
Contents 

List of Figures xvii 

Preface xix 

1 Finite-Sample Properties of OLS 

1.1 The Classical Linear Regression Model 

The Linearity Assumption 
Matrix Notation 
The Strict Exogeneity Assumption 
Implications of Strict Exogeneity 
Strict Exogeneity in Time-Series Models 
Other Assumptions of the Model 
The Classical Regression Model for Random Samples 
"Fixed" Regressors 

1.2 The Algebra of Least Squares 
OLS Minimizes the Sum of Squared Residuals 
Normal Equations 
Two Expressions for the OLS Estimator 
More Concepts and Algebra 
Influential Analysis (optional) 
A Note on the Computation of OLS Estimates 

1.3 Finite-Sample Properties of OLS 
Finite-Sample Distribution of b 
Finite-Sample Properties of s2 

Estimate of Var(b 1 X) 
1.4 Hypothesis Testing under Normality 

Normally Distributed Error Terms 
Testing Hypotheses about Individual Regression Coefficients 
Decision Rule for the t-Test 
Confidence Interval 



vi Contents 

p-Value 3 8 
Linear Hypotheses 39 
The F-Test 40 
A More Convenient Expression for F 42 
t versus F 43 
An Example of a Test Statistic Whose Distribution Depends on X 45 

1.5 Relation to Maximum Likelihood 47 
The Maximum Likelihood Principle 47 
Conditional versus Unconditional Likelihood 47 
The Log Likelihood for the Regression Model 48 
ML via Concentrated Likelihood 48 
Cramer-Rao Bound for the Classical Regression Model 49 
The F-Test as a Likelihood Ratio Test 52 
Quasi-Maximum Likelihood 53 

1.6 Generalized Least Squares (GLS) 54 
Consequence of Relaxing Assumption 1.4 55 
Efficient Estimation with Known V 55 
A Special Case: Weighted Least Squares (WLS) 58 
Limiting Nature of GLS 58 

1.7 Application: Returns to Scale in Electricity Supply 60 
The Electricity Supply Industry 60 
The Data 60 
Why Do We Need Econometrics? 61 
The Cobb-Douglas Technology 62 
How Do We Know Things Are Cobh-Douglas? 63 
Are the OLS Assumptions Satisfied? 64 
Restricted Least Squares 65 
Testing the Homogeneity of the Cost Function 65 
Detour: A Cautionary Note on R~ 67 
Testing Constant Returns to Scale 67 
Importance of Plotting Residuals 68 
Subsequent Developments 68 

Problem Set 7 1 
Answers to Selected Questions 84 

Large-Sample Theory 88 

2.1 Review of Limit Theorems for Sequences of Random Variables 88 
Various Modes of Convergence 89 
Three Useful Results 92 



Contents vii 

Viewing Estimators as Sequences of Random Variables 
Laws of Large Numbers and Central Limit Theorems 

2.2 Fundamental Concepts in Time-Series Analysis 
Need for Ergodic Stationarity 
Various Classes of Stochastic Processes 
Different Formulation of Lack of Serial Dependence 
The CLT for Ergodic Stationary Martingale Differences Sequences 

2.3 Large-Sample Distribution of the OLS Estimator 
The Model 
Asymptotic Distribution of the OLS Estimator 
s2 IS Consistent 

2.4 Hypothesis Testing 
Testing Linear Hypotheses 
The Test Is Consistent 
Asymptotic Power 
Testing Nonlinear Hypotheses 

2.5 Estimating E(E?x~x;) Consistently 
Using Residuals for the Errors 
Data Matrix Representation of S 
Finite-Sample Considerations 

2.6 Implications of Conditional Homoskedasticity 
Conditional versus Unconditional Homoskedasticity 
Reduction to Finite-Sample Formulas 
Large-Sample Distribution of t and F Statistics 
Variations of Asymptotic Tests under Conditional 

Homoskedasticity 
2.7 Testing Conditional Homoskedasticity 
2.8 Estimation with Parameterized Conditional Heteroskedasticity 

(optional) 
The Functional Form 
WLS with Known a 
Regression of e? on zi Provides a Consistent Estimate of a 
WLS with Estimated a 
OLS versus WLS 

2.9 Least Squares Projection 
Optimally Predicting the Value of the Dependent Variable 
Best Linear Predictor 
OLS Consistently Estimates the Projection Coefficients 



Contents 

2.10 Testing for Serial Correlation 
Box-Pierce and Ljung-Box 
Sample Autocorrelations Calculated from Residuals 
Testing with Predetermined, but Not Strictly Exogenous, 

Regressors 
An Auxiliary Regression-Based Test 

2.1 1 Application: Rational Expectations Econometrics 
The Efficient Market Hypotheses 
Testable Implications 
Testing for Serial Correlation 
Is the Nominal Interest Rate the Optimal Predictor? 
R, Is Not Strictly Exogenous 
Subsequent Developments 

2.12 Time Regressions 
The Asymptotic Distribution of the OLS Estimator 
Hypothesis Testing for Time Regressions 

Appendix 2.A: Asymptotics with Fixed Regressors 
Appendix 2.B: Proof of Proposition 2.10 
Problem Set 
Answers to Selected Questions 

3 Single-Equation GMM 
3.1 Endogeneity Bias: Working's Example 

A Simultaneous Equations Model of Market Equilibrium 
Endogeneity Bias 
Observable Supply Shifters 

3.2 More Examples 
A Simple Macroeconometric Model 
Errors-in-Variables 
Production Function 

3.3 The General Formulation 
Regressors and Instruments 
Identification 
Order Condition for Identification 
The Assumption for Asymptotic Normality 

3.4 Generalized Method of Moments Defined 

Method of Moments 
Generalized Method of Moments 
Sampling Error 



Contents 

3.5 Large-Sample Properties of GMM 
Asymptotic Distribution of the GMM Estimator 
Estimation of Error Variance 
Hypothesis Testing 
Estimation of S 
Efficient GMM Estimator 
Asymptotic Power 
Small-Sample Properties 

3.6 Testing Overidentifying Restrictions 
Testing Subsets of Orthogonality Conditions 

3.7 Hypothesis Testing by the Likelihood-Ratio Principle 

The LR Statistic for the Regression Model 
Variable Addition Test (optional) 

3.8 Implications of Conditional Homoskedasticity 
Efficient GMM Becomes 2SLS 
J Becomes Sargan's Statistic 
Small-Sample Properties of 2SLS 
Alternative Derivations of 2SLS 
When Regressors Are Predetermined 
Testing a Subset of Orthogonality Conditions 
Testing Conditional Homoskedasticity 

Testing for Serial Correlation 
3.9 Application: Returns from Schooling 

The NLS-Y Data 
The Semi-Log Wage Equation 
Omitted Variable Bias 
IQ as the Measure of Ability 
Errors-in-Variables 
2SLS to Correct for the Bias 
Subsequent Developments 

Problem Set 
Answers to Selected Questions 

4 Multiple-Equation GMM 
4.1 The Multiple-Equation Model 

Linearity 
Stationarity and Ergodicity 
Orthogonality Conditions 
Identification 



Contents 

The Assumption for Asymptotic Normality 
Connection to the "Complete" System of Simultaneous Equations 

4.2 Multiple-Equation GMM Defined 
4.3 Large-Sample Theory 
4.4 Single-Equation versus Multiple-Equation Estimation 

When Are They "Equivalent"? 
Joint Estimation Can Be Hazardous 

4.5 Special Cases of Multiple-Equation GMM: FIVE, 3SLS, and SUR 
Conditional Homoskedasticity 
Full-Information Instrumental Variables Efficient (FIVE) 
Three-Stage Least Squares (3SLS) 
Seemingly Unrelated Regressions (SUR) 
SUR versus OLS 

4.6 Common Coefficients 
The Model with Common Coefficients 
The GMM Estimator 
Imposing Conditional Homoskedasticity 
Pooled OLS 
Beautifying the Formulas 
The Restriction That Isn't 

4.7 Application: Interrelated Factor Demands 
The Translog Cost Function 
Factor Shares 
Substitution Elasticities 
Properties of Cost Functions 
Stochastic Specifications 
The Nature of Restrictions 
Multivariate Regression Subject to Cross-Equation Restrictions 
Which Equation to Delete? 
Results 

Problem Set 
Answers to Selected Questions 

5 Panel Data 
5.1 The Error-Components Model 

Error Components 
Group Means 
A Reparameterization 

5.2 The Fixed-Effects Estimator 



Contents 

The Formula 
Large-Sample Properties 
Digression: When rli Is Spherical 
Random Effects versus Fixed Effects 
Relaxing Conditional Homoskedasticity 

5.3 Unbalanced Panels (optional) 
"Zeroing Out" Missing Observations 
Zeroing Out versus Compression 
No Selectivity Bias 

5.4 Application: International Differences in Growth Rates 
Derivation of the Estimation Equation 
Appending the Error Term 
Treatment of cri 

Consistent Estimation of Speed of Convergence 
Appendix 5.A: Distribution of Hausman Statistic 
Problem Set 
Answers to Selected Questions 

6 Serial Correlation 
6.1 Modeling Serial Correlation: Linear Processes 

MA(oo) as a Mean Square Limit 
Filters 
Inverting Lag Polynomials 

6.2 ARMA Processes 
AR(1) and Its MA(oo) Representation 
Autocovariances of AR(1) 
AR(p) and Its MA(oo) Representation 

ARMA(p7 q) 
ARMA(p, q) with Common Roots 
Invertibility 
Autocovariance-Generating Function and the Spectrum 

6.3 Vector Processes 
6.4 Estimating Autoregressions 

Estimation of AR(1) 
Estimation of AR(p) 
Choice of Lag Length 
Estimation of VARs 
Estimation of ARMA(p, q) 



xii Contents 

6.5 Asymptotics for Sample Means of Serially Correlated Processes 
LLN for Covariance-Stationary Processes 
Two Central Limit Theorems 
Multivariate Extension 

6.6 Incorporating Serial Correlation in GMM 
The Model and Asymptotic Results 
Estimating S When Autocovariances Vanish after Finite Lags 
Using Kernels to Estimate S 
VARHAC 

6.7 Estimation under Conditional Homoskedasticity (Optional) 
Kernel-Based Estimation of S under Conditional Homoskedasticity 
Data Matrix Representation of Estimated Long-Run Variance 
Relation to GLS 

6.8 Application: Forward Exchange Rates as Optimal Predictors 
The Market Efficiency Hypothesis 
Testing Whether the Unconditional Mean Is Zero 
Regression Tests 

Problem Set 
Answers to Selected Questions 

7 Extremum Estimators 
7.1 Extremum Estimators 

"Measurability" of (? 
Two Classes of Extremum Estimators 
Maximum Likelihood (ML) 
Conditional Maximum Likelihood 
Invariance of ML 
Nonlinear Least Squares (NLS) 
Linear and Nonlinear GMM 

7.2 Consistency 
Two Consistency Theorems for Extremum Estimators 
Consistency of M-Estimators 
Concavity after Reparameterization 
Identification in NLS and ML 
Consistency of GMM 

7.3 Asymptotic Normality 
Asymptotic Normality of M-Estimators 
Consistent Asymptotic Variance Estimation 
Asymptotic Normality of Conditional ML 



Contents 

Two Examples 
Asymptotic Normality of GMM 
GMM versus ML 
Expressing the Sampling Error in a Common Format 

7.4 Hypothesis Testing 
The Null Hypothesis 
The Working Assumptions 
The Wald Statistic 
The Lagrange Multiplier (LM) Statistic 
The Likelihood Ratio (LR) Statistic 
Summary of the Trinity 

7.5 Numerical Optimization 
Newton-Raphson 
Gauss-Newton 
Writing Newton-Raphson and Gauss-Newton in a Common 

Format 
Equations Nonlinear in Parameters Only 

Problem Set 
Answers to Selected Questions 

8 Examples of Maximum Likelihood 
8.1 Qualitative Response (QR) Models 

Score and Hessian for Observation t 
Consistency 
Asymptotic Normality 

8.2 Truncated Regression Models 
The Model 
Truncated Distributions 
The Likelihood Function 
Reparameterizing the Likelihood Function 
Verifying Consistency and Asymptotic Normality 
Recovering Original Parameters 

8.3 Censored Regression (Tobit) Models 
Tobit Likelihood Function 
Reparameterization 

8.4 Multivariate Regressions 
The Multivariate Regression Model Restated 
The Likelihood Function 
Maximizing the Likelihood Function 



X ~ V  Contents 

Consistency and Asymptotic Normality 525 
8.5 FIML 526 

The Multiple-Equation Model with Common Instruments Restated 526 
The Complete System of Simultaneous Equations 529 
Relationship between ( r o ,  Bo) and J0 530 
The FIML Likelihood Function 53 1 
The FIML Concentrated Likelihood Function 532 
Testing Overidentifying Restrictions 533 
Properties of the FIML Estimator 533 
ML Estimation of the SUR Model 535 

8.6 LIML 538 
LIML Defined 538 
Computation of LIML 540 
LIML versus 2SLS 542 

8.7 Serially Correlated Observations 543 
Two Questions 543 
Unconditional ML for Dependent Observations 545 
ML Estimation of AR(1) Processes 546 
Conditional ML Estimation of AR(1) Processes 547 
Conditional ML Estimation of AR(p) and VAR(p) Processes 549 

Problem Set 55 1 

9 Unit-Root Econometrics 
9.1 Modeling Trends 

Integrated Processes 
Why Is It Important to Know if the Process Is I(1)? 
Which Should Be Taken as the Null, I(0) or 1(1)? 
Other Approaches to Modeling Trends 

9.2 Tools for Unit-Root Econometrics 
Linear I(0) Processes 
Approximating I(1) by a Random Walk 
Relation to ARMA Models 
The Wiener Process 
A Useful Lemma 

9.3 Dickey-Fuller Tests 
The AR(1) Model 
Deriving the Limiting Distribution under the I(1) Null 
Incorporating the Intercept 
Incorporating Time Trend 



Contents 

9.4 Augmented Dickey-Fuller Tests 
The Augmented Autoregression 
Limiting Distribution of the OLS Estimator 
Deriving Test Statistics 
Testing Hypotheses about 5 
What to Do When p Is Unknown? 
A Suggestion for the Choice of pm(T)  
Including the Intercept in the Regression 
Incorporating Time Trend 
Summary of the DF and ADF Tests and Other Unit-Root Tests 

9.5 Which Unit-Root Test to Use? 
Local-to-Unity Asymptotics 
Small-Sample Properties 

9.6 Application: Purchasing Power Parity 
The Embarrassing Resiliency of the Random Walk Model? 

Problem Set 
Answers to Selected Questions 

10 Cointegration 
10.1 Cointegrated Systems 

Linear Vector I(0) and 1(1) Processes 
The Beveridge-Nelson Decomposition 
Cointegration Defined 

10.2 Alternative Representations of Cointegrated Systems 
Phillips's Triangular Representation 
VAR and Cointegration 
The Vector Error-Correction Model (VECM) 
Johansen's ML Procedure 

10.3 Testing the Null of No Cointegration 
Spurious Regressions 
The Residual-Based Test for Cointegration 
Testing the Null of Cointegration 

10.4 Inference on Cointegrating Vectors 
The SOLS Estimator 
The Bivariate Example 
Continuing with the Bivariate Example 
Allowing for Serial Correlation 
General Case 
Other Estimators and Finite-Sample Properties 



Contents 

10.5 Application: The Demand for Money in the United States 
The Data 
(m - p, y, R )  as a Cointegrated System 
DOLS 
Unstable Money Demand? 

Problem Set 

Appendix A: Partitioned Matrices and Kronecker Products 
Addition and Multiplication of Partitioned Matrices 
Inverting Partitioned Matrices 

Index 



COPYRIGHT NOTICE:

Fumio Hayashi: Econometrics

is published by Princeton University Press and copyrighted, © 2000, by Princeton
University Press. All rights reserved. No part of this book may be reproduced in any form
by any electronic or mechanical means (including photocopying, recording, or
information storage and retrieval) without permission in writing from the publisher,
except for reading and browsing via the World Wide Web. Users are not permitted to
mount this file on any network servers.

For COURSE PACK and other PERMISSIONS, refer to entry on previous page. For
more information, send e-mail to permissions@pupress.princeton.edu



C H A P T E R 1

Finite-Sample Properties of OLS

A B S T R A C T

TheOrdinary Least Squares (OLS) estimator is the most basic estimation proce-
dure in econometrics. This chapter covers thefinite- or small-sample properties
of the OLS estimator, that is, the statistical properties of the OLS estimator that are
valid for any given sample size. The materials covered in this chapter are entirely
standard. The exposition here differs from that of most other textbooks in its empha-
sis on the role played by the assumption that the regressors are “strictly exogenous.”

In the final section, we apply the finite-sample theory to the estimation of the
cost function using cross-section data on individual firms. The question posed in
Nerlove’s (1963) study is of great practical importance: are there increasing returns
to scale in electricity supply? If yes, microeconomics tells us that the industry should
be regulated. Besides providing you with a hands-on experience of using the tech-
niques to test interesting hypotheses, Nerlove’s paper has a careful discussion of why
the OLS is an appropriate estimation procedure in this particular application.

1.1 The Classical Linear Regression Model

In this section we present the assumptions that comprise the classical linear regres-
sion model. In the model, the variable in question (called thedependent vari-
able, theregressand, or more generically theleft-hand [-side] variable) is related
to several other variables (called theregressors, the explanatory variables, or
the right-hand [-side] variables). Suppose we observen values for those vari-
ables. Letyi be thei -th observation of the dependent variable in question and let
(xi1, xi2, . . . , xiK ) be thei -th observation of theK regressors. Thesampleor data
is a collection of thosen observations.

The data in economics cannot be generated by experiments (except in experi-
mental economics), so both the dependent and independent variables have to be
treated as random variables, variables whose values are subject to chance. Amodel
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is a set of restrictions on the joint distribution of the dependent and independ-
ent variables. That is, a model is a set of joint distributions satisfying a set of
assumptions. The classical regression model is a set of joint distributions satisfy-
ing Assumptions 1.1–1.4 stated below.

The Linearity Assumption

The first assumption is that the relationship between the dependent variable and the
regressors is linear.

Assumption 1.1 (linearity):

yi = β1xi1 + β2xi2 + · · · + βK xiK + εi (i = 1,2, . . . ,n), (1.1.1)

where β’s are unknown parameters to be estimated, and εi is the unobserved error
term with certain properties to be specified below.

The part of the right-hand side involving the regressors,β1xi1+β2xi2+· · ·+βK xiK ,
is called theregressionor theregression function, and the coefficients (β’s) are
called theregression coefficients. They represent the marginal and separate effects
of the regressors. For example,β2 represents the change in the dependent variable
when the second regressor increases by one unit while other regressors are held
constant. In the language of calculus, this can be expressed as∂yi/∂xi2 = β2. The
linearity implies that the marginal effect does not depend on the level of regressors.
The error term represents the part of the dependent variable left unexplained by the
regressors.

Example 1.1 (consumption function): The simple consumption function
familiar from introductory economics is

CONi = β1+ β2YDi + εi , (1.1.2)

whereCON is consumption andYD is disposable income. If the data are
annual aggregate time-series,CONi andYDi are aggregate consumption and
disposable income for yeari . If the data come from a survey of individual
households,CONi is consumption by thei -th household in the cross-section
sample ofn households. The consumption function can be written as (1.1.1)
by setting yi = CONi , xi1 = 1 (a constant), andxi2 = YDi . The error
term εi represents other variables besides disposable income that influence
consumption. They include those variables — such as financial assets — that
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might be observable but the researcher decided not to include as regressors,
as well as those variables — such as the “mood” of the consumer — that are
hard to measure. When the equation has only one nonconstant regressor, as
here, it is called thesimple regression model.

The linearity assumption is not as restrictive as it might first seem, because the
dependent variable and the regressors can be transformations of the variables in
question. Consider

Example 1.2 (wage equation): A simplified version of the wage equation
routinely estimated in labor economics is

log(WAGEi ) = β1+ β2Si + β3TENUREi + β4EXPRi + εi , (1.1.3)

whereWAGE= the wage rate for the individual,S = education in years,
TENURE= years on the current job, andEXPR= experience in the labor
force (i.e., total number of years to date on all the jobs held currently or pre-
viously by the individual). The wage equation fits the generic format (1.1.1)
with yi = log(WAGEi ). The equation is said to be in thesemi-log form
because only the dependent variable is in logs. The equation is derived from
the following nonlinear relationship between the level of the wage rate and
the regressors:

WAGEi = exp(β1)exp(β2Si )exp(β3TENUREi )exp(β4EXPRi )exp(εi ).

(1.1.4)

By taking logs of both sides of (1.1.4) and noting that log[exp(x)] = x, one
obtains (1.1.3). The coefficients in the semi-log form have the interpretation
of percentage changes, not changes in levels. For example, a value of 0.05
for β2 implies that an additional year of education has the effect of raising
the wage rate by 5 percent. The difference in the interpretation comes about
because the dependent variable is the log wage rate, not the wage rate itself,
and the change in logs equals the percentage change in levels.

Certain other forms of nonlinearities can also be accommodated. Suppose, for
example, the marginal effect of education tapers off as the level of education gets
higher. This can be captured by including in the wage equation the squared term
S2 as an additional regressor in the wage equation. If the coefficient of the squared
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term isβ5, the marginal effect of education is

β2+ 2β5S (= ∂ log(WAGE)/∂S).

If β5 is negative, the marginal effect of education declines with the level of educa-
tion.

There are, of course, cases of genuine nonlinearity. For example, the relation-
ship (1.1.4) could not have been made linear if the error term entered additively
rather than multiplicatively:

WAGEi = exp(β1)exp(β2Si )exp(β3TENUREi )exp(β4EXPRi )+ εi .

Estimation of nonlinear regression equations such as this will be discussed in
Chapter 7.

Matrix Notation

Before stating other assumptions of the classical model, we introduce the vector
and matrix notation. The notation will prove useful for stating other assumptions
precisely and also for deriving the OLS estimator ofβ. Define K -dimensional
(column) vectorsxi andβ as

xi
(K×1)

=


xi1

xi2
...

xiK

 , β
(K×1)

=


β1

β2
...

βK

 . (1.1.5)

By the definition of vector inner products,x′iβ = β1xi1+ β2xi2+ · · · + βK xiK . So
the equations in Assumption 1.1 can be written as

yi = x′iβ + εi (i = 1,2, . . . ,n). (1.1.1′)

Also define

y
(n×1)
=
y1
...

yn

 , ε
(n×1)
=
ε1
...

εn

 , X
(n×K )

=
x′1
...

x′n

 =
x11 . . . x1K
... . . .

...

xn1 . . . xnK

 . (1.1.6)

In the vectors and matrices in (1.1.6), there are as many rows as there are obser-
vations, with the rows corresponding to the observations. For this reasony andX
are sometimes called thedata vector and thedata matrix . Since the number of
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columns ofX equals the number of rows ofβ, X andβ are conformable andXβ is
ann×1 vector. Itsi -th element isx′iβ. Therefore, Assumption 1.1 can be written
compactly as

y
(n×1)
= X

(n×K )
β

(K×1)︸ ︷︷ ︸
(n×1)

+ ε
(n×1)

.

The Strict Exogeneity Assumption

The next assumption of the classical regression model is

Assumption 1.2 (strict exogeneity):

E(εi | X) = 0 (i = 1,2, . . . ,n). (1.1.7)

Here, the expectation (mean) is conditional on the regressors forall observations.
This point may be made more apparent by writing the assumption without using
the data matrix as

E(εi | x1, . . . , xn) = 0 (i = 1,2, . . . ,n).

To state the assumption differently, take, for any given observationi , the joint dis-
tribution of thenK + 1 random variables,f (εi , x1, . . . , xn), and consider the con-
ditional distribution, f (εi | x1, . . . , xn). The conditional mean E(εi | x1, . . . , xn)

is in general a nonlinear function of(x1, . . . , xn). The strict exogeneity assumption
says that this function is a constant of value zero.1

Assuming this constant to be zero is not restrictive if the regressors include a
constant, because the equation can be rewritten so that the conditional mean of the
error term is zero. To see this, suppose that E(εi | X) is µ and xi1 = 1. The
equation can be written as

yi = β1+ β2xi2 + · · · + βK xiK + εi

= (β1+ µ)+ β2xi2 + · · · + βK xiK + (εi − µ).

If we redefineβ1 to beβ1+µ andεi to beεi −µ, the conditional mean of the new
error term is zero. In virtually all applications, the regressors include a constant
term.

1Some authors define the term “strict exogeneity” somewhat differently. For example, in Koopmans and Hood
(1953) and Engle, Hendry, and Richards (1983), the regressors are strictly exogenous ifxi is independent ofεj
for all i, j . This definition is stronger than, but not inconsistent with, our definition of strict exogeneity.
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Example 1.3 (continuation of Example 1.1): For the simple regression
model of Example 1.1, the strict exogeneity assumption can be written as

E(εi | YD1,YD2, . . . ,YDn) = 0.

Sincexi = (1,YDi )
′, you might wish to write the strict exogeneity assump-

tion as

E(εi | 1,YD1,1,YD2, . . . ,1,YDn) = 0.

But since a constant provides no information, the expectation conditional on

(1,YD1,1,YD2, . . . ,1,YDn)

is the same as the expectation conditional on

(YD1,YD2, . . . ,YDn).

Implications of Strict Exogeneity

The strict exogeneity assumption has several implications.

• Theunconditional mean of the error term is zero, i.e.,

E(εi ) = 0 (i = 1,2, . . . ,n). (1.1.8)

This is because, by the Law of Total Expectations from basic probability theory,2

E[E(εi | X)] = E(εi ).

• If the cross moment E(xy) of two random variablesx andy is zero, then we say
thatx is orthogonal to y (or y is orthogonal tox). Under strict exogeneity, the
regressors are orthogonal to the error term forall observations, i.e.,

E(xjkεi ) = 0 (i, j = 1, . . . ,n; k = 1, . . . , K )

or

E(xj ·εi ) =


E(xj 1 εi )

E(xj 2 εi )
...

E(xj K εi )

 = 0
(K×1)

(for all i, j ). (1.1.9)

2The Law of Total Expectations states that E[E(y | x)] = E(y).
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The proof is a good illustration of the use of properties of conditional expecta-
tions and goes as follows.

PROOF. Sincexjk is an element ofX, strict exogeneity implies

E(εi | xjk) = E[E(εi | X) | xjk] = 0 (1.1.10)

by the Law of Iterated Expectations from probability theory.3 It follows from
this that

E(xjkεi ) = E[E(xjkεi | xjk)] (by the Law of Total Expectations)

= E[xjk E(εi | xjk)] (by the linearity of conditional expectations4)

= 0.

The point here is that strict exogeneity requires the regressors be orthogonal not
only to the error term from the same observation (i.e., E(xikεi ) = 0 for all k),
but also to the error term from the other observations (i.e., E(xjkεi ) = 0 for all
k and for j 6= i ).

• Because the mean of the error term is zero, the orthogonality conditions (1.1.9)
are equivalent to zero-correlation conditions. This is because

Cov(εi , xjk) = E(xjkεi )− E(xjk)E(εi ) (by definition of covariance)

= E(xjkεi ) (since E(εi ) = 0, see (1.1.8))

= 0 (by the orthogonality conditions (1.1.9)).

In particular, fori = j , Cov(xik, εi ) = 0. Therefore, strict exogeneity implies
the requirement (familiar to those who have studied econometrics before) that
the regressors be contemporaneously uncorrelated with the error term.

Strict Exogeneity in Time-Series Models

For time-series models wherei is time, the implication (1.1.9) of strict exogene-
ity can be rephrased as: the regressors are orthogonal to the past, current, and
future error terms (or equivalently, the error term is orthogonal to the past, current,
and future regressors). But for most time-series models, this condition (anda for-
tiori strict exogeneity) is not satisfied, so the finite-sample theory based on strict
exogeneity to be developed in this section is rarely applicable in time-series con-

3The Law of Iterated Expectations states that E[E(y | x, z) | x] = E(y | x).
4The linearity of conditional expectations states that E[ f (x)y | x] = f (x)E(y | x).
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texts. However, as will be shown in the next chapter, the estimator possesses good
large-sample properties without strict exogeneity.

The clearest example of a failure of strict exogeneity is a model where the
regressor includes thelagged dependent variable. Consider the simplest such
model:

yi = βyi−1 + εi (i = 1,2, . . . ,n). (1.1.11)

This is called thefirst-order autoregressive model(AR(1)). (We will study this
model more fully in Chapter 6.) Suppose, consistent with the spirit of the strict
exogeneity assumption, that the regressor for observationi, yi−1, is orthogonal to
the error term fori so E(yi−1εi ) = 0. Then

E(yi εi ) = E[(βyi−1 + εi )εi ] (by (1.1.11))

= β E(yi−1εi )+ E(ε2
i )

= E(ε2
i ) (since E(yi−1εi ) = 0 by hypothesis).

Therefore, unless the error term is always zero, E(yiεi ) is not zero. Butyi is the
regressor for observationi+1. Thus, the regressor is not orthogonal to the past
error term, which is a violation of strict exogeneity.

Other Assumptions of the Model

The remaining assumptions comprising the classical regression model are the
following.

Assumption 1.3 (no multicollinearity): The rank of the n×K data matrix, X, is
K with probability 1.

Assumption 1.4 (spherical error variance):

(homoskedasticity) E(ε2
i | X) = σ 2 > 0 (i = 1,2, . . . ,n),5 (1.1.12)

(no correlation between observations)

E(εi εj | X) = 0 (i, j = 1,2, . . . ,n; i 6= j ). (1.1.13)

5When a symbol (which here isσ2) is given to a moment (which here is the second moment E(ε2
i | X)), by

implication the moment is assumed to exist and is finite. We will follow this convention for the rest of this book.
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To understand Assumption 1.3, recall from matrix algebra that the rank of a
matrix equals the number of linearly independent columns of the matrix. The
assumption says that none of theK columns of the data matrixX can be expressed
as a linear combination of the other columns ofX. That is,X is of full column
rank . Since theK columns cannot be linearly independent if their dimension is
less thanK , the assumption implies thatn ≥ K , i.e., there must be at least as many
observations as there are regressors. The regressors are said to be(perfectly) mul-
ticollinear if the assumption is not satisfied. It is easy to see in specific applications
when the regressors are multicollinear and what problems arise.

Example 1.4 (continuation of Example 1.2):If no individuals in the sam-
ple ever changed jobs, thenTENUREi = EXPRi for all i , in violation of the
no multicollinearity assumption. There is evidently no way to distinguish the
tenure effect on the wage rate from the experience effect. If we substitute this
equality into the wage equation to eliminateTENUREi , the wage equation
becomes

log(WAGEi ) = β1+ β2Si + (β3+ β4)EXPRi + εi ,

which shows that only the sumβ3 + β4, but notβ3 andβ4 separately, can be
estimated.

The homoskedasticity assumption (1.1.12) says that the conditional second
moment, which in general is a nonlinear function ofX, is a constant. Thanks to
strict exogeneity, this condition can be stated equivalently in more familiar terms.
Consider the conditional variance Var(εi | X). It equals the same constant because

Var(εi | X) ≡ E(ε2
i | X)− E(εi | X)2 (by definition of conditional variance)

= E(ε2
i | X) (since E(εi | X) = 0 by strict exogeneity).

Similarly, (1.1.13) is equivalent to the requirement that

Cov(εi , εj | X) = 0 (i, j = 1,2, . . . ,n; i 6= j ).

That is, in the joint distribution of(εi , εj ) conditional onX, the covariance is zero.
In the context of time-series models, (1.1.13) states that there is noserial correla-
tion in the error term.
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Since the(i, j ) element of then×n matrix εε′ is εi εj , Assumption 1.4 can be
written compactly as

E(εε′ | X) = σ 2In. (1.1.14)

The discussion of the previous paragraph shows that the assumption can also be
written as

Var(ε | X) = σ 2In.

However, (1.1.14) is the preferred expression, because the more convenient mea-
sure of variability is second moments (such as E(ε2

i | X)) rather than variances.
This point will become clearer when we deal with the large sample theory in the
next chapter. Assumption 1.4 is sometimes called thespherical error variance
assumption because then×n matrix of second moments (which are also variances
and covariances) is proportional to the identity matrixIn. This assumption will be
relaxed later in this chapter.

The Classical Regression Model for Random Samples

The sample(y,X) is arandom sampleif {yi , xi } is i.i.d. (independently and iden-
tically distributed) across observations. Since by Assumption 1.1εi is a function
of (yi , xi ) and since(yi , xi ) is independent of(yj , xj ) for j 6= i , (εi , xi ) is inde-
pendent ofxj for j 6= i . So

E(εi | X) = E(εi | xi ),

E(ε2
i | X) = E(ε2

i | xi ),

and E(εi εj | X) = E(εi | xi )E(εj | xj ) (for i 6= j ). (1.1.15)

(Proving the last equality in (1.1.15) is a review question.) Therefore, Assumptions
1.2 and 1.4 reduce to

Assumption 1.2: E(εi | xi ) = 0 (i = 1,2, . . . ,n), (1.1.16)

Assumption 1.4: E(ε2
i | xi ) = σ 2 > 0 (i = 1,2, . . . ,n). (1.1.17)

The implication of the identical distribution aspect of a random sample is that
the joint distribution of(εi , xi ) does not depend oni . So theunconditional second
moment E(ε2

i ) is constant acrossi (this is referred to asunconditional homoske-
dasticity) and the functional form of the conditional second moment E(ε2

i | xi ) is
the same acrossi . However, Assumption 1.4 — that thevalueof the conditional
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second moment is the same acrossi — does not follow. Therefore, Assumption 1.4
remains restrictive for the case of a random sample; without it, the conditional sec-
ond moment E(ε2

i | xi ) can differ acrossi through its possible dependence onxi .
To emphasize the distinction, the restrictions on the conditional second moments,
(1.1.12) and (1.1.17), are referred to asconditional homoskedasticity.

“Fixed” Regressors

We have presented the classical linear regression model, treating the regressors as
random. This is in contrast to the treatment in most textbooks, whereX is assumed
to be “fixed” or deterministic. IfX is fixed, then there is no need to distinguish
between the conditional distribution of the error term,f (εi | x1, . . . , xn), and the
unconditional distribution,f (εi ), so that Assumptions 1.2 and 1.4 can be written as

Assumption 1.2: E(εi ) = 0 (i = 1, . . . ,n), (1.1.18)

Assumption 1.4: E(ε2
i ) = σ 2 (i = 1, . . . ,n);

E(εi εj ) = 0 (i, j = 1, . . . ,n; i 6= j ). (1.1.19)

Although it is clearly inappropriate for a nonexperimental science like economet-
rics, the assumption of fixed regressors remains popular because the regression
model with fixedX can be interpreted as a set of statements conditional onX,
allowing us to dispense with “| X” from the statements such as Assumptions 1.2
and 1.4 of the model.

However, the economy in the notation comes at a price. It is very easy to miss
the point that the error term is being assumed to be uncorrelated with current, past,
and future regressors. Also, the distinction between the unconditional and condi-
tional homoskedasticity gets lost if the regressors are deterministic. Throughout
this book, the regressors are treated as random, and, unless otherwise noted, state-
ments conditional onX are made explicit by inserting “| X.”

Q U E S T I O N S F O R R E V I E W

1. (Change in units in the semi-log form) In the wage equation, (1.1.3), of Exam-
ple 1.2, if WAGEis measured in cents rather than in dollars, what difference
does it make to the equation?Hint: log(x y) = log(x)+ log(y).

2. Prove the last equality in (1.1.15).Hint: E(εi εj | X) = E[εj E(εi | X, εj ) | X].
(εi , xi ) is independent of (εj , x1, . . . , xi−1, xi+1, . . . , xn) for i 6= j .
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3. (Combining linearity and strict exogeneity) Show that Assumptions 1.1 and
1.2 imply

E(yi | X) = x′iβ (i = 1,2, . . . ,n). (1.1.20)

Conversely, show that this assumption implies that there exist error terms that
satisfy those two assumptions.

4. (Normally distributed random sample) Consider a random sample on con-
sumption and disposable income,(CONi ,YDi ) (i = 1,2, . . . ,n). Suppose
the joint distribution of(CONi ,YDi ) (which is the same acrossi because of
the random sample assumption) is normal. Clearly, Assumption 1.3 is satis-
fied; the rank ofX would be less thanK only by pure accident. Show that the
other assumptions, Assumptions 1.1, 1.2, and 1.4, are satisfied.Hint: If two

random variables, y and x, are jointly normally distributed, then the conditional

expectation is linear in x, i.e.,

E(y | x) = β1+ β2x,

and the conditional variance, Var(y | x), does not depend on x. Here, the fact

that the distribution is the same across i is important; if the distribution differed

across i , β1 and β2 could vary across i .

5. (Multicollinearity for the simple regression model) Show that Assumption 1.3
for the simple regression model is that the nonconstant regressor(xi2) is really
nonconstant (i.e.,xi2 6= xj 2 for some pairs of(i, j ), i 6= j , with probability
one).

6. (An exercise in conditional and unconditional expectations) Show that As-
sumptions 1.2 and 1.4 imply

Var(εi ) = σ 2 (i = 1,2, . . . ,n)

and Cov(εi , εj ) = 0 (i 6= j ; i, j = 1,2, . . . n). (∗)

Hint: Strict exogeneity implies E(εi ) = 0. So (∗) is equivalent to

E(ε2
i ) = σ 2 (i = 1,2, . . . ,n)

and E(εi εj ) = 0 (i 6= j ; i, j = 1,2, . . . ,n).
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1.2 The Algebra of Least Squares

This section describes the computational procedure for obtaining the OLS estimate,
b, of the unknown coefficient vectorβ and introduces a few concepts that derive
from b.

OLS Minimizes the Sum of Squared Residuals

Although we do not observe the error term, we can calculate the value implied by
a hypothetical value,̃β, of β as

yi − x′i β̃.

This is called theresidual for observationi . From this, form thesum of squared
residuals(SSR):

SSR(β̃) ≡
n∑

i=1

(yi − x′i β̃)
2 = (y− Xβ̃)′(y− Xβ̃).

This sum is also called theerror sum of squares (ESS)or the residual sum of
squares (RSS). It is a function of̃β because the residual depends on it. TheOLS
estimate, b, of β is theβ̃ that minimizes this function:

b ≡ argmin
β̃

SSR(β̃). (1.2.1)

The relationship amongβ (the unknown coefficient vector),b (the OLS estimate of
it), andβ̃ (a hypothetical value ofβ) is illustrated in Figure 1.1 forK = 1. Because
SSR(β̃) is quadratic iñβ, its graph has the U shape. The value ofβ̃ corresponding
to the bottom isb, the OLS estimate. Since it depends on the sample(y,X), the
OLS estimateb is in general different from the true valueβ; if b equalsβ, it is by
sheer accident.

By having squared residuals in the objective function, this method imposes a
heavy penalty on large residuals; the OLS estimate is chosen to prevent large resid-
uals for a few observations at the expense of tolerating relatively small residuals
for many other observations. We will see in the next section that this particular
criterion brings about some desirable properties for the estimate.
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Figure 1.1: Hypothetical, True, and Estimated Values

Normal Equations

A sure-fire way of solving the minimization problem is to derive the first-order
conditions by setting the partial derivatives equal to zero. To this end we seek a
K -dimensional vector of partial derivatives,∂SSR(β̃)/∂β̃.6 The task is facilitated
by writing SSR(β̃) as

SSR(β̃) = (y− Xβ̃)′(y− Xβ̃) (since thei -th element ofy− Xβ̃ is yi − x′i β̃)

= (y′ − β̃ ′X ′)(y− Xβ̃) (since(Xβ̃)′ = β̃ ′X ′)
= y′y− β̃ ′X ′y− y′Xβ̃ + β̃ ′X ′Xβ̃
= y′y− 2y′Xβ̃ + β̃ ′X ′Xβ̃

(since the scalar̃β
′
X ′y equals its transposey′Xβ̃)

≡ y′y− 2a′β̃ + β̃ ′Aβ̃ with a≡ X ′y andA ≡ X ′X. (1.2.2)

The termy′y does not depend oñβ and so can be ignored in the differentiation of
SSR(β̃). Recalling from matrix algebra that

∂(a′β̃)

∂β̃
= a and

∂(β̃
′
Aβ̃)

∂β̃
= 2Aβ̃ for A symmetric,

6If h : RK → R is a scalar-valued function of aK -dimensional vectorx, the derivative ofh with respect tox is
a K -dimensional vector whosek-th element is∂h(x)/∂xk wherexk is thek-th element ofx. (This K -dimensional
vector is called thegradient.) Here, thex is β̃ and the functionh(x) is SSR(β̃).
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the K -dimensional vector of partial derivatives is

∂SSR(β̃)

∂β̃
= −2a+ 2Aβ̃.

The first-order conditions are obtained by setting this equal to zero. Recalling from
(1.2.2) thata here isX ′y andA is X ′X and rearranging, we can write the first-order
conditions as

X ′X
(K×K )

b
(K×1)

= X ′y. (1.2.3)

Here, we have replaced̃β by b because the OLS estimateb is theβ̃ that satisfies
the first-order conditions. TheseK equations are called thenormal equations.

The vector of residuals evaluated atβ̃ = b,

e
(n×1)
≡ y− Xb, (1.2.4)

is called the vector ofOLS residuals. Its i -th element isei ≡ yi − x′i b.
Rearranging (1.2.3) gives

X ′(y− Xb) = 0 or X ′e= 0 or

1

n

n∑
i=1

xi · ei = 0 or
1

n

n∑
i=1

xi · (yi − x′i b) = 0, (1.2.3′)

which shows that the normal equations can be interpreted as the sample analogue
of the orthogonality conditions E(xi · εi ) = 0. This point will be pursued more
fully in subsequent chapters.

To be sure, the first-order conditions are just a necessary condition for min-
imization, and we have to check the second-order condition to make sure thatb
achieves the minimum, not the maximum. Those who are familiar with the Hessian
of a function of several variables7 can immediately recognize that the second-order
condition is satisfied because (as noted below)X ′X is positive definite. There is,
however, a more direct way to show thatb indeed achieves the minimum. It utilizes
the “add-and-subtract” strategy, which is effective when the objective function is
quadratic, as here. Application of the strategy to the algebra of least squares is left
to you as an analytical exercise.

7TheHessianof h(x) is a square matrix whose(k, `) element is∂2h(x)/∂xk ∂x`.
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Two Expressions for the OLS Estimator

Thus, we have obtained a system ofK linear simultaneous equations inK un-
knowns inb. By Assumption 1.3 (no multicollinearity), the coefficient matrixX ′X
is positive definite (see review question 1 below for a proof ) and hence nonsingular.
So the normal equations can be solved uniquely forb by premultiplying both sides
of (1.2.3) by(X ′X)−1:

b = (X ′X)−1X ′y. (1.2.5)

Viewed as a function of the sample(y,X), (1.2.5) is sometimes called theOLS
estimator. For any given sample(y,X), the value of this function is theOLS
estimate. In this book, as in most other textbooks, the two terms will be used
almost interchangeably.

Since(X ′X)−1X ′y = (X ′X/n)−1X ′y/n, the OLS estimator can also be rewrit-
ten as

b = S−1
xx sxy, (1.2.5′)

where

Sxx = 1

n
X ′X = 1

n

n∑
i=1

xi x′i (sample average ofxi x′i ), (1.2.6a)

sxy = 1

n
X ′y = 1

n

n∑
i=1

xi · yi (sample average ofxi · yi ). (1.2.6b)

The data matrix form (1.2.5) is more convenient for developing the finite-sample
results, while the sample average form (1.2.5′) is the form to be utilized for large-
sample theory.

More Concepts and Algebra

Having derived the OLS estimator of the coefficient vector, we can define a few
related concepts.

• Thefitted value for observationi is defined aŝyi ≡ x′i b. The vector of fitted
value, ŷ, equalsXb. Thus, the vector of OLS residuals can be written ase =
y− ŷ.

• Theprojection matrix P and theannihilator M are defined as

P
(n×n)
≡ X(X ′X)−1X ′, (1.2.7)

M
(n×n)
≡ In − P. (1.2.8)
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They have the following nifty properties (proving them is a review question):

BothP andM are symmetric and idempotent,8 (1.2.9)

PX = X (hence the termprojection matrix), (1.2.10)

MX = 0 (hence the termannihilator ). (1.2.11)

Sincee is the residual vector at̃β = b, the sum of squared OLS residuals,SSR,
equalse′e. It can further be written as

SSR= e′e= ε′Mε. (1.2.12)

(Proving this is a review question.) This expression, relatingSSRto the true
error termε, will be useful later on.

• The OLS estimate ofσ 2 (the variance of the error term), denoteds2, is the sum
of squared residuals divided byn− K :

s2 ≡ SSR

n− K
= e′e

n− K
. (1.2.13)

(The definition presumes thatn > K ; otherwises2 is not well-defined.) As will
be shown in Proposition 1.2 below, dividing the sum of squared residuals by
n− K (called thedegrees of freedom) rather than byn (the sample size) makes
this estimate unbiased forσ 2. The intuitive reason is thatK parameters (β) have
to be estimated before obtaining the residual vectoreused to calculates2. More
specifically,e has to satisfy theK normal equations (1.2.3′), which limits the
variability of the residual.

• The square root ofs2, s, is called thestandard error of the regression(SER)
or standard error of the equation (SEE). It is an estimate of the standard
deviation of the error term.

• Thesampling error is defined asb− β. It too can be related toε as follows.

b− β = (X ′X)−1X ′y− β (by (1.2.5))

= (X ′X)−1X ′(Xβ + ε)− β (sincey = Xβ + ε by Assumption 1.1)

= (X ′X)−1(X ′X)β + (X ′X)−1X ′ε − β
= β + (X ′X)−1X ′ε − β = (X ′X)−1X ′ε. (1.2.14)

8A square matrixA is said to beidempotent if A = A2.
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• UncenteredR2. One measure of the variability of the dependent variable is the
sum of squares,

∑
y2

i = y′y. Because the OLS residual is chosen to satisfy the
normal equations, we have the following decomposition ofy′y:

y′y = (ŷ+ e)′(ŷ+ e) (sincee= y− ŷ)

= ŷ′ŷ+ 2ŷ′e+ e′e

= ŷ′ŷ+ 2b′X ′e+ e′e (sinceŷ ≡ Xb)

= ŷ′ŷ+ e′e (sinceX ′e= 0 by the normal equations; see (1.2.3′)).
(1.2.15)

TheuncenteredR2 is defined as

R2
uc ≡ 1− e′e

y′y
. (1.2.16)

Because of the decomposition (1.2.15), this equals

ŷ′ŷ
y′y
.

Since bothŷ′ŷ ande′e are nonnegative, 0≤ R2
uc ≤ 1. Thus, the uncenteredR2

has the interpretation of the fraction of the variation of the dependent variable
that is attributable to the variation in the explanatory variables. The closer the
fitted value tracks the dependent variable, the closer is the uncenteredR2 to one.

• (Centered) R2, the coefficient of determination. If the only regressor is a
constant (so thatK = 1 andxi1 = 1), then it is easy to see from (1.2.5) thatb
equalsȳ, the sample mean of the dependent variable, which means thatŷi = ȳ
for all i , ŷ′ŷ in (1.2.15) equalsnȳ2, ande′eequals

∑
i (yi − ȳ)2. If the regressors

also include nonconstant variables, then it can be shown (the proof is left as an
analytical exercise) that

∑
i (yi − ȳ)2 is decomposed as

n∑
i=1

(yi − ȳ)2 =
n∑

i=1

(ŷi − ȳ)2+
n∑

i=1

e2
i with ȳ ≡ 1

n

n∑
i=1

yi . (1.2.17)

Thecoefficient of determination, R2, is defined as

R2 ≡ 1−
∑n

i=1 e2
i∑n

i=1(yi − ȳ)2
. (1.2.18)
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Because of the decomposition (1.2.17), thisR2 equals∑n
i=1(ŷi − ȳ)2∑n
i=1(yi − ȳ)2

.

Therefore, provided that the regressors include a constant so that the decompos-
ition (1.2.17) is valid, 0≤ R2 ≤ 1. Thus, thisR2 as defined in (1.2.18) is a
measure of the explanatory power of the nonconstant regressors.

If the regressors do not include a constant but (as some regression software
packages do) you nevertheless calculateR2 by the formula (1.2.18), then theR2

can be negative. This is because, without the benefit of an intercept, the regres-
sion could do worse than the sample mean in terms of tracking the dependent
variable. On the other hand, some other regression packages (notably STATA)
switch to the formula (1.2.16) for theR2 when a constant is not included, in
order to avoid negative values for theR2. This is a mixed blessing. Suppose
that the regressors do not include a constant but that a linear combination of
the regressors equals a constant. This occurs if, for example, the intercept is
replaced by seasonal dummies.9 The regression is essentially the same when one
of the regressors in the linear combination is replaced by a constant. Indeed, one
should obtain the same vector of fitted values. But if the formula for theR2 is
(1.2.16) for regressions without a constant and (1.2.18) for those with a constant,
the calculatedR2 declines (see Review Question 7 below) after the replacement
by a constant.

Influential Analysis (optional)

Since the method of least squares seeks to prevent a few large residuals at the
expense of incurring many relatively small residuals, only a few observations can
be extremely influential in the sense that dropping them from the sample changes
some elements ofb substantially. There is a systematic way to find thoseinfluen-
tial observations.10 Let b(i ) be the OLS estimate ofβ that would be obtained if
OLS were used on a sample from which thei -th observation was omitted. The key
equation is

b(i ) − b = −
( 1

1− pi

)
(X ′X)−1xi ·ei , (1.2.19)

9Dummy variables will be introduced in the empirical exercise for this chapter.
10See Krasker, Kuh, and Welsch (1983) for more details.
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wherexi as before is thei -th row of X, ei is the OLS residual for observationi ,
and pi is defined as

pi ≡ x′i (X
′X)−1xi , (1.2.20)

which is thei -th diagonal element of the projection matrixP. (Proving (1.2.19)
would be a good exercise in matrix algebra, but we will not do it here.) It is easy
to show (see Review Question 7 of Section 1.3) that

0≤ pi ≤ 1 and
n∑

i=1

pi = K . (1.2.21)

So pi equalsK/n on average.
To illustrate the use of (1.2.19) in a specific example, consider the relationship

between equipment investment and economic growth for the world’s poorest coun-
tries between 1960 and 1985. Figure 1.2 plots the average annual GDP-per-worker
growth between 1960 and 1985 against the ratio of equipment investment to GDP
over the same period for thirteen countries whose GDP per worker in 1965 was less
than 10 percent of that of the United States.11 It is clear visually from the plot that
the position of the estimated regression line would depend very much on the single
outlier (Botswana). Indeed, if Botswana is dropped from the sample, the estimated
slope coefficient drops from 0.37 to 0.058. In the present case of simple regres-
sion, it is easy to spot outliers by visually inspecting the plot such as Figure 1.2.
This strategy would not work if there were more than one nonconstant regressor.
Analysis based on formula (1.2.19) is not restricted to simple regressions. Table
1.1 displays the data along with the OLS residuals, the values ofpi , and (1.2.19)
for each observation. Botswana’spi of 0.7196 is well above the average of 0.154
(= K/n = 2/13) and is highlyinfluential , as the last two columns of the table
indicate. Note that we could not have detected the influential observation by look-
ing at the residuals, which is not surprising because the algebra of least squares is
designed to avoid large residuals at the expense of many small residuals for other
observations.

What should be done with influential observations? It depends. If the influ-
ential observations satisfy the regression model, they provide valuable information
about the regression function unavailable from the rest of the sample and should
definitely be kept in the sample. But more probable is that the influential observa-
tions are atypical of the rest of the sample because they do not satisfy the model.

11The data are from the Penn World Table, reprinted in DeLong and Summers (1991). To their credit, their
analysis is based on the whole sample of sixty-one countries.
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Figure 1.2: Equipment Investment and Growth

In this case they should definitely be dropped from the sample. For the exam-
ple just examined, there was a worldwide growth in the demand for diamonds,
Botswana’s main export, and production of diamonds requires heavy investment
in drilling equipment. If the reason to expect an association between growth and
equipment investment is the beneficial effect on productivity of the introduction of
new technologies through equipment, then Botswana, whose high GDP growth is
demand-driven, should be dropped from the sample.

A Note on the Computation of OLS Estimates 12

So far, we have focused on the conceptual aspects of the algebra of least squares.
But for applied researchers who actually calculate OLS estimates using digital
computers, it is important to be aware of a certain aspect of digital computing
in order to avoid the risk of obtaining unreliable estimates without knowing it. The
source of a potential problem is that the computer approximates real numbers by
so-calledfloating-point numbers. When an arithmetic operation involves both
very large numbers and very small numbers, floating-point calculation can pro-
duce inaccurate results. This is relevant in the computation of OLS estimates when
the regressors greatly differ in magnitude. For example, one of the regressors may
be the interest rate stated as a fraction, and another may be U.S. GDP in dollars.
The matrixX ′X will then contain both very small and very large numbers, and the
arithmetic operation of inverting this matrix by the digital computer will produce
unreliable results.

12A fuller treatment of this topic can be found in Section 1.5 of Davidson and MacKinnon (1993).



Table 1.1: Influential Analysis

Country
GDP/worker

growth
Equipment/

GDP
Residual pi

(1.2.19)
for β1

(1.2.19)
for β2

Botswana 0.0676 0.1310 0.0119 0.7196 0.0104 −0.3124
Cameroon 0.0458 0.0415 0.0233 0.0773 −0.0021 0.0045
Ethiopia 0.0094 0.0212 −0.0056 0.1193 0.0010 −0.0119
India 0.0115 0.0278 −0.0059 0.0980 0.0009 −0.0087
Indonesia 0.0345 0.0221 0.0192 0.1160 −0.0034 0.0394
Ivory Coast 0.0278 0.0243 0.0117 0.1084 −0.0019 0.0213
Kenya 0.0146 0.0462 −0.0096 0.0775 0.0007 0.0023
Madagascar −0.0102 0.0219 −0.0254 0.1167 0.0045 −0.0527
Malawi 0.0153 0.0361 −0.0052 0.0817 0.0006 −0.0036
Mali 0.0044 0.0433 −0.0188 0.0769 0.0016 −0.0006
Pakistan 0.0295 0.0263 0.0126 0.1022 −0.0020 0.0205
Tanzania 0.0184 0.0860 −0.0206 0.2281 −0.0021 0.0952
Thailand 0.0341 0.0395 0.0123 0.0784 −0.0012 0.0047
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A simple solution to this problem is to choose the units of measurement so that
the regressors are similar in magnitude. For example, state the interest rate in per-
cents and U.S. GDP in trillion dollars. This sort of care would prevent the problem
most of the time. A more systematic transformation of theX matrix is to subtract
the sample means of all regressors and divide by the sample standard deviations
before formingX ′X (and adjust the OLS estimates to undo the transformation).
Most OLS programs (such as TSP) take a more sophisticated transformation of the
X matrix (called theQR decomposition) to produce accurate results.

Q U E S T I O N S F O R R E V I E W

1. Prove thatX ′X is positive definite ifX is of full column rank. Hint: What

needs to be shown is that c′X ′Xc > 0 for c 6= 0. Define z ≡ Xc. Then

c′X ′Xc = z′z=∑K
k=1 z2

i . If X is of full column rank, then z 6= 0 for any c 6= 0.

2. Verify that X ′X/n = 1
n

∑
i xi x′i andX ′y/n = 1

n

∑
i xi · yi as in (1.2.6).Hint:

The (k, `) element of X ′X is
∑

i xik xi`.

3. (OLS estimator for the simple regression model) In the simple regression
model,K = 2 andxi1 = 1. Show that

Sxx =
[

1 x̄2

x̄2
1
n

∑n
i=1 x2

i2

]
, sxy =

[
ȳ

1
n

∑n
i=1 xi2yi

]

where

ȳ ≡ 1

n

n∑
i=1

yi and x̄2 ≡ 1

n

n∑
i=1

xi2.

Show that

b2 =
1
n

∑n
i=1(xi2 − x̄2)(yi − ȳ)

1
n

∑n
i=1(xi2 − x̄2)2

and b1 = ȳ− x̄2b2.

(You may recognize the denominator of the expression forb2 as the sample
variance of the nonconstant regressor and the numerator as the sample covar-
iance between the nonconstant regressor and the dependent variable.)Hint:

1

n

n∑
i=1

x2
i2 − (x̄2)

2 = 1

n

n∑
i=1

(xi2 − x̄2)
2
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and

1

n

n∑
i=1

xi2 yi − x̄2 ȳ = 1

n

n∑
i=1

(xi2 − x̄2)(yi − ȳ).

You can take (1.2.5′) and use the brute force of matrix inversion. Alternatively,

write down the two normal equations. The first normal equation is b1 = ȳ−x̄2b2.

Substitute this into the second normal equation to eliminate b1 and then solve

for b2.

4. Prove (1.2.9)–(1.2.11).Hint: They should easily follow from the definition of P
and M .

5. (Matrix algebra of fitted values and residuals) Show the following:

(a) ŷ = Py, e= My = Mε. Hint: Use (1.2.5).

(b) (1.2.12), namely,SSR= ε′Mε.

6. (Change in units andR2) Does a change in the unit of measurement for the
dependent variable changeR2? A change in the unit of measurement for
the regressors?Hint: Check whether the change affects the denominator and

the numerator in the definition for R2.

7. (Relation betweenR2
uc andR2) Show that

1− R2 =
(

1+ n · ȳ2∑n
i=1(yi − ȳ)2

)
(1− R2

uc).

Hint: Use (1.2.16), (1.2.18), and the identity
∑

i (yi − ȳ)2 =∑i y2
i − n · ȳ2.

8. Show that

R2
uc =

y′Py
y′y

.

9. (Computation of the statistics) Verify thatb, SSR, s2, andR2 can be calculated
from the following sample averages:Sxx, sxy, y′y/n, and ȳ. (If the regressors
include a constant, then̄y is the element ofsxy corresponding to the constant.)
Therefore, those sample averages need to be computed just once in order to
obtain the regression coefficients and related statistics.
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1.3 Finite-Sample Properties of OLS

Having derived the OLS estimator, we now examine its finite-sample properties,
namely, the characteristics of the distribution of the estimator that are valid for any
given sample sizen.

Finite-Sample Distribution of bbb
Proposition 1.1 (finite-sample properties of the OLS estimator ofβ):

(a) (unbiasedness) Under Assumptions 1.1–1.3, E(b | X) = β.

(b) (expression for the variance) Under Assumptions 1.1–1.4, Var(b | X) = σ 2 ·
(X ′X)−1.

(c) (Gauss-Markov Theorem) Under Assumptions 1.1–1.4, the OLS estimator is
efficient in the class of linear unbiased estimators. That is, for any unbiased
estimator β̂ that is linear in y, Var(β̂ | X) ≥ Var(b | X) in the matrix sense.13

(d) Under Assumptions 1.1–1.4, Cov(b,e | X) = 0, where e≡ y− Xb.

Before plunging into the proof, let us be clear about what this proposition means.

• The matrix inequality in part (c) says that theK × K matrix Var(β̂ | X) −
Var(b | X) is positive semidefinite, so

a′[Var(β̂ | X)− Var(b | X)]a≥ 0 or a′ Var(β̂ | X)a≥ a′ Var(b | X)a

for any K -dimensional vectora. In particular, consider a special vector whose
elements are all 0 except for thek-th element, which is 1. For this particulara,
the quadratic forma′Aa picks up the(k, k) element ofA. But the(k, k) element
of Var(β̂ | X), for example, is Var(β̂k | X) whereβ̂k is thek-th element of̂β.
Thus the matrix inequality in (c) implies

Var(β̂k | X) ≥ Var(bk | X) (k = 1,2, . . . , K ). (1.3.1)

That is, for any regression coefficient, the variance of the OLS estimator is no
larger than that of any other linear unbiased estimator.

13Let A andB be two square matrices of the same size. We say thatA ≥ B if A − B is positive semidefinite.
A K × K matrix C is said to be positive semidefinite (or nonnegative definite) ifx′Cx ≥ 0 for all K -dimensional
vectorsx.
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• As clear from (1.2.5), the OLS estimator is linear iny. There are many other
estimators ofβ that are linear and unbiased (you will be asked to provide one
in a review question below). The Gauss-Markov Theorem says that the OLS
estimator isefficient in the sense that its conditional variance matrix Var(b | X)
is smallest among linear unbiased estimators. For this reason the OLS estimator
is called the Best Linear Unbiased Estimator (BLUE ).

• The OLS estimatorb is a function of the sample(y,X). Since(y,X) are random,
so isb. Now imagine that we fixX at some given value, calculateb for all
samples corresponding to all possible realizations ofy, and take the average of
b (the Monte Carlo exercise to this chapter will ask you to do this). This average
is the (population) conditional mean E(b | X). Part (a) (unbiasedness) says that
this average equals the true valueβ.

• There is another notion of unbiasedness that is weaker than the unbiasedness of
part (a). By the Law of Total Expectations, E[E(b | X)] = E(b). So (a) implies

E(b) = β. (1.3.2)

This says: if we calculatedb for all possible different samples, differing not
only in y but also inX, the average would be the true value. This unconditional
statement is probably more relevant in economics because samples do differ in
bothy andX. The import of the conditional statement (a) is that it implies the
unconditional statement (1.3.2), which is more relevant.

• The same holds for the conditional statement (c) about the variance. A review
question below asks you to show that statements (a) and (b) imply

Var(β̂) ≥ Var(b) (1.3.3)

whereβ̂ is any linear unbiased estimator (so that E(β̂ | X) = β).
We will now go through the proof of this important result. The proof may look

lengthy; if so, it is only because it records every step, however easy. In the first
reading, you can skip the proof of part (c). Proof of (d) is a review question.

PROOF.

(a) (Proof that E(b | X) = β) E(b − β | X) = 0 whenever E(b | X) = β.
So we prove the former. By the expression for the sampling error (1.2.14),
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b− β = Aε whereA here is(X ′X)−1X ′. So

E(b− β | X) = E(Aε | X) = A E(ε | X).

Here, the second equality holds by the linearity of conditional expectations;A
is a function ofX and so can be treated as if nonrandom. Since E(ε | X) = 0,
the last expression is zero.

(b) (Proof that Var(b | X) = σ 2·(X ′X)−1)

Var(b | X) = Var(b− β | X) (sinceβ is not random)

= Var(Aε | X) (by (1.2.14) andA ≡ (X ′X)−1X ′)

= A Var(ε | X)A ′ (sinceA is a function ofX)

= A E(εε′ | X)A ′ (by Assumption 1.2)

= A(σ 2In)A ′ (by Assumption 1.4, see (1.1.14))

= σ 2AA ′

= σ 2 · (X ′X)−1 (sinceAA ′ = (X ′X)−1X ′X(X ′X)−1 = (X ′X)−1).

(c) (Gauss-Markov) Sincêβ is linear iny, it can be written aŝβ = Cy for some
matrix C, which possibly is a function ofX. Let D ≡ C − A or C = D + A
whereA ≡ (X ′X)−1X ′. Then

β̂ = (D+ A)y

= Dy+ Ay

= D(Xβ + ε)+ b (sincey = Xβ + ε andAy = (X ′X)−1X ′y = b)

= DXβ + Dε + b.

Taking the conditional expectation of both sides, we obtain

E(β̂ | X) = DXβ + E(Dε | X)+ E(b | X).

Since bothb and β̂ are unbiased and since E(Dε | X) = D E(ε | X) = 0, it
follows thatDXβ = 0. For this to be true for any givenβ, it is necessary that
DX = 0. Soβ̂ = Dε + b and

β̂ − β = Dε + (b− β)
= (D+ A)ε (by (1.2.14)).
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So

Var(β̂ | X) = Var(β̂ − β | X)
= Var[(D+ A)ε | X]
= (D+ A)Var(ε | X)(D′ + A ′)

(since bothD andA are functions ofX)

= σ 2 · (D+ A)(D′ + A ′) (since Var(ε | X) = σ 2In)

= σ 2 · (DD′ + AD ′ + DA ′ + AA ′).

But DA ′ = DX(X ′X)−1 = 0 sinceDX = 0. Also,AA ′ = (X ′X)−1 as shown in
(b). So

Var(β̂ | X) = σ 2 · [DD′ + (X ′X)−1]
≥ σ 2 · (X ′X)−1 (sinceDD′ is positive semidefinite)

= Var(b | X) (by (b)).

It should be emphasized that the strict exogeneity assumption (Assumption
1.2) is critical for proving unbiasedness. Anything short of strict exogeneity will
not do. For example, it is not enough to assume that E(εi | xi ) = 0 for all i or
that E(xi ·εi ) = 0 for all i . We noted in Section 1.1 that most time-series models
do not satisfy strict exogeneity even if they satisfy weaker conditions such as the
orthogonality condition E(xi ·εi ) = 0. It follows that for those models the OLS
estimator is not unbiased.

Finite-Sample Properties of s2

We defined the OLS estimator ofσ 2 in (1.2.13). It, too, is unbiased.

Proposition 1.2 (Unbiasedness ofs2): Under Assumptions 1.1–1.4, E(s2 | X) =
σ 2 (and hence E(s2) = σ 2), provided n > K (so that s2 is well-defined).

We can prove this proposition easily by the use of the trace operator.14

PROOF. Sinces2 = e′e/(n− K ), the proof amounts to showing that E(e′e | X) =
(n − K )σ 2. As shown in (1.2.12),e′e = ε′Mε whereM is the annihilator. The
proof consists of proving two properties: (1) E(ε′Mε | X) = σ 2· trace(M ), and
(2) trace(M ) = n− K .

14Thetrace of a square matrixA is the sum of the diagonal elements ofA: trace(A) =∑i aii .
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(1) (Proof that E(ε′Mε | X) = σ 2· trace(M )) Sinceε′Mε =∑n
i=1

∑n
j=1 mij εi εj

(this is just writing out the quadratic formε′Mε), we have

E(ε′Mε | X) =
n∑

i=1

n∑
j=1

mij E(εi εj | X) (becausemij ’s are functions ofX,

E(mij εi εj | X) = mij E(εi εj | X))

=
n∑

i=1

mii σ
2

(since E(εi εj | X) = 0 for i 6= j by Assumption 1.4)

= σ 2
n∑

i=1

mii

= σ 2 · trace(M ).

(2) (Proof that trace(M ) = n− K )

trace(M ) = trace(In − P) (sinceM ≡ In − P; see (1.2.8))

= trace(In)− trace(P) (fact: the trace operator is linear)

= n− trace(P),

and

trace(P) = trace[X(X ′X)−1X ′] (sinceP≡ X(X ′X)−1X ′; see (1.2.7))

= trace[(X ′X)−1X ′X] (fact: trace(AB) = trace(BA))

= trace(I K ) = K .

So trace(M ) = n− K .

Estimate of Var(bbb | XXX)
If s2 is the estimate ofσ 2, a natural estimate of Var(b | X) = σ 2·(X ′X)−1 is

\Var(b | X) ≡ s2·(X ′X)−1. (1.3.4)

This is one of the statistics included in the computer printout of any OLS software
package.

Q U E S T I O N S F O R R E V I E W

1. (Role of the no-multicollinearity assumption) In Propositions 1.1 and 1.2,
where did we use Assumption 1.3 that rank(X) = K? Hint: We need the

no-multicollinearity condition to make sure X ′X is invertible.
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2. (Example of a linear estimator) For the consumption function example in
Example 1.1, propose a linear and unbiased estimator ofβ2 that is different
from the OLS estimator.Hint: How about β̂2 = (CON2−CON1)/(YD2−YD1)?

Is it linear in (CON1, . . . ,CONn)? Is it unbiased in the sense that E(β̂2 |
YD1, . . . ,YDn) = β2?

3. (What Gauss-Markov does not mean) Under Assumptions 1.1–1.4, does there
exist a linear, but not necessarily unbiased, estimator ofβ that has a variance
smaller than that of the OLS estimator? If so, how small can the variance be?
Hint: If an estimator of β is a constant, then the estimator is trivially linear in y.

4. (Gauss-Markov for Unconditional Variance)

(a) Prove: Var(β̂) = E[Var(β̂ | X)] + Var[E(β̂ | X)]. Hint: By definition,

Var(β̂ | X) ≡ E
[(
β̂ − E(β̂ | X))(β̂ − E(β̂ | X))′ | X]

and

Var[E(β̂ | X)] ≡ E
{[E(β̂ | X)− E(β̂)][E(β̂ | X)− E(β̂)]′}.

Use the add-and-subtract strategy: take β̂−E(β̂ | X) and add and subtract

E(β̂).

(b) Prove (1.3.3).Hint: If Var(β̂ | X) ≥ Var(b | X), then E[Var(β̂ | X)] ≥
E[Var(b | X)]

5. Propose an unbiased estimator ofσ 2 if you had data onε. Hint: How about

ε′ε/n? Is it unbiased?

6. Prove part (d) of Proposition 1.1.Hint: By definition,

Cov(b,e | X) ≡ E
{
[b − E(b | X)][e− E(e | X)]′ ∣∣ X

}
.

Since E(b | X) = β, we have b− E(b | X) = Aε where A here is (X ′X)−1X ′.
Use Mε = e (see Review Question 5 to Section 1.2) to show that e− E(e |
X) = Mε. E(Aεε′M | X) = A E(εε′ | X)M since both A and M are functions

of X. Finally, use MX = 0 (see (1.2.11)).

7. Prove (1.2.21).Hint: Since P is positive semidefinite, its diagonal elements are

nonnegative. Note that
∑n

i=1 pi = trace(P).
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1.4 Hypothesis Testing under Normality

Very often, the economic theory that motivated the regression equation also speci-
fies the values that the regression coefficients should take. Suppose that the under-
lying theory implies the restriction thatβ2 equals 1. Although Proposition 1.1
guarantees that, on average,b2 (the OLS estimate ofβ2) equals 1 if the restriction
is true,b2 may not be exactly equal to 1 for a particular sample at hand. Obviously,
we cannot conclude that the restriction is false just because the estimateb2 differs
from 1. In order for us to decide whether the sampling errorb2 − 1 is “too large”
for the restriction to be true, we need to construct from the sampling error some
test statistic whose probability distribution is known given the truth of the hypoth-
esis. It might appear that doing so requires one to specify the joint distribution of
(X, ε) because, as is clear from (1.2.14), the sampling error is a function of(X, ε).
A surprising fact about the theory of hypothesis testing to be presented in this sec-
tion is that the distribution can be derived without specifying the joint distribution
when the conditional distribution ofε conditional onX is normal; there is no need
to specify the distribution ofX.

In the language of hypothesis testing, the restriction to be tested (such as
“β2 = 1”) is called thenull hypothesis (or simply thenull ). It is a restriction
on themaintained hypothesis, a set of assumptions which, combined with the
null, produces some test statistic with a known distribution. For the present case
of testing hypothesis about regression coefficients, only the normality assumption
about the conditional distribution ofε needs to be added to the classical regression
model (Assumptions 1.1–1.4) to form the maintained hypothesis (as just noted,
there is no need to specify the joint distribution of(X, ε)). Sometimes the main-
tained hypothesis is somewhat loosely referred to as “the model.” We say that the
model iscorrectly specified if the maintained hypothesis is true. Although too
large a value of the test statistic is interpreted as a failure of the null, the interpreta-
tion is valid only as long as the model is correctly specified. It is possible that the
test statistic does not have the supposed distribution when the null is true but the
model is false.

Normally Distributed Error Terms

In many applications, the error term consists of many miscellaneous factors not
captured by the regressors. The Central Limit Theorem suggests that the error
term has a normal distribution. In other applications, the error term is due to
errors in measuring the dependent variable. It is known that very often measure-
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ment errors are normally distributed (in fact, the normal distribution was originally
developed for measurement errors). It is therefore worth entertaining the normality
assumption:

Assumption 1.5 (normality of the error term): The distribution of ε conditional
on X is jointly normal.

Recall from probability theory that the normal distribution has several convenient
features:

• The distribution depends only on the mean and the variance. Thus, once the
mean and the variance are known, you can write down the density function.
If the distribution conditional onX is normal, the mean and the variance can
depend onX. It follows that, if the distribution conditional onX is normal and
if neither the conditional mean nor the conditional variance depends onX, then
the marginal (i.e., unconditional) distribution is the same normal distribution.

• In general, if two random variables are independent, then they are uncorrelated,
but the converse is not true. However, if two random variables are joint nor-
mal, the converse is also true, so that independence and a lack of correlation
are equivalent. This carries over to conditional distributions: if two random
variables are joint normal and uncorrelated conditional onX, then they are inde-
pendent conditional onX.

• A linear function of random variables that are jointly normally distributed is
itself normally distributed. This also carries over to conditional distributions. If
the distribution ofε conditional onX is normal, thenAε, where the elements of
matrix A are functions ofX, is normal conditional onX.

It is thanks to these features of normality that Assumption 1.5 delivers the following
properties to be exploited in the derivation of test statistics:

• The mean and the variance of the distribution ofε conditional onX are already
specified in Assumptions 1.2 and 1.4. Therefore, Assumption 1.5 together with
Assumptions 1.2 and 1.4 implies that the distribution ofε conditional onX is
N(0, σ 2 In):

ε | X ∼ N(0, σ 2 In). (1.4.1)

Thus, the distribution ofε conditional onX does not depend onX. It then
follows thatε andX are independent. Therefore, in particular, the marginal or
unconditional distribution ofε is N(0, σ 2 In).
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• We know from (1.2.14) that the sampling errorb − β is linear inε given X.
Sinceε is normal givenX, so is the sampling error. Its mean and variance are
given by parts (a) and (b) of Proposition 1.1. Thus, under Assumptions 1.1–1.5,

(b− β) | X ∼ N(0, σ 2·(X ′X)−1). (1.4.2)

Testing Hypotheses about Individual Regression Coefficients

The type of hypothesis we first consider is about thek-th coefficient

H0 : βk = βk.

Here,βk is some known value specified by the null hypothesis. We wish to test this
null against the alternative hypothesis H1 : βk 6= βk, at a significance level ofα.
Looking at thek-th component of (1.4.2) and imposing the restriction of the null,
we obtain

(bk − βk)
∣∣ X ∼ N

(
0, σ 2 · ((X ′X)−1

)
kk

)
,

where
(
(X ′X)−1

)
kk

is the(k, k) element of(X ′X)−1. So if we define the ratiozk by
dividing bk − βk by its standard deviation

zk ≡ bk − βk√
σ 2 · ((X ′X)−1

)
kk

, (1.4.3)

then the distribution ofzk is N(0,1) (the standard normal distribution).
Suppose for a second thatσ 2 is known. Then the statisticzk has some desir-

able properties as a test statistic. First, its value can be calculated from the sample.
Second, its distribution conditional onX does not depend onX (which should not
be confused with the fact that thevalue of zk depends onX). So zk and X are
independently distributed, and, regardless of the value ofX, the distribution ofzk

is the same as its unconditional distribution. This is convenient because different
samples differ not only iny but also inX. Third, the distribution is known. In
particular, it does not depend on unknown parameters (such asβ). (If the distri-
bution of a statistic depends on unknown parameters, those parameters are called
nuisance parameters.) Using this statistic, we can determine whether or not the
sampling errorbk−βk is too large: it is too large if the test statistic takes on a value
that is surprising for a realization from the distribution.

If we do not know the true value ofσ 2, a natural idea is to replace the nuisance
parameterσ 2 by its OLS estimates2. The statistic after the substitution ofs2 for
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σ 2 is called thet-ratio or the t-value. The denominator of this statistic is called
thestandard error of the OLS estimate ofβk and is sometimes written asSE(bk):

SE(bk) ≡
√

s2 · ((X ′X)−1
)

kk
=
√
(k, k) element of \Var(b | X) in (1.3.4). (1.4.4)

Sinces2, being a function of the sample, is a random variable, this substitution
changes the distribution of the statistic, but fortunately the changed distribution,
too, is known and depends on neither nuisance parameters norX.

Proposition 1.3 (distribution of the t-ratio): Suppose Assumptions 1.1–1.5 hold.
Under the null hypothesis H0 : βk = βk, the t-ratio defined as

tk ≡ bk − βk

SE(bk)
≡ bk − βk√

s2 · ((X ′X)−1
)

kk

(1.4.5)

is distributed as t (n− K ) (the t distribution with n− K degrees of freedom).

PROOF. We can write

tk = bk − βk√
σ 2 · ((X ′X)−1

)
kk

·
√
σ 2

s2
= zk√

s2/σ 2

= zk√
e′e/(n−K )

σ2

= zk√
q

n−K

,

whereq ≡ e′e/σ 2 to reflect the substitution ofs2 for σ 2. We have already shown
thatzk is N(0,1). We will show:

(1) q | X ∼ χ2(n− K ),

(2) two random variableszk andq are independent conditional onX.

Then, by the definition of thet distribution, the ratio ofzk to
√

q/(n− K ) is dis-
tributed ast with n− K degrees of freedom,15 and we are done.

(1) Sincee′e= ε′Mε from (1.2.12), we have

q = e′e
σ 2
= ε′

σ
M
ε

σ
.

15Fact: Ifx ∼ N(0,1), y ∼ χ2(m) and ifx andy are independent, then the ratiox/
√

y/m has thet distribution
with m degrees of freedom.
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The middle matrixM , being the annihilator, is idempotent. Also,ε/σ | X ∼
N(0, In) by (1.4.1). Therefore, this quadratic form is distributed asχ2 with
degrees of freedom equal to rank(M ).16 But rank(M ) = trace(M ), becauseM
is idempotent.17 We have already shown in the proof of Proposition 1.2 that
trace(M ) = n− K . Soq | X ∼ χ2(n− K ).

(2) Bothb ande are linear functions ofε (by (1.2.14) and the fact thate= Mε),
so they are jointly normal conditional onX. Also, they are uncorrelated con-
ditional onX (see part (d) of Proposition 1.1). Sob ande are independently
distributed conditional onX. But zk is a function ofb andq is a function ofe.
Sozk andq are independently distributed conditional onX.18

Decision Rule for the t-Test

The test of the null hypothesis based on thet-ratio is called thet-test and proceeds
as follows:

Step 1: Given the hypothesized value,βk, of βk, form thet-ratio as in (1.4.5). Too
large a deviation oftk from 0 is a sign of the failure of the null hypothesis.
The next step specifies how large is too large.

Step 2: Go to thet-table (most statistics and econometrics textbooks include thet-
table) and look up the entry forn−K degrees of freedom. Find thecritical
value, tα/2(n − K ), such that the area in thet distribution to the right of
tα/2(n − K ) is α/2, as illustrated in Figure 1.3. (Ifn − K = 30 and
α = 5%, for example,tα/2(n− K ) = 2.042.) Then, since thet distribution
is symmetric around 0,

Prob
(−tα/2(n− K ) < t < tα/2(n− K )

) = 1− α.

Step 3: Accept H0 if −tα/2(n− K ) < tk < tα/2(n− K ) (that is, if |tk| < tα/2(n−
K )), wheretk is thet-ratio fromStep 1. Reject H0 otherwise. Sincetk ∼
t (n − K ) under H0, the probability of rejecting H0 when H0 is true isα.
So the size (significance level) of the test is indeedα.

A convenient feature of thet-test is that the critical value does not depend on
X; there is no need to calculate critical values for each sample.

16Fact: Ifx ∼ N(0, In) andA is idempotent, thenx′Ax has a chi-squared distribution with degrees of freedom
equal to the rank ofA.

17Fact: IfA is idempotent, then rank(A) = trace(A).
18Fact: Ifx andy are independently distributed, then so aref (x) andg(y).
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Figure 1.3: t Distribution

Confidence Interval

Step 3can also be stated in terms ofbk andSE(bk). Sincetk is as in (1.4.5), you
accept H0 whenever

−tα/2(n− K ) <
bk − βk

SE(bk)
< tα/2(n− K )

or

bk − SE(bk) · tα/2(n− K ) < βk < bk + SE(bk) · tα/2(n− K ).

Therefore, we accept if and only if the hypothesized valueβk falls in the interval:

[bk − SE(bk) · tα/2(n− K ),bk + SE(bk) · tα/2(n− K )]. (1.4.6)

This interval is called thelevel 1− α confidence interval. It is narrower the
smaller the standard error. Thus, the smallness of the standard error is a measure
of the estimator’s precision.

p-Value

The decision rule of thet-test can also be stated using thep-value.

Step 1: Same as above.
Step 2: Rather than finding the critical valuetα/2(n− K ), calculate

p = Prob(t > |tk|)× 2.
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Since thet distribution is symmetric around 0, Prob(t > |tk|) = Prob(t <
−|tk|), so

Prob(−|tk| < t < |tk|) = 1− p. (1.4.7)

Step 3: Accept H0 if p > α. Reject otherwise.

To see the equivalence of the two decision rules, one based on the critical values
such astα/2(n − K ) and the other based on thep-value, refer to Figure 1.3. If
Prob(t > |tk|) is greater thanα/2 (as in the figure), that is, if thep-value is more
thanα, then|tk|must be to the left oftα/2(n− K ). This means fromStep 3that the
null hypothesis is not rejected. Thus, whenp is small, thet-ratio is surprisingly
large for a random variable from thet distribution. The smaller thep, the stronger
the rejection.

Examples of thet-test can be found in Section 1.7.

Linear Hypotheses

The null hypothesis we wish to test may not be a restriction about individual regres-
sion coefficients of the maintained hypothesis; it is often about linear combinations
of them written as a system of linear equations:

H0 : Rβ = r , (1.4.8)

where values ofR andr are known and specified by the hypothesis. We denote the
number of equations, which is the dimension ofr , by #r . SoR is #r × K . These
#r equations are restrictions on the coefficients in the maintained hypothesis. It is
called a linear hypothesis because each equation is linear. To make sure that there
are no redundant equations and that the equations are consistent with each other,
we require that rank(R) = #r (i.e.,R is of full row rank with its rank equaling the
number of rows). But do not be too conscious about the rank condition; in specific
applications, it is very easy to spot a failure of the rank condition if there is one.

Example 1.5 (continuation of Example 1.2):Consider the wage equation
of Example 1.2 whereK = 4. We might wish to test the hypothesis that
education and tenure have equal impact on the wage rate and that there is no
experience effect. The hypothesis is two equations (so #r = 2):

β2 = β3 and β4 = 0.
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This can be cast in the formatRβ = r if R andr are defined as

R =
[

0 1 −1 0
0 0 0 1

]
, r =

[
0
0

]
.

Because the two rows of thisR are linearly independent, the rank condition
is satisfied.

But suppose we require additionally that

β2− β3 = β4.

This is redundant because it holds whenever the first two equations do. With
these three equations, #r = 3 and

R =
0 1 −1 0

0 0 0 1
0 1 −1 −1

 , r =
0

0
0

 .
Since the third row ofR is the difference between the first two,R is not of
full row rank. The consequence of adding redundant equations is thatR no
longer meets the full row rank condition.

As an example of inconsistent equations, consider adding to the first two
equations the third equationβ4 = 0.5. Evidently,β4 cannot be 0 and 0.5
at the same time. The hypothesis is inconsistent because there is noβ that
satisfies the three equations simultaneously. If we nevertheless included this
equation, thenR andr would become

R =
0 1 −1 0

0 0 0 1
0 0 0 1

 , r =
 0

0
0.5

 .
Again, the full row rank condition is not satisfied because the rank ofR is 2
while #r = 3.

The F -Test

To test linear hypotheses, we look for a test statistic that has a known distribution
under the null hypothesis.

Proposition 1.4 (distribution of the F -ratio): Suppose Assumptions 1.1–1.5
hold. Under the null hypothesis H0 : Rβ = r , where R is #r × K with rank(R) =
#r , the F -ratio defined as
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F ≡ (Rb− r)′
[
R(X ′X)−1R′

]−1
(Rb− r)/#r

s2

= (Rb− r)′[R \Var(b | X)R′]−1(Rb− r)/#r (by (1.3.4)) (1.4.9)

is distributed as F(#r ,n − K ) (the F distribution with #r and n − K degrees of
freedom).

As in Proposition 1.3, it suffices to show that the distribution conditional onX
is F(#r ,n − K ); because theF distribution does not depend onX, it is also the
unconditional distribution of the statistic.

PROOF. Sinces2 = e′e/(n− K ), we can write

F = w/#r
q/(n− K )

where

w ≡ (Rb− r)′[σ 2 · R(X ′X)−1R′]−1(Rb− r) and q ≡ e′e
σ 2
.

We need to show

(1) w | X ∼ χ2(#r),

(2) q | X ∼ χ2(n− K ) (this is part (1) in the proof of Proposition 1.3),

(3) w andq are independently distributed conditional onX.

Then, by the definition of theF distribution, theF-ratio∼ F(#r ,n− K ).

(1) Letv ≡ Rb− r . Under H0, Rb− r = R(b− β). So by (1.4.2), conditional on
X, v is normal with mean0, and its variance is given by

Var(v | X) = Var(R(b− β) | X) = R Var(b− β | X)R′ = σ 2 · R(X ′X)−1R′,

which is none other than the inverse of the middle matrix in the quadratic form
for w. Hence,w can be written asv′ Var(v | X)−1v. SinceR is of full row
rank andX ′X is nonsingular,σ 2 · R(X ′X)−1R′ is nonsingular (why? Showing
this is a review question). Therefore, by the definition of theχ2 distribution,
w | X ∼ χ2(#r).19

19Fact: Letx be anm dimensional random vector. Ifx ∼ N(µ,6) with 6 nonsingular, then(x−µ)′6−1(x−
µ) ∼ χ2(m).
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(3) w is a function ofb andq is a function ofe. But b ande are independently
distributed conditional onX, as shown in part (2) of the proof of Proposition
1.3. Sow andq are independently distributed conditional onX.

If the null hypothesisRβ = r is true, we expectRb − r to be small, so large
values ofF should be taken as evidence for a failure of the null. This means that
we look at only the upper tail of the distribution in theF-statistic. The decision
rule of theF-test at the significance level ofα is as follows.

Step 1: Calculate theF-ratio by the formula (1.4.9).
Step 2: Go to the table ofF distribution and look up the entry for #r (the numera-

tor degrees of freedom) andn− K (the denominator degrees of freedom).
Find the critical valueFα(#r ,n− K ) that leavesα for the upper tail of the
F distribution, as illustrated in Figure 1.4. For example, when #r = 3,
n− K = 30, andα = 5%, the critical valueF.05(3,30) is 2.92.

Step 3: Accept the null if theF-ratio fromStep 1is less thanFα(#r ,n−K ). Reject
otherwise.

This decision rule can also be described in terms of thep-value:

Step 1: Same as above.
Step 2: Calculate

p = area of the upper tail of theF distribution to the right of theF-ratio.

Step 3: Accept the null ifp > α; reject otherwise.

Thus, asmall p-value is a signal of the failure of the null.

A More Convenient Expression for F
The above derivation of theF-ratio is by theWald principle , because it is based
on the unrestricted estimator, which is not constrained to satisfy the restrictions of
the null hypothesis. Calculating theF-ratio by the formula (1.4.9) requires matrix
inversion and multiplication. Fortunately, there is a convenient alternative formula
involving two different sum of squared residuals: one isSSR, the minimized sum
of squared residuals obtained from (1.2.1) now denoted asSSRU , and the other is
the restricted sum of squared residuals, denotedSSRR, obtained from

min
β̃

SSR(β̃) s.t. Rβ̃ = r . (1.4.10)
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Figure 1.4: F Distribution

Finding theβ̃ that achieves this constrained minimization is called therestricted
regressionor restricted least squares. It is left as an analytical exercise to show
that theF-ratio equals

F = (SSRR− SSRU )/#r
SSRU/(n− K )

, (1.4.11)

which is the difference in the objective function deflated by the estimate of the
error variance. This derivation of theF-ratio is analogous to how the likelihood-
ratio statistic is derived in maximum likelihood estimation as the difference in log
likelihood with and without the imposition of the null hypothesis. For this reason,
this second derivation of theF-ratio is said to be by theLikelihood-Ratio prin-
ciple. There is a closed-form expression for the restricted least squares estimator
of β. Deriving the expression is left as an analytical exercise. The computation of
restricted least squares will be explained in the context of the empirical example in
Section 1.7.

t versus F
Because hypotheses about individual coefficients are linear hypotheses, thet-test
of H0 : βk = βk is a special case of theF-test. To see this, note that the hypothesis
can be written asRβ = r with

R
(1×K )

=
[
0 · · · 0 1 0 · · · 0

]
(k)

, r = βk.
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So by (1.4.9) theF-ratio is

F = (bk − βk)
[
s2 · (k, k) element of(X ′X)−1

]−1
(bk − βk),

which is the square of thet-ratio in (1.4.5). Since a random variable distributed as
F(1,n− K ) is the square of a random variable distributed ast (n− K ), thet- and
F-tests give the same test result.

Sometimes, the null is that a set of individual regression coefficients equal
certain values. For example, assumeK = 2 and consider

H0 : β1 = 1 and β2 = 0.

This can be written as a linear hypothesisRβ = r for R = I2 andr = (1,0)′. So
the F-test can be used. It is tempting, however, to conduct thet-test separately for
each individual coefficient of the hypothesis. We might accept H0 if both restric-
tions β1 = 1 andβ2 = 0 pass thet-test. This amounts to using the confidence
region of{

(β1, β2) | b1− SE(b1) · tα/2(n− K ) < β1 < b1+ SE(b1) · tα/2(n− K ),

b2− SE(b2) · tα/2(n− K ) < β2 < b2+ SE(b2) · tα/2(n− K )
}
,

which is a rectangular region in the(β1, β2) plane, as illustrated in Figure 1.5. If
(1,0), the point in the(β1, β2) plane specified by the null, falls in this region, one
would accept the null. On the other hand, the confidence region for theF-test is

{
(β1, β2) | (b1 − β1,b2− β2)

(
\Var(b | X))−1

[
b1− β1

b2− β2

]
< 2Fα(#r ,n− K )

}
.

Since \Var(b | X) is positive definite, theF-test acceptance region is an ellipse in
the(β1, β2) plane. The two confidence regions look typically like Figure 1.5.

The F-test should be preferred to the test using twot-ratios for two reasons.
First, if the size (significance level) in each of the twot-tests isα, then the overall
size (the probability that(1,0) is outside the rectangular region) is notα. Second,
as will be noted in the next section (see (1.5.19)), theF-test is a likelihood ratio
test and likelihood-ratio tests have certain desirable properties. So even if the sig-
nificance level in eacht-test is controlled so that the overall size isα, the test is
less desirable than theF-test.20

20For more details on the relationship between thet-test and theF-tests, see Scheffe (1959, p. 46).
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Figure 1.5: t- versus F -Tests

An Example of a Test Statistic Whose Distribution Depends on XXX
To place the discussion of this section in a proper perspective, it may be useful
to note that there are some statistics whose conditional distribution depends onX.
Consider the celebratedDurbin-Watson statistic:∑n

i=2(ei − ei−1)
2∑n

i=1 e2
i

.

The conditional distribution, and hence the critical values, of this statistic depend
on X, but J. Durbin and G. S. Watson have shown that the critical values fall
between two bounds (which depends on the sample size, the number of regres-
sors, and whether the regressor includes a constant). Therefore, the critical values
for the unconditional distribution, too, fall between these bounds.

The statistic is designed for testing whether there is no serial correlation in
the error term. Thus, the null hypothesis is Assumption 1.4, while the maintained
hypothesis is the other assumptions of the classical regression model (including the
strict exogeneity assumption) and the normality assumption. But, as emphasized
in Section 1.1, the strict exogeneity assumption is not satisfied in time-series mod-
els typically encountered in econometrics, and serial correlation is an issue that
arises only in time-series models. Thus, the Durbin-Watson statistic is not useful
in econometrics. More useful tests for serial correlation, which are all based on
large-sample theory, will be covered in the next chapter.
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Q U E S T I O N S F O R R E V I E W

1. (Conditional vs. unconditional distribution) Do we know from Assumptions
1.1–1.5 that the marginal (unconditional) distribution ofb is normal? [Answer:
No.] Are the statisticszk (see (1.4.3)),tk, andF distributed independently of
X? [Answer: Yes, because their distributions conditional onX don’t depend
on X.]

2. (Computation of test statistics) Verify thatSE(bk) as well asb, SSR, s2, andR2

can be calculated from the following sample averages:Sxx, sxy, y′y/n, andȳ.

3. For the formula (1.4.9) for theF to be well-defined, the matrixR(X ′X)−1R′

must be nonsingular. Prove the stronger result that the matrix is positive def-
inite. Hint: X ′X is positive definite. The inverse of a positive definite matrix

is positive definite. Since R (#r × K ) is of full row rank, for any nonzero #r
dimensional vector z, R′z 6= 0.

4. (One-tailedt-test) Thet-test described in the text is thetwo-tailed t-test
because the significanceα is equally distributed between both tails of thet
distribution. Suppose the alternative is one-sided and written as H1 : βk > βk.
Consider the following modification of the decision rule of thet-test.

Step 1: Same as above.
Step 2: Find the critical valuetα such that the area in thet distribution to the

right of tα is α. Note the difference from the two-tailed test: the left
tail is ignored and the area ofα is assigned to the upper tail only.

Step 3: Accept if tk < tα; reject otherwise.

Show that the size (significance level) of thisone-tailed t-test is α.

5. (Relation betweenF(1,n− K ) andt (n− K )) Look up thet andF distribu-
tion tables to verify thatFα(1,n−K ) = (tα/2(n−K ))2 for degrees of freedom
and significance levels of your choice.

6. (t vs. F) “It is nonsense to test a hypothesis consisting of a large number of
equality restrictions, because thet-test will most likely reject at least some of
the restrictions.” Criticize this statement.

7. (Variance ofs2) Show that, under Assumptions 1.1–1.5,

Var(s2 | X) = 2σ 4

n− K
.

Hint: If a random variable is distributed as χ2(m), then its mean is m and vari-

ance 2m.
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1.5 Relation to Maximum Likelihood

Having specified the distribution of the error vectorε, we can use themaximum
likelihood (ML) principle to estimate the model parameters(β, σ 2).21 In this
section, we will show thatb, the OLS estimator ofβ, is also the ML estimator, and
the OLS estimator ofσ 2 differs only slightly from the ML counterpart, when the
error is normally distributed. We will also show thatb achieves theCramer-Rao
lower bound.

The Maximum Likelihood Principle

As you might recall from elementary statistics, the basic idea of the ML principle
is to choose the parameter estimates to maximize the probability of obtaining the
observed sample. To be more precise, we assume that the probability density of the
sample(y,X) is a member of a family of functions indexed by a finite-dimensional
parameter vector̃ζ : f (y,X; ζ̃ ). (This is described asparameterizing the density
function.) This function, viewed as a function of the hypothetical parameter vector
ζ̃ , is called thelikelihood function . At the true parameter vectorζ , the density of
(y,X) is f (y,X; ζ ). The ML estimate of the true parameter vectorζ is theζ̃ that
maximizes the likelihood function given the data(y,X).

Conditional versus Unconditional Likelihood

Since a (joint) density is the product of a marginal density and a conditional density,
the density of(y,X) can be written as

f (y,X; ζ ) = f (y | X; θ) · f (X;ψ), (1.5.1)

whereθ is the subset of the parameter vectorζ that determines the conditional
density function andψ is the subset determining the marginal density function.
The parameter vector of interest isθ ; for the linear regression model with normal
errors,θ = (β ′, σ 2)′ and f (y | X; θ) is given by (1.5.4) below.

Let ζ̃ ≡ (θ̃ ′, ψ̃ ′)′ be a hypothetical value ofζ = (θ ′,ψ ′)′. Then the (uncondi-
tional or joint) likelihood function is

f (y,X; ζ̃ ) = f (y | X; θ̃)· f (X; ψ̃). (1.5.2)

If we knew the parametric form off (X; ψ̃), then we could maximize this joint

21For a fuller treatment of maximum likelihood, see Chapter 7.
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likelihood function over the entire hypothetical parameter vectorζ̃ , and the ML
estimate ofθ would be the elements of the ML estimate ofζ . We cannot do this
for the classical regression model because the model does not specifyf (X; ψ̃).
However, if there is no functional relationship betweenθ̃ andψ̃ (such as a subset
of ψ̃ being a function of̃θ), then maximizing (1.5.2) with respect toζ̃ is achieved
by separately maximizingf (y | X; θ̃) with respect tõθ and maximizingf (X; ψ̃)
with respect toψ̃ . Thus the ML estimate ofθ also maximizes theconditional
likelihood f (y | X; θ̃).

The Log Likelihood for the Regression Model

As already observed, Assumption 1.5 (the normality assumption) together with
Assumptions 1.2 and 1.4 imply that the distribution ofε conditional onX is N(0,
σ 2 In) (see (1.4.1)). But sincey = Xβ + ε by Assumption 1.1, we have

y | X ∼ N(Xβ, σ 2 In). (1.5.3)

Thus, the conditional density ofy givenX is22

f (y | X) = (2πσ 2)−n/2 exp
[
− 1

2σ 2
(y− Xβ)′(y− Xβ)

]
. (1.5.4)

Replacing the true parameters(β, σ 2) by their hypothetical values(β̃, σ̃ 2) and tak-
ing logs, we obtain thelog likelihood function:

log L(β̃, σ̃ 2) = −n

2
log(2π)− n

2
log(σ̃ 2)− 1

2σ̃ 2
(y− Xβ̃)′(y− Xβ̃). (1.5.5)

Since the log transformation is a monotone transformation, the ML estimator of
(β, σ 2) is the(β̃, σ̃ 2) that maximizes this log likelihood.

ML via Concentrated Likelihood

It is instructive to maximize the log likelihood in two stages. First, maximize over
β̃ for any givenσ̃ 2. The β̃ that maximizes the objective function could (but does
not, in the present case of Assumptions 1.1–1.5) depend onσ̃ 2. Second, maximize
over σ̃ 2 taking into account that thẽβ obtained in the first stage could depend on
σ̃ 2. The log likelihood function in which̃β is constrained to be the value from

22Recall from basic probability theory that the density function for ann-variate normal distribution with mean
µ and variance matrix6 is

(2π)−n/2 |6|−1/2 exp
[
−1

2
(y− µ)′6−1(y− µ)

]
.

To derive (1.5.4), just setµ = Xβ and6 = σ2In.



Finite-Sample Properties of OLS 49

the first stage is called theconcentrated log likelihood function (concentrated
with respect tõβ). For the normal log likelihood (1.5.5), the first stage amounts
to minimizing the sum of squares(y − Xβ̃)′(y − Xβ̃). Theβ̃ that does it is none
other than the OLS estimatorb, and the minimized sum of squares ise′e. Thus, the
concentrated log likelihood is

concentrated log likelihood= −n

2
log(2π)− n

2
log(σ̃ 2)− 1

2σ̃ 2
e′e. (1.5.6)

This is a function ofσ̃ 2 alone, and thẽσ 2 that maximizes the concentrated likeli-
hood is the ML estimate ofσ 2. The maximization is straightforward for the present
case of the classical regression model, becausee′e is not a function ofσ̃ 2 and so
can be taken as a constant. Still, taking the derivative with respect toσ̃ 2, rather
than with respect tõσ , can be tricky. This can be avoided by denotingσ̃ 2 by γ̃ .
Taking the derivative of (1.5.6) with respect toγ̃ (≡ σ̃ 2) and setting it to zero, we
obtain the following result.

Proposition 1.5 (ML Estimator of (β, σ 2)): Suppose Assumptions 1.1–1.5 hold.
Then the ML estimator of β is the OLS estimator b and

ML estimator of σ 2 = 1

n
e′e= SSR

n
= n− K

n
s2. (1.5.7)

We know from Proposition 1.2 thats2 is unbiased. Sinces2 is multiplied by a factor
(n − K )/n which is different from 1, the ML estimator ofσ 2 is biased, although
the bias becomes arbitrarily small as the sample sizen increases for any given fixed
K .

For later use, we calculate the maximized value of the likelihood function.
Substituting (1.5.7) into (1.5.6), we obtain

maximized log likelihood= −n

2
log
(2π

n

)
− n

2
− n

2
log(SSR),

so that the maximized likelihood is

max
β̃,σ̃2

L(β̃, σ̃ 2) =
(2π

n

)−n/2 · exp
(
−n

2

)
· (SSR)−n/2. (1.5.8)

Cramer-Rao Bound for the Classical Regression Model

Just to refresh your memory of basic statistics, we temporarily step outside the
classical regression model and present without proof the Cramer-Rao inequality for
the variance-covariance matrix of any unbiased estimator. For this purpose, define
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thescore vectorat a hypothetical parameter valueθ̃ to be the gradient (vector of
partial derivatives) of log likelihood:

score: s(θ̃) ≡ ∂ log L(θ̃)

∂ θ̃
. (1.5.9)

Cramer-Rao Inequality: Let z be a vector of random variables (not necessarily
independent) the joint density of which is given by f (z; θ), where θ is an m-
dimensional vector of parameters in some parameter space 2. Let L(θ̃) ≡ f (z; θ̃)
be the likelihood function, and let θ̂(z) be an unbiased estimator of θ with a finite
variance-covariance matrix. Then, under some regularity conditions on f (z; θ)
(not stated here),

Var[θ̂(z)] ≥ I(θ)−1

(m×m)
(≡ Cramer-Rao Lower Bound ),

where I(θ) is the information matrix defined by

I(θ) ≡ E[s(θ) s(θ)′]. (1.5.10)

(Note well that the score is evaluated at the true parameter value θ .) Also under the
regularity conditions, the information matrix equals the negative of the expected
value of the Hessian (matrix of second partial derivatives) of the log likelihood:

I(θ) = −E

[
∂2 log L(θ)

∂ θ̃ ∂ θ̃
′

]
. (1.5.11)

This is called the information matrix equality .

See, e.g., Amemiya (1985, Theorem 1.3.1) for a proof and a statement of the regu-
larity conditions. Those conditions guarantee that the operations of differentiation
and taking expectations can be interchanged. Thus, for example,

E[∂L(θ)/∂ θ̃] = ∂ E[L(θ)]/∂ θ̃ .

Now, for the classical regression model (of Assumptions 1.1–1.5), the likeli-
hood functionL(θ̃) in the Cramer-Rao inequality is the conditional density (1.5.4),
so the variance in the inequality is the variance conditional onX. It can be shown
that those regularity conditions are satisfied for the normal density (1.5.4) (see,
e.g., Amemiya, 1985, Sections 1.3.2 and 1.3.3). In the rest of this subsection, we
calculate the information matrix for (1.5.4). The parameter vectorθ is (β ′, σ 2)′.
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So θ̃ = (β̃ ′, γ̃ )′ and the matrix of second derivatives we seek to calculate is

∂2 log L(θ)

∂ θ̃ ∂ θ̃
′

((K+1)×(K+1))

=


∂2 log L(θ)

∂β̃ ∂β̃
′

(K×K )

∂2 log L(θ)
∂β̃ ∂γ̃
(K×1)

∂2 log L(θ)

∂γ̃ ∂β̃
′

(1×K )

∂2 log L(θ)
∂2γ̃

(1×1)

 . (1.5.12)

The first and second derivatives of the log likelihood (1.5.5) with respect toθ̃ ,
evaluated at the true parameter vectorθ , are

∂ log L(θ)

∂β̃
= 1

γ
X ′(y− Xβ), (1.5.13a)

∂ log L(θ)

∂γ̃
= − n

2γ
+ 1

2γ 2
(y− Xβ)′(y− Xβ). (1.5.13b)

∂2 log L(θ)

∂β̃ ∂β̃
′ = −

1

γ
X ′X, (1.5.14a)

∂2 log L(θ)

∂2γ̃
= n

2γ 2
− 1

γ 3
(y− Xβ)′(y− Xβ), (1.5.14b)

∂2 log L(θ)

∂β̃ ∂γ̃
= − 1

γ 2
X ′(y− Xβ). (1.5.14c)

Since the derivatives are evaluated at the true parameter value,y − Xβ = ε in
these expressions. Substituting (1.5.14) into (1.5.12) and using E(ε | X) = 0
(Assumption 1.2), E(ε′ε | X) = nσ 2 (implication of Assumption 1.4), and recall-
ing γ = σ 2, we can easily derive

I(θ) =
[

1
σ2 X ′X 0

0′ n
2σ 4

]
. (1.5.15)

Here, the expectation is conditional onX because the likelihood function (1.5.4) is
a conditional density conditional onX. This block diagonal matrix can be inverted
to obtain the Cramer-Rao bound:

Cramer-Rao bound≡ I(θ)−1 =
[
σ 2 · (X ′X)−1 0

0′ 2σ 4

n

]
. (1.5.16)

Therefore, the unbiased estimatorb, whose variance isσ 2 · (X ′X)−1 by Proposition
1.1, attains the Cramer-Rao bound. We have thus proved
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Proposition 1.6 (b is the Best Unbiased Estimator (BUE)):Under Assumptions
1.1–1.5, the OLS estimator b of β is BUE in that any other unbiased (but not
necessarily linear) estimator has larger conditional variance in the matrix sense.

This result should be distinguished from the Gauss-Markov Theorem thatb is min-
imum variance among those estimators that are unbiasedand linear iny. Proposi-
tion 1.6 says thatb is minimum variance in a larger class of estimators that includes
nonlinear unbiased estimators. This stronger statement is obtained under the nor-
mality assumption (Assumption 1.5) which is not assumed in the Gauss-Markov
Theorem. Put differently, the Gauss-Markov Theorem does not exclude the possi-
bility of some nonlinear estimator beating OLS, but this possibility is ruled out by
the normality assumption.

As was already seen, the ML estimator ofσ 2 is biased, so the Cramer-Rao
bound does not apply. But the OLS estimators2 of σ 2 is unbiased. Does it achieve
the bound? We have shown in a review question to the previous section that

Var(s2 | X) = 2σ 4

n− K

under the same set of assumptions as in Proposition 1.6. Therefore,s2 does not
attain the Cramer-Rao bound 2σ 4/n. However, it can be shown that an unbiased
estimator ofσ 2 with variance lower than 2σ 4/(n − K ) does not exist (see, e.g.,
Rao, 1973, p. 319).

The F -Test as a Likelihood Ratio Test

The likelihood ratio test of the null hypothesis comparesLU , the maximized like-
lihood without the imposition of the restriction specified in the null hypothesis,
with L R, the likelihood maximized subject to the restriction. If the likelihood ratio
λ ≡ LU/L R is too large, it should be a sign that the null is false. TheF-test
of the null hypothesis H0 : Rβ = r considered in the previous section is a likeli-
hood ratio test because theF-ratio is a monotone transformation of the likelihood
ratio λ. For the present model,LU is given by (1.5.8) where theSSR, the sum
of squared residuals minimized without the constraint H0, is theSSRU in (1.4.11).
The restricted likelihoodL R is given by replacing thisSSRby the restricted sum of
squared residuals,SSRR. So

L R = max
β̃,σ̃ 2 s.t. H0

L(β̃, σ̃ 2) =
(2π

n

)−n/2 · exp
(
−n

2

)
· (SSRR)

−n/2, (1.5.17)

and the likelihood ratio is
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λ ≡ LU

L R
=
(

SSRU
SSRR

)−n/2

. (1.5.18)

Comparing this with the formula (1.4.11) for theF-ratio, we see that theF-ratio is
a monotone transformation of the likelihood ratioλ:

F = n− K

#r
(λ2/n − 1), (1.5.19)

so that the two tests are the same.

Quasi-Maximum Likelihood

All these results assume the normality of the error term. Without normality, there
is no guarantee that the ML estimator ofβ is OLS (Proposition 1.5) or that the OLS
estimatorb achieves the Cramer-Rao bound (Proposition 1.6). However, Proposi-
tion 1.5 does imply thatb is aquasi- (or pseudo-) maximum likelihood estima-
tor , an estimator that maximizes a misspecified likelihood function. The misspec-
ified likelihood function we have considered is the normal likelihood. The results
of Section 1.3 can then be interpreted as providing the finite-sample properties of
the quasi-ML estimator when the error is incorrectly specified to be normal.

Q U E S T I O N S F O R R E V I E W

1. (Use of regularity conditions) Assuming that taking expectations (i.e., taking
integrals) and differentiation can be interchanged, prove that the expected value
of the score vector given in (1.5.9), if evaluated at the true parameter valueθ ,
is zero.Hint: What needs to be shown is that∫

∂ log f (z; θ)
∂ θ̃

f (z; θ)dz= 0.

Since f (z; θ̃) is a density,
∫

f (z, θ̃)dz = 1 for any θ̃ . Differentiate both sides

with respect to θ̃ and use the regularity conditions, which allows us to change

the order of integration and differentiation, to obtain
∫ [∂ f (z; θ)/∂ θ̃]dz = 0.

Also, from basic calculus,

∂ log f (z; θ)
∂ θ̃

= 1

f (z; θ)
∂ f (z; θ)
∂ θ̃

.

2. (Maximizing joint log likelihood) Consider maximizing (the log of ) the joint
likelihood (1.5.2) for the classical regression model, whereθ̃ = (β̃ ′, σ̃ 2)′ and
log f (y | X; θ̃) is given by (1.5.5). You would parameterize the marginal like-
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lihood f (X; ψ̃) and take the log of (1.5.2) to obtain the objective function to
be maximized overζ ≡ (θ ′,ψ ′)′. What is the ML estimator ofθ ≡ (β ′, σ 2)′?
[Answer: It should be the same as that in Proposition 1.5.] Derive the Cramer-
Rao bound forβ. Hint: By the information matrix equality,

I(ζ ) = −E

[
∂2 log L(ζ )

∂ ζ̃ ∂ ζ̃
′

]
.

Also, ∂2 log L(ζ )/(∂ θ̃ ∂ψ̃
′
) = 0.

3. (Concentrated log likelihood with respect tõσ 2) Writing σ̃ 2 as γ̃ , the log
likelihood function for the classical regression model is

log L(β̃, γ̃ ) = −n

2
log(2π)− n

2
log(γ̃ )− 1

2γ̃
(y− Xβ̃)′(y− Xβ̃).

In the two-step maximization procedure described in the text, we first maxi-
mized this function with respect tõβ. Instead, first maximize with respect toγ̃
given β̃. Show that the concentrated log likelihood (concentrated with respect
to γ̃ ≡ σ̃ 2) is

−n

2
[1+ log(2π)] − n

2
log

(
(y− Xβ̃)′(y− Xβ̃)

n

)
.

4. (Information matrix equality for classical regression model) Verify (1.5.11)
for the linear regression model.

5. (Likelihood equations for classical regression model) We used the two-step
procedure to derive the ML estimate for the classical regression model. An
alternative way to find the ML estimator is to solve for the first-order conditions
that set (1.5.13) equal to zero (the first-order conditions for the log likelihood
is called thelikelihood equations). Verify that the ML estimator given in
Proposition 1.5 solves the likelihood equations.

1.6 Generalized Least Squares (GLS)

Assumption 1.4 states that then×n matrix of conditional second moments E(εε′ |
X) (= Var(ε | X)) is spherical, that is, proportional to the identity matrix. Without
the assumption, each element of then×n matrix is in general a nonlinear function
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of X. If the error is not (conditionally) homoskedastic, the values of the diagonal
elements of E(εε′ | X) are not the same, and if there is correlation in the error
term between observations (the case of serial correlation for time-series models),
the values of the off-diagonal elements are not zero. For any given positive scalar
σ 2, defineV(X) ≡ E(εε′ | X)/σ 2 and assumeV(X) is nonsingular and known.
That is,

E(εε′ | X) = σ 2 V(X)
(n×n)

, V(X) nonsingular and known. (1.6.1)

The reason we decompose E(εε′ | X) into the componentσ 2 that is common to
all elements of the matrix E(εε′ | X) and the remaining componentV(X) is that
we do not need to know the value ofσ 2 for efficient estimation. The model that
results when Assumption 1.4 is replaced by (1.6.1), which merely assumes that the
conditional second moment E(εε′ | X) is nonsingular, is called thegeneralized
regression model.

Consequence of Relaxing Assumption 1.4

Of the results derived in the previous sections, those that assume Assumption 1.4
are no longer valid for the generalized regression model. More specifically,

• The Gauss-Markov Theorem no longer holds for the OLS estimator

b ≡ (X ′X)−1X ′y.

The BLUE is some other estimator.

• The t-ratio is not distributed as thet distribution. Thus, thet-test is no longer
valid. The same comments apply to theF-test.

• However, the OLS estimatoris still unbiased, because the unbiasedness result
(Proposition 1.1(a)) does not require Assumption 1.4.

Efficient Estimation with Known VVV
If the value of the matrix functionV(X) is known, does there exist a BLUE for the
generalized regression model? The answer is yes, and the estimator is called the
generalized least squares (GLS) estimator, which we now derive. The basic idea
of the derivation is to transform the generalized regression model, which consists
of Assumptions 1.1–1.3 and (1.6.1), into a model that satisfies all the assumptions,
including Assumption 1.4, of the classical regression model.
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For economy of notation, we useV for the valueV(X). SinceV is by construc-
tion symmetric and positive definite, there exists a nonsingularn×n matrixC such
that

V−1 = C′C. (1.6.2)

This decomposition is not unique, with more than one choice forC, but, as is clear
from the discussion below, the choice ofC doesn’t matter. Now consider creating
a new regression model by transforming(y,X, ε) by C as

ỹ ≡ Cy, X̃ ≡ CX, ε̃ ≡ Cε. (1.6.3)

Then Assumption 1.1 for(y,X, ε) implies that(ỹ, X̃, ε̃) too satisfies linearity:

ỹ = X̃β + ε̃. (1.6.4)

The transformed model satisfies the other assumptions of the classical linear regres-
sion model. Strict exogeneity is satisfied because

E(ε̃ | X̃) = E(ε̃ | X)
(sinceC is nonsingular,X andX̃ contain the same information)

= E(Cε | X)
= C E(ε | X) (by the linearity of conditional expectations)
= 0 (since E(ε | X) = 0 by Assumption 1.2).

BecauseV is positive definite, the no-multicollinearity assumption is also satisfied
(see a review question below for a proof ). Assumption 1.4 is satisfied for the
transformed model because

E(ε̃ε̃′ | X̃) = E(ε̃ε̃′ | X) (sinceX̃ andX contain the same information)

= C E(εε′ | X)C′ (sinceε̃ε̃′ = Cεε′C′)

= C · σ 2 · VC ′ (by (1.6.1))

= σ 2CVC ′

= σ 2 In (since(C′)−1V−1C−1 = In or CVC ′ = In by (1.6.2)).

So indeed the variance of the transformed error vectorε̃ is spherical. Finally,̃ε | X̃
is normal because the distribution ofε̃ | X̃ is the same as̃ε | X and ε̃ is a linear
transformation ofε. This completes the verification of Assumptions 1.1–1.5 for
the transformed model.
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The Gauss-Markov Theorem for the transformed model implies that the BLUE
of β for the generalized regression model is the OLS estimator applied to (1.6.4):

β̂GLS= (X̃ ′X̃)−1X̃ ′ỹ

= [(CX)′(CX)]−1(CX)′Cy

= (X ′C′CX)−1(X ′C′Cy)

= (X ′V−1X)−1X ′V−1y (by (1.6.2)). (1.6.5)

This is the GLS estimator. Its conditional variance is

Var(β̂GLS | X)
= (X ′V−1X)−1X ′V−1 Var(y | X)V−1X(X ′V−1X)−1

= (X ′V−1X)−1X ′V−1(σ 2V)V−1X(X ′V−1X)−1 (since Var(y | X) = Var(ε | X))
= σ 2 · (X ′V−1X)−1. (1.6.6)

Since replacingV byσ 2·V (= Var(ε | X)) in (1.6.5) does not change the numerical
value, the GLS estimator can also be written as

β̂GLS =
[
X ′ Var(ε | X)−1X

]−1
X ′ Var(ε | X)−1y.

As noted above, the OLS estimator(X ′X)−1X ′y too is unbiased without Assump-
tion 1.4, but nevertheless the GLS estimator should be preferred (providedV is
known) because the latter is more efficient in that the variance is smaller in the
matrix sense. The gain in efficiency is achieved by exploiting the heteroskedastic-
ity and correlation between observations in the error term, which, operationally, is
to insert the inverse of (a matrix proportional to) Var(ε | X) in the OLS formula,
as in (1.6.5). The discussion so far can be summarized as

Proposition 1.7 (finite-sample properties of GLS):

(a) (unbiasedness) Under Assumption 1.1–1.3, E(β̂GLS | X) = β.

(b) (expression for the variance) Under Assumptions 1.1–1.3 and the assumption
(1.6.1) that the conditional second moment is proportional to V(X),

Var(β̂GLS | X) = σ 2 · (X ′V(X)−1X)−1.

(c) (efficiency of GLS) Under the same set of assumptions as in (b), the GLS
estimator is efficient in that the conditional variance of any unbiased estimator
that is linear in y is greater than or equal to Var(β̂GLS | X) in the matrix sense.
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A Special Case: Weighted Least Squares (WLS)

The idea of adjusting for the error variance matrix becomes more transparent when
there is no correlation in the error term between observations so that the matrixV
is diagonal. Letvi (X) be thei -th diagonal element ofV(X). So

E(ε2
i | X) (= Var(εi | X)) = σ 2 · vi (X).

It is easy to see thatC is also diagonal, with the square root of 1/vi (X) in the i -th
diagonal. Thus,(ỹ, X̃) is given by

ỹi = yi√
vi (X)

, x̃i = xi√
vi (X)

(i = 1,2, . . . ,n).

Therefore, efficient estimation under a known form of heteroskedasticity is first to
weight each observation by the reciprocal of the square root of the variancevi (X)
and then apply OLS. This is called theweighted regression(or theweighted least
squares(WLS)).

An important further special case is the case of a random sample where{yi , xi }
is i.i.d. acrossi . As was noted in Section 1.1, the error is unconditionally homo-
skedastic (i.e., E(ε2

i ) does not depend oni ), but still GLS can be used to increase
efficiency because the error can be conditionally heteroskedastic. The conditional
second moment E(ε2

i | X) for the case of random samples depends only onxi , and
the functional form of E(ε2

i | xi ) is the same acrossi . Thus

vi (X) = v(xi ) for random samples. (1.6.7)

So the knowledge ofV(·) comes down to a single function ofK variables,v(·).

Limiting Nature of GLS

All these sanguine conclusions about the finite-sample properties of GLS rest on
the assumption that the regressors in the generalized regression model are strictly
exogenous(E(ε̃ | X̃) = 0). This fact limits the usefulness of the GLS proce-
dure. Suppose, as is often the case with time-series models, that the regressors
are not strictly exogenous and the error is serially correlated. So neither OLS
nor GLS has those good finite-sample properties such as unbiasedness. Neverthe-
less, as will be shown in the next chapter, the OLS estimator, which ignores serial
correlation in the error, will have some good large sample properties (such as “con-
sistency” and “asymptotic normality”), provided that the regressors are “predeter-
mined” (which is weaker than strict exogeneity). The GLS estimator, in contrast,
does not have that redeeming feature. That is, if the error is not strictly exogenous
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but is merely predetermined, the GLS procedure to correct for serial correlation can
make the estimator inconsistent (see Section 6.7). A procedure for explicitly taking
serial correlation into account while maintaining consistency will be presented in
Chapter 6.

If it is not appropriate for correcting for serial correlation, the GLS procedure
can still be used to correct for heteroskedasticity when the error is not serially
correlated with diagonalV(X), in the form of WLS. But that is provided that the
matrix functionV(X) is known. Very rarely do we havea priori information spec-
ifying the values of the diagonal elements ofV(X), which is necessary to weight
observations. In the case of a random sample where serial correlation is guaranteed
not to arise, the knowledge ofV(X) boils down to a single function ofK variables,
v(xi ), as we have just seen, but even for this case the knowledge of such a function
is unavailable in most applications.

If we do not know the functionV(X), we can estimate its functional form
from the sample. This approach is called theFeasible Generalized Least Squares
(FGLS). But if the function V(X) is estimated from the sample, its valueV
becomes a random variable, which affects the distribution of the GLS estimator.
Very little is known about the finite-sample properties of the FGLS estimator. We
will cover the large-sample properties of the FGLS estimator in the context of het-
eroskedasticity correction in the next chapter.

Before closing, one positive side of GLS should be noted: most linear estima-
tion techniques — including the 2SLS, 3SLS, and the random effects estimators to
be introduced later — can be expressed as a GLS estimator, with some liberal defi-
nition of data matrices. However, those estimators and OLS can also be interpreted
as a GMM (generalized method of moments) estimator, and the GMM interpreta-
tion is more useful for developing large-sample results.

Q U E S T I O N S F O R R E V I E W

1. (The no-multicollinearity assumption for the transformed model) Assumption
1.3 for the transformed model is that rank(CX) = K . This is satisfied sinceC
is nonsingular andX is of full column rank. Show this.Hint: Since X is of full

column rank, for any K -dimensional vector c 6= 0, Xc 6= 0.

2. (GeneralizedSSR) Show that̂βGLS minimizes(y− Xβ̃)′V−1(y− Xβ̃).

3. Derive the expression for Var(b | X) for the generalized regression model.
What is the relation of it to Var(β̂GLS | X)? Verify that Proposition 1.7(c)
implies
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(X ′X)−1X ′VX (X ′X)−1 ≥ (X ′V−1X)−1.

4. (Sampling error of GLS) Show:̂βGLS− β = (X ′V−1X)−1X ′V−1ε.

1.7 Application: Returns to Scale in Electricity Supply

Nerlove’s 1963 paper is a classic study of returns to scale in a regulated indus-
try. It also is excellent material for illustrating the techniques of this chapter and
presenting a few more not yet covered.

The Electricity Supply Industry

At the time of Nerlove’s writing, the U.S. electric power supply industry had the
following features:

(1) Privately owned local monopolies supply power on demand.

(2) Rates (electricity prices) are set by the utility commission.

(3) Factor prices (e.g., the wage rate) are given to the firm, either because of perfect
competition in the market for factor inputs or through long-term contracts with
labor unions.

These institutional features will be relevant when we examine whether the OLS is
an appropriate estimation procedure.23

The Data

Nerlove assembled a cross-section data set on 145 firms in 44 states in the year
1955 for which data on all the relevant variables were available. The variables in
the data are total costs, factor prices (the wage rate, the price of fuel, and the rental
price of capital), and output. Although firms own capital (such as power plants,
equipment, and structures), the standard investment theory of Jorgenson (1963)
tells us that (as long as there are no costs in changing the capital stock) the firm
should behave as if it rents capital on a period-to-period basis from itself at a rental
price called the “user cost of capital,” which is defined as(r + δ) · pI , wherer here
is the real interest rate (below we will user for the degree of returns to scale),δ is
the depreciation rate, andpI is the price of capital goods. For this reason capital

23Thanks to the deregulation of the industry since the time of Nerlove’s writing, multiple firms are now allowed
to compete in the same local market, and the strict price control has been lifted in many states. So the first two
features no longer characterize the industry.
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input can be treated as if it is a variable factor of production, just like labor and fuel
inputs.

Appendix B of Nerlove (1963) contains a careful and honest discussion of how
the data were constructed. Data on output, fuel, and labor costs (which, along
with capital costs, make up total costs) were obtained from the Federal Power
Commission (1956). For the wage rate, Nerlove used statewide average wages for
utility workers. Ideally, one would calculate capital costs as the reproduction cost
of capital times the user cost of capital. Due to data limitation, Nerlove instead
used interest and depreciation charges available from the firm’s books.

Why Do We Need Econometrics?

Why do we need a fancy econometric technique like OLS to determine returns to
scale? Why can’t we be simple-minded and plot the average cost (which can be
easily calculated from the data as the ratio of total costs to output) against output
and see whether the AC (average cost) curve is downward sloping? The reason is
that each firm can have a different AC curve. If firms face different factor prices,
then the average cost is less for firms facing lower factor prices. That cross-section
units at a given moment face the same prices is usually a good assumption to make,
but not for the U.S. electricity industry with substantial regional differences in fac-
tor prices. The effect of factor prices on the AC curve has to be isolated somehow.
The approach taken by Nerlove, which became a standard econometric practice, is
to estimate a parameterized cost function.

Another factor that shifts the individual AC curve is the level of production
efficiency. If more efficient firms produce more output, then it is possible that
the individual AC curve is upward sloping but the line connecting the observed
combination of the average cost and output is downward sloping. To illustrate,
consider a competitive industry described in Figure 1.6, where the AC and MC
(marginal cost) curves are drawn for two firms competing in the same market. To
focus on the connection between production efficiency and output, assume that all
firms face the same factor prices so that the only reason the AC and MC curves
differ between firms is the difference in production efficiency. The AC and MC
curves are upward sloping to reflect decreasing returns to scale. The AC and MC
curves for firm A lie above those for firm B because firm A is less efficient than
B. Because the industry is competitive, both firms face the same pricep. Since
output is determined at the intersection of the MC curve and the market price, the
combinations of output and the average cost for two firms are points A and B in
the figure. The curve obtained from connecting these two points can be downward
sloping, giving a false impression ofincreasingreturns to scale.
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Figure 1.6: Output Determination

The Cobb-Douglas Technology

To derive a parameterized cost function, we start with the Cobb-Douglas produc-
tion function

Qi = Ai xα1
i1 xα2

i2 xα3
i3 , (1.7.1)

whereQi is firm i ’s output,xi1 is labor input for firmi , xi2 is capital input, andxi3

is fuel. Ai captures unobservable differences in production efficiency (this term is
often calledfirm heterogeneity). The sumα1+α2+α3 ≡ r is the degree of returns
to scale. Thus, it is assumeda priori that the degree of returns to scale is constant
(this should not be confused with constant returns to scale, which is thatr = 1).
Since the electric utilities in the sample are privately owned, it is reasonable to
suppose that they are engaged in cost minimization (see, however, the discussion
at the end of this section). We know from microeconomics that the cost function
associated with the Cobb-Douglas production function is Cobb-Douglas:

TCi = r · (Ai α
α1
1 α

α2
2 α

α3
3 )
−1/r Q1/r

i pα1/r
i1 pα2/r

i2 pα3/r
i3 , (1.7.2)

whereTCi is total costs for firmi . Taking logs, we obtain the following log-linear
relationship:

log(TCi ) = µi + 1

r
log(Qi )+ α1

r
log(pi1)+ α2

r
log(pi2)+ α3

r
log(pi3),

(1.7.3)
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whereµi = log[r · (Ai α
α1
1 α

α2
2 α

α3
3 )
−1/r ]. The equation is said to belog-linear

because both the dependent variable and the regressors are logs. Coefficients in
log-linear equations areelasticities. The log(pi1) coefficient, for example, is the
elasticity of total costs with respect to the wage rate, i.e., the percentage change
in total costs when the wage rate changes by 1 percent. The degree of returns to
scale, which in (1.7.3) is the reciprocal of the output elasticity of total costs, is
independent of the level of output.

Now let µ ≡ E(µi ) and defineεi ≡ µi − µ so that E(εi ) = 0. This εi

represents the inverse of the firm’s production efficiency relative to the industry’s
average efficiency; firms with positiveεi are high-cost firms. With this notation,
(1.7.3) becomes

log(TCi ) = β1+ β2 log(Qi )+ β3 log(pi1)+ β4 log(pi2)+ β5 log(pi3)+ εi ,

(1.7.4)

where

β1 = µ, β2 = 1

r
, β3 = α1

r
, β4 = α2

r
, and β5 = α3

r
. (1.7.5)

Thus, the cost function has been cast in the regression format of Assumption 1.1
with K = 5. We noted a moment ago that the simple-minded approach of plotting
the average cost against output cannot account for the factor price effect. What
we have shown is that under the Cobb-Douglas technology the factor price effect
is controlled for by the inclusion in the cost function of the logs of factor prices.
Because the equation is derived from an explicit description of the firm’s technol-
ogy, the error term as well as the regression coefficients have clear interpretations.

How Do We Know Things Are Cobb-Douglas?

The Cobb-Douglas functional form is certainly a very convenient parameterization
of technology. But how do we know that the true production function is Cobb-
Douglas? The Cobb-Douglas form satisfies the properties, such as diminishing
marginal productivities, that we normally require for the production function, but
the Cobb-Douglas form is certainly not the only functional form with those desir-
able properties. A number of more general functional forms have been proposed
in the literature, but the Cobb-Douglas form, despite its simplicity, has proved to
be a surprisingly good description of technology. Nerlove’s paper is one of the
relatively few studies in which the Cobb-Douglas (log-linear) form is found to be
inadequate, but it only underscores the importance of the Cobb-Douglas functional
form as the benchmark from which one can usefully contemplate generalizations.
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Are the OLS Assumptions Satisfied?

To justify the use of least squares, we need to make sure that Assumptions 1.1–
1.4 are satisfied for the equation (1.7.4). Evidently, Assumption 1.1 (linearity) is
satisfied with

yi = log (TCi ) , xi = (1, log(Qi ), log (pi1) , log (pi2) , log (pi3))
′ .

There is no reason to expect that the regressors in (1.7.4) are perfectly multi-
collinear. Indeed, in Nerlove’s data set, rank(X) = 5 andn = 145, so Assumption
1.3 (no multicollinearity) is satisfied as well.

In verifying the strict exogeneity assumption (Assumption 1.2), the features of
the electricity industry mentioned above are relevant. It is reasonable to assume, as
in most cross-section data, thatxi is independent ofεj for i 6= j . So the question
is whetherxi is independent ofεi . If it is, then E(ε | X) = 0. According to the
third feature of the industry, factor prices are given to the firm with no regard for
the firm’s efficiency, so it is eminently reasonable to assume that factor prices are
independent ofεi .

What about output? Since the firm’s output is supplied on demand (the first
feature of the industry), output depends on the price of electricity set by the utility
commission (the second feature). If the regulatory scheme is such that the price is
determined regardless of the firm’s efficiency, then log(Qi ) andεi are independ-
ently distributed. On the other hand, if the price is set to cover the average cost,
then the firm’s efficiency affects output through the effect of the electricity price
on demand and output in this case isendogenous, being correlated with the error
term. We will very briefly come back to this point at the end, but until then we
will ignore the possible endogeneity of output. This certainly would not do if we
were dealing with a competitive industry. Since high-cost firms tend to produce
less, there would be anegativecorrelation between log(Qi ) andεi , making OLS
an inappropriate estimation procedure.

Regarding Assumption 1.4, the assumption of no correlation in the error term
between firms (observations) would be suspect if, for example, there were tech-
nology spillovers running from one firm to other closely located firms. For the
industry under study, this is probably not the case.

There is noa priori reason to suppose that homoskedasticity is satisfied. Indeed,
the plot of residuals to be shown shortly suggests a failure of this condition. The
main part of Nerlove’s paper is exploring ways to deal with this problem.
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Restricted Least Squares

The equation (1.7.4) isoveridentified in that its five coefficients, being functions of
the four technology parameters (which areα1, α2, α3, andµ), are not free parame-
ters. We can easily see that from (1.7.5):β3+β4+β5 = 1 (recall:r ≡ α1+α2+α3).
This is a reflection of the generic property of the cost function that it is linearly
homogeneous in factor prices. Indeed, multiplying total costsTCi and all factor
prices(pi1, pi2, pi3) by a common factor leaves the cost function (1.7.4) intact if
and only ifβ3+ β4 + β5 = 1.

Estimating the equation by least squares while imposinga priori restrictions on
the coefficient vector is the restricted least squares. It can be done easily by deriv-
ing from the original regression a separate regression that embodies the restrictions.
In the present example, to impose the homogeneity restrictionβ3 + β4 + β5 = 1
on the cost function, we take any one of the factor prices, saypi3, and subtract
log(pi3) from both sides of (1.7.4) to obtain

log

(
TCi

pi3

)
= β1+ β2 log(Qi )+ β3 log

(
pi1

pi3

)
+ β4 log

(
pi2

pi3

)
+ εi . (1.7.6)

There are now four coefficients in the regression, from which unique values of
the four technology parameters can be determined. The restricted least squares
estimate of(β1, . . . , β4) is simply the OLS estimate of the coefficients in (1.7.6).
The restricted least squares estimate ofβ5 is the value implied by the estimate of
(β1, . . . , β4) and the restriction.

Testing the Homogeneity of the Cost Function

Before proceeding to the estimation of the restricted model (1.7.6), in order to test
the homogeneity restrictionβ3+β4+β5 = 1, we will first estimate the unrestricted
model (1.7.4). If one uses the data available in printed form in Nerlove’s paper, the
OLS estimate of the equation is:

log(TCi ) = −3.5
(1.8)

+ 0.72 log(Qi )

(0.017)
+ 0.44 log(pi1)

(0.29)

− 0.22 log(pi2)

(0.34)
+ 0.43 log(pi3)

(0.10)

R2 = 0.926, mean of dep. variable= 1.72,

SER= 0.392, SSR= 21.552, n = 145. (1.7.7)

Here, numbers in parentheses are the standard errors of the OLS coefficient esti-
mates. Sinceβ2 = 1/r , the estimate of the degree of returns to scale implied
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by the OLS coefficient estimates is about 1.4(= 1/0.72). The OLS estimate of
β4 = α2/r has the wrong sign. As noted by Nerlove, there are reasons to believe
that pi2, the rental price of capital, is poorly measured. This may explain whyb4

is so imprecisely determined (i.e., the standard error is large relative to the size of
the coefficient estimate) that one cannot reject the hypothesis thatβ4 = 0 with a
t-ratio of−0.65 (= −0.22/0.34).24

To test the homogeneity restriction H0 : β3 + β4 + β5 = 1, we could write the
hypothesis in the formRβ = r with R = (0,0,1,1,1) andr = 1 and use the for-
mula (1.4.9) to calculate theF-ratio. The maintained hypothesis is the unrestricted
model (1.7.4) (that is, Assumptions 1.1–1.5 where the equation in Assumption 1.1
is (1.7.4)), so theb and the estimated variance ofb in the F-ratio formula should
come from the OLS estimation of (1.7.4). Alternatively, we can use theF-ratio for-
mula (1.4.11). The unrestricted model producingSSRU is (1.7.4) and the restricted
model producingSSRR is (1.7.6), which superimposes the null hypothesis on the
unrestricted model. The OLS estimate of (1.7.6) is

log

(
TCi

pi3

)
= −4.7

(0.88)
+ 0.72 log(Qi )

(0.017)

+ 0.59 log(pi1/pi3)

(0.20)
− 0.007 log(pi2/pi3)

(0.19)

R2 = 0.932, mean of dep. var.= −1.48,

SER= 0.39, SSR= 21.640, n = 145. (1.7.8)

The F test of the homogeneity restriction proceeds as follows.

Step 1: Using (1.4.11), theF-ratio can be calculated as

(21.640− 21.552)/1

21.552/(145− 5)
= 0.57.

Step 2: Find the critical value. The number of restrictions (equations) in the null
hypothesis is 1, andK (the number of coefficients) in the unrestricted
model (which is the maintained hypothesis) is 5. So the degrees of free-
dom are 1 and 140(= 145− 5). From the table ofF distributions, the
critical value is about 3.9.

Step 3: Thus, we can easily accept the homogeneity restriction, a very comforting
conclusion for those who take microeconomics seriously (like us).

24The consequence of measurement error is not just that the coefficient of the variable measured with error is
poorly determined; it could also contaminate the coefficient estimates for all other regressors. The appropriate
context to address this problem is the large sample theory for endogeneous regressors in Chapter 3.
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Detour: A Cautionary Note on R2

The R2 of 0.926 is surprisingly high for cross-section estimates, but some of the
explanatory power of the regression comes from the scale effect that total costs
increase with firm size. To gauge the contribution of the scale effect on theR2,
subtract log(Qi ) from both sides of (1.7.4) to obtain an equivalent cost function:

log

(
TCi

Qi

)
= β1 + (β2− 1) log(Qi )

+ β3 log(pi1)+ β4 log(pi2)+ β5 log(pi3)+ εi . (1.7.4′)

Here, the dependent variable is the average cost rather than total costs. Application
of the OLS to (1.7.4′) using the same data yields

log

(
TCi

Qi

)
= −3.5

(1.8)
− 0.28 log(Qi )

(0.017)

+ 0.44 log(pi1)

(0.29)
− 0.22 log(pi2)

(0.34)
+ 0.43 log(pi3)

(0.10)

R2 = 0.695, mean of dep. var.= −4.83,

SER= 0.392, SSR= 21.552, n = 145. (1.7.9)

As you no doubt have anticipated, the output coefficient is now−0.28 (= 0.72−1)
with the standard errors and the other coefficient estimates unchanged. TheR2

changes only because the dependent variable is different. It is nonsense to say
that the higherR2 makes (1.7.4) preferable to (1.7.4′), because the two equations
represent the same model. The point is: when comparing equations on the basis of
the fit, the equations must share the same dependent variable.

Testing Constant Returns to Scale

As an application of thet-test, consider testing whether returns to scale are constant
(r = 1). We take the maintained hypothesis to be the restricted model (1.7.6).
Becauseβ2 (the log output coefficient) equals 1 if and only ifr = 1, the null
hypothesis is that H0 : β2 = 1. Thet-test of constant returns to scale proceeds as
follows.

Step 1: Calculate thet-ratio for the hypothesis. From the estimation of the
restricted model, we haveb2 = 0.72 with a standard error of 0.017, so

t-ratio= 0.72− 1

0.017
= −16.
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Because the maintained hypothesis here is the restricted model (1.7.6),K
(the number of coefficients) = 4.

Step 2: Look for the critical value in thet (141) distribution. If the size of the test
is 5 percent, the critical value is 1.98.

Step 3: Since the absolute value of thet-ratio is far greater than the critical value,
we reject the hypothesis of constant returns to scale.

Importance of Plotting Residuals

The regression has a problem that cannot be seen from the estimated coefficients
and their standard errors. Figure 1.7 plots the residuals against log(Qi ). Notice two
things from the plot. First, as output increases, the residuals first tend to be positive,
then negative, and again positive. This strongly suggests that the degree of returns
to scale(r ) is not constant as assumed in the log-linear specification. Second, the
residuals are more widely scattered for lower outputs, which is a sign of a failure
of the homoskedasticity assumption that the error variance does not depend on
the regressors. To deal with these problems, Nerlove divided the sample of 145
firms into five groups of 29, ordered by output, and estimated the model (1.7.6)
separately for each group. This amounts to allowing all the coefficients (including
β2 = 1/r ) and the error variance to differ across the five groups differing in size.
Nerlove finds that returns to scale diminish steadily, from a high of well over 2 to a
low of slightly below 1, over the output range of the data. In the empirical exercise
of this chapter, the reader is asked to replicate this finding and do some further
analysis usingdummy variables and the weighted least squares.

Subsequent Developments

One strand of the subsequent literature is concerned about generalizing the Cobb-
Douglas technology while maintaining the assumption of cost minimization. An
obvious alternative to Cobb-Douglas is the Constant Elasticity of Substitution
(CES) production function, but it has two problems. First, the cost function
implied by the CES production function is highly nonlinear (which, though, could
be overcome by the use of nonlinear least squares to be covered in Chapter 7).
Second, the CES technology implies a constant degree of returns to scale. One
of Nerlove’s main findings is that the degree varies with output. Christensen and
Greene (1976) are probably the first to estimate the technology parameters allow-
ing for variable degrees of returns to scale. Using thetranslog cost functionintro-
duced by Christensen, Jorgenson, and Lau (1973), they find that the significant
scale economies evident in the 1955 data were mostly exhausted by 1970, with
most firms operating at much higher output levels where the AC curve is essen-
tially flat. Their work will be examined in detail in Chapter 4.
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Figure 1.7: Plot of Residuals against Log Output

Another issue is whether regulated firms minimize costs. The influential paper
by Averch and Johnson (1962) argues that the practice by regulators to guarantee
utilities a “fair rate of return” on their capital stock distorts the choice of input
levels. Since the fair rate of return is usually higher than the interest rate, utilities
have an incentive to overinvest. That is, they minimize costs, but the relevant
rate of return in the definition of the user cost of capital is the fair rate of return.
Consequently, unless the fair rate of return is used in the calculation ofpi2, the true
technology parameters cannot be estimated from the cost function. The fair-rate-
of-return regulation creates another econometric problem: to guarantee utilities a
fair rate of return, the price of electricity must be kept relatively high in markets
served by high-cost utilities. Thus output will be endogenous.

A more recent issue is whether the regulator has enough information to bring
about cost minimization. If the utility has more information about costs, it has an
incentive to misreport to the regulator the true value of the efficiency parameter.
Schemes to be adopted by the regulator to take into account this incentive problem
may not lead to cost minimization. Wolak’s (1994) empirical results for Califor-
nia’s water utility industry indicate that the observed level of costs and output is
better modeled as the outcome of a regulator-utility interaction under asymmetric
information. Wolak resolves the problem of the endogeneity of output by estimat-
ing the demand function along with the cost function. Doing so, however, requires
an estimation technique more sophisticated than the OLS.
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Q U E S T I O N S F O R R E V I E W

1. (Review of duality theory) Consult your favorite microeconomic textbook
to remember how to derive the Cobb-Douglas cost function from the Cobb-
Douglas production function.

2. (Change of units) In Nerlove’s data, output is measured in kilowatt hours. If
output were measured in megawatt hours, how would the estimated restricted
regression change?

3. (Recovering technology parameters from regression coefficients) Show that
the technology parameters(µ, α1, α2, α3) can be determined uniquely from
the first four equations in (1.7.5) and the definitionr ≡ α1+ α2+ α3. (Do not
use the fifth equationβ5 = α3/r .)

4. (Recovering left-out coefficients from restricted OLS) Calculate the restricted
OLS estimate ofβ5 from (1.7.8). How do you calculate the standard error ofb5

from the printout of the restricted OLS?Hint: Write b5 = a + c′b for suitably

chosen a and c where b here is (b1, . . . ,b4)
′. So Var(b5 | X) = c′ Var(b | X)c.

The printout from the restricted OLS should include \Var(b | X).
5. If you take pi2 instead ofpi3 and subtract log(pi2) from both sides of (1.7.4),

how does the restricted regression look? Without actually estimating it on
Nerlove’s data, can you tell from the estimated restricted regression in the
text what the restricted OLS estimate of(β1, . . . , β5) will be? Their standard
errors? TheSSR? What about theR2?

6. Why is theR2 of 0.926 from the unrestricted model (1.7.7)lower than theR2

of 0.932 from the restricted model (1.7.8)?

7. A more realistic assumption about the rental price of capital may be that there
is an economy-wide capital market sopi2 is the same across firms. In this case,

(a) Can we estimate the technology parameters?Hint: The answer is yes, but

why? When pi2 is constant, (1.7.4) will have the perfect multicollinearity

problem. But recall that (β1, . . . , β5) are not free parameters.

(b) Can we test homogeneity of the cost function in factor prices?

8. Taking logs of both sides of the production function (1.7.1), one can derive the
log-linear relationship:

log(Qi ) = α0+ α1 log(xi1)+ α2 log(xi2)+ α3 log(xi3)+ εi ,
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whereεi here is defined as log(Ai )−E[log(Ai )] andα0 = E[log(Ai )]. Suppose,
in addition to total costs, output, and factor prices, we had data on factor inputs.
Can we estimateα’s by applying OLS to this log-linear relationship? Why or
why not? Hint: Do input levels depend on εi ? Suggest a different way to
estimateα’s. Hint: Look at input shares.

P R O B L E M S E T F O R C H A P T E R 1

A N A L Y T I C A L E X E R C I S E S

1. (Proof thatb minimizesSSR) Let b be the OLS estimator ofβ. Prove that, for
any hypothetical estimate,̃β, of β,

(y− Xβ̃)′(y− Xβ̃) ≥ (y− Xb)′(y− Xb).

In your proof, use the add-and-subtract strategy: takey−Xβ̃, addXb to it and
then subtract the same from it. It produces the decomposition ofy− Xβ̃:

y− Xβ̃ = (y− Xb)+ (Xb − Xβ̃).

Hint: (y− Xβ̃)′(y− Xβ̃) = [(y− Xb)+ X(b− β̃)]′[(y − Xb)+ X(b− β̃)].
Using the normal equations, show that this equals

(y− Xb)′(y− Xb)+ (b− β̃)′X ′X(b− β̃).

2. (The annihilator associated with the vector of ones) Let1be then-dimensional
column vector of ones, and letM1 ≡ In − 1(1′1)−11′. That is,M1 is the anni-
hilator associated with1. Prove the following:

(a) M1 is symmetric and idempotent.

(b) M11= 0.

(c) M1y = y− ȳ · 1 where

ȳ = 1

n

n∑
i=1

yi .

M1y is the vector ofdeviations from the mean.

(d) M1X = X − 1x̄′ wherex̄ = X ′1/n. Thek-th element of theK × 1 vector
x̄ is 1

n

∑n
i=1 xik .
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3. (Deviation-from-the-mean regression) Consider a regression model with a con-
stant. LetX be partitioned as

X
(n×K )

=
[

1
n×1

... X2
n×(K−1)

]
so the first regressor is a constant. Partitionβ andb accordingly:

β =
[
β1

β2

] ← scalar

← (K − 1)× 1
, b =

[
b1

b2

]
.

Also let X̃2 ≡ M1X2 andỹ ≡ M1y. They are the deviations from the mean for
the nonconstant regressors and the dependent variable. Prove the following:

(a) The K normal equations are

ȳ− b1 − x̄′2b2 = 0

wherex̄2 = X ′21/n,

X ′2y− n · b1 · x̄2− X ′2X2b2 = 0
((K−1)×1)

.

(b) b2 = (X̃ ′2X̃2)
−1X̃ ′2ỹ. Hint: Substitute the first normal equation into the other

K −1 equations to eliminate b1 and solve for b2. This is a generalization of

the result you proved in Review Question 3 in Section 1.2.

4. (Partitioned regression, generalization of Exercise 3) LetX be partitioned as

X
(n×K )

= [ X1
(n×K1)

... X2
(n×K2)

]
.

Partitionβ accordingly:

β =
[
β1

β2

] ← K1× 1

← K2× 1
.

Thus, the regression can be written as

y = X1β1+ X2β2+ ε.

Let P1 ≡ X1(X ′1X1)
−1X ′1, M1 ≡ I − P1, X̃2 ≡ M1X2 andỹ ≡ M1y. Thus,ỹ is

the residual vector from the regression ofy on X1, and thek-th column ofX̃2

is the residual vector from the regression of the correspondingk-th column of
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X2 onX1. Prove the following:

(a) The normal equations are

X ′1X1b1+ X ′1X2b2 = X ′1y, (∗)
X ′2X1b1+ X ′2X2b2 = X ′2y. (∗∗)

(b) b2 = (X̃ ′2X̃2)
−1X̃ ′2ỹ. That is,b2 can be obtained by regressing the residuals

ỹ on the matrix of residuals̃X2. Hint: Derive X1β1 = −P1X2β2 + P1y
from (∗). Substitute this into (∗∗) to obtain X ′2M1X2β2 = X ′2M1y. Then

use the fact that M1 is symmetric and idempotent. Or, if you wish, you can

apply the brute force of the partitioned inverse formula (A.10) of Appendix

A to the coefficient matrix

X ′X =
[

X ′1X1 X ′1X2

X ′2X1 X ′2X2

]
.

Show that the second diagonal block of (X ′X)−1 is (X̃ ′2X̃2)
−1.

(c) The residuals from the regression ofỹ on X̃2 numerically equalse, the
residuals from the regression ofy on X (≡ (X1

... X2)). Hint: If e is the

residual from the regression of y on X,

y = X1b1+ X2b2+ e.

Premultiplying both sides by M1 and using M1X1 = 0, we obtain

ỹ = X̃2b2+M1e.

Show that M1e= eand observe that b2 equals the OLS coefficient estimate

in the regression of ỹ on X̃2.

(d) b2 = (X̃ ′2X̃2)
−1X̃ ′2y. Note the difference from (b). Here, the vector of

dependent variable isy, not ỹ. Are the residuals from the regression of
y on X̃2 numerically the same ase? [Answer: No.] Is theSSRfrom the
regression ofy on X̃2 the same as theSSRfrom the regression of̃y on X̃2?
[Answer: No.]

The results in (b)–(d) are known as theFrisch-Waugh Theorem.

(e) Show:

ỹ′ỹ− e′e= ỹ′X2(X ′2M1X2)
−1X ′2ỹ.
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Hint: Apply the general decomposition formula (1.2.15) to the regression in

(c) to derive

ỹ′ỹ = b′2X̃
′
2X̃2b2+ e′e.

Then use (b).

(f) Consider the following four regressions:

(1) regress̃y onX1.

(2) regress̃y on X̃2.

(3) regress̃y onX1 andX2.

(4) regress̃y onX2.

Let SSRj be the sum of squared residuals from regressionj . Show:

(i) SSR1 = ỹ′ỹ. Hint: ỹ is constructed so that X ′1ỹ = 0, so X1 should have

no explanatory power.

(ii) SSR2 = e′e. Hint: Use (c).

(iii) SSR3 = e′e. Hint: Apply the Frisch-Waugh Theorem on regression (3).

M1ỹ = ỹ.

(iv) Verify by numerical example thatSSR4 is not necessarily equal toe′e.

5. (Restricted regression andF) In the restricted least squares, the sum of squared
residuals is minimized subject to the constraint implied by the null hypothesis
Rβ = r . Form the Lagrangian as

L = 1

2
(y− Xβ̃)′(y− Xβ̃)+ λ′(Rβ̃ − r),

whereλ here is the #r -dimensional vector of Lagrange multipliers (recall:R
is #r × K , β̃ is K × 1, andr is #r × 1). Let β̂ be the restricted least squares
estimator ofβ. It is the solution to the constrained minimization problem.

(a) Let b be the unrestricted OLS estimator. Show:

β̂ = b− (X ′X)−1R′[R(X ′X)−1R′]−1(Rb− r),

λ = [R(X ′X)−1R′]−1(Rb− r).

Hint: The first-order conditions are X ′y− (X ′X)β̂ = R′λ or X ′(y− Xβ̂) =
R′λ. Combine this with the constraint Rβ̂ = r to solve for λ and β̂.
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(b) Let ε̂ ≡ y− Xβ̂, the residuals from the restricted regression. Show:

SSRR − SSRU = (b− β̂)′(X ′X)(b− β̂)
= (Rb− r)′[R(X ′X)−1R′]−1(Rb− r)

= λ′R(X ′X)−1R′λ

= ε̂′Pε̂,

whereP is the projection matrix.Hint: For the first equality, use the add-

and-subtract strategy:

SSRR = (y− Xβ̂)′(y− Xβ̂)

= [(y− Xb)+ X(b− β̂)]′[(y− Xb)+ X(b− β̂)].

Use the normal equations X ′(y − Xb) = 0. For the second and third

equalities, use (a). To prove the fourth equality, the easiest way is to use the

first-order condition mentioned in (a) that R′λ = X ′ε̂.

(c) Verify that you have proved in (b) that (1.4.9) = (1.4.11).

6. (Proof of the decomposition (1.2.17)) Take the unrestricted model to be a
regression where one of the regressors is a constant, and the restricted model
to be a regression where the only regressor is a constant.

(a) Show that (b) in the previous exercise is the decomposition (1.2.17) for this
case.Hint: What is β̂ for this case? Show that SSRR = ∑i (yi − ȳ)2 and

(b− β̂)′(X ′X)(b− β̂) =∑i (ŷ− ȳ)2.

(b) (R2 as anF-ratio) For a regression where one of the regressors is a con-
stant, prove that

F = R2/(K − 1)

(1− R2)/(n− K )
.

7. (Hausman principle in finite samples) For the generalized regression model,
prove the following. Here, it is understood that the expectations, variances, and
covariances are all conditional onX.

(a) Cov(β̂GLS,b − β̂GLS) = 0. Hint: Recall that, for any two random vectors x
and y,

Cov(x, y) ≡ E
[(

x− E(x)
)(

y− E(y)
)′]
.
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So

Cov(Ax,By) = A Cov(x, y)B′.

Also, since β is nonrandom,

Cov(β̂GLS,b− β̂GLS) = Cov(β̂GLS− β,b− β̂GLS).

(b) Let β̃ be any unbiased estimator and defineq ≡ β̃ − β̂GLS. Assumẽβ is
such thatVq ≡ Var(q) is nonsingular. Prove: Cov(β̂GLS,q) = 0. (If we
setβ̃ = b, we are back to (a).)Hint: Define: β̂ ≡ β̂GLS+ Hq for some H.

Show:

Var(β̂) = Var(β̂GLS)+ CH ′ + HC ′ + HVqH ′,

where C ≡ Cov(β̂GLS,q). Show that, if C 6= 0 then Var(β̂) can be made

smaller than Var(β̂GLS) by setting H = −CV−1
q . Argue that this is in con-

tradiction to Proposition 1.7(c).

(c) (Optional, only for those who are proficient in linear algebra) Prove: if the
K columns ofX are characteristic vectors ofV, thenb = β̂GLS, whereV is
then × n variance-covariance matrix of then-dimensional error vectorε.
(So not all unbiased estimators satisfy the requirement in (b) that Var(β̃ −
β̂GLS) be nonsingular.)Hint: For any n × n symmetric matrix V, there

exists an n×n matrix H such that H ′H = In (so H is an orthogonal matrix)

and H ′VH = 3, where 3 is a diagonal matrix with the characteristic roots

(which are real since V is symmetric) of V in the diagonal. The columns of

H are called the characteristic vectors of V. Show that

H−1 = H ′, H ′V−1H = 3−1, H ′V−1 = 3−1H ′.

Without loss of generality, X can be taken to be the first K columns of H.

So X = HF, where

F
(n×K )

=
[

I K

0

]
.

E M P I R I C A L E X E R C I S E S

Read Marc Nerlove, “Returns to Scale in Electricity Supply” (except paragraphs
of equations (6)–(9), the part of section 2 from p. 184 on, and Appendix A and
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C) before doing this exercise. For 145 electric utility companies in 1955, the file
NERLOVE.ASC has data on the following:

Column 1: total costs (call itTC) in millions of dollars
Column 2: output(Q) in billions of kilowatt hours
Column 3: price of labor(PL)
Column 4: price of fuels(PF)
Column 5: price of capital(PK).

They are from the data appendix of his article. There are 145 observations, and
the observations are ordered in size, observation 1 being the smallest company
and observation 145 the largest. Using the data transformation facilities of your
computer software, generate for each of the 145 firms the variables required for
estimation. To estimate (1.7.4), for example, you need to generate log(TC), a con-
stant, log(Q), log(PL), log(PK), and log(PF), for each of the 145 firms.

(a) (Data question) Does Nerlove’s construction of the price of capital conform to
the definition of the user cost of capital?Hint: Read Nerlove’s Appendix B.4.

(b) Estimate the unrestricted model (1.7.4) by OLS. Can you replicate the esti-
mates in the text?

(c) (Restricted least squares) Estimate the restricted model (1.7.6) by OLS. To do
this, you need to generate a new set of variables for each of the 145 firms. For
example, the dependent variable is log(TC/PF), not log(TC). Can you repli-
cate the estimates in the text? Can you replicate Nerlove’s results? Nerlove’s
estimate ofβ2, for example, is 0.721 with a standard error of 0.0174 (the stan-
dard error in his paper is 0.175, but it is probably a typographical error). Where
in Nerlove’s paper can you find this estimate? What about the other coeffi-
cients? (Warning: You will not be able to replicate Nerlove’s results precisely.
One reason is that he used common rather than natural logarithms; however,
this should affect only the estimated intercept term. The other reason: the data
set used for his results is a corrected version of the data set published with his
article.)

As mentioned in the text, the plot of residuals suggests a nonlinear rela-
tionship between log(TC) and log(Q). Nerlove hypothesized that esti-
mated returns to scale varied with the level of output. Following Nerlove,
divide the sample of 145 firms into five subsamples or groups, each hav-
ing 29 firms. (Recall that since the data are ordered by level of output, the
first 29 observations will have the smallest output levels, whereas the last
29 observations will have the largest output levels.) Consider the following
three generalizations of the model (1.7.6):
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Model 1: Both the coefficients (β’s) and the error variance in (1.7.6) differ across
groups.

Model 2: The coefficients are different, but the error variance is the same across
groups.

Model 3: While each group has common coefficients forβ3 andβ4 (price elastic-
ities) and common error variance, it has a different intercept term and a
differentβ2. Model 3 is what Nerlove called the hypothesis of neutral
variations in returns to scale.

For Model 1, the coefficients and error variances specific to groups can be esti-
mated from

y( j ) = X( j )β( j ) + ε( j ) ( j = 1, . . . ,5),

wherey( j ) (29× 1) is the vector of the values of the dependent variable for group
j , X( j ) (29× 4) is the matrix of the values of the four regressors for groupj , β ( j )

(4× 1) is the coefficient vector for groupj , andε( j ) (29× 1) is the error vector.
The second column ofX(5), for example, is log(Q) for i = 117, . . . ,145. Model 1
assumes conditional homoskedasticity E(ε( j )ε( j )′ | X( j )) = σ 2

j I29 within (but not
necessarily across) groups.

(d) Estimate Model 1 by OLS. How well can you replicate Nerlove’s reported
results? On the basis of your estimates ofβ2, compute the point estimates
of returns to scale in each of the five groups. What is the general pattern of
estimated scale economies as the level of output increases? What is the general
pattern of the estimated error variance as output increases?

Model 2 assumes for Model 1 thatσ 2
j = σ 2 for all j . This equivariance

restriction can be incorporated by stacking vectors and matrices as follows:

y = Xβ + ε,
where

y
(145×1)

=
y(1)
...

y(5)

 , X
(145×20)

=
X(1)

. . .

X(5)

 , ε
(145×1)

=
ε

(1)

...

ε(5)

 . (∗)

In particular,X is now a block-diagonal matrix. The equivariance restriction
can be expressed as E(εε′ | X) = σ 2 I145. There are now 20 variables derived from
the original four regressors. The 145 dimensional vector corresponding to the sec-
ond variable, for example, has log(Q1), . . . , log(Q29) as the first 29 elements and
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zeros elsewhere. The vector corresponding to the 6th variable, which represents
log output for the second group of firms, has log(Q30), . . . , log(Q58) for the 30th
through 58th elements and zeros elsewhere, and so on.

The stacking operation needed to form they andX in (∗) can be done easily
if your computer software is matrix-based. Otherwise, you trick your software
into accomplishing the same thing by the use of dummy variables. Define thej -th
dummy variable as

Dji =
{

1 if firm i belongs to thej -th group,

0 otherwise,
(i = 1, . . . ,145).

Then the second regressor isD1i · log(Qi ). The 6th variable isD2i · log(Qi ), and
so forth.

(e) Estimate Model 2 by OLS. Verify that the OLS coefficient estimates here are
the same as those in (d). Also verify that

5∑
j=1

SSRj = SSR,

whereSSRj is theSSRfrom the j -th group in your estimation of Model 1 in
(d) andSSRis theSSRfrom Model 2. This agreement is not by accident, i.e.,
not specific to the present data set. Prove that this agreement for the coeffi-
cients and theSSRholds in general, temporarily assuming just two groups
without loss of generality.Hint: First show that the coefficient estimate is the

same between Model 1 and Model 2. Use formulas (A.4), (A.5), and (A.9) of

Appendix A.

(f) (Chow test) Model 2 is more general than Model (1.7.6) because the coeffi-
cients can differ across groups. Test the null hypothesis that the coefficients
are the same across groups. How many equations (restrictions) are in the
null hypothesis? This test is sometimes called theChow test for structural
change. Calculate thep-value of theF-ratio. Hint: This is a linear hypoth-

esis about the coefficients of Model 2. So take Model 2 to be the maintained

hypothesis and (1.7.6) to be the restricted model. Use the formula (1.4.11) for

the F -ratio.

Gauss Tip: If x is the F-ratio, the Gauss commandcdffc( x,df1,df2 )

gives the area to the right ofF for the F distribution with d f 1 andd f 2
degrees of freedom.
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TSP Tip: The TSP command to do the same iscdf(f, df1= df1 , df2=

df2 ) x . An output of TSP’s OLS command,OLSQ, is @SSR, which is the
SSRfor the regression.

RATS Tip: The RATS command iscdf ftest x df1 df2 . An output
of RATS’s OLS command,LINREG, is %RSS, which is theSSRfor the
regression.

The restriction in Model 3 that the price elasticities are the same across firm
groups can be imposed on Model 2 by applying the dummy variable transformation
only to the constant and log output. Thus, there are 12(= 2× 5+ 2) variables in
X. Now X looks like

X =

1 log(Q1) 0 0 log(PL1/PF1) log(PK1/PF1)
...

...
...

...
...

...

1 log(Q29) 0 0 log(PL29/PF29) log(PK29/PF29)

. . .
...

...

0 0 1 log(Q117) log(PL117/PF117) log(PK117/PF117)
...

...
...

...
...

...

0 0 1 log(Q145) log(PL145/PF145) log(PK145/PF145)


(∗∗)

(g) Estimate Model 3. The model is a special case of Model 2, with the hypothesis
that the two price elasticities are the same across the five groups. Test the
hypothesis at a significance level of 5 percent, assuming normality. (Note:
Nerlove’sF-ratio on p. 183 is wrong.)

As has become clear from the plot of residuals in Figure 1.7, the conditional
second moment E(ε2

i | X) is likely to depend on log output, which is a violation
of the conditional homoskedasticity assumption. This time we do not attempt to
test conditional homoskedasticity, because to do so requires large sample theory
and is postponed until the next chapter. Instead, we pretend to know the form of
the function linking the conditional second moment to log output. The function,
specified below, implies that the conditional second moment varies continuously
with output, contrary to the three models we have considered above. Also contrary
to those models, we assume that the degree of returns to scale varies continuously
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with output by including the square of log output.25 Model 4 is

Model 4:

log

(
TCi

pi3

)
= β1+ β2 log(Qi )+ β3 [log(Qi )]2

+ β4 log

(
pi1

pi3

)
+ β5 log

(
pi2

pi3

)
+ εi

E(ε2
i | X) = σ 2 ·

(
0.0565+ 2.1377

Qi

)
(i = 1,2, . . . ,145)

for some unknownσ 2.

(h) Estimate Model 4 by weighted least squares on the whole sample of 145 firms.
(Be careful about the treatment of the intercept; in the equation after weighting,
none of the regressors is a constant.) Plot the residuals. Is there still evidence
for conditional homoskedasticity or further nonlinearities?

M O N T E C A R L O E X E R C I S E S

Monte Carlo analysis simulates a large number of samples from the model to
study the finite-sample distribution of estimators. In this exercise, we use the tech-
nique to confirm the two finite-sample results of the text: the unbiasedness of the
OLS coefficient estimator and the distribution of thet-ratio. The model is the fol-
lowing simple regression model satisfying Assumptions 1.1–1.5 withn = 32. The
regression equation is

yi = β1+ β2xi + εi (i = 1,2, . . . ,n)

or y = 1 · β1+ x · β2+ ε = Xβ + ε, (∗)

whereX = (1 ... x) andβ = (β1, β2)
′. The model parameters are(β1, β2, σ

2).
As mentioned in the text, a model is a set of joint distributions of(y,X). We

pick a particular joint distribution by specifying the regression model as follows.
Setβ1 = 1, β2 = 0.5, andσ 2 = 1. The distribution ofx = (x1, x2, . . . , xn)

′ is
specified by the following AR(1) process:

xi = c+ φxi−1 + ηi (i = 1,2, . . . ,n), (∗∗)

25We have derived the log-linear cost function from the Cobb-Douglas production function. Does there exist a
production function from which this generalized cost function with a quadratic term in log output can be derived?
This is a question of the “integrability” of cost functions and is discussed in detail in Christensen et al. (1973).



82 Chapter 1

where{ηi } is i.i.d. N(0,1) and

x0 ∼ N
( c

1− φ ,
1

1− φ2

)
, c = 2, φ = 0.6.

This fixes the joint distribution of(y,X). From this distribution, a large number of
samples will be drawn.

In programming the simulation, the following expression forx will be useful.
Solve the first-order difference equation (∗∗) to obtain

xi = φ i x0 + (1+ φ + φ2+ · · · + φ i−1)c

+ (ηi + φηi−1 + φ2ηi−2 + · · · + φ i−1η1),

or, in matrix notation,

x
(n×1)
= r

(n×1)
· x0+ d

(n×1)
+ A

(n×n)
η

(n×1)
, (∗∗∗)

whered = (d1,d2, . . . ,dn)
′ and

d1 = c, d2 = (1+ φ)c, . . . , di = (1+ φ + φ2+ · · · + φ i−1)c, . . . ,

r =


φ

φ2

...

φn

 , A =



1 0 . . . . . . . 0
φ 1 0 . . . 0

φ2 φ 1
. . . 0

...
...

. . .
. . .

...

φn−1 φn−2 . . . φ 1


, η =


η1

η2
...

ηn

 .

Gauss Tip: To form ther matrix, useseqm. To form theA matrix, usetoeplitz

andlowmat .

(a) Run two Monte Carlo simulations. The first simulation calculates E(b | x) and
the distribution of thet-ratio as a distribution conditional onx. A computer
program for the first simulation should consist of the following steps.

(1) (Generatex just once) Using the random number generator, draw a vector
η of n i.i.d. random variables fromN(0,1) andx0 from N(c/(1− φ),1/
(1− φ2)), and calculatex by (∗∗∗). (Calculation ofx can also be accom-
plished recursively by (∗∗) with a do loop, but vector operations such as
(∗∗∗) consume less CPU time than do loops. This becomes a consideration
in the second simulation, wherex has to be generated in each replication.)
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(2) Set a counter to zero. The counter will record the incidence that|t| >
t0.025(n−2). Also, set a two-dimensional vector at zero; this vector will be
used for calculating the mean of the OLS estimatorb of (β1, β2)

′.

(3) Start a do loop of a large number of replications (1 million, say). In each
replication, do the following.

(i) (Generatey) Draw ann dimensional vectorε of n i.i.d. random vari-
ables fromN(0,1), and calculatey = (y1, . . . , yn)

′ by (∗). This y is
paired with the samex from step (1) to form a sample(y, x).

(ii) From the sample, calculate the OLS estimatorb and thet-value for
H0 : β2 = 0.5.

(iii) Increase the counter by one if|t| > t0.025(n − 2). Also, addb to the
two-dimensional vector.

(4) After the do loop, divide the counter by the number of replications to calcu-
late the frequency of rejecting the null. Also, divide the two-dimensional
vector that has accumulatedb by the number of replications. It should
equal E(b | x) if the number of replications is infinite.

Note that in this first simulation,x is fixedthroughout the do loop fory. The
second simulation calculates theunconditional distribution of thet-ratio. It
should consist of the following steps.

(1) Set the counter to zero.

(2) Start a do loop of a large number of replications. In each replication, do the
following.

(i) (Generatex) Draw a vectorη of n i.i.d. random variables fromN(0,1)
andx0 from N(c/(1− φ),1/(1− φ2)), and calculatex by (∗∗∗).

(ii) (Generatey) Draw a vectorε of n i.i.d. random variables fromN(0,1),
and calculatey = (y1, . . . , yn)

′ by (∗).
(iii) From a sample(y, x) thus generated, calculate thet-value for H0 : β =

0.5 from the sample(y, x).

(iv) Increase the counter by one if|t| > t0.025(n− 2).

(3) After the do loop, divide the counter by the number of replications.

For the two simulations, verify that, for a sufficiently large number of replica-
tions,
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1. the mean ofb from the first simulation is arbitrarily close to the true value
(1,0.5);

2. the frequency of rejecting the true hypothesis H0 (the type I error) is arbi-
trarily close to 5 percent in either simulation.

(b) In those two simulations, is the (nonconstant) regressor strictly exogenous? Is
the error conditionally homoskedastic?

A N S W E R S T O S E L E C T E D Q U E S T I O N S

A N A L Y T I C A L E X E R C I S E S

1. (y− Xβ̃)′(y− Xβ̃)

= [(y− Xb)+ X(b− β̃)]′[(y− Xb)+ X(b− β̃)]
(by the add-and-subtract strategy)

= [(y− Xb)′ + (b− β̃)′X ′][(y− Xb)+ X(b− β̃)]
= (y− Xb)′(y− Xb)+ (b− β̃)′X ′(y− Xb)

+ (y− Xb)′X(b− β̃)+ (b− β̃)′X ′X(b− β̃)
= (y− Xb)′(y− Xb)+ 2(b− β̃)′X ′(y− Xb)+ (b− β̃)′X ′X(b− β̃)

(since(b− β̃)′X ′(y− Xb) = (y− Xb)′X(b− β̃))
= (y− Xb)′(y− Xb)+ (b− β̃)′X ′X(b− β̃)

(sinceX ′(y− Xb) = 0 by the normal equations)

≥ (y− Xb)′(y− Xb)

(since(b− β̃)′X ′X(b− β̃) = z′z=
n∑

i=1

z2
i ≥ 0 wherez≡ X(b− β̃)).

7a. β̂GLS− β = Aε whereA ≡ (X ′V−1X)−1X ′V−1 andb − β̂GLS = Bε where
B ≡ (X ′X)−1X ′ − (X ′V−1X)−1X ′V−1. So

Cov(β̂GLS− β,b− β̂GLS)

= Cov(Aε,Bε)

= A Var(ε)B′

= σ 2AVB ′.

It is straightforward to show thatAVB ′ = 0.
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7b. For the choice ofH indicated in the hint,

Var(β̂)− Var(β̂GLS) = −CV−1
q C′.

If C 6= 0, then there exists a nonzero vectorz such thatC′z≡ v 6= 0. For such
z,

z′[Var(β̂)− Var(β̂GLS)]z= −v′V−1
q v < 0 (sinceVq is positive definite),

which is a contradiction becausêβGLS is efficient.

E M P I R I C A L E X E R C I S E S

(a) Nerlove’s description in Appendix B.4 leads one to believe that he did not
include the depreciation rateδ in his construction of the price of capital.

(b) Your estimates should agree with (1.7.7).

(c) Our estimates differ from Nerlove’s slightly. This would happen even if the
data used by Nerlove were the same as those provided to you, because comput-
ers in his age were much less precise and had more frequent rounding errors.

(d) How well can you replicate Nerlove’s reported results? Fairly well. The point
estimates of returns to scale in each of the five subsamples are 2.5, 1.5, 1.1, 1.1,
and .96. As the level of output increases, the returns to scale decline.

(e) Model 2 can be written asy = Xβ + ε, wherey, X, andε are as in (∗). So
(setting j = 2),

X ′X =
[

X(1)′X(1) 0
0 X(2)′X(2)

]
,

which means

(X ′X)−1 =
[(

X(1)′X(1)
)−1

0

0
(
X(2)′X(2)

)−1

]
.

And

X ′y =
[

X(1)′y(1)

X(2)′y(2)

]
.
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Therefore,

(X ′X)−1X ′y =
[(

X(1)′X(1)
)−1

X(1)′y(1)(
X(2)′X(2)

)−1
X(2)′y(2)

]
.

Thus, the OLS estimate of the coefficient vector for Model 2 is the same as that
for Model 1. Since the estimate of the coefficient vector is the same, the sum
of squared residuals, too, is the same.

(f) The number of restrictions is 16.K = #coefficients in Model 2= 20. So the
two degrees of freedom should be(16,125). SSRU = 12.262 andSSRR =
21.640. F-ratio = 5.97 with a p-value of 0.0000. So this can be rejected at
any reasonable significance level.

(g) SSRU = 12.262 andSSRR = 12.577. SoF = .40 with 8 and 125 degrees of
freedom. Itsp-value is 0.92. So the restrictions can be accepted at any reason-
able significance level. Nerlove’sF-ratio (see p. 183, 8th line from bottom) is
1.576.

(h) The plot still shows that the conditional second moment is somewhat larger for
smaller firms, but now there is no evidence for possible nonlinearities.

References
Amemiya, T., 1985,Advanced Econometrics, Cambridge: Harvard University Press.
Averch, H., and L. Johnson, 1962, “Behavior of the Firm under Regulatory Constraint,”American

Economic Review, 52, 1052–1069.
Christensen, L., and W. Greene, 1976, “Economies of Scale in US Electric Power Generation,”

Journal of Political Economy, 84, 655–676.
Christensen, L., D. Jorgenson, and L. Lau, 1973, “Transcendental Logarithmic Production Frontiers,”

Review of Economics and Statistics, 55, 28–45.
Davidson, R., and J. MacKinnon, 1993,Estimation and Inference in Econometrics, Oxford: Oxford

University Press.
DeLong, B., and L. Summers, 1991, “Equipment Investment and Growth,”Quarterly Journal of

Economics, 99, 28–45.
Engle, R., D. Hendry, and J.-F. Richards, 1983, “Exogeneity,”Econometrica, 51, 277–304.
Federal Power Commission, 1956,Statistics of Electric Utilities in the United States, 1955, Class A

and B Privately Owned Companies, Washington, D.C.
Jorgenson, D., 1963, “Capital Theory and Investment Behavior,”American Economic Review, 53,

247–259.
Koopmans, T., and W. Hood, 1953, “The Estimation of Simultaneous Linear Economic Relation-

ships,” in W. Hood, and T. Koopmans (eds.),Studies in Econometric Method, New Haven: Yale
University Press.



Finite-Sample Properties of OLS 87

Krasker, W., E. Kuh, and R. Welsch, 1983, “Estimation for Dirty Data and Flawed Models,” Chap-
ter 11 in Z. Griliches, and M. Intriligator (eds.),Handbook of Econometrics, Volume 1, Amster-
dam: North-Holland.

Nerlove, M., 1963, “Returns to Scale in Electricity Supply,” in C. Christ (ed.),Measurement in Eco-
nomics: Studies in Mathematical Economics and Econometrics in Memory of Yehuda Grunfeld,
Stanford: Stanford University Press.

Rao, C. R., 1973,Linear Satistical Inference and Its Applications(2d ed.), New York: Wiley.
Scheffe, H., 1959,The Analysis of Variance, New York: Wiley.
Wolak, F., 1994, “An Econometric Analysis of the Asymmetric Information, Regulator-Utility Inter-

action,”Annales D’Economie et de Statistique, 34, 13–69.



C H A P T E R  2 

Large-Sample Theory 

A B S T R A C T  

In the previous chapter, we derived the exact- or finite-sample distribution of the OLS 
estimator and its associated test statistics. However, not very often in economics are 
the assumptions of the exact distribution satisfied. The finite-sample theory breaks 
down if one of the following three assumptions is violated: (1) the exogeneity of 
regressors, (2) the normality of the error term, and (3) the linearity of the regres- 
sion equation. This chapter develops an alternative approach, retaining only the third 
assumption. The approach, called asymptotic or large-sample theory, derives an 
approximation to the distribution of the estimator and its associated statistics assum- 
ing that the sample size is sufficiently large. 

Rather than making assumptions on the sample of a given size, large-sample 
theory makes assumptions on the stochastic process that generates the sample. The 
first two sections of this chapter provide the necessary language for describing sto- 
chastic processes. 

The concepts introduced in this chapter are essential for rational expectations 
econometrics, as illustrated in Farna's classic paper on the Fisher Hypothesis that the 
real interest rate is constant. The hypothesis has a very strong policy implication: 
monetary and fiscal policies cannot influence aggregate demand through the real 
interest rate. Very surprisingly, one cannot reject the hypothesis for the United States 
(at least if the sample period ends in the early 1970s). 

2.1 Review of Limit Theorems for Sequences of Random Variables 

The material of this section concerns the limiting behavior of a sequence of ran- 
dom variables, ( z l ,  z2, . . . ). Since the material may already be familiar to you, we 
present it rather formally, in a series of definitions and theorems. An authoritative 
source is Rao (1973, Chapter 2c) which gives proofs of all the theorems included 
in this section. In this section and the rest of this book, a sequence ( z l ,  zz, . . . ) will 
be denoted by {z,].  
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Various Modes of Convergence 
Convergence in Probability 

A sequence of random scalars {z,} converges in probability to a constant (non- 
random) a if, for any E > 0, 

lim Prob(lz, - a1 > 6) = 0. 
n + w  

(2.1.1) 

The constant a is called the probability limit of z, and is written as "plim,,, z, = 

a" or "z, + p  a". Evidently, 

"2, + a" is the same as "z, - a + 0." 
P P 

This definition of convergence in probability is extended to a sequence of ran- 
dom vectors or random matrices (by viewing a matrix as a vector whose elements 
have been rearranged) by requiring element-by-element convergence in probability. 
That is, a sequence of K-dimensional random vectors {z,) converges in probability 
to a K-dimensional vector of constants a if, for any E > 0, 

l i m P r o b ( ( z n k - a k l > & ) = O  f o r a l l k ( = 1 , 2  , . . . ,  K), (2.1.2) 
n+oo 

where z,k is the k-th element of z, and a k  the k-th element of a. 

Almost Sure Convergence 

A sequence of random scalars {z,) converges almost surely to a constant a if 

We write this as "z, +a,s, a." The extension to random vectors is analogous 
to that for convergence in probability. As will be mentioned below, this concept 
of convergence is stronger than convergence in probability; that is, if a sequence 
converges almost surely, then it converges in probability. The concept involved 
in (2.1.3) is harder to grasp because the probability is about an event concerning 
an infinite sequence (zl , z2, . . . ). For our purposes, however, all that matters is 
that almost sure convergence is stronger than convergence in probability. If we 
can show that a sequence converges almost surely, that is one way to prove the 
sequence converges in probability. 

Keen
Rectangle



90 Chapter 2 

Convergence in Mean Square 

A sequence of random scalars ( z , }  converges in mean square (or in quadratic 
mean) to a (written as "z, +m,s, a") if 

lim E[(z ,  - a)'] = 0. 
n + w  

The extension to random vectors is analogous to that for convergence in probabil- 
ity: z ,  +m,s, a if each element of z ,  converges in mean square to the corresponding 
component of a. 

Convergence to a Random Variable 

In these definitions of convergence, the limit is a constant (i.e., a real number). The 
limit can be a random variable. We say that a sequence of K-dimensional random 
variables { z , }  converges to a K-dimensional random variable z and write z ,  +p z 
if { z ,  - z }  converges to 0: 

"z, + Z" is the same as "z, - z + 0." (2.1.5a) 
P P 

Similarly, 

"z, + z" is the same as "z, - z + 0," 
a.s. as .  

(2.1.5b) 

"z, + z" is the same as "z, - z + 0." (2.1.5~) 
m.s. m.s. 

Convergence in Distribution 

Let { z , }  be a sequence of random scalars and F, be the cumulative distribution 
function (c.d.f.) of z , .  We say that { z , }  converges in distribution to a random 
scalar z if the c.d.f. F, of z ,  converges to the c.d.f. F of z at every continuity 
point of F.' We write "z, +d Z" or "z, +L Z" and call F the asymptotic (or 
limit or limiting) distribution of z, .  Sometimes we write "z,  +d F," when 
the distribution F is well-known. For example, "z, +d N(0,l)"  should read 

" z ,  + d z and the distribution of z is N (0, 1) (normal distribution with mean 0 and 
variance I)." It can be shown from the definition that convergence in probability is 
stronger than convergence in distribution, that is, 

'DO not be concerned about the qualifier "at every continuity point of F." For the most part, except possibly 
for the chapters on the discrete or limited dependent variable, the relevant distribution is continuous, and the 
distribution function is continuous at all points. 
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A special case of convergence in distribution is that z is a constant (a trivial random 
variable). 

The extension to a sequence of random vectors is immediate: z, + d  z if 
the joint c.d.f. F, of the random vector z, converges to the joint c.d.f. F of z 
at every continuity point of F. Note, however, that, unlike the other concepts 
of convergence, for convergence in distribution, element-by-element convergence 
does not necessarily mean convergence for the vector sequence. That is, "each 
element of z, + d  corresponding element of z" does not necessarily imply "z, + d  

z." A common way to establish the connection between scalar convergence and 
vector convergence in distribution is 

Multivariate Convergence in Distribution Theorem: (stated in Rao, 1973, 
p. 128) Let {z,) be a sequence of K -dimensional random vectors. Then: 

"z, -+ z" + "A'z, + A'z for any K -dimensional vector of real numbers." 
d d 

Convergence in Distribution vs. Convergence in Moments 
It is worth emphasizing that the moments of the limit distribution of z, are not 
necessarily equal to the limits of the moments of z,. For example, "z, + d  z" does 
not necessarily imply "limn,, E(z,) = E(z)." However, 

Lemma 2.1 (convergence in distribution and in moments): Let a,, be the s-th 
moment of z ,  and limn,, a,, = a, where a, is finite (i.e., a real number). Then: 

'2, + z"+  "a, is the s-th moment of z." 
d 

Thus, for example, if the variance of a sequence of random variables converging in 
distribution converges to some finite number, then that number is the variance of 
the limiting distribution. 

Relation among Modes of Convergence 
Some modes of convergence are weaker than others. The following theorem estab- 
lishes the relationship between the four modes of convergence. 

Lemma 2.2 (relationship among the four modes of convergence): 

(a) "z, - + m , s ,  Q " =+ "z, + p  Q." SO "z, +m,s, Z" + "z, +p z." 

Keen
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(b) "z,  +a.s. u " 3 "z,  +P (Y." SO "zn +a,S,  2'' 3 "z ,  + P  z." 

(c) "z,  + u " + "z ,  + a .  " (That is, if the limiting random variable is a con- 
stant [a trivial random variable], convergence in distn'bution is the same as 
convergence in probability.) 

Three Useful Results 
Having defined the modes of convergence, we can state three results essential for 
developing large-sample theory. 

Lemma 2.3 (preservation of  convergence for continuous transformation): Sup- 
pose a( - )  is a vector-valued continuous function that does not depend on n. 

(a) "z,  + p  ( ~ " 3  "a(z,) +p a((~)."Stated differently, 

plim a(z,) = a(p1im z,) 
n-cc n-cc 

provided the plim exists. 

(b) "z ,  +d z 7 ' 3  "a(z,) + d  a@)." 

An immediate implication of Lemma 2.3(a) is that the usual arithmetic operations 
preserve convergence in probability. For example: 

"xn + B1 Y n  + Y" 3 "xn + yn + B + y" 
P P P 

"x, + j3, yn + y" 3 "xnyn + By." 
P P P 

"x, + B, yn + y" 3 "x,/y, + B/y,"provided that y # 0. 
P P P 

"Y, + r" 3 "Y,' + r-'," provided that r is invertible. 
P P 

The next result about combinations of convergence in probability and in distri- 
bution will be used repeatedly to derive the asymptotic distribution of the estimator. 

Lemma 2.4: 

(a) "x ,  +,j X ,  y, + p  ( ~ " 3  "x,  + yn +,j X+(Y. ' '  

(b) "x,  +,j X ,  y, + p  0" 3 ' ' Y L x ~  + p  0." 

(c) "x,  + d  X ,  A, + p  A" 3 "A,x, + d  Ax,"provided that A, and x, are con- 
formable. In particular, if x - N (0, I ) ,  then A, x, + d N (0,  A I A'). 
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" (d) "x, +d X, A, + p  A" j xiA;lx, + d  ~ 'A-~~ , ' ' p rov ided  that A, and x, 
are conformable and A is nonsingular. 

Parts (a) and (c) are sometimes called Slutzky's Theorem. By setting a = 0, part 
(a) implies: 

That is, if z, = x, +y, and y, + p  0 (i.e., if z, -x, +, 0), then the asymptotic dis- 
tribution of z, is the same as that of x,. When z, - x, +, 0, we sometimes (but not 
always) say that the two sequences are asymptotically equivalent and write it as 

where O ,  is some suitable random variable (y, here) that converges to zero in prob- 
ability. 

A standard trick in deriving the asymptotic distribution of a sequence of ran- 
dom variables is to find an asymptotically equivalent sequence whose asymptotic 
distribution is easier to derive. In particular, by replacing y, by y, - a in part (b) 
of the lemma, we obtain 

"x, + X, y, + a" j "yix, - a'x," or "yix, = a'x, + o,." (2.1.8) 
d P a 

The o, here is (y, - a)'x,. Therefore, replacing y, by its probability limit does not 
change the asymptotic distribution of yix,, provided x, converges in distribution 
to some random variable. 

The third result will allow us to test nonlinear hypotheses given the asymptotic 
distribution of the estimator. 

Lemma 2.5 (the "delta method"): Suppose (x,] is a sequence of K -dimensional 
random vectors such that x, +, B and 

and suppose a(-) : IRK + IRr has continuous first derivatives with A(B) denoting 
the r x K matrix of first derivatives evaluated at B: 

aa(B) A(B) = -. 
( r x  K )  aB' 
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In particular: 

"fi(x, - B) + N(0, X)" + '6fi[a(x,) - a@)] + N(0, A(/~)ZA(/~)')." 
d d 

Proving this is a good way to learn how to use the results covered so far. 

PROOF. By the mean-value theorem from calculus (see Section 7.3 for a statement 
of the theorem), there exists a K-dimensional vector y, between x, and B such that 

a@,) - a(B) = Myn)@, - B). 
( r x K )  ( K x l )  

Multiplying both sides by f i, we obtain 

Since y, is between x, and and since x,, +, B, we know that y, +, B. More- 
over, the first derivative A(.) is continuous by assumption. So by Lemma 2.3(a), 

By Lemma 2.4(c), this and the hypothesis that &(x, - B) +d z imply that 

Viewing Estimators as Sequences of Random Variables 

Let 0, be an estimator of a parameter vector 0 based on a sample of size n. The 
sequence {en) is an example of a sequence of random variables, so the concepts 
introduced in this section for sequences of random variables are applicable to 10,). 
We say that an estimator 0, is consistent for 0 if 
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The asymptotic bias of 8, is defined as plim,,, 6, - 6.2 So if the estimator is 
consistent, its asymptotic bias is zero. A consistent estimator 8, is asymptotically 
normal if 

&(on - 6) +- N ( 0 ,  X). 
d 

Such an estimator is called &-consistent. The acronym sometimes used for "con- 
sistent and asymptotically normal" is CAN. The variance matrix X is called the 
asymptotic variance and is denoted Avar(8,). Some authors use the notation 
Avar(8,) to mean X/n (which is zero in the limit). In this book, Avar(8,) is the 
variance of the limiting distribution of +(en - 6). 

Laws of Large Numbers and Central Limit Theorems 
For a sequence of random scalars (zi},.the sample mean Z, is defined as 

Consider the sequence (Z,}. Laws of large numbers (LLNs) concern conditions 
under which (Z,} converges either in probability or almost surely. An LLN is called 
strong if the convergence is almost surely and weak if the convergence is in prob- 
ability. We can derive the following weak LLN easily from Part (a) of Lemma 2.2. 

A Version of Chebychev's Weak LLN: 

"lim ~ ( 2 , )  = p, lim Var(Z,) = 0" * "2, + p." 
n+ cm n+W P 

This holds because, under the condition specified, it is easy to prove (see an ana- 
lytical question) that 2, +-,,,, p. The following strong LLN assumes that (zi} is 
i.i.d. (independently and identically distributed), but the variance does not need to 
be finite. 

Kolmogorov's Second Strong Law of Large Numbers: Let (zi} be i.i.d. with 

E(zi) = p.3 Then Z, +,,. p. 

'some authors use the term "asymptotic bias" differently. Amemiya (1985). for example, defines it to mean 
limn j m  ~ ( i ~ )  - 6 .  

3 ~ o  the mean exists and is finite (a real number). When a moment (e.g., the mean) is indicated, as here, then 
by implication the moment is assumed to exist and is finite. 
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These LLNs extend readily to random vectors by requiring element-by-element 
convergence. 

Central Limit Theorems (CLTs) are about the limiting behavior of the differ- 
ence between .?, and E(Z,) (which equals E(zi) if {zi) is i.i.d.) blown up by fi. 
The only Central Limit Theorem we need for the case of i.i.d. sequences is: 

Lindeberg-Levy CLT: Let {zi) be i.i.d. with E(zi) = p and Var(zi) = X. Then 

This reads: a sequence of random vectors {fi(i, - p)}  converges in distribution 
to a random vector whose distribution is N(0, X). (Usually, the Lindeberg-Levy 
CLT is for a sequence of scalar random variables. The vector version displayed 
above is derived from the scalar version as follows. Let {zi} be i.i.d. with E(zi) = p 
and Var(zi) = X, and let l be any vector of real numbers of the same dimension. 
Then {l'z,} is a sequence of scalar random variables with E(llz,) = l 'p and 
Var(llz,) = l ' X l .  The scalar version of Linderberg-Levy then implies that 

But this limit distribution is the distribution of l 'x  where x -. N(0, C). So by 
the Multivariate Convergence in Distribution Theorem stated a few pages back, 

{&(in - p ) }  + d  X, which is the claim of the vector version of Lindeberg-Levy.) 

Q U E S T I O N S  FOR R E V I E W  

1. (Usual convergence vs. convergence in probability) A sequence of real num- 
bers is a trivial example of a sequence of random variables. Is it true that 
6' . hm,,, z, = a" =+ "plim,,, z, = a"? Hint: Look at the definition of plim. 
Since limn,, z, = a, lz, - a1 < E for n sufficiently large. 

2. (Alternative definition of convergence for vector sequences) Verify that the 
definition in the text of "z, +,,,, z" is equivalent to 

lim E[(z, - z)'(z, - z)] = 0. 
n + w  

Hint: ~ [ ( z ,  - z)'(z, - z)] = ~ [ ( z , l  - z ~ ) ~ I  + . . . + E[(z,K - zK)~] ,  where 
K is the dimension of z. Similarly, verify that the definition in the text of 
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"z, + p  a" is equivalent to 

lim Prob((z, - a)'(z, - a) > E )  = 0 for any E > 0. 
n+cc 

3. Prove Lemma 2.4(c) from Lemma 2.4(a) and (b). Hint: A,x, = (A, - A)x, + 
Ax,. By (b), (A, - A)x, + p  0. 

4. Suppose fi(8, - 6) + d  N(0, a2).  Does it follow that 6, + p  Q? Hint: 

5. (Combine Delta method with Lindeberg-Levy) Let {zi} be a sequence of i.i.d. 
(independently and identically distributed) random variables with E(zi) = p # 
0 and Var(zi) = a2, and let 2, be the-sample mean. Show that 

Hint: In Lemma 2.5, set B = p, a@) = 1/p,  x, = 2,. 

2.2 Fundamental Concepts in Time-Series Analysis 

In this section, we define the very basic concepts in time-series analysis that will 
form an integral part of our language. The key concept is a stochastic process, 
which is just a fancy name for a sequence of random variables. If the index for 
the random variables is interpreted as representing time, the stochastic process is 
called a time series. If {zi] (i = 1,2, . . . ) is a stochastic process, its realization or 
a sample path is an assignment to each i of a possible value of zi. So a realization 
of {zi] is a sequence of real numbers. We will frequently use the term time series 
to mean both the realization and the process of which it is a realization. 

Need for Ergodic Stationarity 
The fundamental problem in time-series analysis is that we can observe the realiza- 
tion of the process only once. For example, the sample on the U.S. annual inflation 
rate for the period from 1946 to 1995 is a string of 50 particular numbers, which 
is just one possible outcome of the underlying stochastic process for the inflation 
rate; if history took a different course, we could have obtained a different sample. 
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If we could observe the history many times over, we could assemble many sam- 
ples, each containing a possibly different string of 50 numbers. The mean inflation 
rate for, say, 1995 can then be estimated by taking the average of the 1995 inflation 
rate (the 50th element of the string) across those samples. The population mean 
thus estimated is sometimes called the ensemble mean. In the language of general 
equilibrium theory in economics, the ensemble mean is the average across all the 
possible different states of nature at any given calendar time. 

Of course, it is not feasible to observe many different alternative histories. But 
if the distribution of the inflation rate remains unchanged (this property will be 
referred to as stationarity), the particular string of 50 numbers we do observe 
can be viewed as 50 different values from the same distribution. Furthermore, if 
the process is not too persistent (what's called ergodicity has this property), each 
element of the string will contain some information not available from the other 
elements, and, as shown below, the time average over the elements of the single 
string will be consistent for the ensemble mean. 

Various Classes of Stochastic processes4 
Stationary Processes 
A stochastic process {zi} (i = 1,2, . . . ) is (strictly) stationary if, for any given 
finite integer r and for any set of subscripts, i l ,  i2, . . . , i,, the joint distribution of 
(zi, zi, , zi,, . . . , zir) depends only on i l  - i, i2 - i, i3 - i, . . . , i, - i but not on i.  
For example, the joint distribution of (zl, 25) is the same as that of (zI2, z16). What 
matters for the distribution is the relative position in the sequence. In particular, 
the distribution of zi does not depend on the absolute position, i,  of zi, so the mean, 
variance, and other higher moments, if they exist, remain the same across i .  The 
definition also implies that any transformation (function) of a stationary process is 
itself stationary, that is, if {zi} is stationary, then { f (zi)} is.5 For example, {ziz:} is 
stationary if {zi} is. 

Example 2.1 (i.i.d. sequences): A sequence of independent and identically 
distributed random variables is a stationary process that exhibits no serial 
dependence. 

4 ~ a n y  of the concepts collected in this subsection can also be found in Section 4.7 of Davidson and MacKin- 
non (1993). 

5 ~ h e  function f (.) needs to be "measurable" so that f (zi) is a well-defined random variable. Any continuous 
function is measurable. In what follows, we won't bother to add the qualifier "measurable" when a function f of 
a random variable is understood to be a random variable. 
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Example 2.2 (constant series): Draw zl from some distribution and then 

set zi = zl (i = 2, 3, . . . ). So the value of the process is frozen at the 
initial date. The process {zi) thus created is a stationary process that exhibits 
maximum serial dependence. 

Evidently, if a vector process {zi} is stationary, then each element of the vector 
forms a univariate stationary process. The converse, however, is not true. 

Example 2.3 (element-wise vs. joint stationarity): Let { E ~ }  (i = 1 ,  2, . . . ) 
be a scalar i.i.d. process. Create a two-dimensional process {zi} from it by 
defining zil = ~i and zi2 = ~1 The scalar process {zil) is stationary (this 
is the process of Example 2.1). The scalar process {zi2}, too, is stationary 
(the Example 2.2 process). The vector process {zi}, however, is not (jointly) 
stationary, because the (joint) distribution of zl (= ( E ~ ,  ~ 1 ) ' )  differs from that 

of 22 (= ( ~ 2 ,  ~1 )I). 

Most aggregate time series such as GDP are not stationary because they exhibit 
time trends. A less obvious example of nonstationarity is international exchange 
rates, which are alleged to have increasing variance. But many time series with 
trend can be reduced to stationary processes. A process is called trend stationary 
if it is stationary after subtracting from it a (usually linear) function of time (which 
is the index i). If a process is not stationary but its first difference, zi - zi-1. 
is stationary, {zi) is called difference stationary. Trend-stationary processes and 
difference-stationary processes will be studied in Chapter 9. 

Covariance Stationary Processes 
A stochastic process {zi) is weakly (or covariance) stationary if: 

(i) E(zi) does not depend on i ,  and 

(ii) Cov(zi, zi-j) exists, is finite, and depends only on j but not on i (for example, 
Cov(zl, z5) equals Cov(zI2, ~ 1 ~ ) ) .  

The relative, not absolute, position in the sequence matters for the mean and covar- 
iance of a covariance-stationary process. Evidently, if a sequence is (strictly) sta- 
tionary and if the variance and covariances are finite, then the sequence is weakly 
stationary (hence the term "strict"). An example of a covariance-stationary but not 
strictly stationary process will be given in Example 2.4 below. 
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The j-th order autocovariance, denoted rj, is defined as 

The term "auto" comes about because the two random variables are taken from the 
same process. r, does not depend on i because of covariance-stationarity. Also by 
covariance stationarity, rj satisfies 

(Showing this is a review question below.) The 0-th order autocovariance is the 
variance ro = Var(zi). The processes in Examples 2.1 and 2.2 are covariance 
stationary if the variance exists and is finite. For the process of Example 2.1, ro is 
the variance of the distribution and r, = 0 for j > 1 .  For the process of Example 
2.2, rj = rO. 

For a scalar covariance stationary process {zi), the j-th order autocovariance is 
now a scalar. If yj is this autocovariance, it satisfies 

Take a string of n successive values, (zi, zi+l, . . . , zi+,-I), from a scalar process. 
By covariance stationarity, its n x n variance-covariance matrix is the same as that 

of (zl, z2, . . . z,) and is a band spectrum matrix: 

This is called the autocovariance matrix of the process. The j-th order autocor- 
relation coefficient, pj, is defined as 

j-th order autocorrelation coefficient = 

For j = 0, pj = 1. The plot of {pj} against j = 0, 1,2, . . . is called the correlo- 
gram. 
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White Noise Processes 

A very important class of weakly stationary processes is a white noise process, a 
process with zero mean and no serial correlation: 

a covariance-stationary process {zi) is white noise if 

E(zi) = 0 and Cov(zi, zi-j) = 0 for j # 0. 

Clearly, an independently and identically distributed (i.i.d.) sequence with mean 
zero and finite variance is a special case of a white noise process. For this reason, 
it is called an independent white noise process. 

Example 2.4 (a white noise process that is not strictly stationary6): Let w 
be a random variable uniformly distributed in the interval (0, 2n), and define 

It can be shown that E(zi) = 0, Var(zi) = 112, and Cov(zi, zj) = 0 for i # j. 
So {zi} is white noise. However, clearly, it is not an independent white noise 
process. It is not even strictly stationary. 

Ergodicity 
A stationary process {zi) is said to be ergodic if, for any two bounded functions 
f :  Rk + R a n d g :  I@ + R, 

Heuristically, a stationary process is ergodic if it is asymptotically independent, that 
is, if any two random variables positioned far apart in the sequence are almost inde- 
pendently distributed. A stationary process that is ergodic will be called ergodic 
stationary. Ergodic stationarity will be an integral ingredient in developing large- 
sample theory because of the following property. 

Ergodic Theorem: (See, e.g., Theorem 9.5.5 of Karlin and Taylor (1975).) Let 
{zi} be a stationary and ergodic process with E(zi) = p.7 Then 

6 ~ r a w n  from Example 7.8 of Anderson (1971, p. 379) 
7 ~ 0  the mean is assumed to exist and is finite. 
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The Ergodic Theorem, therefore, is a substantial generalization of Kolmogorov's 
LLN. Serial dependence, which is ruled out by the i.i.d. assumption in Kolmogo- 
rov's LLN, is allowed in the Ergodic Theorem, provided that it disappears in the 
long run. Since, for any (measurable) function f (.), { f (zi)) is ergodic stationary 
whenever {zi) is, this theorem implies that any moment of a stationary and ergodic 
process (if it exists and is finite) is consistently estimated by the sample moment. 
For example, suppose {zi) is stationary and ergodic and E(ziz:) exists and is finite. 
Then, xi ziz: is consistent for E(ziz:). 

The simplest example of ergodic stationary processes is independent white 
noise processes. (White noise processes where independence is weakened to no 
serial correlation are not necessarily ergodic; Example 2.4 above is an example.) 
Another important example is the AR(1) process satisfying 

where { E ~ )  is independent white noise. 

Martingales 
Let xi be an element of zi. The scalar process {xi) is called a martingale with 
respect to {zi) if 

E(xi I ~ ~ - ~ , z ~ - ~ ,  ..., z1) =xi-1 fori  2.* (2.2.4) 

The conditioning set ( z ~ - ~ ,  zi-2, . . . , zl )  is often called the information set at point 
(date) i - 1. {xi) is called simply a martingale if the information set is its own past 
values (xiPl, 4-2, . . . , x l )  If zi includes xi, then {xi) is a martingale, because 

E(xi 1 xi-1, xi-2, - .  . ,  ~ 1 )  

= E[E(xi 1 zi-1, ~ i -2 ,  . . . , z l )  I xi-1, xi-2,. . . , x l ]  

(Law of Iterated Expectations) 

= E(xi-1 I xi-], xi-2, . . . , XI) = xi-,. 

'1f the process started in the infinite past so that i runs from -m to +m, the definition is E(x; I 
2;-1, zi-2, . . . ) = xi-, , and the qualifier "i > 2" is not needed. Whether the process started in the infinite 
past or in date i = 1 is not important for large-sample theory to be developed below. What will matter is that the 
process starts before the sample period. 
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A vector process {zi} is called a martingale if 

E(zi I z ~ - ~ ,  . . . , zl)  = z ~ - ~  for i 3 2. (2.2.5) 

Example 2.5 (Hall's Martingale Hypothesis): Let zi be a vector contain- 
ing a set of macroeconomic variables (such as the money supply or GDP) 
including aggregate consumption ci for period i. Hall's (1978) martingale 
hypothesis is that consumption is a martingale with respect to {zi}: 

This formalizes the notion in consumption theory called "consumption 
smoothing": the consumer, wishing to avoid fluctuations in the standard of 
living, adjusts consumption in date i - 1 to the level such that no change in 
subsequent consumption is anticipated. 

Random Walks 
An important example of martingales is a random walk. Let {gi} be a vector 
independent white noise process (so it is i.i.d. with mean 0 and finite variance 
matrix). A random walk, {zi}, is a sequence of cumulative sums: 

Given the sequence {zi}, the underlying independent white noise sequence, {gi}, 
can be backed out by taking first differences: 

So the first difference of a random walk is independent white noise. A random 
walk is a martingale because 

( z  1 z . . . , z )  = E 1 g , . . . 1 )  (since (zi-1, . . . ,z1) and 

(gi-, , . . . , gl)  have the same information, as just seen) 

=E(gl + g  + +gi I gi-1, . . . , g l )  

=E(gi I gi-17. . . , g l )  + (gl + . . .  +gi-1) 

= gl + . . . + gi-1 (E(gi 1 gi-l, . . . , gl) = 0 as {gi} is independent white noise) 

- - z;-1 (by the definition of ziP1). (2.2.8) 
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Martingale Difference Sequences 
A vector process (g;} with E(gi) = 0 is called a martingale difference sequence 
(m.d.s.) or martingale differences if the expectation conditional on its past values, 
too, is zero: 

E(gi 1 gi-~,gi-2, .  .., 81) = 0 for i 2 2. (2.2.9) 

The process is so called because the cumulative sum (2;) created from a martin- 
gale difference sequence (gi} is a martingale; the proof is the same as in (2.2.8). 
Conversely, if (zi) is martingale, the first differences created as in (2.2.7) are a 
martingale difference sequence. 

A martingale difference sequence has no serial correlation (i.e., Cov(gi, gi-j) = 

0 for all i and j # 0). A proof of this claim is as follows. 

PROOF. First note that we can assume, without loss of generality, that j 2 1. 
Since the mean is zero, it suffices to show that E(gig:-,) = 0. So consider rewriting 
it as follows. 

E(gig:-,) 

= E[E(g;g:-, ( giPj)] (by the Law of Total Expectations) 

= E[E(gi ( gi_,)g:-,] (by the linearity of conditional expectations). 

Now, since j 3 1, (gi-l, . . . , gi-,, . . . , gl) includes gi-, . Therefore, 

E(gi I gi- ,) 

= E[E(g; 1 g;-1, . . . , g;-,, . . . , gl) ( gi-,I (by the Law of Iterated Expectations) 

= 0. 

The last equality holds because E(gi 1 gi-1, . . . , gi-, , . . . , gl) = 0. 

ARCH Processes 
An example of martingale differences, frequently used in analyzing asset returns, is 
an autoregressive conditional heteroskedastic (ARCH) process introduced by En- 
gle (1982). A process {g;) is said to be an ARCH process of order 1 (ARCH(1)) 
if it can be written as 
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where { E ~ )  is i.i.d. with mean zero and unit variance. If gl is the initial value of the 
process, we can use (2.2.10) to calculate subsequent values of gi. For example, 

More generally, gi (i 2 2) is a function of gl and ( ~ 2 ,  ~ 3 ,  . . . , E ~ ) .  Therefore, ~i 

is independent of (gl, g2, . . . , gi-l). It is then easy to show that {gi) is an m.d.s. 
because 

E(gi I gi-1, gi-2, . . . 7 81) (2.2.11) 

= E(-. Ei I gi-1, gi-2, . - - 3 gl) 

= =E(Ei I pi-1 9 gi-2. . . . .  81) 

= E(E~)  (since ~i iiindependent of (gl, 82, . . . . gi- 1 )) 

= 0 (since E ( E ~ )  = 0). (2.2.12) 

By a similar argument, it follows that 

So the conditional second moment (which equals the conditional variance since 

E(gi I gl,  g2, . . . , gi-l) = 0) is a function of its own history of the process. In this 
sense the process exhibits own conditional heteroskedasticity. It can be shown 

I (see, e.g., Engle, 1982) that the process is strictly stationary and ergodic if la1 c 1, 

1 provided that gl is a draw from an appropriate distribution or provided that the 
process started in the infinite past. If gi is stationary, the unconditional second 
moment is easy to obtain. Taking the unconditional expectation of both sides of 
(2.2.13) and noting that 

I 
E [ E ( ~ ?  I gi-1, gi-2, . . . , gl)] = E ( ~ ? )  and E ( ~ ? )  = E(~:,) if gi is stationary, 

I 
we obtain 

5 
~ ( g ? )  = { + a ~ ( g f )  or ~(g:) = G. (2.2.14) 

If a > 0, this model captures the characteristic found for asset returns that large 
values tend to be followed by large values. (For more details of ARCH processes, 
see, e.g., Hamilton, 1994, Section 21.1 .) 
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Different Formulation of Lack of Serial Dependence 
Evidently, an independent white noise process is a stationary martingale difference 
sequence with finite variance. And, as just seen, a martingale difference sequence 
has no serial correlation. Thus, we have three formulations of a lack of serial 
dependence for zero-mean covariance stationary processes. They are, in the order 
of strength, 

(1) "(gi} is independent white noise." 

j (2) "(gi} is stationary m.d.s. with finite variance." 

+ (3) "{gi} is white noise." (2.2.15) 

Condition (1) is stronger than (2) because there are processes satisfying (2) but not 
(1). An ARCH(1) process (2.2.10) with la 1 < 1 is an example. Figure 2.1 shows 
how a realization of a process satisfying (1) typically differs from that satisfying 
(2). Figure 2.1, Panel (a), plots a realization of a sequence of independent and nor- 
mally distributed random variables with mean 0 and unit variance. Panel (b) plots 
an ARCH(1) process (2.2.10) with ( = 0.2 and a = 0.8 (so that the unconditional 
variance, ( / ( l  - a) ,  is unity as in panel (a)), where the value of the i.i.d. sequence 
E~ in (2.2.10) is taken from Figure 2.1, Panel (a), so that the sign in both panels 
is the same at all points. The series in Panel (b) is generally less volatile than in 
Panel (a), but at some points it is much more volatile. Nevertheless, the series is 
stationary. 

Condition (2) is stronger than (3); the process in Example 2.4 is white noise, 
but (as you will show in a review question) it does not satisfy (2). 

The CLT for Ergodic Stationary Martingale Differences Sequences 
The following CLT extends the Lindeberg-Levy CLT to stationary and ergodic 
m.d.s. 

Ergodic Stationary Martingale Differences CLT (Billingsley, 1961): Let (gi} 
be a vector martingale difference sequence that is stationary and ergodic with 
E(gig:) = Z? and let g = A xy='=, gi. Then 

'since (gi] is stationary, this matrix of cross moments does not depend on i .  Also, since a cross moment 
matrix is indicated, it is implicitly assumed that all the cross moments exist and are finite. 
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Figure 2.1: Plots of Serially Uncorrelated Time Series: (a) An i.i.d. N ( 0 ,  1) 
sequence. (b) ARCH(1) with shocks taken from panel (a) 

Unlike in the Lindeberg-Levy CLT, there is no need to subtract the mean from gi 
because the unconditional mean of an m.d.s. is by definition zero. For the same rea- 
son, X also equals Var(gi). This CLT, being applicable not just to i.i.d. sequences 
but also to stationary martingale differences such as ARCH(1) processes, is more 
general than Lindeberg-Levy. 

We have presented an LLN for serially correlated processes in the form of the 
Ergodic Theorem. A central limit theorem for serially correlated processes will be 
presented in Chapter 6. 



108 Chapter 2 

QUES'TIONS FOR REVIEW 

1. Prove that Lj = rji. Hint: Cov(zi, ziPj) = E[(zi - p ) ( ~ ~ - ~  - p)'] where 

p = E(zi). By covariance-stationarity, Cov(zi , zi-j) = C O V ( Z ~ + ~ ,  zi). 

2. (Forecasting white noise) For the white noise process of Example 2.4, E(zi) = 

0. What is E(zi I zl)  for i 2 2? Hint: You should be able to forecast the future 

exactly if you know the value of zl .  Is the process an m.d.s? [Answer: No.] 

3. (No anticipated changes in martingales) Suppose {xi) is a martingale with 
respect to {zi}. Show that E(xi+j I ~ i - 1 ,  ~ i - 2 , .  . . , ~ 1 )  = xi-1 and E ( ~ i + j + ~  - 

xi+j I zi-l, zi-2, . . . , zl) = 0 for j = 0, 1, . . . . Hint: Use the Law of Iterated 

Expectations. 

4. Let {xi} be a sequence of real numbers that change with i and { E ~ }  be a sequence 
of i.i.d. random variables with mean 0 and finite variance. Is {xi . E ~ }  i.i.d.? 
[Answer: No.] Is it serially independent? [Answer: Yes.] An m.d.s? [Answer: 
Yes.] Stationary? [Answer: No.], 

5. Show that a random walk is nonstationary. Hint: Check the variance. 

6. (The first difference of a martingale is a martingale difference sequence) Let 
{zi} be a martingale. Show that the process {gi) created by (2.2.7) is an m.d.s. 
Hint: (gl, . . . , gi) and (zl,  . . . , zi) share the same information. 

7. (An m.d.s. that is not independent white noise) Let gi = ~i - ~i -1 ,  where { E ~ }  
is an independent white noise process. Evidently, {gi) is not i.i.d. Verify that 

{gi} (i = 2, 3 , .  . . )  is an m.d.s. Hint: E(gi I gi-1,. . . , g2) = E[E(Ei ~ i - l  I 
Ei-1, . . . , El) I Ei-1.E;-2, Ei-2.Ei-3, . . . , ~ 2 . ~ 1 1 .  

8. (Revision of expectations is m.d.s.) Let {yi} be a process such that E(yi ( 

yi-1, yi-2, . . . , yl) exists and is finite, and define ril = E(yi I yi-1, yi-2, . . . , 
yl) - E(yi I yi-2, yi-3, . . . , yl). SO ril is the change in the expectation as one 
more observation is added to the information set. Show that {ri l l  (i 3 2) is an 
m.d.s. with respect to {yi}. 

9. (Billingsley is stronger than Lindeberg-Levy) Let {zi} be an i.i.d. sequence 
with E(zi) = p and Var(zi) = X, as in the Lindeberg-Levy CLT. Use the 

Martingale Differences CLT to prove the claim of the Lindeberg-Levy CLT, 

namely, that f i ( Z ,  - p )  +d N ( 0 ,  X). Hint: {zi - p }  is an independent white 

noise process and hence is an ergodic stationary m.d.s. 
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2.3 Large-Sample Distribution of the OLS Estimator 

The importance in econometrics of the OLS procedure, originally developed for the 
classical regression model of Chapter 1, lies in the fact that it has good asymptotic 
properties for a class of models, different from the classical model, that are useful in 
economics. Of those models, the model presented in this section has probably the 
widest range of economic applications. No specific distributional assumption (such 
as the normality of the error term) is required to derive the asymptotic distribution 
of the OLS estimator. The requirement in finite-sample theory that the regressors 
be strictly exogenous or "fixed is replaced by a much weaker requirement that 
they be "predetermined." (For the sake of completeness, the appendix develops the 
parallel asymptotic theory for a model with "fixed regressors.) 

The Model 
We use the term the data generating process (DGP) for the stochastic process 
that generated the finite sample (y, X). Therefore, if we specify the DGP, the joint 
distribution of the finite sample (y, X) can be determined. In finite-sample theory, 
where the sample size is fixed and finite, we defined a model as a set of the joint 
distributions of (y, X). In large-sample theory, a model is stated as a set of DGPs. 
The model we study is the set of DGPs satisfying the following set of assumptions. 

Assumption 2.1 (linearity): 

where xi is a K-dimensional vector of  explanatory variables (regressors), B is a 
K-dimensional coefficient vector, and ~i is the unobservable en-or term. 

Assumption 2.2 (ergodic stationarity): The (K + 1) -dimensional vector stochas- 
tic process { yi , xi } is jointly stationary and ergodic. 

Assumption 2.3 (predetermined regressors): All the regressors are predeter- 
mined in the sense that they are orthogonal to the contemporaneous error term: 
E ( x ~ ~ E ~ )  = 0 for all i and k (= 1,2, . . . , K)." This can be written as 

loour definition of the term predetermined is not universal. Some authors say that the regressors are prede- 
termined if E(xi-j . ~ i )  = 0 for all j 2 0, not just for j = 0. That is, the error term is orthogonal not only to 
the contemporaneous but also the past regressors. In Koopmans and Hood (1953). the regressors are said to be 
predetermined if E; is independent of xi-, for all j 2 0. Our definition is the same as Hamilton's (1994). 
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E[xi . (yi - xi B)] = 0 or equivalently E(gi) = 0 

where gi = xi . E ~ .  

Assumption 2.4 (rank condition): The K x K matrix E(xixi) is nonsingular (and 
hence finite). We denote this matrix by X,. 

Assumption 2.5 (gi is a martingale difference sequence with finite second 
moments): {gi} is a martingale difference sequence (so a fortiori E(gi) = 0). The 
K x K matrix of  cross moments, E(gi gj ) , is nonsingular. We use S for Avar(g) (the 

variance of the asymptotic dishbution of ,h g, where g = xi gi). By Assump- 
tion 2.2 and the ergodic stationary Martingale Differences CLT, S = E(gigj). 

The first assumption is just reproducing Assumption 1.1. The rest of the assump- 
tions require some lengthy comments. 

(Ergodic stationarity) A trivial but important special case of ergodic station- 
arity is that {yi, xi} is i.i.d., that is, the sample is a random sample." Most 
existing microdata on households are random samples, with observations ran- 
domly drawn from a population of a nation's households. Thus, we are in no 
way ruling out models that use cross-section data. 

(The model accommodates conditional heteroskedasticity) If {yi, xi} is station- 
ary, then the error term ~i = yi - xiB is also stationary. Thus, Assumption 
2.2 implies that the unconditional second moment E(E:) -if it exists and is 
finite -is constant across i . That is, the error term is unconditionally homo- 
skedastic. Yet the error can be conditionally heteroskedastic in that the condi- 
tional second moment, E(E? ( xi), can depend on xi. An example in which the 
error is homoskedastic unconditionally but not conditionally is included in Sec- 
tion 2.6, where the consequence of superimposing conditional homoskedasticity 
(that E(E: ( xi) = 4') on the model will be explored. 

@(xi . Ei) = 0 VS. E (E~  ( xi) = 0) Sometimes, instead of the orthogonality 
condition E(xi . E ~ )  = 0, it is assumed that the error is unrelated in the sense 
that E ( E ~  I xi) = 0. This is stronger than the orthogonality condition because it 

LLActually, once the independence assumption is made, the same large-sample results can be proved for the 
more general case where (yi, xi) is independently but not identically distributed (i.n.i.d.), provided that some 
conditions on higher moments of the joint distribution of (ci, xi) are satisfied. We will not entertain this general- 
ization because the i.i.d. assumption is satisfied in most microdata sets. 
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implies that, for any (measurable) function f of xi, f (xi) is orthogonal to ~i : 

In rational expectations models, this stronger condition is satisfied, but for the 
purpose of developing asymptotic theory, we need only the weaker assumption 
of the orthogonality condition. 

(Predetermined vs. strictly exogenous regressors) The regressors are not 
required to be strictly exogenous. As we noted in Section 1.2, the exogene- 
ity assumption (Assumption 1.2) implies that, for any regressor k, E(xjk&i) = 0 
for all i and j, not just for i = j, which rules out the possibility that the current 
error term, ~ i ,  is correlated with future regressors, xi+j for j > 1. Assump- 
tion 2.3, restricting only the contemporaneous relationship between the error 
term and the regressors, does not rule-out that possibility. For example, the 
AR(1) process, which does not satisfy the exogeneity assumption of the classi- 
cal regression model, can be accommodated in the model of this chapter. This 
weaker assumption of predetermined regressors will be further relaxed in the 
next chapter. 

I (Rank condition as no multicollinearity in the limit) Since E(xix:) is finite by 
Assumption 2.4, limn,, S, = X, (where S, = i x:=l xixi) with prob- 
ability one by the Ergodic Theorem. So, for n sufficiently large, the sample 
cross moment of the regressors S,,, which can be written as ~ x ' x ,  is nonsin- 
gular by Assumptions 2.2 and 2.4. Since ~ X ' X  is nonsingular if and only if 
rank(X) = K, Assumption 1.3 (no multicollinearity) is satisfied with proba- 
bility one for sufficiently large n .  In the OLS formula b = S z  hY (where 
s, Y - n  = 1 x:=l xi . yi), S,, needs to be inverted. If S, is singular in a finite sam- 
ple (so it cannot be inverted), we just assign an arbitrary value to b so that the 
OLS estimator is well-defined for any sample. 

(A sufficient condition for {gi) to be an m.d.s.) Since an m.d.s. (martingale dif- 
ference sequence) is zero-mean by definition, Assumption 2.5 is stronger than 
Assumption 2.3. We will need Assumption 2.5 to prove the asymptotic normal- 
ity of the OLS estimator. The assumption, about the product of the regressors 
and the error term, may be hard to interpret. A sufficient condition that is easier 
to interpret is 

Note that the current as well as lagged regressors is included in the information 

Keen
Rectangle



112 Chapter 2 

set. This condition implies that the error term is serially uncorrelated and also 
is uncorrelated with the current and past regressors (the proof is much like the 
proof in the previous section that an m.d.s. is serially uncorrelated). That (2.3.1) 
is sufficient for {gi} to be an m.d.s. can be seen as follows. We have 

This holds by the Law of Iterated Expectations because there is more informa- 
tion in the "inside" information set ( ~ ~ - 1 ,  ~ i -2 ,  . . . , & I ,  X i 7  xi-l, . . . , xl)  than in 
the "outside" information set (giPl, . . . , gl). Therefore, 

E(gi I gi-1,. . .  9 gl) 

= :E[xi E ( E ~  I ~ ~ - 1 ,  E~-2, -. . . , ~ 1 ,  xi, xi-, , . . . , XI)  1 gi-1, . . . , gl] 

(by the linearity of conditional expectations) 

= 0 (by (2.3.1)). (2.3.2) 

(When the regressors include a constant) In virtually all applications, the regres- 
sors include a constant. If the regressors include a constant so that xil = 1 for all 
i ,  then Assumption 2.3 of predetermined regressors can be stated in more famil- 
iar terms: the mean of the error term is zero (which is implied by E(xik&i) = 0 
for k = l), and the contemporaneous correlation between the error term and 
the regressors is zero (which is implied by E ( x ~ ~ E ~ )  for k # 1 and E ( E ~ )  = 0). 
Also, since the first element of the K-dimensional vector gi (= xi - E ~ )  is ~ i ,  
Assumption 2.5 implies 

Then, by the Law of Iterated Expectations, { E ~ }  is a scalar m.d.s: 

Therefore, Assumption 2.5 implies that the error term itself is an m.d.s. and 
hence is serially uncorrelated. 

(S is a matrix of fourth moments) Since gi = xi . ~ i ,  the S in Assumption 2.5 
can be written as E(E?x~x~).  Its (k, j) element is E ( E ~ x ~ ~ x ~ ~ ) .  SO S is a matrix of 
fourth moments (the expectation of products of four different variables). Con- 
sistent estimation of S will require an additional assumption to be specified in 
Section 2.5. 
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(S will take a different expression without Assumption 2.5) Thanks to the 
assumption that {gi} is an m.d.s., S (= Avar(g)) is equal to E(gig:). Without 
the assumption, as we will see in Chapter 6, the expression for S is more com- 
plicated and involves autocovariances of gi . 

Asymptotic Distribution of the OLS Estimator 

We now prove that the OLS estimator is consistent and asymptotically normal. It 
should be kept in mind throughout the rest of this chapter that the OLS estimator 
b depends on the sample size n (although the dependence is not made explicit by 
our choice of not to subscript b by n) and that K,  the number of regressors, is held 
fixed when we track the sequence of OLS estimators indexed by n. For the time 
being, we presume that there is available some consistent estimator, denoted g, of 
S (= Avar(g) = E(gigi) = E(E?x~x;)). The issue of estimating S consistently will 
be taken up later. 

Proposition 2.1 (asymptotic distribution of the OLS Estimator): 

(a) (Consistency of b forb)  Under Assumptions 2.1-2.4, plim,,, b = B.  (So 
Assumption 2.5 is not needed for consistency.) 

(b) (Asymptotic Normality of b) If Assumption 2.3 is strengthened as Assump- 
tion 2.5, then 

where 

Avar(b) = X l l S  X l l .  

(Recall: X, = E(xix;), S  = E(gi&), gi Xi . Ei.) 

(c) (Consistent Estimate of Avar(b)) Suppose there is available a consistent esti- 
mator, g, of S  (K x K).  Then, under Assumption 2.2, Avar(b) is consistently 
estimated by 

where S, is the sample mean of xi xi : 
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The proof is a showcase of all the standard tricks in asymptotics. For proving (a) 
and (b), three tricks will be employed: (1) write the object in question in terms 
of sample means, (2) apply the relevant LLN (the Ergodic Theorem in the present 
context) and CLT (the ergodic stationary Martingale Differences CLT) to sample 
means, and (3) use Lemma 2.4(c) to derive the asymptotic distribution. Proof of 
(c) will not be given because it is an immediate implication of ergodic stationarity. 

PROOF (Parts (a) and (b)). 

(1) We first write the sampling error b - B in terms of sample means. 

where 

The sample means S, and g depend on the sample size n,  although the notation 
does not make it explicit. 

(2) (Consistency) Since by Assumption 2.2 {xixi) is ergodic stationary, S, +, 
X,. (The convergence is actually almost surely, but almost sure convergence 
implies convergence in probability.) Since X,, is invertible by Assumption 2.4, 
S&l +, X,-,' by Lemma 2.3(a). Similarly, g -+, E(gi) which by Assumption 
2.3 is 0. So by Lemma 2.3(a), S d g  +, ~ $ 0  = 0. Therefore, plimn,,(b - 

B) = 0, which implies plim,,, b = B. 

(3) (Asymptotic normality) Rewrite (2.3.7) as 

As mentioned in the statement of Assumption 2.5, f i  g + d  N (0, S). So, 
by Lemma 2.4(c), f i ( b  - B) converges to a normal distribution with mean 0 
and variance Z&~S(X;)'. But since X, is symmetric, this expression equals 
(2.3.4). 
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This result says that the distribution of f i  times the sampling error is approxi- 
mated arbitrarily well by a normal distribution when the sample size is sufficiently 
large. The natural question is how large is "large": how large must the sample 
size be for the asymptotic approximation to be valid? The asymptotic result we 
just derived holds for all the DGPs satisfying the model assumptions. However, 
the sample size needed to achieve a given measure of proximity to the asymptotic 
distribution depends on the DGP. We will partially address this issue in the Monte 
Carlo experiment of this chapter. 

s2 IS Consistent 
We now turn to the OLS estimator, s2 ,  of the error variance. 

Proposition 2.2 (consistent estimation of error variance): Let ei = yi - xib be 
the OLS residual for observation i . ~ n d &  ~ s s u m ~ t i o n s  2.1-2.4, 

provided E(E?) exists and is finite. 

If we could observe the error term ~ i ,  then the obvious estimator would be the sam- 
ple mean of E:. It is consistent by ergodic stationarity. The message of Proposition 
2.2 is that the substitution of the OLS residual ei for the true error term ~i does 
not impair consistency. Let us go through a sketch of the proof, because knowing 
how to handle the discrepancy between ~i and its estimate ei will be useful in other 
contexts as well. Since 

it suffices to prove that the sample mean of e;, xi e!, converges in probability to 
E(E!). The relationship between ei and ~i is given by 

e .  I = - yi - xib 

= yi - xi@ - xi (b - p) (by adding and subtracting xip) 

= ~i -xi(b - B), (2.3.9) 

so that 
2 

ei = E? - 2(b - @)'xi . E~ + (b - p)'xixi(b - p). (2.3.10) 
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Summing over i,  we obtain 

The rest of the proof, which is to show that the plims of the last two terms are 

zero so that plim xi E? = plim xi e?, is left as a review question. If you 
do the review question, it should be clear to you that all that is required for the 
coefficient estimator is consistency; if some consistent estimator, rather than the 
OLS estimator b, is used to form the residuals, the error variance estimator is still 
consistent for E(E?). 

QUESTIONS FOR REVIEW 

1. Suppose E(yi I xi) = xiB, that is, suppose the regression of yi on xi is a linear 
function of xi. Define E~ = yi - x:B. Show that xi is orthogonal to E ~ .  Hint: 
First show that E(E~  I xi) = 0. 

2. (Is E(E?) assumed to be finite?) 

(a) Do Assumptions 2.1-2.5 imply that E(E?) exists and is finite? Hint: A 

strictly stationary process may not have finite second moments. 

(b) If one of the regressors is a constant in our model, then the variance of 
the error term is finite. Prove this. Hint: If xil = 1, the (1, 1) element of 

E(gigi) is 6;. 

3. (Alternative expression for S) Let f (xi) = E(E? I xi). Show that S (= 

E(E?x~x:)) can be written as 

Hint: Law of Total Expectations. 

4. Complete the proof of Proposition 2.2. Hint: We have already proved for 

Proposition 2.1 that plimg = 0, plimSxx = Z,, and plim(b - 8) = 0 under 

Assumptions 2.1-2.4. Use Lemma 2.3(a) to show that plim(b - B)'g = 0 and 
plim(b - B)'SXx(b - /3) = 0. 

5. (Proposition 2.2 with consistent 8) Prove the following generalization of 
Proposition 2.2: 
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A A 

Let ti - yi - xi/l where /l is any consistent estimator of /l. Under 
Assumptions 2.1,2.2, and the assumption that E(xi - E ~ )  and E(xix:) are 
finite, Ci t: +p E(E?). 

So the regressors do not have to be orthogonal to the error term. 

2.4 Hypothesis Testing 

Statistical inference in large-sample theory is based on test statistics whose asymp- 
totic distributions are known under the truth of the null hypothesis. Derivation of 
the distribution of test statistics is easier than in finite-sample theory because we 
are only concerned about the large-sample approximation to the exact distribution. 
In this section we derive test statistics, assuming throughout that a consistent esti- 
mator, ?$, of S (- E(gig:)) is available. The issue of consistent estimation of S will 
be taken up in the next section. 

Testing Linear Hypotheses 
Consider testing a hypothesis about the k-th coefficient bk. Proposition 2.1 implies 
that under the Ho: bk = Bk, 

where bk is the k-th element of b and Avar(bk) is the (k, k )  element of the K x K 
matrix Avar(b) . So Lemma 2.4(c) guarantees that 

where 

The denominator in this t-ratio, SE*(bk), is called the heteroskedasticity- 
consistent standard error, (heteroskedasticity-)robust standard error, or 
White's standard error. The reason for this terminology is that the error term 
can be conditionally heteroskedastic; recall that we have not assumed conditional 
homoskedasticity (that E(E; 1 xi) does not depend on xi) to derive the asymptotic 
distribution of tk. This t-ratio is called the robust t-ratio, to distinguish it from the 
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t-ratio of Chapter 1. The relationship between these two sorts of t-ratio will be 
discussed in Section 2.6. 

Given this t-ratio, testing the null hypothesis Ho: Bk = Bk at a significance 
level of a proceeds as follows: 

Step 1: Calculate tk by the formula (2.4.1). 
Step 2: Look up the table of N (0, 1) to find the critical value tap which leaves a /2  

to the upper tail of the standard normal distribution. (example: if a = 5%, 
tap = 1.96.) 

Step 3: Accept the hypothesis if Itk 1 < ta,2; otherwise reject. 

The differences from the finite-sample t-test are: (1) the way the standard error is 
calculated is different, (2) we use the table of N(0, 1) rather than that of t (n - K), 
and (3) the actual size or exact size of the test (the probability of Type I error given 
the sample size) equals the nominal'size (i.e., the desired significance level a )  only 
approximately, although the approximation becomes arbitrarily good as the sample 
size increases. The difference between the exact size and the nominal size of a test 
is called the size distortion. Since tk is asymptotically standard normal, the size 
distortion of the t-test converges to zero as the sample size n goes to infinity. 

Thus, we have proved the first half of 

Proposition 2.3 (robust t-ratio and Wald statistic): Suppose Assumptions 2.1- 
2.5 hold, and suppose there is available a consistent estimate of S (= E(gi g2). 
As before, let 

Then 

(a) Under the null hypothesis Ho : Bk = Bk, tk defined in (2.4.1) + d N (0, 1). 

(b) Under the null hypothesis Ho: R/3 = r, where R is an #r x K matrix (where 
#r, the dimension of r, is the number of restrictions) of full row rank, 

W = n . (Rb - r)'{R[~var(b)]R']-'(Rb - r) + X2(#r). (2.4.2) 
d 

What remains to be shown is that W +d x2(#r), which is a straightforward appli- 
cation of Lemma 2.4(d). 
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PROOF (continued). Write W as 

W = C;Q;'C, where c, = & ( ~ b  - r)  and Q, = RAvar(b)Rf . 

Under Ho, c, = R&(b - B ) .  So by Proposition 2.1, 

c, + c where c -  N(O,RAvar(b)Rf). 
d 

Also by Proposition 2.1, 

Q, -+ Q where Q = R Avar(b)Rf. 
P 

Because R is of full row rank and Avar(b) is positive definite, Q is invertible. 
Therefore, by Lemma 2.4(d), 

Since the #r-dimensional random vector c is normally distributed and since Q 
equals Var(c), cfQ-' c - x2(#r). 

This chi-square statistic W is a Wald statistic because it is based on unrestricted - 
estimates (b and Avar(b) here) not constrained by the null hypothesis Ho. Testing 
Ho at a significance level of a proceeds as follows. 

Step I :  Calculate the W statistic by the formula (2.4.2). 
Step 2: Look up the table of x2(#r) distribution to find the critical value x;(#r) 

that gives a to the upper tail of the x2(#r) distribution. 
Step 3: If W < x;(#r), then accept Ho; otherwise reject. 

The probability of Type I error approaches a as the sample becomes larger. As will 
be made clear in Section 2.6, this Wald statistic is closely related to the familiar 
F -test under conditional homoskedas ticity. 

The Test Is Consistent 
Recall from basic statistics that the (finite-sample) power of a test is the probability 
of rejecting the null hypothesis when it is false given a sample of finite size (that 
is, the power is 1 minus the probability of Type I1 error). Power will obviously 
depend on the DGP (i.e., how the data were actually generated) considered as the 
alternative as well as on the size (significance level) of the test. For example, con- 
sider any DGP (yi, xi} satisfying Assumptions 2.1-2.5 but not the null hypothesis 
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Ho: Bk = &. The power of the t-test of size a against this alternative is 

power = Prob(ltk 1 > tap), 

which depends on the DGP in question because the DGP controls the distribution 
of tk. We say that a test is consistent against a set of DGPs, none of which satisfies 
the null, if the power against any particular member of the set approaches unity as 
n + 00 for any assumed significance level. 

That the t-test is consistent against the set of alternatives (DGPs) satisfying 
Assumptions 2.1-2.5 can be seen as follows. Look at the expression (2.4.1) for the 
t-ratio, reproduced here: 

The denominator converges to d m  despite the fact that the DGP does not 
satisfy the null (recall that all parts of Proposition 2.1 hold regardless of the truth 
of the null, provided Assumptions 2.1-2.5 are satisfied). On the other hand, the 
numerator tends to +m or -00 because bk converges in probability to the DGP's 
Bk, which is different from &. So the power tends to unity as the sample size n 
tends to infinity, implying that the t-test of Proposition 2.3 is consistent against 
those alternatives, the DGPs that do not satisfy the null. The same is true for the 
Wald test. 

Asymptotic Power 
For later use in the next chapter, we define here the asymptotic power of a consis- 
tent test. As noted above, the power of the t-test approaches to unity as the sample 
size increases while the DGP taken as the alternative is held fixed. But if the DGP 
gets closer and closer to the null as the sample size increases, the power may not 
converge to unity. A sequence of such DGPs is called a sequence of local alterna- 
tives. For the regression model and for the null of Ho: Bk = Bk, it is a sequence of 
DGPs such that (i) the n-th DGP, {yf), x j")} (i = 1,2 ,  . . . ), satisfies Assumptions 
2.1-2.5 and converges in a certain sense to a fixed DGP {yi, xi),12 and (ii) the value 
of Bk of the n-th DGP, ~ f ) ,  converges to Bk. Suppose, further, that ~ f '  satisfies 

12see, e.g., Assumption 1 of Newey (1985) for a precise statement. 
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for some given y # 0. So fi?) approaches to & at a rate proportional to I/&. 
This special sequence of local alternatives is called a Pitman drift or a Pitman 
sequence. Substituting (2.4.3) into (2.4.1), the t-ratio above can be rewritten as 

If the sample of size n is generated by the n-th DGP of a Pitman drift, does 
tk converge to a nontrivial distribution? Since the n-th DGP satisfies Assumptions 
2.1-2.5, the first term on the right hand side of (2.4.4) converges in distribution to 
N ( 0 ,  1) by parts (b) and (c) of Proposition 2.1. By part (c) of Proposition 2.1 and 
the fact that {y!"), xy'} "converges" to a fixed DGP, the second term converges in 
probability to 

where Avar(bk) is evaluated at the fixed DGP. Therefore, tk +d N(p,  1) along this 
sequence of local alternatives. If the significance level is a ,  the power converges to 

where x - N(p ,  1) and tap is the level-a critical value. This probability is called 
the asymptotic power. It is a measure of the ability of the test to detect small 
deviations of the model from the null hypothesis. Evidently, the larger is Ip 1, the 
higher is the asymptotic power for any given size a .  By a similar argument, it is 
easy to show that the Wald statistic converges to a distribution called noncentral 
chi-squared. 

Testing Nonlinear Hypotheses 
The Wald statistic can be generalized to a test of a set of nonlinear restrictions on 
p. Consider a null hypothesis of the form 

Here, a is a vector-valued function with continuous first derivatives. Let #a be 
the dimension of a@) (so the null hypothesis has #a restrictions), and let A@) 
be the #a x K matrix of first derivatives evaluated at p :  A(p) = aa(p)/apf.  For 
the hypothesis to be well-defined, we assume that A(p) is of full row rank (this is 
the generalization of the requirement for linear hypothesis R p  = r that R is of full 
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row rank). Lemma 2.5 of Section 2.1 and Proposition 2.l(b) imply that 

Since a(/?) = 0 under Ho, (2.4.7) becomes 

Since b +=, /? by Proposition 2.l(a), Lemma 2.3(a) implies that A(b) +=, A(/?). 
By Proposition 2.l(c), Avar(b) +=, Avar(b). So by Lemma 2.3(a), 

Because A(B) is of full row rank and Avar(b) is positive definite, Var(c) is invert- 
ible. Then Lemma 2.4(d), (2.4.8), and (2.4.9) imply 

Combining two , h ' s  in (2.4.10) into one n, we have proved 

Proposition 2.3 (continued): 

(c) Under the null hypothesis with #a restrictions Ho: a(B) = 0 such that A(B), 
the #a x K matrix of continuous first derivatives of  a@), is of  full row rank, 
we have 

Part (c) is a generalization of (b); by setting a(/?) = R/? - r, (2.4.11) reduces to 
(2.4.2), the Wald statistic for linear restrictions. 

The choice of a(.) for representing a given set of restrictions is not unique. 
For example, BIB2 = 1 can be written as a(/?) = 0 with a(/?) = B1B2 - 1 or with 
a(/?) = B1 - 1/82. While part (c) of the proposition guarantees that in large samples 
the outcome of the Wald test is the same regardless of the choice of the function 
a, the numerical value of the Wald statistic W does depend on the representation, 
and the test outcome can be different in finite samples. In the above example, 
the second representation, a(/?) = B1 - 1/82, does not satisfy the requirement 
of continuous derivatives at B2 = 0. Indeed, a Monte Carlo study by Gregory 
and Veal1 (1985) reports that, when a is close to zero, the Wald test based on the 
second representation rejects the null too often in small samples. 
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Q U E S T I O N S  F O R  R E V I E W  

1. Does SE*(bk) + p  0 asn + oo? 

2. (Standard error of a nonlinear function) For simplicity let K = 1 and let b be - 
the OLS estimate of B. The standard error of b is -. Suppose 1 = 
- log@). The estimate of h implied by the OLS estimate of B is i = - log(b). 

Verify that the standard error of i is ( l lb) . -. 

3. (Invariance [or lack thereof] of the Wald statistic) There is no unique way to 
write the linear hypothesis RB = r, because for any #r x #r nonsingular matrix 
F, the same set of restrictions can be represented as = 7 with E = FR and - 
r - Fr. Does a different choice of R and r affect the asymptotic distribution 
of W? The finite-sample distribution? The numerical value? 

2.5 Estimating ~ ( 6 :  xixi) Consistently 

The theory developed so far presumes that there is available a consistent estimator, 
A 

S, of S (= E(gi&) = E(E?x~x;)) to be used to calculate the estimated asymptotic 
variance, Avar(b). This section explains how to obtain from the sample (y, X). 

Using Residuals for the Errors 
If the error were observable, then the sample mean of &;xixi is obviously consistent 
by ergodic stationarity. But we do not observe the error term, and the substitution 
of some consistent estimate of it results in 

A A 

where Pi yi - xi/?, and /? is some consistent estimator of B .  (Although the 
obvious candidate for the consistent estimator 3 is the OLS estimator b, we use 3 
rather than b here, in order to make the point that the results of this section hold 
for any consistent estimator.) For this estimator to be consistent for S, we need to 
make a fourth-moment assumption about the regressors. 

Assumption 2.6 (finite fourth moments for regressors): E [ ( x ~ ~ x ~ ~ ) ~ ]  exists and 
is finite for all k,  j (= 1 ,2 ,  . . . , K). 
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Proposition 2.4 (consistent estimation of S): Suppose the coefficient estimate 
p used for calculating the residual Bi for g in (2.5.1) is consistent, and suppose 
S = E(gig:) exists and is finite. Then, under Assumptions 2.1, 2.2, and 2.6, g 
given in (2.5.1) is consistent for S. 

To indicate why the fourth-moment assumption is needed for the regressors, we 
provide a sketch of the proof for the special case of K = 1 (only one regressor). 

A 

So xi is now a scalar xi, gi is a scalar gi = x i ~ i ,  and (2.3.10) (with b = /3 and 
ei = i i )  simplifies to 

By multiplying both sides by x? and summing over i,  

Now we can see why the finite fourth-moment assumption on xi is required: if the 
fourth moment E(x:) is finite, then by ergodic stationarity the sample average of 
x: converges in probability to some finite number, so that the last term in (2.5.3) 
vanishes (converges to 0 in probability) if B is consistent for p. It can also be 
shown (see Analytical Exercise 4 for proof) that, by combining the same fourth- 
moment assumption about the regressors and the fourth-moment assumption that 
E(gig:) (= E(E?x~x:)) is finite, the sample average of X ? E ~  converges in probability 
to some finite number, so that the other term on the RHS of (2.5.3), too, vanishes. 

According to Proposition 2.1 (a), the assumptions made in Proposition 2.3 are 
sufficient to guarantee that b is consistent, so we can set b = p in (2.5.1) and use 
the OLS residual to calculate $. Also, the assumption made in Proposition 2.4 that 
E(gig:) is finite is part of Assumption 2.5, which is assumed in Proposition 2.3. 
Therefore, the import of Proposition 2.4 is: 

If Assumption 2.6 is added to the hypothesis in Proposition 2.3, then theg 
given in (2.5.1) with b = p (so ii is the OLS residual ei) can be used in 
(2.3.5) to calculate the estimated asymptotic variance: 

which is consistent for Avar(b). 
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Data Matrix Representation of S 
If B is the n x n diagonal matrix whose i-th diagonal element is 8;, then the in 
(2.5.1) can be represented in terms of data matrices as 

X'BX s = -  
n 

with 

So (2.5.4) can be rewritten (with gi in B set to ei) as 

These expressions, although useful for some purposes, should not be used for 
computation purposes, because the n x n matrix B will take up too much of the 
computer's working memory, particularly when the sample size is large. To com- 
puteg from the sample, the formula (2.5.1) is more useful than (2.5.1'). 

Finite-Sample Considerations 
Of course, in finite samples, the power may well be far below one against certain 
alternatives. Also, the probability of rejecting the null when the DGP does satisfy 
the null (the Type I error) may be very different from the assumed significance 
level. Davidson and MacKinnon (1993, Section 16.3) report that, at least for the 
Monte Carlo simulations they have seen, the robust t-ratio based on (2.5.1) rejects 
the null too often and that simply replacing the denominator n in (2.5.1) by the 
degrees of freedom n - K or equivalently multiplying (2.5.1) by n/(n - K) (this 
is a degrees of freedom correction) mitigates the problem of overrejecting. They 
also report that the robust t-ratios based on the following adjustments on $ perform 
even better: 

where pi is the pi defined in the context of the influential analysis in Chapter 1: it 
is the i-th diagonal element of the projection matrix P, that is, 

Keen
Rectangle



126 Chapter 2 

Q U E S T I O N S  FOR R E V I E W  

1. (Computation of robust standard errors) In Review Question 9 of Section 1.2, 
we observed that the standard errors of the OLS coefficient estimates can be 
calculated from S,,, s,, (the sample mean of xi . yi), yly/n, and JJ, so the sam- 
ple moments need to be computed just once. Is the same true for the robust 
standard errors where the is calculated according to the formula (2.5.1) with 
E .  - e . ?  

1 -  1 

2. The finite-sample variance of the OLS estimator in the generalized regression 
model of Chapter 1 is Var(b I X) = (x'x)-'X'(a2~)X(X'X)-'. Compare this 
to (2.5.4'). What are the differences? 

2.6 Implications of Conditional Homoskedasticity 

The test statistics developed in Sections 2.4 and 2.5 are different from the finite- 
sample counterparts of Section 1.4 designed for testing the same null hypothesis. 
How are they related? What is the asymptotic distribution of the t and F statistics 
of Chapter I? This section answers these questions. 

It turns out that the robust t-ratio is numerically equal to the t-ratio of Section 
1.4, for a particular choice of g. Therefore, the asymptotic distribution of the t- 
ratio of Section 1.4 is the same as that of the robust t-ratio, if that particular choice 
is consistent for S. The same relationship holds between the F-ratio of Section 1.4 
and the Wald statistic W of this chapter. Under the conditional homoskedasticity 
assumption stated below, that particular choice is indeed consistent. 

Conditional versus Unconditional Homoskedasticity 
The conditional homoskedasticity assumption is: 

Assumption 2.7 (conditional homoskedasticity): 

This assumption implies that the unconditional second moment E(E?) equals u 2  by 
the Law of Total Expectations. To be clear about the distinction between uncondi- 
tional and conditional homoskedasticity, consider the following example. 
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Example 2.6 (unconditionally homoskedastic but conditionally hetero- 
skedastic errors): As already observed, if (yi, xi) is stationary, so is ( E ~ ) ,  
and the error is unconditionally homoskedastic in that E($) does not depend 
on i. To illustrate that the error can nevertheless be conditionally heteroske- 
dastic, suppose that ~i is written as ~i E qi f (xi), where {qi) is zero-mean 
E(qi) = 0 and is independent of xi. The conditional second moment of E~ 

depends on xi because 

E(E? ( xi) = ~ ( q ;  f 1 xi) (since E; = qi f (xi)) 

= f ~ ( q :  ( xi) (by the linearity of conditional expectations) 

= f (xi12 ~ ( q ? )  (since qi is independent of xi by assumption), 

I which varies across i because of the variation in f (xi) across i 

Reduction to Finite-Sample Formulas 
To examine the large-sample distribution of the t and F statistics of Chapter 1 

under the additional Assumption 2.7, we first examine the algebraic relationship 
to their robust counterparts. Consider the following choice for the estimate of S: 

where s2 is the OLS estimate of c2 .  (We will show in a moment that this estimator 
is consistent under conditional homoskedasticity.) Then the expression (2.3.5) for 
Avar(b) becomes 

Substituting this expression into (2.4.1), we see that the robust standard error 
becomes 

d s 2  times (k, k) element of (x'x)-~, (2.6.3) 

which is the usual standard error in finite-sample theory. So the robust t-ratio is 
numerically identical to the usual finite-sample t-ratio when we set $ = s2 S,. 
Similarly, substituting (2.6.2) into the expression for the Wald statistic (2.4.2), we 
obtain 
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W = n . (Rb - r)'{R[n . s2 . (x'x)-']R'}-'(Rb - r) 

= (Rb - r)'{R[s2 - (x'x)-']R~}-'(R~ - r) (the two n's cancel) 

= (Rb - r ) l ( ~ [ ( ~ ' ~ ) - l ] ~ ' } - ' ( ~ b  - r)/s2 

= r . F (by the definition of (1.4.9) of the F-ratio) 

= (SSRR - SSR")/S~ (by (1.4.1 1)). 

h 

Thus, when we set S = s2 S,, the Wald statistic W is numerically identical to 
#r . F (where #r is the number of restrictions in the null hypothesis). 

Large-Sample Distribution of t and F Statistics 
It then follows from Proposition 2.3 that the t-ratio (2.4.1) is asymptotically N (0, 1) 
and #r . F asymptotically X 2  (#r), if s2 S,, is consistent for S. That s2 S, is consis- 
tent for S can be seen as follows. Under conditional homoskedasticity, the matrix 
of fourth moments S can be expressed as a product of second moments: 

1 2  S = E(gig:) = E(xixici ) (since gi = xi . ci) 

= E[E(X~X:E? 1 xi)] (by the Law of Total Expectations) 

= E[xix: E(E: I xi)] (by the linearity of conditional expectations) 

= E(xix'a2) (by Assumption 2.7) 

= a2 E(xix:) = a2Cxx. (2.6.4) 

This decomposition has several implications. 

(C,, is nonsingular) Since by Assumption 2.5 S is nonsingular, this decompos- 
ition of S implies that a2 > 0 and C, is nonsingular. Hence, Assumption 2.4 
(rank condition) is implied. 

(No need for fourth-moment assumption) By ergodic stationarity S,, jp C,. 
By Proposition 2.2, s2 is consistent for a2 under Assumptions 2.1-2.4. Thus, 
s2 S,, jp a C , = S. We do not need the fourth-moment assumption (Assump- 
tion 2.6) for consistency. 

As another implication of (2.6.4), the expression for Avar(b) can be simplified: 
inserting (2.6.4) into (2.3.4) of Proposition 2.1, the expression for Avar(b) becomes 

Thus, we have proved 
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I Proposition 2.5 (large-sample properties of b, t ,  and F under conditional homo- 
skedasticity): Suppose Assumptions 2.1-2.5 and 2.7 are satisfied. Then 

(a) (Asymptotic distribution of b) The OLS estimator b of p is consistent and 
asymptotically normal with Avar (b) = a x ,-,' . 

(b) (Consistent estimation of asymptotic variance) Under the same set of assump- - 
tions, Avar(b) is consistently estimated by Avar (b) = s2 S,-,' = n . s2 (x'x)-' . 

(c) (Asymptotic distribution o f  the t and F statistics of the finite-sample theory) 
Under Ho: Bk = Bk, the usual t-ratio (1.4.5) is asymptotically distributed as 
N (0, 1). Under Ho: Rp = r, #r . F is asymptotically X 2  (#r), where F is the 
F statistic from (1.4.9) and #r is the number of restrictions in Ho. 

Variations of Asymptotic Tests under Conditional Homoskedasticity 

According to this result, you should look up the N(0, 1) table to find the critical 
value to be compared with the t-ratio (1.4.5) and the x2  table for the statistic #r . F 
derived from (1.4.9). Some researchers replace the s2  in (1.4.5) and (1.4.9) by 
Ci e?. That is, the degrees of freedom n - K is replaced by n, or the degrees 

of freedom adjustment implicit in s2  is removed. The difference this substitution 
makes vanishes in large samples, because lim,,,[n/(n - K)] = 1. Therefore, 
regardless of which test to use, the outcome of the test will be the same if the 
sample size is sufficiently large. 

Another variation is to retain the degrees of freedom n - K but use the t (n - 
K) table for the t ratio and the F(#r, n - K) table for F ,  which is exactly the 
prescription of finite-sample theory. This, too, is asymptotically valid because, as 
n - K tends to infinity (which is what happens when n += oo with K fixed), 
the t(n - K) distribution converges to N(0, 1) (just compare the t table for large 
degrees of freedom with the standard normal table) and F(#r, n - K) to x2(#r)/#r. 
Put differently, even if the error is not normally distributed and the regressors are 
merely predetermined (orthogonal to the error term) and not strictly exogenous, 
the distribution of the t-ratio (1.4.5) is well approximated by t (n - K), and the 
distribution of the F ratio by F(#r, n - K). 

These variations are all asymptotically equivalent in that the differences in the 
values vanishes in large samples and hence (by Lemma 2.4(a)) their asymptotic 
distributions are the same. However, when the sample size is only moderately 
large, the approximation to the finite-sample or exact distribution of test statistics 
may be better with t (n - K) and F(#r, n - K), rather than with N(0, 1) and x2(#r). 
Because the exact distribution depends on the DGP, there is no simple guide as to 
which variation works better in finite samples. This issue of which table- N(0, 1) 
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or t (n - K) -should be used for moderate sample sizes will be taken up in the 
Monte Carlo exercise of this chapter. 

Q L l E S T l O N S  F O R  R E V I E W  

1 . (Inconsistency of finite sample-formulas without conditional homoskedastic- 
ity) Without Assumption 2.7, Avar(b) is given by (2.3.4) in Proposition 2.1. 
Is it consistently estimated by (2.6.2) without Assumption 2.7? [The answer 
is no. Why?] Is the t-ratio (1.4.5) asymptotically standard normal without the 
assumption? [Answer: No.] 

2. (Advantage of finite-sample formulas under conditional homoskedasticity) 
Conversely, under Assumption 2.7, Avar(b) is given by (2.6.5). Is it consis- 
tently estimated by (2.3.5) under Assumption 2.7? If Assumption 2.7 holds, 
what do you think is the advantage of using (2.6.2) over (2.3.5) to estimate the 
asymptotic variance? [Note: The finite-sample properties of an estimator are 
generally better, the fewer the number of population parameters estimated to 
form the estimator. How many population parameters need to be estimated to 
form (2.3.5)? (2.6.2)? ] 

3. (Relation of F to x2)  Find the 5 percent critical value of F(10, m) and com- 
pare it to the 5 percent critical value of x2(10). What is the relationship 
between the two? 

4. Without conditional homoskedasticity, is (SSRR - SsRU)/s2 asymptotically 
x2(#r)? [Answer: No.] 

5. (n R2 test) For a regression with a constant, consider the null hypothesis that 
the coefficients of the K - 1 nonconstant regressors are all zero. Show that 
nR2 +a x 2 ( ~  - 1) under the hypothesis of Proposition 2.5. Hint: You 

have proved for a Chapter 1 analytical exercise that the algebraic relationship 

between the F-ratio for the null and R2 is 

Can you use the n R2 statistic when the error is not conditionally homoskedas- 
tic? [Answer: No.] 
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2.7 Testing Conditional Homoskedasticity 

With the advent of robust standard errors allowing us to do inference without spec- 
ifying the conditional second moment E(E; ( xi), testing conditional homoske- 
dasticity is not as important as it used to be. This section presents only the most 
popular test due to White (1980) for the case of random samples.'3 

Recall thatg given in (2.5.1) (with Ei = ei) is consistent for S (Proposition 2.4), 
and s2 S, is consistent for a2z, (an implication of Proposition 2.2). But under 
conditional homoskedasticity, S = a2zXx (see (2.6.4)), so the difference between 
the two consistent estimators should vanish: 

Let 9, be a vector collecting unique and nonconstant elements of the K x K sym- 
metric matrix xixi. (Construction of $i from xixi will be illustrated in Example 
2.7 below.) Then (2.7.1) implies 

This c, is a sample mean converging to zero. Under some conditions appropriate 
for a Central Limit Theorem to be applicable, we would expect f i  cn to converge 
in probability to a normal distribution with mean zero and some asymptotic vari- 
ance B, so for any consistent estimator 6 of B, 

where m is the dimension of c,. For a certain choice of E, this statistic can be 
computed as n R~ from the following auxiliary regression: 

regress e: on a constant and S i .  (2.7.4) 

13see, e.g., Judge et al. (1985, Section 11.3) or Greene (1997, Section 12.3) for other tests. 
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White (1980) rigorously developed this argument14 to prove 

Proposition 2.6 (White's Test for Conditional Heteroskedasticity): In addition 
to Assumptions 2.1 and 2.4, suppose that (a) {yi, xi} is i.i.d. with finite E(E:x~x;) 
(thus strengthening Assumptions 2.2 and 2.5), (b) ci is independent of  xi (thus 
strengthening Assumption 2.3 and conditional homoskedasticity), and (c) a certain 
condition holds on the moments of ci and xi. Then, 

where R2 is the R2 from the auxiliary regression (2.7.4), and rn is the dimension 
of  S i .  

Example 2.7 (regressors in white's n R~ test): Consider the Cobb-Douglas 
cost function of Section 1.7: 

Here, xj = (l,log(Qi), log(pil/pi3), log(pi2/pi3)), a four-dimensional vec- 
tor. There are 10 (= 4 512) unique elements in xixj: 

Si is a nine-dimensional vector excluding a constant from this list. So the rn 
in Proposition 2.6 is 9. 

If White's test accepts the null of conditional homoskedasticity, then the results of 
Section 2.6 apply, and statistical inference can be based on the t- and F-ratios from 
Chapter 1. Otherwise inference should be based on the robust t and Wald statistics 
of Proposition 2.3. 

Because the regressors Si in the auxiliary regression have many elements con- 
sisting of squares and cross-products of the elements of xi, the test should be 
consisteat (i.e., the power approaches unity as n + oo) against most heteroskedas- 

1 4 ~ h e  original statement of White's theorem is more general as it covers the case where {yi, x i )  is independent, 
hut not identically distributed (i.n.i.d.). 
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tic alternatives but may require a fairly large sample to have power close to unity. 
If the researcher knows that some of the elements of $; do not affect the condi- 
tional second moment, then they can be dropped from the auxiliary regression and 
the power might be increased in finite samples. The downside of it, of course, is 
that if such knowledge is false, the test will have no power against heteroskedastic 
alternatives that relate the conditional second moment to those elements that are 
excluded from the auxiliary regression. 

Q U E S T I O N  F O R  R E V I E W  

1. (Dimension of Si) Suppose xi = (1, qi ,  qf ,  pi)', a four-dimensional vector. 
How many nonconstant and unique elements are there in xixi? [Answer: 8.1 

2.8 Estimation with Parameterized Conditional Heteroskedasticity 
(optional) 

Even when the error is found to be conditionally heteroskedastic, the OLS esti- 
mator is still consistent and asymptotically normal, and valid statistical inference 
can be conducted with robust standard errors and robust Wald statistics. However, 
in the (somewhat unlikely) case of a priori knowledge of the functional form of 
the conditional second moment E(E? I xi), it should be possible to obtain sharper 
estimates with smaller asymptotic variance. Indeed, in finite-sample theory, the 
WLS (weighted least squares) can incorporate such knowledge for increased effi- 
ciency in the sense of smaller finite-sample variance. Does this finite-sample result 
cany over to large-sample theory? This section deals with the large-sample prop- 
erties of the WLS estimator. To simplify the discussion, throughout this section 
we strengthen Assumptions 2.2 and 2.5 by assuming that {yi, xi} is i.i.d. This is a 
natural assumption to make, because it is usually in cross-section contexts where 
WLS is invoked. 

The Functional Form 
The parametric functional form for the conditional second moment we consider is 

where z; is a function of xi. 
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Example 2.8 (parametric form of the conditional second moment): The 
functional form used in the WLS estimation in the empirical exercise to Chap- 
ter 1 was 

1 I E(&' I log(Qi1, l o g ( ~ i ) ' ~  log(fi), Pi 3 log(@)) pi3 = C X ~  + - ((a,. 

Since the elements of zi can be nonlinear functions of xi, this specification is more 
flexible than it might first look, but still it rules out some nonlinearities. For exam- 
ple, the functional form 

might be more attractive because its value is guaranteed to be positive. We con- 
sider the linear specification (2.8.1) only because estimating parameters in nonlin- 
ear specifications such as (2.8.2) requires the use of nonlinear least squares. 

WLS with Known Q 

To isolate the complication arising from the fact that the unknown parameter vector 
a must be estimated, we first examine the large-sample distribution of the WLS 
estimator with known a. If a is known, the conditional second moment can be 
calculated from data as zia, and WLS proceeds exactly as in Section 1.6: dividing 
both sides of the estimation equation yi = xi@ + by the square root of zia, to 
obtain 

where 

and then apply OLS. For later reference, write the resulting WLS estimator as 
n 

@ (V) . It is given by 
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with 

If Assumption 2.3 is strengthened by the condition that 

then E(Zi I Hi) = 0. To see this, note first that, because zi is a function of xi, 

Second, because Xi is a function of xi, there is no more information in Xi than in 
xi. So by the Law of Iterated Expectations we have 

Therefore, provided that E(HiHi) is nonsingular, Assumptions 2.1-2.5 are satisfied 
for equation (2.8.3). Furthermore, by construction, the error Zi is conditionally 
homoskedastic: E(Z: ( Xi) = 1. SO Proposition 2.5 applies with u2 = 1: the WLS 
estimator is consistent and asymptotically normal, and the asymptotic variance is 

~ v a r ( p ( v ) )  = E(H~X:)-' (since the error variance is 1) 

= plim(l  2 Xi%:) -' (by ergodic sfationarity) 
i=1 

" 1 -1 
= pl im(i  c F ~ i ~ i )  (since i i  = xi /&Z) 

i=l 

So (!X'V-lX)-l is a consistent estimator of AVX(~(V)) .  

Regression of e: on q Provides a Consistent Estimate of a 

If a is unknown, it can be estimated by running a separate regression. (2.8.1) says 
that z:a is a regression of E:. If we define qi = E? - E(E? I xi), then (2.8.1) can be 
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written as a regression equation: 

By construction, E(qi 1 xi) = 0, which, together with the fact that zi is a function 
of xi, implies that the regressors zi are orthogonal to the error term qi. Hence, 
provided that E(zizi) is nonsingular, Proposition 2.1 is applicable to this auxiliary 
regression (2.8.8): the OLS estimator of ol is consistent and asymptotically normal. 

Of course, this we cannot do because we don't observe the error term. How- 
ever, since the OLS estimator b for the original regression yi = xiB + si is con- 
sistent despite the presence of conditional heteroskedasticity, the OLS residual ei 
provides a consistent estimate of E ~ .  It is left to you as an analytical exercise to 
show that, when .si is replaced by ei in the regression (2.8.8), the OLS estimator, 
call it 2, is consistent for ol. 

WLS with Estimated a 
The WLS estimation of the original equation yi = x:B + E~ with estimated ol is 
A h  

B(V), where v is the n x n diagonal matrix whose i-th diagonal is z?. Under 
suitable additional conditions (see, e.g., Amemiya (1977) for an explicit statement 
of such conditions), it can be shown that 

A h  

(a) f i  (P(V) - B) and f i  (B(V) - B) are asymptotically equivalent in that the 
difference converges to zero in probability as n + oo. Therefore, by Lemma 

A h  

2.4(a), the asymptotic distribution of f i (B(V)  - B) is the same as that of 
A h  

f i  (B(v) - 8) .  SO Avar(B(V)) equals ~ v a r ( B ( ~ ) ) ,  which in turn is given by 
(2.8.7); 

1 1- (b) plim ;X VP1X = plim ~x'v-'x. 
A h  

So ( ! x ' ~ - ~ x ) - ~  is consistent for Avar(B(V)). 

All this may sound complicated, but the operational implication for the WLS 
estimation of the equation yi = xi@ + ~i is very clear: 

Step 1: Estimate the equation yi = x:B + ci by OLS and compute the OLS resid- 
uals ei. 

Step 2: Regress e? on zi, to obtain the OLS coefficient estimate &. 
Step 3: Re-estimate the equation yi = xi@ + E~ by WLS, using 1/m as the 

weight for observation i.  

1 1- Since the correct estimate of the asymptotic variance, (;X V-lX)-l in (b), is (n 
times) the estimated variance matrix routinely printed out by standard regression 
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packages for the Step 3 regression, calculating appropriate test statistics is quite 
straightforward: the standard t -  and F-ratios from Step 3 regression can be used to 
do statistical inference. 

OLS versus WLS 
Thus we have two consistent and asymptotically normal estimators, the OLS and 
WLS estimators. We say that a consistently and asymptotically normal estimator is 
asymptotically more efficient than another consistent and asymptotically normal 
estimator of the same parameter if the asymptotic variance of the former is no 
larger than that of the latter. It is left to you as an analytical exercise to show that 
the WLS estimator is asymptotically more efficient than the OLS estimator. 

The superiority of WLS over OLS, however, rests on the premise that the sam- 
ple size is sufficiently large and the functional form of the conditional second 
moment is correctly specified. If the functional form is misspecified, the WLS 
estimator would still be consistent, but its asymptotic variance may or may not 
be smaller than Avar(b). In finite samples, even if the functional form is cor- 
rectly specified, the large-sample approximation will probably work less well for 
the WLS estimator than for OLS because of the estimation of extra parameters (a) 
involved in the WLS procedure. 

Q U E S T I O N S  FOR R E V I E W  

1. Prove: "E(qi I xi) = 0, zi is a function of xi" j "E(zi . qi) = 0." Hint: Law of 

Total Expectations. 

2. Is the error conditionally homoskedastic in the auxiliary regression (2.8.8)? If 
so, does it matter for the asymptotic distribution of the WLS estimator? 

2.9 Least Squares Projection 

What if the assumptions justifying the large-sample properties of the OLS estima- 
tor (except for ergodic stationarity) are not satisfied but we nevertheless go ahead 
and apply OLS to the sample? What is it that we estimate? The answer is in this 
section. OLS provides an estimate of the best way linearly to combine the explana- 
tory variables to predict the dependent variable. The linear combination is called 
the least squares projection. 

Keen
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Optimally Predicting the Value of the Dependent Variable 
We have been concerned about estimating unknown parameters from a sample. 
Let us temporarily suspend the role of econometrician and put ourselves in the 
following situation. There is a random scalar y and a random vector x. We know 
the joint distribution of (y, x) and the value of x. On the basis of this knowledge 
we wish to predict y. So a predictor is a function f (x) of x with the functional 
form f (.) determined by the joint distribution of (y, x). Naturally, we choose the 
function f (.) so as to minimize some index that is a function of the forecast error 
y - f (x). We take the loss function to be the mean squared error E[(y - f (x) )~]  
because it seems as reasonable a loss function as any other and, more importantly, 
because it produces the following convenient result: 

Proposition 2.7: E(y I x) is the best-predictor of y in that it minimizes the mean 
squared error. 

We have seen in Chapter 1 that the add-and-subtract strategy is effective in show- 
ing that the candidate solution minimizes a quadratic function. Let us apply the 
strategy to the squared error here. Let f (x) be any forecast. Add E(y I x) to the 
forecast error y - f (x) and then subtract it to obtain the decomposition 

Y - f (x) = (Y - E(Y 1 x)) + (E(y I x) - f (x)). (2.9.1) 

So the squared forecast error is 

(Y - f ( x ) ) ~  = (Y - E(Y I x ) ) ~  + 2(y - E(y I x))(E(y I x) - f (x)) 

+ (E(y I x) - f ( m 2 .  (2.9.2) 

Take the expectation of both sides to obtain 

mean squared error E ~ [ ( y  - f (x))~]  

= E[(Y - E(Y I x)12] + ~ E [ ( Y  - E(Y I x))(E(y I x) - f (x))] 

+ E[(E(Y I x) - f (x)12]. (2.9.3) 

It is a straightforward application of the Law of Total Expectations to show that the 
middle term, which is the covariance between the optimal forecast error and the 
difference in forecasts, is zero (a review question). Therefore, 

mean squared error = E[(y - E(Y I x)12] + E[(E(Y I x) - f (x)12] 

> E[(Y - E(Y 1 x)12], (2.9.4) 
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which shows that the mean squared error is bounded from below by E [ ( ~  - E(y I 
x))~] ,  and this lower bound is achieved by the conditional expectation. 

Best Linear Predictor 
It requires the knowledge of the joint distribution of (y, x) to calculate E(y I x), 
which may be highly nonlinear. We now restrict the predictor to being a linear 
function of x and ask: what is the best (in the sense of minimizing the mean squared 
error) linear predictor of y based on x? For this purpose, consider /3* that satisfies 
the orthogonality condition 

E[x . (y - xf/3*)] = 0 or E(xxf)/3* = E(x . y). (2.9.5) 

The idea is to choose /3* so that the forecast error y - xf/3* is orthogonal to x. If 
E(xxf) is nonsingular, the orthogonality condition can be solved for /3*: 

/3* = [E(xxf)]-' E(x . y). (2.9.6) 

The least squares (or linear) projection of y on x, denoted E*(y I x), is defined 
as xf/3*, where /3* satisfies (2.9.5) and is called the least squares projection 
coefficients. 

Proposition 2.8: The least squares projection ̂ E * (y I x) is the best linear predictor 
of y in that it minimizes the mean squared errof. 

The add-and-subtract strategy also works here. 

PROOF. For any linear predictor xfp, 

mean squared error = E [ ( ~  - ~ ' p ) ~ ]  

= E { [ ( ~  - xf/3*) + xf (/3* - p)I2} (by the add-and-subtract strategy) 

= ~ [ ( y  - ~ ' / 3 * ) ~ ]  + 2(/3* - 3)' E[X - (y - xf/3*)] + E[(xf(/3* - p))2] 

= E[(Y - X ~ B * ) ~ ]  + E[(X' (~  - B*))~]  

(by the orthogonality condition (2.9.5)) 

r E[(Y - x'B*)~]. 

In contrast to the best predictor, which is the conditional expectation, the best linear 
predictor requires only the knowledge of the second moments of the joint distribu- 
tion of (y, x) to calculate (see (2.9.6)). 
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If one of the regressors x is a constant, the least squares projection coefficients 
can be written in terms of variances and covariances. Let % be the vector of non- 
constant regressors so that 

An analytical exercise to this chapter asks you to prove that 

where 

y = var(x)-' Cov(ji, y), p = E(y) - ylE( i ) .  

This formula is the population analogue of the "deviations-from-the-mean regres- 
sion" formula of Chapter 1 (Analytical Exercise 3). 

OLS Consistently Estimates the Projection Coefficients 
Now let us put the econometrician's hat back on and consider estimating B*.  Sup- 
pose we have a sample of size n drawn from an ergodic stationary stochastic pro- 
cess {yi, xi) with the joint distribution (yi, xi) (which does not depend on i because 
of stationarity) identical to that of (y, x) above. So, for example, E(xixj) = E(xxl). 
By the Ergodic Theorem the second moments in (2.9.6) can be consistently esti- 
mated by the corresponding sample second moments. Thus a consistent estimator 
of the projection coefficients B* is 

which is none other than the OLS estimator b. That is, under Assumption 2.2 
(ergodic stationarity) and Assumption 2.4 guaranteeing the nonsingularity of 
E(xxl), the OLS estimator is always consistent for the projection coefficient vector, 
the B* that satisfies the orthogonality condition (2.9.5). 

Q L l E S T l O N S  F O R  R E V I E W  

1. (Unforecastability of forecast error) For the minimum mean square error fore- 
cast E(y I x), the forecast error is orthogonal to any function $(x) of x. That 
is, E[q$(x)] = 0 where q = y - E(y ( x). Prove this. Hint: The Law of Total 

Expectations. Show that the middle term on the RHS of (2.9.3) is zero by 
setting $(x) = E(y 1 x) - f (x). 
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2. (Forecasting white noise) Suppose { E ~ }  is white noise. What is E * ( E ~  I &;-I, 
-* 

~i -2 ,  . . . , ~ i - ~ ) ?  What is E (E; 1 1, ~ i - 1 ,  E,-2, . . . , E ; - ~ ) ?  IS it true that E ( E ~  ( 

~ i - 1 ,  E;-2, . . . , Ei-m) = O? Hint: Is it zero for the process of Example 2.4? 

3. (Conditional expectations that are linear) Suppose E(y ( 5) = p + y'k. Show: 
A 

E * ( ~  1 1: 5) = E(y 1%). 

4. (Partitioned projection) Consider the model yi = xi/3 + zi6 + ~i with E(xi . 
E;) = 0, E(zi . E ~ )  # 0, and E(zixi) = 0. Thus, zi is not predetermined (i.e., not 
orthogonal to the error term), but it is u~elat€!d to the predetermined regressor 
xi in that the cross moments are zero. 

(a) Show that the least squares projection coefficient of xi in the projection of 
yi on xi and zi is /3. Hint: Calculate E * ( E ~  ( xi, zi). 

(b) What is the least squares projection coefficient of xi in the least squares 
projection of yi on xi? Hint: Treat zi6 + E~ as the error term. 

(c) Which projection would you use for estimating /3? Hint: You want the error 
variance to be smaller. 

2.10 Testing for Serial Correlation 

As remarked in Section 2.3 (see (2.3.3)), when the regressors include a constant 
(true in virtually all known applications), Assumption 2.5 implies that the error 
term is a scalar martingale difference sequence (m.d.s.), so if the error is found to 
be serially correlated, that is an indication of a failure of Assumption 2.5. Serial 
correlation has traditionally been an important subject in econometrics, and there 
are available a number of tests for serial correlation (i.e., tests of the null of no 
serial correlation in the error term). Some of them, however, require that the 
regressors be strictly exogenous. The test to be presented in this section does not 
require strict exogeneity. Because the issue of serial correlation arises only in time- 
series models, we use the subscript "t" instead of "i" in this section (and the next). 
Throughout this section we assume that the regressors include a constant. 

It would be nice to have those tests extended to cover serial correlation in g, 
(= x, - E ~ ) ,  but no such tests have been proposed to gain acceptance. This is a gap 
in the literature, but not a serious one, because nowadays researchers know how 
to live with serial correlation in g. That is, as will be shown in Chapter 6, there 
is available a method to do inference in the presence of serial correlation in g,. 
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Earlier in this chapter we learned how to calculate standard errors that are robust 
to conditional heteroskedasticity. In Chapter 6, those standard errors will be made 
robust to serial correlation as well. 

Box-Pierce and Ljung-Box 
Before turning to the tests for serial correlation in the error term, we temporarily 
step outside the regression framework and consider serial correlation in a univari- 
ate time series. Suppose we have a sample of size n ,  {z l  , . . . , zn 1, drawn from a 
scalar covariance-stationary process. In Section 2.2 we defined the (population) 
j-th order autocovariance yj. The sample j-th order autocovariance is 

where 

(If the population mean E(z,) is known, it can replace the sample mean in; doing 
so would improve the small sample property.) Here, even though only n  - j terms 
are in the sum, the denominator is n  rather than n  - j .  Whether the sum of n  - j 
terms is divided by n  or by n  - j does not affect large-sample results. For moderate 
sample sizes, however, the numerical difference can be substantial, and you should 
always be explicit about which is used as the denominator. The sample j - th  order 
autocorrelation coefficient, b,, is defined as 

If { z r ]  is ergodic stationary, then it is easy to show (see a review question) that 
i;. is consistent for yi ( j  = 0, 1,2,  . . . ). Hence, by Lemma 2.3(a), bj is consistent 
for pi ( j  = 1,2,  . . . ). In particular, if { z f  ] is serially uncorrelated, then all the 
sample autocorrelation coefficients converge to 0 in probability. To test for serial 
correlation, however, we need to know the asymptotic distribution of fib,. It is 
provided by 

Proposition 2.9 (special case of Theorem 6.7 of Hall and Heyde (1980)): Sup- 
pose { z?]  can be written as p + +?, where +, is a stationary martingale difference 
sequence with "own" conditional homoskedasticity: 

(own conditional homoskedasticity) E(+: I E ? - ~ ,  E ? - ~ ,  . . . ) = a 2 ,  a 2  > 0, 
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Let the sample autocorrelation 6, be defined as in (2.10.1) and (2.10.2). Then 

where p = (PI, f2, . . . , Pp)' and $ = (61, 62, . . . , jp)'. 

Here, the process E~ is not required to be ergodic. Proving this under the additional 
condition of ergodicity is left as an analytical exercise. Thus, asymptotically, (fi 
times) the autocorrelations are i.i.d. and the distribution is N(0, 1). The process 
{ E ~ }  assumed here is more general than independent white noise processes, but the 
conditional second moment has to be constant, so this result does not cover ARCH 
processes, for example. 

One way to test for serial correlation in the series is to check whether the first- 
order autocorrelation, pl, is 0. Proposition 2.9 implies that 

So the t-statistic formed as the ratio of b1 to a "standard error" of 1 / f i  is asymp- 
totically standard normal. 

We can also test whether a group of autocorrelations are simultaneously zero. 
Let $ = (61, . . . , bP)' be the p-dimensional vector collecting the first p sample 
autocorrelations. Since the elements of f i j  are asymptotically independent and 
individually distributed as standard normal, their squared sum, called the Box- 
Pierce Q because it was first considered by Box and Pierce (1970), is asymptoti- 
cally chi-squared: 

Box-Pierce Q statistic r n x b; = x(fib,)' 7 X2(p). (2.10.4) 
j=1 j=1 

It is easy to show (see a review question) that the following modification, called 
the Ljung-Box Q, is asymptotically equivalent in that its difference from the Box- 
Pierce Q vanishes in large samples. So by Lemma 2.4(a) it, too, is asymptotically 
chi-squared: 

p bT P n + 2  
Ljung-Box Q statistic -- n . (n + 2) x 4 = x - ( ~ 6 ~ ) ~  7 X2(p). 

j=1 - J j=1 n - J  
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This modification often provides a better approximation to the chi-square distribu- 
tion for moderate sample sizes (you will be asked to verify this in a Monte Carlo I 
exercise). For either statistic, there is no clear guide to the choice of p. If p is too 
small, there is a danger of missing the existence of higher-order autocorrelations, 
but if p is too large relative to the sample size, its finite-sample distribution is likely 
to deteriorate, diverging greatly from the chi-square distribution. 

Sample Autocorrelations Calculated from Residuals 

Now go back to the regression model described by Assumptions 2.1-2.5. If the 
error term E, were observable, we would calculate the sample autocorrelations as 

where 

(There is no need to subtract the sample mean because the population mean is 
zero, an implication of the inclusion of a constant in the regressors.) Since {E,E,-,} 
is ergodic stationary by Assumption 2.2, f j  converges in probability to the corre- 
sponding population mean, E(E, E,- ,) , for all j , and cj is consistent for the popula- 
tion j-th autocorrelation coefficient of E,. 

Next consider the more realistic case where we do not observe the error term. 
We can replace E, in the above formula by the OLS estimate e, and calculate the 
sample autocorrelations as 

where 

(Because the regressors include a constant, the normal equation corresponding to 
the constant ensures that the sample mean of e, is zero. So there is no need to 
subtract the sample mean.) Is it all right to use ,3, (calculated from the residu- 
als) instead of 6, and the residual-based Q statistics derived from I;,} for testing 
for serial correlation? The answer is yes, but only if the regressors are strictly 
exogenous. 
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Recall that the expression linking the residual e, to the true error term r, was 
given in (2.3.9). Using this, the difference between Yj and 5 can be written as 

If E(x, .E , -~ ) ,  E(xtPj err), and E(x,x;-,) are all finite, then the second and the third 
terms vanish (converges to zero in probability) because b. - /3 +, 0. Therefore, 

and thus the difference between pj and b,, too, vanishes in large samples. 
However, fi times the difference does not. &pj and f i b j  can be written as 

We have just seen that, for both f i p j  and fib, ,  the denominator +, a2. So 
the difference between ,hipj and f i b j  will vanish if the difference between f i Y j  
and fi5 does (if you are not convinced, see Review Question 3 below). Now, by 
multiplying both sides of (2.10.10) by fi, we obtain 

Because fi (b - p )  converges to a random variable (whose distribution is normal), 
the third term on the RHS vanishes by Lemma 2.4(b). Regarding the second term, 
we have 
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If the regressors are strictly exogenous in the sense that E(x, . E,) = 0 for all t ,  s, 

then 

and by Lemma 2.4(b) the second term converges to zero in probability. So the 
difference between f i F j  and f i c j  vanishes, which means that the Q statistic cal- 
culated from the regression residuals { e , } ,  too, is asymptotically chi-squared, and 
we can use this residual-based Q to test for serial correlation. If, on the other hand, 
the regressors are not strictly exogenous, then there is no guarantee that (2.10.14) 
holds. Consequently, the residual-based Q statistic may not be asymptotically chi- 
squared. 

Testing with Predetermined, but Not Strictly Exogenous, Regressors 
Therefore, when the regressors are not strictly exogenous, we need to modify the 
Q statistic to restore its asymptotic distribution. For this purpose, consider two 
restrictions: 

(stronger form of predeterminedness) E(Er I €,-I, 6,-2, . . . , x1, x1 - 1 , . . . ) = 0, 
(2.10.15) 

(stronger form of conditional homoskedasticity) 
2 2 E(E, I E ~ - ~ , & ~ - ~  ,..., xt,x1-l , . . .  ) = o  > 0 .  (2.10.16) 

The first condition is just reproducing (2.3.1) (with "t" now being used as the sub- 
script). As was shown in Section 2.3, this is stronger than Assumption 2.3 and 
implies that g, (= x, . 6,) is an m.d.s. Condition (2.10.16), with the conditioning 
set including x,, is obviously stronger than Assumption 2.7 (conditional homoske- 
dasticity). It also is stronger than the own conditional homoskedasticity assumption 
in Proposition 2.9 because the conditioning set includes current and past x as well 
as past E .  The next result shows that under these additional conditions there is an 
appropriate modification of the Q statistic. 

Proposition 2.10 (testing for serial correlation with predetermined regressors): 
Suppose that Assumptions 2.1, 2.2, 2.4, (2.10.15), and (2.10.16) are satisfied. Let 
the sample autocorrelation of the OLSresiduals, j j ,  be defined as in (2.10.8). Then, 
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f i p +  N ( O , a 4 - ( 1 , - O ) ) a n d f i j +  N ( O , I , - O ) ,  (2.10.17) 
d d 

where p = ( P I ,  li,, . . . , P,)', j = (61, c2, . . . , fi,)', and @ j k  (= ( j ,  k )  element of 
the p x p matrix O )  is given by 

The proof, though not very difficult, is relegated to Appendix 2.B. By the Ergodic 
Theorem, matrix O is consistently estimated by its sample counterpart: 

A 

O - ( 4 , k ) ,  4 , k  - ii.;s;:&/s2 ( j ,  k = 1 , 2 , .  . . , p) ,  (2.10.19) 

where 

It follows from this and Proposition 2.10 that 

modified Box-Pierce Q = n . j'(1, - g ) - l j  7 X 2 ( p ) .  (2.10.20) 

As long as the regressors are predetermined and the error is conditionally homo- 
skedastic in the sense of (2.10.15) and (2.10.16), this modified Q statistic can be 
used even when the regressors are not strictly exogenous. 

An Auxiliary Regression-Based Test 
Although calculating this modified Q statistic is straightforward with matrix-based 
software, it is useful to find an asymptotically equivalent statistic that can be calcu- 
lated from regression packages. For this'purpose, consider the following auxiliary 
regression: 

regress et on x,, et- 1, et-2, . . . , et- ,  . (2.10.21) 

To run this auxiliary regression for t = 1 , 2 ,  . . . , n ,  we need data on (eo, e - ~ ,  . . . , 
e - p + l ) .  It does not matter asynlptotically which particular numbers to assign to 
them, but it seems sensible to set them equal to 0 ,  their expected value.15 From this 

auxiliary regression, we can calculate the F statistic for the hypothesis that the p 
coefficients of e t - l ,  e tP2 ,  . . . , e,-,  are all zero. Given Proposition 2.5(c), it is only 
natural to wonder whether p . F is asymptotically X 2 ( p ) .  This conjecture is indeed 

15~nother asymptotically equivalent choice is to run the auxiliary regression for t = p + 1, p + 2, . . . , n 
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true: under the hypothesis of Proposition 2.10, the modified Q statistic (2.10.20) is 
asymptotically equivalent to p . F (i.e., the difference between the two converges 
to zero in probability as n + GO), so p . F ,  too, is asymptotically chi-squared 
(showing this is an analytical exercise). 

This p . F statistic, in turn, is asymptotically equivalent to n R2 from the aux- 
iliary regression. This can be shown as follows. Recall the algebraic result from 
Chapter 1 that the F-ratio can be calculated from the difference in the sum of 
squared residuals between the unrestricted and restricted regressions. The unre- 
stricted regression in the present context is (2.10.21) while the restricted regres- 
sion is 

regress e, on x,. (2.10.22) 

Therefore, if SSRu and SS RR are SSRs from (2.10.2 1) and (2.10.22), respectively, 
we have 

where #kt is the number of variables in x,. However, since e, is the residual from 
the original regression (a regression of y, on x,), the regressors xt in (2.10.22) have 
no explanatory power. So SSRR = e'e where e is the n-dimensional vector of 
residuals from the original regression, and (2.10.23) is numerically identical to 

where R:, is the uncentered R2 for the auxiliary regression (2. 10.21).16 But since 
the sample mean of e, is by construction zero (this is because x, includes a con- 
stant), R:, is numerically identical to the R2 for the auxiliary regression. Thus, we 
have proved the algebraic result that 

where R2 is equal to the R2 for the auxiliary regression (2.10.21). Solving this 
equation for R2 and multiplying both sides by n, we obtain 

16~ecall  from (1.2.16) that the uncentered R: for a regression of y on x is defined as 

2 - Y'Y - e'e 
R,, = -. 

Y'Y 

In the present context, the y'y in this formula is e'e while the e'e in the formula is SSRU. 
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Since * +, 0 as n + oo (an implication of Lemma 2.4(b)), this equa- 
tion shows that p . F - n R2 +, 0. Therefore, n R2 from the auxiliary regression 
(2.10.21) is asymptotically X2(p). The test based on n~~ is called the Breusch- 
Godfrey test for serial correlation. When p = 1, the test statistic is asymptoti- 
cally equivalent to the square of what is known as Durbin's h statistic.17 

Q U E S T I O N S  F O R  R E V I E W  

1. (Consistency of sample autocovariances) Show: if {zf} is ergodic stationary, 
then the sample autocovariance P, given in (2.10.1) is consistent for yj, the 
population autocovariance. Hint: y, = E(z,z,- J )  -E(zt) E(zf- J). Rewrite f, as 

2. (Asymptotic equivalence of two (2's) Prove that the difference between the 
Box-Pierce Q and the Ljung-Box Q converges to 0 in probability as n + oo 
(so their asymptotic distributions are the same). Hint: Let 

Find a p-dimensional vector a,, such that the difference between two Q's is 

aAx,. Show that a, + 0. The asymptotic property to use is Lemma 2.4(b). 

3. Consider f ib j  and f i b j  in (2.10.1 1). We have shown that );o +, a2 and 
Yo +, a 2 .  By Proposition 2.9, f i Y j  +d N(0, a4 ) .  Taking these for granted, 
show that f i b j  -.Jtffij +, 0 if f i p j  --A?, +, 0. Hint: If &pj -fiP, +, 
0, then by Lemma 2.4(a), ,.hi?, + d  N(0, a4 ) .  

Multiply both sides by fi and apply Lemma 2.4(b). 

17see Breusch (1978) and Godfrey (1978). The Breusch-Godfrey test was originally derived as a Lagrange 
Multiplier test for the case where the error is normally distributed and xf consists of fixed regressors and the 
lagged dependent variable. The discussion in the text shows that the test is applicable to the more general case 
considered in Proposition 2.10. 
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2.1 1 Application: Rational Expectations Econometrics 

In dynamic economic models and other contexts, expectations about the future 
naturally play an important role. Rational expectations econometrics concerns 
estimating equations involving expectations. Expectations are usually not observ- 
able, but, if we assume that economic agents form expectations rationally, we can 
overcome the problem of unobservable expectations using the techniques of this 
chapter. The application we consider is Fama's efficient market hypothesis. In 
his own words, "An efficient capital market is a market that is efficient in processing 
information. . . . In an efficient market, prices 'fully reflect' available information" 
(Fama, 1976, p. 133). The words "fully reflect" can be formalized precisely. We 
will do so for a particular capital market and test its implication. 

The Efficient Market Hypotheses 
The capital market studied in Fama (1975) is the market for U.S. Treasury bills. In 
this section we focus on the one-month Treasury bill rates observed on a monthly 
basis. (Later in the book we will also consider Treasury bills of different maturi- 
ties.) To formalize market efficiency for the bills market, we need to introduce a 
few concepts from macroeconomics and finance. Since in this section we deal 
exclusively with time-series data, we use "t" rather than "i" for the subscript. 
Define 

v, = price of a one-month Treasury bill at the beginning of month t ,  

R, = one-month nominal interest rate over month t ,  i.e., nominal return 
on the bill over the month = (1 - v,)/v,,  so v, = 1/(1 + R,), 

P, - value of the Consumer Price Index (CPI), which is our measure of 
the price level at the beginning of month t ,  

nt+l = inflation rate over month t (i.e., from the beginning of month t to 
the beginning of month t + 1 )  = (Pt+l - Pt ) /P t ,  

,n,+l - expected inflation rate over month t ,  expectation formed at the 
beginning of month t ,  

qt+l = inflation forecast error = nt+l - ,n,+l, 

rt+l ex-post real interest rate over month t = 
l/Pt+l - vtlPt 

1 + Rt 
vt l pt 

- - - 1 = R, - nt+l, 
1 + nt+1 

,rt+l = ex-ante real interest rate = + Rt - 1 ~5 Rt - tnt+l 
1 + tnt+l 
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Month t 
A ,-- -. 

t t + l  

Rt R,1 

pt pt+1 

Figure 2.2: What's Observed When 

Timing - the value of which variable is observed at what point in time - is very 
important in rational expectations econometrics. Our rule for dating variables 
(which is different from Fama's) is that the variable has subscript t if its value 
is first observed at the beginning of period (month) t.18 For example, because n,+l, 
the inflation rate over month t ,  depends on P,+], its subscript is t + 1 rather than t. 
For the same reason, r,+l, the ex-post real interest rate over month t has subscript 
t + 1. In contrast, the nominal interest rate Rt over month t has subscript t ,  not 
t + 1, because it is determined by the price of the Treasury bill at the beginning of 
month t ,  v,. Figure 2.2 shows the value of which variable is observed at what point 
in time. 

We take a period to be a month, only because our data are monthly. Note that 
the maturity of the security (one month) coincides with the sampling interval (a 
month). If the sampling interval is finer than the maturity, which is the case if, 
for example, we have monthly data on the three-month Treasury bill rate, then 
maturities overlap and we need a more sophisticated technique to be introduced in 
Chapter 6. 

The efficient market hypothesis is a joint hypothesis combining: 

I 
Rational Expectations. Inflationary expectations are rational: ,n,+l = E(X,+~ I 

I I,), where I, is information available at the beginning of month t and includes 
{R,, R,-l, . . . ,  rr,,nt-1, ...]. Also, I, 1 2 I,-z . . . .  That is, agents 
participating in the market do not forget. 

Constant Real Rates. The ex-ante real interest rate is constant: ,r,+l = r 

- 
181n Fama's (1975) notation, our nt+l is - A t ,  rt+l is and It is &. 
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Testable Implications 

We derive two testable implications of the efficient market hypothesis by utiliz- 

ing the following key observations about the inflation forecast error under rational 

expectations. 

(a) E(V,+~  I I,) = 0, that is, the inflation forecast error is a martingale difference 
sequence with respect to the information set. 

(b) {q,, qr-1, . . . } as well as {R,, RtP1, . . . , n,, n,_I, . . . } are included in I, (known 
at the beginning of month t). That is, agents remember all past mistakes. 

(a) makes intuitive sense; if people use all available information to forecast the 
inflation rate, the forecast error, which is known only after the fact, will not have 

any systematic relation to what people knew when they formed expectations. It can 

be proved easily: 

E(qr+~ I It) 

= E(nr+1 - tnt+l I It) (since qt+l = ~ I + I  - tnt+l) 

= E ( ~ t + l  I 11) - E(tnt+1 I 11) 

= E ( ~ t + l  I It) - E[E(nt+1 I It) I 111 

(since rnt+l = E(T,+~ I I,) by rational expectations) 

= E ( ~ t + l  I It) - E ( ~ t + l  I It) = 0. (2.11.1) 

(b) follows because agents remember past inflation forecasts. Since ,- ,- lnt-j = 

E(n,-, I is a function of I,-j-l, it is included in I,-,-l (i.e., known at the 
beginning of month t - j - 1) and hence in I, (known at the beginning of month 

t) for j 1 0. Thus 71,-, = n,-, - t-j-ln,-, is included in I, for all j 1 0. 
Observations (a) and (b), together with the Law of Total Expectations, imply 

So, it is a zero mean and serially uncorrelated process. 

These are not testable because expectations are unobservable, but, when com- 
bined with the constant-real-rate assumption, they imply two testable implications 

about the inflation rate and the interest rate which are observable. 

Implication 1: The ex-post real interest rate has a constant mean and is serially 

uncorrelated. 
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This follows because 

rt+1 = Rt - nt+1 

= (R, - tnt+l) - b , + l  - tnt+1) 

= ,r,+l - qr+l (by definition) 

- - r - + (since ,r,+l = r by assumption). (2.1 1.2) 

By (c), {r,) has mean r and is serially uncorrelated. 

Implication 2: E(nt+ I I,) = -r + R, 

That is, the best (in the sense of minimum mean squared error) inflation forecast on 

the basis of all the available information. is the nominal interest rate; the nominal 

rate R,, which is determined by the price of a Treasury bill v,, summarizes all the 
currently available information relevant for predicting future inflation. This is the 

formalization of asset prices "fully reflecting" available information. This, too, can 
be derived easily. Solve (2.1 1.2) for n,+l as n,+l = -r + R, + qr+l. So 

E b t + l  IIr) 

= E(-r + R, + V t + l  I It) 

= -r + R, + E(qt+, I I,) (since r is a constant and Rt is included in I,) 

= -r  + R, (by (a)). (2.1 1.3) 

In the rest of this section, we test these two implications of market efficiency. 

Testing for Serial Correlation 
Consider first the implication that the ex-post real rate has no serial correlation, 

which Fama tests using the result from Proposition 2.9. We use the monthly data 

set used by Mishkin (1992) on the one-month T-bill rate and the monthly CPI infla- 
tion rate, stated in percent at annual rates.19 Figure 2.3 plots the data. The ex-post 

real interest rate, defined as the difference between the T-bill rate and the CPI infla- 
tion rate, is plotted in Figure 2.4. To duplicate Fama's results, we take the sample 

period to be the same as in Fama (1 975), which is January 1953 through July 197 I. 

The sample size is thus 223. The time-series properties of the real interest rate are 

summarized in Table 2.1. In calculating the sample autocorrelations bj = f j  Ifo, 

I 9 ~ h e  data set is described in some detail in the empirical exercise. Following Fama, the inflation measure 
used in the text is calculated from the raw CPI numbers. The inflation measure used by Mishkin (1992) treats the 
housing component of the CPI consistently. See question (k) of Empirical Exercise 1. 
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Figure 2.3: Inflation and lnterest Rates 
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Figure 2.4: Real lnterest Rates 



Table 2.1: Real Interest Rates, January 1953-July 1971 

mean = 0.82%, standard deviation = 2.847%, sample size = 223 

bj -0.101 0.172 -0.019 -0.004 -0.064 -0.021 -0.092 0.095 0.094 0.019 0.004 0.207 
std. error 0.067 0.067 0.067 0.067 0.067 0.067 0.067 0.067 0.067 0.067 0.067 0.067 

Ljung-Box Q 2.3 9.1 9.1 9.1 10.1 10.2 12.1 14.2 16.3 16.4 16.4 26.5 
p-value(%) 12.8% 1.1% 2.8% 5.8% 7.3% 11.7% 9.6% 7.6% 6.1% 8.9% 12.8% 0.9% 
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we use the formula (2.10.1) for Pj where the denominator is the sample size rather 

than n - j .  Similarly, the formula for the standard error of ij is I / , /% rather than 

1/4= (SO the standard error does not depend on j) .  The Ljung-Box Q statistic 

in the table for, say, j = 2 is (2.10.5) with p = 2. The results in the table show 
that none of the autocorrelations are highly significant individually or as a group, 
in accordance with the first implication of the efficient market hypothesis. 

Is the Nominal Interest Rate the Optimal Predictor? 

We can test Implication 2 by estimating an appropriate regression and carrying 
out the t-test of Proposition 2.3. The remarkable fact about the efficient market 

hypothesis is that, despite its simplicity, it is specific enough to imply the important 

parts of the assumptions justifying the t - t e~ t .~ '  To see this, let y, = n , + ~ ,  x, - 
(1, R,)', E, = q t + ~  (the inflation forecast error), and rewrite (2.1 1.2) as 

so Assumption 2.1 is obviously satisfied with 

The other assumptions of the model are verified as follows. 

Assumption 2.3 (predetermined regressors). The g, (= x, . E,) in the present 

context is (qt+1, Rtqt+])'. What we need to show is that E(q,+,) = 0 and 

E(R, qt+1) = 0. The former is implied by (a) and the Law of Total Expectations: 

The latter holds because 

E(Rt %+l) 

= E[E(R, qt+] ( I,)] (by the Law of Total Expectations) 

= E[R, E(vr+] I I,)] (by linearity of conditional expectations and R, E I,) 

= 0 (by (a)). (2.1 1.7) 

Assumption 2.5. By (b), I, includes (E,- I (= q,), E,-2, . . . ) as well as (x,, 
x tPl ,  . . . ). (a) then implies (2.3.1), which is a sufficient condition for {g,} to be 

m.d.s. 

2 0 ~ h e  technical part-that the fourth-moment matrix E(gtgi) exists and is finite and that the regressors have 
finite fourth moments - is not implied by the efficient market hypothesis and needs to be assumed. 
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Assumption 2.4. E(X,X;) here is 

Its determinant is E(R:) - [E(R,) ]~  = Var(R,), which must be positive; if the 
variance were zero, we would not observe the interest rate Rf fluctuating. 

Assumption 2.2 (ergodic stationarify). It requires R,} to be ergodic sta- 
tionary. The plot in Figure 2.3 shows a stretch of upward movements, especially 
for the nominal interest rate, although the stretch is followed by a reversion to a 
lower level. Testing stationarity of the series will be covered in Example 9.2 of 
Chapter 9. For now, despite this rather casual evidence to the contrary, we pro- 
ceed under the assumption of stationarity (but the implication of having trending 
series will be touched upon in the final subsection). For ergodicity, we just have 
to assume it. 

What we have shown is that, under the efficient market hypothesis, {y,, x,} (where 

y, = and x, = (1, R,)') belongs to the set of DGPs satisfying Assumptions 
2.1-2.5. 

Having verified the required assumptions, we now proceed to estimation. Using 
our data, the estimated regression is, for t = 1/53, . . . ,7171, 

R~ = 0.24, mean of dependent variable = 2.35, SER = 2.84%, n = 223. 
(2. I 1.9) 

The heteroskedasticity-robust standard errors calculated as in (2.4.1) (where ?? is 
given by (2.5.1) with ti = ei) are shown in parentheses. As shown in (2.1 1.5), 
market efficiency implies that the Rf coefficient equals 1 .21 The robust r-ratio for 
the null that the R, coefficient equals 1 is (1.015 - 1)/0.112 = 0.13. Its p-value is 
about 90 percent. Thus, we can easily accept the null hypothesis. 

There are other ways to test the implication of the nominal interest rate sum- 
marizing all the currently available information. We can bring in more explanatory 
variables in the regression and see if they have an explanatory power over and 
above the nominal rate. The additional variables to be brought in, however, must 
be part of the current information set I, because, obviously, the efficient market 

' l ~ h e  intercept is known to be -r, but it does not produce a testable restriction since the efficient market 
hypothesis does not specify the value of r. 
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hypothesis is consistent with the existence of some variable not currently avail- 
able predicting future inflation better than the current nominal rate. Formally, if x, 
includes variables not included in I,, the argument we used for verifying Assump- 
tion 2.3 is no longer valid. 

R, Is Not Strictly Exogenous 

As has been emphasized, one important advantage of large-sample theory over 
finite-sample theory of Chapter 1 is that the regressors do not have to be strictly 
exogenous as long as they are orthogonal to the error term. We now show by 
example that R, is not strictly exogenous, so finite-sample theory is not applicable 
to the Fama regression (2.1 1.4). Suppose that the process for the inflation rate is 
an AR(1) process: 

n, = c + p n , - ~  + q,, (q,) is independent white noise. 

If qr+l is independent of any elements of I,, then 

E(nt+1 I 1,) 

= c + pn, + E(Q,+~ I I,) (since n, is in I,) 

= c + pn, (since E(V,+~ I I,) = E(V,+~)  and E(Q,+~) = 0 by assumption). 

So qt+l is indeed the inflation forecast error for n,+l and 

(since R, = r + E(X,+~ 1 I,) under market efficiency). It is then easy to see that the 
error term E,  in the Fama regression (of n,+l on a constant and R,), which is the 
inflation forecast error qr+l, can be correlated with future regressors. For example, 

COV(E,, R,+l) 

= Cov(qt+1, r + C + ~ ~ t + l )  

= P Cov(vt+l, n,+l) 

= P Var(vt+~) (since n,+l = c + pn, + qt+l and C O V ( ~ , + ~ ,  n,) = O), 

which is not zero. 
Although finite-sample theory is not applicable, its prescription for statistical 

inference is approximately valid, provided that the error is conditionally homo- 
skedastic and the sample size is large enough, which was the message of Section 
2.6. 
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Subsequent Developments 
Although Fama's paper represents perhaps the finest example of rational expec- 
tations econometrics, events after its publication and a large number of empirical 
studies it inspired proved that the near one-for-one relation between inflation and 
interest rates is limited to the postwar period until 1979. Such strong association 
cannot be found for the prewar period or for many other countries. Furthermore, the 
increase in the real interest rates after the change in the Fed's operating procedure 
that took place in October 1979 runs counter to the premise of the Fama regres- 
sion that the expected real interest rate is constant over time. When the sample is 
restricted to the post-October 1979 period, the interest rate coefficient in the Fama 
regression is far below unity.22 

These findings raise the question of why the strong association occurs only for 
I 

certain periods but not for others. The explanation by Mishkin (1992) is that the 
inflation premium gets incorporated into interest rates only gradually. In periods 
when the inflation rate shows only short-run fluctuations, interest rates are not 

I responsive to inflation. However, sustained movements in inflation will be reflected 
in interest rates. The period when the strong association is observed (which 
includes Fama's sample period, see Figure 2.3) is precisely when inflation showed 
a sustained upward movement. 

! On January 29, 1997, the U.S. Treasury auctioned $7 billion in ten-year 
inflation-indexed bonds, making it possible for researchers to observe the ex-ante 

I real interest rate as the yield on indexed bonds. Evidence from Great Britain, 
where indexed bonds have been available since the early 1980s, is that the yields 
on indexed bonds, although much less volatile than the yield on ordinary bonds, 
are not constant over time. The constant-real-rate assumption that we made was 
the auxiliary assumption whereby we can test whether bond prices fully reflect 
available information. Now we can do so without the auxiliary assumption by 
regressing the actual inflation rate on the yield differential between the conven- 
tional and indexed bonds. We can also relax the assumption, made implicitly so 
far, that the yield differential equals the expected inflation rate. Investors may not 
be risk-neutral, and the inflation risk premium over and above the expected infla- 
tion rate may be needed to induce them to hold ordinary bonds. If so, the expected 
inflation rate is once again unobservable. Rational expectations econometrics will 
continue to be a useful tool for dealing with unobservable expectations. 

"~ee, for example, Mishkin (1992, Table I ). We will verify this in part (I) of Empirical Exercise I .  
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Q U E S T I O N S  F O R  R E V I E W  

1. Let R, = 5% and n,+l = 2%. Calculate r,+l using the two formulas, ( 1  + 
R, ) / ( l  + x,+~) - 1 and R, - n,+l. Is the difference small? What if R, = 20% 

and n,+l = 17%? 

2. Show that E*(n,+, I 1, R,) = -r + R, under the efficient market hypothesis. 
Hint: Use (2.9.7). 

3. If the inflation forecast error q,+l were observable, how would you test market 
efficiency? Do we need the constant ex-ante real rate assumption? 

4. If the inflation rates and the interest rates were measured in fractions rather 
than percent (e.g., 0.08 instead of 8%), how would the regression result (2.11.9) 

change? If the inflation rate is in percent but per month and the interest rate is 
in percent per year? Hint: If x is the inflation rate per month and y is its annual 

rate, then 1 + y = ( 1  + x)12 SO that y = 12x. 

5. Suppose in (2.1 1.4) x, includes a third variable which is not in I,. Which part 
of the argument deriving Assumption 2.3 fails? Hint: The third element of g, is 

the third variable times qt+l. 

6. Provide an example of market inefficiency such that Implication 1 holds but 
Implication 2 does not. Hint: Suppose n, and R, are serially independent and 

mutually independent processes. 

2.12 Time Regressions 

Throughout this chapter, we have assumed that {y,, x,} is stationary. This assump- 
tion, however, is not always satisfied in time-series regressions. In this book, we 
examine two cases where the regressors are not stationary and yet OLS is applica- 
ble. The first is examined here, while the other case, called "cointegrating regres- 
sions," is covered in Chapter 10. 

The regression we consider is written as 

where { E , }  is independent white noise. This regression can be written as y, = 
xifi + E ,  with 
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xt = (1, t)', /3 = (a, 6)'. (2.12.2) 

Clearly, xt is not stationary because the mean of the second element is t,  which 
increases with time. Similarly, yt is not stationary. The linear function, a + 6 t, is 
called the time trend of y,. We say that a process is trend stationary if it can be 
written as the sum of a time trend and a stationary process. The process {y,} here is 
a special trend-stationary process where the stationary component is independent 
white noise. 

The Asymptotic Distribution of the OLS Estimator 

Let b be the OLS estimate of p based on a sample of size n 

The sampling error can be written as 

a - a  
b - p = [ :  6 - 6  ] = ( k x t x ~ ) - l ( ~ x t . E t ) .  t= l  t = ~  (2.12.4) 

Using the algebraic result that C:=, t = n . (n + 1)/2, C:=, t2 = n . (n + 1)(2n + 
1)/6, it is easy to show 

So, unlike in the stationary case, C:=, xtxi/n does not converge in probability to 
a nonsingular matrix; it actually diverges. 

It turns out that the OLS estimates & and 6̂  are consistent but have different rates 
of convergence. As in the stationary case, the rate of convergence for & is &. In 
contrast, the rate for 6̂  is n3I2. That is, n3I2(6^ - 6) converges to a nondegenerate 
distribution (the distribution of a nonconstant random variable). To assign those 
different rates of convergence to the elements of b - p ,  consider multiplying both 
sides of (2.12.4) by the matrix 
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This produces 

where 

Qn - Y ; ~ ( ~ x ~ x ; ) Y ; ~  and v,, E l ; ' z x r  .cr .  (2.12.8) 
r = l  r=l 

Substituting (2.12.5) and (2.12.6) into these expressions for Q, and v,, we obtain 

Clearly, we have 

For v,, it can be shown (see, e.g., Hamilton, 1994, pp. 458460) that 

if { E ~ }  is independent white noise with E(E;) = a2 and E(EQ) < 00. Thus the 
asymptotic distribution of (2.12.7) is normal with mean 0 and variance Q-' (a2 Q) . 
Q-' = a2 Q-'. Summarizing the discussion so far, 

Proposition 2.11 (OLS estimation of the time regression): Consider the time 
regression (2.12.1) where E, is independent white noise with E(E:) = a2 and 
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E(E:) < oa and let ii and 6̂  be the OLS estimate of a and 13. Then 

As in the stationary case, ii is &-consistent because &(& - a )  converges to a 
(normal) random variable. The OLS estimate of the time coefficient, 6^, too is con- 
sistent, but the speed of convergence is faster: it is n3I2-consistent in that n3I2(6^-6) 
converge to a random variable. In this sense, 6̂  is hyperc~nsistent.'~ 

Hypothesis Testing for Time Regressions 
Thus, the OLS coefficient estimates of the time regression are asymptotically nor- 
mal, provided the sampling error is properly scaled. We now show that the defla- 
tion of the sampling error by the standard error provides a scaling that makes the 
resulting ratio -the t -value - asymptotically standard normal. 

First consider the t-value for the null a = ao.  Noting that 

the t-value can be written as 

- - &(& - a01 
(since [& 01 = [ l  OIY,) 

J.2 . ri OIY.(E:=, xt~;)- 'yn[:1 

1 -1  1 
JS2.11 ~ { ~ ( E l t )  1 [ o ]  

- - &(& - ao) 
(by (2.12.8)). 4- 

23~stimators that are n-consistent are usually called superconsistent. A prominent example of superconsistent 
estimators arises in the estimation of unit-root processes; see Chapter 9. Some authors use the term "supercon- 
sistent" more broadly, to refer to estimators that are ny-consistent with y z i. In their language, $ in the text is 
superconsistent. 
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It is straightforward (see review question 1) to show that s2 is consistent for a 2 .  
And by (2.12. lo), Q, + p  Q. Thus by Lemma 2.4(c) and Proposition 2.1 1, 

1 st element of z 
t-value for the null of a = a0 + (2.12.14) 

Ja2 x (1, 1) element of Q-' 

where z -- N(0, a2 Q-I). SO the t-value for a is asymptotically N(0, I), as in the 
stationary case. 

Using the same trick and noting that [0 n3I2] = [0 1]Y,, we can write the 
t-value for the null of 6 = h0 as 

So the t-value for the coefficient of time, too, is asymptotically N(0, I)! Inference 
about a or 6 can be done exactly as in the stationary case. 

Q U E S T I O N S  F O R  R E V I E W  - 

1. (s2 is consistent for a 2 )  Show that s2 + p  a2. Hint: From (2.3.10), derive 

Sum over t to obtain 

2. (Serially uncorrelated errors) Suppose { E ~ }  is a general stationary process, 
rather than an independent white noise process, but suppose that v, +d N(0, V) 
where V # a2 Q. Are the OLS estimators, & and 6^, consistent? Does Y,(b - 
/I) converge to a normal random vector with mean zero? If so, what is the 
variance of the normal distribution? [Answer: Q-'vQ-'.I Are the t-values 
asymptotically normal? [Answer: Yes, but the variance will not be unity.] 

Appendix 2.A: Asymptotics with Fixed Regressors 

To prove results similar in conclusion to Proposition 2.5, we add to Assumption 
2.1 the following. 
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Assumption 2.A.1: X is deterministic. As n -+ oo, S,, -+ Xxx, a nonsingular 
matrix (conventional convergence here, because X is nonrandom). 

Assumption 2.A.2: { E ~ }  is i.i.d. with E(E~)  = 0 and Var(~i) = a2 

Proposition 2.A.1 (asymptotics with fixed regressors): Under Assumptions 2.1, 
2.A. 1, and 2.A.2, plus an assumption called the Lindeberg condition on {gi } (where 
gi = xi . E~) ,  the same conclusions as in Proposition 2.5 hold. 

Rather than stating the Lindeberg condition, we explain why such condition is 
needed. To prove the asymptotic normality of b, we would take (2.3.8) and show 
that f i g  converges to a normal distribution. The technical difficulty is that the 

sequence {gi} is not stationary thanks to the assumption that (xi} is a sequence of 
nonrandom vectors. For example, 

is not constant across observations. Consequently, neither the Lindeberg-Levy CLT 
nor the Martingale Differences CLT is applicable. Fortunately, however, there 
is a generalization of the Lindeberg-Levy CLT to nonstationary processes with 
nonconstant variance, called the Lindeberg-Feller CLT, which places a technical 
restriction on the tail distribution of gi to prevent observations with large xi from 
dominating the distribution of f ig .  

Appendix 2.8: Proof of Proposition 2.10 

This appendix provides a proof of Proposition 2.10. We start with the expression 
for f i  given in (2.10.12). The first part of the proof is to find an expression that is 
asymptotically equivalent. 

(since the last term above vanishes) 
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1 
(since - C (xt-j . E~ + xt . ~ t - j )  + E ( x ~ - ~  . c + xt . ~t-'))  

n 
t = j + l  

P 

= f i F j  - p;.fi(b - /!I) where f i  -- E(xt . E , - ~ )  

(since E(xtPj . = 0 by (2.10.15)) 

1 
(since fi- C - fii C E~ E ~ -  n 

1 '  
= - C E~E,-' + 0 for each j )  

J?i ,=, P 

- fii C E,E,-, - IL; fix;: C xt - ct (since sXx + 2,) 
n 

t = l  t = l  
P 

= c(ifigi, 

where 

Thus, letting 

we have proved that 
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where 

The second part of the proof is to show that g, is a martingale difference 
sequence, namely, that 

But this easily follows from the Law of Total Expectations, the fact that (g,-,, 
g ,4 ,  . . . ) has less information than (x,, x,-1, . . . , & , - I ,  E,-2, . . . ), and (2.10.15). 

Clearly, g, is ergodic stationary. Therefore, by the ergodic stationary Mar- 
tingale Differences CLT, f i g  + d  N(0, E(g,gi)). The next step is to calculate 
E(g,gi). Its ( j ,  k) block is 

By using the Law of Total Expectations and (2.10.16), it is easy to show that 

where 6 jk  is "Kronecker's delta," which is 1 if j  = k and 0 otherwise. 
Since, as shown above, f i p  - C'f ig  and f i g  +d N ( 0 ,  E(g,gi)), we have 

a 

Avar(p) (= variance of limiting distribution of f i p )  = C' E(g,g:)C. 

Its ( j ,  k) element is 

( j ,  k) element of Avar(9) = cj E(gj,g;,)ck. 
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Substituting (2.B.2) into this and using the definition of c, in (2.B.1), we obtain, 

after some simple calculations, 

( , j ,  k) element of Avar(9) = a' . [Six - P;~;:Px/a2]. 

where Q, is defined in Proposition 2.10. Since &p - &jr/a2, the limiting 
11 

distribution of &$ is the same as that of f i p / a 2 ,  which is N(0, I, - a). 

P R O B L E M  S E T  F O R  C H A P T E R  2 

A N A L Y T I C A L  E X E R C I S E S  

1. (Taken from Example 3.4.2 of Amemiya (1985)) Let z ,  be defined by 

0 with probability (n - l ) / n ,  
Zn = 

n2 with probability 1 I n .  

Show that plim,,, z ,  = 0 but lim,t,, E(z,) = GO. 

2. Prove Chebychev's weak LLN, by showing that 2, +,,,, W .  Hint: 

Show that ~ [ ( i ,  - E(?,,))(E(~,) - I*)] = 0. 

3. (Consistency and Asymptotic Normality of OLS for Random Samples) Con- 
sider replacing Assumption 2.2 by 

Assumption 2.2': { yi , xi } is a random sample. 

and Assumption 2.5 by 

Assumption 2.5': S - E(gig:) exists and is finite. 
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Prove the following simplified version of Proposition 2.1 : 

Proposition 2.1 for Random Samples: Under Assumptions 2.1,2.3,2.4, and 
2.2', the OLS estimator b is consistent. Under the additional assumption of  
Assumption 2.5', the OLS estimator b is asymptotically normal with Avar(b) 
given by (2.3.4). 

(a) Show that this is a special case of Proposition 2.1 of the text. 

(b) Give a direct proof of this proposition. 
Hint: Use Kolmogorov and Linderberg-Levy. 

4. (Proof of Proposition 2.4) We wish to prove Proposition 2.4. To avoid inessen- 
tial complications, we assume as in the text that K = 1 (only one regressor). 
What remains to be shown is that the sample mean of the first term on the RHS 
of (2.5.3) converges in probability to some finite number. Prove it. Hint: Let 

f = xisi and h - .u?. The Cauchy-Schwartz inequality states: 

By assumption, E(x?E?) (= E ( ~ ? ) )  is finite, and by Assumption 2.6 E ( x ~ )  is also 

finite. So E(E;x,?) is finite and A Ci six,? + p  some finite number by ergodic 

stationarity. 

5. (Direct proof that the change in SSR divided by a2  is asymptotically x2)  In 
Section 2.6, we proved that 

as a corollary to Proposition 2.3. Give a direct proof, first by showing that 

SSRR - S S R ~  = (fig)'~,-,l  R'(R s,-,' ~ ' 1 - l ~  s,-,' ( f i g ) ,  

6. (Optional, consistency of 2) In this question we prove the claim made in Sec- 
tion 2.8 that 2, the OLS estimate for the regression of e? on zi, is consistent. 
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Let & be the OLS estimate from 

(a) Make appropriate assumptions in addition to Assumptions 2.1 and 2.2 to 
show that & is consistent. Hint: You need a rank condition for zi. 

(b) Derive: 

with vi = -2(b - B)'xi - E~ + (b - B)'xix:(b - B) .  Hint: The discrepancy 

between E: and the squared OLS residual e? from the OLS estimation of 

the original equation yi = xiB =t E~ is given by (2.3.10). Substituting it into 

(2.8.8) gives: e; = Z:(Y + (qi + Vi). 

(c) To avoid inessential complications, suppose that xi is a scalar xi. Then 

xi zi . vi in (*) becomes 

Show that the plim of the first term is zero. Hint: 

Show that the plim of the second term is zero if E(x?z~) exists and is finite. 

(d) Thus we have proved that h - & vanishes. Prove the stronger result that 
f i ( h  - &) vanishes. Hint: Use Lemma 2.4(b). 

7. (Optional, proof that WLS is asymptotically more efficient than OLS) In Sec- 
h h  

tion 2.8, the WLS estimator is denoted B(V). We wish to prove that it is asymp- 
totically more efficient than OLS, namely, 

A h  

But since Avar(B(V)) = ~ v a r ( p ( ~ ) ) ,  it is sufficient to prove that 

Prove this last matrix inequality. Hint: In Chapter 1, we proved the algebraic 
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result that 

for any positive definite matrix V. (This follows from the fact that GLS is more 

efficient than OLS; the LHS is (a2 times) the variance of the OLS estimator for 

the generalized regression model while the RHS is (a2 times) the variance of 

the GLS estimator.) Dividing both sides of (*) by n and taking probability limits 

yields: 

(plim f x'x)-' (plim ~ X ' V X )  (plim ~x'x)-' 2 p l i m ( ~ ~ ' ~ - l ~ ) - l  . (**) 

The RHS is ~var (B(V))  (see (2.8.7)). Show that the LHS equals Avar(b) = 

8. Prove (2.9.7). Hint: If ( p ,  y )  is the least squares projection coefficients, it 

satisfies 

where 

The first equation of (*) is p + E(%)'y = E(y). Use this to eliminate p from the 

rest of the equations of (*) and then solve for y .  In the process, use Var(%) = 

E(2Gf) - E(2) E(Gf), Cov(%, y) = E(2 . y) - E(%) E(y). Alternatively, use the 

formula for the partitioned inverse (see (A.lO) of Appendix A) to obtain 

Then substitute this into (**). 

9. (Proof of Proposition 2.9 for p = 1) Assume that {E,} is an ergodic stationary 
martingale difference sequence and that E(E: / El-], cr-2, . . . , EI)  = a2 < CO. 
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1 P1 7. - - . E ~ - ~  ( j  =O, 1), 61 = 7. 
I - n  t=j+l Yo 

(a) Show that {g,} (t = 2, 3, . . . ) is a martingale difference sequence. 

(b) Show that E(gf) = a 4 .  

(c) Show that f i  -+d N(0, a 4 )  as n  += co. 

(d) Show that f i b 1  +d N(0, I). Hint: First show that f i P l / a 2  + = d  N(0, 1). 
Then use Lemma 2.4(c). 

10. (Asymptotics of sample mean of MA(2)) Let (ELI, EO, ~ 1 ,  ~ 2 ,  . . . ) be i.i.d. 
with mean zero and variance a:. Consider a process (y-1, yo, y1, y2, . . . ) gen- 
erated by 

(This process is called a second-order moving average process (MA(2)); see 
Chapter 6. 

(a) Show that (yl, y2, . . . ) is covariance stationary. Derive the expressions for 
the autocovariances yj ( j  = 0, 1 ,2 ,  . . . ). 

(b) Let 

Show that 

Hint: There is a one-to-one mapping between ( c l ,  EO, ~ 1 ,  . . . , E ~ )  and 

(Y-1, YO, YI, . . . ,  ~ t )  soE(yt I Yt-j, - .  - Y-1) = E(Yt I Et-j, - - - 7 8-11. 

(c) Let 
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Show that 

(d) Because {y,} is not i.i.d, the Lindeberg-Levy CLT is not applicable. 
However, it will be shown in Chapter 6 that f i  j, converges in distribution 
to a normal random variable. What is the mean of the limiting distribution? 
What is the variance of the limiting distribution (i.e., Avar(j,))? Hint: In 

Lemma 2.1, set z ,  = f i  j,, and lim,,,(l - q l n )  = 1 for any fixed q.  

11. (Optional, Breusch-Godfrey test for serial correlation) In this question, we 
prove that the modified Box-Pierce Q is asymptotically equivalent to p  F from 
auxiliary regression (2.10.21), where p  is the number of lags and F is the F- 

ratio for the hypothesis that the coefficients of e,-1, e t 4 ,  . . . , e,-, are all zero. 
First we establish the notation. ~ e t  

where e, is the residual from the original regression y, = x:B + E, and f j  is 
the sample j-th order autocovariance, defined in (2.10.8), calculated from the 
residuals. 

(a) The auxiliary regression (2.10.21) has K + p  regressors. Let & be the vector 
of the K + p coefficients. Show that 

Hint: Since e is the vector of residuals from the original regression with X 
as regressors, Xfe = 0. 
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(b) Show: 

Chapter 2 

where 

E ( X ~ . E ~ - ~ )  . . -  E ( x ~ . E ~ - ~ ) ] .  
( K  xp)  

Hint: The j-th column of AX'E is ! ~:=,+, xt . el-,. Use (2.3.9) to show 

that it converges in probability to E(xt . E,-,). 

(c) (very easy) Show: i +, 0. 

(d) Let SSR here be the sum of squared residuals from the auxiliary, not the 
origina1,regression.Show: - 

SSR 2 
+ a  9 

n - K - p  P 

where a2 is the variance of the error term from the original regression. 
Hint: [X i El i = E f .  So SSR = (e - Ep)'(e - Ep) .  i ~ ' e  = p,  
1 I ;E E +p a2 Ip. 

(e) Show: 

Hint: Apply the formula for the F-ratio in (1.4.9) to the auxiliary regression. 

(f) Use the formula for the partitioned inverse (see (A.lO) of Appendix A) to 
show 

(g) Let $ and $ be as in (2.10.8) and (2.10.19). Show that the modified Box- 
Pierce Q defined in (2.10.20) is asymptotically equivalent to pF (i.e., the 
difference between the two converges to zero in probability). Hint: Show 

that both pF and the modified Q are asymptotically equivalent to 

npl(Ip - *)-'?/a2, 

where @ is defined in (2.10.18). 
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12. (Optional, Chow test for structural change in large samples) Consider apply- 
ing the Chow test for structural change to the regression model with conditional 
homoskedasticity described in Proposition 2.5. Since the issue of structural 
change arises mostly in time-series models, we use "t" for the subscript. We 
generalize Assumption 2.1 by allowing the coefficient vector to change at the 
break date r :  

I for t  = l , 2  , . . . ,  r ,  
Yt = 

x;B2+&t for t  = r + l , r + 2  ,..., n. 

We assume that the break date r is known. (When the break date is unknown, 
the situation is more complicated and has been an object of recent research. 
See Stock (1994, Section 5) for a survey.) The null hypothesis to test is that 

B1 = B2. This is a set of K restrictions. Let SSRl be the sum of squared 
residuals from the first period (t = 1 ,2 ,  . . . , r), SSR2 be the SSR from the 
second period (t = r + 1, r + 2, . . . , n), and SSRR be the SSR from the entire 
sample under the constraint B1 = B2. From Chapter 1, the Chow statistic is 
defined as 

Let b l  be the OLS estimate of Bl  obtained from the first period and b2 be the 
OLS estimate of B2 from the second period. 

(a) Show that K F is numerically equal to 

where s2 = (SSR1 +SSR2)/(n -2K). Hint: The n equations can be written 

in matrix form as y = XB + E ,  where 
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'The null hypothesis that p1 = B2 can be written as Rp = r where R = 

[IK : -IK] and r = 0. Use Proposition 1.4. 

(b) Let h - r l n .  Show that, as n + m with h fixed, 

where Ex, - E(x,x;). 

(c) Show that, as n + m with ;C fixed, 

It can be shown (see, e.g., Stock, 1994, Section 5) that & EL=, X,E, and 
1 C:=r+l xtcl are asymptotically uncorrelated. So 

(d) Show that Avar(bl - b2) = h - ' a 2 x 2  + (1 - A)-'a2x;;. Hint: Let 

Show that 

bl  - b2 = [IK : -IK]b. Use Lemma 2.4(c). 

(e) Finally, show that K F +d x2  (K) as n + m with A = r l n  fixed. 

EMPIRICAL EXERCISES 

1. Read the introduction and Sections I-IV of Fama (1975), before doing this 
exercise. In the data file MISHKIN.ASC, monthly data are provided on: 

Column 1: year 
Column 2: month 
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Column 3: one-month inflation rate (in percent, annual rate; call this PAII) 
Column 4: three-month inflation rate (in percent, annual rate; call this PA13) 
Column 5: one-month T-bill rate (in percent, annual rate; call this TBI) 
Column 6: three-month T-bill rate (in percent, annual rate; call this TB3) 
Column 7: CPI for urban consumers, all items (the 1982-1984 average is set 

to 100; call this CPI). 

The sample period is February 1950 to December 1990 (491 observations). 
The data on PAII, PA13, TBI, and TB3 are the same data used in Mishkin 
(1992) and were made available to us by him. The T-bill data were obtained 
from the Center for Research in Security Prices (CRSP) at the University of 
Chicago. The T-bill rates for the month are as of the last business day of the 
previous month (and so can be taken for the interest rates at the beginning of the 
month). The construction of PAII and PA13 will be described toward the end 
of this exercise; for the time being, we will use the inflation derived from CPI. 

(a) (Librarylinternet work) To check the accuracy of the data in MISH- 
KIN.ASC, find relevant tables from back issues of Treasury Bulletin or 
Federal Reserve Bulletin for hard-copy data on T-bill rates. Or visit the 
web sites of the Board of Governors (www.bog.frb.fed.us) or the Trea- 
sury Department (www.ustreas.gov) to accomplish the same. Can you 
find one-month T-bill rates? [Answer: Probably not.] Are the rates in 
MISHKIN.ASC close to those in the relevant tables? Do they appear to be 
at the beginning of the month? 

(b) (Librarylinternet work) Find relevant tables from back issues of Monthly 
Labor Review (or visit the web site of the Bureau of Labor Statistics, 
www.bls.gov) to verify that the CPI figures in MISHKIN.ASC are correct. 
Verify that the timing of the variable is such that a January CPI observation 
is the CPI for the month. Regarding the definition of the CPI, verify the 
following. (1) The CPI is for urban consumers, for all items including food 
and housing, and is not seasonally adjusted. (2) Prices of the component 
items of the index are sampled throughout the month. When is the CPI for 
the month announced? 

(c) Is the CPI a fixed-weight index or a variable-weight index? Hint: Dig up 

your old intermediate macro textbook; graduate macro textbooks won't do. 

The one-month T-bill rate for month t in the data set is for the period from 
the beginning of month t to the end of the month (as you just verified). Ideally, 
if we had data on the price level at the beginning of each period, we would 
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calculate the inflation rate for the same period as (Pt+l - P,)/ P,, where P, 
is the beginning-of-the-period price level. We use CPI for month t - 1 for 
P, (i.e., set P, = CPI,-I). Since the CPI component items are collected at 
different times during the month, there arises the inevitable misalignment of 
the inflation measure and the interest-rate data. Another problem is the timing 
of the release of the CPI figure. The efficient market theory assumes that P, is 
known to the market at the beginning of month t when the T-bill rates for the 
month are set. However, the CPI for month t - 1, which we take to be P,, is 
not announced until sometime in the following month (month t). Thus we are 
assuming that people know the CPI for month t - 1 at the beginning of month t. 

TSP Tip: When reading in the data and calculating the inflation rate, you 
should exploit TSP's ability to handle calendar dates. The initial part of 
your TSP program might look like: 

? The data are monthly, 1950:2 thru 1990:12 
freq m;smpl 50:2 90:12; 
? Read in the ASCII data 
read(file='mishkin.asc') year month pail pai3 

tbl tb3 cpi; 
? Calculate inflation rate and the real rate 
smpl 50:3 90:12; 
pai= ( (cpi/cpi (-1) ) **12-1) *loo; 
r = tbl-pai; 

RATS Tip: Similarly, the initial part of your RATS program might look like: 

* The data are monthly, 1950:2 thru 1990:12 
cal 50 2 12;all 0 90:12 
* Read in the ASCII data 
open data mishkin.asc 

data(org=obs) / year month pail pai3 tbl tb3 cpi 
* Calculate inflation rate and real rate 
set pai = ((cpi(t)/cpi(t-l))**12-1)*100 

set r = tbl(t) -pai (t) 

(d) Reproduce the results in Table 2.1. Because the T-bill rate is in percent and 
at an annual rate, the inflation rate must be measured in the same unit. Cal- 
culate n,+l, which is to be matched with TBl,  (the one-month T-bill rate 
for month t), as the continuously compounded rate in percent: 
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Gauss Tip: One way to compute the sample autocovariances by formula 
(2.10.1) and the sample autocorrelations by (2.10.2) is the following. 
Let z be the n-dimensional vector whose i-th component is zi and nobs 
be the sample size, n. 

z = z -meanc ( z ) ; / *  de-mean the series * /  

nlag=12; / *  lag length * /  
rho=zeros (nlag, 1) ; 
j=l;do until j>nlag; 

rho[ jl =z1*shiftr(z', j, 0) '/nabs; 

/ *  sample autocovariances * /  
j=j+l;endo; 

rho=rho./(zl*z/nobs); 
/ *  sample autocorrelations * /  

TSP Tip: Use the BJIDENT command. It does not calculate p-values, so 
(unless you are willing to learn how to use TSP's matrix commands) give 
up the idea of producing p-values. 

RATS Tip: Use CORRELATE or BOXJENK. 

(e) Can you reproduce (2.1 1.9), which has robust standard errors? What is the 
interpretation of the intercept? 

Gauss Tip: For the heteroskedasticity-robust standard errors, you have to 
calculate g by formula (2.5.1) with t i = ei (OLS residual). An exam- 
ple of the Gauss codes is the following. Let x be the n x K data 
matrix and ehat the n-dimensional vector of OLS residuals. If g is 
the n x K matrix whose i-th row is xi . ei, the Gauss code for generating 
g is g = x . * eha t. The Gauss code for calculating is g ' g/ nobs, 
where nobs is the sample size. This, however, does not exploit the fact 
that g is symmetric. The more computationally efficient command is 
moment (g, 0) /nobs. 

TSP Tip: Use the option HCTYPE= 0 of OLSQ. 

RATS Tip: Use the ROBUSTERRORS option of LINREG. 

(f) (Davidson-MacKinnon correction of White) The finite-sample properties 
of the robust t-ratio might be improved by the Davidson-MacKinnon adjust- 
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ment discussed in the text. Calculate robust standard errors using the three 
formulas discussed in the text. The first is the degrees of freedom correc- 
tion of multiplying by n/(n - K). The second is to calculateg by formula 
(2.5.5) with d = 1. The third is (2.5.5) with d = 2. These correspond to 
TSP's OLSQ options HCTYPE = 1, 2, 3. 

Gauss Tip: Let p be the n-dimensional vector to store the pi's of (2.5.5), 
sxxinv = S,-,', x = the data matrix X. One way to compute p is 

p=zeros(nobs,l); 

i=l;do until i>nobs; 
p[il=x[i, .I *sxxinv*x[i, .I '/nabs; 

i=i+l;endo; 

(g) (Estimation under conditional homoskedasticity) Test market efficiency 
by regressing n,+l on a constant and TBl ,  under conditional hornoskedas- 
ticity (2.6.1). Compare your results with those in (e) and (f ). Which part is 
different? 

(h) (Breusch-Godfrey test) For the specification in (g), conduct the Breusch- 
Godfrey test for serial correlation with p = 12. (The n R2 statistic should 
be about 27.0.) Let e, (t  = 1,2 ,  . . . , n) be the OLS residual from the 
regression in (g). To perform the Breusch-Godfrey test as described in the 
text, we need to set e, (t = 0, 1, . . . , - 11) to zero in running the auxiliary 
regression for t = 1,2,  . . . , n. 

TSP Tip: The TSP codes for calculating the nR2 statistic are the follow- 
ing. res id is the OLS residual from the original regression. 

? Part (h): Breusch-Godfrey 

resid=@res; 

smpl 52:l 52:12; 

resid=O; 

smpl 53:l 71:7; 
olsq resid c tbl resid(-1) resid(b2) resid(-3) 

resid(-4) resid(-5) resid(-6) 

resid(-7) resid(-8) resid(-9) 

resid(-10) resid(-11) 

resid(-12) ; 

set w=@nob*@rsq;cdf(chisq,df=12) w; 

Here, w is the n R2 statistic. 
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RATS Tip: The RATS codes for calculating the n R2 statistic are the fol- 
lowing. res id is the OLS residual from the original regression. 

* Part (h): Breusch-Godfrey 
set resid 53 : 1 71: 7 = pai-%beta(l) -%beta (2) *tbl 
set resid 52:l 52:12 = 0 
linreg resid 53:l 71:7; 

# constant tbl resid(1 to 12) 

compute w = %nobs*%rsquared 

cdf chisquared w 12 

Here, w is the n R' statistic. 

Gauss Tip: As in the Gauss codes for (d), the shi f t r command is useful 
here. Let y (223 x 1) and x .(223 x 2) be the vector of the depend- 
ent variable and the matrix of regressors, respectively, from the previous 
regression. Let b (2 x 1) be the vector of estimated coefficients from the 
previous regression. Your Gauss program for creating the y and x for 
the auxiliary regression might look like: 

" @  Part (h): Breusch-Godfrey @ " ;  

y=y-x*b; / *  residual vector from the previous 
regression * /  

j=l;do until j112; 

x=x"shiftr(yl,j,O)'; 

j=j+l;endo; 

(i) (Reconstructing Fama) What are Fama's own point estimate and standard 
error of the nominal interest rate coefficient? Are they identical to your 
results? (Farna uses different notation, so you need to translate hls results 
in our notation.) Why is his estimate of the intercept different from yours? 
(One obvious reason is that our data are different, but there is another rea- 
son.) Optional: What are the differences between his data and our data? 

(j) (Seasonal dummies) The CPI used to calculate the inflation rate is not sea- 
sonally adjusted. To take account of seasonal factors while still using sea- 
sonally unadjusted data in the regression, define twelve monthly dummies, 

M 1, M2, . . . , M 12, and use them in place of a constant in the regression 
in (g). Does this make any difference to your results? What happens if you 
include a constant along with the twelve monthly dummies in the regres- 
sion? Optional: Is there any reason for prefemng seasonally unadjusted 
data to seasonally adjusted? 
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TSP Tip: Use the DUMMY command to create monthly dummies. 

RATS Tip: Use the SEASONAL command to create monthly dummies. 

A well-known problem with the CPI series is that its residential housing 
component is home mortgage interest costs for periods before 1983 and a more 
appropriate "rental equivalence" measure since 1983. The inflation variables 
PA11 and PA13 in MISHKIN.ASC are calculated from a price index that uses 
the rental-equivalence measure for all periods. For more details on this, see 
Section I1 of Huizinga and Mishkin (1984). The timing of the variables is such 
that a January observation for PA11 is calculated from the December and Jan- 
uary data on the price index and PA13 from the December and March data on 
the price index. So, under the assumption that the price index is for the end of 
the month, a January observation for PA11 is the inflation rate during the month, 
and a January observation for P A Z ~  is the inflation rate from the beginning of 
January to the end of March. 

(k) Estimate the Fama regression for 1/53-7171 using this better measure of 
the one-month inflation rate and compare the results to those you obtained 
in (e). 

(I) Estimate the Famaregression for the post-October 1979 period. Is the nom- 
inal interest rate coefficient much lower? (The coefficient should drop to 
0.564.) 

2. (Continuation of the Nerlove exercise of Chapter 1, p. 76) 

(i) For Model 4, carry out White's n R~ test for conditional heteroskedasticity. 
( n ~ ~  should be 66.546). 

(j) (optional) Estimate Model 4 by OLS. This is Step 1 of the procedure of 
Section 2.8. Carry out Step 2 by estimating the following auxiliary regres- 
sion: regress e? on a constant and l / Q i .  Verify that Step 3 is what you did 1 

in part (h). 

(k) Calculate White standard errors for Model 4. 

M O N T E  C A R L 0  E X E R C I S E S  

1. (Degrees of freedom correction) In the model of the Monte Carlo exercise of 
Chapter 1, we assumed that the error term was normal. Assume instead that 
is uniformly distributed between -0.5 and 0.5. 

(a) Verify that the DGP of the second simulation (where X differs across simu- 
lated samples) satisfies Assumptions 2.1-2.5 and 2.7. (It can be shown that 

Keen
Rectangle



Large-Sample Theory 183 

Assumption 2.2 [ergodic stationarity] is also satisfied. This is an implica- 
tion of Proposition 6.1 (d).) 

(b) Run the second simulation of the Chapter 1 Monte Carlo exercise with the 
uniformly distributed error term. In each replication, calculate the usual 
t-ratio, as before, and compare it with two critical values. The first is the 
same critical value (2.042) implied by the t (30) distribution, and the second 
is the critical value (1.96) from N(0, 1). Compute the rejection frequency 
for each critical value. Which one is closer to the nominal size of 5%? 

2. (Box-Pierce vs. Ljung-Box) We wish to verify the claim that the small sample 
properties of the Box-Ljung Q statistic are superior to those of the Box-Pierce 
Q. Generate a string of 50 i.i.d. random numbers with mean 0. (Choose your 
favorite distribution.) Taking this string as data, do the following. 

(1) Calculate the Box-Pierce Q and the Ljung-Box Q statistics (see (2.10.4) 
and (2.10.5)) with p = 4. (The ensemble mean is 0 by construction. Nev- 
ertheless take the sample mean from the series when you compute the auto- 
correlations.) 

(2) For each statistic, accept or reject the null of no serial correlation at a sig- 
nificance level of 5%, assuming that the statistic is distributed as X2(4). 

Do this a large number of times, each time using a different string of 50 i.i.d. 
random numbers generated afresh. For each Q statistic, calculate the frequency 
of rejecting the null. If the finite-sample distribution of the statistic is well 
approximated by x2(4), the frequency should be close to 5%. Which statistic 
gives you the frequency closer to the nominal size of 5%? Do we fail to reject 
the null too often if we use the Box-Pierce Q? 

A N S W E R S  T O  S E L E C T E D  Q U E S T I O N S  

A N A L Y T I C A L  E X E R C I S E S  

3. From (2.3.7) of the text, b - B = S;,'g. By Kolmogorov, Sxx +p E(xi xi) and 
g +, 0. So b is consistent. By the Lindeberg-Levy CLT, f i g  +d N(0, S). 
The rest of the proof should now be routine. 

7. What remains to be shown is that the LHS of (**) equals Avar(b) = X,-,'SX,-,'. 

1 
Xxx = plim -XfX 

n 
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and 
s = E(E?x;x:) 

= E[E(E? I x,)x~x:] 

= E[(z:a)xix:] (by (2.8.1)) 

1 " 
= plim - x ( z : a ) x i x j  (by ergodic stationarity) 

;=, 
1 

= plim -XIVX (by definition (2.8.4) of V). 
n 

E M P I R I C A L  E X E R C I S E S  

Ic. The CPI is probably the most widely used fixed-weight price index. 

1 e. The negative of the intercept = r (the constant ex-ante real interest rate). 

1 g. Point estimates are the same. Only standard errors are different. 

1 i. Looking at Fama's Table 3, his R, coefficient when the sample period is 1/53 to 
7/71 is 0.98 with a s.e. of 0.10. Very close, but not exactly the same. There are 
two possible explanations for the difference between our estimates and Fama's. 
First, in calculating the inflation rate for month t ,  n,+l = (P,+I - P,)/P,, it is 
not clear from Fama that CPZ,-l rather than CPZ, was used for P,. Second, the 
weight for the CPZ at the time of his writing may be for 1958. The weight for 
the CPI in our data is for 1982-1984. Our estimate of the intercept (-0.868) 
differs from Fama's (0.00070) because, first, his dependent variable is the neg- 
ative of the inflation rate and, second, the inflation rate and the T-bill rate are 
monthly rates in Fama. 

1 j. The seasonally adjusted series manufactured by the BLS is a sort of two-sided 
moving average. Thus, for example, seasonally adjusted CPZ, depends on sea- 
sonally unadjusted values of future CPI, which is not in I,. Thus if there is no 
reason to take account of seasonal factors in the relationship between the infla- 
tion rate and the nominal interest rate, one should use seasonally unadjusted 
data. If there is a need to take account of seasonal factors, it is better to include 
seasonal dummies in the regression rather than use seasonally adjusted data. 
Inclusion of seasonal dummies does not change results in any important way. 

1 k. The R, coefficient drops to 0.807 from 1.014. 
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C H A P T E R  3 

Single-Equation GMM 

A B S T R A C T  

The most important assumption made for the OLS is the orthogonality between the 
error term and regressors. Without it, the OLS estimator is not even consistent. 
Since in many important applications the orthogonality condition is not satisfied, it 
is imperative to be able to deal with endogenous regressors. The estimation method 
called the Generalized Method of Moments (GMM), which includes OLS as a spe- 
cial case, provides a solution. This chapter presents GMM for single-equation mod- 
els, while the next chapter develops its multiple-equation extension. These chapters 
deal only with linear equations. GMM estimation of nonlinear equations will be cov- 
ered in Chapter 7. The major alternative to GMM, the maximum likelihood (ML) 
estimation, will be covered in Chapter 8. 

Reflecting the prevalence of endogenous regressors in economics, this chapter 
starts out with a number of examples. This is followed by a general formulation 
of endogenous regressors in Section 3.3. Section 3.4 introduces the GMM proce- 
dure for the model of Section 3.3. Sections 3.5-3.7 are devoted to developing the 
large sample properties of the GMM estimator and associated test statistics. Under 
conditional homoskedasticity, the formulas derived in these sections can be simpli- 
fied. Section 3.8 collects those simplified formulas. In particular, the two-stage least 
squares (2SLS), the techniques originally designed for the estimation of simultane- 
ous equations models, is a special case of GMM. The ML counterpart of 2SLS is 
called limited-information maximum likelihood (LIML), which will be covered in 
Section 8.6. 

The empirical exercise of the chapter takes up the most widely estimated equa- 
tion in economics, the wage equation. The equation relates the wage rate to the 
individual's various characteristics such as education and ability. Because education 
is a choice made by individuals, and also because ability is imperfectly measured 
in data, the regressors are likely to be endogenous. We apply the estimation tech- 
niques introduced in this chapter to the wage equation and verify that the parameter 
estimates depend on whether we correct for endogeneity. 
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3.1 Endogeneity Bias: Working's Example 

A Simultaneous Equations Model of Market Equilibrium 
The classic illustration of biases created by endogenous regressors is Working 
(1927). Consider the following simple model of demand and supply: 

qf = a 0  + a1 pi + ui , (demand equation) (3.1.1a) 

q,! = Bo + Blpi + vi , (supply equation) (3.1.1b) 

qf = qf , (market equilibrium) (3.1.1~) 

where qf is the quantity demanded for the commodity in question (coffee, say) in 
period i ,  qf is the quantity supplied, and pi is the price. The error term ui in the 
demand equation represents factors that influence coffee demand other than price, 
such as the public's mood for coffee. Depending on the value of ui, the demand 
curve in the price-quantity plane shifts up or down. Similarly, vi represents supply 
factors other than price. We assume that E(ui) = 0 and E(vi) = 0 (if not, include 
the nonzero means in the intercepts a. and Bo). To avoid inessential complications, 
we also assume Cov(ui, vi) = 0. If we define qi = q: = q,", the three-equation 
system (3.1.1) can be reduced to a two-equation system: 

qi = a 0  + a1 pi + U i ,  (demand equation) (3.1.2a) 

qi = Bo + pi + vi . (supply equation) (3.1.2b) 

We say that a regressor is endogenous if it is not predetermined (i.e., not 
orthogonal to the error term), that is, if it does not satisfy the orthogonality con- 
dition. When the equation includes the intercept, the orthogonality condition is 
violated and hence the regressor is endogenous, if and only if the regressor is cor- 
related with the error term. In the present example, the regressor pi is necessarily 
endogenous in both equations. To see why, treat (3.1.2) as a system of two simul- 
taneous equations and solve for (p i ,  qi) as 

So price is a function of the two error terms. From (3.1.3a), we can calculate the 
covariance of the regressor pi with the demand shifter ui and the supply shifter vi 
to be 
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which are not zero (unless Var(ui) = 0 and Var(vi) = 0). Therefore, price is 
correlated positively with the demand shifter and negatively with the supply shifter, 
if the demand curve is downward-sloping (al < 0) and the supply curve upward- 
sloping (B1 > 0). In this example, endogeneity is a result of market equilibrium. 

Endogeneity Bias 
When quantity is regressed on a constant and price, does it estimate the demand 
curve or the supply curve? The answer is neither, because price is endogenous in 
both the demand and supply equations. Recall from Section 2.9 that the OLS esti- 
mator is consistent for the least squares projection coefficients. In the least squares 
projection of qi on a constant and pi, the coefficient of pi is Cov(pi, q;)/ ~ a r ( ~ ~ ) , '  

SO, 

plim of the OLS estimate of the price coefficient = C o v ( ~ i .  qi). (3.1.5) 
Var (~ i )  

To rewrite this ratio in relation to the price effect in the demand curve (a1), use the 
demand equation (3.1.2a) to calculate Cov(pi, qi) as 

Substituting (3.1.6) into (3.1.5), we obtain the expression for the asymptotic bias 
for al 

plim of the OLS estimate of the price coefficient - a1 = 
Cov(pi ui) . (3.1.7) 

V d p i  ) 

Similarly, the asymptotic bias for B1, the price effect in the supply curve, is 

plim of the OLS estimate of the price coefficient - = Cov(pi vi) . (3.1.8) 
V d ~ i )  

But, as seen from (3.1.4), Cov(pi, ui) # 0 and Cov(pi, vi) # 0, so the OLS 
estimate is consistent for neither a1 nor PI. This phenomenon is known as the 

endogeneity bias. It is also known as the simultaneous equations bias or simul- 
taneity bias, because the regressor and the error term are often related to each 
other through a system of simultaneous equations, as in the present example. 

 act: Let y be the least squares coefficients in E* (? I I ,  x) = a + x'y. Then y = var(x)-' Cov(x, y). 
Proving this was an analytical exercise for Chapter 2. 
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In the extreme case of no demand shifters (so that ui = 0 for all i), we have 

Cov(pi, ui) = 0, and the formula (3.1.7) indicates that the OLS estimate is con- 
sistent for the demand parameter a l .  In this case, the demand curve does not shift, 
and, as illustrated in Figure 3.1 (a), all the observed combinations of price and quan- 
tity fall on the demand curve as the supply curve shifts. In the other extreme case 
of no supply shifters, the observed price-quantity pairs trace out the supply curve 
as the demand curve shifts (see Figure 3.l(b)). In the general case of both curves 
shifting, the OLS estimate should be consistent for a weighted average of a1 and 

PI. This can be seen analytically by deriving yet another expression for the plim 
of the OLS estimate: 

plim of the OLS estimate of the price coefficient = 
a 1  Var(vi) + Bi Var(ui) 

Var(vi)+Var(ui) ' 

Proving this is a review question. 

Observable Supply Shifters 
The reason neither the demand curve nor the supply curve is consistently estimated 
in the general case is that we cannot infer from data whether the change in price 

and quantity is due to a demand shift or a supply shift. This suggests that it might 
be possible to estimate the demand curve (resp. the supply curve) if some of the 
factors that shift the supply curve (resp. the demand curve) are observable. So 
suppose the supply shifter, vi, can be divided into an observable factor xi and an 

unobservable factor Ci uncorrelated with xi .2 

Now imagine that this observed supply shifter x, is predetermined (i.e., uncorre- 

lated with the error term) in the demand equation; think of x, as the temperature 

in coffee-growing regions. If the temperature (x,) is uncorrelated with the unob- 

served taste for coffee (u,), it should be possible to extract from price movements 
a component that is related to the temperature (the observed supply shifter) but 
uncorrelated with the demand shifter. We can then estimate the demand curve 

I by examining the relationship between coffee consumption and that component of 

price. Let us formalize this argument. 

2 ~ h i s  decomposition is always possible. If the least squares projection of vi on a constant and xi is yo + B?xi. 
define C; m vi - yo - & x i ,  so v; = C; + yo + & x i .  By definition, Ci is uncorrelated with xi .  Substitute this 
equation into the original supply equation (3.1.2b) and submerge yo in the intercept. This produces (3.1.2b1). 
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For the equation in question, a predetermined variable that is correlated with 
the endogenous regressor is called an instrumental variable or an instrument. 
We sometimes call it a valid instrument to emphasize that its correlation with the 
endogenous regressor is not zero. In this example, the observable supply shifter xi 
can serve as an instrument for the demand equation. This can be seen easily. Solve 
the system of two simultaneous equations (3.1.2a) and (3.1.2b1) for (pi ,  qi): 

Since Cov(xi , Ci) = 0 by construction and Cov(xi , ui) = 0 by assumption, it 
follows from (3.1.10a) that 

So xi is indeed a valid instrument. 
With a valid instrument at hand, we can estimate the price coefficient al of 

the demand curve consistently. Use the demand equation (3.1.2a) to calculate, not 
Cov(pi, qi) as in (3.1.6), but Cov(xi, qi): 

Cov(xi, qi) = a1 Cov(xi, p i )  + Cov(xi, ui) 

= a1 Cov(xi, p i )  (Cov(xi, ui) = 0 by assumption). 

As we just verified, Cov(xi, pi)  # 0. So we can divide both sides by Cov(xi, pi) 
to obtain 

A natural estimator that suggests itself is 

sample covariance between xi and qi 
&,IV = (3.1.12) 

sample covariance between xi and pi 

This estimator is called the instrumental variables (IV) estimator with xi as the 
instrument. We sometimes say "the endogenous regressor pi is instrumented by 
Xi .)) 

Another popular procedure for consistently estimating a1 is the two-stage least 
squares (2SLS). It is so called because the procedure consists of running two 
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regressions. In the first stage, the endogenous regressor pi is regressed on a con- 
stant and the predetermined variable xi, to obtain the fitted value, b i ,  of pi. The 
second stage is to regress the dependent variable qi on a constant and ji . The use of 
bi rather than pi distinguishes 2SLS from the simple-minded application of OLS 
to the demand equation. The 2SLS estimator of a, is the OLS estimate of the bi 
coefficient in the second-stage regression. So it equals3 

sample covariance between bi and qi 
& , ~ S L S  = (3.1.13) 

sample variance of bi 

To relate the regression in the second stage to the demand equation, rewrite 
(3.1.2a) as 

The second stage regression estimates this equation, treating the bracketed term as 
the error term. The OLS estimate of al is consistent for the following reason. If the 
fitted value bi were exactly equal to the least squares projection E*(pi  I 1, xi), then 
neither ui nor (pi - bi)  would be correlated with bi : ui is uncorrelated because it is 
uncorrelated with xi and bi is a linear function of xi, and (pi - bi)  is uncorrelated 
because it is a least squares projection error. The fitted value bi is not exactly equal 

to E*(pi I 1, xi), but the difference between the two vanishes as the sample gets 
larger. Therefore, asymptotically, bi is uncorrelated with the error term in (3.1.14), 
making the 2SLS estimator consistent. Furthermore, since the projection is the best 
linear predictor, the fitted value incorporates all of the effect of the supply shifter 
on price. This suggests that minimizing the asymptotic variance is minimized for 
the 2SLS estimator. 

In the present example, the IV and 2SLS estimators are numerically the same 
(we will prove this in a more general context). More generally, the 2SLS estimator 
can be written as an IV estimator with an appropriate choice of instruments, and 
the IV estimator, in turn, is a particular GMM estimator. 

Q U E S T I O N S  F O R  R E V I E W  

1. In the simultaneous equations model (3.1.2), suppose Cov(ui, vi) is not nec- 

essarily zero. Is it necessarily true that price and the demand shifter ui are 
positively correlated when a1 < 0 and B1 > O? [Answer: No.] Why? 

3 ~ a c t :  In the regression of yi on a constant and xi, the OLS estimator of the xi coefficient is the ratio of the 
sampIe covariance between xi and yi to the sample variance of xi. Proving this was a review question of Section 
1.2. 
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2. (3.1.7) shows that the OLS estimate of the price coefficient in the regression of 
quantity on a constant and price is biased for the price coefficient a , .  Is the OLS 
estimate of the intercept biased for ao, the intercept in the demand equation? 
Hint: The plim of the OLS estimate of the intercept in the regression is 

But from (3.1.2a), E(qi) = a,-, + a1 E(pi). 

3. Derive (3.1.9). Hint: Show: 

4. For the market equilibrium model -(3.1.2a), (3.1 .2b1) (on page 189) with 
Cov(ui, Si) = 0, Cov(xi, ui) = 0, and Cov(xi, Si) = 0, verify that price is 
endogenous in the demand equation. Is it in the supply equation? Hint: Look 

at (3.1.1 Oa). Do we need the assumption that the demand and supply shifters 
are uncorrelated (i.e., Cov(ui, Si) = 0) for and to be consistent? 
Hint: Is xi a valid instrument without the assumption? 

3.2 More Examples 

Endogeneity bias arises in a wide variety of situations. We examine a few more 
examples. 

A Simple Macroeconometric Model 

Haavelmo's (1943) illustrative model is an extremely simple macroeconometric 
model: 

Ci = a0 + a1 Yi + ui , 0 < a ,  < 1 (consumption function) 

Yi = Ci + Ii (GNP identity), 

where Ci is aggregate consumption in year i,  Yi is GNP, Ii is investment, and a1 is 
the Marginal Propensity to Consume out of income (the MPC). As is familiar from 
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introductory macroeconomics, GNP in equilibrium is 

If investment is predetermined in that Cov(Zi, ui) = 0, it follows from (3.2.1) that 

So income is endogenous in the consumption function, but investment is a valid 
instrument for the endogenous regressor. A straightforward calculation similar to 
the one we used to derive (3.1.7) shows that the OLS estimator of the MPC obtained 
from regressing consumption on a constant and income is asymptotically biased: 

This is perhaps the clearest example of simultaneity bias. The difference from 
Working's example of market equilibrium is that here the second equation is an 
identity, which only makes it easier to see the endogeneity of the regressor. The 
asymptotic bias can be corrected for by the use of investment as the instrument 
for income in the consumption function. The role played by the observable supply 
shifter in Working's example is played here by investment. 

Errors-in-Variables 

The term errors-in-variables refers to the phenomenon that an otherwise predeter- 
mined regressor necessarily becomes endogenous when measured with error. This 
problem is ubiquitous, particularly in micro data on households. For example, in 
the Panel Study of Income Dynamics (PSID), information on variables such as 
food consumption and income is collected over the telephone. It is perhaps too 
much to hope that the respondent can recall on the spot how much was spent on 
food over a specified period of time. 

The cross-section version of M. Friedman's (1957) Permanent Income Hypoth- 
esis can be formulated neatly as an errors-in-variables problem. The hypothesis 
states that "permanent consumption" C: for household i is proportional to "per- 
manent income" Yi+: 
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It is assumed that measured consumption Ci and measured income Yi are error- 
ridden measures of permanent consumption and income: 

Ci = C f  + c i  and Yi = Yi*+yi. (3.2.4) 

Measurement errors ci and yi are assumed to be zero mean and uncorrelated with 
permanent consumption and income: 

Substituting (3.2.4) into (3.2.3), the relationship can be expressed in terms of mea- 
sured consumption and income: 

This example differs from the previous ones in that the equation does not 
include a constant. So we should examine the cross moment E(Yiui) rather than 
the covariance Cov(Yi, u ;) to determine whether income is predetermined. It is 
straightforward to derive from (3.2.4)-(3.2.7) that 

So measured income is endogenous in the consumption function (3.2.7). Unlike 
in the previous examples, the endogeneity is due to measurement errors. Using 
the fact that the OLS estimator of the Yi coefficient in (3.2.7) is consistent for 
the corresponding least squares projection coefficient E(Ci Yi)/ E ( Y ~ ~ ) ,  we can also 
derive from (3.2.4)-(3.2.7) that 

A 

plim koLS = 
k E[(Y,*)~I 

< k. 
E[(Yi*l21 + E(Y?) 

So the regression of measured consumption on measured income (without the inter- 
cept) underestimates k. Friedman used this result to explain why the MPC from 
the cross-section regression of consumption on income is lower than the MPC esti- 
mated from aggregate time-series data. 

Let us suppose for a moment that there exists a valid instrument xi. So 
E(xiui) = 0 and E(xiYi) # 0. A similar argument we used for deriving (3.1.11) 
establishes that 
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So a consistent IV estimator is 

- sample mean of xi Ci 
k1v = 

sample mean of xi Yi ' 

But is there a valid instrument? Yes, and it is a constant. Substituting xi = 1 
into (3.2.10), we obtain a consistent estimator of k which is the ratio of the sample 
mean of measured consumption to the sample mean of measured income. This is 
how Friedman estimated k. 

Production Function 
In many contexts, the error term includes factors that are observable to the eco- 
nomic agent under study but unobservable to the econometrician. Endogeneity 
arises when regressors are decisions made by the agent on the basis of such fac- 
tors. Consider a cross-sectional sample of firms choosing labor input to maximize 
profits. The production function of the i-th firm is 

where Qi is the firm's output, L; is labor input, Ai is the firm's efficiency level 
known to the firm, and vi is the technology shock. In contrast to Ai, v; is not 
observable to the firm when it chooses Li. Neither Ai nor v; is observable to the 
econometrician. 

Assume that, for each firm i, vi is serially independent over time. Therefore, 
B = E[exp(vi)] is the same for all i,4 and the level of output the firm expects when 
it chooses Li is 

Let p be the output price and w the wage rate. For simplicity, assume that all the 
firms are from the same competitive industry so that p and w are constant across 
firms. Firm i's objective is to choose Li to maximize expected profits 

p - Ai (L~)"  . B - w . L;. 

Take the derivative of this with respect to Li, set it equal to zero, and solve it for 

4 ~ f  vi for firm i were correlated over time, the firm would use past values of vi to forecast the current value of 
vi when choosing labor input, and so B would differ across firms. Also. since the expected value of a nonlinear 
function of a random variable whose mean is zero is not necessarily zero, B is not necessarily zero even if 
E(vi) = 0. 
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Li, to obtain the profit-maximizing labor input level: 

Let ui be firm i's deviation from the mean log efficiency: ui = log(Ai) - 
E[log(Ai)], and let 40 - E[log(Ai)] (so E(ui) = 0 and Ai = exp(&, + ui)). Then, 
the production function (3.2.1 1) and the labor demand function (3.2.12) in logs can 
be written as 

where 

Because all firms face the same prices, Po is constant across firms. (3.2.14) shows 
that, in the log-linear production function (3.2.13), log(Li) is an endogenous regres- 
sor positively correlated with the error term (vi + ui) through ui. Thus, the OLS 
estimator of in the estimation of the log-linear production function confounds 
the contribution to output of ui with labor's contribution. This example illus- 
trates yet another source of endogeneity: a variable chosen by the agent taking 
into account some error component unobservable to the econometrician. 

Q U E S T I O N S  F O R  R E V I E W  

1. In Friedman's Permanent Income Hypothesis, consider the regression of Ci on 
a constant and Yi. Derive the plim of the OLS estimator of the Yi coefficient in 
this regression with a constant. Hint: The plim equals the ratio of Cov(Ci, Yi) 

to Var(Yi). Show that it equals 

A 

2. In the production function example, show that plim,,, = 1, where 

is the OLS estimate of from (3.2.13). Hint: Eliminate ui from the log 

output equation (3.2.13) by using the labor demand equation (3.2.1 4). 

3. In the production function example, suppose the firm can observe v; as well 
as ui before deciding on labor input. How does the demand equation for labor 
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(3.2.12) change? Show that log(Qi) and log(Li) are perfectly correlated. Hint: 

log(Qi) will be an exact linear function of log(Li) without errors. 

3.3 The General Formulation 

We now provide a general formulation. It is a model described by the following set 
of assumptions and is a generalization of the model of Chapter 2. 

Regressors and Instruments 

Assumption 3.1 (linearity): The equation to be estimated is linear: 

y i = z : 6 + ~ ~  ( i = l , 2  , . . . ,  n), 

where zi is an L-dimensional vector of  regressors, 6 is an L-dimensional coeffi- 
cient vector, and ~i is an unobservable error term. 

Assumption 3.2 (ergodic stationarity): Let xi be a K-dimensional vector to be 
referred to as the vector of  instruments, and let wi be the unique and nonconstant 
elements of ( yi , zi , xi) .5 {wi } is jointly stationary and ergodic. 

Assumption 3.3 (orthogonality conditions): All the K variables in xi are pre- 
determined in the sense that they are all orthogonal to the current error term: 
E(xik E ~ )  = 0 for all i and k (k = 1, 2, . . . , K ) . ~  This can be written as 

where gi = xi . ci. 

We remarked in Section 2.3 that, when the regressors include a constant, the orthog- 
onality conditions about the regressors are equivalent to the condition that E ( E ~ )  = 

0 and that the regressors be uncorrelated with the error term. Here, the orthogonal- 
ity conditions are about the instrumental variables. So if one of the instruments is 

'see examples below for illustrations of wi. 
6 ~ s  was noted in Section 2.3, our use of the term predetermined may not be standard in some quarters of the 

profession. All we require for the term is that the current error term be orthogonal to the current regressors. We 
do not require that the current error term be orthogonal to the past regressors. 



Single-Equation GMM 199 

a constant, Assumption 3.3 is equivalent to the condition that E (E~)  = 0 and that 
nonconstant instruments be uncorrelated with the error term. 

The examples examined in the previous two sections can be written in this 
general format. For example, 

Example 3.1 (Working's example with an observable supply shifter): 
Consider the market equilibrium model of (3.1.2a) and (3.1 .2b1) on page 189. 
Suppose the equation to be estimated is the demand equation. The example 
can be cast in the general format by setting 

and wi = (qi , pi, xi)'. Since the mean of the error term is zero, a constant is 
orthogonal to the error term and so can be included in xi. It follows that xi, 
which is assumed to be uncorrelated with the error term, satisfies the orthog- 
onality condition E(xi .si) = 0. SO it too can be included in xi. 

The other examples of the previous sections can be similarly written as special 
cases of the general model. 

Having two separate symbols, xi and zi, may give you the impression that 
the regressors and the instruments do not share the same variables, but that is not 
always the case. Indeed in the above example, xi and zi share the same variable 
(a constant). The instruments that are also regressors are called predetermined 
regressors, and the rest of the regressors, those that are not included in xi, are 
called endogenous regressors. A good example to make the point is 

Example 3.2 (wage equation): A simplified version of the wage equation 
to be estimated later in this chapter is 

where LWi is the log wage of individual i ,  Si is completed years of school- 
ing, EXPRi is experience in years, IQi is IQ, and .si is unobservable individ- 
ual characteristics relevant for the wage rate. We assume E(E~)  = 0 (if not, 
include the mean of .si in A1). In one of the specifications we estimate later, we 
assume that Si is predetermined but that IQ,, an error-ridden measure of the 
individual's ability, is endogenous due to the errors-in-variables problem. We 
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also assume that EXPRi, AGE; (age of the individual), and MEDi (mother's 

education in years) are predetermined. AGE; is excluded from the wage equa- 
tion, reflecting the underlying assumption that, once experience is controlled 

for, age has no effect on the wage rate. In terms of the general model, 

yi = LWi, L = 4, z; = 
EXPR; 

AGEi 

MED; 

and wi = (LW;, S;, EXPRi, IQi, AGEi, MED;)'. As in Example 3.1, we can 
include a constant in xi because E ( E ~ )  = 0. In this example, xi and zi share 

three variables (1, S; , EXPRi). .If, for example, S; were not included in xi, 

that would amount to treating Si as endogenous. 

If, as in this example, some of the regressors zi are predetermined, those prede- 

termined regressors should be included in the list of instruments xi. The GMM 
estimation of the parameter vector is about how to exploit the information afforded 

by the orthogonality conditions. Not including predetermined regressors as ele- 

ments of xi amounts to throwing away the orthogonality conditions that could have 

been exploited. 

Identification 

As seen from the examples of the previous two sections, an instrument must be not 
only predetermined (i.e., orthogonal to the error term) but also correlated with the 

regressors. Otherwise, the instrumental variables estimator cannot be defined (see, 
e.g., (3.1 .I  1)). The generalization to the case with more than one regressor and 
more than one predetermined variable is 

Assumption 3.4 (rank condition for identification): The K x L matrix E(xiz:) 

is o f  full column rank (i.e., its rank equals L,  the number of  its columns). We 
denote this matrix by x,,.' 

To see that this is indeed a generalization, consider Example 3.1. With zi = 

(I. pi)', xi = (1, xi)', the X,, matrix is 

'SO the cross moment E(xiz:) is assumed to exist and is finite. If a moment is indicated, as here, then by 
implication the moment is assumed to exist and is finite. 
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The determinant of this matrix is not zero (and hence is of full column rank) if and 
only if Cov(x;, p , )  = E(xipi) - E(x;) E(p;) # 0. 

Assumption 3.4 is called the rank condition for identification for the fol- 
lowing reason. To emphasize the dependence of gi (r x, . E ; )  on the data and the 
parameter vector, rewrite g; as 

So the orthogonality conditions can be rewritten as 

Now let 6 (L x 1 )  be a hypothetical value of 6 and consider the system of K 
simultaneous equations in L unknowns (the L elements of 6): 

The orthogonality conditions (3.3.2) mean that the true value of the coefficient 
vector, 6, is a solution to this system of K simultaneous equations (3.3.3). So 
the assumptions we have made so far guarantee that there exists a solution to the 
simultaneous equations system. We say that the coefficient vector (or the equation) 
is identified if 6 = 6 is the only solution. 

Because the estimation equation is linear in our model, the function g(w;; 6) is 
linear in 6, as it can be written as xi . y; - xiz:6. So (3.3.3) is a system of K linear 
equations: 

where 

nxy -- E(xi . y;), Cxz - E(xiz:). 

A necessary and sufficient condition that 6 = 6 is the only solution can be derived 
from the following result from matrix algebra.8 

Suppose there exists a solution to a system of linear simultaneous equations 

'see, e.g.. Searle (1982. pp. 233-234). 

Keen
Rectangle



202 Chapter 3 

in x: Ax = b. A necessary and sufficient condition that it is the only 
solution is that A is of full column rank. 

Therefore, 8 = 6 is the only solution to (3.3.4) if and only if Ex, is of full column 
rank, which is Assumption 3.4. 

Order Condition for Identification 
Since rank(Ex,) < L if K < L, a necessary condition for identification is that 

K (= #predetermined variables) 2 L (= #regressors). (3.3.5a) 

This is called the order condition for identification. It can be stated in different 
ways. Since K is also the number of orthogonality conditions and L is the number 
of parameters, the order condition can.be stated equivalently as 

#orthogonality conditions 2 #parameters. (3.3.5b) 

By subtracting the number of predetermined regressors from both sides of the 
inequality, we obtain another equivalent statement: 

#predetermined variables excluded from the equation 

2 kndogenous regressors. (3.3%) 

Depending on whether the order condition is satisfied, we say that the equation is 

overidentified if the rank condition is satisfied and K > L, 

exactly identified or just identified if the rank condition is satisfied and 
K = L ,  

underidentified (or not identified) if the order condition is not satisfied (i.e., if 

K < L). 

Since the order condition is a necessary condition for identification, a failure of the 
order condition means that the equation is not identified. 

The Assumption for Asymptotic Normality 

As in Chapter 2, we need to strengthen the orthogonality conditions for the estima- 
tor to be asymptotically normal. 

Assumption 3.5 (gi is a martingale difference sequence with finite second 
moments): Let gi = xi . E ~ .  {gi] is a martingale difference sequence (so a for- 
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tiori E(gi) = 0). The K x K matrix of cross moments, E(gigi), is nonsingular. 
We use S for Avar(g) (i.e., the variance of the limiting distribution of f i  g, where 

g = Cy=l gi). By Assumption 3.2 and the ergodic stationary Martingale Differ- 
ences CLT, S = E(gigi). 

This is the same as Assumption 2.5, and the same comments apply: 

If the instruments include a constant, then this assumption implies that the error 
is a martingale difference sequence (and a fortiori serially uncorrelated). 

A sufficient and perhaps easier to understand condition for Assumption 3.5 is 

that 

which means that, besides being a martingale difference sequence, the error term 

is orthogonal not only to the current but also to the past instruments. 

Since gig: = c? xixi, S is a matrix of fourth moments. Consistent estimation of 
S will require a fourth-moment assumption to be specified in Assumption 3.6 

below. 

If {gi} is serially correlated, then S (which is defined to be Avar(g)) does not 

equal E(gi&) and will take a more complicated form, as we will see in Chapter 6. 

Q U E S T I O N S  F O R  R E V I E W  

1. In the Working example of Example 3.1, is the demand equation identified? 

Overidentified? Is the supply equation identified? 

2. Suppose the rank condition is satisfied for the wage equation of Example 3.2. 

Is the equation overidentified? 

3. In the production function example, no instrument other than a constant is spec- 

ified. So K = 1 and L = 2. The order condition informs us that the log output 

equation (3.2.13) cannot be identified. Write down the orthogonality condition 

and verify that there are infinitely many combinations of (@o, that satisfy 

the orthogonality condition. 

4. Verify that the examples of Section 3.2 are special cases of the model of this 

section by specifying (yi , xi, zi) and writing down the rank condition for each 
example. 
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5. Show that the model implies 

rank ( , K x L , >  C,, = rank ( ( K X L )  Cxz (z:?))' 

Hint: 6 = 6 is a solution to (3.3.4). (Some textbooks add this equation to 
the rank condition for identification, but the equation is implied by the other 
assumptions of the model.) 

6. (Irrelevant instruments) Consider adding another variable, call it ti, to xi. 

Although it is predetermined, the variable is unrelated to the regressors in that 

E(t;zie) = 0 for all C (= 1, 2, . . . , L). Is the rank condition still satisfied? 
Hint: If a K x L matrix is of full column rank, then adding any L-dimensional 

row vector to the rows of the matrix does not alter the rank. 

7. (Linearly dependent instruments) In Example 3.2, suppose AGE; = EXPR; + 
Si for all the individuals in the population. Does that necessarily mean a failure 

of the rank condition? [Answer: No.] Is the full-rank condition in Assumption 
3.5 (that E(gig:) be nonsingular) satisfied? Hint: There exists a K-dimensional 

vector a # 0 such that afxi  = 0. Show that a' E(g,g:) = 0. 

8. (Linear combinations of instruments) Let A be a q x K matrix of full row 

rank (so q 5 K )  such that AX,, is of full column rank. Let 2; = Axi (so ji; is 

a vector of q transformed instruments). Verify: Assumptions 3.3-3.5 hold for 
rii if they do for xi. 

9. Verify that the model, consisting of Assumptions 3.1-3.5, reduces to the regres- 
sion model of Chapter 2 if z; = xi. 

3.4 Generalized Method of Moments Defined 

The orthogonality conditions state that a set of population moments are all equal 
to zero. The basic principle of the method of moments is to choose the para- 
meter estimate so that the corresponding sample moments are also equal to zero. 

The population moments in the orthogonality conditions are E[g(wi; 6)]. Its sam- 

ple analogue is the sample mean of g(wi; 6) (where g(w;; 6) is defined in (3.3.1)) 
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evaluated at some hypothetical value 6 of 6: 

1 " 
gn (h  = - C g(wi; 6). 
( K x l )  n i= l  

Applying the method of moments principle to our model amounts to choosing 
a 6 that solves the system of K simultaneous equations in L unknowns: gn(6) = 0, 
which is the sample analog of (3.3.3). Because the estimation equation is linear, 
g, (8) can be written as 

1 " 
&(6) = - C xi . (yi - ~ $ 6 )  (by definition (3.3.1) of g(wi; 6)) 

n 
i=l  

where s,, and S, are the corresponding sample moments of a,, and C,,: 

1 1 

S x ~  - - c x i y i  and S, = - C x i z j .  
( K x l )  i=l  ( K x L )  n i=l  

So the sample analog &(6) = 0 is a system of K linear equations in L unknowns: 

This is the sample analogue of (3.3.4). If there are more orthogonality conditions 
than parameters, that is, if K > L, then the system may not have a solution. The 
extension of the method of moments to cover this case as well is the generalized 
method of moments (GMM). 

Method of Moments 

If the equation is exactly identified, then K = L and C, is square and invertible. 
Since under Assumption 3.2 S,, converges to C,, almost surely, S,, is invertible 
for sufficiently large sample size n with probability one. Thus, when the sample 
size is large, the system of simultaneous equations (3.4.3) has a unique solution 
given by 
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This estimator is also called the instrumental variables estimator with xi serving 
as instruments. Because it is defined for the exactly identified case, the formula 
assumes that there are as many instruments as regressors. If, moreover, zi = xi (all 
the regressors are predetermined or orthogonal to the error term), then &v reduces 
to the OLS estimator. Thus, the OLS estimator is a method of moments estimator. 

Generalized Method of Moments 
If the equation is overidentified so that K > L, we cannot in general choose an 
L-dimensional 6 to satisfy the K equations in (3.4.3). If we cannot set gn(6) exactly 
equal to 0, we can at least choose 6 so that &(6) is as close to 0 as possible. To 
make precise what we mean by "close," we define the distance between any two 
K-dimensional vectors 5 and q by the quadratic form (5 - q)'fi(5 - q), where 
@, sometimes called the weighting matrix, is a symmetric and positive definite 
matrix defining the di~tance.~ 

Definition 3.1 (GMM estimator): Let fi be a K x K symmetric positive definite 
matrix, possibly dependent on the sample, such that fi +, W as the sample size 
n goes to infinity with W symmetric and positive definite. The GMM estimator 
of 6, denoted 2 ( f i ) ,  is 

i(@) = argmin J (6, f i )  , 
S 

where 
- A 

J(6, W) E n g,(6)'fiS(6). 

(The reason the distance gn (6)'@& (5) is multiplied by the sample size (n) becomes 
clear in Section 3.6.) The weighting matrix is allowed to be random and depend 
on the sample size, to cover the possibility that the matrix is estimated from the 
sample. The definition makes clear that the GMM is a special case of minimum 
distance estimation. In minimum distance estimation, plim gn(6) = 0, as here, 
but the gn(.) function is not necessarily a sample mean. 

Since gn(8) is linear in 6 (see (3.4.2)), the objective function is quadratic in 6 
when the equation is linear: 

9 ~ o  not let the word "weight" confuse you between GMM and weighted least squares (WLS). In GMM, the 
weighting is applied to the sample mean g, while in WLS it applies to each observation. 
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It is left to you to show that the first-order condition for the minimization of this 
with respect to is 

s;, e SY = s;, e s,, f . 
( L x K )  ( K x K )  ( K x l )  ( L x K )  ( K x K )  ( K x L )  ( L x l )  

If Assumptions 3.2 and 3.4 hold, then S,, is of full column rank for sufficiently 
large n with probability one. Then, since e is positive definite, the L x L matrix 
s;,~s, is nonsingular. So the unique solution can be obtained by multiplying 
both sides by the inverse of S;,~S,,. That unique solution is the GMM estimator: 

GMM estimator: $ ( e )  = (s;,~s,,)-' S;,esXy, (3.4.8) 

If K = L, then S,, is a square matrix and (3.4.8) reduces to the IV estimator 
(3.4.4). The GMM is indeed a generalization of the method of moments. 

Sampling Error 
For later use, we derive the expression for the sampling error. Multiplying both 
sides of the estimation equation yi = z : 6 + ~ ~  from left by xi and taking the averages 
yields 

where 

Substituting (3.4.9) into (3.4.8), we obtain 

Q U E S T I O N S  F O R  R E V I E W  

1. Verify that (3.1.12) is the IV estimator of a 1  when the method of moments is 
applied to the demand equation (3.1.2a) with (1, xi) as instruments. 

- A 

2. If the equation is just identified, what is the minimized value of J(6, W)? 

3. Even if the equation is overidentified, the population version, (3.3.4), of the 
system of K equations (3.4.3) has a solution. Then, why does not the sample 
version, (3.4.3), have a solution? Hint: The population version has a solution 
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because the K x (L + 1) matrix [Ex, : a,,] is of rank L. The rank condition 

is a set of equality conditions on the elements of Ex, and a,,. Even if S,, 
and s,, converge to Ex, and a,,, respectively, it does not necessarily follow 

that [S,, : s,,] is of rank L for sufficiently large n.  In contrast, S,, is of full 

column rank for sufficiently large n when its limit, Ex, is of full column rank. 

This is because the full column rank condition for a matrix is a set of inequality 

conditions on the elements of the matrix. 

4. What is wrong with the following argument? 

Even if the equation is overidentified, there is no problem finding a 
solution to (3.4.3). Just premultiply both sides by S;, to obtain 

Since S,, is of full column rank, S;,S,, is invertible. So the solution is 

Hint: This 6 certainly solves (3.4.12), but does it solve (3.4.3)? 

5. (Singular W) Verify that the GMM estimator (3.4.8) remains well-defined for 
sufficiently large n even if W (- plim @) is singular, as long as E;,WE,, is 
nonsingular. 

3.5 Large-Sample Properties of GMM 

The GMM formula (3.4.8) defines GMM estimators, which are a set of estimators, 
each indexed by the weighting matrix @. You will be delighted to know that eveq 
estimator to be introduced in the next few chapters is a GNIM estimator for some 
choice of @. The task of this section is to develop the large-sample theory for the 
GMM estimator for any given choice of @, which can be carried out quite easily 
with the techniques of the previous chapter. The first half of this section extends 
Propositions 2.1-2.4 of Chapter 2 to GMM estimators. One issue that did not arise 
in those propositions is which GMM estimators should be preferred to other GMM 
estimators. This is a question of choosing optimally and will be taken up in the 
latter part of this section. 
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Asymptotic Distribution of the GMM Estimator 

The large-sample theory for i(@) valid for any given choice of @ is 

Proposition 3.1 (asymptotic distribution of the GMM estimator): 
A 

(a) (Consistency) Under Assumptions 3.1-3.4, plim,,, 6 (W) = 6. 

(b) (Asymptotic Normality) If Assumption 3.3 is strengthened as Assumption 
3.5, then 

where 

2 A 

(Recall: Ex, = E(xizi), S = E(g;g;) = E(E; xix:), W = plim W.) 

(c) (Consistent Estimate of Avar(i (@) )) Suppose there is available a consistent 
estimator, g, of S (K x K). Then, under Assumption 3.2, Avar(i(%)) is 
consistently estimated by 

where S,, is the sample mean of X ; Z ~  : 

The ugly looking expression for the asymptotic variance will become much prettier 
when we choose the weighting matrix optimally. If you have gone through the 
proof of Proposition 2.1, you should find it a breeze to prove Proposition 3.1. The 
key observations are: 

( 1  S -+ E x  (by ergodic stationarity) 

(2) g (= C:='=, gi) -+, 0 (by ergodic stationarity and the orthogonality condi- 
tions) 

(3) f i g  - + d  N(0, S) (by Assumption 3.5). 

Consistency immediately follows if you use ( I ) ,  (2), and Lemma 2.3(a) on the 
expression for the sampling error (3.4.1 1). To prove asymptotic normality, multiply 
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both sides of (3.4.11) by ,hi to obtain 

Chapter 3 

I 

and use (3), Lemma 2.3(a), and Lemma 2.4(c). Part (c) of Proposition 3.1 follows 
immediately from Lemma 2.3(a). 

Estimation of Error Variance 
In Section 2.3, we proved the consistency of the OLS estimator, s2, of the error 
variance. As was noted there, the result holds as long as the residual is from some 
consistent estimator of the coefficient vector. The same is true here. 

Proposition 3.2 (consistent estimation of error variance): For any consistent 
A A 

estimator, 6, of 6, define gi = yi - zj6. Under Assumptions 3.1, 3.2, plus the 
assumption that E(ziz:) (second moments of  the regressors) exists and is finite, 

provided E(E:) exists and is finite. 

The proof is very similar to the proof of Proposition 2.2. The relationship between 
and E~ is given by 

so that 

i.; = E: - 2 4  - + (a - 6)'zizj(i - 6). (3.5.5) 

Summing over i , we obtain 

As usual, !xi&: -+p E(E:). Since a is consistent and ! Xizizi converges in proba- 
bility to some finite matrix by assumption, the last term vanishes. It is easy to show 
that E ( z ~ . E ~ )  exists and is finite.1° Then, by ergodic stationarity, 

' O B ~  the Cauchy-Schwartz inequality, E(lzie&; 1) 5 J ~ ( z j ? , ) .  E(F?) ,  where z i t  is the C-th element of 2 ; .  Both 

~(z!!) and E($) are finite by assumption. 
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1 
- Z i z i  . E ~  + some finite vector. 
n P 

So the second term on the RHS of (3.5.6), too, vanishes. 

Hypothesis Testing 
It should now be routine to derive from Proposition 3.1 (b) and 3.1 (c) the following. 

Proposition 3.3 (robust t-ratio and Wald statistics): Suppose Assumptions 3.1- 
h 

3.5 hold, and suppose there is available a consistent estimate S of S (= Avar(g) = 

E(gi g: 1). Let 

h h h  

Avar(G(W)) = (s~,~?s,,)-~ S:,W s WS~Z(S:,~SXZ)-' 

Then: 
- 

(a) Under the null hypothesis Ho: at = at, 

- 
where (Avar(d ( e ) ) )  ,, is the (C, C) element of Avar(d ( e ) )  [which is 

z -. 
Avar(Gc (W))] and 

S q  (robust standard e m )  = (3.5.7) 

(b) Under the null hypothesis Ho: R6 = r where #r is the number of restrictions 
(the dimension of r) and R (#r x L) is of full row rank, 

(c) Under the null hypothesis Ho: a(6) = 0 such that A(@, the #a x L matrix of 
first derivatives of a(6) (where #a is the dimension of a), is continuous and of 
full row rank, 
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For the Wald statistic for the nonlinear hypothesis, the same comment that we 

made for Proposition 2.3 applies here: the numerical value of the Wald statistic is 
not invariant to how the nonlinear restriction is represented by a(.). 

Estimation of S 
We have already studied the estimation of S (= E(gigi) = E(E: x;x:)) in Section 
2.5. The proposed estimator was, if adapted to the present estimation equation 

yi = z:6 + ~ i ,  

A A 

where 2; - yi - zi6 and 6 is consistent for 6. The fourth-moment assumption 
needed for this to be consistent for S is a generalization of Assumption 2.6. 

Assumption 3.6 (finite fourth moments): E [ ( x ~ ~ z ~ ~ ) ~ ]  exists and is finite for all 
k (= 1 ,  . . . , K )  and l (= 1 ,  . . . , L).  

It is left as an analytical exercise to prove 

Proposition 3.4 (consistent estimation of S): Suppose the coefficient estimate $ 
used for calculating the residual Ei for ?? in (3.5.10) is consistent, and suppose 
S = E(gig/) exists and is finite. Then, under Assumptions 3.1, 3.2, and 3.6, ?? 
given in (3.5.10) is consistent for S. 

Efficient GMM Estimator 

Naturally, we wish to choose from the GMM estimators indexed by @ one that has 

the least asymptotic variance. The next proposition provides a choice of W that 
minimizes the asymptotic variance. 

Proposition 3.5 (optimal choice of the weighting matrix): A lower bound for 
the asymptotic vatiance of  the GMM estimators (3.4.8) indexed by %? is given by 
(EL S-'EXz)-'. The lower bound is achieved i f  @ is such that W (- plim @) = 
s-1 1 1  

Because the asymptotic variance for any given @ is (3.5.1), this proposition is 
proved if we can show that 

 he condition that W = S-I  is sufficient but not necessary for efficiency. A necessary and sufficient condi- 
tion is that there exists a matrix C such that C;,W = C C L  S-' . See Newey and McFadden (1994, p. 2165). 
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for any symmetric positive definite matrix W. Proving this algebraic result is left 
as an analytical exercise. 

A GMM estimator satisfying the efficiency condition that plim@ = S-I will 
be called the efficient (or optimal) GMM estimator. Simply by replacing @ by 
A 

S-' (which is consistent for S-') in the formulas of Proposition 3.1, we obtain 

Efficient GMM estimator: i (SF') = (s:, Spl sx,)-l s:,g-'sXy, (3.5.12) 

~var( i (g-I) )  = (Xk. s-' x ~ , ) - ~ ,  (3.5.13) 

With @ = g-',  the formulas for the robust t and the Wald statistics in Proposition 
3.3 become 

where SE: is the robust standard error given by 

and 

To calculate the efficient GMM estimator, we need the consistent estimator 
A 

S. But Proposition 3.4 assures us that the ?% based on any consistent estimator 
of 6 is consistent for S. This leads us to the following two-step efficient GMM 
procedure: 

Step 1: Choose a matrix @ that converges in probability to a symmetric and pos- - A 

itive definite matrix, and minimize J(6, W) over 6 to obtain $(@). There 
is no shortage of such matrices @ (e.g., @ = I), but usually we set 
@ = S;. The resulting estimator i(s;b) is the celebrated two-stage least 
squares (as we will see in Section 3.8). Use this to calculate the residual 
ti = yi - zl8 (@) and obtain a consistent estimator g of S by (3.5.10). 

Step 2: Minimize ~ ( 6 .  g- ')  over 8. The minimizer is the efficient GMM estima- 
tor. 
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Asymptotic Power 

Like the coefficient estimator, the t and Wald statistics depend on the choice of W. 
It seems intuitively obvious that those statistics associated with the efficient GMM 
estimator should be preferred in large samples. This intuition can be formalized in 
terms of asymptotic power introduced in Section 2.4. Take, for example, the t-ratio 
for testing Ho: = 6 e .  The t-ratio is written (reproducing (3.5.7)) as 

The denominator converges to some finite number even when the null is false. 
In contrast, the numerator explodes (its plim is infinite) when the null is false. 
So the power under any fixed alternative approaches unity. That is, the test is 
consistent. This is true for any choice of W, so test consistency cannot be a basis 
for choosing W. 

Next, consider a sequence of local alternatives subject to Pitman drift: 

for some given y # 0. Substituting (3.5.18) into (3.5.17), the t-ratio above can be 
rewritten as 

fi(& ( G )  - 6:)) 
+ 

Y (3.5.19) 

Applying the same argument for deriving the asymptotic distribution of the t-ratio 
in (2.4.4), we can show that te + d  N(p,  l ) ,  where 

If the significance level is a ,  the asymptotic power is given by Prob(lx1 > ta12), 
where x -- N(p,  1) and ta12 is the level-a critical value. Evidently, the larger is 
Ipl, the higher is the asymptotic power. And JpI decreases with the asymptotic 

I 
variance. Therefore, the asymptotic power against local alternatives is maximized 
by the efficient GMM estimator. 
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Small-Sample Properties 
Do these desirable asymptotic properties of the efficient GMM estimator and asso- 
ciated test statistics carry over to their finite-sample distributions? The efficient 
GMM estimator uses 3-1, a function of estimated fourth moments, for %. Gener- 
ally, it takes a substantially larger sample size to estimate fourth moments reliably 
than to estimate first and second moments. So we would expect the efficient GMM 
estimator to have poorer small-sample properties than the GMM estimators that do 
not use fourth moments for %. The July 1996 issue of the Journal of Business 
and Economic Statistics has a number of papers examining the small-sample dis- 
tribution of GMM estimators and associated test statistics for various DGPs. Their 
overall conclusion is that the equally weighted GMM estimator with % = I gen- 
erally outperforms the efficient GMM in terms of the bias and variance in finite 
samples. They also find that the size of the efficient Wald statistic in small samples 
far exceeds the assumed significance level. That is, if a is the assumed signifi- 
cance level and c, is the associated critical value so that  rob(^^ > c,) = a, the 
probability in finite samples that the Wald statistic is greater than c, far exceeds a; 
the test rejects the null too often. Unfortunately, however, like most other small- 
sample studies, those studies fail to produce clear quantitative guidance which the 
empirical researcher could follow. 

Q U E S T I O N S  FOR R E V I E W  

1. Verify that all the results of Sections 2.3-2.5 are special cases of those of this 
section. In particular, verify that (3.5.1) reduces to (2.3.4). Hint: Ex, is square 

if zi = xi. 

2. (Singular W) Suppose W is singular but E~ ,WEXz is nonsingular. Verify that 
all the results of this section (except Proposition 3.5) remain valid. 

3. (Asymptotically equivalent choice of %) Suppose %I - E2 +, 0. Show 
that 

Hint: 

f i g  converges in distribution to a random variable. Use Lemma 2.4(b). 
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4. (Three-step GMM) Consider adding to the efficient two-step GMM proce- 
dure the following third step: Recompute g by (3.5.10), but this time using 
the residual from the second step. Calculate the GMM estimator with this 
recomputed g. Is this estimator consistent? Asymptotically normal? Efficient? 
Hint: Verify by Proposition 3.4 that the recalculated g is consistent for S. Does 

the asymptotic distribution of the GMM estimator depend on the choice of @ if 
A 

plim,,, W is the same? 

5. (When zi is a strict subset of xi) Suppose zi is a strict subset of xi. So xi 
includes, in addition to the regressors (which are all predetermined), some other 
predetermined variables. Are the efficient two-step GMM estimator and the 
OLS estimator numerically the same? [Answer: No.] 

6. (Data matrix representation of efficient GMM) Let B be the n x n diagonal 
matrix whose i-th element is i:, where ti is the residual from the first-step 
consistent estimation. That is, 

Verify that 

where X, y, and Z are data matrices for the instruments, the dependent variable, 
and the regressors (they are defined in Section 3.8 below). 

7. (GLS interpretation of efficient GMM) Let X, Z, and y be as in the previous 
question. Then the estimation equation can be written as y = Z6 + E. Pre- 
multiply both sides by X to obtain 

X'y = X'Z6 + X'E. 

Taking S to be the variance matrix of X'E and g to be its consistent estimate, 
apply FGLS. Verify that the FGLS estimator is the efficient GMM estimator 
(the FGLS estimator was defined in Section 1.6). 

8. (Linear combination of orthogonality conditions) Derive the efficient GMM 
estimator that exploits a linear combination of orthogonality conditions, 
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where A is a q x K matrix of full row rank (so q 5 K). [Answer: Replace S,, 

by AS,,, s,, by As,, and S by ASA'. Formally, the estimator can be written as 
(3.4.8) with @ = A'(A~A')-'A.] Verify: If q = K (so that A is nonsingular), 

then the efficient GMM estimator is numerically equal to the efficient GMM 
estimator associated with the orthogonality conditions E(gi) = 0. 

3.6 Testing Overidentifying Restrictions 

If the equation is exactly identified, then it is possible to choose 8 so that all the 

elements of the sample moments g, (8) are zero and the distance 

is zero. (The 8 that does it is the IV estimator.) If the equation is overidentified, 
then the distance cannot be set to zero exactly, but we would expect the minimized 

distance to be close to zero. It turns out that, if the weighting matrix @ is chosen 

optimally so that plim@ = S-', then the minimized distance is asymptotically 

chi-squared. 

Let g be a consistent estimator of S, and consider first the case where the dis- 

tance is evaluated at the true parameter value S, J(S, g-I). Since by definition 

gn (8) = g (= &gi) for 8 = 6, the distance equals 

I 
Since f i g  -+d N(0, S) and g -+, S, its asymptotic distribution is x'(K) by 

Lemma 2.4(d). Now if S is replaced by i(g-'), then the degrees of freedom change 

from K to K - L. The intuitive reason is that we have to estimate L parameters 
S before forming the sample average of g,. (We encountered a similar situation in 

Chapter 1 in the context of the unbiased estimation of a2 . )  We summarize this as 

I 
I Proposition 3.6 (Hansen's test of overidentifying restrictions (Hansen, 1982)): 
I Suppose there is available a consistent estimator, $, of  S (= E(gig:)). Under 

Assumptions 3.1-3.5, 
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A formal proof is left as an optional exercise. Because the $ given in (3.5.10) is 
consistent (under the additional condition of Assumption 3.6), the minimized dis- 
tance calculated in the second step of the efficient two-step GMM is asymptotically 
X 2 ( ~  - L). 

Three points on the use and interpretation of the J test are in order. 

This is a specification test, testing whether all the restrictions of the model 
(which are the assumptions maintained in Proposition 3.6) are satisfied. If the J 
statistic of Proposition 3.6 is surprisingly large, it means that either the orthogo- 
nality conditions (Assumption 3.3) or the other assumptions (or both) are likely 
to be false. Only when we are confident about those other assumptions can we 
interpret the large J statistic as evidence for the endogeneity of some of the K 
instruments included in xi. 

Unlike the tests we have encountered so far, the test is not consistent against 
some failures of the orthogonality conditions. The essential reason is the loss of 
degrees of freedom from K to K - L. It is easy to show that g is related to its 
sample counterpart, g,, ( i  ($-I)), as 

The problem is that, since 6sx, = 0, this matrix g is not of full column rank. If 
the orthogonality conditions fail and E(gi) # 0, then the elements of f i g  will 
diverge to +cm or -cm. But, since is not of full column rank, gfig and hence 
J(~($-I), $-I) may remain finite for some pattern of nonzero orthogonalities.12 

It is only recently that the small-sample properties of the test became a concern. 

Several papers in the July 1996 issue of the Journal of Business and Economic 
Statistics report that the finite-sample or actual size of the J test in small samples 
far exceeds the nominal size (i.e., the test rejects too often). 

Testing Subsets of Orthogonality Conditions 

Suppose we can divide the K instruments into two groups: the vector xil of K1 
variables that are known to satisfy the orthogonality conditions, and the vector xi2 
of remaining K - K1 variables that are suspect. Since the ordering of instruments 
does not change the numerical values of the estimator and test statistics, we can 
assume without loss of generality that the last K - KI elements of xi are the suspect 

I2see Newey (1985, Section 3) for a thorough treatment of this issue. 
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instruments: 

} K 1  rows, 
xi = [::I 

} K - K 1  rows. 

The part of the model we wish to test is 

This restriction is testable if there are at least as many nonsuspect instruments as 
there are coefficients so that K 1  p L. The basic idea is to compare two J statistics 
from two separate GMM estimators of the same coefficient vector 6, one using only 
the instruments included in xi l ,  and the other using also the suspect instruments xi2 
in addition to x i l .  If the inclusion of the suspect instruments significantly increases 
the J statistic, that is a good reason for doubting the predeterrninedness of x i2 .  

In accordance with the partition of x i ,  the sample orthogonality conditions 
gn (8) and S can be written as 

where 

In particular, gln(6") can be written as 

where 

For a consistent estimate 3 of S, the efficient GMM estimator using all the K 
instruments and its associated J statistic have already been derived in this and the 
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previous section. Reproducing them, 

The efficient GMM estimator of the same coefficient vector 6 using only the first 
K1 instruments and its associated J statistic are obtained by replacing xi by xil in 
these expressions. So 

A 

where Sll  is a consistent estimate of Sl l .  
The test is based on the following proposition specifying the asymptotic distri- 

bution of J - J1 (the proof is left as an optional exercise). 

Proposition 3.7 (testing a subset of orthogonality conditions13): Suppose 
Assumptions 3.1-3.5 hold. Let xil be a subvector o f  xi, and strengthen Assump- 
tion 3.4 by requiring that the rank condition for identification is satisfied for xil (SO 
E(xil zi) is of  full column rank). Then, for any consistent estimators g of  S and gl I 

o f  s11, 

where K = #xi (dimension of xi), K1 = #xil (dimension o f  xil), and J and J1 
are defined in (3.6.8) and (3.6.10). 

Clearly, the choice of g and gI I does not matter asymptotically as long as they are 
consistent. But in finite samples, the test statistic C can be negative. This problem 
can be avoided and C can be made nonnegative in finite samples if the same g is 
used throughout, that is, i f g l l  in (3.6.9) and (3.6.10) is the submatrix o fg in  (3.6.7) 
and (3.6.8). This is accomplished by taking the following steps: 

(1) do the efficient two-step GMM with full instruments xi to obtain g from the 

first step, 8 and J from the second step; 

(2) extract the submatrix g1 from g obtained from (I), calculate 8 by (3.6.9) using 

this g1 1 and J1 by (3.6.10). Then take the difference in J. 

1 3 ~ h e  test was developed in Newey (1985, Section 4) and Eichenbaurn, Hansen, and Singleton (1985, Appendix 
C). 
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It is left as an optional analytical exercise to prove that C calculated as just described 
is nonnegative in finite samples. 

We can use Proposition 3.7 to test for the endogeneity of a subset of regressors, 
as the next example illustrates. 

Example 3.3 (testing whether schooling is predetermined in the wage 
equation): In the wage equation of Example 3.2, suppose schooling Si is 
suspected to be endogenous. To test for the endogeneity of Si, partition xi as 

The vector of regressors, zi, is the same as in Example 3.2. The first step is to 
do the efficient two-step GMM estimation of 6 with xi = ( 1 ,  EXPRi, AGEi, 
MED;, 5';)' as the instruments. This produces J and the 5 x 5 matrix S. 
Second, extract the leading 4 x 4 submatrix corresponding to xi, from 
A 

S and estimate the same coefficients 6 by GMM, this time with the fewer 
A 

instruments xil and using this Sl l .  The difference in the J statistic from the 
two different GMM estimators of 6 should be asymptotically x2(1). 

Q U E S T I O N S  F O R  R E V I E W  -- -- 

1. Does J(~(S-') ,  s - I )  + d  X 2 ( ~  - L) where and S are two different consis- 
tent estimators of S? 

A A A 

2. show: ~(d(S- l ) ,  S-l) = n.sLy S-'(sxy - Sx, 6(Sp1)). 

3. Can the degrees of freedom of the C statistic be greater than K - L? [Answer: 
No.] 

4. Suppose K1 = L. Does the numerical value of C depend on the partition of xi 
between xi1 and xi2? 
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- - - - 

3.7 Hypothesis Testing by the Likelihood-Ratio Principle 

We have derived in Section 3.5 the chi-squared test statistics for the null hypothesis 
Ho: a(6) = 0 by the Wald principle. This section does the same by the likelihood- 
ratio (LR) principle, which is to examine the difference in the objective function 
with and without the imposition of the null. Derivation of test statistics by the 
Lagrange Multiplier principle for GMM and extension to nonlinear equations are 

given in Section 7.4. 
In the efficient GMM estimation, the objective function is ~ ( 8 ,  g-') for a given 

consistent estimates of S. The restricted efficient GMM estimator is defined as 

restricted efficient GMM: 6(gP1) - argmin ~ ( 6 ,  g-I) subject to Ho. (3.7.1) 
6 

The LR principle suggests that 

should be asymptotically chi-squared. Indeed it is. 

Proposition 3.8 (test statistic by the LR principle): Suppose Assumptions 3.1- 
3.5 hold and suppose there is available a consistent estimator, s, of S (= E ( y  g)). 
Consider the null hypothesis of #a restrictions Ho: a(6) = 0 such that A(@, the 
#a x L matrix of first derivatives, is continuous and of  full row rank. Define two 
statistics, W and LR, by (3.5.16) and (3.7.2), respectively. Then, under the null, the 
following holds: 

(a) The two statistics are asymptotically equivalent in that their asymptotic dish- 
butions are the same (namely, X2(#a)). 

(b) The two statistics are asymptotically equivalent in the stronger sense that their 
numerical difference converges in probability to zero: LR - W -+p 0. (By 
Lemma 2.4(a), this result is stronger than (a).) 

(c) Furthermore, if the hypothesis is linear so that the restrictions can be written as 
R6 = r, then the two statistics are numerically equal. 

Proving this for the linear case, which is an algebraic result, is left as an analytical 
exercise. For a full proof, see Section 7.4. 
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Several comments about Proposition 3.8: 

The advantage of LR over W is invariance: the numerical value of LR does not 
depend on how the nonlinear restrictions are represented by a(.). On the other 
hand, you have to write a nonlinear optimization computer program to find the 
restricted efficient GMM when the hypothesis is nonlinear. 

Proposition 3.8 requires that the distance matrix fi satisfy the efficiency condi- 
tion plim % = S-' . Otherwise LR is not asymptotically chi-squared. In con- 
trast, the Wald statistic is asymptotically chi-squared without % satisfying the 
efficiency condition. 

The same estimate of S should be used throughout in the calculation of LR. Let - 
S and S be two different consistent estimators of S, and consider the statistic 

This statistic is what you end up with if you perform two separate two-step effi- 
cient GMMs with and without the constraint of the null; S is the estimate of S 
from the first step with the constraint, while is from the first step without the 
constraint. The statistic is asymptotically equivalent to LR (in that the difference 
between the two converges in probability to zero), but in finite samples it may 
be negative. Having the same estimate of S throughout ensures the nonnegativ- 
ity of the statistic in finite samples. Researchers usually use the estimate from 
unconstrained estimation (g) here, but the estimate from constrained estimation 
is also valid because it is consistent for S under the null. 

Part (b) of the proposition (the asymptotic equivalence in a stronger sense) 
means that if the sample size is large enough and the hypothesis is true, then the 
outcome (not just the probability of rejection or acceptance) of the test based 
on LR will be the same as that based on W because the probability that the two 
statistics differ numerically by an even tiny amount is zero in sufficiently large 
samples. 

For the numerical equivalence LR = W for the linear case to hold, the same 
A 

S must be used throughout to calculate not only LR but also the Wald statistic. 
Otherwise LR and W are only asymptotically equivalent. 

The LR Statistic for the Regression Model 
Because the regression model of Chapter 2 is a special case of the GMM model 
of this chapter, it may be useful to know how LR would look for that special case. 
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Because xi = zi in the regression model, the (unrestricted) efficient GMM estima- 

tor is OLS and J (j(gp1), g-') = 0. Therefore, 

where 8(S-') is the restricted efficient GMM estimator. By Proposition 3.8, this 
statistic is asymptotically chi-squared and is numerically equal to the Wald statistic 
if the null is linear. As will be shown below, under conditional homoskedasticity, 
this statistic can be written as the difference in the sum of squared residuals nor- 
malized to the error variance. 

Variable Addition Test (optional) 
In the previous section, we considered a specification test based on the C statis- 
tic for the endogeneity of a subset, xi2 of instruments x; while assuming that the 
other instruments xi, are predetermined. Occasionally, we encounter a special case 
where zi = xi 1 : 

A popular method to test whether the suspect instruments xi? are predetermined is 
to estimate the augmented equation 

and test the null Ho: a = 0. Testing is either by the Wald statistic W or by the 
LR statistic, which is numerically equal to W. This test is sometimes called the 

variable addition test. How is the test related to the C test of Proposition 3.7? 
To calculate LR, we have to calculate two efficient GMM estimators of y with 

the same instrument set x i :  one with the constraint a = 0 and one without. The 
unrestricted efficient GMM estimator is the OLS estimator on the unconstrained 
equation (3.7.5). The associated J statistic is zero. Let 

where ei is the OLS residual from the unrestricted regression (3.7.5). If we use 

this estimate of S, the restricted efficient GMM estimator of y minimizes the J 
function 
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subject to u = 0. Clearly, the restricted estimator can be written as 

where i($-') is the efficient GMM estimator with xi as instruments on the restricted 

equation (3.7.4). So 

A 

1-R = n.(sXy - S x x y ) ' ~ - l ( ~ x ,  - S,,?) (since J = 0 for unrestricted GMM) 
,. A h A A A 

= n.(sXy - Sxxl ~ ( s - ' ) ) '  s - ~  (sXy - Sxxl;(s-l)) (since Sxxy = S,,, G(s-I)). 

This is none other than Hansen's J statistic for the restricted equation (3.7.4) when 
xi is the instrument vector. This statistic, in turn, equals the C statistic because the 

J1 in Proposition 3.7 is zero in the present case. Therefore, all three statistics, W 
from the unrestricted regression, LR, and C, are numerically equal to Hansen's J ,  

provided that the same is used throughout. That is, the variable addition test is 

numerically equivalent to Hansen's test for overidentifying restrictions. 

Q U E S T I O N S . F O R  R E V I E W  

1. (LR for the regression model) Verify that, for the regression model where 

zj = Xi, 

2. (Choice of in variable addition test) Suppose you form $ from the residual 

from the restricted regression (3.7.4) and use it to form W, LR, and C. Are 

they numerically equal? Are they asymptotically chi-squared? Hint: Is this $ 
consistent under the null? 

3.8 Implications of Conditional Homoskedasticity 

So far, we have not assumed conditional homoskedasticity in developing the asymp- 

totics of the GMM estimator. This section considers the implication of imposing 
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Assumption 3.7 (conditional homoskedasticity): 

Under conditional homoskedasticity, the matrix of fourth moments S (= 

E(gig:) = E(E? xixi)) can be written as a product of second moments: 

where X, = E(xix:). As in Chapter 2, this decomposition of S has several impli- 
cations. 

Since S is nonsingular by Assumption 3.5, this decomposition implies that a2 > 

0 and Ex, is nonsingular. 

The estimator exploiting this structure of S is 

where G 2  is some consistent estimator to be specified below. By ergodic station- 
arity, S, +,,, X,. Thus, provided that G 2  is consistent, we do not need the 
fourth-moment assumption (Assumption 3.6) for g to be consistent. 

Needless to say, all the results presented so far are valid under the extra 
condition of conditional homoskedasticity. But many of the results and formu- 
las can be simplified substantially under this extra condition, by just replacing S 
by a2Xxx and the expression (3.5.10) for by (3.8.2). This section collects those 
simplifications. 

Efficient GMM Becomes 2SLS 
In the efficient GMM estimation, the weighting matrix is g-' . If we set to (3.8.2), 
the GMM estimator becomes 

which does not depend on G2.  In the general case, the whole point of the first step in 
the efficient two-step GNIM was to obtain a consistent estimator of S. Under con- 
ditional homoskedasticity, there is no need to do the first step because the second- 
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step estimator collapses to the GMM estimator with Sxx used for g, ~(sG:). This 
estimator, i z s ~ s ,  is called the Two-Stage Least Squares (2SLS or TSLS).'~ The 
same equation can be estimated by maximum likelihood. Section 8.6 will cover 
the ML counterpart of 2SLS, called the "limited-information maximum likelihood 
estimator." 

The expression for ~ v a r ( b ~ ~ ~ ~ )  can be obtained by substituting (3.8.1) into 
(3.5.13): 

A natural estimator of this is 

For 32 ,  consider the sample variance of the 2SLS residuals: 

(Some authors divide the sum of squares by n - L, not by n, to calculate Z2.) By 
Proposition 3.2, (3.8.6) -+, a2 if E(zizi) exists and is finite. Thus defined in 
(3.8.2) with this 32 is consistent for S. 

Substituting (3.8.2) into (3.5.15) and (3.5.16), the t-ratio and the Wald statistic 
become 

J Becomes Sargan's Statistic 
When is set to (ii2SXx)-', the distance defined in (3.4.6) becomes 

1 4 ~ h i s  estimator was first proposed by Theil (1953). 
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Proposition 3.6 then implies that the distance evaluated at the efficient GMM esti- 
mator under conditional homoskedasticity, ~ ~ S L S ,  is asymptotically chi-squared. 
This distance is called Sargan's statistic (Sargan, 1958): 

Sargan's statistic = n .  
(sxy - ~x~i2SLS)~sx;: (sxy - ~ x z i 2 S L S )  . (3.8.10) 

&2 

We summarize our results so far as 

Proposition 3.9 (asymptotic properties of 2SLS): 

(a) Under Assumptions 3.1-3.4, the 2SLS estimator (3.8.3) is consistent. If 
Assumption 3.5 is added, the estimator is asymptotically normal with the asymp- 
totic variance given by (3.5.1) with W = (a2~, , ) - ' .  If Assumption 3.7 (con- 
ditional homoskedasticity) is added to Assumptions 3.1-3.5, then the estimator 
is the efficient GMM estimator. 

Furthermore, i f  E(zi z:) exists and is finite, l5 then 

(b) the asymptotic variance is consistently estimated by (3.8.5), 

(c) te in (3.8.7) +d N (0, I), W in (3.8.8) +d X2(#r), and 

(4 the Sargan statistic in (3.8.10) +d ( K  - L) . 

Proposition 3.8 states that the LR statistic, which is the difference in J with and 
without the imposition of the null hypothesis, is asymptotically chi-squared. Since 
J can be written as (3.8.9), we have 

where 8 is the restricted 2SLS estimator which minimizes (3.8.9) under the null 
hypothesis.16 In Proposition 3.8, the use of the same guaranteed the statistic 
to be nonnegative in finite samples. Here, deflation by the same k2 ensures the 
statistic to be nonnegative. If the hypothesis is linear, then this LR is numerically 
equal to the Wald statistic W. 

 his additional assumption is needed for the consistency of G2; see Proposition 3.2. 
1 6 ~ h i s  statistic was first derived by Gallant and Jorgenson (1979). 



Single-Equation GMM 229 

Small-Sample Properties of PSLS 
There is a fairly large literature on the finite-sample distribution of the 2SLS esti- 
mator (see, e.g., Judge et al. (1985, Section 15.4) and Staiger and Stock (1997, 
Section 1)). Some studies manage to derive analytically the exact finite-sample 

distribution of the estimator, while others are Monte Carlo studies for various 
DGPs. The analytical results, however, are not useful for empirical researchers, 
because they are derived under the restrictive assumptions of fixed instruments and 
normal errors and the analytical expressions for distributions are computationally 
intractable. 

For the case of a single regressor and a single (stochastic) instrument with 

normal errors, Nelson and Startz (1990) derive the exact finite-sample distribution 
of the 2SLS estimator that is fairly simple and easy to calculate. They also show 

that, when the instrument is "weak" in the sense of low explanatory power in the 

first-stage regression of the regressor on the instrument, a mass of the distribution 
of the sampling error $2SLS - 8 remains apart from zero until the sample size gets 
really large. 

Their work illustrates the need for reporting the R~ for the first-stage regres- 

sions; if the R~ is low, we should suspect the large-sample approximation to the 
distribution of the 2SLS estimator to be poor (you will see a dramatic example in 
part (g) of the empirical exercise). Recently, Staiger and Stock (1997) proposed an 
alternative asymptotic approximation to the finite-sample distribution of the 2SLS 

and other estimators and associated test statistics, for the case of "weak" instru- 

ments. Their device is to look at a sequence of models along which the coefficients 

of the instruments in the first-stage regressions converge to zero. (Analytical Exer- 
cise 10 works out this type of asymptotics for the simple case of one regressor and 

one instrument.) 

Alternative Derivations of PSLS 
If we define data matrices as 

then it is easy to see that the 2SLS estimator and associated statistics can be written 

as 
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where P r X(XIX)-'X' is the projection matrix, 

.., .. 
- 2  E E  A 

a = - where P E y - Z62SLS. 
n 

P'PP 
Sargan's statistic = -. 

62 

Using this formula, we can provide two other derivations of the 2SLS estimator. 

2SLS as an I V  Estimator 

Let ii (L x 1) be the vector of L instruments (which will be generated from xi as 
described below) for the L regressors, and let 2 be the n x L data matrix of those 
L instruments. So the i-th row of 2 is 2;.  The IV estimator of 6 with li serving as 
instruments is, by (3.4.4), 

Now we generate those L instruments from xi as follows. The t-th instrument is 
the fitted value from regressing zit (the t-th regressor) on xi. The n-vector of fitted 
value is x(x'X)-' Xfze, where is the n-vector of the t-th regressor (i.e., the t-th 
column of Z). Therefore, the n x L data matrix of instruments is 

A 

Z = (x(x'x)-I X1zl. . . . , x(x'x)-'x'z~) = x(x'x)-'X'Z = PZ, (3.8.13) 

where P is the projection matrix. Substituting this into the IV format (3.8.12) yields 

the 2SLS estimator (see (3.8.3')). 



Single-Equation GMM 23 1 

2SLS a s  Two Regressions 

Instead of substituting the generated instruments ii into the IV format to estimate 
the equation yi = zi6 + E ~ ,  consider regressing yi on ii. The coefficient estimate is 

( 2 2 )  - ' 2 y  = (Z'P'PZ) - 'zlpy 

= (z'Pz)-'z'F'~ (since P is symmetric and idempotent). 

This is the 2SLS estimator. So the 2SLS coefficient estimate can be obtained in two 
stages: the first stage is to regress the L regressors on xi and obtain fitted values i,, 
and the second stage is to regress yi on those fitted values. 

For those regressors that are predetermined and hence included in xi, there is no 
need to cany out the first-stage regression because the fitted value is the regressor 

itself. To see this, if zit is predetermined and included in xi as the k-th instrument, 
the n-vector of fitted values for the l-th regressor is Pze, where zt is the n-vector 
whose i-th element is zit. But since zt is also the k-th column of X, Pze = Pxk. 
Since P is the projection matrix, Pxk = xk. 

This derivation of the 2SLS is useful as it justifies the naming of the estimator, 
but there is a pitfall. In the second-stage regression where yi is regressed on i i ,  the 
standard errors routinely calculated by the OLS package are based on the residual 
vector y - ZiZSLS. This does not equal the 2SLS residual y - zjzSLS. Therefore, 
the OLS standard errors and estimated asymptotic variance from the second stage 
cannot be used for statistical inference. 

When Regressors Are Predetermined 
When all the regressors are predetermined and the errors are conditionally homo- 
skedastic, there is a close connection between the distance function J for efficient 
GMM and the sum of squared residuals (SSR). From (3.8.9') on page 230, 

- y'Py - 2y1zii + S1zlzS 
- (since PZ = Z when zi c xi) 

&2 
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where 9 = Py is the vector of fitted values from unrestricted OLS. Since the 

last term does not depend on 6, minimizing J amounts to minimizing the sum 
of squared residuals (y - ~ 6 ) ' ( y  - ~ 6 ) .  It then follows that (1) the efficient GMM 
estimator is OLS (which actually is true without conditional homoskedasticity as 
long as zi = xi), (2) the restricted efficient GMM estimator subject to the con- 
straints of the null hypothesis is the restricted OLS (whose objective function is 
not J but SSR), and (3) the Wald statistic, which is numerically equal to the LR 
statistic, can be calculated as the difference in SSR with and without the imposition 
of the null, normalized to 3 2 .  This last result confirms the derivation in Section 2.6 
of the Wald statistic by the Likelihood Ratio principle. 

Testing a Subset of Orthogonality Conditions 

In Section 3.6 we introduced the statistic C for testing a subset of orthogonality 

conditions. It utilizes two efficient GMM estimators of the same equation, one 
using the full set xi of instruments and the other using only a subset, xi,, of xi. 
To examine what expression it takes under conditional homoskedasticity, let XI  

(n x K 1 )  be the data matrix whose i-th row is xi,. Because the two-step efficient 
GMM estimator is the 2SLS estimator under conditional homoskedasticity, the two 

GMM estimators are given by 

= (z'Pz)-'z'P~ with P = x(x'x)~'x',  (3.8.15) 

6 =  ( Z ' P ~ Z ) ~ ' Z ' P ~ ~  with PI =xI(x',xI)- 'x' , .  (3.8.16) 

And the C statistic becomes the difference in two Sargan statistics: 

where 
- ,, i'i 

i - y - Z 6 ,  i = y - Z 6 ,  a G - .  
n 

As seen for the case without conditional homoskedasticity, C is guaranteed to be 

nonnegative in finite samples if the same matrix is used throughout, which under 

conditional homoskedasticity amounts to using the same estimate of the error vari- 

ance, C 2 ,  to deflate both i'pi and ifPl i ,  as in (3.8.17). By Proposition 3.7, this C 
is asymptotically x 2 ( ~  - K1 ). 

Perhaps more popular is the test statistic proposed by Hausman and Taylor 
(1980) and further examined by Newey (1985). is asymptotically more efficient 

than 6 because $ exploits more orthogonality conditions. Therefore, ~ v a r ( 6 )  2 
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Avar(i). Furthermore, as you will be asked to show (Analytical Exercise 9), under 
the same hypothesis guaranteeing C to be asymptotically chi-squared, 

(If you have been exposed to the Hausman test in the ML context, you can rec- 
ognize this as the GMM version of the Hausman principle.) By Proposition 3.9, 

Avar(i) is consistently estimated by 

Similarly, a consistent estimator of Avar(6) is 

Here, as in the calculation of the C statistic, the same estimate, 6', is used through- 

out, in order to guarantee the test statistic below to be nonnegative. The resulting 

estimator of ~ v a r ( 8  - i )  is 

Hausman and Taylor (1980) have shown that (1) this matrix in finite samples is 

positive semidefinite (nonnegative definite) but not necessarily nonsingular, but 

(2) for any generalized inverse17 of this matrix, the Hausman statistic 

is invariant to the choice of the generalized inverse and is asymptotically chi- 

squared with min(K - K1, L - s) degrees of freedom, where 

s = #zi n xil = number of regressors which are retained as instruments in xi,. 

What is the relationship between C and H under conditional homoskedasticity? 

It can be shown (see Newey, 1985) that: 

"A generalized inverse, A-, of a matrix A is any matrix satisfying AA-A = A.  If A is square and nonsin- 
gular, then A- is unique and equal to A ' .  

Keen
Rectangle



234 Chapter 3 

If K - KI 5 L - s so that both H and C have the same degrees of free- 
dom, then H = C (numerically equal). Otherwise, the two statistics are 
numerically different and have different degrees of freedom. 

One frequent case where K - KI 5 L - s holds is when xi2 is a subset of z i ,  that is, 
when the suspect instruments are a subset of regressors. In this case, the formulas 
(3.8.17) and (3.8.22) are two alternative ways of calculating numerically the same 
statistic. In the case where K - K1 > L - s, the degrees of freedom for H are less 
than those for the C statistic (K - KI).  For this reason, the Hausman test, unlike 
the C test, is not consistent against some local alternatives.18 

Testing Conditional Homoskedasticity 
For the OLS case with predetermined regressors, as shown in Section 2.7, there 
is a convenient n~~ test of conditional homoskedasticity. In the present case, the 
n R2 statistic obtained by regressing the squared 2SLS residuals on a constant and 
second-order cross products of the instrumental variables turns out not to have the 
desired asymptotic distribution. A test statistic that is asymptotically chi-squared 
is available but is extremely cumbersome. See White (1982, note 2). 

Testing for Serial Correlation 
For the OLS case, we developed in Section 2.10 tests for serial correlation in the 
error term. More specifically, under (2.10.15) (which is stronger than Assumption 
2.3 or 3.3) and (2.10.16) (which is stronger than Assumption 2.7 or 3.7 of con- 
ditional homoskedasticity), the modified Box-Pierce Q given in (2.10.20) can be 
used for testing the null of no serial correlation in the error term, and this statistic is 
asymptotically equivalent (in the stronger sense of the plim of the difference being 
zero) to  then^^ statistic from regression (2.10.21). Can this test be extended to the 
case where the regressors zi are endogenous? If the instruments xi satisfy (2.10.15) 
and (2.10.16), then the argument in Appendix 2.B of Chapter 2 can be generalized 
to produce a modified Q statistic that is asymptotically chi-squared under the null 
of no serial correlation. However, the expression for the statistic is more compli- 
cated than (2.10.20) and so is not presented here. This modified Q statistic for the 
case of endogenous regressors does not seem to be asymptotically equivalent to the 
n R2  statistic from regression (2.10.21). 

 he Hausman statistic can be generalized to the case of conditional heteroskedasticity, but it is not practical 
because the degrees of freedom depend on the unknown values of the matrices Z, and S. See Newey (1985). 
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Q U E S T I O N S  F O R  R E V I E W  

1. (GMM with conditional homoskedasticity) In efficient two-step GMM esti- 
mation, $ in the second step is calculated from the first step by (3.5.10) using 
the first-step residuals. Under conditional homoskedasticity, derive the asymp- 
totic variance of the two-step estimator. Is it the same as (3.8.4)? Hint: Under 

conditional homoskedasticity, (3.5.10) -+, o'x,,. 
2. (2SLS without conditional homoskedasticity) Is the 2SLS consistent when 

conditional homoskedasticity does not hold? Derive the plim of (3.8.2) and 
~ v a r ( $ ~ ~ ~ ~ ~ )  without assuming conditional homoskedasticity. Is the 2SLS as 
efficient as the two-step GMM (i.e., is its asymptotic variance as small as 

(3.5.13))? Hint: 2SLS is a G M M  estimator with a choice of %' that is not nec- 

essarily efficient without conditional homoskedasticity. 

3. (GLS interpretation of 2SLS) Verify that the 2SLS estimator can be written as 
a GLS estimator if S,, and sxy are interpreted as the data matrix of regressors 
and the data vector of the dependent variable and Sxx as the variance matrix of 

the error term. 

4. Provide two cases in which $2SLS and $(g-') are asymptotically equivalent in 
the sense that 

Hint: Keywords are "conditional homoskedasticity" and "exactly identified." 

5. Suppose the equation is just identified. Show that 2SLS (3.8.3) reduces to IV 
(3.4.4). 

6. (Sargan as n R2) Prove that Sargan's statistic (3.8.10') equals n R:,, where R:, 
is the uncentered R-squared from a regression of 3 on X. Hint: Review Ques- 

tion 8 of Section 1.2. 

7. (When zi is a strict subset of xi) Suppose zi is a strict subset of x,. So xi 
includes, in addition to the regressors (which are all predetermined), some other 

predetermined variables. We have shown that the efficient GMM estimator is 

OLS under conditional homoskedasticity. Does the result remain true without 

conditional homoskedasticity? Hint: Review Question 5 of Section 3.5. 
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3.9 Application: Returns from Schooling 

Since Mincer's (1958) pioneering study, the relationship between the wage rate 
and schooling has been the subject of a large number of empirical and theoreti- 
cal investigations. You might find the amount of attention puzzling because the 
explanation of the positive relationship seems to be obvious: education enhances 
the individual's productivity. There are, however, other explanations. For exam- 
ple, in the Spencian job market signaling model, more educated individuals receive 
higher wages only because education is used as a signal of higher ability; although 
education does not increase the individual's earning capacity, there is a correlation 
between the wage rate and schooling because both variables are influenced by the 
third variable, ability. This section shows how to use the technique of this chapter 
to isolate the effect of education on the wage rate from that of ability. One of the 
earliest studies to address this issue is Griliches (1976). 

'The NLS-Y Data 
The data used by Griliches are the Young Men's Cohort of the National Longitu- 
dinal Survey (NLS-Y). This cohort was first surveyed in 1966 at ages 14-24, with 
5,225 respondents, and was resurveyed at one- or two-year intervals thereafter. By 
1969, about a quarter of the original sample was lost, but there are 2,026 indi- 
viduals who reported earnings in 1969 and whose records are complete enough to 
allow derivation of all the variables for analysis. A very attractive feature of the 
NLS-Y is its inclusion of two measures of ability. One of them is the score on 
the Knowledge of the World of Work (KWW) test administered by the NLS inter- 
viewers in 1966. The other measure is the IQ score. All youths in the survey who 
had completed ninth grade by 1966 were asked to sign waivers letting their school 
supply the survey administrator their scores on various tests and other background 
materials. The resulting School Survey, conducted in 1968, yielded data on differ- 
ent mental ability scores, which were combined into IQ equivalents. Of the 2,026 
individuals with information about the 1969 wage rate and other variables, the IQ 
score is available for 1,362 individuals, reflecting the fact that the School Survey 
was able to cover only two-thirds of the original sample. Our discussion here con- 
cerns Griliches's results based on this smaller sample. Table 3.1 reports the means 
and standard deviation of key variables. 
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Table 3.1: Characteristics of Young Men from the National 
Longitudinal Survey 

Means and Standard Deviations (in parentheses) 

Variable 

Sample size 1,362 

Age in 1969 

Schooling in years in 1969 (S) 

Logarithm of hourly wages (in cents) in 1969 (LW) 5.68 
(0.40) 

Score on the Knowledge of the World of Work test (KWW) 35.1 
(7.9) 

IQ score (ZQ) 

Experience in years in 1969 

SOURCE: Griliches (1976, Table 1). 

I 

The Semi-Log Wage Equation 
The typical wage equation estimated in the literature is the semi-log form: 

where LW is the log wage rate for the individual, S is schooling in years, A is a 
measure of ability, h is the vector of observable characteristics of the individual 
(such as experience and location dummies), 6 is the associated vector of coeffi- 
cients, and E is the unobservable error term with zero mean (in this section, the 
individual subscript i will be dropped for notational simplicity). The semi-log 
specification for schooling S is often justified by appealing to the well-established 
stylized fact from large cross-section data (such as the Current Population Survey) 
that the relationship between log wages and schooling is linear.19 

The schooling coefficient p measures the percentage increase in the wage rate 
the individual would receive if she had one more year of education. It therefore 

1 9 ~ o r  the functional form issue, see Card (1995). 
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represents the marginal return from investing in human capital, which should be in 
the same order of magnitude as the rate of return from financial assets. We assume 
that the nonconstant regressors, (S, A,  h), are uncorrelated with the error term E 

so that the OLS is an appropriate estimation technique if ability A is included in 
the regression along with S and h. In the rest of this section, we examine what 
Griliches called the "ability bias"- biases on the OLS estimate of p that would 
arise when ability A is not included in the regression and when its imperfect mea- 
sure is included in its place. 

Omitted Variable Bias 
Sometimes the data set you work with has no measures of A (this is true for the 
Current Population Survey, for example). What is the consequence of ignoring 
ability by omitting A from the wage equation? We know from Section 2.9 that 
the regression of LW on a constant, S, and h provides a consistent estimator of the 
corresponding least squares projection, which can be written as 

-* 
E (LW I 1, S, h) = E*(a + BS + yA + 6'h + E I 1, S, h) (by (3.9.1)) 

= a  +BS+  6'h+ YE*(A 1 1, S, h) +E*(E I 1, S, h). (3.9.2) 

Since the regressors in (3.9.1) are all predetermined, we have E(E) = 0, E(S E) = 
0, and E(h-E) = 0. So E*(E ( 1, S, h) = 0. Writing Z*(A ( 1 ,  S, h) = 81 + 13s S + 
0hh, (3.9.2) becomes 

Therefore, the OLS coefficient estimate can be asymptotically biased for all the 
included regressors. This phenomenon is called the omitted variable bias. In 
particular, 

That is, the OLS estimate of the schooling coefficient p includes the indirect effect 
of ability on log wages through schooling (yes) as well as the direct effect of 
schooling (p). If 13s is positive, then kLS is asymptotically biased upward. 

Using the sample of 1,362 individuals from the NLS-Y described above, 
Griliches estimated the wage equation for 1969. The list of variables included in h 
will not be given here; suffice to say that it includes experience in years and some 
region and city-size dummies. Griliches's estimate of the schooling coefficient 
when ability is ignored in the wage equation is reproduced on line 1 of Table 3.2. 
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a 

On the face of it, the estimate looks good: the point estimate resembles the rate of 
return one might get from financial assets, and it is sharply estimated as evidenced 
by the high t-value. 

IQ as the Measure of Ability 
As already mentioned, the NLS-Y has two measures of ability, KWW (the score on 
the Knowledge of the World of Work test) collected in 1966 and IQ (the IQ score). 
Since the NLS-Y respondents were at least fourteen years old in 1966, KWW would 

reflect the effect of schooling already undertaken, and so it cannot be a measure of 
raw ability. The IQ score does not have this problem. If IQ were a perfect measure 
of ability so that A can be equated with it, then the wage equation (3.9.1) could be 
estimated consistently with IQ substituting for A. Griliches's OLS estimates of B 
(schooling coefficient) and y (ability coefficient) when IQ is included in the equa- 
tion are reported in line 2 of Table 3.2. Now the estimated schooling coefficient is 
lower, confirming our prediction that the estimated schooling coefficient includes 
the effect of ability on the wage rate when ability is omitted from the regression. 

Errors-in-Variables 
Of course the IQ score may not be an error-free measure of ability. If q is the 
measurement error, IQ is related to A as 

with E(q) = 0. The interpretation of q as measurement error makes it reasonable 
to assume that q is uncorrelated with A, S, h, and the wage equation error term E .  

Substituting (3.9.3) into (3.9.1), we obtain 

LW=(cr -y$)+BS+ y I Q + S f h + ( & -  yq). (3.9.4) 

We now illustrate for this example the general result that, if at least one of the 
regressors is measured with error, the OLS estimates of all the regression coeffi- 
cients can be asymptotically biased. 

To examine the consequence of using the error-ridden measure IQ for A, con- 
sider the corresponding least squares projection: 
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Table 3.2: Parameter Estimates 

Estimation equation: LW = a + /?S + ylQ + other controls 

~ ~ ~ i ~ ~ ~ i ~ ~  Coefficient of Excluded 
SER R~ 

Which regressor 
Line no. predetermined 

technique S lQ is endogenous'? 
variables 

1 OLS 0.065 - 0.332 0.309 none - 

(13.2) 

2 OLS 0.059 0.0019 0.331 0.313 none - 

(10.7) (2.8) 

2SLS 0.052 0.0038 0.332 - 

(7.0) (2.4) 
MED, KWW, age, 
age squared, back- 
ground variables 

- - -  

SOURCE: Line 1 :  equation (Bl) in Griliches (1976. Table 2) .  Line 2: equation (B3) in Griliches's Table 2.  
Line 3: line 3 in Griliches's Table 5 .  Figures in parentheses are t-values rather than standard errors. 

Keen
Rectangle

Keen
Rectangle



Single-Equation GMM 24 1 

Now consider E*(E ( 1, S, IQ, h) in (3.9.5). Since E(E) = 0 and (S, h) are 
uncorrelated with E, (1, S, h) are orthogonal to E. IQ is also orthogonal to E because 

E(IQ E) = E[(@ + A + q) E l  (by (3.9.3)) 

= E(q E) (since E(E) = 0, Cov(A, E) = 0) 

= 0. 

~ h u s ,  E*(E I 1, S, IQ, h) = o in (3.9.5). 
So the biases, if any, equal - y  E*(q I 1, S, I Q ,  h) in (3.9.5). Let (Os, OIQ, &) 

be the projection coefficients of (S, I Q, h) in g*(q  1 1, S, I Q, h). By the formula 
(2.9.7) from Chapter 2, 

Var(S) Cov(S, IQ) Cov(S, h') 

Cov(h, S) Cov(h, IQ) Var(h) 

In this expression, Cov(S, q) and Cov(h, q) are zero by assumption. Cov(IQ, q), 
however, is not zero because 

Cov(IQ, q) = E(IQ q) (since E(q) = 0) 

= E[(@ + A + v) q1 (by (3.9.3)) 

= @ E(q) + E(A v) + E(v2) 

= Var(q) (since E(q) = 0 and Cov(A, q) = 0). 

That is, the measurement error, if uncorrelated with the true value, is necessarily 
correlated with the measured value. Using the fact that 

Cov(S, q) = 0, Cov(IQ, q) = Var(q), and Cov(h, q) = 0, 

the projection coefficients can be rewritten as 

where 

Var(S) Cov(S, IQ) Cov(S, h') 
a = second column of Cov(IQ, S) Var(IQ) Cov(IQ, h') 

Cov(h, S) Cov(h, IQ) Var(h) 
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Therefore, in the regression of LW on a constant, S, IQ, and h,  

plim &LS = p - y . Var(r]).(lst element of a), (3.9.7a) 

plim POLS = y - y . Var(r]).(2nd element of a). (3.9.7b) 

Since the second element of a is positive (it is a diagonal element of the inverse of 
a variance-covariance matrix), the OLS estimate of the ability coefficient is biased 
downward. The direction of the asymptotic bias for the schooling coefficient, how- 
ever, depends on the sign of the first element of a. Typically, Cov(S, IQ) would 
be positive, so, barring unusually strong correlation of (S, IQ) with h,  the first ele- 
ment of a would be negative. Thus, we conjecture that POLS is biased upward for 
schooling. 

2SLS to Correct for the Bias 
To control for the bias, Griliches applies the 2SLS to the wage equation. To do 
so, the set of instruments needs to be specified. The predetermined regressors, 
(1, S,  h), can be included in the set. The additional variables included in the set 
to instrument IQ are age, age squared, KWW, mother's education, and some other 
background variables of the individual (such as father's occupation). Those vari- 
ables are thus assumed to be predetermined. Griliches's 2SLS estimate for this 
specification is reproduced in line 3 of Table 3.2.20 In accordance with our pre- 
diction that the OLS estimate of the ability coefficient is biased downward, the 
OLS estimate of the ability coefficient of 0.0019 in line 2 is lower than the 2SLS 
estimate of 0.0038 in line 3. Our conjecture that h L s  of the schooling coefficient 
when IQ is included in the regression is biased upward, too, is borne out by data 
because the estimate of p of 0.059 in line 2 is higher than the estimate of 0.052 in 
line 3. 

To summarize, the "ability bias" studied by Griliches is that the schooling 
coefficient is biased upward if ability is ignored and is biased in an unknown direc- 
tion (but perhaps upward) if an imperfect measure of ability (IQ in the present case) 
is included. The 2SLS provides a solution, but it is predicated on the assumption 
that the instruments used (such as MED and KWW) are uncorrelated with unob- 
served wage determinants E and r ] .  Those determinants would include personal 
characteristics like diligence. It seems not unreasonable to suppose that KWW 
depends on such characteristics. If so, KWW cannot serve as an instrument. One 
could go further and argue that MED is not predetermined either, because some 

2 0 ~ h e  R~ is not reported for the 2SLS estimate because, unlike in the OLS case, the sum of squared 2SLS 
residuals cannot be divided between the "explained variation" and the "unexplained variation." 
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of the mother's personal characteristics that influenced her education and that are 
valued in the marketplace would be inherited by the child. Whether those variables 
included in the set of instruments are predetermined can be tested by Sargan's 
statistic. But the statistic is not reported in Griliches's paper (which was written 
long before doing so became a standard practice). 

Subsequent Developments 

Perhaps because it is so difficult to come up with valid instruments that are uncor- 
related with unobserved characteristics but correlated with ZQ, controlling for the 
"ability bias" continued to attract much attention in the literature. There is a fairly 
large literature starting with Behrman et al. (1980), which compares identical twins 
with different levels of education to control for genetic characteristics and family 
background. One can also compare the same individual at two points in time. In 
either case, the appropriate estimation technique is what is called the fixed-effect 
estimator, to be covered in Chapter 5. 

The endogeneity of schooling is another major issue. If one takes the view that 
the error term includes a host of unobservable individual characteristics that might 
affect the individual's choice of schooling, then schooling needs to be treated as an 

endogenous variable. But again, finding valid instruments uncorrelated with unob- 
servable characteristics but correlated with schooling is extremely difficult. The 
recent literature can be viewed as a search for the determinants of schooling hav- 
ing little to do with the individual's unobserved characteristics. The variable used 
in Angrist and Krueger (1991), for example, is whether the individual is subject to 
compulsory schooling laws. 

Finally, the literature on the relationshp between school quality and earnings 
is attracting renewed attention. See Card and Krueger (1996) for a survey. 

Q U E S T I O N S  F O R  R E V I E W  

1. List all the assumptions made in this section about the means and covariances 

of (S, A, ZQ, KWW, h, E ,  r ] ) .  Study how Griliches states those assumptions. 
Which ones are crucial for the 2SLS to be consistent? 

2. Suppose the relationship between ZQ and A is given not by (3.9.3) but by 

Is the 2SLS estimator of (the schooling coefficient) still consistent? [Answer: 
Yes.] 
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In the Spencian model of job market signaling, individuals are sorted into 
two groups, with low-ability individuals choosing a low level of education 
and high-ability ones choosing a high level of education. Education does not 
increase the earning capacity of individuals, so the individual's wage rate is 
determined by his or her ability. If we had data on the wage rate, ability, and 
schooling for a sample of individuals that includes both high- and low-ability 
individuals, can we test the hypothesis that education by itself does not con- 
tribute to higher wages? Hint: The data would have a multicollinearity problem. 

P R O B L E M  S E T  F O R  C H A P T E R  3 

A N A L Y T I C A L  E X E R C I S E S  

1. Prove: A symmetric and idempotent matrix is positive semidefinite. 

2. We wish to prove Proposition. 3.4. To avoid inessential complications, consider 
the case where K = 1 and L = 1 so that xi and zi are scalars. So (3.5.5) 
becomes 

and the in (3.5.10) becomes 

(a) Show: The first term on the RHS of (*) converges in probability to S 
2 2 (= E(xi si )). 

(b) Use the Cauchy-Schwartz inequality 

to show that ~ ( z i x ? s ~ )  exists and is finite. Hint: zix:si is the product of xisi 
and xizi. Fact: E(x) exists and is finite if and only if E(lx 1) < XI. Where do 

we use Assumption 3.6? 

(c) Show that the second term on the RHS of (*) converges to zero in proba- 
bility. 
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(d) In a similar fashion, show that the third term on the RHS of (*) converges 
to zero in probability. 

3. We wish to prove the algebraic result (3.5.1 1). What needs to be proved is that 
A - B is positive semidefinite where 

and 

B = (xk, S-I xxZ)- l  

A result from matrix algebra states: 

Let A and B be two positive definite and symmetric matrices. A - B is 
positive semidefinite if and only if B-' - A-' is positive semidefinite. 

Therefore, what needs to be proved is that 

is positive semidefinite. 

(a) Since S ( K  x K )  is positive definite, there exists a nonsingular K x K 

matrix C such that CIC = S-l. Verify that Q can be written as 

where 

Hint: c-'c'-' = S. 

(b) Show that Q is positive semidefinite. Hint: First show that MG is symmetric 
and idempotent. As you showed in Exercise 1, a symmetric and idempotent 
matrix is positive semidefinite. 

4. Suppose zi is a strict subset of xi. Which one is smaller in the matrix sense, 

the asymptotic variance of the OLS estimator or the asymptotic variance of 
the efficient two-step GMM estimator? Hint: Without loss of generality, we can 

assume that the first L elements of the K-dimensional vector xi are zi. If K x K 
matrix W is given by 
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where 

A - E(E:z~z:) = leading (L x L) submatrix of S, 
( L  x L )  

then the asymptotic variance of the OLS estimator can be written as (3.5.1). If 

you did Exercise 3, you can verify that the algebraic relation (3.5.11) does not 

require W to be positive definite, as long as X~,WSWX,, is nonsingular. 

5. (optional) Prove Proposition 3.6 by following the steps below. 

(a) Show: &(i(gpl))  = B^g wherefj - IK - s , , ( s ~ , ~ - ' s , , ) - ~ s ~ ~ ~ - ~ .  

(b) since is positive definite, there exists a nonsingular K x K matrix C such 
AIA- 1 A that C'C = g-'. Define A = CS,,. Show that B S B = C'MC, where 

M = IK - A(AIA)-l A'. What is the rank of M? Hint: The rank of an 

idempotent matrix equals its trace. 

(c) Let v - f i C g .  Show that v + d  N ( 0 ,  IK). 

(d) Show that J(~(S- ' ) ,  g-I) = v'Mv. What is its asymptotic distribution? 

6. Show that the J statistic in Proposition 3.6 is numerically equal to 

Ar- 1 A n .sky B S Bs,, , 

where 6 is defined in Exercise 5(a). Hint: From Exercise 5, J = n.g16'S-'fjg. 
Show that %g = Es,,. 

7. (optional) Prove Proposition 3.7 by taking the following steps. The notation 
not introduced in this exercise is the same as in Exercise 5. 

(a) Prove: 

- A  

g1n(8) = Elgl and B', (sII)-' fj1 = C',MICI, 

where 
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(b) Prove: rank(M) = K - L, rank(Ml) = K1 - L. 

(c) Prove: You have proved in the previous exercise that J = vlMv, where 
v = f i C g .  Here, prove: J1 = v;Mlvl, where vl = f i C l g l .  

To proceed further, define the K x K1 matrix F as 

} K1 rows, 

} K - K1 TOWS. 

Then: xil = F1xi, Sxlz = F1SXz, gl = F'g. 

(d) Prove J - J1 = vl(M - D)v where D = C1-'FC;M1CIF1C-I. 

(e) Prove that D is symmetric and idempotent, with rank K1 - L. Hint: 

(f) Prove: AID = 0. Hint: 

AID = (S:,C')(C'-'FC',M~ c~F'C-') = (S:,FC',M~) (c~F'c-I), 

SLFC; = A',, 

(g) Prove: M - D is symmetric and idempotent, with rank K - K1 

(h) Prove the desired result: J - JI +d (K - K1). 

(i) Step (d) has established that C = n-g'C1(M - D)C g. Show that C can be 
written as 

Hint: &(i) = shy. So the numerical value of C would have been the 

same if we replaced g by hy from the beginning in (a). 

(j) Show that M - D is positive semidefinite. Thus, the quadratic form C is 
nonnegative for any sample. 
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8. (Optional, proof of numerical equivalence in Proposition 3.8) In the restricted 

efficient GMM, the J function is minimized subject to the restriction R6 = r. 
For the time being, do not restrict %? to be equal tog-' and form the Lagrangian 

as 

where A is the #r-dimensional Lagrange multipliers (recall: r is #r x 1, R is 

#r x L, and 6 is L x 1). Let 8 be the solution to the constrained minimization 

problem. (If @ = g-I, it is the restricted efficient GMM estimator of 6.) 
- A 

(a) Let i (@) be the unrestricted GMM estimator that minimizes J(6, W). 
Show: 

8 = i ( G )  - (S~,@S~,)-'R' [R(s,$?s,,)-~R']-~ [ R i ( G )  - r], 

A = 2n- [ R ( S ~ , ~ S ~ , ) - ' R ' ] - ~  [Ri(@) - r]. 

Hint: The first-order conditions are 

- 2 n ~ ~ , G s , ,  + 2n(~k,@~,)8  + R'A = 0. 

Combine this with the constraint ~8 = r to solve for A and 8 .  

(b) Show: 

Hint: 

Use the first-order conditions for the unrestricted GMM: 

(c) Now set @ = g-' and show that the Wald statistic W defined in (3.5.8) is 
numerically equal to LR in (3.7.2). 

* A 

9. (GMM Hausrnan principle) Let i1 = 6(W1) and & = i ( G 2 )  be two GMM 
estimators with two different choices of the weighting matrix, GI and G2. 
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(a) Show: 

where 

A 

Q1 = X:,WIXxz, Q2 = X:,W2Xxz, plim Wj = Wi (j = 1, 2). 
n-no 

A A 

(b) Let q = SI - 82. Show that f i q  +d  N ( 0 ,  Avar(q)), where 

(c) Set G2 = SO that i2 is efficient GMM. Show that 

10. (Weak instruments. This question is due to M. Watson.) Consider the follow- 

ing model: 

where yi, zi, and r i  are scalar random variables. Let xi denote a scalar instru- 
mental variable that is related to zi via the equation: 

Let 

Assume that 

(1) ( x i ,  qi} follows a stationary and ergodic process. 

(2) gi is a martingale difference sequence with E(gig:) = S, which is a positive 
definite matrix. 

(3) ~ ( x ? )  = a: > 0. 
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Chapter 3 

(a) Prove that a,, - E(xizi) # 0 (so that the rank condition for identification 
is satisfied). 

(b) Prove that +, 6. 

We now want to consider a case in which the rank condition is just barely 
satisfied, that is, a,, is very close to zero. One way to do this is to replace 
Assumption (4) with 

For the remainder of the problem, assume that (1)-(3) and (4') hold. (This 
assumption and the following questions are based on Staiger and Stock (1997).) 
Note that $ - 6 = s;$jl, where jl is the sample mean of gli  (= 

(c) Show that s,, +, 0. 

(d) Show that &s,, +d a: + a ,  where a is distributed N(0, sZ2) and ~ 2 2  is 
the (2,2) element of S. 

(e) Show that $ - 6 + d  (a: + a)-'b, where (a, b) are jointly normally dis- 
tributed with mean zero and covariance matrix S. 

(f) Is $ consistent? 

E M P I R I C A L  E X E R C I S E S  

Read Griliches (1976) before answering. We will estimate the type of the wage 
equation estimated by Griliches using an extract from the NLS-Y used by Black- 
bum and Neumark (1992)." The NLS-Y is panel data, with the same set of young 
men surveyed at several points in time (we will not exploit the panel feature of the 
data set in this exercise, though). The extract contains information about those 
individuals at two points in time: first, the earliest year in which wages and other 
variables are available, and second, in 1980. In a data file GRILIC.ASC, data are 
provided on RNS, RNS80, MRT, MRT80, SMSA, SMSA80, MED, IQ, KWW, YEAR, 
AGE, AGE80, S, 5'80, EXPR, EXPR80, TENURE, TENURE80, LW, and LW80 (in 
this order, with the columns corresponding to the variables, as usual). The variable 

21See Blackbum and Neurnark (1992, Section 111) for a more detailed description of the sample. 
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YEAR is the year of the first point in time. Variables without "80 are for the first 
point, and those with "80" are for 1980. The definition of the variables for the first 
point is: 

RNS = dummy for residency in the southern states 

MRT = dummy for marital status (1 if married) 

SMSA = dummy for residency in metropolitan areas 

MED = mother's education in years 

KWW = score on the "Knowledge of the World of Work" test 

IQ = IQ score 

AGE = age of the individual 

S = completed years of schooling 

EXPR = experience in years 

TENURE = tenure in years 

LW = log wage. 

The Blackburn-Neumark sample has 815 observations after deleting black indi- 
viduals. Also deleted are cases with missing information on mother's education, 
reducing the sample size to 758. 

(a) Calculate means and standard deviations of all the provided variables (includ- 
ing those for 1980) and prepare a table similar to Griliches's Table 1. Also, 
calculate the correlation between IQ and S (use the MSD (CORR)  command 
for TSP, CMOM ( PRINT, CORR) for RATS). 

Since the year the wage rate is observed differs across individuals, the wage rate 
will have the year effect. Generate eight year dummies for YEAR = 66, . . . ,73. 
(Note: There is no observation for 1972.) The year dummies will be included in 
the log wage equation to control for the year effect. 

(b) Consider the wage equation (dropping the individual subscript i) 

where LW is log wages, S is schooling, and 

h - (EXPR, TENURE, RNS, SMSA, year dummies)'. 

(There is no need to include a constant because it is a linear combination of 
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the year dummies.) Prepare a table similar to Table 3.2. In your 2SLS esti- 
mation of the wage equation, the set of instruments should consist of prede- 
termined regressors (S and h) and excluded predetermined variables (MED, 
KWW, MRT, AGE). Is the relative magnitude of the three different estimates 
of the schooling coefficient consistent with the prediction based on the omitted 
variable and errors-in-variables biases? 

TSP Tip: To do 2SLS, use the INST or 2SLS command. 

RATS Tip: Use the LINREG command with the INST option. To define the 
instrument set, use the INSTRUMENTS command. 

(c) For your 2SLS estimation of the wage equation in part (b), calculate Sargan's 
statistic (it should be 87.655). What should the degrees of freedom be? Calcu- 
late the p-value. 

TSP Tip: Sargan's statistic can be calculated as @phi  / ( @ s sr / @nob ), where 
the variables with "@" are outputs from TSP commands. @nob is sample 
size, @phi  is ~ ' x ( x ' x ) - ~ x ' ~  where 5 is the 2SLS residual vector, and @ssr 
is i ' i .  

RATS Tip: Sargan's statistic is %uzwzu/ ( %rss / %nobs ), where variables 
with "%" are outputs from RATS commands. %nobs is sample size, 
%uzwzu is ~'x(x'x)-'X'S, and %rss is i ' i .  

(d) Obtain the 2SLS estimate by actually running two regressions. Verify that the 
standard errors given by the second stage regression are different from those 
you obtained in (b). 

(e) Griliches mentions that schooling, too, may be endogenous. What is his argu- 
ment? Estimate by 2SLS the wage equation, treating both l Q  and S as endoge- 
nous. What happens to the schooling coefficient? How would you explain the 
difference between your 2SLS estimate of the schooling coefficient here and 
your 2SLS estimate in (b)? Calculate Sargan's statistic (it should be 13.268) 
and its p-value. 

(f) Estimate the wage equation by GMM, treating schooling as predetermined as in 
the 2SLS estimation in part (b). Are 2SLS standard errors smaller than GMM 
standard errors? Test whether schooling is predetermined by the C statistic. 
To calculate C, you need to do two GMMs with and without schooling as an 
instrument. Use the same throughout. To calculate 5, use the 2SLS residual 
from part (b). The C statistic should be 58.168. 
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TSP Tip: It is a bit awkward to calculate $ in TSP. The following codes, 
though not elegant, get the job done. Here, resO is the residuals from the 
2SLS estimation in (b). 

smpl 1 758; 
xO=resO*s; 
xl=resO*expr; 
x2=resO*tenure; 

x3=resO*rns; 

x4=resO*smsa; 

x5=resO*y66; 

@mom, an output from the TSP command MSD, is $. To do GMM, use 
TSP's GMM command. The GMM option COVOC=ma trix name forces 
the GMM command to use the assigned matrix for g. The J statistic is given 

by @nob* @phi. 

RATS Tip: The LINREG with the INST and ROBUSTERRORS option does 
GMM for linear equations. The WMATRIX=ma trix name option of 
LINREG accepts g-', not g. To calculate $-' in RATS, do the following. 
Here, res 0 is the residuals from the 2SLS estimation in part (b). 

mcov / resO 

# s expr tenure rns smsa y66 . . .  y73 
med kww mrt age 

compute sinv=inv(%cmom) 

sinv is $-I. The J statistic is given by %uzwzu. 

(g) Go back to the wage equation you estimated in (e) by 2SLS endogenous school- 
ing. The large Sargan's statistic (and the large J statistic in part (0) is ' a con- 
cern. So consider dropping both MED and KWW from the list of instruments. 
Is the order condition for identification still satisfied? What happens to the 
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2SLS estimates? (The schooling coefficient will be -529.3%!) What do you 
think is the problem? Hint: There are two endogenous regressors, S and IQ. 
MRT and AGE are the only excluded predetermined variables. If MRT and 

AGE do not have explanatory power in the first-stage regression of S and IQ 
on the instruments, then the fitted values of S and IQ will be very close to linear 

combinations of the included predetermined variables. This will lead to a near- 

multicollinearity problem in the second-stage regression. Make sure you exam- 

ine the first-stage regressions to check the explanatory power of MRT and AGE. 

A N S W E R S  T O  S E L E C T E D  Q U E S T I O N S  

A N A L Y T I C A L  E X E R C I S E S  

4. The asymptotic variance of the OLS estimator is (by setting x = z in (3.5.1)) 

where A - E(E;z~z;). The asymptotic variance of the two-step GMM is, by 

(3.5.13), 

where S = E(E; x i x ; ) .  If W is as defined in the hint, then 

WSW = W and XkzWXxz = X m ~ - l X z z .  

So (3.5.1) reduces to the asymptotic variance of the OLS estimator. By (3.5.1 I), 
it is no smaller than (ELz s-'x,,)-', which is the asymptotic variance of the 
two-step GMM estimator. 

E M P I R I C A L  E X E R C I S E S  

(b) See Table 3.3, lines 1-5. 

(e) He gives three reasons for the endogeneity of schooling. First, the measure- 
ment error r] may be related to success in schooling. The second reason is the 
argument we made in the text: the choice of S is influenced by unobservable 
characteristics. Third, schooling may be measured with error. The general 
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Table 3.3: Parameter Estimates, Blackburn-Neumark Sample 

Estimation equation: dependent variable = LW, regressors: S, I Q ,  EXPR, TENURE, and other controls 

Excluded 
predetermined 

Coefficient of Test of over- 
Line Estimation Which regressor variables 

SEE R~ identifying 
no. technique 

IQ EXPR TENURE 
is endogenous? besides 

restrictions 
regional 
dummies 

1 OLS 0.070 - 0.030 0.043 0.328 0.425 - none - 
(0.0067) (0.0065) (0.0075) 

2 OLS 0.062 0.0027 0.031 0.042 0.326 0.430 - none - 

(0.0073) (0.0010) (0.0065) (0.0075) 

3 2SLS 0.069 0.0002 0.030 0.043 0.328 - 87.6 IQ MED, KWW, 
(0.013) (0.0039) (0.0066) (0.0076) (p  = 0.0000) AGE, MRT 

4 2SLS 0.172 -0.009 0.049 0.042 0.380 - 13.3 S, IQ MED, KWW, 
(0.021) (0.0047) (0.0082) (0.0088) (p  = 0.00131) AGE, MRT 

5 GMM 0.176 -0.009 0.050 0.043 0.379 - 11.6 S, IQ MED, KWW, b 

(0.021) (0.0049) (0.0080) (0.0095) (p  = 0.00303) AGE, MRT 

6 2SLS 0.117 0.002 0.033 0.0051 0.380 - 14.9 S80, IQ MED, KWW, 
(0.027) (0.0050) (0.0052) (0.0029) (p = 0.00058) AGE80, MRT80 

NOTE: Standard errors in parentheses. Line 6 is for 1980. 
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formula for the asymptotic bias for the 2SLS estimator is given by 

If S is endogenous, the instrument set xi for the 2SLS estimation in (b) erro- 
neously includes a variable (which is S) that is not predetermined. So one of 
the elements of E(xi.ri) is not zero. Then it is clear from the formula that 

asymptotic bias can exist at least for some coefficients. 

(g) Without MED and KWW as instruments, the 2SLS estimator becomes impre- 

cise. The order condition is satisfied with equality. The culprit is the low 

explanatory power of MRT (look at its t-value in the first-stage regressions for 

S and IQ). 
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C H A P T E R  4 

Multiple-Equation GMM 

A B S T R A C T  

This chapter is concerned about estimating more than one equation jointly by GMM. 
Having learned how to do the single-equation GMM, it is only a small step to get to 
a system of multiple equations, despite the seemingly complicated notation designed 
to keep tabs on individual equations. This is because the multiple-equation GMM 
estimator can be expressed as a single-equation GMM estimator by suitably specify- 
ing the matrices and vectors comprising the single-equation GMM formula. This 
being the case, we can develop large-sample theory of multiple-equation GMM 
almost off the shelf. 

The payoff from mastering multiple-equation GMM is considerable. Under con- 
ditional homoskedasticity, it reduces to the full-information instrumental variable 
efficient (FWE) estimator, which in turn reduces to three-stage least squares (3SLS) 
if the set of instrumental variables is common to all equations. If we further assume 
that all the regressors are predetermined, then 3SLS reduces to seemingly unrelated 
regressions (SUR), which in turn reduces to the multivariate regression when all the 
equations have the same regressors. 

We will also show that the multiple-equation system can be written as an equa- 
tion system with its coefficients constrained to be the same across equations. The 
GMM estimator for this system is again a special case of single-equation GMM. The 
GMM estimator when all the regressors are predetermined and errors are condition- 
ally homoskedastic is called the random-effects (RE) estimator. Therefore, SUR and 
RE are equivalent estimators. 

The application of this chapter is estimation of interrelated factor demands by 
SURIRE. A system of factor demand functions is derived from a cost function called 
the translog cost function, which is a generalization of the linear logarithmic cost 
function considered in Chapter 1. 

This chapter does not consider the maximum likelihood (ML) estimation of 
multiple-equation models. The ML counterpart of 3SLS is full-information maxi- 
mum likelihood (FIML). For a full treatment of FIML, see Section 8.5. 

If the complexity of this chapter's notation stands in your way, just set M (the 
number of equations) to two. Doing so does not impair the generality of any of the 
results of this chapter. 
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4.1 The Multiple-Equation Model 

To be able to deal with more than one equation, we need to complicate the notation 
by introducing an additional subscript designating the equation. For example, the 
dependent variable of the m-th equation for observation i will be denoted yim. 

Linearity 
There are M linear equations, each of which is a linear equation like the one in 
Assumption 3.1 : 

Assumption 4.1 (linearity): There are M linear equations 

Yim = zimSm + Eim (m = 1, 2, . . . , M ;  i = l , 2 ,  . . . , n), (4.1.1) 

where n is the sample size, zim is the Lm-dimensional vector of regressors, 6, is 
the conformable coefficient vector, and &im is an unobservable en-or term in the 
m-th equation. 

The model will make no assumptions about the interequation (or contempora- 

neous) correlation between the errors (e i l ,  . . . , E ~ M ) .  Also, no a priori restric- 

tions are placed on the coefficients from different equations. That is, the model 

assumes no cross-equation restrictions on the coefficients. These points can be 

illustrated in 

Example 4.1 (wage equation): In the Griliches exercise of Chapter 3, we 

estimated the wage equation. In one specification, Griliches adds to it the 

equation for KWW (score on the "Knowledge of the World of Work test): 

where (to refresh your memory) LWi is the log wage of the i-th individual in 

the first year of the survey, Si is schooling in years, IQi is IQ, and EXPRi is 

experience in years. In this example, M = 2, L ,  = 4, L2 = 3, Yil = LWi7 
yi2 = m i ,  and 
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The errors E~~ and E~~ can be correlated. The correlation arises if, for exam- 
ple, there is an unobservable individual characteristic that affects both the 
wage rate and the test score. There are no cross-equation restrictions such as 

PI = 82. 

Cross-equation restrictions naturally arise in panel data models where the 
same relationship can be estimated for different points in time. 

Example 4.2 (wage equation for two years): The NLS-Y data we used for 
the Griliches exercise actually has information for 1980, so we can estimate 
two wage equations, one for the first point in time (say, 1969) and the other 
for 1980: 

In the language of multiple equations, S69i (education in 1969) and S80i 
(education in 1980) are two different variables. It would be natural to enter- 
tain the case where the coefficients remained unchanged over time, with 

41 = 42, = P2, y1 = y2, ITI = n2. This is a set of linear cross-equation 
restrictions. 

As will be shown in Section 4.3 below, testing (linear or nonlinear) cross-equation 
restrictions is straightforward. Estimation while imposing the restriction that the 
coefficients are the same across equations will be considered in Section 4.6. 

Stationarity and Ergodicity 

Let xi, be the vector of Km instruments for the m-th equation. Although not fre- 

quently the case in practice, the set of instruments can differ across equations, and 
so the number of instruments, Km, can depend on the equation. 

Example 4.1 (continued): Suppose that IQi is endogenous in both equations 
and that there is a variable, MEDi (mother's education), that is predetermined 
in the first equation (so E(MEDi E ~ ~ )  = 0). So the instruments for the LW 
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equation are (1, Si, EXPRi, MEDi). If these instruments are also orthogonal 
to ~ ~ 2 ,  then the KWW equation can be estimated with the same set of instru- 
ments as the LW equation. In this example, K1 = K2 = 4, and 

The multiple-equation version of Assumption 3.2 is 

Assumption 4.2 (ergodic stationarity): Let wi be unique and nonconstant ele- 
ments of (yil , . . . , y i ~ ,  zi 1 , . . . , Z ~ M ,  xi 1 , . . . , X~M). {wi} is jointly stationary and 
ergodic. 

This assumption is stronger than just assuming that ergodic stationarity is satisfied 
for each equation of the system. Even if {yim, zim , xi,} is stationary and ergodic 
for each individual equation m, it does not necessarily follow, strictly speaking, 
that the larger process {wi}, which is the union of individual processes, is Cjointly) 
stationary and ergodic (see Example 2.3 of Chapter 2 for an example of a vec- 
tor nonstationary process whose components are univariate stationary processes). 
In practice, the distinction is somewhat blurred because the equations often share 
common variables. 

Example 4.1 (continued): Because zil, zi2, xil, and xi2 for the example have 
some common elements, wi has only six elements: (LWi , KWW; , Sj , IQi,  
EXPRi, MEDi). The ergodic stationarity assumption for the first equation 
of this example is that {LWi, Si, IQi ,  EXPRi, MED;} is jointly stationary and 
ergodic. Assumption 4.2 requires that the joint process include KWW;. 

Orthogonality Conditions 
The orthogonality conditions for the M-equation system are just a collection of the 
orthogonality conditions for individual equations. 

Assumption 4.3 (orthogonality conditions): For each equation m ,  the K,  van- 
ables in xi, are predetermined. That is, the following orthogonality conditions are 
satisfied: 

E(xim . E~,) = 0 (m = 1,2 ,  . . . , M). 
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So there are Ern K ,  orthogonality conditions in total. If we define 

then all those orthogonality conditions can be written compactly as E(gi) = 0. 
Note that we are not assuming "cross" orthogonalities; for example, xi1 does not 
have to be orthogonal to ~ ~ 2 ,  although it is required to be orthogonal to ~ i , .  HOW- 
ever, if a variable is included in both xi1 and xi2, then the assumption does imply 
that the variable is orthogonal to both eil and E i 2 .  

Example 4.1 (continued): x, K,  in the current example is 8 (= 4 + 4)  
and gi is 

Because xil and xi2 have the same set of instruments, each instrument is 
orthogonal to both E i l  and E i 2 .  

Identification 

Having set up the orthogonality conditions for multiple equations, we can derive 
the identification condition in much the same way as in the single-equation case. 
The multiple-equation version of (3.3.1) is 

where wi is as in Assumption 4.2, and 6 without the subscript is a stacked vector 
of coefficients: 
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So the orthogonality conditions can be written as E[g(wi; 6)] = 0. The coefficient 
vector is identified if 6 = 6 is the only solution to the system of equations 

Using the definition (4 .13 ,  we can rewrite the left-hand side of this equation, 

E[g(wi; 8)1, as 

where 

(The third equality in (4.1.8) is obtained by formula (A.4) of Appendix A for mul- 
tiplication of partitioned matrices.) Therefore, the system of equations determining 
6 can be written as 

which is the same in form as (3.3.4), the system of equations determining 6 in the 
single-equation case! 
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It then follows from the discussion of identification for the single-equation case 

that a necessary and sufficient condition for identification is that C,, be of full 
column rank. But, since C,, is block diagonal, this condition is equivalent to 

Assumption 4.4 (rank condition for identification): For each m (= I , 2 ,  . . . , M), 
E(x;,z~,) (K, x L,) is o f  full column rank. 

It should be clear why the identification condition becomes thus. We can uniquely 

determine all coefficient vectors (S,, . . . . SM) if and only if each coefficient vector 
S,, is uniquely determined, which occurs if and only if Assumption 3.4 holds for 
each equation. The rank condition is this simple because there are no a priori 

cross-equation restrictions. Identification when the coefficients are assumed to be 

the same across equations will be covered in Section 4.6. 

The Assumption for Asymptotic Normality 

As in the single-equation estimation, the orthogonality conditions need to be 

strengthened for asymptotic normality: 

Assumption 4.5 (gi is a martingale difference sequence with finite second 
moments): {gi} is a joint martingale difference sequence. E(gig;) is nonsingular. 

The same comment that we made above about joint ergodic stationarity applies 

here: the assumption is stronger than requiring the same for each equation. As in 

the previous chapters, we use the symbol S for Avar(g), the asymptotic variance of 
g (i.e., the variance of the limiting distribution of f i g ) .  By the CLT for stationary 

and ergodic martingale difference sequences (see Section 2.2), it equals E(gig:). It 
has the following partitioned structure: 

That is, the (m, h )  block of S is E ( E ~ ~ E ~ ~ x ~ ~ x ~ ~ )  (111, h = 1. 2, . . . , M). 
In sum, the multiple-equation model is a system of equations where the assump- 

tions we made for the single-equation model apply to each equation, with the added 

requirement of jointness (such as joint stationarity) where applicable. 
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Connection to the "Complete" System of Simultaneous Equations 
The multiple-equation model presented in most other textbooks, called the "com- 
plete" system of simultaneous equations, adds more assumptions to our model. 
Those additional assumptions are not needed for the development of multiple- 
equation GMM, but if you are curious about them, you can at this junction make a 
detour to the first two subsections of Section 8.5. 

4.2 Multiple-Equation GMM Defined 

Derivation of the GMM estimator for multiple equations, too, can be carried out in 
much the same way as in the single-equation case. Let 6 be a hypothetical value of 

the true parameter vector 6 and define g, (8) by (3.4.1). The definition of the GMM 
estimator is the same as in (3.4.5), provided that the weighting matrix @ is now 
C, K,  x Em K,, . In the previous section, we were able to rewrite E[g(wi; 611 for 

multiple equations as a linear function of 6 (see (4.1.8)). We can do the same for 
the sample analogue g, (8): 
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where 

Again, this is the same in form as the expression for g,,(j) for the single-equation 
case. 

It follows that the results of Section 3.4 about the derivation of the GMM esti- 
mator are applicable to the multiple-equation case. In particular, just reproducing 
(3.4.8) and (3.4.1 I), 

multiple-equation GMM estimator: $ (9) = (s;,$?s,,)-'s:,$?s,, (4.2.3) 

its sampling error: $($?) - S = (s;,$?s,,)-IS;, $?g. (4.2.4) 

The features specific to the multiple-equation GMM formula are the following: 
(i) s,, is a stacked vector as in (4.2.2), (ii) S,, is a block diagonal matrix as in 
'(4.2.2), (iii) accordingly, the size of the weighting matrix $? is Em K, x Em K,, 
and (iv) g in (4.2.4), the sample mean of gi, is the stacked vector 

It will be necessary to rewrite the multiple-equation GMM formula (4.2.3) 
while explicitly taking account of those special features. If $?,h (K, x Kh) is the 
(m, h) block of $? (m, h = 1,2, . . . , M), then (4.2.3) can be written out in full as 
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To go from the second-to-last to the last line, use formulas (A.6) and (A.7) of 
the appendix on partitioned matrices. If you find the operation too much, just set 
M = 2. 
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- 

4.3 Large-Sample Theory 

Large-sample theory for the single-equation GMM was stated in Propositions 3.1- 
3.8. It is just a matter of mechanical substitution to translate it to the multiple- 
equation model. Provided that 6, x,,, S, gi ,  s,,, and s,, are as defined in the 
previous sections and that "Assumption 3.x" is replaced by "Assumption 4.x," 

Propositions 3.1, 3.3, and 3.5-3.8 are valid as stated for the multiple-equation 

model. Only a few comments about their interpretation are needed. 

(Hypothesis testing) In the present case of multiple equations, 6 is a stacked 

vector composed of coefficients from different equations. The import of Propo- 
sitions 3.3 and 3.8 about hypothesis testing for multiple equations is that we can 

test cross-equation restrictions. 

Example 4.2 (continued): For the two-equation system of wage equa- 

tions for two years, the stacked coefficient vector 6 is 

It would be interesting to test Ho: B1 = p2 and nl = n2, namely, that the 

schooling and experience premia remained stable over time. The hypoth- 
esis can be written as RS = r, where 

Nonlinear cross equation restrictions, too, can be tested; just use part (c) 

of Proposition 3.3 or Proposition 3.8. 

(Test of overidentifying restrictions) The number of orthogonality conditions 

is Ern K ,  and the number of coefficients is Ern L,. Accordingly, the degrees 
of freedom for the J statistic in Proposition 3.6 are Ern K ,  - Ern L,, and that 

for the C statistic in Proposition 3.7 is the total number of suspect instruments 

from different equations. 

Proposition 3.2 does not apply to multiple equations as is, but it is obvious how 
it can be adapted. 

Proposition 4.1 (consistent estimation ofcontemporaneous error cross-equation 
A A 

moments): Let 6, be a consistent estimator of 6, , and let i'im -- yim - z:,6, be 
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the implied residual for m = 1,2,  . . . , M .  Under Assumptions 4.1 and 4.2, plus 
the assumption that E(z irnz ih)  exists and is finite for all m,  h (= 1,2,  . . . , M ) ,  

where 
1 

3mh = - Ciimiih and c m h  = E ( E ~ , E ~ ~ )  n i=l 

provided that E ( E ~ , E ~ ~ )  exists and is finite. 

The proof, very similar to the proof of Proposition 3.2 and tedious, is left as an 
analytical exercise. 

This leaves Proposition 3.4 about consistently estimating S. The assumption 
corresponding to Assumption 3.6 (the finite fourth-moment assumption) is 

Assumption 4.6 (finite fourth moments): E[(ximk z ~ ~ ~ ) ~ ]  exists and is finite for 
all k (= 1,2,  . . . , K,), j (= 1,2,  . . . , Lh) ,  m ,  h (= 1,2,  . . . , M ) ,  where ximk is 
the k-th element of xi ,  and zih, is the j -th element of  z i h .  

The multiple-equation version of the formula (3.5.10) for consistently estimating 
S is 

for some consistent estimate iim of ~ i , .  

Proposition 4.2 (consistent estimation of S, the asymptotic variance of g): Let 
A A 

6 ,  be a consistent estimator of 6, ,  and let iim = yi, - z: ,6,  be the implied 
A 

residual for m = 1,2,  . . . , M .  Under Assumptions 4.1, 4.2, and 4.6, S given in 
(4.3.2) is consistent for S. 

We will not give a proof; the technique is very similar to the one used in the proof 
of Proposition 2.4. 
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Table 4.1: Multiple-Equation GMM in the Single-Equation Format 

Sample Analogue of - - 
Orthogonality Conditions: gn(6) = s,, - Sxz6 = 0 

GMM Estimator: i (G)  = ( s ~ ~ ~ s ~ ~ ) - ~ s ~ ~ ~ ~ ~ ~  

Its Sampling Error: i ( G )  - 6 = (s&Gs,)-'s~,@~ 

Asymptotic Variance of 
Optimal GMM: ~var(i(S-l)) = (X;,S-~ zm)-l 

Its Estimator: ~var(i(S-l)) = (S&S-'SXz)-' 

J Statistic: J(~(S-') ,  Spl )  = n . gn (i(S-l))lS-lgn ($(Spl)) 

Single-Equation GMM 

applied to the Multiple-Equation GMM 

gi 

Estimator consistent 

under which 

assumptions? 

Size of W 

X xz 

Estimator asymptotic 

normal under which 

equation in question 

xi . ~i (4.1.4) 

K x K  

E(x~z:) 

d.f. of J I K - L  I E,(Km-Lm) 

Ern Km x E m  Km 

(4.1.9) 

I 
A 

S + p  S under 

which assumptions? I 
3.1, 3.2, 3.6, E(gig:) finite 4.1,4.2,4.6, E(gig:) finite 
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Since this g is consistent for S, the multiple-equation GMM estimator, using 
A 

S-' as the weighting matrix, $(g-'), is an efficient multiple-equation GMM esti- 
mator with minimum asymptotic variance. The formulas for the asymptotic vari- 
ance and its consistent estimator are (3.5.13) and (3.5.14), which are reproduced 
here for convenience: 

To recapitulate, the features specific to the multiple-equation GMM are: Xxz is a 
block diagonal matrix given by (4.1.9), S is given by (4.1.1 l),  sxy and Sxz by (4.2.2), 
and g by (4.3.2). For the initial estimator $, needed to calculate ti, and g ,  we can 
use the FIVE estimator (to be presented below) or the efficient single-equation 
GMM applied to each equation separately. Of course, as long as it is consistent, 
the choice of the initial estimator does not affect the asymptotic distribution of the 
efficient GMM estimator. 

Table 4.1 summarizes the results of this chapter so far. 

4.4 Single-Equation versus Multiple-Equation Estimation 

An obvious alternative to multiple-equation GMM, which estimates the stacked 
coefficient vector 6 ( E m  L, x 1) jointly, is to apply the single-equation GMM sep- 
arately to each equation and then stack the estimated coefficients. If the weighting 
matrix in the single-equation GMM for the m-th equation is G,, (K, x K,), the 
resulting equation-by-equation GMM estimator of the stacked coefficient vector 
6 can be written as the multiple-equation GMM estimator $ ( G )  given in (4.2.3), 
where the E K, x Ern K, weighting matrix fi is a block diagonal matrix whose 
m-th block is W,,: 

This is because both Sxz ( E m  K, x Ern L,) and G are block diagonal. (The 
reader should actually substitute the expressions (4.2.2) for Sxz and (4.4.1) for G 
into (4.2.3) to verify that S~,f iSXz and hence (~: ,f i~, ,)- '~~,fi  are block diagonal, 
using formulas (AS) and (A.9) of Appendix A. Set M = 2 if it makes it easier.) 

Keen
Rectangle



272 Chapter 4 

Therefore, the difference between the multiple-equation GMM and the equation- 

by-equation GMM estimation of the stacked coefficient vector S lies in the choice 
of the Ern K t  x Ern K, weighting matrix 6'. Put differently, the equation-by- 
equation GMM is a particular multiple-equation GMM. 

When Are They "Equivalent"? 

As seen in Chapter 3, if the equation is just identified, the choice of the weighting 
matrix 6' does not matter because the GMM estimator, regardless of the choice 

of 6', numerically equals the IV estimator. The same is true for multiple-equation 
GMM: if each equation of the system is exactly identified so that L, = K, for 
all m, then S,, in the GMM formula (4.2.3) is a square matrix and the GMM 

estimator for any choice of 6' becomes the multiple-equation IV estimator S;,'sx, 

(and, since S,, is block diagonal, the estimator is just a collection of single-equation 

IV estimators). 
On the other hand, if at least one of the M equations is overidentified, the choice 

of 6' ( E m  K, x Ern K,) does affect the numerical value of the GMM estimator. 

Consider the efficient equation-by-equation GMM estimator of 6 (E, ,  L, x I),  
where each equation is estimated by the efficient single-equation GMM with an 

optimal choice of 6',,,, (m = 1,2,  . . . , M). Is it as efficient as the efficient 
multiple-equation GMM? The equation-by-equation estimator can be written as 
a(@), where the C, K, x Em K, block diagonal weighting matrix 6' satisfies 

( E ( E ~ ~ x ~ I X : ~  ))-I  

plim W = . (4.4.2) 
n+oo 

(E(E;MX~MXIM))-I 

Because this plim is not necessarily equal to S-' (unless (4.4.3) below holds), 
the estimator is generally less efficient than the efficient multiple-equation GMM 

estimator $(g-'), where g is a consistent estimator of S. But if the equations are 

"unrelatedi in the sense that 

E ( E ~ ~ E ~ ~ x ~ ~ x ~ ~ , )  = 0 for all m # h (= 1,2,  . . . , M), (4.4.3) 

then S becomes block diagonal and for the weighting matrix fi defined above 

plim6' = S-'. Since in this case 6' - g-' +, 0, we have (as we proved in 

Review Question 3 of Section 3.5) 

'under conditional homoskedasticity, this condition becomes the more familiar condition that E(E~,E~\,)  = 0. 
See the next section. 
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It then follows from Lemma 2.4(a) that the asymptotic distribution of i(@) is the 
same as that of $@-I) ,  so the efficient equation-by-equation GMM estimator is an 
efficient multiple-equation GMM estimator. 

We summarize the discussion so far as 

Proposition 4.3 (equivalence between single-equation and multiple-equation 
GMM): 

(a) If all equations are just identified, then the equation-by-equation GMM and 
the multiple-equation GMM are numerically the same and equal to the IV 
estimator. 

(b) If at least one equation is overidentified but the equations are "unrelated" in the 
sense of (4.4.3), then the efficient equation-by-equation GMM and the efficient 
multiple-equation GMM are asymptotically equivalent in that ,h times the 
difference converges to zero in probability. 

For those two cases, there is no efficiency gain from joint estimation. Furthermore, 
if it is known a priori that the equations are "unrelated," then the equation-by- 
equation estimation should be preferred, because exploiting the apriori knowledge 
by requiring the off-diagonal blocks of % to be zeros (which is what the equation- 
by-equation estimation entails) will most likely improve the finite-sample proper- 
ties of the estimator. 

Joint Estimation Can Be Hazardous 
Except for cases (a) and (b), joint estimation is asymptotically more efficient. Even 
if you are interested in estimating one particular equation (say, the LW equation 
in Example 4.1), you can generally gain asymptotic efficiency by combining it 
with some other equations (see, however, Analytical Exercise 10 for an example 
where joint estimation entails no efficiency gain even if the added equations are not 
unrelated). 

There are caveats, however. First of all, the small-sample properties of the 
coefficient estimates of the equation in question might be better without joint esti- 
mation. Second, the asymptotic result presumes that the model is correctly spec- 
ified, that is, all the model assumptions are satisfied. If the model is misspecified, 
neither the single-equation GMM nor the multiple-equation GMM is guaranteed 
even to be consistent. And chances of misspecification increase as you add equa- 
tions to the system. 
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To illustrate this second point, suppose Assumption 4.3 does not hold because, 

only for the M-th equation, the orthogonality conditions do not hold: E(xiM . 
l iM) # 0. This may come about if, for example, the equation omits a variable that 
should have been included as a regressor. To see that this leads to possible inconsis- 
tency for all equations, examine the formula (4.2.4) for the sampling error where g 
is given by (4.2.5). The M-th block of plim,,, g is not zero. Since plim S,, = X,, 
under ergodic stationarity and plim @ = W by assumption, the asymptotic bias is 

In efficient multiple-equation GMM, W - hence (TkzAWX,)-' Xk,W - are not 
generally block diagonal, so any element of plim,,, 6(@) - 6 can be different 
from zero. Even for the coefficients of the equations of interest involving no rnis- 
specification the asymptotic bias may not be zero. That is, in joint estimation, 
biases due to a local misspecification contaminate the rest of the system. This 
problem does not arise for the equation-by-equation GMM which constrains @ to 
be block diagonal. 

Q U E S T I O N  F O R  R E V I E W  - 

1. Express the equation-by-equation 2SLS estimator in the form (4.2.3) by suit- 
A - 

ably specifying W,,'s in (4.4.1). [Answer: W,, = (t  xy=, xi,xj,)-'.I 

4.5 Special Cases of Multiple-Equation GMM: FIVE, BSLS, and SUR 

Conditional Homoskedasticity 
Under conditional homoskedasticity, we can easily derive a number of prominent 
estimators as special cases of multiple-equation GMM. The multiple-equation ver- 
sion of conditional homoskedasticity is 

Assumption 4.7 (conditional homoskedasticity): 

forallm, h = 1 , 2 , .  . . , M. 
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Then the unconditional cross moment E(&irn&,h) equals a m h  by the Law of Total 
Expectations. You should have no trouble showing that 

(m, h) block of E(gig:) given in (4.1.1 1) 

= E ( E ~ ~ E ~ ~ x ~ ~ x : ~ )  

= E [ E ( E ~ ~  E~~ xirnxih ( xim , xih)] (by the Law of Total Expectations) 

= E [ E ( E ~ ~  cih I xim , xih )xim xih ] (by linearity of conditional expectations) 

= E[arnhxirn xih ] (by conditional homoskedasticity) 

= o m h  E(xirnxih) (by linearity of expectations). (4.5.1) 

Thus, the S in (4.1.11) can be written as 

Since by Assumption 4.5 S is finite, this decomposition implies that E(xirnxih) 
exists and is finite for all m, h (= 1, 2, . . . , M ) .  

Full-Information Instrumental Variables Efficient (FIVE) 

An estimator of S exploiting the structure of fourth moments shown in (4.5.2) is 

A 

where, for some consistent estimator 6, of 6, 

By Proposition 4.1, Zmh +p a r n h  provided (in addition to Assumptions 4.1 and 4.2) 
that E(zimzih) is finite. By ergodic stationarity, Ci ximxih converges in probabil- 
ity to E(xirnxih), which, as just noted, exists and is finite. Therefore, (4.5.3) is 
consistent for S, without the fourth-moment assumption (Assumption 4.6). 
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The FIVE estimator of 6, denoted i m ~ ,  is 

withg @ven by (4.5.3) to exploit conditional homoskedasti~it~.~ Being a multiple- 
equation GMM for some choice of E, it is consistent and asymptotically normal 
by (the multiple-equation adaptation of)  Proposition 3.1. Because g is consistent 
for S, the estimator is efficient by Proposition 3.5. Thus, we have proved 

Proposition 4.4 (large-sample properties of FIVE): Suppose Assumptions 4.1- 
4.5 and 4.7 hold. Suppose, furthermore, that E(zim zi, ) exists and is finite for all 
rn , h (= l , 2 ,  . . . , M) .3 Let S and IS be as in (4.5.2) and (4.5.3), respectively. Then 

(a) s +, S; 

(b) invE, defined as i (g- ' ), is consistent, asymptotically normal, and efficient, 
with ~ v a r ( & ~ )  given by (4.3.3); 

A 

(c) The estimated asymptotic variance given in (4.3.4) is consistent f o r A v ~ ( 6 ~ ~ ~ )  ; 

(d) (Sargan 's statistic) 

where g,, (.) is given in (4.2.1). 

Usually, the initial estimator im needed to calculate is the 2SLS estimator. 

Three-Stage Least Squares (3SLS) 
When the set of instruments is the same across equations, the FIVE formula can 
be simplified somewhat. The simplified formula is the 3SLS estimator, denoted 

i3s~s.4 TO this end, let 

2 ~ h e  estimator is due to Brundy and Jorgenson (1971). 
3 ~ h i s  assumption i s  needed for to be consistent. See Proposition 4.1. 
4 ~ h e  estimator is due to Zellner and Theil(1962). 
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Then the M x M matrix of cross moments of ~ i ,  denoted C, can be written as 

To estimate C consistently, we need an initial consistent estimator of 6 ,  for the 
purpose of calculating the residual iim. The term 3SLS comes from the fact that 
the 2SLS estimator of 6 ,  is used as the initial estimator. Given the residuals thus 
calculated, a natural estimator of C is 

which is a matrix whose (m, h )  element is the estimated cross moment given in 
(4.5.4). 

If xi (= xil = xi2 = . . . = x i M )  is the common set of instruments with dimen- 

sion K, then gi in (4.1.4), S in (4.5.2),  and in (4.5.3) can be written compactly 
using the Kronecker product5 as 

gi = Ei  8 X i  
( M K  XI) 

A 

so S-I = 2-I 8 (i x : = ,  xixi)- ' .  The Kronecker product decomposition (4.5.9) of 
S and the nonsingularity of S (by Assumption 4.5) imply that both C and E(xix:) 
are nonsingular. 

To achieve further rewriting of the 3SLS formulas, we need to go back to 
(4.2.6), which, with $? = S - ' ,  writes out in full the efficient multiple-equation 
GMM estimator. The formula (4.5.10) implies that the $? in (4.2.6) is such that 

5 ~ e e  formulas (A. 11) and (A. 15) of the Appendix if you are not familiar with the Kronecker product notation. 
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A A . (; kxiX;)-l, 
Wmh (= (m, h) block of W) = a (4.5.11) 

i= l  

where Zmh is the (m, h) element of 2-'. Substitute this into (4.2.6) to obtain 

where 

Similarly, substituting into (4.3.3) the expression for C,, in (4.1.9) and the expres- 
sion for S in (4.5.9) and using formula (A.6) of the Appendix, we obtain the 

A 

expressions for A ~ a r ( C 5 ~ ~ ~ ~ ) :  

where 

Amh = E(zincx;) [E(X~X;)]-~ E ( X ~ Z : ~ ) ,  (4.5.16) 

and amh is the (m, h) element of C-I. This is consistently estimated by 1 

(This sample version can also be obtained directly by substituting (4.2.2) and 

(4.5.10) into (4.3.4)) 
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Most textbooks give expressions even prettier than these by using data matrices 
(such as the n x K matrix X). Deriving such expressions is an analytical exercise 
to this chapter. The preceding discussion can be summarized as 

Proposition 4.5 (large-sample properties of 3SLS): Suppose Assumptions 4.1- 
4.5 and 4.7 hold, and suppose xi, = xi (common set of  instruments). Suppose, 
furthermore, that E(zimzjh) exists and is finite for all m, h (= 1, 2, . . . , M). Let 5 
be the M x M matrix o f  estimated error cross moments calculated by (4.5.7) using 
the 2SLS residuals. Then 

(a) i3sLS given by (4.5.12) is consistent, asymptotically normal, and efficient, with 
~ v a r ( i ~ ~ ~ ~ )  given by (4.5.15). 

(b) The estimated asymptotic variance (4.5.17) is consistent for ~ v a r ( i ~ ~ ~ ~ ) .  

(c) (Sargan 's statistic) 

where S = 2 @I (! xi xixi), K is the number o f  common instruments, and 
g,, (.) is given in (4.2.1). 

Seemingly Unrelated Regressions (SUR) 

The 3SLS formula can further be simplified if 

xi = union of (zil, . . . , Z~M). 

This is equivalent to the condition that 

E(zim . ~ i h )  = 0 (m, h = 1,2, . . . , M). (4.5.18') 

That is, the predetermined regressors satisfy "cross" orthogonalities: not only are 
they predetermined in each equation (i.e., E(zim - E ~ ~ )  = O), but also they are 
predetermined in the other equations (i.e., E(zim . F ~ ~ )  = 0 for m # h). The 
simplified formula is called the SUR estimator, to be denoted isuR.6 

estimator is due to Zellner (1962). 
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Example 4.3 (Example 4.1 with different specification for instruments): 
If (4.5.18) holds for the two-equation system of Example 4.1, xi is the union 

of zil and zi2, SO 

The orthogonality conditions that E(x; . = 0 and E(xi . E ; ~ )  = 0 become 

E = 0 and E = 0, (4.5.20) 
IQ; Ei l  

EXPR; EXPRi E;2 

which should be contrasted with the statement that the regressors are prede- 
termined in each equation: 

The difference between (4.5.20) and (4.5.21) is that the KWW equation is 1 

overidentified with EXPR as the additional instrument. 

Because SUR is a special case of 3SLS, formulas (4.5.12), (4.5.15), and (4.5.17) 

for j3sLS apply to isuR. The implication of the SUR assumption (4.5.18) is that, in - A 

the above expressions for Amh , cmh, and Amh , xi "disappears": 

Here we give a proof of (4.5.16'). Without loss of generality, suppose zim is the 
first L, elements of the K elements of xi. Let D (K x L,) be the first Lm columns 
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of IK. Then we have 

Substituting these into (4.5.16) yields (4.5.16'). The proof of (4.5.13') and (4.5.14'), 
which are about the sample moments, proceeds similarly, with zim = D1xi. (You 
will be asked to provide an alternative proof by the use of the projection matrix in 
the problem set.) 

In 3SLS, the initial consistent estimator for calculating % was 2SLS. But, 2SLS 
when the regressors are a subset of the instrument set is OLS (as you showed for 
Review Question 7 of Section 3.8). So, for SUR, the initial estimator is the OLS 
estimator. The preceding discussion can be summarized as 

Proposition 4.6 (large-sample properties of SUR): Suppose Assumptions 4.1- 
4.5 and 4.7 hold with xi = union o f  (zil, . . . , z~M) .  Let % be the M x M matrix o f  
estimated error cross moments calculated by (4.5.7) using the OLS residuals. Then 

(a) i s U R  given by (4.5.12) with imll and emh given by (4.5.13') and (4.5.14') 
for m ,  h = 1, . . . , M is consistent, asymptotically normal, and efficient, with 

~ v a r ( & ~ )  given by (4.5.15) where A,/, is given by (4.5.16'). 

(b) The estimated asymptotic variance (4.5.17) where xmh is given by (4.5.13') is 
consistent for ~ v a r ( & ~ ) .  

(c) (Sargan 's statistic) 

where = % D ( f xi xi xi), K is the number o f  common instruments. and 
gn (.) is given in (4.2.1). 

(Unlike in Proposition 4.5, the condition that E(zi,zih) be finite is not needed 
because, thanks to (4.5.18), it is implied by the condition that E(xixi) be nonsingu- 
lar, which in turn is implied by the nonsingularity of S [from Assumption 4.51 and 
the fact that S can be written as 1 8 E(xix:).) Sargan's statistic for SUR is rarely 

reported in practice. 

SUR versus OLS 
Since the regressors are predetermined, the system can also be estimated by the 
equation-by-equation OLS. Then why SUR over OLS? As just seen, under condi- 
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tional homoskedasticity, the efficient multiple-equation GMM is FIVE, which in 
turn is numerically equal to SUR under (4.5.18). As shown in Chapter 3, under 
conditional homoskedasticity, the efficient single-equation GMM is 2SLS, which 
in turn is numerically equal to OLS because the regressors are predetermined under 
(4.5.18). This interrelationship is shown in Figure 4.1. Therefore, the relation 
between SUR and equation-by-equation OLS is strictly analogous to the relation 
between the multiple-equation GMM and the equation-by-equation GMM. As dis- 
cussed in Section 4.4. there are two cases to consider. 

(a) Each equation is just identified. Because the common instrument set is the 
union of all the regressors, this is possible only if the regressors are the same 
for all equations, i.e., if zim = xi for all m. The SUR for this case is called 
the multivariate regression. We observed in Section 4.4 that both the efficient 
multiple-equation GMM and the efficient single-equation GMM are numer- 
ically the same as the IV estimator for the just identified system. Because 
the regressors are predetermined, we conclude that the GMM estimator of the 
multivariate regression model is simply equation-by-equation OLS.~  This can 
be verified directly by substituting (4.5.13') and (4.5.14') on page 280 (with 
zim = xi) into the expression for the point estimate (4.5.12). Also substitut- 
ing (4.5.16') and (4.5.13') (again with zim = xi) into (4.5.15) and (4.5.17), we 
obtain, for multivariate regression, 

(b) At least one equation is overidentified. Then SUR is more efficient than 
equation-by-equation OLS, unless equations are "unrelated" to each other in 

the sense of (4.4.3). In the present case of conditional homoskedasticity and 
the common set of instruments, (4.4.3) becomes 

crmhE(xix:) = O  forallm # h. 

Since E(xix:) cannot be a zero matrix (it is assumed to be nonsingular), equa- 
tions are "unrelated to each other if and only if crmh = 0. Therefore, SUR 
is more efficient than OLS if crmh # 0 for some pair (m, h). If crmh = 0 for 
all (m, h), the two estimators are asymptotically equivalent (i.e., f i  times the 
difference vanishes). 

7 ~ t  will be shown in Chapter 8 that the estimator is also the maximum likelihood estimator. 
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efficient equation-by-equation GMM efficient multiple-equation GMM r1 
conditional homoskedasticity + u- II 

equation-by-equation 2SLS 

SUR assumption (4.5.18), 
i.e., endogenous regressors + 

satisfy "cross" orthogonalities 
II 

equation-by-equation OLS I E r l  
Figure 4.1 : OLS and GMM 

Another way to see the efficiency of SUR is to view the SUR model as 
a multivariate regression model with a priori exclusion restrictions. As an 
example, expand the two-equation system of Example 4.3 as 

The common instrument set is (1, Si, IQi, EXPRi). Then this two-equation sys- 
tem is a multivariate regression model with the same regressors in both equa- 
tions. But if n2 is apriori restricted to be 0 and thus EXPRi is excluded from the 
second equation, then the model becomes the SUR model. The SUR estimator 
is more efficient than the multivariate regression because it exploits exclusion 
restrictions. 

The relationship among the estimators considered in this section is summa- 
rized in Table 4.2. 

Q U E S T I O N S  F O R  R E V I E W  

1. (FIVE without conditional homoskedasticity) Without conditional homoske- 

dasticity, is the in (4.5.3) consistent for S in (4.1.1 I)? [Answer: No. Why?] 
Under conditional homoskedasticity, is (4.3.2) consistent for (4.5.2)? [Answer: 

Yes. Why?] 

2. (FIVE without conditional homoskedasticity) Without conditional homoske- 
dasticity, is FIVE consistent and asymptotically normal? Efficient? Hint: The 

FIVE estimator is a multiple-equation GMM estimator (4.2.3) for some @. Does 

the @ satisfy the efficiency condition that plim @ = S-'? 
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Table 4.2: Relationship between Multiple-Equation Estimators 

Multivariate 
regression 

Assumptions 4.1-4.5, 
Assumption 4.7 

xi, = xi for all m 
Zim = xi for all m 

irrelevant 

irrelevant 

equation-by-equation 
OLS 

OLS formula 

OLS formula 

The model 

S (E Avar(g)) 

$ 

4.1-4.5, 

(4.3.3) (4.3.3) 

(4.3.4) (4.3.4) 

Multiple- 

equation GMM 

Assumptions 
4.1-4.6 

(4.1.11) 

(4.3.2) 

Assumption 4.7 
E(zirnzih) finite 

xi, = xi for all m 

C 8 E(x~x:) 
A 

C 8 (n-I C ~ X ~ X ; )  
A 

C from 2SLS residuals 

(4.5.12) 
with (4.5.13), (4.5.14) 

(4.5.15) 
with (4.5.16) 

(4.5.17) 
with (4.5.13) 

FIVE 

Assumptions 4.1-4.5, 
Assumption 4.7 
E(Z~,Z;~) finite 

(4.5.2) 

(4.5.3) 

Assumption 4.7 
xi, = xi for all m 

xi = union of zil , . . . , Z ~ M  

C 8 E(x~x:) 
A 

C 8 (n-'Cixix:) 
A 

C from OLS residuals 

(4.5.12) 
with (4.5.13'), (4.5.14') 

(4.5.15) 
with (4.5.16') 

(4.5.17) 
with (4.5.13') 
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3. (When FIVE and eq-by-eq 2SLS are numerically the same) Suppose each 
equation is just identified. Are the equation-by-equation 2SLS and FIVE esti- 
mators asymptotically equivalent (in that f i  times the difference vanishes)? 
Numerically the same? Hint: Both FlVE and 2SLS reduce to IV. 

4. (When are FIVE and eq-by-eq 2SLS asymptotically equivalent) When the 
errors are orthogonal to each other (so umh = 0 for m # h), the FIVE and 
equation-by-equation 2SLS estimators are asymptotically equivalent (in that 
f i  times the difference vanishes). Prove this. Hint: Superimpose conditional 

hornoskedasticity on Proposition 4.3(b). Under conditional homoskedasticity, 

the efficient multiple-equation GMM reduces to the FlVE and the efficient single- 

equation GMM reduces to the equation-by-equation 2SLS. Also under condi- 

tional hornoskedasticity, the equations are "unrelated" in the sense of (4.4.3) if 

urn,, = 0. 

5. (Conditional hornoskedasticity under SUR assumptions) Verify that, under 
the SUR assumption (4.5.18), Assumption 4.7 becomes 

E ( E ~ ~  ~ i h  I Zil, . . . , ziM) = umh for all m ,  h = 1, 2, . . . , M. 

6. In Example 4.3, what happens to the SUR estimator when xi includes MEDi 
also? Hint: xi still "disappears" from (4.5.1 3), (4.5.14), and (4.5.1 6). To 
Sargan's statistic? 

7. (Identification in SUR) In Proposition 4.6, the identification condition 
(Assumption 4.4) is actually not needed because it is implied by the other 
assumptions. Verify that Assumptions 4.5 and 4.7 imply Assumption 4.4. Hint: 
By Assumption 4.5 and the Kronecker decomposition (4.5.9) of S, E(xixi) is 

nonsingular. zim is a subset of xi. 

8. (SUR without conditional homoskedasticity) 

(a) Without conditional homoskedasticity, is SUR consistent and asymptot- 
ically normal? Efficient? Hint: The SUFI estimator is still a multiple- 

equation GMM estimator, so Proposition 3.1 applies. 

(b) Without conditional homoskedasticity, does SUR still reduce to the 
multivariate regression when the system is just identified in that each equa- 
tion is just identified (so zim = xi)? [Answer: Yes.] 

9. (Role of "cross" orthogonalities) Suppose, instead of (4.5.18') on page 279, 
the orthogonality conditions are that E(zim . cim) = 0 for m = 1,2 ,  . . . , M. Is 
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SUR consistent? [Answer: Not necessarily.] Derive the efficient multiple- 
equation GMM estimator under conditional homoskedasticity. [Answer: It 
is OLS.] 

10. Verify that Sargan's statistic for the multivariate regression model is zero. 

4.6 Common Coefficients 

In many applications, particularly in panel data contexts, you deal with a special 
case of the multiple-equation model where the number of regressors is the same 
across equations with the same coefficients. Such a model is a special case of the 
multiple-equation model of Section 4.1. This section shows how to apply GMM 
to multiple equations while imposing the common coefficient restriction. It will be 
shown at the end that the seemingly restrictive model actually includes as a special 
case the multiple-equation model without the common coefficient restriction. 

The Model with Common Coefficients 

With common coefficients, the multiple-equation system becomes 

Assumption 4.1' (linearity): There are M linear equations to be estimated: 

where n is the sample size, zim is an L-dimensional vector of regressors, 6 is an 
L -dimensional coefficient vector common to all equations, and &im is an unobserv- 
able error term of  the m -th equation. 

Of the other assumptions of the multiple-equation model, Assumptions 4.2- 4.6, 
only Assumption 4.4 (identification) needs to be modified to reflect the common 
coefficient restriction. The multiple-equation version of g(wi; 8) is now 

so that E[g(wi; 811 becomes 
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where 

So the implication of common coefficients is that Xxz is now a stacked, not a block 
diagonal, matrix. With this change, the system of equations determining 8 is again 
(4.1. lo), so the identification condition is 

Assumption 4.4' (identification with common coefficients): The EL, Km x L 
matrix Xx, defined in (4.6.4) is of full column rank. 

This condition is weaker than Assumption 4.4, which requires that each equation 
of the system be identified. Indeed, a sufficient condition for identification is that 
E(ximzjm) be of full column rank for some m.8 This is thanks to the apriori restric- 
tion that the coefficients are the same across equations. It is possible that the system 
is identified even if none of the equations are identified individually. 

The GMM Estimator 
It is left to you to verify that g, (S) can be written as sxy - s,,S with 

8Proof: If E(xirnz~,) is of full column rank, its rank is L. Since the rank of a matrix is also equal to the 
number of linearly independent rows, E(ximzim) has L linearly independent rows. Thus, Ex, has at least L 
linearly independent rows. 
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so that the GMM estimator with a Em Km x Em Km weighting matrix % is (4.2.3) 
with the sampling error given by (4.2.4). Provided that Ex, and S,, are as just rede- 
fined and 6 is interpreted as the common coefficient, large-sample theory for the 
multiple-equation model with common coefficients is the same as that with sepa- 
rate coefficients developed in Section 4.3, with Assumption 4. l' replacing Assump- 
tion 4.1, Assumption 4.4' replacing Assumption 4.4, and the residual ti redefined 

A A 

to be yim -zim6 (not yim -zImJm) for some consistent estimate of the L-dimensional 
common coefficient vector 6. 

In order to relate this GMM estimator to popular estimators in the literature, it 
is necessary to write out the GMM formula in full. Substituting (4.6.5) into (4.2.3), 
we obtain 

M M  [ { ( 2 i m  ) h ( 2 x i  i h )  ] (4.6.6) 
m=l h=l i=l i=l  

A 

where Wmh is the (m, h)  block of G. (For the second equality, use formula (A.8) 
of Appendix A.) The efficient GMM estimator obtains if the %' in this expression 

is replaced by the inverse of defined in (4.3.2). 

Imposing Conditional Homoskedasticity 
The efficient GMM estimator obtains when we set in (4.6.6) G = g-' whereg is a 
consistent estimator of S. As before, we can impose conditional homoskedasticity 
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to reduce the efficient GMM estimator to popular estimators. The FIVE estimator 
obtains if g is given by (4.5.3). 

If we further assume that the set of instruments is the same across equations, 
then, as before, this g has the Kronecker product structure 

so that Emh in (4.6.6) is given by (4.5.11), resulting in what should be called the 
3SLS estimator with common coefficients: 

where C?mh is the (m, h )  element of %-I .  If, in addition, the SUR condition 
(4.5.18) is assumed, then the "disappearance of x" occurs in (4.6.7) and the efficient 
GMM estimator becomes what is called (for historical reasons) the random-effects 
estimator: 

Its asymptotic variance is 

(To derive this, go back to the general formula (4.3.3) for the Avar of efficient 
GMM. Set X,, as in (4.6.4), S = X €3 E(xixi), use formula (A.8) of Appendix A 
to calculate the matrix product, and observe the "disappearance of x" that (4.5.16) 
becomes (4.5.16') on page 280 under the SUR assumption (4.5.18).) It is consis- 
tently estimated by 
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We summarize the result about the random-effects estimator as 

Proposition 4.7 (large-sample properties of the random-effects estimator): 
Suppose Assumptions 4.1 ', 4.2, 4.3, 4.4 ', 4.5, and 4.7 hold with xi = union of 
(zil, . . . , ziM). Let X be the M x M matrix whose (m, h )  element is E(cim cih), 
and let 2 be a consistent estimate of X. Then 

(a) i ~ ~ ,  given by (4.6.8) is consistent, asymptotically normal, and efficient, with 
Avar(iRE) given by (4.6.9). 

(6) The estimated asymptotic variance (4.6.10) is consistent for Avar(iRE). 

(c) (Sargan 's statistic) 

where S = 2 8 (i C xixi), K is the number of common instruments, and 
g,,(8) = s,, - s,,& with s,, and S,, given by (4.6.5). 

Below we will rewrite the formulas (4.6.8)-(4.6.10) in more elegant forms. 

Pooled OLS 
For the SUR of the previous section, we obtained % from the residuals from the 
equation-by-equation OLS. The consistency is all that is required for 2, so the 
same procedure for 5 works here just as well, but the finite sample distribution of 
 RE might be improved if we exploit the a priori restriction that the coefficients be 
the same across equations in the estimation of 2. So consider setting % to 

rather than 

in the first-step GMM estimation for the purpose of obtaining an initial consistent 
estimate of 6. The estimator is (4.6.8) with emh = 1 for m = h and 0 for m # h,  
which can be written as 



Multiple-Equation GMM 

which is simply the OLS estimator on the sample of size Mn where observations 
are pooled across equations. For this reason, the estimator is called the pooled 
OLS estimator. The expression suggests that the orthogonality conditions that are 
being exploited are 

which does not involve the "cross" orthogonalities E(zim . & i h )  = 0 (m # h ) .  It is 
left as an analytical exercise to show that the pooled OLS is the GMM estimator 
exploiting (4.6.12).  

Because it is so easy to calculate, pooled OLS is a popular option for those 
researchers who do not want to program estimators. The estimator is also robust 
to the failure of the "cross" orthogonalities. But it is important to keep in mind 
that the standard errors printed out by the OLS package, which do not take into 
account the interequation cross moments (amh), are biased. For the pooled OLS 
estimator, which is a GMM estimator with a nonoptimal choice of @, the correct 
formula for the asymptotic variance is (3.5.1) of Proposition 3.1. Setting W = 

IM €3 [E(x ix : ) ] - ' ,  S = X €3 E(x;xi) ,  X,, as in (4.6.4),  and again observing the 
disappearance of x, we obtain 

which is consistently estimated by 

Since the pooled OLS estimator is consistent, the associated residual can be used to 
calculate emh (m, h = 1 ,  . . . , M )  in this expression. The correct standard errors of 
pooled OLS are the square roots of ( l l n  times) the diagonal element of this matrix. 
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Beautifying the Formulas 

These formulas for the random-effects and pooled OLS estimators are quite straight- 
forward to derive but look complicated, with double and triple summations. They 
can, however, be beautified-and at the same time more useful for program- 
ming - if we introduce some new matrix notation. Let 

so that the M-equation system with common coefficients in Assumption 4.1' can 
be written compactly as 

y i = Z i 6 + . s i  ( i = 1 , 2  ,..., n). (4.6.1') 

The beautification of the complicated formulas utilizes the following algebraic 
results: 

for any M x M matrix C = (cmh). NOW take the triple summation in (4.6.8) 

I 

= - C (r bmh . zi, . yih) (by changing order of summations) 
i=l m=l h=l 

1 
- C zl%-lyi (by (4.6.16b) with C = %-I). 
n 

Similarly, by (4.6.16b) with C = %-l, the other triple summation in (4.6.8) be- 

comes 
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The double and triple summations in (4.6.9) and (4.6.10) can be written similarly. 
We have thus rewritten the random-effects formulas as 

Using (4.6.16a), the pooled OLS formulas can be written as 

These formulas are not just pretty; as will be seen in the next section, they will be 
useful for handling certain classes of panel data (called unbalanced panel data). 

The Restriction That Isn't 

Although it appears that the model of this section, with the common coefficient 
assumption, is a special case of the model of Section 4.1, the latter can be cast in 
the format of the model of this section with a proper redefinition of regressors. For 
example, consider Example 4.1. Instead of defining zil and zi2 as in (4.1.2), define 
them as 

Then the two-equation system fits the format of Assumption 4.1'. (See Review 
Question 5 below for a demonstration of the same point more generally.) 

with 8 = 

- 
41 
81 
Y1 

n 

42 
8 2  
Y2 - 

. 
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Furthermore, a system in which only a subset of variables have common coeffi- 

cients can be written in the form of Assumption 4.1'. Consider Example 4.2. 

Suppose we wish to assume a priori that the coefficients of schooling, IQ, and 

experience remain constant over time (so ,bl = ,b2 = ,b, y1 = y2 = y ,  n l  = n2 = 

n )  but the intercept does not. The translation is accomplished by setting 

Therefore, the common coefficient restriction is not restrictive. We could have 

derived the GMM estimator for the model of Section 4.1 as a special case of the 

GMM estimator with the common coefficient restriction. But the model without 

the restriction is perhaps an easier introduction to multiple equations. 

Q U E S T I O N S  F O R  R E V I E W  

1. (Identification with common coefficients) Let zimj be the j-th element of zi,. 

That is, zimj is the j-th regressor in the m-th equation. Assume that z;,l = 1 for 
all i ,  m. Which of the assumptions made for the model is violated if zim2 = 1 
for all i ,  m? Hint: Look at the rank condition. Would your answer change if 

zim2 = m for all i ,  m? Hint: It should. 

2. (Importance of "cross" orthogonalities) Suppose E(zim . E ; ~ )  = 0 for m = h 
but not necessarily for m # h. Would the random-effects estimator be consis- 

tent? Hint: The sampling error of the random-effects estimator is 

3. (Inefficiency of pooled OLS) Derive the efficient GMM estimator of 8 that 

exploits E(zim . &im) = 0 for all m. Is it the same as the pooled OLS? [Answer: 

No.] Is it the same as the random-effects estimator? [Answer: No.] 

4. (C,,, sXy, S,, with common instruments in Kronecker products) Suppose the 

instruments are the same across equations: xi, = xi. Show that C,, in (4.6.4) 
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can be written as E(Zi @xi),  where Zi is the M x L matrix defined in (4.6.15). 
1 Also, s,, = A Cy='=, yi @ xi, SxZ = , C:=, Zi @ xi. Hint: xiz:,, = z:,, @ xi. 

5. (The restriction that isn't) To avoid possible confusion arising from the fact 
that the zim in Section 4.1 and the zim in this section are different, write the 
M-equation system in (4.1.1) as 

Yim = -k &im (m = 1,2 ,  . . . , M ;  i = 1, 2, . . . , n ) ,  (1) 

where z;,,, and S:, are Lm-dimensional. 

(a) (Assumption 4.1 as a special case of Assumption 4.1') Verify that (1) can 
be written as (4.6.1) if we define 

(b) (Assumption 4.4 as a special case of Assumption 4.4') Verify that, when 
zi, is defined as in (2) with zTm interpreted as the zi, of Section 4.1, 
Assumption 4.4' becomes Assumption 4.4. 

Zim - - 
M (Em=] L m  xl) 

(c) (GMM formula) Under the same interpretation, verify that Sxz of (4.6.5) 
becomes a block diagonal matrix whose m-th block is Ci ximz;A, so that 
(4.6.6) becomes (4.2.6) if the zim in (4.2.6) is understood to mean zTm. 

6. (Identification in the RE model) Assumption 4.4' in Proposition 4.7 is actu- 
ally unnecessary. Verify that Assumptions 4.5 and 4.7 imply Assumption 4.4'. 
Hint: If E(xix:) is nonsingular, then Assumption 4.4 holds, a s  shown in Review 
Question 7 to Section 4.5. Assumption 4.4' is weaker than Assumption 4.4. 

- - 
0 

0 

z;,,, 
0 

0 - - 

7. (Only for those who have become familiar with Kronecker products) 

] L1 rows 

] Lm-l rows 
] L,, rows and 6 = 

M 

Lnt+~rows ( E m = ,  L m  X 1) 
. (2) 

6; 

} LM rows 

(a) Show that E(z:x-'z~) in (4.6.9') on page 293 for the random-effects esti- 
mator is nonsingular if the assumptions of Proposition 4.7 hold. Hint: 
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(xi can reappear, since xi includes zi, and zih) 

Ex, is of full column rank by Assumption 4.4' 

(b) Show that E(ZiZi) in (4.6.13') on page 293 for pooled OLS is invertible. 
Hint: Replace X-'  by I. 

4.7 Application: Interrelated Factor Demands 

The translog cost function is a generalization of the Cobb-Douglas (log-linear) 
cost function introduced in Section 1.7. An attractive feature of the translog specifi- 
cation is that the cost-minimizing input demand equations, if transformed into cost 
share equations, are linear in the logs of output and factor prices, with the coeffi- 
cients inheriting (a subset of)  the cost function parameters characterizing the tech- 
nology. Those technology parameters can be estimated from a system of equations 
for cost shares. Early applications of this idea include Berndt and Wood (1975) 
and Chnstensen and Greene (1976). This section reviews their basic methodology. 
The methodology is also applicable in the analysis of consumer demand. 

To better focus on the issue at hand and to follow the practice of those original 
studies, we will proceed under the assumption of conditional homoskedasticity. 
Also, we will assume that the regressors in the system of share equations, which are 
log factor prices and log output, are predetermined. As we argued in Section 1.7, 
this assumption is not unreasonable for the U.S. electric power industry before the 
recent deregulation. Consequently, the appropriate multiple-equation estimation 
technique is the multivariate regression. 

The Translog Cost Function 
We have already made a partial transition from the log-linear to translog cost func- 
tion: in the empirical exercise of Chapter 1, we entertained the idea of adding the 
square of log output to the log-linear cost function (see Model 4). If this idea is 
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extended to the quadratic and cross terms in the logs of all the arguments, the log- 

linear cost function with three inputs (1.7.4) becomes the translog cost function: 

Here, and as in the rest of this section, the observation subscript "i" is dropped. In 
this expression, the term 

is a quadratic form representing the second-order effect of factor prices. We can 

assume, without loss of generality, that the 3 x 3 matrix of quadratic form coeffi- 
cients, (yjk), is 

In the case of log-linear cost function examined in Section 1.7, the degree of 
returns to scale can be calculated as the reciprocal of the elasticity of costs with 

I respect to output. If this definition is applied to the translog cost function, we have 

1 
returns to scale = - 

a log(C)lalog(Q) 

Factor Shares 
The link between the cost function parameters and factor demands is given by 
Shephard's Lemma from microeconomics. Let xi be the cost-minimizing demand 

3 for factor input j given factor prices (p l  , pz, p3) and output Q. So x i = ,  pixj = C. 

The lemma states that 

' ~ e t  x be an n-dimensional vector. The associated quadratic form is x'Ax. Since x'Ax = xlA'x, we have 
xlAx = xf[(A + Af)/2]x. So if A is not symmetric, it can be replaced by the symmetric matrix (A + Af)/2 
without changing the value of the quadratic form. 
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(4.7.4) 

Noting that 

the lemma can also be written as stating that the logarithmic partial derivative of 
the cost function equals the factor share, namely, 

For the case of translog cost function given in (4.7.1), the log partial derivative 
is easy to calculate: 

Combining this with (4.7.5) and defining the cost shares sj = pjxj/C, we obtain 
the following system of cost share equations associated with the translog cost 
function: 

This system of share equations is subject to the cross-equation restrictions that the 
coefficient of log(pk) in the sj equation equals the coefficient of log(pj) in the sk 
equation for j # k. In the rest of this section, these cross-equation restrictions will 
be called the symmetry restrictions, although they are not a consequence of the 
symmetry assumption (4.7.2). Those cross-equation restrictions are a consequence 
of calculus: you should verify that, if you did not assume symmetry, the coefficient 
of log(p2) in the sl equation, for example, would be (y12 + y2,)/2, which would 
equal the log(pl) coefficient in the sz equation. 

Substitution Elasticities 

In the production function literature, a great deal of attention has been paid to 
estimating the elasticities of substitution (more precisely, the Hicks-Allen partial 
elasticities of substitution) between various inputs.'' As shown in Uzawa (1962), 

'Osee Section 9.2 of Berndt (1991) for a historical overview. 
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the substitution elasticity between inputs j and k, denoted q j k ,  is related to the cost 

function C by the formula 

For the translog cost function, some routine calculus and Shephard's lemma 

show that 

yjk + S j S k  for j # k 
S j  Sk 

V j k  = 
yjj + s j2  - s j  

for j = k, 
sj2 

where sj is the cost share of input j. In the special case of the log-linear cost 
function where yjk = 0 for all j, k, we have q , k  = 1 for j # k, verifying that 

the substitution elasticities are unity between any two factor inputs for the Cobb- 
Douglas technology. 

Properties of Cost Functions 

As is well known in microeconomics (see, e.g., Varian, 1992, Chapter 5), cost 
functions have the following properties. 

I 

1 1. (Homogeneity) Homogeneous of degree one in factor prices. 

2. (Monotonicity) Nondecreasing in factor prices, which requires that 8 C / a p j  2 
0 for all j. 

~ 3. (Concavity) Concave in factor prices, which requires that the Hessian (the 

matrix of second-order derivatives) of a cost function C, say 

be negative semidefinite. By (4.7.8), concavity is satisfied if and only if the 

matrix of substitution elasticities, ( q j k ) ,  is negative semidefinite." 

For the case of translog cost function, these properties take the following form. 

"Let H be the Hessian of the cost function C and V be a diagonal matrix whose j-th diagonal is aC/apj. Then 

the matrix of substitution elasticities, (qjk), given in (4.7.8) can be written compactly as: (qjk) = C .V-'HV-' .  
Since V is a diagonal matrix, v-'Hv-' is negative semidefinite if and only if H is. 

Keen
Rectangle



300 Chapter 4 

1 .  Homogeneity: It is easy to verify (see a review question) that, with the symme- 
try restrictions imposed on (yjk), the homogeneity condition can be expressed 
as 

Homogeneity will be imposed in our estimation of the share equations. 

2. Monotonicity: Given Shephard's lemma, monotonicity is equivalent to requir- 
ing that the right-hand sides of the share equations (4.7.7) be nonnegative for 
any combinations of factor prices and output. For any values of coefficients, 
we can always choose factor prices and output so that this condition is vio- 
lated. Accordingly, we cannot impose monotonicity on the share equations. It 
is possible, however, to check whether monotonicity is satisfied for the "rele- 
vant range," that is, if it is satisfied for all the combinations of factor prices and 
output found in the data at hand; we will do this for the estimated parameters 
below. 

3.  Concavity: Concavity requires that the matrix of substitution elasticities given 
by (4.7.9) be negative semidefinite for any combinations of cost shares. It is 
possible to show that a necessary and sufficient condition for concavity is that 
the 3 x 3 matrix (yjk) be negative semidefinite.I2 In particular, the diagonal 

elements, (yl y22, have to be nonpositive. The condition that the matrix 
(yjk) be negative semidefinite is a set of inequality conditions on its elements. 
Estimation while imposing inequality conditions is feasible (see Jorgenson, 
1986, Section 2.4.5, for the required technique), but it will not be pursued here. 

Stochastic Specifications 
The translog cost function given in (4.7.1) has an (additive) error term, E ,  while 
the share equations derived from it have none. On our data, the share equations do 

12F'roof: Let s here be a 3 x 1 vector whose j-th element is s, and S here be a diagonal matrix whose j-th 
element is s,. Then the matrix of substitution elasticities given in (4.7.9) can be written as (q,k) = SP1 [(yjk) + 
ss' - S]S-I. For some combination of cost shares, ss' - S is zero (for example, set s = (1,O.O)'). So a necessary 
condition for the matrix (qjk) to be negative semidefinite is that the manix (yjk) is negative semidefinite. This 
condition is also sufficient, because the matrix ss' - S is negative semidefin~te and the sum of two negative 
semidefinite matrices is negative semidefinite. 
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not hold exactly for each firm, so we need to allow for errors. The usual practice 
is to add a random disturbance term to each share equation. There are two ways 
to justify such a stochastic specification. One is optimization errors: firms make 
random errors in choosing their cost-minimizing input combinations. But then 
actual total costs will not be as low as what is indicated in the cost function, because 
there is no room for optimization errors in the derivation of the cost function. The 
other justification for errors is to allow a, in the share equations to be stochastic 
and differ across firms. The intercept in the share equation for j would then be the 
mean of a,, and the error term would be the deviation of aj from its mean. But this 
also means that the a, in the cost function has to be treated as random. 

In either case, therefore, internal consistency would prevent us from adding 
the cost function to the share equations with additive errors to form a system of 
estimation equations. In the rest of this section, we will focus on a system that 
consists entirely of share equations. This, however, means that we can estimate 
only a subset of the cost function parameters. Two parameters, a g  and YQQ,  which 
are absent in factor demands, cannot be estimated. Since the degree of returns to 
scale depends on them (see (4.7.3)), it cannot be estimated either. 

The Nature of Restrictions 
With the additive errors appended, the system of share equations (4.7.7) is written 
out in full as 

This system has fifteen coefficients or parameters. The cross-equation restrictions 
(that the 3 x 3 matrix of log price coefficients, ( y j k ) ,  be symmetric) and the homo- 
geneity restrictions (4.7.10) form a set of eight restrictions, so that the fifteen para- 
meters can be described by seven free parameters. To understand this, it is useful 

1 to decompose the restrictions into the following three groups. 

i 
+a2+a3 = 1, 

y11 + y21 + y31 = 0, 
adding-up restrictions: y l ~  + y 2 ~  + y32 = 0, (4.7.12) 

y13 + y23 + y33 = 09 
YIQ + Y2Q + y3Q = 0. 
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Y11 + Y12 + Y13 = 0, 
homogeneity: y21 + y22 + Y23 = 0, 

y31 + y32 + y33 = 0, 

Chapter 4 

(4.7.13) 

These are eleven equations, but only eight of them are restrictive: given the adding- 
up restrictions, one of the three homogeneity restrictions is implied by the two 
others, and given the adding-up and homogeneity restrictions, two of the three 
symmetry restrictions are implied by the other (you should verify this). 

Multivariate Regression Subject to Cross-Equation Restrictions 
It is straightforward to impose the homogeneity restrictions, (4.7.13), because they 
are not cross-equation restrictions. We can eliminate three parameters, say ( ~ ~ 3 ,  
Y23, y33), from the system to obtain 

The system (with or without the imposition of homogeneity) has the special 
feature that the sum of the dependent variables, (sl,  s2, s3), adds up to unity for all 
observations. This feature and the adding-up restrictions imply that the sum of the 
error terms, ( E ~ ,  ~ 2 ,  E ~ ) ,  is zero for all observations, so the 3 x 3 error covariance 
matrix, I; - Var(El, ~ 2 ,  E ~ ) ,  is singular. Recall that, in the multivariate regression 
model (which is the special case of the SUR model described in Proposition 4.6), 
the S matrix defined in (4.1.11) can be written as a Kronecker product: S = Z: @ 

E(xixi). Thus S becomes singular, in violation of Assumption 4.5. The common 
practice to deal with this singularity problem is to drop one equation from the 
system and estimate the system composed of the remaining equations (see below 
for more on this issue). The coefficients in the equation that was dropped can be 
calculated from the coefficient estimates for the included two equations by using 
the adding-up restrictions. The adding-up restrictions as well as homogeneity are 
thus incorporated. 

As mentioned above, given the adding-up restrictions and homogeneity, there 

is effectively only one symmetry restriction. For example, if (yl3, Y23, y33) are 
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eliminated from the system to incorporate homogeneity, as in (4.7.15), and if the 
third equation is dropped to incorporate the adding-up restrictions, then the unique 
symmetry restriction can be stated as yl2 = y21. If this cross-equation restriction 
is imposed, the system becomes 

Since the regressors are predetermined and since the equations have common 
regressors, the system can be estimated by the multivariate regression subject to 
the cross-equation restriction of symmetry. This constrained estimation, if it is cast 
in the "common coefficient" format explored in Section 4.6, can be transformed 
into an unconstrained estimation. That is, the system (4.7.16) can be written in the 
"common coefficient" format of yi = ZiS + ~i (see (4.6.1') on page 292), if we 
set (while still dropping the "i" subscript from sl, s2, log(pl/p3), log(p2/p3), and 

So the multivariate regression subject to symmetry is equivalent to the (uncon- 
strained) random-effects estimation. 

This random-effects estimation of the two-equation system produces consistent 
estimates of the following seven parameters: 

The rest of the fifteen share equation parameters, 

can be calculated using the adding-up restrictions (4.7.12), homogeneity (4.7.13), 
and symmetry (4..7.14). For example, y33 can be calculated as 
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So the point estimate of y33 is given by 

where (Tll, pl2, 722) are the random-effects estimates. The standard error of 733 

can be calculated by applying the "delta method" (see Lemma 2.5) to the consistent 
estimate of Avar(pl l ,  p12, 722) obtained from the random-effects estimation. 

Which Equation to Delete? 
Does it matter which equation is to be dropped from the system? It clearly would 
not if there were no cross-equation restrictions, because the multivariate regression 
is numerically equivalent to the equation-by-equation OLS. To see if the numerical 

invariance holds under the cross-equation restriction, let Z * be the 2 x 2 matrix of 
error covariances for the two-equation system obtained from dropping one equation 

from the three-equation system (4.7.15). It is the appropriate submatrix of the 
3 x 3 error covariance matrix Z. (For example, if the third equation is dropped, 
then Z * is the leading 2 x 2 submatrix of the 3 x 3 matrix Z .) To implement the 

random-effects estimation, we need a consistent estimate, %*, of X*. Two ways 
for obtaining %* are: 

(equation-by-equation OLS) Estimate the two equations separately, thus ignor- 
ing the cross-equation restriction, and then use the residuals to calculate g*. 
Equivalently, estimate the three equations separately by OLS, use the three- 
equation residuals to calculate % (an estimate of the 3 x 3 error covariance matrix 

Z), and then extract the appropriate submatrix from %. If %* is thus obtained, 
then (as you will verify in the empirical exercise) the numerical invariance is 
guaranteed; it does not matter which equation to drop. 

Obtain %* from some technique that exploits the cross-equation restriction (such 

as the pooled OLS applied to the common coefficient format). The numerical 
invariance in this case is not guaranteed. 

The numerical invariance holds under equation-by-equation OLS, because the 3 x 3 
matrix %, from which E* is derived, is singular in finite samples. In large samples, 
as long as E* is consistent, and even if Z* is not from equation-by-equation OLS, 

this relationship between %* and 5 holds asymptotically because C is singular. So 
the invariance holds asymptotically if %* is consistent. In particular, the asymptotic 

variance of parameter estimates does not depend on the choice of equation to drop. 
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Results 
Nerlove's study examined in Chapter 1 was based on 1955 cross-section data for 
U.S. electric utility companies. Christensen and Greene (1976) updated Nerlove's 
data to 1970 for 99 firms, using data sources that allowed them to construct better 
measures of the wage rate and fuel prices (see their Section V for more details). 
Their data set includes information on factor shares, so the share equations can be 
estimated. The means and standard deviations for some of the variables in the data 
are reported in Table 4.3, which shows that fuel accounts for a very large share of 
the cost of electricity generation. 

We use the equation-by-equation OLS residuals to calculate z*, so that the 
random-effects estimates are numerically invariant to the choice of equation to 
drop. The estimates are reported in Table 4.4, along with 2 derived from the 
equation-by-equation OLS. The factor input index j is 1 for labor, 2 for capital, and 
3 for fuel. Some (actually all) of the diagonal elements of the matrix of estimated 
price coefficients, (Ck), are positive. So the matrix is not negative semidefinite, in 
violation of concavity.13 

Even if (Ek) is not negative semidefinite, the associated substitution elastici- 
ties given in the formula (4.7.9) may be negative semidefinite. Since the formula 
is derived assuming no optimization errors, fitted cost shares, rather than actual 
cost shares, should be used for the sj and sk in the formula. The elasticities av- 
eraged over firms are shown in Table 4.5. (They are the off-diagonal elements of 
the symmetric 3 x 3 substitution elasticity matrix thus calculated.) The three fac- 
tor inputs are substitutes because the substitution elasticities are positive, but the 
degree of substitutability is far less than what is assumed in the log-linear technol- 
ogy. Concavity is violated even in the "relevant range": for 20 firms out of the 99 
in the sample, the matrix of substitution elasticities is not negative semidefinite. 
Monotonicity, in contrast, is satisfied in the relevant range: fitted cost shares are 
nonnegative for all inputs for all firms in the sample. 

l3I'his "test" of concavity can be formalized. Using the delta method, we can calculate the asymptotic distri- 
bution of the characteristic roots of (p jk ) .  The null hypothesis of concavity is that those characteristic roots are 
all nonpositive. 
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Table 4.3: Simple Statistics (Sample Size = 99) 

Output in Labor Capital Fuel 
kilowatt hours share share share 

Mean 9.0 0.141 0.227 0.631 
Std. deviation 10.3 0.059 0.062 0.095 

Table 4.4: Random-Effects Estimates 

Point Standard 
Parameter t -value 

estimate error 

A 

0.00173 -0.000171 -0.00156 
X by pooled OLS = -0.000171 0.00253 -0.00236 

-0.00156 -0.00236 0.00391 I 
Table 4.5: Substitution Elasticities 

Labor-Capital Capital-Fuel Labor-Fuel 
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Q U E S T I O N S  F O R  R E V I E W  

1. Derive (4.7.6). Verify that the symmetry of (yjk) is used in the derivation. 

2. Derive the homogeneity restrictions (4.7.10). Hint: For the translog cost func- 

tion (4.7.1) to be homogeneous of degree one in factor prices, it is necessary 

and sufficient that, for any scalar A # 0, 

3. (Counting restrictions) Using the adding-up restrictions (4.7.12), two of the 
three equations in (4.7.13), and one of the three equations in (4.7.14), derive 
the other two equations in (4.7.14). 

4. (OLS respects singularity) Consider applying the equation-by-equation OLS 
to each of the three equations in (4.7.15). Show that the equation-by-equation 
OLS estimates of the coefficients satisfy the adding-up restrictions. Show that 
the 3 x 3 error covariance matrix calculated from the equation-by-equation 
OLS residuals is singular. Hint: Let yl,  y2, y3 be n-dimensional vectors of 

the three dependent variables (where n is the sample size), and let X be the 

n x K data matrix of the common K regressors ( K  = 4 in (4.7.15)). Note 

that yl + y2 + y3 = 0. The equation-by-equation OLS coefficient estimates are 

(x'x)-'xfyj, j = 1,2 ,  3. The three n x 1 residual vectors are Myj, j = 1, 2,3,  
where M - I, - x(x'x)-'XI. 

Keen
Rectangle



308 Chapter 4 

P R O B L E M  S E T  FOR C H A P T E R  4 

A N A L Y T I C A L  E X E R C I S E S  

1. (Data matrix representation of 3SLS) In the 3SLS model, the set of instru- 
ments is the same across equations. Let K be the number of common instru- 
ments. Define: 

Y = 
(Mnx 1) 

YM Ynm 

E = 
(Mn x 1) 

Enm 

Show the following: 

Assumption 4.1 becomes y = Z6 + E, 

i3SLS = [z'(%-' 4 P)z]- '~ '(5- '  4 P)y, where P = x(x'x)-'x', 

-77- 
Avar(63sLs) = n . [z'(%-' 4 P)z]-', 
A A 

Amh in (4.5.13) becomes Amh = ~ Z L P Z ~ ,  

fmh in (4.5.14) becomes fmh = dz;pyh 
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Hint: 

Use formulas (A.l l) and (A.13)-(A.15) of Appendix A. 

2. (Data matrix representation of SUR, RE, and Pooled OLS) 

(a) Prove that (4.5.13) reduces to (4.5.13') (on page 280) and (4.5.14) to 
(4.5.14'), under the SUR assumption (4.5.18). Hint: If P = x(XIX)-'XI, 

A 1 I then Amh = ,ZmPZh, Zmh = iz;pyh. PZ, = Z, if the columns of Z, 
are taken from the columns of X. 

(b) Show that, for SUR, 

the estimator = [ ~ ' ( g - l  4 I , ) z ] - ' z ' (~ -~  4 In)y, 

its A= = n . [zl(Z-l 4 I,)ZI-l. 

(c) Suppose, just for this part of the question, that zi, = xi for all m. So 
Z = IM 4 X. Show that SUR reduces to the multivariate regression 

estimator 

Verify that the m-th K-dimensional block of this M K-dimensional vector 
is (XIX)-'X'y,. 

Now redefine Z as 

z G 
(MnxL) [ 1 l ]  

ZM 

So Assumption 4.1' (linear equations with common coefficients) can be written 
as y = Z6 + E, where y and E are as in Analytical Exercise 1 and 6 is the 
L-dimensional vector of common coefficients. 

(d) Show that, for the random-effects estimator, the same formulas you derived 
in (b) for SUR hold with Z as just redefined as in (*). Hint: The estima- 

tor is given in (4.6.8) and its Avar is in (4.6.10). Use formula (A.8) of the 

Appendix. 
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(e) Show that 

(f) In the Mn x L matrix Z defined in (*), its rows are ordered first by the 
equation (m) and then by observation (i). Now order the rows first by 
observation (i), which amounts to redefining Z as 

z - 
(Mn x L) 1111 j 

zn 

where Z; (i = I ,  2, . . . , n) is the M x L matrix defined in (4.6.15). Reorder 
rows of y and E similarly: 

How would the formulas for RE and pooled OLS you derived in (d) and (e) 
change? Hint: Just replace "2 8 In" by "I, 8 %". Set M = 2 if you find the 

translation too hard. 

3. (GLS interpretation of SUR and RE) The SUR model consists of Assumptions 
4.1- 4.5, 4.7, and (4.5.18) (that xi = union of (zil, . . . , ziM)). Specialize the 
model by strengthening Assumption 4.3 (orthogonality conditions) as 

and Assumption 4.2 (ergodic stationarity) as stating that 

(a) (Easy) Explain why these are stronger assumptions. 

(b) Let E (Mn x 1) and Z (Mn x Ern L,) be as in Analytical Exercise 1 above. 
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Show that the specialized model implies 

E(E I Z ) = 0  and E ( E E ' I Z ) = E @ I , .  

Hint: For the first, what needs to be shown is E(,zirn I Z) = 0. For the latter, 

the (m, h) block of E(EE' 1 Z) is E(em E;, I Z), an n x n matrix. What needs 
to be shown is that this matrix is arnhI,. 

(c) (Finite-sample properties of SUR) Suppose E is known so that the consis- 
tent estimates Srnh in the SUR formulas in Proposition 4.6 can be equated 
with the true value amh.  

(i) Verify that the model satisfies the GLS assumptions of Section 1.6 
(which are Assumptions 1.1-1.3 and (1.6.1)) with a sample size of Mn. 

(ii) Verify that the SUR estimator is the GLS estimator. Hint: The X in 

Section 1.6 is Z here. Show that a2 V there is E €31,. Use your answer 

to 2(b). 

(iii) Verify that SUR is unbiased in finite samples in that E ( ~ S U R  - 8 1 Z) = 
0. 

(iv) The expression for var(isuR I Z) is given in Proposition 1.7 of Section 
1.6. Show that 

~ v a r ( i ~ u R )  = plim n . ~ a r ( i s m  I Z). 
n + c c  

Hint: With E ( E ~ '  ( Z) = E €3 I,, the matrix ~ a r ( i s u ~  I Z) is the inverse 

of a matrix whose (m, h) block is arnhz',zh. ZkZh = xi zimzih. 

(d) (Finite-sample properties of RE) Now impose on the model the condition 
that the coefficient vector is the same across equations so that Z is as in (*) 
of Analytical Exercise 2. As in (c), suppose X is known so that the con- 
sistent estimates Smh in the RE formulas in Proposition 4.7 can be equated 
with the true value a m h .  

(i) Verify that this model with common coefficients satisfies the GLS 
assumptions of Section 1.6. In particular, Assumption 1.1 can be writ- 
ten as y = Z8 + E, where y and E are as in Analytical Exercise 2. 

(ii) Verify that the random-effects estimator is the GLS estimator. 

(iii) Verify that the random-effects estimator is unbiased in finite samples. 
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(iv) Show that 

Avar(&) = plim n . ~ a r ( i m  1 Z) . 
n-+w 

Hint: ~ a r ( & ~  I Z) is the inverse of Em Ch amhZ;zh. 

4. (Standard errors from equation-by-equation vs. multiple-equation GMM) We 
have shown in Section 4.4 that the Avar of the efficient equation-by-equation 
GMM estimator is no less (in matrix sense) than the Avar of the efficient 
multiple-equation GMM estimators. In this exercise we show that the same 
holds for A=. ~ e t  g and S, be as in (4.3.2) and (4.2.2), respectively. 

(a) (Trivial) Verify that, under appropriate assumptions, (S~~~- 'S , , ) - '  is con- 
sistent for the asymptotic variance of the efficient multiple-equation GMM 
estimator. What are those appropriate assumptions? 

(b) Let 8, be the efficient single-equation GMM estimator of 6, and 8 be the 
stacked vector formed from (81, . . . , j M ) .  8 is the efficient equation-by- 
equation GMM estimator of 6. Show that AVX(~,) is consistently esti- 
mated by 

where 

(c) Verify that (*) is the (m, m)  block of 

where @ is the block diagonal matrix whose m-th diagonal block is @,,. I 

(d) Proposition 3.5 is an algebraic result applicable not just to population 
moments, so it implies that 

Taking this for granted, show the following: If the same residuals are used 
to calculate @ for the equation-by-equation GMM and g for the multiple- 
equation GMM, then, for each coefficient, the standard error from the 
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efficient multiple-equation GMM is no larger than that from the efficient 
equation-by-equation GMM. Hint: The standard errors are the square 

roots of the diagonal elements of the estimated asymptotic variance divided 

by the sample size. 

(e) Does the result you proved in (d) hold true if the model is misspecified in 
any way? Hint: What you have proved is an algebraic result. 

(f) Go through steps (a)-(d) for the FIVE and equation-by-equation 2SLS. 
Hint: It's just a matter of redefining sand the rn-th diagonal block, Ern,, of 

E. The Ern, for 2SLS is the inverse of 

and the for FIVE is (4.5.3). 

5. (Identification and cross-equation restrictions) Consider the wage equation 
for 1969 and 1980: 

The orthogonality conditions are E ( E ~ ~ )  = 0, E(&i2) = 0, E(MEDi E ~ , )  = 0, 
E(MEDi ~ ~ 2 )  = 0. Assume we have a random sample on (LW69, LW80, S69, 
S80, IQ, MED). 

(a) Is the LW69 equation identified in isolation? Hint: Check the order condi- 

tion for identification for the LW69 equation. 

(b) Write the four orthogonality conditions in terms of (Po, B1, 82) as a sys- 
tem of equations linear in B's. How many equations are there? State the 
rank condition for identification in terms of relevant cross moments. (This 
example shows that even if each equation of the system is not identified in 
isolation, the system can be identified thanks to the cross-equation restric- 
tion that B's are the same across equations.) 

(c) Show that the system cannot be identified if IQ and MED are uncorrelated. 

6. (Optional) Prove Proposition 4.1. Hint: Generalize the proof of Proposition 

3.2. 
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7. (Numerical equivalence of 2SLS and 3SLS) In the system of equations yim = 

zirnSm + &irn (i = 1, . . . , n; m = 1, . . . , M), suppose all equations share the 
same set of instruments (so xi, = xi). (In what follows, assume all the condi- 
tions for the 3SLS estimator are satisfied.) 

(a) When each equation has the same RHS variables (so zim = zi), the 2SLS 
and 3SLS estimators are numerically the same. Prove this. Hint: Let B - 
xi xizj. The 3SLS estimator is (4.2.3) with S, = IM 8 B, @ = %-' 8 

S&! where S,, = A xi xixI  

(b) If the errors are not conditionally homoskedastic, does (a) remain true for 
the single-equation and multiple-equation GMM estimators? Hint: The 

answer is no. Why? Can you write sP1 as a Kronecker product without 

conditional homoskedasticy? 

8. (SUR is more than assuming predetermined regressors in each equation) Con- 
sider estimating a system of M equations: Yim = zim Sm + Eirn (i = 1, . . . , n; 

m = 1, . . . , M). The orthogonality conditions are E(zirn . &im) = 0 (m = 
1,2 ,  . . . , M). 

(a) Does the efficient multiple-equation GMM estimator i(s- ') reduce to the 
equation-by-equation OLS? Does your conclusion change if the errors are 
conditionally homoskedastic? Hint: What's the size of S,,? g? 

(b) Explain why the efficient GMM you derived in (a) under conditional homo- 
skedasticity differs from SUR. Hint: The difference is in the orthogonality 

conditions. 

9. (Optional, peril of joint estimation) Taken from Greene (1997, p. 706). Con- 
sider the two-equation SUR model: 

For simplicity, assume that E(E;), E(&il &i2), and E(E;~) are known. Now sup- 
pose you apply SUR, but erroneously omit xi3 from the second equation. What 
effect does this have dn the consistency of the estimator of PI?  Hint: Let xl ,  

x2, x3, y1, y2, e l ,  and ~2 be n-dimensional vectors of respective variables and 
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= [ a ]  B = [ill, n = [ E(~i2  E ~ I  E(&i I ~ i 2 )  
E(&i22) 

(So, for example, ?Z is 2n x 2 and is 2 x 1.) Show that: 

(a) The two-equation system can be written as y = Xp + - d + E .  

(b) The SUR estimator of when xi3 is inadvertently left out is 

(c) Use formulas (A.6) and (A.7) of the Appendix to show 

where 

(d) Argue that plim b = 0. Is plim a = O? 

10. (Optional, adding just-identified equations does not increase efficiency) Con- 
sider the 3SLS two-equation model where the second equation is just identified 

* 
(so L2 = K). Let 81,3SLS be the 3SLS estimator of the coefficients of the first 
equation and $ 1 , 2 S ~ S  be the 2SLS estimator of the same coefficients. 

(a) Write down ~ v a r ( $ l , ~ ~ ~ ~ )  in terms of a l l  and A l l ,  which is defined in 
(4.5.16). 
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(b) Show that ~ v a r ( i ~ , ~ ~ ~ ~ )  = ~ v a r ( i ~ , 2 ~ ~ ~ ) .  Hint: Use the partitioned inverse 
formula (see formula (A.lO) of the Appendix) to write the upper-left (L1 x L1) 
block of ~ v a r ( i 1 , ~ ~ ~ ~ )  as G-' where 

But by (4.5.16), 

~ 1 2 ~ 2 ~ 2 1  

= E(Z~~X:)[E(X~X:)]-' E(xizi2) 

[E(zi2x;) [E(xix;)]-' E(x~z;~)]- '  E(zi2x;) [E(xix;)]-' E(xiz:') 

= E(Z~~X~)[E(X~X~)] - '  E(xiz:,) (since #zi2 (= L2) = #xi (= K)) 

= All.  

,12 . ,21 
(since uI1 - ( u22 ) = l /ull) .  

1 1 . (Linear combinations of orthogonality conditions) For the multiple-equation 
model of Proposition 4.7, derive the efficient GMM estimator that exploits the 
following orthogonality conditions: 

Hint: The sample analogue of the left-hand side the orthogonality conditions is 

There are as many orthogonality conditions as there are coefficients. The effi- 

cient GMM estimator is the IV estimator that solves &(8) = 0. 
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E M P I R I C A L  E X E R C I S E S  

In data file GREENE.ASC, data are provided on the following variables. 

Column 1 : firm ID in Nerlove's 1955 sample 
Column 2: costs in 1970 in millions of dollars 
Column 3: output in millions of kilowatt hours 
Column 4: price of labor 
Column 5: price of capital 
Column 6: price of fuel 
Column 7: labor's cost share 
Column 8: capital's cost share 

The sample has 99 observations. Fuel's cost share can be calculated as one minus 
the sum of labor and capital cost shares. These data were used in Christensen and 
Greene (1976). 

In the text, the third equation (for fuel share) of the system was dropped in 
the random-effects estimation. To verify the numerical invariance, drop the second 
equation (for capital share) and eliminate (y12, y22, Y ~ ~ )  when imposing homogen- 
eity. This produces the two-equation system: 

sl = a1 + Yll log(pl /p2) + Yi3 log(ps/p2) + y l ~  log(Q) + ~1 (labor share), 

$3 = a3 + ~ 3 1  log(pi l~2)  + ~ 3 3  log(p3/pd + Y3Q log(Q) + ~3 (fuel share). 

Call this the unconstrained system. The constrained system imposes symmetry 
y13 = ~ 3 1  on the unconstrained system. 

(a) Verify that the simple statistics of the sample shown in the text can be dupli- 
cated. 

(b) (Numerical invariance) Apply the random-effects estimation (i.e., the multi- 
variate regression subject to the cross-equation restriction) to the constrained 
system. Can you duplicate the coefficient estimates in the text? You should 
first apply equation-by-equation OLS to the unconstrained system to calculate 
-* 
73 . (Note on computation: Programming joint estimation is much easier with 
canned programs such as TSP and RATS. However, those canned programs 
will not print out Sargan7s statistic for the SUR.) 

Gauss Tip: The random-effects estimator could be calculated by operating 
on data matrices, but we recommend the use of do loops. Use (4.6.8') on 
page 293. 
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RATS Tip: Use the NLSYS proc, which is designed for handling nonlinear 
equations but which can be used for linear equations. It can also be used for 
calculating g*, as done in the following codes: 

* Estimation with capital share equation dropped 
* Define parameters 
nonlin a1 af gll glf gfl gff gly gfy 

* Define two eq. system 
frml labor sl = al+gll*log(pl/pk)+glf*log(pf/pk) 

+gly*log (kwh) 

frml fuel sf = af +gf l*log (pl/pk) +gf f *log (pf/pk) 

+gfy*log (kwh) 

* Set starting values for the parameters 
compute al=af=gll=glf=gfl=gff=gfy=0 

* Now do multivariate regression w/o cross-eq. 
* restriction 
nlsystem(outsigma=sigmahat) / labor fuel 

Here, s igmahat is the 2 x 2 matrix $*. The random-effects estimation 
using this $* is done by the following codes. 

* Now impose cross-eq. restriction on fuel share 
* eq. (set gfl=glf) 
* Define parameters. 
nonlin a1 af gll glf gff gly gfy 

* Impose symmetry. 
frml fuelb sf = af+glf*log(pl/pk)+gff*log(pf/pk) 

+gfy*log (kwh) 

* Multivariate regression with covariance matrix 
* calculated from equation-by-equation OLS 
* residuals 
nlsystem(isigma=sigmahat) / labor fuelb 

TSP Tip: An example of TSP codes that accomplish the same thing as the 
RATS codes above is: 

? Estimate the system with capital equation 

? dropped. 

frml labor sl=al+gll*log(pl/pk)+glf*log(pf/pk) 

+gly*log (kwh) ; 
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frml fuel sf=af+gfl*log(pl/pk)+gff*log(pf/pk) 

+gfyxlog(kwh); 

? Set parameter values to zero. 

param a1 af gll glf gfl gff gly gfy; 

? Multivariate regression without symmetry 

sur labor fuel; 

? Estimate error covariance matrix from residuals 

mform sigmahat=@covu; 

? 

? Do multivariate regression with cross-equation 

? restriction. 

? Impose symmetry. 

frml fuel sf=af+glf*log(pl/pk)+gff*log(pf/pk) 

+gfy*log (kwh) ; 

? Multivariate regression subject to symmetry 

lsq(maxitw=0,wname=sigmahat) labor fuel; 

This gives the random-effects estimate of the seven free parameters, 

As explained in the text, use the adding-up, homogeneity, and symmetry 
restrictions to calculate the point estimates and their standard errors of the 
remaining eight parameters. The TSP command ANALYZ should be useful 
here. 

(c) (Optional, for Gauss users) Calculate Sargan's statistic. Hint: Use the for- 

mula in Proposition 4.7. The xi vector should be: a constant, log(pl/pz), 
log(p3/p2), log(Q). For g*, use the one obtained from the unconstrained 

1 system. s,, = x:=, yi @I xi and S,, = x:=, Zi @I xi. The statistic should 

be 0.6331 3 with a p-value of 0.42621. 

(d) (Testing symmetry) Given that Sargan's statistic is 0.63313, perform the fol- 
lowing hypothesis testing. Take the maintained hypothesis to be the uncon- 
strained system. The null hypothesis is the symmetry restriction that yl3 = y3,. 
Hint: By Proposition 3.8, the difference in the Sargan statistics with and with- 

out symmetry is asymptotically chi-squared. What is Sargan's statistic for the 

unconstrained system? 

(e) (Wald test of symmetry) Test the same null hypothesis by the Wald principle. 
So you test the symmetry restriction in the unconstrained system. Verify that 
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the test statistic is numerically equal to Sargan's statistic for the constrained 
system you estimated in (b). 

TSP Tip: Just insert the line 

analyz wald wald=glf-gfl; 

right after the codes for the unconstrained estimation. 

(f) Using the parameter estimates you obtained in (b), calculate the elasticity of 
substitution between labor and capital averaged over the 99 firms. Can you 
duplicate the result in the text? 

A N S W E R S  T O  S E L E C T E D  Q U E S T I O N S  

A N A L Y T I C A L  E X E R C I S E S  

3b. E(E~, I Z) 

= E(E~, I zll,  . . . , Z ~ M ,  ~ 2 1 ,  . . . Z ~ M ,  . . . , zn1, . . . , Z,M) (by definition of Z) I 
= E(Eim I zil, . . . , ziM) (by the i.i.d. assumption) 

= 0 (by the strengthened orthogonality conditions). 

The (i, j )  element of the n x n matrix E(E,E; I Z) is E(E~, ~ , h  I Z). By the I 
i.i.d. assumption, this is zero for j # i .  For j = i, 

E(&im Eih I Z) 

= E(Eim Eih I Z l l ,  . - .  9 Z I M ~  Z21r . . . Z2M9 . - - Zn1, . . . , Z ~ M )  

= E(cirn cih I z i l ,  . . . , ziM) (by the i.i.d. assumption). 

Since xi, = xi and xi is the union of (zil, . . . , ziM) in the SUR model, the con- 
ditional homoskedasticity assumption, Assumption 4.7, states that E(&irn&ih I 
Zil, ..., Z~M) = Omh. 

5b. 

1 E (S69) E(LW69) 
1 E (S80) 

E(MED) E(S69 . MED) E(IQ. MED) E(LW69 . MED) 
E(MED) E(S80. MED) E(IQ. MED) E(LW80 . MED) 
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The condition for the system to be identified is that the 4 x 3 coefficient matrix 
is of full column rank. 

5c. If IQ and MED are uncorrelated, then E(IQ.  MED) = E(IQ) . E(MED) and the 
third column of the coefficient matrix is E(IQ) times the first column. So the 
matrix cannot be of full column rank. 

where 

AS usual, under Assumption 4.1 and 4.2,  (1) +, a m h  (E E(Eim E i h ) ) .  

For ( 4 ) ,  by Assumption 4.2 and the assumption that E(zimzih)  is finite, Ci . 
zimzjh converges in probability to a (finite) matrix. So ( 4 )  +, 0. 

Regarding (2 ) ,  by Cauchy-Schwartz, 

where zi,j is the j-th element of z; , .  So E(zim - & i h )  is finite and ( 2 )  +, 0 
because 6, - 6, +, 0. Similarly, ( 3 )  +, 0. 
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Panel Data 

A B S T R A C T  

A longitudinal or panel data set has multiple observations for a number of cross- 
section units. As its name suggests, a panel has two dimensions, one for cross- 
section units and the other for observations. The latter dimension is usually time, but 
there are exceptions. A cross-section sample of twins, for example, is a panel where 
the second dimension is siblings. The distinction between cross-section units and 
observations, the two terms used interchangeably until now, should be kept in mind 
throughout this chapter. When it is apt to do so, we will use the term "group" for the 
cross-section unit. 

In many applications, we encounter the error-components model. In such mod- 
els, the error term of the equation has a component that is common to all observa- 
tions (time-invariant if the second dimension of the panel is time) but that may not 
be orthogonal to regressors. There is available a technique, called the "fixed-effects 
estimator," which allows us to estimate the model without the help of instrumental 
variables. It and the random-effects estimator of the previous chapter are the two 
staple techniques in panel econometrics. 

The optional section of this chapter, Section 5.3, shows how to modify the fixed- 
effects estimator when the number of observations varies across groups. The empir- 
ical section takes up growth empirics, a topic that has recently attracted a great deal 
of attention. 

As it turns out, the fixed-effects and other estimators covered in this chapter 
are particular GMM estimators on a suitable transformation of the error-components 
model. The GMM interpretation of the fixed-effects estimator is pursued in an ana- 
lytical exercise to this chapter, where you will be asked to find an estimator that is 
asymptotically more efficient than the fixed-effects estimator. 
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5.1 The Error-Components Model 

Our point of departure is the multiple-equation model with common coefficients 
of Proposition 4.7. To simplify the discussion, we will assume that the sample is 
a random sample. This assumption is satisfied in most popular panels, such as the 
Panel Study of Income Dynamics (PSID) and the National Longitudinal Survey 
(NLS). In those panels, a large number - hundreds or even thousands -of cross- 
section units are randomly drawn from the population. 

For this case of random samples, the assumptions of Proposition 4.7 can be 
restated as (see (4.6.15) for the definition of yi (M x I), Zi (M x L), ei (M x 1)): 

(system of M linear equations) yi = Zi8 + ei (5,l.l) 

(random sample) (yi, Zi} is i.i.d. (5.1.2) 

("SUR assumption") E(zim . E ~ ~ )  = 0 for m,  h = 1,2, . . . , M, (5.1.3) 

i.e., E(ei @I xi) = 0 where xi = union of (zil, . . . , ziM), 

(identification) E(Zi @I xi) is of full column rank,' (5.1.4) 

(conditional homoskedasticity) E(eiei 1 xi) = E(eiei) = X (5.1.5) 

(nonsingularity of E(gig:)) E(gigi) is nonsingular, where gi = e, 8 xi. (5.1.6) 

As noted in Section 4.5, since E(gi&) = X 8 E(xix:) under conditional homoske- 
dasticity, (5.1.6) is equivalent to the condition 

X and E(xix:) are nonsingular. (5.1.6') 

Under these assumptions, the random-effects estimator jRE, defined in (4.6.8') on 
page 293, is the efficient GMM estimator. 

Error Components 
This model, very frequently used for panel data, is one where the unobservable 
error term eim is assumed to consist of two components: 

 h he ZXZ in Assumption 4.4' can be written as E(Zi 8 xi); see Review Question 4 to Section 4.6. 
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The first unobservable component a i ,  without the m subscript and hence common 
to all equations, is called the individual effect, the individual heterogeneity, or 
the fixed effect. If we define 

the matrix representation of the M-equation system is 

Yi = Zi6 + IM . ai + qi (i = I ,  2, . . . , n), (5.1.1') 

where lM is the M-dimensional vector of ones. 
The orthogonality conditions (5.1.3) are satisfied if the regressors of the system 

are orthogonal to both error components, that is, if 

E(zim - a i )  = 0 form = 1,2 ,  . . . , M, (5.1.8a) 

and 

E(zim - qih) = 0 form, h = 1 , 2 , .  . . , M. (5.1.8b) 

However, in many applications that utilize panel data, (5.1.8a) is not a reason- 
able assumption to make. This is because the fixed effect represents some perma- 
nent characteristics of the individual economic unit, as illustrated by the following 
examples. 

Example 5.1 (production function with firm heterogeneity): In the log- 
linear production function (3.2.13) of Section 3.2, suppose the firm's effi- 
ciency ui stays constant over time. Then the equation for year m is 

where Qim is the output of firm i in year m, Lim is labor input in year m, and 
vim is the technology shock in year m. The equation can be written as (5.1.1') 
by setting 
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Yim = log(Qim), zim = (1,10g(L;m))', S = (&j, a; = u;, qjm = vim 

Also, 

Under perfect competition, the individual effect u; would be positively cor- 
related with labor input because efficient firms, whose u; is higher than its 
mean value, would hire more labor to expand (see (3.2.14)). If vim represents 
unexpected shocks that are unforeseen by the firm when input choices are 
made, it is reasonable to assume that vim is uncorrelated with the regressors. 

Example 5.2 (wage equation): For simplicity, drop experience from the 
wage equation of Example 4.2 but suppose data for 1982, in addition to 1969 
and 1980, are available. Suppose also that the coefficient of schooling and 
that of IQ remain the same over time but that the intercept is time-dependent 
(due, for example, to business-cycle effects on wages). With the error decom- 
position (5.1.7), the three-equation system is 

As noted at the end of Section 4.6, even if a subset of the coefficients dif- 
fers across equations, the system can be written as multiple equations with 
common coefficients. In this example, this is accomplished with 

1 0 0 S69; IQ; 
= [::I = [o 1 0 S80 I Q j ]  S ' = ( 4 1 , 4 2 , 4 3 , p , y ) .  (5.1.9) 

4 3  0 0 1 S82; IQ; 

Also, 

X; = (1, S69;, S80;, S82;, IQ;)'. 

The error term includes the wage determinants not accounted for by schooling 
and IQ. It may be reasonable to assume that they are divided between the 
permanent individual traits (denoted a;), which would affect the individual's 
choice of schooling, and other factors (denoted qim) uncorrelated with the 
regressors, such as measurement error in the log wage rate. 
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Group Means 
Fortunately, there is available a popular estimator, called the fixed-effects estima- 
tor, that is robust to the failure of (5.1 .$a), i.e., that is consistent even when the 
regressors are not orthogonal to the fixed effect a;. To anticipate the next section's 
discussion, the estimator is applied to an M-equation system transformed from the 
original system (5.1.1'). The matrix used for the transformation is the annihilator 
associated with l M :  

What this matrix does is to extract deviations from group means. For example, 
multiplying the M-dimensional vector yi from left by Q results in 

where 

is the group mean for the dependent variable. Note that this mean is over m, not 
over i; it is specific to each group (i). Similarly for the regressors, each column of 
QZ; is the vector of deviations for the corresponding column of Z;. 

A Reparameterization 
Not surprisingly, however, robustness to the failure of (5.1.8a) comes at a price: 
some of the parameters of the model may no longer be identifiable after the trans- 
formation by Q. To provide two examples, 

The obvious case is the coefficient of a variable common to all equations. For 
example, IQi in Example 5.2 is a common regressor (see (5.1.9)), so the col- 
umn of Zi corresponding to IQ; (the fifth column) is lM . IQi and the fifth 
column of QZ; is a vector of zeros. Consequently, the IQ coefficient, y ,  cannot 
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be identified after the transformation. To separate the coefficient of common 
regressors from the rest, let b; be the vector of common regressors and write the 
M x L matrix of regressors, Z;, as 

and partition the coefficient vector 6 accordingly: 

The coefficient vector y cannot be identified after transformation. 

It may also be the case that, in addition to y ,  some of the coefficients in @ are 
unidentifiable and a reparameterization is needed. Consider Example 5.2 where 
each equation has a different intercept. One of the intercepts needs to be dropped 
from Fi and included in bi, because a common intercept can be created by taking 
a linear combination of the equation-specific intercepts. One reparameterization 
is to define 

1 0 S69i 1 IQi 

, @ =  (41 -43,42-43,B)', Y = ( 4 3 , ~ ) ' .  
0 0 S82; 1 IQ; 

More generally, the identification condition for fixed-effects estimation is that 
Fi and b; are defined so that 

E(QFi @ xi) is of full column rank (5.1.15) 

where xi = union of (z;,, . . . , ziM). Why is this an identification condition? 
Because (as you will see more clearly in Analytical Exercise 2), the fixed-effects 
estimator is a (specialization of the) random-effects estimator applied to the trans- 
formed regression of Qy on QF. (5.1.15) is just the adaptation of the identification 
condition (5.1.4) to the transformed regression. 
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With Zi thus divided between Fi and b;, the system of M-equations (5.1.1') on 
page 325 can be rewritten as 

Y; = F ; P + l M . b : y + l M . a ; + q ,  ( i =  1,2  , . . . ,  n), or 

Yirn=fi',P+b:y+ai+q;rn ( i = l , 2  , . . . ,  n ; m = l ,  . . . ,  M), (5.1.1") 

where fi:, is the m-th row of F;. The error-components model consists of assump- 
tions (5.1.1") (M linear equations), (5.1.2) (random samples), (5.1.8) (SUR 
assumption with two error components), (5.1.4) (identification), (5.1.5) (condi- 
tional homoskedasticity), (5.1.6) (nonsingular E(gi&)), and (5.1.15) (fixed-effects 
identification). We include the additional identification condition (5.1.15) for fixed- 
effects estimation, so that both the random-effects estimator and the fixed-effects 
estimator are well-defined for the same model. 

Q U E S T I O N S  F O R  R E V I E W  

1. (Verification of Proposition 4.7 assumptions) Verify that the conditions of 
Proposition 4.7 are satisfied when (5.1.1)-(5.1.6) hold. Show that the iden- 
tification condition (5.1.4) is satisfied when E(x;x',) is nonsingular. Hint: zirn is 
a subset of xi. Thus, (5.1.4) is redundant. 

2. (Nonuniqueness of reparameterization) (5.1.13) is not the only reparameter- 
ization for Example 5.2. If Fi is defined as 

how should bi and 6 be defined? 

3. Without reparameterization, the Fi for Example 5.2 is 

with bi = IQi . Verify that (5.1.15) is not satisfied. 
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5.2 The Fixed-Effects Estimator 

The Formula 
As already mentioned, the fixed-effects estimator is defined for the transformed 
system. Multiplying both sides of (5.1.1") on page 329 from the left by Q and 
making use of the fact that QIM = 0, we obtain 

Qyi = QFiB + Qtli  

or 

where 

Thus, the fixed effect a; and common regressors drop out in the transformed equa- 

tions. Now form the pooled sample of transformed yi and Fi as 

The fixed-effects estimator of 8, denoted &. is the p l e d  OLS estimator, that 

is, the OLS estimator applied to the pooled sample ( i ,  i?) of size Mn. Therefore, 

= (: 2 F/ QFi) 2 F: Qy; (since Q is symmetric and idempotent). 
n 

i = l  i = l  
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Substituting (5.2.1) into (5.2.4), the sampling error can be obtained as 

Because it is based on deviations from group means, the fixed-effects estima- 

tor is also known as the within estimator or the covariance estimator. Another, 
and perhaps more popular, derivation is to apply OLS to levels, i.e., not in devia- 
tions but with group (i) specific dummies added to the list of regressors. For this 

reason the estimator is also called the least squares dummy variables (LSDV) 
estimator. The LSDV interpretation allows us to see what additional assumptions 

are needed for the error-components model in developing a finite-sample theory 
for the estimator. This is left as Analytical Exercise 1 .  

Large-Sample Properties 
As you will prove in Analytical Exercise 2, the fixed-effects estimator can also be 

written as a GMM estimator, which lends itself to a straightforward development 
of large-sample theory for the fixed-effects estimator summarized in Proposition 

5.1 below. Proving the proposition, however, can be accomplished more easily by 

inspecting the expression (5.2.5) for sampling error. 

Proposition 5.1 (large-sample properties of the fixed-effects estimator): Con- 
sider the error-components model (consisting o f  (5.1.1") on page 329, (5.1.2), 

(5.1.8), (5.1.4)-(5.1.6), and (5.1.15)), but relax the SUR assumption (5.1.8b) by 
requiring only that 

E(fim . qih) = 0 for all m,  h (= 1, 2, . . . , M ) ,  (5.2.6) 

where f h  is the m-th row o f  Fi .  Define yi, F;, and iji by (5.2.2). Then: 

(a)  the fixed-effects estimator (5.2.4) is consistent and asymptotically normal with 

(b) This asymptotic variance is consistently estimated by 

Keen
Rectangle
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where T is the sample cross-moment matrix of transformed residuals associ- 
ated with the fixed-effects estimator: 

The only nontrivial part of the proof is to show: 

(1) E(QFi) is nonsingular (and hence invertible), 

(2) E(F:Qqi) = 0 (which is needed for consistency), and 

(3) E(QijiijjFi) (which is the Avar of x:=, Fiji)  = E[Q E(ijiijj)Fi]. 

The rest of the proof is an easy application of Kolmogorov's LLN and the Lindeberg- 

Levy CLT. 
Proving that (5.1.15) implies (1) is left as an optional analytical exercise. 
To prove (2), use formula (4.6.16b) and rewrite the expectation as 

This is zero by the orthogonality conditions (5.2.6). 
Proof of (3) is as follows. First note that 

(This follows by the Law of Total Expectations and by the fact that x; [= union 

of (zil, . . . , ziM)] includes the elements of Fi and F; is a function of Fi.) But 
~ ( i j ,  iji I xi) equals the unconditional mean E(iji ijj) because 

E(ijiijj I xi) = E(Hi3: I xi) (since Hi = QE; = Q(ly . a; + qi) = Qqi = 8;) 

= QE(E;E: I xi)Q 

= Q E(E~E:)Q (by (5.1.5)) 

= E(iii j)  

= E(ij,ij;) (since Hi = iji). 
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A glance at the expression for the asymptotic variance should make you sus- 
pect that there must be some other estimator that is asymptotically more efficient, 
because the asymptotic variance of an efficient estimator can be written as the 
inverse of a matrix. Indeed, as you will prove in Analytical Exercise 2, there is 
available an estimator that is asymptotically more efficient than the fixed-effects 
estimator. 

Digression: When qi Is Spherical 
The usual error-components model assumes, additionally, that the second error 
component q, is spherical: 

E(qiq:) = U ~ I ~ ,  SO that E(ijiijj) = U ~ Q .  (5.2.12) 

If, as in many panel data sets, m is time, this assumption is often referred to as the 
assumption of no "serial correlation." The lack of serial correlation in this sense 
should not be confused with the condition that q, be uncorrelated with q, for i # j . 
The latter is a consequence of our maintained assumption that the sample is i.i.d. 

Substituting this into (5.2.7) and noting that QF; = F;, we find that the expres- 
sion for the asymptotic variance simplifies to 

If there is a consistent estimate, 8;, of a;, then the asymptotic variance is consis- 
tently estimated by 

which equals n times 8; ,2 (2F)- ' ,  that is, n times the usual expression for the esti- 
mated variance matrix when OLS is applied to the pooled sample (y, F) of size Mn. 

To extend the OLS analogy, define SSR as 

n 

R = ( - F )  - ) = ( - F ; )  - F ; )  . (5.2.15) 

In the pooled OLS on deviations from group means, there are #@ coefficients to be 
estimated. The usual OLS estimate of the error variance is 

SSR 
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This, however, is not consistent for a;. You will be asked to show in Analytical 
Exercise 3 that a consistent estimator is 

SSR 
~n - n  -#p' 

(For that matter, SSR/(Mn - n) is also consistent.) The reason n has to be sub- 
tracted from the denominator of (5.2.16) is that M transformed equations are not 
linearly independent; for both sides of the M transformed equations, the sum is 
always zero, as you can see by multiplying both sides of (5.2.1) from left by 1L 
and making use of 1',Q = 0'. The effective sample size of the pooled sample is 
Mn - n, not Mn. Use of (5.2.16) instead of (5.2.17) is a very common mistake, 
which results in an underestimation of standard errors and an overestimation of 
t-values. For example, if M = 3, n = 1,000, and #/I = 5, the t-values will be 
overestimated by about 23% (= square root of 299511995 minus one). 

Random Effects versus Fixed Effects 
Now get back to the general case of no restriction on E(qiq:), so the error term 
can have an arbitrary pattern of "serial correlation" across m. Comparing (5.2.6) 
with (5.1.8), we see that the orthogonality conditions not used by the fixed-effects 
estimator are 

E(fi, . a i )  = 0 for all m,  E(bi . a , )  = 0, E(bi - I],,,,) = 0 for all m. (5.2.18) 

That is, the fixed-effects estimator is robust to the failure of (5.2.18). ~ e t  p, be the 
elements of & (the random-effects estimator applied to the original M-equation 
system (5.1.1") on page 329) that correspond to p: 

A 

Also, let ~var(&,) be the asymptotic variance of p,. It is the leading submatrix 
of ~var(i,) (given by (4.6.9') on page 293) corresponding to p .  

The random-effects estimator p, is an efficient estimator while p, is consis- 
h 

tent but not efficient. However, if (5.2.18) is violated, p, is no longer guaranteed 
to be consistent, while 8, remains consistent. Thus, a natural test of (5.2.18) is to 
consider the difference between the two estimators, 
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It is easy to prove that f i q  is asymptotically normal. The Hausman principle 
(originally developed for ML estimators but proved to be applicable to GMM esti- 
mators in Analytical Exercise 9 to Chapter 3) implies that 

A 

(So, there is no need to incorporate the asymptotic covariance between BE and 
A 

BE because it is zero.) By Proposition 4.7, the leading submatrix of (4.6.9') 
A 

on page 293 provides a consistent estimator of Avar(B,). By Proposition 5.1, 
~ v a r ( & )  is consistently estimated by (5.2.8). A consistent estimator of Avar(q), 
therefore, is the difference. Write this as Avar(q). It is proved in the appendix 
that (i) Avar(q) is nonsingular (and hence positive definite) and (ii) the Hausman 
statistic defined below is guaranteed to be nonnegative for any sample {yi, Zi]. To 
summarize, 

Proposition 5.2 (Hausman specification test): Suppose the assumptions o f  the 
error-components model ((5.1.1 ") (on page 329), (5.1. Z), (5.1.8), (5.1.4)-(5.1.6), 

and (5.1.15)) hold. Define q and Avar(q) as just described. Then the Hausman 
statistic 

is distributed asymptotically chi-square with #B degrees o f  fieedom. It is nonneg- 
ative in finite samples. 

This test is a specification test because it can detect a failure of (5.2.18) which is 
part of the maintained assumptions of the error-components model. More specif- 
ically, consider a sequence of local alternatives that satisfy all the assumptions 
of the error-components model except (5.2.18).~ With some additional technical 
assumptions, it can be shown that the Hausman statistic converges to a noncentral 
X 2  distribution with a noncentrality parameter along those sequences of local alter- 
n a t i v e ~ . ~  That is, the Hausman statistic has power against local alternatives under 
which the random-effects estimator is inconsistent. 

Relaxing Conditional Homoskedasticity 
It is straightfonvard to derive the large sample distribution of the fixed-effects esti- 
mator without conditional homoskedasticity. As will be seen in the next section, 

2The notion of local alternatives was introduced in Section 2.4. 
3 ~ e e  Newey (1985). The required technical assumption is Newey's Assumption 5. 
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extension of the large sample results to cover unbalanced panels is actually easier 
without conditional homoskedasticity. 

Proposition 5.3 (fixed-effects estimator without conditional homoskedasticity): 
Drop conditional homoskedasticity (5.1.5) from the hypothesis of Proposition 5.1. 
Define yi, Fi, and iji by (5.2.2). Then: 

(a) the fixed-effects estimator (5.2.4) is consistent and asymptotically normal with 

(b) I f ,  furthermore, some appropriate finite fourth-moment assumption (which is 
an adaptation of Assumption 4.6) is satisfied, then the asymptotic ~ a ~ a n c e  is 
consistently estimated by 

- A  

where i); = yi - Fig, (this iji should not be confused with iji in (5.2.1)). 

Again, there are two ways to prove this. Write the fixed-effects estimator as a 
GMM estimator and then apply the large sample theory of GMM estimators. Or 
you can prove it directly by inspecting the expression (5.2.4) for the sampling error. 
The only non-trivial part of the proof is that the middle summation in the expression - 
for Avar(B,) converges in probability to its population counterpart. E ( q  iji ijiFi). 
The required technique is very similar to the one used for proving Proposition 4.2 
and so is not repeated here. 

Q U E S T I O N S  FOR R E V I E W  

1. For the large sample results of this section to hold, do we have to assume that 
ai and qi are orthogonal to each other? 

2. (Dropping redundant equations) As mentioned in the text, the M transformed 
equations are not linearly independent in the sense that any one of the M trans- 
formed equations is a linear combination of the remaining M - 1 equations. So 
consider forming a pooled sample of size Mn - n by dropping one transformed 
equation (say, the last equation) for each group (i). Is the OLS estimator on 
this smaller pooled sample the fixed-effects estimator? [Answer: No.] 

Keen
Rectangle
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3. (Importance of cross orthogonalities) Suppose (5.2.6) holds for rn = h but 
not necessarily for rn # h. Would the fixed-effects estimator be necessarily 
consistent? [Answer: No.] 

4. Verify that E(ijilji) is singular. (Nevertheless, E[Q E(ijilji)Zi] in (5.2.7) and 
E(Qijiiji@;) in (5.2.23) are nonsingular, as an optional analytical exercise will 
ask you to show.) 

5. (Consistent estimation of error covariances) To prove that (5.2.9) is consistent 
for E(ij,ij:), you would apply Proposition 4.1 to the transformed system of 
M equations. Verify that the conditions of the proposition are satisfied here. 
In particular, is the requirement that E(i;,F:,) (where ii, is the rn-th row of 
g;) be finite satisfied by the error-component model? Hint: f;, is a linear 

transformation of xi. (5.1.5) and (5.1.6) imply that E(x;x:) is nonsingular. 

6. (What the Hausman statistic tests) For simpiicity, assume Z: (= E(e;e:)) is 
known. Also for simplicity, assume that there are no common regressors, so 
z;, = f;, and (5.2.18) reduces to (5.1.8a): E(zi, - a i )  = 0 for all rn. This is the 
restriction not used by the fixed-effects estimator. Is the random-effects esti- 
mator necessarily inconsistent when (5.1.8a) fails but all the other assumptions 
of the error-components model (such as (5.1.8b)) are satisfied? Hint: Show 

that, without (5.1.8a), 

where ei  = lea; + q-,. Provided (5.1.8b) holds, (5.1.8a) is sufficient for 

E(z;Z:-'ei) to be zero. Is it necessary? Thus, strictly speaking, the Hausman 
test is not a test of (5.1.8a); it is a test of E(z;X-'ei) = 0. 

5.3 Unbalanced Panels (optional) 

In applying the multiple-equation model to panel data, we have been making an 
implicit but important assumption that the variables are observable for all rn, so 
that the number of observations for each cross-section unit is the same (M). Such 
a panel is called a balanced panel. But no available panel data sets are balanced, 
thanks to exits from and entries to the survey. Inevitably, some firms disappear 
from the sample due to bankruptcies and mergers before the end year M of the 
survey, while those firms that did not exist at the start of the survey may be included 
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later. Some of the households initially in the survey will not complete the spell of 
M periods due to household resolutions or because respondents get tired of being 
asked the same questions over and over again. The panel of identical siblings is 
unbalanced if it includes identical triplets (and even septuplets) as well as twins. 

This section shows that the fixed-effects estimator easily extends to unbal- 
anced panels. This sanguine conclusion, however, depends on the assumption that 
whether the cross-section unit stays in the sample does not depend on the error 
term. Without this assumption, the estimator is no longer consistent. This phe- 
nomenon is called the selectivity bias. A full discussion of why a selectivity bias 
arises and how it can be corrected for is relegated to Section 8.2, because the issue 
is not specific to panel data. 

"Zeroing Out" Missing Observations 
To handle missing observations, it is convenient to define a dummy variable, dim, 

1 if observation m is in the sample, 
dim = 

0 otherwise, 

and 

M 

di = [4'] , Mi = Z dim = l observations from i . (5.1.2) 
( M x l )  

d i ~  m=l 

If observation m is missing for group i, fill the m-th rows of yi, F;, and qi with 
zeros so that they continue to be of fixed size. That is, 

Thus, for each i and m, either all the elements of the vector (yim , fi,) are observable 
or none is observable. We will not consider the case where some, but not all, 
elements of (y,, , fim ) are observable. 

With this new notation, (5.1.1") on page 329 becomes 

In the case of balanced panels, where di = lM, the transformation matrix Q in the 
fixed-effects formula (5.2.4) is the annihilator associated with lM (see (5.1.10)). 
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With missing observations, we use as the transformation matrix the annihilator 

associated with d; : 

1 
= IM - - did: (since did; = Mi). (5.3.5) 

Mi 

This matrix depends on i because d, differs across i.  Nevertheless, we leave: this 

dependence of Q on i implicit for economy of notation. With y; , Fi , q ;, and Q thus 
redefined, the formula for the fixed-effects estimator remains the same as (5.2.4). 
Substituting (5.3.4) into this formula and observing that Qdi = 0, we see tha.t the 
expression for the sampling error, too, is the same as (5.2.5). 

Zeroing Out versus Compression 

As seen in Section 5.2 for the case of balanced panels, the fixed-effects estin.~ator 
can be calculated as the OLS estimator on the pooled sample (of size Mn) of ~devi- 

ations from group means. As before, let yi, F,, and I j ;  be the transformations by Q 
of yi, F;, and q,, respectively. For example, y; looks like 

where 

1 1 
j .  = - d'y. = - x (sum of yim over m for which data are available). (5.3.6) 
' - Mi 1 1  

Mi 

Thus, if observation m for group i is available, the m-th element of y; is still the 
deviation of yim from the group mean, but the group mean is over available obser- 

vations. Since dim = 0 if observation m is not available, the rows correspondi.ng to 
missing observations in yi are zero. The same structure applies to columns of Fi. 
Therefore, the pooled sample of size Mn created from (y;, f;) ( i  = 1, . . . , r:) has 

a number of rows filled with zeros. Those rows can be dropped from the pooled 
sample without affecting the numerical value of the fixed-effects estimator. That 

is, we can "compress" (y;, Fi) by dropping rows filled with zeros, before forming 

the pooled sample. 
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No Selectivity Bias 
The fixed-effects estimator, thus adapted to unbalanced panels, remains consistent 
and asymptotically normal, if the orthogonality conditions (5.2.6) in Proposition 
5.1 are modified to 

(no selectivity bias) E(fim . qih I d;) = 0 (m, h = 1,2, . . . , M). (5.3.7) 

As shown in the next proposition, this condition is crucial for ensuring the consis- 
tency of the fixed-effects estimator. By the Law of Total Expectations, this condi- 
tion is stronger than (5.2.6) that the unconditional expectation is zero. It is easy to 
construct an example where (5.3.7) does not hold because the pattern of selection 
di depends on the error term qi. Note that (5.3.7) does not involve the fixed effect 
cri. 'Thus, if the dependence of sample selection on the error term is only through 
the fixed effect, the problem of sample selectivity bias does not occur. 

If the orthogonality conditions (5.2.6) are strengthened as (5.3.7), the conclu- 
sions: of Proposition 5.3 carry over: 

Proplosition 5.4 (large-sample properties of the bed-effects estimator for un- 
balanced panels): Consider the error-components model consisting of (5.3.4), 
(5.1..2), (5.1.4)-(5.1.6), (5.1.15), and (5.3.7), with (yi,Fi,qi) as in (5.3.3). As 
before, define (f i ,  ki, Iji) by (5.2.2), but with Q given by (5.3.5). Then the conclu- 
sions of Proposition 5.3 hold. 

Here .we show that E(F:Qqi) = 0. (The other parts of the proof, which are appli- 
cation.~ of Kolmogorov's LLN and the Lindeberg-Levy CLT, are the same as in the 
proof of Proposition 5.3.) Since 

where q:; is the (m, h) element of Q applied to the i-th equations, we have 

If there is no selectivity bias so that E(fim . q;h I d;) = 0, then (5.3.9) equals zero 
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because 

= E [q;; . dim . dih . E(fim . qih I d;)] (since q$l is a function of d;). 

(5.3.10) 

It is interesting that the extension to unbalanced panels is easier without condi- 
tional homoskedasticity. In order for (5.2.7) of Proposition 5.1 to be the asymptotic 
variance of the estimator under conditional homoskedasticity, we would have to 
assume that the second moment of iji conditional on x; and di  equals the uncondi- 
tional second moment, and consistent estimation of this second moment would be 
a bit complicated. 

Q U E S T I O N S  F O R  R E V I E W  

1. Fordi = (1,0, 1)', writedownQ. 

2. (Alternative derivation of the fixed-effects estimator for unbalanced panels) 
Let y; be the Mi-dimensional vector created from the M-dimensional vector 
y; by dropping rows for which there is no observation. Similarly, create Ff 
(Mi x #/?) from F; and d; from d; (so df is the Mi-dimensional vector of 
ones). Let Q* (Mi x Mi) be the annihilator associated with d f .  Verify that the 
fixed-effects estimator can also be written as (5.2.4) in terms of those starred 
matrices and vectors. 

3. Section 4.6 described the pooled OLS in levels for the system (4.6.1') on page 
292. 

(a) How would you modify the estimator (4.6.11') on page 293 to accommo- 
date unbalanced panels? Hint: Define yi and Zi (M x L) by "zeroing out." 

(b) Without conditional homoskedasticity, what is its asymptotic variance? 
[Answer: [E(z~z;)]-' E(Z;o;sjZ;) [E(Z;Z;)]-'.I 

(c) How would you estimate the asymptotic variance? Hint: Replace Fi by Z;, 
Q by IM, and ij, by E ;  in Proposition 5.3. 
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5.4 Application: International Differences in Growth Rates 

Do poor economies grow faster than rich economies? If so, how much faster? 
These are the questions addressed in the recent burgeoning literature of g r ~ w t h . ~  
This section derives the key equation that has been used to explain economic 
growth of nations and discusses ways to estimate it. Actual estimation of several 
specifications of the equation is relegated to the empirical exercise. 

Derivation of the Estimation Equation 

In neoclassical growth theory, output per effective labor in period t, denoted q(t) 

and to be defined more precisely in (5.4.4) below, converges to the steady-state 
level q*. The log-linear approximation around the steady state gives 

Estimating A, the speed of convergence, has been the objective of the recent 
growth literature. (5.4.1) implies that, for any two points, tmPl and tm in time, 

where 

(Since in our data tm's are equally spaced in time, p will not depend on m.) Output 
per effective labor is defined as 

where Y (t) equals aggregate output, L(t) equals aggregate hours worked, and A(t) 

equals level of labor-augmenting technical progress. Assuming A(t) grows at a 
constant rate g (so that A(t) = A(0) exp(gt)), (5.4.4) implies 

log(q(t)) = log - - log(A(0)) - g . t .  (r::;) 
Substituting this into (5.4.2), we obtain 

4~ very extensive survey of the literature is Barro and Sala-i-Martin (1995). 
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where 

@m -- g .  (tm - P  ' t m - ~ ) .  

An equivalent form of equation (5.4.6) can be obtained by subtracting log - 
from both sides: 

Since p < 1 as h > 0, this equation says that the level of per capita output has a 
negative effect on subsequent growth. The country, when poor, should grow faster. 
This form of the equation is more intuitive, but for the purpose of choosing the 
correct estimation technique, (5 .4 .6)  rather than (5.4.6') is more instructive. 

Equation (5.4.6) should hold for each country i .5 For the rest of this section, we 
assume that the speed of convergence ( A )  and the growth rate of labor-augmenting 
technical progress ( g )  are the same across countries. Then (5.4.6) for country i can 
be written as 

where 
Y(tm> yim = log (-) for country i . 
L(tm) 

ai = ( 1  - p )  x {log(q*) + l o g ( A ( 0 ) ) )  for country i . (5.4.9) 

Appending the Error Term 
It is a fairly standard practice in applied econometrics to derive an equation without 
an error term from the theory and then append an error term for estimation. Growth 
empirics is not an exception; an error term vim is added to (5.4.8) to obtain 

5 ~ e  have derived the equation describing convergence assuming a closed economy. The assumption is hard 
to justify, but a similar equation can be derived under free mobility of physical capital if human capital is another 
factor of production and not freely mobile internationally. See, e.g., Barro and Sala-i-Martin (1995). 
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One natural interpretation of vim is business cycles, which in macroeconomics are 
defined as the difference between actual output and potential output. Growth the- 
ory is about potential output. The discrepancy between potential output and actual 
output becomes the error term in the estimation equation derived from growth the- 

ory. But then there would be an errors-in-variables problem, which renders the 
regressors endogenous.6 For the rest of this section, we follow the mainstream 
growth literature and ignore the endogeneity problem. 

Another problem is the possible correlation in v i m  between countries (i's). This 
spatial (or geographical) correlation would not arise if the sample were a random 
sample. But the sample of nations is not a random sample; it is the universe. 
The phenomenon known as international business cycles implies that the spatial 
correlation would be positive. Statistical inference treating countries as if they were 
independent data points would overstate statistical significance. This problem, too, 
is largely ignored in the literature and will be ignored in our discussion. 

Treatment of ai 

As is clear from (5.4.9), the term a; in equation (5.4.10) depends on the steady- 
state level q* and the initial level of technology A(0). How you treat a; in the 
estimation depends on which version of neoclassical growth theory you subscribe 
to. According to the Cass-Koopmans optimal growth model, the sole determi- 
nant of the steady-state level q* is the growth rate of labor. Thus, if technological 
knowledge freely flows internationally so that A(0) is the same across countries, 
the international differences in a; are completely explained by the labor growth 
rate. Therefore, leaving aside the endogeneity problem just mentioned, OLS esti- 
mation of (5.4.10) delivers consistency if the labor growth rate is included as the 
additional regressor to control for a;. If you subscribe to the Solow-Swan growth 
theory, the saving rate is the other determinant of q*,  so the regression should 
include the saving rate along with the labor growth rate. 

A large fraction of the recent growth literature under the rubric of "conditional 
convergence" includes these and other variables that might affect q* or A(0) - 
such as measures of political stability and the degree of financial intermediation - 
in order to control for a i .  In the empirical exercise, you will be asked to esti- 
mate p ,  and hence the speed of convergence A, using this conditional convergence 
approach. 

6 ~ e t  xi, be the log potential output in year t, for country i that growth theory is purported to explain, so that 
(5.4.8) holds for xi,  rather than for yi,  . Let log actual output yi, be related to xim as y; ,  = xi, + v i m .  Then 
(5.4.10) results, but with the error term vim - pv;, ,-  1 .  Not only would there be an errors-in-variables problem, 
but also the error term has a moving-average structure. 
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However, no matter how ingeniously the variables are selected to control for 

a;, some component of a; having to do with features unique to the country would 
remain unexplained and find its way in the error term. Being part of a , ,  it is corre- 
lated with the regressor y;,,-~ in (5.4.10). The OLS estimation, even if the equation 
includes a variety of variables to control for a;, will not provide consistency. The 
alternative approach is to treat a; as an unobservable fixed effect. 

Consistent Estimation of Speed of Convergence 
If output and other variables are observed at M + 1 points in time, to, tl , t2, . . . , t ~ ,  

equation (5.4.10) is available form = 1, . . . , M. The fixed-effects technique could 
be applied to this M-equation system, but it does not provide consistency. The rea- 

son is that the system is "dynamic" in that some of the regressors are the dependent 
variables for other equations of the system. To see this, look at the first two equa- 

tions of the system: 

Suppose the error term q, I is orthogonal to the regressors (which are a constant and 
y ; ~ )  in the first equation, so that E(qi ) = 0 and E(yio qil ) = 0. If we further make 
the assumption that E(a; q;l) = 0, then from the first equation 

But yil is one of the regressors in the second equation. Therefore, if the error term 
vim is orthogonal to the regressors for each equation, the "cross" orthogonalities are 
necessarily ~ i o l a t e d . ~  As emphasized in Section 5.2 (see Review Question 3), the 
fixed-effects estimator is not guaranteed to be consistent if the cross orthogonalities 

are not satisfied. For a precise expression for the bias, see Analytical Question 4 to 

this chapter. 
One way to obtain consistency is the following. Take the first differences of 

the M-equations to obtain M - 1 equations: 

YIM - Y ~ , M - I  = PM-1 + (YI,M-I - Y~,M-Z)P + ( T I ~ M  - qi.M-I), (5.4.1 1) 

 h his was first pointed out by Nickell (1981). 
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where 

P m  d'm+l - d 'm.  

The random-effects estimator and the equation-by-equation OLS do not provide 
consistency because the regressors are not orthogonal to the error term. For exarn- 
ple in the first equation, y; 1 - y;o is not orthogonal to q;2 - qil because E(yil . q;l ) # 
0 as just seen. Consistent estimation can be done by multiple-equation GMM, if 
there are valid instruments. In the optional empirical exercise to this chapter, you 
will be asked to use the saving rate as the instrument for the endogenous regressors. 
To the extent that the saving rate is uncorrelated with vim, this estimator is robust 
to the endogeneity problem mentioned above. 

Q U E S T I O N S  F O R  R E V I E W  

1. The assumption that g (growth rate of technical progress) is common to all 
countries is needed to derive (5.4.8). Do we have to assume that g is constant 
over time? [Answer: No.] 

2. (Identification) For simplicity, let M = 3 so that (5.4.1 1) is a two-equation 
system. 

(a) Write (5.4.11) as a multiple-equation system with common coefficients by 
properly defining the yil, yi2, zil, zi2, d in (4.6.1). Hint: zi2, for example, is 

(0, 1, ~ i 2  - ~ i l ) ' .  

(b) If s,, is the instrument for y;, - y;,,_l, the instrument vector for the 
m-th equation is xim = (1, sim)' for m = 1,2. Show that the system is 
not identified if Cov(sim, yim - y;,,-l) = 0 for all m. Hint: 

Appendix 5.A: Distribution of Hausman Statistic 

This appendix proves that the Avar(q) in (5.2.21) is positive definite and the Haus- 
man statistic (5.2.22) is guaranteed to be nonnegative in any finite samples. 
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As shown in Section 4.6, 

where 

K = #xi, L - #zi, (so Zi is M x L). 

Let 

so that Fi = Z;D. Then it can be shown fairly easily that 

where 
h 

W = Q @ s,-,', Q E annihilator associated with l ~ .  

From (5.A.1) and (5.A.2) it follows that 

(To derive this, recall from Section 4.6 that 

But since QZi = (QFi i 0), this equals 

A 

so that SLzWSxz = D D ' S ~ ~ S , ~  = s;~~s,DD'.)  
As was shown in Analytical Exercise 5 of Chapter 3, 
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Substituting this into (5.A.3), we obtain 

The asymptotic variance of this expression is 

A 

where B = plim6, W = plim W = Q €3 Z z ,  and S - Avar(g). Here, DIZAW . 
Z,,D is invertible because it is easy to show that 

which, as proved in Analytical Exercise 5, is nonsingular. (5.A.7) is consistently 
estimated by 

A straightforward but lengthy matrix calculation shows that (5.A.7) equals - - 
~ v a r ( & )  - Dl ~ v a r ( j ~ ) D  and (5 .A.9) equals Avar(B,) - D1Avar(SE)D. In 
any finite sample, (5.A.9) is positive sernidefinite. So the Hausman statistic is 
guaranteed to be nonnegative. 

We now show that (5.A.7) is nonsingular. By (5.1.6), S is positive definite. 
Therefore, the rank of Avar(q) equals the rank of 

Since the columns of S-'Z, form a basis for the column null space of B and 
since (Q €3 Z,-,')Z,,D is of full column rank by (5.1.15), by Lemma A.5 of Newey 
(1985),' the rank of (5.A. 10) equals 

where use has been made of the fact that S = Z 18 Z,. 
Now, xi collects all the unique variables in Zi. Rearrange xi  as 

 he lemma states: Let A be a k x C matrix, B an C x m  matrix, and C an C x n  matrix. I f  the columns of 
C form a basis for the column null space of A and rank(B) = m, then rank(AB) = rank(<: : B) - n.  Here, 
k = C = M K , m = p , a n d n = L .  
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Then 

so that Z, can be written as 

where H' = (H;, . . . , H',). Substituting (5.A.14) into (5.A.ll), the rank of 
Avar(q) is 

The m-th K rows of the (MK x (L + p)) matrix [(x-' @ IK)H i (Q @ IK)]HD] 
are 

Therefore, rank[(zp1 @ IK)H i (Q @ IK)HD] = L + p unless vec(Z-I) md 
vec(Q) are linearly dependent; that is, unless 72-' is proportional to Q. But since 
rank(72-') = M # rank(Q) = M - 1, Z-' cannot be proportional to Q. 

P R O B L E M  S E T  FOR C H A P T E R  5 

A N A L Y T I C A L  E X E R C I S E S  

1. (Fixed-effects estimator as the LSDV estimator) In (5.1.1") on page 329, re:de- 
fine ai to be the sum of old ai and b: y , so that (5.1.1") becomes 

y i = F i B + l M . ~ ; + q i  ( i =  1,2 , . . . ,  n). (1) 

Define the following stacked vectors and matrices: 

Y = 
(Mnxl )  ( M n x l )  

Y n 
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l M  

D =In @ I M  = [ lM ... I] (2) 
(Mn xn) 

so that the M-equation system (1) for i = 1, 2, . . . , n can be written as 

+ 
'In 

[:]=[I. Yn lM . .  1~ [:]+[:IB+[:] a n  Fn 'In 

'The OLS estimator of 8 on a pooled sample of size Mn, (y, W), is (w'w)-' . 
'W'y. 

((a) Show that the fixed-effects estimator given in (5.2.4) is the last #B ele- 
ments of this vector. Hint: Use the Frisch-Waugh Theorem about parti- 

tioned regressions (see Analytical Exercise 4(c) of Chapter 1). The first 

step is to regress y on D and regress each column of F on D. If we define 

the annihilator associated with D as 

then the residual vectors can be written as MDy and MDF. The second step 

is to regress MDy on MDF. Show that the estimated regression coefficient 
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can be written as 

Show that MD = In 63 Q (where Q is the annihilator associated with lM, as 
in the text) and use this to show that (1) is indeed the fixed-effects estimator. 

Alternatively, you can go all the way back to the normal equations. If a 
and b are the OLS estimators of a and B,  then (a, b) satisfies the system 

of n + #B linear simultaneous equations: 

Take the first n equations and solve for a taking b as given. This should 

yield: a = (D'D)-'(D'~ - D'Fb). Then substitute this into the rest of the 

equations to solve for b. (You can accomplish the same thing by using the 
formula for inverting partitioned matrices.) 

(b) Show: 

where ai is the OLS estimator of a;, fi:, is the m-th row of Fi, and ji = 
1 M(yil + . . . + yiM). Hint: Use the normal equations for a. 

(c) Assume: 

(i) {yi, F;} is i.i.d., 

(ii) E(qi I Fi) = 0 (which is stronger than the orthogonality conditions 
(5.1.8b)), 

(iii) E(qiq: I F;) = o,21~ (the spherical error assumption), and 

(iv) W is of full column rank. 

Show that the assumptions of the Classical Regression Model are satisfied 
for the pooled regression (3). Hint: You have to show that W is exogenous 
in (3), that is, 

E(q I W) = 0 . 
( M n  x 1) 
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Also show that E(t)t)' I W) = U;I~,,. Develop the small sample theory for 
a and b. For example, are they unbiased? Let SSR be the sum of squared 
residuals from the pooled regression (3). Is this SSR the same as the SSR 
from the "within" regression (5.2.15)? 

2. (GMM interpretation of FE) It is fairly well known for the case of two equa- 
tions (M = 2) that the fixed-effects estimator is the OLS estimator in the 
regression of first differences: yi2 - yil on zi2 - zil. This question generalizes 
this argument to the case of arbitrary M. 

We wish to write the fixed-effects estimator (5.2.4) in the GMM format 

for properly defined S,,, G, and s,. Let C be a matrix such that 

C is an M x (M - 1) matrix of full column rank satisfying C1lM = 0. (8) 

A prominent example of such a matrix C is the matrix of first differences: 

Another example is an M x (M - 1) matrix created by dropping one column, 
say the last, from Q, the annihilator associated with lM. 

(a) Verify that these two matrices satisfy (8). 

(b) For any given choice of C, verify that you can derive the following system 
of M - 1 transformed equations by multiplying both sides of the system of 
M equations (5.1.1") (on page 329) from left by C': 

where 
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(c) (optional) Verify the following: 

If (yi , Zi) satisfies the assumptions of the error-components model 
(which are (5.1.lU), (5.1.2), (5.1.8), (5.1.4), (5.1.5), and (5.1.6) or 
(5.1.6') on page 324), then {yi, @;I satisfies the assumptions of the 
random-effects model, i.e., for the M - 1 equation system (9), 

(random sample) ( f i ,  @;) is i.i.d., 

(orthogonality conditions) E(fii 8 xi) = 0 with xi = union of 
(zil , . . . , ziM) = unique elements of (F;, b;), 

(identification) E(@; 8 xi) is of full column rank, 

(conditional homoskedasticity) ~ ( 4 ~ 4 :  I xi) = E(fi; 4: which is 

nonsingular, 

(nonsingularity of E(gig)) E(g;g) is nonsingular, g; = fii 8 xi. 

Hint: For the orthogonality conditions, note that (5.1.8b) can be written as 

E(qi 8 xi) = 0 and that fii  8 xi = (C' 8 IK)(qi 8 xi). The identification 

condition is equivalent to (5.1 .IS) (see the answer sheet for proof). To show 

that ~ ( 4 ~ 4 :  I xi) does not depend on xi, use the fact that fii  = C1qi = C'ei 
since ei  = lM . ai + qi. Given conditional homoskedasticity, we have 

So the last condition (nonsingularity of E(g,$)) is simply that E(xix;) be 

nonsingular. 

(d) Show that the fixed-effects estimator (5.2.4) can be written in the GMM 
format (7) with 

Hint: Use the following result from matrix algebra: If C satisfies condition 

(8), then 
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(the annihilator associated with lM). The elements of f;, are a subset of 

the elements of xi. Observe the "disappearance of x." So, for example, 

(e) Let 5 ((M - 1) x (M - 1)) be a consistent estimate of \Ir = ~ ( 4 ~ 4 : ) .  Show 
that the efficient GMM estimator is given by 

Show that 

~ v a r ( P )  = [E \~r-l$;)]-' . (13) 

Hint: Apply Proposition 4.7 to the present system of M - 1 equations. 

(f) Show that the following is consistent for \Ir: 

Hint: Verify that all the assumptions of Proposition 4.1 are satisfied. 

(g) (Sargan's statistic) Derive Sargan's statistic associated with the efficient 
GMM estimator. Hint: In Proposition 4.7(c), set 

(h) Suppose that qi is spherical in that 

Verify that, if 6; is a consistent estimator of a;, then 

is consistent for \Ir. Verify that the efficient GMM estimator (12) with this 
choice of 5 is numerically equal to the fixed-effects estimator. 
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( i )  (Invariance to the choice of C) Verify: if an M x (M - 1) matrix C satisfies 
(8), so does B = CA where A is an (M - 1) x (M - 1) nonsingular matrix. 
Replace C everywhere in this section by B and verify that the choice of C 
does not change any of the results of this question. 

3. Let SSR be the sum of squared residuals defined in (5.2.15). For the error- 
component model with the spherical assumption that E(qi q:) = a; IM, prove 

SSR 
plim - = (M - 1) . 0,'. 
n+co n 

Hint: 

(since Q is symmetric and idempotent) 

n 
A 

= i j  (c'c)-I?; (t; - C'y; - C'F; BE) 

1 
= n . trace[(clc)-I - c iiii] (since the trace operator is linear). 

n i=l 

With the usual technical condition (that E(fi, fi',) exists and is finite for all rn, h ,  
which obtains if E(xixi) exists and is finite), it should now be routine to show 
that 

where v; - C1yi - CIFiB. Show that E(vivi) = a; . C'C. 
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4. (Inconsistency of the fixed-effects estimator for dynamic models) Consider a 
"dynamic" model 

Suppose we have a random sample on (yio, y;l,. . . , yIM). We assume that 
E(a; vim) = 0, and E(yio qim) = 0 for all m. Also assume there is no cross- 
equation correlation: E(qim qih) = 0 for m # h, and that the second moment 
is the same across equations: E(~,IL) = 0;. 

(a) Write this system of M equations as (5.1.1") on page 329 by properly defin- 
ing yi , F;, and b; . 

(b) Show: E(yim . qih) = 0 if m < h. Hint: 

1 - pm 
Yim = fl im + pfl;,m-l + - .  . + pm-lqil + - ai + pmyio. 

1 - P  

(c) Verify that E(yim . qih) = pm-ha; for m ? h. (optional) Show that 

(d) Therefore, if E(FiQFi) is nonsingular and if (M - 1) - Mp + pM # 0, then 
the fixed-effects estimator for this dynamic model is inconsistent. Which 
assumption of Proposition 5.1 guaranteeing the consistency of the fixed- 
effects estimator is violated? 

5. (Optional, identification ensures nonsingularity) 

(a) Show that E(FF;) in (5.2.7) is invertible under assumption (5.1.15), that 
E(QFi 8 xi) is of full column rank. Hint: 

where qmh = (m, h) element of Q. Show that 

(Recall that the elements of fi, are included in xi.) Finally, show that 
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xif& = f:, O xi, (Fi O xi)' = (fil O x:, . . . , fiM 8 xi), and 

(b) Use a similar argument to show that YE[% E(ij,ij;)F;] in (5.2.7) is nonsin- 
gular. Hint: Since 

we have 

Also, 

(c) Show that E(eq- 'F i )  in (13) of Analytical Exercise 2 is nonsingular. 
Hint: A s  shown in Analytical Exercise 2(c), E(QFi O xi) is of full column 
rank if and only if E(CIFi O xi) is of full column rank. 

6. (Optional, alternative identification condition) Consider the error-component 
model (5.1.1") on page 329. Let p = #@. If Am is the matrix that picks up fim 
from xi, it can be written as 

where em is the m-th row of IM. 

(a) Let A (K M x p) be the matrix obtained from stacking (Al, . . . , AM). Show 
that Fi = (IM O x:)A. 

(b) Show that the rank condition (5.1.15), combined with the condition that 
E(xixi) be nonsingular (which is implied by (5.1.5) and (5.1.6)), can be 
written as 
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(This result will be used in the next exercise.) Hint: 

SO E(%; (8 x;) = [IM @ E(x;xj)](Q @ IK)A. 

7. (Optional, checking nonsingularity) Prove that ~ ( F : i j ~  iji%;) in (5.2.23) is non- 
singular, by taking the following steps. 

(a) Write F i j i  as a linear function of g, = e i  €3 xi. Hint: Let A be as in the 

previous exercise. 

F i j i  = A1(IM @ x;)Qq; 

= A1(IM €3 x;)Qei (since E ;  = lM . a; + qi) 

= A 1 ( I ~  @ xi)(Qe; @ 1) 

= A1(Qei @ xi) 

= A1(Q @ IK )(E; @ xi) 

= A1(Q €3 IK )g; . 

(b) Prove the desired result. Hint: E(gi$) is positive definite by (5.1.6). 

E M P I R I C A L  E X E R C I S E S  

In this exercise, you will estimate the speed of convergence using several different 
estimation techniques. We use the international panel constructed by Summers and 
Heston (1991), which has become the standard data set for studying the growth of 
nations. The Summers-Heston panel (also called the Penn World Table) includes 
major macro variables measured in a consistent basis for virtually all the countries 
of the world. 

The file SUM-HES . ASC is an extract for 1960-1985 from version 5.6 of the 
Penn World Table downloaded from the NBER's home page (www.nber.org). The 
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file is organized as follows. For each country, information on the country is con- 
tained in multiple records (rows). The first record has the country's identification 
code and two dummies, one for a communist regime (referred to as COM below) 
and the other for the Organization of Petroleum Exporting Countries (referred to as 
OPEC below). The second record has the year, the population (in thousands), real 
GDP per capita (in 1985 U.S. dollars), and the saving rate (in percent) for 1960. 
The third record has the same for 1961, and so forth. The twenty-seventh record of 
the country is for 1985. The first few records of the file look like: 

The file contains all 125 countries for which the data are available. (The mapping 
between the country ID and the country name is in count ry .  asc. Country 1 
is Algeria, 2 is Angola, etc. Note that the mapping in Penn World Table version 
5.6 is different from that in Summers and Heston (1991).) GDP per capita is the 
country's real GDP converted into U.S. dollars using the purchasing power parity 
of the country's currency against the dollar for 1985 (the variable "RGDPCH" in 
the Penn World Table). The saving rate is measured as the ratio of real investment 
to real GDP ("I" in the Penn World Table). See Sections I1 and I11 (particularly 
1II.D) of Summers and Heston (1991) for how the variables are constructed. 

The first issue we examine empirically is conditional convergence. (At this 
juncture it would be useful to skim Mankiw, Romer, and Weil (1992).) Let si be 
the saving rate of country i and ni be the country's population growth rate (which 
we take to be the growth rate of labor). In the Solow-Swan growth model with 
a Cobb-Douglas production function, the steady-state level of output per effective 
labor, denoted q* in the text, is a linear function of log(si) - log(ni + g +6), where 
g is the rate of labor-augmenting technical progress and 6 is the depreciation rate 
of the capital stock. Then, assuming A(O), the initial level of technology, to be the 
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same across countries, equation (5.4.10) can be written as 

The growth model implies that yl = - y2, but we will not impose this restriction. 
This is the specification estimated in Table IV of Mankiw et al. (1992). As in 
Mankiw et a]., assume g + 6 to be 5 percent for all countries, and take s; to be 
the saving rate averaged over the 1960-1985 period. We measure n; as the aver- 
age annual population growth rate over the same period (Mankiw et al. uses the 
average growth rate of the working-age population). Because our sample of 125 
countries includes (former) communist countries and OPEC, we add COM (= 1 if 
communist, 0 otherwise) and OPEC (= 1 if OPEC, 0 otherwise) to the equation: 

Yim = @m + P Y ~ , ~ - I  + 1'1 log(s;) + y2 log(n; + g + 6) 

+ y3COMi + y40PECj + v i m .  (2) 

(a) By subtracting from both sides, we can rewrite (2) as 

For this specification, set M = 1 Gust one equation to estimate) and take to = 
1960 and tl = 1985, so the dependent variable, yil - yio, is the cumulative 
growth between 1960 and 1985. Plot y;l - yio against y;o for the 125 countries 
included in the sample. Is there any relation between the initial GDP (yio) 
and the subsequent growth (yil - yio)? Assuming outright that the error term is 
orthogonal to the regressors, estimate equation (2') by OLS. Calculate the value 
of A (speed of convergence) implied by the OLS estimate of p. (It should be 
less than 1 percent per year.) Calculate the asymptotic standard error (i.e., 1 /n 
times the square root of the asymptotic variance) of your estimate of A. Hint: 
By (5.4.3), i = - log(6)/25. By the delta method (Lemma 2.5 of Section 2.1), 

(since the derivative of log(p) is I lp) .  So a consistent estimate of ~ v a r ( i )  is 

~ v a r ( b ) / ( 2 5 6 ) ~ .  The standard error of is I /n  times the square root of this. 

So: the standard error of i = (standard error of 6)/(256). Can you confirm the 
finding that "if countries did not vary in their investment and population growth 
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rates, there would be a strong tendency for poor countries to grow faster than 
rich ones" (Mankiw et al., 1992, p. 428). 

(b) (Fixed-effects estimation) By setting M = 25, to = 1960, tl  = 1961, . . . , 
tz5 = 1985, we can form a system of 25 equations, with (5.4.10) as the 
m-th equation. Estimate the system by the fixed-effect technique, assuming 
that the error is spherical in the sense of (5.2.12). What is the implied value 
of A? (It should be about 6.4 percent per year.) (Optional: Calculate the stan- 
dard errors without the spherical error assumption. As emphasized in the text, 
the fixed-effects estimator is not consistent. We nevertheless apply blindly the 
fixed-effect technique just to gain programming experience.) 

TSP Tip: TSP's command for the fixed-effects estimator (with the spherical 
error assumption) is PANEL. It, however, does not accept the data organiza- 
tion of SUM-HES . ASC. It requires that the group (country) ID and the year 
be included in the rows containing information on group-years. The data file 
that PANEL can accept is FIXED. ASC. Its first few records are: 

Here, the first variable is the country ID, followed by COM, OPEC, year, real 
per capita GDP for the year, and real per capita GDP for the previous year. 

RATS Tip: RATS does not have a command specifically for the fixed-effects 
estimator, but there is a command called PANEL (not to be confused with 
TSP's PANEL) that calculates deviations from group means. The RATS 
codes for doing this part of the exercise are shown here: 

* (b) fixed-effects estimation. 
* 

calendar (panelobs=25) 

allocate 0 125//25 
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open data fixed.asc 

data(org=obs) / id com opec year rgdp rgdpl 
* generate year dummies (only 24 dummies are 
* enough) 
dec vector[seriesl dummies(24) 
do i=1,24 

set dummies(i) = (year==i+1960) 

end do i 

* log transformation 
set y = log(rgdp); 

set ylag = log(rgdp1); 
* simple statistics 
table 

* calculate deviations from group means 
panel y / yw 1 entry 1.0 indiv -1.0 
dec vector [series] dumw (24) 

panel ylag / ylagw 1 entry 1.0 indiv -1.0 
do i=1,24 

panel dummies(i) / dumw(i) 1 entry 1.0 
indiv -1.0 

end do i 

* Within regression, with degrees of freedom 
* correction 
linreg(dfc=125) yw;# dumw ylagw 

(c) (optional) As in the previous question, take M = 25 and to = 1960, t l  = 
1961, t 2  = 1962, . . . , t 2 ~  = 1985. Then (5.4.1 1) is a system of 24 equations if 
written as the model of Section 4.6: 

Yim = ~ : ~ 6 + e i m  (i = l , 2  , . . . ,  125;m = 1 , 2  , . . . ,  24), (3) 

where the yi, in (3) equals yi,,+l - yi, in (5.4.1 I), 

a 25-dimensional vector whose m-th element is 1 ,  



Panel Data 363 

If sim is country i's saving rate (investment1GDP ratio) in year m, use a con- 

stant and as the instrument in the m-th equation (so, for example, in the 
first equation where the nonconstant regressor is yi.1961 - Yi,1960, the vector of 
instruments is (1, s;, 1960)'). Apply the multiple-equation GMM technique to 
(3) assuming conditional homoskedasticity. (It will be very clumsy to use TSP 
or RATS; use GAUSS. The estimator is (4.6.6) with set to the inverse of 
(4.5.3).) The implied value of A should be about 36 percent per year! 

A N S W E R S  T O  S E L E C T E D  Q U E S T I O N S  

A N A L Y T I C A L  E X E R C I S E S  

1c. E(q; I W) 

= E(qi ( F) (since D is a matrix of constants) 

=E(q;  I F I ?  . . .  jFn) 

= E(q; I Fi) 

(since q, is indep. of (F1, . . . , FiP l ,  Fi+, , . . . , F,) by i.i.d. assumption) 

= 0. 

Therefore, the regressors are exogenous. Also, 

E(qi9: I W) = E(qiq: I F) 

= E(qiq: I Fi) 

= IM (by the spherical error assumption). 

By the i.i.d. assumption, E(qiqj 1 W) = 0 for i # j .  So E(qql 1 W) = a,? IM,. 

2c. Proof that "E(QF; €3 xi) is of full column rank" e "E(C'F, €3 xi) is of full 
column rank :  
Let A - E(QFi 8 xi) and B = E(C'F; €3 xi). There exists an M x (M - 1) 
matrix L of full column rank such that Q = LC' (it is actually C(CfC)-' by 
(1 1)). Let D = L €3 IK.  Then A = DB. Since the rank of a product of two 
matrices is less than or equal to the rank of either of the two matrices, 
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Next consider a product D'A = D'DB. 

But since L is of full column rank, D'D is nonsingular. Since multiplication by 
a nonsingular matrix does not alter rank, 

From (1)-(3) it follows that rank(A) = rank(B). Since A and B have the same 
number of columns, the desired conclusion follows. 

There is no b;. 

4d. Since E(rlih . yi,) # 0 for m > h, some of the "cross" orthogonalities are not 
satisfied. 
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Serial Correlation 

A B S T R A C T  

This chapter extends the GMM model of Chapter 3 to incorporate serial correlation 
in the product of the vector of instruments and the error term. To do so, we need to 
generalize the Central Limit Theorems of Chapter 2 to serially correlated processes. 
The generalization is possible under certain conditions restricting the degree of serial 
correlation. The condition is transparent for the stochastic processes called linear 
processes. Linear processes are important in their own right, and this chapter devotes 
four sections to covering them. In the application section, the extended GMM model 
is used to test the efficient market hypothesis, this time for the foreign exchange 
market. 

A Note on Notation: Because the issues treated here are specific to time-series 
data, we use the subscript "t" instead of "i" in this chapter. 

6.1 Modeling Serial Correlation: Linear Processes 

Section 2.2 introduced covariance-stationary processes and their autocovariances. 
In particular, a (scalar or univariate) white noise process {E,} is a zero-mean 
covariance-stationary process with no serial correlation: 

E(E,) = 0, E(E~~) = a2 > 0, E(E,E,-~) = 0 for j # 0. 

A very important class of covariance-stationary processes, called linear processes, 
can be created by taking a moving average of a white noise process. This section 
studies general properties of linear processes using an apparatus called the filter. 

Because the current value of a linear process can depend on possibly infinite 
past values of a white noise process, it is convenient to have the white noise pro- 
cess and the linear process it generates defined for t = 0, - 1,  -2, . . . as well ' 
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as for t = 1, 2, . . . . Intuitively, a covariance-stationary process defined for all 

integers ( r  = 0, f 1, f 2, . . . ) is a process that started so long ago that its mean and 

autocovariances have stabilized to time-invariant constants. 

The simplest example of linear processes that exhibit serial correlation is a finite- 

order moving average process. A process {y,) is called the q-th order moving 
average process (MA(q)) if it can be written as a weighted average of the current 

and most recent q values of a white noise process: 

Yr = p + 80&, + 81e,-l + . . . + 8q~ , -q  with 80 = 1. (6.1.1) 

Evidently, a moving average process is covariance-stationary with mean p. It is 

easy to verify that the j-th order autocovariance, yj (r E[(y, - p )  (y,- - p ) ] ) ,  is 

where a2 = E(E:). (This formula also covers y-, because yj = y-,.) For example, 
forq = 1, wehave 

yo = (0; + L9?)a2 = (1 + L9?)a2 

(by setting j = 0  and q = 1 in (6.1.2a) and noting 80 = I), 
2 y1 = y-1 = (OIOO)a = 810 2 

(by setting j = 1 and q = 1 in (6.1.2a) and noting = l), 

yj = O  f o r j = f 2 , f 3 ,  . . . .  

The whole profile of autocovariances, {yj), is described by just q + 1 parame- 

ters (81, 82, . . . , eq, and a2) ,  and the correlogram {pj) (where pj = yj/yo) by q 
parameters (el,  62, . . . ,8,). 

MA(-) as a Mean Square Limit 

As illustrated in the above example, serial correlation in MA(q) processes dies out 

completely after q lags. Although some time series have this property (we will see 
an example in the application below), it is certainly desirable to be able to model 

serial correlation that does not have this property. An obvious idea is to have y, 
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depend on the infinite past by replacing the sum of finitely many terms in (6.1. I), 

by an infinite sum 

where {pkj) is a sequence of real numbers. 
For this idea to work, we must make sure that this sum of infinitely many 

random variables is well defined, namely, that the partial sum 

converges (in some appropriate sense) to a random variable as n + oo. One 
popular condition under which this happens is that the sequence of real numbers 
{I)~) be absolutely surnrnable: 

(This is a standard short-hand expression in calculus. Equation (6.1.5) reads: the 
partial sum C,"=o I @j 1 converges to a real number [i.e., a finite limit] as n + oo 
and the infinite sum in (6.1.5) is dejined to be this real number.) For the sequence 
{pkj) to be absolutely summable, it is necessary (but certainly not sufficient) that 
I+$ + 0 as j + oo. Thus, absolute sumrnability requires that the effect of the past 
shocks represented by I+$ eventually die away. 

As claimed in the next proposition, the partial sum (6.1.4) converges in mean 
square to some random variable for any given t. The mean square limit is unique 
in the following sense. If there exists another random variable to which the partial 
sum converges in mean square, then (as you will show in Analytical Exercise 1) 
the two mean square limits are equal with probability on$. We dejine the infinite 
sum (6.1.3) to be the unique mean square limit of the partial sum (6.1.4) and say 
"the infinite sum converges in mean square." 

Proposition 6.1 (MA(-) with absolutely surnrnable coefficients): Let {E,) be 
white noise and {@j) be a sequence of  real numbers that is absolutely summable. 
Then 
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(a) For each t , 
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converges in mean square. {y,} is covariance-stationary. (The process {y,} is 
called the infinite-order moving-average process (MA(oo)) .) 

(b) The mean o f  y, is p . The a ~ t o c o v ~ a n c e s  { yj } are given by 

(c) The autocovariances are absolutely summable: 

(d) If ,  in addition, {E,} is i.i.d, then the process {y,} is (strictly) stationary and 
ergodic. 

This result includes MA(q) processes as a special case with llrj = Oj for j = 
0, 1, . . . , q and @, = 0 for j > q. Evidently, this sequence {@,I is absolutely 
surnrnable. Proving parts (axe) is Analytical Exercise 2. Proving (a) would use 
the fact from calculus that Cauchy sequences converge (see Review Question 1 
about Cauchy sequences). Part (b) is an obvious extrapolation to infinity of the 
corresponding results on the mean and autocovariances of finite-order MA pro- 
cesses, but the extrapolation involves interchanging the order of expectations and 
summations. For example, to prove that the mean of the MA(oo) process is p, you 

would have to show that the expected value of the mean square limit of (6.1.3) is 
the limit of the expected value of (6.1.4). The fact that this operation is legitimate 
under mean square convergence would be used in the proof of part (b). Part (c) 
says, intuitively, that if the effect of past shocks represented by @, dies out fast 
enough to make {@,I absolutely summable, then serial correlation dies out just as 

fast. Absolute summability of autocovariances will play a key role in the theory of 
covariance-stationary processes to be developed in this chapter. For a proof of (d), 

see, e.g., Hannan (1970, p. 204, Theorem 3).' 

'~bso lu te  summability of (*) is more than enough for part (a) to hold. As shown in Analytical Exercise 2, 
square summability, which is weaker than absolute summability, is enough to ensure that the infinite sum is well 
defined as a mean square limit. However, for the other parts of this proposition to hold, absolute summability is 
needed. 

Keen
Rectangle
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The MA(m) process in (6.1.6) is said to be one-sided because the moving 
average does not include future values of E,. It is a special case of a linear process, 
which is defined to be two-sided moving averages of the form: 

. . 

yt = P +  f i b - ,  with 2 (+,I <m. 

The proposition (and all the results in this section) can easily be extended to gen- 
eral linear processes. We nevertheless focus on one-sided moving averages, only 
because two-sided moving averages are very rarely encountered in economics. 

Proposition 6.1 can be generalized to the case where the process ( y , }  is a mov- 
ing average of a general covariance-stationary process rather than of a white noise 
process. In particular, absolute surnrnability of autocovariances survives the oper- 
ation of taking an absolutely surnrnable weighted average. 

Proposition 6.2 (Filtering covariance-stationary processes): Let { x , }  be a 
covariance-stationary process and ( h j  } be a sequence of  real numbers that is ab- 
solutely summable. Then 

(a) For each t ,  the infinite sum 

converges in mean square. The process { y,}  is covm'ance-stationary. 

(b) If; furthermore, the autocovm~ances of ( x , }  are absolutely summable, then so 
are the autocovm'ances of { y, } . 

We defer to, e.g., Fuller (1996, Theorem 4.3.1) for a proof, but the basic technique 
is the same as in the proof of Proposition 6.1. Deriving the autocovariances of { y , } ,  
which would generalize (6.1.7), is Analytical Exercise 3. 

Filters 
The operation of taking a weighted average of (possibly infinitely many) successive 
values of a process, as in (6.1.6) and (6.1.9), is called filtering. It can be expressed 
compactly if we use the device called the lag operator L ,  defined by the relation 
L J x ,  = x, - , .  We now introduce some concepts associated with the lag operator 
that will be useful in time-series analysis.2 

 or a fuller treatment of filters, see, e.g., Gourieroux and Monfort (1997, Sections 5.2 and 7.4). 
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Filters Defined 
For a given arbitrary sequence of real numbers, (ao, a l ,  a2, . . . ), define a filter by 

If we just mechanically and mindlessly apply the definition of the lag operator to 
an input process {x,}, we get 

a (L)x, = aox, + a1 Lx, + a 2 ~ 2 x ,  + . . . 

This is indeed the definition of a (L)x,. If x, = c (a constant), a (L)c  = a(1)c = 

c CEO 9. If a, # 0 for j = p and a, = 0 for j > p, the filter reduces to a p-th 
degree lag polynomial: 

When applied to an input process, it creates a weighted average of the current 
and p most recent values of the process. Proposition 6.2 assures us that the object 
a(L)x, defined by (6.1.1 1) is a well-defined random variable forming a covariance- 
stationary process if the sequence {q} is absolutely summable and if the input pro- 
cess {x,} is covariance-stationary. A filter with absolutely summable coefficients 
will be referred to (in this book) as an absolutely summable filter. To use some 
fancy set theory language, an absolutely summable filter is a mapping from the set 
of covariance-stationary processes to itself. 

Products of Filters 

Let {a,} and {Pi} be two arbitrary sequences of real numbers and define the sequence 
{6,} by the relation 
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The sequence (6,) created from this convoluted formula is called the convolution 
of {aj) and {Bj}. Leta(L) = a g + a l ~ + a ~ ~ ~ + .  . . , B(L) = ,Bo+p1 L + ~ ~ L ' + .  . . , 
and 6 (L) = Sg + L + 62 L~ + . . . be the associated filters. We define the product 
of two filters a (L)  and B(L) to be this filter 6(L) and write it as 

For example, for a ( L )  = I + al L and B(L) = I + L,  the convolution formula 
yields 

(If you are familiar with the product of two polynomials of the usual sort from cal- 
culus, you can immediately see that thls definition for filters is strictly analogous.) 
As is clear from the definition, filters are commutative: 

Commutativity, however, will not carry over to matrix filters (see Section 6.3 
below). 

If the two sequences {aj} and {Bj} are absolutely summable and if ( x , )  is 
covariance-stationary, then Proposition 6.2 assures us that (B(L)x,) is covariance- 
stationary and so a(L)B(L)x, is a well-defined random variable, equal to 6(L)x,. 
Thus, if a (L)  and B(L) are absolutely summable and {x,} is covariance-stationary, 

then 

(Incidentally, {2ij) is absolutely summable [see, e.g., Fuller, 1996, p. 301.) 

Inverses 
Of particular interest is the case when 6(L) = 1 (a very special filter) so that the 
two filters a (L) and B(L) satisfy a (L) B(L) = 1. We say that B(L) is the inverse 
of a (L)  and denote it as a ( ~ ) - '  or l /a (L) .  That is, 

a ( ~ ) - '  is a filter satisfying a (L)  a ( ~ ) - '  = 1. (6.1.14) 

As long as a 0  # 0 in a (L)  = a g  + a1 L + . . . , the inverse of a ( L )  can be defined 
for any arbitrary sequence {aj  ) because the set of equations (6.1.12) with 60 = 1, 
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6, = 0 ( j  = 1,2,  . . . ) can be solved successively for (B,): 

1 also a1 
Bo = - , B ,=--  --- - , , etc. 

a0 a 0  a 0  

For example, consider the filter 1 - L. Its inverse is given by 

The coefficient sequence is obviously not absolutely summable. This example 
illustrates the point that an inverse filter may not be absolutely summable. 

It is left as Review Question 3 to show that 

a(L)  a ( ~ ) - '  = a ( L ) - ' a ( ~ )  (so inverses are commutative), (6.1.15a) 

"a(L) B(L) = 6(L)" + "B(L) = c~(L) - '~ (L)"  + "a(L) = 6(L) P(L)-'," 
(6.1.15b) 

provided a. # 0 and Po # 0. Therefore, for example, to solve a (L) B (L) = 6 (L) 
for B(L), you "multiply from the left" by the inverse of a(L). We have noted above 
that commutativity does not necessarily hold for matrix filters. As will be shown 
in Section 6.3, for inverses, commutativity does generalize to matrix filters. 

Inverting Lag Polynomials 
In the next section on ARMA processes, it will become necessary to calculate the 
inverse of a p-th degree lag polynomial @(L) 

Since &, = 1 # 0, the inverse can be defined. Let $ (L) @ (L)-l . By definition, 
it satisfies 

The convolution formula (6.1.12) provides an algorithm for solving this for p!r (L). 
Setting a (L) = 4 (L), B(L) = p!r (L), and 6 (L) = 1 in the formula yields 



Serial Correlation 

constant: 
L : 

L2 : 

These equations can easily be solved successively for (&, +2, . . . ) as 

+ 0 = 1 ,  + I = $ ] ,  +2=42+4: ,  etc. 

Also, notice that for sufficiently large j (actually for j 3 p), {+;I follows the p-th 
order homogeneous difference equation 

So, once the first p coefficients (+o, + I ,  . . . , +p-l) are calculated, we can use this 
homogeneous p-th order difference equation to generate the rest of the coefficients 
(&, j 2 p) with those first p coefficients as the initial condition. 

As we know from the theory of homogeneous difference equations (summa- 
rized in Analytical Exercise 4), the solution sequence {+;} to (6.1.17) eventually 
starts declining at a geometric rate if what is known as the stability condition 
holds. The condition states: 

All the roots of the p-th degree polynomial equation in z 

@(z) = 0 where 4(z) = 1 - 412 - ~ $ 2 2 ~  - - cpPzP (6.1.18) 

are greater than 1 in absolute value. 

The roots of the polynomial equation @(z) = 0 can be complex numbers. If your 
command of complex numbers is rusty, a complex number z can be written as 

where a and b are two real numbers and i = &f. So a complex number can 
be represented as a point in a two-dimensional diagram with the horizontal axis 
measuring a (the real part) and the vertical axis measuring b (the imaginary part). 

Keen
Rectangle
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Its absolute value is ( z (  = 2/-, which is the distance between the origin and 

the point representing z. We say that z lies outside the unit circle when J z J  > 

1. So the stability condition above can be restated as requiring that the roots lie 
outside the unit circle. Because z = A. solves #(z) = 0 whenever z = 1/A. solves 
z~ - 4,z~-l  - @ 2 z ~ - 2  - . . . - 4p-lz - 4, = 0, the stability condition can be 

equivalently stated as 

All the roots of the p-th order polynomial equation 

are less than 1 in absolute value (i.e., lie inside the unit circle). 

Under this condition, as you will be asked to prove (Analytical Exercise 4), 
there exist two real numbers, A > 0 and 0 < b < 1, such that 

I$,l < ~ b j  forall j. (6.1.19) 

Given (6.1.19), the absolute summability of {$,) follows because 

Thus, we have proved 

Proposition 6.3 (Absolutely summable inverses of lag polynomials): Consider 
a p-th degree lag polynomial @(L) = 1 - g51L - 4 2 ~ 2  - - . .  - cPp L P , and let 
$(L) = @(L)-'. If  the associated p-th degree polynomial equation @(z) = 0 

satisfies the stability condition (6.1.18) or (6.1.1 a'), then the coefficient sequence 
of @ ( L )  is bounded in absolute value by a geometrically declining sequence 

(as in (6.1.19)) and hence is absolutely summable. 

To illustrate, consider a lag polynomial of degree one, 1 - 4L.  The root of the 
associated polynomial equation 1 - 4z = 0 is 114. The stability condition is that 

11/41 > 1 or 141 < 1. The filter 

is evidently its inverse. The coefficient sequence {@) is indeed bounded in absolute 
value by a geometrically declining sequence (for example, set A = 1.1 and b = 4). 
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QLIESTIONS FOR R E V I E W  

1. (Cauchy sequences) A sequence of real numbers, {a,), is said to be a Cauchy 
sequence if la, - a, I + 0 as m ,  n + m. An important result from calculus 
is that a, converges to a real number if and only if the sequence is Cauchy. 
Taking this as given, show that {yj) is absolutely surnrnable if and only if 

1 yj 1 + 0 as m,  n + m. (YOU can assume, without loss of gener- 
ality, that m > n.) 

2. (How filtering alters autocovariances) Let h (L) = ho + h 1 L and y, = h (L)x, 
where {x, } is covariance-stationary. Verify that (with { y:) being the autocovar- 
iance of {x,)) the autocovariances of {y,) are given by 

3. Prove (6.1.15b). Hint: Here is a proof that "a(L) p(L) = 6(L)" =. "p(L) = 

a(L)-'G(L)": 

4. Does @(z) = 1 - $z + &z2 satisfy the stability condition? Hint: The roots of 

@(z) = 0 are 2(1 f f i  i)/3.  

5. (Coefficients of polynomial equations) Consider a polynomial equation 

4 (z) = 0 where 4 (z) = 1 - 4, z - 42z2 and let (A1, A2) be the two roots. 
Verify that = l/A1 + 1/A2, 4 2  = -l/(Al . A2). Hint: If A1 and A2 are the 

two roots of 4 (z) = 0, 4 (z) can be written as 4 (z) = (1 - t z )  (1 - & z). 

6. (Inverting 1 - 4 L) Verify that (6.1.20) is the inverse of 1 - 4 L by checking 
the convolution formula (6.1.12) with a0 = 1, aj = 0 for j 2 1. 

6.2 ARMA Processes 

Having introduced the concept of filters, we can study with ease and grace a class 
of linear processes called ARMA processes, which are a parameterization of the 
coefficients of MA(m) processes. 
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AR(1) and Its MA(-) Representation 
A first-order autoregressive process (AR(1)) satisfies the following stochastic 
difference equation: 

where (E,} is white noise. If 4 f 1, let p = cl (1  - 4 )  and rewrite this equation as 

As will be seen in a moment, p, not c, is the mean of y, if y, is covariance- 
stationary. For this reason, we will call (6.2.1') a deviation-from-the-mean form. 
The moving average is on the successive values of (y,), not on (E,). The difference 
equation is called stochastic because of the presence of the random variable E,. 

We seek a covariance-stationary solution (y,} to this stochastic difference equa- 
tion. The solution depends on whether 14 1 is less than, equal to, or greater than l .  

Case 1: 141 < 1 
The solution can be obtained easily by the use of the inverse (1 - @L)-' given by 
(6.1.20). Since this filter is absolutely surnmable when 141 < 1, we can apply it to 
both sides of the AR(1) equation (6.2.1') to obtain 

This operation is legitimate because, thanks to Proposition 6.2, both sides of this 
equation are well defined as mean square limits. By the definition (6.1.14) of 
inverses, ( 1 - 4 ~ ) ( 1 - 4 ~ ) - '  = 1, and bycommutativityof inverses (1 -4~) - ' (1 -  
4 L )  = 1. Therefore, if (y,) is covariance-stationary, the left-hand side equals y, - p  

by (6.1.13). So 

What we have shown is that, if (y,} is a covariance-stationary solution to the sto- 
chastic difference equation (6.2.1) or (6.2. l'), then y, has the moving-average rep- 
resentation as in (6.2.2). Conversely, if y, has the representation (6.2.2), then 
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it satisfies the difference equation. This can be derived easily by substitution of 
(6.2.2) into (6.2.1'): 

(1 - @L)(Y~ - P)  = (1 - @L)(l  - @ ~ ) - l & t  

= E~ (since (1 - @L)(1 - @L)-' = 1 by definition of inverses). 

Thus, the process {y,} given by (6.2.2) is the unique covariance-stationary solution 
to the first-order stochastic difference equation if )@ I < 1. The mean of this process 
is p by Proposition 6.1(b). 

The condition I @ (  < 1, which is the stability condition (6.1.18) associated 
with the first-degree polynomial equation 1 - @z = 0, is called the stationarity 
condition in the present context of autoregressive processes. Intuitively, this result 
says that the process, if it started a long time ago, "settles down," provided that 
I @ (  < 1 so that the effect of the past dies out geometrically as time progresses. 

Case 2: I @ )  > 1 
By shifting time forward by one period (i.e., by replacing "t" by "t + I"), multiply- 
ing both sides by @-', and rearranging, the stochastic difference equation (6.2.1') 
can be written as 

Applying the above argument but this time moving in the opposite direction in time 
shows that the unique covariance-stationary solution is 

That is, the current value of y is a moving average offuture values of E. The infinite 
sum is well defined because the sequence { @ - I )  is absolutely summable if 141 > 1. 

Case 3: I @ J  = 1 
The stochastic difference equation has no covariance-stationary solution. For exam- 
ple, if @ = 1, the stochastic difference equation becomes 

Yt = c + yt-1 + Et 

= c + (c + yt-2 + ~ ~ - 1 )  + (since yt-1 = c + ytP2 

= C + ( C + ( C + ~ ~ - ~ + E ~ - ~ ) + E ~ - ~ ) + E ~ ,  etc. 
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Repeating this type of successive substitution j times, we obtain 

(If ( q }  is independent white noise, this process is a random walk with drift c.) 
Suppose, contrary to our claim, that the process is covariance-stationary. Then the 
variance of y, - y,-, is 2(yo - y,). The variance of the right-hand side is a2 - j. So 

2 2 . ( y o -  y,) = a  . j or 

a 
p .  J - - 1 - - . j < -1 for j large enough (recall: p, = y,/yo). 

2 ~ 0  

This is a contradiction since autocorrelation coefficients cannot be greater than one 
in absolute value. So {y,} cannot be covariance-stationary. Processes with 4 = 1 
are examples of "unit-root processes" and will be studied in Chapter 9. 

The solution (6.2.4) for the case of (41 > 1, with the current value of y linked 
to the future values of the forcing process (E,}, is not useful in economics, which 
does not confer perfect foresight on economic agents. In what follows, unless oth- 
erwise stated, we will use the term "an AR(1) process" as the unique covariance- 
stationary solution to an AR(1) equation (6.2.1) or (6.2.1') when the stationarity 
condition holds. 

Autocovariances of AR(1) 
The autocovariances (y,} of AR(1) (for the case of 141 < 1) can be calculated in 
two ways. The first method is to represent AR(1) as MA(cm) as in (6.2.2) and use 
(6.1.7). Since = 4J for AR(l), we have 

and p j ( = y , / y o ) = 4 J  ( j = O , l ,  . . . ) .  

So the correlogram of an AR(1) process is very simple: it declines with j at a 
constant geometric rate. 

The second method bases the calculation on what is called the Yule-Walker 
equations; see Analytical Exercise 5 for the use of the Yule-Walker equations in 
the calculation of autocovariances. 

AR(p) and Its MA(-) Representation 
All the results just derived for AR(1) can be generalized to AR(p), the p-th 
order autoregressive process, which satisfies the p-th order stochastic difference 
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equation: 

where { E ~ J  is white noise and @p # 0. Evidently, @(I )  = 1 - - - .  . - @p. If 
@(I)  # 0, let p = c/(1 - $1 - . . . - = c/@(l) .  As shown below, p is the 
mean of yt if yt is covariance-stationary. Substituting for c, the AR(p) equation 
(6.2.6) can be written equivalently in deviation-from-the-mean form: 

The generalization to AR(p) of what we have derived for AR(1) is 

Proposition 6.4 (AR(p) as MA(ao) with absolutely summable coefficients): 
Suppose the p-th degree polynomial @ ( z )  satisfies the stationarity (stability) con- 
dition (6.1.18) or (6.1.18 '). Then 

(a) The unique covariance-stationary solution to the p-th order stochastic differ- 
ence equation (6.2.6) or (6.2.6') has the MA(oo) representation 

where @ (L) = @ (L)-' . The coefficient sequence is bounded in absolute 
value by a geometrically declining sequence and hence is absolutely summable. 

(b) The mean p of the process is given by 

p = @(l)-lc where c is the constant in (6.2.6). (6.2.8) 

(c) { y j J  is bounded in absolute value by a sequence that declines geometrically 
with j .  Hence, the autocovariances are absolutely summable. 

Unless otherwise stated, we will use the term "an AR(p) process" as the unique 
covariance-stationary solution (6.2.7) to an AR(p) equation (6.2.6) that satisfies the 
stationarity condition. The absolute summability of the inverse @(L)-' in part (a) 
of this proposition is immediate from Proposition 6.3. Given absolute summability, 
the first part of (a) can be proved by the same argument we used for AR(1); just 

Keen
Rectangle
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multiply both sides of (6.2.6') by $(L)-' and observe that 

Part (b) is immediate from Proposition 6.l(b). Part (c) can easily be proved by 
combining (a) and Proposition 6.l(b). Analytical Exercise 7 will ask you to give 
an alternative proof of the proposition without using filters but using the apparatus 
called the companion form. 

As in AR(l), autocovariances can be obtained in two ways. The first method 
utilizes the MA(oo) representation. The coefficients {I),] in the MA representation 
are the coefficients in the inverse of the lag polynomial $ (L), and the algorithm for 
calculating the inverse coefficients has already been presented (see (6.1.16)). Given 
{I),], use (6.1.7) to calculate the autocovariances { y,). The second method uses the 
Yule-Walker equations. 

ARMA(P, 9 )  
An ARMA(p, q) process combines AR(p) and MA(q): 

where {el ] is white noise. If $ (1) # 1, set p = c/$ (1). The deviation-from-the- 
mean form is 
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This is still a stochastic p-th order difference equation but with a serially correlated 
forcing process { ~ ( L ) E , }  instead of a white noise process { E ,  }. Proposition 6.4 
generalizes easily to 

Proposition 6.5 (ARMA(p,  q )  as MA(-) with absolutely summable coeffi- 
cients): Suppose the p-th degree polynomial @ ( z )  satisfies stationarjty (stability) 
condition (6.1.18) or (6.1.18 '). Then 

(a) The unique covariance-stationary solution to the p-th order stochastic differ- 
ence equation (6.2.9) or (6.2.9 ') has the MA(oo) representation 

where $ ( L )  = C)(L) - '0 (~) .  The coefficient sequence { $ j }  is bounded in 
absolute value by a geomehically declining sequence and hence is absolutely 
summable. 

(b) The mean ,LL of the process is given by 

F = 4(1) - ' c  wherec is the constant in (6.2.9). (6.2.1 1 )  

(c) {fi} is bounded in absolute value by a sequence that declines geometrically 
with j .  Hence, the aut~cov~ances are absolutely summable. 

Unless otherwise stated, we will use the term "an ARh4A process" as the unique 
solution (6.2.10) to an ARh4A equation (6.2.9) or (6.2.9') that satisfies the station- 
arity condition. The MA(oo) representation can be derived easily by multiplying 
both sides of (6.2.9') by the inverse @(L)- '  and observing that C)(L)-'c$(L) = 
4 ( L )  c$(L)-' = 1 .  For the rest of part (a) and part (b), the only nontrivial part 
of the proof is to show that {$,} is bounded in absolute value by a geometrically 
declining sequence. For AR(p) we used the algorithm based on the set of equa- 
tions (6.  l .  16) to solve 4 ( L )  $ ( L )  = l for $ ( L ) .  This algorithm can easily be 
generalized. This time $ ( L )  = 4 ( ~ ) - ' 0 ( ~ )  or 

To solve this for $ ( L ) ,  apply the convolution formula (6.1.12) with a ( L )  = 4 ( L ) ,  
b ( L )  = $ ( L ) ,  and 6 ( L )  = 0 ( L )  (instead of 1 ) .  The resulting set of equations is 
the same as (6.1.16), except that the right-hand side of the equation for the constant 
is Bo rather than 1 ,  that of the equation for L is O1 rather than 0,  that of L~ is 02, and 
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so forth, until the equation for Lq, whose right-hand side is 8,. The right-hand side 
of the rest of the equations is 0. As in AR(p), these equations can easily be solved 
successively for (q0,  ql ,  q 2 ,  . . . ) as 

eo = 60 = 1, = 61 + 41, @2 = 82 + 42 + 8141 + 4:, etc. 

Again, as in the AR(p) case, for sufficiently large j (actually, for j 2 max(p, 
q + I), as you will verify in Review Question 5), {tCrj} follows the same p-th order 
homogeneous difference equation (6.1.17). So {tCrj} is bounded in absolute value 
by a geometrically declining sequence and hence is absolutely summable. 

Again there are two ways to derive the expression for autocovariances in terms 
of (41, . . . , @,, 81, . . . ,8,, G ~ ) .  You can calculate the coefficients {tCrj} in the MA 
representation as just described and then use (6.1.7). The other method is based on 
the Yule-Walker equations. 

ARMA(p, q )  with Common Roots 

In the ARMA(p, q)  equation (6.2.9'), suppose @(L) satisfies the stationarity condi- 
tion as in Proposition 6.5, but suppose that one of the roots of 4(z) = 0 is also a root 
of 8 (z) = 0. If that root is A, the polynomials 4 (z) and 8 (z) have a factorization 

4(z> = a(z) @*(z), 8(z) = a(z )  O*(z) with a(z) = 1 - h-lz. 

The inverse of @(L) is @*(L)-'a(L)-'. So the q ( L )  in Proposition 6.5 can be 
written as 

which shows that the ARMA(p, q) equation (6.2.9') and the simpler ARMA(p - 
1, q - 1) equation 

share the same process as the unique covariance-stationary s ~ l u t i o n . ~  For reasons 
of parsimony, ARMA equations with common roots are rarely used to parameterize 
covariance-stationary processes. 

j ~ i n c e  we defined filters for sequences of real numbers, the discussion in the text presumes that the root A 
is real. If A is complex, then there must be another common root which is the complex conjugate of A. Let 
hl = a + bi and A2 = a - bi be the pair of complex roots. Then if we define 

I 2a I 
a ( z )  = I - (A;' + A;')z  + - -' = 1 - - z+- 

(A, . A 2 )  * (a2 + b2)  (a2 + b 2 )  Z" 

the discussion in the text canies over. 
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lnvertibility 
For the ARMA(p, q) equation (6.2.9), if @(z) = 0 and O(z) = 0 have no com- 
mon roots and if 0 (z) satisfies the stability condition (6.1.18) or (6.1.18'), then the 
ARMA process is said to be invertible and the stability condition on 0 (z) is called 
the invertibility ~ondition.~ Since O(L)-' is absolutely summable if O(z) satis- 
fies the invertibility (stability) condition, we can multiply both sides of the ARMA 
equation (6.2.9) by o(L)-' and use the relation o(L)-'c = cO(1)-' = c/O(l) to 
obtain 

So, the process has the infinite-order autoregressive (AR(oo)) representation. The 
derivation does not require the stationarity condition (that @(z) satisfies the sta- 
bility condition). If both @(z) and O(z) satisfy the stability condition, then the 
ARMA(p, q) process has both the MA(oo) and AR(oo) representations. 

Autocovariance-Generating Function and the Spectrum 
A particularly useful way to summarize the whole profile of autocovariances, 
{y,}, of a covariance-stationary process {y,} is the autocovariance-generating 
function: 

00 

= yo + C y, . (zj + z-j) (since y- = y,). (6.2.14) 

The argument of this function (z) is a complex scalar. Because the summation 
involves infinitely many terms, there arises a question as to whether the function 
is well defined. A familiar result from calculus says that the infinite sum is well 
defined at least for lzl = 1 (the unit circle) if {y,} is absolutely summable. For 
example, for z = 1, 

4 ~ t  is easy to confuse invertibility and the existence of an inverse. Since 00 = I # 0, B(L) does have an 
inverse without the invertibility condition. The inverse, however, may not be absolutely summable unless the 
invertibility condition is satisfied. 

Keen
Rectangle
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This is indeed well defined because the infinite sum converges5 
Any complex number on the unit circle can be represented as 

where i = f l  and o is the negative of the radian angle that z makes with the real 
axis. If the autocovariance-generating function is evaluated at this z and divided by 
2n ,  the resulting function of o ,  

is called the (power) spectrum or the spectral density (function) of {y,}, and o 

is referred to as the frequency. 
It can be shown that for absolutely summable autocovariances, all of the auto- I 

covariances can be calculated from the spectrum (hence the term autocovariance- 
generating function). So there is a one-to-one mapping between the {y,} sequence 
and gy(z) or sy(o). The time domain approach, which concentrates on {y,} and 

I 

which is what we have been doing, and the frequency domain approach, which 
is based on the interpretation of the spectrum, are therefore equivalent, although 
some results can be more easily stated in one approach than in the other. This book 
will not cover the frequency domain approach any further than this. 

If {y,} is white noise, then evidently gy (z) is constant and equal to the variance. 
For MA(l), gy(z) is obtained by simple substitution of (6.1.2) for q = 1 into the 
definition (6.2.14): 

where O(z) = 1 + O1z. This last expression generalizes to the MA(q) case where 

6(z) = 1 + 612 + 622' + . . . + Oqz4. (YOU should verify this by carrying out the 
multiplication in this expression for gy(z) for MA(q), collecting terms by powers 
of z, and looking at the coefficient of zi or z-J .) The expression is also good for 

5 ~ a c t :  If ( y j ]  is absolutely summable, then it is summable (i.e., the partial sum of ( y j ]  converges to a finite 
limit). 
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MA(co) processes if the coefficients are absolutely summable, as the following 
result assures us. 

Proposition 6.6 (Autocovariance-generating function for filtered processes): 
Let {E,) be white noise and let +(L) = + +l L + + 2 ~ 2  + . . . be an absolutely 
summable filter (i.e., with absolutely summable). Then the autocovan'ance- 
generating function of the MA(m) process {y,) where y, = p + +(L)E~  is 

More generally, let {x, ) be covariance-stationary with absolutely summable 
a u t o ~ o v ~ a n c e s  and gx (z) be the autocovariance-generating function of  {x,]. The 
auto~ov~ance-genera ting function of  the filtered series { y,) where y, = h (L)x, 
(with absolutely summable (h,]) is 

We will not prove this result; see, e.g., Theorem 4.3.1 of Fuller (1996). 
Because AR(p) and ARMA(p, q)  processes have the MA(m) representa- 

tions, their autocovariance-generating functions can be derived easily from (6.2.19). 
Since +(L) = l/@(L) for AR(p), and +(L) = B(L)/$(L) for ARMA(p, q),  we 
have 

Q U E S T I O N S  FOR R E V I E W  - 

1. If (y,] is the covariance-stationary solution to the AR(1) equation (6.2.1) with 
141 < 1, what is 

(the least squares projection)? Hint: E ( Y ~ - ~ E ~ )  = 0. DO the projection coeffi- 
A 

cients depend on t ?  Is E*(y, 1 1, y , -~)  = E(y, 1 y,-l)? Hint: E(y,-le,) = 0 

but does it mean E(E* I y,-l) = O? What is E*(y, ( 1, y,-1, yr-2)? Now 
suppose that (y,] is the covariance-stationary solution to the AR(1) equation 
when 14) > 1. Is it true that E ( Y ~ - ~ E ~ )  = O? [Answer: No.] Does E*(y, I 
1, ytPl) = c + 4yl-l as was the case when 141 < l ?  
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2. (AR(1) with 4 = -1) For simplicity, set c = 0 in the AR(1) equation (6.2.1). 
Show that the AR(1) equation with 4 = - 1 has no covariance-stationary solu- 
tion. Hint: The same sort of successive substitution we did for the case 4 = 1 
yields 

From this, derive 

3. (About Proposition 6.4) How do we know that 4(1) # 0 in (6.2.8)? Hint: 
Use the stationarity condition. Prove (b) of Proposition 6.4. Hint: Take the ex- 

pectation of both sides of (6.2.6) and exploit the covariance-stationarity of {y,]. 

4. (About Proposition 6.5) Verify that y, - p = $(L)- '  ~ ( L ) E ,  is a solution to 
the ARMA(p, q) equation. 

5. (I+,) for ARMA(p, q)) For AR(p), we used the equations (6.1.12) to calcu- 
late the MA coefficients {+,). For ARMA(3, I), write down the corresponding 
equations. From which lag j does {+,I start following 

which is (6.1.17) for p = 3? Do the same for ARMA(1, 2). From which j 
does {+,I start following (6.1.17) for p = l ?  [Answer: j = 3.1 

6. (How filtering alters the spectrum) Let h(L) be absolutely summable. By 
Proposition 6.2, if {x,] is covariance-stationary with absolutely summable auto- 
covariances, then so is {y,] where y, = h (L)x,. Using (6.2.20), verify that 

s (w) = h (eFiW) sx (w) h (eiW ) . 

7. (The spectrum is real valued) Show that the spectrum is real valued. Hint: 
Substitute (6.2.16) into (6.2.14). Use the following facts from complex analysis: 

[cos(o) - i sin(w)]j = cos(jw) - i sin(jw); sin(-w) = - sin(w). 
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6.3 Vector Processes 

It is straightforward to extend all the concepts introduced so far to vector processes. 
A vector white noise process {E,} is a jointly covariance-stationary process 

satisfying 

E(E,) = 0, E(E,E;) = P (positive definite), and 

E(E,E;-,) = 0 for j # 0. (6.3.1) 

Since P is not restricted to being diagonal, there can be contemporaneous corre- 
lation between the elements of E ~ .  Perfect correlation among the elements of E, is 
ruled out because P is required to be positive definite. 

A vector MA(-) process is the obvious vector version of (6.1.6): 

m 

y, = p + Y,e,-, with Yo = I_ (6.3.2) 
j =o 

where {Y,} are square matrices. The sequence of coefficient matrices is said to be 
absolutely summable if each element is absolutely summable. That is, if is 
the (k, e) element of Y, , 

cc 

"{Pi} is absolutely summable" o ''X l@kU I < 01 for all (k, 0." (6.3.3) 
j =O 

With this definition, Proposition 6.1 generalizes to the multivariate case in an obvi- 
ous way. In particular, if r, (= E[(y, - p)(yt-, - p)']) is the j-th order autocovar- 
iance matrix, then the expression for autocovariances in part (b) of Proposition 6.1 

becomes 

(This formula also covers j = - 1, -2, . . . because r-, = I'j .) 
A multivariate filter can be written as 

where {Hi} is a sequence of (not necessarily square) matrices. So if Hkej is the 
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(k, C) element of Hi, the (k, C) element of H(L) is 

The multivariate version of Proposition 6.2 is obvious, with y, = H(L) x,. 

Product of Filters 
Let A(L) and B(L) be two filters where {A,} is rn x r and {B,} is r x s so that 
the matrix product AjBk can be defined. The product of two filters, D(L) = 

A(L) B(L) is an rn x s filter whose coefficient matrix sequence {Dj} is given by 
the multivariate version of the convolution formula (6.1.12): 

Inverses 
Let A(L) and B(L) be two filters whose coefficient matrices are square. B(L) is 
said to be the inverse of A(L) and is denoted A(L)-I if 

For any arbitrary sequence of square matrices {A,}, the inverse of A(L) exists if 
A. is nonsingular. It is easy to show that inverses are commutative (see Review 
Question 2), so 

Absolutely Summable Inverses of Lag Polynomials 
A p-th degree lag matrix polynomial is 

where { a , }  is a sequence of r x r matrices with a, # 0. From the theory of 
homogeneous difference equations, the stability condition for the multivariate case 
is as follows: 
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All the roots of the determinantal equation 

are greater than 1 in absolute value (i.e., lie outside the unit circle). 

Or, equivalently, 

All the roots of the determinantal equation 

are less than 1 in absolute value (i.e., lie inside the unit circle). 

As an example, consider a first-degree lag polynomial @(L) = I - L where 
= is 2 x 2. Equation (6.3.8) can be written as 

With the stability condition thus generalized, Proposition 6.3 generalizes in an 
obvious way. Let \Ir(L) = @(L)-l. Each component of the coefficient matrix 
sequence ( \ I r j )  will be bounded in absolute value by a geometrically declining 
sequence. 

The multivariate analogue of an AR(p) is a vector autoregressive process 
of p-th order (VAR(p)). It is the unique covariance-stationary solution under 
stationarity condition (6.3.8) to the following vector stochastic difference equation: 

yr - @ly,-l - - .  . - 9,yt-, = c + E, or 9(L)(yt - p )  = E, 

where 9 ( L )  = I, - 9 , L  - 9 2 ~ 2  - . . . - a p L P  and p = 9( l ) - 'c ,  
(6.3.9) 

where 9, # 0. For example, a bivariate VAR(1) can be written out in full as a 
two-equation system with common regressors: 

More generally, an M-variate VAR(p) is a set of M equations with Mp+l common 
regressors. Proposition 6.4 generalizes straightforwardly to the multivariate case. 
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In particular, each element of rj is bounded in absolute value by a geometrically 

declining sequence. 

Vector autoregressions are a very popular tool for analyzing the dynamic inter- 
relationship between key macro variables. A thorough treatment can be found in 
Hamilton (1994, Chapter 1 1). 

The multivariate analogue of an ARMA(p, q) is a vector ARMA(p, q)  
(VARMA(p, 9) ) .  It is the unique covariance-stationary solution under the sta- 
tionarity condition to the following vector stochastic difference equation: 

where 

where a, # 0 and 0, # 0. Proposition 6.5 generalizes in an obvious way. 

Autocovariance Generating Function 

The multivariate version of the autocovariance-generating function for a vector 

covariance-stationary process (y,} is 

00 00 

GY(z) = rjz i  = To + E ( r j z j  + rjz-j)  (since Lj = T;.). (6.3.11) 
j=-00 j = l  

The spectrum of a vector process {y,} is defined as 

Proposition 6.6 generalizes easily. In particular, if H(L) is an r x s abso- 
lutely summable filter and Gx(z) is the autocovariance-generating function of an s- 

dimensional covariance-stationary process {x,} with absolutely summable autoco- 

variances, then the autocovariance-generating function of y, = H(L)x, is given by 
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As special cases of this, we have 

vector white noise : GY (z) = 52, (6.3.14) 

VMA(m) : Gy (z) = *(z) 52 *(zF1)', (6.3.15) 

VAR(p): GY(z) = [O(z)-l] 52 [O(Z-~ ) -~ I ' ,  (6.3.16) 

VARMA(p, q) : GY(z) = [O(z)-l] [O(Z)] 52 [ ~ ( z - ' ) I '  [~(z-')-'1'. (6.3.17) 

For example, if y, = E, + 0 1 ~ , - 1 ,  

Q U E S T I O N S  F O R  R E V I E W  

1. Verify (6.3.4) for vector MA(1). 

2. (Commutativity of inverses) Verify the commutativity of inverses, that is, 
"A(L) B(L) = I" e "B(L) A(L) = 1 for two square filters of dimension 
r with lAol # 0 and lBol # 0. Hint: Set Do = I, Dj = 0 ( j  2 1) in (6.3.5) and 

solve for B's. Show that this B(L) satisfies B(L) A(L) = I. 

3. (Lack of commutativity for multivariate filters) Provide an example where 
A(L) and B(L) are 2 x 2 but A(L) B(L) # B(L) A(L). Hint: How about 

A(L) = I + Al L and B(L) = I + B1 L? Find two square matrices Al and B1 
such that Al B1 # B1 Al .  

4. Verify the multivariate version of (6.1.15b), namely, 

provided A. and Bo are nonsingular. 
So, to solve A(L) B(L) = D(L) for B(L), "multiply both sides from the 

left" by A(L)-' . 

5. Show that [A(L) B(L)]-' = B(L)-'A(L)-' , provided that A. and Bo are non- 
singular. Hint: By definition, A(L)B(L)[A(L)B(L)]-' = I. 
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6.4 Estimating Autoregressions 

Autoregressive processes (autoregressions) are popular in econometrics, not only 
because they have a natural interpretation but also because they are easy to esti- 
mate. This section considers the estimation of autoregressions. Estimation of 

ARMA processes will be touched upon at the end. 

Estimation of AR(1) 
Recall that an AR(1) is an MA(m) with absolutely summable coefficients. So 

if (E,) is independent white noise (an i.i.d. sequence with zero mean and finite 

variance), it is strictly stationary and ergodic (Proposition 6.l(d)). Letting x, = 

(1, and /I = (c, @ ) I ,  the AR(1) equation (6.2.1) can be written as a regression 
equation 

We assume the sample is (yo, y1, y2, . . . , y,), yo inclusive, so that (6.4.1) for t = 1 

(which has yo on the right-hand side) can be included in the estimation. So the 
sample period is from t = 1 to n. 

We now show that all the conditions of Proposition 2.5 about the asymptotic 

properties of the OLS estimator of /I with conditional homoskedasticity are satis- 

fied here. First, obviously, linearity (Assumption 2.1) is satisfied. Second, as just 

noted, (y,, x,) is jointly stationary and ergodic (Assumption 2.2). Third, since y,-1 
(the nonconstant regressor in x,) is a function of ( E ~ - ~ ,  ~ ~ - 2 ,  . . . ), it is independent 
of the error term E, by the i.i.d. assumption for {,st). Thus 

that is, the error is conditionally homoskedastic (Assumption 2.7). Fourth, if 

gt = xt . E~ = ( E ~ ,  Y,-1 E~) ' ,  {g,) is a martingale difference sequence, as required in 
Assumption 2.5, because 

first element of E(g, I g,-1, g , 4 ,  . . . ) 

=E(&t I gt-17 gr-2, . . . )  
- - E(&t I Et-1, Et-2, . . . , Yt-2Et-1, Yr-3Et-2. . . . ) 
= 0 (since { E ~ )  is i.i.d. and yt-j is a function of (E,-~,  ~ ~ ~ j - 1 ,  . . . )) 
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and 

second element of E(g, I g,-1, g,-2, . . . ) 
= E(&tYr-I I gr-1, gt-2, . . - 1  
= E[E(&tYr-l I Yr-19  gt-17 gt-2, - - - 1  I gr-1, gr-2, - - - I  

(by the Law of Iterated Expectations) 

In particular, E ( E ~ Y ~ - ~ )  = 0, SO X, is orthogonal to the error term (Assumption 2.3). 
Finally, the rank condition about the moment matrix E(x,xi) (Assumption 2.4) is 
satisfied because the determinant of 

is yo > 0. This also means that E(g,g',) is nonsingular because under condi- 
tional homoskedasticity E(g,gi) = a2 E(xtxi). So the nonsingularity condition 
in Assumption 2.5 is met. 

Thus the AR(1) with an independent white noise process satisfies all the 
assumptions of Proposition 2.5, so parts (a)-(c) of the propositions hold true here, 
with (c, 4)' as B ,  (1, Y,-~) '  as x,, and a2 as the error variance. In particular, the 
OLS estimate of the error variance, 

2 1 " 
s =- e:, e, = yt - S - $y,-l where (S. $) are OLS estimates, 

n - 2  t=1 

is consistent for a2. 

Estimation of AR(p) 
Similarly for AR(p), the autoregressive coefficients (41, . . . , 4,) can be consis- 
tently estimated by regressing y, on the constant and lagged y's, (ytPl, . . . , y,-,). 
We assume the sample is (Y-,+~, Y - ~ + Z ,  . . . , yo, y1, . . . , yn), inclusive of p lagged 

values prior to yl, so that the AR(p) equation for t = 1 can be included and the 
sample period is from t = 1 to n. 

Proposition 6.7 (Estimation of AR coefficients): Let {y,} be the AR(p) process 
following (6.2.6) with the stationarity condition (6.1.18). Suppose further that 
{ E , }  is independent white noise. Then the OLS estimator of (c, 41, 42,  . . . , 4,) 
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obtained by regressing yt on the constant and p lagged values of Y for the sam- 
ple period of t = 1 ,2 ,  . . . , n is consistent and asymptotically normal. Letting 

h 

/3 = (c, e2, . . . , 4,)' and xt = ( I ,  y tPl ,  . . . , yt-,)', and B = OLS estimate of  
B ,  we have 

which is consistently estimated by 

where s2 is the OLS estimate of  the error variance given by 

2 I 
S = 

n - p - I  C ( y t  - - 81~~-1- . . - - &,yt-p)2. 
(6.4.5) 

t=l 

The proof is to verify the assumptions of Proposition 2.5, which can be done in the 
same way as we did for AR(1). The only difficult part is to show that E(x,xi) is 
nonsingular (Assumption 2.4), which is equivalent to requiring the p x p autoco- 
variance matrix Var(y,, . . . , Y,-,+~) to be nonsingular (see Review Question l(b) 
below). It can be shown that the autocovariance matrix of a covariance-stationary 
process is nonsingular for any p if yo > 0 and yj -+ 0 as j -+ 00.~ So Assumption 
2.4, too, is met. 

We have not covered the maximum likelihood estimation of AR(p), but for 
those of you who are curious about the connection to ML, the OLS estimator is 
numerically the same as the conditional Gaussian ML estimator and asymptotically 
equivalent to the exact Gaussian ML estimator. See Section 8.7. 

Choice of Lag Length 
All these nice results about estimation of autoregressions assume that the order 
(the lag length) of autoregression, p,  is known. How should we proceed if the 
order p is unknown? First of all, it is clear that Proposition 6.7, which is about 
p-th order autoregressions, is applicable to autoregressions of lower order, say 

r < p .  That is, even if 4, # 0 but #,+I = 4,+2 = - = 4, = 0, the proposition 
remains applicable as long as (&,  42, . . . , 4,) satisfies the stationarity condition. 
In particular, the OLS estimates of 4,.+2, . . . , 4,) will converge to the true 
value of zero. To put the same argument differently, suppose that the true order of 

6 ~ e e ,  e.g., Proposition 5.1.1 of Brockwell and Davis (1991). 
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the autoregression is p (so $p f 0) and suppose that all we know about p is that it 

is less than or equal to some known integer p,,,. By setting the r in the argument 
just given to p and the p to p,,,, we see that Proposition 6.7 is applicable to 
autoregressions with p,,, lags: if the {y,) is stationary AR(p) and if we regress 
y, on the constant and p,,, lags of y, then the OLS coefficient estimates will be 
consistent and asymptotically normal. 

It is natural to think that the true lag length may be estimated from this OLS 
estimate of ($1, . . . , $pmax ). We consider two classes of rules for determining the 

lag length. The first is the 

General-to-specific sequential t rule: Start with an autoregression of p,,, lags. 

If the last lag is significant at some prespecified significance level (say, 10 per- 
cent), then end the procedure and set the lag length to p,,, . Otherwise drop the 
last lag, reestimate the autoregression with one fewer lag, and repeat the same 

test. If this process continues until there is only one lag in the autoregression 
and if that lag is insignificant, then set the lag length to 0 (no lags). 

This rule has the following properties, to be illustrated in a moment. Since the 
t-test is consistent, the lag length thus chosen will never be less than p (the true lag 

length) in large samples. However, the probability of overfitting (that the lag length 
chosen is greater than the true lag length p) is not zero, even in large samples. That 
is, if fi is the lag length chosen by the sequential t rule, 

lim Prob(fi < p) = 0 and lim Prob(fi > p) > 0. 
n-03 n-m 

(6.4.6) 

To illustrate, suppose p = 2 and p,,, = 3. The sequential t rule starts out 
with three lags in the autoregression: 

We test the null hypothesis that $3 = 0 at the 10 percent significance level. With 
a probability of 10 percent, we reject the (true) null and set the lag length to 3, or 

accept the null with a probability of 90 percent, in large samples. In the event of 
accepting the null, we set $3 = 0, estimate an autoregression with two lags, and test 

the hypothesis that $2 = 0. Since $2 # 0 in truth (i.e., since p = 2), the absolute 

value of the t-value on the OLS estimate of $2 would be very large in large samples, 
so we would never accept the (false) null that the second lag is zero. Therefore, in 

this example, Prob(fi = 2) = 90% and Prob(fi = 3) = 10% in large samples. 
There are two minor variations in the choice of the sample period with data 

(yI, . . . , y n )  One is to use the same sample period o f t  = p,,,,, + 1, p ,,,, +2, . . . , n 



396 Chapter 6 

throughout. The other is to let the sample period be "elastic" by expanding it as 
fewer and fewer lags are included. That is, when the autoregression being estimated 
has j lags, the sample period is t = j + 1, j + 2, . . . , n. 

The second rule for selecting the lag length uses either the Akaike information 
criterion (AIC) or the Schwartz information criterion (SIC), also called the 
Bayesian information criterion (BIC). This procedure sets the lag length to the 
j that minimizes 

over j = 0, 1 ,2 ,  . . . , p,,,, where SSRj is the sum of squared residuals for the auto- 
regression with j lags. In this formula, "j + 1" enters as the number of parameters 
(the coefficients of the constant and j lags). For the AIC, C(n) = 2 while for the 
BIC, C(n) = log(n). A few comments about this information-criterion-based rule: 

As the number of parameters increases with j, the first term of the objective 

function (6.4.7) declines because the fit of the equation gets better, but the sec- 
ond term increases. The information criterion strikes a balance between a better 
fit and model parsimony. 

Without an upper bound p,,,, a ridiculously large value of j might be chosen 
(indeed, the information criterion achieves a minimum of -oo at j + 1 = n 
because SSRj = 0 for j = n - 1). In the present context where the true DGP is a 
finite-order autoregression, a reasonable upper bound is the maximum possible 
lag length. 

Again there can be two ways to set the sample period. You can use the fixed 
sample period o f t  = p,,, + 1, p,,, + 2, . . . , n throughout, in which case SSRj 
is the sum of n - p,,, squared residuals. Or you can use the "elastic" sample 
period, in which case SSRj is the sum of n - j squared residuals. In either case, 
there is yet another variation, which is to replace the n in the information cri- 
terion (6.4.7) by the actual sample size. So you replace the n by n - p,,, if 
the fixed sample is to be used. Based on simulations and some theoretical con- 
siderations, Ng and Perron (2000) recommend the use of a fixed, rather than an 
"elastic," sample period, with n - p,,, replacing n in the information criterion. 

Let FAIC and jBIc be the lag lengths chosen by the AIC and BIC, respectively. 
Like the lag length selected by the general-to-specific t rule, they are functions of 
data, and hence are random variables. For them it is possible to show the following 
(see, e.g., Liitkepohl, 1993, Section 4.3): 
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(1) FBIC 5 FAIC unless the sample size is very small. (If the fixed sample of 
t = p,, + 1, . . . , n is used and "n - p,," replaces n in (6.4.7), this is true 
for any finite sample with n > p,,, + 8.) This is an algebraic result and holds 
for any sample on y. 

(2) Suppose that {y,) is stationary AR(p) and {E,) is independent white noise with 
a finite fourth moment. Then 

That is, just like the general-to-specific sequential t rule, the AIC rule has a positive 
probability of overfitting. In contrast, the BIC rule is consistent. Furthermore, 
Hannan and Deistler (1988, Theorem 5.4.1 (c) and its Remark 1) have shown that 
the consistency of FBIC holds when the upper bound p,, is made to increase at a 
rate of log(n) (i.e., when it is set to [c log(n)] [the integer part of c log(n)] for any 
given c > 0). This means that you do not need to know an upper bound in the 
consistent estimation by BIC of the order of an autoregression. 

Estimation of VARs 
Estimation of VAR coefficients is equally easy. If y, is M-dimensional, the VAR(p) 
(6.3.9) is an M-equation system and can be written as 

ytm = x:Sm + E,, (m = 1,2 ,  . . . , M), (6.4.9) 

where y,, is the m-th element of y, , E,, is the m-th element of E,, and 

C, = m-th element of c, +irn = m-th row of @, 

So the M equations share the same set of regressors. It is easy to verify that x, 
is orthogonal to the error term in each equation and that the error is condition- 
ally homoskedastic (the proof is very similar to the proof for AR(p)). So the 
M-equation system with i.i.d. {E,) satisfies all the conditions for the multivariate 
regression model of Section 4.5. Thus, efficient GMM estimation is very easy: 
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just do equation-by-equation OLS. The expressions for the asymptotic variance 
and its consistent estimate can be obtained from Proposition 4.6 with zim = X, (SO 
(4.5.13') on page 280 becomes C,  x,xi). If 6 is the (Mp + 1)M-dimensional 
stacked vector created from (6 1 ,  . . . , aw) and if $ is the equation-by-equation OLS 
estimate of 6, we have from (4.5.17) 

where 

If we do not know the lag length p ,  we estimate it from data. In the information- 
criteria-based rule, the lag length we choose is the k that minimizes 

over k = 0, 1, . . . , p ,,,. Here, as in the univariate case, C(n) = 2 for the AIC and 
log(n) for the BIC. Exactly the same results, listed as ( I )  and (2) above for the uni- 
variate case, hold for the multivariate case (see, e.g, Liitkepohl, 1993, Section 4.3). 

Estimation of ARMA(p, q) 
Letting 

the univariate ARMA(p. q) equation (6.2.9) can be written as 

The moving-average component of ARMA creates two problems. First, obviously, 
the error term ut is serially correlated (in fact, it is MA(q)). Second, since the 
lagged dependent variables included in z, are correlated with lags of E included in 
the error term, the regressors z, are not orthogonal to the error term u,. That is, 
serial correlation in the presence of lagged dependent variables results in biased 
estimation. The second problem could be dealt with by using suitably lagged 
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dependent variables (y,-q-l, ~ , - ~ - 2 ,  . . . ) as instruments. Regarding the first prob- 
lem, the method to be developed later in this chapter provides consistent estimates 
of the coefficient vector in the presence of serial correlation. Given a consistent 
estimate of 6, the MA parameters (8's) can be estimated from the residuals. This 
procedure, however, is not efficient.' We will not cover the topic of efficient esti- 
mation of A & A ( ~ ,  q) processes with Gaussian errors. Interested readers are 
referred to, e.g., Fuller (1996, Chapter 8) or Hamilton (1994, Chapter 5). 

Q U E S T I O N S  F O R  R E V I E W  

1. (Avar of AR coefficients) 

(a) For AR( I), show that 

where 6 is the OLS estimator of 4 .  Hint: It is a2 times the (2,2) element 

of the inverse of (6.4.4). 

(b) For AR(p), let 4 be the OLS estimate of (41, 42, . . . , &)I. Show that 

where V is the p x p autocovariance matrix 

Hint: If x, is as in Proposition 6.7, then 

where 1 is a p x 1 vector of ones. Show that the inverse of this matrix is 

7 ~ h e  model yields infinitely many orthogonality conditions, E(u, . vs) = 0 for all s 5 - 9 - 1. The GMM 
procedure can exploit only finitely many orthogonality conditions. 

Keen
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given by 

A = [i " ] where a + 1 + p21'v-'I, c - - p ~ - ' I .  
c v-' 

This also shows that E(xtxi) is nonsingular if and only if V is. (If V is 
nonsingular, then E(xtx:) is nonsingular because it is invertible. If V is 

singular, then there exists a p-dimensional vector d # 0 such that Vd = 0 
and E(x,x:)f = 0 where f = (-pl'd, dl).) 

2. (Estimated VAR(1) coefficients) Consider a VAR(1) without the intercept: 
yt = AytPl + .st. Verify that the estimate of A by multivariate regression using 
the sample (yl, y2, . . . , y,) (so the sample period is t = 2,3 ,  . . . , n) is 

Hint: The coefficient vector in the m-th equation is the m-th row of A. 

6.5 Asymptotics for Sample Means of Serially Correlated Processes 

This section studies the asymptotic properties of the sample mean 

for serially correlated processes. (It should be kept in mind that j depends on 
n, although the notation does not make it explicit.) For the consistency of the 
sample mean, we already have a sufficient condition in the Ergodic Theorem of 
Chapter 2. The first proposition of this section provides another sufficient condition 
in the form of restrictions on covariance-stationary processes. We also provide 
two CLTs for serially correlated processes, one for linear processes and the other 
for ergodic stationary processes. Chapter 2 includes a CLT for ergodic stationary 
processes, but it rules out serial correlation because the process is assumed to be a 
martingale difference sequence. The CLT for ergodic stationary processes of this 
section generalizes it by allowing for serial correlation. 
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LLN for Covariance-Stationary Processes 
Proposition 6.8 (LLN for covariance-stationary processes with vanishing auto- 
covariances): Let {y,} be covariance-stationary with mean p and { y,} be the auto- 
c ~ v ~ a n c e s  of  { y,) . Then 

(a) j + ,.,, p as n + oo i f  lim,,, y, = 0. 

~ ~ 

(b) lim Var(&j) = 1 y, i m i f  {y,) is ~ummable.~ (6.5.1) 
n-03 

Since a mean square convergence implies a convergence in probability, part (a) 
shows that a very mild condition on covariance-stationary processes suffices for 
the sample mean to be consistent for p. To prove part (a), by Chebychev's LLN 
(see Section 2. l), it suffices to show that limn,, Var(j) = 0, which is fairly easy 
(Analytical Exercise 9) once the expression for Var(j) is derived. Unlike in the case 
without serial correlation in {y,}, calculating the variance of j is more cumbersome 
because covariances between two different terms have to be taken into account: 

(If you have difficulty deriving this, set n to, say, 3 to verify.) For each fixed j 3 1, 
the coefficient of y, in (6.5.2) goes to 1 as n + oo, so that all the autocovariances 
eventually enter the sum with a coefficient of one. This is not enough to show the 
desired result (6.5.1). Filling in the rest of the proof of (b) is Analytical Exercise 10. 

For a covariance-stationary process {y,}, we define the long-run variance to 
be the limit as n + oo of Var(&j) (if it exists). So part (b) of the proposition 
says that the long-run variance equals CEO=_, y,, which in turn equals the value of 

'~nderson (1971, Lemma 8.3.1,  p. 460). Absolute summability of { y j )  is not needed 
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the autocovariance-generating function gy(z) at z = 1 (see (6.2.15)) or 2n times 
the spectrum at frequency zero (see (6.2.17)). 

Two Central Limit Theorems 
We present two CLTs to cover serial correlation. The first is a generalization of 
Lindeberg-Levy. 

Proposition 6.9 (CLT for MA(w)): Let y, = p + CEO where (E,) is 
independent white noise and Cy=o I $r, 1 < oo . Then 

We will not prove this result (see Anderson, 1971, Theorem 7.7.8 or Brockwell 
and Davis, 1991, Theorem 7.1.2 for a proof), but we should not be surprised to 
see that Avar(j) (the variance of the limiting distribution of f i  ( j  - p))  equals 
the long-run variance z-, yj. We know from Lemma 2.1 that "x, +=d x," 
"Var(x,) += c < oo" j "Var(x) = c." Here, set x, = f i  ( j  - p). By (6.5. I), 
Var(x,) converges to a finite limit C yj. So the variance of the limiting distribution 

of f i ( j  - is C y j .  
By Proposition 6.l(d), the process in Proposition 6.9 is (stationary and) ergodic. 

Remember that ergodicity limits serial correlation by requiring that two random 
variables sufficiently far apart in the sequence be almost independent. But ergodic 
stationarity alone is not sufficient to ensure the asymptotic normality of j. A natu- 
ral question arises: is there a further restriction on ergodicity, short of requiring the 
process to be linear as in Proposition 6.9, that delivers asymptotic normality? The 
restriction that has become increasingly popular is what this book calls Gordin's 
condition for ergodic stationary processes. It has three parts. The first two parts 
follow: 

(a) ~(y:) < oo. (This is a restriction on [strictly] stationary processes because, 
strictly speaking, a stationary process might not have finite second moments.) 

(b) E(yt I ytPj, yt-,-I, . . . ) +=m.s. 0 as j += oo. (Since (y,) is stationary, this 

condition is equivalent to E(yo I y-,, y-,-I, . . . ) +m.s.  0 as j += oo. Because 

E(yt I y,-,, y,-,-l, . . . ) is a random variable, the convergence cannot be the 
usual convergence for real numbers.) 



Serial Correlation 403 

This condition implies that the unconditional mean is zero, E(y,) = o . ~  As the fore- 
cast (the conditional expectation) is based on less and less information, it should 
approach the forecast based on no information, i.e., the unconditional expectation. 
To prepare for the third part, let I, = (y,, yt-1, yt-2, . . . ) and write yt as 

Yt = Yt - [Wyt I It-1) - E(yt I It-111 - [E(Y~ I It-2) - E ( Y ~  I It-211 - . . . 

- [E(Y~ I It-,) - E(yt I It-,)] 

where 

This rtk is the revision of expectations about y, as the information set increases 

from It-k-l to It-k. By (b), yt - (rro + rt + . . . + rt , j- converges in mean square 
to zero as j -+ oo for each t .  So yt can be written as 

This sum is called the telescoping sum. The third part of Gordin's condition is 

(c) E [ E ( ~ ; ) ] ~ ' ~  < oo. 

The telescoping sum indicates how the "shocks" represented by (rto, r t l ,  . . . ) influ- 
ence the current value of y. Condition (c) says, roughly speaking, that shocks that 
occurred a long time ago do not have disproportionately large influence. As such, 
the condition restricts the extent of serial correlation in {y,). 

To understand the condition, take for example a zero-mean AR(1) with inde- 
pendent errors: 

Yt = + ct, 14) < 1, {ct} independent white noise with a2 = Var(c,). 

Evidently, Gordin's condition (a) is satisfied. Condition (b) too is satisfied because 

9 ~ e e  Lemma 5.14 of White (1984) for a proof. 

Keen
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and E[(@J~, - , )~]  -+ 0 as j + m .  The expectation revision r,; can be written as 

So the telescoping sum for AR(1) is the MA(m) representation. Condition (c) is 
satisfied because [ ~ ( r ; ) ] " ~  = 141' a and 

The CLT we have been seeking is 

Proposition 6.10 (Gordin's CLT for zero-mean ergodic stationary processes): lo 

Suppose (y,] is stationary and ergodic and suppose Gordin's condition is satisfied. 
Then E(y,) = 0, the autocovariances (y;} are absolutely summable, and 

Since Gordin's condition is satisfied if (y,] is a martingale difference sequence, 
which exhibits no serial correlation, Proposition 6.10 is a generalization of the 
ergodic stationary Martingale Difference Sequence CLT of Chapter 2. 

Multivariate Extension 

Extension of the above results to the multivariate case is straightforward. Let 

be the sample mean of a vector process (y,]. 

The multivariate version of Proposition 6.8 is that 

(a) 7 +,.,. if each diagonal element of T, goes to zero as j + m ,  and 

(b) lim,,, Var(& 7) (which is the long-run covariance matrix of (y,]) equals 
ZE-, r, if ( r j ]  is sumrnable (i.e., if each component of r, is sumrnable). 

1°~his  result is due to Gordin (1969). restated as Theorem 5.15 of White (1984). The claim about the absolute 
summability of autocovariances is noted in foomote 19 of Hansen (1982). 
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Therefore, the long-run covariance matrix of {y,} can be written as 

where Gy(z) (the autocovariance-generating function) and sy ( w )  (the spectrum) 
for the vector process (y,} are defined in Section 6.3. 

The multivariate version of Proposition 6.9 is that 

if {y,} is vector MA(oo) with absolutely summable coefficients and {E,} is vector 
independent white noise. 

The multivariate extension of Gordin's condition on ergodic stationary processes 
is obvious: 

Gordin's condition on ergodic stationary processes 

(a) E(y,yi) exists and is finite. 

(b) E ( Y ~  I Y t - j ?  Yt-j-17 . . . ) +m.s. 0 as J + 

00 

(c) x [ ~ ( < , r , , ) ] ~ / ~  is finite, where 
j=O 

rtj E(yt I Y t - j ,  Y t - j - 1 9  . . - - E(yt I Y t - j - 1 7  Yt-j-2, . - - 1- 

The multivariate version of Proposition 6.10 is obvious: Suppose Gordin's con- 

dition holds for vector ergodic stationary process {y,}. Then E(y,) = 0, { r j }  is 
absolutely summable, and 

Q U E S T I O N S  FOR R E V I E W  

1. Show that Var ( f i j )  = 1' Var(y,, Y , -~ ,  . . . , y,-,+l)l/n, where Var(yt, 
y I - l ,  . . . , Y,-,+~) is the n x n autocovariance matrix of a covariance-stationary 
process {y,}. 

''stated as Assumption 3.5 in Hansen (1982). 
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2. (Avar(j) for MA(m)) Verify that Avar(j) for the MA(m) process in Propo- 
sition 6.9 equals 

Hint: It should equal gr (1) for MA(m). 

3. (Asymptotics of j for AR(1)) Consider the AR(1) process y, = c+c$y,-, +&, 

with 141 < 1. Does j + p  p? Add the assumption that {E,] is an independent 
white noise process. Calculate Avar(j). [Answer: [(I + 4)/(1 - 4)] yo.] 

4. (Long-run covariance matrix of filtered series) Let H(L) = Ho + H I  L and 
{x,} be covariance-stationary with absolutely summable autocovariances. Ver- 
ify that the long-run covariance matrix of y, = H(L) x, is given by 

Hint: Use (6.3.13) and (6.5.6). 

5. (Long-run variance of "unit-root MA" processes) What is the long-run vari- 
ance of y, = E, - & , - I ,  where E, is whlte noise? [Answer: zero.] 

6.6 Incorporating Serial Correlation in GMM 

The Model and Asymptotic Results 

We have now all the tools needed to introduce serial correlation in the single- 
equation GMM model of Chapter 3. Recall that g, in Chapter 3 (with the sub- 
script "i" replaced by "t") is a K-dimensional vector defined as x, . &,, the product 

of the K-dimensional vector of instruments x, and the scalar error term E, .  By 
Assumption 3.3 (orthogonality conditions), the mean of g, is zero. We assumed 
in Assumption 3.5 that (g,} was a martingale difference sequence. Since no serial 
correlation is allowed under this assumption, the matrix S, defined to be the asymp- 
totic variance of g ( x:=, g,), was simply the variance of g,. We can now allow 

for serial correlation in {&}  by relaxing Assumption 3.5 as 

Assumption 3.5' (Gordin's condition restricting the degree of serial correla- 
tion): {g,] satisfies Gordin's condition. Its long-run covariance matrix is non- 
singular. 
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Then by the multivariate version of Proposition 6.10, f i g  converges to a normal 
distribution. The variance of this limiting distribution (namely, Avar(g)), denoted 
S, equals the long-run covariance matrix, 

where Tj  is the j-th order autocovariance matrix 

(Since E(g,) = 0 by the orthogonality conditions, there is no need to subtract the 
mean from g, .) 

That is, S (E Avar(g)) equals ro under Assumption 3.5 and x,y_, rj under 
Assumption 3.5'. This is the only difference between the GMM model with and 
without serial correlation. Accordingly, all the results we developed in Sections 
3.5-3.7 carry over, provided that S is now given by (6.6.1) and g, some consis- 
tent estimation of S, is redefined to take into account serial correlation. More 
specifically: 

The GMM estimator i(G) remains consistent and asymptotically normal. Its 
asymptotic variance is consistently estimated by (3.5.2), provided that the g 
there is consistent for S defined in (6.6.1). This estimated asymptotic variance 
sometimes gets the adjective heteroskedasticity and autocorrelation consistent 

(HAC). 
A 

The GMM estimator achieves the minimum variance when plim,,, W = S-' 
where S is given by (6.6.1). 

The two-step procedure described in Section 3.5 still provides an efficient GMM 
estimator, provided that g calculated in Step 1 is consistent for S. 

~ i t h g  thus properly defined, the expressions for the t,  W, J, C, and LR statistics 
of Sections 3.5-3.7 remain valid; those statistics retain the same asymptotic 
distributions in the presence of serial correlation. 

Estimating S When Autocovariances Vanish after Finite Lags 
All these results assume that you have a consistent estimate, g, of the long-run 
variance matrix S. Obtaining such an estimate takes some intellectual effort, par- 
ticularly when autocovariances do not vanish after finite lags. 



408 Chapter 6 

We start our quest with consistent estimation of individual autocovariances. 
The natural estimator is 

where 

kt = X, . E,, E, = yt - zii, i consistent for 6. 

If we had the true value g, in place of the estimated value & in this formula, then 
A 

Tj would be consistent for rj under Assumptions 3.1 and 3.2, the assumptions 
implying ergodic stationarity for (g,). But we have to use the estimated series (g,) 

rather than the true series to calculate autocovariances. For this reason we need 
some suitable fourth-moment condition (which we will not bother to state) for the 
estimated autocovariances to be consistent. The proof of consistency is not given 
here because it is very similar to the proof of Proposition 3.4. 

Given the estimated autocovariances, there are two cases to consider for the 
calculation of g. If we know n priori that Tj = 0 for j > q where q is known and 
finite, then clearly S can be consistently estimated by 

More difficult is the other case where we do not know q (which may or may not 
be infinite). How can we estimate the long-run variance matrix, which involves 
possibly infinitely many parameters? There are two approaches. 

Using Kernels to Estimate S 
Recently, several procedures have been proposed to estimate the long-run variance 
matrix S.12 A class of estimators, called the kernel-based (or "nonparametric") 
estimators, can be expressed as a weighted average of estimated autocovariances: 

 or the results to be stated in this and the next subsection to hold, we need to impose a set of technical 
conditions (in addition to Gordin's condition above) that further restrict the nature of serial correlation. For a 
statement of those conditions and a more detailed discussion of the subject treated in this and the next subsection, 
see Den Haan and Levin (1996b). 
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Here, the function k(-), which gives weights for autocovariances, is called a kernel 
and q(n) is called the bandwidth. The bandwidth can depend on the sample size n. 
The estimator (6.6.4) above is a special kernel-based estimator with q(n) = q and 

This kernel is called the truncated kernel. In the present case of unknown q,  
we could use the truncated kernel with a bandwidth q(n) that increases with the 
sample size. As q (n) increases to infinity, more and more (and ultimately all) auto- 
covariances can be included in the calculation of :. This truncated kernel-based 
A 

S, however, is not guaranteed to be positive semidefinite in finite samples. This is 
a problem because then the estimated asymptotic variance of the GMM estimator 
may not be positive semidefinite. 

Newey and West (1987) noted that the kernel-based estimator can be made 
nonnegative definite in finite samples if the kernel is the Bartlett kernel: 

k(x) = 
for 1x1 > 1. 

The Bartlett kernel-based estimator of S is called (in econometrics) the Newey- 
West estimator. For example, for q(n) = 3, the kernel-based estimator includes 
autocovariances up to two (not three) lags: 

In his definitive treatment of kernel-based estimation of the long-run variance, 
Andrews (1991) has examined positive semidefinite kernels, namely, the class of 
kernels (including Bartlett's) that yield a positive semidefinite :. He shows, under 
some suitable regularity conditions, how the speed at which : converges (in mean 
square) to S depends on the kernel and q(n). The most rapid possible rate is n2I5 
(i.e., n2I5 . (: - S) remains stochastically bounded),13 which occurs when q(n) 
grows at rate n1I5 (i.e., q(n)/n 'I5 remains bounded) and the kernel is a member of 
a certain subset of positive semidefinite kernels. The Bartlett kernel is not in this 
subset. For Bartlett, the most rapid possible rate is n'I3 which occurs when q(n) 
grows at rate n1I3. Therefore, at least on asymptotic grounds, positive semidefinite 

1 3 ~  sequence of random variables {x,] is said to be stochastically bounded and written x, = Op if for any 
E there exists an M z 0 such that Prob(lx,l z M) i E for all n .  If a sequence converges in distribution to a 
random variable, then the sequence is stochastically bounded. 
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kernels in this subset should be preferred to Bartlett. An example of such kernels 
is the quadratic spectral (QS) kernel: 

Since k(x) # 0 for 1x1 > 1 in the QS kernel, all the estimated autocovariances fj 
A 

( j  = 0, 1, . . . , n - 1) enter the calculation of S even if q(n) < n - 1. 
To be sure, the knowledge of the growth rate is not enough to determine the 

value of the bandwidth for any particular data of finite length. Andrews (1991) 
also considered a data-dependent formula for determining the bandwidth that not 
only grows at the optimal rate but also minimizes some appropriate criterion (the 
asymptotic mean square error). But even in this formula, some parameter values 
need to be provided by the user, so the formula does not really provide automatic 
data-based selection of the bandwidth. 

VARHAC 
The other procedure for estimating S, called the VAR Heteroskedasticity and Auto- 
correlation Consistent (VARHAC) estimator, was proposed by Den Haan and Levin 
(1996a). The idea is to fit a finite-order VAR to the K-dimensional series {g,} and 
then construct the long-run covariance matrix implied by the estimated VAR. This 
is not to say that g, is assumed to be a finite-order VAR. In fact, in this proce- 
dure (and also in the kernel-based procedure), g, does not even have to be a linear 
process, let alone a finite-order autoregression. The VARHAC procedure consists of 
two steps. 

Step 1: Lag length selection for each VAR equation. In this step, for each VAR 
equation, you determine the lag length by the Bayesian information crite- 
rion (BIC). Let ikr be the k-th element of the K-dimensional vector $. 
The k-th VAR equation can be written as 
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where 

In picking the lag length by the BIC, the maximum lag length p,,, needs 
to be specified. In Section 6.4, when the BIC was introduced in the context 
of estimating the true order (lag length) of a finite-order autoregression, 
pmax was set to some integer known to be greater than or equal to the 
true lag length. In the present case where g, is not necessarily a finite- 
order VAR, Den Haan and Levin (1996a, Theorem 2(c)) show that the 
VARHAC estimator is consistent for S when p,,, grows at rate n1I3 and 
recommend setting p,,, to [n 'I3] (the integer part of n 'I3). To emphasize 
its dependence on the sample size, we denote the maximum lag length by 
p,,,(n). Let S S R ~ )  be the sum of squared residuals (SSR) from the OLS 
estimation of (6.6.10) (the k-th equation in the VAR) for t = p,,,(n) + 
1, p,,,(n) + 2 , .  . . , n.I4 For p = 0, S S R ~ )  = ~ ~ = p , o , ( n ) + l ( ~ k , ) 2 ,  the SSR 
from the regression of ik, on no regressors. Since there are p K  coefficients 
in the k-th equation, the BIC criterion is 

(The n in this expression could be replaced by the actual sample size n - 
p,,, with no asymptotic consequences.) Let p(k) be the p that minimizes 
the information criterion over p = 0, 1, . . . , p,,,(n) for the k-th VAR - (k) . 
equation. Also let 4, ( j  = 1,2 ,  . . . , p(k)) be the OLS estimate of the 

VAR coefficients 4:) ( j  = 1. 2, . . . . p(k)) when (6.6.10) is estimated by 
OLS for p = p(k). 

Step 2: Calculating the implied long-run variance. Let 

the largest lag length in the K equations. By construction, P 5 p,,,(n). 
Step 1 produces an estimated VAR which can be written as 

A A 

g, = 8 1  g,-1 + . . .  + ap gf-p + 6, 
( K x l )  ( K x K ) ( K x l )  ( K x K ) ( K x l )  ( K x l )  

( t = ~ ~ ~ ~ ( n ) + 1 , p , , , ( n ) + 2  , . . . ,  n). (6.6.12) 

14s0 the sample period is fixed throughout the process of picking the lag length. 
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Since the lag length differs across equations, some rows of 3, ( p  = 
h - (k) 

1,2 ,  ... , P)maybezero. Thero~sof@~arerelatedtoq5~ ( j  = 1,2,  ... , 
p(k)) obtained in Step 1 as 

- (k) 
A 

k-th row of eP = ('p 
for 1 i P i p(k), 

(6.6.13) 
( K X K )  0 for p(k) < p i P. 

Let 5 be the VAR residual variance matrix: 

Recall that the long-run variance matrix of a VAR is given by (6.3.16) for 
z = 1. The estimator of S implied by the estimated VAR (6.6.12) is then 

This VARHAC estimator is positive semidefinite by construction. Den Haan 
and Levin (1996a) show that (under suitable regularity conditions) the estimator 
converges to S at a faster rate than any positive semidefinite kernel-based estimator 
for almost all autocovariance structures of g, (which is not necessarily a finite-order 
VAR). In particular, if g, is finite-order VARMA, then the lag order chosen by the 
BIC grows at a logarithmic rate and the VARHAC estimator converges at a rate 
arbitrarily close to n1f2, which is faster than the maximum rate n2f5 achieved by 
positive semidefinite kernel-based estimators. 

Q U E S T I O N S  FOR R E V I E W  

1. When x, = z,, what is the efficient GMM estimator? 

2. (Consequence of ignoring serial correlation) Consider the efficient GMM esti- 
mator that presumes {g,} to be serially uncorrelated. If {g,} is in fact serially 
correlated, is the estimator consistent? Efficient? 
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6.7 Estimation under Conditional Homoskedasticity (Optional) 

We saw in Section 3.8 that the GMM estimator reduced tb the 2SLS estimator 
under conditional homoskedasticity. This section shows how the 2SLS can be 
generalized to incorporate serial correlation. It will then become clear that the 
GLS estimator is not a GMM estimator with serial correlation. The latter half of 
this section examines the relationship between the GLS and GMM. 

Kernel-Based Estimation of S under Conditional Homoskedasticity 
The relationship between serial correlation in g, - x, - E, and serial correlation in 
the error term Er becomes clearer under conditional homoskedasticity. Let 

o, = E(E,E,-,) for all j .  (6.7.1) 

Since {E,} is stationary by Assumptions 3.1 and 3.2, w, does not depend on t. 

If E(E,) = 0 (which is the case if x, includes the constant), then o, equals the 
j-th order autocovariance of {E,}. Suppose the error term is conditionally 
homoskedastic: 

conditional homoskedasticity: 

Under this additional condition, the usual argument utilizing the Law of Total 
Expectations can be applied to r, : 

r, = E(g,gi- ,) (since E(g,) = 0) 

= E ( E ~ & ~ - ~ x ~ x ~ - , )  

= E[E(E~EZ-, 1 x,, x,- ,)x,xi- ,I (by the Law of Total Expectations) 

= o, E(x,xi-,). (6.7.3) 

Thus, unless E(x,xi-,) is zero, {g,) is serially correlated if and only if {E,) is. 
To estimate Ti, we exploit the fact that T, is a product of two second moments, 

E(x,xi-,) and E(E,E,-,) A natural estimator of E(x,xLj) is r:=,+l x,x:- ,. It 
is easy to show that q is consistently estimated by C:=j+l d12r-j where 2, is 
the residual from some consistent estimator (the proof is almost the same as in the 
case with no serial correlation, see Proposition 3.2). Thus, a natural estimate of T, 
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under conditional homoskedasticity is 

Given these estimated autocovariances, the kernel-based estimation of g is exactly 
the same as in the case without conditional homoskedasticity described in the pre- 
vious section. 

Data Matrix Representation of Estimated Long-Run Variance 
For the purpose of relating the GMM estimator with serial correlation but with 
conditional homoskedasticity to conventional estimators, the data matrix represen- 
tation of g is useful. By defining an n x n matrix 6 suitably, we can write g as 

where X is the n x K data matrix whose r-th row is xi. The matrix 6 looks much 
like the autocovariance matrix of {E,}: 

If we know a priori that COV(E~, E~ - ,) = 0 (SO that rj = 0) for j > q, specify the 
elements of this 6 as 

&&-, i f 0 j j  j q ,  

Then the g in (6.6.4) can be written as (6.7.5). If we do not know that there is such 
a q,  then use the kernel-based estimator of S. For the Bartlett kernel, let 

Then the consistent estimator (6.6.3) with (6.6.4) equals (6.7.5). 
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It is now easy to show the following extension of the 2SLS estimator to encom- 
pass serial correlation: 

The efficient GMM estimator under conditional homoskedasticity can be written 
as 

where Z and y are the data matrices of the regressors and the dependent variable. 
This generalizes (3.8.3') on page 230. 

The consistent estimator of Avar(i(s-l)) reduces to 

So the square roots of the diagonal elements of [z'x(x'~x)-'X'ZI-' are the stan- 
dard errors. This generalizes (3.8.5') on page 230. 

Relation to GLS 

The procedure for incorporating serial correlation into the GMM estimation we 
have described is different from the GLS procedure. To see the difference most 
clearly, consider the case where x, = z,. If there are L regressors, X'Z and X ' ~ X  
in (6.7.9) are all L x L matrices, so the efficient GMM estimator that exploits the 
orthogonality conditions E(z, . E , )  = 0 is the OLS estimator i O ~ s  = (ZtZ)-'Z'y. 
The consistent estimate of its asymptotic variance is obtained by setting X = Z in 
(6.7.10): 

This may seem strange because we know from Section 1.6 that the GLS estima- 
tor is more efficient than OLS when the error is serially correlated. This is a finite 
sample result, but, given that we have a consistent estimator 6 of Q, we could take 
the GLS formula and estimate 6 as 

Is not this estimator asymptotically more efficient than OLS in that its asymptotic 
variance is smaller? The problem with GLS is that consistency is not guaranteed, 
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if the regressors are merely predetermined, as shown below. As we emphasized 
in Chapter 2, the regressors are not strictly exogenous in most time series mod- 
els. It follows that GLS should not be used to correct for serial correlation in the 
error term for models lacking strict exogeneity. In particular, for the x, = z, case, 
the correct procedure to adjust for serial correlation is to leave the point estimate 
unchanged while incorporating serial correlation in the estimate of the asymptotic 
variance. 

That the GLS estimator is generally inconsistent can be seen as follows. To 
focus on the problem at hand, assume that the true autocovariance matrix is pro- 
portional to some known n x n matrix V: 

As shown in Section 1.6, the GLS estimator of the coefficient 6 in the regression 
model y = Z6 +E can be calculated as the OLS estimator on the transformed model 
Cy = CZ6 + CE, where C is the "square root" of V-' such that C'C = V-'. But 
look at the t-th observation of the transformed model, which can be written as 

where 

j t  = Ct lYl  + - .  + ctnyn, 

i t  = CtlZl + - . + C,,Z,,, 

2, = ctlel + +c,,E,, 

(c, 1 ,  . . . , c,,) is the t-th row of C. 

For the GLS estimator to be consistent, it is necessary that E(Z, . E , )  = 0. The 
left-hand side of this condition can be written as 

E(Z, - E,) = (a) + (b), 
n 

By the orthogonality condition E(z, - E,) = 0, (a) is zero. For (b), because the 
regressors are merely predetermined and not assumed to be strictly exogenous, 
E(z, . E,) is not guaranteed to be zero for s # u. So (b) is not zero, unless the c's 
take particular values to offset the nonzero terms. 

There is one important special case where GLS is consistent, and that is when 
the error is a finite-order autoregressive process. To take the simplest case, suppose 
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that {E,} is AR(1): E, = + q,. Its autocovariance matrix is 

It is easy to verify that the square root, C, of V-' (satisfying C'C = V) is given by 

So the t-th transformed equation is 

The GLS estimate of 6, which is the OLS estimate in the regression of y, - 4y,-] 
on z, - 4zIpl is consistent if q, is orthogonal to both z, and z,-1. However, those 
orthogonality conditions are different from the orthogonality conditions for the 
untransformed model, which are that E(z, - E,) = 0. 

Q U E S T I O N S  F O R  R E V I E W  

1. Verify (6.7.5) for n = 3, q = 1. 

2. (Sargan's statistic) Derive the generalization of Sargan's statistic (3.8.10') on 
page 230 to the case of serially correlated errors. 

3. Suppose that z, is a strict subset of x,. We have seen in Section 3.8 that the 
2SLS estimator reduces to the OLS estimator. Is this true here as well? That 
is, does (6.7.9) reduce to (ZIZ)-'Z'y? [Answer: No.] 

4. (Data matrix representation of S without conditional homoskedasticity) De- 
fine 5 suitably so that (6.7.5) equals the Bartlett kernel-based estimator of 
without conditional homoskedasticity, namely, (6.6.5) with (6.6.7). Hint: Write 
h 

C? as (6.7.6). If the lag length q is known, 4 = for 0 5 j 5 q and 0 for 

j > q.  How would you define cji for the Bartlett kernel-based estimator? 
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5. Consider the simple regression model: y, = Pz, +E,, where {E,} is AR(l), E, = 
+ qr with known 4 .  Assume E(z,E,) = 0, E(zrqr) = 0, E ( Z , - ~ ~ , )  = 0, 

and conditional homoskedasticity. Also, to simplify, assume E(z,) = 0. Show 
that 

where 4 = Var(z,), a; = Var(q,), p .  = Corr(z,, 2,-;). Find a configuration -- 
of (4 ,  { y j } )  such that ~ v a r ( p ~ ~ ~ )  > Avar(PGLs). Explain why this is consistent 
with the fact that POLS is an efficient GMM estimator. 

6.8 Application: Forward Exchange Rates as Optimal Predictors 

In foreign exchange markets, the percentage difference between the forward 
exchange rate and the spot exchange rate is called the fonvard premium. The 
relation between the forward premium and the expected rate of currency appreci- 
ationtdepreciation over the life of the forward contract has been the subject of a 
large number of empirical studies. The simplest hypothesis about the relationship 
is that the two are the same. In this section, we test this hypothesis using the same 
weekly data set used by Bekaert and Hodrick (1993). 

The data cover the period of 1975-1989 and include the following variables: 

St = spot exchange rate, stated in units of the foreign currency per dollar 
(e.g., 125 yen per dollar) on the Friday of week t,  

F, = 30-day forward exchange rate on Friday of week t,  namely, the price 
in foreign currency units of the dollar deliverable 30 days from Friday 
of week t,  

S30, = the spot rate on the delivery date on a 30-day forward contract made 
on Friday of week t. 

The important feature of the data is that the maturity of the contract covers several 
sampling intervals; the delivery date is after the Friday of week t + 4 but before the 
Friday of week t + 5. 
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The Market Efficiency Hypothesis 
To indicate the assumptions underlying the hypothesis, consider three strategies 
for investing dollar funds for 30 days at date t .  The first is to invest in a domestic 
money market instrument (e.g., U.S. Treasury bills) whose maturity is 30 days. Let 
it be the rate of return over the 30-day period. The second investment strategy is to 
convert dollars into foreign currency units, buy a 30-day money market instrument 
denominated in the foreign currency whose interest rate is denoted i:, and convert 
back to dollars at maturity. The rate of return from this investment strategy is 

This strategy involves foreign exchange risk because at time t of investing you 
do not know S30, which is the spot rate 30 days hence. The third investment 
strategy differs from the second in that it hedges against exchange risk by buying 
dollars forward at price Ft at the same time the dollar fund is converted into foreign 
currency units. This hedged foreign investment provides a sure return equal to 

Because the first and the third strategies involve no risk, arbitrage requires that the 
rates of return be the same: 

Taking logs of both sides and using the approximation log(1 + x) x x, we obtain 
the covered interest parity equation: 

where lower case letters for S and F are natural logs. That is, the forward premium, 
ft  - st ,  equals the interest rate differential. This relationship holds almost exactly 
in real data. In fact, people routinely calculate the forward premium as the interest 
rate differential. 

The rate of return from the second investment strategy is uncertain, but if in- 
vestors are risk-neutral, its expected return is equal to the sure rate of return. Fur- 
thermore, if their expectations are rational, the expected return is the conditional 
expectation based on the information currently available, so 
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where E ( .  I I , )  is the expectations operator and I, is the information set as of date 
t. Since S,, F,, and i: are known at date t ,  this equality reduces to 

E(Ft/S30,  I I , )  = 1 .  

Again, by log approximation, F,/S30, x 1 + f, - s30,. Therefore, 

E(s30, I I , )  = f, or E(E,  I I , )  = 0 where E,  = s30, - f,. (6.8.3) 

This is the market efficiency hypothesis. As is clear from the derivation, the 
hypothesis assumes risk-neutrality and rational expectations. The hypothesis is 
sometimes described as the forward rate being the optimal forecast of future spot 
rates, because the conditional expectation is the optimal forecast in that it mini- 
mizes the mean square error (see Proposition 2.7). 

Testing Whether the Unconditional Mean Is Zero 

Taking the unconditional expectation of both sides of (6.8.3), we obtain the uncon- 
ditional relationship: 

That is, the forecast must be correct on average. Figure 6.1 is a plot of the forecast 
error E,  for the yenldollar exchange rate. It looks like a stationary series, and we 
proceed under the assumption that it is.15 Because the forecast error is observable, 
we can test the hypothesis that its unconditional mean is zero. This is in contrast 
to the Fama exercise, where the forecast error (about future inflation) is observable 
only up to a constant. 

To test the hypothesis of market efficiency, we need to derive the asymptotic 
distribution of the sample mean, E ,  under the hypothesis. The task is somewhat 
involved because ( E , }  is serially correlated. To see why the forecast error has 
serial correlation, note that I , ,  while including ( E , - ~ ,  Et -6 ,  . . . }, does not include 
{ E , ,  . . . , E , - ~ }  because E, ,  which depends on s30,, cannot be observed until after 
t + 4. Therefore, 

It follows that COV(E,, E,-,) = 0 for j > 5 but not necessarily for j 5 4. In 

15using covered interest rate parity, E,  = (s301 - s t )  - ( i ;  - i f ) .  If you believe that both the 30-day rate of 
change ~ 3 0 ,  - sf and the interest rate differential i: - if are stationary, you have to believe that the forecast error 
is stationary. 
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Figure 6.1 : Forecast Error, YenIDollar 

the Fama exercise, the ex-post real interest rate (which is the inflation forecast 
error plus a constant) was serially uncorrelated because the maturity for the interest 
rate and the sampling interval were the same. Here, the forecast error has serial 

correlation because the maturity of the forward contract (30 days) is longer than 
the sampling interval (a week). The estimated correlogram is displayed along with 
the two-standard error band in Figure 6.2.16 The standard error is calculated under 
the assumption that the forecast error is i.i.d. So it equals I/&, as in Table 2.1. 
The pattern of autocorrelation is broadly consistent with the hypothesis: it stays 
well above two standard errors for the first four lags and generally lies within the 
band thereafter. 

Under the null of market efficiency, since serial correlation vanishes after a 
finite lag, it is easy to see that {E,} satisfies the essential part of Gordin's condition 
restricting serial correlation. By the Law of Iterated Expectations, (6.8.5) implies 
E(E, I E,-, , E,- - 1 ,  . . . ) = 0 for j 2 5, which immediately implies part (b) of 
Gordin's condition. Since the revision of expectations, r,j, is zero for j 2 5, part 
(c) is satisfied, provided that r,, (0 5 j 5 4) have finite second moments. It then 

16~lthough theory implies that the population mean is zero, I subtracted the sample mean in the calculation of 
sample autocorrelations. 
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- - - - two standard errors 

Figure 6.2: Correlogram of s30 - f, YenIDollar 

follows from Proposition 6.10 that 

Furthermore, the denominator is consistently estimated by replacing yj by its sam- 
ple counterpart f j  . So the ratio 

is also asymptotically standard normal. The denominator of this expression will be 

called the standard error of the sample mean. 

Table 6.1 reports results for testing the implication of the hypothesis that the 

unconditional mean of the forecast error is zero, for three foreign exchange rates 

against the dollar. The three currencies are the Deutsche mark, the British pound, 

and the Japanese yen. Columns 1 and 2 of the table report the mean and the stan- 

dard deviation of the actual rate of change of the spot rate, s30, - s t ,  and the 

forward premium, f ,  - s t .  (Because the spot rate is per dollar, a positive rate of 

change means that the dollar strengthened.) The monthly rates of change and the 
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Table 6.1: Means of Rates of Change, Forward Premiums, 
and Differences between the Two: 1975-1989 

Means and Standard Deviations 
Exchange s30 - s f - s  Difference 

rate (actual rate (expected rate (unexpected rate 
of change) of change) of change) 

YI$ -4.98 -3.74 -1.25 
(41.6) (3.65) (42.4) 

standard error = 3.56 

- 1.78 -3.91 2.13 
(40.6) (2.17) (41.1) 

standard error = 3.26 

3.59 2.16 1.43 
(39.2) (3.49) (39.9) 

standard error = 3.29 

NOTE: s30 - s is the rate of change over 30 days and f - s is the forward 
premium, expressed as annualized percentage changes. Standard deviations are in 
parentheses. The standard errors are the values of the denominator of (6.8.7). The 
data are weekly, from 1975 to 1989. The sample size is 778. 

forward premium have been multiplied by 1,200 to express the rates in annualized 
percentages. The market efficiency hypothesis is that the forward premium is the 
expected rate of change of the spot rate. It is evident that the actual rate of change 
is much more volatile than the forward premium. The third column reports the 
sample mean of E,, which equals the difference between the first two columns for 
the sample mean. The numbers in parentheses below the sample mean are the stan- 
dard errors calculated as described above. In no case is there significant evidence 
against the null hypothesis of zero mean. 

Regression Tests 
The unconditional test, however, does not exploit the implication of market effi- 
ciency that the forecast error is orthogonal to conditioning information I,. Prob- 
ably the most important variable in the information set I ,  for future spot rates is 
the forward rate f,. We can test whether the forecast error is uncorrelated with the 
forward rate by regressing E ,  on the constant and f,. This is equivalent to running 
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Figure 6.3: Yen/Dollar Spot Rate, Jan. 1975-Dec. 1989 

the following regression 

and testing whether Po = 0 and = 1. Because the error term is the forecast error 
orthogonal to anything known at date t including f,, the regressors are guaranteed 
to be orthogonal to the error term. So it might appear that we can estimate (6.8.8) 
by OLS and adjust for serial correlation in the error term as indicated in Section 
6.6 for correct inference. 

However, as the graph in Figure 6.3 suggests, the spot exchange rate looks like 
a process with increasing variance. As we will verify in Chapter 9, we cannot 
reject the hypothesis that the process has a unit root. The forward rate has the same 
property. (Its plot is not shown here because it is indistinguishable from the plot 
of the spot rate.) Thus, Assumption 3.2, which requires the regressor (f,) and the 
dependent variable (s30,) to be stationary, is not satisfied. The problem actually 
runs deeper. We have observed in Figure 6.1 that the difference between s30, and 
f, looked like a stationary series. In the language to be introduced in Chapter 10, 
s30, and f, are "cointegrated" with a cointegrating vector of (1, - l ) ,  in which case 
the OLS estimate of in (6.8.8) converges quickly to 1. This can be verified in 
Figure 6.4 where s30, is plotted against f,. If a regression line is fitted, its slope 
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f(t),  log forward rate 

Figure 6.4: Plot of s30 against f ,  YenIDollar 

is 0.99. The problem from the point of view of testing market efficiency is that the 
OLS estimate converges to 1 regardless of whether or not the hypothesis is true. 
Therefore, the test has no power. 

The problem can be dealt with by estimating a different regression, 

Judging from the plot of s30, - sf and f, - st (not shown), it is reasonable to 
assume that they are stationary, which is consistent with Assumption 3.2 (ergodic 
stationarity). That the equation satisfies other GMM assumptions under market 
efficiency can be verified as follows. For Po = 0 and = 1, the error term e, 
equals the forecast error s30, - f, and so the orthogonality conditions E(et) = 0 and 
E[(f, - st) . el] = 0 (Assumption 3.3 with z, = x,) are satisfied. The identification 
condition is that the second moment of (1, f, - st) be nonsingular, which is true if 
and only if Var( f, - s,) > 0. This is evidently satisfied; if the population variance 
were zero, we would not observe any variations in f, - st. This leaves us with 
Assumption 3 3 ,  which requires that there is not too much serial correlation in 

Keen
Rectangle
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Table 6.2: Regression Tests of Market Efficiency: 1975-1989 

s30t - st = PO + PI (ft - st) + ~t 

Regression Coefficients 
Currency R~ Wald Statistic for 

Constant Forward 
H,,: Po = 0, = 1 

premium 

NOTE: Standard errors are in parentheses. They are heteroskedasticity-robust and 
allow for serial correlation up to four lags calculated by the formula (6.8.11). The 
sample size is 778. Our results differ slightly from those in Bekaert and Hodrick 
(1993) because they used the Bartlett kernel-based estimator with q ( n )  = 4 to 
estimate S. 

As already noted, since It includes -5, et-6, . . . }, the forecast error satisfies 
(6.8.5). Review Question 3 will ask you to show that {g,} inherits the same prop- 
erty, namely, 

So, as in the unconditional test, Gordin's condition is satisfied, provided that the 
relevant second moments are finite. Since E(gtg',-j) = 0 for j 3 5, the long-run 
covariance matrix S can be estimated as in (6.6.4) with q = 4. (In the empir- 
ical exercise, you will be asked to estimate g by the Bartlett kernel and also by 
VARHAC.) 

To summarize, the efficient GMM estimator of j!? = (Po, PI)' in (6.8.9) is OLS 
and the consistent estimator of its asymptotic variance is given by 

whereg is given in (6.6.4) with q = 4. Table 6.2 reports the regression test results 
for the three currencies. The corresponding plot for the yen/$ exchange rate is 
in Figure 6.5. Notice that the estimated slope coefficient is not only significantly 
different from 1 but also negative, for all three currencies. The null hypothesis 
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Figure 6.5: Plot of s30 - s against f - s ,  YenIDollar 

-1 50 - 

-200 

implied by market efficiency that Po = 0 and PI = 1 can be rejected decisively. 
This is reflected in the too many observations in the north-west quadrant of Figure 
6.5; too often expected dollar depreciation (negative f, - st)  is associated with 
actual dollar appreciation (positive s30, - sf ) .  

. .. 

I I I I I 

Q U E S T I O N S  FOR R E V I E W  

-20 -1 5 -1 0 -5 0 5 10 

f(t)-s(t), forward premium 

1. (The standard error in the unconditional test) Let E, = s30, - f, and consider 
a regression of E, on the constant. To account for serial correlation, use (6.6.4) 
with q = 4 for P. Verify that the t-value for the hypothesis that the intercept is 
zero is given by (6.8.7). 

2. (Lack of identification) For simplicity suppose F, is the two-week forward 
exchange rate so that the s30, in (6.8.9) can be replaced by s,+2. Suppose that 
the spot exchange rate is a random walk and I, = {st, st- 1, . . . }. What should 
f, be under the hypothesis? Which of the required assumptions are violated? 

[Answer: The identification condition.] Suppose, instead, that st is AR(1) 
satisfying s, = c + + r ] ,  where { r ] , }  is i.i.d. and 141 < 1. Verify that 

f, = (1 + 4)c  + 42s,. Hint: s,+2 = (1 + 4)c  + 42sf + (r],+2 + 4r],+l). Verify 

that Et = Vt+2 + @r]r+l. 
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3. Prove (6.8.10). Hint: E ( E ~  1 I,) = 0. Verify that I, includes st - f, and 

{gt-5, gt - 6 ,  . . . ). Use the Law of Iterated Expectations. 

P R O B L E M  S E T  F O R  C H A P T E R  6 

A N A L Y T I C A L  E X E R C I S E S  

1. (Mean square limits and their uniqueness) In Chapter 2, we defined the mean 
square convergence of a sequence of random variables {z,) to a random vari- 
able z. In this and other questions, we will deal with sequences of random 
variables with finite second moments. For those sequences, the definition of 
mean square convergence is 

DEFINITION. Let {I,} be a sequence of random variables with E ( z ~ )  < m. 

We say that {z,} converges in mean square to a random variable z with E ( z ~ )  < 

m, written Z, +,.,. Z, if E[(z, - z ) ~ ]  -+ 0 as n + m. 

(a) Show that, if z, +,,,, z and z, +m.s. z', then E[(z - z ' ) ~ ]  = 0. Hint: 
z - Z' = (Z - z,) + (z, - 2'). Define llxll = Jm. Then 

- ~ ' 1 1 ~  = J I z  - zn112 + ~ E [ ( z  - z,)(z, - z')] + l l ~ n  - ~ ' 1 1 ~  

< I I Z  - zn112 + 2 J K F i R  J- + IIzn - ~ ' 1 1 ~  - 

(by Cauchy-Schwartz inequality that E(xy) 5 dx2) d m )  

= ( l l ~  - zn I1 + llzn - ~'11)~.  

So llz - z'll 5 llz - zn 1 1  + 112, - z'll. This is called the triangle inequality. 

(b) Show that Prob(z = z') = 1. Hint: Use Chebychev's inequality: 

2. (Proof of Proposition 6.1) A well-known result about mean square conver- 
gence (see, e.g., Brockwell and Davis, 1991, Proposition 2.7.1) is 

(i) (2,) converges in mean square if and only if E[(z, - z , ) ~ ]  + 0 as m ,  n + 
0. 

(ii) If X, -+,.,. x and z, +,,,. z, then 

lim E(x,) = E(x) and lim E(x,z,) = E(xz). 
n+m n+m 
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Take this result for granted in answering. 

(a) Prove that (6.1.6) converges in mean square as n + m under the hypoth- 
esis of Proposition 6.1. Hint: Let 

What needs to be proved is that (y,,,} converges in mean square as  n + 
m for each t. Given (i) above, it is sufficient to prove that (assuming m > n 

without loss of generality) 

Use the fact that an absolutely summable sequence is square surnrnable, 
i.e., 

and the fact that a sequence of real numbers (a,} converges (to a finite 
limit) if and only if a, is a Cauchy sequence: 

Set a, = Go +;. 
(b) Prove that E(y,) = p. Hint: Let y,,, = p + xjn=O +,E,-, as in (a). It was 

shown in (a) that y,,, +m,s, yt. 

(c) (Proof of part (b) of Proposition 6.1) Show that 

Have we shown that (y,} is covariance-stationary? [Answer: Yes.] 

(d) (Optional) Prove part (c) of Proposition 6.1, taking the following facts 
from calculus for granted. 

(i) If (a,} is absolutely summable, then (aj} is summable (i.e., -m  < 

=,a, < m )  and 
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(ii) Consider a sequence with two subscripts, { a j k ]  ( j ,  k = 0, 1 ,2 ,  . . . ). 
Suppose CEO laik[ < cc for each k and let sk = CEO lajkl. Suppose 
Isk] is summable. Then 

Hint: Derive 

3. (Autocovariances of h ( L ) x , )  We wish to derive the autocovariances of { y , ]  
of Proposition 6.2. As in Proposition 6.2, assume throughout this question that 
{ x , }  is covariance-stationary. First consider a weighted average of finitely many 
terms: 

(a) Show that for this { y , , , ] ,  

where y; is the j-th order autocovariance of { x , } .  
Verify that this reduces to (6.1.2) if {x , }  is white noise. Hint: If you find this 

difficult, first set n = 1, and then increase n to establish the pattern. 

(b) Now consider a weighted average of possibly infinitely many terms: 

Taking Proposition 6.2(a) for granted, show that 

yj = hkhl yPk+,  if { h i )  is absolutely surnmable. 
k=O C=O 

Hint: y,., +m.s. yr as n + 00 by Proposition 6.2. Proceed as in 2(c). 
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4. (Homogeneous linear difference equations) Consider a p-th order homoge- 
neous linear difference equation: 

where (41, 42, . . . , (Pp) are real constants with 4p # 0, with the initial condi- 
tion that (yo, yl ,  . . . , yp-1) are given. The associated polynomial equation is 

Let hk (k = 1, 2, . . . , K) be the distinct roots of this equation (they can be 
complex numbers) and rk be the multiplicity of hk. SO rl + r2 + . . . + TK = p. 

The polynomial equation can be written as 

For example, consider the second degree polynomial equation 

Its root is 2 with the multiplicity of 2 because 

So K = 1 and rl  = 2 and hl  = 2 in this example. 
As you verify below, the solution to the p-th order homogeneous equation 

can be written as 

The coefficients ckn (there are p of those because rl + . - . + r~ = p)  can be 
determined from the initial conditions which specify the values for (yo, y, , . . . , 
yPpl). In the above example of (4), 

In the important special case where all the roots are distinct, K = p and rk = 1 
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for all k, and (5) becomes 
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(a) For the special case of p = 2 and distinct roots, (7) is 

Verify that this solves the homogeneous difference equation (1) with p = 2 
for any given (clo, ~20). TO determine (clo, c20), write down (8) for j = 0 
and j = 1, and solve for c's as a function of (yo, y1, A,, A2). 

(b) To leam (remember) how to deal with multiple roots, consider example 
(4) above. Verify that (6) solves the second-order homogeneous difference 
equation 

(c) (Optional) Prove the following lemma. 

LEMMA. Let 0 5 6 < 1 and let n be a non-negative integer. Then there 
exist two real numbers, A and b, such that 6 < b < 1 and ( j ) " ( ~  < A ~ J  
forj  = 0 ,  l , 2 ,  . . . .  

Hint: Pick any b such that 6 < b < 1. Because b~ eventually gets 

larger than (j)"cJ as j increases, there exists some j, call it J,  such that 

(j)"6j < bJ for all j 2 J. 

(d) Suppose the stability condition holds for the p-th order homogeneous lin- 
ear difference equation. Prove that there exist two numbers, A and b, such 
that 0 < b < 1 and 

Hint: 
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where c = max{lckn I}. Since 1 ~ ; '  1 < 1 by the stability condition, we can 

apply the lemma with = 1 and claim 

(j)" ( J  < Ak(bk)j for all j 

for some Ak > 0 and (A;'I < bk < 1. Set A* = max{Ak} and b = 

max{bk}, so that Ak(bk)j 5 A*bJ for all k. So 

(Recall that p = rl + . - - + rK.) Then define A to be cpA*. You may 

find this sort of argument using inequalities hard to follow. If so, set p,  K, 
and (rl,  . . . , rK)  to some specific numbers (e.g., p = 3, K = 2, r l  = 1, 
r2 = 2). 

5. (Yule-Walker equations) In the text, the autocovariances of an AR(1) pro- 
cess were calculated from the MA(oo) representation. Here, we use the Yule- 
Walker equations. 

(a) From (6.2.1') on page 376, derive 

(b) (Easy) From the MA representation, show that 

(c) Derive the Yule-Walker equations: 
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(d) Calculate (yo, yl, . . . )  from (9) and (10). Hint: First set j = 1 in (10) to 

obtain yl = 4 yo. This and (9) can be solved for (yo, yl). 

6. (AR(1) without using filters) We wish to prove, without the help of Proposi- 
tion 6.2, that {y,} following the AR(1) equation (6.2.1), with the stationarity 
condition 141 < 1, must have an MA(m) representation if it is covariance- 
stationary. 

(a) Let x, r y, - p SO that E(x,) = 0. By successive substitution, derive from 
(6.2.1') (on page 376) 

where 

(b) Show that x , ,  +,,,, x,. Hint: What needs to be shown is that E[(x,,, - 
x , ) ~ ]  + 0 as n + m .  (x,,, - x , ) ~  = ~$~'x:-,. Because {y,} is assumed 

to be covariance-stationary, E(x:-,) < m .  

(c) (Trivial) Recalling that the infinite sum 

is dejined to be the mean square limit of the partial sum x,,,, show that y, 
can be written as 

7. (Companion form) We wish to generalize the argument just developed in 
question 6 to AR(p). Without loss of generality, we can assume that p = 0 (or 
redefine y, to be the deviation from the mean of y,). Define 
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Consider the following first-order vector stochastic difference equation: 

In this system of p equations, called the companion form, the first equation 

is the same as the AR(p) equation (6.2.6') on page 379 and the rest are just 
identities about y t P j  ( j  = 1, 2, . . . , p - 1). 

(a) By successive substitution, show that 

The eigenvalues or characteristic roots of a p x p matrix F are the roots 
of the determinantal equation 

It can be shown that the left-hand side of this is hp -4, hp-' - - . . - 4p-1h - r$p. 
So the determinantal equation becomes the p-th order polynomial equation: 

(b) Verify this for p = 2. 

In the rest of this question, assume that all the roots of the p-th order poly- 
nomial equation (which, as just seen, are the eigenvalues of F) are distinct. Let 

(A,, A?;, . . . , hp) be those distinct eigenvalues. We have from matrix algebra 

that there exists a nonsingular p x p matrix T such that 
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(This fact does not depend on the special form of the matrix F;  all that is needed 
for (15) is that the A's are distinct eigenvalues of F.) From (15) it follows that 

(c) (Very easy) Prove this for n = 3. 

(d) Show that t,,, +,.,. 5 ,  as n + oo if the stationarity condition about the 
AR(p) equation is satisfied and if {y,) is covariance-stationary. Hint: The 

stationarity condition requires that all the roots of (13) be less than 1 in abso- 

lute value. By (1 2) what needs to be shown is that (F)"t,-, +,,,, 0. Recall 

that z, + ,,,, ar if the mean square convergence occurs component-wise. 

(e) Show that y, has the MA(oo) representation 

How is $, related to the characteristic roots? Hint: From (d) it immediately 

follows that 

The top equation of this is the MA(oo) representation for y,. 

(If all the eigenvalues are not distinct, we need what is called the "Jordan 
decomposition" of F in place of (15).) 

8. (AR(1) that started at t = 0) In the text, the MA(oo) representation (6.2.2) of 
an AR(1) process following y, = c + @ Y , - ~  + E, assumes that the process is 
defined for t = -1, -2, . . . as well as for t = 0, 1,2, . . . . Instead, consider 
an AR(1) process that started at t = 0 with the initial value of yo. Suppose that 
141 < 1 and that yo is uncorrelated with the subsequent white noise process 

(El, ~ 2 ,  . - * ). 

(a) Write the variance of y, as a function of u2 (= Var(~,)), Var(yo), and @. 

Hint: By successive substitution, 

Let p and {yj) be the mean and autocovariances of the covariance- 

stationary AR(1) process, so p = c / ( l  - @) and {y,) are as in (6.2.5). 
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Show that 

lirn E(yt) = p,  lirn Var(yt) = yo, and lirn Cov(y,, = yi. 
I+, t +OO I+, 

(b) Show that {y,} is covariance-stationary if E(yo) = p and Var(yo) = yo. 

9. (Proof of Proposition 6.8(a)) We wish to prove Proposition 6.8(a). By Cheby- 
chev's inequality, it suffices to show that limn,, Var(j) = 0. From (6.5.2), 

(a) (Optional) Prove the following result: 

1 " 
lim a, = 0 + lim - C a, = 0. 

j+m n+m n j=1 

Hint: {aj} converges to 0. So (i) laj ( < M for all j ,  and (ii) for any given E > 

0 there exists a positive integer N such that (aj I < 612 for all j > N. So 

By taking n large enough, NMIn can be made less than ~ / 2 .  

(b) Taking the result in (a) as given, prove that Var(j) -t 0 as n -t CQ. 
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10. (Proof of Proposition 6.8(b)) 

(a) (optional) Prove the following result: 

I 
C a ,  < m + lim - 1 ja, = 0. 

n - + w  n  
j=1  , = I  

Hint: 

1 ja, = a1 + 202 + 30, + - . . + non 

Since {a , }  is summable, ( i )  I C;=, akI < M for all j ,  n ,  and ( i i )  there exists 
a positive integer N such that I X i = ,  akI < ~ / 2  for any given E > 0 for all 
j ,  n > N (this follows because {C,"=, a,}  is Cauchy). 

(b) Taking this result as given, prove Proposition 6.8(b). 

E M P I R I C A L  E X E R C I S E S  

1. Read at least pp. 115-1 19 (except the last two paragraphs of p. 119) of Bekaert 
and Hodrick (1993) before answering. Data files DM.ASC (for the Deutsche 
Mark), POUND.ASC (British Pound), and YEN.ASC (Japanese Yen) contain 
weekly data on the following items: 

Column 1: the date of the observation (e.g., "19850104" is January 4, 1985) 
Column 2: the ask price of the dollar in units of the foreign currency in the 

spot market on Friday of the current week (S,) 
Column 3: the ask price of the dollar in units of the foreign currency in the 

30-day forward market on Friday of the current week (F,) 
Column 4: the bid price of the dollar in units of the foreign currency in the spot 

market on the delivery date on a current forward contract (S30,). 
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The sample period is the first week of 1975 through the last week of 1989. 
The sample size is 778. As in the text, define sf r log(&), f, = log(Ff), 
s30, = log(S30,). If I, is the information available on the Friday of week t, it 
includes {sf, . . . , f,, f,-1, . . . , ~ 3 0 , - ~ ,  s3Of-,j, . . . 1. Note that s30, is not 
observed until after the Friday of week t + 4. Define E, = s30, - f,. 

Pick your favorite currency to answer the following questions. 

(a) (Librarylinternet work) For the foreign currency of your choice, identify 
the week when the absolute value of the forward premium is largest. For 
that week, find some measure of the domestic one-month interest rate (e.g., 
the one-month CD rate) for the United States and the currency's home 
country, to verify that the interest rate differential is as large as is indicated 
in the forward premium. 

(b) (Correlogram of {E,]) Draw the sample correlogram of E, with 40 lags. 
Does the autocorrelation appear to vanish after 4 lags? (It is up to you to 
decide whether to subtract the sample mean in the calculation of sample 
correlations. Theory says the population mean is zero, which you might 
want to impose in the calculation. In the calculation of the correlogram 
for the yen/$ exchange rate shown in Figure 6.2, the sample mean was 
subtracted.) 

(c) (Is the log spot rate a random walk?) Draw the sample correlogram of 
s ,+~ - s, with 40 lags. For those 40 autocorrelations, use the Box-Ljung 
statistic to test for serial correlation. Can you reject the hypothesis that {sf} 
is a random walk with drift? 

(d) (Unconditional test) Carry out the unconditional test. Can you replicate 
the results of Table 6.1 for the currency? 

(e) (Optional, regression test with truncated kernel) Carry out the regression 
test. Can you replicate the results of Table 6.2 for the currency? 

RATS Tip: Use LINREG with the ROBUSTERRORS option. To include 
autocorrelations up to the fourth, set LAGS = 4 in LINREG. The DAMP = 

0 option instructs LINREG to use the truncated kernel. 

TSP Tip: TSP's GMM procedure has the KERNEL option, but the choice is 
limited to Bartlett and the kernel called Parzen. You would have to use 
TSP's matrix commands to do the truncated kernel estimation. 

(f) (Bartlett kernel) Use the Bartlett kernel-based estimator of S to do the 
regression test. Newey and West (1994) provide a data-dependent auto- 
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matic bandwidth selection procedure. Take for granted that the autocovari- 
ance lag length determined by this procedure is 12 for yen/$ (so autocovar- 
iances up to the twelfth are included in the calculation of g), 8 for DM/$, 
and 16 for Pound/$. 

RATS Tip: The ROBUSTERRORS , DAMP = 1 option instructs LINREG to 
use Bartlett. For yen/$, for example, set LAGS = 12. 

TSP Tip: Set het , kernel = bart le t t in the GMM procedure. Set 
NMA = 1 2 for yen/$. 

The standard error for the f - s coefficient for yen/$ should be 0.68 15. 

(g) (Optional, VARHAC) Use the VARHAC estimator for g in the regression 
test. Set p,,, to the integer part of n'/3.  In Step 1 of the VARHAC, you 
would estimate a bivariate VAR, and for each of the two VAR equations, 
you would pick the lag length p by BIC on the fixed sample of t = p,,, + 
1 ,  . . . , T. The information criterion could be (6.6.1 1) or, alternatively, 

, Just to be clear about how you picked p in your answer, use this latter 
objective function in selecting p by BIC. For the case of yen/$, the lag 
length selected should be 4 for the first VAR equation and 6 for the second 
equation. For yen/$, the standard error for the f - s coefficient should be 
0.8027. 

2. (Continuation of the Fama exercise of Chapter 2) Now we know how to use 
the three-month T-bill rate to test the efficiency of the U.S. Treasury bills mar- 
ket using monthly data. Let 

n, = inflation rate (in percent, annual rate) over the three-month 
period ending in month t - 1, 

R, = three-month T-bill rate (in percent, annual rate) at the begin- 
ning of month t .  

Consider the Fama regression for testing market efficiency: 

(a) (Trivial) Why is the dependent variable 17,+3 rather than, say, n,? 
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(b) Show that, under the efficient market hypothesis, = 1 and the autoco- 
variance of { E ~ )  vanishes after the second lag (i.e., y, = 0 for j > 2). 

(c) Let rt+3 -- Rr - nr+3 be the ex-post real rate on the three-month T-bill. 
Use PA13 in MISHKIN.ASC as the measure of the three-month inflation 
rate to calculate the ex-post real rate. (The timing of the variables in 
MISHKIN.ASC is such that a January interest rate observation uses end-of- 
December bill rate data and a January observation for a three-month infla- 

tion rate is from the December to March CPI data. So PA13 and TB3 (three- 
month T-bill rate) for the same month can be paired in the regression.) 
Draw the sample co~~elogram for the sample period of 1153-717 1. What is 

the prediction of the efficient market hypothesis about the correlogram? 

(d) Test market efficiency by estimating the Fama regression for the sample 

period of 1/53-7171. (The sample size should be 223; do not throw away 

two-thirds of the observations, as Fama did in his Tables 6-8.) Use (6.6.4) 

with q = 2 for S. 

A N S W E R S  T O  S E L E C T E D  Q U E S T I O N S  

A N A L Y T I C A L  E X E R C I S E S  

2d. Since {+,)  is absolutely summable, +j + 0 as j + oo. So for any j ,  there 

exists an A > 0 such that / + j + k /  5 A for all j ,  k. So I+,+k . + k (  I Alllrk I. 
Since { + k }  (and hence { A + k } )  is absolutely summable, so is {+,+k . + k }  (k = 

0, 1,2,  . . . ) for any given j .  Thus by (i), 

Now set ujk in (ii) to I + j + k l  . Then 

Let 
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Then {sk} is summable because Isk 1 5 I lClk 1.M and (lClk} is absolutely summable. 
Therefore, by (ii), 

This times a2 is CEO 1 yjl. So {y,} is absolutely summable. 

7e. lCrj is the (1, 1) element of T(A)JT-' . 

= (1 - 4')p + 4' E(y0) (since p = c/(1 - 4)) 
= P + 4' . [E(yo) - PI, 

Var(y,) = (1 + $I2 + 44 + . . . + 42t-2)a2 

+ 42' Var(yo) (since COV(E~, yo) = 0) 

= (1 - 42')y~ + 42t Var(yo) (since yo = a2/(1 - @2)), 

= Yo + 42f . [Var(yo) - yo19 

E M P I R I C A L  E X E R C I S E S  

Ic. The Ljung-Box statistic with 40 lags is 84.0 with a p-value of 0.0058%. So the 
hypothesis that the spot rate is a random walk with drift can be rejected. See 
Figure 6.6 for the correlogram for yen/$. 

If. For the yen/$ exchange rate, the standard errors are 3.72 for the constant and 
0.68 for the f - s coefficient. The Wald statistic for the hypothesis that ,!lo = 0 
and ,!ll = 1 is 21.85 (p = 0.002%). 



Serial Correlation 443 

- - - -  two standard errors 

Figure 6.6: Correlogram of st+, - st ,  YenIDollar 

- - - - two standard errors 

Figure 6.7: Correlogram of Three-Month Ex-Post Real Rate 

2c. The correlogram for the three-month ex-post real rate is shown above (Figure 
6.7). Theory predicts that serial correlation vanishes after the second lag. The 
correlogram is mostly consistent with this prediction. 
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C H A P T E R  7 

Extreml~m Estimators 

A B S T R A C T  

In the previous chapters, the generalized method of moments (GMM) has been our 
choice for estimating the various models we have considered. The method of max- 
imum likelihood (ML) has been discussed, but only in passing. In this chapter, we 
expand our repertoire of estimation techniques by examining a class of estimators 
called "extremum estimators," which includes (linear and nonlinear) least squares, 
(linear and nonlinear) GMM, and ML as special cases. As has been emphasized 
by Amemiya (1985) and others, this unified approach is useful for bringing out the 
common structure that underlies those apparently diverse estimation principles. 

Section 7.1 introduces extremum estimators. The two sections that follow 
develop the asymptotic properties of extremum estimators. Section 7.4 defines the 
trio of test statistics -the Wald, Langrange multipler, and likelihood-ratio statis- 
tics - for extremum estimators in general, and shows how they can be specialized 
to individual cases. Section 7.5 is a brief discussion of the computational aspects of 
extremum estimators. 

The discussion of this chapter may appear daunting, as it combines a heavy use 
of asymptotic theory with calculus. The essence, however, is really straightforward. 
If you can read graduate textbooks on micro and macroeconomics without too much 
difficulty, you should be able to understand most of the discussion on the second (if 
not the first) reading. 

If you are not interested in the asymptotics of extremum estimators per se but 
plan to study Chapter 8, there is no need to read this chapter in its entirety. Just read 
Section 7.1 and then try to understand the statements in Propositions 7.5, 7.6, 7.8, 
7.9, and 7.1 1. 

A Note on Notation: Unlike in the previous chapters, we use the parameter vec- 
tor with subscript 0 for its true value. So e0 is the true parameter value, while 8 
represents a hypothetical parameter value. This notation is standard in the "high- 
brow" literature on nonlinear estimation. Also, we will use "t" rather than "i" for 
the observation index. 
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7.1 Extremum Estimators 

An estimator 6 is called an extremum estimator if there is a scalar objective func- 
tion Q,(B) such that 

6 maximizes Q,(O) subject to 8 E O c RP, (7.1.1) 

where O,  called the parameter space, is the set of possible parameter values. In 
this book, we restrict our attention to the case where O is a subset of the finite 
dimensional Euclidean space RP . The objective function Q, (8) depends not only 
on 8 but also on the sample or the data, (wl,  w2, . . . , w,), where w, is the t-th 
observation and n is the sample size. In our notation the dependence of the objec- 
tive function on the sample of size n is signalled by the subscript n. The maxi- 
mum likelihood (ML) and the linear and nonlinear generalized method of moments 
(GNIM) estimators are particular extremum estimators. This section presents these 
and other extremum estimators and indicates how they are related to each other. 

"Measurability" of 

To be sure, the maximization problem (7.1.1) may not necessarily have a solution. 
But recall from calculus the following fact: 

Let h : RP + R be continuous and A c RP be a compact (closed and 
bounded) set. Then h has a maximum on the set A. That is, there exists an 
x* E A such that h(x*) 3 h(x) for all x in A. 

Therefore, if Q,(B) is continuous in 8 for any data (wl,  w2, . . . , w,) and O is 
compact, then there exists a 8 that solves the maximization problem in (7.1.1) for 
any given data (wl,  . . . , w,). In the event of multiple solutions, we would choose 

A 

one from them. So 8, thus uniquely determined for any data (wl,  . . . , w,), is a 
function of the data. Strictly speaking, however, being a function of the vector 
of random variables (w,, . . . , w,) is not enough to make 6 a well-defined random 
variable; needs to be a "measurable" function of (wl, . . . , w,). (If a function is 
continuous, it is measurable.) The following lemma shows that 6 is measurable if 

Q,(fl> is 

Lemma 7.1 (Existence of extremum estimators): Suppose that (i) the parameter 
space O is a compact subset of  RP, (ii) Qn(8) is continuous in 8 for any data 
(wl, . . . , w,), and (iii) Q ,  (8) is a measurable function o f  the data for all 8 in O. 
Then there exists a measurable function of  the data that solves (7.1.1). 
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See, e.g., Gourieroux and Monfort (1995, Property 24.1) for a proof. In all the 
examples of this chapter, Qn (8) is measurable. 

In most applications, we do not know the upper or lower bound for the true 
parameter vector. Even if we do, those bounds are not included in the parameter 
space, so the parameter space is not closed (see the CES example below for an 
example). So the compactness assumption for O is sometlung we wish to avoid. 
In some of the asymptotic results of this chapter, we will replace the compactness 
assumption by some other conditions that are satisfied in many applications. 

Two Classes of Extremum Estimators 
In the next two sections, we will develop asymptotic results for extremum esti- 
mators and then specialize those results to the following two classes of extremum 
estimators. 

1 .  M-Estimators. An extremum estimator is an M-estimator if the objective 
function is a sample average: 

where m is a real-valued function of (w,, 8). Two examples of an M-estimator 
we study are the maximum likelihood (ML) and the nonlinear least squares 
(NLS). 

2. GMM. An extremum estimator is a GMM estimator if the objective function 
can be written as 

I I 
Qn(8) = -5gn(8)'Ggn(fl) with h ( 8 )  - x g(wt; 8), (7.1.3) 

( K x l )  n t=I 

where 6' is a K x K symmetric and positive definite matrix that defines the 
distance of gn (8) from zero. It can depend on the data. Maximizing this objec- 
tive function is equivalent to minimizing the distance &(8)'6'g,,(8), which is 
how we defined GMM in Chapter 3. As will become clear, the deflation of the 
distance by 2 simplifies the expression for the derivative of the objective func- 
tion. We have introduced GMM estimation for linear models where g(wt ; 8) is 
linear in 8.  Below we will show that GMM estimation can be extended easily 
to nonlinear models. 

There are extremum estimators that do not fall into either class. A prominent exam- 
ple is classical minimum distance estimators. Their objective function can be 
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written as -g,, (8)'Ggn (8) but g, (8) is not necessarily a sample mean. The consis- 
tency theorem of the next section is general enough to cover this class as well. 

In the rest of this section, we present examples of M-estimators and GMM 
estimators. Each example is a combination of the model (a set of data generating 
processes [DGPs]) and the estimation method. 

Maximum Likelihood (ML) 
A prime example of an M-estimator is the maximum likelihood for the case where 
{w,} is i.i.d. The model here is a set of i.i.d. sequences {w,} where the density of 
w, is a member of the family of densities indexed by a finite-dimensional vector 
8:  f (w,; 8 ) ,  8 E 0. (Since (w,} is identically distributed, the functional form of 
f (.; .) does not depend on t.) The functional form o f f  (.; -) is known. The model 
is parametric because the parameter vector 8 is finite dimensional. At the true 
parameter value 80, the density of the true DGP (the DGP that actually generated 
the data) is f (w,; eO).' We say that the model is correctly specified if 80 E 0. 

Since {w,} is independently distributed, the joint density of the data (wl, 
w2,. . . , w,) is 

With the distribution of the data thus completely specified, the natural estimation 
method is maximum likelihood, which proceeds as follows. With the true para- 
meter vector 80 replaced by its hypothetical value 8 ,  this density, viewed as a 
function of 8, is called the likelihood function. The maximum likelihood (ML) 
estimator of 80 is the 8 that maximizes the likelihood function. Since the log 
transformation is a monotone transformation, maximizing the likelihood function 
is equivalent to maximizing the log likelihood f ~ n c t i o n : ~  

The ML estimator of 80, therefore, is an M-estimator with 

'Had we adhered to the notational convention of the previous sections, the true parameter value would be 
denoted by I9 and a hypothetical value by 0 .  In this chapter, we use BO for the true value and I9 for a hypothetical 
value of the parameter vector. 

2 ~ o r  I9 such that f (wt; 0) = 0, the log cannot be taken. This does not present a problem because such I9 
never maximizes the (level) likelihood function f (wl , . . . , w,; 0). For such I9 we can assign an arbitrarily small 
number to log f (wt ; 0) so that the maximizer of the level likelihood is also the maximization of the log likelihood. 
See White (1994, p. 15) for a more formal treatment of this issue. 
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1 " 
m(wt;8) = logf(wt;8),  thatis, a,(@) = -x log f (wt ;8) .  (7.1.6) 

n t=l 

Before illustrating ML by an example, it is useful to make three remarks. 

(Serially correlated observations) The average log likelihood would not take 
a form as simple as this if (w,] were serially correlated. Examples of ML for 
serially correlated observations will be studied in the next chapter. 

(Alternative estimators) Maximum likelihood is not the only way to estimate 
the parameter vector. For example, let ~ ( 8 )  be the expectation of w, implied by 
the density function f (w,; 8). It is a known function of 8.  By construction, the 
following zero-mean condition holds: 

The parameter vector 80 could be estimated by GMM with g(w,; 8 )  = w, -p(8) 
in the GMM objective function (7.1.3). 

(Efficiency of ML) As will be shown in the next two sections, ML is consistent 
and asymptotically normal under suitable conditions. It was widely believed 
that ML is efficient (i.e., achieves minimum asymptotic variance) in the class 
of all consistent and asymptotically normal estimators. This belief was shown 
to be wrong by a counterexample (described, for example, in Amemiya, 1985, 
Example 4.2.4). Nevertheless, ML is efficient in quite general classes of asymp- 
totically normal estimators. One such general class is GMM estimators. In 
Section 7.3, we will note that the asymptotic variance of any GMM estimator of 
O0 is no smaller than that of the ML estimator. 

Example 7.1 (Estimating the mean of a normal distribution): Let the 
data (wl, . . . , w,) be a scalar i.i.d. sequence with the distribution of w, given 
by N(p ,  u2).  So 8 = (p, u2)' and 

The average log likelihood of the data (wl,  . . . , w,) is 
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The ML estimator of (pO, 0:) is an extremum estimator with Q,(8) taken 
to be this average log likelihood. Suppose that the variance is assumed to 

be positive but that there is no a priori restriction on po, so the parameter 

space O is R x R++, where Kt++ is the set of positive real numbers. It is easy 
to check that the ML estimator of p o  is the sample mean of w,. The GMM 
estimator of p o  based on the zero-mean condition E(w, - po) = 0, too, is the 
sample mean of w,. 

Conditional Maximum Likelihood 
In most applications, the vector w, is partitioned into two groups, y, and x,, and the 
researcher's interest is to examine how x, influences the conditional distribution of 

y, given x,. We have been calling the variable y, the dependent variable and x, 

regressors. None of the results of this chapter depends on y, being a scalar; y, can 
be a vector and still all the results will remain valid with the scalar "y," replaced 

by a vector "y, ." We nevertheless use the scalar notation, simply because in all the 
examples we consider in this chapter, there is only one dependent variable. 

Let f (y, 1 x,; 80) be the conditional density of y, given x,, and let f (x,; S o )  
be the marginal density of x,. Then 

is the joint density of w, = (y,, xi)'. Suppose, for now, that 80 and $o are not func- 

tionally related (see the next paragraph for an example of a functional relationshp). 
The average log likelihood of the data (w, , . . . , w,) is 

1 " 1 " 1 " 
- n x 1% f (wt; 8 ,  $) = - n log f (yf 1 +; 8 )  + - x log f (x,; $). n 

t = l  , = I  r=1 

The first term on the right-hand side is the average log conditional likelihood. 
The conditional ML estimator of 80 maximizes this first term, thus ignoring the 

second term. It is an M-estimator with 

The second term on the right-hand side of (7.1.10) is the average log marginal 
likelihood. It does not depend on 8,  so the conditional ML estimator of 80 is 
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numerically the same as the (joint or full) ML estimator that maximizes the average 

joint likelihood (7.1.10). 
Now suppose that 80 and $o are functionally related. For example, 80 and $o 

might be partitioned as 80 = (a;, Bb)', So = (Bb, yb)'. Then the full (i.e., uncon- 
ditional) ML and conditional ML estimators are no longer numerically equal. It is 
intuitively clear that the conditional ML misses information that could have been 
obtained from the marginal likelihood. Indeed it can be shown that the conditional 
ML estimator of 80 is less efficient than the full ML estimator obtained from max- 

imizing the joint log likelihood (7.1.10) (see, e.g., Gourieroux and Monfort, 1995, 
Section 7.5.3). In most applications, this loss of efficiency is unavoidable because 

we do not know, or do not wish to specify, the parametric form, f (x,; $), of the 
marginal distribution. 

Here are two examples of conditional ML (other examples will be in the next 

chapter). 

Example 7.2 (Linear regression model with normal errors): In Chapter 
2, we considered the linear regression model with conditional homoskedas- 
ticity. Assume further that the error term is normally distributed, so 

The conditional likelihood of y, given x,, f (y, I x,; 8), is the density function 
of N(xiB, a2 ) .  So, with 8 = (B', a2) '  and w, = (y,, xi)', the m function is 

The parameter space O is IRK x KC++, where K is the dimension of j9 and 
KC++ is the set of positive real numbers reflecting the a prion restriction that 
a; > 0. As was verified in Chapter 1 ,  the ML estimator of Po is the OLS 

estimator and the ML estimator of a; is the sum of squared residuals divided 

by the sample size n.  

Example 7.3 (Probit): In the probit model, a scalar dependent variable y, 
is a binary variable, y, E (0, I}. For example, y, = 1 if the wife chooses to 

enter the labor force and y, = 0 otherwise, and x, might include the husband's 
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income. The conditional probability of y, given a vector of regressors x, is 
given by 

where @ (.) is the cumulative density function of the standard normal distri- 
bution. This can be written compactly as 

If there is no a priori restriction on 80, the parameter space O is IWP. The ML 
estimator of 80 is an M-estimator with the m function given by 

rn(w,; 8) = log f (y, I x,; 8) = yt log @(x:8) + (1 - Y,) log[l - @(x:@)I. 
(7.1.15) 

lnvariance of ML 
The joint ML and conditional ML estimators have a number of desirable proper- 
ties. One of them, which holds true in finite samples, is invariance. To describe 
invariance for an extremum estimator in general, consider reparameterizing the 
model by a mapping or function A = ~ ( 8 )  defined on O. Let A be the range of the 
mapping: 

A = 7(O) = {A 1 A = 7(8) forsome8 E O]. (7.1.16) 

By definition, for every A in A, there exists at least one 8 such that A = r(8). The 
mapping 7 : O -+ A is called a reparameterization if it is one-to-one; namely, for 
every I in A, there is only one 8 in O such that A = 7 (8). This unique 8 is therefore 
a function of I. This mapping from A to O is called the inverse of 7 and denoted 
T - l .  We say that an extremum estimator 6 is invariant to reparameterization r 
if the extremum estimator for the reparameterized model is ~ ( 6 ) .  Let &(A) be 
the objective function associated with the reparameterized model. An extremum 
estimator is invariant if and only if 

& , ( A )  = Q,(T-~(A))  for all A E A. (7.1.17) 

To see this, let i = r (6). For any A E A, we have 5, (A) = Q, (r -' (A)) 5 Q, (6) 
because 6 maximizes Q, (8) on O and T-'(A) is in O. But Q, (9) = Q, ( ~ - ' ( i ) )  = 
5, ( i ) .  SO 5, (A) 5 5, (i) for all I E A. 
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ML (be it conditional or joint) is invariant to reparameterization because the 
likelihood after reparameterization is f(.; 1 )  = f (.; r- '(a)), which produces the 
objective functions that satisfy (7.1.17). Can there be an estimator that is not in- 
variant? The answer is yes; Review Question 5 will ask you to verify that GMM is 
not invariant. 

Nonlinear Least Squares (NLS) 
In NLS, as in conditional ML, the observation vector w, is partitioned into two 
groups, y, and x, : w, = (y,, xi)'. The model in NLS is a set of stochastic processes 
{y,, x,} such that the conditional mean E(y, I x,), which is a function of x,, is a 
member of the parametric family of functions ~ ( x , ;  8) ,  8 E O. The functional form 
of q(. ;  .) is known. If 8, is the true parameter value, then E(y, 1 x,) = V(X,; OO) for 
the true DGP {y,, x,}. If we define E, - y, - E(y, ( x,), then the correctly specified 
model can be written as 

The most widely used estimation method to estimate 8, here is least squares, 
which is to minimize the sum of squared residuals. Therefore, an NLS estimator, 
which is least squares applied to the model just described, is an M-estimator with 

1 " 
m(w,; 8)  = -[y, - ~ ( x , ;  e)i2, that is, e n ( @ )  = -- C [y, - v(x,; e)i2. 

n 
t = l  

(7.1.19) 

Here maximization of Qn(8) is the same as minimization of the sum of squared 
residuals. 

Example 7.4 (CES production function with additive errors): As an 
illustration, consider the CES production function 

where Q, is output in period t ,  Kt is the capital stock, L, is labor input, and 
E, is an additive shock to the production function with E(E, I Kt, L,) = 0. 
This is a conditional mean model (7.1.18) with y, = Q, , x, = (Kt,  L,)', 8, = 

(A,, So, M)', ~ ( x , ;  8) = A - [SK;~ + (1 - S)L;~]-"~.  The usual properties 
for production functions (of monotonicity and concavity) are satisfied if A > 

0,0 < S < 1, - 1 < p ,  which determines the parameter space O. 
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Linear and Nonlinear GMM 
In Chapter 3, we applied GMM to linear equations. The linear equation to be 
estimated was 

With x, as the vector of instruments, the orthogonality (zero-mean) conditions were 

The correctly specified model here is a set of ergodic stationary processes w, = 

(y,, zi, xi)' such that these zero-mean conditions hold for 80 in O. The linear GMM 
estimator of 80 is a GMM estimator with the g function in the GMM objective 
function (7.1.3) given by 

GMM can be readily applied to nonlinear equations. Suppose that the estima- 
tion equation is nonlinear and also implicit in y, : 

Just set g(w, ; 8 )  = x, .a (y, , z, ; 8 ) .  This estimator is called a generalized nonlinear 
instrumental variables e ~ t i m a t o r . ~  It is still a special case of GMM because the 
g function here can be written as a product of the vector of instruments and the 
error term. The properties of GMM estimators to be developed in this chapter do 
not rely on this special structure. 

As an example of nonlinear GMM, consider the nonlinear Euler equation of 
Hansen and Singleton (1982). 

Example 7.5 (Nonlinear consumption Euler equation): The Euler equa- 
tion for the household optimization problem, standard in macroeconomics, is 

where R,,, is the gross ex-post rate of return (1 plus the rate of return) from 
the asset in question, c, is consumption, Po is the discounting factor, u'(c) is 
the marginal utility, and I, is the information available at date r .  Assume for 

3 ~ t  is more general than the usual nonlinear instrumental variables estimator because conditional homoske- 
dasticity is not assumed. 
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the utility function that u (c) = ~ ' - ~ o / ( l  - uo). Then ul(c) = C - ~ O  and the 
Euler equation becomes 

If x, is a vector of variables whose values are known at date t, then x, E I, 
and it follows from (7.1.26) that 

Taking the unconditional expectation of both sides and using the Law of Total 
Expectations (that E[E(x I I,)] = E(x)), we obtain the orthogonality (zero- 
mean) conditions :E[g(w,; Bo)] = 0 where 

Q U E S T I O N S  FOR R E V I E W  

1. (Estimating probit model by NLS) For the probit model, verify that E(y, I 
x,) = @(x;O0). Consider applying least squares to this model. Specify the rn 
function in the M-estimator objective function (7.1.2). 

2. (Estimating probit model by GMM) For the probit model, verify that the 
orthogonality conditions E[x,. (y, - ( ~ : 0 ~ ) ) ]  = 0 hold. Specify the g function 
in the GMM objective function (7.1.3). 

3. (Estimation by ML of a GMM model?) Suppose that (y,, z,, x,} is i.i.d. in 
the correctly specified linear model described in the last subsection. Can you 
estimate 00 by ML? [Answer: No, because the model does not specify the 
parametric form for the density of w, .] 

4. (E(E, ( x,) = 0 vs. E(E, . x,) = 0 in NLS) Consider the quadratic NLS model 
where ~ ( x , ;  0) = Oo + Olx, + 02x,2. Suppose that E(E,x,) = 0 but E(E,X;) # 0. 
Does E(E, ( x,) = 0 hold? [Answer: No. If E(E, I x,) = 0, then E(~,h(x,))  = 0 



456 Chapter 7 

for any (measurable) function h .] Would the NLS estimator of O0 be consistent? 
[Answer: No.] 

5. (Lack of invariance in GMM) Consider the linear model y, = O0zf + where 
80 and z, are scalars. The orthogonality conditions are E[xf . (y, - @Ozf)] = 0. 
Write down the GMM objective function en(@) .  Assume that O = &+ (i.e., 

> 0) and consider the reparameterization A = 118. With this reparame- 
terization, the linear equation can be rewritten as 2, = )coyf - Aoef and the 
orthogonality conditions can be rewritten as E[x, . (zf - )coyr)] = 0. Let &(A) 
be the GMM objective functions associated with this set of orthogonality con- 
ditions. Is it the case that Q, (@) = 6, (1 /@) or G, (A) = Q, (1 /A) when fi is 
the same in the two objective functions? [Answer: No.] 

7.2 Consistency 

In this section, we first present a set of sufficient conditions under which an extre- 
mum estimator is consistent. Those conditions will then be specialized to NLS, 
ML, and GMM. 

Two Consistency Theorems for Extremum Estimators 

The objective function e n ( . )  is a random function because for each 8 its value 
Q, (e), being dependent on the data (wl,  . . . , w,), is a random variable. The basic 
idea for the consistency of an extremum estimator is that if Q,(8) converges in 
probability to Qo(8), and the true parameter Bo solves the "limit problem" of max- 
imizing the limit function Qo(8), then the limit of the maximum 6 should be 80. 
Sufficient conditions for the maximum of the limit to be the limit of the maximum 
are that the convergence in probability be "uniform" (in the sense made precise 
in a moment) and that the parameter space O be compact. As already mentioned, 
the parameter space is not compact in most applications. We therefore provide an 
alternative set of consistency conditions, which does not require O to be compact. 

To state the first consistency theorem for extremum estimators, we need to 
make precise what we mean by convergence being "uniform." If you are already 
familiar from calculus with the notion of uniform convergence of a sequence of 
functions, you will recognize that the definition about to be given is a natural 
extension to a sequence of random functions, e n ( . )  (n = 1,2, . . . ). Pointwise 
convergence in probability of Q, (.) to some nonrandom function Qo(.) simply 
means plim,,, Q,(8) = Qo(8) for all 8,  namely, that the sequence of random 
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variables 1 Q, (8) - Qo(8) 1 ( n  = 1,2, . . . ) converges in probability to 0 for each 
8.  Uniform convergence in probability is stronger. The convergence has to occur 
"uniformly" over the parameter space O in the following sense: 

sup lQ,(8) - Qo(8)I + 0 as n + oo. 
BE@ P 

As in the case of convergence in probability, uniform convergence in probability 
can be extended readily to sequences of vector random functions or matrix random 
functions (by viewing a matrix as a vector whose elements have been rearranged), 
by requiring uniform convergence for each element: a sequence of vector ran- 
dom functions (h, (.)} converges uniformly in probability to a nonrandom function 
ho(.) if each element converges uniformly. This element-by-element convergence 
is equivalent to convergence in the norm: 

sup llh,(8) - ho(8)11 + 0 as n + oo, 
B E @  P 

where 11.11 is the usual Euclidean norm.4 
In the following statement of our first consistency theorem, the conditions 

ensuring that 9 is well defined are labeled (i)-(iii), while those ensuring consis- 
tency are (a) and (b). 

Proposition 7.1 (Consistency with compact parameter space): Suppose that 
(i) O is a compact subset of  R p ,  (ii) Q, (8) is continuous in 8 for any data (wl, . . . , 
w,), and (iii) Q,(8) is a measurable function of  the data for all 8 in O (so by 
Lemma 7.1 the extremum estimator 9 defined in (7.1.1) is a well-defined random 
variable). I f  there is a function Qo (8) such that 

(a) (identification) Qo(8) is uniquely maximized on O at 80 E 0, 

(b) (uniform convergence) Q, (.) converges uniformly in probability to Qo(-), 

then 9 +, 80. 

We will not prove this result; see, e.g., Amemiya (1985, Theorem 4.1.1) for a proof. 
For estimates such as ML, NLS, and GMM, we will state later the identification 
condition (a) in more primitive terms so that the condition can be interpreted more 
intuitively. 

4 ~ h e  Euclidean norm of a p-dimensional vector x = (XI ,  x2, . . . , I,,)', denoted JlxJl, is defined as 

J;:+x;+.-.+xi. 
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The theorem that does away with the compactness of O is 

Proposition 7.2 (Consistency without compactness): Suppose that (i) the true 
parameter vector 80 is an element of  the interior o f  a convex parameter space O 
( C  R*), (ii) Q, (8) is concave over the parameter space for any data (wl , . . . , w,), 
and (iii) Q,(B) is a measurable function of  the data for all 6 in O. Let e be 
the extremum estimator defined by (7.1.1) (wait for a moment to learn about its 
existence). If there is a function Qo(6) such that 

(a) (identification) Qo(8) is uniquely maximized on O at 80 E O, 

(6) (pointwise convergence) Q, (8) converges in probability to Qo(8) for all 
8 E O, 

then, as n + m, e exists with probability approaching 1 and e +, Bo. 

See Newey and McFadden (1994, pp. 2 133-2 134) for a proof. In most applications, 
O is an open convex set (as in Examples 7.1-7.4), so condition (i) is satisfied. The 
convergence of Q,(8) to Qo(8) is required to be only pointwise, which is easier to 
verify in applications. The price of these niceties is the requirement that the objec- 
tive function e n ( @ )  be concave for any data (under which pointwise convergence 
implies uniform convergence), but in many applications this condition is satisfied. 
Below we will verify that concavity is satisfied for ML for the linear regression 
model (after a reparameterization), probit ML, and linear GMM. 

Consistency of M-Estimators 
For an M-estimator, the objective function is given by (7.1.2). If {w,) is ergodic 
stationary, the Ergodic Theorem implies pointwise convergence for Q, (6) : Q, (8) 
converges in probability pointwise for each 8 E O to Qo(8) given by 

(provided, of course, that E[m(w,; 8)] exists and is finite). To apply the first con- 
sistency result (Proposition 7.1) to M-estimators, we need to show that the conver- 
gence of x:=, m(w,; .) to E[m(w,; .)] is uniform. A standard method to prove 
uniform convergence in probability, which exploits the fact that the expression is 

5~ scalar function h ( x )  is said to be concave if a h ( x 1 )  + (1  - a ) h ( x 2 )  5 h ( a x l  + ( I  - a ) x 2 )  for all 
x , ,  x2,O 5 a 5 1 .  So a linear function is concave. Some authors use the term "globally concave" to distinguish 
it from the concept of "local concavity" that the Hessian evaluated at the parameter vector in question is negative 
semidefinite. If a function is concave, then it is continuous. So condition (ii) in this proposition is stronger than 
condition (ii) in the previous proposition. 
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a sample mean, is the uniform law of large numbers. Its version for ergodic 

stationary processes (stated as Lemma 2.4 in Newey and McFadden, 1994, and as 
Theorem A.2.2 in White, 1994) is 

Lemma 7.2 (Uniform law of large numbers): Let {w,} be an ergodic stationary 
process. Suppose that (i) the set O is compact, (ii) rn(w,; 8 )  is continuous in 8 
for all w,, and (iii) rn (w,; 8 )  is measurable in w, for all 8 in O. Suppose, in 
addition, the 

dominance condition: there exists a function d(w,) (sometimes called the 
"dominating function") such that Irn (w,; 8 )  1 5 d(w,) for all 8 E O and 

E[d(wt)l < m. 

Then Cy=, m(w,; .) converges uniformly in probability to E[rn(w,; .)] over O. 
Moreover, E[m (w, ; 8)] is a continuous function o f  8.  

Since by construction Im(w,; 8 )  1 5 supeEo Irn (w,; 8 )  1 for all 8 E O, we can use 

supeEo Irn(w,; 811 for d(w,), so the above dominance condition can be stated sim- 

ply as E[supe,, Im(w,; 8)1 ] < m. The Uniform Law of Large Numbers can be 

extended immediately to vector random functions as follows: 

Let {w,) be an ergodic stationary process. Suppose that (i) the parameter 

space O is compact, (ii) h(w,; 8 )  is continuous in 8 for all w,, and 

(iii) h(w,; 8 )  is measurable in w, for all 8 in O. Suppose, in addition, the 

dominance condition: E[ sup Ilh(w,; 8 )  ( 1  1 < m. 
B E @  

Then E[h(w,; 8)] is a continuous function of 8 and C:=, h(w,; .) con- 
verges uniformly in probability to E[h(w,; .)] over O. 

Just by combining this lemma with the first consistency theorem for extremum 

estimators, and noting that Q, (8) is continuous if m(w,; 8 )  is continuous in 8 and 

that Q, (8) is a measurable function of the data if rn (w,; 8 )  is measurable in w,, we 
obtain 

Proposition 7.3 (Consistency of M-estimators with compact parameter space): 
Let {w, } be ergodic stationary. Suppose that (i) the parameter space O is a compact 
subset o f  RP , (ii) m(w,; 8 )  is continuous in 8 for all w,, and (iii) m (w,; 8 )  is 
measurable in w, for all 8 in O. Let e be the M-estimator defined by (7.1.1) and 
(7.1.2). Suppose, further, that 
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(a) (identification) E[m (w, ; 8)] is uniquely maximized on O at 80 E 0, 

(b) (dominance) E[supeEo Im(w,; 8)1] < GO. 

Then e +, 80. 

It is even more straightforward to specialize the second consistency theorem for 

extremum estimators to M-estimators. The objective function Q, (8) is concave if 
m(w,; 8) is concave in 8.6 As noted above, the pointwise convergence of Q,(8) to 

Qo(8) (= E[m(w,; @)I) is assured by the Ergodic Theorem if E[m(w,; 8)] exists 
and is finite for all 8.  Thus 

Proposition 7.4 (Consistency of M-estimators without compactness): Let {w,] 
be ergodic stationary. Suppose that (i) the true parameter vector 80 is an element of 
the interior of a convex parameter space O (C  RP), (ii) m(w,; 8)  is concave over 
the parameter space for all w,, and (114 m(w,; 8) is measurable in w, for all 8 in 
O. Let e be the M-estimator defined by (7.1.1) and (7.1.2). Suppose, further, that 

(a) (identification) E[m (w, ; 8)] is uniquely maximized on O at 80 E 0, 

(b) E[ Im(w,; 8)1 ] < CQ (i.e., E[m(w,; 8)] exists and is finite) for all 8 E O. 

Then, as n + CQ, e exists with probability approaching 1 and e +, 80. 

The following example shows that probit conditional ML satisfies the concavity 
condition. 

Example 7.6 (Concavity of the probit likelihood function): The m func- 

tion for probit is given in (7.1.15) where 4 (-) is the cumulative density func- 
tion of the standard normal distribution. Since the normal distribution is sym- 

metric, 4(-v)  = 1 - 4 (v) and the m function can be rewritten as 

1 Concavity of m is implied if both log 4(x)9) and log @(-go)  are concave in 
I 8. Since xi8 is linear in 8, it suffices to show concavity of log 4(v) .  The first I derivative of log 4 (v) is 

6~ fact from calcylus: if f (x) and g(x) are concave functions, then so is f (x) + g(x) 
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where $(v) (= @'(v)) is the density function of N ( 0 ,  1). It is well known 
that $(v)/@(v) is a decreasing function. So log @(v) is (strictly) concave. 

Concavity after Reparameterization 
Proposition 7.4 can be extended easily to estimators for objective functions that are 

I concave after reparameterization. Suppose that all the conditions of the proposition 
except concavity are satisfied and that there is a continuous one-to-one mapping 
T (8) : O + A = T ( 0 )  such that 

I is concave in A and A = T(O) is a convex set. Let 

be the objective function after this reparameterization. Clearly, all the assumptions 
of Proposition 7.4 are satisfied for A ,  A,  and G(w,; A): A. - ~ ( 8 0 )  is an interior 
point of A, E[G(w,; A)] is uniquely maximized at l o ,  and El: IG(w,; A)I ] < oo for 
all A in A. Thus for sufficiently large n ,  there exists an M-estimator i such that - 
plim,,, i = Lo. Since Qn (A) satisfies (7.1.17) for the one-to-one mapping T ,  

e = ~ - ' ( i )  maximizes the original objective function Qn (8). The estimator e is 
consistent because 

plim e = plim ~ - ' ( i )  
n+cc  n+m 

- 
= T '(plim i )  (since T-' is continuous) 

n-cc 

- 1 = T (AO) =do .  (7.2.6) 

Example 7.7 (Concavity of linear regression likelihood function): In 
the conditional ML estimation of the linear regression model, m(w,; 8 )  is 
given in (7.1.13) with 8 = (B', a2) '  and w, = (y,, x',)'. This function is 
not necessarily c ~ n c a v e , ~  but consider a reparameterization: y = l / a  and 
6 = B/a. It is a continuous one-to-one mapping between O = IRK x &+ and 
A = IRK x &+. The new parameter space A is convex. With A = (6', y)', 

7 ~ o r  example, the second partial derivative of rn with respect to a 2  may or may not be non-negative depending 
on the value of y, 2x;B. Recall that a necessary condition for a twice differentiable function h ( x l ,  . . . , x p )  to be 

concave is that i32h/(i3xj)2 be non-negative for all j = 1,2,  . . . , p .  
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the m function after reparameterization becomes 

Since log(y) is concave in y ,  it is concave in I. Since v = yy, - xi6 is linear 
in I and -$v2 is concave, - i(yy,  - is concave in I. So i i  above, 
which is the sum of two concave functions (plus a constant), is concave in 
I for any w,. Therefore, provided that all the conditions of Proposition 7.4 
besides concavity are satisfied for 8 ,  0, and m (w,; 8), the conditional ML 
estimator 0 is consistent. 

Identification in NLS and ML 
The identification condition (a) (that E[m(w,; 8)] be uniquely maximized at 80) in 
these consistency theorems for M-estimators can be stated in more primitive terms 
for NLS and ML. 

N L S  
Consider first NLS, where m(w,; 8) = -(y,-~(x,;  8)12 and E(y, I x,) = ~ ( x , ;  80). 
We have shown in Section 2.9 that the conditional expectation minimizes the mean 
squared error, that is, for any (measurable) function h(x,), 

mean squared error = ~ [ { y ,  - h ( ~ , ) ) ~ ]  

= E[{Y, - E(Y, I x , ) ) ~ ]  + E[{E(Y, I x,) - h ( ~ , ) ) ~ ]  

2 E[{Y, - E(Y, 1 x t ) ~ ~ ] .  (7.2.8) 

This is just reproducing (2.9.4) in the current notation. Furthermore, the condi- 
tional expectation is essentially the unique minimizer in the following sense. 

Being functions of x,, h(x,) and E(y, ( x,) are random variables. For 
two random variables X and Y, let X # Y mean Prob(X # Y) > 0 
(i.e., Prob(X = Y) < 1) and let X = Y mean Prob(X # Y )  = 0. 
(If X and Y differ only for events whose probability is zero, we do not 
need to care about the difference.) Therefore, h(x,) # E(y, I x,) means 
Prob(h(x,) # E(y, I x,)) > 0. If h(x,) # E(y, 1 x,) in this sense, 
then {E(y, I x,) - h ( ~ , ) ) ~  > 0 with positive probability. Consequently, 
E[{E(~ ,  1 x,) - h ( ~ , ) ) ~ ]  in (7.2.8) is positive and the mean squared error is 
strictly greater than ~ [ { y ,  - E(y, ( x , ) )~ ] .  
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Just setting h(x,) = ~ ( x , ;  0)  and noting that ~ ( x , ;  80) = E(y, I x,), we conclude 
that 

Therefore, the identification condition -that E[m(x,; o)] = - E [ ( ~ ,  - cp(x,; 8)}2] 
be maximized (i.e., E [ ( ~ ,  - ~ ( x , ;  o ) } ~ ]  be minimized) uniquely at f10 - holds if 

conditional mean identification: ~ ( x , ;  8 )  # ~ ( x , ;  80) for all 8 # OO. (7.2.10) 

ML 

For ML, the role played by (7.2.8) for NLS is played by the Kullback-Leibler 
information inequality. Here we examine identification for conditional ML (doing 
the same for unconditional or joint ML is more straightforward). The hypothetical 
conditional density f (y, I x,; O), being a function of (y,, x,), is a random variable 
for any 8.  The expected value of the random variable log f (y, I x,; 8 )  can be 
written as8 

Note well that the expected value is with respect to the true joint density f (y,, x,; 

00, 96,). The Kullback-Leibler information inequality about density functions 
(adapted to conditional densities) states that 

(provided, of course, that E[log f (y, I x,; O)] exists and is finite). (See Analytical 
Exercise 1 for derivation.) It immediately follows that the identification condition 
(that E[log f (y, I x,; 8)]  be maximized uniquely at 80) is satisfied if 

conditional density identification: f (y, I x,; 8 )  # f (y, I x,; 80) 

for all 8 # OO. (7.2.13) 

8 ~ f  f (yt I xr; 0) = 0, then its log cannot be defined. If this bothers you, assume f (yt I xt; 0) is positive for 
all yt,  xt, and 0 .  See White (1994, p. 9) for an argument that avoids such a simplifying assumption. 
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We can turn the two consistency theorems for M-estimators, Propositions 7.3 
and 7.4, into ones for conditional ML, with w, = (y,, xi)' and m(w,; 0) = log f . 
(y, ( x,; 0). Replacing the identification condition for M-estimators by conditional 
density identification, we obtain the following two self-contained statements about 
consistency of ML. 

Proposition 7.5 (Consistency of conditional ML with compact parameter 
space): Let { y, , x, } be ergodic stationary with conditional density f (y, I x, ; 00) 
and let 0 be the conditional ML estimator, which maximizes the average log con- 
ditional likelihood (derived under the assumption that { y,, x, } is i.i.d.): 

1 B = argmax - C log f(y, 1 x,; 0). 
B E @  

Suppose the model is correctly specified so that 00 is in O. Suppose that (i) the 
parameter space O is a compact subset of Rp , (ii) f (y, I x, ; 0) is continuous in 0 
for all (y, , x, ), and (iii) f (y, I x, ; 0) is measurable in ( y, , x, ) for all 0 E O (so by 
Lemma 7.1 0 is a well-defined random variable). Suppose, further, that 

(a) (identification) Prob[ f ( y, I x, ; 0) # f ( y, I x, ; Bo)] > 0 for all 0 # 00 in O,  

(b) (dominance) E[ supoco I log f (y, I x,; 0) 1 ] < m (note: the expectation is 
over y, and x,). 

Then 0 -+, 00. 

Proposition 7.6 (Consistency of conditional ML without compactness): Let 
{ y, , x, ] be ergodic stationary with conditional density f (y, I x, ; 00) and let 0 be the 
conditional ML estimator, which maximizes the average log conditional likelihood 
(derived under the assumption that { y, , x, ] is i.i.d.): 

1 B = argmax - C log f(y, I x,; 0). 
n 

Suppose the model is correctly specified so that 00 is in O. Suppose that (i) the 
true parameter vector 00 is an element of the interior of a convex parameter space 
O (C  Rp ), (ii) log f (y, I x, ; 0) is concave in 0 for all (y, , x,), and (iii) log f (y, I 
x,; 0) is measurable in (y,, x,) for all 0 in O.  (For sufficiently large n,  0 is well 
defined; see a few lines below.) Suppose, further, that 

(a) (identification) Prob[ f (y, I x, ; 0) # f (y, ( x, ; Bo)] > 0 for all 0 # 00 in O,  
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(b) E[ I log f (y, 1 x,; 8)1] < m (i.e., E[log f (y, I x,; 8)] exists and is finite) 
for all 8 E O (note: the expectation is over y, and x,). 

Then, as n -t m, 6 exists with probability approaching 1 and 0 -t , 80. 

There are two remarks worth making. 

The Kullback-Leibler information inequality (7.2.12) holds for unconditional 
densities as well (the proof is easier for unconditional densities). Therefore, 
Propositions 7.5 and 7.6 hold for unconditional ML; just replace f (y, I x,; 8) 

by f (wt; 8). 

The noteworthy feature of these two ML consistency theorems is that, despite 

the fact that the log likelihood is derived under the i.i.d. assumption for {y,, x,}, 
consistency is assured even if {y,, x,} is not i.i.d. but merely ergodic station- 
ary. This is because the ML estimator is an M-estimator. An ML estimator that 
maximizes a likelihood function different from the model's likelihood function 
is called a quasi-ML estimator or QML estimator. Put differently, a QML 
estimator maximizes the likelihood function of a misspecified model. There- 
fore, the "maximum likelihood estimators in Propositions 7.5 and 7.6 are QML 
estimators if {y,, x,} is ergodic stationary but not i.i.d. The propositions say that 
those particular QML estimators are consistent. 

The identification condition in conditional ML can be stated in even more prim- 
itive terms for specific examples. 

Example 7.8 (Identification in linear regression model): For the linear 
regression model with normal errors, the log conditional likelihood for obser- 
vation t is 

Since the log function is strictly monotonic, conditional density identification 

is equivalent to the condition that log f (yr 1 x,; 8) # log f (y, I x,; 80) 
with positive probability if 8 # 80. This condition is satisfied if E(x,xi) is 
nonsingular (and hence positive definite). To see why, let 8 = (B', a2)' and 
80 = (Bb, a;)'. Clearly, log f (y, ( x,; 8) # log f (y, I x,; 80) with positive 
probability if a2 # a;. So consider the case where a2 = a; but @ # Po. 
Then 
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Hence, xiB # xiBo with positive probability; if $B = <Po with probability 
1 (i.e.. if xiB # xiBo with probability zero), then E[($B - x # ~ } ~ ]  will be 
zero. Thus, y, - xiB # y, - xiBo with positive probability, implying that the 
identification condition is satisfied. The same condition about E(x,x;) also 
implies condition (b) in Proposition 7.6 because 

E[(yt - x;B)~I = E[(E, +$(Po - 8)l2] (since y, = <Po + E,) 

= E(E:) + (Bo - B)'E(xtxl,)(Bo - B) 

(since E(E, . x,) = 0). 

The last term is finite if E(x,xi) is. These results, together with the fact 
noted earlier that the log likelihood is concave after reparameterization, imply 
that the conditional ML estimator of the linear regression model with normal 
errors (derived under the i.i.d. assumption for (y,, x,}) is consistent if (y,, x,} 
is ergodic stationary and E(x,xi) is nonsingular. 

Example 7.9 (Identification in probit): The same conclusion just derived 
in the previous example for the linear model also holds for the probit model, 
whose conditional likelihood for observation t is 

The same argument used in Example 7.8 implies that, under the nonsingular- 
ity of E(x,xi), xi8 # xiOO with positive probability if 8 # 80. But since 
@(v) is strictly monotonic, $9 # x;OO with positive probability implies 
@(xi8) # @(xiO0) and @(-xi8) # @(-$OO) with positive probability. 
Hence, the identification condition (a) in Proposition 7.6 is satisfied if E(x,xi) 
is nonsingular. 

The nonsingularity of E(x,xi) also implies that condition (b) of Proposi- 
tion 7.6 is satisfied for probit. It is easy to verify that 

I log @(v)l 5 I log@(O)I + Ivl + lv12 for all v. (7.2.14) 

Combining this bound for I log @ (v) 1 and the fact that y, and 1 - y, are less 
than or equal to 1 in absolute value, it is easy to show that E[ I log f (y, 1 
x,; 8)1] < cm if E(x,x:) exists and is finite (a condition implied by the non- 
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singularity of E(x,x;)).~ We therefore conclude that the probit ML estimator 
(whose log likelihood is derived under the i.i.d. assumption for {y,, x,}) is 
consistent if {y,, xl} is ergodic stationary and E(x,x;) is nonsingular. 

Consistency of GMM 
We now turn to GMM and specialize Proposition 7.1 to GMM by verifying the 
conditions of the proposition under a set of appropriate sufficient conditions. The 
GMM objective function is given by (7.1.3). Clearly, the continuity of en(@) in 8 
is satisfied if g(w,; 8) is continuous in 8 for all w,. If {w,} is ergodic stationary, 

then g,,(@) (E I:=, g(w,; 8)) +, E[g(w,; @)I. So the limit function Qo(8) is 

This function is nonpositive if W (= plim %) is positive definite. It has a max- 
imum of zero at 8 0  because E[g(w,; Bo)] = 0 by the orthogonality conditions. 
Thus, the identification condition (that Qo(8) be uniquely maximized at 8 0 )  in 
Proposition 7.1 is satisfied if E[g(w,; @)I  # 0 for 8 # 8 0 .  Regarding the uniform 
convergence of en(@) to Qo(8), it is not hard to show that the condition is satis- 
fied if g,, (.) converges uniformly to E[g(w,; .)I (see Newey and McFadden, 1994, 
p. 2132). The multivariate version of the Uniform Law of Large Numbers stated 
right below Lemma 7.2, in turn, provides a sufficient condition for the uniform 
convergence. So we have proved 

Proposition 7.7 (Consistency of GMM with compact parameter space): Let 
{w,] be ergodic stationary and let i be the GMM estimator defined by 

where the symmetric matrix % is assumed to converge in probability to some 

90nly for interested readers, here is a proof: 

I l o g f ( ~ r  Ixr;@)l  i I~tI l log@(x:@)l+Il  -~tlllog@(-x:@)l 

< I log @(x;@)l + /log @(-x:@)l (since lytl i 1 and I1 - ytl i 1) - 

< 2 x [ I log W O ) I  + IX;BI + I X ; @ I ~ ]  (by (7.2.14)) - 

i 2 x [llog@(O)I + Ilxtll . 1 1 @ I I  + llxr112. ll@112]. 

The last inequality is due to the Cauchy-Schwartz inequality that Ix'yl _( llxll llyll for any two conformable vectors 
x and y. Also, E((lxt 11'). which is the sum of ~(1:) over i, is finite because the nonsingularity of E(xtxi) implies 

~(1:) < w for all i. 1f E(llxr (1') < W ,  then E(llxr 11) < W .  
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symmetric positive definite matrix W .  Suppose that the model is correctly specified 
in that E[g(w, ; 80:~] = 0 (i.e., the orthogonality conditions hold) for 80 E 0. 
Suppose that (i) the parameter space O is a compact subset o f  RP , (ii) g(w, ; 8)  is 
continuous in 8 for all w, , and (iii) g(w, ; 8 )  is measurable in w, for all 8 in 0 (so 
0 is a well-defined random variable by Lemma 7.1). Suppose, further, that 

(a) (identification) E[g(w,; 8)] # 0 for all 8 # 80 in 0, 

(b) (dominance) :E[  sup^,^ Ilg(wt; 8 )  11 I < 00. 

Then 0 -+, 80. 

If Q,(B) is concave, then the compactness of 0, the continuity of g(w,; 8), 
and the dominance condition can be replaced by the condition that E[g(w,; 8)] 
exist and be finite for all 8.  We will not state this result as a proposition because 
there are very few applications in which Q, (8) is concave. For example, the GMM 
objective function for the Euler equation model in Example 7.5 is not concave. Just 
about the only well-known case is one in which g(w,; 8 )  is linear in 8, but the linear 
case has been treated rather thoroughly in Chapter 3. When g(w,; 8)  is nonlinear 
in 8 ,  specifying primitive conditions for (a) (identification) and (b) (dominance) in 
Proposition 7.7 is generally quite difficult. So in most applications those conditions 
are simply assumed. 

Q U E S T I O N S  F O R  R E V I E W  

1. (Necessity of density identification) We have shown for conditional ML that 
the conditional density identification (7.2.13) is sufficient for condition (a) (that 
E[log f (y, I x,; 8)] be maximized uniquely at OO). That it is also a necessary 
condition is clear from the Kullback-Leibler information inequality. Without 
using this inequality, show the necessity of conditional mean identification. 
Hint: Show that, if (7.2.13) were false, then (a) would not hold. Suppose that 

there exists a el # O0 such that O1 E 0 and f (y, I x,; 81) = f (y, I x,; 80). 

Then E[log f (y, I x,; e l ) ]  = E[log f (y, I x,; 80)l. 

2. (Necessity of conditional mean identification) Without using (7.2.8), show 
that conditional mean identification is necessary as well as sufficient for iden- 
tification in NLS. 

3. (Identification in NLS) Suppose that the q function in NLS is linear: 
( ~ ( x , ;  8)  = xi@. Verify that identification is satisfied if E(x,xi) is nonsingular. 
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4. (Identification in NLS estimation of probit) In the probit model, E(y, 1 x,) = 
@(xiOO). Consider estimating O0 by least squares. Verify that conditional mean 
identification is satisfied if E(x,xi) is nonsingular. 

5. (Quasi-ML) Suppose in Proposition 7.5 that {y,, x,} is i.i.d., so the likelihood 
function itself is not misspecified. But suppose that the true parameter vector 
O0 is not included in the assumed parameter space O. So in this sense the 
estimator 6 is a quasi-ML estimator. Drop condition (a), and suppose instead 
that there is a unique O* in O that maximizes E[log f (y, I x,; O)]. Show that 
the QML estimator 6 is consistent for O*. Hint: Replace the O0 in Proposition 

7.3 by O*. In Propositions 7.1-7.4, O0 does not need to be the "true" parameter 

vector. 

6. (Identification in linear GMM) Consider the linear GMM model of Chapter 3. 
Verify that the rank condition for identification derived in Chapter 3 is equiva- 
lent to the identification condition in Proposition 7.7. 

7. (Concavity of the objective function in linear GMM) Verify that the GMM 
objective function in linear GMM is concave in 8. Hint: The Hessian (the 

A 

matrix of second derivatives) of Q,(O) is -SLWS,, where S, - C:=, x,zi. 
A twice continuously differentiable function is concave if and only if its Hessian 

is everywhere negative semidefinite. 

8. (GMM identification with singular W) For W, if we require it to be merely 
positive semidefinite, not necessarily positive definite, what would be the iden- 
tification condition in Proposition 7.7? Hint: Suppose W is positive semidef- 

inite. Show that if E[g(w,; 00)] = 0 and W E[g(w,; O)] # 0 for 8 # 00, then 

Qo(0) = -; E[g(w,; O)]'W E[g(w,; O)] has a unique maximum at 00. 

7.3 Asymptotic Normality 

The basic tool in deriving the asymptotic distribution of an extremum estimator is 
the Mean Value Theorem from calculus. How it is used depends on whether the 
estimator is an M-estimator or a GMM estimator. Therefore, the proof of asymp- 
totic normality will be done separately for M-estimators (including ML as a special 

I case) and GMM estimators. This is followed by a brief remark on the relative effi- 
ciency of GMM and ML. By way of summing up, we will point out at the end of 
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the section that the Taylor expansion for the sampling error has a structure shared 
by both M-estimators and GMM. 

Asymptotic Normality of M-Estimators 
Reproducing (7.1.2), the objective function for M-estimators is 

It will be convenient to give symbols to the gradient (vector of first derivatives) and 
the Hessian (matrix of second derivatives) of the m function as 

In analogy to ML, s(wr; 8) will be referred to as the score vector for observation 
t. This s(wr; 8) should not be confused with the score in the usual sense, which is 
the gradient of the objective function Qn(8). The score in the latter sense will be 
denoted sn (8) later in this chapter. The same applies to the Hessian: H(wr; 8) will 
be referred to as the Hessian for observation t,  and the Hessian of Q,(8) will be 
denoted H, (8). 

The goal of this subsection is the asymptotic normality of 9 described in 
(7.3.10) below. In the process of deriving it, we will make a number of assump- 
tions, which will be collected in Proposition 7.8 below. Assume that m(wr; 8)  is 
differentiable in 8 and that 9 is in the interior of O. So 9, being the interior solution 
to the problem of maximizing Q, (8), satisfies the first-order conditions 

1 " 
= - C s(wr; 9) (by (7.3.1) and (7.3.2)). 

n 

We now use the following result from calculus: 

Mean Value Theorem: Let h : RP + IW4 be continuously differentiable. Then 
h(x) admits the mean value expansion 
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where ii is a mean value lying between x and q . l o  

Setting q = p, x = 0 , q  = B0. and h(-) = 9 in the Mean Value Theorem, we 
obtain the following mean value expansion: 

where 8 is a mean value that lies between 9 and 80. The continuous differentiability 
requirement of the Mean Value Theorem is satisfied if m (w,; 8) is twice continu- 
ously differentiable with respect to 8. Combining this equation with the first-order 
condition above, we obtain 

Assuming that C:=, H(wt; 8) is nonsingular, this equation can be solved for 
0 - 80 to yield 

This expression for (fi times) the sampling error will be referred to as the mean 
value expansion for the sampling error. Note that the score vector s(wt; 8 )  is 
evaluated at the true parameter value 80. 

NOW, since 8 lies between 80 and 0, 8 is consistent for 80 if 0 is. ~f {wtj is 
ergodic stationary, it is natural to conjecture that 

''The Mean Value Theorem only applies to individual elements of h, so that x actually differs from element to 
element of the vector equation. This complication does not affect the discussion in the text. 
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The ergodic stationarity of w, and consistency of 8 alone, however, are not enough 
to ensure this; some technical condition needs to be assumed. One such technical 
condition is the uniform convergence of C:=, H(w,; .) to E[H(w,; .)I in a neigh- 
borhood of OO." But by the Uniform Convergence Theorem, the uniform conver- 
gence of C:=, H(w,; .) is satisfied if the following dominance condition is satis- 
fied for the Hessian: for some neighborhood X of 80, E[ sup,,, IIH(w,; 8 )  111 < oo 

(this is condition (4) below).12 This is a sufficient condition for (7.3.8); if you can 
directly verify (7.3.8), then there is no need to verify the dominance condition for 
asymptotic normality. 

Finally, if (7.3.8) holds and if 

then by the Slutzky theorem (see Lemma 2.4(c)) we have 

Collecting the assumptions we have made so far, we have 

Proposition 7.8 (Asymptotic normality of M-estimators): Suppose that the con- 
ditions of  either Proposition 7.3 or Proposition 7.4 are satisfied, so that {w,} is 
ergodic stationary and the M-estimator e defined by (7.1.1) and (7.1.2) is consis- 
tent. Suppose, further, that 

(1) 80 is in the interior of  O,  

(2) m ( W, ; 8)  is twice continuously differentiable in 8 for any w, , 

(3) & X:=, S(W, ; 80) + d  N(0, 2 ) .  2 positive definite, where s(w, ; 8 )  is defined 
in (7.3.2), 

 his is a consequence of the following result (see, e.g., Theorem 4.1.5 of Amemiya, 1985): 

Suppose a sequence of random functions hn(B) converges to a nonstochastic function ho(B) uniformly 
in 19 over an open neighborhood of BO. Then plim,,, hn(e) = ho(B0) if plim E = 190 and ho(B) is 
continuous at BO. 

Set hn(B) to $ H(wt; .) and ho(B) to E[H(w~; B ) ] .  Continuity of EIH(wl; 8 ) ]  will be assured by the 
Uniform Convergence Theorem. The uniform convergence needs to be only over a neighborhood of 00, not over 
the entire parameter space, because E is close to 190 for n sufficiently large. 

1 2 ~  matrix can be viewed as a vector whose elements have been rearranged. So the Euclidean norm of a matrix, 
such as IIH(wr; 0 )  1 1 ,  is the square root of the sum of squares of all its elements. 



Extremum Estimators 473 

(4) (local dominance condition on the Hessian) for some neighborhood & of  80, 

so that for any consistent estimator 8, i C:=, H(w,; 8)  +, E[H(w,; Bo)], 
where H(w, ; 8)  is defined in (7.3.3), 

(5) E[H(w,, 80:~] is nonsingular. 

Then e is asymptotically normal with 

(This is Theorem 4.1.3 of Amemiya (1985) adapted to M-estimators.) Two remarks 
are in order. 

Of the assumptions we have made in the derivation of asymptotic normality, 
the following are not listed in the proposition: (i) e is an interior point, and 

(ii) C:=, H(w,; 8)  is nonsingular. It is intuitively clear that these conditions 
hold because e converges in probability to an interior point 80, and C:=, 
H(w,; 8)  converges in probability to a nonsingular matrix E[H(w,; Bo)]. See 
Newey and McFadden (1994, p. 2152) for a rigorous proof. This sort of techni- 
cality will be ignored in the rest of this chapter. 

If w, is ergodic stationary, then so is s(w,; 80) and the matrix C is the long 
run variance matrix of {s(w,; e0)}.13 A sufficient condition for (3) is Gordin's 
condition introduced in Section 6.5. So condition (3) in the proposition can be 
replaced by Gordin's condition on {s(w,; eO)]. It is satisfied, for example, if w, 
is i.i.d. and E[s(w,; 00)] = 0. The assumption that X is positive definite is not 
really needed for the conclusion of the proposition, but we might as well assume 
it here because in virtually all applications it is satisfied (or assumed) and also 
because it will be required in the discussion of hypothesis testing later in this 
chapter. 

Consistent Asymptotic Variance Estimation 
To use this asymptotic result for hypothesis testing, we need a consistent estimate 
of 

1 3 ~ h e  long-run variance was introduced in Section 6.5. 
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Since e +, eo, condition (4) of Proposition 7.8 implies that 

Therefore, provided that there is available a consistent estimator e of L,  

is a consistent estimator of the asymptotic variance matrix. To obtain %, the meth- 
ods introduced in Section 6.6, such as the VARHAC, can be applied to the esti- 
mated series (s(wt; e ) }  under some suitable technical conditions. 

Asymptotic Normality of Conditional ML 
We now specialize this asymptotic normality result to ML for the case of i.i.d. 
data. In ML, where the m function is a log (conditional) likelihood, the first-order 
conditions (7.3.4) are called the likelihood equations. The fact that the m function 
is a log (conditional) likelihood leads to a simplification of the asymptotic variance 
matrix of e .  We show this for conditional ML; doing the same for unconditional or 
joint ML is easier. 

Consider the two equalities in condition (3) of Proposition 7.9 below. The sec- 
ond equality is called the information matrix equality (not to be confused with the 
Kullback-Leibler information inequality). It is so called because E[s(w,; 80) s(wt; 
eO)'] is the information matrix for observation t. It is left as Analytical Exer- 
cise 2 to derive these two equalities under some technical conditions permitting the 
interchange of differentiation and integration. Here, we just note the implication 
of these two equalities for Proposition 7.8. If w, is i.i.d., the Lindeberg-Levy CLT 
and the first equality (that E[s(wt; eO)] = 0) imply 

1 " 
- z s ( w t ;  60) + N(0, L)  where L = E[s(w,; eo) s(w,; eo)']. 
f i  t=1 d 

This and the information matrix equality imply that Avar(e) in Proposition 7.8 is 
simplified in two ways as 
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Thus, we have proved 

Proposition 7.9 (Asymptotic normality of conditional ML): Let w, (= (y,, xj)') 
be i.i. d. Suppose the conditions of  either Proposition 7.5 or Proposition 7.6 are sat- 
isfied, so that e +, 80. Suppose, in addition, that 

(1) 80 is in the interior of  O,  

(2) f ( y, I x, ; 8)  is twice continuously differentiable in 8 for all (y, , x,), 

(3) E[s(w,; Bo)] = 0 and - E[H(w,; BO:I] = E[s(w,; 80) s(w,; Bo)'], where s and 
H functions are defined in (7.3.2) and (7.3.3), 

(4) (local dominance condition on the Hessian) for some neighborhood X of 80, 

so that for any consistent estimator 8 ,  x:=, H(w,; 8 )  + p  E[H(w,; Bo)], 

(5) E [ ~ ( w ,  ; 00)] is nonsingular. 

Then e is asymptotically normal with Avar(e) given by (7.3.13). 

Two remarks about the proposition: 

Condition (3) is stated as an assumption here because its derivation requires 
interchange of integration and differentiation (see Analytical Exercise 2). A 
technical condition under which the interchange is legal is readily available from 
calculus (see, e.g., Lemma 3.6 of Newey and McFadden, 1994). So condition 
(3) could be replaced by such a technical condition on f (y, I x,; 8). We do not 
do it here because in most applications condition (3) can be verified directly. 

It should be clear from the above discussion how this proposition can be adapted 
to unconditional ML: simply replace f (y, I x,; 8 )  by f (w,; 8). 

To use this asymptotic result for hypothesis testing, we need a consistent esti- 
mate of ~ v a r ( e ) .  Noting that it can be written as -{E[H(w,; 80)]]-'. a natural 
estimator is 

first estimator of Avar(9) = - (7.3.14) 
t=l 

Since e +, 80, this estimator is consistent by condition (4) of Proposition 7.9. 
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Another estimator, based on the relation Avar(8) = (E[S(W,; 00) s(wt; o~) ' ] ) - ' ,  is 

second estimator of Avar(8) = 
t=l 

To insure consistency for this estimator, we need to make an assumption in addi- 
tion to the hypothesis of Proposition 7.9 (see, e.g., Theorem 4.4 of Newey and 
McFadden, 1994). We will not show it here because in many applications the 
consistency of this second estimator can be verified directly. 

There is no compelling reason for prefemng one estimator of Avar(8) over the 
other. The second estimator, which requires only the first derivative of the log like- 
lihood, is easier to compute than the first. This can be an important consideration 
when it is impossible to calculate the derivatives of the density function analyt- 
ically and some numerical method must be used. On the other hand, in at least 
some cases the first provides a better finite-sample approximation of the asymp- 
totic distribution (see, e.g., Davidson and MacKinnon, 1993). 

Two Examples 

To get a better grasp of the asymptotic normality results about conditional ML, it 
is useful to see how the results can be applied to familiar examples. We consider 
two such examples. 

Example 7.10 (Asymptotic normality in linear regression model): To 
reproduce the log conditional density for observation t for the linear regres- 
sion model with normal errors. 

2 1 1 
log f(yt ) x, ;B ,o  ) = --log(2n) - -log(02) - ( Y ' - ~ " ) ~ .  (7.3.16) 

2 2 2a2 

With O = RK x R++ (where K is the dimension of B), condition (1) of 
Proposition 7.9 is satisfied. Condition (2) is obviously satisfied. To verify 
(3), a routine calculation yields:14 

1 4 ~ o r  the parameter u2  the differentiation is with respect to u2 rather than u .  
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where w, = (y,, xi)', 0 = (B', u2)' and i., = y, - xiB (which should be 
distinguished from E, = y, - xiBo). So for 0 = Bo the i., in these expressions 
can be replaced by E, .  In the linear regression model, E(E, 1 x,) = 0. Also, 
since E,  is N(0, a:), we have E(E:) = 0 and E(EQ) = 30:. Using these 
relations, it is easy to verify (3). In particular, 

If E(x,xi) is nonsingular, then E[H(w,; Bo)] is nonsingular and (5) is satisfied. - - 
Regarding condition (4), let E, = y, - xiB for some consistent estimator B 
and a2. Condition (7.3.8) in this example is 

- 
It is straightforward to show this, given that E, = E, -xi (B -Bo). We conclude 
that all the conditions of Proposition 7.9 are satisfied if E(x,xi) is nonsingular. 

Example 7.11 (Asymptotic normality of probit ML): To reproduce the 
log conditional likelihood of the probit model, 

With O = Rp, condition (1) of Proposition 7.9 is satisfied. Condition (2) is 
obviously satisfied. To verify (3), a tedious calculation yields 

I (To derive (7.3.22), use the fact that y: = y,.) Here, a(.) is the cumulative 
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density function of N(0, 1) and d(.) = a ' ( - )  is its density function. It is then 
easy to prove the conditional version of (3): 

So (3) is satisfied by the Law of Total Expectations. In particular, for probit, 
it is easy to show that 

1 where 

is called the inverse Mill's ratio or the hazard for N(0, 1). It can be shown 
that the term in braces in (7.3.22) is between 0 and 2 (see Newey and McFad- 
den, 1994, p. 2147). So 

The Euclidean norm J(xtxi 1 1  is the square root of the sum of squares of the ele- 
ments of xtxi. Therefore, the expectation of 11x,$)1~ and hence that of (Jxtxi 1 1  
are finite if E(xtxi) (exists and) is finite. So the local dominance condition 
on the Hessian (condition (4)) is satisfied if E(xt$) is nonsingular. It can be 
shown that condition (5) is satisfied if E(xt$) is nonsingular (see footnote 29 
on p. 2147 of Newey and McFadden, 1994). We conclude, again, that all the 
conditions of Proposition 7.9 are satisfied if E(xt$) is nonsingular. 

Asymptotic Normality of GMM 
Now turn to GMM. The GMM objective function is 

1 1 " 
Q.(W = -r&(e)l@ffi(e) with &(e) = - C g ( ~ , ;  8). (7.3.27) 

( K x l )  n t=l 

As in the case of M-estimators, we apply the Mean Value Theorem to the first-order 
condition for maximization, but the theorem will be applied to &((?I), not its first 
derivative. Thus, unlike in the case of M-estimators, the objective function needs 
to be continuously differentiable only once, not twice. This reflects the fact that 
the sample average enters the objective function differently for the case of GMM. 
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Assuming that e is an interior point, the first-order condition for maximization 
of the objective function is 

a ~n (8) * I  A 0 =-=-Gn(8)  W g,(e), ae (7.3.28) 
( P X ~ )  ( p x K )  ( K x K )  ( K x l )  

( p x l )  

where Gn (8) is the Jacobian of g, (8): 

ag,(e) Gn(8) G - 
( K x p )  38' ' 

Now apply the Mean Value Theorem to g, (8), not to a Q ,  (8)/a8 as in M-estimation, 
to obtain the mean value expansion 

Substituting this into the first-order condition above, we obtain 

0 = -Gn(e)' i@ g,(80) - G, (e)' i@ G, (8) (e - 80). (7.3.31) 
( ~ x l )  ( p x K )  ( K x K )  ( K x l )  ( p x K )  ( K x K )  ( K x p )  ( p x l )  

Solving this for (e - Bo) and noting that h ( 8 )  = ! I:=, g(w,; B), we obtain 

- 1  1 
( 8  - 0 )  = - n i@ ( 8  ( 8  i@ - C g ( w t ;  80). 

( P X ~ )  ( p x K )  ( K x K )  ( K x p )  ( p x K )  ( K x K )  Z/;; r=l 

In this expression, the Jacobian Gn (8) of g, (8) is evaluated at two different points, 
e and 8. Since ~ ( 8 )  = I:=, g(w,; 8), the Jacobian at any given estimator 8 can 
be written as 

If w, is ergodic stationary and 8 is consistent, it is natural to conjecture that this 
expression converges to ~ [ a g ( w , ;  80)/a8']. As was true for M-estimators, this 
conjecture is true if ag(w,; 8)/a01 satisfies the suitable dominance condition spec- 
ified in condition (4) below. It should now be clear that the GMM equivalent of 
Proposition 7.8 is 
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Proposition 7.10 (Asymptotic normality of GMM): Suppose that the conditions 
of Proposition 7.7 are satisfied, so that {w, ) is ergodic stationary, @ ( K  x K )  con- 
verges in probability to a symmetric positive definite matrix W ,  and the 
p-dimensional GMM estimator 9 is consistent. Suppose, fiuther, that 

(1)  is in the interior of O,  

(2) g(w,; 9) is continuously differentiable in 9 for any w,, 
( K x l )  

(3) 5 x:=, g(w,; 80) +, N (0, S ), S positive definite, 
( K x K )  

(4) (local dominance condition on w) for some neighborhood X of go, 

a m i )  so that for any consistent estimator 9, xyZl +p ~[v], 
( K x P )  

(5) ~ [ ~ ~ ( ; ; i " ) ]  is of full column rank. 
( K x P )  

Then the following results hold: 

(a) (asymptotic normality) 9 is asymptotically normal with 

where G - E[-I. 
( K  X P )  

(b) (consistent asymptotic variance estimation) Suppose there is available a con- 
sistent estimate s of S. The asymptotic variance is consistently estimated by 

A a ( w , . ) )  
where G - - ~ , ( g )  = !x:=l 

( K x P )  

The assumption that S is positive definite is not really needed for the conclusion 
of the proposition, but we might as well assume it here because in virtually all 
applications it is satisfied (or assumed) and also because it will be required in the 
discussion of hypothesis testing later in thls chapter. 

It is useful to note the analogy between linear and nonlinear GMM by compar- 
ing this proposition to Proposition 3.1. In linear GMM, g, (9) is given by 
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So - G,(o) in Proposition 7.10 reduces to -(: x x , z i ) ,  and G reduces to 
- E(x,zi). The thrust of Proposition 7.10 is that the asymptotic distribution of the 
nonlinear GMM estimator can be obtained by taking the linear approximation of 
g, (8) around the true parameter value. 

The analogy to linear GMM extends further: 

(Efficient nonlinear GMM) Using the current notation, the matrix inequality 
(3.5.1 1) in Section 3.5 is 

(G' wG)-'GI WS WG(G1 WG)-' 2 (G's-'G)-I, (7.3.36) 

which says that the lower bound for ~ v a r ( 6 )  is (GIS-'G)-'. The lower bound is 
A 

achieved if % satisfies the efficiency condition that plim,,, W = S-', namely, 
that % = g-' for some consistent estimator of S. 

( J  statistic for testing overidentifying restrictions) Suppose that the conditions 
of Proposition 7.10 are satisfied and that % = g-' so that % satisfies the ef- 
ficiency condition: plim % = S-'. Then the minimized distance J = n&(9)' 
A 

(0) (= -2n ~ " ( 9 ) )  is asymptotically chi-squared with K - p degrees of 
freedom. The proof of this result is essentially the same as in the linear case; see 
Newey and McFadden (1994, Section 9.5) for a proof. 

(Estimation of S) S is the long-run variance of (g(w,; go)). Under some suit- 
able technical conditions, the methods introduced in Section 6.6 - such as the 
VARHAC - can be applied to the estimated series (g(w, ; 0)) to obtain g .  In 
particular, if w, is i.i.d., then S = ~ [ g ( w , ;  OO)g(w,; 00)'] and the sample second 
moment of g(w, ; 6)  can serve as g .  

GMM versus ML 
The question we have just answered is: taking the orthogonality conditions as 
given, what is the optimal choice of the weighting matrix W? A related, but dis- 
tinct, question is: what is the optimal choice of orthogonality conditions?15 This 
question, too, has a clear answer, provided that the parametric form of the den- 
sity of the data (wl ,  . . . , w,) is known. Here, we focus on the i.i.d. case with the 

I5yet another efficiency question concerns the optimal choice of instruments in generalized nonlinear instru- 
mental estimation (a special case of GMM where the g function is a product of the vector of instruments and the 
error term for an estimation equation). See Newey and McFadden (1994, Section 5.4) for a discussion of optimal 
instruments. 
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density of w, given by f (w,; 8). Let 6 be the GMM estimator associated with 
A 

the orthogonality conditions E[g(w,; 00)] = 0. Its asymptotic variance Avar(8) is 
given in Proposition 7.10. It is not hard to show that 

~ v a r ( 0 )  2 E[s(w,; 80) s(w,; 8o)']-' where s(w,; 80) = a log f (w, ; 80) 

( P X I )  ae 

That is, the inverse of the information matrix E(ssl) is the lower bound for the 
asymptotic variance of GMM estimators. This matrix inequality holds under the 
conditions of Proposition 7.10 plus some technical condition on f (w,; 8)  which 
allows the interchange of differentiation and integration. See Newey and McFad- 
den (1994, Theorem 5.1) for a statement of those conditions and a proof. Asymp- 
totic efficiency of ML over GMM estimators then follows from this result because 
the lower bound [E(ssl)]-I is the asymptotic variance of the ML estimator. The 
superiority of ML, however, is not very surprising, given that ML exploits the 
knowledge of the parametric form f (w,; 8 )  of the density function while GMM 
does not. 

As you will show in Review Question 4 below, GMM achieves this lower 
bound when the g function in the orthogonality conditions is the score for obsewa- 
tion t: 

Therefore, the GMM estimator with optimal orthogonality conditions is asymp- 
totically equivalent to ML. Actually, they are numerically equivalent, which can 
be shown as follows. Since K (the number of orthogonality conditions) equals p 
(the number of parameters) when g is chosen optimally as in (7.3.38), the GMM 

A A 

estimator 8 should satisfy g,(8) = 0, which under (7.3.38) can be written as 

This is none other than the likelihood equations (i.e., the first-order condition for 
ML). They have at least one solution because the ML estimator satisfies them. 
If they have only one solution, then 0 is the ML estimator as well as the GMM 
estimator. If they have more than one solution, we need to choose one from them 
as the GMM estimator. Since one of the solutions is the ML estimator, we can 
simply choose it as the GMM estimator. 
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Expressing the Sampling Error in a Common Format 
To prepare for the next section's discussion, it is useful to develop a slightly dif- 
ferent proof of asymptotic normality. We have used the Mean Value Theorem 
to derive the mean value expansion for the sampling error, which is (7.3.7) for 
M-estimators and (7.3.32) for GMM. We show in this subsection that they can be 
written in a common format, (7.3.43) below. 

Consider M-estimators first. Noting that = 1 C:=l s(wt; eo), the mean 
value expansion (7.3.7) can be written as 

By condition (4) of Proposition 7.8, C:=, H(wt; e)  converges in probability to 
some p x p symmetric matrix q given by 

So rewrite (7.3.40) as 

By construction, the term in braces converges in probability to zero. By condition 
1 n (3) of Proposition 7.8. f i  (= 7 E t = ,  s(w,; 00)) converges to a random J 

variable. So the last term, which is the product of the term in braces and f i  w. 
converges to zero in probability by Lemma 2.4(b). This fact can be written com- 
pactly as a Taylor expansion:16 

where the term "o," means "some random variable that converges to zero in prob- 
ability."17 The exact expression for the o, term will depend on the context. Here, it 
equals the last term in (7.3.42). As you will see, all that matters for our argument 

I61t is apt to call this equation a Taylor expansion rather than a mean value expansion because the matrix that 
multiplies fi is evaluated at 0 ,  rather than at 6 as in the mean value expansion. 

"The "op" notation was introduced in Section 2.1. 
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is that the op term vanishes (converges to zero in probability), not its expres- 
sion. Since the difference between f i ( e  - 80) and -Y-'f i  vanishes, the 

asymptotic distribution of f i ( 0  - 80) is the same as that of -Y- ' f i  by 
Lemma 2.4(a). It then follows that f i ( 0  - 80) converges to a normal distribution 
with mean zero and asymptotic variance given by 

Avar(6) = Y-'ZY-' where Z = Avar 
( P  x P )  

( a  Q;rO)). (7.3.44) 

For M-estimators, fi = -!- x:=, s(w,; 80) and Z is the long-run vari- 
J;; 

ance of s(w,; 80). Setting Y = E[H(w,; e0)] gives the expression for ~ v a r ( 0 )  in 
Proposition 7.8. 

Next turn to GMM. The expression for fi is 

1 " J;; aQn(eO) = -[G~(Bo)]' 9- g(wt; 80). ae (7.3.45) 
J;; ,=, 

ag(w . B O )  (Recall that Gn (8) - .) Since G, (80) = x +, G (= E[+]). 
9 +, W ,  and 1 x:=, g(w,; 80) +=d N ( 0 ,  S) under the conditions of Proposition 

J;; 
7.10, we have fi converging to a normal distribution with mean zero and 

Now rewrite the mean value expansion for the sampling error for GMM (7.3.32) as 

It is left as Review Question 5 below to show that this can be written as the Taylor 
expansion (7.3.43), with the symmetric matrix Y given by 

Substituting (7.3.48) and (7.3.46) into (7.3.44), we obtain the GMM asymptotic 
variance indicated in Proposition 7.10. 

Table 7.1 summarizes the discussion of this subsection by indicating how the 
substitution should be done to make the common formulas applicable to 
M-estimators and GMM. 



Table 7.1: Taylor Expansion for the Sampling Error 

J;;(D - eo) = - 8 - l  J;; aQn(eO) + o,, J;; aQn(eo) + N ( O ,  c), AVX(D) = r l - l x ~ - l  ae ae d 

Terms for substitution M-estimators GMM 

8 ~ [ ~ ( w t ;  eo) ]  -GIWG 

C long-run variance of s(wt; 80) G' WS WG 

NOTE: See (7.3.2) and (7.3.3) for definition of s(w,; 8) and H(wt; 8). Also, 

I " 
gn (8) = - g(wt ; 8) and G = E 

n 
t = l  
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In passing, it is useful for the next section's discussion to note that C = -\Ir 
for ML with i.i.d. observations and efficient GMM (the GMM with W = S-'). 
For ML, C = E[s(w,; 80) s(w, ; fI0)'], which equals the negative of the \Ir given 
in (7.3.41) thanks to the information matrix equality. For efficient GMM, setting 
W = S-I in (7.3.46) gives 

which is the negative of the \Ir in (7.3.48). 

Q U E S T I O N S  F O R  R E V I E W  

1. (Score and Hessian of objective function) For M-estimators and ML in partic- 
ular, we defined the score for observation t ,  s(w,; 8), to be the gradient (vector 
of first derivatives) of m(w,; 8)  and the Hessian for observation t ,  H(w,; 8), to 
be the Hessian of m(w,; 8). Let the score (without the qualifier "for observation 
t") be the gradient of the objective function Qn(8) and denote it as sn(8). Let 
the Hessian (without the qualifier "for observation t") be the Hessian of e n ( @ )  
and denote it as Hn(8). Under the conditions of Proposition 7.9, show that 

Hint: {s(w,; 00)) is i.i.d. 

2. (Conditional information matrix equality for the linear regression model) For 
the linear regression model of Example 7.10, verify that 

3. (Avar for the linear regression model) For the linear regression model of Exam- 
ple 7.10, let (3, s 2 )  be the ML estimate of (B, a'). Write down the first esti- 

-A 

mator of ~ v a r ( e )  defined in (7.3.14). Does Avar(B) equal S 2 ( t  x,xi)-'? 
[Answer: No.] 

4. (GMM with optimal orthogonality conditions) Assume that the relevant tech- 
nical conditions are satisfied for the hypothetical density f (w,; 8 )  so that the 
information matrix equality holds. Using Proposition 7.10, show that when the 
g function in the orthogonality conditions is given as in (7.3.38), the asymp- 
totic variance matrix of the GMM estimator equals the inverse of the infor- 
mation matrix for observation t (which is the lower bound in (7.3.37)). Hint: 

Since K equals p,  G is a square matrix and the expression for ~ v a r ( e )  in 
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! Proposition 7.10 reduces to ~var( t?)  = G-'sG'-' . The choice of g implies 
G = E[H(w,; 00)] and S = E[s(w,; 80) s(wt; 80)']. 

5. (Taylor expansion of the sampling error for GMM) Show that (7.3.47) can be 
written as the Taylor expansion (7.3.43) under the conditions of Proposition 
7.10, by taking the following steps. 

I (a) Show that B-' = + Y, where Y, +, 0. 

(b) Show that c = f i  + y. where y. +, 0. Hint: G. ( t? )  - G,, (90) = 

(G.& - G) - (G.(B0) - G) +, 0 and G$ x:=l g(w,; 80) converges 
in distribution to a random variable. 

(c) ~howthat-B-lc = - ~ - ' f i ~ + x , , ,  wherex. = -[Y.&-+ 

*-'yn + Y,Y.]. 

I (d) Show that xn +, 0. 

I 6. (Why the GMM distance is deflated by 2) Verify that, if the negative of the 
distance g, (8)'$-1g, (8) were not divided by 2 in the definition of the efficient 
GMM objective function, then we would not have X = -*. 

7.4 Hypothesis Testing 

As is well known for ML, there is a trio of statistics -the Wald, Lagrange mul- 
tiplier (LM), and likelihood ratio (LR) statistics -that can be used for testing the 
null hypothesis. The three statistics are asymptotically equivalent in that they share 
the same asymptotic distribution (of X 2 ) .  I, this section we show that the asymp- 
totic equivalence of the trinity can be extended to GMM by developing an argu- 
ment applicable to both ML and GMM. The key to the argument is the common 
format for the sampling error derived at the end of the previous section. On the 
first reading, you may wish to read the next subsection and then jump to the last 
subsection. 

The Null Hypothesis 

We have already considered, in the context of the linear regression model, the 
problem of testing a set of r possibly nonlinear restrictions (see Section 2.4). To 
recapitulate, let 80 be the p-dimensional model parameter. The null hypothesis can 
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be expressed as 

We assume that a(.) is continuously differentiable. Also, let 

be the Jacobian of a(8). We assume that 

A. -- A(OO) is of full row rank. 
( r  x P) 

Chapter 7 

(7.4.1) 

This ensures that the r restrictions are not redundant. This rank condition implies 

that r 5 p.  
Let 6 be the extremum estimator in question. It is either ML or GMM. It solves 

the unconstrained optimization problem (7.1.1). The Wald statistic for testing the 
null hypothesis utilizes the unconstrained estimator. The LM statistic, in contrast, 
utilizes the constrained estimator, denoted 0, which solves 

max Q,(8) s.t. a(8) = 0. (7.4.4) 
B E @  

As was shown in Section 7.2, the true parameter value 80 solves the "limit uncon- 
strained problem" where Q, in the unconstrained optimization problem (7.1.1) 
is replaced by the limit function Qo. It also solves the "limit constrained prob- 
lem" where Q, in the above constrained optimization problem is replaced by Qo, 
because do satisfies the constraint. It turns out that the uniform convergence in 
probability of en ( . )  to Qo(.) assures that the limit of the constrained estimator 
8 is the solution to the limit constrained problem, which is 80. For a proof, see 
Newey and McFadden (1994, Theorem 9.1) for GMM and Gallant and White 
(1988, Lemma 7.3(b)) for general extremum estimators. It is also possible to show 
that, if all the conditions ensuring the asymptotic normality of the unconstrained 
estimator are satisfied, then 0, too, is asymptotically normal under the null. For a 
proof for GMM, see Newey and McFadden (1994, Theorem 9.2); for ML, see, e.g., 
Amemiya (1985, Section 4.5).18 

181f you are interested in the proof, it is just the mean value version of the discussion in the subsection on the 
LM statistic below, which is based on Taylor expansions. 
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The Working Assumptions 
The argument for showing that the Wald, LM, and LR statistics are all asymptoti- 
cally X2(r) is based on the truth of the following conditions. 

(A) f i ( e  - 80) admits the Taylor expansion (7.3.43), which is reproduced here 

(B) fim +d N(0. Z), Z positive definite. ae 

(C) f i (8  - Bo) converges in distribution to a random variable. 

(D) Z = -*. 
We have shown in the previous section that the first two conditions are satisfied 
for conditional ML under the hypothesis of Proposition 7.9, for unconditional ML 
under the hypothesis suitably modified, and for GMM under the hypothesis of 
Proposition 7.10. As just noted, under the same hypothesis, the constrained esti- 
mator e is consistent and asymptotically normal, ensuring condition (C). So con- 
ditions (A)-(C) are implied by the hypothesis assuring the asymptotic normality of 
the extremum estimator. 

The Wald and LM statistics, if defined appropriately so as not to depend on 
condition (D), are asymptotically X2(r). But their expressions can be simplified 
if condition (D) is invoked. Furthermore, without the condition, the LR statistic 
would not be asymptotically x2.  AS was noted at the end of the previous section, 
condition (D) is satisfied for ML and also for efficient GMM with W = S-'. 
Therefore, the part of the discussion that relies on condition (D) is not applicable 
to nonefficient GMM. 

The Wald Statistic 

Throughout the book we have had several occasions to derive the Wald statistic 
using the "delta method" of Lemma 2.5. Here, we provide a slightly different 
derivation based on the Taylor expansion. Applying the Mean Value Theorem to 
a(e) around Bo and noting that a(Bo) = 0 under the null, the mean value expansion 
of f i a ( 9 )  is 

Derivation of the Taylor expansion from the mean value expansion is more trans- 
parent than in the previous section and proceeds as follows. Since 8,  lying between 
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e0 and e ,  is consistent and since A(.) is continuous, ~ ( 8 )  converges in probability 
to A. (- A(eO)). Furthermore, the term multiplying A(8), f i ( e  - eO), converges 
to a random variable. So ( ~ ( 8 )  - Ao)Jii(e - 80) vanishes (converges to zero in 
probability) by Lemma 2.4(b). Denoting this term by o , ,  the mean value expansion 
can be rewritten as a Taylor expansion: 

(Note that this argument would not be valid if f i ( e  - 80) did not converge to a 
random variable.) 

Substituting the Taylor expansion (7.4.5) into this, we obtain an equation link- 

ing Jii a(& to Jii : 

J;;a(i) = - 9 - I  J;; a Qn (80) 
ae + oP. (7.4.8) 

( r x l )  ( r x p )  ( p x p )  
( p x l )  

(The op here is A. times the op in (7.4.5) plus the o, in (7.4.7), but it still converges 
to zero in probability.) It immediately follows from this expression and the asymp- 
totic normality of Jii (condition (B)) that fist($) converges to a normal 
distribution with mean zero and 

~var(a(6))  = Ao9- ' I ;~ - 'Ab  
( r x r )  

= A. I;-' Ab (if condition (D) is invoked). (7.4.9) 
( r x p )  ( p x p )  ( p x r )  

Since the r x p matrix A. is of full row rank and I; is positive definite (by condition 
(B)), this r x r matrix is positive definite. Therefore, the associated quadratic form 

is asymptotically X2(r) under the null. As noted above, A($) +, Ao. So if there - A - 1  
is available a consistent estimator 2 of I;, then A(8)I; ~ ( e ) '  is consistent for 
AoI;-'Ab, which implies by Lemma 2.4(d) that the Wald statistic defined by 

too is asymptotically (r) under the null. 
How the consistent estimator 2 of I; (= - 9 )  is obtained depends on whether 

the extremum estimator is ML or efficient GMM. For ML, it is given by a consistent 
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estimate of -\lr = - E[H(w,; (lo)]: 

or by a consistent estimate of C = ~ [ s ( w , ;  8o) s(w,; eO)']: 

For efficient GMM, C = GtS-'G (see (7.3.49)), which is consistently estimated 

by 

A A n  - 1 " ag(wt; e )  
2 =G's-'G with = G , ( I ) =  -C aet . (7.4.14) 

( K x p )  n 
t = l  

A 

As already mentioned, S is an estimate of the long-run variance matrix constructed 
from the estimated series (g(w,; e)}. 

The Lagrange Multiplier (LM) Statistic 
Let y, (r x 1) be the Lagrange multiplier for the constrained problem (7.4.4). The 
constrained estimator e satisfies the first-order conditions 

We seek the Taylor expansion of these first-order conditions. By condition 

(C), f i ( 8  - eo) converges to a random variable. So f i a ( e )  admits the Taylor 
expansion 

It is left as Review Question 2 to show that the following Taylor expansion holds 
for both ML and GMM: 

An implication of this equation is that ,h converges to a random variable. 
So ,h y,, satisfying (7.4.15), converges to a random variable. Consequently, since 
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A(0) +, Ao, we obtain 

Substituting these three equations into the first-order conditions, we obtain 

Using the formula for partitioned inverses, this can be solved to yield 

The rest is the same as in the derivation of the Wald statistic. From (7.4.21), 
f i  y, converges to a normal distribution with mean zero and variance given by 

= (AoX-'Ab)-l (if condition (D) is invoked). (7.4.23) 

Since this r x r matrix is positive definite, the associated quadratic form 

is asymptotically X2(r) under the null. If there is available a consistent estima- - --1 
tor, denoted $, of X, then A(0)X ~ ( 8 ) '  is consistent for AoX-'Ab. So the LM 
statistic defined by the first line below is asymptotically X2(r) under the null. This 
statistic can be beautified by the first-order conditions (7.4.15): 

- --1 
LM -- n y: [A(B)Z ~ ( g ) ' ]  y, 

(1 xr)  ( r x  1) 

(since ~ ( 9 ) ' ~ ~  = -%$ by (7.4.15)). 

( l x p )  (px l )  
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The last expression for the LM statistic is the reason why the statistic is also called 

the score test statistic. It is the distance from zero of the score evaluated at the con- 

strained estimate 8. You should not be fooled by its beauty, however: despite being 

a quadratic form associated with a p-dimensional vector, the degrees of freedom 

of its X 2  asymptotic distribution are r, not p ,  as is clear from the derivation. 
For ML, g is given by (7.4.12) or (7.4.13), evaluated at 8 .  For GMM, C is 

consistently estimated by 

1 " ag(w,; 8)  g=G'g-'G with 6 - G , ( ~ ) = - X  . (7.4.26) 
( K x p )  n r=l ae' 

Here, g is an estimate of the long-run variance matrix constructed from the esti- 

mated series {g(wr; 8)). 

The Likelihood Ratio (LR) Statistic 
The LR statistic is defined as 2n times Q, (8) - Q, (8). (For efficient GMM, calling 

this the likelihood ratio statistic is a slight abuse of the language because Q, for 

GMM is not the likelihood function, but we will continue to use the term for both 

ML and GMM.) It is not hard to show for ML and GMM (see Review Questions 6 
and 7) that 

The validity of this expression does not depend on condition (D). 
From this expression, it is easy to derive the asymptotic distribution of the LR 

statistic. Subtracting (7.4.22) from (7.4.5), we obtain 

Substituting this into (7.4.27), the LR statistic can be written as 

Now invoke assumption (D). The LR statistic becomes 
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This is asymptotically x2(r)  because the variance of the limiting distribution of 
A ~ X - ' ( & Z  9) is the positive definite matrix in brackets. 

This completes the proof of the asymptotic equivalence of the trio of statis- 
tics. But it should be clear from the proof that something stronger than asymptotic 
equivalence (that the three statistics share the same asymptotic distribution) holds. 
We have shown in the proof that the difference between the Wald statistic and 
(7.4.10) is 0,. But by (7.4.8) the difference between the latter and the quadratic 
form in the expression for the LR statistic (7.4.30) is o, when I: = -Y. So the 
numerical difference between the Wald statistic and the LR statistic is o, when 
X = -\P. The same applies to the LM statistic. The difference between it and 
(7.4.24) is 0,. But the difference between the latter and the quadratic form in 
(7.4.30) is again o, when I: = - Y. 

Summary of the Trinity 
To summarize the rather lengthy discussion of this section, 

Proposition 7.11 (The trinity): Let i the extremum estimator defined in (7.1.1). 
Consider the null hypothesis (7.4.1) where a(-) is continuously differentiable (so 
the Jacobian A(@ = is continuous) and the rank condition (7.4.3) is satisfied. 
Let 8 be the constrained extremum estimator defined in (7.4.4). Assume: 

the hypothesis of Proposition 7.9, if the extremum estimator is conditional ML, 

the hypothesis appropriately modified as indicated right below Proposition 7.9, 

in the case of unconditional ML, 

the hypothesis of Proposition 7.10 with W = S-' and that there is available a 
consistent estimator of S constructed from e and constructed from 8 ,  in the 
case of efficient GMM. 

Define the Wald, LM, and LR statistics as in Table 7.2. Then 

(a) the constrained extremum estimator e is consistent and asymptotically nonnal, 

(b) the three statistics all converge in distribution to X2(r)  under the null where r 
is the number of restrictions in the null, 

(c) moreover, the numerical difference between the three statistics converges in 
probability to zero under the null. 
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Q U E S T I O N S  F O R  R E V I E W  

1. Verify that the LM statistic for ML can be written as 

2. Derive (7.4.18). Hint: For ML, replace * by 0 in (7.3.5). For GMM, derive 

where 0 lies between O0 and 0 .  The derivation of this should be as easy as the 

derivation of (7.3.31). 

3. Explain why the LR statistic would not be asymptotically X 2  if X = -* did 

not hold. 

4. For ML, suppose the trio of statistics are calculated as indicated in Table 7.2, 

but suppose wr is actually serially correlated. Which one is still asymptotically 

x2? [Answer: None.] 

5. Suppose X = -* does not hold but suppose that a consistent estimate % of * 
is available along with the consistent estimate % of X. Propose an LM statistic 

that is asymptotically X2(r). Hint: Use the first equality in (7.4.23), which is 

valid without X = -*. The answer is 

6. (Optional, proof of (7.4.27)) Prove (7.4.27) for M-estimators. Hint: Take for 

granted the "second-order" mean value expansion around 0, 

where 0 lies between 0 and 0. By the first-order condition. 9 = 0. Also, 
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7. (Optional, proof of (7.4.27) for GMM) Prove (7.4.27) for GMM. Hint: From 
the mean value expansion of &(8) around 9, derive the Taylor expansion 

Substitute this into ~ ~ ( 9 )  = -+&(9)' @& (9). Then use the first-order condi- 
tion that ~ ~ ( 9 ) '  @&(9) = 0. 

7.5 Numerical Optimization 

So far, we have not been concerned about the computational aspect of extremum 
estimators. In the ML estimation of the linear regression model, for example, the 
objective function Qn(8) is quadratic in 8, so there is a closed-form formula for 
the maximizer, which is the OLS estimator. The objective function is quadratic for 
linear GMM also, with the linear GMM estimator being the closed-form formula. 
In most other cases, however, no such closed-form formulas are available, and 
some numerical algorithm must be employed to locate the maximum. A number of 
algorithms are available, but this section covers only the two most important ones. 
More details can be found in, e.g., Judge et al. (1985, Appendix B). The first is 
used for calculating M-estimators, while the second is used for GMM. 

Newton-Raphson 
We first consider M-estimators, whose objective function Q, (8) is (7.1.2). Since 
Qn(8) is twice continuously differentiable for M-estimators, there is a second- 
order Taylor expansion 

where ij is the estimate in the j-th round of the iterative procedure to be described 
in a moment, and s, and H, are the gradient and the Hessian of the objective 
function: 
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The ( j  + 1)-th round estimator ej+l is the maximizer of the quadratic function on 
the right-hand side of (7.5.1). It is given by 

This iterative procedure is called the Newton-Raphson algorithm. If the objective 
function is concave, the algorithm often converges quickly to the global maximum. 

For ML estimators, when the global maximum 6 is thus obtained, the estimate 
of ~ v a r ( e )  is obtained as -H,($)-' (recall that Hn(8) E H(w,: 8)). 

Gauss-Newton 
Now turn to GMM, whose objective function is Q, (8) = -ig,,(8)' ftg,,(8) (see 
(7.1.3)). As in the derivation of the asymptotic distribution, we work with a lin- 
earization of the g,, (8) function. The first-order Taylor expansion of g,, (8) around 
ej is 

where 

v. , = - g,,(e,) - Gn(ej)ej, G, = -Gn(ej). (7.5.5) 

(Recall that G, (8) E .) If the g,, (8) function in the expression for the GMM 
objective function were this linear function vj - Gj8, then the objective function 
would be quadratic in 8 and the maximizer (or the minimizer of the GMM distance) 
would be the linear GMM estimator: 

This is the ( j  + 1)-th round estimate in the Gauss-Newton algorith~n. '~ Unlike in 
Newton-Raphson, there is no need to calculate second-order derivatives. 

Writing Newton-Raphson and Gauss-Newton in a Common Format 
There are also similarities between Gauss-Newton and Newton-Raphson. Substi- 
tuting (7.5.5) into (7.5.6) and rearranging, we obtain 

I 9 ~ h e  Gauss-Newton algorithm was originally developed for nonlinear least squares. See Review Question 2 
for how Gauss-Newton is applied to NLS. The algorithm presented here is therefore its GMM adaptation. 



Extremum Estimators 499 

The second bracketed term is none other than the gradient evaluated at 9, for the 
GMM objective function Q, (8) = - f g,, (8)'%?g,, (8). The role played by the 
Hessian of the objective function in (7.5.3) is played here by the first bracketed 
term, which is the estimate based on e, of the -GI WG in Table 7.1. Therefore, 
the analogy between M-estimators and GMM noted in Table 7.1 also holds here. 
Furthermore, if g,, is linear, then the Hessian equivalent (the first bracketed term in 
(7.5.7)) is the Hessian of the GMM objective function. So the analogy is exact: the 
Gauss-Newton algorithm coincides with the Newton-Raphson algorithm. 

Equations Nonlinear in Parameters Only 
In the Gauss-Newton algorithm (7.5.7), when g,,(8) (= C g(w,; 8)) is not linear 
in 8, it is generally necessary to take averages over observations to evaluate the 
gradient and the Hessian equivalent in each iteration. (This is also generally true 
in Newton-Raphson if the objective function is not quadratic in 8.)  For large data 
sets it is a very CPU time-intensive operation. There is, however, one case where 
the averaging over observations in each iteration is not needed. That occurs in a 
class of generalized nonlinear instrumental variable estimation (a special case of 
nonlinear GMM where g(y,, z,, 8) can be written as a(y,, z,; 8)x1). Suppose that 
the equation a(y,, z,; 8)  takes the form 

where ao(.) and al (-) are known functions of (y,, z,) (but not functions of 8). A 
function of tlus form is said to be nonlinear in parameters only or linear in 
variables. It can be easily seen that 
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These equations make it clear that the sample averages need to be calculated just 
once, before the start of iterations. 

Q U E S T I O N S  F O R  R E V I E W  
A 

1 . (Does Q, increase during iterations?) Set 0 = B,+, in (7.5.1) and rewrite it as 

Consider the Newton-Raphson algorithm (7.5.3). Suppose that 6,+] is suffi- 
ciently close to 6, so that the sign of Q.(O,+~) - Q, (6,) is the same as that of 
the right hand side of the equation. Show that ~ , ( 0 , + ~ )  2 ~ ~ ( 0 , )  if Q,(O) is 
concave. Hint: Using (7.5.3), the right-hand side can be written as 

2. (Gauss-Newton for NLS) Ln NLS (nonlinear least squares), the objective func- 
tion is given by (7.1.19). Let 6, be the estimate in the j-th round and consider 
the linear approximation 

Replace ~ ( x , ;  8 )  in the m function by this linear function in 0. Show that the 
maximizer of this linearized problem is 
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P R O B L E M  S E T  F O R  C H A P T E R  7 

ANALYTICAL EXERCISES 

1. (Kullback-Leibler information inequality) Let f (y I x; 8 )  be a parametric 
family of hypothetical conditional density functions, with the true density func- 
tion given by f (y I x; 80). Suppose E[log f (y 1 x; 8:1] exists and is finite for 
all 8.  The Kullback-Leibler information inequality states that 

Prove this by taking the following steps. In the proof, for simplicity only, 
assume that f (y 1 x; 8) > 0 for all (y, x) and 8,  so that it is legitimate to take 
logs of the density f (y I x; 8). 

(a) Suppose Prob[ f (y ( x; 8 )  # f (y 1 x; O0:)1 > 0. Let w = (y, x')' and 
define 

Verify that a(w) # 1 with positive probability, so that a(w) is a noncon- 
stant random variable. 

(b) The strict version of Jensen's inequality states that 

if c(x) is a strictly concave function and x is a nonconstant random 
variable, then E[c(x)] < c(E(x)). 

Using this fact, show that 

Hint: log(x) is strictly concave. 

(c) Show that E[a(w)] = 1. Hint: The conditional mean of a(w) equals 1 
because 
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The last equality holds because f (y I x; 8)  is a density function for any x 
and 8.  Note well that the conditional expectation is taken with respect to the 

true conditional density f (y 1 x; $0). 

(d) Finally, show the desired result. 

2. (Information matrix equality) For ML, the score vector and the Hessian for 
observation (y , x) can be rewritten (with w = (y , x')') as: 

As usual, for simplicity, assume f (y 1 x, 8) > 0 for all (y, x) and 8,  so it is 
legitimate to take logs of the density function. 

(a) Assuming that integration (i.e., taking expectations) and differentiation can 
be interchanged, show that E[s(w; Bo)] = 0. Hint: Since f (y ( x; 8)  is a 

hypothetical density, its integral is unity: 

Differentiate both sides of this equation with respect to 8 and then charlge 

the order of differentiation and integration to obtain the identity 

1 S(W: 6)f (y I x; 6)dy = 0 . 
( P X ~ )  

Set 8 = 80 and obtain E[s(w; go) 1 x] = 0. 

(b) Show the information matrix equality: 
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Hint: Differentiating both sides of the above identity in the previous hint 

and assuming that the order of differentiation and integration can be inter- 

changed, we obtain 

Show that the integrand can be written as 

3. (Trinity for linear regression model) Consider the linear regression model 
with normal errors, whose conditional density for observation t is 

Let (8, c2)  be the unrestricted ML estimate of 8 = (Bra2)' and let (p, 52) be 
the restricted ML estimate subject to the constraint RB = c where R is an r x K 
matrix of known constants. Assume that O = IRK x &+ and that E(x,xi) is 
nonsingular. Also, let 

(a) Verify that B minimizes the sum of squared residuals. So it is the OLS 
estimator. Verify that minimizes the sum of squared residuals subject to 
the constraint RB = c. So it is the restricted least squares estimator. 

(b) Let Qn(8) = C:=, log f (y, I x,; 8, a2). Show that 

where SSRu (= C(y t  - x$?)~) is the unrestricted sum of squared residuals 
and SSRR (- C(y, - X ~ F ) ~ )  is the restricted sum of squared residuals. 
Hint: Show that c2 = S S R U / n  and G 2  = S S R R / n .  
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(c) Verify that the 2 given hen, although not the same as -+ x:=, H(wt; e) ,  
is consistent for - E[H(w,; Oo)]. Verify that the % given here, although 
not the same as -A C:=l H(w,; 8), is consistent for - E[H(w,; do)]. Hint: 
From the discussion in Example 7.8, 9 is consistent. As mentioned in Sec- 

tion 7.4, 8 too is consistent under the null. Given the consistency of and 

8 ,  it should be easy to show that 62  and a2 are consistent for a2. 

(d) Show that the Wald, LM, and LR statistics using 2 and 2 given here in the 
formulas in Table 7.2 can be written as 

(RP - c)'[R(x'x)-'~'1-I (RP - c) 
W = n .  

SSR 

L M = n .  (y - ~ B ) ' P ( Y  - xg') 
SSR 

7 

where y (n x 1) and X (n x K )  are the data vector and matrix associated 
with y, and x,, and P = X(X1X)-'X'. Hint: The A(@) (r x (K + 1)) in 

Table 7.2 is 

(e) Show that the three statistics can also be written as 

SSRR - SSRu 
W = n -  

SSRu 
9 

SSRR - SSRU 
L M = n .  

SSR 

Hint: As we have shown in an analytical exercise of Chapter 1, 
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(f) Show that W 1 LR >_ LM. (These inequalities do not always hold in 
nonlinear regression models.) 

A N S W E R S  T O  S E L E C T E D  Q U E S T I O N S  

2a. Since f (y I x; 8) is a hypothetical density, its integral is unity: 

This is an identity, valid for any 8 E O. Differentiating both sides of this 
identity with respect to 8, we obtain 

If the order of differentiation and integration can be interchanged, then 

But by the definition of the score, s(w; 8) f (y I x; 0) = $ f (y I x; 8). Substi- 
tuting this into (3), we obtain 

This holds for any 0 E O, in particular, for 80. Setting 8 = 80, we obtain 

Then, by the Law of Total Expectations, we obtain the desired result. 
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C H A P T E R  8 

Examples of Maximum Likelihood 

A B S T R A C T  

The method of maximum likelihood (ML) was developed in the previous chapter as a 
special case of extremum estimators. In view of its importance in econometrics, this 
chapter considers applications of ML to some prominent models. We have already 
seen some of those models in Chapters 3 and 4 in the context of GMM estimation. 

In deriving the asymptotic properties of ML estimators for the models considered 
here, the general results for ML developed in Chapter 7 will be utilized. Before 
proceeding, you should review Section 7.1, Propositions 7.5,7.6,7.8,7.9, and 7.11. 

A Note on Notation: We will maintain the notation, introduced in the previous 
chapter, of indicating the true parameter value by subscript 0. So 8 is a hypothetical 
parameter value, while Bo is the true parameter value. 

8.1 Qualitative Response (QR) Models 

In many applications in economics and other sciences, the dependent variable is 
a categorical variable. For example, a person may be in the labor force or not; a 
commuter chooses a particular mode of transportation; a patient may die or not; 
and so on. Regression models in which the dependent variable takes on discrete 
values are called qualitative response (QR) models. A QR model is described 
by a parameterized density function f (y, ( x,; 8) representing a family of discrete 

probability distributions of y, given x,, indexed by 8. 
A QR model is called a binary response model if the dependent variable can 

take on only two values (which can be taken to be 0 and 1 without loss of gener- 
ality) and is called a multinomial response model if the dependent variable can 
take on more than two values. Only binary models are treated in this subsection. 
For a thorough treatment of binary and multinomial models, see Amemiya (1985, 
Chapter 9). 
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The most popular binary response model is the probit model, which has already 
been presented in Example 7.3. Another popular binary model is the logit model: 

where A is the cumulative density function of the logistic distribution: 

This density f (y, ( x,; Bo) can be written as 

Talung logs of both sides and replacing the true parameter value 00 by its hypo- 
thetical value 0, we obtain the log likelihood for observation t: 

The logit objective function Q,(0) is l l n  times the log likelihood of the sam- 
ple (yl , X I ,  y2, XZ,  . . . , y,, x,). Under the assumption that {v,, x,} is i.i.d., the log 
likelihood of the sample is the sum of the log likelihood for observation t over t. 

Therefore. 

For probit, we have proved that its log likelihood function is concave (Example 
7.6), and that the ML estimator is consistent (Example 7.9) and asymptotically 
normal (Example 7.11) under the assumption that E(x,xi) is nonsingular. You 
are about to find out that doing the same for logit is easier. (On the first read- 
ing, however, you may wish to skip the discussion on consistency and asymptotic 
normality .) 

Score and Hessian for Observation t 

The logistic cumulative density function has the convenient property that 
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Using this, it is easy to derive (see Review Question l(a)) the following expressions 
for the score and the Hessian for observation t:  

where w, = (y,, xi)' 

Consistency 
Since x,xi is positive semidefinite, it immediately follows from its expression that 
H(w,; 8 )  is negative semidefinite and hence Q,(8) is concave. The relevant con- 
sistency theorem, therefore, is Proposition 7.6. We show here that the conditions 
of the proposition are satisfied under the nonsingularity of E(x,x:). Condition (a) 
of the proposition is the (conditional) density identification: f (y, I x,; 8 )  # f (y, I 
x,; 80) with positive probability for 8 # eO.' Since a logarithm is a strictly mono- 
tone transformation, this condition is equivalent to 

log f (y, 1 x,; 8 )  # log f (y, I x,; 80) with positive probability for 8 # 00, 
(8.1.9) 

where 80 is the true parameter value and the density f is given in (8.1.3). Verifi- 
cation of this condition is the same as in the probit example in Example 7.9 and 
proceeds as follows. The discussion in Example 7.8 has established that 

E(x,x;) nonsingular =+ xi8 # x;O0 with positive probability for 8 # 80. 
(8.1.10) 

Since the logit function A(v) is a strictly monotone function of v, we have 
A(xi8) # A ( X ; ~ ~ )  when xi8 # Thus, condition (a) is implied by the non- 
singularity of E(x,x;). Turning to condition (b) (that E[( log f (y,Jx,; e ) ~ ]  < oa for 
all 8), it is easy to show that 

Condition (b) can then be verified in a way analogous to the verification of the 
same condition for probit in Example 7.9. Thus, as in probit, the nonsingularity of 
E(x,xi) ensures that logit ML is consistent. 

'In other words, let X = f ( y t  I x i ;  0 )  and Y - f ( y t  I x i ;  0 0 ) .  X and Y are random variables because they 
are functions of w t  = ( y l ,  xi)' .  The condition can be stated simply as Prob(X # Y )  > 0 for tJ # 8 0 .  
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Asymptotic Normality 
To prove asymptotic normality under the same condition, we verify the conditions 
of Proposition 7.9. Condition (1) of the proposition is satisfied if the parameter 
space O is taken to be IWP . Condition (2) is obviously satisfied. Condition (3) can be 
checked easily as follows. Since E(y, I x,) = A(xi0), we have E[s(w,; 00) ( x,] = 
0 from (8.1.7). Hence, E[s(w,; Bo)] = 0 by the Law of Total Expectations. It is left 
as Review Question l(b) to derive the conditional information matrix equality 

Hence, (3) is satisfied by the Law of Total Expectations. The local dominance 
condition (condition (4)) is easy to verify for logit because, since IA(x;O)[l - 
A(xi0):Il < 1, wehave: IIH,(w,; @)I1 5 Ilx,xiII forallo. Theexpectationof Il~,xi11~ 
(the sum of squares of the elements of x,xi) is finite if E(x,xi) is nonsingular (and 
hence finite). So E(llx,xi 11) is finite. Regarding condition (3, the argument in 
footnote 29 of Newey and McFadden (1994) used for verifying the same condition 
for probit can be used for logit as 

Thus, we conclude that if {y,, x,} is i.i.d. and E(x,x;) is nonsingular, then the 
logit ML estimator 0 of 00 is consistent and asymptotically normal, with the asymp- 
totic variance consistently estimated by 

where w, = (y,, xi)' and H(w,; 0 )  is given in (8.1.8). 

Q U E S T I O N S  F O R  R E V I E W  

1. (Score and Hessian for observation t for general densities) In (8.1.1), re- 
place the logit cumulative density function (c.d.f.) A(xiBo) by a general c.d.f. 

F(xi00). 

(a) Verify that the score and Hessian for observation t are given by 

'only for interested readers, here's the argument. For any 17 > 0, there exists a C such that A(u)[l - A(u)] ) 
c > ofor I U I  5 v.  SO E[A(x'~)[I  - A(x'~)Ixx'] > ~ [ i ( l x ' e l  5 v)h(xle)[i - h ( x 1 e ) l ~ ' ]  > cE[i( lxle(  5 
v)xx1] in the matrix inequality sense, where 1 ((ul 5 13) is the indicator function. The last term is positive definite 
(not just positive semi-definite) for large enough 6 by non-singularity of E(xxl). 
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where F, = F(x;O), f, = f (xie), and f (.) = F1(.) is the density function. 

(b) Verify the conditional information matrix equality (8.1.12) for the general 
c.d.f. F .  Hint: Show that the expected value of the second term in the 

expression for the Hessian in the previous question is zero. 

2. Verify (8.1.7) and (8.1.8). 

3. (Logit for serially correlated observations) Suppose {y, , x, } is ergodic station- 
ary but not necessarily i.i.d. Is the logit ML estimator described in the text con- 
sistent? [Answer: Yes, because the relevant consistency theorem, Proposition 
7.6, does not require a random sample. However, the expression for ~ v a r ( 9 )  is 
not given by the negative of the inverse of the sample Hessian.] 

8.2 Truncated Regression Models 

A limited dependent variable (LDV) model is a regression model in which either 
the dependent variable y, is constrained in some way or the observations for which 
y, does not meet some prespecified criterion are excluded from the sample. The 
LDV model of the former sort is called a censored regression model, while the 
latter is called a truncated regression model. This section presents truncated 
regression models; censored regression models are presented in the next section. 

'The Model 
Suppose that {y,, x,) is i.i.d. satisfying 

The model would be just the standard linear regression model with normal errors, 
were it not for the following feature: only those observations that meet some pre- 
specified rule for y, are included in the sample. We will consider only the simplest 
truncation rule: y, > c where c is a known constant. This rule is sometimes called 
a "truncation from below." Once this case is worked out, it should not be hard to 
consider more general truncation rules. 
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0 c 

Figure 8.1 : Effect of Truncation 

Truncated Distributions 
To proceed, we need two results from probability theory. 

Density o fa  Truncated Random Variable: If a continuous random variable 
y  has a density function f ( y )  and c  is a constant, then its distribution after 
the truncation y  > c  is defined over the interval ( c ,  oo) and is given by 

Figure 8.1 illustrates how truncation alters the distribution for N ( 0 ,  1). The solid 
curve is the density of N ( 0 ,  1). Because it is a density, the area under the curve is 
unity. The dotted curve is the distribution after truncation, which is defined over 
the interval (c ,  oo). It lies above the solid curve over this interval so that the area 
under the dotted curve is unity. 

The second result follows. 

Moments of the Truncated Normal Dktribution: I f  y  -- N ( p O ,  n i )  and c  
is a constant, then the mean and the variance of the truncated distribution 
are 

@ ( u )  where v  = ( c  - po)/ao and A(v) m. 
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This formula for the mean clearly shows that the sample mean of draws from the 
truncated distribution is not consistent for PO. This is an example of the sample 
selection bias. The bias equals aoA(v). The function A(v) is called the inverse 
Mill's ratio or the hazard function. The function A(v) is convex and asymptotes 
to v as v + oo and to zero as v + -oo. So its derivative A1(v) is between 0 and 
1. It is easy to show that 

Using (8.2.3) and (8.2.4), we can show how truncation alters the form of the 
regression of y, on x,. By (8.2.1), the distribution of y, conditional on x, before 
truncation is N(x;Bo, a:). Observation t is in the sample if and only if y, > c. So 

E( y, I x, , t in the sample) = xi Po + ool (*) , 

Var(y, 1 x,, t in the sample) = a i [ l  - A ( d ) [ A ( e )  00 - -1. c-xi80 00 (8.2.7) 

This formula shows that the OLS estimate of the x, coefficient from the linear 
regression of y, on x, is not consistent because the correction term ool(*). 

which is correlated with x,, would be included in the error term in the linear regres- 
sion. Since the functional form of the hazard function A(v) is known (under the 
normality assumption for E,), we could avoid the sample selection bias by apply- 
ing nonlinear least squares to estimate (Bo, a:), but maximum likelihood should 
be the preferred estimation method because it is asymptotically more efficient. 

In passing, we note that the sample selection bias does not arise if selection is 
based on the regressors, not on the dependent variable. Suppose that observation t 
is in the sample if #(x,) 1 0. Then 

E(y, I x,, t in the sample) = E[xiBo + E, I x,, #(xt) > 01 
= xiBo + E [ ~ t  I xt, #(xt) > 01 
= xiPo. (8.2.8) 

The last equality holds since E [E, 1 x,, #(x,) > 01 = E(E, I x,) = 0 if #(x,) 0. 

The Likelihood Function 
Derivation of the likelihood function utilizes (8.2.2). As just noted, the pretrunca- 
tion distribution of y, I x, is N(x;Bo, a:), whose density function is 
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where @(.) is the density of N(0, 1). The probability that observation t is in the 
sample is given by 

Prob(y, > c I x,) = 1 - Prob(y, I c I x,) 

(since 1 x, - N(0. 1)). (8.2.10) 
0 0  

Therefore, by (8.2.2), the post-truncation density, defined over (c, m), is 

L ~ ( Y ~ - X ~ P O )  
f (y, I x, ,  t in the sample; Po, a t )  = 00 0 0  (8.2.1 1) 

1 - @(&j 
no 

This is the density (conditional on x,) of observation t in the sample. Taking logs 
and replacing (Po, a:) by their hypothetical values (B, a 2 ) ,  we obtain the log con- 
ditional likelihood for observation t :  

Were it not for the last term, this would be the log likelihood (conditional on x,) for 
the usual linear regression model. The last term is needed because the value of the 
dependent variable for observation t ,  having passed the test y, > c and thus being 
in the sample, is never less than or equal to c. 

Reparameteriziqg the Likelihood Function 
This log likelihood function can be made easier to analyze if we introduce the 
following reparameterization: 

(We have considered this reparameterization in Example 7.7 for the linear regres- 
sion model.) This is a one-to-one mapping between (B, a 2 )  and (6, y ), with 
the inverse mapping given by B = 6/ y, a2 = l l y 2 .  The reparameterized log 
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conditional likelihood is 

The objective function in ML estimation is l / n  times the log likelihood of the 
sample. For a random sample, the log likelihood of the sample is the sum over 
t of the log likelihood for observation t .  Thus, the objective function in the ML 
estimation of the reparameterized truncated regression model, denoted &(A, y), 
is the average over t of (8.2.14). The ML estimator (i, p) of (60, yo) is the (6, y ) 
that maximizes this objective function. 

Verifying Consistency and Asymptotic Normality 
The next task is to derive the score and the Hessian and check the conditions 
for consistency and asymptotic normality for the reparameterized log likelihood 
(8.2.14). (On the first reading, you may wish to skip the discussion on consistency 
and asymptotic normality.) 

Score and Hessian for Observation t 

A tedious calculation yields 

c-x:/9 where K is the number of regressors, w, = (y,, xi)', and v, - y c  - xi6 (= -). 

The Hessian is not everywhere negative semidefinite even after the reparameteri- 
zation. So the objective function &(6, y )  is not c~ncave .~  The relevant consis- 
tency theorem, therefore, is Proposition 7.5, not Proposition 7.6, while the relevant 
asymptotic normality theorem remains Proposition 7.9. 

3~owever,  it can be shown that the Hessian of the objective function On(@)  is negative semidefinite at any 
solution to the likelihood equations (see Orme, 1989). Since this rules out any saddle points or local minima, 
having more than two local maxima is impossible. Therefore, provided that the maximum of &(a, y )  occurs at 
a point interior to the parameter space, the first-order condition is necessary and suflicient for a global maximum. 
If an algorithm such as Newton-Raphson produces convergence, the point of convergence is the global maximum. 
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Consistency 
Condition (a) of Proposition 7.5 is the (conditional) density identification 

f(vt  I xt; 6, Y )  # f (yt  I xt: 60, YO) 
with positive probability for (6, y ) # (60, yo), 

where (60, yo) is the true parameter value and the parameterized log density f"(y, I 
x,; 6, y )  is given in (8.2.14). Clearly, given (y,, x,), the value of f(y, I x,; 6, y )  
is different for different values of y .  So identification boils down to the condition 
that xi6 # x;J0 with positive probability for 6 # 60. But (8.1 . lo)  indicates that 
this condition is satisfied if E(x,xi) is nonsingular. Turning to condition (b) of the 

proposition (the dominance condition for f(yt I x,; 6, y)), it is easy to show that 
the condition is satisfied under the nonsingularity of E ( x , x ~ ) . ~  Therefore, the ML 
estimator ( i ,  $) of (60, yo) is consistent under the nonsingularity of E(x,x;). 

Asymptotic Normality 
A rather tedious calculation using (8.2.6), (8.2.7), and (8.2.13) shows that E[s I 
x,] = 0. An extremely tedious calculation yields the conditional information 

matrix equality: E[ss' 1 x,] = - E[H I x,]. Therefore, condition (3) of Propo- 
sition 7.9 is satisfied. We will not discuss verification of conditions (4) and (5) of 

the prop~sit ion.~ 
Thus, we conclude: if {vt, x,} is i.i.d. and E(x,xi) is nonsingular, then the ML 

estimator (i, $) of the truncated regression model is consistent and asymptotically 

normal with the asymptotic variance consistently estimated by 

where w, = (y,,  xi)' and H(wt; 8 )  is given in (8.2.16). 

40nly for interested readers, what needs to be shown is ~ [ s u ~ ~ , ~  I log f(yl  I xt; @)I]  < m, where 0 = 
(Sf, y) '  and O is a compact set. An extension of the argument in Example 7.8 shows that there is a dominating 
function for the bracketed term in (8.2.14). The inequality (7.2.14) can be used to show that there is a dominating 
function for log[l - @(cy - x:S)]. 

 here seems to be no published work that verifies conditions (4) and (5). For the case where (xt] is a 
sequence of fixed constants, Sapra (1992) proved asymptotic normality under the assumption that xt is bounded 
and z:=, xrxi is nonsingular. (His proof is for the more general setting of serially correlated obser- 
vations.) It would seem reasonable to conjecture that for the case where xr is random (as here), a sufficient 
condition for consistency and asymptotic normality is the nonsingularity of E(xlxi). 
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Recovering Original Parameters 
By the invariance property of ML (see Section 7. l), the ML estimate of (Po, ci) 

A .. 
is /I = 6/? and k 2  = 1 /p2,  the value of the inverse mapping. Clearly, if the ML 
estimate of the reparameterized model, ( i ,  f), is consistent, then so is the ML esti- 
mate (B, k 2 )  thus recovered. The asymptotic variance of (B, k2)  can be obtained 

by the delta method (see Lemma 2.5) as ? ~ v a r ( i ,  ?)?, where 3 is the estimate of 
the Jacobian matrix for the inverse mapping (P = 6/ y ,  a2  = l /  2, evaluated at 

(5, f ) :  

Q U E S T I O N S  F O R  R E V I E W  

1. (Second moment of y,) From (8.2.6) and (8.2.7), derive: 

1 
E(Y: I x,, t in sample) = -[1 + A(vt)yc + ( ~ ( 6 ) ~  + A(vt)x:6], 

Y 

where v, - y c  - xi6. 

2. (Estimation of truncated regression model by GMM) The truncated regres- 
sion model can also be estimated by GMM. Consider the following K + 1 
orthogonality conditions. The first K of them are 

where w, = ( y ,  , xi)' and v, = y c - xi6. The (K + 1)-th orthogonality condition 
is 

(a) Verify that E[gl (w,; So, yo)] = 0 and E[g2(w,; 60, yo)] = 0. Hint: Use the 

Law of Total Expectations. v, is a function of x,. 

(b) Show that (6*, y *) satisfies the likelihood equations if and only if it satisfies 
the K + 1 orthogonality conditions. Hint: Let s2(w,; 6, y )  be the (K + 1)-th 
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element of s(w,; 6 ,  y )  in (8.2.15). Then 

8.3 Censored Regression (Tobit) Models 

The censored regression model is also called the Tobit model to pay respect to 
Tobin (1958), who was the first to introduce censoring in economics. The simplest 
Tobit model can be written as follows: 

Here, st I xt is N ( 0 ,  a:) and {y,, x,] (t = 1,2, . . . , n) is i.i.d. The threshold value 
c is known. Unlike in the truncated regression model, there is no truncation here: 
observations for which the value of the dependent variable y: fails to pass the test 
y: > c are in the sample. The feature that distinguishes the censored regression 
model from the usual regression model is that the dependent variable is censored, 
that is, constrained to lie in a certain range, which necessitates a distinction between 
the observable dependent variable yt and the unobservable or latent variable y:. 

The former is the censored value of the latter. An equivalent way to write the 
model is 

y, = max{x:bo + E,, cl. (8.3.3) 

Tobit Likelihood Function 

For those observations that remain intact after censoring (Tobin (1958) called those 

observations nonlimit observations), the density of y, (conditional on x,) is 

This differs from the density for the truncated model (8.2.1 1) simply because there 
is no truncation. For those observations, called limit observations, for which the 
value of the dependent variable is altered by censoring, all we know is that y: 5 c, 
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the probability of which is given by 

Prob(y: _( c 1 x,) = Prob (Y: ;o<so - , - <so 1 
00 

c - <Po = a( ) (since 
"0 

I xt - N(0, 1)). (8.3.5) 

Therefore, the density of y,, defined over the interval [c, oo), is (8.3.4) for y, > c 
and a probability mass of size @(c-ziBO) at y, = c. This density can be written as 

where the dummy variable Dt is a function of y, defined as 

0 if y, > c(i.e., y: > c), 
(8.3.7) 

1 ify, = c(i.e., y: 5 c). 

Taking logs and replacing (so, a;) by their hypothetical values (j3, a2) ,  we obtain 
the log conditional likelihood for observation t: 

Thus, the Tobit average log likelihood for a random sample can be written as 

Reparameterization 
As in the truncated regression model, the discussion is simplified if we introduce 
the reparameterization (8.2.13). The reparameterized log conditional likelihood is 
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We have seen that the term in braces is concave in (6, y )  (see Example 7.7). We 
have also seen that log @(v) is concave (see Example 7.6), which implies that 
log @ (y c - xi6) is concave in (6, y ). It follows that the reparameterized Tobit 
average log likelihood for observation t ,  being a non-negative weighted average of 
two concave functions, is concave in the parameters (this finding is due to Olsen, 
1978). Accordingly, as in probit and logit, the relevant consistency theorem for 
Tobit is Proposition 7.6. 

The remaining task is to write down the score and the Hessian and check the 
conditions for consistency and asymptotic normality for the reparameterized log 
likelihood (8.3.10). 

Score and Hessian for Observation t 

A straightfonvard calculation utilizing the fact that A(-v) = && = $$$ and 
(8.2.5) produces 

c-xis where v, - yc  - xi6 (= -). 

Consistency and Asymptotic Normality 

For Tobit, we will not verify the conditions for consistency and asymptotic normal- 
ity. For the case where {x,} is a sequence of fixed constants, Amemiya (1973) has 
proved the consistency and asymptotic normality of Tobit ML under the assump- 
tion that x, is bounded and lim A C:=, x,xi is nonsingular. It seems a reasonable 
guess that for the case where x, is stochastic (as here), a sufficient condition for 
consistency and asymptotic normality is the nonsingularity of E(xtxi). 

Recovering Original Parameters 

As in the truncated regression model, the ML estimate of (Po,  a:) can be recovered 
A A 

as /I = 6/p and e2 = 1 /p2. The asymptotic variance of (p, e 2 )  can be obtained 
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I - A  

1 by the delta method as T~var(6,  );)J1, where? is as in (8.2.18) and ~va r ($ ,  );) is 

Q U E S T I O N S  FOR R E V I E W  

1. (Censored vs. truncated regression) One way to see the difference between 
truncation and censoring is to calculate E(yt I x,) for the censored regression 
model. Show that 

Hint: Conditional on y, > c, the distribution of y, (conditional on x,) is none 

other than the truncated distribution derived in the previous section, whose 

expectation is given in (8.2.6). The probability that y, > c is given in (8.2.10). 

2. Show that the Hessian given in (8.3.12) is negative semidefinite. Hint: 

0 0 
;yfXt2] = [ I r ]  [x: Y f ] +  [ .  

-ytx: + Y, -Yt 0 7 

[*xi - cx; -;:.I = [:I [x: c ]  . 

Also, A(v) 1 v for all v (i.e., A(-v) + v 3 0 for all -v). 

3. (Tobit for serially correlated observations) Suppose {y,, x,} is ergodic station- 
ary but not necessarily i.i.d. Is the Tobit ML estimator described in the text 
consistent? [Answer: Yes.] 

- - 

8.4 Multivariate Regressions 

In Section 1.5 and also in Example 7.2 of Chapter 7, we pointed out that the OLS 
estimator of the linear regression model is numerically the same as the ML estima- 
tor of the same model with normal errors. We have derived the GMM estimators 
for the single-equation models with endogenous regressors in Chapter 3 and for 
their multiple-equation versions in Chapter 4, but we have not indicated what the 
ML estimators for those models are. In this section and the next, we derive those 
ML counterparts. This section examines the ML estimation of the multivariate 
regression model, which is the simplest multiple-equation model. 
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The Multivariate Regression Model Restated 
The multivariate regression model is described by Assumptions 4.1-4.5 and 4.7, 
with z,, = x,, = x, for all m = 1,2, . . . , M. To change the notation of Chapter 
4, the system of M equations can be written as 

Here, we maintain the convention of designating the true parameter vector by sub- 
script 0. If we define 

then the M-equation system can be written compactly as 

yl = nbxI + Vr (t = 1,2, . . . , n). 

The model has the following features. 

{yr, x,) is ergodic stationary (Assumption 4.2). 

The common regressors x, are predetermined in that E(x, - v,,) = 0 for all m 

(Assumption 4.3). 

The rank condition for identification (Assumption 4.4) reduces to the familiar 
condition that E(x,x:) be nonsingular. 

The error vector is conditionally homoskedastic in that E(v,vi I x,) = Po, and 
Po is positive definite (Assumption 4.7). 

The GMM estimator of no, is the OLS estimator: 

So the GMM (OLS) estimate of no is given by 
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The Likelihood Function 
i The model is not yet specific enough to lend itself to ML estimation. We make the 

supplementary assumptions that (1) v, 1 x, -- N(0, Qo), and (2) (y,, x,} is i.i.d. 
(This assumption strengthens Assumptions 4.2 and 4.5.) 

The multivariate regression model with the normality assumption (1) implies 
that y, ( x, -- N(II;xt, QO). The density of this multivariate normal distribution is 

(2n)-M/2 l ~ ~ l - l / ~  exp - -(y, - n ; ~ [ ) ~ n ; l  (y, - n;x,)]. (8.4.6) r :  
Replacing the true parameter values ( n o ,  QO) by their hypothetical values (II,  Q) 
and taking logs, we obtain the log conditional likelihood for observation t: 

1 where use has been made of the fact that - log( 1 S2 1) = log(l Q-' I ). 
For a random sample, l l n  times the log conditional likelihood of the sample 

is the average over t of the log conditional likelihood for observation t .  So the 
objective function Qn(II ,  Q) is 

It is left as Review Question 2 to show that the last term can be written as 

where 6 ( I I )  is defined as 

So the objective function can be rewritten as 

The ML estimate of ( n o ,  QO) is the (n, Q) that maximizes this objective function. 



Chapter 8 

The parameter space for ( n o ,  Po) is 

{(n, P )  1 P is symmetric and positive definite}. 

Maximizing the Likelihood Function 
We now prove that the solution to the maximization problem is numerically the 
same as the GMM estimator. That is, the ML estimator of no is given by the 
GMMIOLS estimator fi in (8.4.5) and the ML estimate of Po is given by 

where i, - y, - ll x,. 
It is left as Analytical Exercise 2 to show that, under the assumptions of the 

multivariate regression model stated above, G ( n )  is positive definite with proba- 
bility one for any given ll for sufficiently large n. So we can assume that G ( n )  is 
positive definite, not just positive semidefinite. The proof that the GMM estimator 
is numerically the same as the ML estimator is based on the following two-step 
maximization of the objective function. 

Step I :  The first step is to maximize Q,(ll, P )  with respect to P ,  taking ll as 
given. For this purpose, the following fact from matrix algebra is useful. 

An Inequality Involving Trace and ~e terminant :~  Let A and B 
be two symmetric and positive definite matrices of the same size. 
Then the function 

f (A) r log ([A() - trace (AB) 

is maximized uniquely by A = B-'. 

This result, with A = P-' and B = G ( n ) ,  immediately implies that the 
objective function (8.4.1 1) is maximized uniquely by P = G ( n ) ,  given 
ll. Substituting this P into (8.4.1 1) gives ( l l n  times) the concentrated 
log likelihood function (concentrated with respect to P): 

6 ~ h i s  result is implied by Lemma A.6 of Johansen (1995). The uniqueness of the minimizer is due to the 
linearity of the trace operator and the strict concavity of log(lA1) noted in Magnus and Neudecker (1988, p. 222). 
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Step 2: Looking at the concentrated log likelihood function Q;l;(n), we see that 
the ML estimator of no should minimize 

It is left as Analytical Exercise 1 to show that this is minimized by the 
OLS estimator fi given in (8.4.5). Finally, setting II = fi in (8.4.10) 
gives (8.4.12). 

Consistency and Asymptotic Normality 

We have shown in Chapter 4, without the normality assumption (that s t  I xt is 
normal) or the i.i.d. assumption for ( y , ,  x , } ,  that the GMMIOLS estimator fi in 

(8.4.5) is consistent and asymptotically normal and that G in (8.4.12) is consistent. 
It then follows, trivially, that the ML estimator of no is consistent and asymptot- 
ically normal and the ML estimator of St0 is consistent. It is worth emphasizing 

that the ML estimator of no based on the likelihood function that assumes normal- 
ity is consistent and asymptotically normal even if the error term is not normally 

distributed. 
We will not be concerned with the asymptotic normality of the ML estimator 

A h  

of 510, Sl(n). One way to demonstrate the asymptotic normality would be to verify 

the conditions of the relevant asymptotic normality theorem of the previous chapter. 

Q U E S T I O N  F O R  R E V I E W  

1. Prove (8.4.9). Hint: Use the following properties of the trace operator. (1) 

trace(x) = x if x is a scalar, (2) trace(A + B) = trace(A) + trace(B), and (3) 

trace(AB) = trace(BA) provided AB and BA are well defined. The answer is 
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= trace 1; x Q-l (y, - nfx,)  (y, - n'x, 
,=I  1 

8.5 FlML 

As seen in Chapter 4, the multivariate regression model is a specialization of the 
seemingly unrelated regression (SUR) model, which in turn is a specialization of 
the multiple-equation system to which three-stage least squares (3SLS) is appli- 
cable. The two-stage least squares (2SLS) estimator is the GMM estimator when 
each equation of the system is estimated separately, while 3SLS is the GMM esti- 
mator when the system as a whole is estimated. This section presents the ML 
counterparts of 2SLS and 3SLS. 

The Multiple-Equation Model with Common Instruments Restated 
To refresh your memory, the model is an M-equation system described by Assump- 
tions 4 .14.5  and 4.7, with x,, = x, for all m = 1,2 ,  . . . , M (so the set of instru- 
ments is the same across equations). Still maintaining the convention of denot- 
ing the true parameter value by subscript 0, we can write the M equations of the 
system as 

The model has the following features. 

Unlike in the multivariate regression model, for each equation m,  the regres- 

sors z,, may not be orthogonal to the error term, but there are available K pre- 
determined variables x, that are known to satisfy the orthogonality conditions 
E(x, . E,,) = 0 for all m (this is Assumption 4.3). Defining the M x 1 vector 

as 
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the orthogonality conditions can be expressed as 

These K predetermined variables serve as the common set of instruments in the 
GMM estimation. 

The endogenous variables of the system are those variables (apart from the 
errors) in the system that are not included in x,. 

The rank condition for identification (Assumption 4.4) is that the K x L, matrix 

E(x,z;,) be of full column rank for all m. Equation m is said to be overidenti- 
fied if the rank condition is satisfied and L, < K. 

The error vector is conditionally homoskedastic in that E(E,E; I x,) = Co, and 
Co is positive definite (Assumption 4.7). 

E(x,x;) is nonsingular (a consequence of conditional homoskedasticity and the 
nonsingularity requirement in Assumption 4.5). 

The GMM estimator for this system as a whole is the 3SLS estimator given in 
(4.5.12), while the single-equation GMM estimator of each equation in isolation is 
2SLS given in (3.8.3). 

The following examples will be used to illustrate the concepts to be introduced 
shortly. 

Example 8.1 (A model of market equilibrium): An expanded version of 
Working's example considered in Section 3.1 is a two-equation system: 

~ I = Y ~ ~ P I + ~ I I + B I ~ ~ ~ + E ~ ~  (demand), (8.5.4) 

91 = Y ~ I P I  + 821 + 8 2 2 ~ ~  + &12 (supply). (8.5.5) 

In this system, q, is the amount of coffee transacted and p, is the coffee price. 
The variable a, appearing in the demand equation is a taste shifter, while the 
variable w, is the amount of rainfall that affects the supply of coffee. The 
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system can be cast in the general format by setting 

Ytl  = 41, Yt2 = qt, Zt l  = ['I 7 '2 = [ r t  ] 7 

at Wt 

go1 = [":I 9 go2 = ["I . 
812  822  

(Note that y,, and yt2 are the same variable.) If E(E,;) = 0, E ( ~ , E , ~ )  = 0, and 
E(wtstj) = 0 for j = 1,2,  then (1, a,, w,) can be included in the common 
set of instruments. So 

xt = [i] . 
The other nonerror variables in the system, p, and q,, are endogenous vari- 
ables. Provided that the rank condition for identification is satisfied, each 
equation is just identified because the number of right-hand side variables 
equals that of instruments. 

Example 8.2 (Wage equation): In the empirical exercise of Chapter 3, 
we estimated a standard wage equation. Consider supplementing the wage 
equation by an equation explaining KWW (the score on the "Knowledge of 
the World of Work" test): 

where St, for example, is years in schooling for individual t .  Assume that 
E(E,,) = 0 and E(IQ,E,~) = 0 for j = 1, 2. Assume also that there is a 
variable MED (mother's education), which does not appear in either equation 
but which is predetermined in that E(MED,&,,) = 0 for j = 1, 2. So the 
common set of instruments is x, = (1, IQ,, MED,)'. The rest of the nonerror 
variables in the system are endogenous variables. This two-equation system 
has three endogenous variables, LW, S, and M. Provided that the rank 
condition is satisfied, the first equation is just identified because the number of 
right-hand side variables equals the number of instruments, while the second 
equation is overidentified. 
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The Complete System of Simultaneous Equations 
The ML counterpart of 3SLS is called the full-information maximum likelihood 
(FIML) estimator. If it is to be estimated by FIML, the multiple-equation model 
needs to be further specialized before introducing the normality and i.i.d, assump- 
tions. The required specialization is that those M equations form a "complete" 
system of simultaneous equations. Completeness requires two things. 

1. There are as many endogenous variables as there are equations. This condition 
implies that, if y, is an M-dimensional vector collecting those M endogenous 
variables, then (ytl, . . . , y , ~ ,  z , ~ ,  . . . , Z,M) are all elements of (y,, x,), which 
allows one to write the M-equation system (8.5.1) as 

ro yr + Bo x, = E, t = 1 2  . n (8.5.8) 
( M x M ) ( M x l )  ( M x K ) ( K x l )  ( M x l )  

with the m-th equation being y,, = ~ ~ , 6 ~ ,  + E,,. (This is illustrated for 
Example 8.1 below.) The equation system written in this way is called the 
structural form, and (ro, Bo) are called the structural form parameters. As 
will be illustrated below, each of the structural form parameters is a function of 

(801, - .  . 9 6 0 ~ ) .  
The system in Example 8.1 satisfies this first requirement. The system in 

Example 8.2 is not a complete system because the number of endogenous vari- 
ables is greater than the number of equations. It is not possible to estimate 
incomplete systems by FIML (unless we complete the system by adding appro- 
priate equations, see the discussion about LIML below). This is in contrast to 
GMM; incomplete systems can be estimated by 3SLS (or more generally by 
multiple-equation GMM if conditional homoskedasticity is not assumed), as 
long as they satisfy the rank condition for identification. 

2. The square matrix ro is nonsingular. This implies that the structural form can 
be solved for the endogenous variables y, as 

where 

V, ro - I  et  
( M x l )  ( M x M )  ( M x l )  

Expression (8.5.9) is known as the reduced-form representation of the struc- 
tural form, and the elements of no are called the reduced-form coefficients. In 
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each equation of the reduced form, the regressors are the same set of variables, 
x,. From (8.5.3) and (8.5.1 I), it follows that E(x,vi) = 0, namely, that all the 
regressors are predetermined. The reduced form, therefore, is a multivariate 
regression model. 

Relationship between (ro, Bo) and bo 
Let 60 be the stacked vector collecting all the coefficients in the M-equation system 
(8.5.1): 

For understanding the mechanics of FIML, it is important to see how the coeffi- 
cient matrices ( r o ,  Bo) depend on 60. To illustrate, consider Example 8.1. The 60 
vector is 

The two endogenous variables are (p,, q,). It does not matter how the endogenous 
variables are ordered, so arbitrarily put p, first in y,: y, = (p,, q,)'. The structural 
form parameters can be written as 

This example serves to illustrate three points. First, each row of ro has an 
element of unity, reflecting the fact that the coefficient of the dependent variable 
in each of the M equations (8.5.1) is unity. In this sense ro is already normal- 
ized. Second, some elements of ro and Bo are zeros, reflecting the fact that some 
endogenous or predetermined variables do not appear in certain equations of the 
M-equation system. This feature of the structural form coefficient matrices is 
called the exclusion restrictions. (In Example 8.1, no elements of ro happen 
to be zero because the two endogenous variables appear in both equations.) Third, 
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the system involves no cross-equation restrictions, so each element of 60 appears 

in (To, Bo) just once. 

The FIML Likelihood Function 
To make the complete system of simultaneous equations estimable by FIML, we 
assume (1) that the structural error vector E, is jointly normal conditional on x,, 
i.e., E, 1 X, - N(0, Co), and (2) that {y,, x,} is i.i.d., not just ergodic stationary 
martingale differences (this assumption strengthens Assumptions 4.2 and 4.5). 

By the normality assumption (1) about the structural errors e, and (8.5.1 l), 
we have v, I x, -- N(0, r;lCo(r;l)'). Combining this and the reduced form 
y, = nbx, + V, with (8.5.10) produces 

So the log conditional likelihood for observation t is 

M 1 
log f (y, I x,; 6, C) = -- i o g ( 2 ~ )  - - iog((r- 'x(r-l) ' l)  

2 2 
1 

- -[ y, + ~ - l ~ x t ] ' [ ~ - ' C ( ~ - ' ) ' ] - l [ y ,  + T-~BX,]. (8.5.16) 
2 

The likelihood is a function of (6, C)  because, as illustrated in (8.5.14), the struc- 

tural form coefficients ( r ,  B) are functions of 6. Now 

[ y, + T-~Bx,]'[T-' C(r-')'I-'[ y, + r-'Bx,] 

= [yt + r - l ~ x , ] ( ' [ r ' C - l ~ ] [ y ,  + r-'BX,] 

= [ry,  + Bx,]'C-' [ry,  + Bx,] 

and 

Substituting these into (8.5.16), 

1 
- -[TY, 2 + B x , ] ' ~ ' [ r y ,  + Bx,]. (8.5.19) 

Taking the average over t ,  we obtain the FIML objective function for a random 

sample: 
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The FIML estimate of (60, Xo) is the (6, X) that maximizes this objective function. 

The FIML Concentrated Likelihood Function 

As in the maximization of the objective function of the multivariate regression 
model, we can proceed in two steps. The first step is to maximize e n ( & ,  X) with 
respect to X given 6. This yields 

Its (m, h)  element can be written as 

By substituting (8.5.21) back into the objective function (8.5.20), ( l l n  times) the 
FIML concentrated likelihood function can be derived as 

The second step is to maximize this FIML concentrated likelihood with respect to 
6. The FIML estimator $ of 60 is the 6 that maximizes this f~nc t ion .~  The FIML 
estimator of Xo is %(i). 

7 ~ o  the FIML estimator is an extremum estimator that maximizes 

1 " -1; z ( y t  + l-'Bxt)(yt + l-'Bxt)'1 
t=l 

Some aspects of this extremum estimator are explored in an optional analytical exercise (see Analytical Exer- 
cise 3). 
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Testing Overidentifying Restrictions 
Now compare this FIML concentrated likelihood Qi(6) given in (8.5.23) with that 
for the multivariate regression model, Q,*(II) given in (8.4.13). The FIML concen- 
trated likelihood Qi  (6) is what obtains when we impose on Qi (II) the restrictions 
implied by the null hypothesis that 

Put differently, FIML estimation of 60 is a constrained multivariate regression. 
Therefore, the truth of the null hypothesis can be tested by the likelihood ratio 
principle. Since the OLS estimator fi given in (8.4.5) maximizes the multivariate 
regression concentrated likelihood function Q,* (ll) given in (8.4.13) and the FINIL 
estimator i maximizes the FlML concentrated likelihood function ~ i ( i )  given in 
(8.5.23), the likelihood ratio test statistic is 

A - 1 -  A h  

= n x (log16(-(I' B)')I - log lB(r~)l) .  

A h  

where G ( n )  is defined in (8.4.10) and ( r ,  B) is the value of ( r ,  B) implied by i .  
Since the dimension of 6 equals EL, L,, the number of restrictions implied by 
the null hypothesis Ho above is 

which is the total number of overidentifying restrictions of the system. Therefore, 
the likelihood ratio test based on the LR statistic (8.5.25) is a test of overidentify- 
ing restrictions. It is a specification test because the restriction being tested is a 
condition assumed in the model. 

Properties of the FIML Estimator 
There is no closed-form solution to the FIML estimator. So, in order to establish 
the consistency and asymptotic normality, we would have to verify the conditions 
of relevant theorems of the previous chapter. We summarize here, without proof, 
the main properties of the FIML estimator. 

Identification 

Stating the identification condition in various forms for complete simultaneous 
equations systems is a major topic in most textbooks. Here it is left as an optional 
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analytical exercise (Analytical Exercise 3) to show that the identification condi- 
tion for FIML as an extremum estimator is equivalent to the rank condition for 
identification (that E(xtzi,) be of full column rank for all rn = 1,2,  . . . , M ) .  

Asymptotic Propert ies 

Although the FIML objective function (8.5.20) is derived under the normality of 
.st I x,, the FIML estimator of 60 is consistent and asymptotically normal without 
the normality assumption. For a proof of consistency without normality, see, e.g., 
Amemiya (1985, pp. 232-233). There is a nice proof of asymptotic normality 
of due to Hausman (1975), which shows that an iterative instrumental variable 
estimation can be viewed as an algorithm for solving the first-order conditions for 
the maximization of Q,(6, x ) . ~  This argument shows that the FIML estimator of 
60 is asymptotically equivalent to the 3SLS e~timator.~ Therefore, its asymptotic 
variance is given by (4.5.15), and a consistent estimator of the asymptotic variance 
is (4.5.17). 

lnvariance 

Since the FIML estimator is an ML estimator, it has the invariance property dis- 
cussed in Section 7.1. To illustrate, consider Example 8.1 and suppose you wish to 
reparameterize the supply equation as 

The old supply parameters (y21, 821, 822) and the new supply parameters (Y21, B21, 
F22) are connected by the one-to-one mapping 

If ();21, & I ,  &2) is the FIML estimator of (y21, 821, 822) for the system consisting 
of the demand equation (8.5.4) and the old supply equation (8.5.5), then the FIML 
estimator based on the system consisting of (8.5.4) and the new supply equation 

is numerically the same as the value of the above mapping at ();21, E 2 ) .  The 
3SLS estimator (and 2SLS for that matter) does not have this invariance property. 

'we will not display the first-order conditions (the likelihood equations) for FIML because i t  requires some 
cumbersome matrix notation. See Amemiya (1985, pp. 233-234) or Davidson and MacKinnon (1993. pp. 658- 
660) for more details. For the SUR model, the likelihood equations and the iterative procedure are much easier 
to describe; see the next subcection. 

9 ~ h i s  asymptotic equivalence does not carry over to nonlinear equation systems; nonlinear FIML is more 
efficient than nonlinear 3SLS. See Amemiya (1985, Section 8.2). 
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The foregoing discussion about FIML can be summarized as 

Proposition 8.1 (Asymptotic properties of FIML): Consider the M-equation sys- 
tem (8.5.1) and let So be the stacked vector collecting all the coefficients in the 
M-equation system. Make the following assumptions. 

the rank condition for identification (that E(x, z;,) be o f  full column rank for all 
m = 1 ,2 ,  . . . , M) is satisfied, 

E(x,x:) is nonsingular, 

the M-equation system can be written as a complete system of simultaneous 

equations (8.5.8) with To nonsingular, 

E, ( X, - N (0, XO), XO positive definite, 

the parameter space for (So, Xo) is compact with the true parameter vector 

(So, X 0) included as an interior point. 

Then 

(a) the FIML estimator ( i ,  %), which maximizes (8.5.20), is consistent and asymp- 
totically normal, 

(b) the asymptotic variance of i is given by (4.5.15), and a consistent estimator of  
the asymptotic variance is (4.5.1 7) where emh is the (m , h ) element of % -l, 

(c) the likelihood ratio statistic (8.5.25) for testing overidentifying restrictions is 
asymptotically with K M - xEl L, degrees of  freedom. 

Furthermore, these asymptotic results about i hold even i f  E, 1 x, is not normal. 

ML Estimation of the SUR Model 

The SUR model is a specialization of the FIML model with z,, being a subvector 
of x,. It is therefore an M-equation system (8.5.1) where the regressors z,, are 
predetermined. Unlike in the multivariate regression model, the set of regressors 
could differ across equations. It is easy to show (see Review Question 3) that no 
two dependent variables can be the same variable, so y, (M x 1) in the structural 
form (8.5.8) simply collects the M dependent variables. Furthermore, since z,, 
includes no endogenous variables, To in the structural form is the identity matrix. 
Thus, the FIML objective function (8.5.20) becomes 
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where r is understood to be the identity matrix. (We continue to carry r around 
in order to facilitate the comparison to the objective function for LIML to be intro- 
duced in the next subsection.) As in FIML, the C that maximizes the objective 
function given 6 is given by %(6) in (8.5.21). 

For the SUR model, the score with respect to 6 can be written down rather 
easily. The m-th row of r y ,  + Bx, is y,, - zi,6,. Define y (Mn x 1) and Z 
(Mn x EL, L,) as in the first analytical exercise to Chapter 4. Then 

Therefore, 

(Doing the same for the more general case of FIML is not as easy because, although 
(8.5.30) holds for FIML as well, the score % is more complicated thanks to the 
term log([ r 1 2, in the FIML likelihood function. Put differently, if I r 1 is a constant 
(i.e., independent of 6), then % for FIML is the same as (8.5.31).) Setting this 
equal to zero and solving for 6, we obtain 

Given some consistent estimator 5 of Co, i ( 2 )  is the SUR estimator of So derived 
in Chapter 4. 

These two functions ( i(C),  g(6)) define a mapping from the parameter space 
for (6, C) to itself, and a solution to the first-order conditions for the maximization 
of Q n  ( 8 ,  C) is a fixed point in this mapping. Such a fixed point can be calculated 

* ( J )  A(]) 
by the following iterative SUR. Let (6 , X ) be the estimate of (60, Xo) in the 
j-th iteration. The estimate in the next iteration is 

The first part of this iteration is the SUR estimation given % ( j ' ,  while the latter 
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part updates the estimate of Zo using the current estimate of So. If this process 
converges, then the limit is a solution to the first-order conditions. 

Q U E S T I O N S  F O R  R E V I E W  

1. (Deriving f (y, I x,) from f (E, ( x,)) In this exercise, we wish to derive the 
likelihood for observation t for the FIML model by the following fact from 
probability theory: 

Change of Variable Formula: Suppose E is a continuous M-dimen- 
sional random vector with density f , ( ~ )  and g : RM += RM is a one- 
to-one and differentiable mapping on an open set S ,  with the inverse 
mapping denoted as g-' (.). Let the M x M matrix J(E) be the Jacobian 
matrix (the M x M matrix of partial derivatives, whose (i, j) 

element is y). Assume that IJ(E)~ is not zero at any point in S. 
Then the density of y = g(e) is given by 

(Note that I J(g-' (y)) 1 is a determinant, which may or may not be positive.) 
Using this fact, derive the density of y, I x, from the density of E, I x, 
and verify that the associated log likelihood is given by (8.5.16). Hint: The 

inverse mapping g-'(y,) is the left-hand side of (8.5.8). So J(E,) = r;'. Also, 

log(abs((r1)) = log(lr12). 

2. (Instruments outside the system) Consider the complete system of simultane- 
ous equations (8.5.8) with lrol # 0. Suppose that one of the K predetermined 
variables, say  XI^, does not appear in any of the M-equations. Let g * (y I x) be 
the least squares projection of y on x. Show that E*(y,m I x,) = g*(y,m 1 St), 
where St = (I,,, . . . , X,.K-,)' (so x, = (Si, xtK)I). (AS you will show in Ana- 
lytical Exercise 4, including x , ~  in the list of instruments in addition to St will 
not change the asymptotic variance of the FIML estimator of So; it probably 
makes the small sample properties only worse.) 

3. Recall that in Example 8.1 y, I and y,2 are the same variable. In the SUR model, 
this cannot happen; that is, no two elements of (ytl,  ~ ~ 2 ,  . . . , yrM) are the same 
variable if the assumptions describing the model are satisfied. Prove this. Hint: 

Suppose y,, and y,2 are the same variable. Then 
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Since ztl and zt2 are subvectors of x,, the right-hand side can be written as 

xia for some K-dimensional vector a .  Use the orthogonality conditions that 

E(xtei) = 0 and the nonsingularity of E(x,x;) to show that a = 0. 

- -  

8.6 LlML 

LIML Defined 
The advantage of the FIML estimator is that it allows you to exploit all the infor- 
mation afforded by the complete system of simultaneous equations. This, however, 
is also a weakness because, as is true with any other system or joint estimation pro- 
cedure, the estimator is not consistent if any part of the system is rnisspecified. 
If you are confident that the equation in question is correctly specified but not so 
sure about the rest of the system, you may well prefer to employ single-equation 
methods such as 2SLS. The rest of this section derives the ML estimator called the 
limited-information maximum likelihood (LIML) estimator, which is the ML 
counterpart of 2SLS. 

Let the m-th equation of the M-equation system be the equation of interest. The 
L, regressors, ztm, are either endogenous or predetermined. Let y, be the vector 
of Mm endogenous variables and 2, be the vector of Km predetermined variables, 
with Mm + Km = L,. Partition So, conformably as Som = (ybm, Bb,)'. Then the 
m-th equation can be written as 

Obviously, this single equation in isolation is an incomplete system because of the 
existence of the Mm included endogenous variables i t .  However, if this equation 
is supplemented by the Mm reduced-form equations for y, taken from (8.5.9), then 
the system of 1 + Mm equations thus formed is a complete system of simultaneous 
equations. To describe this idea more fully, let no be the associated reduced- 
form coefficient matrix and collect appropriate Mm columns from no and write the 
reduced-form equations for the Mm included endogenous variables as 
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Combining (8.6.1) and (8.6.2), we obtain the system of I + Mm equations: 

where 

Here, we have assumed, without loss of generality, that the included predetermined 
variables 2, are the first K,  elements of x,. The equation system (8.6.3) is a com- 
plete system of 1 + M, simultaneous equations because 

For example, consider Example 8.2. The included endogenous variable in the 
wage equation is St. Supplement the wage equation by a reduced-form equation 
for St, a regression of St on a constant, IQ,, and MED,. The To matrix for the 
two-equation system that results is 

The hypothetical value T of ?;o has the same structure shown in (8.6.4) for 
- 
To. So I?;) = I .  Replacing in the FIML objective function (8.5.20) (6, B) by 
(ym , B, , a), l- by r, and Z by x, and noting that 1?;1 = 1, we obtain the LIML 
objective function: 

1 
- - 2n c [ T ~ t  + EX,]'C' [FY, + Ex,], (8.6.6) 

,=I 

A A - - 
where is the (1 + M,) x (1 + Mm) variance matrix of E l .  Let (f,,, B,, ll. Z)  
be the FIML estimator of this system. The LIML estimator of 60, = (ybtn, Bbtn)' 
is (f;, r,)'. This derivation of the LIML estimator, which is different from the 
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original derivation by Anderson and Rubin (1949), is due to Pagan (1979). Since 
LIML is a FIML estimator, Proposition 8.1 assures us that the LIML estimator is 
consistent and asymptotically normal even if the error is not normally distributed. 

Computation of LIML 
For the SUR model, we have shown that the ML estimator can be obtained from 
the iterative SUR procedure. If you reexamine the argument, you should see that 
it does not depend on r in the SUR objective function (8.5.29) being the identity 
matrix; all that is needed is that the determinant of r is a constant. Therefore, the 
same argument also applies to the LIML objective function (8.6.6). That is, we can 
obtain the LIML estimator of 60, by applying the iterative SUR procedure to the 
(l+Mm)-equation system (8.6.3). In particular, if Xo is known, the LIML estimator 
is the SUR estimator. On the face of it, this conclusion -that SUR can be used to 
estimate the coefficients of included endogenous variables -is surprising, but it is ,. 
true. The essential reason is this: the sampling error 6, - JOrn depends not only 
on the correlation between the included endogenous variables y, and the error term 
E ~ ,  but also on the correlation between y, and +,. Those two correlations cancel 
each other out. Review Question 1 verifies this for a simple example. 

The iterative SUR procedure, however, is not how the LIML estimator is usu- 
ally calculated, because there is a closed-form expression for the estimator. The 
simultaneous equation system (8.6.3) has two special features. One is the special 
structure of ?;, which we have noted, and the other is the fact that there are no 
exclusion restrictions in the rows of B corresponding to the included endogenous 
variables y,. Thanks to these features, the LIML estimator i, = ( f ; ,  p,)' and 
also the likelihood ratio statistic (8.5.25) can be calculated explicitly. 

To write down the closed-form expressions for the LIML estimator and the - - 
likelihood ratio statistic, we need to introduce some more notation. Let Z,, Y, X, 
X, and y, be the data matrices and the data vector associated with z,,, y,, x,, x,, 

and y,,  , respectively: 
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and let M and G be the annihilators based on X and g, respectively: 

Then the LIh4L estimator i, can be written as 

where k is the smallest characteristic root of 

with (1 + M,) x (1 + M,) matrices %' and W defined by 

(See, e.g., Davidson and MacKinnon, 1993, pp. 645-649, for a derivation.) The 
likelihood ratio statistic (8.5.25) for testing overidentifying restrictions reduces to 

LR = n log k. (8.6.12) 

Since there are no overidentifying restrictions in the supplementary M, equations 
(8.6.2), the equation of interest is the only source of overidentifying restrictions, 
which are K - L, in number. Therefore, by Proposition 8.1, this statistic for testing 
overidentifying restrictions is asymptotically (K - L, ). When the equation is 
just identified so that K = L,, then the LR statistic should be zero. Indeed, it can 
be shown that k = 1 in this case (see, e.g., p. 647 of Davidson and MacKinnon, 
1993). 

If we do not necessarily require k to be as just defined, the estimator (8.6.9) is 
called a k-class estimator. The LIML estimator is thus a k-class estimator with 
k defined above. Inspection of the 2SLS formula in terms of data matrices (see 
(3.8.3') on page 230) immediately shows that the 2SLS estimator is a k-class esti- 
mator with k = 1, and the OLS estimator is a k-class estimator with k = 0. It 
follows that LIML and 2SLS are numerically the same when the equation is just 
identified (so that k = 1). 

We have already shown that LIML is consistent and asymptotically normal. 
Moreover, using the explicit formula (8.6.9), it can be shown that the LIML esti- 
mator of do, has the same asymptotic distribution as 2SLS (see, e.g., Amemiya, 
1985, Section 7.3.4). So the formula for the asymptotic variance of LIML is given 
by (3.8.4) and its consistent estimate by (3.8.5). 
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LIML versus 2SLS 
Since LIML and 2SLS share the same asymptotic distribution, you cannot prefer 
one over the other on asymptotic grounds. For any finite sample, LIML has the 

invariance property, while 2SLS is not invariant. Furthermore, the conclusion one 
could draw from the large literature on finite-sample properties (see, e.g., Judge 
et al., 1985, Section 15.4) is that LIML should be preferred to 2SLS. Major con- 

clusions from the literature are listed below. They assume that the predetermined 
variables xt are fixed constants, however. 

Suppose errors are normally distributed. The p-th moment of the 2SLS estima- 

tor exists if and only if p < K - L,, + 1, where K is the number of predetermined 

variables and L,, is the number of regressors in the m-th equation. Thus, 2SLS 

does not even have a mean if the equation is just identified (i.e., if K = L,), 
and this is true even if the distribution of errors is a normal distribution, whose 

moments are all finite. 

The LIML estimator has no finite moments even if errors are normally dis- 

tributed. 

However, in most Monte Carlo simulations (see, e.g., Anderson, Kunitomo, and 

Sawa, 1982), LIML approaches its asymptotic normal distribution much more 

rapidly than does 2SLS. 

Q U E S T I O N S  F O R  R E V I E W  

1. (Why SUR can be used for a structural equation) To see why SUR can be 
used to estimate the coefficients of included endogenous variables, consider 

the following simple example: 

where xt is predetermined. Suppose for simplicity that 

is known. Let ( f ,  f i  be the SUR estimator of (yo, Po). 
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(a) Show that 

where amh is the (m, h )  element of xi1. Hint: The formula for the SUR 

estimator is given by (4.5.12) with (4.5.13') and (4.5.14') on page 280. 

(b) Show that 

converges to zero in probability. Hint: 

8.7 Serially Correlated Observations 

So far, we have assumed i.i.d. observations in deriving the asymptotic variance of 
ML estimators. This section is concerned with ML estimation when observations 
are serially correlated. 

Two Questions 
When observations are serially correlated, there arise two distinct questions. The 
first is whether the ML estimator that maximizes a likelihood function derived from 
the assumption of i.i.d. observations is consistent and asymptotically normal when 
indeed the observations are serially correlated. More precisely, suppose that the 
observation vector w, is ergodic stationary but not necessarily i.i.d., and consider 
the ML estimator that maximizes 
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where log f (w,; 8 )  is the log likelihood for observation t. This objective function 
would be ( l l n  times) the log likelihood of the sample (wl,  . . . , w,) if the obser- 
vations were i.i.d. Even though the log likelihood for observation t, log f (w,; e) ,  
is correctly specified, this objective function is misspecified because it assumes, 
incorrectly, that (w,] is i.i.d. The ML estimator that maximizes this objective func- 
tion is a quasi-ML estimator because the likelihood function is misspecified. Is a 
quasi-ML estimator that incorrectly assumes no serial correlation consistent and 
asymptotically normal? 

We have actually answered this first question in the previous chapter. By 
Propositions 7.5 and 7.6, the quasi-ML estimator is consistent because it is an 
M-estimator, with m(w,; 8 )  given by the log likelihood for observation t. For 
asymptotic normality, the relevant theorem is Proposition 7.8, which spells out 
conditions under which an M-estimator is asymptotically normal. Just reproduc- 
ing the conclusion of Proposition 7.8, the expression for the asymptotic variance is 
given by 

where Bo is the true value of 8,  H(w,; 8 )  is the Hessian for observation t, and C is 
the long-run variance of the score for observation t evaluated at 80, s(w,; 80). This 
asymptotic variance can be consistently estimated by 

where 5 is a consistent estimate of C. Any of the "nonparametric" methods dis- 
cussed in Chapter 6 (such as the VARHAC) can be used to calculate 5 from the 
estimated series {s(w,; e)]; there is no need to parameterize the serial correlation 

in {s(w,; 00)). 
The second question is what is the likelihood function that properly accounts 

for serial correlation in observations and what are the properties of the "genuine" 
ML estimator that maximizes it. The question can be posed for conditional ML 
as well as unconditional ML. In conditional ML, we divide the observation vector 
w, into two groups, the dependent variable y, and the regressors x,, and examine 
the conditional distribution of (yl ,  . . . , y,) conditional on (xl ,  . . . , x,). Parameter- 
izing this conditional distribution is relatively straightforward when {w,] is i.i.d., 
because it can be written as a product over t of the conditional distribution of y, 
given x,. In fact, this i.i.d. case is what we have examined in this and previous 
chapters. If {w,} is serially correlated, however, the researcher does not know the 
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dynamic interaction between y, and x, well enough to be able to write down the 

conditional distribution.I0 In the rest of this section, we deal only with examples 
of unconditional ML estimation with serially correlated observations. 

Unconditional ML for Dependent Observations 
We start out with the simplest case of a univariate series. Let (yo, yl , . . . , yn) be the 
sample. (For notational convenience, we assume that the sample includes observa- 
tion for t = 0.) When the observations are serially correlated, the density function 

of the sample can no longer be expressed as a product of individual densities. How- 
ever, it can be written down in terms of a series of conditional probability density 

functions. The joint density function of (yo, yl)  can be written as 

Similarly, for (YO, Y I ,  ~ 2 1 ,  

f (YO, Y I ,  ~ 2 )  = f ( ~ 2  I Y I ,  yo)f (yo, y ~ ) .  (8.7.5) 

Substituting (8.7.4) into this, we obtain 

A repeated use of this sort of sequential substitution produces 

If the conditional density f (y, 1 y,-1, . . . , yl , yo) and the unconditional density 

f (yo) are parameterized by a finite-dimensional parameter vector 8 ,  then ( l l n  

times) the log likelihood of the sample (yo, y1, . . . , y,) can be written as 

The ML estimator 8 of the true parameter value 80 is the 8 that maximizes this log 
likelihood function. We will call this ML estimator the exact ML estimator. 

'O~or a discussion of conditional ML when the complete specification of the dynamic interaction is not pos- 
sible or undesirable, see Wooldridge (1994, Section 5). For a discussion of possible restrictions on the dynamic 
interaction (such as "Granger causality" and "weak exogeneity"), see, e.g., Davidson and MacKinnon (1993, 
Section 18.2). 
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ML Estimation of AR(1) Processes 
In Section 6.2, we considered in some detail first-order autoregressive (AR(1)) 
processes. If we assume for an AR(1) process that the error term is normally 
distributed, we obtain a Gaussian AR(1) process: 

with E~ - i.i.d. N(0, a t ) .  We assume the stationarity condition that (40( < 1. 
So (y,} is ergodic stationary by Proposition 6.l(d). From Section 6.2, we know 
that the unconditional mean of y, is co/(l - &) and the unconditional variance 
is a;/(1 - 4;). Furthermore, since y, can be written as a weighted average of 

( E ~ ,  &,-I, . . . ), its distribution is normal when E, is normal. Therefore, 

co a02 
Y O "  N ( - . ~ ) .  1 - 4 0  

Also, it follows directly from (8.7.9) and the normality assumption that 

Therefore, using the formula (8.7.7), the joint density of (yo, y1, . . . , yn) for a 
hypothetical parameter value 0 = (c, 4, a2) '  can be written as 

Taking logs and dividing both sides by n, we obtain the objective function for exact 
ML: 

The exact ML estimator e of the AR(1) process is the 0 that maximizes this objec- 
tive function. Assuming an interior solution, the estimator solves the first-order 
conditions (the likelihood equations) obtained by setting % to zero. They are a 
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system of equations that are nonlinear in 0, so finding 0 requires iterative algo- 
rithms such as those described in Section 7.5. 

Conditional ML Estimation of AR(1) Processes 
The source of the nonlinearity in the likelihood equations is the log likelihood of 
yo. As an alternative, consider dropping this term and maximizing 

1 "  1 1 1 
Qn(fi) = - x(-2 log(2n) - log(a2) - - (y, - c - $y,-1)2}. (8.7.14) n 

r = l  
20  

Using the relation f (yo, y1, . . . , yn) = f (yl, . . . , Yn I yo) f (yo) and (8.7.12), we 
see that this objective function is ( l l n  times) the log of the likelihood conditional 
on the first observation yo, 

Let 0 be the 0 that maximizes the log conditional likelihood (8.7.14) (conditional 
on yo)  This ML estimator will henceforth be called the yo-conditional ML esti- 
mator. Here, conditioning is on yo, which makes the estimator here conceptually 
different from the conditional ML estimators of the previous sections where con- 
ditioning is on x,. 

Before examining the relationship between the two ML estimators, the exact 
ML estimator 0 and the yo-conditional ML estimator 0, we give two derivations of 
the asymptotic properties of the latter. The first derivation is based on the explicit 
solution for the estimator. Recall from Section 1.5 and Example 7.2 that the objec- 
tive function in the ML estimation of the linear regression model y, = xiPo + E ,  

for i.i.d. observations is 

It was shown in Section 1.5, and is very easy to show, that the ML estimator of 
Po is the OLS coefficient estimator and the ML estimator of a: equals the sum 
of squared residuals divided by the sample size. Now, with x, = (1, Y,-~) '  and 
Po = (c0, $0)', the objective function for the linear regression model reduces to 
Qn(0) in (8.7.14), the conditional log likelihood for the AR(1) process. Therefore, 

algebraically, the conditional ML estimator ( E ,  6) of (co, $0) is numerically the 
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same as the OLS coefficient estimator in the regression of y, on a constant and y,-1, 
and the conditional ML estimator i?* of at is the sum of squared residuals divided 
by n .  Regarding the asymptotic properties of the estimator, we have shown in 
Section 6.4 that (;,I$) is consistent and asymptotically normal with the asymptotic 
variance indicated in Proposition 6.7 for p = 1 and that e2 is consistent for ao2. 

Therefore, for the asymptotic normality of the conditional ML estimator ( t ,  I $ ) ,  
which maximizes the yo-conditional likelihood for normal errors, the normality 
assumption is not needed. 

The second derivation is more indirect but nevertheless more instructive. As 
just noted, the objective function Q,(8) coincides with (8.7.16) with x, = (1, Y,-~)'  
and Po = (co, 40)'. Since {y,, x,} is merely ergodic stationary and not necessarily 
i.i.d., the conditional ML estimator ( t ,  I$ ,  G2) can be viewed as the quasi-ML esti- 
mator considered in Proposition 7.6. It has been verified in Example 7.8 that the 
objective function satisfies all the conditions of Proposition 7.6 if E(x,xi) where 
x, = (1, Y,-~)'  is nonsingular. We have shown in Section 6.4 that this nonsingular- 

ity condition is satisfied for AR(1) processes if at > 0. Thus, the conditional ML 
is consistent. To prove asymptotic normality, view the conditional ML estimator 
as an M-estimator with w, = (y,, ytPl)' and 

The relevant theorem, therefore, is Proposition 7.8. Let s(wt; 8) be the score for 
observation t and let H(w,; 8) be the Hessian for observation t associated with this 
m function, and consider the conditions (1)-(5) of Proposition 7.8. The discussion 
in Example 7.10 implies that all the conditions except for (3) hold if E(x,xi) where 
x, = (1, y,-1)' is nonsingular, which as just noted is satisfied if a; > 0. This leaves 

condition (3) that x:=, s(w,: 80) +=, N ( 0 .  2). In the AR(1) model, f (y, I 
yt-1, . . . , y1, yo) = f (y, ( yt-,). As you will show in Review Question 1, this 
special feature of the joint density function implies that the sequence {s(w,; eO)} is 
a martingale difference sequence. Since s(w,; 80) is a function of w, = (y,, Y,-~)'  

and {y,} is ergodic stationary, the sequence {s(w,; 00)} also is ergodic stationary. 
So by the ergodic stationary martingale difference CLT of Chapter 2, we can claim 
that condition (3) is satisfied with 

Finally, it is easy to show the information matrix equality for observation t that 

- :E[H(w,; 00)] = E[s(w,; 80) s(w,; eO)'] (a proof is in Example 7.10). Substitut- 
ing this and (8.7.18) into (8.7.2), we conclude that the asymptotic variance of the 



Examples of Maximum Likelihood 

yo-conditional ML estimator 0 of 00 is given by 

That is, the usual conclusion for a correctly specified ML estimator for i.i.d. obser- 
vations is applicable to the yo-conditional ML estimator that maximizes the cor- 
rectly specified conditional likelihood (8.7.14) for dependent observations.' ' 

The difference between (8.7.13) and (8.7.14) is the log likelihood of yo divided 
by n. If the sample size n is sufficiently large, then the first observation yo makes a 
negligible contribution to the likelihood of the sample. The exact ML estimator and 
the yo-conditional ML estimator turn out to have the same asymptotic distribution, 
provided that ( $ 1  < 1 (see, e.g., Fuller, 1996, Sections 8.1 and 8.4). For this 
reason, in most applications the parameters of an autoregression are estimated by 
OLS (yo-conditional ML) rather than exact ML. 

Conditional ML Estimation of AR(p) and VAR(p) Processes 

A Gaussian AR(p) process can be written as 

with E, - i.i.d. N(0, a:). The conditional ML estimation of the AR(p) process is 
completely analogous to the AR(1) case. If the sample is (y-,+', ~ - ~ + 2 ,  . . . , YO, 
yl,  . . . , yn), then ( l l n  times) the log likelihood of the sample conditional on 

( Y - ~ + I ,  . . . , YO) is (8.7.16) with 

Therefore, the conditional ML (conditional on (y-,,, , y-p+2, . . . , yo)) estimator 

of (co, $ o ~ ,  . . . , $op) is numerically the same as the OLS coefficient estimator in 
the regression of y, on a constant and p lagged values of y,. The conditional ML 
estimate of a: is the sum of squared residuals divided by the sample size. By 
Proposition 6.7, the conditional ML estimator of the coefficients is consistent and 
asymptotically normal if the stationarity condition (that the roots of 1 - $ 0 ~ 2  - . . . - 
$opzP = 0 be greater than 1 in absolute value) is satisfied. Again as in the AR(1) 
case, the error term does not need to be normal for consistency and asymptotic 
normality. The exact ML estimates and the conditional ML estimates have the 
same asymptotic distribution if the stationarity condition is satisfied. 

 his argument can be applied to models more general than autoregressive processes. See Lemma 5.2 of 
Wooldridge ( 1994). 
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These results generalize readily to vector processes. A Gaussian VAR(p) 
(p-th order vector autoregression) can be written as 

with e, -- i.i.d. N ( 0 ,  QO). The objective function in the conditional ML estimation 
is (I / n  times) the log conditional likelihood: 

where 

This coincides with the objective function in the ML estimation of the multivari- 

ate regression model considered in Section 8.4. Therefore, the conditional ML 

estimate of (co, no) is numerically the same as the equation-by-equation OLS esti- 
mator. It is consistent and asymptotically normal if the coefficient matrices satisfy 

the stationarity condition (that all the roots of (IM - * 0 1 ~  - . . . - @ O p ~ P I  = 0 be 

greater than 1 in absolute value). This result does not require the error vector e, to 

be normally distributed. 

Q U E S T I O N S  F O R  R E V I E W  

1. (Score is m.d.s.) Consider the Gaussian AR(1) process (8.7.9) and let s(w,; 8)  
be the score for observation t (the gradient of (8.7.17)) with w, = (y,, Y , - ~ ) '  

and 8 = (c, 4, a2)'. 

(a) Show that 

where /3 = (c, 4)' and x, = ( I ,  ytPl)'. 
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(b) Show that 

Hint: At 6 = 60, y, - xip = E ~ .  

(c) Show that {s(wt; eO))  is a martingale difference sequence. Hint: s(wt; 60) 
is a (measurable) function of (y,, Y ( - ~ ) .  SO s(w,-,; 60) ( j  2 2 )  can be 

calculated from (ytP1, yt - 2 ,  . . . ). 

(d) Does this result in (c) carry over to Gaussian AR(p)? [Answer: Yes.] 

P R O B L E M  S E T  FOR C H A P T E R  8 

A N A L Y T I C A L  E X E R C I S E S  

1. Show that 

h 

where it = y, - filxt and ll is given in (8.4.5). (Since it does not depend on 
II by construction, this inequality shows that the left-hand side is minimized at 
II = fi.) Hint: Use the "add-and-subtract" strategy to derive 



Chapter 8 

Then use the following result from matrix algebra: 

Let A and B be two positive semidefinite matrices of the same size. 

Then IA + BI 2 IA(. 

2. ( 6 ( n )  is positive definite.) Under the conditions of the multivariate regres- 

sion model, show that 6 ( n )  defined in (8.4.10) is positive definite for any 
given ll. Hint: Derive y, - n'x, = v, + ( n o  - n)'x,. Since (y,, xr} is i.i.d., 
6 ( n )  converges almost surely to ~ [ ( y ,  - ll'x,)(y, - ll'x,)']. Show that 

Then use the matrix inequaltiy mentioned in the previous exercise. Q0 is positive 

definite by assumption. 

3. (Optional, identification of 6 in FIML) As noted in footnote 7 of Section 8.5, 
the FIML estimator of 60 is an extremum estimator whose objective function is 

where 

Let 

To show the consistency of this extremum estimator, we would verify the two 

conditions of Proposition 7.1 of the previous chapter. Reproducing these two 
conditions in the current notation: 

identification: Qo(6) is uniquely maximized on the compact parameter space 

at 60, 

uniform convergence: Q,  (.) converges uniformly in probability to Qo(.). 

In this exercise we prove that the rank condition for identification (that E(x,z;,) 
be of full column rank for all m) is equivalent to the above extremum estimator 

identification condition. In the proof, take for granted all the assumptions we 

made about FIML in the text. 
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To set up the discussion, we need to introduce some new notation. Repro- 

ducing the m-th equation of the structural form from the text: 

The regressors z,, consist of M, endogenous variables and K, predetermined 
variables with M, + K, = L,. Define 

S, : a matrix that selects those M, endogenous regressors from y,, 
(Mm x M )  

C, : a matrix that selects those K, predetermined regressors from x,. 
( K m  x  K )  

To illustrate, S1 and C1 for Example 8.1 with y, = (p, , 9,)' and x, = (1, a,, w,)' 

is 

So  the regressors in the m-th equation can be written as 

(a) Show that 

E(x,z;,) = E(x,x;) [ no s:, i c:, ] 
( K x L , )  ( K x K )  ( K x M ) ( M x M , )  ( K x K , )  

Hint: Use the reduced form (8.5.9) and the fact that E(x,v;) = 0. 

Since multiplication by a nonsingular matrix (E(x,xi) here) does not alter rank, 

equation (6) implies that the rank condition for identification is equivalent to 

the condition that the rank of [nosh ! c;] be L,. 

(b) Show that 

plim G(6) = r ; ' ~ ~ ( r ; ' ) '  + [IIb + r-'B] E ( x , x ~ ) [ n ~  + r - l ~ ] ' ,  (7) 
n+m 

where IIb = - r i l B o .  Hint: Since (y,, x,} is i.i.d., the probability limit is 

given by E [ ( ~ ,  + r-'Bx,)(y, + T-'BX,)']. Also, 
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(c) Show that lG(6)) is minimized only if rllb + B = 0. Hint: Since E(x,x',) 
is positive definite, the second term on the right-hand side of (7) is zero only 

if no + ~ ' ( r - I ) '  = 0. Use the fact from matrix algebra noted in Exercise 1 

above. 

Therefore, the extremum estimator identification condition (that Qo(6) be max- 
imized uniquely at 60) holds if and only if ( r ,  B) = (ro, Bo) is the only solu- 
tion to r ll; + B = 0 viewed as a system of simultaneous equations for ( r  , B). 

(d) Let a; (1 x (M + K)) be the m-th row of [r ! B], and let eh be a (1 x (M + 
K)) vector whose element corresponding to y,, is one and whose other 
elements are zero. To illustrate, e; for Example 8.1 with y, = (p,, q,)' and 
x, = ( I ,  a,, w,)' is (0, l,O,O,O). Verify for Example 8.1 the general result 
that 

(e) Rewrite I'll; + B = 0 as 

Show that the m-th row of rll; + B = 0 can be written as 

where 

KO, -- [no t ~ ~ ] e , .  

(f) Verify that 6, = 60, is a solution to (10). Show that a necessary and 
sufficient condition that 6, = 60, is the only solution to (10) is the rank 
condition for identification for equation m. Hint: Recall the following fact 

from linear algebra: Suppose Ax = y has a solution XO. A necessary and 

sufficient condition that it is the only solution is that A is of full column rank. 

(g) Explain why we can conclude that the only solution to Tllo + B = 0 is 
(r, B) = (rot  Bo). Hint: Each element of 6 appears in either r or B only 

once. 
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4. (Optional, instruments that do not show up in the system) Consider the com- 

plete system of simultaneous equations discussed in Section 8.5. Let 

Suppose that x , ~  does not appear in any of the M structural equations. Show 
that dropping x , ~  from the list of instruments changes neither the rank con- 

dition for identification nor the asymptotic variance of the FIML estimator 

of JO. Hint: Define the two matrices, S, and C, as in Exercise 3, so that 

z:,,, = (yiSk ! xiC;,) and (6) holds. FIML is asymptotically equivalent to 3SLS, 

so its asymptotic variance is given in (4.5.1 5). The last row of C;n is a vector of 

zeros. Let ?io ( ( K  - 1 )  x M )  be the matrix of reduced-form coefficients when 

.xrK is dropped from the system. Then 
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C H A P T E R  9 

Unit-Root Econometrics 

A B S T R A C T  

Up to this point our analysis has been confined to stationary processes. Section 9.1 
introduces two classes of processes with trends: trend-stationary processes and unit- 
root processes. A unit-root process is also called difference-stationary or integrated 
of order 1 (I(1)) because its first difference is a stationary, or I(O), process. The tech- 
nical tools for deriving the limiting distributions of statistics involving I(0) and 1(1) 
processes are collected in Section 9.2. Using these tools, we will derive some unit- 
root tests of the null hypothesis that the process in question is I(1). Those tests not 
only are popular but also have better finite-sample properties than most other existing 
tests. In Section 9.3, we cover the Dickey-Fuller tests, which were developed to test 
the null that the process is a random walk, a prototypical I(1) process whose first 
difference is serially uncorrelated. Section 9.4 shows that these tests can be general- 
ized to cover 1(1) processes with serially correlated first differences. These and other 
unit-root tests are compared briefly in Section 9.5. Section 9.6, the application of this 
chapter, utilizes the unit-root tests to test purchasing power parity (PPP), the funda- 
mental proposition in international economics that exchange rates adjust to national 
price levels. 

- - 

9.1 Modeling Trends 

There is no shortage of examples of time series with what could be reasonably 

described as trends in economics. Figure 9.1 displays the log of U.S. real GDP. 
The log GDP clearly has an upward trend in that its mean, instead of being constant 
as with stationary processes, increases steadily over time. The trend in the mean 

is called a deterministic trend or time trend. For the case of log U.S. GDP, the 
deterministic trend appears to be linear. Another kind of trend can be seen from 
Figure 6.3 on page 424, which graphs the log yenldollar exchange rate. The log 
exchange rate does not have a trend in the mean, but its every change seems to have 
a permanent effect on its future values so that the best predictor of future values is 
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Figure 9.1: Log U.S. Real GDP, Value for 1869 Set to 0 

its current value. A process with this property, which is not shared by stationary 

processes, is called a stochastic trend. If you recall the definition of a martingale, 
it fits this description of a stochastic trend. Stochastic trends and martingales are 

synonymous. 
The basic premise of this chapter and the next is that economic time series can 

be represented as the sum of a linear time trend, a stochastic trend, and a stationary 
process. 

Integrated Processes 
A random walk is an example of a class of trending processes known as integrated 
processes. To give a precise definition of integrated processes, we first define 
I(0) processes. An I(0) process is a (strictly) stationary process whose long-run 
variance (defined in the discussion following Proposition 6.8 of Section 6.5) is 

finite and positive. (We will explain why the long-run variance is required to be 
positive in a moment.) Following, e.g., Hamilton (1994, p. 433 ,  we allow I(0) 

processes to have possibly nonzero means (some authors, e.g., Stock, 1994, require 
I(0j processes to have zero mean). Therefore, an I(0) process can be written as 

where {u,} is zero-mean stationary with positive long-run variance. 

' A  nore on semantics. Processes with trends are often called "nonstationary processes." We will not use this 
term in the rest of this book because a process can he not stationary without containing a trend. For example, let 
cl be an i.i.d. process with unit variance and let df take a value of 1 for r odd and 2 fo r t  even. Then a process {u, )  
defined by ul = dl - E I  is not stationary because its variance depends on t .  Yet the process cannot be reasonably 
described as a process with a trend. 
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The definition of integrated processes follows from the definition of I(0) pro- 
cesses. Let A be the difference operator, so, for a sequence {&}, 

At, = (1 - L)tf  = 6, - 6,-1, 

~ ~ 6 ,  = (1 - L126t = (6, - tt-I) - (6,-I - 6,-21, etc. (9.1.2) 

Definition 9.1 (I(d) processes): A process is said to be integrated of order d 
(I(d)) (d = 1,2 ,  . . . ) if its d-th difference ~ ~ 6 ,  is I(0). In particular, a process 
{t,} is integrated of order 1 (I(1)) if the first difference, At,, is I(0). 

The reason the long-run variance of an I(0) process is required to be positive is 
to rule out the following definitional anomaly. Consider the process {v,} defined by 

where {E,} is independent white noise. As we verified in Review Question 5 of 
Section 6.5, the long-run variance of {vr} is zero. If it were not for the requirement 
for the long-run variance, {v,} would be I(0). But then, since AE, = v,, the inde- 
pendent white noise process {E,} would have to be I(l)! If a process {vr} is written 
as the first difference of an I(0) process, it is called an I(- 1) process. The long-run 
variance of an I(- 1) process is zero (proving this is Review Question I) .  

For the rest of this chapter, the integrated processes we deal with are of order 
1. A few comments about 1(1) processes follow. 

(When did it start?) As is clear with random walks, the variance of an 1(1) pro- 
cess increases linearly with time. Thus if the process had started in the infinite 
past, the variance would be infinite. To focus on 1(1) processes with finite vari- 
ance, we assume that the process began in the finite past, and without loss of 
generality we can assume that the starting date is t = 0. Since an I(0) process 
can be written as (9.1.1) and since by definition an I(1) process {t,} satisfies the 
relation A& = 6 + u,, we can write 6, in levels as 

where {u,} is zero-mean I(0). So the specification of the levels process {t,} must 
include an assumption about the initial condition. Unless otherwise stated, we 
assume throughout that ~(6:) < GO. SO to can be random. 

(The mean in J(0) is the trend in I(I)) As is clear from (9.1.4), an 1(1) process 
can have a linear trend, 6 . t .  This is a consequence of having allowed I(0) 
processes to have a nonzero mean 6. If 6 = 0, then the 1(1) process has no trend 

Keen
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and is called a driftless I(1) process, while if 6 # 0, the process is called an 
1(1) process with drift. Evidently, an 1(1) process with drift can be written as 
the sum of a linear trend and a driftless 1(1) process. 

(Two other names of I(1) processes) An I(1) process has two other names. It is 
called a difference-stationary process because the first difference is stationary. 
It is also called a unit-root process. To see why it is so called, consider a model 

(1 - PL)Y, = 6 + u,, (9.1.5) 

where u, is zero-mean I(0). It is an autoregressive model with possibly serially 
correlated errors represented by u,. If the autoregressive root p is unity, then the 
first difference of y, is I(O), so {y,) is I(1). 

Why Is It Important to Know if the Process Is I(l)? 
For the rest of this chapter, we will be concerned with distinguishing between 
trend-stationary processes, which can be written as the sum of a linear time trend 
(if there is one) and a stationary process, on one hand, and difference-stationary 
processes (i.e., 1(1) processes with or without drift) on the other. As will be shown 
in Proposition 9.1, an 1(1) process can be written as the sum of a linear trend (if 
any), a stationary process, and a stochastic trend. Therefore, the difference between 
the two classes of processes is the existence of a stochastic trend. There are at least 
two reasons why the distinction is important. 

1. First, it matters a great deal in forecasting. To make the point, consider the 
following simple AR(1) process with trend: 

where {E , )  is independent white noise. The s-period-ahead forecast of y,+, 
conditional on (v,, y,-l, . . . ) can be written as 

Both (y,, y,-1, . . . ) and (zt, ztP1, . . .) contain the same information because 
there is a one-to-one mapping between the two. So the last term can be written 
as 
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since zr+S = F,+, + P F , + ~ - ~  + . . . + p S - l ~ t + l  + pSzr. Substituting (9.1.8) into 
(9.1.7), we obtain the following expression for the s-period-ahead forecast: 

There are two cases to consider. 

Case lpl < 1. Now if Ipl < 1, then (z,) is a stationary AR(1) process 
and thus is zero-mean I(0). So (y,) is trend stationary. In this case, since 
~(z : )  < oo, we have 

E [ ( ~ ~ ~ ~ ) ~ ]  = P2S E(z,~) + o as s + oo. 

Therefore, the s-period-ahead forecast E(y,+, I y,, y,-1, . . . ) converges in 
mean square to the linear time trend a + 6 . (t + s) as s + oo. More precisely, 

E{[E(Y,+, I yt, Yt-1. . . . ) - a - 6 . (t + s)l2] + 0 as s + oo. (9.1.10) 

That is, the current and past values of y do not affect the forecast if the fore- 
casting horizon s is sufficiently long. In particular, if 6 = 0, then 

That is, a long-run forecast is the unconditional mean. This property, called 
mean reversion, holds for any linear stationary processes, not just for station- 
ary AR(1) processes.2 For this reason, a linear stationary process is sometimes 
called a transitory component. 

Case p = 1. Suppose, instead, that p = 1. Then (z,) is a driftless random 
walk (a particular stochastic trend), and v, can be written as 

which shows that (y,) is a random walk with drift with the initial value of zo+a 
(a particular 1(1) or difference-stationary process). Setting p = 1 in (9.1.9), we 
obtain 

'see,  e.g., Hamilton (1994, p. 439) for a proof 
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That is, a random walk with drift 8 is expected to grow at a constant rate of 
8 per period from whatever its current value y, happens to be. Unlike in the 
trend-stationary case, the current value has a permanent effect on the forecast 
for all forecast horizons. This is because of the presence of a stochastic trend 
2,. A stochastic trend is also called a permanent component. 

2. The second reason for distinguishing between trend-stationary and difference- 
stationary processes arises in the context of inference. For example, suppose 
you are interested in testing a hypothesis about /3 in a regression equation 

where u,  is a stationary error term. If the regressor x,  is trend stationary, then, 
as was shown in Section 2.12, the t-value on the OLS estimate of /3 is asymp- 
totically standard normal. On the other hand, if x, is difference stationary, that 
is, if it has a stochastic trend, then the t-value has a nonstandard limiting distri- 
bution, so inference about /3 cannot be made in the usual way. The regression in 
this case is called a "cointegrating regression." Inference about a cointegrating 
regression will be studied in the next chapter. 

Which Should Be Taken as the Null, I(0) or I(l)? 
To distinguish between trend-stationary processes and difference-stationary, or 1(1), 
processes, the usual practice in the literature is to test the null hypothesis that the 
process is I(l),  rather than taking the hypothesis of trend stationarity as the null. 
Presumably there are two reasons for this. One is that the researcher believes the 
variables of the equation of interest to be 1(1) and wishes to control type I error with 
respect to the 1(1) null. This, however, is not ultimately convincing because usually 
the researcher does not have a strong prior belief as to whether the variables are I(0) 
or I(1). For a concise statement of the problem this poses for inference, see Watson 
(1994, pp. 2867-2870). The other reason is simply that the literature on tests of the 
trend-stationary null against the 1(1) alternative is still relatively underdeveloped. 
There are available several tests of the null hypothesis that the process is I(0) or 
more generally trend stationary; see contributions by Tanaka (1990), Kwiatkowski 
et al. (1992), and Leybourne and McCabe (1994), and surveys by Stock (1994, 
Section 4) and Maddala and Kim (1998, Section 4.5). As of this writing, there 
is no single I(0) test commonly used by the majority of researchers that has good 
finite-sample properties. In this book, therefore, we will concentrate on tests of the 
1(1) null. 
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Other Approaches to Modeling Trends 
In addition to stochastic trends and time trends, there are two other popular 

approaches to modeling trends: fractionally integration and broken trends with 

an unknown break date. They will not be covered in this book. For a survey of 
the former approach, see Baillie (1996). The literature on trend breaks is growing 
rapidly. Surveys can be found in Stock (1994, Section 5) and Maddala and Kim 

(1998, Chapter 13). 

Q U E S T I O N  FOR R E V I E W  

1. (Long-run variance of differences of I(0) processes) Let {u,} be I(0) with 

Var(u,) < GO. Verify that {Au,} is covariance stationary and that the long- 

run variance of {Au,} is zero. Hint: The long-run variance of {v,) (where 

v, - Au,) is defined to be the limit as T -+ GO of ~ a r ( f i 5 ) .  f i ~  = 

( ~ 1  + v2 + ' ' ' + v T ) / f i  = (UT - u O ) / f i .  

9.2 Tools for Unit-Root Econometrics 

The basic tool in unit-root econometrics is what is called the "functional central 
limit theorem" (FCLT). For the FCLT to be applicable, we need to specialize 1(1) 

processes by placing restrictions on the associated I(0) processes. Which restric- 

tions to place, that is, which class of I(0) processes to focus on, differs from author 

to author, depending on the version of the FCLT in use. In this book, following the 
practice in the literature, we focus on linear I(0) processes. After defining linear 

I(0) processes, this section introduces some concepts and results that will be used 

repeatedly in the rest of this chapter. 

Linear I(0) Processes 
Our definition of linear I(0) processes is as follows. 

Definition 9.2 (Linear I(0) processes): A linear I(0) process can be written as a 

constant plus a zero-mean linear process {u,) such that 

u, = @(L)E,, @(L) = $ro + $rlL + @ 2 ~ 2  + . . .  fort  = 0, f 1, f 2 , .  . . . (9.2.1) 

{E,} is independent white noise (i.i.d. with mean 0 and E(E:) = o2 > O), (9.2.2) 

Keen
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The innovation process {E,] is assumed to be white noise i.i.d. This requirement is 
for simplifying the exposition and can be relaxed ~ubstantially.~ In the rest of this 
chapter, we will refer to linear I(0) processes as simply I(0) processes, without the 
qualifier "linear." Also, unless otherwise stated, {E,] will be an independent white 
noise process and {u,] a zero-mean I(0) process. 

Condition (9.2.3a) (sometimes called the one-summability condition) is 
stronger than the more familiar condition of absolute surnmability. This stronger 
assumption will make it easier to prove large sample results of the next section, 
with the help of the Beveridge-Nelson decomposition to be introduced shortly. 
Since { t , ]  is absolutely summable, the linear process {u,] is strictly stationary 
and ergodic by Proposition 6.1 (d). The j-th order autocovariance of {u, ] will be 
denoted yj. Since E(u,) = 0, yj = E(u,u,-,). By Proposition 6.l(c) the autoco- 
variances are absolutely sumrnable. 

To understand condition (9.2.3b), recall that the long-run variance (which we 
denote h2 in this chapter) equals the value of the autocovariance-generating func- 
tion at z = I by Proposition 6.8(b). By Proposition 6.6 it is given by 

00 

I' = long-run variance of {u,] = yo + 2 C y, = o2 . [ t ( l )12.  (9.2.4) 
j=l 

The condition (9.2.3b) thus ensures the long-run variance to be positive. 

Approximating 1(1) by a Random Walk 
Let {.$,I be 1(1) so that At, = 6 + u, where u, - ~ ( L ) E ,  is a zero-mean I(0) 
process satisfying (9.2.1)-(9.2.3) with ~(6:) < m. Using the following identity 
(to be verified in Review Question 1): 

3 ~ o r  example, the innovation process can be stationary martingale differences. See, e.g., Theorem 3.8 of 
Tanaka (1996, p. 80). 
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we can write u, as 

u, - + ( L ) E ~  = + ( l )  - E, + qt - qtPl with qt -- ~ ( L ) E ~ .  (9.2.6) 

It can be shown (see Analytical Exercise 7) that a (L)  is absolutely summable. 
So, by Proposition 6.l(a), {qt] is a well-defined zero-mean covariance-stationary 
process (it is actually ergodic stationary by Proposition 6.l(d)). Substituting (9.2.6) 
into (9.1.4), we obtain (what is known in econometrics as) the Beveridge-Nelson 
decomposition: 

Thus, any linear J(1) process can be written as the sum of a linear time trend (6 . t ) ,  
a driftless random walk or a stochastic trend (+( l )  ( E ~  + E~ + . . . + E ~ ) ) ,  a stationary 
process (qt), and an initial condition (co - qo). Stated somewhat differently, we 
have 

Proposition 9.1 (Beveridge-Nelson decomposition): Let {u, } be a zero-mean 
I(0) process satisfying (9.2.1)-(9.2.3). Then 

where 11, = ~ ( L ) E ~ ,  aj = -(+j+l + $rjlrjt2 + . . . ). {qt] is zero-mean ergodic 
stationary? 

For a moment set 6 = 0 in (9.2.7) so that (6,) is driftless I(1). An important 
implication of the decomposition is that any driftless 1(1) process is dominated by 
the stochastic trend +( l )  C:=l E, in the following sense. Divide both sides of the 
decomposition (9.2.7) (with 6 = 0) by f i  to obtain 

4 ~ o r  a more general condition, which does not require the I(0) process (uf) to be linear, under which u 1 + 
. . . t ut is decomposed as shown here, see Theorem 5.4 of Hall and Heyde (1980). In that theorem, { E ~ ]  is a 
stationary martingale difference sequence, so the stochastic trend is a martingale. 
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Since E(#) < m by assumption, ~ [ ( t ~ / & ) ~ ]  + 0 as t + m. SO to/& con- 
verges in mean square (and hence in probability) to zero. The same applies to 
rl,/& and rlo/&. So the terms in the brackets on the right-hand side of (9.2.8) can 
be ignored asymptotically. In contrast, the first term has a limiting distribution of 
N (0, u2. [+ (1)12) by the Lindeberg-Levy CLT of Section 2.1. In this sense, the sto- 
chastic trend grows at rate &. Using (9.2.4), the stochastic trend can be written as 

which shows that changes in the stochastic trend in 6, have a variance of h2, the 
long-run variance of (At,}. 

Now suppose 6 # 0 so that (6,) is 1(1) with drift. As is clear from dividing 
both sides of (9.2.7) by t rather than & and applying the same argument just given 
for the 6 = 0 case, the stochastic trend as well as the stationary component can be 
ignored asymptotically, with t , / t  converging in probability to 6. In this sense the 
time trend dominates the 1(1) process in large samples. 

Relation to ARMA Models 

In Section 6.2, we defined a zero-mean stationary ARMA process (u,}  as the 
unique covariance-stationary process satisfying the stationary ARMA(p, q )  
equation 

where @(L) satisfies the stationarity condition. If (E,} is independent white noise 
and if 8(1) # 0, then the ARMA(p, q)  process is zero-mean I(0). To see this, note 
from Proposition 6.5(a) that u, can be written as (9.2.1) with 

Since @(I )  # 0 by the stationarity condition and 8(1) # 0 by assumption, con- 
dition (9.2.3b) (that +(1) # 0) is satisfied. By Proposition 6.4(a), the coefficient 
sequence (*) is bounded in absolute value by a geometrically declining sequence, 
which ensures that (9.2.3a) is satisfied. 

Given the zero-mean stationary ARMA(p, q) process (u,} just described, the 

associated I(1) process (t,} defined by the relation At, = u, is called an autore- 
gressive integrated moving average (ARIMA(p, 1, q))  process. Substituting the 
relation u, = (1 - L)t, into (9.2.10), we obtain 
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with @* (L) = @(L)(l  - L), @(L) stationary, and 0(1) # 0. One of the roots of 
the associated autoregressive polynomial equation @* (z) = 0 is unity and all other 
roots lie outside the unit circle. More generally, a class of I(d) processes can be 
represented as satisfying (9.2.12) where @*(L) is now defined as 

So @* (z) = 0 now has a root of unity with a multiplicity of d (i.e., d unit roots) and 
all other roots lie outside the unit circle. This class of I(d) processes is called au- 
toregressive integrated moving average (ARIMA(p, d, q ) )  processes. The first 
parameter (p) refers to the order of autoregressive lags (not counting the unit 
roots), the second parameter (d) refers to the order of integration, and the third 
parameter (q) is the number of moving average lags. Since @(L) satisfies the 
stationarity condition, taking d-th differences of an ARIMA(p, d ,  q)  produces a 
zero-mean stationary ARMA(p, q) process. So an ARIMA(p, d ,  q)  process is 

I(d). 

The Wiener Process 
The next two sections will present a variety of unit-root tests. The limiting distri- 
butions of their test statistics will be written in terms of Wiener processes (also 
called Brownian motion processes). Some of you may already be familiar with 
this from continuous-time finance, but to refresh your memory, 

Definition 9.3 (Standard Wiener processes): A standard Wiener (Brownian 
motion) process W(.) is a continuous-time stochastic process, associating each 
date t E [0, 11 with the scalar random variable W(t), such that 

(2) for any dates 0 5 tl < tz < . . . < tk 5 1, the changes 

are independent multivariate normal with W(s) - W(t) -- N(0, (s - t)) (so in 
particular W(l)  -- N(0, 1)); 

(3) for any realization, W(t) is continuous in t with probability 1. 
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Roughly speaking, the functional central limit theorem (FCLT), also called the 
invariance principle, states that a Wiener process is a continuous-time analogue 
of a driftless random walk. Imagine that you generate a realization of a standard 
random walk (whose changes have a unit variance) of length T, scale the graph 
vertically by deflating all its values by fi, and then horizontally compress this 
normalized graph so that it fits the unit interval [0, I]. In Panel (a) of Figure 9.2, 
that is done for a sample size of T = 10. The sample size is increased to 100 in 
Panel (b), and then to 1,000 in Panel (c). As the figure shows, the graph becomes 
increasingly dense over the unit interval. The FCLT assures us that there exists a 
well-defined limit as T + cx and that the limiting process is the Wiener process. 
Property (2) of Definition 9.3 is a mathematical formulation of the property that the 
sequence of instantaneous changes of a Wiener process is i.i.d. The continuous- 
time analogue of a driftless random walk whose changes have a variance of a2, 

rather than unity, can be written as a W(r). 
To pursue the analogy between a driftless random walk and a Wiener process 

a bit further, consider a "demeaned standard random w a l k  which is constructed 
from a standard driftless random walk by subtracting the sample mean. That is, let 
(<,I be a driftless random walk with Var(Af,) = 1 and define 

The continuous-time analogue of this demeaned random walk is a demeaned stan- 
dard Wiener process defined as 

(We defined the demeaned series for t = 0, 1 ,  . . . , T - 1, to match the dating 
convention of Proposition 9.2 below. If the demeaned series is defined for t = 

1 ,  2, . . . , T, then its continuous-time analogue, too, is (9.2.15).) 
We can also create from the standard random walk (6,) a detrended series: 

where G and $ are the OLS estimates of the intercept and the time coefficient in the 
regression o f t ,  on (1, t) (t = 0, 1, . . . , T - 1). The continuous-time analogue of 
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Figure 9.2: Illustration of the Functional Central Limit Theorem 
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the detrended random walk is a detrended standard Wiener process defined as 

The coefficients a and d are the limiting random variables of 2 and 6^, respectively, 
as T + co (see, e.g., Phillips and Durlauf, 1986, for a derivation). Therefore, 
if a linear time trend is fitted to a drifless random walk by OLS, the estimated 
linear time trend 6̂  converges in distribution to a random variable d; even in large 
samples 6̂  will never be zero unless by accident. This phenomenon is sometimes 
called spurious detrending. 

A Useful Lemma 
Unit-root tests utilize statistics involving I(0) and 1(1) processes. The key results 
collected in the following proposition will be used to derive the limiting distribu- 
tions of the test statistics of the unit-root tests of Sections 9.3-9.4. 

Proposition 9.2 (Limiting distributions of statistics involving I(0) and I(1) 
variables): Let {t,) be driftless 1(1) so that At, is zero-mean I(0) satisfying 
(9.2.1)-(9.2.3) and E(C;) < 00. Let 

h2 = long-mn vm'ance of {At,) and yo = Var(A6,). 

Then 

1 T 

(a) Z ( b - d 2  + d h2 - 1' ~ ( r ) ~  dr, 
t=1 

Let { t r )  be the demeaned series created from (6,) by the formula (9.2.14). Then 



Unit-Root Econometrics 571 

Let {c: ) be the detrended series created from {ct ] by the formula (9.2.16). Then 

The convergence is joint. That is, a vector consisting o f  the statistics indicated in 
( a ) + )  converges to a random vector whose elements are the corresponding random 
variables also indicated in (a)-(0. 

Part (a), for example, reads as follows: the sequence of random variables { ( l l ~ ) ~  

cT=~ indexed by T converges in distribution to a random variable h2 1 w2 
dr. The limiting random variables in the proposition are all written in terms of 
standard Wiener processes. Note that the same Wiener process W ( . )  appears in 
(a) and (b) and that the demeaned and detrended Wiener processes in (c)-(f) are 
derived from the Wiener process appearing in (a) and (b). So the limiting random 
variables in (a)-(f) can be correlated. 

To gain some understanding of this result, suppose temporarily that {<,I is 
a driftless random walk with Var(A<,) = a 2 .  Given that a Wiener process is 
the continuous-time analogue, it is not surprising that "CT=, (ct-1)2" suitably nor- 
malized by a power of T becomes "a2 1 w2." Perhaps what you might not have 
guessed is the normalization by T2. One way to see why the square of T provides 
the right normalization, is to recall that E[(<,)~] = Var(&) = a2 . t .  Thus, 

So the mean of C T = , ( ~ , - ~ ) ~  grows at rate T2. In order to construct a random 
variable that could have a limiting distribution, c T = ~ ( ~ ~ - ~ ) ~  will have to be divided 
by T2. 

Now suppose that {c,) is a general driftless 1(1) process whose first difference 
is a zero-mean I(0) process satisfying (9.2.1)-(9.2.3). Then serial correlation in 
Act can be taken into account by replacing a2 by h2 (the long-run variance of 

{A&}). This is due to implication (9.2.9) of the Beveridge-Nelson decomposi- 
tion that a driftless 1(1) process is dominated in large samples by a random walk 
whose changes have a variance of h2. Put differently, the limiting distribution of 
c ~ _ ~ ( < ~ - ~ ) ~ / T ~  would be the same if {&I, instead of being a general driftless 
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1(1) process with serially correlated first differences, were a driftless random walk 
whose changes have a variance of A ~ .  

For a proof of Proposition 9.2, see, e.g., Stock (1994, pp. 2751-2753). It is a 
rather mechanical application of the FCLT and a theorem called the "continuous 
mapping theorem." Since W(l) - N(0, l), the limiting random variable in (b) is 

where X - x 2  ( 1 )  (chi-squared with 1 degree of freedom). Proof of (b) can be done 
without the fancy apparatus of the FCLT and the continuous mapping theorem and 
is left as Analytical Exercise 1. 

Q U E S ' T I O N S  F O R  R E V I E W  

1. (Verifying Beveridge-Nelson for simple cases) Verify (9.2.5) for $(L) = 1 + 
L. Do the same for $(L) = (1 - #L)-' where 141 < 1. 

2. (A CLT for I(0)) Proposition 6.9 is about the asymptotics of the sample mean 
of a linear process. Verify that the paragraph right below Proposition 9.1 is a 
proof of Proposition 6.9 with the added assumption of one-summability. 

3. (Is the stationary component in Beveridge-Nelson I(O)?) Consider a zero- 
mean I(0) process 

Verify that the long-run variance of { r ] , }  defined in (9.2.6) is zero. 

4. (Initial values and demeaned values) Let (6,) be driftless I(1) so that 6, can 
be written as 6, = t o  + ul + u2 + . . . + u,. Does the value of to affect the 
value of 6; where (6;) is the demeaned series created from {c,) by the formula 
(9.2.14)? [Answer: No.] 

5. (Linear trends and detrended values) Let 6, be I(1) with drift, so it can be 
written as the sum of a linear time trend a + 6 . r and a driftless 1(1) process. 
Do the values of a and 6 affect the value of 6: where {t:) is the detrended 
series created from (6,) by the formula (9.2.16)? [Answer: No.] 
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9.3 Dickey-Fuller Tests 

In this and the following section, we will present several tests of the null hypothesis 
that the data generating process (DGP) is I(1). In this section, the 1(1) process is a 
random walk with or without drift, and the tests are based on the OLS estimation 

of appropriate AR(1) equations. Those tests were developed by Dickey (1976) and 

Fuller (1976) and are referred to as Dickey-Fuller tests or DF tests. We take the 

convention that the sample has T + 1 observations (yo, y l ,  . . . , yT), SO that the 

AR(1) equation can be estimated for t = 1,2 ,  . . . , T .  

The AR(1) Model 
The Dickey-Fuller test statistics are derived from the estimation of the first-order 

autoregressive model: 

yt = pyt-1 + E ~ ,  { E ~ }  independent white noise. (9.3.1) 

(The case with intercept will be studied in a moment.) This model includes both 

1(1) and I(0) processes: if p = 1, that is, if the associated polynomial equation 

1 - pz = 0 has a unit root, then Ay, = E~ and {y,) is a driftless random walk, 

whereas if lp 1 < 1, the process is zero-mean stationary AR(1). Thus, the hypoth- 
esis that the data are generated by a driftless random walk can be formulated as the 

null hypothesis that p = 1. If we take the position that the DGP is either I(0) or 

I( l) ,  then - 1 < p _( 1. Given this a priori restriction on p,  the I(0) alternative can 

be expressed as p < 1. So one-tailed tests will be used to test the null of p = 1 
against the I(0) alternative. 

The tests will be based on 6, the OLS estimate of p in the AR(1) equation 

(9.3.1). Under the I(1) null of p = 1, the sampling error is 6 - 1, whose expression 

is given by 

As will be verified in a moment, the numerator has a limiting distribution if divided 

by T and the denominator has one if divided by T ~ .  SO consider the sampling error 

magnified by T : 
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Deriving the Limiting Distribution under the 1(1) Null 
Deriving the limiting distribution of T . ( i  - 1) under the 1(1) null (a driftless ran- 
dom walk) is very straightforward. Since {y,} is driftless I(1), parts (a) and (b) of 
Proposition 9.2 are applicable with 6, = y,. Furthermore, since Ay, is independent 
white noise, h2 (the long-run variance of {Ay,}) equals yo (the variance of Ay,). 
Thus, 

As noted in the Proposition, the convergence is joint, so WT E (wIT, ~ 2 ~ ) '  as 
a vector converges to a 2 x 1 random vector, w r (w 1, ~ 2 ) ' .  Since (9.3.3) is a 
continuous function of wT (it equals w ~ ~ / w ~ ~ ) ,  it follows from Lemma 2.3(b) that 

w l  ? w ( r l 2  - y ; ( ~ ( i ) ~  - 1) 
+ - =  - - DF,. 

W2 y ~ . / d W ( r ) ~ d r  x W ( ~ ) ~ d r  

(9.3.6) 

The test statistic T . (6 - 1) is called the Dickey-Fuller, or DF, p statistic. Several 
points are worth noting: 

T . (6 - l),  rather than the usual 8 . (6 - l ) ,  has a nondegenerate limiting 
distribution. The estimator 6 is said to be superconsistent because it converges 
to the true value of unity at a faster rate (T). 

The null hypothesis does not specify the values of Var(~,) and yo (the initial 
value) of the DGP, yet they do not affect the limiting distribution, the distribution 
of the random variable DF,. That is, the limiting distribution does not involve 
those nuisance parameters. So we can use T . (6 - 1) as the test statistic. This 
test of a driftless random walk is called the Dickey-Fuller p test. 

Note that both the numerator and the denominator involve the same Wiener 

process, so they are correlated. Since W(1) is distributed as standard normal, 
the numerator of the expression for DF, could be written as (X2(1) - 1)/2. But 
this would obscure the point being made here. 
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The usual t-test for the null of p = 1, too, has a limiting distribution. It is just 
a matter of simple algebra to show that the t-value for the null of p = 1 can be 
written as 

where s is the standard error of regression: 

It is easy to prove (see Review Question 3) that s2 is consistent for yo (= Var(Ay,)). 
It is then immediate from this and (9.3.4) and (9.3.5) that 

;(w(1)2 - 1) 
t + =  E DFt. 

This limiting distribution, too, is free from nuisance parameters. So the t-value 
can be used for testing, but the critical values for the standard normal distribution 
cannot be used; they have to come from a tabulation (provided below) of D F, . This 
test is called the DF t test. 

We summarize the discussion so far as 

Proposition 9.3 (Dickey-Fuller tests of a driftless random walk, the case with- 
out intercept): Suppose that {y,} is a driftless random walk (so {Ay,} is inde- 
pendent white noise) with E(~;)  < co. Consider the regression of y, on y,-1 
(without intercept) for t = 1,2, . . . , T .  Then 

D F p  statistic: T - (b - 1) += DF,, 
d 

D F t  statistic: t += DF,, 
d 

where j is the OLS estimate of the ytPl coefficient, t is the t -value for the hypoth- 
esis that the y, - I coefficient is 1, and DF, and DF, are the random variables defined 
in (9.3.6) and (9.3.9). 

Thus, we have two test statistics, T . (b - 1) and the t-value, for the same I(1) null. 
Comparison of the (generalizations of)  these DF tests will be discussed in the next 
section. 

Keen
Rectangle
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Table 9.1: Critical Values for the Dickey-Fuller p Test 

Sample 
size (T) 

Probability that the statistic is less than entry 
0.01 0.025 0.05 0.10 0.90 0.95 0.975 0.99 

Panel (a): T . ( j  - 1) 
-11.8 -9.3 -7.3 -5.3 1.01 1.41 1.78 
-12.8 -9.9 -7.7 -5.5 0.97 1.34 1.69 
-13.3 -10.2 -7.9 -5.6 0.95 1.31 1.65 
-13.6 -10.4 -8.0 -5.7 0.94 1.29 1.62 
-13.7 -10.4 -8.0 -5.7 0.93 1.28 1.61 
-13.8 -10.5 -8.1 -5.7 0.93 1.28 1.60 

Panel (b): T . (6'' - 1) 
-17.2 -14.6 -12.5 -10.2 -0.76 0.00 0.65 
-18.9 -15.7 -13.3 -10.7 -0.81 -0.07 0.53 
-19.8 -16.3 -13.7 -11.0 -0.83 -0.11 0.47 
-20.3 -16.7 -13.9 -11.1 -0.84 -0.13 0.44 
-20.5 -16.8 -14.0 -11.2 -0.85 -0.14 0.42 
-20.7 -16.9 -14.1 -11.3 -0.85 -0.14 0.41 

Panel (c): T ( j r  - 1) 
-22.5 -20.0 -17.9 -15.6 -3.65 -2.51 -1.53 
-25.8 -22.4 -19.7 -16.8 -3.71 -2.60 -1.67 
-27.4 -23.7 -20.6 -17.5 -3.74 -2.63 -1.74 
-28.5 -24.4 -21.3 -17.9 -3.76 -2.65 -1.79 
-28.9 -24.7 -21.5 -18.1 -3.76 -2.66 -1.80 
-29.4 -25.0 -21.7 -18.3 -3.77 -2.67 -1.81 

SOURCE: Fuller (1976, Table 8.5.1), corrected in Fuller (1996, Table 10.A.l). 

Panel (a) of Table 9.1 has critical values for the finite-sample distribution of the 

random variable T . ( j  - 1) for various sample sizes. The solid curve in Figure 9.3 
graphs the finite-sample distribution of j for T = 100, which shows that the OLS 
estimate of p is biased downward (i.e., the mean of j is less than 1). These are 
obtained by Monte Carlo assuming that E, is Gaussian and yo = 0. By Proposition 

9.3, as the sample size T increases, those critical values converge to the critical 

values for the distribution of DF,, reported in the row for T = 00. (Since yo does 

not have to be zero and Er does not have to be Gaussian for the asymptotic results 
in Proposition 9.3 to hold, we should obtain the same limiting critical values if the 

finite-sample critical values were calculated with a different assumption about the 

initial value yo and the distribution of E,.) From the critical values for T = 00, 
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- without intercept or time - - - - - - - - -  with intercept - - - - with time 

Figure 9.3: Finite-Sample Distribution of OLS Estimate 
of AR(1) Coefficient, T = 100 

we can see that the DF, distribution, too, is skewed to the left, with the 5 percent 

lower tail critical value of -8.1 (so Prob(DF, < -8.1) = 5%) and the 5 percent 

upper tail critical value of 1.28. The small-sample bias in j is reflected in the 

skewness in the limiting distribution of T . ( j  - 1). 

Critical values for DF, (the limiting distribution of the t-value) are in the row 

for T = oo of Table 9.2, Panel (a). Like DF,, it is skewed to the left. The table 

also has critical values for finite-sample sizes. Again, they assume that yo = 0 and 
is normally distributed. 

Incorporating the Intercept 

A shortcoming of the tests based on the AR(1) equation without intercept is its lack 

of invariance to an addition of a constant to the series. If the test is performed on a 

series of logarithms (as in Example 9.1 below), then a change in units of measure- 

ment of the series results in an addition of a constant to the series, which affects 

the value of the test statistic. To make the test statistic invariant to an addition of a 

constant, we generalize the model from which the statistic is derived. Consider the 

model 

YI = a + 21, 21 = P Z ~ - I  + { E , }  independent white noise. (9.3.10) 
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Table 9.2: Critical Values for the Dickey-Fuller t-Test 

Sample Probability that the statistic is less than entry 
size ( T )  0.01 0.025 0.05 0.10 0.90 0.95 0.975 0.99 

Panel (a): t 
-1.95 -1.60 0.92 1.33 1.70 2.15 
-1.95 -1.61 0.91 1.31 1.66 2.08 
-1.95 -1.61 0.90 1.29 1.64 2.04 
-1.95 -1.62 0.89 1.28 1.63 2.02 
-1.95 -1.62 0.89 1.28 1.62 2.01 
-1.95 -1.62 0.89 1.28 1.62 2.01 

Panel (b): t w  

-2.99 -2.64 -0.37 0.00 0.34 0.71 
-2.93 -2.60 -0.41 -0.04 0.28 0.66 
-2.90 -2.59 -0.42 -0.06 0.26 0.63 
-2.88 -2.58 -0.42 -0.07 0.24 0.62 
-2.87 -2.57 -0.44 -0.07 0.24 0.61 
-2.86 -2.57 -0.44 -0.08 0.23 0.60 

Panel (c): t S  

-3.60 -3.24 -1.14 -0.81 -0.50 -0.15 
-3.50 -3.18 -1.19 -0.87 -0.58 -0.24 
-3.45 -3.15 -1.22 -0.90 -0.62 -0.28 
-3.42 -3.13 -1.23 -0.92 -0.64 -0.31 
-3.42 -3.13 -1.24 -0.93 -0.65 -0.32 
-3.41 -3.13 -1.25 -0.94 -0.66 -0.32 

SOURCE: Fuller (1976, Table 8.5.2), corrected in Fuller (1996, Table 10.A.2). 

The process {y,] obtains when a constant a is added to a process satisfying (9.3.1). 
Under the null of p = 1, ( 2 , )  is a driftless random walk. Since y, can be written as 

{y,] too is a driftless random walk with the initial value of yo = a + zo. Under the 
alternative of p c 1, {y,] is stationary AR(I) with mean a. Thus, the class of I(0) 
processes included in (9.3.10) is larger than that in (9.3.1). 

By eliminating {z,] from (9.3.10), we obtain an AR(1) equation with intercept 
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where 

a* = (1 - p)a. 

Since a* = 0 when p = 1, the 1(1) null (that the DGP is a driftless random walk) is 

the joint hypothesis that p = 1 and a* = 0 in terms of the coefficients of regression 
(9.3.1 1). Without the restriction a* = 0, ( y , }  could be a random walk with drift. 
We will develop tests of a random walk with drift in a moment. Until then, we 
continue to take the null to be a random walk without drift. 

Let j w  here be the OLS estimate of p in (9.3.11) and tw be the t-value for the 
null of p = 1. It should be clear that a would not affect the value of bw or its OLS 
standard error; adding the same constant to y, for all t merely changes the estimated 

intercept. Therefore, the finite-sample as well as large-sample distributions of the 

DF pa statistic, T . (bw - l ) ,  and the DF t" statistic, tw, will not depend on a 

regardless of the value of p. 

As you will be asked to prove in Analytical Exercise 2, T . (jw - 1) converges 

in distribution to a random variable represented as 

and tw converges in distribution to 

Here, Ww(.) is a demeaned standard Wiener process introduced in Section 9.2. 

These limiting distributions are free from nuisance parameters such as a .  The 
basic idea of the proof is the following. First, obtain a demeaned series by sub- 

tracting the sample mean from {y,} (or equivalently, as the OLS residuals from the 
regression of {y,} on a constant). Second, use the Frisch-Waugh Theorem (intro- 

duced in Analytical Exercise 4 of Chapter 1) to write T . ( j w  - 1) and the t-value 
in formulas involving the demeaned series. Finally, use Proposition 9.2(c) and (d). 
Summarizing the discussion, we have 

Proposition 9.4 (Dickey-Fuller tests of a driftless random walk, the case with 
intercept): Suppose that {y,} is a driftless random walk (so {Ay,} is independent 
white noise) with E(~:) < cm. Consider the regression of  y, on (1, ytPl  ) for 
t = l , 2 ,  . . . , T .  Then 

DF pw statistic: T . ( j w  - 1) + DFF, 
d 

Keen
Rectangle
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DF t p  statistic: t p  + D F ~ ,  
d 

where b p  is the OLS estimate of  the y,-1 coefficient, tp is the t-value for the 
hypothesis that the y,-1 coefficient is 1 ,  and DFF and D F ~  are the two random 
variables defined in (9.3.13) and (9.3.14). 

Critical values for DFF are in Table 9.1, Panel (b), and those for D F ~  are in 
Table 9.2, Panel (b), in rows for T = m. The distribution is more strongly skewed 
to the left than in the case without intercept. The table also has critical values for 
finite-sample sizes based on the assumption that E, is normal. The finite-sample 
distribution of i?p for T = 100 is graphed in Figure 9.3. It shows a greater bias 
for i?p than for 6 (the OLS estimate without intercept). Unlike in the case without 
intercept, the finite-sample critical values do not depend on yo. This is because, 
when p = 1, a change in the initial value yo only adds the same constant to y, for 
all t ,  so the values of the DF pp and tp statistics are invariant to yo. 

We started out this subsection by saying that the 1(1) null is the joint hypothesis 
that p = 1 and a* = 0. Yet the test statistics are for the hypothesis that p = 1. For 
the unit-root tests, this is the practice in the profession; test statistics for the joint 
hypothesis are rarely used. 

Example 9.1 (Are the exchange rates a random walk?): Let y, be the 
log of the spot yen/$ exchange rate. To make the tests invariant to the choice 
of units (e.g., yen/$ vs. yen/$), we fit the AR(1) model with intercept, so 
Proposition 9.4 is applicable. For the weekly exchange rate data used in the 
empirical application of Chapter 6 and graphed in Figure 6.3 on page 424, 
the AR(1) equation estimated by OLS is 

yt = 0.162 + 0.9983376 y,-l, R~ = 0.997, SER = 2.824. 
(0.435) (0.0019285) 

Standard errors are in parentheses. Because of the lagged variable y,-1, the 
actual sample period is from the second week rather than the first week of 
1975. So T = 777 and 

Since the alternative hypothesis is that p < 1, a one-tailed test is called for. 
(If you think that the process might be an explosive AR(1) with p > 1, you 
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should perform a two-tailed test.) From Table 9.1, Panel (b), for DF:, the 
(asymptotic) critical value that gives 5 percent to the lower tail is - 14.1. 
That is, 

Prob(DFz < -14.1) = 0.05. 

The test statistic of -1.29 is well above this critical value, so the null is 
easily accepted at the 5 percent significance level. Turning to the DF t test, 
from Table 9.2, Panel (b), the 5 percent critical value is -2.86. The t-value 
of -0.86 is greater, so the null hypothesis is easily accepted. 

Incorporating Time Trend 

As was mentioned in Section 9.1, most economic time series appear to have lin- 
ear time trends. To make the DF tests applicable to time series with trend, we 

generalize the model once again, this time by adding a linear time trend: 

~t = a + S . t + zr , zt = pzt-1 + E ! ,  { E ~ }  independent white noise. (9.3.15) 

Here, S is the slope of the linear trend which may or may not be zero. Under the 
null of p = 1, { z , }  is a driftless random walk, and y, can be written as 

with yo = a + zo. So { y , }  is a random walk with drift if S # 0 and without drift 

if S = 0. Under the alternative that p < 1, the process, being the sum of a linear 
trend and a zero-mean stationary AR(1) process, is trend stationary. 

By eliminating { z , }  from (9.3.15) we obtain 

where 

a* = (1 - p)a  + pS, S* = (1 - p)S. (9.3.18) 

Since S* = 0 when p = 1, the J(1) null (that the DGP is a random walk with 

or without drift) is the joint hypothesis that p = 1 and S* = 0 in terms of the 
regression coefficients. In practice, however, unit-root tests usually focus on the 

single restriction p = 1. 
As in the AR(1) model with intercept, the statement of Proposition 9.3 can be 

readily modified to the AR(1) model with trend. Let 6' be the OLS estimate of the 

p in (9.3.17) and t 3 e  the t-value for the null of p = 1. As you will be asked to 
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prove in Analytical Exercise 3, T - (b' - 1) converges in distribution to 

and t' converges in distribution to 

Here, Wr(.) is a detrended standard Wiener process introduced in Section 9.2. The 
basic idea of the proof is to use the Frisch-Waugh Theorem to write T . (fir - 1) and 
t' in formulas involving detrended series and then apply Proposition 9.2(e) and (f). 
Summarizing the discussion, we have 

Proposition 9.5 (Dickey-Fuller tests of a random walk with or without drift): 
Suppose that {y,} is a random walk with or without drift with E(~:) < oo. Con- 
sidertheregression of  y, on (1, t ,  y , -~ )  fort = 1,2 ,  . . . , T .  Then 

DFp'  statistic: T . (b' - 1) -+ DF,', (9.3.21) 
d 

D F  t ' statistic: t ' -+ D F: , 
d 

(9.3.22) 

where j' is the OLS estimate of  the y,- 1 coefficient, t ' is the t -value for the hypoth- 
esis that the y,- 1 coefficient is 1 ,  and D F,' and D F: are the two random variables 
defined in (9.3.19) and (9.3.20). 

Critical values for DF,' are in Table 9.1, Panel (c), and those for DF: are in Table 
9.2, Panel (c). The table also has critical values for finite sample sizes based on the 
assumption that F ,  is normal (the initial value yo as well as the trend parameters a 

and S need not be specified to calculate the finite-sample distributions because they 
do not affect the numerical values of the test statistics under the null of p = 1). For 
both the DF p' and t' statistics, the distribution is even more strongly skewed to the 
left than that for the case with intercept. Now for all sample sizes displayed in the 
tables, the 99 percent critical value is negative, meaning that more than 99 percent 
of the time j' is less than unity when in fact the true value of p is unity! This 
is illustrated by the chained curve in Figure 9.3, which graphs the finite-sample 
distribution of j' for T = 100. 
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Two comments are in order about Proposition 9.5. 

(Numerical invariance) The test statistics jr and tr are invariant to (a,  6) regard- 
less of the value of p; adding a + 6 . t to the series {y,} merely changes the OLS 
estimates of a* and 6* but not jr or its t-value. Therefore, the finite-sample 
as well as large-sample distributions of T . (6' - 1) and t r  will not depend on 
(a,  6), regardless of the value of p. 

(Should the regression include time?) Since the test statistics are invariant to 
the value 6 in the DGP, Proposition 9.5 is applicable even when 6 = 0. That is, 
the jr and t' statistics can be used to test the null of a driftless random walk. 
However, if you are confident that the null process has no trend, then the DF pp 
and tp tests of Proposition 9.4 should be used, with the regression not including 
time, because the finite-sample power against stationary alternatives is generally 
greater with j p  and tp than with j' and t r  (you will be asked to verify this in 
Monte Carlo Exercise 1). On the other hand, if you think that the process might 
have a trend, then you should use 5' and t', with time in the regression. If you 
fail to include time in the regression and use critical values from Table 9.1, Panel 
(b), and Table 9.2, Panel (b), when indeed the DGP has a trend, then the test will 
not be correctly sized in large samples (i.e., the probability of rejecting the null 
when the null is true will not approach the prespecified significance level (the 
nominal size) as the sample size goes to infinity). This is simply because the 
limiting distributions of j p  or tp when the DGP has a trend are not DFF or 
DF: . 

Q U E S T I O N S  FOR R E V I E W  

1. (Superconsistency) Let j be the OLS coefficient estimate as in (9.3.2). Verify 
that TI-" ( j  - 1) -+,Ofor0 < I ]  < 1 i f p  = 1. 

2. (Limiting distribution under general driftless I(1)) In the AR(1) model (9.3.1), 
drop the assumption that the error term is independent white noise by replacing 
E ,  by u, and assuming that (u,} is a general zero-mean I(0) process satisfying 
(9.2.1)-(9.2.3). So the process under the null of p = 1 is a general driftless 
I(1) process. Show that T - ( j  - 1) converges in distribution to 

where h2 = long-run variance of { Ay,} and yo = Var(Ay,). 
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3. (Consistency of s2) The usual OLS standard error of regression for the AR(1) 
equation, s ,  is defined in (9.3.8). If (pl < 1,  we know from Section 6.4 that 
s 2  is consistent for Var(~,). Show that, under the null of p = 1, s2  remains 
consistent for Var(e,). Since Ay, = E, when p = 1, s2  is consistent for yo 

(= Var(Ay,)) as well. Hint: Rewrite s h s  

Also, E[(Av,)~]  = yo. Use the result we have used repeatedly: if XT + p  0 and 

YT +d Y ,  then XT - YT + p  0. 

4. (Two tests for a random walk) Consider two regressions. One is to regress 
Avt on AY,-~,  and the other is to regress Ay, on ytPl .  To test the null that {y,} 
is a driftless random walk, which distribution should be used, the t-value from 
the first regression or the t-value from the second regression? 

5. (Consistency of DF tests) Recall that a test is said to be consistent against a 
set of alternatives if the probability of rejecting a false null hypothesis when 

the true DGP is any of the alternatives approaches unity as the sample size 
increases. Let T . (B - 1) be as defined in (9.3.3). 

(a) Suppose that {y,} is a zero-mean I(0) process and that its first-order auto- 
correlation coefficient is less than 1 (so E(~:) > E(y, ytPl)). Show that 

Thus, the DF p test is consistent against general I(0) alternatives. Hint: 

Show that, if {y,} is I(O), 

plim = E(yt YI-1) 

T+m E ( Y ~ - d 2  

(b) Show that the DF t test is consistent against general zero-mean I(0) alter- 
natives. Hint: s converges in probability to some positive number when {y,} 

is zero-mean I(0). 
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6. (Effect of yo on test statistics) For f iP  and t M ,  verify that the initial value yo 
does not affect their values in finite samples when p = 1. Does this hold true 

when p < l ?  [Answer: No, because the effect of a change in yo on y, depends 

on t.] Does the finite-sample power against the alternative of p < 1 depend on 

yo? [Answer: Yes.] 

7. (Sargan-Bhargava, 1983, statistic) Basing the test statistic on the OLS coeffi- 
cient estimator is not the only way to derive a unit-root test. For a sample of 

(yo, yl, . . . , yT), the Sargan-Bhargava statistic is defined as 

(a) Verify that it is the reciprocal of the Durbin-Watson statistic. 

(b) Show that, if {y,) is a driftless random walk, then 

1 

SB + 1 [ ~ ( r ) ] '  dr. 
d 

T T 7 2 
Hint: E,=,y: = y;, + yT. Also, y;/T2 +, 0. 

(c) Verify that, under an 1(0) alternative with E[(A?,)~]  # 0, SB +, 0. (So 

the test rejects the 1(1) null for small values of SB.) 

- - - - 

9.4 Augmented Dickey-Fuller Tests 

The 1(1) null process in the previous section was a random walk, which does not 

allow for serial correlation in first differences. The tests of this section control for 
serial correlation by adding lagged first differences to the autoregressive equation. 

They are due to Dickey and Fuller (1979) and came to be known as the Augmented 
Dickey-Fuller (ADF) tests. 

'The Augmented Autoregression 
The 1(1) null in the simplest ADF tests is that {y,) is ARIMA(p, 1,0), that is, { Ay,) 

is a zero-mean stationary AR(p) process: 
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where { E ~ }  is independent white noise and where the associated polynomial equa- 
tion, l - z - c2z2 - . - - - cPzP = 0, has all the roots outside the unit circle. (Later 
on we will allow {Ay,) to be stationary ARMA(p, q) . )  The first difference process 
{Ay,) is thus an I(0) process because it can be written as Ay, = @(L)E, where 

The model used to derive the test statistics includes this process as a special case: 

Indeed, (9.4.3) reduces to (9.4.1) when p = 1. 
Equation (9.4.3) can also be written as an AR(p + 1): 

where the 4's are related to (p, 51, . . . , 5,) by 

Conversely, any (p + 1)-th order autoregression can be written in the form (9.4.3). 
This form (9.4.3) was originally proposed by Fuller (1976, p. 374). It is called the 
augmented autoregression because it can be obtained by adding lagged changes 
to the level AR(1) equation (9.3.1). 

It is easy to show (Review Question 2) that the polynomial equation associated 
with (9.4.4) has a root inside the unit circle if p > 1. Thus, if we take the position 
that the DGP is either 1(1) or I(O), then p cannot be greater than 1 and the I(0) 
alternative is that p < 1. 

Limiting Distribution of the OLS Estimator 
Having set up the model, we now turn to the task of deriving the limiting distri- 
bution of the OLS estimate of p in the augmented autoregression (9.4.3) under the 
I(1) null. Numerically the same estimate of p can be obtained from the AR(p + 1) 
equation (9.4.4) by calculating the sum of the OLS estimates of (&, 4 2 ,  . . . , @p+l) 
(recall that p = + - - . + 4p+1). For the purpose of deriving the limiting distri- 
bution, however, the augmented autoregression is more convenient. Under the 1(1) 
null, all the p + 1 regressors in (9.4.4) are driftless I(1), but it masks the fact, to 
be exploited below and clear from (9.4.3), that p linear combinations of them are 
zero-mean I(0). 
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To simplify the calculation, consider the special case of p = 1 (one lagged 
change in yt or AR(2)), so that the augmented autoregression is 

We assume that the sample is ( Y - ~ ,  yo, . . . , yT) SO that the augmented autore- 
gression can be estimated for t = 1 , 2 ,  . . . , T (or alternatively, the sample is 

(yl, y2, . . . , yT) but the summations in what follows are from t = 3 to t = T 
rather than from t = 1 to t = T). Write this as 

with 

If b = (j, i l ) '  is the OLS estimator of the augmented autoregression coefficients 
p (= (p ,  C1)'), the sampling error is given by 

The individual terms in (9.4.8) are given by 

We can now apply the same trick we used for the time regression of Section 
2.12. For some nonsingular matrix YT to be specified below, rewrite (9.4.8) as 

where 
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We seek a matrix TT such that T T  . (b - B )  has a nondegenerate limiting distribu- 
tion under the 1(1) null. This is accomplished by setting 

With this choice of the scaling matrix T T ,  it follows from (9.4.9) and (9.4.11) that 

Let us examine the elements of AT and cT and derive their limiting distributions 
under the null of p = 1. 

The (1, 1) element of AT. Since {y,] is 1(1) without drift, it converges in distri- 
bution to h2 . j w2 dr by Proposition 9.2(a) where h2 - long-run variance of 

IAyt 1. 

The (2,2) element of AT. It converges in probability (and hence in distribution) 
to yo (= Var(Ayt)) because {Ay,}, being stationary AR(l), is ergodic station- 
ary with mean zero. 

The off-diagonal elements of AT. They are 1 1 8  times 

which is the average of the product of zero-mean I(0) and driftless 1(1) vari- 
ables. By Proposition 9.2(b), the similar product (1 I T)  xT=, Ayt yt-1 con- 
verges in distribution to a random variable. It is easy to show (Review Question 
3) that (9.4.14), too, converges to a random variable. So 1 / n  times (9.4.14), 
which is the off-diagonal elements of AT, converges in probability (hence in 
distribution) to 0. 

Therefore, AT, the properly rescaled X'X matrix, is asymptotically diagonal: 
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SO 

We now turn to the elements of CT 

The first element of CT. Using the Beveridge-Nelson decomposition, it can be 
shown (Analytical Exercise 4) that 

for a general zero-mean I(0) process 

In the present case, Ay, = Cl Ay,-, + E, under the null, so +(L) = (1 - L)-' 

and 

Second element of cT. It is easy to show (Review Question 4) that (AytPl E ~ }  is a 
stationary and ergodic martingale difference sequence, so 

1 
second element of cT = - 1 Ay,-l E, t 4 -- N(0, yo . 

-J7; ,=, d 

where yo = Var(Ay,) and a2 = Var(~,). 

Substituting (9.4.15)-(9.4.19) into (9.4.10) and noting that the true value of 
p is unity under the 1(1) null, we obtain, for the OLS estimate of the augmented 
autoregre~sion,~ 

5 ~ e r e ,  we are using Lemma 2.3(b) to claim that A;' c y  converges in distribution to A-'c where A and c 
are the limiting random variables of AT and C T ,  respectively. Note that, unlike in situations encountered for the 
stationary case, the convergence of AT to A is in distribution, not in probability. We have proved in the text that 
AT converges in distribution to A and CT to c, but we have not shown that ( A T ,  C T )  converges in distribution 
jointly to ( A ,  c ) .  which is needed when using Lemma 2.3(b). However, by, e.g., Theorem 2.2 of Chan and Wei 
(1988). the convergence is joint. 
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Thus, 

a2@(l )  ;[w(1l2 - 11 
T . ( b - 1 ) +  -. 

A2 
or -. T .  (b - 1) + DF,, 

A2 1: ~ ( r ) 2 &  a2@(l>  d 

where DF, is none other than the DF p distribution defined in (9.3.6). Note that 
the estimated coefficient of the zero-mean I(0) variable (AY,-~)  has the usual f i  
asymptotics, while that of the driftless I(1) variable (y, - l )  has a nonstandard lim- 
iting distribution. 

Deriving Test Statistics 
There are no nuisance parameters entering the limiting distribution of the statistic 
-. " T . (b - 1)  in (9.4.20), but the statistic itself involves nuisance parameters 
0 2 $ ( ' )  

through - " By the formula (9.2.4) for the long-run variance A2 of {Ay,}, this 
021c.(1) ' 

ratio equals @(I), which in turn equals & by (9.4.18) under the null. Now go 

back to the augmented autoregression (9.4.6). Since f 1 ,  the OLS estimate of cl,  is 
consistent by (9.4.21), a consistent estimator of ' is (1 - E l ) - ' .  It then follows 

1 -C1 

from (9.4.20) that 

T . ( j - 1 )  
+ DF,. 

1 - f l  d 

That is, the required correction on T . ( j  - 1 )  is done through the estimated coeffi- 
cient of lagged Ay in the augmented autoregression. After the correction is made, 
the limiting distribution of the statistic does not depend on nuisance parameters 
controlling serial correlation of {Ay,} such as A2 and yo. 

The OLS t-value for the hypothesis that p = 1 ,  too, has a limiting distribution. 
It can be written as 
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J T 

s . ( I ,  1 ) element of (EX, 4) - I  

- T . ( b - 1 )  - 
s . J(1, 1) element of (AT)-' ' 

where s is the usual OLS standard error of regression. It follows easily from 
(9.4.15), (9.4.20), the consistency of s2 for a2, and Proposition 9.2(a) and (b) for 
c, = yf that 

t + DF,, 
d 

(9.4.24) 

where DF, is the DF t distribution defined in (9.3.9). Therefore, for the t-value, 
there is no need to correct for the fact that lagged Ay is included in the augmented 
autoregression. 

All these results for p = 1 can be generalized easily: 

Proposition 9.6 (Augmented Dickey-Fuller test of a unit root without inter- 
cept): Suppose that { y , )  is ARIMA(p, 1,O) so that ( A y , )  is a zero-mean station- 
ary AR(p) process following (9.4.1). Consider estimating the augmented autore- 
gression, (9.4.3), and let (b, e l ,  t2, . . . , fp) be the OLS coefficient estimates. Also 
let t be the t -value for the hypothesis that p = 1.  Then 

T .  (6 - 1) 
ADF p statistic: ,. .. .. + DF,, (9.4.25) 

1 - c 2 - . . . -  d SP 
ADFt statistic: t + DF,, 

d 
(9.4.26) 

where DF, and DF, are the two random variables defined in (9.3.6) and (9.3.9). 

Testing Hypotheses about 5 
The argument leading to this surprisingly simple result is lengthy, but it has a 
by-product. The obvious generalization of (9.4.21) to the p-th order autoregres- 
sion is 
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where yj is the j-th order autocovariance of {Ay,).  By Proposition 6.7, this is the 
same asymptotic distribution you would get if the augmented autoregression (9.4.3) 
were estimated by OLS with the restriction p = 1, that is, if (9.4.1) is estimated 
by OLS. It is easy to show (Review Question 6) that hypotheses involving only the 
coefficients of the zero-mean I(0) regressors (Cl, C2, . . . , Jp) can be tested in the 
usual way, with the usual t and F statistics asymptotically valid. 

In deriving the limiting distributions of the regression coefficients, we have 
exploited the fact that one of the regressors is zero-mean I(0) while the other is 
driftless I(1). A systematic treatment of more general cases can be found in Sims, 
Stock, and Watson (1990) and Watson (1994, Section 2). 

What to Do When p Is Unknown? 
Proposition 9.6 assumes that the order of autoregression, p, for Ay, is known. 
What can we do when the order p is unknown? To distinguish between the true 
order p and the number of lagged changes included in the augmented autoregres- 
sion, we denote the latter by j in this section. We have considered a similar prob- 
lem in Section 6.4. The difference is that the DGP here is a stationary process in 
first differences, not in levels as in Section 6.4, and that the estimation equation is 
an augmented autoregression with p freely estimated. We display below, without 
proof, three large-sample results about the choice of b under which the conclu- 
sion of Proposition 9.6 remains valid. These results are applicable to a class of 
processes more general than is assumed in Proposition 9.6: {Ay,) is zero-mean 
stationary and invertible ARMA(p, q) of unknown order (albeit with an additional 
assumption on E ,  that its fourth moment is finite).6 

So, written as an autoregression, the order of autoregression for Ay, can be 
infinite, as when q > 0, or finite, as when q = 0. 

The first result is that the conclusion of Proposition 9.6 continues to hold when 
b, the number of lagged first differences in the augmented autoregression, is in- 
creased with the sample size at an appropriate rate. 

(1) (Said and Dickey, 1984, generalization of Proposition 9.6) Suppose that @ 
satisfies 

@ -+ oo but - ' - + O a s T - + m .  T1/3 

(That is, j goes to infinity but at a rate slower than T ' / ~ . )  Then the two 
statistics, the ADF p and ADF t ,  based on the augmented autoregression with 

6 ~ e e  Section 6.2 for the definition of invertible ARMA(p, q )  processes. If an ARMA(p, q )  process is invert- 
ible, then it can be written as an infinite-order autoregression. 
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i lagged changes, have the same limiting distributions as those indicated in 
Proposition 9.6. 

This result, however, does not give us a practical guide for the lag length selec- 
tion because there are infinitely many rules for fi  satisfying (9.4.28). A natural 
question is whether any of the rules for selecting the lag length considered in 
Section 6.4 -the general-to-specific sequential t rule or the information-criterion- 
based rules-can be used in the present context. To refresh your memory, the 
information-criterion-based rule is to set i to the j that minimizes 

where SSRj is the sum of squared residuals from the autoregression with j lags: 

The tern C(T)/T is multiplied by j + 1, because the equation has j + 1 coeffi- 
cients including the lagged y, coefficient. For the Akaike information criterion 
(AIC), C(T) = 2, while for the Bayesian information criterion (BIC), also called 
Schwartz information criterion (SIC), C(T) = log(T). In either rule, j is selected 
from the set j = 0, 1,2,  . . . , p,,. In Section 6.4, this upper bound p,, was set 
to some known integer greater than or equal to the true order of the finite-order 
autoregressive process. The i selected by either of these rules is a function of data 
(not just a function of T), and hence is a random variable. 

To be sure, when {Ay,) is stationary and invertible ARMA(p, q), the auto- 
regressive order is infinite when q > 0 and the upper bound p,, obviously cannot 
be set to the true order. But it can be made to increase with the sample size T.  To 
emphasize the dependence of pmax on T, write it as pmax(T). If the rules are thus 
modified, does the Said-Dickey extension of Proposition 9.6 remain valid when j 
is chosen by either of the rules? The answer obtained by Ng and Perron (1995) is 
yes. More specifically, 

(2) Suppose that 6 is selected by the general-to-specific t rule with pmx(T) sat- 
isfying condition (9.4.28) (which in the Said-Dickey extension above was a 

condition for i ,  not for pmax(T)) and pmax(T) > c . Tg for some c > 0 and 
0 < g < 113. Then the limiting distributions of the ADF p and ADF t statistics 
are as indicated in Proposition 9.6.7 

7 ~ h i s  is Theorem 5.3 of Ng and Perron (1995). Their condition A1 is (9.4.28) here. Their condition A2" is 
implied by the second condition indicated here. 
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(3) Suppose that @ is selected by AIC or by BIC with p-(T) satisfying condition 
(9.4.28). Then the same conclusion holds.8 

Thus, no matter which rule - the sequential t ,  AIC, or BIC - for selecting @ you 
employ, the large-sample distributions of the ADF statistics are the same as in 
Proposition 9.6. 

A Suggestion for the Choice of p,,(T) 
The finite-sample distribution, however, depends on which rule you use and also 
on the choice of the upper bound p-(T), and there are infinitely many valid 
choices for the function p-(T). For example, p-(T) = [ T ' / ~ ]  (the integer 
part of ~ ' 1 ~ )  satisfies the conditions in result (2) for the sequential t-test. So does 
pm,(T) = [ 1 0 0 ~ ~ / ' ~ ] .  It is important, therefore, that researchers use the same 
pm,(T) when deciding the order of the augmented autoregression. In this context, 
the Monte Carlo literature examining the small-sample properties of various unit- 
root tests is relevant. Simulations run by Schwert (1989) show that in small and 
moderately large samples (from T = 25 to 1,000), including enough lags in the 
autoregression is important to minimize size  distortion^.^ The choice of @ (the 
number of lags included in the autoregression) that was more or less successful in 

114 controlling the actual size in Schwert's study is [12 . (A) 1. The upper bound 
pm,(T) should therefore give lag selection rules a chance of selecting a @ as large 
as this. Therefore, in the examples and application of this chapter, we use the 
function 

T 1/4 
P-(T) = [12 . (=) ] (integer part of 12 . (9.4.31) 

in any of the rules for selecting the lag length. This function satisfies the conditions 
of results (2) and (3) above. 

The sample period when selecting @ is t = p-(T) + 2, p-(T) + 3, . . . , T. 
The first t is pm(T) + 2 because p-(T) + 1 observations are needed to cal- 
culate p,,(T) lagged changes in the augmented autoregression. Since only T - 
pm,(T) - 1 observations are used to estimate the autoregression (9.4.30) for j = 

1, 2, . . . , p-(T), the sample size in the objective function in (9.4.29) should be 

''I'his is Theorem 4.3 of Ng and Perron (1995). The theorem does not indicate the upper bound p-(T) ,  but 
(as pointed out by Pierre Perron in private communications with the author) Hannan and Deistler (1988, Section 
7.4 (ii)) implies that (9.4.28) can be an upper bound. 

9 ~ e c a l l  that a size distortion refers to the difference between the actual or exact size (the finite-sample prob- 
ability of rejecting a hue null) and the nominal size (the probability of rejecting a hue null when the sample size 
is infinite). 
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T - pm,(T) - 1 rather than T: 

Including the Intercept in the Regression 
As in the DF tests, we can modify the ADF tests so that they are invariant to an 
addition of a constant to the series. We allow {y,) to differ by an unspecified 
constant from the process that follows augmented autoregression without intercept 
(9.4.3). This amounts to replacing the y, in (9.4.3) by y, - a, which yields 

where a* = (1 - p)a.  As in the AR(1) model with intercept, the I(1) null is the 
joint hypothesis that p = 1 and a* = 0. Nevertheless, unit-root tests usually focus 
on the single restriction p = 1. 

It is left as an analytical exercise to prove 

Proposition 9.7 (Augmented Dickey-Fuller test of a unit root with intercept): 
Suppose that { y,) is an ARIMA(p, 1,0) process so that {Ay,] is a zero-mean 
stationary AR(p) process following (9.4.1). Consider estimating the augmented 
autoregression with intercept, (9.4.33), and let ( G ,  cC", ;I, &, . . . , tP) be the OLS 
coefficient estimates. Also let t @  be the t -value for the hypothesis that p = 1. Then 

T . (bC" - 1) 
ADF pC" statistic: .. .. A += DFp", (9.4.34) 

1 -e l  - c 2 - . . . -  d 
(P 

ADFtC" statistic: tC" + D F ~ ,  
d 

(9.4.35) 

where the random variables DF: and D F ~  are defined in (9.3.13) and (9.3.14). 

The basic idea of the proof is to use the Frisch-Waugh Theorem to write ,i3C" and 
the t-value in formulas involving the demeaned series created from {y,).  

Before turning to an example, two comments about Proposition 9.7 are in order. 

(Numerical invariance) As was true in Proposition 9.4, since the regression 
includes a constant, the test statistics are invariant to an addition of a constant to 
the series. 

(Said-Dickey extension) The Said-Dickey-Ng-Perron extension is also appli- 
cable here: if {Ay,)  is stationary and invertible ARMA(p, q) (so Ay, can be 
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written as a possibly infinite-order autoregression), then the ADF p'* and t p  

statistics have the limiting distributions indicated in Proposition 9.7, provided 
that j (the number of lagged changes to be included in the autoregression) is set 
by the sequential t rule or the AIC or BIC rules.1° 

Example 9.2 (ADF on T-bill rate): In the empirical exercise of Chapter 
2, we remarked rather casually that the nominal interest rate R, might have 
a trend for the sample period studied by Fama (1975). Here we test whether 
it has a stochastic trend (i.e., whether it is driftless I(1)). The data set we 
used in the empirical application of Chapter 2 was monthly observations on 
the U.S. one-month Treasury bill rate. We take the sample period to be from 
January 1953 to July 1971 (T = 223 observations), the sample period of 
Fama's (1975) study. The interest rate series does not exhlbit time trend. So 
we include a constant but not time in the autoregression. 

The maximum lag length p,,(T) is set equal to 14 according to the func- 
tion (9.4.31). In the process of choosing the actual lag length 6, we fix the 
sample period from t  = p-(T) + 2 = 16 (April 1954) to t = 223 (July 
1971), with a sample size of 208 (= T - p-(T) - I). The sequential r rule 
picks a b of 14. The objective function in the information-criterion-based 
rule when the sample size is fixed is (9.4.32). The AIC picks b = 14, while 
the BIC picks j? = 1. Given b = 1, we estimate the augmented autoregres- 
sion on the maximum sample period, which is t = b + 2, . . . , T (from March 
1953 to July 197 1) with 221 observations. The estimated regression is 

R~ = 0.944, sample size = 221. 

From this estimated regression, we can calculate 

0.97705 - 1 0.97705 - 1 
ADF C p  = 221 x = -4.22, t p  = = -1.42. 

1 + 0.20 0.0 162 

From Table 9.1, Panel (b), the 5 percent critical value for the ADF pp statistic 
is - 14.1. The 5 percent critical value for the ADF tp statistic is -2.86 from 
Table 9.2, Panel (b). For either statistic, the I(1) null is easily accepted. 

  ON^ and Perron (1995) proved this result about the selection of lag length only for the case without intercept. 
That it can be extended to the case with intercept and also to the case with trend was confirmed in a private 
communication with one of the authors of the paper. 
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Incorporating Time Trend 
Allowing for a linear time trend, too, can be done as in the DF tests. Replacing the 
y, in augmented autoregression (9.4.3) by y, - a - 6 . t ,  we obtain the following 
augmented autoregression with time trend: 

where 

a* = (1 - p)a + (p  - J1 - J2 - - 0 .  - Jp)8, 6* = (1 - p)6. (9.4.37) 

Since 6' = 0 when p = 1, the 1(1) null (that the process is I(1) with or without 
drift) implies that p = 1 and 8' = 0 in (9.4.36), but, as usual, we focus on the 
single restriction p = 1. 

Combining the techniques used for proving Propositions 9.5 and 9.7, it is easy 
to prove 

Proposition 9.8 (Augmented Dickey-Fuller Test of a unit root with linear time 
trend): Suppose that (y,) is the sum of  a linear time trend and an ARIMA(p, 1,O) 
process so that (Ay,) is a stationary AR(p) process whose mean may or may not 
be zero. Consider estimating the augmented autoregression with trend, (9.4.36), 
and let (&, i, br , f I  , f 2 ,  . . . , fp) be the OLS coefficient estimates. Also let t r  be 

the t - value for the hypothesis that p = 1. Then 

ADF pr statistic: T - ( B T - l )  A jDFb, ,. - (9.4.38) 
1 - J 1  - J2 - ... - JP 

ADFtr statistic: t r  + DF:, 
d 

(9.4.39) 

where the random variables DF,S and DF,! are defined in (9.3.19) and (9.3.20). 

Before turning to an example, three comments are in order. 

(Numerical invariance to trend parameters) As in Proposition 9.5, since the 
regression includes a constant and time, neither a nor 6 affects the OLS esti- 
mates of (p, J1, . . . , Jp) and their standard errors, so the finite-sample as well as 
large-sample distribution of the ADF statistics will not be affected by (a,  6). 

(Said-Dickey extension) Again, the Said-Dickey-Ng-Perron extension is 
applicable here: if {Ay,) is stationary and invertible ARMA(p, q)  with possibly 
a nonzero mean, then the ADF pr  and t r  statistics have the limiting distributions 
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indicated in Proposition 9.8, provided that 6 is set by the sequential t-rule or the 
AIC or BIC rules. 

(Should the regression include time?) The same comment we made about the 
choice between the DF tests with or without trend is applicable to the ADF tests. 
If you are confident that the null process has no trend, then the ADF pp and t p  

tests of Proposition 9.7 should be used, with the augmented autoregression not 
including time, because the finite-sample power of the ADF tests is generally 
greater without time in the augmented autoregression. On the other hand, if you 
think that the process might have a trend, then you should use the ADF pr  and 
t r  tests of Proposition 9.8 with time in the augmented autoregression. 

Example 9.3 (Does GDP have a unit root?): As was shown in Figure 9.1, 
the log of U.S. GDP clearly has a linear time trend, so we include time in 
the augmented autoregression. Using the logarithm of U.S. real GDP quar- 
terly data from 1947:Ql to 1998:Ql (205 observations), we estimate the 
augmented autoregression (9.4.36). As in Example 9.2, we set p,,(T) = 

[12 - (205/100)'/~] (which is 14). Also as in Example 9.2, the sample period 
is fixed (t = p,,(T) + 2, . . . , T) in the process of selecting the number of 
lagged changes. The sequential t picks 5 = 12, while both AIC and BIC 
pick 5 = 1. Given 6 = 1, the augmented autoregression estimated on the 
maximal sample o f t  = j + 2, . . . , T (1947:Q3 to 1998:Ql) is 

R~ = 0.999, sample size = 203. 

From this estimated regression, we can calculate 

0.9707388 - 1 
ADF pr  = 203 x = -9.11, 

1 - 0.348 

From Table 9.1, Panel (c), the 5 percent critical value for the ADF pr  statistic 
is -21.7. The 5 percent critical value for the ADF t r  statistic is -3.41 from 
Table 9.2, Panel (c). For either statistic, the I(1) null is easily accepted. 

A little over 50 years of data may not be enough to discriminate between 
the 1(1) and I(0) alternatives. (As noted by Perron (1991), among others, 
the span of the data rather than the sampling frequency, e.g., quarterly vs. 
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annual, is more important for the power of unit-root tests, because 1 - 6 is 
much smaller on quarterly data than on annual data.) We now use annual 
GDP data from 1869 to 1997 for the ADF tests." So T = 129. As before, 
we set pmOx(T) = [12 - (1291 100)'/~] (which is 12) and fix the sample period 
in the process of choosing the lag length. The sequential t picks 9 for j, 
while the value chosen by AIC and BIC is 1. When 5 = 1, the regression 
estimated on the maximum sample of t  = 6 + 2, . . . , T (from 1871 to 1997, 
127 observations) is 

R~ = 0.999, sample size = 127. 

The ADF pr and t r  statistics are -26.2 and -3.53, respectively, which are 
less (greater in absolute value) than their respective 5 percent critical values 
of -21.7 and -3.41. With the annual data covering a much longer span of 
time, we can reject the 1(1) null that GDP has a stochastic trend. 

The impression one gets from Examples 9.1-9.3 is the ease with which the 1(1) 
null is accepted, which leads to the suspicion that the DF and ADF tests may have 
low power in finite samples. The power issue will be examined in the next section. 

Summary of the DF and ADF Tests and Other Unit-Root Tests 
The various 1(1) processes we have considered in this and the previous section 
satisfy the model (a set of DGPs) 

yr = dt + zt, zt = pzt-l + u,, {u , }  -- zero-mean I(0). (9.4.40) 

The restrictions on (9.4.40), besides the restriction that p = 1, that characterize the 
1(1) null for each of the cases considered are the following. 

(1) Proposition 9.3: d, = 0, (u,) independent white noise, 

(2) Proposition 9.4: d, = a!, (u,) independent white noise, 

(3) Proposition 9.5: d, = a! + 6 . t, {u,) independent white noise, 

(4) Said-Dickey extension of Proposition 9.6: d, = 0, (u,) is zero-mean 

ARMA(p, q) ,  

"~nnual GDP data from 1929 are available from the Bureau of Economic Analysis web site. The Balke- 
Gordon GNP data (Bake and Gordon, 1989) were used to extrapolate GDP back to 1869. 
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(5) Said-Dickey extension of Proposition 9.7: d, = a, {u,) is zero-mean 

ARMA(p, 91, 

(6) Said-Dickey extension of Proposition 9.8: d, = a + 6 . t ,  {u,) is zero-mean 

ARMA(p7 9). 

Q U E S T I O N S  F O R  R E V I E W  

1. (Non-uniqueness of the decomposition between zero-mean I(0) and driftless 

I(1)) Assume p = 2 in (9.4.4). Show that the third-order autoregression can 
be written equivalently as 

How are (al ,  a;!, a3) related to &, @3)? Which regressor is zero-mean I(0) 
and which one is driftless I(l)? Verify that the OLS estimate of the y r - ~  coeffi- 
cient from this equation is numerically the same as the OLS estimate of p from 
(9.4.3) with p = 2. 

2. Let @(z) = 1 - @lz - . . . - @ p + l ~ ~ + '  be the polynomial associated with the 
AR(p + 1) process (9.4.4). Show that @(z) = 0 has a real root inside the unit 
circleifp > 1. Hint: @(I)  = 1 - (@I  + . . . + @ p + l )  = 1 - p  < O i f  p > 1. 
@(O) = 1 > 0. 

h2 3. Prove that (9.4.14) +d ~ ( 1 ) ~  + ?. Hint: The asymptotic distribution 
T * of $ z:=, A ~ , - I  y,-I is the same as that of $ z,=, Ay, y,. Also, AY, y, = 

Ay, y,-I + ( ~ y , ) ~ .  Use Proposition 9.2(b). 

4. Let {Ay,) be a zero-mean I(0) process satisfying (9.2.1)-(9.2.3). (The zero- 
mean stationary AR(p) process for {Ay,) considered in Proposition 9.6 is a 
special case of this.) 

(a) Show that { A ~ , - I  E, } is a stationary and ergodic martingale difference 
sequence. Hint: Since {E,) and {Ay,] are jointly ergodic stationary, {AytPl .  
E,) is ergodic stationary. To show that {Ay,- l~ , ]  is a martingale difference 

sequence, use the Law of Iterated Expectations. { E , _ ~ .  E , - ~ ,  . . . ) has more 

information than {AyrP2 Ayr-3 . . . ). 

2 (b) Prove (9.4.19). Hint: You need to show that E[(AY,-~ E , ) ~ ]  = yo . CJ . 
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5. Verify (9.4.24). Hint: From (9.4.20) and (9.2.4), 

Also, by (9.4.1 5) and (9.2.4), 

s - J(1. 1) element of (AT)-' -+ d l / J s .  (9.4.41) 

Since @(I)  > 0 by the stationarity condition, d m  = @(I) .  

6. (t-test on <) It is claimed in the text (right below (9.4.27)) that the usual t -  

value for each < is asymptotically standard normal. Verify this for the case of 

p = 1. Hint: (9.4.27) for p = 1 is 

You need to show that 8 times the standard error of converges in prob- 

ability to the square root of a 2 / y o .  8 times the standard error of i1 is s . 
J(2,2) element of ( ~ ~ 1 - l .  

9.5 Which Unit-Root Test to Use? 

Besides the DF and ADF tests, a number of other unit-root tests are available (see 

Maddala and Kim, 1998, Chapter 3, for a catalogue). The most prominent among 

them are the Phillips (1987) test for case (4) (mentioned at the end of the previous 
section) and the Phillips-Perron (1988) test, a generalization of the Phillips test 

to cover cases (5) and (6). (The Phillips tests are derived in Analytical Exercise 

6.) Their tests are based on the OLS estimate of the y,-1 coefficient in an AR(1) 

equation, rather than an augmented autoregression, with the long-run variance of 

{Ay,} estimated from the residuals of the AR(1) equation. We did not present 

them in the text because the finite-sample properties of the tests are rather poor 

(see below). There is a new generation of unit-root tests with reasonably low size 

distortions and good power. They include the ADF-GLS test of Elliott, Rothenberg, 

and Stock (1996) and the M-tests of Perron and Ng (1996). 
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Local-to-Unity Asymptotics 
These and most other unit-root tests are consistent against all fixed I(0) alterna- 
tives.'* Which consistent test should be chosen over the other? Recall that in 
Section 2.4 we defined the asymptotic power against a sequence of local alterna- 
tives that drift toward the null at rate 8. It turns out that in the unit-root context 
the appropriate rate is T rather than f i  (see, e.g., Stock, 1994, pp. 2772-2773). 
That is, the probability of rejecting the null of p = 1 when the true DGP is 

has a limit between 0 and 1 as T goes to infinity. This limit is the asymptotic 
power. The sequence of alternatives described by (9.5.1) is called local-to-unity 
alternatives. By definition, the asymptotic power equals the nominal size when 
c = 0. It can be shown that the DF or ADF p tests are more powerful than the 
DF or ADF t tests against local-to-unity alternatives (see Stock, 1994, pp. 2774- 
2776). That is, for any nominal size and c, the asymptotic power of the DF or ADF 
p statistic is greater than that of the DF or ADF t-statistic. On this score, we should 
prefer the p-based test to the t-based test, but the verdict gets overturned when we 
examine their finite-sample properties. 

Small-Sample Properties 

Turning to the issue of testing an 1(1) null against a fixed, rather than drifting, I(0) 
alternative, the two desirable finite-sample properties of a test are a reasonably low 
size distortion and high power against I(0) alternatives. There is a large body of 
Monte Carlo evidence on the finite-sample properties of the DF, ADF, and other 
unit-root tests (for a reference, see the papers cited on p. 2777 of Stock, 1994, and 
see Ng and Perron, 1998, for a comparison of the ADF-GLS and the M-tests). 
Major findings are the following. 

Virtually all tests suffer from size distortions, particularly when the null is in a 

sense close to being I(0). The M-test generally has the smallest size distortion, 
followed by the ADF t. The size distortion of the ADF p is much larger than 
that of the ADF t .  For example, the I(1) null considered by Schwert (1989) is 

Yt - Yz-i = Et + O E ~ - ~ ,  { E ~ }  Gaussian i.i.d. (9.5.2) 

When 0 is close to -1, this 1(1) process is very close to a white noise process, 

 hat the DF tests are consistent against general I(0) alternatives was verified in Review Question 5 to Section 
9.3. For the consistency of the ADF tests, see, e.g., Stock (1994, p. 2770). 
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because the AR root of unity nearly equals the MA root of -8. Simulations by 
Schwert (1989) show that the ADF p and Phillips-Perron Z ,  and Z,  tests (see 
Analytical Exercise 6) reject the 1(1) null far too often in finite samples when 8 

is close to -1. In particular, for the Phillips-Perron tests, the actual size when 
the nominal size is 5 percent is more than 90 percent even for sample sizes as 
large as 1,000 when 8 = -0.8. 

In the case of ADF tests, how the lag length @ is selected affects the finite- 
sample size and power. For a given rule for choosing @, the power is generally 
higher for the ADF p-test than for the ADF t-test. 

The power is generally much higher for the ADF-GLS and the M-tests than for 

the ADF t- and p-tests. 

Unlike the M-statistic, the ADF-GLS statistic can be calculated easily by standard 
regression packages. In the empirical exercise of this chapter, you will be asked to 
use the ADF-GLS to test an 1(1) null. 

9.6 Application: Purchasing Power Parity 

The theory of purchasing power parity (PPP) states that, for any two countries, 
the currency exchange rate equals the ratio of the price levels of the two countries. 
Put differently, once converted to a common currency, national price levels should 
be equal. Let P, be the price index for the United States, P;" be the price index for 
the foreign country in question (say, the United Kingdom), and St be the exchange 
rate in dollars per unit of the foreign currency. PPP states that 

or taking logs and using lower-case letters for them,13 

PPP is related to but different from the law of one price, which states that (9.6.1) 
holds for any good, with P, representing the dollar price of the good in question 

'3~quation (9.6.1) or (9.6.2) is a statement of "absolute PPP'' What is called relative PPP requires only that 
the first difference of (9.6.2) hold, that is, the rate of growth of the exchange rate should offset the differential 
between the rate of growth in home and foreign price indexes. Relative PPP should not be confused with the 
weaker version of PPP to be introduced below. 
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and P;" the foreign currency price of the good. If international price arbitrage 

works smoothly, the law of one price should hold at every date t. If the law of one 
price holds for all goods and if the basket of goods for the price index is the same 

between two countries, then PPP should hold. 
Due to a variety of factors limiting international price arbitrage, PPP does not 

hold exactly at every date t.14 A weaker version of PPP is that the deviation 
from PPP 

which is the real exchange rate, is stationary. Even if it does not enforce the law 

of one price in the short run, international arbitrage should have an effect in the 

long run. 

The Embarrassing Resiliency of the Random Walk Model? 
For many years researchers found it difficult to reject the hypothesis that real 

exchange rates follow a random walk under floating exchange regimes. As Rogoff 

(1996) notes, this was somewhat of an embarrassment because every reasonable 
theoretical model suggests the weaker version of PPP. However, studies since the 

mid 1980s looking at longer spans of data have been able to reject the random walk 

null. Recent work by Lothian and Taylor (1996) is a good example. It uses annual 

data spanning two centuries from 179 1 to 1990 for dollarlsterling and franclsterling 

real exchange rates to find that the random walk null can be rejected. In what fol- 
lows, we apply the ADF t-test to their data on the dollar/sterling (dollars per pound) 

exchange rate. 

The dollarlsterling real exchange rate, calculated as (9.6.3) and plotted in Fig- 

ure 9.4, exhibits no time trend. We therefore do not include time in the augmented 

autoregression. If we were dealing with the weak version of the law of one price, 
with P, and P: denoting the home and foreign prices of a particular good, then we 

could exclude the intercept from the augmented autoregression because a change 

in units of measuring the good does not affect z,. But P, and P;" here are price 

indexes, and a change in the base year leads to adding a constant to z,. To make 

the test invariant to such changes, a constant is included in the augmented autore- 

gression. By applying the ADF test, rather than the DF test, we can allow for serial 

correlation in the first differences of z ,  under the null, but the lag length chosen by 

BIC (with p,,,(T) = [12 . (200/100)'/4] = 14) turned out to be 0, so the ADF t- 

test reduces to the DF t-test and an augmented autoregression reduces to an AR(1) 

equation. The estimated AR(1) equation is 

14see, e.g.. Section 4 of Rogoff (1996) for a list of factors that prevent PPP from holding. 
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Figure 9.4: Dollar/Sterling Real Exchange Rate, 1791 -1 990, 191 4 Value 
Set to 0 

The DF t-statistic (tw) is -3.5 (= (0.8869 - 1)/0.0326), which is significant at 
1 percent. Thus, we can indeed reject the hypothesis that the sterling/dollar real 
exchange rate is a random walk. 

An obvious caveat to this result is that the sample period of 1791-1990 includes 
fixed and floating rate periods. It might be that international price arbitrage works 
more effectively under fixed exchange rate regimes. If so, the zt-1 coefficient 
should be closer to 0 during fixed rate periods. Lothian and Taylor (1996) report 
that if one uses a simple Chow test, one cannot reject the hypothesis that the zt-1 
coefficient is the same before and after floating began in 1973. In the empirical 
exercise of this chapter, you will be asked to verify their finding and also use the 
ADF-GLS to test the same hypothesis. 

P R O B L E M  S E T  FOR C H A P T E R  9 

A N A L Y T I C A L  E X E R C I S E S  

1. Prove Proposition 9.2(b). Hint: By the definition of Aft ,  we have f t  = f t P 1  + 
Aft.  So 
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From this, derive 

Sum this over t = 1, 2, . . . , T to obtain 

Divide both sides by T to obtain 

Apply Proposition 6.9 and the Ergodic Theorem to the terms on the right-hand 

side of (*). 

2. (Proof of Proposition 9.4) Let jP be the OLS estimate of p in the AR(1) 
equation with intercept, (9.3.1 l),  and define the demeaned series (y:-,) (t = 

l , 2 ,  . . . ,  T) by 

w - - Y O + Y ~ + . . - + Y T - I  YtP l  = Yt-1 - Y ,  Y = T 
(t = 1 2 . .  , T). (1) 

This y:-, equals the OLS residual from the regression of y,-, on a constant for 
t = 1 , 2  , . . . ,  T. 

(a) Derive 

Hint: By the Frisch-Waugh Theorem, jW is numerically equal to the OLS 

coefficient estimate in the regression of yt on y:-, (without intercept). Thus, 

11 11 Use the fact that cT=~ yrPI = 0 to show that EL, (yt - yt-,) . y,-, = 
11 ~ T = l ( v t  - yt-1) . Y , - , .  
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(b) (Easy) Show that, under the null hypothesis that {y,} is driftless 1(1) (not 
necessarily driftless random walk), 

where yo is the variance of Ay,, h2 is the long-run variance of Ay,, and 
WY(-) is a demeaned standard Brownian motion introduced in Section 9.2. 
Hint: Use Proposition 9.2(c) and (d) with {, = y,. 

(c) (Trivial) Verify that T - (BY - 1) converges to DF; (defined in (9.3.13)) if 
{y,} is a driftless random walk. Hint: If y, is a random walk, then h2 = yo. 

(d) (Optional) Lets be the standard error of regression for the AR(1) equation 
with intercept, (9.3.11). Show that s2  is consistent for yo (= Var(Ay,)) 
under the null that {y,} is driftless 1(1) (so Ay, is zero-mean I(0) satisfying 
(9.2.1)-(9.2.3)). Hint: Let (&*, BY) be the OLS estimates of (a*, p). Show 

that &* converges to zero in probability. Write s2 as 

Since plim&* = 0, it should be easy to show that the first term on the right- 

hand side of (5) converges in probability to yo = E [ ( A ~ , ) ~ ] .  To prove that 

the second term converges to zero in probability, take for granted that 

(e) Show that tY +d DC if {y,} is a driftless random walk. Hint: Since 

{y,} is a driftless random walk, h2 = yo = a2 (= variance of E , ) .  So s is 
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consistent for [T . 

j p  - 1 
tp = 

s x J(2.2) element of (X'X)-' 

Show that the square root of the (2.2) element of (c:=, x,x;)-' is 

where x, - [ l ,  ~ ~ - 1 1 '  

3. (Proof of Proposition 9.5) Let fir be the OLS estimate of p in the AR(1) 
equation with time trend, (9.3.17), and define the detrended series (y:-,) (t = 
1 , 2 , .  . . , T) by 

where (2, $) are the OLS coefficient estimates for the regression of ytPl on 
( l , t ) f o r t =  l , 2  , . . . ,  T. 

(a) Derive 

Hint: By the Frisch-Waugh Theorem, fir is numerically equal to the OLS 

estimate of the y:-, coefficient in the regression of y, on y:-, (without inter- 

cept or time). Thus, 

Show that ~ f = ,  (Y, -yL1) .Y:-, = CTXl (yt -Yt-l) .).':I. (BY construction, 
T cT=~ y;-, = 0 and C , = ,  t - y:-, = 0 (these are the normal equations).) 

(b) (Easy) Show that, under the assumption that y, = ar + S . t + 6, where (6,) 
is driftless I(1), 
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where yo is the variance of Ay,, h2 is the long-run variance of Ay,, and 
Wr (.) is a detrended standard Brownian motion introduced in Section 9.2. 
Hint: Let t:-, be the residual from the hypothetical regression of tt_, on 

(1, t) for t = 1, 2, . . . , T where tt = yt - cr - 6 . t (this regression is 

hypothetical because we do not observe (6,)). Then t:-, = y:-, for t = 1, 
2, . . . . T, because <, differs from yt only by a linear trend cr + 6 . t. Use 

Proposition 9.2(e) and (f). Since Ay, = 6 + At, under the null, the variance 

of At, equals that of Ayt and the long-run variance of At,  equals that of 

AY,. 

(c) (Trivial) Verify that T . (b r  - 1) converges to DF,S (defined in (9.3.19)) 
if {y,} is a random walk with or without drift. 

4. (Proof of (9.4.16)) In the text, 

was left unproved. Prove this under the condition that {y,} is driftless 1(1) 
so that {Ay,} is zero-mean I(0) satisfying (9.2.1)-(9.2.3). Hint: The F, in 

(9.4.16) is the innovation process in the MA representation of {Ay,].  Using 

the Beveridge-Nelson decomposition, we have 

rlt- 

Show that the second and the third term on the right-hand side of this equa- 

tion converge in probability to zero. Once you have done Analytical Exercise 1 

above, it should be easy to show that 
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5. (Optional, proof of Proposition 9.7) To simplify the calculation, set p = 1, so 
the augmented autoregression is 

Let (&*, jw, i l )  be the OLS coefficient estimates. Show that 

Hint: By the Frisch-Waugh Theorem, ( j p ,  tl) are numerically the same as the 

OLS coefficient estimates from the regression of yt on (yr-, , ( A ~ ~ - ~ ) ( ~ ) ) ,  where 

yr-, is the residual from the regression of y,-I on a constant and ( A ~ , - ~ ) ( ~ )  is 

the residual from the regression of AytPl on a constant for t = 1.2.  . . , T. 
Therefore, if b = ( j w ,  il)', jl = (p, <I)', and x, = (yr-I , ( ~ y , - ~ ) ( ~ ) ) ' ,  then 

they satisfy (9.4.8). So 

I 
(1, 1) element of AT = - ~ ( y ~ - l ) 2 ,  

T2 t=l 

1 T 

1 st element of eT = - yr-l . E, . T t=l 

Apply Proposition 9.2(c) and (d) with 6, = yt to these expressions. 

6. (Phillips tests) Suppose that (y,} is driftless 1(1), so Ay, can be serially corre- 
lated. Nevertheless, estimate the AR(1) equation without intercept, rather than 
the augmented autoregression without intercept, on {y,}. Let p̂  be the OLS 
estimate of the y,-, coefficient. Define 

where 3; is the standard error of j ,  s is the OLS standard error of regression, 
i2 is a consistent estimate of ;12, Po is a consistent estimate of yo, and t is the 
t-value for the hypothesis that p = 1. 
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(a) Show that Z ,  and Z ,  can be written as 

Hint: By the algebra of least squares, 

(b) Show that 

Z ,  + DF, and Zt  + DF,. 
d d 

Hint: Use Proposition 9.2(a) and (b) with 6, = y,. 

7. (Optional) Show that a (L)  in (9.2.5) is absolutely summable. Hint: A one-line 
proof is 

Justify each of the equalities and inequalities. 

M O N T E  C A R L 0  E X E R C I S E S  

1. (You have less power with time) In this simulation, we wish to verify that the 
finite-sample power against stationary alternatives is greater with the DF tfi-test 
than with the DF tr-test, that is, inclusion of time in the AR(1) equation reduces 
power. The DGP we examine as the stationary alternative is a stationary AR(1) 
process: 

Choose the sample size T to be 100 and the nominal size to be 5 percent. 
Your computer program for calculating the finite-sample power should have 

the following steps. 
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(1) Set counters to zero. There should be two counters, one for the DF t p  and 
the other for t r .  They will record the number of times the (false) null gets 
rejected. 

(2) Start a do loop of a large number of replications (1 million, say). In each 
replication, do the following. 

(i) Generate the data vector (yo, y1, . . . , yT). 

Gauss Tip: As was mentioned in the Monte Carlo exercise for Chapter 
1, to generate (yl , y2, . . . , yT), avoid creating a do loop within the 
current do loop; use the matrix operators. The matrix formula is 

Y = r .Yo+ A E 
( T x l )  ( T x ~ )  ( T x T ) ( T x l )  

where 

To define r, use the Gauss command s e w .  To define A, use 
t oep l  i t z and l o w m a t .  r and A should be defined in step (I), 
outside the current do loop. 

(ii) Calculate t p  and t r  from (yo, y l ,  . . . , yT). (So the sample size is actu- 
ally T + 1.) 

(iii) Increase the counter for t p  by 1 if t p  < -2.86 (the 5 percent critical 
value for D F ~ ) .  Increase the counter for t r  by 1 if t r  < -3.41 (the 5 
percent critical value for DF:). 

(3) After the do loop, for each statistic, divide the counter by the number of 
replications to calculate the frequency of rejecting the null. This frequency 
converges to the finite-sample power as the number of Monte Carlo repli- 
cations goes to infinity. 
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Power should be about 0.124 for the DF tp-test (so only about 12 percent of 
the time can we reject the false null!) and 0.092 for the DF t'-test. So indeed, 
power is less when time is included in the regression, at least against this par- 
ticular DGP. 

2. (Size distortions) In this Monte Carlo simulation, we calculate the size dis- 
tortions for the ADF pp- and tp-tests. Our null DGP is the one examined by 
Schwert (1989): 

For T = 100 and the nominal size of 5 percent, calculate the finite-sample or 
exact size for bp and tp. It would be useful to select the number of lagged 
changes in the augmented autoregression by one of the data-dependent meth- 
ods (the sequential t ,  the AIC, or the BIC), but to keep the computer program 
simple and also to save CPU time, set it equal to 4. Thus, the regression equa- 
tion, as opposed to the DGP, is 

Since the sample includes yo, the sample period that can accommodate four 
lagged changes is from t = 5 (not p + 2 = 6) to t = T and the actual sample 
size is T - 4. Verify that the size distortion is less for the ADF tp- than for the 
ADF pp-test. (The size should be about 0.496 for the ADF pp and 0.290 for 
the ADF tp.) 

E M P I R I C A L  E X E R C I S E S  

Read Lothian and Taylor (1996, pp. 488-509) (but skip over their discussion of the 
Phillips-Perron tests) before answering. The file LT.ASC has annual data on the 
following: 

Column 1: year 
Column 2: dollarlsterling exchange rate (call it St) 
Column 3: U.S. WPI (wholesale price index), normalized to 100 for 1914 (P,) 
Column 4: U.K. WPI, normalized to 100 for 1914 (P;"). 

The sample period is 1791 to 1990 (200 observations). These are the same data 
used by Lothian and Taylor (1996) and were made available to us. For data sources 

Keen
Rectangle



614 Chapter 9 

and how the authors combined them to construct consistent time series, see the 
Appendix of Lothian and Taylor (1 996). (According to the Appendix, the exchange 
rate (and probably WPIs) are annual averages. This is rather unfortunate and point- 
in-time data should have been used, because of the time aggregation problem: if a 
variable follows a random walk on a daily basis, the annual averages of the variable 
do not follow a random walk. See part (f ) below for more on this.) 

Calculate the dollar/sterling real exchange rate as 

Since St is in dollars per pound, an increase means sterling appreciation. The plot 
of the real exchange rate in Figure 9.4 shows no clear time trend, so we apply the 
ADF tp-test. Therefore, the augmented autoregression to be estimated is 

where p is the number of lagged changes included in the augmented autoregression 
(which was denoted in the text). 

(a) (ADF with automatic lag selection) For the entire sample period of 1791- 
1990, apply the sequential t-rule, the AIC, and the BIC to select p (the num- 
ber of lagged changes to be included). Set p- (the maximum number of 
lagged changes in the augmented autoregression, denoted p-(T) in the text) 
by (9.4.3 1) (so p,,, = 14). For the sequential t test, use the significance level 
of 10 percent. (You should find p = 14 by the sequential t ,  14 by AIC, and 0 
by BIC.) Verify that the value of the tp-statistic for p = 0 (if estimated on the 
maximum sample) matches the value reported in Table 1 of Lothian and Taylor 
(1 996) as t,. 

RATS Tip: RATS allows you to change the number of regressors in a do loop. 
Since the RATS OLS procedure LINREG does not allow the standard errors 
to be retrieved, the DF tp cannot be calculated in the program. So calculate 
the DF tp-statistic as the t-value on the z t - I  coefficient in the regression of 
zt - z tP1 .  Also, neither the AIC nor the BIC is calculated by LINREG. So use 
COMPUTE. In the RATS codes below, z is the log real exchange rate and dz 
is its first difference. In applying the sequential t, AIC, and BIC rules, fix the 
sample period to be 1806 to 1990 (which corresponds to p,, + 2, . . . , T). 
The RATS codes for AIC and BIC are 

linreg dz 1806:l 1990:1;# constant z{l) 
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compute ssrr=%rss 

compute akaike = log(%rss/%nobs)+%nreg*2.0/%nobs 

compute schwarz = log(%rss/%nobs)+%nreg*10g(%nobs) 

/ %nobs 
display akaike schwarz 
* run ADF with 1 through 14 lagged changes 
do p=1,14 

linreg dz 1806:l 1990:1;# constant z{l} dz{l to p} 

compute akaike = log(%rss/%nobs)+%nreg*2.0/%nobs 

compute schwarz = log(%rss/%nobs)+%nreg 

*log (%nabs) /%nobs 

display akaike schwarz 

end do 

TSP Tip: Unlike RATS, it appears that TSP does not allow you to change the 
sample period and the number of regressors in a do loop. The OLSQ pro- 
cedure prints out the BIC, but not the AIC, so the AIC must be calculated 
using the SET command. 

(b) (DF test on the floating period) Apply the DF tw-test to the floating exchange 
rate period of 1974-1 990. Because of the lagged dependent variable z,-1, the 
first equation is for t = 1975: 

21975 = const. + PZ1974 + error. 

So the sample size is 16. Can you reject the random walk null at 5 percent? 

(c) (DF test on the gold standard period) Apply the DF tw-test to the gold standard 
period of 1870-1913. Take t = 1 for 187 1, so the sample size is 43. Can you 
reject the random walk null at 5 percent? Is the estimate of p (the z,-I coeffi- 
cient in the regression of z, on a constant and zr-,) closer to zero than in (b)? 

(d) (Chow test) Having rejected the I(1) null, we proceed under the maintained 
assumption that the log real exchange rate z, follows a stationary AR(1) pro- 
cess. To test the null hypothesis that there is no structural change in the AR(1) 
equation, split the sample into two subsamples, 179 1-1973 and 1974-1990, 
and apply the Chow test. You may recall that the Chow test was originally 
developed for models with strictly exogenous regressors. If K is the number 
of regressors including a constant (2 in the present case), it is an F-test with 
(K, T - 2K) degrees of freedom. This result is not directly applicable here, 
because in the AR(1) equation the regressor is the lagged dependent variable 
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which is not strictly exogenous. However, as you verified in Analytical Exer- 

cise 12 of Chapter 2, if the variables (the regressors and the dependent variable) 
are ergodic stationary (which is the case here because (z , }  is ergodic station- 
ary when lpl < 11, then in large samples, with the sizes of both subsamples 
increasing, K . F is asymptotically X 2 ( ~ ) .  This result does not require the 
regressors to be strictly exogenous. Calculate K . F and verify the claim (see 
pp. 498-502 of Lothian and Taylor, 1996) that "there is no sign of a structural 
shift in the parameters during the floating period." In the present case of a 

lagged dependent variable, there is an issue of whether the equation for 1974, 

21974 = const. + ~ ~ 1 9 7 3  + error, 

should be included in the first subsample or in the second. It does not matter in 

large samples; include the equation in the first subsample (so the sample size 
of the first subsample is 183). (Note: K . F should be about 1.26.) 

(e) (The ADF-GLS) As was mentioned in Section 9.5, the ADF-GLS test achieves 
substantially higher power at a cost of only slightly higher size distortions. The 
ADF-GLS ti" and tr-statistics are calculated as follows. As in the ADF tb- and 

tr-tests, the null process is 

yt = dt + 21. zt = pzt - ]  + u t ,  p = 1, (u , }  zero-mean I(0) process. (3) 

Write dt = xi/?. For the case where dl is a constant. x, = 1 and /? = a ,  while 

for the case where d, is a linear time trend, x, = (1, t)' and B = (a, 6)'. We 
assume the sample is of size T with ( y l ,  y2, . . . , yT). 

(i) (GLS estimation of B )  In estimating the regression equation 

yt = x:B +error, (t = 1:  2 , .  . .  , T),  (4) 

do GLS assuming that the error process is AR(1) with the autoregressive 
coefficient of = 1 + t/ T. (The value of c will be specified in a moment.) 
That is, estimate /? by OLS by regressing 

(Unlike in the genuine GLS, the first observations, yl and XI, are not 
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weighted by d m ,  but this should not matter in large samples.) Set 

F according to 
2 = -7 

in the demeaned case (with x, = l),  

in the detrended case. (Roughly spealung, this choice of F ensures that the 
asymptotic power at c = F where p = 1 + c / T  is nearly 50 percent which 
is the asymptotic power achieved by an ideal test specifically tailored to 

A 

this alternative of c = I?.) Call the resulting estimator BGLS and define 
A 

jt -- yt - x;BGLs. (This should not be confused with the GLS residual, 
A 

which is (yt - fiyt-1) - (xt - Fxt-l)'BGLs.) 

(ii) (ADF without intercept on the residuals) Estimate the augmented autore- 
gression without intercept using jt instead of y,: 

j t  = ~ j t - I  + ti . (jt-I - jr-2) + .  . . + tl, . ( j tPp  - jt-p-l) + error 

The t-value for p = 1 is the ADF-GLS t-statistic; call it the ADF-GLS r w  
if x, = 1 and the ADF-GLS t' if x, = (1, t)'. The limiting distribution 
of the ADF-GLS tp is that of DF, (which is tabulated in Table 9.2, Panel 
(a)), while that of the ADF-GLS t' is tabulated in Table I.C. of Elliott et al. 
(1996). Reproducing their lower tail critical values 

-3.48 for 1%, -3.15 for 2.5%. -2.89 for 5%, and -2.57 for 10%. 

Elliott et al. (1996) show for the ADF-GLS test that the asymptotic power 
is higher than those of the ADF p- and t-tests, and that compared with 
the ADF tests, the finite-sample power is substantially higher with only a 
minor deterioration in size distortions. 

Apply the ADF-GLS tw-test to the gold standard subsample 187G1913. 
Choose the lag length by BIC with p,,,, (the maximum number of lagged 
changes in the augmented autoregression, denoted p,,,,(T) in the text) by 
(9.4.31) (so p,, = 9). Can you reject the null that the real exchange rate 
is driftless I(1)? (Note: The BIC will pick 0 for p. The statistic should be 
-2.24. You should be able to reject the 1(1) null at 5 percent.) 

TSP Tip: An example of TSP codes assuming p = 0 for this part is the 

following. 
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? 

? (e) ADF-GLS 
? 

? Step 1: GLS demeaning 
? 

set rhobar=l-7/(1913-1870+1); 
smpl 1870 1913; 
const=l; 

ct=l; 
zt=z; ? z is the log real exchange rate 

smpl 1871 1913; 

zt=z-rho bar*^ (-1) ; 

ct=const-rhobar*const(-1); 
smpl 1870 1913; 

olsq zt ct; 
z=z-@coef (1) ; 

? @coef(l) is the GLS estimate of the mean 
? 

? Step 2: DF with demeaned variable 

? 

smpl 1871 1913; 
olsq z z(-1) ; 
set t=(@coef (1)-l)/@ses(l);print t; 

(f) (Optional analytical exercise on time aggregation) Suppose y, is a random 
walk without drift. Create from this time-averaged series by the formula 

(Think of y, as the exchange rate on day t and jj as an annual average of daily 
exchange rates for year j.) Show that { j j }  is not a random walk. More specif- 
ically, show that 
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A N S W E R S  T O  S E L E C T E D  Q U E S T I O N S  

A N A L Y T I C A L  E X E R C I S E S  

1. Since ~(6:) < a, t0/n converges in mean square (and hence in probability) 
to 0 as T + a. Thus, the second term on the right-hand side of (*) in the hint 
can be ignored. Regarding the first term, we have 

The first term on the right-hand side of this equation can be ignored. By 
Proposition 6.9, the second term converges to N(0, k2) because At, is a linear 

process with absolutely summable MA coefficients. So the first term on the 
right-hand side of (*) converges in distribution to (k2/2)x where X - X2(1). 

Since {At,} is ergodic stationary, the last term on the right-hand side of (*) 
converges in probability to 4 E [ ( A ~ , ) ~ ]  by the Ergodic Theorem. 

5. The (1, 1) element of AT converges to the random variable indicated in Propo- 

sition 9.2(c). Regarding the first element of CT, by Beveridge-Nelson, 

Therefore, 
w fi 

Yt-, = +(l)w;-l + 17,-,, 

where 
W - - X o + " ' + x ~ - l  xtPl = xtPl - X ,  x = forx = w , ~ ,  

T 

and 

The second term on the right-hand side of this equation can be ignored asymp- 
totically. By Proposition 9.2(d) for 6, = w, (a driftless random walk), the first 

term on the right-hand side converges to 
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From this. we have 

The AT matrix is asymptotically diagonal for the demeaned case too. The off- 
diagonal elements of AT are equal to 1 / f i  times 

Since cT=~ yr-, = 0, this equals 

It is easy to show, by a little bit of algebra analogous to that in Review Question 
3 of Section 9.4 and Proposition 9.2(d), that (6) has a limiting distribution. So 
1 1 8  times (6), which is the off-diagonal elements of AT,  converges to zero 
in probability. Then, using the same argument we used in the text for the case 
without intercept, it is easy to show that 51 is consistent for (1. So @ ( l )  is 
consistently estimated by 1/(1 - i t ) .  Taken together, 

E M P I R I C A L  E X E R C I S E S  

(a) With p = 0, the estimated AR(1) equation is 

The value of t f i  is -3.47, which matches the value in Table 1 of Lothian and 
Taylor (1996). The 5 percent critical value is -2.86 from Table 9.2, Panel (b). 

(b) The estimated AR(1) equation for 1974-1990 is 

zr = const. + 0 . 7 7 0 4 ~ , - ~ ,  SSR = 0.150964, R2 = 0.539, T = 16. 
(0.1 904) 

tfi = - 1.21 > -2.86. We fail to reject the null at 5 percent. 
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(c) The estimated AR(1) equation for 1870-1913 is 

zt = const. + 0.7222 zrP1,  SSR = 0.069429, R~ = 0.538, T = 43. 
(0.1045) 

t p  = -2.66 > -2.86. We fail to reject the null at 5 percent. 

(d) The estimated AR(1) equation for 1791-1974 is 

zt  = const. + 0.8993 z , - ~ ,  SSR = 0.837772, R~ = 0.805, T = 183. 
(0.0329) 

From this and the results in (a) and (b), 

The 5 percent critical value for x2(2) is 5.99. So we accept the null hypothesis 
of parameter stability. 

(e) The ADF-GLS tfi = -2.24. The 5 percent critical value is -1.95 from Table 
9.2, Panel (a). So we can reject the 1(1) null. 
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Cointegration 

A B S T R A C T  

As the examples of the previous section amply illustrate, many economic time series 
can be characterized as being I(1). But very often their linear combinations appear to 
be stationary. Those variables are said to be cointegrated and the weights in the lin- 
ear combination are called a cointegrating vector. This chapter studies cointegrated 
systems, namely, vector I(1) processes whose elements are cointegrated. 

In the previous chapter, we have defined univariate I(0) and I(1) processes. 
The first section of this chapter presents their generalization to vector processes and 
defines cointegration for vector I(1) processes. Section 10.2 presents alternative rep- 
resentations of a cointegrated system. Section 10.3 examines in some detail a test of 
whether a vector I(1) process is cointegrated. Techniques for estimating cointegrat- 
ing vectors and making inferences about them are developed in Section 10.4. 

As an application, Section 10.5 takes up the money demand function. The log 
real money supply, the nominal interest rate, and the log real income appear to be 
I(l), but the existence of a stable money demand function implies that those vari- 
ables are cointegrated, with the coefficients in the money demand function forming 
a cointegrating vector. The techniques of Section 10.4 are utilized to estimate the 
cointegrating vector. 

Unlike in other chapters, we will not present results in a series of propositions, 
because the level of the subject matter is such that it is difficult to state assumptions 
without introducing further technical concepts. However, for technically oriented 
readers, we indicate in the text references where the assumptions are formally stated. 

A Note on Notation: Unlike in other chapters, the symbol "n" is used for the 
dimension of the vector processes, and as in the previous chapter, the symbol "T" 
is used for the sample size and "r" is the observation index. Also, if yt is the t-th 
observation of an n-dimensional vector process, its j-th element will be denoted yj ,  

instead of ytj . We make these changes to be consistent with the notation used in the 
majority of original papers on cointegration. 
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10.1 Cointegrated Systems 

Figure lO.l(a) plots the logs of quarterly real per capita aggregate personal dis- 
posable income and personal consumption expenditure for the United States from 
1947:Ql to 1998:Ql. Both series have linear trends and-as will be verified in an 

example below - stochastic trends. However, these two 1(1) series tend to move 
together, suggesting that the difference is stationary. This is an example of coin- 
tegration. Cointegration relations abound in economics. In fact, many of the 
variables we have examined in the book are cointegrated: prices of the same com- 
modity in two different countries (the difference should be stationary under the 

weaker version of Purchasing Power Parity), long- and short-term interest rates 

(even though they have trends, yield differential may be stationary), forward and 

spot exchange rates, and so forth. Cointegration may characterize more than two 
variables. For example, the existence of a stable money demand function implies 
that a linear combination of the log of real money stock, the nominal interest rate, 

and log aggregate income may be stationary even though each of the three variables 

is I(1). 

We start out this section by extending the definitions of univariate I(0) and 1(1) 
processes of the previous chapter to vector processes. The concept of cointegration 
for multivariate 1(1) processes will then be introduced formally. 

year 
- log per capita income - - - - - log per capita consumption 

Figure 10.1 (a): Log Income and Consumption 

Linear Vector I(0) and 1(1) Processes 

Our definition of vector I(0) and 1(1) processes follows Hamilton (1994) and 

Johansen (1995). To introduce the multivariate extension of a zero-mean linear 
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univariate I(0) process, consider a zero-mean n-dimensional VMA (vector moving 
average) process: 

U, = ~ ( L ) E , , ~ ( L ) E I , + ~ ~ L + ~ ~ L ~ + . . . ,  (10.1.1) 
( n x l )  (nxn)  ( n x l )  

where E, is i.i.d. with 

E ( E ~ )  = 0, E(E,E;) = 8 , 8 positive definite. (1 0.1.2) 
(n xn) 

(The error process E, could be a vector Martingale Difference Sequence satisfying 
certain properties, but we will not allow for this degree of generality.) As in the 
univariate case, we impose two restrictions. The first is one-summability:' 

{ q j  } is one-summable. (10.1.3) 

Since { q j }  is absolutely summable when one-summability holds, the multivariate 
version of Proposition 6.l(d) means that u, is (strictly) stationary and ergodic. The 
second restriction on the zero-mean VMA process is 

3 (1) f 0 (n x n matrix of zeros). (10.1.4) 
(nxn)  

That is, at least one element of the n x n matrix q ( 1 )  is not zero. This is a natu- 
ral multivariate extension of condition (9.2.3b) in the definition of univariate I(0) 
processes on page 564. 

A (linear) zero-mean n-dimensional vector I(0) process or a (linear) zero- 
mean I(0) system is a VMA process satisfying (10.1.1)-(10.1.4). Given a zero- 
mean I(0) system u,, a (linear) vector I(0) process or a (linear) I(0) system can 
be written as 

where 6 is an n-dimensional vector representing the mean of the stationary process. 
Using the formula (6.5.6) with (6.3.15), the long-run covariance matrix of the I(0) 
system is 

Since 8 is positive definite and q ( 1 )  satisfies (10.1.4), at least one of the diagonal 

'A sequence of matrices {Q j  J is said to be one-summable if {qj,ke] is one-summable (i.e., jIqj,ke I < 
CO) for all k ,  e = 1,2 ,  . . . . n ,  where qj,ke is the (k, t) element of the n x n matrix Q,. 
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elements of this long-run variance matrix is positive, implying that at least one of 
the elements of an I(0) system is individually I(0) (i.e., I(0) as a univariate process). 
We do not necessarily require *(l) to be nonsingular. In fact, accommodating its 
singularity is the whole point of the theory of cointegration. Consequently, the 
long-run variance matrix, too, can be singular. 

Example 10.1 (A bivariate I(0) system): Consider the following bivariate 
first-order VMA process: 

I where 

Since this is a finite-order VMA, the one-summability condition is trivially 
satisfied. Requirement (10.1.4) is satisfied because 

I So this example fits our definition of I(0) systems. If y = 0, then the first 
1 element, u I,, is actually I(- 1)  as a univariate process. 

The n-dimensional 1(1) system y, associated with a zero-mean I(0) system u, 
can be defined by the relation 

So the mean of Ay, is 6. Since not every element of the associated zero-mean 
I(0) process u, is required to be individually I(O), some of the elements of the I(1) 
system y, may not be individually 1(1).~ Substituting (10.1.1) into this, we obtain 

This is called the vector moving average (VMA) representation of an 1(1) 

2 ~ n  many textbooks and also in Engle and Granger (1987), all elements of an I(1) system are assumed to be 
individually I( l) ,  but that assumption is not needed for the development of cointegration theory. This point is 
emphasized in, e.g., Liitkepohl (1993, pp. 352-353) and Johansen (1995, Chapter 3). 



Cointegration 

system. In levels, y, can be written as 

Y, = y o + s . t + u l + U 2 + . . . + U  ,, (10.1.11) 

or, written out in full, 

Regarding the initial value yo, we assume either that it is a vector of fixed constants 
or that it is random but independent of E, for all t. 

Example 10.2 (A bivariate 1(1) system): An 1(1) system whose associated 
zero-mean I(0) process is the bivariate process in Example 10.1 is 

( where 'Pl is given in (10.1.7). In levels, 

The second element of y, is 1(1) as a univariate process. If y = 0, then 
the first element yl, is trend stationary because the deviation from the trend 
function (y l ,o -~ l ,o )  +a1 . t  is stationary (actually i.i.d.). Otherwise ylr  is I(1). 

The Beveridge-Nelson Decomposition 
For an 1(1) system whose associated zero-mean I(0) process is u, satisfying 
(1 0.1.1)-(10.1.4), it is easy to obtain the Beveridge-Nelson (BN) decomposition. 
Recall from Section 9.2 that the univariate BN decomposition is based on the 
rewriting of the MA filter as (9.2.5) on page 564. The obvious multivariate version 
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00 

*(L) = *(I) + (1 - L)a(L), a ( L )  = CU~LJ,  
( n x n )  ( n x n )  ( n  x n )  j =o 

So the multivariate analogue of (9.2.6) on page 565 is 

Since Y(L) is one-summable, a (L)  is absolutely summable and q, is a well- 
defined covariance-stationary process. Substituting this into (10.1.1 l) ,  we obtain 
the multivariate version of the BN decomposition: 

As in the univariate case, the 1(1) system y, is decomposed into a linear trend 6 . t ,  
a stochastic trend Y(l ) (e l  + e2 + . . . + e,), a stationary component q,, and the 
initial condition yo - q o  By construction, qo is a random variable. So unless yo is 
perfectly correlated with qo, the initial condition is random. 

Example 10.2 (continued): For the bivariate 1(1) system in Example 10.2, 
the matrix version of a (L)  equals -Y so that the stationary component q, 
in the BN decomposition is 

(It should be easy for you to verify this from the matrix version of (9.2.5).) 
The two-dimensional stochastic trend is written as 

Thus, the two-dimensional stochastic trend is driven by one common stochas- 
tic trend, C:=, ~2~ This is an example of the "common trend representation 
of Stock and Watson (1993) (see Review Question 2 below). 
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Cointegration Defined 
The 1(1) system y, is not stationary because it contains a stochastic trend \Ir(l) . 
(el + . . . + e,), and, if S # 0, a deterministic trend S - t. The deterministic and 
stochastic trends, however, may disappear if we take a suitable linear combina- 
tion of the elements of y,. To pursue this idea,3 premultiply both sides of the BN 
decomposition (10.1.16) by some conformable vector a to obtain 

a'y, = a '&.  t + a'\Ir(l)(e, + e2 + . . . + e,) + afqt + al(yo - qo). (10.1.19) 

If a satisfies 

then the stochastic trend is eliminated and a'y, becomes 

a'y, = afS . t  +alq,  +af(yo - qo). 

Strictly speaking, this process is not trend stationary because the initial condition 
a' (yo - yo) can be correlated with the subsequent values of afqt (see Review Ques- 
tion 3 below for an illustration). The process would be trend stationary if, for 

example, the initial value yo were such that al(yo - yo) = 0. 
We are now ready to define ~ o i n t e ~ r a t i o n . ~  

Definition 10.1 (Cointegration): Let y, be an n-dimensional I(1) system whose 
associated zero-mean I(0) system u, satisfies (10.1.1)-(10.1.4). We say that y, is 

cointegrated with an n-dimensional cointegrating vector a if a # 0 and a'y, can 
be made trend stationary by a suitable choice of its initial value yo. 

Defining cointegration in this way, although dictated by logical consistency, does 

not necessarily mean that the theory of cointegration requires that the initial con- 
dition yo be chosen as indicated in the definition. The process in (10.1.21) is not 
stationary because q, and qo are correlated. However, since q, = ~ ( L ) E ,  and a (L)  

is absolutely summable, q, and 7, will become asymptotically independent as t 
increases. In this sense, the process in (10.1.21) is "asymptotically stationary," 
and asymptotic stationarity is all that is needed for estimation and inference for 

cointegrated I(1)  system^.^ 

3 ~ h e  idea was originally suggested by Granger (1981). See also Aoki (1968) and Box and Tiao (1977). 
4 0 u r  definition is the same as Definition 3.4 in Johansen (1995). 
 he distinction between stationarity and asymptotic stationarity is discussed in Liitkepohl (1993, pp. 348- 

349). 
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With cointegration thus defined, we can define the following related concepts. 

(Cointegration rank) The cointegrating rank is the number of linearly 
independent cointegrating vectors, and the cointegrating space is the space 
spanned by the cointegrating vectors. As the preceding discussion shows, an 
n-dimensional vector a is a cointegrating vector if and only if (lo. 1.20) holds. 
Since there are h linearly independent such vectors if the cointegration rank is 
h.  it follows that 

Put differently, the cointegration rank h equals n - rank[@ (l)]. 

(Cointegration among subsets of y,) At least one of the elements of a coin- 
tegrating vector is not zero. Suppose, without loss of generality, that the first 
element of the cointegrating vector is not zero. Then we say that yl, (the first 
element of y,) is cointegrated with y2, (the remaining n - 1 elements of y,) or 
that yl, is part of a cointegrating relationship. We can also define cointegra- 
tion for a subset of y,. For example, the n - 1 variables in y2, are not cointegrated 
if there does not exist an (n - 1)-dimensional vector b # 0 such that (10.1.20) 
holds with a' = (0, b'). Therefore, y2, is not cointegrated if and only if the last 
n - 1 rows of @ (1) are linearly independent. 

(Stochastic cointegration) Note that the deterministic trend a'6 . t is not elimi- 
nated from a'y, unless the cointegrating vector also satisfies 

In most applications, a cointegrating vector eliminates both the stochastic and 
deterministic trends in (10.1.19). That is, a vector a that satisfies (10.1.20) nec- 
essarily satisfies (10.1.23), so that a'y,, which can now be written as 

is stationary (not just trend stationary) for a suitable choice of yo. This implies 
that 6 is a linear combination of the columns of @(l) ,  so 

rank ly(l)] = n - h. 

Unless otherwise noted, we will assume that (10.1.25) as well as (10.1.22) are 
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satisfied when the cointegration rank is h. If we wish to describe the case where 
a cointegrating vector eliminates the stochastic trend but not necessarily the de- 
terministic trend, we will use the term stochastic cointegration. Of course, if y, 
does not contain a deterministic trend (i.e., if 6 = 0), then there is no difference 
between cointegration and stochastic cointegration. 

Example 10.2 (continued): In the bivariate 1(1) system (10.1.12) in Exam- 
ple 10.2, the matrix 8 ( l )  is given in (10.1.8), so 

The rank of 8 ( 1 )  is 1, so the cointegration rank is 1 (= 2 - 1). All cointe- 
grating vectors can be written as (c, -cy)', c # 0. The assumption that the 
cointegration vector also eliminates the deterministic trend can be written as 
cdl - ~ ~ 8 2  = 0 or 81 = ~ 8 2 ,  which implies that the rank of [6 i 8 ( l ) ]  shown 
above is one. 

Quite a few implications for 1(1) systems follow from the definition of cointe- 
gration. For example, 

(h < n) For an n-dimensional 1(1) system, the cointegration rank cannot be 
as large as n. If it were n, then rank[8(1)] = 0 and 8 ( l )  would have to be a 
matrix of zeros, which is ruled out by requirement (10.1.4). 

(Implications of the positive definiteness of the long-run variance of Ay,) The 
long-run variance matrix of Ay, is given by 8 ( l ) P 8 ( 1 ) '  (see (10.1.5)), which 
is positive definite if and only if 8 ( l )  is nonsingular. Therefore, y, is not coin- 
tegrated if and only if the long-run variance matrix of Ay, is positive definite.6 
Since the long-run variance of each element of Ay, is positive if the long-run 
variance matrix of Ay, is positive definite, it follows that each element of y, is 
individually I(1) (i.e., I(1) as a univariate process) if y, is not cointegrated. The 
same is true for a subset of y,. For example, consider ~ 2 , ,  the last n - 1 elements 
of y,. The long-run variance matrix of Ay2! is given by \Ir2(1)P\Ir2(1)' where 
8, (1) is the last n - 1 rows of 8 (1). It is positive definite if and only if the rows 
of q 2 ( l )  are linearly independent or ~ 2 ,  is not cointegrated. In particular, each 
element of ~ 2 ,  is individually 1(1) if ~ 2 ,  is not cointegrated. 

6 ~ h i s  equivalence is specific to linear processes. In general, the positive definiteness of the long-run variance 
matrix of Ayt is sufficient, but not always necessary, for y,  to be not cointegrated. See Phillips (1986, p. 321). 
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Suppose that yl, is cointegrated with y2,. Then yz, is not cointegrated if h = 1 

and cointegrated if h > 1. The reason is as follows. Cointegration of yl, with 
y2, implies that there exists a cointegrating vector, call it a l ,  whose first element 
is not zero. If h = 1, then there should not exist an (n - 1)-dimensional vector 
b # 0 such that a; = (0, b') is a cointegrating vector, because a l  and a2 are 
linearly independent. A vector such as a2 can be found if h > 1. 

(VAR in first differences?) If y, is difference stationary (without drift), it is 
tempting to model it as a stationary finite-order VAR @(L)Ay, = E, where 
@(L) is a matrix polynomial of degree p such that all the roots of l@(z) I = 0 

are outside the unit circle. But then y, cannot be cointegrated. The reason is 
as follows. If @ ( L )  satisfies the stationarity condition, the coefficient matrix 
sequence {q j }  of its inverse 9 ( L )  = @(L)-'  is bounded by a geometrically 
declining sequence (see Section 6.3). So * ( L )  is one-summable and Ay, = 

*(L)E, is a VMA process satisfying (10.1.2) and (10.1.3). Furthermore, 

So *(I )  is nonsingular and the long-run variance matrix of Ay, is positive 
definite. 

Q U E S T I O N S  FOR R E V I E W  

1. Let (yl,, y2,) be as in Example 10.2 with y = 0. Show that {yl, + y2,} is I(1). 
Hint: You need to show that the long-run variance of {Ayl, + Ay2,} is positive. 

2. (Stock and Watson (1988) common-trend representation) Let w, = + 
E~ + . - . + E, SO that the BN decomposition is 

A result from linear algebra states that 

if C is an n x n matrix of rank n - h, then there exists an n x n non- 
singular matrix G and an n x (n - h) matrix F of full column rank 
such that 

c G = [  F i 0 1 .  
( n x n ) ( n  x n )  (nx(n-h))  (nxh)  

Show that the permanent component *(l)w, can be written as FT,, where F is 
an n x (n - h )  matrix of full column rank and T, is an (n - h)-dimensional 
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random walk with Var(At,) positive definite. Hint: 9 ( l ) w ,  = 9(1)GG-'w,. 
Let t, be the first n - h elements of G-'w,. This representation makes clear 
that an I(1) system with a cointegrating rank of h has n - h common stochastic 

trends. 

3. (a'y, is not quite stationary) To show that the process in (10.1.21) is not quite 
stationary, consider the simple case where q ,  = E, - E,-I, 6 = 0, and yo = 0. 
Verify that 

2 8  f o r t = O ,  for t = 0, 

-P for t = 1, Var(aryt) = 6a'Pa for t = 1, 

o f o r t > l ,  (II 4af P a  for t > I , 

where 9 = Var(e,). Verify that {a'y, ) is stationary for t = 2, 3, . . . . 

4. (What if some elements are stationary?) Let y, be an 1(1) system and suppose 
that the first element of y, is stationary. Show that the cointegrating rank is at 

least 1. 

5. (Matrix of cointegrating vectors) Suppose that the cointegration rank of an 

n dimensional I(1) system y, is h and let A be an n x h matrix collecting h 
linearly independent cointegrating vectors. Let F be any h x h nonsingular 

matrix. Show that columns of AF are h linearly independent cointegrating 

vectors. Hint: Multiplication by a nonsingular matrix does not alter rank. 

- 

10.2 Alternative Representations of Cointegrated Systems 

In addition to the common trend representation (see Review Question 2 of the pre- 
vious section), there are three other useful representations of cointegrated vector 

I(1) processes: the triangular representation of Phillips (1991), the VAR represen- 
tation, and the VECM (vector error-correction model) of Davidson et al. (1978). 
This section introduces these representations. 

Phillips's Triangular Representation 

This representation is convenient for the purpose of estimating cointegrating vec- 
tors. The representation is valid for any cointegration rank, but we initially assume 

that the cointegrating rank h is 1. Let a be a cointegrating vector, and suppose, 

without loss of generality, that the first element of a is not zero (if it is zero, change 
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the ordering of the variables of the system so that the first element after reordering 
is not zero). Partition y, accordingly: 

Thus, ylt is cointegrated with y2,. Since a scalar multiple of a cointegrating vector, 
too, is a cointegrating vector, we can normalize the cointegrating vector a so that 
its first element is unity: 

We have seen in the previous section that if a cointegrating vector a eliminates 
not only the stochastic trend (i.e., a'Y(1) = 0') but also the deterministic trend 
(i.e., a'6 = 0), then a'y, can be written as (10.1.24). Setting the a in (10.1.24) to 
the cointegrating vector in (10.2.2), we obtain 

Yl t  = Y ' ~ 2 t  + z: + p,  

where 

Z: 3 (1, -yl))lt, p -- ( I t  -Y')(YO - )lo). (10.2.4) 

Since qt is jointly stationary, z: is stationary. This equation, with z: viewed as an 
error term and p as an intercept, is called a cointegrating regression. Its regres- 
sion coefficients y ,  relating the permanent component in yl, to those in y2,, can 
be interpreted as describing the long-run relationship between yl, and ~ 2 ~ .  The 
cointegrating regression will have the trend term a'6 . t as an additional regressor 
if the cointegrating vector does not eliminate the deterministic trend in a'y,. The 
triangular representation is an n-equation system consisting of this cointegrating 
regression and the last n - 1 rows of (10.1.9): 

A~2t  = 62 + ~ 2 t  = 82 + Y2(L) et , (10.2.5) 
( (n - l )x l )  ((n-1)xn) ( n x l )  

where a2 and ~2~ are the last n - 1 elements of the n-dimensional vectors 6 and 
u,, respectively, and Y2(L) is the last n - 1 rows of the Y (L) in the VMA repre- 
sentation (10.1 .lo). The implication of the h = 1 assumption is that, as noted in 
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the previous section, y;, is not cointegrated (it would be cointegrated if h > 1). In 
particular, each element of y;r is individually I(1). 

More generally, consider the case where the cointegration rank h is not neces- 
sarily 1. By changing the order of the elements of y, if necessary, it is possible (see, 
e.g., Hamilton, 1994, pp. 576577) to select h linearly independent cointegrating 
vectors, a l ,  a2, . . . , ah, such that 

Partition y, conformably as 

Multiplying both sides of the BN decomposition (10.1.16) by this A' and noting 
that A'\Ir(l) = 0 (since the columns of A are cointegrating vectors), A'6 = 0 
(if those cointegrating vectors also eliminate the deterministic trend), and A'y, = 

ylr - r'y2,, we obtain the following h cointegrating regressions: 

Y I ~  = r' Y2r + I.L + z:, (10.2.8) 
(hx  1) (hx(n-h)) ( (n-h)xl)  (hx  1) ( h x l )  

where p G A'(yo - yo) and z: = A'q,. Since q, is jointly stationary, so is z:. The 
triangular representation is these h cointegrating regressions, supplemented by the 
rest of the VMA representation: 

Here, \Ir2(L) is the last n -h rows of the \Ir (L) in the VMA representation (10.1.10). 
It is easy to show (see Review Question 1) that y2, is not cointegrated. 

To illustrate the triangular representation and how it can be derived from the 
VMA representation, consider 

Example 10.3 (From VMA to triangular): In the bivariate system (10. I. 12) 
of Example 10.2, the cointegration rank is 1. The cointegrating vector whose 
first element is unity is (1, - y)'. So the z: and ,u in (10.2.3) are 
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P = ( 1 ,  - y ) ( y o  - l o )  = ( ~ 1 . 0  - Y Y Z , ~ )  - ( ~ 1 . 0  - ~ & 2 , 0 ) ,  

(10.2.10) 

and the triangular representation is 

I Ylt = P + YY2t + ( E l f  - ~ & 2 t ) 5  

AY2t = 82 + E2t - 

VAR and Cointegration 
For the stationary case, we found it useful and convenient to model a vector process 

as a finite-order VAR. Although, as seen above, no cointegrated 1 ( 1 )  system can be 
represented as a finite-order VAR in first differences, some cointegrated systems 
may admit a finite-order VAR representation in levels. So suppose a cointegrated 

J ( 1 )  system y, can be written as 

For later reference, we eliminate 4 from this to obtain 

where 

How do we know that this finite-order VAR in levels is a cointegrated 1 ( 1 )  
system? An obvious way to find out is to derive the VMA representation, A t t  = 

\Ir(L)&,, from the VAR representation, @ ( L ) t ,  = E , ,  and see if \Ir(L) satisfies the 
definition of a cointegrated system. The derivation is a bit tricky because the VMA 
representation is in first differences, but it can be done fairly easily as follows. 

Taking the first difference of both sides of @ ( L ) t ,  = 8, and noting that A  = 1 - L  
and ( 1  - L ) @ ( L ) = + ( L ) ( l  - L ) ,  we obtain 
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Substitute At ,  = @(L)e, into this to obtain 

This equation has to hold for any realization of e,, so 

This can be solved for @(L) by multiplying both sides from the left by @(L)-l, the 

inverse of + ( L ) . ~  This produces: @(L) = @(L)-'(1 - L). The question is, under 
what conditions on +(L) is this @(L) one-summable and rank[@(l)] = n - h? 

We can easily derive a necessary condition. Setting L = 1 in (10.2.17), we 

obtain 
+(I) @(I)  = 0 . 
(nxn) (nxn) (flxfl) 

Since the rank of @ ( 1) equals n - h when the cointegration rank of 5, is h , the rank 

of @(l)  is at most h. As shown below, the rank is actually h. To state a necessary 
and sufficient condition, let U(L) and V(L) be n x n matrix lag polynomials with 
all their roots outside the unit circle and let M(L) be a matrix polynomial satisfying 

That is, the first n - h diagonal elements of the diagonal matrix M(L) are 1 - L and 
the remaining h diagonal elements are unity. A necessary and sufficient condition 
for a finite-order VAR process {t,} following @(L)t ,  = e, to be a cointegrated 

1(1) system with rank h is that @(L) can be factored as @(L) = U(L)M(L)V(L).~ 
Therefore, all the roots of I@(z)I = 0 are on or outside the unit circle and those 

that are on the unit circle are all unit roots (z = 1). It is not sufficient that @(L) 
has n - h unit roots with the other roots outside the unit circle; see an example 

in Review Question 4 where @(z) has two unit roots and one root outside the unit 
circle yet the system is not I(1). The n - h unit roots have to be located in the 
system in the particular way indicated by the factorization @(z) = U(z)M(z)V(z). 

Setting z = 1 in this factorization, we obtain @(l)  = U(Z)M(I)V(l). Since the 

roots of U(z) and V(z) are all outside the unit circle, U(l)  and V(l)  are nonsingular 

7 ~ h e  inverse exists because OO = I, is nonsingular; see Section 6.3. Since we are not assuming the station- 
arity condition for O(L), the inverse filter may not be absolutely surnmable. 

l ~ h i s  result is an implication of the lemma due to Sam Yoo, cited in Engle and Yoo (1991). See Watson (1994, 
pp. 287G2873) for an accessible exposition. 
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and the rank of a(1) equals the rank of M(l), which is h .  That is, 

Then it follows from basic linear algebra that there exist two n x h matrices of full 
column rank, B and A, such that 

This is sometimes called the reduced rank condition. The choice of B and A is 
not unique; if F is an h x h nonsingular matrix, then B(F1)-' and AF in place 

of B and A also satisfy (10.2.21). Substituting (10.2.21) into (10.2.18), we obtain 
BA1\Ir(l) = 0. Since B is of full column rank, this equation implies A1\Ir(l) = 0. 
So the columns of the n x h matrix A are cointegrating vectors. 

The Vector Error-Correction Model (VECM) 
For the univariate case, we derived the augmented autoregression (9.4.3) on page 

586 from an AR equation. The same idea can be applied to the VAR here. It is 
a matter of simple algebra to show that the VAR representation a (L) t ,  = E ,  in 
(10.2.12) can be written equivalently as 

where 

Subtracting tt-, from both sides of (10.2.22) and noting that p - In = -(In - 

a1 - - . . . - a p )  = -@(I), we can rewrite (10.2.22) as 

Using the relation y, = a + 6 . t + t,, this can be translated into an equation in y,: 
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where a* and 6* are as in (10.2.14) and z, is given by 

Since, as noted above, the n x h matrix A collects h cointegrating vectors, z, is 
trend stationary (with a suitable choice of the initial value This representa- 
tion is called the vector error-correction model (VECM) or the error-correction 
representation. If it were not for the term Bz,-l in the VECM, the process, 
expressed as a VAR in first differences, could not be cointegrated. The VECM 
accommodates h cointegrating relationships by including h linear combinations of 
levels of the variables. If there are no time trends in the cointegrating relations, 
that is, if A'6 = 0, then 6* = 8(1)6 = BA'6 = 0. So the VAR and the VECM 
representations do not involve time trends despite the possible existence of time 
trends in the elements of y,. 

That the same I(0) process has the VMA, VAR, and VECM representations is 
known as the Granger Representation Theorem. 

Example 10.4 (From VMA to VARNECM): In the previous example, we 
derived the triangular representation from the VMA representation (10.1.12). 
In this example, we derive the VAR and VECM representations from the 
same VMA representation. For the @(L) in (10.1.12), it is easy to verify that 
(10.2.17) is satisfied with 

I So the VMA can be represented by a finite-order VAR. For this VAR, we have 

1 which can be written as (10.2.21) with 

9 ~ u s t  in case you are wondering why yo is relevant. It is true that you can solve (10.2.27) for zt as 

zt-l = (BIB)-'~'[a* +6* . t  - Ayt + CIAyl-1 + . . .  + C p - l A ~ l - p + l  + e l l .  

So you might think that 21 is trend stationary regardless of the choice of yo. This is not true, strictly speak- 
ing, because, unlike in the VMA representation, Ayl in the VARNECM representation is not defined for 
r = -1, -2, . . . . Only with a judicious choice of yo can one make Ayl (r = 1,2,  . . . ) stationary. This point is 
mentioned in Johansen (1995, Theorem 4.2). 
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B = [k] and A = [-:I (for example). (10.2.31) 

1 By (10.2.27) and (10.2.28), the VECM for this choice of B and A is 

zr G A'Yt = Yl r  - YY2t. (10.2.32) 

The deterministic trend disappears if a1 = ya2, that is, if the cointegrating 
vector also eliminates the deterministic trend. 

Johansen's ML Procedure 
In closing this section, having introduced the VECM representation, we here 
provide an executive summary of the maximum likelihood (ML) estimation of 

cointegrated systems proposed by Johansen (1988). Go back to the VAR rep- 
resentation (10.2.13). For simplicity, we assume that there is no trend in the 
cointegrating relations, so that 6" = 0." We have considered the conditional ML 
estimation (conditional on the initial values of y) of a VAR in Section 8.7. If the 
error vector e t  is jointly normal N(0, 52) and if we have a sample of T + p obser- 

vations (Y-,+~, ~ - ~ + 2 ,  . . . , yT), then the (average) log likelihood of (yl, . . . , yT) 
conditional on the initial values (Y-,+~, y-,+2, . . . , yo) is given by 

where n is the dimension of the system (not the sample size), 8 = ( l l ,  52), and 

nlE a1 . . .  
( n x l )  (nxn)  (nxn )  

Yt-p 

'O~or a thorough treatment of time trends in the VECM, see Johansen (1995, Sections 5.7 and 6.2). 
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Let 

Then the reduced rank condition is that { ,  = -BA1 and the VECM (10.2.26) can 
be written as 

Equations (10.2.35) and (10.2.24) provide a one-to-one mapping between (91, . . . , 
9,) and ( t o ,  . . . , r p P l ) .  Thus the same average log likelihood QT ( 6 )  can be 
rewritten in terms of the VECM parameters as 

where 

The ML estimate of the VECM parameters is the (a*, {,,  . . . , {,-, , Q )  that max- 
imizes this objective function, subject to the reduced rank constraint that {, = 

-BA1 for some n x h full rank matrices A and B. This constraint accommodates 

h cointegrating relationships on the 1(1) system. Obviously, the maximized log 

likelihood is higher the higher the assumed cointegration rank h. Thus, we can use 

the likelihood ratio statistic to test the null hypothesis that h = ho against the alter- 

native hypothesis of more cointegration. Unlike in the stationary VAR case, the 

limiting distribution of the likelihood ratio statistic is nonstandard. Given the coin- 

tegration rank h thus determined, the ML estimate of h cointegrating vectors can 

be obtained as the estimate of A. For a more detailed exposition of this procedure, 

see Hamilton (1994, Chapter 20) and also Johansen (1995, Chapter 6). 
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Q U E S T I O N S  FOR R E V I E W  

1. (Error vector in the triangular representation) Consider the error vector 
( z f ,  u2,) in the triangular representation (10.2.8) and (10.2.9). It can be writ- 
ten as 

Here, 

\I~;(L) = (I, - r l )  u(L), 
( h x n )  ( n x n )  

where u(L) is from the BN decomposition and \Ir2(L) is the last n - h rows of 
\Ir (L) in the VMA representation 

(a) Show that \Ir2(1) is of h l l  row rank (i.e., the n-h rows of \Ir2(l) are linearly 
independent). Hint: Suppose, contrary to the claim, that there exists an 

(n-h)-dimensional vector b # 0 such that b1\Ir2(1) = 0'. Show that (0', b') 
would be an (n-dimensional) cointegrating vector and the cointegration rank 

would be at least h + 1. 

(b) Verify that \Ir*(L) is absolutely summable. 

(c) Write \Ir*(L) = \Ir: + \Ir;L + \ I ~ ; L ~  + . . . . For the bivariate process of 
Example 10.3, verify that 9: is not diagonal. (Therefore, even if the ele- 
ments of E, are uncorrelated, z: and u2, can be correlated.) 

2. (From triangular to VMA representations) For Example 10.3, start from the 
triangular representation (10.2.11) and recover the VMA representation. Hint: 

Take the first difference of the cointegrating regression. 

3. (An alternative decomposition of 0(1)) For the bivariate system of Example 
10.4, verify that 

B = (y, 0)', A = ( l /y ,  -1)' 

is an alternative decomposition of @(I). Write down the VECM corresponding 
to this choice of B and A. 
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4. (A trivariate VAR that is I(2)) Consider a trivariate VAR given by 

Verify that this is an 1(2) system by writing ~ ~ y ,  as a vector moving average 
process. Write down @ ( L )  for this system and show that @(z) has three roots, 
two unit roots and one that is outside the unit circle. 

10.3 Testing the Null of No Cointegration 

Having introduced the notion of cointegration, we need to deal with two issues. 
The first is how to determine the cointegration rank, and the second is how to 

estimate and do inference on cointegrating vectors. The first will be discussed in 
this section, and the second will be the topic of the next section. There are several 
procedures for determining the cointegration rank. Among them are Johansen's 

(1988) likelihood ratio test derived from the maximum likelihood estimation of 

the VECM (briefly covered at the end of previous section) and the common trend 
procedure of Stock and Watson (1988). These procedures allow us to test the null 

of h = ho where ho is some arbitrary integer between 0 and n - 1. We will not 
cover these procedures." Here, we cover only the simple test suggested by Engle 

and Granger (1987) and extended by Phillips and Ouliaris (1990). In that test, the 

null hypothesis is that h = 0 (no cointegration) and the alternative is that h >_ 1. 

Spurious Regressions 
The test of Engle and Granger (1987) is based on OLS estimation of the regression 

where ylt is the first element of y,, y2, is the vector of the remaining n - 1 ele- 

ments, and z: is an error term. This regression would be a cointegrating regression 
if h = 1 and yl, were part of the cointegrating relationship. Under the null of h = 0 

(no cointegration), however, this regression does not represent a cointegrating rela- 
tionship. Let (jl, 9 )  be the OLS coefficient estimates of (P, y). It turns out that 9 

"See Maddala and Kim (1998, Section 7) for a catalogue of available procedures. 
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does not provide consistent estimates of any population parameters of the system! 

For example, even if y,,  is unrelated to y;?, (in that Ayl, and Ay2$ are independ- 

ent for all s, t), the t- and F-statistics associated with the OLS estimates become 

arbitrarily large as the sample size increases, giving a false impression that there 

is a close connection between yl, and y2,. This phenomenon, called the spurious 
regression, was first discovered in Monte Carlo experiments by Granger and New- 
bold (1974). Phillips (1986) theoretically derived the large-sample distributions of 
the statistics for spurious regressions. For example, the t-value, if divided by n, 
converges to a nondegenerate distribution. 

The Residual-Based Test for Cointegration 

The regression (10.3.1) nevertheless provides a useful device for testing the null 

of no cointegration, because the OLS residuals, yl, - jl - ~ ' Y 2 r ,  should appear to 

have a stochastic trend if y, is not cointegrated and be stationary otherwise. Engle 

and Granger (1987) suggested applying the ADF t-test to the residuals in order to 

test the null of no cointegration. Because of the use of the residuals, the test is 

called the residual-based test for cointegration. The asymptotic distributions of 

the test statistic for some leading unit-root tests were derived theoretically and the 

(asymptotic) critical values tabulated by Phillips and Ouliaris (1990) and Hansen 

(1992a). 

In contrast to the univariate unit-root tests, the asymptotic distributions (and 

hence the asymptotic critical values) depend on the dimension n of the system. This 

is because the residuals depend on (I;., f ) ,  which, being estimates based on data, 

are random variables. Here we indicate the appropriate asymptotic critical values 

when the unit-root test applied to the residuals is the ADF t-test of Proposition 9.6 

for autoregressions without a constant or time. That is, the ADF t-statistic is the t -  

value on the x,-1 coefficient in the following augmented autoregression estimated 

on residuals: 

where x, here is the residual from regression (10.3.1). There is no need to include 

a constant in this augmented autoregression because, with the regression already 

including a constant, the sample mean of the residuals is guaranteed to be zero. 

There is no need to include time either, because the variables of the regression 

(10.3.1) implicitly or explicitly include time trends (see below for more on this). 

The number of lagged changes, p, needs to be increased to infinity with the sample 
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size T,  but at a rate slower than ~ ' 1 ~ .  More precisely,12 

+ O a s ~ + c c .  p + cc but - (10.3.3) 
T1I3 P 

The critical values are the same if Phillips' Z,-test (see Analytical Exercise 6 of the 
previous chapter) is used instead of the ADF t .  There are three cases to consider. 

1. E(Ay2,) = 0 and E(Aylt) = 0, so no elements of the 1(1) system have drift. 
The appropriate critical values are in Table lO.l(a), which reproduces Table 
IIb of Phillips and Ouliaris (1990). For a statement of the conditions on the 
VMA representation under which the asymptotic distribution is derived, see 

Hamilton (1994, Proposition 19.4). 

2. E(Ayz,) # 0 but E(Ayl,) may or may not be zero. This case was discussed by 
Hansen (1992a). Let g (- n - 1) be the number of regressors besides a con- 
stant in the regression (10.3.1). Some of the g regressors have drift. Since lin- 
ear trends from different regressors can be combined into one,13 the regression 
(10.3.1) can be rewritten as a regression of yl, on a constant, g - 1 I(1) regres- 
sors without drift, and one 1(1) regressor with drift. Now, since linear trends 
dominate stochastic trends (in the sense made precise in the discussion of the 
BN decomposition in the previous chapter), the 1(1) regressor with a trend 
behaves very much like time in large samples. So the residuals are "asymp- 

totically the same" as the residuals from a regression with a constant, g - 1 
driftless I(1) variables, and time as regressors, in the sense that the limiting 

distribution of a statistic based on the residuals from the former regression is 
the same as that from the latter regression. 

The critical values for the ADF t test based on the latter regression are 
tabulated in Table IIc of Phillips and Ouliaris (1990). Therefore, to find the 
appropriate critical value when the regression (10.3.1) has a constant and g 

regressors but not time, turn to this table for g - 1 regressors. If the regression 
has only one regressor besides the constant (i.e., if g = I), then the regres- 

sion is asymptotically equivalent to a regression of yl, on a constant and time. 
For this case, the limiting distribution of the ADF t-statistic calculated from 
the residuals turns out to be the Dickey-Fuller distribution (DF:) of Proposi- 
tion 9.8. Table lO.l(b) combines these distributions: for the case of one 1(1) 

''see Phillips and Ouliaris (1990, Theorem 4.2). The lag length p can be a random variable because it can 
be data-dependent. This condition is the same as in the Said-Dickey extension of the ADF tests in the previous 
chapter (see Section 9.4), except that p here can be a random variable. 

1 3 ~ o r  example, let n = 3 so that there are two regressors, yzt and y3, with coefficients yl and y2, respectively. 
If 62 and 63 are the drifts in y2, and y 3 ,  respectively, then the linear trends in regression (10.3.1) are ylS2t and 
y2S3t, which can be combined into a single time trend (yl S2 + nS3) t .  
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Table 10.1: Critical Values for the ADF t-Statistic 
Applied to Residuals 

Estimated Regression: yl, = p + y1y2, 

Number of regressors, 
1% 2.5% 

excluding constant 
5% 

(a) Regressors have no drift 

1 -3.96 -3.64 -3.37 -3.07 
2 -4.31 -4.02 -3.77 -3.45 
3 -4.73 -4.37 -4.11 -3.83 
4 -5.07 -4.71 -4.45 -4.16 
5 -5.28 -4.98 -4.71 -4.43 

(b) Some regressors have drift 

SOURCE: For panel (a), Phillips and Ouliaris (1990, Table IIb). For panel (b), the 
first row is from Fuller (1996, Table 10.A.2), and the other rows are from Phillips 
and Ouliaris (1990, Table IIc). 

regressor (g = I), it shows the ADF tt-distribution, and for the case of g (> 1) 
regressors, it shows the critical values from Table IIc of Phillips and Ouliaris 
(1990) for g - 1 regressors. For example, if g = 2, the 5 percent critical 
value is -3.80, which is the 5 percent critical value in Table IIc in Phillips and 
Ouliaris (1990) for one regressor. 

3. This leaves the case where E(Ay2,) = 0 and E(Aylt) # 0. Since yl, has drift 
and y2, does not, we need to include time in the regression (10.3.1) in order 
to remove a linear trend from the residuals. The discussion for the previous 
case makes it clear that the ADF t-statistic calculated using the residuals from 
a regression of yl, on a constant, g driftless 1(1) regressors y2,, and time has 
the asymptotic distribution tabulated in Table lO.l(b) for g + 1 regressors (or 
Table IIc of Phillips and Ouliaris, 1990, for g regressors). For example, if 
g = 2, the regressor (10.3.1) has a constant, two 1(1) regressors, and time; the 
critical values can be found from Table 10.1 (b) for three regressors. 
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Several comments are in order about the residual-based test for cointegration. 

(Test consistency) The alternative hypothesis is that y, is cointegrated (i.e., 
h 1 1). The test is consistent against the alternative as long as yl, is cointegrated 
with y2,.14 The reason (we will discuss it in more detail below for the case with 
h = 1) is that the OLS residuals from the regression (10.3.1) will converge to a 
stationary process. However, if yl, is 1(1) and not part of the cointegration rela- 
tionship, then the test may have no power against the alternative of cointegration 
because the OLS residuals, yl, - yfy2,, with a nonzero coefficient (of unity) on 
the 1(1) variable yl,, will not converge to a stationary process. Thus, the choice 
of normalization (of which variable should be used as the dependent variable) 
matters for the consistency of the test. 

(Should time be included in the regression?) If time is included in the regres- 
sion (10.3.1), then the drift in yl , ,  E(Ayl,), affects only the time coefficient, 
making the numerical value of the residuals (and hence the ADF t-value) invari- 
ant to E(Ayl,). This means that the case 3 procedure, which adds time to the 
regressors, can be used for case 1, where E(Ayl,) happens to be zero. That is, 
if you include time in the regression (10.3. l),  then the appropriate critical value 
for case 1 is given from Table lO.l(b) for g + 1 regressors. The procedure is 
also valid for case 2, because if time is included in addition to a constant and 
g 1(1) regressors with drift, then the regression can be rewritten as a regression 
with a constant, g driftless 1(1) regressors, and time that combines the drifts in 
the g 1(1) regressors. This regression falls under case 3 and the critical values 
provided by Table lO.l(b) for g + 1 regressors apply. Therefore, when time is 
included in the regression (10.3. l),  the same critical values can be used, regard- 
less of the location of drifts. A possible disadvantage is reduced power in finite 
samples. The finite-sample power is indeed lower at least for the DGPs exam- 
ined by Hansen (1992a) in his simulations. 

(Choice of lag length) The requirement (10.3.3) does not provide a practical 
rule in finite samples for selecting the lag length p in the augmented autoregres- 
sion to be estimated on the residuals. There seems to be no work in the context of 
the residual-based test comparable to that of Ng and Perron (1995) for univari- 
ate 1(1) processes. The usual practice is to proceed as in the univariate context, 
which is to use the Akaike information criterion (AIC) or the Bayesian infor- 
mation criterion (BIC), also called the Schwartz information criterion (SIC), to 
determine the number of lagged changes. 

1 4 ~ o r  the case of h = 1, this is an implication of Theorem 5.1 of Phillips and Ouliaris (1990). Their remark (d) 
to this theorem shows that the test is consistent when h > 1 and hence y2, is cointegrated. 
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(Finite-sample considerations) Besides the residual-based ADF t-test, a num- 

ber of tests are available for testing the null of no cointegration. They include 

tests proposed by Phillips and Ouliaris (1990), Stock and Watson (1988), and 

Johansen (1988). Haug (1996) reports a recent Monte Carlo study examining the 

finite-sample performance of these and other tests. It reveals a tradeoff between 
power and size distortions (that is, tests with the least size distortion tend to have 

low power). The residual-based ADF t-test with the lag length chosen by AIC, 
although less powerful than some other tests, has the least size distortion for the 

DGPs examined. 

The following example applies the residual-based test with the ADF t-statistic 

to the consumption-income relationship. 

Example 10.5 (Are consumption and income cointegrated?): As was 

already mentioned in connection with Figure 10.1 (a), log income (y,) and 

log consumption (c,) appear to be cointegrated with a cointegrating vector of 

(1, - 1). This figure, however, is rather deceiving. The plot of y, - c, (which 

is the log of the saving rate) in Figure 10.l(b) shows an upward drift right 

after the war and a downward drift since the mid 1980s. (The latter is the 

well-publicized fact that the U.S. personal saving rate has been declining.) 

As seen below, the test results depend on whether to include these periods 

or not. We initially focus on the sample period of 1950:Ql to 1986:Q4 (148 

obervations). 

We first test whether the two series are individually I(1), by conduct- 

ing the ADF t-test with a constant and time trend in the augmented auto- 

regression. In applying the BIC to select the number of lagged changes in 

the augmented augoregression, we follow the same practice of the previous 

chapter: the maximum length (p,,,) is [12 - (T/100)'I4] (the integer part of 

[12. ( ~ 1 1 0 0 )  'I4]), the sample period is fixed at t = p,,,,, +2, p,,, +3, . . . , T 

in the process of choosing the lag length p ,  and, given p, the maximum sam- 

ple o f t  = p + 2, p + 3, . . . , T is used to estimate the augmented autoregres- 

sion with p lagged changes. For the present sample size, p,,, is 13. 

For disposable income, the BIC selects the lag length of 0 and the ADF 

t-statistic ( t r )  is -1.80. The 5 percent critical value from Table 9.2 (c) is 

-3.41, so we accept the hypothesis that y, is I(1). For consumption, the lag 

length by the BIC is 1 and the ADF t statistic is -2.07. So we accept the 1(1) 

null at 5 percent. Thus, both series might well be described as 1(1) with drift. 

Turning to the residual-based test for cointegration, the OLS estimate of 

the static regression is 
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Figure 10.1 (b): Log Income Minus Log Consumption 

c, = -0.046 + 0.975 y,, R~ = 0.998, t = 1950:Ql to 1986:Q4. 
(0.009) (0.0037) 

(10.3.4) 

To conduct the residual-based ADF t test, an augmented autoregression with- 
out constant or time is estimated on the residuals with the lag length of 0 
selected by the BIC. The ADF t statistic is -5.49. Since the series have time 
trends, we turn to Table 10.1 (b), rather than Table 10.1 (a), to find critical val- 
ues. For g = 1, the 5 percent critical value is -3.41, so we can reject the null 
of no cointegration. 

If the residual-based test is conducted on the entire sample of 47:Ql 
to 98:Q1, the ADF t statistic is -2.94 with the lag length of 1 determined 
by BIC, and thus, we cannot reject the hypothesis that the consumption-on- 
income regression is spurious! 

Testing the Null of Cointegration 

In the above test, cointegration is taken as the alternative hypothesis rather than the 
null. But very often in economics the hypothesis of economic interest is whether 
the variables in question are cointegrated, so it would be desirable to develop tests 
where the null hypothesis is that h = 1 rather than that h = 0. Very recently, 
several tests of the null of cointegration have been proposed. For a catalogue of 
such tests, see Maddala and Kim (1998, Section 4.5). As was true in the testing of 
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the null that a univariate process is I(O), there is no single test of cointegration used 
by the majority of researchers yet.'' 

Q U E S T I O N  F O R  R E V I E W  

1. For the residual-based test for cointegration with the regression (10.3.1) not 
including time as a regressor, verify that there is very little difference in the 
critical value between case 1 and case 2. 

10.4 Inference on Cointegrating Vectors 

In the previous section, we examined whether an 1(1) system is cointegrated. In 
this section, we assume that the system is known to be cointegrated and that the 
cointegration rank and the associated triangular representation are known.16 Our 
interest is to estimate the cointegrating vectors in the triangular representation and 
to make inference about them. For the most part, we focus on the special case 
where the cointegration rank is 1 ; the general case is briefly discussed at the end of 
the section. 

The SOLS Estimator 
For the h = 1 case, the triangular representation is 

Ylt = p + yfy2t + 2; 
(1x1) 

A ~ 2 t  = 82 + U2, 
((n-1)xl) I = 9 * ( L )  E ,  , (10.4.1) 

(nxn) ( n x l )  
1) 

where ~2~ is not cointegrated. (This is just reproducing (10.2.3) and (10.2.5) with 
(10.2.39) for h = 1.) So the regression (10.3.1) is now the cointegrating regression. 
Therefore, there exists a unique (n - 1)-dimensional vector y  such that yl, - y f y 2 ,  
is a stationary process (2:) plus some time-invariant random variable (p) when 
9 = y  and has a stochastic trend when 9 # y .  This suggests that the OLS estimate 

1 5 ~ h e  procedures of Johansen (1988) and Stock and Watson (1988) cannot be used for testing the null of 
cointegration against the alternative of no cointegration, because in their tests the alternative hypothesis specifies 
more cointegration than the null. 

161n practice, we rarely have such knowledge, and the decision to entertain a system with h cointegrating 
relationships is usually based on the outcome of prior tests (such as those mentioned in the previous section) 
designed for determining the cointegration rank. This creates a pretest problem, because the distribution of the 
estimated cointegrating vectors does not take into account the uncertainty about the cointegration rank. This issue 
has not been studied extensively. 
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(b, i )  of the coefficient vector, which minimizes the sum of squared residuals, 

is consistent. In fact, as was shown by Phillips and Durlauf (1986) and Stock 
(1987) for the case where 6 2  in (10.4.1) (= E(Ay2,)) is zero and by Hansen (1992a, 
Theorem l(b)) for the 6 2  # 0 case, the OLS estimate 9 is superconsistent for the 

cointegrating vector y ,  with the sampling error converging to 0 at a rate faster than 
the usual rate of 2/7;.17 Also, the R' converges to unity.18 The OLS estimator of y 

from the cointegrating regression will be referred to as the "static" OLS (SOLS) 
estimator of the cointegrating vector. Since the SOLS estimator is consistent, the 

residuals converge to a zero-mean stationary process. Thus, if a univariate unit- 
root test such as the ADF test is applied to the residuals, the test will reject the 1(1) 

null in large samples. This is why the residual-based test of the previous section is 

consistent against cointegration. 
This fact - that the OLS coefficient estimates are consistent when the regres- 

sors are 1(1) and not cointegrated - is a remarkable result, in sharp contrast to the 

case of stationary regressors. To appreciate the contrast, remember from Chap- 

ter 3 what it takes to obtain a consistent estimator of y when the regressors y2, 

are stationary: for the OLS estimator to be consistent, the error term 2,' has to be 
uncorrelated with y2,; otherwise we need instrumental variables for ~ 2 , .  In contrast, 

if y , ,  is cointegrated with y2, and if the 1(1) regressors yzt are not cointegrated, as 
here, then we do not have to worry about the simultaneity bias, at least in large 

samples, even though the error term 2,' and the 1(1) regressors are correlated.19 

In finite samples, however, the bias of the SOLS estimator (the difference 
between the expected value of the estimator and the true value) can be large, as 

noted by Banerjee et al. (1986) and Stock (1987). Another shortcoming of SOLS 
is that the asymptotic distribution of the associated t value depends on nuisance 

parameters (which are the coefficients in \Ir*(L) in (10.4.1)), so it is difficult to do 
inference. Later in this section we will introduce another estimator (to be referred 
to as the "DOLS" estimator) which is efficient and whose associated test statistics 

(such as the t- and Wald statistics) have conventional asymptotic distributions. 

1 7 ~ h e  speed of convergence is T if 62 = 0, and T ~ / ~  if 82 # 0. All the studies cited here assume that w 
is a fixed constant. The same conclusion should hold even if w is treated as random. As mentioned in Section 
10.1 (see the paragraph right below (10.1.21)). strictly speaking, w + z: is not stationary even if z: is stationary. 
However, since p and z: are asymptotically independent as t + m, p + z: is asymptotically stationary, which 
is all that is needed for the asymptotic results here. 
 or a statement of the conditions under which these results hold, see Hamilton (1994, Proposition 19.2). 

Those conditions are restrictions on O * ( L ) E ~  in (10.4.1). 
191f y?, is cointegrated, then h 2 and the regression (10.3.1)-with n - I regressors-is no longer a 

cointegrating regression (a cointegrating regression should haven - h regressors, see the triangular representation 
(10.2.8)). This case can be handled by the general methodology presented by Sims, Stock, and Watson (1990). 
See Hamilton (1994, Chapter 18) or Watson (1994, Section 2) for an accessible exposition of the methodology. 
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The Bivariate Example 
To be clear about the source and nature of the correlation between the error term 
and the 1(1) regressors and also to pave the way for the introduction of the DOLS 
estimator, consider the bivariate version of (10.4.1). For the time being, assume 
**(L)  = 9: (so there is no serial correlation in (z:, u ~ ~ ) ) ,  82 = 0, and p = 0. The 
triangular representation can be written as 

The error term 2: and the I(1) regressor yzt in the cointegrating regression in 
(10.4.2) can be correlated because 

C0v(Y2t3 2:) = COV(Y~,O + A~2.1 + A~2.2 + . . . + 2:) 

= Cov(AY2.1 + A~2.2 + . . . + A Y ~ ~ ,  2:) (since C o ~ ( y ~ , ~ ,  2;) = 0) 
- 
- Cov(~2.1 + U2,2 + . . . + ~ 2 ,  2:) (since Ay2, = uZt) 

= Cov(u2,, 2:) (since ( ~ 2 ,  2:) is i.i.d.). (10.4.3) 

Since *: and !2 are not restricted to be diagonal, 2; and ~2~ can be contemporane- 
ously correlated. 

To isolate this possible correlation, consider the least squares projection of z: 
on a constant and uzt (= A Y ~ ~ ) .  Recall from Section 2.9 that E*(y I 1, x)  = 

[E(y) - Bo E(x)] + Box where Po = Cov(x, y)/ Var(x) and that the least squares 
projection error, y - E*(y I 1, x), has mean zero and is uncorrelated with x.  Here, 
the mean is zero for both 2; and ~ 2 ~ .  SO E*(z; I I ,  uZt) = BOuZt and, if we denote 

-* the least squares projection error by vt = 2: - E (2: 1 1, u2,), we have 

Substituting this into the cointegrating regression, we obtain 

This regression will be referred to as the augmented cointegrating regression. 
Now we show that the 1(1) regressor ~2~ is strictly exogenous in that Cov(y2,, vt) = 

0 for all t ,  s. By construction, C O V ( A Y ~ ~ ,  v,) = 0. For C O V ( A Y ~ ~ ,  vt) for t # S, 
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because ( z ~ ,  ~ 2 ~ )  is i.i.d. SO Ay2t is strictly exogenous. The strict exogeneity of 
Ay2t implies the same for y2,, because 

Cov(y~,, vt) = Cov(y2,o + Ay2.1 + Ay2.2 + . . . + Ay2,, v,) 

= COV(AYZ,~ + Ay2.2 + . . . + Ayz,, vt) (since C o ~ ( y ~ , ~ ,  v,) = 0) 

= 0 for all t ,  s by (10.4.6). (10.4.7) 

Continuing with the Bivariate Example 

To recapitulate, we have shown that, in the augmented cointegrating regression 
(10.4.5), the 1(1) regressor is strictly exogenous if q*(L)  = q;. Let (7 ,  &) be 
the OLS coefficient estimate of (y, Po) from the augmented cointegrating regres- 

sion. (This 7 should be distinguished from the SOLS estimator of y in the coin- 
tegrating regression in (10.4.2).) This regression, (10.4.5), is very similar to the 

augmented autoregression (9.4.6) in that one of the two regressors is zero-mean 

I(0) and the other is driftless I(1). We have shown for the augmented autoregres- 

sion that the "X'X" matrix, if properly scaled by T and 1/T, is asymptotically 

diagonal, so the existence of I(0) regressors can be ignored for the purpose of 
deriving the limiting distribution of 7 ,  the OLS estimator of the coefficient of the 

1(1) regressor. The same is true here, and the same argument exploiting the asymp- 
totic diagonality of the suitably scaled "X'X" matrix shows that the usual t-value 

for the hypothesis that y = yo is asymptotically equivalent to 

where 0; is the variance of v,. That is, the difference between the usual t-value 

and f in (10.4.8) converges to zero in probability, so the limiting distribution of t 
and that of fare  the same. 

In the augmented autoregression used for the ADF test, the limiting distribu- 
tion of the ADF t-statistic was nonstandard (it is the Dickey-Fuller t-distribution). 

In contrast, the asymptotic distribution of f (and hence that of the usual t-value) 

is standard normal. To see why, first recall that the 1(1) regressor y2, is strictly 
exogenous in that Cov(y2,, v,) = 0 for all t ,  s. To develop intuition, temporar- 

ily assume that (z:, U Z ~ )  is jointly normal. Then y ~ ,  and v, are independent for 
all (s. t ) ,  not just uncorrelated. Consequently, the distribution of v, conditional on 

(y2 ,~ ,  ~2.2, . . . , y27-) is the same as its unconditional distribution,which is N(0, a:). 
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So the distribution of the numerator of (10.4.8) conditional on ( Y ~ , ~ ,  ~2.2, . . . , 
Y ~ T )  is 

But the standard deviation of this normal distribution equals the denominator of 
f ,  so 

Since this conditional distribution of fdoes not depend on (y2 ,~ ,  ~2.2, . . . , y27-), the 

unconditional distribution off ,  too, is N(0, 1). (This type of argument is not new to 
you; see the paragraph containing (1.4.3) of Chapter 1 .) Recall from Chapter 2 that, 
even if the normality assumption is dropped, the distribution of the usual t-value 
is standard normal, albeit asymptotically, in large samples. The same conclusion 
is true here: the limiting distribution of f is N(0, 1) even if (z:, u2,) is not jointly 
normal. Proving this requires an argument different from the type used in Chapter 
2, because y2, here has a stochastic trend. We will not give a formal proof here; just 
an executive summary. It consists of two parts. The first is to derive the limiting 
distribution of the numerator of (10.4.8) (which can be done using a result stated 
in, e.g., Proposition 18.l(e) of Hamilton, 1994, or Lemma 2.3(c) of Watson, 1994). 
This distribution is nonstandard. The second is to show that normalization (10.4.8) 
converts the nonstandard distribution into a normal distribution (Lemma 5.1 of Park 
and Phillips, 1988). 

This example of a bivariate 1(1) system is special in several respects: (a) there 
is no serial correlation in the error process (z:, u2,), (b) the I(1) regressor y2, is a 
scalar, (c) y2, has no drift, and (d) p = 0. Of these, relaxing (a) requires some 
thoughts. 

Allowing for Serial Correlation 

If it is not the case that Y*(L) = Y i  as in (10.4.2), then (z:, u2,) is serially corre- 
lated. Consequently, the 1(1) regressor y2, in the augmented cointegrating regres- 
sion (10.4.5) is no longer strictly exogenous because Cov(Ay2,, v,), while still zero 
for t = s, is no longer guaranteed to be zero for t # s. To remove this correlation, 
consider the least squares projection of z: on the current, past, and future values of 
u2, not just on the current value of u2. Noting that Ay2t = u2,, the projection can 
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be written as 

(This v, is different from the v, in (10.4.5).) By construction, E(v,) = 0 and 
Cov(Ay2,, v,) = 0 for all t ,  s. The two-sided filter P(L) can be of infinite order, 
but suppose -for now -that it is not and Bj = 0 for ( j 1 > p. Thus, 

Substituting this into the cointegrating regression in (10.4.2), we obtain the (vastly) 
augmented cointegrating regression 

Since Cov(Ay2,, v,) = 0 for all t and s, Ay2, is strictly exogenous, which means 
(as seen above) that the level regressor y2, too is strictly exogenous. Thus, by 
including not just the current change but also past and future changes of the 1(1) 
regressor in the augmented cointegrating regression, we are able to maintain the 

strict exogeneity of y2,. The OLS estimator of the cointegrating vector y based 
on this augmented cointegrating regression is referred to as the "dynamic" OLS 
(DOLS), to distinguish it from the SOLS estimator based on the cointegrating 
regression without changes in y2. 

There are 2 + 2 p  regressors, the first of which is driftless 1(1) and the rest 
zero-mean I(0). As before, with suitable scaling by T and 1/7;, the I(1) regressor 
is asymptotically uncorrelated with the 2 p  + 1 zero-mean I(0) regressors, so that 
the suitably scaled X'X matrix is again block diagonal and the zero-mean I(0) 
regressors can be ignored for the purpose of deriving the limiting distribution of 
the DOLS estimate of y .  Therefore, the expression for the random variable that is 
asymptotically equivalent to the t-value for y = yo is again given by (10.4.8), the 
expression derived for the case where (zf, u2,) is serially uncorrelated. 

However, when (zf, u2,) is serially correlated, the derivation of the asymp- 
totic distribution of (10.4.8) is not the same as when (zf, u2,) is serially uncor- 
related, because the error term v, can now be serially correlated; the projection 
(10.4.9), while eliminating the correlation between Ay2, and v, for all s, r, does 
not remove its own serial correlation in v,. To examine the asymptotic distribution, 
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let V (T x T) be the autocovariance matrix of T successive values of v, and A t  be 
the long-run variance of v,. Also, let X in the rest of this subsection be the T x 1 

matrix ( y 2 , ~ ,  y2,2, . . . , ~ 2 ~ ) ' .  Again, to develop intuition, temporarily assume that 
(z:, 242,) are jointly normal. Then, since y2, is strictly exogenous, the distribution 
of the numerator of (10.4.8) conditional on X is normal with mean zero and the 
conditional variance 

1 
- X'VX. 
T2 

The square root of this would have to replace the denominator of (10.4.8) to make 
the ratio standard normal in finite samples. Fortunately, it turns out (see Corollary 
2.7 of Phillips, 1988) that, in large samples, the distribution of the numerator is the 
same as the distribution you would get if v, were serially uncorrelated but with the 
variance of A t  rather than a:. 

Therefore, all that is required to modify the ratio (10.4.8) to accommodate 

serial correlation in v, is to replace a: (- Var(v,)) by A t  (the long-run variance of 
v,), namely, if f is given by (10.4.8) with a: still in the denominator, its rescaled 
value 

is asymptotically N(0, 1) ! Since the OLS t-value for y is asymptotically equivalent 
to f, it follows that 

(A') . t 7 N(O,l), 

where i, is some consistent estimator of A, and s is the usual OLS standard error 
of regression (it is easy to show that s is consistent for a,). Put differently, if we 
rescale the usual standard error of f (the OLS estimate of the y2, coefficient in 
(10.4.11)) as 

rescaled standard error = ( )  x usual standard error, (10.4.15) 

then the t-value based on this rescaled standard error is asymptotically N(0, 1). 
The foregoing argument is applicable only to the coefficient of the 1(1) regres- 

sor, so the t-values for /?'s in (10.4.1 l),  even when their standard errors are rescaled 
as just described, are not necessarily N(0, 1) in large samples. 
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Since the regressors are strictly exogenous, the discussion in Sections 1.6 and 
6.7 suggests that the GLS might be applicable. However, the fact noted above that 
X'VX behaves asymptotically like A,XIX implies that the GLS estimator of y (to 
be referred to as the DGLS estimator) is asymptotically equivalent to the DOLS 
estimator (or more precisely, T times the difference converges to 0 in probability) 
(see Phillips, 1988, and Phillips and Park, 1988). Therefore, there is no efficiency 
gain from correcting for the serial correlation in the error term v, by GLS. 

A consistent estimate of A, is easy to obtain. Recall that in Section 6.6 we 
used the VARHAC procedure to estimate the long-run variance matrix of a vector 
process. The same procedure can be applied to the present case of a scalar error 
process. Consider fitting an AR(p) process to the residuals, GI, from the augmented 
cointegrating regression 

GI = @lGf- l  + & G I - 2  + ...  +@pGf-p + e f  ( t  = p + 1 , .  . . , T). (10.4.16) 

(This p should not be confused with the p in the augmented cointegrating regres- 
sion.) Use the BIC to pick the lag length by searching over the possible lag lengths 
of 0, 1, . . . , T Using the relation (6.2.21) on page 385 and noting that the long- 
run variance is the value at z = 1 of the autocovariance-generating function, the 
long-run variance A: of v,  can be estimated by 

where 4, ( j  = 1,2,  . . . , p) are the estimated AR(p) coefficients and 2, is the 
residual from the AR(p) equation (10.4.16). 

General Case 
We now turn to the general case of an n-dimensional cointegrated system with 
possibly nonzero drift. We focus on the h = 1 case because extending it to the case 
where h > 1 is straightforward. So the triangular representation is (10.4.1) and the 
augmented cointegrating regression is 

Here, /I, ( j  = 0, 1,2,  . . . , p ,  - 1,  -2, . . . , -p) are the least squares projection 
coefficients in the projection of z: (the error in the cointegrating regression) on the 
current, past, and future values of Ay2. The DOLS estimator of the cointegrating 
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vector y is simply the OLS estimator of y from this augmented cointegrating 
regression. 

The following results are proved in Saikkonen (1991) and Stock and Watson 
(1993).2O 

I. The bivariate results derived above carry over. That is, the DOLS estimator 
of y is superconsistent and the properly rescaled t- and Wald statistics for 
hypotheses about y have the conventional asymptotic distributions (standard 
normal and chi squared). The proper rescaling is to multiply the usual t-value 
by (s/i,,) and the Wald statistics by the square of (s/i,). This simple rescaling, 
however, does not work for the t-value and the Wald statistic for hypotheses in- 
volving p or pi. 

2. If the two-sided filter p(L) in the projection of z: on the leads and lags of Ay2, 
is infinite order, then the error term vt includes the truncation remainder, 

All the results just mentioned above carry over, provided that p in (10.4.18) 
is made to increase with the sample size T at a rate slower than T ' / ~ .  See 
Saikkonen (1991, Section 4) for a statement of required regularity conditions. 

3. The estimator is efficient in some precise sense.21 The estimator is asymp- 
totically equivalent to other efficient estimators such as Johansen's maximum 
likelihood procedure based on the VECM, the Fully Modified estimator of 
Phillips and Hansen (1990), and a nonlinear least squares estimator of Phillips 
and Loretan (1991) (and also to the DGLS, as mentioned above). For all these 
efficient estimators, the t- and Wald statistics for hypotheses about y ,  cor- 
rectly rescaled if necessary, have standard asymptotic distributions (see 
Watson, 1994, Section 3.4.3, for more details). 

Other Estimators and Finite-Sample Properties 
Stock and Watson (1993) examined the finite-sample performance of these estima- 
tors just mentioned (excluding the Phillips-Loretan estimator). For the DGPs and 
the sample sizes (T = 100 and 300) they examined, the following results emerged. 

'O~hese authors assume that p is a fixed constant. However, the same conclusions would hold even if p were 
a time-invariant random variable. 

l he t-value is asymptotically N ( 0 ,  I ) ,  but the DOLS estimator itself is not asymptotically normal. So the 
usual criterion of comparing the variances of the asymptotic distributions among asymptotically normal estima- 
tors is not applicable here. See Saikkonen (1991, Section 3) for an appropriate definition of efficiency. 
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(1) The bias is smallest for the Johansen estimator and largest for SOLS. (2) How- 
ever, the variance of the Johansen estimator is much larger than those for the other 
efficient estimators, and DOLS has the smallest root mean square error (RMSE). 
(3) For all estimators examined, the distribution of the t-values (correctly rescaled 
if necessary) tends to be spread out relative to N(0, I), suggesting that the null will 
be rejected too often. These conclusions are broadly consistent with the assessment 
of Monte Carlo studies found in Maddala and Kim (1998, Section 5.7). 

Q U E S T I O N  F O R  R E V I E W  

1. As we have emphasized, there is a similarity between augmented autoregres- 
sion (9.4.6) on page 587 and augmented cointegrating regression (10.4.5). Then 
why is the t-value on the I(1) regressor in the augmented cointegrating regres- 
sion (10.4.5) asymptotically N(0, 1) while that in (9.4.6) is not? 

! 
10.5 Application: The Demand for Money in the United States 

The literature on the estimation of the money demand function is very large (see 
Goldfeld and Sichel, 1990, for a review). The money demand equation typically 
estimated in the literature is 

where rn, is the log of money stock in period t ,  p, is the log of price level, y, is 
log income, R, is the nominal interest rate, and z: is some error term. y, is the 
income elasticity and y~ is the interest semielasticity of money demand (it is a 
semielasticity because the interest rate enters the money demand equation in lev- 
els, not in logs). Most empirical analyses that predate the literature on unit roots 
and cointegration suffer from two drawbacks. First, as will be verified below, all 
the variables involved, m, - p, ,  v,, and R,, appear to contain stochastic trends. If 
the variables have trends, conventional inference under the stationarity assumption 
is not valid. Second, the regressors may be endogenous. This is likely to be a seri- 
ous problem in the case of money demand, because in virtually all macro models a 
shift in money demand represented by the error term z: affects the nominal interest 
rate and perhaps income. A resolution of both problems is provided by the econo- 
metric technique for estimating cointegrating regressions presented in the previous 
section. 
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Another issue addressed in this section is the stability of the money demand 
function. The consensus in the literature is that money demand is unstable. This 
is challenged by Lucas (1988) who, using annual data since 1900, argues that the 
interest semielasticity is stable if the income elasticity is constrained to be unity. 
We will examine Lucas' claim by applying the state-of-the-art econometric tech- 
niques developed in this chapter. 

The Data 
We base our analysis on the annual data studied by Lucas (1988), extended by 
Stock and Watson (1993) to cover 1900-1989. Their measures of the money stock, 
income, and the nominal interest rate are M1, net national product (NNP), and 
the six-month commercial paper rate (in percent at an annual rate), respectively. 
The use of net national product - rather than gross national product -follows the 
tradition since Friedman (1959) that the scale variable (y,) in the money demand 
equation should be a measure of wealth rather than a measure of transaction vol- 
ume. There are no official statistics on M1 that date back to as early as 1900, so one 
needs to do some splicing on series from multiple sources. For the money stock 
and the interest rate, monthly data were averaged to obtain annual observations. 
See Appendix B of Stock and Watson (1993) for more details on data construction. 

(m - p ,  y , R) as a Cointegrated System 
Figures 10.2 and 10.3 plot rn - p,  y, and R. The three series have clear trends. 
Log real money stock (rn - p)  grew rapidly over the first half of the century, but 
experienced almost no growth thereafter until 1981. Log income (y), on the other 
hand, grew steadily over the entire sample period with a major interruption from 
1930 to the early 1940s, so M1 velocity (y - (rn - p)), also plotted in Figure 10.3, 
dropped during that period and then grew steadily until 1981. This movement in 
M1 velocity is fairly closely followed by the nominal interest rate, which suggests 
that rn - p, y, and R are cointegrated, with a cointegrating vector whose element 
corresponding to y is about 1. 

Inspection of these figures suggests that the three variables, rn - p ,  y, and 
R, might be well described as being individually I(1). In fact, Stock and Watson 
(1993), based on the ADF tests, report that rn - p and y are individually 1(1) with 
drift, while R is I(1) with no drift. They also report, based on the Stock-Watson 
(1988) common trend test, that the three-variable system is cointegrated with a 
cointegrating rank of 1. In what follows, we proceed under the assumption that 
rn - p is cointegrated with y and R. (In the empirical exercise, you will be asked 
to check the validity of this premise.) 
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DOLS 
The first line of Table 10.2 reports the SOLS estimate of the cointegrating regres- 
sion (10.5.1). (The sample period is 1903-1987 because in the DOLS estimation 
below two lead and lagged changes will be included in the augmented cointegrating 
regression.) The standard errors are not reported because the asymptotic distribu- 
tion of the associated t-ratio, being dependent on nuisance parameters, is unknown. 
The SOLS estimate of the income elasticity of 0.943 is close to unity, but we can- 
not tell whether it is insignificantly different from unity. To be able to do inference, 
we turn to the DOLS estimation of the cointegrating vector, which is to estimate 
the parameters (p ,  y,, yR) in the cointegrating regression (10.5.1) by adding Ay, ,  
A R , ,  and their leads and lags. Following Stock and Watson (1993), the number 
of leads and lags is (arbitrarily) chosen to be 2, so the augmented cointegrating 
regression associated with (10.5.1) is 

This dictates the sample period to be t = 1903, . . . , 1987. The DOLS point esti- 
mate of (y,, yR), reported in the second line of Table 10.2, is obtained from esti- 
mating this equation by OLS. 

To calculate appropriate standard errors, the long-run variance of the error term 
vt needs to be estimated. For this purpose we fit an autoregressive process to the 
DOLS residuals. The order of the autoregression is (again arbitrarily) set to 2. With 
the DOLS residuals calculated for t = 1903, . . . , 1987, the sample period for the 
AR(2) estimation is for t = 1905, . . . , 1987 (sample size = 83). The estimated 
autoregression is 

6, = 0.93806 - 0.13341 6t-2,  S S R  = 0.19843. (10.5.3) 

We then use the formula (10.4.17), but to be able to replicate the DOLS estimates 
by Stock and Watson (1993, Table 111), we divide the SSR by T - p - K rather 
than by T - p to calculate i?:, where K here is the number of regressors in the 
augmented cointegrating regression (which is 13 here). Thus 3: = 0.19843/(83 - 
2 - 13) = 0.0029181 and 
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Table 10.2: SOLS and DOLS Estimates, 190S1987 

R~ 
Std. error 

YY YR  of regression 

SOLS estimates 0.943 -0.082 0.959 0.135 

DOLS estimates 0.970 -0.101 0.982 0.096 
(Rescaled standard errors) (0.046) (0.01 3) 

SOURCE: The point estimates and standard errors are from Table I11 of Stock 
and Watson (1993). The R~ and standard error of regression are by author's 
calculation. 

Table 10.3: Money Demand in Two Subsamples 

SOLS estimates 0.919 -0.085 0.192 -0.016 

DOLS estimates 0.887 -0.104 0.269 -0.027 
(Rescaled standard errors) (0.197) (0.038) (0.2 13) (0.025) 

SOURCE: Table I11 of Stock and Watson (1993). 

The estimate i, is the square root of this, which is 0.277. Since the standard error 
of the DOLS regression is 0.096, the factor in the formula (10.4.15) for rescal- 
ing the usual OLS standard errors from the augmented cointegrating regression is 
0.27710.096 = 2.89. The numbers in parentheses in Table 10.2 are the adjusted 
standard errors thus calculated. Now we can see that the estimated income elastic- 
ity is not significantly different from unity. 

Unstable Money Demand? 
Table 10.3 reports the parameter estimates by SOLS and DOLS for two subsam- 
ples, 1903-1945 and 1946-1987. (Following Stock and Watson (1993), the break 
date of 1946 was chosen both because of the natural break at the end of World 
War I1 and because it divides the full sample nearly in two.) In sharp contrast to 
the estimates based on the first-half of the sample, the postwar estimates are very 
different from those based on the full sample. 

Lucas (1988) argues that estimates like these are consistent with a stable 
demand for money with a unitary income elasticity. To support this view, he points 
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Figure 10.4: Plot of m - p - y against R 

to the evidence depicted in Figure 10.4. It plots m, -p l  -yt (the log inverse velocity, 
which would be the dependent variable in the money demand equation (10.5.1) if 
the income elasticity y, were set to unity) against the interest rate, with the postwar 
observations indicated by a different set of symbols from the prewar observations. 
The striking feature is that, although postwar interest rates are substantially higher, 
postwar observations lie on the line defined by the prewar ~bse rva t ions .~~  

This finding suggests that the postwar estimates suffer from the near multi- 
collinearity problem: because of the similar trends in y and R in the postwar period 
(shown in Figures 10.2 and 10.3), y, and y~ estimated on postwar data are strongly 
correlated. Even though for each element the postwar estimate of (y,, yR) is differ- 
ent from the prewar estimate, they may not be jointly significantly different. This 
possibility could be easily checked by the Chow test of structural change, at least 
if the regressors were stationary. In the Chow test, you would estimate 

where D, is a dummy variable whose value is 1 if t 3 1946 and 0 otherwise. 
Thus, the coefficients of the constant, y,, and R, are ( p ,  y,, yR) until 1945 and 
( p  + SO, yy + By,  y~ + SR) thereafter. If the regressors are stationary, the Wald 
statistic for the null hypothesis that So = O,Sy = 0, SR = 0 is asymptotically 
X2(3) as both subsamples grow larger with the relative size held constant (see 

2 2 ~ n  Lucas' (1988) original plot, the sample period is 19W1985 and the break date is 1957, but the message 
of the figure is essentially the same. 



I Analytical Exercise 12 in Chapter 2). Now in the present case where regressors 
are 1(1) and not cointegrated, it has been shown by Hansen (1992b, Theorem 3(a)) 
that the Wald statistic (properly rescaled if necessary) has the same asymptotic 
distribution (of X 2 )  if the parameters of the cointegration regression are estimated 
by an efficient method such as DOLS (which adds Ay,, A R,, and their leads and 
lags to the cointegrating regression (10.5.5)), the Fully Modified estimation, or the 
Johansen M L . ~ ~  The DOLS estimates of (10.5.5) augmented with two leads and 
two lags of Ay and AR are shown in Table 10.4. The insignificant Wald statistic 
supports Lucas' view that the money demand in the United States has been stable 

I in the twentieth century. 

P R O B L E M  S E T  FOR C H A P T E R  10 

E M P I R I C A L  E X E R C I S E S  

(Skim Stock and Watson, 1993, Section 7 and Appendix B, before answering.) The 
file MPYR.ASC has annual data on the following: 

Column 1: natural log of M1 (to be referred to as m) 
Column 2: natural log of the NNP price deflator (p) 

Column 3: natural log of NNP (y) 
Column 4: the commercial paper rate in percent at an annual rate (R). 

The sample period is 1900 to 1989. This is the same data used by Stock and Watson 
(1993) in their study of the U.S. money demand. See their Appendix B for data 
sources. 

Questions (a) and (b) are for verifying the presumption that m - p is cointe- 
grated with (y, R). The rest of the questions are about estimating the cointegrating 
vector. 

(a) (Univariate unit-root tests) Stock and Watson (1993, Appendix B) report that 
the ADF tw and t r  statistics, computed with 2 and 4 lagged first differences, 
fail to reject a unit root in each of m - p and R at the 10 percent level and that 
the unit root hypothesis is not rejected for y with 4 lags, but is rejected at the 
10 percent (but not 5 percent) level with 2 lags. Verify these findings. In your 
tests, use the tw test for R, and t r  form - p and y, and use asymptotic critical 
values (those critical values for T = oo). 

2 3 ~ e  noted in the previous section that the Wald statistic is not asymptotically chi squared even after rescaling 
if the hypothesis involves w. Hansen's (1992b) result, however, shows that the Wald statistic for the hypothesis 
about the difference in w is asymptotically chi squared. Hansen (1992b) also develops tests for structural change 
at unknown break dates. 



Table 10.4: Test for Structural Change 

YY Y R  60 A,  8~ Wald statistic 

DOLS estimates 0.925 -0.090 1.36 -0.52 0.048 1.85 

(Rescaled standard errors) (0.142) (0.026) (0.72) (0.3 1) (0.034) (p-value = 0.60) 

SOURCE: Author's calculation, to be verified in the empirical exercise. 
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(b) (Residual-based tests) Conduct the Engle-Granger test of the null that m - p 
is not cointegrated with y and R.  Set p = 1 (which is what is selected by BIC). 
(If you do not include time in the regression, the ADF t-statistic derived from 
the residuals should be about -4.7. Case 2 discussed in Section 10.3 should 
apply. So the 5 percent critical value should be -3.80.) 

(c) (DOLS) Reproduce the SOLS and DOLS estimates of the cointegrating vector 
reported in Table 10.2. 

(d) (Chow test) Reproduce the DOLS estimates reported in Table 10.4. They are 
based on the following augmented cointegrating regression: 

mt - Pt 

= CL + YyYt + Y R R ~  +60Dt +GyytDt + 6 ~ R t D t  

+ BYOAY~ + By,- lA~t+l  + By,-2Ayt+2 + ByiAyt-i  + By2Ayt-2 

+ B R o A R ~  + B R , - I A R ~ + I  + p~,-2ARt+2 +  BRIAR^-I + B R ~ A R ~ - 2  + V t .  

The null hypothesis is that 60 = 6, = 6R = 0. Set the p in (10.4.16) to 2. 
Calculate the Wald statistic for the null hypothesis of no structural change. 
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