increase with firm size. To gauge the contribution of the scale effect oiRRthe
subtract logQ;) from both sides of (1.7.4) to obtain an equivalent cost function:

T .
I09<§) = 1+ (B2 — 1D 1og(Q))

+ B3 log(pi1) + B4 log(pi2) + Bs log(piz) + 6.  (1.7.4)

Here, the dependent variable is the average cost rather than total costs. Application
of the OLS to (17.4) using the same data yields

Iog<T—Q) = —-35 — 0.28 log(Q))
Qi (1.8)  (0.017)

+ 044 log(pi1) — 0.22 log(pi2) + 0.43 log(pi3)
(0.29 (0.34) (0.10

R? = 0.695 mean of dep. var= —4.83,
SER= 0.392 SSR= 21552 n = 145 (1.7.9)

As you no doubt have anticipated, the output coefficient is rR@28 (= 0.72— 1)

with the standard errors and the other coefficient estimates unchangedR?The
changes only because the dependent variable is different. It is nonsense to say
that the higheiR?> makes (1.7.4) preferable to.714), because the two equations
represent the same model. The point is: when comparing equations on the basis of
the fit, the equations must share the same dependent variable.

Testing Constant Returns to Scale

As an application of the-test, consider testing whether returns to scale are constant
(r = 1). We take the maintained hypothesis to be the restricted model (1.7.6).
Becauses, (the log output coefficient) equals 1 if and onlyrif= 1, the null
hypothesis is that it 8, = 1. Thet-test of constant returns to scale proceeds as
follows.

Step 1: Calculate thet-ratio for the hypothesis. From the estimation of the
restricted model, we hav® = 0.72 with a standard error of 0.017, so

072—1

—16.
0.017 .

t-ratio =
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Because the maintained hypothesis here is the restricted model (K7.6),
(the number of coefficients) = 4.

Step 2: Look for the critical value in theé(141) distribution. If the size of the test
is 5 percent, the critical value is 1.98.

Step 3: Since the absolute value of theatio is far greater than the critical value,
we reject the hypothesis of constant returns to scale.

Importance of Plotting Residuals

The regression has a problem that cannot be seen from the estimated coefficients
and their standard errors. Figure 1.7 plots the residuals agairi&;lpogNotice two

things from the plot. First, as output increases, the residuals first tend to be positive,
then negative, and again positive. This strongly suggests that the degree of returns
to scale(r) is not constant as assumed in the log-linear specification. Second, the
residuals are more widely scattered for lower outputs, which is a sign of a failure
of the homoskedasticity assumption that the error variance does not depend on
the regressors. To deal with these problems, Nerlove divided the sample of 145
firms into five groups of 29, ordered by output, and estimated the model (1.7.6)
separately for each group. This amounts to allowing all the coefficients (including
B> = 1/r) andthe error variance to differ across the five groups differing in size.
Nerlove finds that returns to scale diminish steadily, from a high of well over 2 to a
low of slightly below 1, over the output range of the data. In the empirical exercise
of this chapter, the reader is asked to replicate this finding and do some further
analysis usinglummy variables and the weighted least squares.

Subsequent Developments

One strand of the subsequent literature is concerned about generalizing the Cobb-
Douglas technology while maintaining the assumption of cost minimization. An
obvious alternative to Cobb-Douglas is the Constant Elasticity of Substitution
(CES) production function, but it has two problems. First, the cost function
implied by the CES production function is highly nonlinear (which, though, could
be overcome by the use of nonlinear least squares to be covered in Chapter 7).
Second, the CES technology implies a constant degree of returns to scale. One
of Nerlove’s main findings is that the degree varies with output. Christensen and
Greene (1976) are probably the first to estimate the technology parameters allow-
ing for variable degrees of returns to scale. Usingitaaslog cost functionintro-

duced by Christensen, Jorgenson, and Lau (1973), they find that the significant
scale economies evident in the 1955 data were mostly exhausted by 1970, with
most firms operating at much higher output levels where the AC curve is essen-
tially flat. Their work will be examined in detail in Chapter 4.
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Figure 1.7: Plot of Residuals against Log Output

Another issue is whether regulated firms minimize costs. The influential paper
by Averch and Johnson (1962) argues that the practice by regulators to guarantee
utilities a “fair rate of return” on their capital stock distorts the choice of input
levels. Since the fair rate of return is usually higher than the interest rate, utilities
have an incentive to overinvest. That is, they minimize costs, but the relevant
rate of return in the definition of the user cost of capital is the fair rate of return.
Consequently, unless the fair rate of return is used in the calculatipn,dhe true
technology parameters cannot be estimated from the cost function. The fair-rate-
of-return regulation creates another econometric problem: to guarantee utilities a
fair rate of return, the price of electricity must be kept relatively high in markets
served by high-cost utilities. Thus output will be endogenous.

A more recent issue is whether the regulator has enough information to bring
about cost minimization. If the utility has more information about costs, it has an
incentive to misreport to the regulator the true value of the efficiency parameter.
Schemes to be adopted by the regulator to take into account this incentive problem
may not lead to cost minimization. Wolak’s (1994) empirical results for Califor-
nia’s water utility industry indicate that the observed level of costs and output is
better modeled as the outcome of a regulator-utility interaction under asymmetric
information. Wolak resolves the problem of the endogeneity of output by estimat-
ing the demand function along with the cost function. Doing so, however, requires
an estimation technique more sophisticated than the OLS.
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QUESTIONS FOR REVIEW

1.

Chapter 1

(Review of duality theory) Consult your favorite microeconomic textbook
to remember how to derive the Cobb-Douglas cost function from the Cobb-
Douglas production function.

(Change of units) In Nerlove’s data, output is measured in kilowatt hours. If
output were measured in megawatt hours, how would the estimated restricted
regression change?

(Recovering technology parameters from regression coefficients) Show that
the technology parametefst, a1, ay, @3) can be determined uniquely from
the first four equations in (1.7.5) and the definitioe: o1 + a2 + «3. (DO not

use the fifth equatios = as/r.)

(Recovering left-out coefficients from restricted OLS) Calculate the restricted
OLS estimate 0fs from (1.7.8). How do you calculate the standard errdosof
from the printout of the restricted OL$®nt: Write bs = a + ¢’b for suitably
chosen a and cwhere b hereis (by, ..., by)’". So Var(bs | X) = ¢ Var(b | X)c.

The printout from the restricted OLS should include Vam)\lxy

If you take p;, instead ofp;z and subtract logpi») from both sides of (1.7.4),
how does the restricted regression look? Without actually estimating it on
Nerlove's data, can you tell from the estimated restricted regression in the
text what the restricted OLS estimate (@, .. ., Bs) will be? Their standard
errors? TheSSR What about thdR??

Why is the R? of 0.926 from the unrestricted model (1.71@ver than theR?
of 0.932 from the restricted model (1.7.8)7?

A more realistic assumption about the rental price of capital may be that there
is an economy-wide capital market pg is the same across firms. In this case,

(a) Can we estimate the technology parametetsi?:. The answer is yes, but
why? When pj, is constant, (1.7.4) will have the perfect multicollinearity
problem. But recall that (81, ..., Bs) are not free parameters.

(b) Can we test homogeneity of the cost function in factor prices?
Taking logs of both sides of the production function (1.7.1), one can derive the

log-linear relationship:

log(Qi) = ao + a1 l0g(Xi1) + a2 log(Xi2) + a3 log(xi3) + i,
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whereg; here is defined as Igg\ ) —E[log(A)] andag = E[log(A;)]. Suppose,

in addition to total costs, output, and factor prices, we had data on factor inputs.
Can we estimate’s by applying OLS to this log-linear relationship? Why or
why not? Hint: Do input levels depend on ¢;? Suggest a different way to
estimatex’s. Hint: Look at input shares.

PROBLEM SET FOR CHAPTER 1

ANALYTICAL EXERCISES
1. (Proof thatb minimizesSSR Letb be the OLS estimator @. Prove that, for
any hypothetical estimatg, of g,
(Y — XB)'(y = XB) = (y — Xb)'(y — Xb).

In your proof, use the add-and-subtract strategy: ;aké(ﬁ, addXb to it and
then subtract the same from it. It produces the decompositign-oK 8:

y — XB = (y — Xb) + (Xb — XB).

Hint: (y — XB)'(y — XB) = [(y — Xb) + X (b — B)I'[(y — Xb) + X (b — B)].

Using the normal equations, show that this equals
(y — Xb)'(y — Xb) + (b — BYX'X (b — ).

2. (The annihilator associated with the vector of ones) s then-dimensional
column vector of ones, and Ibt; = 1, — 1(1’1)~11". Thatis,M; is the anni-
hilator associated witth. Prove the following:

(@) My is symmetric and idempotent.
(b) M1 =0.

(c) My =y —y-1where

<l
Il
Sl

Vi

i=1
My is the vector ofdeviations from the mean

(d) M1 X = X — 1X’ whereX = X'1/n. Thek-th element of th&k x 1 vector
X is % Zinzl Xik -
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3. (Deviation-from-the-mean regression) Consider aregression model with a con-
stant. LetX be partitioned as

X =|1: X
(nxK) Nxl nx(K-1)

so the first regressor is a constant. Partiffoandb accordingly:

B.| < scalar by
= . b == .
p |:ﬂ2i| «~(K-1x1 |:b2j|

Also Iet)~(2 = M1X, andy = M1y. They are the deviations from the mean for
the nonconstant regressors and the dependent variable. Prove the following:

(@) TheK normal equations are
y—b —X3b, =0
wherex, = X,1/n,

XLy —n-by - X — X,X5by = o .
2y 1 - X2 2R 202 (K-DxD)

(b) b, = (>~<’2>'22)—1>~<’2y. Hint: Substitute the first normal equation into the other
K — 1 equations to eliminate b; and solve for b,. This is a generalization of
the result you proved in Review Question 3 in Section 1.2.

4. (Partitioned regression, generalization of Exercise 3) X.be partitioned as

(nxK) (nxKy) (nxKy)

Partition 8 accordingly:

ﬂ— ﬂl «~— Kix1
_ﬂz <—K2X1'

Thus, the regression can be written as
y = X1B8;,+ X2B, + &.

LetP, = Xl(X/lxl)‘1X’l, Mi=1-Py, >~(2 = M1X, andy = Mly ThUS,y is
the residual vector from the regressionyobn X1, and thek-th column ofX,
is the residual vector from the regression of the corresporkfitgcolumn of
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X5, on X;. Prove the following:

(@) The normal equations are

X/lxlbl + X/1X2b2 = X/ly, (*)

(b) by = (X,X2)~1XLy. Thatis,b, can be obtained by regressing the residuals
y on the matrix of residualX,. Hint: Derive X181 = —P1X2B, + P1y
from (x). Substitute this into (xx) to obtain X;M X8, = X,;M1y. Then
use the fact that M 1 is symmetric and idempotent. Or, if you wish, you can
apply the brute force of the partitioned inverse formula (A.10) of Appendix
A to the coefficient matrix

oy _ [Xxa xixz|
XoX1 X5Xs
Show that the second diagonal block of (X'X)Lis (X,X2) L.

(c) The residuals from the regression yfon X5 numerically equals, the
residuals from the regression gfon X (= (X; : X»)). Hint: If eis the
residual from the regression of y on X,

y = Xiby + Xob, + €
Premultiplying both sides by M ; and using M 1X; = 0, we obtain
¥ = Xob, + Me
Show that M ;& = eand observe that b, equals the OLS coefficient estimate

in the regression of ¥ on )?2.

d) by = (X,X2)XLy. Note the difference from (b). Here, the vector of
dependent variable ig, noty. Are the residuals from the regression of
y on X5 numerically the same a&? [Answer: No.] Is theSSRfrom the
regression of on X, the same as th8SRfrom the regression df on X,?
[Answer: No.]

The results in (b)—(d) are known as thasch-Waugh Theorem

(e) Show:

¥y — €e=§Xo(X5M1X2) TIXLY.
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Hint: Apply the general decomposition formula (1.2.15) to the regression in
(c) to derive

¥y = b,X,Xoh, + €e.
Then use (b).
(f) Consider the following four regressions:
(1) regress/ on Xj.
(2) regressy onXo.
(3) regressy on X; andXs.
(4) regressy on Xo.
Let SSR be the sum of squared residuals from regresgioghow:

(i) SSR =Y'y. Hint: ¥ is constructed so that X}y = 0, so X1 should have
no explanatory power.

(i) SSR = €e. Hint: Use (c).
(i) SSKR = €e. Hint: Apply the Frisch-Waugh Theorem on regression (3).
My =¥.
(iv) Verify by numerical example th&SR is not necessarily equal &e.
5. (Restricted regression aig Inthe restricted least squares, the sum of squared

residuals is minimized subject to the constraint implied by the null hypothesis
RB = r. Form the Lagrangian as

1 ~ ~ ~
L=30- XB)'(y —XB) + A (RB —1),

wherel here is the #dimensional vector of Lagrange multipliers (recdR:
is# x K, BisK x 1, andr is # x 1). Let be the restricted least squares
estimator off. It is the solution to the constrained minimization problem.

(a) Letb be the unrestricted OLS estimator. Show:

B =b— XX RRXX)RTLRb-r),
A =[RXX)RTHRb—r).

Hint: The first-order conditions are X'y — (X’X)ﬁ =R'Aor X'(y — Xﬁ) =
R’A. Combine this with the constraint R = r to solve for A and B.
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(b) Lete =y — Xﬁ, the residuals from the restricted regression. Show:

SSR — SSR = (b — B) (X'X)(b — B)
= (Rb—=r)[RXXX)"'RT*Rb =)
=2RX'X)IR'A

A/ A~
= ¢ Pe,

whereP is the projection matrixHint: For the first equality, use the add-
and-subtract strategy:

SSR = (y — XB)'(y — XB)
= [(y — Xb) + X(b — B)I'[(y — Xb) + X(b — B)].

Use the normal equations X'(y — Xb) = 0. For the second and third
equalities, use (a). To prove the fourth equality, the easiest way is to use the
first-order condition mentioned in (a) that R’A = X'é.

(c) Verify that you have proved in (b) that (1.4.9) = (1.4.11).

6. (Proof of the decomposition (1.2.17)) Take the unrestricted model to be a
regression where one of the regressors is a constant, and the restricted model
to be a regression where the only regressor is a constant.

(@) Show that (b) in the previous exercise is the decomposition (1.2.17) for this
case.Hint: What is ﬁ for this case? Show that SSR = >, (y; — ¥)? and
(b—B)YX'X)(b—B) =Y(§— 9>

(b) (R? as anF-ratio) For a regression where one of the regressors is a con-
stant, prove that

_ RY(K -1
T A-RY/-K)

7. (Hausman principle in finite samples) For the generalized regression model,
prove the following. Here, itis understood that the expectations, variances, and
covariances are all conditional of

€) Cov(ﬁGLs, b - ﬁGLS) = 0. Hint: Recall that, for any two random vectors X
andy,

Cov(x,y) = E[(x — E®)(y — Ew))'].
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So
Cov(Ax, By) = ACowv(x, y)B'.
Also, since B is nonrandom,

Cov(BoLs, b — BaLs) = Cov(Bes — B, b — BoLs)-

(b) Let B be any unbiased estimator and defines § — Bs. Assumeg is
such thatvVy = Var(q) is nonsingular. Prove: CQﬁGLS, q) = 0. (Ifwe
setﬂ = b, we are back to (a) Mint: Define: ﬁ ﬁGLS + Hq for some H.
Show:

Var(ﬁ) = Var(ﬁGLs) + CH + HC' + HV4H’,

where C = Cov(/ﬂ\GLS, ). Show that, if C # O then Var(ﬁ) can be made
smaller than Var(fg ) by setting H = —CVal. Argue that this is in con-
tradiction to Proposition 1.7(c).

(c) (Optional, only for those who are proficient in linear algebra) Prove: if the
K columns ofX are characteristic vectors ¥f, thenb = ﬁGLS, whereV is
then x n variance-covariance matrix of tmedimensional error vectas.

(So not all unbiased estimators satisfy the requirement in (b) thaﬁ\/ar
ﬁGLS) be nonsingular.)Hint: For any n x n symmetric matrix V, there
exists an n x n matrix H such that H'H = |, (so H is an orthogonal matrix)
and H'VH = A, where A is a diagonal matrix with the characteristic roots
(which are real since V is symmetric) of V in the diagonal. The columns of
H are called the characteristic vectors of V. Show that

H'=H, HVH=A"" HV!=A"H.

Without loss of generality, X can be taken to be the first K columns of H.

So X = HF, where
I
F = .
(nxK) |:Oj|

Read Marc Nerlove, “Returns to Scale in Electricity Supply” (except paragraphs
of equations (6)—(9), the part of section 2 from p. 184 on, and Appendix A and

EMPIRICAL EXERCISES
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C) before doing this exercise. For 145 electric utility companies in 1955, the file
NERLOVE.ASC has data on the following:

Column 1: total costs (call it C) in millions of dollars
Column 2: outpui( Q) in billions of kilowatt hours
Column 3: price of labotPL)

Column 4: price of fuelgPF)

Column 5: price of capitalPK).

They are from the data appendix of his article. There are 145 observations, and
the observations are ordered in size, observation 1 being the smallest company
and observation 145 the largest. Using the data transformation facilities of your

computer software, generate for each of the 145 firms the variables required for
estimation. To estimate (1.7.4), for example, you need to generafEdpga con-

stant, logQ), log(PL), log(PK), and logPF), for each of the 145 firms.

(@) (Data question) Does Nerlove’s construction of the price of capital conform to
the definition of the user cost of capitalitht: Read Nerlove’s Appendix B.4.

(b) Estimate the unrestricted model (1.7.4) by OLS. Can you replicate the esti-
mates in the text?

(c) (Restricted least squares) Estimate the restricted model (1.7.6) by OLS. To do
this, you need to generate a new set of variables for each of the 145 firms. For
example, the dependent variable is(0G/PF), not log(TC). Can you repli-
cate the estimates in the text? Can you replicate Nerlove’s results? Nerlove’s
estimate off,, for example, is 0.721 with a standard error of 0.0174 (the stan-
dard error in his paper is 0.175, but it is probably a typographical error). Where
in Nerlove’s paper can you find this estimate? What about the other coeffi-
cients? (Warning: You will not be able to replicate Nerlove’s results precisely.
One reason is that he used common rather than natural logarithms; however,
this should affect only the estimated intercept term. The other reason: the data
set used for his results is a corrected version of the data set published with his
article.)

As mentioned in the text, the plot of residuals suggests a nonlinear rela-
tionship between log C) and log Q). Nerlove hypothesized that esti-
mated returns to scale varied with the level of output. Following Nerlove,
divide the sample of 145 firms into five subsamples or groups, each hav-
ing 29 firms. (Recall that since the data are ordered by level of output, the
first 29 observations will have the smallest output levels, whereas the last
29 observations will have the largest output levels.) Consider the following
three generalizations of the model (1.7.6):
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Model 1: Both the coefficients4’s) and the error variance in (1.7.6) differ across
groups.

Model 2: The coefficients are different, but the error variance is the same across
groups.

Model 3: While each group has common coefficients fgrand 8, (price elastic-
ities) and common error variance, it has a different intercept term and a
different 8,. Model 3 is what Nerlove called the hypothesis of neutral
variations in returns to scale.

For Model 1, the coefficients and error variances specific to groups can be esti-
mated from

y = XxXDgh 40 (j=1,...,5),

wherey) (29 x 1) is the vector of the values of the dependent variable for group
i, X1 (29 x 4) is the matrix of the values of the four regressors for grgug‘’

(4 x 1) is the coefficient vector for group, ande)) (29 x 1) is the error vector.
The second column of®, for example, is logQ) fori = 117, ..., 145. Model 1
assumes conditional homoskedasticite @1 | X)) = ol 29 Within (but not
necessarily across) groups.

(d) Estimate Model 1 by OLS. How well can you replicate Nerlove’s reported
results? On the basis of your estimatespgef compute the point estimates
of returns to scale in each of the five groups. What is the general pattern of
estimated scale economies as the level of output increases? What is the general
pattern of the estimated error variance as output increases?

Model 2 assumes for Model 1 tha(}2 = o2 for all j. This equivariance
restriction can be incorporated by stacking vectors and matrices as follows:

y=XB+e,

where
y@D XD e

: (145%x20) (145x1) .
y© G &®

Yy
(145x 1)
In particular,X is now a block-diagonal matrix. The equivariance restriction
can be expressed agdz’ | X) = 0?1145 There are now 20 variables derived from
the original four regressors. The 145 dimensional vector corresponding to the sec-
ond variable, for example, has IgQ,), .. ., 10g(Qg) as the first 29 elements and



Finite-Sample Properties of OLS 79

zeros elsewhere. The vector corresponding to the 6th variable, which represents
log output for the second group of firms, has(Qgy), .. ., l0g(Qsg) for the 30th
through 58th elements and zeros elsewhere, and so on.

The stacking operation needed to form thand X in (%) can be done easily
if your computer software is matrix-based. Otherwise, you trick your software
into accomplishing the same thing by the use of dummy variables. Definetthe
dummy variable as

1 iffirmi belongs to thg-th group, .
Dji = " I_ g 9-th grotip i=1,...,145.
0 otherwise,

Then the second regressorDs; - log(Q;). The 6th variable i - log(Q;), and
so forth.

(e) Estimate Model 2 by OLS. Verify that the OLS coefficient estimates here are
the same as those in (d). Also verify that

5
Y SSR=SSR

j=1

whereSSR is the SSRfrom the j-th group in your estimation of Model 1 in

(d) andSSRis the SSRfrom Model 2. This agreement is not by accident, i.e.,
not specific to the present data set. Prove that this agreement for the coeffi-
cients and theSSRholds in general, temporarily assuming just two groups
without loss of generalityHint: First show that the coefficient estimate is the

same between Model 1 and Model 2. Use formulas (A.4), (A.5), and (A.9) of
Appendix A.

() (Chow test) Model 2 is more general than Model (1.7.6) because the coeffi-
cients can differ across groups. Test the null hypothesis that the coefficients
are the same across groups. How many equations (restrictions) are in the
null hypothesis? This test is sometimes called @w test for structural
change Calculate thep-value of theF-ratio. Hint: This is a linear hypoth-
esis about the coefficients of Model 2. So take Model 2 to be the maintained
hypothesis and (1.7.6) to be the restricted model. Use the formula (1.4.11) for
the F-ratio.

Gauss Tip: If x is the F-ratio, the Gauss commaratiffc( x,dfl,df2 )
gives the area to the right d&f for the F distribution withdfl anddf2
degrees of freedom.
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TSP Tip: The TSP command to do the samed(f, dfl= dfl , df2=
df2 ) x. Anoutput of TSP’s OLS comman@LSQis @SSRwhich is the
SSKHor the regression.

RATS Tip: The RATS command isdf ftest X dfl dfZ . An output
of RATS’s OLS commandLINREG, is %RS$Swhich is theSSRfor the
regression.

The restriction in Model 3 that the price elasticities are the same across firm
groups can be imposed on Model 2 by applying the dummy variable transformation
only to the constant and log output. Thus, there ar¢12 x 5+ 2) variables in
X. Now X looks like

X =
(1 10g(Qy) 0 0 log(PLi/PF1)  log(PKy/PFy) ]
Z:I. Iog(:ng) O 0 IOgPLZ:g/PFzg) IOg(PKQ:g/PFzg)
0 0 ) 1 logQi17) Iog(PL11:7/PF117) log(P K11:7/PF117)
_(:) 0 1 Iog(é)m) Iog(PL14:5/PF145) Iog(PK1;5/PF145)_
(%)

(9) Estimate Model 3. The model is a special case of Model 2, with the hypothesis
that the two price elasticities are the same across the five groups. Test the
hypothesis at a significance level of 5 percent, assuming normality. (Note:
Nerlove’sF-ratio on p. 183 is wrong.)

As has become clear from the plot of residuals in Figure 1.7, the conditional
second moment &? | X) is likely to depend on log output, which is a violation
of the conditional homoskedasticity assumption. This time we do not attempt to
test conditional homoskedasticity, because to do so requires large sample theory
and is postponed until the next chapter. Instead, we pretend to know the form of
the function linking the conditional second moment to log output. The function,
specified below, implies that the conditional second moment varies continuously
with output, contrary to the three models we have considered above. Also contrary
to those models, we assume that the degree of returns to scale varies continuously
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with output by including the square of log outgatModel 4 is
Model 4:

T .
Iog(p—q> = p1+ B2 109(Qi) + B3 [log(Q)1?

i3
+ Ba |09(&> + Bs |09(&> + &i
Pi3 Pis
E(e? | X) =02 <0.0565-|— %ﬁ (i=12...,145

i
for some unknowr 2.

(h) Estimate Model 4 by weighted least squares on the whole sample of 145 firms.
(Be careful about the treatment of the intercept; in the equation after weighting,
none of the regressors is a constant.) Plot the residuals. Is there still evidence
for conditional homoskedasticity or further nonlinearities?

MONTE CARLO EXERCISES

Monte Carlo analysis simulates a large number of samples from the model to
study the finite-sample distribution of estimators. In this exercise, we use the tech-
nique to confirm the two finite-sample results of the text: the unbiasedness of the
OLS coefficient estimator and the distribution of theatio. The model is the fol-
lowing simple regression model satisfying Assumptions 1.1-1.5mwith32. The
regression equation is

Yi=pPr1+BXi+& (=12...,n)
ory=1-B1+x-fo+te=XB+e, ()

whereX = (1:x) andB = (B1, B2)". The model parameters af:, B2, 02).

As mentioned in the text, a model is a set of joint distributiongyoiX). We
pick a particular joint distribution by specifying the regression model as follows.
Setp; = 1, 8, = 0.5, ando? = 1. The distribution ok = (X1, X, ..., X)' iS
specified by the following ARL) process:

Xi:C+¢Xi—l+ni (I :1121"'9n)’ (**)

25e have derived the log-linear cost function from the Cobb-Douglas production function. Does there exist a
production function from which this generalized cost function with a quadratic term in log output can be derived?
This is a question of the “integrability” of cost functions and is discussed in detail in Christensen et al. (1973).
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where{n;} is i.i.d. N(0Q, 1) and

Xo ~ N(ﬁ,l_—zz), c=2 ¢=06

This fixes the joint distribution ofy, X). From this distribution, a large number of
samples will be drawn.

In programming the simulation, the following expression Xawill be useful.
Solve the first-order difference equatiork) to obtain

X =¢'Xo+L+d+¢2+-+¢ e
+ i+ mics+ @i+ + 0 ),

or, in matrix notation,

X =71 X+ d + A g, (k%)
(nx1) (nx1) (nx1) (nxn)(nxl)

whered = (dq, dp, ..., dy) and

dh=c, dhb=1+¢),..., d=A+¢+¢*+---+¢' De,...,

1 0 ....... 0
¢2 é 1 0 0 n
¢ 12

¢n

¢n.—l d)n'—Z o d) l
Gauss Tip: To form ther matrix, usesegm. To form theA matrix, useoeplitz
andlowmat .

(a) Run two Monte Carlo simulations. The first simulation calculatds |E<) and
the distribution of the-ratio as a distribution conditional axa A computer
program for the first simulation should consist of the following steps.

(1) (Generates just once) Using the random number generator, draw a vector
» of ni.i.d. random variables fronlN (0, 1) andxo from N(c/(1 — ¢), 1/
(1 — ¢?)), and calculatex by (xxx). (Calculation ofx can also be accom-
plished recursively bys:x) with a do loop, but vector operations such as
(*xx) consume less CPU time than do loops. This becomes a consideration
in the second simulation, wherehas to be generated in each replication.)
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(2) Set a counter to zero. The counter will record the incidence |that
to.025(N — 2). Also, set a two-dimensional vector at zero; this vector will be
used for calculating the mean of the OLS estim&tof (81, 82)'.

(3) Start a do loop of a large number of replications (1 million, say). In each
replication, do the following.

() (Generatgy) Draw ann dimensional vectog of n i.i.d. random vari-
ables fromN(0, 1), and calculatey = (y1, ..., ¥n)' by (x). Thisy is
paired with the same from step (1) to form a samplg, x).

(i) From the sample, calculate the OLS estimdioand thet-value for
Hoi /32 = 0.5.

(i) Increase the counter by one|if > tggo5(n — 2). Also, addb to the
two-dimensional vector.

(4) After the do loop, divide the counter by the number of replications to calcu-
late the frequency of rejecting the null. Also, divide the two-dimensional
vector that has accumulatddby the number of replications. It should
equal Eb | x) if the number of replications is infinite.

Note that in this first simulatiorx is fixedthroughout the do loop for. The
second simulation calculates theconditional distribution of the-ratio. It
should consist of the following steps.

(1) Set the counter to zero.

(2) Startado loop of alarge number of replications. In each replication, do the
following.

() (Generatx) Draw avectom of ni.i.d. random variables from (0, 1)
andxg from N(c/(1 — ¢), 1/(1 — ¢?)), and calculate by (sxxx).

(i) (Generatgy) Draw avectoe of ni.i.d. random variables froml (0, 1),
and calculatey = (y1, ..., ¥n) by ().

(i) From a sampley, x) thus generated, calculate thgalue for Hy: g =
0.5 from the sampley, x).

(iv) Increase the counter by onglif > tgg25(h — 2).
(3) After the do loop, divide the counter by the number of replications.

For the two simulations, verify that, for a sufficiently large number of replica-
tions,
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1. the mean ob from the first simulation is arbitrarily close to the true value
(1,0.5);

2. the frequency of rejecting the true hypothesig(the type | error) is arbi-
trarily close to 5 percent in either simulation.

(b) In those two simulations, is the (nonconstant) regressor strictly exogenous? Is
the error conditionally homoskedastic?

ANSWERS TO SELECTED QUESTIONS

ANALYTICAL EXERCISES
L y-XBYy-Xp 3
= [(y — Xb) + X(b — B)T[(y — Xb) 4+ X(b — )]
(by the add-and-subtract strategy)
= [(y = Xb) + (b — BYX'[(y — Xb) + X (b — B)]
= (y — Xb)'(y — Xb) + (b — B)’X'(y — Xb)
+(y — XbYX(b — B) + (b — BYX'X(b — B)
= (y — Xb)'(y — Xb) + 2(b — BYX'(y — Xb) + (b — By X'X (b — B)
(since(b — B)X'(y — Xb) = (y — Xb)'X(b — B))
= (y — Xb)'(y — Xb) + (b — B)X'X (b — B)
(sinceX’(y — Xb) = 0 by the normal equations)
> (y — Xb)'(y — Xb)

(since(b — BYX'X(b— B) =Zz=) 72> O wherez = X(b — B)).
i1

7a. Bois — B = Ae whereA = (X'V-IX)~IX'V-1andb — Bg s = Be where
B=XX)"X — XV~X)"IX'V-1. So

COV(BGLS —B.b— ﬁGLS>
= Cov(Ae, Be)
= A Var(e)B’
= 0?AVB'.

It is straightforward to show tha8vB’ = 0.
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7b. For the choice of indicated in the hint,
Var(B) — Var(Bg ) = —CV;'C.

If C # 0, then there exists a nonzero vectasuch thalC’z = v # 0. For such
Z,

Z[Var(B) — Var(ﬁGLS)]z =-V'V, v <0 (sinceVy is positive definite),
which is a contradiction becau{@%LS is efficient.

EMPIRICAL EXERCISES

(@) Nerlove’s description in Appendix B.4 leads one to believe that he did not
include the depreciation radein his construction of the price of capital.

(b) Your estimates should agree with (1.7.7).

(c) Our estimates differ from Nerlove’s slightly. This would happen even if the
data used by Nerlove were the same as those provided to you, because comput-
ers in his age were much less precise and had more frequent rounding errors.

(d) How well can you replicate Nerlove’s reported results? Fairly well. The point
estimates of returns to scale in each of the five subsamples are 2.5, 1.5, 1.1, 1.1,
and .96. As the level of output increases, the returns to scale decline.

(e) Model 2 can be written ag = X8 + ¢, wherey, X, ande are as in£). So
(settingj = 2),

Qrx @
oy — | XX 0 ’
0 X@rx @)

which means

X'X)~t = [(X(l)/x(l))_l 0 }

0 (X<2>’X(2>)_l

And
X Dry(®)

X/y = [X(z)/y(z)} .
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Therefore,
(X<1>/X<1>)_1X<1>/y<1>}

X/X —lx/ —
XXXy [(xe)/X(z))—lX(z)/y(z)

Thus, the OLS estimate of the coefficient vector for Model 2 is the same as that
for Model 1. Since the estimate of the coefficient vector is the same, the sum

of squared residuals, too, is the same.

(f) The number of restrictions is 16 = #coefficients in Model 2= 20. So the
two degrees of freedom should &6, 125. SSR = 12262 andSSR =
21.640. F-ratio = 5.97 with a p-value of 0.0000. So this can be rejected at
any reasonable significance level.

(9) SSR = 12262 andSSR, = 12577. SoF = .40 with 8 and 125 degrees of
freedom. Itsp-value is 0.92. So the restrictions can be accepted at any reason-
able significance level. NerloveB-ratio (see p. 183, 8th line from bottom) is
1.576.

(h) The plot still shows that the conditional second moment is somewhat larger for
smaller firms, but now there is no evidence for possible nonlinearities.
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CHAPTER 2

Large-Sample Theory

ABSTRACT

In the previous chapter, we derived the exact- or finite-sample distribution of the OLS
estimator and its associated test statistics. However, not very often in economics are
the assumptions of the exact distribution satisfied. The finite-sample theory breaks
down if one of the following three assumptions is violated: (1) the exogeneity of
regressors, (2) the normality of the error term, and (3) the linearity of the regres-
sion equation. This chapter develops an alternative approach, retaining only the third
assumption. The approach, called asymptotic or large-sample theory, derives an
approximation to the distribution of the estimator and its associated statistics assum-
ing that the sample size is sufficiently large.

Rather than making assumptions on the sample of a given size, large-sample
theory makes assumptions on the stochastic process that generates the sample. The
first two sections of this chapter provide the necessary language for describing sto-
chastic processes.

The concepts introduced in this chapter are essential for rational expectations
econometrics, as illustrated in Fama’s classic paper on the Fisher Hypothesis that the
real interest rate is constant. The hypothesis has a very strong policy implication:
monetary and fiscal policies cannot influence aggregate demand through the real
interest rate. Very surprisingly, one cannot reject the hypothesis for the United States
(at least if the sample period ends in the early 1970s).

2.1 Review of Limit Theorems for Sequences of Random Variables

The material of this section concerns the limiting behavior of a sequence of ran-
dom variables, (z;, z», - . . ). Since the material may already be familiar to you, we
present it rather formally, in a series of definitions and theorems. An authoritative
source is Rao (1973, Chapter 2c) which gives proofs of all the theorems included
in this section. In this section and the rest of this book, a sequence (21, z3, . ..) will
be denoted by {z,}.
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Various Modes of Convergence

Convergence in Probability

A sequence of random scalars {z,} converges in probability to a constant (non-
random) « if, for any € > O,

lim Prob(|z, — «| > &) = 0. 2.1.1)
n—oo

The constant « is called the probability limit of z, and is written as “plim,,_, ,, z, =
a” or “z, —, a”. Evidently,

I E2]

Zn — a7 isthesameas “z, —a — 0.7
P P

13

This definition of convergence in probability is extended to a sequence of ran-
dom vectors or random matrices (by viewing a matrix as a vector whose elements
have been rearranged) by requiring element-by-element convergence in probability.
That is, a sequence of K -dimensional random vectors {z,} converges in probability
to a K-dimensional vector of constants « if, for any ¢ > 0,

lim Prob(|z,x —ox| >&)=0 forallk(=1,2,...,K), (2.1.2)
n—oo
where z,, is the k-th element of z,, and ¢ the k-th element of «.

Almost Sure Convergence
A sequence of random scalars {z,} converges almost surely to a constant ¢ if

Prob( lim z, = a) —1. 2.1.3)

n—00

2

We write this as “z, —,s. @ The extension to random vectors is analogous
to that for convergence in probability. As will be mentioned below, this concept
of convergence is stronger than convergence in probability; that is, if a sequence
converges almost surely, then it converges in probability. The concept involved
in (2.1.3) is harder to grasp because the probability is about an event concerning
an infinite sequence (z), z2, ...). For our purposes, however, all that matters is
that almost sure convergence is stronger than convergence in probability. If we
can show that a sequence converges almost surely, that is one way to prove the

sequence converges in probability.
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Convergence in Mean Square
A sequence of random scalars {z,} converges in mean square (or in quadratic
mean) to « (written as “z, = ) if

Tim E[(z, — ®)*]1=0. (2.1.4)

The extension to random vectors is analogous to that for convergence in probabil-
ity: Z, — . @ if each element of z, converges in mean square to the corresponding
component of a.

Convergence to a Random Variable

In these definitions of convergence, the limit is a constant (i.e., a real number). The
limit can be a random variable. We say that a sequence of K -dimensional random
variables {z,} converges to a K-dimensional random variable z and write z, —pZ
if {2, — z} converges to 0:

“2, > 27 isthesameas “z, —z — 0.7 (2.1.5a)
P P
Similarly,
“2, —> 2” isthesameas “z, —z— 0,” (2.1.5b)
a.s. a.s.
“z, > Z°" 1isthesameas “z,—z — 0. (2.1.5¢)
m.S. m.s.

Convergence in Distribution

Let {z,} be a sequence of random scalars and F,, be the cumulative distribution
function (c.d.f.) of z,. We say that {z,} converges in distribution to a random
scalar z if the c.d.f. F, of z, converges to the c.d.f. F of z at every continuity
point of F.! We write “z, —4 z” or “z, — z” and call F the asymptotic (or
limit or limiting) distribution of z,. Sometimes we write “z, —4 F,” when
the distribution F is well-known. For example, “z, —4 N(0,1)” should read
“zn —>4 2 and the distribution of z is N(0, 1) (normal distribution with mean 0 and
variance 1).” It can be shown from the definition that convergence in probability is
stronger than convergence in distribution, that is,

“Z, > 2" = “z, —d> z.” (2.1.6)
p

Do not be concerned about the qualifier “‘at every continuity point of F.” For the most part, except possibly
for the chapters on the discrete or limited dependent variable, the relevant distribution is continuous, and the
distribution function is continuous at all points.
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A special case of convergence in distribution is that z is a constant (a trivial random
variable).

The extension to a sequence of random vectors is immediate: z, —4 z if
the joint c¢.d.f. F, of the random vector z, converges to the joint c.d.f. F of z
at every continuity point of F. Note, however, that, unlike the other concepts
of convergence, for convergence in distribution, element-by-element convergence
does not necessarily mean convergence for the vector sequence. That is, “each
element of z, — 4 corresponding element of z” does not necessarily imply “z, —4
z”” A common way to establish the connection between scalar convergence and
vector convergence in distribution is

Multivariate Convergence in Distribution Theorem:  (stated in Rao, 1973,
p- 128) Let {z,} be a sequence of K -dimensional random vectors. Then:

“Z, e 2”& “Uz, e A’z for any K -dimensional vector of real numbers.”

Convergence in Distribution vs. Convergence in Moments

It is worth emphasizing that the moments of the limit distribution of z, are not
necessarily equal to the limits of the moments of z,,. For example, “z, —4 z” does
not necessarily imply “lim,—_, - E(z,) = E(z).” However,

Lemma 2.1 (convergence in distribution and in moments): Let o, be the s-th
moment of z, and lim,,_, o, &, = o, where o, is finite (i.e., a real number). Then:

“Zn —d> z” = ‘W, is the s-th moment of 7.”

Thus, for example, if the variance of a sequence of random variables converging in
distribution converges to some finite number, then that number is the variance of
the limiting distribution.

Relation among Modes of Convergence
Some modes of convergence are weaker than others. The following theorem estab-
lishes the relationship between the four modes of convergence.

Lemma 2.2 (relationship among the four modes of convergence):

»”»

(3) “zn — ms. (!”=> “Zn _)p a.” So “Zn —ms. Z”:> “zn _)p 7.
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(b) “2, =5 "= “2, >, .7 80 “2, >4 2= “2, >, 2.7

(c) “z, »>pa” & “z, >4 a.” (That is, if the limiting random variable is a con-
stant [a trivial random variable], convergence in distribution is the same as
convergence in probability.)

Three Useful Results
Having defined the modes of convergence, we can state three results essential for
developing large-sample theory.

Lemma 2.3 (preservation of convergence for continuous transformation): Sup-
pose a(-) is a vector-valued continuous function that does not depend on n.

(a) “z, —»p a” = “a(z,) —p a(a).” Stated differently,

plim a(z,) = a(plimz,)

n— 00 n—od
provided the plim exists.
(b) “zn —)d z”:> “a(zn) %d a(z).77

An immediate implication of Lemma 2.3(a) is that the usual arithmetic operations
preserve convergence in probability. For example:

£6xn _p) ﬁ’ yn _p) y” :> ‘6xn + yn _p) ﬂ + y”

“En 2> By n 2 V7= Xnyn 2 By

“Xp = B, Yp = ¥ = “x,/yn = B/y, provided that y # 0.

p p p
“Y, - I'” = “Y' - T''” provided that I is invertible.
p p
The next result about combinations of convergence in probability and in distri-

bution will be used repeatedly to derive the asymptotic distribution of the estimator.
Lemma 2.4:
(3) “Xn —>d X, ¥n =p a’= “X,, + Yn maX +a.”
(b) “xn %d x’ yn _)p 0”:> “y;,xn %p 0.’7

(© “Xp =>a X, Ay, 5, A7 = “A,X, —>4 AX,” provided that A, and x, are con-
formable. In particular, if x ~ N(0, X), then A, x, —4 N(0, AZA’).



Large-Sample Theory 93

d) “x, >4X, A, >p A" = “X.ATIX, >4 XA~x,” provided that A, and x,
p n‘tn p
are conformable and A is nonsingular.

Parts (a) and (c) are sometimes called Slutzky’s Theorem. By setting ¢ = 0, part
(a) implies:

“Xn _d) X, yn - 099 = “Xn + yn _d) X.” ’ (2.17)
P

Thatis, if z, = X, +y, and y, =, 0 (i.e., if z, —x, — 0), then the asymptotic dis-
tribution of z, is the same as that of x,. When z, —x, — 0, we sometimes (but not
always) say that the two sequences are asymptotically equivalent and write it as

“2, ~ X,” or “z, =X, +0p,”
where o, is some suitable random variable (y, here) that converges to zero in prob-
ability.

A standard trick in deriving the asymptotic distribution of a sequence of ran-
dom variables is to find an asymptotically equivalent sequence whose asymptotic
distribution is easier to derive. In particular, by replacing y, by y, — e in part (b)
of the lemma, we obtain

[T

“Xn =X Ya > o =y X, ~ o'x,” or “y X, = a'X, + 0,7 (2.1.8)
P a

The o, here is (y, — a)'x,. Therefore, replacing y, by its probability limit does not
change the asymptotic distribution of y, x,, provided x, converges in distribution
to some random variable.

The third result will allow us to test nonlinear hypotheses given the asymptotic
distribution of the estimator.

Lemma 2.5 (the “delta method”): Suppose (x,} is a sequence of K -dimensional
random vectors such that x, —, B and

\/H(Xn - ﬂ) _d) z,

and suppose a(-): R — R’ has continuous first derivatives with A(B) denoting
the r x K matrix of first derivatives evaluated at B :

da(B)
A =
(riQ 3ﬂ/
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Then
Vnla(x,) — a(B)] — APz

In particular:

V% — B) > N©, )" = “Valax,) —a(B)] > N(0, AB)EAB)).”

Proving this is a good way to learn how to use the results covered so far.

PROOF. By the mean-value theorem from calculus (see Section 7.3 for a statement
of the theorem), there exists a K -dimensional vector y, between x,, and 8 such that

a(xn) - a(ﬂ) = A(Yn)(xn - ﬂ)

(rxK) (Kx1)

Multiplying both sides by /7, we obtain

Vnla(x,) — a(B)] = A(¥x)v/n(x, — B).

Since y, is between x,, and 8 and since x, —, B, we know that y, —, 8. More-
over, the first derivative A(-) is continuous by assumption. So by Lemma 2.3(a),

A(yn) > A(B).
By Lemma 2.4(c), this and the hypothesis that \/n(x, — B) —4 z imply that

AV (x, — B) (= v/nlax,) —a(B)]) — AB)z. m

Viewing Estimators as Sequences of Random Variables

Let (3,, be an estimator of a parameter vector § based on a sample of size n. The
sequence {(),,} is an example of a sequence of random variables, so the concepts
introduced in this section for sequences of random variables are applicable to {(),,}.
We say that an estimator 0, is consistent for 6 if

plim(),, =60 or 9,, — 0.
P

n—oo
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The asymptotic bias of 8, is defined as plim,_, 8, — 0.2 So if the estimator is
consistent, its asymptotic bias is zero. A consistent estimator 8,, is asymptotically
normal if

Vn@, -0 — N, D).

Such an estimator is called 4/n-consistent. The acronym sometimes used for “con-
sistent and asymptotically normal” is CAN. The variance matrix X is called the
asymptotic variance and is denoted Avar(@,). Some authors use the notation
Avar(é,,) to mean X /n (which is zero in the limit). In this book, Avar(@,,) is the
variance of the limiting distribution of \/n (8, — 8).

Laws of Large Numbers and Central Limit Theorems
For a sequence of random scalars {z;}, the sample mean Z,, is defined as

1 n
In=-— E Z;.
n 4

i=1

Consider the sequence {Z,}. Laws of large numbers (I.LLNs) concern conditions
under which {z,} converges either in probability or almost surely. An LLN is called
strong if the convergence is almost surely and weak if the convergence is in prob-
ability. We can derive the following weak LLN easily from Part (a) of Lemma 2.2.

A Version of Chebychev’s Weak LLN:
“lim E(z,) = u, liI{.lo Var(z,) = 0"= “z, - u.”
n— 00 n— p

This holds because, under the condition specified, it is easy to prove (see an ana-
lytical question) that zZ, — 5. #. The following strong LLN assumes that {z;} is
1.1.d. (independently and identically distributed), but the variance does not need to
be finite,

Kolmogorov’s Second Strong Law of Large Numbers: Let {z;} be i.i.d. with
E(z;) = M-3 Thenz, —>as. ih.

2Some authors use the term “asymptotic bias” differently. Amemiya (1985), for example, defines it to mean
limp— 00 E(84) — 6.

380 the mean exists and is finite (a real number). When a moment (e.g., the mean) is indicated, as here, then
by implication the moment is assumed to exist and is finite.
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These LLLNs extend readily to random vectors by requiring element-by-element
convergence.

Central Limit Theorems (CLTs) are about the limiting behavior of the differ-
ence between z, and E(z,,) (which equals E(z;) if {z;} is i.i.d.) blown up by /n.
The only Central Limit Theorem we need for the case of i.i.d. sequences is:

Lindeberg-Levy CLT: Let {z;} be i.i.d. with E(z;) = pu and Var(z;) = X. Then
_ 1 ¢
Vil =) = = g(zi ~ )~ N, ).

This reads: a sequence of random vectors {/n(Z, — p)} converges in distribution
to a random vector whose distribution is N (0, X). (Usually, the Lindeberg-Levy
CLT is for a sequence of scalar random variables. The vector version displayed
above is derived from the scalar version as follows. Let {z;} bei.i.d. with E(z;) = u
and Var(z;) = X, and let A be any vector of real numbers of the same dimension.
Then {1'z,} is a sequence of scalar random variables with E(A'z,) = A'p and
Var(A'z,) = A'EA. The scalar version of Linderberg-Levy then implies that

SNz, — A p) =A@z, — p) e N0, 1 Z1).
But this limit distribution is the distribution of A’x where x ~ N(0, X). So by
the Multivariate Convergence in Distribution Theorem stated a few pages back,

{ﬁ (z, — ;L)} — 4 X, which is the claim of the vector version of Lindeberg-Levy.)

QUESTIONS FOR REVIEW

1. (Usual convergence vs. convergence in probability) A sequence of real num-
bers is a trivial example of a sequence of random variables. Is it true that
“lim,_, 00 2» = @” = “plim,_, 2, = a”? Hint: Look at the definition of plim.
Since lim,,_, », z, = «, |z, — | < & for n sufficiently large.

2. (Alternative definition of convergence for vector sequences) Verify that the
definition in the text of “z,, — . Z” is equivalent to

lim E[(z, —z)'(z, —2)] = 0.

Hint: E[(z, — 2)' (2, — 2)] = E[(Zm — 2:)’] + -+ + El(zax — 2x)?], where
K is the dimension of z.  Similarly, verify that the definition in the text of
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“z, —p & Is equivalent to

lim Prob((z, — &)’ (z, — &) > ¢) = 0 for any & > 0.

n—00

3. Prove Lemma 2.4(c) from Lemma 2.4(a) and (b). Hint: A,x, = (A, — A)X, +
Ax,. By (b), (A, — A)x, —, 0.

4. Suppose ﬁ(é,, —0) —4 N(0, 02). Does it follow that é,, —p 67 Hint:

~ 1 ~ 1
6,—0=——". 6, —60), pim— =0.
7+ V6= 6). plim —

5. (Combine Delta method with Lindeberg-Levy) Let {z;} be a sequence of i.i.d.
(independently and identically distributed) random variables with E(z;) = u #

0 and Var(z;) = o2, and let Z, be the-sample mean. Show that
11 o?
ﬁ(———) - N(o, —4).

Zn p/ d iz

Hint: In Lemma 2.5, set 8 = u, a(B) = 1/u, x, = Z,..

2.2 Fundamental Concepts in Time-Series Analysis

In this section, we define the very basic concepts in time-series analysis that will
form an integral part of our language. The key concept is a stochastic process,
which is just a fancy name for a sequence of random variables. If the index for
the random variables is interpreted as representing time, the stochastic process is
called a time series. If {z;} (i = 1,2, ...) is a stochastic process, its realization or
a sample path is an assignment to each i of a possible value of z;. So a realization
of {z;} is a sequence of real numbers. We will frequently use the term time series
to mean both the realization and the process of which it is a realization.

Need for Ergodic Stationarity

The fundamental problem in time-series analysis is that we can observe the realiza-
tion of the process only once. For example, the sample on the U.S. annual inflation
rate for the period from 1946 to 1995 is a string of 50 particular numbers, which
is just one possible outcome of the underlying stochastic process for the inflation
rate; if history took a different course, we could have obtained a different sample.
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If we could observe the history many times over, we could assemble many sam-
ples, each containing a possibly different string of 50 numbers. The mean inflation
rate for, say, 1995 can then be estimated by taking the average of the 1995 inflation
rate (the 50th element of the string) across those samples. The population mean
thus estimated is sometimes called the ensemble mean. In the language of general
equilibrium theory in economics, the ensemble mean is the average across all the
possible different states of nature at any given calendar time.

Of course, it is not feasible to observe many different alternative histories. But
if the distribution of the inflation rate remains unchanged (this property will be
referred to as stationarity), the particular string of 50 numbers we do observe
can be viewed as 50 different values from the same distribution. Furthermore, if
the process is not too persistent (what’s called ergodicity has this property), each
element of the string will contain some information not available from the other
elements, and, as shown below, the time average over the elements of the single
string will be consistent for the ensemble mean.

Various Classes of Stochastic Processes*

Stationary Processes

A stochastic process {z;} (i = 1,2,...) is (strictly) stationary if, for any given
finite integer r and for any set of subscripts, iy, is, ..., i,, the joint distribution of
(zi, 2, 2;,, ..., 2;) depends only on iy —i,i, —i,i3 —i,...,i, —i but notoni.
For example, the joint distribution of (z;, Zs) is the same as that of (z;;, z;¢). What
matters for the distribution is the relative position in the sequence. In particular,
the distribution of z; does not depend on the absolute position, i, of z;, so the mean,
variance, and other higher moments, if they exist, remain the same across i. The
definition also implies that any transformation (function) of a stationary process is
itself stationary, that is, if {z;} is stationary, then { f (z;)} is.> For example, {z;z}} is
stationary if {z;} is.

Example 2.1 (i.i.d. sequences): A sequence of independent and identically
distributed random variables is a stationary process that exhibits no serial
dependence.

4Many of the concepts collected in this subsection can also be found in Section 4.7 of Davidson and MacKin-
non (1993).

5The function () needs to be “measurable” so that f(z;) is a well-defined random variable. Any continuous
function is measurable. In what follows, we won’t bother to add the qualifier “measurable” when a function f of
a random variable is understood to be a random variable.
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Example 2.2 (constant series): Draw z; from some distribution and then
set z; = 21 (i = 2,3,...). So the value of the process is frozen at the
initial date. The process {z;} thus created is a stationary process that exhibits
maximum serial dependence. '

Evidently, if a vector process {z;} is stationary, then each element of the vector
forms a univariate stationary process. The converse, however, is not true.

Example 2.3 (element-wise vs. joint stationarity): Let{s;} (i =1,2,...)
be a scalar i.i.d. process. Create a two-dimensional process {z;} from it by
defining z;; = ¢&; and z;; = &; The scalar process {z;|} is stationary (this
is the process of Example 2.1). The scalar process {z;,}, too, is stationary
(the Example 2.2 process). The vector process {z;}, however, is not (jointly)
stationary, because the (joint) distribution of z; (= (¢, &;)’) differs from that

of z; (= (&2, £1)).

Most aggregate time series such as GDP are not stationary because they exhibit
time trends. A less obvious example of nonstationarity is international exchange
rates, which are alleged to have increasing variance. But many time series with
trend can be reduced to stationary processes. A process is called trend stationary
if it is stationary after subtracting from it a (usually linear) function of time (which
is the index i). If a process is not stationary but its first difference, z; — z;_j,
is stationary, {z;} is called difference stationary. Trend-stationary processes and
difference-stationary processes will be studied in Chapter 9.

Covariance Stationary Processes
A stochastic process {z;} is weakly (or covariance) stationary if:

(i) E(z;) does not depend on i, and

(i1) Cov(z;, z; ;) exists, is finite, and depends only on j but not on i (for example,
Cov(z,, z5) equals Cov(zys, Z6)).

The relative, not absolute, position in the sequence matters for the mean and covar-
iance of a covariance-stationary process. Evidently, if a sequence is (strictly) sta-
tionary and if the variance and covariances are finite, then the sequence is weakly
stationary (hence the term “strict”’). An example of a covariance-stationary but not
strictly stationary process will be given in Example 2.4 below.
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The j-th order autocovariance, denoted I';, is defined as
rjECOV(Z,',Z,'_j) (]=0,1,2,)

The term “auto” comes about because the two random variables are taken from the
same process. I'; does not depend on i because of covariance-stationarity. Also by
covariance stationarity, I'; satisfies )
I, = I"_j. (2.2.1)
(Showing this is a review question below.) The 0-th order autocovariance is the
variance 'y = Var(z;). The processes in Examples 2.1 and 2.2 are covariance
stationary if the variance exists and is finite. For the process of Example 2.1, Ty is
the variance of the distribution and I'; = 0 for j > 1. For the process of Example
22,T; =Ty, '

For a scalar covariance stationary process {z;}, the j-th order autocovariance is
now a scalar. If y; is this autocovariance, it satisfies

Yi=V-j- 2.2.2)

Take a string of n successive values, (z;, Zi+1, - - -, Ziyn—1), fTom a scalar process.
By covariance stationarity, its n X n variance-covariance matrix is the same as that
of (z1, 22, - - . ) and is a band spectrum matrix:

(% o v e Ve
. Yo Vi ... Va2
Var(zi, Zig1, « - Zign—-1) = o : : :
Vo2 .. V1 Yo "N
| Vo1 oo V2 1 VO |

This is called the autocovariance matrix of the process. The j-th order autocor-
relation coefficient, p;, is defined as

Jj-th order autocorrelation coefficient =
vi Cov(zi,zi—j) .
p=—=—H7—¥—"— (=12,...). (2.2.3)
" w Var(z;)
For j = 0, p; = 1. The plot of {p;} against j =0, 1,2, ... is called the correlo-
gram.
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White Noise Processes :
A very important class of weakly stationary processes is a white noise process, a
process with zero mean and no serial correlation:

a covariance-stationary process {z;} is white noise if
E(z;) = 0 and Cov(z;,z;_;) = 0for j # 0.

Clearly, an independently and identically distributed (i.i.d.) sequence with mean
zero and finite variance is a special case of a white noise process. For this reason,
it is called an independent white noise process.

Example 2.4 (a white noise process that is not strictly stationary®): Let w
be a random variable uniformly distributed in the interval (0, 2), and define

zi=cosiw) (=1,2,...).

It can be shown that E(z;) = 0, Var(z;) = 1/2, and Cov(z;, z;) = Ofori # j.
So {z;} is white noise. However, clearly, it is not an independent white noise

process. It is not even strictly stationary.

Ergodicity
A stationary process {z;} is said to be ergodic if, for any two bounded functions
f:R* > Randg: R > R,

nlirgo ’E[f(z,-, s Zitk) 8 Zidns - s Zi+n+£)]|

= [EL Gir - 20| [BL8 i - 2isnso)]]|

Heuristically, a stationary process is ergodic if it is asymptotically independent, that
is, if any two random variables positioned far apart in the sequence are almost inde-
pendently distributed. A stationary process that is ergodic will be called ergodic
stationary. Ergodic stationarity will be an integral ingredient in developing large-
sample theory because of the following property.

Ergodic Theorem: (See, e.g., Theorem 9.5.5 of Karlin and Taylor (1975).) Let
{z;} be a stationary and ergodic process with E(z;) = u.” Then

SDrawn from Example 7.8 of Anderson (1971, p. 379).
7So the mean is assumed to exist and is finite.
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1 n
Z, —E zZ, —> L.
n - a.s.
i=

m

The Ergodic Theorem, therefore, is a substantial generalization of Kolmogorov’s
LLN. Serial dependence, which is ruled out by the i.i.d. assumption in Kolmogo-
rov’s LLN, is allowed in the Ergodic Theorem, provided that it disappears in the
long run. Since, for any (measurable) function f(-), {f(z;)} is ergodic stationary
whenever {z;} is, this theorem implies that any moment of a stationary and ergodic
process (if it exists and is finite) is consistently estimated by the sample moment.
For example, suppose {z;} is stationary and ergodic and E(z;z;) exists and is finite.
Then, 1 3, z;Z, is consistent for E(z;z}).

The simplest example of ergodic stationary processes is independent white
noise processes. (White noise processes where independence is weakened to no
serial correlation are not necessarily ergodic; Example 2.4 above is an example.)
Another important example is the AR(1) process satisfying

zZi=cH+pzic1+e&, |pl <1,

where {¢;} is independent white noise.

Martingales
Let x; be an element of z;. The scalar process {x;} is called a martingale with
respect to {z;} if

E(x; | zi1,2i_2,...,2,) = x;_; fori > 2.8 2.2.4)

The conditioning set (z;_1, Z;_», . . . , Z1) is often called the information set at point
(date) i — 1. {x;} is called simply a martingale if the information set is its own past
values (x;_1, x;_2, ..., x1). If z; includes x;, then {x;} is a martingale, because

E(x_i | Xi—1, Xi—2, ..., X1)
=EE®W; | Zi—1,2Zi—2, ..., Z1) | Xi—1, Xi—2, ..., X1]
(Law of Iterated Expectations)

=B | xic1, Xi2, oo, X1) = X0

8If the process started in the infinite past so that i runs from —oo to +o0, the definition is E(x; |
Z;_1,Zi—>,...) = xj_1, and the qualifier “/ > 2” is not needed. Whether the process started in the infinite
past or in date { = 1 is not important for large-sample theory to be developed below. What will matter is that the
process starts before the sample period.
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A vector process {z;} is called a martingale if
E(Z,’ I Z,_1,..-, Z]) =1Z;1 fori > 2. (225)

Example 2.5 (Hall’s Martingale Hypothesis): Let z; be a vector contain-
ing a set of macroeconomic variables (such as the money supply or GDP)
including aggregate consumption c¢; for period i. Hall’s (1978) martingale
hypothesis is that consumption is a martingale with respect to {z;}:

E(ci | zio1,2i—2, ..., 21) = Ci—1.

This formalizes the notion in consumption theory called ‘“consumption
smoothing”: the consumer, wishing to avoid fluctuations in the standard of
living, adjusts consumption in date i — 1 to the level such that no change in

subsequent consumption is anticipated.

Random Walks

An important example of martingales is a random walk. Let {g;} be a vector
independent white noise process (so it is i.i.d. with mean 0 and finite variance
matrix). A random walk, {z;}, is a sequence of cumulative sums:

Z1=g, =g +8,..., ;=8 +8+ --+8g, . (2.2.6)

Given the sequence {z;}, the underlying independent white noise sequence, {g;},
can be backed out by taking first differences:

g1=21, =2 —2,... , 8 —=Z;, —Zi_1,.... (227)

So the first difference of a random walk is independent white noise. A random
walk is a martingale because

E(z; | zi-1,...,21) =E(z; | g_1,...,81) (since (z;—;,...,2;) and

(gi-1, .- -, &) have the same information, as just seen)
=E@+g+---+glg1,-.-.8)
=E(g | 8-1,-.-.8)+ @+ +8-1)
=g +---+g-1 (E@g|g-1,..-,8)=0as{g}is independent white noise)
=2;_; (by the definition of z; ;). (2.2.8)
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Martingale Difference Sequences

A vector process {g;} with E(g;) = 0 is called a martingale difference sequence
(m.d.s.) or martingale differences if the expectation conditional on its past values,
too, is zero:

E(gi | 8i-1,8i—2,...,8) =0 for i >2. (2.2.9)

The process is so called because the cumulative sum {z;} created from a martin-
gale difference sequence {g;} is a martingale; the proof is the same as in (2.2.8).
Conversely, if {z;} is martingale, the first differences created as in (2.2.7) are a
martingale difference sequence.

A martingale difference sequence has no serial correlation (i.e., Cov(g;, g;—;) =
O for all i and j # 0). A proof of this claim is as follows.

PROOF. First note that we can assume, without loss of generality, that j > 1.
Since the mean is zero, it suffices to show that E(g;g; j) = 0. So consider rewriting
it as follows.

E(g; g;— j)
= E[E(g;g;_ ; 18i-)1 (by the Law of Total Expectations)
= E[E(g; | gi-;)g;_ ;] (by the linearity of conditional expectations).

Now, since j > 1, (gi—1, ..., 8i-j, ..., 81) includes g;_ ;. Therefore,

E(g: | gi-;)
= E[E(g; | 8i-1,..-,8i—j,....8) | g-;]1 (bythe Law of Iterated Expectations)
=0.

The last equality holds because E(g; | gi—i, ..., 8-, ..., 8) =0. [ |

ARCH Processes

An example of martingale differences, frequently used in analyzing asset returns, is
an autoregressive conditional heteroskedastic (ARCH) process introduced by En-
gle (1982). A process {g;} is said to be an ARCH process of order 1 (ARCH(1))
if it can be written as

g =VvV¢+tagh, &, (2.2.10)
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where {¢;} is i.i.d. with mean zero and unit variance. If g, is the initial value of the
process, we can use (2.2.10) to calculate subsequent values of g;. For example,

g =V +agt- e

More generally, g; (i = 2) is a function of g; and (&2, €3, ..., &;). Therefore, &;
is independent of (g1, g2, ..., gi-1). Itis then easy to show that {g;} is an m.d.s.
because

E(gi | gi-1, 8i-2,...,81) (2.2.11)

=E(V¢+oagh, &lg-1,8-2.-..8)
=YV ; + agiz—l E(Si I 8i—1s8i-2y -+ gl)

=vi+ ozgiz_l E(g;) (since &; is independent of (g;, g2, ..., 8i-1))
=0 (since E(g;) = 0). (2.2.12)

By a similar argument, it follows that

E@? | gi1,8i-2,-.-.81) =¢ +agh,. (2.2.13)

So the conditional second moment (which equals the conditional variance since
E(gi | g1, g2, ..., gi—1) = 0) is a function of its own history of the process. In this
sense the process exhibits own conditional heteroskedasticity. It can be shown
(see, e.g., Engle, 1982) that the process is strictly stationary and ergodic if |¢| < 1,
provided that g; is a draw from an appropriate distribution or provided that the
process started in the infinite past. If g; is stationary, the unconditional second
moment is easy to obtain. Taking the unconditional expectation of both sides of
(2.2.13) and noting that

E[E(g? | gi-1,8i2,...,81)] =E(g?) and E(g?) = E(g’ ) if g is stationary,

we obtain

E(g}) =¢+aE(g)) or B(g)= ]_f_

(2.2.14)

If « > 0, this model captures the characteristic found for asset returns that large
values tend to be followed by large values. (For more details of ARCH processes,
see, e.g., Hamilton, 1994, Section 21.1.)
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Different Formulation of Lack of Serial Dependence

Evidently, an independent white noise process is a stationary martingale difference
sequence with finite variance. And, as just seen, a martingale difference sequence
has no serial correlation. Thus, we have three formulations of a lack of serial
dependence for zero-mean covariance stationary processes. They are, in the order
of strength,

(1) “{g;} is independent white noise.”
= (2) “{g;} is stationary m.d.s. with finite variance.”
= (3) “{g;} is white noise.” (2.2.15)

Condition (1) is stronger than (2) because there are processes satisfying (2) but not
(1). An ARCH(1) process (2.2.10) with || < 1 is an example. Figure 2.1 shows
how a realization of a process satisfying (1) typically differs from that satisfying
(2). Figure 2.1, Panel (a), plots a realization of a sequence of independent and nor-
mally distributed random variables with mean O and unit variance. Panel (b) plots
an ARCH(1) process (2.2.10) with ¢ = 0.2 and & = 0.8 (so that the unconditional
variance, ¢ /(1 — o), is unity as in panel (a)), where the value of the i.i.d. sequence
&; in (2.2.10) is taken from Figure 2.1, Panel (a), so that the sign in both panels
is the same at all points. The series in Panel (b) is generally less volatile than in
Panel (a), but at some points it is much more volatile. Nevertheless, the series is
stationary.

Condition (2) is stronger than (3); the process in Example 2.4 is white noise,
but (as you will show in a review question) it does not satisfy (2).

The CLT for Ergodic Stationary Martingale Differences Sequences
The following CLT extends the Lindeberg-Levy CLT to stationary and ergodic
m.d.s.

Ergodic Stationary Martingale Differences CLT (Billingsley, 1961): Let {g;}

be a vector martingale difference sequence that is stationary and ergodic with
E(gg) =X andlet§=1Y" g. Then

I G
Jng= ﬁggi - N@©, ).

9Since {g;} is stationary, this matrix of cross moments does not depend on i. Also, since a cross moment
matrix is indicated, it is implicitly assumed that all the cross moments exist and are finite.
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Figure 2.1: Plots of Serially Uncorrelated Time Series: (a) Ani.i.d. N(0, 1)
sequence. (b) ARCH(1) with shocks taken from panel (a)

Unlike in the Lindeberg-Levy CLT, there is no need to subtract the mean from g;
because the unconditional mean of an m.d.s. is by definition zero. For the same rea-
son, X also equals Var(g;). This CLT, being applicable not just to i.i.d. sequences
but also to stationary martingale differences such as ARCH(1) processes, is more
general than Lindeberg-Levy.

We have presented an LLN for serially correlated processes in the form of the
Ergodic Theorem. A central limit theorem for serially correlated processes will be
presented in Chapter 6.
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QUESTIONS FOR REVIEW

1. ProvethatT_; = F}. Hint: Cov(z;,z;—;) = E[(z; — u)(zi-; — p)'] where
i = E(z;). By covariance-stationarity, Cov(z;, z;_ ;) = Cov(z;;, ;).

2. (Forecasting white noise) For the white noise process of Example 2.4, E(z;) =
0. What is E(z; | z1) for i > 2? Hint: You should be able to forecast the future
exactly if you know the value of z;. Is the process an m.d.s? [Answer: No.]

3. (No anticipated changes in martingales) Suppose {x;} is a martingale with

respect to {Z,‘}. Show that E(xi+j | Z; 1,Zi—2,..., Z]) = X;-1 and E(x,-+j+1 —
Xitj | Zi—1,2i2,...,21) =0for j =0, 1,.... Hint: Use the Law of Ilterated
Expectations.

4. Let {x;} be a sequence of real numbers that change with i and {¢;} be a sequence
of i.i.d. random variables with mean O and finite variance. Is {x; - ¢;} 1.i.d.?
[Answer: No.] Is it serially independent? [Answer: Yes.] An m.d.s? [Answer:
Yes.] Stationary? [Answer: No.]

5. Show that a random walk is nonstationary. Hint: Check the variance.

6. (The first difference of a martingale is a martingale difference sequence) Let
{z;} be a martingale. Show that the process {g;} created by (2.2.7) is an m.d.s.
Hint: (g;,...,g) and (z,, ..., z;) share the same information.

7. (An m.d.s. that is not independent white noise) Let g; = ¢; - £;_, where {g;}
is an independent white noise process. Evidently, {g;} is not i.i.d. Verify that
{gi} (i =2,3,...)is an m.d.s. Hint: E(g; | gi—1,...,82) = E[E(& - &i_( |
Ei-1,---,€1) | €i_1°€i2, Ei-2°€i-3, ..., E2-€1].

8. (Revision of expectations is m.d.s.) Let {y;} be a process such that E(y; |
Yi—1s Yi=2, .-+, y1) exists and is finite, and define r;; = E(y; | yi—1, Yi—2, .-+,
yu) — E(y: | yi—2, i3, ..., ¥1). S0 ry is the change in the expectation as one
more observation is added to the information set. Show that {r;1} ({ > 2) is an
m.d.s. with respect to {y;}.

9. (Billingsley is stronger than Lindeberg-Levy) Let {z;} be an i.i.d. sequence
with E(z;) = g and Var(z;) = X, as in the Lindeberg-Levy CLT. Use the
Martingale Differences CLT to prove the claim of the Lindeberg-Levy CLT,
namely, that /n(Z, — pt) =4 N(0, X). Hint: {z; — 1} is an independent white
noise process and hence is an ergodic stationary m.d.s.



Large-Sample Theory 109

2.3 Large-Sample Distribution of the OLS Estimator

The importance in econometrics of the OLS procedure, originally developed for the
classical regression model of Chapter 1, lies in the fact that it has good asymptotic
properties for a class of models, different from the classical model, that are useful in
economics. Of those models, the model presented in this section has probably the
widest range of economic applications. No specific distributional assumption (such
as the normality of the error term) is required to derive the asymptotic distribution
of the OLS estimator. The requirement in finite-sample theory that the regressors
be strictly exogenous or “fixed” is replaced by a much weaker requirement that
they be “predetermined.” (For the sake of completeness, the appendix develops the
parallel asymptotic theory for a model with “fixed” regressors.)

The Model

We use the term the data generating process (DGP) for the stochastic process
that generated the finite sample (y, X). Therefore, if we specify the DGP, the joint
distribution of the finite sample (y, X) can be determined. In finite-sample theory,
where the sample size is fixed and finite, we defined a model as a set of the joint
distributions of (y, X). In large-sample theory, a model is stated as a set of DGPs.
The model we study is the set of DGPs satisfying the following set of assumptions.

Assumption 2.1 (linearity):
yi=x§ﬂ+€i (i=1,2,...,n)

where Xx; is a K-dimensional vector of explanatory variables (regressors), B is a
K-dimensional coefficient vector, and ¢; is the unobservable error term.

Assumption 2.2 (ergodic stationarity): The (K +1)-dimensional vector stochas-
tic process {y;, X;} is jointly stationary and ergodic.

Assumption 2.3 (predetermined regressors): All the regressors are predeter-
mined in the sense that they are orthogonal to the contemporaneous error term:
E(xixe;) =0 foralli andk (= 1,2, ..., K).'"° This can be written as

10Qyr definition of the term predetermined is not universal. Some authors say that the regressors are prede-
termined if E(x;_; - £;) = O forall j > 0, not just for j = 0. That is, the error term is orthogonal not only to
the contemporaneous but also the past regressors. In Koopmans and Hood (1953), the regressors are said to be
predetermined if ¢; is independent of x;_ j for all j > 0. Our definition is the same as Hamilton’s (1994).
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Elx; - (y; — ;)] =0 or equivalently E(g;) = 0

where g; = X; - &;.
Assumption 2.4 (rank condition): The K x K matrix E(x;X}) is nonsingular (and
hence finite). We denote this matrix by Xy.

Assumption 2.5 (g; is a martingale difference sequence with finite second
moments): (g;} is a martingale difference sequence (so a fortiori E(g;} = 0). The
K x K matrix of cross moments, E(g;g;), is nonsingular. We use S for Avar(g) (the
variance of the asymptotic distribution of \/n 8, where § = 1 3. g;). By Assump-
tion 2.2 and the ergodic stationary Martingale Differences CLT, S = E(g;g}).

The first assumption is just reproducing Assumption 1.1. The rest of the assump-
tions require some lengthy comments.

o (Ergodic stationarity) A trivial but important special case of ergodic station-
arity is that {y;, x;} is i.i.d., that is, the sample is a random sample.!! Most
existing microdata on households are random samples, with observations ran-
domly drawn from a population of a nation’s households. Thus, we are in no
way ruling out models that use cross-section data.

¢ (The model accommodates conditional heteroskedasticity) If {y;, x;} is station-
ary, then the error term &; = y; — X;B is also stationary. Thus, Assumption
2.2 implies that the unconditional second moment E(eiz)—if it exists and is
finite —is constant across i. That is, the error term is unconditionally homo-
skedastic. Yet the error can be conditionally heteroskedastic in that the condi-
tional second moment, E(ei2 | X;), can depend on x;. An example in which the
error is homoskedastic unconditionally but not conditionally is included in Sec-
tion 2.6, where the consequence of superimposing conditional homoskedasticity
(that E(¢? | x;) = o'*) on the model will be explored.

o (E(x; - &) = 0 vs. E(¢g; | X;) = 0) Sometimes, instead of the orthogonality
condition E(x; - &) = 0, it is assumed that the error is unrelated in the sense
that E(g; | x;) = 0. This is stronger than the orthogonality condition because it

U Actually, once the independence assumption is made, the same large-sample results can be proved for the
more general case where {y;, x;} is independently but not identically distributed (i.n.i.d.), provided that some
conditions on higher moments of the joint distribution of (s;, x;) are satisfied. We will not entertain this general-
ization because the i.i.d. assumption is satisfied in most microdata sets.
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implies that, for any (measurable) function f of x;, f(x;) is orthogonal to ¢;:
E[f(x)e;] = E[E(f(xi)e; | x;)] = E[f(x;) E(&; | x;)] = 0.

In rational expectations models, this stronger condition is satisfied, but for the
| purpose of developing asymptotic theory, we need only the weaker assumption
of the orthogonality condition.

o (Predetermined vs. strictly exogenous regressors) The regressors are not
required to be strictly exogenous. As we noted in Section 1.2, the exogene-
ity assumption (Assumption 1.2) implies that, for any regressor k, E(x;xe;) = 0
for all i and j, not just for i = j, which rules out the possibility that the current
error term, ¢;, is correlated with future regressors, x;;; for j > 1. Assump-
tion 2.3, restricting only the contemporaneous relationship between the error
term and the regressors, does not rule out that possibility. For example, the
AR(1) process, which does not satisfy the exogeneity assumption of the classi-
cal regression model, can be accommodated in the model of this chapter. This
weaker assumption of predetermined regressors will be further relaxed in the
next chapter.

¢ (Rank condition as no multicollinearity in the limit) Since E(x;x}) is finite by

Assumption 2.4, lim, o, Syx = Xy (wWhere S = %Z?:l X;X;) with prob-
ability one by the Ergodic Theorem. So, for n sufficiently large, the sample
cross moment of the regressors Sy, which can be written as %X’X, 1 nonsin-
gular by Assumptions 2.2 and 2.4. Since %X’X is nonsingular if and only if
rank(X) = K, Assumption 1.3 (no multicollinearity) is satisfied with proba-
bility one for sufficiently large n. In the OLS formula b = Sg!s,y (where
Sxy = % S0 Xi - ¥i), Sxx needs to be inverted. If Sy, is singular in a finite sam-
ple (so it cannot be inverted), we just assign an arbitrary value to b so that the
OLS estimator is well-defined for any sample.

¢ (A sufficient condition for {g;} to be an m.d.s.) Since an m.d.s. (martingale dif-
ference sequence) is zero-mean by definition, Assumption 2.5 is stronger than
Assumption 2.3. We will need Assumption 2.5 to prove the asymptotic normal-
ity of the OLS estimator. The assumption, about the product of the regressors
and the error term, may be hard to interpret. A sufficient condition that is easier
to interpret is

E(ei | €ic1, 602, ..., 61, X, Xi—1, ..., X)) = 0. (2.3.1)

Note that the current as well as lagged regressors is included in the information
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set. This condition implies that the error term is serially uncorrelated and also
is uncorrelated with the current and past regressors (the proof is much like the
proof in the previous section that an m.d.s. is serially uncorrelated). That (2.3.1)
is sufficient for {g;} to be an m.d.s. can be seen as follows. We have

E@g |g-1,...,81)

=E[E®@g | &-1,8-2, ..., 6. X, Xi—1, ..., X1) | Biz1y oo, B1].

This holds by the Law of Iterated Expectations because there is more informa-
tion in the “inside” information set (¢;_1, &;-5, ..., &1, X;, X;_1, . .. , X1) than in
the “outside” information set (g;_1, ..., g1). Therefore,

E(@ | 8i-1,...,81)
=E[x; E(e; | &i-1, 82, .- €1, X, Xim15 - X1) | @ity -+ -5 81
(by the linearity of conditional expectations)
=0 (by(2.3.1)). (2.3.2)

e (When the regressors include a constant) In virtually all applications, the regres-
sors include a constant. If the regressors include a constant so that x;; = 1 for all
i, then Assumption 2.3 of predetermined regressors can be stated in more famil-
iar terms: the mean of the error term is zero (which is implied by E(x;;&;) = 0
for k¥ = 1), and the contemporaneous correlation between the error term and
the regressors is zero (which is implied by E(x;;¢;) for k # 1 and E(g;) = 0).
Also, since the first element of the K-dimensional vector g; (= x; - &) is &,
Assumption 2.5 implies

E( | gi-1,8i-2,...,81) =0.
Then, by the Law of Iterated Expectations, {¢;} is a scalar m.d.s:

E(s | &i-1,8i-2,...,€) =0. (2.3.3)
Therefore, Assumption 2.5 implies that the error term itself is an m.d.s. and

hence is serially uncorrelated.

¢ (S is a matrix of fourth moments) Since g; = x; - &;, the S in Assumption 2.5
can be written as E(¢7x;x)). Its (k, j) element is E(e2x;;.x;;). So S is a matrix of
fourth moments (the expectation of products of four different variables). Con-
sistent estimation of S will require an additional assumption to be specified in
Section 2.5.
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e (S will take a different expression without Assumption 2.5) Thanks to the
assumption that {g;} is an m.d.s., S (= Avar(g)) is equal to E(g;g;). Without
the assumption, as we will see in Chapter 6, the expression for S is more com-
plicated and involves autocovariances of g;.

Asymptotic Distribution of the OLS Estimator

We now prove that the OLS estimator is consistent and asymptotically normal. It
should be kept in mind throughout the rest of this chapter that the OLS estimator
b depends on the sample size n (although the dependence is not made explicit by
our choice of not to subscript b by n) and that X, the number of regressors, is held
fixed when we track the sequence of OLS estimators indexed by n. For the time
being, we presume that there is available some consistent estimator, denoted S, of
S (= Avar(g) = E(g;g)) = E(aizxixg)). The issue of estimating S consistently will
be taken up later. -

Proposition 2.1 (asymptotic distribution of the OLS Estimator):

(a) (Consistency of b for 8) Under Assumptions 2.1-2.4, plim,_, . b = B. (So
Assumption 2.5 is not needed for consistency.)

(b) (Asymptotic Normality of b) If Assumption 2.3 is strengthened as Assump-
tion 2.5, then

Jnb — B) —d> N(0, Avar(b)) as n — oo,

where
Avar(b) = TS E_. (2.3.4)

(Recall: £ = E(xX)), S = E(gig)), & =X - £1.)

(c) (Consistent Estimate of Avar(b)) Suppose there is available a consistent esti-
mator, S, of S (K x K). Then, under Assumption 2.2, Avar(b) is consistently
estimated by

Avar(b) = S §SZ., (2.3.5)

where Sxy is the sample mean of x;X;:

1 o 1
Sy = - Zx,-x; = -X'X. (2.3.6)
(KxK)y n Py n
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The proof is a showcase of all the standard tricks in asymptotics. For proving (a)
and (b), three tricks will be employed: (1) write the object in question in terms
of sample means, (2) apply the relevant LLN (the Ergodic Theorem in the present
context) and CLT (the ergodic stationary Martingale Differences CLT) to sample
means, and (3) use Lemma 2.4(c) to derive the asymptotic distribution. Proof of
(c) will not be given because it is an immediate implication of ergodic stationarity.

PROOF (Parts (a) and (b)).

(1) We first write the sampling error b — B in terms of sample means.
b-B8=XX)Xe

1 -1/1

- (1xx)" (1o
n. n
1 n , -1 1 n

(S GExea)

=S.!g, (2.3.7)

where

S| =

n
g= Zgi’ g =X &
i=1
The sample means S,y and g depend on the sample size n, although the notation
does not make it explicit.

(2) (Consistency) Since by Assumption 2.2 {x;x;} is ergodic stationary, Syx —p
¥4« (The convergence is actually almost surely, but almost sure convergence
implies convergence in probability.) Since X is invertible by Assumption 2.4,
Sal = Z;xl by Lemma 2.3(a). Similarly, g —, E(g;) which by Assumption
2.3is 0. So by Lemma 2.3(a), Sl —p Z;XIO = 0. Therefore, plim,_, (b —
B) = 0, which implies plim,_ ., b = 8.

(3) (Asymptotic normality) Rewrite (2.3.7) as
Vb — B) =S5 (Vn ). (2.3.8)

As mentioned in the statement of Assumption 2.5, ﬁ g —4 N(0,S). So,
by Lemma 2.4(c), /n(b — B) converges to a normal distribution with mean 0
and variance E;XIS(E;XI)’. But since X4 is symmetric, this expression equals
2.3.4). [ |
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This result says that the distribution of ./n times the sampling error is approxi-
mated arbitrarily well by a normal distribution when the sample size is sufficiently
large. The natural question is how large is “large”: how large must the sample
size be for the asymptotic approximation to be valid? The asymptotic result we
just derived holds for all the DGPs satisfying the model assumptions. However,
the sample size needed to achieve a given measure of proximity to the asymptotic
distribution depends on the DGP. We will partially address this issue in the Monte
Carlo experiment of this chapter.

s? Is Consistent
We now turn to the QLS estimator, s2, of the error variance.

Proposition 2.2 (consistent estimation of error variance): Lete; = y; — X;b be
the OLS residual for observation i. Under Assumptions 2.1-2.4,

1 n
2 2 2
§° = E ¢ — E(g)),
n—Kizle’ P (&)

provided E(g?) exists and is finite.

If we could observe the error term ¢;, then the obvious estimator would be the sam-
ple mean of £?. It is consistent by ergodic stationarity. The message of Proposition
2.2 is that the substitution of the OLS residual ¢; for the true error term ¢; does
not impair consistency. Let us go through a sketch of the proof, because knowing
how to handle the discrepancy between ¢; and its estimate e; will be useful in other
contexts as well. Since

=G5
s n-—-K nZe,,

i=]

it suffices to prove that the sample mean of 7, = 3" e?, converges in probability to
E(eiz). The relationship between ¢; and ¢; is given by

e =y — X:b
=y —x;f —Xx;(b— B) (by adding and subtracting x; )
=¢& —x:(b— B), 2.3.9)

so that
el =¢e? —2(b— B)x; - & + (b — BYx;x{(b — B). (2.3.10)
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Summing over i, we obtain

%Ze? = %Ze? —2(b— ﬂ)’% D oxi-ei+ (b—ﬂ)’(%inxj.)(b )
i=1 i=1 i=1 i=1

1 n
==Y &2 20~ BYg+ (b~ B)YSx(d— B). 23.11)
i=1

n“

The rest of the proof, which is to show that the plims of the last two terms are
zero so that plim 2 )", ¢ = plim 1 3", €7, is left as a review question. If you
do the review question, it should be clear to you that all that is required for the
coefficient estimator is consistency; if some consistent estimator, rather than the
OLS estimator b, is used to form the residuals, the error variance estimator is still
consistent for E(e?).

QUESTIONS FOR REVIEW

1. Suppose E(y; | x;) = x] 8, that is, suppose the regression of y; on x; is a linear
function of x;. Define &; = y; — x;8. Show that x; is orthogonal to &;. Hint:
First show that E(g; | x;) = 0.

2. (Is E(¢?) assumed to be finite?)

(a) Do Assumptions 2.1-2.5 imply that E(siz) exists and is finite? Hint: A
strictly stationary process may not have finite second moments.

(b) If one of the regressors is a constant in our model, then the variance of
the error term is finite. Prove this. Hint: If x;; = 1, the (1, 1) element of

E(gig)) is £2.

3. (Alternative expression for S) Let f(x;) = E(s? | x;). Show that § (=
E(s7x;X})) can be written as

S = ELf (x)xix(].

Hint: Law of Total Expectations.

4. Complete the proof of Proposition 2.2. Hint: We have already proved for
Proposition 2.1 that plimg = 0, plim S,y = X4, and plim(b — 8) = 0 under
Assumptions 2.1-2.4. Use Lemma 2.3(a) to show that plim(b — 8)’g = 0 and
phm(b - B)/Sxx(b - ﬂ) =0.

5. (Proposition 2.2 with consistent 79\) Prove the following generalization of
Proposition 2.2:



Large-Sample Theory 117

Letg = y; — X:ﬁ where B is any consistent estimator of . Under
Assumptions 2.1, 2.2, and the assumption that E(x; - ¢;) and E(x;x]) are
finite, > 3", 82 —, E(e?).

n

So the regressors do not have to be orthogonal to the error term.

2.4 Hypothesis Testing

Statistical inference in large-sample theory is based on test statistics whose asymp-
totic distributions are known under the truth of the nuil hypothesis. Derivation of
the distribution of test statistics is easier than in finite-sample theory because we
are only concerned about the large-sample approximation to the exact distribution.
In this section we derive test statistics, assuming throughout that a consistent esti-
mator, § of S (= E(g:g})) is available. The issue of consistent estimation of S will
be taken up in the next section.

Testing Linear Hypotheses
Consider testing a hypothesis about the k-th coefficient 8. Proposition 2.1 implies
that under the Hqy: B¢ = Bk,

Vb =B = N(0, Avar(b) and  Avar(by) > Avar(y),

where by, is the k-th element of b and Avar(b;) is the (k, k) element of the K x K
matrix Avar(b). So Lemma 2.4(c) guarantees that

Vb —By) b — By

L, = =
VA  SE®
SE*(b) = /1 - AvarBo) = /1 - (Swi SSw) -

The denominator in this z-ratio, SE*(b), is called the heteroskedasticity-
consistent standard error, (heteroskedasticity-)robust standard error, or
White’s standard error. The reason for this terminology is that the error term
can be conditionally heteroskedastic; recall that we have not assumed conditional
homoskedasticity (that E(ei2 | x;) does not depend on X;) to derive the asymptotic
distribution of #;. This ¢-ratio is called the robust ¢-ratio, to distinguish it from the

e NQ@, 1), (24.1)

where
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t-ratio of Chapter 1. The relationship between these two sorts of z-ratio will be
discussed in Section 2.6.

Given this ¢-ratio, testing the null hypothesis Hy: 8 = B, at a significance
level of o proceeds as follows:

Step 1: Calculate 1; by the formula (2.4.1).

Step 2: Look up the table of N (0, 1) to find the critical value #,,, which leaves o/2
to the upper tail of the standard normal distribution. (example: if « = 5%,
te;2 = 1.96.)

Step 3: Accept the hypothesis if |#| < #,/2; otherwise reject.

The differences from the finite-sample ¢-test are: (1) the way the standard error is
calculated is different, (2) we use the table of N(0, 1) rather than that of ¢ (n — K),
and (3) the actual size or exact size of the test (the probability of Type I error given
the sample size) equals the nominal size (i.e., the desired significance level «) only
approximately, although the approximation becomes arbitrarily good as the sample
size increases. The difference between the exact size and the nominal size of a test
is called the size distortion. Since #; is asymptotically standard normal, the size
distortion of the ¢-test converges to zero as the sample size n goes to infinity.
Thus, we have proved the first half of

Proposition 2.3 (robust z-ratio and Wald statistic): Suppose Assumptions 2.1-
2.5 hold, and suppose there is available a consistent estimate S of S (= E(g;g})).
As before, let

Avar(b) = S_! SsZ.

Then
(a) Under the null hypothesis Hy: By = Ek, t, defined in (2.4.1) —4 N(0, 1).

(b) Under the null hypothesis Hy: RB = r, where R is an #r x K matrix (where
#r, the dimension of r, is the number of restrictions) of full row rank,

W =n- (Rb — r)/{R[Avar(b)]R'} "} (Rb — r) - x2(#1). (2.4.2)

What remains to be shown is that W —4 x2(#r), which is a straightforward appli-
cation of Lemma 2.4(d).



Large-Sample Theory 119

PROOF (continued). Write W as
W =c,Q;'c, where ¢, =+/n(Rb—r)and Q, = RAvar(b)R’.
Under Hy, ¢, = R/n(b — B). So by Proposition 2.1,
€ > ¢ where ¢~ N(0, R Avar(b)R").
Also by Proposition 2.1,
Q. —P> Q where Q= RAvar(b)R'.

Because R is of full row rank and Avar(b) is positive definite, Q is invertible.
Therefore, by Lemma 2.4(d),

W — Q7 le.

Since the #r-dimensional random vector ¢ is normally distributed and since Q
equals Var(c), ¢Q le ~ x2(#r). n

This chi-square statistic W is a Wald statistic because it is based on unrestricted
estimates (b and Avar(b) here) not constrained by the null hypothesis H,. Testing
H, at a significance level of o proceeds as follows.

Step 1: Calculate the W statistic by the formula (2.4.2).

Step 2: Look up the table of x2(#r) distribution to find the critical value )(3 (#r)
that gives o to the upper tail of the x2(#r) distribution.

Step 3: If W < x2(#r), then accept Hy; otherwise reject.

The probability of Type I error approaches o as the sample becomes larger. As will
be made clear in Section 2.6, this Wald statistic is closely related to the familiar
F-test under conditional homoskedasticity.

The Test Is Consistent

Recall from basic statistics that the (finite-sample) power of a test is the probability
of rejecting the null hypothesis when it is false given a sample of finite size (that
is, the power is 1 minus the probability of Type II error). Power will obviously
depend on the DGP (i.e., how the data were actually generated) considered as the
alternative as well as on the size (significance level) of the test. For example, con-
sider any DGP {y;, x;} satisfying Assumptions 2.1-2.5 but not the null hypothesis
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Hy: By = Bk. The power of the ¢-test of size ¢ against this alternative is
power = Prob(|#;| > ta/z),

which depends on the DGP in question because the DGP controls the distribution
of 7. We say that a test is consistent against a set of DGPs, none of which satisfies
the null, if the power against any particular member of the set approaches unity as
n — oo for any assumed significance level.

That the ¢-test is consistent against the set of altermatives (DGPs) satisfying
Assumptions 2.1-2.5 can be seen as follows. Look at the expression (2.4.1) for the
t-ratio, reproduced here:

\ = NI )
V Avar(by)

The denominator converges to +/Avar(b;) despite the fact that the DGP does not
satisfy the null (recall that all parts of Proposition 2.1 hold regardless of the truth
of the null, provided Assumptions 2.1-2.5 are satisfied). On the other hand, the
numerator tends to +00 or —oo because b, converges in probability to the DGP’s
By, which is different from B,. So the power tends to unity as the sample size n
tends to infinity, implying that the ¢-test of Proposition 2.3 is consistent against
those alternatives, the DGPs that do not satisfy the null. The same is true for the
Wald test.

Asymptotic Power

For later use in the next chapter, we define here the asymptotic power of a consis-
tent test. As noted above, the power of the ¢-test approaches to unity as the sample
size increases while the DGP taken as the alternative is held fixed. But if the DGP
gets closer and closer to the null as the sample size increases, the power may not
converge to unity. A sequence of such DGPs is called a sequence of local alterna-
tives. For the regression model and for the null of Hy: 8; = B, it is a sequence of
DGPs such that (i) the n-th DGP, { yi("), XE")} (i =1,2,...), satisfies Assumptions
2.1-2.5 and converges in a certain sense to a fixed DGP {y;, x;},1? and (ii) the value
of B; of the n-th DGP, B, converges to B,. Suppose, further, that ,B,E") satisfies

" =B, + (2.4.3)

Sl

12See, ¢.g., Assumption 1 of Newey (1985) for a precise statement.
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for some given ¥ # 0. So ,B,E") approaches to B, at a rate proportional to 1/./7.

This special sequence of local alternatives is called a Pitman drift or a Pitman
sequence. Substituting (2.4.3) into (2.4.1), the ¢-ratio above can be rewritten as

_ am
- ﬁ(b:\ﬂk LN Q.4.4)
\/ Avar(by) \/ Avar(by)

If the sample of size n is generated by the n-th DGP of a Pitman drift, does
1, converge to a nontrivial distribution? Since the n-th DGP satisfies Assumptions
2.1-2.5, the first term on the right hand side of (2.4.4) converges in distribution to
N(0, 1) by parts (b) and (c) of Proposition 2.1. By part (c) of Proposition 2.1 and
the fact that { y,.("), xf") } “converges” to a fixed DGP, the second term converges in

I

probability to
Y

H JVAvar(by)’

where Avar(by) is evaluated at the fixed DGP. Therefore, , —4 N(u, 1) along this
sequence of local alternatives. If the significance level is «, the power converges to

(2.4.5)

I

Prob(|x| > t4/2) (2.4.6)

where x ~ N(u, 1) and £y, is the level-a critical value. This probability is called
the asymptotic power. It is a measure of the ability of the test to detect small
deviations of the model from the null hypothesis. Evidently, the larger is ||, the
higher is the asymptotic power for any given size «. By a similar argument, it is
easy to show that the Wald statistic converges to a distribution called noncentral
chi-squared.

Testing Nonlinear Hypotheses
The Wald statistic can be generalized to a test of a set of nonlinear restrictions on
B. Consider a null hypothesis of the form

Hy: a(8) = 0.

Here, a is a vector-valued function with continuous first derivatives. Let #a be:
the dimension of a(8) (so the null hypothesis has #a restrictions), and let A(8)
be the #a x K matrix of first derivatives evaluated at B8: A(B) = da(B)/d8’. For
the hypothesis to be well-defined, we assume that A(8) is of full row rank (this is
the generalization of the requirement for linear hypothesis RS = r that R is of full
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row rank). Lemma 2.5 of Section 2.1 and Proposition 2.1(b) imply that
Vnla(b) — a(B)] 26 c~ N(0, A(B) Avar(b) A(B)'). (2.4.7)

Since a(B) = 0 under Hy, (2.4.7) becomes
Vna(®) — ¢, e~ N(0, A(B) Avar(b) A(BY). (2.4.8)

Since b —, B by Proposition 2.1(a), Lemma 2.3(a) implies that A(b) —; A(B).
By Proposition 2.1(c), Avar(b) —, Avar(b). So by Lemma 2.3(a),

A(b)Avar(b) A (b)Y’ ~ A(B) Avar(b) A()’ = Var(©). 2.4.9)

Because A(B) is of full row rank and Avar(b) is positive definite, Var(c) is invert-
ible. Then Lemma 2.4(d), (2.4.8), and (2.4.9) imply

JrabY{A(b)Avar(b)A (b)Y}~ /7 a(b) > Var(c)"le ~ x2(#a). (2.4.10)
Combining two /n’s in (2.4.10) into one n, we have proved

Proposition 2.3 (continued):

(c) Under the null hypothesis with #a restrictions Hy: a(B) = 0 such that A(B),
the #a x K matrix of continuous first derivatives of a(f), is of full row rank,
we have

W = n - a(b) {A(b)Avar(b) A(b)'}~'a(b) — X (). (2.4.11)

Part (c) is a generalization of (b); by setting a(8) = R — r, (2.4.11) reduces to
(2.4.2), the Wald statistic for linear restrictions.

The choice of a(-) for representing a given set of restrictions is not unique.
For example, 818, = 1 can be written as a(8) = 0 with a(8) = 818, — 1 or with
a(B) = B1—1/B,. While part (c) of the proposition guarantees that in large samples
the outcome of the Wald test is the same regardless of the choice of the function
a, the numerical value of the Wald statistic W does depend on the representation,
and the test outcome can be different in finite samples. In the above example,
the second representation, a(f) = B; — 1/8,, does not satisfy the requirement
of continuous derivatives at 8, = 0. Indeed, a Monte Carlo study by Gregory
and Veall (1985) reports that, when B, is close to zero, the Wald test based on the
second representation rejects the null too often in small samples.
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QUESTIONS FOR REVIEW

1. Does SE*(b;) —p 0asn — 00?

2. (Standard error of a nonlinear function) For simplicity let K = 1 and let b be
the OLS estimate of 8. The standard error of b is Vv Am) /n. Suppose L =
— log(B). The estimate of A implied by the OLS estimate of 8 is A = — log(b).
Verify that the standard error of X is 1/6)-v Am) /n.

3. (Invariance [or lack thereof] of the Wald statistic) There is no unique way to
write the linear hypothesis RS = r, because for any #r x #r nonsingular matrix
F, the same set of restrictions can be represented as ﬁﬁ = Fwith R = FR and
T = Fr. Does a different choice of R and r affect the asymptotic distribution
of W? The finite-sample distribution? The numerical value?

2.5 Estimating E(¢?x;x/) Consistently

The theory developed so far presumes that there is available a consistent estimator,
§, of S (= E(gig) = E(E?x,-x§)) to be used to calculate the estimated asymptotic
variance, Avar(b). This section explains how to obtain S from the sample (y, X).

Using Residuals for the Errors

If the error were observable, then the sample mean of sl.zxi x; is obviously consistent
by ergodic stationarity. But we do not observe the error term, and the substitution
of some consistent estimate of it results in

~ 1<
S_———E g2 (X, 2.5.1
” £ XX ( )

where &; = y; — xﬁﬁ, and 3 is some consistent estimator of 8. (Although the
obvious candidate for the consistent estimator 3 is the OLS estimator b, we use 3
rather than b here, in order to make the point that the results of this section hold
for any consistent estimator.) For this estimator to be consistent for S, we need to
make a fourth-moment assumption about the regressors.

Assumption 2.6 (finite fourth moments for regressors): E[(x;;x; j)z] exists and
is finite forallk, j (= 1,2, ..., K).


Keen
Rectangle


124 Chapter 2

Proposition 2.4 (consistent estimation of S): Suppose the coefficient estimate
? used for calculating the residual &; for S in (2.5.1) is consistent, and suppose
S = E(g;g;) exists and is finite. Then, under Assumptions 2.1, 2.2, and 2.6, S
given in (2.5.1) is consistent for S.

To indicate why the fourth-moment assumption is needed for the regressors, we
provide a sketch of the proof for the special case of K = 1 (only one regressor).
So x; is now a scalar x;, g; is a scalar g; = x;¢;, and (2.3.10) (with b = E and
e; = £;) simplifies to

82 =2 —2(B — Bxis; + (B — B)*x2. (2.5.2)

By multiplying both sides by xi2 and summing over i,

n

I 22 Ixoo 2 Iy 3, (R 21 4
- 2,2 _ _ 22 = _2(B — B)— X — B> ‘(253
nge,x, nge,x, 3 ﬂ)ni;”,ﬂﬂ By~ xi. (253)

i=l

Now we can see why the finite fourth-moment assumption on x; is required: if the
fourth moment E(x}) is finite, then by ergodic stationarity the sample average of
x; converges in probability to some finite number, so that the last term in (2.5.3)
vanishes (converges to 0 in probability) if ﬁ is consistent for 8. It can also be
shown (see Analytical Exercise 4 for proof) that, by combining the same fourth-
moment assumption about the regressors and the fourth-moment assumption that
E(gg) (= E(eizxix;)) is finite, the sample average of x?ei converges in probability
to some finite number, so that the other term on the RHS of (2.5.3), too, vanishes.

According to Proposition 2.1(a), the assumptions made in Proposition 2.3 are
sufficient to guarantee that b is consistent, so we can setb = ? in (2.5.1) and use
the OLS residual to calculate S. Also, the assumption made in Proposition 2.4 that
E(g;g)) is finite is part of Assumption 2.5, which is assumed in Proposition 2.3.
Therefore, the import of Proposition 2.4 is:

If Assumption 2.6 is added to the hypothesis in Proposition 2.3, then the S
given in (2.5.1) with b = E (so &; is the OLS residual ¢;) can be used in
(2.3.5) to calculate the estimated asymptotic variance;

— 1<
Avar(b) = S (; 3 e x,-x;.)s;,}, (2.5.4)
i=1

which is consistent for Avar(b).
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Data Matrix Representation of §
If B is the n x n diagonal matrix whose i-th diagonal element is 2, then the S in
{(2.5.1) can be represented in terms of data matrices as

-~ XBX
S = 2.5.1)
n
with
&
B=
&
So (2.5.4) can be rewritten (with &; in B set to ¢;) as
Avar(b) = 7 - (X'X) "1 (X'BX)(X'X) . 2.5.4)

These expressions, although useful for some purposes, should not be used for
computation purposes, because the n x n matrix B will take up too much of the
computer’s working memory, particularly when the sample size is large. To com-
pute S from the sample, the formula (2.5.1) is more useful than (2.5.1").

Finite-Sample Considerations -
Of course, in finite samples, the power may well be far below one against certain
alternatives. Also, the probability of rejecting the null when the DGP does satisfy
the null (the Type I error) may be very different from the assumed significance
level. Davidson and MacKinnon (1993, Section 16.3) report that, at least for the
Monte Carlo simulations they have seen, the robust ¢-ratio based on (2.5.1) rejects
the null too often and that simply replacing the denominator » in (2.5.1) by the
degrees of freedom n — K or equivalently multiplying {(2.5.1) by n/(n — K) (this
is a degrees of freedom correction) mitigates the problem of overrejecting. They
also report that the robust z-ratios based on the following adjustments on S perform
even better:

§=li——ei—x-x’- d=1or2 (2.5.5)

ns —p)? ’ -

where p; is the p; defined in the context of the influential analysis in Chapter 1: it
is the i-th diagonal element of the projection matrix P, that is,
X SIX;

pi=xXX)x;, =
n
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QUESTIONS FOR REVIEW

1. (Computation of robust standard errors) In Review Question 9 of Section 1.2,
we observed that the standard errors of the OLS coefficient estimates can be
calculated from Sy, Sxy (the sample mean of X; - y;), Yy/n, and y, so the sam-
ple moments need to be computed just once. Is the same true for the robust
standard errors where the S is calculated according to the formula (2.5.1) with
g, =¢e?

2. The finite-sample variance of the OLS estimator in the generalized regression
model of Chapter 1 is Var(b | X) = (X'X) X' (¢2V)X(X'’X)~!. Compare this
to (2.5.4"). What are the differences?

2.6 Implications of Conditional Homoskedasticity

The test statistics developed in Sections 2.4 and 2.5 are different from the finite-
sample counterparts of Section 1.4 designed for testing the same null hypothesis.
How are they related? What is the asymptotic distribution of the r and F statistics
of Chapter 1? This section answers these questions.

It turns out that the robust ¢-ratio is numerically equal to the ¢-ratio of Section
1.4, for a particular choice of S. Therefore, the asymptotic distribution of the ¢-
ratio of Section 1.4 is the same as that of the robust z-ratio, if that particular choice
is consistent for S. The same relationship holds between the F-ratio of Section 1.4
and the Wald statistic W of this chapter. Under the conditional homoskedasticity
assumption stated below, that particular choice is indeed consistent.

Conditional versus Unconditional Homoskedasticity
The conditional homoskedasticity assumption is:

Assumption 2.7 (conditional homoskedasticity):
E(e? | x) =0 > 0. (2.6.1)
This assumption implies that the unconditional second moment E(¢?) equals o2 by

the Law of Total Expectations. To be clear about the distinction between uncondi-
tional and conditional homoskedasticity, consider the following example.
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Example 2.6 (unconditionally homoskedastic but conditionally hetero-
skedastic errors): As already observed, if {y;, x;} is stationary, so is {g;},
and the error is unconditionally homoskedastic in that E(2) does not depend
on i. To illustrate that the error can nevertheless be conditionally heteroske-
dastic, suppose that ¢; is written as &; = n; f (x;), where {n;} is zero-mean
E(n;) = O and is independent of x;. The conditional second moment of &;
depends on x; because

E(e} | %) = B(n? f(x:)* | x;) (since &; = n; f (%))
= f(x;)* E(ni2 | x;) (by the linearity of conditional expectations)

=f (x,~)2 E(niz) (since 7; is independent of x; by assumption),

which varies across i because of the variation in f(x;) across i.

Reduction to Finite-Sample Formulas

To examine the large-sample distribution of the ¢ and F statistics of Chapter 1
under the additional Assumption 2.7, we first examine the algebraic relationship
to their robust counterparts. Consider the following choice for the estimate of S:

§ = stxx,

where 52 is the OLS estimate of o2, (We will show in a moment that this estimator
is consistent under conditional homoskedasticity.) Then the expression (2.3.5) for
Avar(b) becomes

Avar(d) = sS7 = n - 52 (X'X)"\. (2.6.2)

Substituting this expression into (2.4.1), we see that the robust standard error
becomes

\/ s? times (k, k) element of (X'X) !, (2.6.3)

which is the usual standard error in finite-sample theory. So the robust z-ratio is
numerically identical to the usual finite-sample ¢-ratio when we set S = 5% 8S,,.
Similarly, substituting (2.6.2) into the expression for the Wald statistic (2.4.2), we
obtain
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W=n - Rb—r){R[n-s* XX)'IR}(Rb-r)
= (Rb — r){R[s* - (X’X)"'IR'}"'(Rb —r) (the two n’s cancel)
= (Rb — r) [R[(X'X) IR’} " (Rb — 1)/
=r . F (by the definition of (1.4.9) of the F-ratio)
= (SSRg — SSRy)/s* (by (1.4.11)).

Thus, when we set § = 52 Sy, the Wald statistic W is numerically identical to
#r - F (where #r is the number of restrictions in the null hypothesis).

Large-Sample Distribution of ¢ and F Statistics

It then follows from Proposition 2.3 that the ¢-ratio (2.4.1) is asymptotically N (0, 1)
and #r - F asymptotically x2(#r), if s> Sy is consistent for S. That s? S,, is consis-
tent for S can be seen as follows. Undér conditional homoskedasticity, the matrix
of fourth moments S can be expressed as a product of second moments:

S =E(gig) = B(x;xje}) (sinceg; =x; - &)
= E[E(x;x}e? | x;)] (by the Law of Total Expectations)
= E[x;X; E(ei2 | X;)] (by the linearity of conditional expectations)
= E(x;x'0?) (by Assumption 2.7)
= 0?E(X;X}) = 0 Ty (2.6.4)

This decomposition has several implications.

e (X, isnonsingular) Since by Assumption 2.5 S is nonsingular, this decompos-
ition of S implies that 02 > 0 and X, is nonsingular. Hence, Assumption 2.4
(rank condition) is implied.

® (No need for fourth-moment assumption) By ergodic stationarity Syy = .
By Proposition 2.2, 52 is consistent for o2 under Assumptions 2.1-2.4. Thus,
52 S > 02X« = S. We do not need the fourth-moment assumption (Assump-
tion 2.6) for consistency.

As another implication of (2.6.4), the expression for Avar(b) can be simplified:
inserting (2.6.4) into (2.3.4) of Proposition 2.1, the expression for Avar(b) becomes

Avar(b) = 02X . (2.6.5)

Thus, we have proved
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Proposition 2.5 (large-sample properties of b, ¢, and F under conditional homo-
skedasticity): Suppose Assumptions 2.1-2.5 and 2.7 are satisfied. Then

(a) (Asymptotic distribution of b) The OLS estimator b of B is consistent and
asymptotically normal with Avar(b) = 022 _].

(b) (Consistent estimation of asymptotic variance) Under the same set of assump-
tions, Avar(b) is consistently estimated by Avar(b) = s2S! =n-s?. (X'’X)"L.

(c) (Asymptotic distribution of the t and F statistics of the finite-sample theory)
Under Hy: By = Ek, the usual t-ratio (1.4.5) is asymptotically distributed as
N(0,1). Under Hy: RB =1, #r - F is asymptotically x(#r), where F is the
F statistic from (1.4.9) and #r is the number of restrictions in H.

Variations of Asymptotic Tests under Conditional Homoskedasticity

According to this result, you should look up the N(0, 1) table to find the critical
value to be compared with the ¢-ratio (1.4.5) and the x? table for the statistic #r- F
derived from (1.4.9). Some researchers replace the s2 in (1.4.5) and (1.4.9) by
,ll Y, €. That is, the degrees of freedom n — K is replaced by n, or the degrees

2 is removed. The difference this substitution

of freedom adjustment implicit in s
makes vanishes in large samples, because lim,_,.[n/{(n — K)] = 1. Therefore,
regardless of which test to use, the outcome of the test will be the same if the
sample size is sufficiently large.

Another variation is to retain the degrees of freedom » — K but use the t(n —
K) table for the ¢ ratio and the F(#r,n — K) table for F, which is exactly the
prescription of finite-sample theory. This, too, is asymptotically valid because, as
n — K tends to infinity (which is what happens when n — oo with K fixed),
the t(n — K) distribution converges to N(0, 1) (just compare the ¢ table for large
degrees of freedom with the standard normal table) and F (#r,n—K) to X2 (#r) JH#T.
Put differently, even if the error is not normally distributed and the regressors are
merely predetermined (orthogonal to the error term) and not strictly exogenous,
the distribution of the #-ratio (1.4.5) is well approximated by ¢(n — K), and the
distribution of the F ratio by F{(#r,n — K).

These variations are all asymptotically equivalent in that the differences in the
values vanishes in large samples and hence (by Lemma 2.4(a)) their asymptotic
distributions are the same. However, when the sample size is only moderately
large, the approximation to the finite-sample or exact distribution of test statistics
may be better with ¢ (n — K') and F (#r, n— K ), rather than with N (0, 1) and X2 (#r).
Because the exact distribution depends on the DGP, there is no simple guide as to
which variation works better in finite samples. This issue of which table— N(0, 1)
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or t(n — K)—should be used for moderate sample sizes will be taken up in the
Monte Carlo exercise of this chapter.

QUESTIONS FOR REVIEW

1. (Inconsistency of finite sample-formulas without conditional homoskedastic-
ity) Without Assumption 2.7, Avar(b) is given by (2.3.4) in Proposition 2.1.
Is it consistently estimated by (2.6.2) without Assumption 2.7? [The answer
is no. Why?] Is the z-ratio (1.4.5) asymptotically standard normal without the
assumption? [Answer: No.]

2. (Advantage of finite-sample formulas under conditional homoskedasticity)
Conversely, under Assumption 2.7, Avar(b) is given by (2.6.5). Is it consis-
tently estimated by (2.3.5) under Assumption 2.7? If Assumption 2.7 holds,
what do you think is the advantage of using (2.6.2) over (2.3.5) to estimate the
asymptotic variance? [Note: The finite-sample properties of an estimator are
generally better, the fewer the number of population parameters estimated to
form the estimator. How many population parameters need to be estimated to
form (2.3.5)? (2.6.2)7]

3. (Relation of F to x2) Find the 5 percent critical value of F(10, cc) and com-
pare it to the 5 percent critical value of x*(10). What is the relationship
between the two?

4, Without conditional homoskedasticity, is (SSRzx — SSRy)/s?> asymptotically
x*(#r)? [Answer: No.]

5. (nR? test) For a regression with a constant, consider the null hypothesis that
the coefficients of the K — 1 nonconstant regressors are all zero. Show that
nR? —4 x*(K — 1) under the hypothesis of Proposition 2.5. Hint: You
have proved for a Chapter 1 analytical exercise that the algebraic relationship
between the F-ratio for the null and R? is

R*/(K-1)

F=—me-n

Can you use the nR? statistic when the error is not conditionally homoskedas-
tic? [Answer: No.]
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2.7 Testing Conditional Homoskedasticity

With the advent of robust standard errors allowing us to do inference without spec-
ifying the conditional second moment E(g? | x;), testing conditional homoske-
dasticity is not as important as it used to be. This section presents only the most
popular test due to White (1980) for the case of random samples.'?

Recall that S givenin (2.5.1) (with &; = ¢;) is consistent for S (Proposition 2.4),
and 52 S, is consistent for 02X, (an implication of Proposition 2.2). But under
conditional homoskedasticity, S = 023« (see (2.6.4)), so the difference between
the two consistent estimators should vanish:

- 1 <
S— 528y =-— E eizxix; — sz E X;X;
n “ n -
i=1 i=1

1 n
==Y (& —sHxx; > 0. 2.7.1)
n p

i=1

Let ¥; be a vector collecting unique and nonconstant elements of the K x K sym-
metric matrix x;X;. (Construction of ¢; from x;x; will be illustrated in Example
2.7 below.) Then (2.7.1) implies

1 ‘ 2 2
&= (e —sHy; — 0. 212
" izl(e, sV e (2.7.2)

This ¢, is a sample mean converging to zero. Under some conditions appropriate
for a Central Limit Theorem to be applicable, we would expect /7 ¢, to converge
in probability to a normal distribution with mean zero and some asymptotic vari-
ance B, so for any consistent estimator Bof B,

n-c.B e, - x2(m), (2.7.3)

where m is the dimension of ¢,. For a certain choice of ﬁ, this statistic can be
computed as nR? from the following auxiliary regression:

regress e; on a constant and ¥;. (2.7.4)

13gee, e.g., Judge et al. (1985, Section 11.3) or Greene (1997, Section 12.3) for other tests.
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White (1980) rigorously developed this argument'* to prove

Proposition 2.6 (White’s Test for Conditional Heteroskedasticity): In addition
to Assumptions 2.1 and 2.4, suppose that (a) {y;, X;} is i.i.d. with finite E(e,.zx,-xg)
(thus strengthening Assumptions 2.2 and 2.5), (b) €; is independent of x; (thus
strengthening Assumption 2.3 and conditional homoskedasticity), and (c) a certain
condition holds on the moments of ¢; and X;. Then,

nR* - x2(m),

where R? is the R? from the auxiliary regression (2.7.4), and m is the dimension
of y;.

Example 2.7 (regressors in White’s n R? test): Consider the Cobb-Douglas
cost function of Section 1.7:

b2
pbi3

log(2) = 1 + Palog(@) + prlog( 22 + prtog(22) + .

Here, x; = (1, log(Q;), log(pi1/pi3), log(pi2/ pi3)), a four-dimensional vec-
tor. There are 10 (= 4 - 5/2) unique elements in X;X;:

1, log(Qy), log(p’;) log(%),

Pi Pi
[log(Q)1*, log(Q)) - 1og( ‘) log(Q,) - log( j)

[oa(52)]+ toe(2) 1oe(52). [oe(22)]

¥; is a nine-dimensional vector excluding a constant from this list. So the m

in Proposition 2.6 is 9.

If White’s test accepts the null of conditional homoskedasticity, then the results of
Section 2.6 apply, and statistical inference can be based on the ¢- and F-ratios from
Chapter 1. Otherwise inference should be based on the robust ¢ and Wald statistics
of Proposition 2.3.

Because the regressors ¥, in the auxiliary regression have many elements con-
sisting of squares and cross-products of the elements of x;, the test should be
consisteat (i.e., the power approaches unity as n — 00) against most heteroskedas-

14The original statement of White’s theorem is more general as it covers the case where {y;, x;} is independent,
but not identically distributed (i.n.i.d.).
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tic alternatives but may require a fairly large sample to have power close to unity.
If the researcher knows that some of the elements of ¥; do not affect the condi-
tional second moment, then they can be dropped from the auxiliary regression and
the power might be increased in finite samples. The downside of it, of course, is
that if such knowledge is false, the test will have no power against heteroskedastic
alternatives that relate the conditional second moment to those elements that are
excluded from the auxiliary regression.

QUESTION FOR REVIEW

1. (Dimension of ¥;) Suppose x; = (1, ¢;, g7, p;)’, a four-dimensional vector.
How many nonconstant and unique elements are there in x;x;? [Answer: 8.]

2.8 Estimation with Parameterized Conditional Heteroskedasticity
(optional)

Even when the error is found to be conditionally heteroskedastic, the OLS esti-
mator is still consistent and asymptotically normal, and valid statistical inference
can be conducted with robust standard errors and robust Wald statistics. However,
in the (somewhat unlikely) case of a priori knowledge of the functional form of
the conditional second moment E(si2 | X;), it should be possible to obtain sharper
estimates with smaller asymptotic variance. Indeed, in finite-sample theory, the
WLS (weighted least squares) can incorporate such knowledge for increased effi-
ciency in the sense of smaller finite-sample variance. Does this finite-sample result
carry over to large-sample theory? This section deals with the large-sample prop-
erties of the WLS estimator. To simplify the discussion, throughout this section
we strengthen Assumptions 2.2 and 2.5 by assuming that {y,, x;} is i.i.d. This is a
natural assumption to make, because it is usually in cross-section contexts where
WLS is invoked.

The Functional Form
The parametric functional form for the conditional second moment we consider is

E(e? | x;) = Za, (2.8.1)

where z; is a function of x;.
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Example 2.8 (parametric form of the conditional second moment): The
functional form used in the WLS estimation in the empirical exercise to Chap-
ter 1 was

E(e? 1 10g(0:), 10g(0)*, Tog( 22, log (£2)) = o +0- ().

Since the elements of z; can be nonlinear functions of x;, this specification is more
flexible than it might first look, but still it rules out some nonlinearities. For exam-
ple, the functional form

E(e? | x;) = exp(Z,at) (2.8.2)

might be more attractive because its value is guaranteed to be positive. We con-
sider the linear specification (2.8.1) only because estimating parameters in nonlin-
ear specifications such as (2.8.2) requires the use of nonlinear least squares.

WLS with Known a

To isolate the complication arising from the fact that the unknown parameter vector
a must be estimated, we first examine the large-sample distribution of the WLS
estimator with known «. If & is known, the conditional second moment can be
calculated from data as z}et, and WLS proceeds exactly as in Section 1.6: dividing
both sides of the estimation equation y; = x;8 + ¢; by the square root of zZ;e, to
obtain

yi =Xp +E, (2.8.3)

where

Yi - X; ~ _ &
» Xi y € = »

yi =
Vzie Zo Zo

and then apply OLS. For later reference, write the resulting WLS estimator as
B(V). It is given by

n

Bon=(- %) - %5
i=l i=l

R N & [y |
=\ — —X; X, — —X; - i
(n,lzga”) nZzga Y

= =

=XV 1X)"IX'Vvly, (2.8.4)
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with

If Assumption 2.3 is strengthened by the condition that
E( | x;) =0, (2.8.5)

then E(&; | x;) = 0. To see this, note first that, because z; is a function of x;,

E(& | x;) = E(

Second, because X; is a function of x;, there is no more information in X; than in
X;. So by the Law of Iterated Expectations we have

E(&; | %) = E[E(; | x) | X] = 0.

Therefore, provided that E(X;X}) is nonsingular, Assumptions 2.1-2.5 are satisfied
for equation (2.8.3). Furthermore, by construction, the error &; is conditionally
homoskedastic: E(8? | X;) = 1. So Proposition 2.5 applies with 02 = 1: the WLS
estimator is consistent and asymptotically normal, and the asymptotic variance is

Avar(’ﬂ\(V)) = E(f(,-ii;)_1 (since the error variance is 1)

1 o -1
= plim(— Z X; i:) (by ergodic stationarity)
o

1 1 -1
= plim{ — ——X;X; i X; = X; i
p1m(n ,Ezl zﬁax x,) (since X; = X;/+/Z;c)
1 -1
=plim(—X/V—1X) . 2.8.7)
n

So (+X'V~!X)~! is a consistent estimator of Avar(B(V)).

Regression of e? on z Provides a Consistent Estimate of a
If & is unknown, it can be estimated by running a separate regression. (2.8.1) says
that )« is a regression of £2. If we define n; = ¢? — E(¢? | x;), then (2.8.1) can be
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written as a regression equation:
6] =z + 1. (2.8.8)

By construction, E(; | x;) = 0, which, together with the fact that z; is a function
of x;, implies that the regressors z; are orthogonal to the error term 7;. Hence,
provided that E(z;z;) is nonsingular, Proposition 2.1 is applicable to this auxiliary '
regression (2.8.8): the OLS estimator of « is consistent and asymptotically normal.

Of course, this we cannot do because we don’t observe the error term. How-
ever, since the OLS estimator b for the original regression y; = x;8 + ¢; is con-
sistent despite the presence of conditional heteroskedasticity, the OLS residual e;
provides a consistent estimate of ¢;. It is left to you as an analytical exercise to
show that, when ¢g; is replaced by ¢; in the regression (2.8.8), the OLS estimator,
call it &, is consistent for a.

WLS with Estimated a

The WLS estimation of the original equation y; = x;8 + ¢; with estimated « is
ﬁ(V), where V is the n x n diagonal matrix whose i-th diagonal is z;&. Under
suitable additional conditions (see, e.g., Amemiya (1977) for an explicit statement
of such conditions), it can be shown that

(a) /n (ﬁ(V) — B) and /n (ﬁ(V) — B) are asymptotically equivalent in that the
difference converges to zero in probability as n — oco. Therefore, by Lemma
2.4(a), the asymptotic distribution of /n (E(V) — B) is the same as that of
V1 (B(V) — B). So Avar(B(V)) equals Avar(B(V)), which in turn is given by
(2.8.7);

() plim 1X'V-'X = plim 1X'V-'X.
So (AX'V-1X)1 is consistent for Avar(B(V)).

All this may sound complicated, but the operational implication for the WLS
estimation of the equation y; = x; 8 + &; is very clear:

Step 1: Estimate the equation y; = x;8 + ¢; by OLS and compute the OLS resid-
uals ¢;.

Step 2: Regress e? on z;, to obtain the OLS coefficient estimate &.

Step 3: Re-estimate the equation y; = X} + &; by WLS, using 1 /\/z;_& as the
weight for observation .

Since the correct estimate of the asymptotic variance, (%X’V”X)’1 in (b), 18 (n
times) the estimated variance matrix routinely printed out by standard regression
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packages for the Step 3 regression, calculating appropriate test statistics is quite
straightforward: the standard ¢- and F-ratios from Step 3 regression can be used to
do statistical inference.

OLS versus WLS

Thus we have two consistent and asymptotically normal estimators, the OLS and
WLS estimators. We say that a consistently and asymptotically normal estimator is
asymptotically more efficient than another consistent and asymptotically normal
estimator of the same parameter if the asymptotic variance of the former is no
larger than that of the latter. It is left to you as an analytical exercise to show that
the WLS estimator is asymptotically more efficient than the OLS estimator.

The superiority of WLS over OLS, however, rests on the premise that the sam-
ple size is sufficiently large and the functional form of the conditional second
moment is correctly specified. If the functional form is misspecified, the WLS
estimator would still be consistent, but its asymptotic variance may or may not
be smaller than Avar(b). In finite samples, even if the functional form is cor-
rectly specified, the large-sample approximation will probably work less well for
the WLS estimator than for OLS because of the estimation of extra parameters (a)
involved in the WLS procedure.

QUESTIONS FOR REVIEW

1. Prove: “E(#; | x;) =0, z; 1s a function of X;” = “E(z; - ,) = 0.” Hint: Law of
Total Expectations.

2. Is the error conditionally homoskedastic in the auxiliary regression (2.8.8)? If
so0, does it matter for the asymptotic distribution of the WLS estimator?

2.9 Least Squares Projection

What if the assumptions justifying the large-sample properties of the OLS estima-
tor (except for ergodic stationarity) are not satisfied but we nevertheless go ahead
and apply OLS to the sample? What is it that we estimate? The answer is in this
section. OLS provides an estimate of the best way linearly to combine the explana-
tory variables to predict the dependent variable. The linear combination is called
the least squares projection.
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Optimally Predicting the Value of the Dependent Variable

We have been concerned about estimating unknown parameters from a sample.
Let us temporarily suspend the role of econometrician and put ourselves in the
following situation. There is a random scalar y and a random vector x. We know
the joint distribution of (y, x) and the value of x. On the basis of this knowledge
we wish to predict y. So a predictor is a function f(x) of x with the functional
form f(-) determined by the joint distribution of (y, x). Naturally, we choose the
function f(-) so as to minimize some index that is a function of the forecast error
y — f(x). We take the loss function to be the mean squared error E[(y — f(x))?]
because it seems as reasonable a loss function as any other and, more importantly,
because it produces the following convenient result:

Proposition 2.7: E(y | x) is the best-predictor of y in that it minimizes the mean
squared error.

We have seen in Chapter 1 that the add-and-subtract strategy is effective in show-
ing that the candidate solution minimizes a quadratic function. Let us apply the
strategy to the squared error here. Let f(x) be any forecast. Add E(y | x) to the
forecast error y — f(x) and then subtract it to obtain the decomposition

y—f@®=00-EQ[x)+ EQY|x) - f(x). (2.9.1)
So the squared forecast error is

= f&))? =y —E@ %) +2(y —EW | x)E®Y | x) — f(X))
+ Ey | x) — fFx)% (2.9.2)

Take the expectation of both sides to obtain

mean squared error = E[(y — f(x))?]
=E[(y — E(y | ¥))*] + 2E[(y —E(y | x)(E(y | x) — F(X))]
+E[E® | %) — f(0)*]. (29.3)

It is a straightforward application of the Law of Total Expectations to show that the
middle term, which is the covariance between the optimal forecast error and the
difference in forecasts, is zero (a review question). Therefore,

mean squared error = E[(y — E(y | X))*] + E[(E(y | X) — f(X))?]
> E[(y —E(y | )], (29.4)
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which shows that the mean squared error is bounded from below by E[(y —E@ |
x))z], and this lower bound is achieved by the conditional expectation.

Best Linear Predictor

It requires the knowledge of the joint distribution of (y, X) to calculate E(y | x),
which may be highly nonlinear. We now restrict the predictor to being a linear
function of x and ask: what is the best (in the sense of minimizing the mean squared
error) linear predictor of y based on x? For this purpose, consider B* that satisfies
the orthogonality condition

Ex-(y —x8"]1=0 or E(xx)B* =E(x-y). (2.9.5)

The idea is to choose B* so that the forecast error y — x'8* is orthogonal to x. If
E(xx’) is nonsingular, the orthogonality condition can be solved for g*:

B* = [Exx)]'E(x - ). (2.9.6)

The least squares (or linear) projection of y on x, denoted E*(y | x), is defined
as x'B*, where B* satisfies (2.9.5) and is called the least squares projection
coefficients.

Proposition 2.8: The least squares projectionﬁ *(y | x) is the best linear predictor
of y in that it minimizes the mean squared error,

The add-and-subtract strategy also works here.

PROOF. For any linear predictor xB,

mean squared error = E[(y — x’ﬁ)z]
=E{[0 - xB") + X (B* - ﬁ)]z} (by the add-and-subtract strategy)
=E[(y - X'89?] +2(8" — B)E[x- (b — X B9)] + E[X'(8" - B))’]
=E[(y - x'8%°] + E[x' (B — 8]
(by the orthogonality condition (2.9.5))
> E[(y — x8)?]. n

In contrast to the best predictor, which is the conditional expectation, the best linear
predictor requires only the knowledge of the second moments of the joint distribu-
tion of (y, x) to calculate (see (2.9.6)).
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If one of the regressors X is a constant, the least squares projection coefficients
can be written in terms of variances and covariances. Let X be the vector of non-

S

An analytical exercise to this chapter asks you to prove that

constant regressors so that

E'GIx=E"(¢| LX) =pn+y% (2.9.7)

where

y = Var(® ' Cov(k, y), u =E(y) — ' ERX).

This formula is the population analogue of the “deviations-from-the-mean regres-
sion” formula of Chapter 1 (Analytical Exercise 3).

OLS Consistently Estimates the Projection Coefficients

Now let us put the econometrician’s hat back on and consider estimating 8*. Sup-
pose we have a sample of size n drawn from an ergodic stationary stochastic pro-
cess {y;, X;} with the joint distribution (y;, x;) (which does not depend on i because
of stationarity) identical to that of (y, x) above. So, for example, E(x;x;) = E(xx').
By the Ergodic Theorem the second moments in (2.9.6) can be consistently esti-
mated by the corresponding sample second moments. Thus a consistent estimator
of the projection coefficients B* is

(5oa) (o) oo
i=1 i=1

which is none other than the OLS estimator b. That is, under Assumption 2.2
(ergodic stationarity) and Assumption 2.4 guaranteeing the nonsingularity of
E(xx’), the OLS estimator is always consistent for the projection coefficient vector,
the B* that satisfies the orthogonality condition (2.9.5).

QUESTIONS FOR REVIEW

1. (Unforecastability of forecast error) For the minimum mean square error fore-
cast E(y | x), the forecast error is orthogonal to any function ¢ (x) of x. That
is, E[n¢ (x)] = 0 where n = y — E(y | x). Prove this. Hint: The Law of Total
Expectations. Show that the middle term on the RHS of (2.9.3) is zero by

setting ¢(x) = E(y | x) — f(x).
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2. (Forecasting white noise) Suppose {¢;} is white noise. What is E*(si | &i—1,
&_o,...,&_m)? What is E*(é‘,‘ | 1,81, 8-2,..., €8 -m)? Is it true that E(g; |
€i—1,&i_2, ..., &_m) = 07 Hint: Is it zero for the process of Example 2.4?

3. (Conditional expectations that are linear) Suppose E(y | X) = ¢+ y'X. Show:
E'(y | LX) =EQ | %).

4. (Partitioned projection) Consider the model y; = x;8 + z.8 + ¢; with E(x; -
&) =0,E(z; - &) # 0, and E(z;x]) = 0. Thus, z; is not predetermined (i.e., not
orthogonal to the error term), but it is unrelated to the predetermined regressor
X; in that the cross moments are zero.

(@) Show that the least squares projection coefficient of x; in the projection of
y; on X; and z; is B. Hint: Calculate E*(¢; | x;, Z;).

(b) What is the least squares projection coefficient of x; in the least squares
projection of y; on x;? Hint: Treat z;§ + ¢, as the error term.

(c) Which projection would you use for estimating 87 Hint: You want the error
variance to be smaller.

2.10 Testing for Serial Correlation

As remarked in Section 2.3 (see (2.3.3)), when the regressors include a constant
(true in virtually all known applications), Assumption 2.5 implies that the error
term is a scalar martingale difference sequence (m.d.s.), so if the error is found to
be serially correlated, that is an indication of a failure of Assumption 2.5. Serial
correlation has traditionally been an important subject in econometrics, and there
are available a number of tests for serial correlation (i.e., tests of the null of no
serial correlation in the error term). Some of them, however, require that the
regressors be strictly exogenous. The test to be presented in this section does not
require strict exogeneity. Because the issue of serial correlation arises only in time-
series models, we use the subscript in this section (and the next).
Throughout this section we assume that the regressors include a constant.

It would be nice to have those tests extended to cover serial correlation in g,
(= x, - &), but no such tests have been proposed to gain acceptance. This is a gap
in the literature, but not a serious one, because nowadays researchers know how
to live with serial correlation in g,. That is, as will be shown in Chapter 6, there
is available a method to do inference in the presence of serial correlation in g,.

[1P%2) [1Ee4]
t 14
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Earlier in this chapter we learned how to calculate standard errors that are robust
to conditional heteroskedasticity. In Chapter 6, those standard errors will be made
robust to serial correlation as well.

Box-Pierce and Ljung-Box

Before turning to the tests for serial correlation in the error term, we temporarily
step outside the regression framework and consider serial correlation in a univari-
ate time series. Suppose we have a sample of size n, {z1, ..., 2,}, drawn from a
scalar covariance-stationary process. In Section 2.2 we defined the (population)
Jj-th order autocovariance y;. The sample j-th order autocovariance is

n

1
== )@= WG =% (=01, (2.10.1)

1=j+1

>

where
1 n
Z,, = — E Zt.
n
t=1

(If the population mean E(z,) is known, it can replace the sample mean Zz,; doing
so would improve the small sample property.) Here, even though only n — j terms
are in the sum, the denominator is »n rather than n — j. Whether the sum of n — j
terms is divided by n or by n — j does not affect large-sample results. For moderate
sample sizes, however, the numerical difference can be substantial, and you should
always be explicit about which is used as the denominator. The sample j-th order
autocorrelation coefficient, 5;, is defined as

~ Vi .
b= (G=12...). (2.10.2)
Yo

If {z,} is ergodic stationary, then it is easy to show (see a review question) that
¥; is consistent for y; (j =0, 1,2, ...). Hence, by Lemma 2.3(a), p; is consistent
for p; (j = 1,2,...). In partticular, if {z;} is serially uncorrelated, then all the
sample autocorrelation coefficients converge to 0 in probability. To test for serial
correlation, however, we need to know the asymptotic distribution of \/np;. It is
provided by

Proposition 2.9 (special case of Theorem 6.7 of Hall and Heyde (1980)): Sup-
pose {z;} can be written as . + ¢,, where &, is a stationary martingale difference
sequence with “own” conditional homoskedasticity:

2

(own conditional homoskedasticity) E(e,2 | &_1,&—2,...) =07, 0% > 0.
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Let the sample autocorrelation p; be defined as in (2.10.1) and (2.10.2). Then
Jny - N(@0,0%L,) and /np - NO, L),
where }’; = (}71’ };2a ceey );p), &Hdi) = (pAla /327 sy ﬁp)/'

Here, the process &, is not required to be ergodic. Proving this under the additional
condition of ergodicity is left as an analytical exercise. Thus, asymptotically, (,/n
times) the autocorrelations are i.i.d. and the distribution is N (0, 1). The process
{&,} assumed here is more general than independent white noise processes, but the
conditional second moment has to be constant, so this result does not cover ARCH
processes, for example.

One way to test for serial correlation in the series is to check whether the first-
order autocorrelation, p,, is 0. Proposition 2.9 implies that

A

1/«/—

So the ¢-statistic formed as the ratio of 5, to a “standard error” of 1/./n is asymp-
totically standard normal.

We can also test whether a group of autocorrelations are simultaneously zero.
Let p = (p1, ..., pp) be the p-dimensional vector collecting the first p sample
autocorrelations. Since the elements of /np are asymptotically independent and
individually distributed as standard normal, their squared sum, called the Box-
Pierce Q because it was first considered by Box and Pierce (1970), is asymptoti-
cally chi-squared:

Vnp, = — N, 1). (2.10.3)

P P

. . . A~ A2

Box-Pierce Q statistic = n E 1 pr = E 1(\/r_z,oj) - x:(p). (2.104)
j= =

It is easy to show (see a review question) that the following modification, called
the Ljung-Box @, is asymptotically equivalent in that its difference from the Box-
Pierce Q vanishes in large samples. So by Lemma 2.4(a) it, too, is asymptotically
chi-squared:

"2 P

I
Ljung-Box Q statistic =n - (n 4 2) Z Z +
Jj= 1 j:l

—> x*(p).

(2.10.5)
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This modification often provides a better approximation to the chi-square distribu-
tion for moderate sample sizes (you will be asked to verify this in a Monte Carlo
exercise). For either statistic, there is no clear guide to the choice of p. If p is too
small, there is a danger of missing the existence of higher-order autocorrelations,
but if p is too large relative to the sample size, its finite-sample distribution is likely
to deteriorate, diverging greatly from the chi-square distribution.

Sample Autocorrelations Calculated from Residuals
Now go back to the regression model described by Assumptions 2.1-2.5. If the
error term &, were observable, we would calculate the sample autocorrelations as

=Y G=12..) (2.10.6)

where

1 « _
=~ Z g6 (j=01,2,...). (2.10.7)
t=j+1

R

(There is no need to subtract the sample mean because the population mean is
zero, an implication of the inclusion of a constant in the regressors.) Since {e;¢,_;}
is ergodic stationary by Assumption 2.2, y; converges in probability to the corre-
sponding population mean, E(g,¢;_;), for all j, and g; is consistent for the popula-
tion j-th autocorrelation coefficient of &;.

Next consider the more realistic case where we do not observe the error term.
We can replace ¢, in the above formula by the OLS estimate e, and calculate the
sample autocorrelations as

ij—A— (j=1,2,...), (2.10.8)
Yo
where
R 1 « .
=~ Z eerj (j=0,1,2,...). (2.10.9)
1=j+1

(Because the regressors include a constant, the normal equation corresponding to
the constant ensures that the sample mean of e; is zero. So there is no need to
subtract the sample mean.) Is it all right to use p; (calculated from the residu-
als) instead of f; and the residual-based Q statistics derived from {p;} for testing
for serial correlation? The answer is yes, but only if the regressors are strictly
exogenous.
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Recall that the expression linking the residual ¢, to the true error term &, was
given in (2.3.9). Using this, the difference between p; and y; can be written as

n
. 1
Vi =~ E e e _j
J n J

t=j+1

l n
= > e —xb—Blle; —x_;(b - B)]

1=j+1

t

1 o ,
= j—-——Z(Xz_j'81+xl'8f—j)(b_ﬂ)
nt=j+1

n

+(b- ﬂ)’(% 3 x x;_j)(b —B). (2.10.10)

1=j+1
IfE(x,-&_;), E(X,_;-&), and E(x;x]_ j) are all finite, then the second and the third
terms vanish (converges to zero in probability) because b — 8 —, 0. Therefore,

}7j—}7j—p>0 (j=0,1,2,...),

and thus the difference between p; and p;, too, vanishes in large samples.
However, /n times the difference does not. /np; and \/np; can be written as

Jnp; = v/ and /np; = ﬁyf. (2.10.11)

~ A

Yo

We have just seen that, for both /np; and \/np;, the denominator —, o%. So
the difference between /nj; and \/np; will vanish if the difference between /ny;
and \/ny; does (if you are not convinced, see Review Question 3 below). Now, by
multiplying both sides of (2.10.10) by 4/n, we obtain

N IR ,
Vg =g == 3 e %)V (b= B)
t=j+1

n

+\/ﬁ(b—ﬂ)’(% > xx_,)b—p). (2.10.12)

t=j+1

Because 4/n (b— B) converges to a random variable (whose distribution is normal),
the third term on the RHS vanishes by Lemma 2.4(b). Regarding the second term,
we have
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1 n
p Z X—j - &+ X - &-)) —p> E(x,_; - &) +EX -&_;). (2.10.13)

t=j+1

If the regressors are strictly exogenous in the sense that E(x, - ;) = 0 for all 7, s,
then

Ex,_;-&)+EX, -&_j) =0, (2.10.14)

and by Lemma 2.4(b) the second term converges to zero in probability. So the
difference between 1/ng; and /np; vanishes, which means that the Q statistic cal-
culated from the regression residuals {e;}, too, is asymptotically chi-squared, and
we can use this residual-based Q to test for serial correlation. If, on the other hand,

the regressors are not strictly exogenous, then there is no guarantee that (2.10.14)
holds. Consequently, the residual-based Q statistic may not be asymptotically chi-
squared.

Testing with Predetermined, but Not Strictly Exogenous, Regressors
Therefore, when the regressors are not strictly exogenous, we need to modify the
Q statistic to restore its asymptotic distribution. For this purpose, consider two

restrictions:
(stronger form of predeterminedness) E(e; | €1, &2, .- -, X¢, X1, ...) =0,
(2.10.15)
(stronger form of conditional homoskedasticity)
E(e? | &1, 6120 s X1, Xyo1, ... ) =02 > 0. (2.10.16)

The first condition is just reproducing (2.3.1) (with “#” now being used as the sub-
script). As was shown in Section 2.3, this is stronger than Assumption 2.3 and
implies that g, (= x, - &) is an m.d.s. Condition (2.10.16), with the conditioning
set including x;, is obviously stronger than Assumption 2.7 (conditional homoske-
dasticity). It also is stronger than the own conditional homoskedasticity assumption
in Proposition 2.9 because the conditioning set includes current and past x as well
as past €. The next result shows that under these additional conditions there is an
appropriate modification of the Q statistic.

Proposition 2.10 (testing for serial correlation with predetermined regressors):
Suppose that Assumptions 2.1, 2.2, 2.4, (2.10.15), and (2.10.16) are satisfied. Let
the sample autocorrelation of the OLS residuals, 6 ;, be defined as in (2.10.8). Then,
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Jnp — N, o*-(I, — ®)) and V/np e N@©,1, - ®), (2.10.17)
where ¥ = (Y1, V2, .., V), p = (P1, P2, ..., Pp), and ¢jx (= (j, k) element of
the p x p matrix ®) is given by

¢jx = E(x; - &_ ;) Ex,X,)) " E(X; - £-1) /0. (2.10.18)

The proof, though not very difficult, is relegated to Appendix 2.B. By the Ergodic
Theorem, matrix @ is consistently estimated by its sample counterpart:

® = ($0), b = BSeiity/s® (k=1,2,...,p), (21019

where

n n

32= 1 32 _=l X, - €_;

_n—KE ,,ﬂj—nE r o €r—j-
t=1

t=j+1

It follows from this and Proposition 2.10 that
modified Box-Pierce Q =n - p'(I, — ®)~'p - x3(p). (2.10.20)

As long as the regressors are predetermined and the error is conditionally homo-
skedastic in the sense of (2.10.15) and (2.10.16), this modified Q statistic can be
used even when the regressors are not strictly exogenous.

An Auxiliary Regression-Based Test

Although calculating this modified Q statistic is straightforward with matrix-based
software, it is useful to find an asymptotically equivalent statistic that can be calcu-
lated from regression packages. For this purpose, consider the following auxiliary
regression:

regress e, ON Xy, €1, 8,2, ..., € _p. (2.10.21)

To run this auxiliary regression forr = 1,2, ..., n, we need data on (eg, e_q, .. .,
e_p+1). It does not matter asymptotically which particular numbers to assign to
them, but it seems sensible to set them equal to O, their expected value.!> From this
auxiliary regression, we can calculate the F statistic for the hypothesis that the p
coefficients of ;,_1, ¢;,_,, ..., e, are all zero. Given Proposition 2.5(c), it is only
natural to wonder whether p - F is asymptotically x?(p). This conjecture is indeed

15 Another asymptotically equivalent choice is to run the auxiliary regressionfort = p+1, p+2,...,n.
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true: under the hypothesis of Proposition 2.10, the modified Q statistic (2.10.20) is
asymptotically equivalent to p - F (i.e., the difference between the two converges
to zero in probability as n — ©0), so p - F, too, is asymptotically chi-squared
(showing this is an analytical exercise).

This p - F statistic, in turn, is asymptotically equivalent to n R? from the aux-
iliary regression. This can be shown as follows. Recall the algebraic result from
Chapter 1 that the F-ratio can be calculated from the difference in the sum of
squared residuals between the unrestricted and restricted regressions. The unre-
stricted regression in the present context is (2.10.21) while the restricted regres-
sion is

regress e, on ;. (2.10.22)

Therefore, if SSRy and SSRg are SSRs from (2.10.21) and (2.10.22), respectively,
we have

SSRg — SSRy SSRx — SSRy
F = = (n —#x, — p)R 2R (510,03
P SSRyJn—te —py TR T )

where #x, is the number of variables in x,. However, since ¢, is the residual from
the original regression (a regression of y, on X, ), the regressors X, in (2.10.22) have
no explanatory power. So SSRp = e’e where e is the n-dimensional vector of
residuals from the original regression, and (2.10.23) is numerically identical to

2

(n =t = p) T

where R2, is the uncentered R? for the auxiliary regression (2.10.21).! But since
the sample mean of e, is by construction zero (this is because x, includes a con-
stant), RZ, is numerically identical to the R? for the auxiliary regression. Thus, we
have proved the algebraic result that

2

R2

p-F=n-—#,— p) ,
where R? is equal to the R? for the auxiliary regression (2.10.21). Solving this
equation for R? and multiplying both sides by n, we obtain

16Recall from (1.2.16) that the uncentered R? fora regression of y on x is defined as

Yy — e

R, =22
Yy

uc_

In the present context, the y'y in this formula is ¢’e while the ¢'e in the formula is SSRy;.
p!
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n 1

nR? = .
n—#—p 1+

oF -p- F.

n—#x;—p

. p-F
Since =P

tion shows that p - F — nR* —, 0. Therefore, n R? from the auxiliary regression
(2.10.21) is asymptotically x2(p). The test based on nR? is called the Breusch-
Godfrey test for serial correlation. When p = 1, the test statistic is asymptoti-
cally equivalent to the square of what is known as Durbin’s h statistic.!”

—p 0asn — oo (an implica;ion of Lemma 2.4(b)), this equa-

QUESTIONS FOR REVIEW

1. (Consistency of sample autocovariances) Show: if {z,} is ergodic stationary,
then the sample autocovariance y; given in (2.10.1) is consistent for y;, the
population autocovariance. Hint: y; = E(z,z,—;)—E(z,) E(z;-;). Rewrite y; as

D B S I G n—j _ .,
Vi = ; Z LrZ—j —Zn; Z Zt—j‘_Zn; Z 2+ " (Zn)".

t=j+1 t=j+1 t=j+1

2. (Asymptotic equivalence of two Q’s) Prove that the difference between the
Box-Pierce 0 and the Ljung-Box Q converges to O in probability as n — oo
(so their asymptotic distributions are the same). Hint: Let

x= ((WVap) . (Vs

Find a p-dimensional vector a, such that the difference between two Q’s is
a x,. Show that a, — 0. The asymptotic property to use is Lemma 2.4(b).

3. Consider /np; and \/np; in (2.10.11). We have shown that ) —, o2 and
Yo —p 0. By Proposition 2.9, /ny; —4 N(0, o*). Taking these for granted,
show that /np; —/np; —, 0if /ny;—/ny; =, 0. Hint: If /ny;—/ny; >,
0, then by Lemma 2.4(a), /np; —q4 N(0, o).

Vi Vi - (1 1) . (1 1) 1 A
===Vl VI -3+t @-¥.
Yo Yo ’ Yo o2 ’ o o? a? ’ ’

Multiply both sides by 4/n and apply Lemma 2.4(b).

17gee Breusch (1978) and Godfrey (1978). The Breusch-Godfrey test was originally derived as a Lagrange
Multiplier test for the case where the error is normally distributed and x; consists of fixed regressors and the
lagged dependent variable. The discussion in the text shows that the test is applicable to the more general case
considered in Proposition 2.10.
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2.11 Application: Rational Expectations Econometrics

In dynamic economic models and other contexts, expectations about the future
naturally play an important role. Rational expectations econometrics concerns
estimating equations involving expectations. Expectations are usually not observ-
able, but, if we assume that economic agents form expectations rationally, we can
overcome the problem of unobservable expectations using the techniques of this
chapter. The application we consider is Fama'’s efficient market hypothesis. In
his own words, “An efficient capital market is a market that is efficient in processing
information. ... In an efficient market, prices ‘fully reflect’ available information”
(Fama, 1976, p. 133). The words “fully reflect” can be formalized precisely. We
will do so for a particular capital market and test its implication.

The Efficient Market Hypotheses

The capital market studied in Fama (1975) is the market for U.S. Treasury bills. In
this section we focus on the one-month Treasury bill rates observed on a monthly
basis. (Later in the book we will also consider Treasury bills of different maturi-
ties.) To formalize market efficiency for the bills market, we need to introduce a
few concepts from macroeconomics and finance. Since in this section we deal
exclusively with time-series data, we use “t” rather than “i” for the subscript.
Define

v, = price of a one-month Treasury bill at the beginning of month ¢,
R, = one-month nominal interest rate over month ¢, i.e., nominal return
on the bill over the month = (1 — v,)/v,,so v, = 1/(1 + R,),
P, = value of the Consumer Price Index (CPI), which is our measure of
the price level at the beginning of month ¢,
7,+1 = inflation rate over month ¢ (i.e., from the beginning of month ¢ to
the beginning of month t + 1) = (P41 — P)/ P,
41 = expected inflation rate over month ¢, expectation formed at the
beginning of month ¢,
n:+1 = inflation forecast error = m,4; — 7,41,

. 1/P, 1—V P,
rr41 = €x-post real interest rate over month t = Lt/—t

v/ P,
1+ R, /P
= _1~R -,
1+ m4
(141 = ex-ante real interest rate = ————— — 1 ~ R, — ,m, 4.

+ e
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Month ¢
I jl —> time
t t+1
R, Ry
Pt Pt+1

Figure 2.2: What's Observed When

Timing — the value of which variable is observed at what point in time — is very
important in rational expectations econometrics. Our rule for dating variables
(which is different from Fama’s) is that the variable has subscript ¢ if its value
is first observed at the beginning of period (month) ¢.!* For example, because 7,1,
the inflation rate over month ¢, depends on P, ., its subscript is ¢ + 1 rather than ¢.
For the same reason, 7,4, the ex-post real interest rate over month ¢ has subscript
t + 1. In contrast, the nominal interest rate R, over month ¢ has subscript ¢, not
t + 1, because it is determined by the price of the Treasury bill at the beginning of
month ¢, v,. Figure 2.2 shows the value of which variable is observed at what point
in time.

We take a period to be a month, only because our data are monthly. Note that
the maturity of the security (one month) coincides with the sampling interval (a
month). If the sampling interval is finer than the maturity, which is the case if,
for example, we have monthly data on the three-month Treasury bill rate, then
maturities overlap and we need a more sophisticated technique to be introduced in
Chapter 6.

The efficient market hypothesis is a joint hypothesis combining:

Rational Expectations. Inflationary expectations are rational: ,m,.1 = E(m,1; |
I,), where I, is information available at the beginning of month ¢ and includes
{R,,R,_1,..., 7y, W_1,...}. Also, I, D I,y D I,_».... That is, agents

participating in the market do not forget.

Constant Real Rates. The ex-ante real interest rate is constant: ,r,.] = r.

1817 Fama’s (1975) notation, our Tyy] is -Ar rey1is7r41, and ;s .
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Testable Implications

We derive two testable implications of the efficient market hypothesis by utiliz-
ing the following key observations about the inflation forecast error under rational
expectations.

(a) E(ns41 | I,) = 0, that is, the inflation forecast error is a martingale difference
sequence with respect to the information set.

m) {n:, -1, ... Yaswellas{R,, R, {, ..., 7, 7,1, ... }areincluded in /, (known
at the beginning of month 7). That is, agents remember all past mistakes.

(a) makes intuitive sense; if people use all available information to forecast the
inflation rate, the forecast error, which is known only after the fact, will not have
any systematic relation to what people knew when they formed expectations. It can
be proved easily:

EMmiv1 | 1)
=E(m 41 — g | 1) (SInce 9,4y = 74 — (Tr41)
=E@1 | 1) —EGm | 1)
=E@11 | 1)) —E[E(m41 [ 1) | 1]
(since ,7,4) = E(m,41 | I;) by rational expectations)

=E@ | 1) —E@ia | 1) = 0. (2.11.1)

(b) follows because agents remember past inflation forecasts. Since ,_;_7m,_; =
E(m,_; | I,—j_)) is a function of I,_;_y, it is included in /,_;_; (i.e., known at the
beginning of month r — j — 1) and hence in /, (known at the beginning of month
t) for j > 0. Thus n,_; = m,_; —_j_1m,_; is included in /; for all j > O.
Observations (a) and (b), together with the Law of Total Expectations, imply

(©) {n,}ism.d.s.

So, it is a zero mean and serially uncorrelated process.

These are not testable because expectations are unobservable, but, when com-
bined with the constant-real-rate assumption, they imply two testable implications
about the inflation rate and the interest rate which are observable.

Implication 1: The ex-post real interest rate has a constant mean and is serially
uncorrelated.
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This follows because

revl = R — 74
= (R, — m141) — (g1 — 1T 41)
= ri+1 — NM41 (by definition)

=r —n4 {since ,r;41 = r by assumption). 2.11.2)

By (c), {r;} has mean r and is serially uncorrelated.
Implication 2: E(w,, | ;) = —r + R,.

That is, the best (in the sense of minimum mean squared error) inflation forecast on
the basis of all the available information. is the nominal interest rate; the nominal
rate R,, which is determined by the price of a Treasury bill v,, summarizes all the
currently available information relevant for predicting future inflation. This is the
formalization of asset prices “fully reflecting” available information. This, too, can
be derived easily. Solve (2.11.2) for 7, as 7,4 = —r + R, + n;41. So

E(m 41 | 1)

=E(—r+R +na1 | 1)

=—r+R,+E(1 | 1) (since ris aconstant and R, is included in /,)

= —r+ R, (by(a)). (2.11.3)

In the rest of this section, we test these two implications of market efficiency.

Testing for Serial Correlation

Consider first the implication that the ex-post real rate has no serial correlation,
which Fama tests using the result from Proposition 2.9. We use the monthly data
set used by Mishkin (1992) on the one-month 7'-bill rate and the monthly CPIinfla-
tion rate, stated in percent at annual rates.!® Figure 2.3 plots the data. The ex-post
real interest rate, defined as the difference between the T-bill rate and the CPI infla-
tion rate, is plotted in Figure 2.4. To duplicate Fama’s results, we take the sample
period to be the same as in Fama (1975), which is January 1953 through July 1971.
The sample size is thus 223. The time-series properties of the real interest rate are
summarized in Table 2.1. In calculating the sample autocorrelations p; = ;/o,

19The data set is described in some detail in the empirical exercise. Following Fama, the inflation measure
used in the text is calculated from the raw CPI numbers. The inflation measure used by Mishkin (1992) treats the
housing component of the CPI consistently. See question (k) of Empirical Exercise 1.
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Table 2.1: Real Interest Rates, January 1953-July 1971

mean = 0.82%, standard deviation = 2.847%, sample size = 223

j=1 j=2 j=3 j=4 j=5 j=6 j=7 j=8 j=9 j=10 j=11 j=12

oj —0.101 0.172 -0.019 —0.004 —0.064 —0.021 —0.092 0.095 0.094 0.019 0.004  0.207

std. error 0.067 0.067 0.067 0.067 0.067 0.067 0.067 0.067 0.067 0.067 0.067  0.067
Ljung-Box 0 2.3 9.1 9.1 9.1 10.1 10.2 12.1 14.2 16.3 16.4 16.4 26.5

p-value (%) 12.8% 1.1% 28% 58% 13% 11.7% 9.6% 7.6% 61% 89% 12.8% 0.9%
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we use the formula (2.10.1) for p; where the denominator is the sample size rather
than n — j. Similarly, the formula for the standard error of p; is 1//n rather than
1/4/n — j (so the standard error does not depend on ;). The Ljung-Box Q statistic
in the table for, say, j = 2 is (2.10.5) with p = 2. The results in the table show
that none of the autocorrelations are highly significant individually or as a group,
in accordance with the first implication of the efficient market hypothesis.

Is the Nominal Interest Rate the Optimal Predictor?

We can test Implication 2 by estimating an appropriate regression and carrying
out the ¢-test of Proposition 2.3. The remarkable fact about the efficient market
hypothesis is that, despite its simplicity, it is specific enough to imply the important
parts of the assumptions justifying the ¢-test.?® To see this, let y, = m,,1, X, =
(1, R,)', & = n,41 (the inflation forecast error), and rewrite (2.11.2) as

M1 = P1+ PR + npsy or Y =x8 + &, (2.11.4)
so Assumption 2.1 is obviously satisfied with
B=(r1). (2.11.5)

The other assumptions of the model are verified as follows.

o Assumption 2.3 (predetermined regressors). The g, (= X, - &) in the present
context is (9,41, R;n:11). What we need to show is that E(n;.;) = 0 and
E(R,n;41) = 0. The former is implied by (a) and the Law of Total Expectations:

E(ni41) = E[E(ni41 | 1)] = 0. (2.11.6)

The latter holds because

E(Rm+1)

= E[E(R;n,41 | I}}] (by the Law of Total Expectations)

= E[R,E(n;11 | I)] (by linearity of conditional expectations and R, € I,)
=0 (by (a)). (2.11.7)

o Assumption 2.5. By (b), I, includes (¢,_, (= n,),&—2,...) as well as (x,,
X;—1,...). (a) then implies (2.3.1), which is a sufficient condition for {g;} to be
m.d.s.

20The technical part — that the fourth-moment matrix E(g,g;) exists and is finite and that the regressors have
finite fourth moments -— is not implied by the efficient market hypothesis and needs to be assumed.
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e Assumption 2.4. E(x,X;) here is

! E(R’)} ) (2.11.8)

E(x;x]) =
o [E(R,) E(R)
Its determinant is E(R?) — [E(R,)]* = Var(R,), which must be positive; if the
variance were zero, we would not observe the interest rate R, fluctuating.

o Assumption 2.2 (ergodic stationarity). It requires {m, 1, R;} to be ergodic sta-
tionary. The plot in Figure 2.3 shows a stretch of upward movements, especially
for the nominal interest rate, although the stretch is followed by a reversion to a
lower level. Testing stationarity of the series will be covered in Example 9.2 of
Chapter 9. For now, despite this rather casual evidence to the contrary, we pro-
ceed under the assumption of stationarity (but the implication of having trending
series will be touched upon in the final subsection). For ergodicity, we just have
to assume it.

What we have shown is that, under the efficient market hypothesis, {y,, x;} (where
y; = 7,41 and X; = (1, R;)’) belongs to the set of DGPs satisfying Assumptions
2.1-2.5.

Having verified the required assumptions, we now proceed to estimation. Using
our data, the estimated regression is, for t = 1/53,...,7/71,

M4 = —0.868 + 1.015 R,
0.431)  (0.112)

R? = 0.24, mean of dependent variable = 2.35, SER = 2.84%, n = 223.
(2.11.9)

The heteroskedasticity-robust standard errors calculated as in (2.4.1) (where Sis
given by (2.5.1) with §; = ;) are shown in parentheses. As shown in (2.11.5),
market efficiency implies that the R, coefficient equals 1.2! The robust z-ratio for
the null that the R, coefficient equals 1is (1.015 — 1)/0.112 = 0.13. Its p-value is
about 90 percent. Thus, we can easily accept the null hypothesis.

There are other ways to test the implication of the nominal interest rate sum-
marizing all the currently available information. We can bring in more explanatory
variables in the regression and see if they have an explanatory power over and
above the nominal rate. The additional variables to be brought in, however, must
be part of the current information set /, because, obviously, the efficient market

21 The intercept is known to be —r, but it does not produce a testable restriction since the efficient market
hypothesis does not specify the value of r.
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hypothesis is consistent with the existence of some variable not currently avail-
able predicting future inflation better than the current nominal rate. Formally, if x,
includes variables not included in I;, the argument we used for verifying Assump-
tion 2.3 is no longer valid.

R, 1s Not Strictly Exogenous

As has been emphasized, one important advantage of large-sample theory over
finite-sample theory of Chapter 1 is that the regressors do not have to be strictly
exogenous as long as they are orthogonal to the error term. We now show by
example that R, is not strictly exogenous, so finite-sample theory is not applicable
to the Fama regression (2.11.4). Suppose that the process for the inflation rate is
an AR(1) process:

T, =c+ pm_| + 1, {ﬁ,} is independent white noise.
If 1,4, is independent of any elements of I,, then

E(m | 1)
=c+pm +E(m4, | I;) (since m; isin I;)
=c+ pm; (since E(n;4, | I;) = E(n,+1) and E(%,51) = 0 by assumption).

So 1,4, is indeed the inflation forecast error for 7, and
Ri=r+c+pm

(since R, = r +E(m, 4, | I,) under market efficiency). It is then easy to see that the
error term ¢, in the Fama regression (of 7, on a constant and R;), which is the
inflation forecast error 7,1, can be correlated with future regressors. For example,

Cov(e;, Ri11)
= Cov(ni41, 7 + ¢+ pmiyy)

= pCov(Nrs1, Tr41)

= p Var(n;;1) (since m,y1 = ¢ + p7; + nr41 and Cov(n,4y, 1) = 0),

which is not zero.

Although finite-sample theory is not applicable, its prescription for statistical
inference is approximately valid, provided that the error is conditionally homo-
skedastic and the sample size is large enough, which was the message of Section
2.6.
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Subsequent Developments

Although Fama’s paper represents perhaps the finest example of rational expec-
tations econometrics, events after its publication and a large number of empirical
studies it inspired proved that the near one-for-one relation between inflation and
interest rates is limited to the postwar period until 1979. Such strong association
cannot be found for the prewar period or for many other countries. Furthermore, the
increase in the real interest rates after the change in the Fed’s operating procedure
that took place in October 1979 runs counter to the premise of the Fama regres-
sion that the expected real interest rate is constant over time. When the sample is
restricted to the post-October 1979 period, the interest rate coefficient in the Fama
regression is far below unity.??

These findings raise the question of why the strong association occurs only for
certain periods but not for others. The explanation by Mishkin (1992) is that the
inflation premium gets incorporated into interest rates only gradually. In periods
when the inflation rate shows only short-run fluctuations, interest rates are not
responsive to inflation. However, sustained movements in inflation will be reflected
in interest rates. The period when the strong association is observed (which
includes Fama’s sample period, see Figure 2.3) is precisely when inflation showed
a sustained upward movement.

On January 29, 1997, the U.S. Treasury auctioned $7 billion in ten-year
inflation-indexed bonds, making it possible for researchers to observe the ex-ante
real interest rate as the yield on indexed bonds. Evidence from Great Britain,
where indexed bonds have been available since the early 1980s, is that the yields
on indexed bonds, although much less volatile than the yield on ordinary bonds,
are not constant over time. The constant-real-rate assumption that we made was
the auxiliary assumption whereby we can test whether bond prices fully reflect
available information. Now we can do so without the auxiliary assumption by
regressing the actual inflation rate on the yield differential between the conven-
tional and indexed bonds. We can also relax the assumption, made implicitly so
far, that the yield differential equals the expected inflation rate. Investors may not
be risk-neutral, and the inflation risk premium over and above the expected infla-
tion rate may be needed to induce them to hold ordinary bonds. If so, the expected
inflation rate is once again unobservable. Rational expectations econometrics will
continue to be a useful tool for dealing with unobservable expectations.

22gee, for example, Mishkin (1992, Table 1). We will verify this in part (1) of Empirical Exercise 1.
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QUESTIONS FOR REVIEW

1. Let R, = 5% and 7,y = 2%. Calculate r,; using the two formulas, (1 +
R)/(1+my)) —1and R, — m,y,. Is the difference small? What if R, = 20%
and 7, = 17%?

2. Show that E*(mH | 1, R;) = —r + R, under the efficient market hypothesis.
Hint: Use (2.9.7).

3. If the inflation forecast error 1, were observable, how would you test market
efficiency? Do we need the constant ex-ante real rate assumption?

4. If the inflation rates and the interest rates were measured in fractions rather
than percent (e.g., 0.08 instead of 8%), how would the regression result (2.11.9)
change? If the inflation rate is in percent but per month and the interest rate is
in percent per year? Hint: If x is the inflation rate per month and y is its annual
rate, then 1 + y = (1 + x)? so that y ~ 12x.

5. Suppose in (2.11.4) x, includes a third variable which is not in /,. Which part
of the argument deriving Assumption 2.3 fails? Hint: The third element of g, is
the third variable times 7, ;.

6. Provide an example of market inefficiency such that Implication 1 holds but
Implication 2 does not. Hint: Suppose 7; and R, are serially independent and
mutually independent processes.

2.12 Time Regressions

Throughout this chapter, we have assumed that {y,, X} is stationary. This assump-
tion, however, is not always satisfied in time-series regressions. In this book, we
examine two cases where the regressors are not stationary and yet OLS is applica-
ble. The first is examined here, while the other case, called “cointegrating regres-
sions,” is covered in Chapter 10.

The regression we consider is written as

vy=a+6-t+e, 2.12.1)

where {¢,} is independent white noise. This regression can be written as y, =
x,B + &, with
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x, = (1), B=(a,8). (2.12.2)

Clearly, x, is not stationary because the mean of the second element is ¢, which
increases with time. Similarly, y, is not stationary. The linear function, o + § - ¢, is
called the time trend of y,. We say that a process is trend stationary if it can be
written as the sum of a time trend and a stationary process. The process {y,} here is
a special trend-stationary process where the stationary component is independent
white noise.

The Asymptotic Distribution of the OLS Estimator
Let b be the OLS estimate of 8 based on a sample of size n:

b= [‘;} = (; x,x;)_l(tz;: X, - y,). (2.12.3)

The sampling error can be written as

b—B= |:(?§ ::i| = (,z;: x,x;)_l (,z;: X, - e,). (2.12.4)

Using the algebraic result that Y 1t =n-(n+1)/2,> ;> =n-(n+1)(2n+
1)/6, it is easy to show

~ n n-(n+1)/2
gx;x,— [n-(n-l—l)/Z n.(n+1)(2n+1)/6]' (2.12.5)

So, unlike in the stationary case, > |, X,X,/n does not converge in probability to
a nonsingular matrix; it actually diverges.

It turns out that the OLS estimates & and § are consistent but have different rates
of convergence. As in the stationary case, the rate of convergence for & is \/n. In
contrast, the rate for 8 is n¥2. That is, n3/2(5 — 8) converges to a nondegenerate
distribution (the distribution of a nonconstant random variable). To assign those
different rates of convergence to the elements of b — B8, consider multiplying both
sides of (2.12.4) by the matrix

n = [‘/ﬁ ?/2] (2.12.6)
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This produces
T.b— )= [ﬁg:‘;‘ﬂ =T, (; xx) (; X )
=7, (i x,x:)—iTnT;l (Xn: X, - 8,)
t=1 t=1
= [T;I(Xn:x,x;)'r;]]_l('r;l Xn:x, .8,)
t=1 =1

=Q;'v,, (2.12.7)
where

Q, = T;I(Xn: x,x;)*r;l and v, =Y. Xn:x, & (2.128)
t=1

t=1

Substituting (2.12.5) and (2.12.6) into these expressions for Q,, and v,, we obtain

0, = 1 (n+1)/(2n)
T+ 1D/@r) (n+D@n+1)/6n%) |

1 n
=D 11 &

= . 2.12.9

Y [% z,zl(t/n)e,} @129

Clearly, we have

12

Q.— Q= [1/2 1/3} : (2.12.10)

For v,, it can be shown (see, e.g., Hamilton, 1994, pp. 458-460) that

Vo > N0, 62 Q) (2.12.11)

if {g,} is independent white noise with E(¢?) = o2 and E(¢}) < oco. Thus the
asymptotic distribution of (2.12.7) is normal with mean 0 and variance Q! (2 Q)-
Q! = 62 Q~!. Summarizing the discussion so far,

Proposition 2.11 (OLS estimation of the time regression): Consider the time
regression (2.12.1) where ¢, is independent white noise with E(¢?) = o2 and
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E(e}) < oo and let & and 8 be the OLS estimate of o and 8. Then

] v i)

As in the stationary case, @ is 1/n-consistent because /n(& — «) converges to a
(normal) random variable. The OLS estimate of the time coefficient, 8, too is con-
sistent, but the speed of convergence is faster: it is n3/2-consistent in that n3/2(§ —8)
converge to a random variable. In this sense, §is hyperconsistent.?

Hypothesis Testing for Time Regressions
Thus, the OLS coefficient estimates of the time regression are asymptotically nor-
mal, provided the sampling error is properly scaled. We now show that the defla-
tion of the sampling error by the standard error provides a scaling that makes the
resulting ratio — the ¢-value — asymptotically standard normal.

First consider the z-value for the null « = «p. Noting that

n -1 n -1]1
(1, 1) element of XX, =[1 0] XX, , (2.12.12)
(Saw) =0 o) [)]

the ¢-value can be written as
a—ap
Jer e 0T xx) 4]
V(@ — ag)
o A o k) [
_ V(@ — )
VoI O (2 %) ]
_ (@ — ap)
e o (S e Y; )

__ @) (by (2.12.8)). (2.12.13)
2.1 01Q; (]

1 =

(since [ 0] =1[1 0]Y,)

23Estimators that are n-consistent are usually called superconsistent. A prominent example of superconsistent
estimators arises in the estimation of unit-root processes; see Chapter 9. Some authors use the term “supercon-
sistent” more broadly, to refer to estimators that are n? -consistent with y > % In their language, 8 in the text is
superconsistent.
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It is straightforward (see review question 1) to show that s2 is consistent for o2.
And by (2.12.10), Q, —p Q. Thus by Lemma 2.4(c) and Proposition 2.11,

1st element of z

t-value for the null of ¢ = a9 — (2.12.14)

d /o2 x (1, 1) element of Q!

where z ~ N(0, 52 Q™). So the r-value for « is asymptotically N (0, 1), as in the
stationary case.

Using the same trick and noting that [0 »73%?] = [0 1]Y,, we can write the
t-value for the null of § = §g as

n3/2(§ — &)

t = .
Jeo ;9]

So the z-value for the coefficient of time, too, is asymptotically N (0, 1)! Inference
about « or § can be done exactly as in the stationary case.

(2.12.15)

QUESTIONS FOR REVIEW

1. (s is consistent for 02) Show that s> —, o'2. Hint: From (2.3.10), derive
e =e2—2(b— BV, X'% &+ (b= BT, Y, ' xxY, Y, (b— B).

Sum over ¢ to obtain
l - 2 1 - 2 2 7 1 7
—N ==Y "2~ Z(b—B)Yuvu+ —(b— B)Y,Q,Yu(b — B).
n =1 n =1 h h

2. (Serially uncorrelated errors) Suppose {e;} is a general stationary process,
rather than an independent white noise process, but suppose thatv, —4 N(0, V)
where V # 02 Q. Are the OLS estimators, & and 5 , consistent? Does Y (b —
B) converge to a normal random vector with mean zero? If so, what is the
variance of the normal distribution? [Answer: Q~!VQ~'.] Are the r-values
asymptotically normal? [Answer: Yes, but the variance will not be unity.]

Appendix 2.A: Asymptotics with Fixed Regressors

To prove results similar in conclusion to Proposition 2.5, we add to Assumption
2.1 the following.
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Assumption 2.A.1: X js deterministic. Asn — 00, Sxx — Xy, 4 nonsingular
matrix (conventional convergence here, because X is nonrandom).

Assumption 2.A.2: {g;} is ii.d. with E(g;) = 0 and Var(e;) = o2.

Proposition 2.A.1 (asymptotics with fixed regressors): Under Assumptions 2.1,
2.A.1, and 2.A.2, plus an assumption called the Lindeberg condition on {g;} (where
g =X; - &), the same conclusions as in Proposition 2.5 hold.

Rather than stating the Lindeberg condition, we explain why such condition is
needed. To prove the asymptotic normality of b, we would take (2.3.8) and show
that \/n g converges to a normal distribution. The technical difficulty is that the
sequence {g;} is not stationary thanks to the assumption that {x;} is a sequence of
nonrandom vectors. For example,

Var(g;) = E(¢7x;x)) = E(¢?)X;X, = 07X;X,

is not constant across observations. Consequently, neither the Lindeberg-Levy CLT
nor the Martingale Differences CLT is applicable. Fortunately, however, there
is a generalization of the Lindeberg-Levy CLT to nonstationary processes with
nonconstant variance, called the Lindeberg-Feller CLT, which places a technical
restriction on the tail distribution of g; to prevent observations with large x; from
dominating the distribution of /n 8.

Appendix 2.B: Proof of Proposition 2.10

This appendix provides a proof of Proposition 2.10. We start with the expression
for y; given in (2.10.12). The first part of the proof is to find an expression that is
asymptotically equivalent.

. R )
\/ﬁyf = ﬁy] - ; Z (xt—j &+ X '€t—j) x/’_l(b — B)
t=j+1
/ 1 . /
+vab—BY(~ Y xx_, )b - p)
t=j+1
';’ \/’—1)71 - "ll Z (xt—j -& + X ‘8t—j)/\/’7(b -B)

t=j+1

(since the last term above vanishes)
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’; «/E?j - E(Xt—j c &+ X 'Et—j)lﬁ(b -B)

Chapter 2

. [~
(since P Z (Xi—j - & + X - &) —p) Ex—j & +X%X -&_j))

t=j+1

= «/5)71 - I"jl'ﬁ(b —B) where n; =EX - &-j)
(since E(x;_; - &) = 0 by (2.10.15))

- ) alg
= ﬁn — ﬂj\/zsxx]; th < &
t=1

1 « ) 1<
= ‘/_; Z €r€i—j _““jﬁsxxl; ;Xz -&  (by (2.10.7))

t=j+1

1 n ‘1 n
’ -1
~ =D ee; — WVSE =) X e
a nt—l ! ! XXnt—l

1 « 1 <
(since +/n— E E1&1—j — /N— E E1E1—
n n
=] t=j+1
1

J
NG Ze,e,_j —p) 0 for each j)

t=1

1 « , 1 «
-1 .
~ Jn— E E16_j — ujﬁzxx - E X, - & (since Syy — Xix)
“ n t=1 n t=1 P

= c;\/;gj’

where

1 _ 1 o E_j&r
G =l_y-1 v & == Zgjn g: =
(K+1)x1) TExx B | k<) D (K+D)x1) X &

Thus, letting

Y

we have proved that

} . B.1
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where

1

(PK+Dxp)
Cp

ln
g =-) &
(p(K+1)x1) n;:l
g1r
8 =\ :
(p(K+1)x1)
8p:

The second part of the proof is to show that g, is a martingale difference
sequence, namely, that

E(gjt |gt—l’ g2, -") =0 (forj = 1v2a o vp)~

But this easily follows from the Law of Total Expectations, the fact that (g,_,,
g2, ... ) has less information than (X;, X;—1, ..., &1, &2, ... ), and (2.10.15).

Clearly, g, is ergodic stationary. Therefore, by the ergodic stationary Mar-
tingale Differences CLT, «/ng —q4 N(0, E(g;g,)). The next step is to calculate
E(g:g)). Its (Jj, k) block is

E(gjtg;ct)
(K+D)x(K+1))

_ I:E(Etzgt—jgt—k) E(xiatza,_j)]

E(x.&%6 1)  E(e2x,x))

By using the Law of Total Expectations and (2.10.16), it is easy to show that

40 2
o O oM } (2B.2)

o’p, 0'%

E(g.g,) = [

(K+D)x(K+1)

where §;; is “Kronecker’s delta,” which is 1 if j = k and 0 otherwise.
Since, as shown above, /ny ~ C'\/ngand \/n g —4 N(0, E(g,g,)), we have
a

Avar($) (= variance of limiting distribution of v/ny) = C'E(g,g,)C.
Its (j, k) element is

(j, k) element of Avar(y) = c;. E(g;. g, )¢k
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Substituting (2.B.2) into this and using the definition of ¢; in (2.B.1), we obtain,
after some simple calculations,

(J, k) element of Avar(y) = ot [0k — [L;- Z;xluk/az].

So
Vnp —~ N, o'l, —o'®),

where ® is defined in Proposition 2.10. Since /np ~ /np/c?, the limiting
distribution of \/np is the same as that of /n /0%, which is N(0, L, — ®). [

PROBLEM SET FOR CHAPTER 2

ANALYTICAL EXERCISES
1. (Taken from Example 3.4.2 of Amemiya (1985)) Let z, be defined by

0  with probability (n — 1)/n,

n?  with probability 1/n.

<
=
I

Show that plim,,_, ., z, = 0 but lim,,_, , E(z,) = o0.

2. Prove Chebychev’s weak LLN, by showing that Z, — . . Hint:
Zn— 1 = (20 — EG@W) + (EGw) — ).
So
(G — 10> = (2, — E@W)” +2(Z0 — EG))(EGa) — 1) + (EG) — 1)

Show that E[ (2, — E(Z,))(E(Zx) — u)] = 0.

3. (Consistency and Asymptotic Normality of OLS for Random Samples) Con-
sider replacing Assumption 2.2 by

Assumption 2.2’: {y;, x;} is a random sample.
and Assumption 2.5 by

Assumption 2.5': S = E(g;g;) exists and is finite.
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Prove the following simplified version of Proposition 2.1:

Proposition 2.1 for Random Samples: Under Assumptions 2.1, 2.3, 2.4, and
2.2, the OLS estimator b is consistent. Under the additional assumption of
Assumption 2.5’, the OLS estimator b is asymptotically normal with Avar(b)
given by (2.3.4).

(a) Show that this is a special case of Proposition 2.1 of the text.

(b) Give a direct proof of this proposition.
Hint: Use Kolmogorov and Linderberg-Levy.

4. (Proof of Proposition 2.4) We wish to prove Proposition 2.4. To avoid inessen-
tial complications, we assume as in the text that X = 1 (only one regressor).
What remains to be shown is that the sample mean of the first term on the RHS
of (2.5.3) converges in probability to some finite number. Prove it. Hint: Let
f=xg,and h = x . The Cauchy-Schwartz inequality states:

E(|f - hl) < VE(fD) E(hY),

E(lx}ei]) < /E(x2e?) E(x}).

By assumption, E(x?¢?) (= E(g?)) is finite, and by Assumption 2.6 E(x) is also
finite. So E(e,»x?) is finite and % Zi e,»x? —, some finite number by ergodic
stationarity.

So

5. (Direct proof that the change in SSR divided by o2 is asymptotically x2) In
Section 2.6, we proved that

(SSRg — SSRy)/s* - x> (#r)
as a corollary to Proposition 2.3. Give a direct proof, first by showing that

SSRg — SSRy = (V/ng)'S,, R(RS R)'RS_(/ng),
|

E—E - 8.
n_

6. (Optional, consistency of &) In this question we prove the claim made in Sec-
tion 2.8 that e, the OLS estimate for the regression of ei2 on z;, is consistent.
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Let & be the OLS estimate from
ef =Za+mn, 0 =& —E@E | x). (2.8.8)
(a) Make appropriate assumptions in addition to Assumptions 2.1 and 2.2 to
show that @ is consistent. Hint: You need a rank condition for z;.

(b) Derive:

A 3 1n /_11 n
a—a={—-) %z;) —) z;-v *
GEe) ak v

with v; = —2(b — B)'x; - & + (b — B)'x;x;(b — B). Hint: The discrepancy
between ¢? and the squared OLS residual e? from the OLS estimation of
the original equation y; = x;8 4 &; is given by (2.3.10). Substituting it into
(2.8.8) gives: ¢ = Z)a + (n; + v;).

(c¢) To avoid inessential complications, suppose that x; is a scalar x;. Then
% Y,z - v; in (%) becomes

n

—2(b B)% Y xez+ (b - ﬁ)z—:; x2;. (%)
i=1

i=1

Show that the plim of the first term is zero. Hint:
E(x;¢;2;) = E[z; - x; - E(&; | x;)]-

Show that the plim of the second term is zero if E(x,-zz,-) exists and is finite.

(d) Thus we have proved that & — & vanishes. Prove the stronger result that
/n(&@ — &) vanishes. Hint: Use Lemma 2.4(b).

7. (Optional, proof that WLS is asymptotically more efficient than OLS) In Sec-
tion 2.8, the WLS estimator is denoted 8 (V). We wish to prove that it is asymp-
totically more efficient than OLS, namely,

Avar(B(V)) < Avar(b).
But since Avar(?(V)) = Avar(’ﬁ(V)), it is sufficient to prove that
Avar(B(V)) < Avar(b).

Prove this last matrix inequality. Hint: In Chapter 1, we proved the algebraic
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result that
X'X) (X'VX)X'X)! > (X'vIX)! (%)

for any positive definite matrix V. (This follows from the fact that GLS is more
efficient than OLS; the LHS is (o'? times) the variance of the OLS estimator for
the generalized regression model while the RHS is (o2 times) the variance of
the GLS estimator.) Dividing both sides of (x} by n and taking probability limits
yields:

(plim 2X’X) ™ (plim 1X'VX) (plim 1X'X) ™" > plim(AX'V-'X)". ()

The RHS is Avar(B(V)) (see (2.8.7)). Show that the LHS equals Avar(b) =
D

8. Prove (2.9.7). Hint: If (i, y) is the least squares projection coefficients, it
satisfies

E(xx) m =E(x-y), (+)

or

m = [Exx)] "' E(x - y), (k%)

. [1 E [ Ew
Exx) = |:E(i) E(ii’)] Bty = [E(i.y)]

The first equation of (x) is u + E(X)’y = E(y). Use this to eliminate u from the
rest of the equations of (x) and then solve for y. In the process, use Var(x) =
E(xx') — E(x) E(X), Cov(x, y) = E(x - y) — E(X) E(y). Alternatively, use the
formula for the partitioned inverse (see (A.10) of Appendix A) to obtain

where

o] 1 +E®X) Var(X)"'E(X) — E(X)’ Var(x)~!
Exx')"' = Var®) -1 E(3 o1 .
— Var(x) ' E(X) Var(x)
Then substitute this into (xx).

9. (Proof of Proposition 2.9 for p = 1) Assume that {¢,} is an ergodic stationary
martingale difference sequence and that E(¢? | &,_1, &, ..., &1) = 0% < oc.
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Letg, =& -&_1 and
n

N ) R
yj:;zst'st—j (]:0’1)"‘)1:}/0

1=j+1
(a) Show that {g,} (r =2, 3,...) is a martingale difference sequence.
(b) Show that E(g?) = o%.

(c) Show that \/ny; —¢ N(0,0%) as n — oc.

(d) Show that \/n p; —4 N(0, 1). Hint: First show that /n 7, /a? —4 N(0, 1).
Then use Lemma 2.4(c).

10. (Asymptotics of sample mean of MA(2)) Let (¢_1, &, &1, &2, ... ) be i.id.
with mean zero and variance ng- Consider a process (y_1, Yo, Y1, ¥2, - .. ) gen-
erated by

y-1=£6_1, Yo=¢&+ 011, y=¢& + 051+ 6e 0 =12,...).

(This process is called a second-order moving average process (MA(2)); see
Chapter 6.

(a) Show that (yj, y2, ...) is covariance stationary. Derive the expressions for
the autocovariances y; (j =0,1,2,...).

(b) Let
T =By | ye—jo Ye—jo15 -+ -5 Y0, ¥-1)
—EW: | Ye—j=1, yi—j—2, -« -5 Yo, ¥-1)
t=j,j+1,...;j=0,1,2,...).
Show that
ro =&, 11 =01&_1, =062, r3=0, ry=0,...
Hint: There is a one-to-one mapping between (¢_j, &9, €1, ..., &) and

(-1, Y0, Y15 -+ Y1) SOE(y: | Y1—js ., y-1) =By | &—j, ..., €-1).
(c) Let

1
ynE;(y1+yz+---+yn)-
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Show that
Var(v/n y,) = yo + 2[(1 - %)m + (l - %)Vz}

(d) Because {y;} is not i.i.d, the Lindeberg-Levy CLT is not applicable.
However, it will be shown in Chapter 6 that v/# ¥, converges in distribution
to a normal random variable. What is the mean of the limiting distribution?
What is the variance of the limiting distribution (i.e., Avar(y,))? Hint: In
Lemma 2.1, set z, = v/ y,, and lim,_, (1 — g/n) = 1 for any fixed q.

11. (Optional, Breusch-Godfrey test for serial correlation) In this question, we
prove that the modified Box-Pierce Q is asymptotically equivalent to pF" from
auxiliary regression (2.10.21), where p is the number of lags and F is the F-
ratio for the hypothesis that the coefficients of e,_;, e,5, ..., €, are all zero.

First we establish the notation. Let

[0 0 -~ 0]
Xll € 0 e
€y (4] 0
= : s E = 9 € = ’
(nxK) , (nxp) e3 € (4] (nx1)
X, €n
_en—l €p-2 - en—p_
1w 1y ﬁll ﬁlZ )?1
’ﬁ — ;XX ;XE ﬁ—l — (IE\XK) (ixp) }A, — .
(K+pyx&+py | LE'X LRE|’ B2 B% |’ ah
n n (pxK) (pxp) v

Vp

where ¢, is the residual from the original regression y, = x;8 + ¢, and p; is
the sample j-th order autocovariance, defined in (2.10.8), calculated from the
residuals.

(@) The auxiliary regression (2.10.21) has K + p regressors. Let & be the vector
of the K + p coefficients. Show that

A =_ K x1
a:B 1 (:<)
4
(px1)

Hint: Since e is the vector of residuals from the original regression with X
as regressors, X'e = 0.
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(b) Show:
B B= x ,
rY [H JZIP:I
where
H =[Bes) o Blueas)].

Hint: The j-th column of %X’E is % ZLHI X; - ¢,j. Use (2.3.9) to show
that it converges in probability to E(x; - &,_;).

(c) (very easy) Show: a — 0.

(d) Let SSR here be the sum of squared residuals from the auxiliary, not the
original, regression. Show:

SSR 2
—_)O’,
n—K-—p o

where o is the variance of ¢,, the error term from the original regression.
Hint: [X | Ela@ = Ep. SoSSR = (e — Ep)' (e — Ep). 1Ee = p,
%E’E —5 o2 I,

(e) Show:

_ np'B%p
" SSR/(n—K —p)’

pF

Hint: Apply the formula for the F-ratio in (1.4.9) to the auxiliary regression.

(f) Use the formula for the partitioned inverse (see (A.10) of Appendix A) to
show

B2 = [%EE - (%E’X)S;,}(%X’E)]—l.

(9) Let p and ® be as in (2.10.8) and (2.10.19). Show that the modified Box-
Pierce @ defined in (2.10.20) is asymptotically equivalent to pF (i.e., the
difference between the two converges to zero in probability). Hint: Show
that both p F' and the modified Q are asymptotically equivalent to

np' (@, — ®)"'p/o?,

where ® is defined in (2.10.18).
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12. (Optional, Chow test for structural change in large samples) Consider apply-
ing the Chow test for structural change to the regression model with conditional
homoskedasticity described in Proposition 2.5. Since the issue of structural
change arises mostly in time-series models, we use “t” for the subscript. We
generalize Assumption 2.1 by allowing the coefficient vector to change at the
break date r:

x B +e fort=12...,r,
y:
t x;B,+¢& fort=r+1,r+2,...,n

We assume that the break date r is known. (When the break date is unknown,
the situation is more complicated and has been an object of recent research.
See Stock (1994, Section 5) for a survey.) The null hypothesis to test is that
B, = B,. This is a set of K restrictions. Let SSR; be the sum of squared
residuals from the first period (t = 1,2,...,r), SSR, be the SSR from the
second period (t =r 4+ 1,r + 2,...,n), and SSRg be the SSR from the entire
sample under the constraint 8, = B,. From Chapter 1, the Chow statistic is
defined as

_ [SSRg — (SSRy + SSRy)1/K
" (SSR; + SSR)/(n —2K)

Let by be the OLS estimate of 8, obtained from the first period and b, be the
OLS estimate of 8, from the second period.

(a) Show that K F is numerically equal to

EDMEE & A LS XX\ -1
ﬁ(bl—bz)’[(—" S+ (=) ] V(b — by),

where 52 = (SSR; +SSR,)/(n —2K). Hint: The n equations can be written
in matrix form as y = X8 + ¢, where

X = Xi 0 Xy =],
(nx2K) 0 Xuo! «xp )

r+1
) B,
X2 = : ) ﬂ [ .
((n—r)xK) QK x1) B2

“
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The null hypothesis that 8, = B, can be written as R8 = r where R =
[Ix : —Ix]and r = 0. Use Proposition 1.4.

(b) Let A = r/n. Show that, as n — oo with A fixed,
I 1 ¢ ,
— E XX, &> Ay, — E XX, = (1 — A) Xy,
n P n P
=1 t=r+1
where Xy, = E(x;x]).

(c) Show that, as n — oo with A fixed,

n

1 r
NG le,-s, —~ N, 102 ), lx, & = N, (1 = )0 Exy).
t=

B
Jn

t=r+

It can be shown (see, e.g., Stock, 1994, Section 5) that ﬁ Y i1 X:& and

% >t .1 X:& are asymptotically uncorrelated. So

1 r
WZIZI xt .8t — N(O I:A.O'zzxx 0 ])
% Ztn:r—}-l X - & d ’ 0 (1-2)0 2 yx

(d) Show that Avar(b; —by) = A '0?E + (1 — )" . Hint: Let

Show that

Avar(b) Ale?x ] 0

ar(b) = N
0 (1-n"le?x)

b, — by = [Ix : —Ix]b. Use Lemma 2.4(c).

(e) Finally, show that K F — 4 x*>(K) as n — oo with A = r/n fixed.

EMPIRICAL EXERCISES

1. Read the introduction and Sections I-IV of Fama (1975), before doing this
exercise. In the data file MISHKIN.ASC, monthly data are provided on:

Column [: year
Column 2: month
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Column 3: one-month inflation rate (in percent, annual rate; call this PAII)

Column 4: three-month inflation rate (in percent, annual rate; call this PAI3)

Column 5: one-month T-bill rate (in percent, annual rate; call this TB1)

Column 6: three-month T-bill rate (in percent, annual rate; call this TB3)

Column 7: CPI for urban consumers, all items (the 1982-1984 average is set
to 100; call this CPI).

The sample period is February 1950 to December 1990 (491 observations).
The data on PAII, PAI3, TBI, and TB3 are the same data used in Mishkin
(1992) and were made available to us by him. The T-bill data were obtained
from the Center for Research in Security Prices (CRSP) at the University of
Chicago. The T-bill rates for the month are as of the last business day of the
previous month (and so can be taken for the interest rates at the beginning of the
month). The construction of PAIl and PAI3 will be described toward the end
of this exercise; for the time being, we will use the inflation derived from CPI.

(a) (Library/internet work) To check the accuracy of the data in MISH-
KIN.ASC, find relevant tables from back issues of Treasury Bulletin or
Federal Reserve Bulletin for hard-copy data on T-bill rates. Or visit the
web sites of the Board of Governors (www.bog.frb.fed.us) or the Trea-
sury Department (www.ustreas.gov) to accomplish the same. Can you
find one-month T-bill rates? [Answer: Probably not.] Are the rates in
MISHKIN.ASC close to those in the relevant tables? Do they appear to be
at the beginning of the month?

(b) (Library/internet work) Find relevant tables from back issues of Monthly
Labor Review (or visit the web site of the Bureau of Labor Statistics,
www.bls.gov) to verify that the CPI figures in MISHKIN.ASC are correct.
Verify that the timing of the variable is such that a January CPI observation
is the CPI for the month. Regarding the definition of the CPI, verify the
following. (1) The CPI is for urban consumers, for all items including food
and housing, and is not seasonally adjusted. (2) Prices of the component
items of the index are sampled throughout the month. When is the CP1I for
the month announced?

(c) Is the CPI a fixed-weight index or a variable-weight index? Hint: Dig up
your old intermediate macro textbook; graduate macro textbooks won’t do.

The one-month T-bill rate for month ¢ in the data set is for the period from
the beginning of month ¢ to the end of the month (as you just verified). Ideally,
if we had data on the price level at the beginning of each period, we would
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calculate the inflation rate for the same period as (P, — P;)/P;, where P,
is the beginning-of-the-period price level. We use CPI for month ¢ — 1 for
P, (i.e., set P, = CPI,_;). Since the CPI component items are collected at
different times during the month, there arises the inevitable misalignment of
the inflation measure and the interest-rate data. Another problem is the timing
of the release of the CPI figure. The efficient market theory assumes that P, is
known to the market at the beginning of month ¢ when the T-bill rates for the
month are set. However, the CPI for month ¢+ — 1, which we take to be P,, is
not announced until sometime in the following month (month ¢). Thus we are
assuming that people know the CPI for month ¢ — 1 at the beginning of month ¢.

TSP Tip: When reading in the data and calculating the inflation rate, you
should exploit TSP’s ability to handle calendar dates. The initial part of
your TSP program might look like:

? The data are monthly, 1950:2 thru 1990:12

freq m;smpl 50:2 90:12;

? Read in the ASCII data

read(file='mishkin.asc’) year month pail pai3
tbl tb3 cpi;

? Calculate inflation rate and the real rate

smpl 50:3 90:12;

pai=((cpi/cpi(-1))**12-1)*100;

r = tbl-pai;

RATS Tip: Similarly, the initial part of your RATS program might look like:

* The data are monthly, 1950:2 thru 1990:12

cal 50 2 12;all 0 90:12

* Read in the ASCII data

open data mishkin.asc

data(org=obs) / year month pail pai3 tbl tb3 cp1
* Calculate inflation rate and real rate

set pal = ((cpi(t)/cpi(t-1))**12-1)*100

set r = tbhl(t)-pai(t)

(d) Reproduce the results in Table 2.1. Because the T-bill rate is in percent and
at an annual rate, the inflation rate must be measured in the same unit. Cal-
culate 7,1, which is to be matched with TBI, (the one-month T-bill rate
for month ¢), as the continuously compounded rate in percent:
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P12
[(=2)" - 1] x 100
P,
Gauss Tip: One way to compute the sample autocovariances by formula
(2.10.1) and the sample autocorrelations by (2.10.2) is the following.

Let z be the n-dimensional vector whose i-th component is z; and nobs
be the sample size, n.

z=z-meanc(z) ; /* de-mean the series */
nlag=12; /* lag length */
rho=zeros(nlag,1l);
j=1;do until js>nlag;
rho[j]=z’*shiftr(z’,j,0)'/nobs;
/* sample autocovariances */
J=j+1;endo;
rho=rho./(z'*z/nobs);
/* sample autocorrelations */

TSP Tip: Use the BJIDENT command. It does not calculate p-values, so
(unless you are willing to learn how to use TSP’s matrix commands) give
up the idea of producing p-values.

RATS Tip: Use CORRELATE or BOXJENK.

(e) Can you reproduce (2.11.9), which has robust standard errors? What is the
interpretation of the intercept?

Gauss Tip: For the heteroskedasticity-robust standard errors, you have to
calculate S by formula (2.5.1) with & = ¢; (OLS residual). An exam-
ple of the Gauss codes is the following. Let x be the n x K data
matrix and ehat the n-dimensional vector of OLS residuals. If g is
the n x K matrix whose i-th row is X; - ¢;, the Gauss code for generating
gisg = x.*ehat. The Gauss code for calculating Sis g'g/nobs,
where nobs is the sample size. This, however, does not exploit the fact
that S is symmetric. The more computationally efficient command is
moment (g, 0) /nobs.

TSP Tip: Use the option HCTYPE=0 of OLSQ.
RATS Tip: Use the ROBUSTERRORS option of LINREG.

(f) (Davidson-MacKinnon correction of White) The finite-sample properties
of the robust ¢-ratio might be improved by the Davidson-MacKinnon adjust-
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ment discussed in the text. Calculate robust standard errors using the three
formulas discussed in the text. The first is the degrees of freedom correc-
tion of multiplying S by n/(n— K). The second is to calculate S by formula
(2.5.5) with d = 1. The third is (2.5.5) with d = 2. These correspond to
TSP’s OLSQ options HCTYPE = 1, 2, 3.

Gauss Tip: Let p be the n-dimensional vector to store the p;’s of (2.5.5),

sxxinv = Sz, x = the data matrix X. One way to compute p is

p=zeros (nobs, 1) ;
1=1;do until isnobs;
plil=x[i, .]l*sxxinv*x([i,.]’/nobs;

1=i+1;endo;

(g) (Estimation under conditional homoskedasticity) Test market efficiency

by regressing 7, on a constant and TB1, under conditional homoskedas-
ticity (2.6.1). Compare your results with those in (e) and (f). Which part is
different?

(h) (Breusch-Godfrey test) For the specification in (g), conduct the Breusch-

Godfrey test for serial correlation with p = 12. (The nR? statistic should
be about 27.0.) Lete, (r = 1,2,...,n) be the OLS residual from the
regression in (g). To perform the Breusch-Godfrey test as described in the
text, we need to set e, (f = 0, 1, ..., —11) to zero in running the auxiliary
regression fort =1,2,...,n.

TSP Tip: The TSP codes for calculating the nR? statistic are the follow-
ing. residis the OLS residual from the original regression.

? Part (h): Breusch-Godfrey
resid=Gres;

smpl 52:1 52:12;

resid=0;

smpl 53:1 71:7;

olsqg resid ¢ tbl resid(-1) resid(-2) resid(-3)
resid(-4) resid(-5) resid(-6)
resid(-7) resid(-8) resid(-9)
resid(-10) resid(-11)
resid(-12);

set w=@nob*@rsq;cdf (chisq,df=12) w;

Here, w is the n R? statistic.


Keen
Rectangle


Large-Sample Theory 181

(i

V)

RATS Tip: The RATS codes for calculating the nR? statistic are the fol-
lowing. resid is the OLS residual from the original regression.

* Part (h): Breusch-Godfrey
set resid 53:1 71:7 = pai-%beta(l)-%beta(2)*tbl
gset resid 52:1 52:12 = 0
linreg resid 53:1 71:7;
# constant tbl resid{l to 12}
compute w = %$nobs*%rsquared
cdf chisquared w 12

Here, w is the n R? statistic.

Gauss Tip: As in the Gauss codes for (d), the shif tr command is useful
here. Let v (223 x 1) and x (223 x 2) be the vector of the depend-
ent variable and the matrix of regressors, respectively, from the previous
regression. Let b (2 x 1) be the vector of estimated coefficients from the
previous regression. Your Gauss program for creating the y and x for
the auxiliary regression might look like:

"@ Part (h): Breusch-Godfrey @";
y=y-x*b; /* residual vector from the previous
regression */
j=1;do until j>12;
x=x"shiftr(y’,j,0)";
j=j+1;endo;

(Reconstructing Fama) What are Fama’s own point estimate and standard
error of the nominal interest rate coefficient? Are they identical to your
results? (Fama uses different notation, so you need to translate his results
in our notation.) Why is his estimate of the intercept different from yours?
(One obvious reason is that our data are different, but there is another rea-
son.) Optional: What are the differences between his data and our data?

(Seasonal dummies) The CPI used to calculate the inflation rate is not sea-
sonally adjusted. To take account of seasonal factors while still using sea-
sonally unadjusted data in the regression, define twelve monthly dummies,
M1, M2,..., M12, and use them in place of a constant in the regression
in (g). Does this make any difference to your results? What happens if you
include a constant along with the twelve monthly dummies in the regres-
sion? Optional: Is there any reason for preferring seasonally unadjusted
data to seasonally adjusted?
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TSP Tip: Use the DUMMY command to create monthly dammies.
RATS Tip: Use the SEASONAL command to create monthly dummies.

A well-known problem with the CPI series is that its residential housing
component is home mortgage interest costs for periods before 1983 and a more
appropriate “rental equivalence” measure since 1983. The inflation variables
PAII and PAI3 in MISHKIN.ASC are calculated from a price index that uses
the rental-equivalence measure for all periods. For more details on this, see
Section II of Huizinga and Mishkin (1984). The timing of the variables is such
that a January observation for PA/l is calculated from the December and Jan-
uary data on the price index and PAI3 from the December and March data on
the price index. So, under the assumption that the price index is for the end of
the month, a January observation for PA/I is the inflation rate during the month,
and a January observation for PAI3 is the inflation rate from the beginning of
January to the end of March.

(k) Estimate the Fama regression for 1/53-7/71 using this better measure of
the one-month inflation rate and compare the results to those you obtained
in (e).

() Estimate the Fama regression for the post-October 1979 period. Is the nom-
inal interest rate coefficient much lower? (The coefficient should drop to
0.564.)

2. (Continuation of the Nerlove exercise of Chapter 1, p. 76)

(i) For Model 4, carry out White’s n R? test for conditional heteroskedasticity.
(nR? should be 66.546).

(i) (optional) Estimate Model 4 by OLS. This is Step 1 of the procedure of
Section 2.8. Carry out Step 2 by estimating the following auxiliary regres-
2 on a constant and 1/Q;. Verify that Step 3 is what you did

i

sion: regress e
in part (h).

(k) Calculate White standard errors for Model 4.

MONTE CARLO EXERCISES

1. (Degrees of freedom correction) In the model of the Monte Carlo exercise of
Chapter 1, we assumed that the error term was normal. Assume instead that ;
is uniformly distributed between —0.5 and 0.5.

(a) Verity that the DGP of the second simulation (where X differs across simu-
lated samples) satisfies Assumptions 2.1-2.5 and 2.7. (It can be shown that
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Assumption 2.2 [ergodic stationarity] is also satisfied. This is an implica-
tion of Proposition 6.1(d).)

{b) Run the second simulation of the Chapter 1 Monte Carlo exercise with the
uniformly distributed error term. In each replication, calculate the usual
t-ratio, as before, and compare it with two critical values. The first is the
same critical value (2.042) implied by the ¢ (30) distribution, and the second
is the critical value (1.96) from N (0, 1). Compute the rejection frequency
for each critical value. Which one is closer to the nominal size of 5%?

(Box-Pierce vs. Ljung-Box) We wish to verify the claim that the small sample
properties of the Box-Ljung Q statistic are superior to those of the Box-Pierce
Q. Generate a string of 50 i.i.d. random numbers with mean 0. (Choose your
favorite distribution.) Taking this string as data, do the following.

(1) Calculate the Box-Pierce Q and the Ljung-Box Q statistics (see (2.10.4)
and (2.10.5)) with p = 4. (The ensemble mean is O by construction. Nev-
ertheless take the sample mean from the series when you compute the auto-
correlations.)

(2) For each statistic, accept or reject the null of no serial correlation at a sig-
nificance level of 5%, assuming that the statistic is distributed as x2(4).

Do this a large number of times, each time using a different string of 50 i.i.d.
random numbers generated afresh. For each Q statistic, calculate the frequency
of rejecting the null. If the finite-sample distribution of the statistic is well
approximated by x2(4), the frequency should be close to 5%. Which statistic
gives you the frequency closer to the nominal size of 5%? Do we fail to reject
the null too often if we use the Box-Pierce Q?

ANSWERS TO SELECTED QUESTIONS

ANALYTICAL EXERCISES

3.

From (2.3.7) of the text, b — 8 = S;,}g. By Kolmogorov, 8y, —, E(x;x;) and
g —p 0. So b is consistent. By the Lindeberg-Levy CLT, \/ng —4 N(0, S).
The rest of the proof should now be routine.

What remains to be shown is that the LHS of (x*) equals Avar(b) = X ;XISE;XI.

1
Y x = plim —X'X
n
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and
S = E(e’x,x))
= E[E(¢] | x)x,x(]
= E[(z;a)x;x;] (by (2.8.1))

1 n
= plim — E (z;a)x;x; (by ergodic stationarity)
g
1
= plim —X'VX (by definition (2.8.4) of V).
n

EMPIRICAL EXERCISES

1c. The CPI is probably the most widely used fixed-weight price index.

1e. The negative of the intercept = r (the constant ex-ante real interest rate).
1g. Point estimates are the same. Only standard errors are different.

1i. Looking at Fama'’s Table 3, his R, coefficient when the sample period is 1/53 to
7/71 is 0.98 with a s.e. of 0.10. Very close, but not exactly the same. There are
two possible explanations for the difference between our estimates and Fama's.
First, in calculating the inflation rate for month ¢, 7, .| = (P, — P;)/ P, it is
not clear from Fama that CPI,_ rather than CPI, was used for P,. Second, the
weight for the CPI at the time of his writing may be for 1958. The weight for
the CPI in our data is for 1982-1984. Our estimate of the intercept (—0.868)
differs from Fama’s (0.00070) because, first, his dependent variable is the neg-
ative of the inflation rate and, second, the inflation rate and the T-bill rate are
monthly rates in Fama.

1j. The seasonally adjusted series manufactured by the BLS is a sort of two-sided
moving average. Thus, for example, seasonally adjusted CPI, depends on sea-
sonally unadjusted values of future CPI, which is not in [,. Thus if there is no
reason to take account of seasonal factors in the relationship between the infla-
tion rate and the nominal interest rate, one should use seasonally unadjusted
data. If there is a need to take account of seasonal factors, it is better to include
seasonal dummies in the regression rather than use seasonally adjusted data.
Inclusion of seasonal dummies does not change results in any important way.

1k. The R; coefficient drops to 0.807 from 1.014.
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CHAPTER 3

Single-Equation GMM

ABSTRACT

The most important assumption made for the OLS is the orthogonality between the
error term and regressors. Without it, the OLS estimator is not even consistent.
Since in many important applications the orthogonality condition is not satisfied, it
is imperative to be able to deal with endogenous regressors. The estimation method
called the Generalized Method of Moments (GMM), which includes OLS as a spe-
cial case, provides a solution. This chapter presents GMM for single-equation mod-
els, while the next chapter develops its multiple-equation extension. These chapters
deal only with linear equations. GMM estimation of nonlinear equations will be cov-
ered in Chapter 7. The major alternative to GMM, the maximum likelihood (ML)
estimation, will be covered in Chapter 8.

Reflecting the prevalence of endogenous regressors in economics, this chapter
starts out with a number of examples. This is followed by a general formulation
of endogenous regressors in Section 3.3. Section 3.4 introduces the GMM proce-
dure for the model of Section 3.3. Sections 3.5-3.7 are devoted to developing the
large sample properties of the GMM estimator and associated test statistics. Under
conditional homoskedasticity, the formulas derived in these sections can be simpli-
fied. Section 3.8 collects those simplified formulas. In particular, the two-stage least
squares (2SLS), the techniques originally designed for the estimation of simultane-
ous equations models, is a special case of GMM. The ML counterpart of 2SLS is
called limited-information maximum likelihood (LIML), which will be covered in
Section 8.6.

The empirical exercise of the chapter takes up the most widely estimated equa-
tion in economics, the wage equation. The equation relates the wage rate to the
individual’s various characteristics such as education and ability. Because education
is a choice made by individuals, and also because ability is imperfectly measured
in data, the regressors are likely to be endogenous. We apply the estimation tech-
niques introduced in this chapter to the wage equation and verify that the parameter
estimates depend on whether we correct for endogeneity.
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3.1 Endogeneity Bias: Working’s Example

A Simultaneous Equations Model of Market Equilibrium
The classic illustration of biases created by endogenous regressors is Working
(1927). Consider the following simple model of demand and supply:

g = ag+a1p; +u;, (demand equation) (3.1.1a)
q; = Bo+ Bipi +vi, (supply equation) (3.1.1b)
q? =¢q}, (market equilibrium) (3.1.1¢)

where qlfi is the quantity demanded for the commodity in question (coffee, say) in
period i, g; is the quantity supplied, and p; is the price. The error term u; in the
demand equation represents factors that influence coffee demand other than price,
such as the public’s mood for coffee. Depending on the value of u;, the demand
curve in the price-quantity plane shifts up or down. Similarly, v; represents supply
factors other than price. We assume that E(x;) = 0 and E(v;) = O (if not, include
the nonzero means in the intercepts ¢y and ). To avoid inessential complications,
we also assume Cov(u;, v;) = 0. If we define g; = q,-d = g7, the three-equation
system (3.1.1) can be reduced to a two-equation system:

gi = &g+ o1 p; +u;, (demand equation) (3.1.2a)
q; = Bo + Bipi +vi. (supply equation) (3.1.2b)

We say that a regressor is endogenous if it is not predetermined (i.e., not
orthogonal to the error term), that is, if it does not satisfy the orthogonality con-
dition. When the equation includes the intercept, the orthogonality condition is
violated and hence the regressor is endogenous, if and only if the regressor is cor-
related with the error term. In the present example, the regressor p; is necessarily
endogenous in both equations. To see why, treat (3.1.2) as a system of two simul-
taneous equations and solve for (p;, ¢;) as

__ﬂo—ao Vi — U

P e —h " a-p
_afo—aofi | oy — Biu,
e - B o —p

(3.1.3a)

(3.1.3b)

So price is a function of the two error terms. From (3.1.3a), we can calculate the
covariance of the regressor p; with the demand shifter #; and the supply shifter v;
to be
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Var(ui), Covipr. v) = Var(v;) ’
a; — B ar — By
which are not zero (unless Var(u;) = 0 and Var(v;) = 0). Therefore, price is
correlated positively with the demand shifter and negatively with the supply shifter,
if the demand curve is downward-sloping (¢; < 0) and the supply curve upward-
sloping (B; > 0). In this example, endogeneity is a result of market equilibrium.

Cov(p;, u;) = — (3.1.4)

Endogeneity Bias

When quantity is regressed on a constant and price, does it estimate the demand
curve or the supply curve? The answer is neither, because price is endogenous in
both the demand and supply equations. Recall from Section 2.9 that the OLS esti-
mator is consistent for the least squares projection coefficients. In the least squares
projection of g; on a constant and p;, the coefficient of p; is Cov(p;, q;)/ Var(p;),!
$O,

Cov{p;, gi
plim of the OLS estimate of the price coefficient = M. (3.1.5)

Var(p;)
To rewrite this ratio in relation to the price effect in the demand curve («;), use the
demand equation (3.1.2a) to calculate Cov(p;, ¢;) as

Cov(p;. q;) = a; Var(p;) + Cov(p;, u;). (3.1.6)

Substituting (3.1.6) into (3.1.5), we obtain the expression for the asymptotic bias
for oy
Cov(pi, u;)

plim of the OLS estimate of the price coefficient — ¢y = ———. (3.1.7)
Var(p;)

Similarly, the asymptotic bias for 8, the price effect in the supply curve, is

plim of the OLS estimate of the price coefficient — 8, = —————COV(pi’ v,~). (3.1.8)
Var(p;)
But, as seen from (3.1.4), Cov(p;, u;) # 0 and Cov(p;,v;) # 0, so the OLS
estimate is consistent for neither ¢; nor 8;. This phenomenon is known as the
endogeneity bias. It is also known as the simultaneous equations bias or simul-
taneity bias, because the regressor and the error term are often related to each
other through a system of simultaneous equations, as in the present example.

lFact: Let y be the least squares coefficients in E*(y | 1,x) = a +x'y. Theny = Var(x)_1 Cov(x, y).
Proving this was an analytical exercise for Chapter 2.
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In the extreme case of no demand shifters (so that u; = 0 for all i), we have
Cov(p;, u;) = 0, and the formula (3.1.7) indicates that the OLS estimate is con-
sistent for the demand parameter ¢;. In this case, the demand curve does not shift,
and, as illustrated in Figure 3.1(a), all the observed combinations of price and quan-
tity fall on the demand curve as the supply curve shifts. In the other extreme case
of no supply shifters, the observed price-quantity pairs trace out the supply curve
as the demand curve shifts (see Figure 3.1(b)). In the general case of both curves
shifting, the OLS estimate should be consistent for a weighted average of «; and
B1. This can be seen analytically by deriving yet another expression for the plim
of the OLS estimate:

oy Var(v;) + B Var(u;)

Var(v;) + Var(u;)
(3.1.9)

plim of the OLS estimate of the price coefficient =

Proving this is a review question.

Observable Supply Shifters

The reason neither the demand curve nor the supply curve is consistently estimated
in the general case is that we cannot infer from data whether the change in price
and quantity is due to a demand shift or a supply shift. This suggests that it might
be possible to estimate the demand curve (resp. the supply curve) if some of the
factors that shift the supply curve (resp. the demand curve) are observable. So
suppose the supply shifter, v;, can be divided into an observable factor x; and an
unobservable factor ¢; uncorrelated with x;.2

qi = Po+ Bipi + Poxi + & with 2 # 0. (supply) (3.1.2b")

Now imagine that this observed supply shifter x; is predetermined (i.e., uncorre-
lated with the error term) in the demand equation; think of x; as the temperature
in coffee-growing regions. If the temperature (x;) is uncorrelated with the unob-
served taste for coffee (u;), it should be possible to extract from price movements
a component that is related to the temperature (the observed supply shifter) but
uncorrelated with the demand shifter. We can then estimate the demand curve
by examining the relationship between coffee consumption and that component of
price. Let us formalize this argument.

2This decomposition is always possible. If the least squares projection of v; on a constant and x; is yg + Bax;.
define ; = v; — yg — Baxi, sov; = & + yo + Brx;. By definition, ¢; is uncorrelated with x;. Substitute this
equation into the original supply equation (3.1.2b) and submerge y; in the intercept. This produces (3.1.2b/).
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For the equation in question, a predetermined variable that is correlated with
the endogenous regressor is called an instrumental variable or an instrument.
We sometimes call it a valid instrument to emphasize that its correlation with the
endogenous regressor is not zero. In this example, the observable supply shifter x;
can serve as an instrument for the demand equation. This can be seen easily. Solve
the system of two simultaneous equations (3.1.2a) and (3.1.2b") for (p;, g:):

ﬁo—ao+ B2 xi+§i_ui’
ap—pB1 o — B a; — B
= a1 fo — apfi o182 X+ arg; — .Blui‘ (3.1.10b)
ar — B a; — B a; — B
Since Cov(x;, ;) = 0 by construction and Cov(x;, ;) = 0 by assumption, it
follows from (3.1.10a) that

pi = (3.1.10a)

Var(x,-) ;é 0.

Cov(x;, pi) = i 3

ar — P
So x; is indeed a valid instrument.
With a valid instrument at hand, we can estimate the price coefficient a; of

the demand curve consistently. Use the demand equation (3.1.2a) to calculate, not
Cov(p;, g;) asin (3.1.6), but Cov(x;, g;):

Cov(xi, gi) = a; Cov(x;, p;) + Cov(x;, u;)
=a; Cov(x;, p;) (Cov(x;, u;) = 0 by assumption).
As we just verified, Cov(x;, p;) # 0. So we can divide both sides by Cov(x;, p;)
to obtain

_ Cov(x;, gi)

a = . 3.1.11
"= Covixi, p) GLID
A natural estimator that suggests itself is
1 i between x; and g;
by = sample covariance between x; and g; (3.1.12)

sample covariance between x; and p;

This estimator is called the instrumental variables (IV) estimator with x; as the
instrument. We sometimes say “the endogenous regressor p; is instrumented by
Xi J

Another popular procedure for consistently estimating o) is the two-stage least
squares (2SLS). It is so called because the procedure consists of running two
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regressions. In the first stage, the endogenous regressor p; is regressed on a con-
stant and the predetermined variable x;, to obtain the fitted value, p;, of p;. The
second stage is to regress the dependent variable ¢; on a constant and p;. The use of
p; rather than p; distinguishes 2SLS from the simple-minded application of OLS
to the demand equation. The 2SLS estimator of «; is the OLS estimate of the p;
coefficient in the second-stage regression. So it equals®

sample covariance between p; and g; ) (3.1.13)

&125Ls = : -
sample variance of p;
To relate the regression in the second stage to the demand equation, rewrite
(3.1.2a) as

gi = oo+ a1 p; + [u; + a1(pi — p)1. (3.1.14)

The second stage regression estimates this equation, treating the bracketed term as
the error term. The OLS estimate of «; is consistent for the following reason. If the
fitted value p; were exactly equal to the least squares projection E*( pi | 1, x;), then
neither u; nor (p; — p;) would be correlated with p;: u; is uncorrelated because it is
uncorrelated with x; and p; is a linear function of x;, and (p; — p;) is uncorrelated
because it is a least squares projection error. The fitted value p; is not exactly equal
to E*( pi | 1, x;), but the difference between the two vanishes as the sample gets
larger. Therefore, asymptotically, p; is uncorrelated with the error term in (3.1.14),
making the 2SLS estimator consistent. Furthermore, since the projection is the best
linear predictor, the fitted value incorporates all of the effect of the supply shifter
on price. This suggests that minimizing the asymptotic variance is minimized for
the 2SLS estimator.

In the present example, the IV and 2SLS estimators are numerically the same
(we will prove this in a more general context). More generally, the 2SLS estimator
can be written as an IV estimator with an appropriate choice of instruments, and
the IV estimator, in turn, is a particular GMM estimator.

QUESTIONS FOR REVIEW

1. In the simultaneous equations model (3.1.2), suppose Cov(y;, v;) is not nec-
essarily zero. Is it necessarily true that price and the demand shifter u; are
positively correlated when «; < 0 and By > 07 [Answer: No.] Why?

3Fact: In the regression of y; on a constant and x;, the OLS estimator of the x; coefficient is the ratio of the
sample covariance between x; and y; to the sample variance of x;. Proving this was a review question of Section
1.2.
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2. (3.1.7) shows that the OLS estimate of the price coefficient in the regression of
quantity on a constant and price is biased for the price coefficient ;. Is the OLS
estimate of the intercept biased for «, the intercept in the demand equation?
Hint: The plim of the OLS estimate of the intercept in the regression is

Cov(pi. g:)

E(g:) — W E(p:).

But from (3.1.2a), E(g;) = ap + a1 E(py).
3. Derive (3.1.9). Hint: Show:

Var(v;) + Var(u;) Cov(p;. q1) = a Var(v;) + By Var(u;)
() — B1)? P = (o1 — Br)? '

4. For the market equilibrium model -(3.1.2a), (3.1.2b') (on page 189) with
Cov(u;, &;) = 0, Cov(x;, u;) = 0, and Cov(x;, ¢;) = 0, verify that price is
endogenous in the demand equation. Is it in the supply equation? Hint: Look

Var(p;) =

at (3.1.10a). Do we need the assumption that the demand and supply shifters
are uncorrelated (i.e., Cov(u;, ;) = 0) for &; v and & »s1s to be consistent?
Hint: Is x; a valid instrument without the assumption?

3.2 More Examples

Endogeneity bias arises in a wide variety of situations. We examine a few more
examples.

A Simple Macroeconometric Model
Haavelmo’s (1943) illustrative model is an extremely simple macroeconometric
model:

Ci=ay+oY;+u;, 0<a <1 (consumption function)

Y; =C; + I; (GNP identity),

where C; is aggregate consumption in year i, Y; is GNP, /; is investment, and ¢ is
the Marginal Propensity to Consume out of income (the MPC). As is familiar from
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introductory macroeconomics, GNP in equilibrium is

ap I; U;

Y; (3.2.1)

=l—a1 l—a;  1—ap

If investment is predetermined in that Cov(/;, u;) = 0, it follows from (3.2.1) that

Var(u;
Cov(¥. uy) = 22
1 —
Var(J,
Cov(l;. vy = ~add) g
1 - [24]

So income is endogenous in the consumption function, but investment is a valid
instrument for the endogenous regressor. A straightforward calculation similar to
the one we used to derive (3.1.7) shows that the OLS estimator of the MPC obtained
from regressing consumption on a constant and income is asymptotically biased:

COV(Y,‘, u,~) . 1 - (23}

Var(Y;) 14 A

phm &I,OLS — ) = > 0. (322)

This is perhaps the clearest example of simultaneity bias. The difference from
Working’s example of market equilibrium is that here the second equation is an
identity, which only makes it easier to see the endogeneity of the regressor. The
asymptotic bias can be corrected for by the use of investment as the instrument
for income in the consumption function. The role played by the observable supply
shifter in Working’s example is played here by investment.

Errors-in-Variables

The term errors-in-variables refers to the phenomenon that an otherwise predeter-
mined regressor necessarily becomes endogenous when measured with error. This
problem is ubiquitous, particularly in micro data on households. For example, in
the Panel Study of Income Dynamics (PSID), information on variables such as
food consumption and income is collected over the telephone. It is perhaps too
much to hope that the respondent can recall on the spot how much was spent on
food over a specified period of time.

The cross-section version of M. Friedman’s (1957) Permanent Income Hypoth-
esis can be formulated neatly as an errors-in-variables problem. The hypothesis
states that “permanent consumption” C; for household i is proportional to “per-
manent income” Y;*:

Cr=ky' with0 <k < I. (3.2.3)
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It is assumed that measured consumption C; and measured income Y; are error-
ridden measures of permanent consumption and income:

C;=C'4c¢ and Y=Y +y,. (3.2.4)

Measurement errors ¢; and y; are assumed to be zero mean and uncorrelated with
permanent consumption and income:

E(c;) =0, E(y:) =0, E(ciy) =0, (3.2.5)
E(Cc;) =0, E(¥/y) =0, E(Cfy) =0, E¥*c)=0.  (3.2.6)

Substituting (3.2.4) into (3.2.3), the relationship can be expressed in terms of mea-
sured consumption and income:

C,' = kY, + U; with U =¢; — ky, (327)

This example differs from the previous ones in that the equation does not
include a constant. So we should examine the cross moment E(Y;u;) rather than
the covariance Cov(Y;, u;) to determine whether income is predetermined. It is
straightforward to derive from (3.2.4)—(3.2.7) that

E(Yiu;) = —kE(y?) < 0.

So measured income is endogenous in the consumption function (3.2.7). Unlike
in the previous examples, the endogeneity is due to measurement errors. Using
the fact that the OLS estimator of the Y; coefficient in (3.2.7) is consistent for
the corresponding least squares projection coefficient E(C;Y;)/ E(Y?), we can also
derive from (3.2.4)—(3.2.7) that

kE[(Y})] -
E[(Y)2] +E())

plimkoLs = (3.2.8)
So the regression of measured consumption on measured income (without the inter-
cept) underestimates k. Friedman used this result to explain why the MPC from
the cross-section regression of consumption on income is lower than the MPC esti-
mated from aggregate time-series data.

Let us suppose for a moment that there exists a valid instrument x;. So
E(x;u;) = 0 and E(x;Y;) # 0. A similar argument we used for deriving (3.1.11)
establishes that

_ Ex:Cy)
— B(uY)

3.2.9
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So a consistent IV estimator is

~ sample mean of x; C;
Vo= D —. (3.2.10)
sample mean of x;Y;
But is there a valid instrument? Yes, and it is a constant. Substituting x; = 1

into (3.2.10), we obtain a consistent estimator of k which is the ratio of the sample
mean of measured consumption to the sample mean of measured income. This is
how Friedman estimated k.

Production Function

In many contexts, the error term includes factors that are observable to the eco-
nomic agent under study but unobservable to the econometrician. Endogeneity
arises when regressors are decisions made by the agent on the basis of such fac-
tors. Consider a cross-sectional sample of firms choosing labor input to maximize
profits. The production function of the i-th firm is

Qi = A4; - (L))" -exp(vy), 0< ¢y < 1, (3.2.11)

where Q; is the firm’s output, L; is labor input, A; is the firm’s efficiency level
known to the firm, and v; is the technology shock. In contrast to A;, v; is not
observable to the firm when it chooses L;. Neither A; nor v; is observable to the
econometrician.

Assume that, for each firm i, v; is serially independent over time. Therefore,
B = E[exp(v;)] is the same for all i 4 and the level of output the firm expects when
it chooses L; is

Ai - (L)" - B.

Let p be the output price and w the wage rate. For simplicity, assume that all the
firms are from the same competitive industry so that p and w are constant across
firms. Firm {’s objective is to choose L; to maximize expected profits

p-Ai-(L)" -B—w- L,

Take the derivative of this with respect to L;, set it equal to zero, and solve it for

4f v; for firm { were correlated over time, the firm would use past values of v; to forecast the current value of
v; when choosing labor input, and so B would differ across firms. Also, since the expected value of a nonlinear
function of a random variable whose mean is zero is not necessarily zero, B is not necessarily zero even if
E(v;) =0.
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L;, to obtain the profit-maximizing labor input level:
w7 o
L= (—) (AiBdy) . (3.2.12)
p

Let u; be firm i’s deviation from the mean log efficiency: u; = log(4;) —
E[log(A;)], and let ¢9 = E[log(A;)] (so E(u#;) = 0 and A; = exp(¢o + u;)). Then,
the production function (3.2.11) and the labor demand function (3.2.12) in logs can
be written as :

log(Q;) = ¢o + ¢1log(L;) + (v; + uy), (3.2.13)
log(Li) = o+ 7 i (3.2.14)
where
1
Bo = [log(w/p) — ¢o — log(¢1 B)].
¢ —1

Because all firms face the same prices, Sy is constant across firms. (3.2.14) shows
that, in the log-linear production function (3.2.13), log(L;) is an endogenous regres-
sor positively correlated with the error term (v; 4 u;) through u;. Thus, the OLS
estimator of ¢; in the estimation of the log-linear production function confounds
the contribution to output of u; with labor’s contribution. This example illus-
trates yet another source of endogeneity: a variable chosen by the agent taking
into account some error component unobservable to the econometrician.

QUESTIONS FOR REVIEW

1. In Friedman’s Permanent Income Hypothesis, consider the regression of C; on
a constant and Y;. Derive the plim of the OLS estimator of the ¥; coefficient in
this regression with a constant. Hint: The plim equals the ratio of Cov(C;, Y;)
to Var(Y;). Show that it equals

k Var(Y}*)
Var(Y}) + Var(y;)’

2. In the production function example, show that plim,_, ¢A>1‘0Ls = 1, where
(2’1,0LS is the OLS estimate of ¢»; from (3.2.13). Hint: Eliminate u; from the log

output equation (3.2.13) by using the labor demand equation (3.2.14).

3. In the production function example, suppose the firm can observe v; as well
as u; before deciding on labor input. How does the demand equation for labor
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(3.2.12) change? Show that log(Q;) and log(L;) are perfectly correlated. Hint:
log(Q;) will be an exact linear function of log(L;) without errors.

3.3 The General Formulation

We now provide a general formulation. It is a model described by the following set
of assumptions and is a generalization of the model of Chapter 2.

Regressors and Instruments
Assumption 3.1 (linearity): The equation to be estimated is linear:

yi=Z;8+8,’ (i:1,2,...,n),

where z; is an L-dimensional vector of regressors, 8 is an L-dimensional coeffi-
cient vector, and g; is an unobservable error term.

Assumption 3.2 (ergodic stationarity): Let x; be a K-dimensional vector to be
referred to as the vector of instruments, and let w; be the unique and nonconstant
elements of (y;, z;,x;).> {w;} is jointly stationary and ergodic.

Assumption 3.3 (orthogonality conditions): All the K variables in x; are pre-
determined in the sense that they are all orthogonal to the current error term:
E(x;r ;) =0 foralli andk (k = 1,2, ..., K).% This can be written as

E[x; - (y; —2:8)]=0 or E(g)=0,

where g; = X; - &;.

We remarked in Section 2.3 that, when the regressors include a constant, the orthog-
onality conditions about the regressors are equivalent to the condition that E(e;) =
0 and that the regressors be uncorrelated with the error term. Here, the orthogonal-
ity conditions are about the instrumental variables. So if one of the instruments is

5See examples below for illustrations of w;.

6 As was noted in Section 2.3, our use of the term predetermined may not be standard in some quarters of the
profession. All we require for the term is that the current error term be orthogonal to the current regressors. We
do not require that the current error term be orthogonal to the past regressors.
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a constant, Assumption 3.3 is equivalent to the condition that E(g;) = 0 and that
nonconstant instruments be uncorrelated with the error term.

The examples examined in the previous two sections can be written in this
general format. For example,

Example 3.1 (Working’s example with an observable supply shifter):
Consider the market equilibrium model of (3.1.2a) and (3.1.2b’) on page 189.
Suppose the equation to be estimated is the demand equation. The example
can be cast in the general format by setting

1 1
yi=¢qi, L=2, 4= o , 2 = ,ei=u, K=2,x = ,
(23] Pi Xi

and w; = (g;, pi, x;)’. Since the mean of the error term is zero, a constant is
orthogonal to the error term and so can be included in x;. It follows that x;,
which is assumed to be uncorrelated with the error term, satisfies the orthog-

onality condition E(x; &;) = 0. So it too can be included in x;.

The other examples of the previous sections can be similarly written as special
cases of the general model.

Having two separate symbols, x; and z;, may give you the impression that
the regressors and the instruments do not share the same variables, but that is not
always the case. Indeed in the above example, x; and z; share the same variable
(a constant). The instruments that are also regressors are called predetermined
regressors, and the rest of the regressors, those that are not included in x;, are
called endogenous regressors. A good example to make the point is

Example 3.2 (wage equation): A simplified version of the wage equation
to be estimated later in this chapter is

LW; = &1 + 8,8; + 3EXPR; + 8410, + ¢,

where LW, is the log wage of individual i, S; is completed years of school-
ing, EXPR; is experience in years, IQ; is IQ, and ¢&; is unobservable individ-
ual characteristics relevant for the wage rate. We assume E(g;) = 0 (if not,
include the mean of ¢; in §;). In one of the specifications we estimate later, we
assume that S; is predetermined but that /Q;, an error-ridden measure of the
individual’s ability, is endogenous due to the errors-in-variables problem. We
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also assume that EXPR;, AGE; (age of the individual), and MED; (mother’s
education in years) are predetermined. AGE; is excluded from the wage equa-
tion, reflecting the underlying assumption that, once experience is controlled
for, age has no effect on the wage rate. In terms of the general model,

1
1
Si S
yi :LW,', L= 4, z, = ' , K= 5, X, = EXPR, y
EXPR, AGE
10. i
o | MED,

and w; = (LW,, S;, EXPR;, IQ;, AGE;, MED;)'. As in Example 3.1, we can
include a constant in x; because E(g;) = 0. In this example, x; and z; share
three variables (1, S;, EXPR;). If, for example, §; were not included in x;,

that would amount to treating S; as endogenous.

If, as in this example, some of the regressors z; are predetermined, those prede-
termined regressors should be included in the list of instruments x;. The GMM
estimation of the parameter vector is about how to exploit the information afforded
by the orthogonality conditions. Not including predetermined regressors as ele-
ments of x; amounts to throwing away the orthogonality conditions that could have
been exploited.

Identification

As seen from the examples of the previous two sections, an instrument must be not
only predetermined (i.e., orthogonal to the error term) but also correlated with the
regressors. Otherwise, the instrumental variables estimator cannot be defined (see,
e.g., (3.1.11)). The generalization to the case with more than one regressor and
more than one predetermined variable is

Assumption 3.4 (rank condition for identification): The K x L matrix E(x;z;)
is of full column rank (i.e., its rank equals L, the number of its columns). We
denote this matrix by X ;.

To see that this is indeed a generalization, consider Example 3.1. With z; =
(1, p), x; = (1, x;), the X, matrix is

780 the cross moment E(x; z;) is assumed to exist and is finite. If a moment is indicated, as here, then by
implication the moment is assumed to exist and is finite.
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The determinant of this matrix is not zero (and hence is of full column rank) if and
only if Cov(x;, p;) = E(x; pi) — E(x;,)E(p;) # 0.

Assumption 3.4 is called the rank condition for identification for the fol-
lowing reason. To emphasize the dependence of g; (= x;-¢;) on the data and the
parameter vector, rewrite g; as

g =gwi;é) =x;- (v —z9). (3.3.1)
So the orthogonality conditions can be rewritten as

Elgw;:8]= 0 . (3.3.2)
(Kx1)

Now let § (L x 1) be a hypothetical value of § and consider the system of K
simultaneous equations in L unknowns (the L elements of §):

Elg(wi:8)]= 0 . (3.3.3)
(Kx1)
The orthogonality conditions (3.3.2) mean that the true value of the coefficient
vector, 8, is a solution to this system of K simultaneous equations (3.3.3). So
the assumptions we have made so far guarantee that there exists a solution to the
simultaneous equations system. We say that the coefficient vector (or the equation)
is identified if § = & is the only solution.
Because the estimation equation is linear in our model, the function g(w;; 8)is
linear in 3, as it can be written as x; - y; — x,-zgg. So (3.3.3) is a system of K linear
equations:

Ex-y) —Exz)§=0 or I, & = oy, (3.3.4)
(K xL)(Lx1) (Kx1)

where

Oxy = EX - yi), Exg = E(X,jZ;).

A necessary and sufficient condition that § = § is the only solution can be derived
from the following result from matrix algebra.®

Suppose there exists a solution to a system of linear simultaneous equations

8See, e.g.. Searle (1982, pp. 233-234).
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in x: Ax = b. A necessary and sufficient condition that it is the only
solution is that A is of full column rank.

Therefore, 8 = § is the only solution to (3.3.4) if and only if X, is of full column
rank, which is Assumption 3.4.

Order Condition for Identification
Since rank(Xy,;) < L if K < L, a necessary condition for identification is that

K (= #predetermined variables) > L (= #regressors). (3.3.5a)

This is called the order condition for identification. It can be stated in different
ways. Since K is also the number of orthogonality conditions and L is the number
of parameters, the order condition can.be stated equivalently as

#orthogonality conditions > #parameters. (3.3.5b)

By subtracting the number of predetermined regressors from both sides of the
inequality, we obtain another equivalent statement:

#predetermined variables excluded from the equation

> #endogenous regressors. (3.3.5¢)

Depending on whether the order condition is satisfied, we say that the equation is
o overidentified if the rank condition is satisfied and K > L,

» exactly identified or just identified if the rank condition is satisfied and
K=1L,

o underidentified (or not identified) if the order condition is not satisfied (i.e., if

K <L)

Since the order condition is a necessary condition for identification, a failure of the
order condition means that the equation is not identified.

The Assumption for Asymptotic Normality
As in Chapter 2, we need to strengthen the orthogonality conditions for the estima-
tor to be asymptotically normal.

Assumption 3.5 (g; is a martingale difference sequence with finite second
moments): Letg; = x; - ;. {g;} is a martingale difference sequence (so a for-
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tiori E(g;) = 0). The K x K matrix of cross moments, E(g;g;), is nonsingular.
We use S for Avar(g) (i.e., the variance of the limiting distribution of \/n g, where
g= % > &). By Assumption 3.2 and the ergodic stationary Martingale Differ-
ences CLT, S = E(g;g;).

This is the same as Assumption 2.5, and the same comments apply:

QUESTIONS FOR REVIEW

1.

If the instruments include a constant, then this assumption implies that the error
is a martingale difference sequence (and a fortiori serially uncorrelated).

A sufficient and perhaps easier to understand condition for Assumption 3.5 is
that

E(ei l ez, e, %, %1, ...,X) =0, (3.3.6)

which means that, besides being a martingale difference sequence, the error term
is orthogonal not only to the current but also to the past instruments.

Since g;g; = e,.z X;X;, S is a matrix of fourth moments. Consistent estimation of

S will require a fourth-moment assumption to be specified in Assumption 3.6
below.

If {g;} is senally correlated, then S (which is defined to be Avar(g)) does not
equal E(g;g;) and will take a more complicated form, as we will see in Chapter 6.

In the Working example of Example 3.1, is the demand equation identified?
Overidentified? Is the supply equation identified?

Suppose the rank condition is satisfied for the wage equation of Example 3.2.
Is the equation overidentified?

In the production function example, no instrument other than a constant is spec-
ified. So K = 1 and L = 2. The order condition informs us that the log output
equation (3.2.13) cannot be identified. Write down the orthogonality condition
and verify that there are infinitely many combinations of (¢, ¢) that satisfy
the orthogonality condition.

Verify that the examples of Section 3.2 are special cases of the model of this
section by specifying (y;, X;, z;) and writing down the rank condition for each
example.
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5. Show that the model implies

rank( T ) = rank( Tyz © Oy )
(KxL) (KxL) (Kx1)

Hint: § = § is a solution to (3.3.4). (Some textbooks add this equation to
the rank condition for identification, but the equation is implied by the other
assumptions of the model.)

6. (Irrelevant instruments) Consider adding another variable, call it §;, to x;.
Although it is predetermined, the variable is unrelated to the regressors in that
E(¢;z;¢) = Oforall £ (= 1,2,..., L). Is the rank condition still satisfied?
Hint: If a K x L matrix is of full column rank, then adding any L-dimensional
row vector to the rows of the matrix does not alter the rank.

7. (Linecarly dependent instruments) In Example 3.2, suppose AGE; = EXPR; +
S; for all the individuals in the population. Does that necessarily mean a failure
of the rank condition? [Answer: No.] Is the full-rank condition in Assumption
3.5 (that E(g;g;) be nonsingular) satisfied? Hint: There exists a K-dimensional
vector @ # 0 such that @’x; = 0. Show that «’ E(g;g;) = 0.

8. (Linear combinations of instruments) Let A be a ¢ x K matrix of full row
rank (so ¢ < K) such that AX,, is of full column rank. Let X; = Ax; (so X; is
a vector of ¢ transformed instruments). Verify: Assumptions 3.3-3.5 hold for
x; if they do for x;.

9. Verify that the model, consisting of Assumptions 3.1-3.5, reduces to the regres-
sion model of Chapter 2 if z; = x;.

3.4 Generalized Method of Moments Defined

The orthogonality conditions state that a set of population moments are all equal
to zero. The basic principle of the method of moments is to choose the para-
meter estimate so that the corresponding sample moments are also equal to zero.
The population moments in the orthogonality conditions are E[g(w;; é)]. Its sam-
ple analogue is the sample mean of g(w;; é) (where g(w;; §) is defined in (3.3.1))
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evaluated at some hypothetical value 8 of 8

- 1 <& .
g,(8) = ;Zg(wi; 3). (3.4.1)
i=1

(Kx1)
Applying the method of moments principle to our model amounts to choosing
a § that solves the system of K simultaneous equations in L unknowns: g, (3) =0,

which is the sample analog of (3.3.3). Because the estimation equation is linear,
g,(8) can be written as

- 1 <& -
g2,(8) = — Zx,— - (yi — z;8) (by definition (3.3.1) of g(w;; §))
n
i=1

- ,l, Xn:xi%‘ - (% ixiZZ)S = 5y ~ Sxd, (3.42)
i=1 i=1

where s,y and Sy, are the corresponding sample moments of o4y and X,;:

1 < 1
Syy = —in~yi and S, = ;inzg.
i=1 i

(kx1) 15T
So the sample analog g,,(S) = 01is a system of K linear equations in L unknowns:
Sxz 8 = Syy. (3.4.3)

This is the sample analogue of (3.3.4). If there are more orthogonality conditions
than parameters, that is, if X > L, then the system may not have a solution. The
extension of the method of moments to cover this case as well is the generalized
method of moments (GMM).

Method of Moments

If the equation is exactly identified, then K = L and X,; is square and invertible.
Since under Assumption 3.2 Sy, converges to X,, almost surely, Sy, is invertible
for sufficiently large sample size n with probability one. Thus, when the sample
size is large, the system of simultaneous equations (3.4.3) has a unique solution
given by

A 1
by =Sty = (- 2oxz) ~ Y xew (3.44)
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This estimator is also called the instrumental variables estimator with x; serving
as instruments. Because it is defined for the exactly identified case, the formula
assumes that there are as many instruments as regressors. If, moreover, z; = x; (all
the regressors are predetermined or orthogonal to the error term), then SIV reduces
to the OLS estimator. Thus, the OLS estimator is a method of moments estimator.

Generalized Method of Moments

If the equation is overidentified so that K > L, we cannot in general choose an
L-dimensional § to satisfy the K equations in (3.4.3). If we cannot set g, (3) exactly
equal to 0, we can at least choose § so that g,,(g) is as close to 0 as possible. To
make precise what we mean by “close,” we define the distance between any two
K-dimensional vectors & and 5 by the quadratic form (§ — n)’W(E — 1), where
W, sometimes called the weighting matrix, is a symmetric and positive definite
matrix defining the distance.’

Definition 3.1 (GMM estimator): Let Whea K x K symmetric positive definite
matrix, possibly dependent on the sample, such that w —p W as the sample size
n goes to infinity with W symmetric and positive definite. The GMM estimator
of 8, denoted §(W), is

8(W) = argmin J (3, W), (3.4.5)
;

where

JG@, W) =n-g,()Wg.(@).

(The reason the distance g, (3)'Wg,, (3) is multiplied by the sample size (n) becomes
clear in Section 3.6.) The weighting matrix is allowed to be random and depend
on the sample size, to cover the possibility that the matrix is estimated from the
sample. The definition makes clear that the GMM is a special case of minimum
distance estimation. In minimum distance estimation, plim g,(8) = 0, as here,
but the g, (-) function is not necessarily a sample mean.

Since g, (3) is linear in § (see (3.4.2)), the objective function is quadratic in s
when the equation is linear:

J(8, W) = n-(Sxy — Sx28)'W(Syy — Sxzd). (3.4.6)

9Do not let the word “weight” confuse you between GMM and weighted least squares (WLS). In GMM, the
weighting is applied to the sample mean g, while in WLS it applies to each observation.
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It is left to you to show that the first-order condition for the minimization of this
with respect to § is

S W s, =8, W S, 4. (3.4.7)
Axk) ExXK) (gx1y  (Lxk) KxK) (kxL) (Lx1)

If Assumptions 3.2 and 3.4 hold, then S, is of full column rank for sufficiently
large n with probability one. Then, since W is positive definite, the L x L matrix
S;‘z\/’i’S,(z is nonsingular. So the unique solution can be obtained by multiplying
both sides by the inverse of S/, WS,,. That unique solution is the GMM estimator:

GMM estimator: §(W) = (S,,WS,,) "' S,,Ws,,. (3.4.8)

If K = L, then S,; is a square matrix and (3.4.8) reduces to the IV estimator
(3.4.4). The GMM is indeed a generalization of the method of moments.

Sampling Error

For later use, we derive the expression for the sampling error. Multiplying both
sides of the estimation equation y; = z;8+-¢; from left by x; and taking the averages
yields

Sxy = Sxd + 8, (3.4.9)
where

g=

;|._.

Y xiE = - Zg(w,, 8) = g.(8). (3.4.10)
i=1

Substituting (3.4.9) into (3.4.8), we obtain

(W) —8 = (S,WS,,) 'S, Wg. (3.4.11)

QUESTIONS FOR REVIEW

1. Verify that (3.1.12) is the IV estimator of «; when the method of moments is
applied to the demand equation (3.1.2a) with (1, x;) as instruments.

2. If the equation is just identified, what is the minimized value of J (8, W)?

3. Even if the equation is overidentified, the population version, (3.3.4), of the
system of K equations (3.4.3) has a solution. Then, why does not the sample
version, (3.4.3), have a solution? Hint: The population version has a solution
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because the K x (L + 1) matrix [Ey; : 0] is of rank L. The rank condition
is a set of equality conditions on the elements of X,; and o,. Even if Sy,
and sy, converge to Xy, and oy, respectively, it does not necessarily follow
that [Sy; : Sxy] is of rank L for sufficiently large n. In contrast, Sy, is of full
column rank for sufficiently large n when its limit, X, is of full column rank.
This is because the full column rank condition for a matrix is a set of inequality
conditions on the elements of the matrix.

4. What is wrong with the following argument?

Even if the equation is overidentified, there is no problem finding a
solution to (3.4.3). Just premultiply both sides by S, to obtain

8,88 =S5 (3.4.12)
Since Sy; is of full column rank, S, Sy, is invertible. So the solution is

8 = (S.,S:) IS 8yy.

Hint: This & certainly solves (3.4.12), but does it solve (3.4.3)?

5. (Singular W) Verify that the GMM estimator (3.4.8) remains well-defined for
sufficiently large n even if W (= plim W) is singular, as long as X, WI,, is
nonsingular.

3.5 Large-Sample Properties of GMM

The GMM formula (3.4.8) defines GMM estimators, which are a set of estimators,
each indexed by the weighting matrix W. You will be delighted to know that every
estimator to be introduced in the next few chapters is a GMM estimator for some
choice of W. The task of this section is to develop the large-sample theory for the

- GMM estimator for any given choice of W, which can be carried out quite easily
with the techniques of the previous chapter. The first half of this section extends
Propositions 2.1-2.4 of Chapter 2 to GMM estimators. One issue that did not arise
in those propositions is which GMM estimators should be preferred to other GMM
estimators. This is a question of choosing w optimally and will be taken up in the
latter part of this section.



Single-Equation GMM 209

Asymptotic Distribution of the GMM Estimator
The large-sample theory for §(W) valid for any given choice of Wis

Proposition 3.1 (asymptotic distribution of the GMM estimator):

(a) (Consistency) Under Assumptions 3.1-3.4, plim S(VAV) =34.

h—>00

(b) (Asymptotic Normality) If Assumption 3.3 is strengthened as Assumption
3.5, then

V(@ (W) — §) > N(0. Avar(§(W))) asn — oo,
where
Avar@(W)) = (ZL,WE,,) ', WSWI,,(Z.WE,,)"'.  (35.1)

(Recall: X, = E(x;z}),S = E(gig) = E(ei2 x;x;), W = plim w.)

(c) (Consistent Estimate of Avar(S (W)) ) Suppose there is available a consistent
estimator, S, of S (K x K). Then, under Assumption 3.2, Avar(S(W)) is
consistently estimated by

—

Avar(3(W)) = (S, WS,,)~'S,,WSWS,,(S,,WS:)™!, (352

where Sy, is the sample mean of X;z;:

n
1
_ § : ’
sz = - X;Z;.
n -
i=1

(KxL)

The ugly looking expression for the asymptotic variance will become much prettier
when we choose the weighting matrix optimally. If you have gone through the
proof of Proposition 2.1, you should find it a breeze to prove Proposition 3.1. The
key observations are:

(1) Sy, —p Xy, (by ergodic stationarity)

2 g= nl > i1 &) —>p 0 (by ergodic stationarity and the orthogonality condi-
tions)

(3) /ng —4 N(0,S) (by Assumption 3.5).

Consistency immediately follows if you use (1), (2), and Lemma 2.3(a) on the
expression for the sampling error (3.4.11). To prove asymptotic normality, multiply
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both sides of (3.4.11) by +/n to obtain
JnBW) - 8) = (S, WSy,) 'S, Wo/ng (3.5.3)

and use (3), Lemma 2.3(a), and Lemma 2.4(c). Part (c) of Proposition 3.1 follows
immediately from Lemma 2.3(a).

Estimation of Error Variance

In Section 2.3, we proved the consistency of the OLS estimator, 52, of the error
variance. As was noted there, the result holds as long as the residual is from some
consistent estimator of the coefficient vector. The same is true here.

Proposition 3.2 (consistent estimation of error variance): For any consistent
estimator, 8, of 8, define §; = y; — z;6. Under Assumptions 3.1, 3.2, plus the
assumption that E(z;z.) (second moments of the regressors) exists and is finite,

Z re E(e?),

provided E(e?) exists and is finite.

The proof is very similar to the proof of Proposition 2.2. The relationship between
£; and ¢; is given by

b=y — 28 =5 —170-0), (3.5.4)

so that
2 =e2—208—8)z -6+ (8 —8)zz(d 9. (3.5.5)

Summing over i, we obtain
—ZA”- Zs — 203 — 8y~ Zz, & +(5—s)( Zz, ) @ — 9.
(3.5.6)
As usual, 1 %62 — E(}). Since 8 is consistent and L1¥2:2; converges in proba-

bility to some finite matrix by assumption, the last term vanishes. It is easy to show
that E(z;-¢;) exists and is finite.'” Then, by ergodic stationarity,

lOBy the Cauchy-Schwartz inequality, E(|z;¢¢; ]} < E(z%)- E(¢?), where zi¢ 1s the £-th element of z;. Both
quality. i€ i
E(zfe) and E(eiz) are finite by assumption.
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—%,2;-6; — some finite vector.
n p

So the second term on the RHS of (3.5.6), too, vanishes.

Hypothesis Testing
It should now be routine to derive from Proposition 3.1(b) and 3.1(c) the following.

Proposition 3.3 (robust £-ratio and Wald statistics): Suppose Assumptions 3.1-
3.5 hold, and suppose there is available a consistent estimate S of S (= Avar(g) =
E(gig)). Let

o~~~

Avar(8(W)) = (S, WS,,) 'S, WS WS, (S WS,,) "

Then:

(a) Under the null hypothesis Hy: §; = 8¢,

_ V(W) — &) _ 8e(W) — &,

N, 1),
e — SE? - NO. D
(Avar(8(W))),,
where (Avar(8(W))),, is the (¢,¢) element of Avar(8(W)) [which is
Avar(8¢(W))] and
1, —n
SE}; (robust standard error) = \/ —-(Avar(§(W))),,- (3.5.7)
n

(b) Under the null hypothesis Hy: RS = r where #r is the number of restrictions
(the dimension of r) and R (#r x L) is of full row rank,

e —

W =n- REW) - o) [RIAVarGW)IR'} ™ (REW) — 1) — x*(#).
(3.5.8)
(c) Under the null hypothesis Hy: a(8) = 0 such that A(8), the #a x L matrix of

first derivatives of a(8) (where #a is the dimension of a), is continuous and of
full row rank,

S

W = n-a@W)) {AGW)[AvarGW)IAGW))'} " aB(W)) — x> ().
(3.5.9
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For the Wald statistic for the nonlinear hypothesis, the same comment that we
made for Proposition 2.3 applies here: the numerical value of the Wald statistic is
not invariant to how the nonlinear restriction is represented by a(-).

Estimation of S

We have already studied the estimation of S (= E(g;g;) = E(¢?x;x})) in Section
2.5. The proposed estimator was, if adapted to the present estimation equation
Vi = Z;(s + &,

~ 1
S=-) &xx (3.5.10)
n

where £, = y; — zl’S and 8 is consistent for 8. The fourth-moment assumption
needed for this to be consistent for S is a generalization of Assumption 2.6.

Assumption 3.6 (finite fourth moments): E[(x;zz;¢)?] exists and is finite for all
k(=1,...,K)and?(=1,...,L).

It is left as an analytical exercise to prove

Proposition 3.4 (consistent estimation of S): Suppose the coefficient estimate é
used for calculating the residual &; for S in (3.5.10) is consistent, and suppose
S = E(g;g;) exists and is finite. Then, under Assumptions 3.1, 3.2, and 3.6, S
given in (3.5.10) is consistent for S.

Efficient GMM Estimator

Naturally, we wish to choose from the GMM estimators indexed by W one that has
the least asymptotic variance. The next proposition provides a choice of W that
minimizes the asymptotic variance.

Proposition 3.5 (optimal choice of the weighting matrix): A lower bound for
the asymptotic variance of the GMM estimators (3.4.8) indexed by W is given by
(x,, S~'%,;) . The lower bound is achieved if W is such that W (= plim W) =
g1 11

Because the asymptotic variance for any given W is (3.5.1), this proposition is
proved if we can show that

11The condition that W = S™1 is sufficient but not necessary for efficiency. A necessary and sufficient condi-
tion is that there exists a matrix C such that Ei; W = C E%, S™. See Newey and McFadden (1994, p. 2165).
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(ZL,WE,) '2 WSWE,, (2. WE,)"' > (2,87'2,)7" 3.5.11)

X

for any symmetric positive definite matrix W. Proving this algebraic result is left
as an analytical exercise.

A GMM estimator satisfying the efficiency condition that plimW =S~ will
be called the efficient (or optimal) GMM estimator. Simply by replacing w by
S-! (which is consistent for S7!) in the formulas of Proposition 3.1, we obtain

Efficient GMM estimator: 8(S™!) = (S,,87'Sy,) 'S, S 'syy, (3.5.12)

Avar3S™") = (2,8 1T, (3.5.13)
Avar3G-1) = (8,8 'S )" (3.5.14)

With W = §", the formulas for the robust ¢ and the Wald statistics in Proposition
3.3 become
5 S -5

Iy = , 3.5.15
¢ SE; ( )

where SE7 is the robust standard error given by

* 1 ;o —
and
W = n-a@E )Y [AGE " NE,LS 'S TAGE ™))} 'a@E ). (3.5.16)

To calculate the efficient GMM estimator, we need the consistent estimator
S. But Proposition 3.4 assures us that the S based on any consistent estimator
of & is consistent for S. This leads us to the following two-step efficient GMM
procedure:

Step 1: Choose a matrix W that converges in probability to a symmetric and pos-
itive definite matrix, and minimize J (3, W) over 8 to obtain 3(\"\V). There
is no shortage of such matrices w (e.g., W = I), but usually we set
W= S, The resulting estimator S(S;x') is the celebrated two-stage least
squares (as we will see in Section 3.8). Use this to calculate the residual
Ei=y — Z;S(W) and obtain a consistent estimator S of S by (3.5.10).

Step 2: Minimize J (8, §‘1) over 8. The minimizer is the efficient GMM estima-
tor.
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Asymptotic Power

Like the coefficient estimator, the r and Wald statistics depend on the choice of W.
It seems intuitively obvious that those statistics associated with the efficient GMM
estimator should be preferred in large samples. This intuition can be formalized in
terms of asymptotic power introduced in Section 2.4. Take, for example, the #-ratio
for testing Hg: §; = 8¢. The ¢-ratio is written (reproducing (3.5.7)) as

tEﬁ@@%m

¢ (3.5.17)

re—

(Avar(§(W))),,

The denominator converges to some finite number even when the null is false.
In contrast, the numerator explodes (its plim is infinite) when the null is false.
So the power under any fixed alternative approaches unity. That is, the test is
consistent. This is true for any choice of W, so test consistency cannot be a basis
for choosing W.

Next, consider a sequence of local alternatives subject to Pitman drift:

XY

n

for some given y # 0. Substituting (3.5.18) into (3.5.17), the ¢-ratio above can be

8% =8 + (3.5.18)

rewritten as

_ VbW -8 y

(3.5.19)
\/ (Avar(8(W))),, \/ (Avar(3(W))),,

te

Applying the same argument for deriving the asymptotic distribution of the ¢-ratio
in (2.4.4), we can show that t, —4 N (u, 1), where

Y

73 — .
V (Avar(6(W))),,

If the significance level is «, the asymptotic power is given by Prob(|x| > t,,2),

(3.5.20)

where x ~ N(u, 1) and ¢, is the level-a critical value. Evidently, the larger is
||, the higher is the asymptotic power. And |u| decreases with the asymptotic
variance. Therefore, the asymptotic power against local alternatives is maximized
by the efficient GMM estimator.
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Small-Sample Properties

Do these desirable asymptotic properties of the efficient GMM estimator and asso-
ciated test statistics carry over to their finite-sample distributions? The efficient
GMM estimator uses S, a function of estimated fourth moments, for W. Gener-
ally, it takes a substantially larger sample size to estimate fourth moments reliably
than to estimate first and second moments. So we would expect the efficient GMM
estimator to have poorer small-sample properties than the GMM estimators that do
not use fourth moments for W. The July 1996 issue of the Journal of Business
and Economic Statistics has a number of papers examining the small-sample dis-
tribution of GMM estimators and associated test statistics for various DGPs. Their
overall conclusion is that the equally weighted GMM estimator with W=1 gen-
erally outperforms the efficient GMM in terms of the bias and variance in finite
samples. They also find that the size of the efficient Wald statistic in small samples
far exceeds the assumed significance level. That is, if « is the assumed signifi-
cance level and ¢, is the associated critical value so that Prob(x? > ¢,) = «, the
probability in finite samples that the Wald statistic is greater than ¢, far exceeds «;
the test rejects the null too often. Unfortunately, however, like most other small-
sample studies, those studies fail to produce clear quantitative guidance which the
empirical researcher could follow.

QUESTIONS FOR REVIEW

1. Verify that all the results of Sections 2.3-2.5 are special cases of those of this
section. In particular, verify that (3.5.1) reduces to (2.3.4). Hint: X,; is square
if z; = X;.

2. (Singular W) Suppose W is singular but X, , WX, is nonsingular. Verify that
all the results of this section (except Proposition 3.5) remain valid.

3. (Asymptotically equivalent choice of W) Suppose W, - W, —p 0. Show
that

JndW)) — Vnd(Wy) — 0.
P
Hint:

VR8(W)) — /n§(W,)
= [(SuW1Sx) 'S, W1 — (S, W2S,,) 'S, W | v &.

/n g converges in distribution to a random variable. Use Lemma 2.4(b).
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4. (Three-step GMM) Consider adding to the efficient two-step GMM proce-
dure the following third step: Recompute S by (3.5.10), but this time using
‘the residual from the second step. Calculate the GMM estimator with this
recomputed S. Is this estimator consistent? Asymptotically normal? Efficient?
Hint: Verify by Proposition 3.4 that the recalculated S is consistent for S. Does
the asymptotic distribution of the GMM estimator depend on the choice of W if

-~

plim,_, ., W is the same?

5. (When z; is a strict subset of x,:) Suppose z; is a strict subset of x;. So x;
includes, in addition to the regressors (which are all predetermined), some other
predetermined variables. Are the efficient two-step GMM estimator and the
OLS estimator numerically the same? [Answer: No.]

6. (Data matrix representation of efficient GMM) Let B be the n x n diagonal
matrix whose i-th element is 51.2, where &; is the residual from the first-step
consistent estimation. That is,

Verify that

8 = [ZXX'BX)'X'Z]"'ZX(X'BX) Xy,
where X, y, and Z are data matrices for the instruments, the dependent variable,
and the regressors (they are defined in Section 3.8 below).

7. (GLS interpretation of efficient GMM) Let X, Z, and y be as in the previous
question. Then the estimation equation can be written as y = ZJ§ + &. Pre-
multiply both sides by X to obtain

X'y = X'Z6 + Xle.

Taking S to be the variance matrix of X’e and S to be its consistent estimate,
apply FGLS. Verify that the FGLS estimator is the efficient GMM estimator
(the FGLS estimator was defined in Section 1.6).

8. (Linear combination of orthogonality conditions) Derive the efficient GMM
estimator that exploits a linear combination of orthogonality conditions,

AE(g) =0,
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where A is a ¢ x K matrix of full row rank (so ¢ < K). |[Answer: Replace S,
by ASyy, Sy, by Asyy, and S by ASA’. Formally, the estimator can be written as
(3.4.8) with W= A’(A/S\A’)“A.] Verify: If g = K (so that A is nonsingular),
then the efficient GMM estimator is numerically equal to the efficient GMM
estimator associated with the orthogonality conditions E(g;) = 0.

3.6 Testing Overidentifying Restrictions

If the equation is exactly identified, then it is possible to choose 8 so that all the
elements of the sample moments g,(8) are zero and the distance

J(8, W) = n-g,(8) Wg,(8)

1s zero. (The § that does it is the TV estimator.) If the equation is overidentified,
then the distance cannot be set to zero exactly, but we would expect the minimized
distance to be close to zero. It turns out that, if the weighting matrix W is chosen
optimally so that plimW = S~!, then the minimized distance is asymptotically
chi-squared.

Let S be a consistent estimator of S, and consider first the case where the dis-
tance is evaluated at the true parameter value 8, J (8, S~'). Since by definition
2,08 =8(= Lyig) for § = §, the distance equals

J@.S ) =ngS'g=(np S (Vnp. (3.6.1)

Since \/ng —4 N(0,S) and S — S, its asymptotic distribution is x*(K) by
Lemma 2.4(d). Now if § is replaced by 3(§‘1), then the degrees of freedom change
from K to K — L. The intuitive reason is that we have to estimate L parameters
& before forming the sample average of g;. (We encountered a similar situation in
Chapter 1 in the context of the unbiased estimation of ¢2.) We summarize this as

Proposition 3.6 (Hansen’s test of overidentifying restrictions (Hansen, 1982)):
Suppose there is available a consistent estimator, S, of S (= E(g;g))). Under
Assumptions 3.1-3.5,

J@EEH.87) (=ne. @8 )8 e,6E) - XK - L),
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A formal proof is left as an optional exercise. Because the S given in (3.5.10) is
consistent (under the additional condition of Assumption 3.6), the minimized dis-
tance calculated in the second step of the efficient two-step GMM is asymptotically
x2(K — L).

Three points on the use and interpretation of the J test are in order.

o This is a specification test, testing whether all the restrictions of the model
(which are the assumptions maintained in Proposition 3.6) are satisfied. If the J
statistic of Proposition 3.6 is surprisingly large, it means that either the orthogo-
nality conditions (Assumption 3.3) or the other assumptions (or both) are likely
to be false. Only when we are confident about those other assumptions can we
interpret the large J statistic as evidence for the endogeneity of some of the K
instruments included in x;.

¢ Unlike the tests we have encountered so far, the test is not consistent against
some failures of the orthogonality conditions. The essential reason is the loss of
degrees of freedom from K to K — L. It is easy to show that g is related to its
sample counterpart, g, (3(S™")), as

Vg, 38 ) =Byng B=Ix —Su,S 'Sw) 'S, S, 3.6.2)

The problem is that, since ﬁsz = 0, this matrix B is not of full column rank. If
the orthogonality conditions fail and E(g;) # 0, then the elements of \/n g will
diverge to +00 or —oo. But, since B is not of full column rank, ﬁﬁ g and hence
J(8(S~"), S~1) may remain finite for some pattern of nonzero orthogonalities. 2

o Itis only recently that the small-sample properties of the test became a concern.
Several papers in the July 1996 issue of the Journal of Business and Economic
Statistics report that the finite-sample or actual size of the J test in small samples
far exceeds the nominal size (i.e., the test rejects too often).

Testing Subsets of Orthogonality Conditions

Suppose we can divide the X instruments into two groups: the vector x;; of K
variables that are known to satisfy the orthogonality conditions, and the vector x;,
of remaining K — K variables that are suspect. Since the ordering of instruments
does not change the numerical values of the estimator and test statistics, we can
assume without loss of generality that the last K — K| elements of x; are the suspect

12gce Newey (1985, Section 3) for a thorough treatment of this issue.
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instruments:

Xi2|} K — K, rows.

x; = ["“] } Ky rows, (3.6.3)

The part of the model we wish to test is
E(Xiz '8,’) =0. (364)

This restriction is testable if there are at least as many nonsuspect instruments as
there are coefficients so that K; > L. The basic idea is to compare two J statistics
from two separate GMM estimators of the same coefficient vector 8, one using only
the instruments included in x;;, and the other using also the suspect instruments x;,
in addition to x;;. If the inclusion of the suspect instruments significantly increases
the J statistic, that is a good reason for doubting the predeterminedness of x;,.

In accordance with the partition of x;, the sample orthogonality conditions
g, (3) and S can be written as

2in ()
- (Ky1x1) St Si2
2(8) = ~ , 8 = , (3.6.5)
%le) 2:,(8) (KXK) [:521 S22j|
(K—K)x1)

where
S = E(e? x:1x},), S12 = B(e7 x;1X),), Sa1 = E(e7 Xi2X1), So2 = E(e? xi2X),).
In particular, gl,,(g) can be written as

- 1 — =
gln(‘s) = ; inl'(yi - Zia) = Sxyiy — Sx1za’
i=1
where

1 o -
ley = ; inl'yh lez = ; ZX“Z;. (366)
i=1 i=1

For a consistent estimate S of S, the efficient GMM estimator using all the K
instruments and its associated J statistic have already been derived in this and the
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previous section. Reproducing them,

8 =(S,5'S,,)7"'S,, S s,y (3.6.7)
J =ng,8)S"'g.@3). (3.6.8)

The efficient GMM estimator of the same coefficient vector § using only the first
K, instruments and its associated J statistic are obtained by replacing x; by x;; in
these expressions. So

8 = [8,,,(51) " Sx,al 'S}, S11) Uswy (3.6.9)

Ji = n-g,(8)S11) ' g1 (3), (3.6.10)

where §11 is a consistent estimate of Sq;.
The test is based on the following proposition specifying the asymptotic distri-
bution of J — J; (the proof is left as an optional exercise).

Proposition 3.7 (testing a subset of orthogonality conditions!’):  Suppose
Assumptions 3.1-3.5 hold. Let X;, be a subvector of x;, and strengthen Assump-
tion 3.4 by requiring that the rank condition for identification is satisfied for X; (so
E(x;1z;) is of full column rank). Then, for any consistent estimators S of S and §11
of 811,

CEJ—Jl—d>x2(K—K1),

where K = #x; (dimension of x;), K1 = #x;; (dimension of x;;), and J and J;
are defined in (3.6.8) and (3.6.10).

Clearly, the choice of S and §11 does not matter asymptotically as long as they are
consistent. But in finite samples, the test statistic C can be negative. This problem
can be avoided and C can be made nonnegative in finite samples if the same Sis
used throughout, that is, if §1] in (3.6.9) and (3.6.10) is the submatrix of Sin (3.6.7)
and (3.6.8). This is accomplished by taking the following steps:

(1) do the efficient two-step GMM with full instruments x; to obtain S from the
first step, 8 and J from the second step;

(2) extract the submatrix §11 from S obtained from (1), calculate & by (3.6.9) using
this S¢; and J; by (3.6.10). Then take the difference in J.

13The test was developed in Newey (1985, Section 4) and Eichenbaum, Hansen, and Singleton (1985, Appendix
O).
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It is left as an optional analytical exercise to prove that C calculated as just described
is nonnegative in finite samples.

We can use Proposition 3.7 to test for the endogeneity of a subset of regressors,
as the next example illustrates.

Example 3.3 (testing whether schooling is predetermined in the wage
equation): In the wage equation of Example 3.2, suppose schooling S; is
suspected to be endogenous. To test for the endogeneity of §;, partition x; as

1
EXPR;
X = s Xip = S
AGE;

MED,

The vector of regressors, Z;, is the same as in Example 3.2. The first step is to
do the efficient two-step GMM estimation of § with x; = (1, EXPR;, AGE;,
MED;, S;) as the instruments. This produces J and the 5 x 5 matrix S
Second, extract the leading 4 x 4 submatrix §11 corresponding to x;; from
S and estimate the same coefficients § by GMM, this time with the fewer
instruments X;; and using this §11. The difference in the J statistic from the
two different GMM estimators of & should be asymptotically x2(1).

QUESTIONS FOR REVIEW

1. Does J(3(SY), SH =4 x2(K — L) where S and S are two different consis-
tent estimators of S?

2. Show: J(8(S™1),87!) = ns}, S~ (syy — Sk 8E1)).

3. Can the degrees of freedom of the C statistic be greater than K — L? [Answer:
No.]

4, Suppose K| = L. Does the numerical value of C depend on the partition of x;
between x;; and Xx;,?
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3.7 Hypothesis Testing by the Likelihood-Ratio Principle

We have derived in Section 3.5 the chi-squared test statistics for the null hypothesis
Hy: a(d) = 0 by the Wald principle. This section does the same by the likelihood-
ratio (LR) principle, which is to examine the difference in the objective function
with and without the imposition of the null. Derivation of test statistics by the
Lagrange Multiplier principle for GMM and extension to nonlinear equations are
given in Section 7.4.

In the efficient GMM estimation, the objective function is J (S, §‘1) for a given
consistent estimate S of S. The restricted efficient GMM estimator is defined as

restricted efficient GMM: 3(S~!) = argmin J(3,S™') subjecttoHp. (3.7.1)
5

The LR principle suggests that
LR=JGESH,SH-JE8YH,Sh (3.7.2)
should be asymptotically chi-squared. Indeed it is.

Proposition 3.8 (test statistic by the LR principle): Suppose Assumptions 3.1-
3.5 hold and suppose there is available a consistent estimator, S, of S (= E(gig)).
Consider the null hypothesis of #a restrictions Hy: a(8) = 0 such that A(8), the
#a x L matrix of first derivatives, is continuous and of full row rank. Define two
statistics, W and LR, by (3.5.16) and (3.7.2), respectively. Then, under the null, the
following holds:

(a) The two statistics are asymptotically equivalent in that their asymptotic distri-
butions are the same (namely, xz(#a) ).

(b) The two statistics are asymptotically equivalent in the stronger sense that their
numerical difference converges in probability to zero: LR — W —, 0. (By
Lemma 2.4(a), this result is stronger than (a).)

(c) Furthermore, if the hypothesis is linear so that the restrictions can be written as

Ré& = r, then the two statistics are numerically equal.

Proving this for the linear case, which is an algebraic result, is left as an analytical
exercise. For a full proof, see Section 7.4.
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Several comments about Proposition 3.8:

The advantage of LR over W is invariance: the numerical value of LR does not
depend on how the nonlinear restrictions are represented by a(-). On the other
hand, you have to write a nonlinear optimization computer program to find the
restricted efficient GMM when the hypothesis is nonlinear.

Proposition 3.8 requires that the distance matrix W satisfy the efficiency condi-
tion plimW = S~!. Otherwise LR is not asymptotically chi-squared. In con-
trast, the Wald statistic is asymptotically chi-squared without w satisfying the
efficiency condition.

The same estimate of S should be used throughout in the calculation of LR. Let
S and S be two different consistent estimators of S, and consider the statistic

JES ). STH-J3E N, § .

This statistic is what you end up with if you perform two separate two-step effi-
cient GMMs with and without the constraint of the null; S is the estimate of S
from the first step with the constraint, while S is from the first step without the
constraint. The statistic is asymptotically equivalent to LR (in that the difference
between the two converges in probability to zero), but in finite samples it may
be negative. Having the same estimate of S throughout ensures the nonnegativ-
ity of the statistic in finite samples. Researchers usually use the estimate from
unconstrained estimation (§) here, but the estimate from constrained estimation
is also valid because it is consistent for S under the null.

Part (b) of the proposition (the asymptotic equivalence in a stronger sense)
means that if the sample size is large enough and the hypothesis is true, then the
outcome (not just the probability of rejection or acceptance) of the test based
on LR will be the same as that based on W because the probability that the two
statistics differ numerically by an even tiny amount is zero in sufficiently large
samples.

For the numerical equivalence LR = W for the linear case to hold, the same
S must be used throughout to calculate not only LR but also the Wald statistic.
Otherwise LR and W are only asymptotically equivalent.

The LR Statistic for the Regression Model
Because the regression model of Chapter 2 is a special case of the GMM model
of this chapter, it may be useful to know how LR would look for that special case.
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Because x; = z; in the regression model, the (unrestricted) efficient GMM estima-
tor is OLS and J(§(S™!), S~!) = 0. Therefore,

LR=J3SE™H,S™, (3.7.3)

where 3(§“) is the restricted efficient GMM estimator. By Proposition 3.8, this
statistic is asymptotically chi-squared and is numerically equal to the Wald statistic
if the null is linear. As will be shown below, under conditional homoskedasticity,
this statistic can be written as the difference in the sum of squared residuals nor-
malized to the error variance.

Variable Addition Test (optional)

In the previous section, we considered a specification test based on the C statis-
tic for the endogeneity of a subset, x;; of instruments x; while assuming that the
other instruments X;; are predetermined. Occasionally, we encounter a special case
where z; = Xx;;:

yi =X, 8 + €. (3.7.4)

A popular method to test whether the suspect instruments x;; are predetermined is
to estimate the augmented equation

)
yi =X 8 +X,a+¢6 =Xy +e with y= |: il (3.7.5)
o

and test the null Hy: o« = 0. Testing is either by the Wald statistic W or by the
LR statistic, which is numerically equal to W. This test is sometimes called the
variable addition test. How is the test related to the C test of Proposition 3.7?

To calculate LR, we have to calculate two efficient GMM estimators of y with
the same instrument set X;: one with the constraint &« = 0 and one without. The
unrestricted efficient GMM estimator is the OLS estimator on the unconstrained
equation (3.7.5). The associated J statistic is zero. Let

~ 1 R
S=- CX; X, 3.7.6
oD exx (3.7.6)

where e; is the OLS residual from the unrestricted regression (3.7.5). If we use
this estimate of S, the restricted efficient GMM estimator of ¥ minimizes the J
function
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J();~§A]) = n'(sxy - Sxxf’)ls_l(sxy - Sw¥)

subject to ¢ = 0. Clearly, the restricted estimator can be written as

N ICR
y=|"9 |

where 3(§_1) is the efficient GMM estimator with X; as instruments on the restricted
equation (3.7.4). So

LR = n-(Syy — Sxx?)' S ™' (Sy — Sxx?)  (since J = 0 for unrestricted GMM)
= n'(sxy - Sxxls(’s\*l)),’s\‘l(sxy - Sxxls(g_l)) (since Syxy = Sxxls(g_l))-

This is none other than Hansen’s J statistic for the restricted equation (3.7.4) when
x; is the instrument vector. This statistic, in turn, equals the C statistic because the
Ji in Proposition 3.7 is zero in the present case. Therefore, all three statistics, W
from the unrestricted regression, LR, and C, are numerically equal to Hansen’s J,
provided that the same S is used throughout. That is, the variable addition test is
numerically equivalent to Hansen’s test for overidentifying restrictions.

QUESTIONS -FOR REVIEW

1. (LR for the regression model) Verify that, for the regression model where

Z; =X,
LR = yXnS) X'y — 2y’ X(nS) ' (X'X)8 + & (X'X)(nS) "} (X'X)3.

2. (Choice of S in variable addition test) Suppose you form S from the residual
from the restricted regression (3.7.4) and use it to form W, LR, and C. Are
they numerically equal? Are they asymptotically chi-squared? Hint: Is this §
consistent under the null?

3.8 Implications of Conditional Homoskedasticity

So far, we have not assumed conditional homoskedasticity in developing the asymp-
totics of the GMM estimator. This section considers the implication of imposing
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Assumption 3.7 (conditional homoskedasticity):
E(e? | x;) = o2

Under conditional homoskedasticity, the matrix of fourth moments S (=
E(gg) = E(:si2 X;X;)) can be written as a product of second moments:

S =023, (3.8.1)

where Xy = E(x;X;). As in Chapter 2, this decomposition of S has several impli-
cations.

e Since S is nonsingular by Assumption 3.5, this decomposition implies that o2 >
0 and X,y is nonsingular.

L The eStimatOf exploiting thlS structure Of S iS
’S‘ A2IZ ) , A2S (382)
i=1 o , -

where 42 is some consistent estimator to be specified below. By ergodic station-
arity, Syx —>as. Lxx. Thus, provided that &2 is consistent, we do not need the
fourth-moment assumption (Assumption 3.6) for S to be consistent.

Needless to say, all the results presented so far are valid under the extra
condition of conditional homoskedasticity. But many of the results and formu-
las can be simplified substantially under this extra condition, by just replacing S
by 02X 4 and the expression (3.5.10) for S by (3.8.2). This section collects those
simplifications.

Efficient GMM Becomes 2SLS
In the efficient GMM estimation, the weighting matrix is S~'. If we setSto (3.8.2),
the GMM estimator becomes

3(§_1) = [S;z(&z Sxx)_1 sz]_l S;Z(OA'Z Sxx)—_1 Sxy
= (S, S5 Sw) ' SL, S sy

XZ XX

= 8(Sg) = dasis, (3.8.3)

which does not depend on 4. In the general case, the whole point of the first step in
the efficient two-step GMM was to obtain a consistent estimator of S. Under con-
ditional homoskedasticity, there is no need to do the first step because the second-
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step estimator collapses to the GMM estimator with S,, used for §, S(S;xl). This
estimator, 8,15, is called the Two-Stage Least Squares (2SLS or TSLS).!* The
same equation can be estimated by maximum likelihood. Section 8.6 will cover
the ML counterpart of 2SLS, called the “limited-information maximum likelihood
estimator.”

The expression for Avar(SZSLs) can be obtained by substituting (3.8.1) into
(3.5.13):

Avar(8ys15) = 02(ZL, ) T 7. (3.8.4)

A natural estimator of this is

Avar(8,515) = 62-(S,, ST Syp) (3.8.5)

Xz XX

For 62, consider the sample variance of the 2SLS residuals:
1 < 5
5t = — i — 2,8 2, 3.8.6
o7 = ;()’ Z;d)s15) ( )

(Some authors divide the sum of squares by n — L, not by n, to calculate 52.) By
Proposition 3.2, (3.8.6) —, o?if E(z;z;) exists and is finite. Thus S defined in
(3.8.2) with this &2 is consistent for S.

Substituting (3.8.2) into (3.5.15) and (3.5.16), the ¢-ratio and the Wald statistic
become

Q _ 5 52
f = SasLs.e — O with SE, = \F_.((s;{z Sor Sxt) 1) 4y (3.8.7)
n

SE,
a(8ss1s) [A(SZSLS)(S;Z Sex sz)_lA(SZSLS)/]- 'a(82s15)
=n- ~ . (38.8)
o
J Becomes Sargan’s Statistic
When W is set to (6%8) !, the distance defined in (3.4.6) becomes
o Xy — sz/_l X_SXZS
I3 628p0™") = 0.2 Sx0) Ssx Sy ) (3.8.9)

62

14-This estimator was first proposed by Theil (1953).
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Proposition 3.6 then implies that the distance evaluated at the efficient GMM esti-
mator under conditional homoskedasticity, §,s15, is asymptotically chi-squared.
This distance is called Sargan’s statistic (Sargan, 1958):

(Sxy - SXZSZSLS)/S;XI (Sxy - szs2SLS)
A 2 .
o

Sargan’s statistic = n- (3.8.10)

We summarize our results so far as

Proposition 3.9 (asymptotic properties of 2SLS):

(a) Under Assumptions 3.1-3.4, the 2SLS estimator (3.8.3) is consistent. If
Assumption 3.5 is added, the estimator is asymptotically normal with the asymp-
totic variance given by (3.5.1) with W = (0°E)~!. If Assumption 3.7 (con-
ditional homoskedasticity) is added to Assumptions 3.1-3.5, then the estimator
is the efficient GMM estimator.

Furthermore, if E(2;z)) exists and is finite,'> then

(b) the asymptotic variance is consistently estimated by (3.8.5),
(c) t,in (3.8.7) =4 N(0,1), W in (3.8.8) —4 x*(#r), and
(d) the Sargan statistic in (3.8.10) >4 x2(K = L).
Proposition 3.8 states that the LR statistic, which is the difference in J with and

without the imposition of the null hypothesis, is asymptotically chi-squared. Since
J can be written as (3.8.9), we have

. (Sxy - szs)ls;xl (Sxy - szs) - (Sxy - SXZSZSLS)’S;XI(Sxy - SXZSZSLS)

ILR=n %2

k]

3.8.11)

where & is the restricted 2SLS estimator which minimizes (3.8.9) under the null
hypothesis.’® In Proposition 3.8, the use of the same S guaranteed the statistic

2 ensures the

to be nonnegative in finite samples. Here, deflation by the same &
statistic to be nonnegative. If the hypothesis is linear, then this LR is numerically

equal to the Wald statistic W.

15This additional assumption is needed for the consistency of 62; see Proposition 3.2.
16 This statistic was first derived by Gallant and Jorgenson (1979).
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Small-Sample Properties of 25LS

There is a fairly large literature on the finite-sample distribution of the 2SLS esti-
mator (see, e.g., Judge et al. (1985, Section 15.4) and Staiger and Stock (1997,
Section 1)). Some studies manage to derive analytically the exact finite-sample
distribution of the estimator, while others are Monte Carlo studies for various
DGPs. The analytical results, however, are not useful for empirical researchers,
because they are derived under the restrictive assumptions of fixed instruments and
normal errors and the analytical expressions for distributions are computationally
intractable.

For the case of a single regressor and a single (stochastic) instrument with
normal errors, Nelson and Startz (1990) derive the exact finite-sample distribution
of the 2SLS estimator that is fairly simple and easy to calculate. They also show
that, when the instrument is “weak” in the sense of low explanatory power in the
first-stage regression of the regressor on the instrument, a mass of the distribution
of the sampling error SZSLS — & remains apart from zero until the sample size gets
really large.

Their work illustrates the need for reporting the R? for the first-stage regres-
sions; if the R? is low, we should suspect the large-sample approximation to the
distribution of the 2SLS estimator to be poor (you will see a dramatic example in
part (g) of the empirical exercise). Recently, Staiger and Stock (1997) proposed an
alternative asymptotic approximation to the finite-sample distribution of the 2SLS
and other estimators and associated test statistics, for the case of “weak” instru-
ments. Their device is to look at a sequence of models along which the coefficients
of the instruments in the first-stage regressions converge to zero. (Analytical Exer-
cise 10 works out this type of asymptotics for the simple case of one regressor and
one instrument.)

Alternative Derivations of 2SLS
If we define data matrices as

x’l z h)!
X’ z y
2 2 72
X = ) Z = . ) y = . ’
(nxK) : (nxL) : (nx1) :
’ !
X, z, In

then it is easy to see that the 2SLS estimator and associated statistics can be written
as
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895 = [ZX(X'X)'X'Z]'ZXX'X) X'y
= (Z'PZ)"'Z'py, (3.8.3)

where P = X(X'X) !X’ is the projection matrix,

—

Avar(8y519) = n-62[ZX(X'X)"'X'Z)" = n-62(Z'PZ)". (3.8.5)
6’2 = 2 where & = y- ZS2SLS- (386/)
n
5 -4
f = 2SLS, ¢ ¢ (3.8.7")

S (ZXx0-XZ)1),

. . N o,
a(dss1s)’ [A(32SLS)(Z/X(X,X)_IX/Z)_lA(‘SZSLS),] a(dzs1s)

W= 53 (3.8.8)
% — Z3YP(y — Z3
J (4, (&Z‘Sxx)_l) = Y )Az(y ) (3.8.9)
%)
... &Pé ,
Sargan’s statistic = ——. (3.8.10)
g

Using this formula, we can provide two other derivations of the 2SLS estimator.

2SLS as an IV Estimator

Let z; (L x 1) be the vector of L instruments (which will be generated from x; as
described below) for the L regressors, and let Z be the n x L data matrix of those
L instruments. So the i-th row of Z is z;. The IV estimator of § with Z; serving as
instruments is, by (3.4.4),

. N B [y s 15y

Sy = (;X;Zizi) ;;zi'y,; = (Z'7)"'Zy. (3.8.12)
1= 1=

Now we generate those L instruments from x; as follows. The £-th instrument is

the fitted value from regressing z;; (the £-th regressor) on x;. The n-vector of fitted

value is X(X'X) ! X’z,, where z, is the n-vector of the £-th regressor (i.e., the £-th

column of Z). Therefore, the n x L data matrix of instruments is

Z=XXX)"Xz....,XXX)"'X2)=XXX)"'XZ=PZ, (3.8.13)

where P is the projection matrix. Substituting this into the IV format (3.8.12) yields
the 2SLS estimator (see (3.8.3")).
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2SLS as Two Regressions
Instead of substituting the generated instruments z; into the IV format to estimate
the equation y; = z.8 + &;, consider regressing y; on z;. The coefficient estimate is

Z'Z)"'Z'y = (ZPPZ)"'Z'Py
= (Z'PZ)"'Z'Py (since P is symmetric and idempotent).

This is the 2SLS estimator. So the 2SLS coefficient estimate can be obtained in two
stages: the first stage is to regress the L regressors on x; and obtain fitted values z;,
and the second stage is to regress y; on those fitted values.

For those regressors that are predetermined and hence included in x;, there is no
need to carry out the first-stage regression because the fitted value is the regressor
itself. To see this, if z;, is predetermined and included in x; as the k-th instrument,
the n-vector of fitted values for the £-th regressor is Pz,, where z, is the n-vector
whose i-th element is z;,. But since z, is also the k-th column of X, Pz, = Px,.
Since P is the projection matrix, Px; = x;.

This derivation of the 2SLS is useful as it justifies the naming of the estimator,
but there is a pitfall. In the second-stage regression where y; is regressed on z;, the
standard errors routinely calculated by the OLS package are based on the residual
vector y — ZSZSLS- This does not equal the 2SLS residual y — ZS;SLS. Therefore,
the OLS standard errors and estimated asymptotic variance from the second stage
cannot be used for statistical inference.

When Regressors Are Predetermined

When all the regressors are predetermined and the errors are conditionally homo-
skedastic, there is a close connection between the distance function J for efficient
GMM and the sum of squared residuals (SSR). From (3.8.9") on page 230,

JG. 6 80y = Y= Z3)'P(y — 7.3)

&2
y'Py — 2y'PZ3 + 5 Z/PZ3$
Py — 2y'Z8 + 3 ZZ8
= vy yAZ (since PZ = Z when z; C x;)
g
_ (y-Z3)(y—28) yy-—yPy
- 52 - 52

_ -2 -28) G-He-§

52 52

, (3.8.14)
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where y = Py is the vector of fitted values from unrestricted OLS. Since the
last term does not depend on 8, minimizing J amounts to minimizing the sum
of squared residuals (y — ZS)’(y — Zg). It then follows that (1) the efficient GMM
estimator is OLS (which actually is true without conditional homoskedasticity as
long as z; = x;), (2) the restricted efficient GMM estimator subject to the con-
straints of the null hypothesis is the restricted OLS (whose objective function is
not J but SSR), and (3) the Wald statistic, which is numerically equal to the LR
statistic, can be calculated as the difference in SSR with and without the imposition
of the null, normalized to 6 2. This last result confirms the derivation in Section 2.6
of the Wald statistic by the Likelihood Ratio principle.

Testing a Subset of Orthogonality Conditions

In Section 3.6 we introduced the statistic C for testing a subset of orthogonality
conditions. It utilizes two efficient GMM estimators of the same equation, one
using the full set x; of instruments and the other using only a subset, x;;, of x;.
To examine what expression it takes under conditional homoskedasticity, let X,
(n x K;) be the data matrix whose i-th row is x},. Because the two-step efficient
GMM estimator is the 2SLS estimator under conditional homoskedasticity, the two
GMM estimators are given by

8= (ZPZ)"'ZPy with P=XXX)'X, (3.8.15)
§=2P,Z2)'ZPy with P, =X, X/X;)"'X]. (3.8.16)

And the C statistic becomes the difference in two Sargan statistics:

¢'Pé — &'P&
_gre—enie (3.8.17)

where
&'é
-
As seen for the case without conditional homoskedasticity, C is guaranteed to be
nonnegative in finite samples if the same matrix S is used throughout, which under
conditional homoskedasticity amounts to using the same estimate of the error vari-
ance, 62, to deflate both &'P¢ and &'P,&, as in (3.8.17). By Proposition 3.7, this C
is asymptotically x2(K — K}).

Perhaps more popular is the test statistic proposed by Hausman and Taylor
(1980) and further examined by Newey (1985). 3 is asymptotically more efficient
than 8 because 3 exploits more orthogonality conditions. Therefore, Avar(S) >
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Avar(g). Furthermore, as you will be asked to show (Analytical Exercise 9), under
the same hypothesis guaranteeing C to be asymptotically chi-squared,

Avar( — &) = Avar(8) — Avar(3). (3.8.18)

(If you have been exposed to the Hausman test in the ML context, you can rec-
ognize this as the GMM version of the Hausman principle.) By Proposition 3.9,
Avar(8) is consistently estimated by

e——

Avar(8) = n-62.(Z'PZ)"". (3.8.19)
Similarly, a consistent estimator of Avar(8) is

Avar(8) = n-6%(Z'P,Z)"". (3.8.20)

Here, as in the calculation of the C statistic, the same estimate, &2, is used through-
out, in order to guarantee the test statistic below to be nonnegative. The resulting
estimator of Avar(d — 8) is

——

Avar(§ — §) = 62 n-[@P2)"' — (Z'PD)7Y). (3.8.21)

Hausman and Taylor (1980) have shown that (1) this matrix in finite samples is
positive semidefinite (nonnegative definite) but not necessarily nonsingular, but
(2) for any generalized inverse!” of this matrix, the Hausman statistic

H=n@~816"n[ZP2)" — @PL)"]} Vn(G -8
G 8§ [(ZPZ)"' —(Z'PL)'] (5 -8)

jaliy)
g~

(3.8.22)

is invariant to the choice of the generalized inverse and is asymptotically chi-
squared with min(K — K, L — s) degrees of freedom, where

s = #z; N x;; = number of regressors which are retained as instruments in x;; .

What is the relationship between C and H under conditional homoskedasticity?
It can be shown (see Newey, 1985) that:

17A generalized inverse, A™, of a matrix A is any matrix satisfying AA”A = A. If A is square and nonsin-
gular, then A~ is unique and equal to A~ 1,
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If K — K| < L — 5 so that both H and C have the same degrees of free-
dom, then H = C (numerically equal). Otherwise, the two statistics are
numerically different and have different degrees of freedom.

One frequent case where K — K| < L —s holds is when x;; is a subset of z;, that is,
when the suspect instruments are a subset of regressors. In this case, the formulas
(3.8.17) and (3.8.22) are two alternative ways of calculating numerically the same
statistic. In the case where K — K| > L — s, the degrees of freedom for H are less
than those for the C statistic (K — K). For this reason, the Hausman test, unlike
the C test, is not consistent against some local alternatives.'®

Testing Conditional Homoskedasticity

For the OLS case with predetermined regressors, as shown in Section 2.7, there
is a convenient n R? test of conditional homoskedasticity. In the present case, the
nR? statistic obtained by regressing the squared 2SLS residuals on a constant and
second-order cross products of the instrumental variables turns out not to have the
desired asymptotic distribution. A test statistic that is asymptotically chi-squared
is available but is extremely cumbersome. See White (1982, note 2).

Testing for Serial Correlation

For the OLS case, we developed in Section 2.10 tests for serial correlation in the
error term. More specifically, under (2.10.15) (which is stronger than Assumption
2.3 or 3.3) and (2.10.16) (which is stronger than Assumption 2.7 or 3.7 of con-
ditional homoskedasticity), the modified Box-Pierce Q given in (2.10.20) can be
used for testing the null of no serial correlation in the error term, and this statistic is
asymptotically equivalent (in the stronger sense of the plim of the difference being
zero) to the n R? statistic from regression (2.10.21). Can this test be extended to the
case where the regressors z; are endogenous? If the instruments x; satisfy (2.10.15)
and (2.10.16), then the argument in Appendix 2.B of Chapter 2 can be generalized
to produce a modified Q statistic that is asymptotically chi-squared under the null
of no serial correlation. However, the expression for the statistic is more compli-
cated than (2.10.20) and so is not presented here. This modified Q statistic for the
case of endogenous regressors does not seem to be asymptotically equivalent to the
nR? statistic from regression (2.10.21).

18The Hausman statistic can be generalized to the case of conditional heteroskedasticity, but it is not practical
because the degrees of freedom depend on the unknown values of the matrices Xxz and S. See Newey (1985).
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QUESTIONS FOR REVIEW

1.

(GMM with conditional homoskedasticity) In efficient two-step GMM esti-
mation, S in the second step is calculated from the first step by (3.5.10) using
the first-step residuals. Under conditional homoskedasticity, derive the asymp-
totic variance of the two-step estimator. Is it the same as (3.8.4)? Hint: Under
conditional homoskedasticity, (3.5.10) =, 62 Z .

(2SLS without conditional homoskedasticity) Is the 2SLS consistent when
conditional homoskedasticity does not hold? Derive the plim of (3.8.2) and
Avar(SZSLS) without assuming conditional homoskedasticity. Is the 2SLS as
efficient as the two-step GMM (i.e., is its asymptotic variance as small as
(3.5.13))? Hint: 2SLS is a GMM estimator with a choice of W that is not nec-
essarily efficient without conditional homoskedasticity.

(GLS interpretation of 2SLS) Verify that the 2SL.S estimator can be written as
a GLS estimator if S, and sy, are interpreted as the data matrix of regressors
and the data vector of the dependent variable and S,y as the variance matrix of
the error term.

Provide two cases in which SZSLS and 3(§_1) are asymptotically equivalent in
the sense that

ﬁ[szsw - 8(§—1)] —; 0.

Hint: Keywords are “conditional homoskedasticity” and “exactly identified.”

Suppose the equation is just identified. Show that 2SLS (3.8.3) reduces to IV
(3.4.4).

(Sargan as nR?) Prove that Sargan’s statistic (3.8.10) equals nR2 ,
g g uc

is the uncentered R-squared from a regression of & on X. Hint: Review Ques-
tion 8 of Section 1.2.

2
where R,

(When z; is a strict subset of X;) Suppose z; is a strict subset of x;. So x;
includes, in addition to the regressors (which are all predetermined), some other
predetermined variables. We have shown that the efficient GMM estimator is
OLS under conditional homoskedasticity. Does the result remain true without
conditional homoskedasticity? Hint: Review Question 5 of Section 3.5.
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3.9 Application: Returns from Schooling

Since Mincer’s (1958) pioneering study, the relationship between the wage rate
and schooling has been the subject of a large number of empirical and theoreti-
cal investigations. You might find the amount of attention puzzling because the
explanation of the positive relationship seems to be obvious: education enhances
the individual’s productivity. There are, however, other explanations. For exam-
ple, in the Spencian job market signaling model, more educated individuals receive
higher wages only because education is used as a signal of higher ability; although
education does not increase the individual’s earning capacity, there is a correlation
between the wage rate and schooling because both variables are influenced by the
third variable, ability. This section shows how to use the technique of this chapter
to isolate the effect of education on the wage rate from that of ability. One of the
earliest studies to address this i1ssue is Griliches (1976).

The NLS-Y Data

The data used by Griliches are the Young Men’s Cohort of the National Longitu-
dinal Survey (NLS-Y). This cohort was first surveyed in 1966 at ages 14-24, with
5,225 respondents, and was resurveyed at one- or two-year intervals thereafter. By
1969, about a quarter of the original sample was lost, but there are 2,026 indi-
viduals who reported earnings in 1969 and whose records are complete enough to
allow derivation of all the variables for analysis. A very attractive feature of the
NLS-Y is its inclusion of two measures of ability. One of them is the score on
the Knowledge of the World of Work (KWW) test administered by the NLS inter-
viewers in 1966. The other measure is the IQ score. All youths in the survey who
had completed ninth grade by 1966 were asked to sign waivers letting their school
supply the survey administrator their scores on various tests and other background
materials. The resulting School Survey, conducted in 1968, yielded data on differ-
ent mental ability scores, which were combined into IQ equivalents. Of the 2,026
individuals with information about the 1969 wage rate and other variables, the IQ
score is available for 1,362 individuals, reflecting the fact that the School Survey
was able to cover only two-thirds of the original sample. Our discussion here con-
cerns Griliches’s results based on this smaller sample. Table 3.1 reports the means
and standard deviation of key variables.
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Table 3.1: Characteristics of Young Men from the National
Longitudinal Survey

Means and Standard Deviations (in parentheses)

Variable
Sample size 1,362
Age in 1969 22.3
(3.2)
Schooling in years in 1969 (S) 12.5
(1.9)
Logarithm of hourly wages (in cents) in 1969 (LW) 5.68
(0.40)
Score on the Knowledge of the World of Work test (KWW) 35.1
7.9
IQ score (IQ) 97.7
(15.3)
Experience in years in 1969 3.7
(2.8)

SOURCE: Griliches (1976, Table 1).

The Semi-Log Wage Equation
The typical wage equation estimated in the literature is the semi-log form:

IW=a+BS+yA+8h+e, (3.9.1)

where LW is the log wage rate for the individual, S is schooling in years, A is a
measure of ability, h is the vector of observable characteristics of the individual
(such as experience and location dummies), & is the associated vector of coeffi-
cients, and ¢ is the unobservable error term with zero mean (in this section, the
individual subscript i will be dropped for notational simplicity). The semi-log
specification for schooling S is often justified by appealing to the well-established
stylized fact from large cross-section data (such as the Current Population Survey)
that the relationship between log wages and schooling is linear.!”

The schooling coefficient 8 measures the percentage increase in the wage rate
the individual would receive if she had one more year of education. It therefore

19For the functional form issue, see Card (1995).
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represents the marginal return from investing in human capital, which should be in
the same order of magnitude as the rate of return from financial assets. We assume
that the nonconstant regressors, (S, A, h), are uncorrelated with the error term ¢
so that the OLS is an appropriate estimation technique if ability A is included in
the regression along with S and h. In the rest of this section, we examine what
Griliches called the “ability bias” — biases on the OLS estimate of 8 that would
arise when ability A is not included in the regression and when its imperfect mea-
sure is included in its place.

Omitted Variable Bias

Sometimes the data set you work with has no measures of A (this is true for the
Current Population Survey, for example). What is the consequence of ignoring
ability by omitting A from the wage equation? We know from Section 2.9 that
the regression of LW on a constant, S, and h provides a consistent estimator of the
corresponding least squares projection, which can be written as

E'UW|1,Sh)=E"(@+BS+yA+8h+e|1,5h) (by(3.9.1)
—a+BS+8h+yE (A1, S, h+E'(|1,S, h). (3.92)

Since the regressors in (3.9.1) are all predetermined, we have E(g) = 0, E(S¢) =
0,and E(h-e) = 0. SoE*(e [ 1, S,h) = 0. Writing E*(A | 1, S,h) = 6, + 05 S +
6,h, (3.9.2) becomes

E'IW | 1,8 h) = (@+y6) + (B + y65)S + (8 + y-Op)h.

Therefore, the OLS coefficient estimate can be asymptotically biased for all the
included regressors. This phenomenon is called the omitted variable bias. In
particular,

plim EOLS = B + ybs.

That is, the OLS estimate of the schooling coefficient 8 includes the indirect effect
of ability on log wages through schooling (y6s) as well as the direct effect of
schooling (8). If 6 is positive, then B\OLS is asymptotically biased upward.

Using the sample of 1,362 individuals from the NLS-Y described above,
Griliches estimated the wage equation for 1969. The list of variables included in h
will not be given here; suffice to say that it includes experience in years and some
region and city-size dummies. Griliches’s estimate of the schooling coefficient
when ability is ignored in the wage equation is reproduced on line 1 of Table 3.2.
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On the face of it, the estimate looks good: the point estimate resembles the rate of
return one might get from financial assets, and it is sharply estimated as evidenced
by the high ¢-value.

IQ as the Measure of Ability

As already mentioned, the NLS-Y has two measures of ability, KWW (the score on
the Knowledge of the World of Work test) collected in 1966 and IQ (the IQ score).
Since the NLS-Y respondents were at least fourteen years old in 1966, KWW would
reflect the effect of schooling already undertaken, and so it cannot be a measure of
raw ability. The IQ score does not have this problem. If /Q were a perfect measure
of ability so that A can be equated with it, then the wage equation (3.9.1) could be
estimated consistently with /Q substituting for A. Griliches’s OLS estimates of
(schooling coefficient) and y (ability coefficient) when /Q is included in the equa-
tion are reported in line 2 of Table 3.2. Now the estimated schooling coefficient is
lower, confirming our prediction that the estimated schooling coefficient includes
the effect of ability on the wage rate when ability is omitted from the regression.

Errors-in-Variables
Of course the IQ score may not be an error-free measure of ability. If n is the
measurement error, /Q is related to A as

1Q=¢+A+n, (3.9.3)

with E(n) = 0. The interpretation of n as measurement error makes it reasonable
to assume that 7 is uncorrelated with A, S, h, and the wage equation error term &.
Substituting (3.9.3) into (3.9.1), we obtain

LW = (a —y¢)+ BS+yIQ + 8h+ (¢ — yn). (3.9.4)

We now illustrate for this example the general result that, if at least one of the
regressors is measured with error, the OLS estimates of all the regression coeffi-
cients can be asymptotically biased.

To examine the consequence of using the error-ridden measure IQ for A, con-
sider the corresponding least squares projection:

E*UW|1,5,1Q0,h) = (@ — y¢) + BS + yIQ + &'h
+E%e 11,510,y —yE*(n| 1,510, h). (39.5)
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Table 3.2: Parameter Estimates

Estimation equation: LW = « 4+ 8.5 + y1Q + other controls

. Excluded
, Estimation Coefficient of ,  Which regressor xeinde
Line no. technique SER R s end 0 predetermined
ndogenous’
q S 19 encos variables
1 OLS 0.065 — 0.332  0.309 none —
(13.2)
2 OLS 0.059 0.0019 0.331 0313 none —
(10.7) (2.8)
3 2SLS 0.052 0.0038 0332 — 10 MED, KWW, age,
(7.0) 2.4 age squared, back-

ground variables

SOURCE: Line 1: equation (B1) in Griliches (1976, Table 2). Line 2: equation (B3) in Griliches’s Table 2.
Line 3: line 3 in Griliches’s Table 5. Figures in parentheses are ¢-values rather than standard errors.
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Now consider E*(s | 1,8,1Q,h) in (3.9.5). Since E(¢) = 0 and (S, h) are
uncorrelated with €, (1, S, h) are orthogonal to €. IQ is also orthogonal to € because

E(Q &) =E[(¢ + A+ n)e] (by (3.9.3))
= E(ne) (since E(e) =0, Cov(A,¢e) =0)
=0.

Thus, E*(e | 1, S, IQ, h) = 0 in (3.9.5).

So the biases, if any, equal —yﬁ*(n | 1,8, 71Q,h)in (3.9.5). Let (05, 619, 6h)
be the projection coefficients of (S, I Q, h) in E*(n | 1, 8,10, h). By the forrnula
(2.9.7) from Chapter 2,

05 var(S)  Cov(S,10) Cov(S,h) |~ [ Cov(s, n)
o | = | Cov(IQ,S) Var(JQ) Cov(IQ, W) Cov(IQ,n) | . (3.9.6)
O Cov(h,S) Cov(h,IQ)  Var(h) Cov(h, 1)

In this expression, Cov(S, ) and Cov(h, n) are zero by assumption. Cov(IQ, n),
however, is not zero because

Cov(lQ,n) = E(IQ n) (since E(n) =0)
=El(¢+A+nn]l (by(3.93))
= ¢ E(n) + E(A n) + E(®)
= Var(n) (since E(n) = 0 and Cov(A, n) = 0).

That is, the measurement error, if uncorrelated with the true value, is necessarily
correlated with the measured value. Using the fact that

Cov(S,n) =0, Cov(IQ,n) = Var(n), and Cov(h,n)=0,
the projection coefficients can be rewritten as

Os
o | = Var(n)-a,
On

where
Var(S) Cov(S,IQ) Cov(S,h)
a = second column of | Cov(IQ, §) Var(IQ) Cov(IQ,h)
Cov(h, S) Cov(h, IQ) Var(h)
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Therefore, in the regression of LW on a constant, S, /Q, and h,

plim EOLS = B — y- Var(n)-(1st element of a), (3.9.7a)
plim yors = y — y- Var(n)-(2nd element of a). (3.9.7b)

Since the second element of a is positive (it is a diagonal element of the inverse of
a variance-covariance matrix), the OLS estimate of the ability coefficient is biased
downward. The direction of the asymptotic bias for the schooling coefficient, how-
ever, depends on the sign of the first element of a. Typically, Cov(S, IQ) would
be positive, so, barring unusually strong correlation of (S, IQ) with h, the first ele-
ment of a would be negative. Thus, we conjecture that E)LS is biased upward for
schooling.

2SLS to Correct for the Bias

To control for the bias, Griliches applies the 2SLS to the wage equation. To do
50, the set of instruments needs to be specified. The predetermined regressors,
(1, S, h), can be included in the set. The additional variables included in the set
to instrument /Q are age, age squared, KWW, mother’s education, and some other
background variables of the individual (such as father’s occupation). Those vari-
ables are thus assumed to be predetermined. Griliches’s 2SLS estimate for this
specification is reproduced in line 3 of Table 3.2.2° In accordance with our pre-
diction that the OLS estimate of the ability coefficient is biased downward, the
OLS estimate of the ability coefficient of 0.0019 in line 2 is lower than the 2SLS
estimate of 0.0038 in line 3. Our conjecture that EOLS of the schooling coefficient
when I is included in the regression is biased upward, too, is borne out by data
because the estimate of 8 of 0.059 in line 2 is higher than the estimate of 0.052 in
line 3.

To summarize, the “ability bias” studied by Griliches is that the schooling
coefficient is biased upward if ability is ignored and is biased in an unknown direc-
tion (but perhaps upward) if an imperfect measure of ability (/Q in the present case)
is included. The 2SLS provides a solution, but it is predicated on the assum