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Preface

Until recently, most people were not paying too much attention to financial
markets. This certainly changed with the onset of the financial crisis. For a
long time we took it for granted that we can borrow money from a bank or get
safe interest payments on deposits. All these fundamental beliefs were shaken
in the wake of the financial crisis.

When the man on the street has lost his faith in systems which he believed
to function as steadily as the rotation of the earth, how much more have
the beliefs of financial economists been shattered? But the good news is: in
recent years, the theory of financial economics has incorporated many aspects
that now help to understand many of the bizarre market phenomena that
we could observe during the financial crisis. In the early days of financial
economics, the fundamental assumption was that markets are always efficient
and market participants perfectly rational. These assumptions allowed to build
an impressive theoretical model that was indeed useful to understand quite a
few characteristics of financial markets. Nevertheless, a major financial crisis
was not necessary to realize that the assumptions of perfectly efficient markets
with perfectly rational investors did not hold – often not even “on average”.
The observation of systematic deviations gave birth to a new theory, or rather
a set of new theories, behavioral finance theories.

While classical finance remains the cornerstone of financial theory – and be
it only as a benchmark that helps us to judge how much real markets deviate
from efficiency and rationality – behavioral finance enriches the view on the
real market and helps to explain many of the more detailed phenomena that
might be minor on sunny days, but decisive in rough weather.

Often, behavioral finance is introduced as something independent of finan-
cial economics. It is assumed that behavioral finance is something students
may learn after they have mastered and understood all of the classical financial
economics.

In this book we would like to follow a different approach. As market behav-
ior can only be fully understood when behavioral effects are linked to classic
models, this book integrates both views from the very beginning. There is



VI Preface

no separate chapter on behavioral finance in this book. Instead, all classic
topics (such as decisions on markets, the capital asset pricing model, market
equilibria etc.) are immediately connected with behavioral views. Thus, we
will never stay in a purely theoretical world, but look at the “real” one. This
is supported with many case studies on market phenomena, both during the
financial crisis and before.

How this book works and how it can be used for teaching or self-study is
explained in detail in the introduction (Chapter 1).

For now we would like to take the opportunity to thank all those people
who helped us write this book. First of all, we would like to thank many of our
colleagues for their valuable input, in particular Anke Gerber, Bjørn Sandvik,
Mei Wang, and Peter Wöhrmann.

Parts of this book are based on scripts and other teaching material that
was initially composed by former and present students of ours, in particular
by Berno Büchel, Nilüfer Caliskan, Christian Reichlin, Marc Sommer and
Andreas Tupak.

Many people contributed to the book by means of corrections or proof-
reading. We would like to thank especially Amelie Brune, Julia Buge, Mar-
ius Costeniuc, Michal Dzielinski, Mihnea Constantinescu, Mustafa Karama,
R. Vijay Krishna, Urs Schweri, Vedran Stankovic, Christoph Steikert, Sven-
Christian Steude, Laura Oehen and the best secretary of the world, Martine
Baumgartner.

That this book is not only an idea, but a real printed book with hundreds
of pages and thousands of formulas is entirely due to the fact that we had two
tremendously efficient LATEX professionals working for us. A big “thank you”
goes therefore to Thomas Rast and Eveline Hardmeier.

We also want to thank our publishers for their support, and especially
Martina Bihn for her patience in coping with the inevitable delays of finishing
this book.

Finally, we thank our families for their even larger patience with their
book-writing husbands and fathers.

We hope that you, dear reader, will have a good time with this book, and
that we can transmit some of our fascination for financial economics and its
interplay with behavioral finance to you.

Enjoy!

Thorsten Hens
Marc Oliver Rieger
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Foundations
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Introduction

“Advice is the only commodity on the market where the
supply always exceeds the demand.” Anonymous

This first chapter provides an overview on financial economics and how to
study it: you will learn how we have designed this textbook and how you
can use it efficiently; we will give you an overview of the essence of financial
economics and some of its central ideas; we will finally summarize how research
in financial economics is done, what methods are used and how they interact
with each other.

If you are new to the field of financial economics, we hope that at the end
of this introduction your appetite to learn more about it has been sufficiently
stimulated to enjoy reading the rest (or at least the main parts) of this book,
and maybe even to immerse yourself deeper in this fascinating research area. If
you are already working in this field, you can lean back and relax while reading
the introduction and then pick the topics of this book that are interesting to
you. Since financial economics is a very active area of research into which we
have incorporated a number of very recent results, be assured that you will
find something new as well.

1.1 An Introduction to This Book

This book integrates classical and behavioral approaches to financial eco-
nomics and contains results that have been found only recently. It can serve
several aims:

• as a textbook for a master or PhD course. Some parts can also be used on
an advanced bachelor level,

• for self-study,
• as a reference to various topics and as an overview on current results in

financial economics and behavioral finance.

In the following we want to give you some recommendations on how to use
this book as a textbook and for self-studying. Further information and sample
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slides that can be used for teaching this book are available on the book’s
homepage: http://www.financial-economics.de.

The book has three parts: the foundations part consists of this introduction
and a chapter on decision theory. The second part on financial markets builds
a sophisticated model of financial markets step by step and is also the core of
this book. Finally, the third part presents advanced topics that sketch some
of the connections between financial economics and other fields in finance. In
the first two parts, every chapter is accompanied by a number of exercises
and tests (solutions can be found in the appendix). Tests are included in
order to enable self-studying and as an assessment of the progress made in a
chapter. Exercises are meant to deepen the understanding by working with
the presented material.

Multi-period

Models
Information

Asymmetries

Prospect

Theory

continuous

Time-

Models

the Firm

Theory of

Chaps.

3.1–3.3

General Two-period Model

Behavioral CAPM

CAPM

Classical Decision Theory

Ambiguity

More on Two-period

Models – Chaps. 4.3–4.7

Chap. 8

Chap. 7

Chap. 5Chap. 6

Chaps. 4.1–4.2

Chap. 3.4

Chaps. 2.1–2.3, 2.7

Chaps. 2.4–2.5 Chap. 2.6

Fig. 1.1. An overview on the interdependence of the chapters in this book. If you
want to build up your course on this book, be careful that the “bricks do not fall
down”!

The level of difficulty usually increases gradually within a chapter. Diffi-
cult parts not needed in the subsequent chapters are marked with an asterisk.
The content of this book provides enough study/teaching material for two
semesters. For a one-semester class there are therefore various possible routes.
A reasonable suggestion for a bachelor class could be to cover Chap. 1, ex-
cerpts of Chap. 2, Chaps. 3.1–3.2. They may be spiced with some applications.

http://www.financial-economics.de
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A one-semester master course could be based on Chap. 1, main ideas of
Chap. 2, Chaps. 3–4 and some parts of Chap. 5. A two-semester course could
follow the whole book in order of presentation. For a one-semester PhD course
for students who have already taken a class in financial economics, one could
choose some of the advanced topics (especially Chaps. 5–8) and provide neces-
sary material from previous chapters as needed (e.g., the behavioral decision
theory from Chaps. 2.4–2.5). The interdependence of the chapters in this book
is illustrated in Fig. 1.1.

1.2 An Introduction to Financial Economics

Finance is composed of many different topics. These include public finance, in-
ternational finance, corporate finance, derivatives, risk management, portfolio
theory, asset pricing, and financial economics.

Financial economics is the interface that connects finance to economics.
This means that different research questions, methods and languages meet,
which can be very fruitful, but also sometimes confusing. To mitigate the
confusion, we will present common topics from both points of view, the eco-
nomics and the finance perspective. In doing so, we hope to reduce potential
misunderstandings and help to explore the synergies of the subfields.

Most topics in finance are in some way or the other connected to financial
economics. We will discuss several of these connections and the relation to
neighboring disciplines in detail, see Fig. 1.2.

Having located financial economics on the scientific map, we are now ready
to start our expedition by an overview of the key ideas and research methods.
The central point is hereby the transfer of the concept of trade from economics
(where tangible goods are traded) to the concept of valuation used in finance.

1.2.1 Trade and Valuation in Financial Markets

Financial economics is about trade among agents, trading in well functioning
financial markets. At first sight, agents trade interest bearing or dividends
paying assets (bonds or stocks) as well as derivatives thereof in financial mar-
kets. But from an economic perspective, on financial markets, agents trade
time, risks and beliefs. Of course, agents are heterogeneous, i.e., they have
different valuations of time, risks and beliefs. One of the main topics of finan-
cial economics is therefore the aggregation of those different valuations at a
market equilibrium into market prices for time, risks and beliefs.

For a long time, researchers believed that the aggregation approach would
be sufficient to describe financial markets. Recently, however, this classical
view has been challenged by new theories (behavioral and evolutionary fi-
nance) as well as by the emergence of new trading strategies (as implemented,
e.g., by hedge funds). One of the goals of this book is to describe to what de-
gree these new views on financial markets can be integrated into the classical
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Fig. 1.2. Connections of financial economics with other subfields of finance and
other disciplines

concepts and how they give rise to new insights into financial economics. In
this way, we lay the foundations to understand practitioner’s buzz words like
“Alpha”, “Alternative Beta” and “Pure Alpha”.

What do we mean by saying that markets trade risks, time and beliefs? Let
us explain this idea with some examples. The trading of risks can be explained
easily if we look at commodities. For example, a farmer is naturally exposed
to the risk of falling prices, whereas a food company is exposed to the risk
of increasing prices. Using forwards, both can agree in advance on a price for
the commodity, and thus trade risk in a way that reduces both parties’ risks.

There are other situations where one party might not reduce its risk, but
is willing to buy the risk from another party for a certain price: hedge funds
and insurance companies, although very different in their risk appetite, both
work by this fundamental principle.

How to trade “time” on financial markets? Here the difference between
investment horizons plays a role. If I want to buy a house, I prefer to do this
rather earlier than later, since I get a benefit from owning the house. A bank
will lend me money and wants to be paid for that with a certain interest. The
same mechanism we can also find on financial markets when companies and
states issue bonds. Sometimes the loan issued by the bank is bundled and
sold as some of these now infamous CDOs that were at the epicenter of the
financial crisis.
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We can also trade “beliefs” on financial markets. In fact, this is likely to
be the most frequent reason to trade: two agents differ in their opinion about
certain assets. If Investor A believes Asset 1 to be more promising and Investor
B believes Asset 2 to be the better choice, then there is obviously some reason
for both to trade. Is there really? Well, from their perspectives there is, but
of course only one of them can be right, so contrary to the first two reasons
for a trade (risk and time), where both parties will profit, here only one of
them (the smarter or luckier) will profit. We will discuss the consequences of
this observation in a simple model as “the hunt for Alpha” in Chapter 3.3.

But in all of these cases what does limit the amount of trading? If trading
is good for both parties (or at least they believe so), why do they not trade
infinite amounts? In all cases, the reason is the decreasing marginal utility
of the agents: eventually, the benefit from more trades will be outweighed by
other factors. For instance, if agents trade because of different beliefs, they
will still have the same differences in beliefs after their trade but they won’t
trade unlimited amounts due to their decreasing marginal utility in the states.

1.2.2 No Arbitrage and No Excess Returns

Financial markets are complex, and moreover practitioners and researchers
tend to use the same word for different concepts, so sometimes these con-
cepts get mixed-up. An example of this is the frequent confusion between
no-arbitrage and no gains for trades. An efficient financial market is arbitrage-
free. An arbitrage opportunity is a self-financing trading strategy that does
not incur losses but gives positive returns. Many researchers and practitioners
agree that arbitrage strategies are so rare that one can assume they do not
exist.

This simple idea has far-reaching conclusions for the valuation of deriva-
tives. Derivatives are assets whose payoffs depend on the payoff of other assets,
the underlying, the assets from which the derivative is derived. In the simple
case where the payoff of the derivative can be duplicated by a portfolio of the
underlying and e.g., a risk-free asset, the price of the derivative must be the
same as the value of the duplicating portfolio. Why? Suppose the derivative’s
price is actually higher than the value of the duplicating portfolio. In that
case, one can build an arbitrage strategy by shorting the asset and hedging
the payoff by holding the duplicating portfolio. If the price of the derivative
were less than that of the duplicating portfolio, one would trade the other
way round. Hence the principle of no-arbitrage ties asset prices to each other.
As we will see later, the absence of arbitrage also implies nice mathematical
properties for asset prices which allow one to describe them by methods from
stochastics, for example by martingales.

Often, however, the term “arbitrage” is used for a likely, but uncertain
gain by an investment strategy. Now, forgetting about the motivations for
trading like risk sharing and different time preferences, many people believe
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that the only reason to trade on financial markets would be to gain more than
others, more precisely: to generate excess returns or “a positive Alpha”.

Given that efficient markets are arbitrage-free, it is often argued that there-
fore such gains are not possible and hence trading on a financial market is
useless: in any point of time the market has already incorporated all future
opportunities. Thus, instead of cleverly weighing the pros and cons of various
assets, one could also choose the assets at random, like in the famous monkey
test, where a monkey throws darts on the Wall Street Journal to pick stocks
and competes with investment professionals (see [Mal90]).

However, this point of view is wrong in two ways: first, it completely
ignores the two other reasons for trading on financial markets, namely risk
and time. Secondly, there is a distinction between an arbitrage-free market
and one without any further opportunities for gains from trade returns. An
efficient market, i.e. a market without any further gains from trade, must be
arbitrage-free since arbitrage opportunities certainly give gains from trades.
However, the converse is not true. Absence of arbitrage does not mean that
you should not try to position yourself on the markets reflecting on your
beliefs, time preferences and risk aversion.

Saying that investments could be chosen at random just because markets
are arbitrage-free is like saying that when you go shopping in a shop without
bargains, you can pick your goods at random. Just try to buy the ingredients
for a tasty dinner in this way, and you will discover that this is not true.

There is another way of looking at this problem: If you consider the return
distribution of your portfolio, forming asset allocations means to construct
the return distribution that is most suitable for you. One motive for this
may simply be controlling the risk of your initial portfolio, which could, e.g.,
be achieved by buying capital protection. Even though all possible portfolios
would be arbitrage-free, the precise choice nevertheless matters to you.

Before we conclude this extremely important section we should mention
how the notion of excess returns is related to the concepts of absence of
arbitrage and no gains from trade. An excess return is a return higher than
the risk-free rate. An excess return is usually no arbitrage opportunity since
it carries some risks. Does it indicate gains from trade? In other words, should
you buy assets that have excess returns? Whether you ought to buy or not
depends on your risk preference relative to the risk the asset carries. For
example, a positive alpha is an excess return that is attractive if your risk
preference is to avoid variance and if your beliefs coincide with the average
beliefs in the market. However, if one of these conditions is not met, an asset
with positive alpha may not be a good choice, as we will see later.

1.2.3 Market Efficiency

The word “efficiency” has a double meaning in financial economics. One mean-
ing – put forward by Fama – is that markets are efficient if prices incorporate
all information. For example, paying analysts to research the opportunities
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and the risks of certain companies is worthless because the market has al-
ready priced the company reflecting all available information. To illustrate
this view consider Fama and a pedestrian walking on the street. The pedes-
trian spots a 100 Dollar Bill and wants to pick it up. Fama, however, stops
by saying if the 100 Dollar Bill were real, someone would have picked it up
before.

The second meaning of efficiency is that efficient markets do not have any
unexploited gains from trade. Thus the allocation obtained on efficient mar-
kets cannot be improved by raising the utility of one agent without lowering
the utility of some other agent. This notion of efficiency is called Pareto-
efficiency. Mostly, when we refer to “efficiency” in our book, we will mean
Pareto-efficiency.

1.2.4 Equilibrium

Economics is based on the idea of understanding markets from the interaction
of optimizing agents. In a competitive equilibrium all agents trade in such a
way as to achieve the most desirable consumption pattern, and market prices
are such that all markets clear, i.e., in all markets demand is equal to supply.

Obviously, in a competitive equilibrium there cannot be arbitrage oppor-
tunities since otherwise no agent would find an optimal action. Exploiting the
arbitrage more would drive the agent’s utility to infinity and he would like
to trade infinite amounts of the assets involved, which conflicts with market
clearing. Note that the notion of equilibrium puts more restrictions on asset
prices than mere no-arbitrage. Equilibrium prices reflect the relative scarcity
of consumption in different states, the agents’ beliefs of the occurrence of the
states and their risk preferences. Moreover, in a complete market, at equilib-
rium there are no further gains from trade.

As a final remark on equilibrium one should note that for one given initial
allocation there can be multiple equilibria. Which one is actually obtained may
be a matter of exogenous factors like market sentiment or conventions. For
example, stock returns could be high or low when the weather is extremely
nice. Supposing that every trader believes in high stock returns when the
weather is extremely nice, stock returns will turn out to be high because the
agents’ trades make this belief self-fulfilling. However it could also be the other
way round, i.e., low returns when the weather is extremely nice.

In a financial market equilibrium the agents’ beliefs determine the market
reality and the market reality confirms agents’ beliefs. In the words of George
Soros [Sor98, page xxiii]:

Financial markets attempt to predict a future that is contingent on
the decisions people make in the present. Instead of just passively
reflecting reality, financial markets are actively creating the reality
that they, in turn, reflect. There is a two way connection between
present decisions and the future events, which I call reflexivity.
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1.2.5 Aggregation and Comparative Statics

Do we really need to know all agents’ beliefs, risk attitudes and initial en-
dowments in order to determine asset prices at equilibrium? The answer is
“No”, fortunately! If equilibrium prices are arbitrage-free then they can be
supported by a single decision problem in which one so-called “representative
agent” optimizes his utility supposing he had access to all endowments. The
equilibrium prices found in the competitive equilibrium can also be thought
of as prices that induce a representative agent to demand total endowments.

For this trick to be useful one then needs to understand how the individual
beliefs and risk attitudes aggregate into those of the representative agent. In
the case of complete markets such aggregation rules can be found.

A final warning on the use of the representative agent methodology is
in order. This method describes asset prices by some as-if decision problem.
Hence it is constructed given the knowledge of the asset prices. It is not able
to predict asset prices “out-of-sample”, e.g., after some exogenous shock to
the economy.

1.2.6 Time Scale of Investment Decisions

Investors differ in their time horizon, information processing and reaction
time. Day traders for example make many investment decisions per day re-
quiring fast information processing. Their reaction time is only a few seconds.
Other investors have longer investment horizons (e.g., one or more years).
Their investment decisions do not have to be made “just in time”. A popu-
lar investment advice for investors with a longer investment horizon is: “Buy
stocks and take a good long (20 years) sleep”. Investors following this advice
are expected to have a different perception to stocks as Benartzi and Thaler
[BT95] make pretty clear with the following example:

Compare two investors, Nick who calculates the gains and losses in
his portfolio every day, and Dick who only looks at his portfolio once
per decade. Since, on a daily basis, stocks go down in value almost
as often as they go up, Nick’s loss aversion will make stocks appear
very unattractive to him. In contrast, loss aversion will not have much
effect on Dick’s perception of stocks since at ten year horizons stocks
offer only a small risk of losing money.

Particularly important for an investment decision is the perception of the
situation. In the words of a day trader, interviewed by the Wall Street Journal
[Mos98], the situation is like this:

Ninety percent of what we do is based on perception. It doesn’t matter
if that perception is right or wrong or real. It only matters that other
people in the market believe it. I may know it’s crazy, I may think
it’s wrong. But I lose my shirt by ignoring it. This business turns on
decisions made in seconds. If you wait a minute to reflect on things,
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you’re lost. I can’t afford to be five steps ahead of everybody else in
the market. That’s suicide.

Thus, intraday price movements reflect how the average investor perceives
incoming news. In the very long run price movements are determined by trends
in fundamental data – like earnings, dividend growth and cash flows. A fa-
mous observation called excess volatility first made by Shiller [Shi81] is that
stock prices fluctuate around the long term trend by more than economic
fundamentals indicate. How the short run aspects get washed out in the long
run, i.e., how aggregation of fluctuations over time can be modelled is rather
unclear.

In this course we will consider three time scales: The short run (intraday
market clearing of demand and supply orders), the medium run (monthly
equalization of expectations) and the long run (yearly wealth dynamics).

1.2.7 Behavioral Finance

A rational investor should follow expected utility theory. However, it is often
observed that agents do not behave according to this rational decision model.
Since it is often important to understand actual investment behavior, the
concepts of classical (rational) decision theory have often been replaced with
a more descriptive approach that is labeled as “behavioral decision theory”.

Its application to finance led to the emergence of “behavioral finance” as
a subdiscipline. Richard Thaler once nicely defined what behavioral finance
is all about [Tha93]:

Behavioral finance is simply open-minded finance. [...] Sometimes in
order to find a solution to an [financial] empirical puzzle it is necessary
to entertain the possibility that some of the agents in the economy
behave less than fully rational some of the time.

Whenever there is need to study deviations from perfectly rational behavior,
we are already in the realm of behavioral finance. It is therefore quite obvious
that a clear distinction of problems inside and outside behavioral finance is
impossible: we will often be in situations where agents behave mostly ratio-
nal, but not always, so that a simple model might be successful with only
considering rational behavior, but behavioral “corrections” have to be made
as soon as we take a closer look.

In this book we therefore aim to integrate behavioral views into classical
theories to show how they can enhance our understanding of financial markets.

One particularly interesting behavioral model is Prospect Theory. It was
developed by Daniel Kahneman and Amos Tversky [KT79] to describe de-
cisions between risky alternatives. Prospect Theory departs from expected
utility by showing the sensitivity of actual decisions to biases like framing, by
using a valuation function that is defined on gains and losses instead of final
wealth and by using non-linear probability when weighting the utility values
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obtained in various states. In particular Prospect Theory investors are loss
averse, and they are risk averse when comparing two gains but risk seeking
when comparing two losses. The question then is whether Prospect Theory is
relevant for market prices. And indeed it is: many so-called asset pricing puz-
zles can be resolved with Prospect Theory. An example is the equity premium
puzzle, i.e., the observation that stock returns are on average 6–7% above
the bond returns. This high excess return is hard to explain with plausible
values for risk aversion, if one sticks to the expected utility paradigm. The
idea of myopic loss aversion (Benartzi and Thaler [BT95]), the observation
that investors have short horizons and are loss averse, can resolve the equity
premium puzzle.

1.3 An Introduction to the Research Methods

We want to conclude this chapter by taking a look at the research methods
that are used in financial economics. After all, we want to know where the
results we are studying come from and how we can possibly add new results.

Albert Einstein is known to have said that “there is nothing more practical
than a good theory.” But what is a good theory? First of all, a good theory
is based on observable assumptions. Moreover, a good theory should have
testable implications – otherwise it is a religion which cannot be falsified.
This falsification aspect cannot be stressed enough.1 Finally, a good theory
is a broad generalization of reality that captures its essential features. Note
that a theory does not become better if it becomes more complicated.

But what are our observations and implications? There are essentially two
ways to gather empirical evidence to support (or falsify) a theory on financial
markets: one way is to study financial market data. Some of this data (e.g.,
stock prices) is readily available, some is difficult to obtain for reasons such
as privacy issues or time constraints. The second way is to conduct surveys
and laboratory experiments, i.e., to expose subjects to controlled conditions
under which they have to perform financial decisions.

Both approaches have their advantages and limitations: market data is
often noisy, depends on many uncontrollable factors and might not be available
for a specific purpose, but by definition always comes from real life situations.
Experimental data often suffers from a small number of subjects, necessarily
unrealistic settings, but can be collected under controlled conditions. Today,
both methods are frequently used together (typically, experiments for the
more fundamental questions, like decision theory, and data analysis for more

1 Steve Ross, the founder of the econometric Arbitrage Pricing Theory (APT ), for
example, claims that “every financial disaster begins with a theory!” By saying
this, he means that those who start trading based on a theory are less likely
to react to disturbing facts because they are typically in love with their ideas.
Falsification of their beloved theory is certainly not their goal!
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applied questions, like asset pricing), and we will see many applications of
these approaches throughout this book.

So, what is a typical route that research in financial economics is taking?
Often a research question is born by looking at data and finding empirically

robust deviations from random behavior of asset prices. The next step is then
to try to explain these effects with testable hypotheses. Such hypotheses can
rely on classical concepts or on behavioral or evolutionary approaches. In the
latter cases, laboratory tests have often been performed first in order to test
these approaches under controlled conditions.

The role of empirical findings and its interplay with theoretical research
in finance cannot be overstressed. To quote Hal Varian[Var93b]:

Financial economics has been so successful because of this fruitful
relationship between theory and data. Many of the same people who
formulated the theories also collected and analyzed the data. This is
a model that the rest of the economic profession would do well to
emulate.

In any case, if you want to discover interesting effects in the stock market,
the main requirement is that you understand the “Null Hypothesis”. In this
case, it is what a rational market looks like. Therefore a big part of this book
will deal with traditional finance that explains the rational point of view.

We have now concluded our bird’s-eye view on financial economics and
on the contents of this book. Before we dive into financial markets with their
manifold interactions, we start with a more basic situation: in the next chapter
we will study the individual decisions a person makes with financial problems.
This leads us to the general field of decision theory which will later serve us
as a building block for the understanding of more complex interactions on the
market that involve not only one, but many persons.





2

Decision Theory

“As soon as questions of will or decision or reason or
choice of action arise, human science is at a loss.”
Noam Chomsky

How should we decide? And how do we decide? These are the two central
questions of Decision Theory: in the prescriptive (rational) approach we ask
how rational decisions should be made, and in the descriptive (behavioral)
approach we model the actual decisions made by individuals. Whereas the
study of rational decisions is classical, behavioral theories have been intro-
duced only in the late 1970s, and the presentation of some very recent results
in this area will be the main topic for us. In later chapters we will see that
both approaches can sometimes be used hand in hand, for instance, market
anomalies can be explained by a descriptive, behavioral approach, and these
anomalies can then be exploited by hedge fund strategies which are based on
rational decision criteria.

In this book we focus on the part of Decision Theory which studies choices
between alternatives involving risk and uncertainty. Risk means here that a
decision leads to consequences that are not precisely predictable, but follow
a known probability distribution. A classical example would be the decision
to buy a lottery ticket. Uncertainty or ambiguity means that this probability
distribution is at least partially unknown to the decision maker.

In the following sections we will discuss several decision theories connected
to risk. When deciding about risk, rational decision theory is largely synony-
mous with Expected Utility Theory, the standard theory in economics. The
second widely used decision theory is Mean-Variance Theory, whose simplicity
allows for manifold applications in finance, but is also a limit to its validity.
In recent years, Prospect Theory has gained attention as a descriptive theory
that explains actual decisions of persons with high accuracy. At the end of this
chapter, we discuss time-preferences and the concept of “time-discounting”.

Before we discuss different approaches to decisions under risk and how
they are connected with each other, let us first have a look at their common
underlying structure.
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2.1 Fundamental Concepts

A common feature of decision theories under risk and uncertainty is that they
define so-called preference relations between lotteries. A lottery is hereby a
given set of states together with their respective outcomes and probabilities. A
preference relation is a set of rules that states how we make pairwise decisions
between lotteries.

Example 2.1. As an example we consider a simplified stock market in which
there are only two different states: a boom (state 1) and a recession (state 2).
Both states occur with a certain probability prob1 respectively prob2 = 1 −
prob1. An asset will yield a payoff of a1 in case of a boom and a2 in case of a
recession.

Boom: payoff a1prob1 ���������

Recession: payoff a2
prob2 ���������

We can describe assets also in the form of a table. Let us assume we want to
compare two assets, a stock and a bond, then we have for the payoffs:

state probability stock bond

Boom prob1 astock
1 abond

1

Recession prob2 astock
2 abond

2

The approach summarized in this table is called the “state preference
approach”.

If we are faced with a decision between these assets, this decision will ob-
viously depend on the probabilities prob1 and prob2 with which we expect
a boom or a recession, and on the corresponding payoffs. However, it might
also depend on the state in which the corresponding payoff is made. To give a
simple example: you might prefer ice cream over a hot cup of tea on a sunny
summer day, but in winter this preference is likely to reverse, although the
price of ice cream and tea and your budget are all unchanged. In other words,
your preference depends directly on the state. It is often a reasonable simpli-
fication to assume that preferences over financial goods are state independent
and we will assume this most of the time. This does not exclude indirect ef-
fects: in Example 2.1 a preference might, e.g., depend on the available budget
which could be lower in the case of a recession.

In the state independent case, a lottery can be described only by outcomes
and their respective probabilities. Let us assume in the above example that
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prob1 = prob2 = 1/2. Then we would not distinguish between one asset that
yields a payoff of a1 in a boom and a2 in a recession and one asset that yields
a payoff of a2 in a boom and a1 in a recession, since both give a payoff of
a1 with probability 1/2 and a2 with probability 1/2. This is a very simple
example for a probability measure on the set of outcomes.1

To transform the state preference approach into a lottery approach, we sim-
ply add the probabilities of all states where our asset has the same payoff. For-
mally, if there are S states s = 1, 2, . . . , S with probabilities prob1, . . . , probS
and payoffs a1, . . . aS , then we obtain the probability pc for a payoff c by sum-
ming probi over all i with ai = c. If you like to write this down as a formula,
you get

pc =
∑

{i=1,...,S | ai=c}
probi.

To give a formal description of our liking and disliking of the things we
can choose from, we introduce the concept of preferences. A preference com-
pares lotteries, i.e., probability distributions (or, more precisely, probability
measures), denoted by P , on the set of possible payoffs. If we prefer lottery
A over B, we simply write A � B. If we are indifferent between A and B,
we write A ∼ B. If either of them holds, we can write A � B. We always
assume A ∼ and thus A � B (reflexivity). However, we should not mix up
these preferences with the usual algebraic expressions ≥ and >: if A � B and
B � A, this does not imply that A = B, which would mean that the lotteries
were identical, since of course we can be indifferent when choosing between
different things!

Naturally, not every preference makes sense. Therefore in economics one
usually considers preference relations which are preferences with some addi-
tional properties. We will motivate this definition later in detail, for now we
just give the definition, in order to clarify what we are talking about.

Definition 2.2. A preference relation � on P satisfies the following condi-
tions:

(i) It is complete, i.e., for all lotteries A, B ∈ P, either A � B or B � A
or both.

(ii) It is transitive, i.e., for all lotteries A, B, C ∈ P with A � B and B � C
we have A � C.

There are more properties one would like to require for “reasonable” pref-
erences. When comparing two lotteries which both give a certain outcome,
we would expect that the lottery with the higher outcome is preferred. – In
other words: “More money is better.” This maxim fits particularly well in the
context of finance, in the words of Woody Allen:
1 We usually allow all real numbers as outcomes. This does not mean that all of

these outcomes have to be possible. In particular, we can also handle situations
where only finitely many outcomes are possible within this framework. For details
see the background information on probability measures in Appendix A.4.
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Money is better than poverty, if only for financial reasons.

Generally, one has to be careful with ad hoc assumptions, since adding too
many of them may lead to contradictions. The idea that “more money is
better”, however, can be generalized to natural concepts that are very useful
when studying decision theories.

A first generalization is the following: if A yields a larger or equal outcome
than B in every state, then we prefer A over B. This leads to the definition of
state dominance. If we go back to the state preference approach and describe
A and B by their payoffs aA

s and aB
s in the states s = 1, . . . , S, we can define

state dominance very easily as follows:2

Definition 2.3 (State dominance). If, for all states s = 1, . . . S, we have
aA

s ≥ aB
s and there is at least one state s ∈ {1, . . . , S} with aA

s > aB
s , then we

say that A state dominates B. We sometimes write A �SD B.
We say that a preference relation � respects (or is compatible with) state

dominance if A �SD B implies A � B. If � does not respect state dominance,
we say that it violates state dominance.

In the example of the economy with two states (boom and recession),
A �SD B simply means that the payoff of A is larger or equal than the payoff
of B in the case of a boom and in the case of a recession (in other words
always) and at least in one of the two cases strictly bigger.

As a side remark for the interested reader, we briefly discuss the following
observation: in the above economy with two states with equal probabilities
for boom and recession, we could argue that an asset A that yields a payoff of
1000e in the case of a boom and 500e in the case of a recession is still better
than an asset B that yields 400e in the case of a boom and 600e in case
of a recession, since the potential advantage of B in the case of a recession
is overcompensated by the advantage of A in the case of a boom, and we
have assumed that both cases are equally likely (compare Fig. 2.1). However,
A does not state-dominate B, since B is better in the recession state. The
concept of state-dominance is therefore not sufficient to rule out preferences
that prefer B over A. If we want to rule out such preferences, we need to define
a more general notion of dominance, e.g., the so-called stochastic dominance3.
We call an asset A stochastically dominant over an asset B if for every payoff
the probability of A yielding at least this payoff is larger or equal to the
probability of B yielding at least this payoff. It is easy to prove that state
dominance implies stochastic dominance. We will briefly come back to this
definition in Sec. 2.4.
2 It is possible to extend this definition from finite lotteries to general situations:

state dominance holds then if the payoff in lottery A is almost nowhere lower
than the payoff of lottery B and it is strictly higher with positive probability. See
the appendix for the measure theoretic foundations to this statement.

3 Often this concept is called first order stochastic dominance, see [Gol04] for more
on this subject.
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Fig. 2.1. Motivation for stochastic dominance

In the following sections we will focus on preferences that can be expressed
with a utility functional. What is the idea behind this? Handling preference
relations is quite an inconvenient thing to do, since computational methods do
not help us much: preference relations are not numbers, but – well – relations.
For a given set of lotteries, we have to define them in the form of a long list,
that becomes infinitely long as soon as we have infinitely many lotteries to
consider. Hence we are looking for a method to define preference relations
in a neat way: we simply assign a number to each lottery in a way that a
lottery with a larger number is preferred over a lottery with a smaller number.
In other words: if we have two lotteries and we want to know what is the
preference between them, we compute the numbers assigned to them (using
some formula that we define beforehand in a clever way) and then choose
the one with the larger number. Our analysis is now a lot simpler, since we
deduce preferences between lotteries by a simple calculation followed by the
comparison of two real numbers. We call the formula that we use in this
process a utility functional. We summarize this in the following definition:

Definition 2.4 (Utility functional). Let U be a map that assigns a real
number to every lottery. We say that U is a utility functional for the preference
relation � if for every pair of lotteries A and B, we have U(A) ≥ U(B) if
and only if A � B.

In the case of state independent preference relations, we can understand
U as a map that assigns a real number to every probability measure on the set
of possible outcomes, i.e., U : P → R.

At this point, we need to clarify some vocabulary and answer the question,
what is the difference between a function and a functional. This is very easy:
a function assigns numbers to numbers; examples are given by u(x) = x2

or v(x) = log x. This is what we know from high school, nothing new here.
A functional, however, assigns a number to more complicated objects (like
measures or functions); examples are the expected value E(p) that assigns to
a probability measure a real number, in other words E : P → R, or the above
utility functional. The distinction between functions and functionals will help
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us later to be clear about what we mean, i.e. it is important not to mix up
utility functions with utility functionals.

Not for all preferences, there is a utility functional. In particular if there
are three lotteries A, B, C, where we prefer B over A and C over B, but A over
C, there is no utility functional reflecting these preferences, since otherwise
U(A) < U(B) < U(C) < U(A). This preference clearly violates the second
condition of Def. 2.2, but even if we restrict ourselves to preference relations,
we cannot guarantee the existence of a utility function, as the example of a
lexicographic ordering shows, see [AB03, p.317]. We will formulate in the next
sections some conditions under which we can use utility functionals, and we
will see that we can safely assume the existence of a utility functional in most
reasonable situations.

2.2 Expected Utility Theory

We will now discuss the most important form of utility, based on the expected
utility approach.

2.2.1 Origins of Expected Utility Theory

The concept of probabilities was developed in the 17th century by Pierre
de Fermat, Blaise Pascal and Christiaan Huygens, among others. This led
immediately to the first mathematically formulated theory about the choice
between risky alternatives, namely the expected value (or mean value). The
expected value of a lottery A having outcomes xi with probabilities pi is given
by

E(A) =
∑

i

xipi.

If the possible outcomes form a continuum, we can generalize this by defining

E(A) =
∫ +∞

−∞
xdp,

where p is now a probability measure on R. If, e.g., p follows a normal distri-
bution, this formula leads to

E(A) =
1

σ
√

2π

∫ +∞

−∞
x exp

(
− (x− μ)2

2σ2

)
dx,

where μ ∈ R and σ > 0.
The expected value is the average outcome of a lottery if played iteratively.

It seems natural to use this value to decide when faced with a choice between
two or more lotteries. In fact, this idea is so natural, that it was the only
well-accepted theory for decisions under risk until the middle of the 20th
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century. Even nowadays it is still the only one which is typically taught at
high school, leaving many a student puzzled about the fact that “mathematics
says that buying insurances would be irrational, although we all know it’s a
good thing”. (In fact, a person who decides only based on the expected value
would not buy an insurance, since insurances have negative expected values
due to the simple fact that the insurance company has to cover its costs and
usually wants to earn money and hence has to ask for a higher premium than
the expected value of the insurance.)

But not only in high schools is the idea of the expected value as the sole
criterion for rational decisions still astonishingly widespread: when newspapers
compare the performance of different pension funds, they usually only report
the average return p.a. But what if you have enrolled into a pension fund with
the highest average return over the past 100 years, but the average return over
your working period was low? More general, what does the average return of
the last year tell you about the average return in the next year?

The idea that rational decisions should only be made depending on the
expected return was first criticized by Daniel Bernoulli in 1738 [Ber38]. He
studied, following an idea of his cousin, Nicolas Bernoulli, a hypothetical lot-
tery A set in a hypothetical casino in St. Petersburg which became therefore
known as the “St. Petersburg Paradox”. The lottery can be described as fol-
lows: After paying a fixed entrance fee, a fair coin is tossed repeatedly until
“tails” first appears. This ends the game. If the number of times the coin
is tossed until this point is k, you win 2k−1 ducats (compare Fig. 2.2). The
question is now: how much would you be willing to pay as an entrance fee to
play this lottery?

If we follow the idea of using the expected value as criterion, we should
be willing to pay an entrance fee up to this expected value. We compute the
probability pk that the coin will show “tails” after exactly k times:

pk = P (“heads” on 1st toss) · P (“heads” on 2nd toss) · · ·
· · ·P (“tails” on k-th toss)

=
(

1
2

)k
.

Now we can easily compute the expected return:

E(A) =
∞∑

k=1

xkpk =
∞∑

k=1

2k−1

(
1
2

)k

=
∞∑

k=1

1
2

= +∞.

In other words, following the expected value criterion, you should be willing
to pay an arbitrarily large amount of money to take part in the lottery. How-
ever, the probability that you win 1024 = 210 ducats or more is less than one
in a thousand and the infinite expected value only results from the tiny pos-
sibility of extremely large outcomes. (See Fig. 2.3 for a sketch of the outcome
distribution.) Therefore most people would be willing to pay not more than
a couple of ducats to play the lottery. This seemingly paradoxical difference
led to the name “St. Petersburg Paradox”.
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Fig. 2.2. The “St. Petersburg Lottery”
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Fig. 2.3. The outcome distribution of the St. Petersburg Lottery

But is this really so paradoxical? If your car does not drive, this is not
paradoxical (although cars are constructed in order to drive), but it needs
to be checked, and probably repaired. If you use a model and encounter an
application where it produces paradoxical or even plainly wrong results, then
this model needs to be checked, and probably repaired. In the case of the
St. Petersburg Paradox, the model was structured to decide according to
the expected return. Now, Daniel Bernoulli noticed that this expected return
might not be the right guideline for your choice, since it neglects that the
same amount of money gained or lost might mean something very different to
a person depending on his wealth (and other factors). To put it simple, it is
not at all clear why twice the money should always be twice as good: imagine
you win one billion dollars. I assume you would be happy. But would you be
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as happy about then winning another billion dollars? I do not think so. In
Bernoulli’s own words:

There is no doubt that a gain of one thousand ducats is more signif-
icant to the pauper than to a rich man though both gain the same
amount.

Therefore, it makes no sense to compute the expected value in terms of
monetary units. Instead, we have to use units which reflect the usefulness
of a given wealth. This concept leads to the utility theory, in the words of
Bernoulli:

The determination of the value of an item must not be based on the
price, but rather on the utility [“moral value”] it yields.

In other words, every level of wealth corresponds to a certain numerical value
for the person’s utility. A utility function u assigns to every wealth level (in
monetary units) the corresponding utility, see Fig. 2.4.4 What we now want
to maximize is the expected value of the utility, in other words, our utility
functional becomes

U(p) = E(u) =
∑

i

u(xi)pi,

or in the continuum case

U(p) = E(u) =
∫ +∞

−∞
u(x) dp.

Since we will define other decision theories later on, we denote the Expected
Utility Theory functional from now on by EUT .

utility

money

Fig. 2.4. A utility function

4 We will see later, how to measure utility functions in laboratory experiments
(Sec. 2.2.4), and how it is possible to deduce utility functions from financial
market data (Sec. 4.6).
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Why does this resolve the St. Petersburg Paradox? Let us assume, as
Bernoulli did, that the utility function is given by u(x) := ln(x), then the
expected utility of the St. Petersburg lottery is

EUT (Lottery) =
∑

k

u(xk)pk =
∑

k

ln(2k−1)
(

1
2

)k

= (ln 2)
∑

k

k − 1
2k

< +∞.

This is caused by the “diminishing marginal utility of money”, i.e., by the
fact that ln(x) grows slower and slower for large x.

What other consequences do we get by changing from the classical decision
theory (expected return) to the Expected Utility Theory (EUT)?5

Example 2.5. Let us consider a decision about buying a home insurance. There
are basically two possible outcomes: either nothing bad happens to our house,
in which case our wealth is diminished by the price of the insurance (if we
decide to buy one), or disaster strikes, our house is destroyed (by fire, earth-
quake etc.) and our wealth gets diminished by the value of the house (if we do
not buy an insurance) or only by the price of the insurance (if we buy one).

We can formulate this decision problem as a decision between the following
two alternative lotteries A and B, where p is the probability that the house
is destroyed, w is our initial wealth, v is the value of the house and r is the
price of the insurance:

A :=

w − vp ���������

w1−p ����������� B :=

w − rp ���������

w − r1−p
���������

We can also display these lotteries as a table like this:

A = Probability 1 − p p
Final wealth w w − v

, B = Probability 1 − p p
Final wealth w − r w − r

.

A is the case where we do not buy an insurance, in B if we buy one. Since the
insurance wants to make money, we can be quite sure that E(A) > E(B). The
expected return as criterion would therefore suggest not to buy an insurance.
Let us compute the expected utility for both lotteries:
5 EUT is sometimes called Subjective Expected Utility Theory to stress cases where

the probabilities are subjective estimates rather than objective quantities. This
is frequently abbreviated by SEU or SEUT.
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EUT (A) = (1 − p)u(w) + pu(w − v),
EUT (B) = (1 − p)u(w − r) + pu(w − r) = u(w − r).

We can now illustrate the utilities of the two lotteries (compare Fig. 2.5) if
we notice that EUT (A) can be constructed as the value at (1−p)v of the line
connecting the points (w − v, u(w − v)) and (w, u(w)), since

EUT (A) = u(w − v) + (1 − p)v
u(w) − u(w − v)

v
.

WW − V

B

W − R

d

EUT (B)

EUT (A)

Fig. 2.5. The insurance problem

The expected profit of the insurance d is the difference of price and ex-
pected return, hence d = r − pv. We can graphically construct and compare
the utilities for the two lotteries (see Fig. 2.5). We see in particular, that a
strong enough concavity of u makes it advantageous to buy an insurance, but
also other factors have an influence on the decision:

• If d is too large, the insurance becomes too expensive and is not bought.
• If w becomes large, the concavity of u decreases and therefore buying the

insurance at some point becomes unattractive (assuming that v and d are
still the same).

• If the value of the house v is large relative to the wealth, an insurance
becomes more attractive.

We see that the application of Expected Utility Theory leads to quite realistic
results. We also see that a crucial factor for the explanation of the attrac-
tiveness of insurances and the solution of the St. Petersburg Paradox is the
concavity of the utility function. Roughly spoken, concavity corresponds to
risk-averse behavior. We formalize this in the following way:
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Definition 2.6 (Concavity). We call a function u : R → R concave on the
interval (a, b) (which might be R) if for all x1, x2 ∈ (a, b) and λ ∈ (0, 1) the
following inequality holds:

λu(x1) + (1 − λ)u(x2) ≤ u (λx1 + (1 − λ)x2) . (2.1)

We call u strictly concave if the above inequality is always strict (for x1 �= x2).

Definition 2.7 (Risk-averse behavior). We call a person risk-averse if he
prefers the expected value of every lottery over the lottery itself.6

x2x1 x0

x0 = λx1 + (1 − λ)x2

λu(x1) + (1 − λ)u(x2)

u(x0)

Fig. 2.6. A strictly concave function

Formula (2.1) looks a little complicated, but follows with a small compu-
tation from Fig. 2.6. Analogously, we can define convexity and risk-seeking
behavior:

Definition 2.8 (Convexity). We call a function u : R → R convex on the
interval (a, b) if for all x1, x2 ∈ (a, b) and λ ∈ (0, 1) the following inequality
holds:

λu(x1) + (1 − λ)u(x2) ≥ u(λx1 + (1 − λ)x2). (2.2)

We call u strictly convex if the above inequality is always strict (for x1 �= x2).

Definition 2.9 (Risk-seeking behavior). We call a person risk-seeking if
he prefers every lottery over its expected value.

We have some simple statements on concavity and its connection to risk
aversion.

6 Sometimes this property is called “strictly risk-averse”. “Risk-averse” then also
allows for indifference between a lottery and its expected value. The same remark
applies to risk-seeking behavior, compare Def. 2.9.
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Proposition 2.10. The following statements hold:

(i) If u is twice continuously differentiable, then u is strictly concave if and
only if u′′ < 0 and it is strictly convex if and only if u′′ > 0. If u is
(strictly) concave, then −u is (strictly) convex.

(ii) If u is strictly concave, then a person described by the Expected Utility
Theory with the utility function u is risk-averse. If u is strictly convex,
then a person described by the Expected Utility Theory with the utility
function u is risk-seeking.

To complete the terminology, we mention that a person which has an
affine (and hence convex and concave) utility function is called risk-neutral,
i.e., indifferent between lotteries and their expected return.

As we have already seen, risk aversion is the most common property, but
one should not assume that it is necessarily satisfied throughout the range of
possible outcomes. We will discuss these questions in more detail in Sec. 2.2.3.

An important property of utility functions is, that they can always be
rescaled without changing the underlying preference relations. We recall that

U(x1, . . . , xS) =
S∑

s=1

psu(xs).

Then, U is fixed only up to monotone transformations and u only up to
positive affine transformations:

Proposition 2.11. Let λ > 0 and c ∈ R. If u is a utility function that corre-
sponds to the preference relation �, i.e., A � B implies U(A) ≥ U(B), then
v(x) := λu(x) + c is also a utility function corresponding to �.

For this reason it is possible to fix u at two points, e.g., u(0) = 0 and
u(1) = 1, without changing the preferences. And for the same reason it is not
meaningful to compare absolute values of utility functions across individuals,
since only their preference relations can be observed, and they define the utility
function only up to affine transformations. This is an important point that
is worth having in mind when applying Expected Utility Theory to problems
where several individuals are involved.

We have learned that Expected Utility Theory was already introduced by
Bernoulli in the 18th century, but has only been accepted in the middle of
the 20th century. One might wonder, why this took so long, and why this
mathematically simple method has not quickly found fruitful applications.
We can only speculate what might have happened: mathematicians at that
time felt a certain dismay to the muddy waters of applications: they did not
like utility functions whose precise form could not be derived from theoretical
considerations. Instead they believed in the unique validity of clear and tidy
theories. And the mean value was such a theory.

Whatever the reason, even in 1950 the statistician Feller could still write in
an influential textbook [Fel50] on Bernoulli’s approach to the St. Petersburg
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Paradox that he “tried in vain to solve it by the concept of moral expectation.”
Instead Feller attempted a solution using only the mean value, but could ulti-
mately only show that the repeated St. Petersburg Lottery is asymptotically
fair (i.e., fair in the limit of infinite repetitions) if the entrance fee is k log k
at the k-th repetition. This implies of course that the entrance fee (although
finite) is unbounded and tends to infinity in the limit which seems not to be
much less paradoxical than the St. Petersburg Paradox itself. Feller was not
alone with his criticism: W. Hirsch writes about the St. Petersburg Paradox
in a review on Feller’s book:

Various mystifying “explanations” of this paradox had been offered in
the past, involving, for example, the concept of moral expectation. . .
These explanations are hardly understandable to the modern student
of probability.

The discussion in the 1960s even became at times a dispute with slight “pa-
triotic” undertones; for an entertaining reading on this, we refer to [JB03,
Chapter 13].

At that time, however, the ideas of von Neumann and Morgenstern (that
originated in their book written in 1944 [vNM53]) finally gained popularity
and the Expected Utility Theory became widely accepted.

The previous discussions seem to us nowadays more amusing than com-
prehensible. We will speculate later on some reasons why the time was ripe
for the full development of the EUT at that time, but first we will present
the key insights of von Neumann and Morgenstern, the axiomatic approach
to EUT.

2.2.2 Axiomatic Definition

When we talk about “rational decisions under risk”, we usually mean that
a person decides according to Expected Utility Theory. Why is there such a
strong link between rationality and EUT? However convincing the arguments
of Bernoulli are, the main reason is a very different one: we can derive EUT
from a set of much simpler assumptions on an individual’s decisions. Let us
start to compose such a list:

First, we assume that a person should always have some opinion when
deciding between two alternatives. Whether the person prefers A over B or
B over A or whether the person is indecisive, does not matter. But one of
these should always be the case. Although this sounds trivial, it might well
be that in some context this condition is violated, in particular when moral
issues are involved. Generally, and in particular when only financial matters
are involved, this condition is indeed very natural. We formulate it as our
first axiom, i.e., a fundamental assumption on which our later analysis can be
based:

Axiom 2.12 (Completeness). For every pair of possible alternatives, A, B,
either A ≺ B, A ∼ B or A � B holds.
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It is easy to see that EUT satisfies this axiom as long as the utility func-
tional has a finite value.

The next idea is that we should have consistent decisions in the following
sense: If we prefer B over A and C over B, then we should prefer C over
A. This idea is called “transitivity”. In the fairy tale “Lucky Hans” by the
Brothers Grimm, this property is violated, as Lucky Hans happily exchanges
a lump of solid gold, that he had earned for seven years of hard work, for
a horse, because the gold is so heavy to carry. Afterwards he exchanges the
horse for a cow, the cow for a pig, the pig for a goose, and the goose finally
for two knife grinder stones which he then accidentally throws into a well.
But he is very happy about this accident, since the stones were so heavy to
carry. . . At the end of the tale he has therefore the same that he had seven
years before – nothing. But nevertheless each exchange seemed to make him
happy.

Gold

Horse

Cow

PigGoose

Nothing

Grindstone

Fig. 2.7. The cycle of the “Lucky Hans”, violating transitivity

In mathematical terms, “Lucky Hans” preferred B over A, C over B and
A over C. Although we might not be blessed with such a cheerful nature,
we have to accept that the behavior of some people can be very strange
indeed and that the assumption of transitivity might be already too much
to describe individuals. However, persons like “Lucky Hans” are probably
quite an exception, and the fairy tale would not have its humorous effect
if the audience considered such a transitivity-violating behavior normal. We
can therefore feel quite safe by applying this principle, in particular in a
prescriptive context.

Axiom 2.13 (Transitivity). For every A,B,C with A  B and B  C, we
have A  C.
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Transitivity is satisfied by EUT and by all other theories that are based
on a utility functional, since for these decision theories, transitivity translates
into transitivity of real numbers which is always satisfied.

The properties up to now could have been stated for preferences between
apples and pears or for whatever one might wish to decide about. It was by
no means necessary that the objects under considerations were lotteries. We
will now focus on decision under risk, since the following axioms require more
detailed properties of the items we wish to compare.

The next axiom is more controversial than the first two. We argue as fol-
lows: if we have to choose between two lotteries which are partially identical,
then our decision should only depend on the difference between the two lot-
teries, not on the identical part. We illustrate this with an example:

Example 2.14. Let us assume that we decide about buying a home insur-
ance.There are two insurances on the market that cost the same amount of
money and pay out the same amount in case of a damage, but one of them
excludes damages by floods and the other one excludes damages by storm.
Moreover both insurances exclude damages induced by earthquakes.

A :=

No damage: w − r

General damage: w − r

Storm: w − r

Flood: w − r − v

Earthquake: w − r − v

, B :=

No damage: w − r

General damage: w − r

Storm: w − r − v

Flood: w − r

Earthquake: w − r − v

.

If we decide on which insurance to buy, we should make our decision without
considering the case of an earthquake, since this case (probability and costs)
is identical for both alternatives and hence irrelevant for our decision.

Although the idea to ignore irrelevant alternatives sounds reasonable, it
turns out not to be very consistent with experimental findings. We will discuss
this when we study descriptive approaches like Prospect Theory in Sec. 2.4.
For now, we can happily live with this assumption, since we are more interested
in rational decisions, in other words we follow a prescriptive approach.

To formulate this axiom mathematically correctly, we need to understand
what it means when we combine lotteries.
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Definition 2.15. Let A and B be lotteries and λ ∈ [0, 1], then λA+(1−λ)B
denotes a new combined lottery where with probability λ the lottery A is played,
and with probability 1 − λ the lottery B is played.7

Example 2.16. Let A and B be the following lotteries:

A =

01/2 �������

11/2
������� , B =

01/3 �������

22/3
������� .

Then the lottery C := λA+ (1 − λ)B can be calculated as

C = λA+ (1 − λ)B =

A�������	

λ
���������

B�������	
1−λ ��

��
��

��
� =

λ

�����������

01/2 �������

11/2
�������

1−λ
��

��
��

��
��

�

01/3 �������

22/3
�������

.

Alternatively, we can do the same calculation by representing the lottery in a
table:

A = Probability 1/2 1/2
Outcome 0 1

, B = Probability 1/3 2/3
Outcome 0 2

.

Then the lottery C := λA+ (1 − λ)B is

C = λA+ (1 − λ)B = λ 1 − λ
A B

=
λ 1 − λ

1/2 1/2 1/3 2/3
0 1 0 2

Both formulations lead to the same result, it is basically a matter of taste
whether we write lotteries as tree diagrams or tables. The Independence Ax-
iom allows us now to collect compound lotteries into a single lottery, i.e.

7 If the lotteries are given as probability measures, then the notation coincides with
the usual algebraic manipulations of probability measures.
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C ∼
0λ

2 + 1−λ
3

�������������� 1λ/2

22(1−λ)
3

														

or C ∼
λ
2 + 1−λ

3
λ
2

2(1−λ)
3

0 1 2

A mathematically precise formulation of the Independence Axiom reads
as follows:

Axiom 2.17 (Independence). Let A and B be two lotteries with A � B, and
let λ ∈ (0, 1] then for any lottery C, it must hold

λA + (1 − λ)C � λB + (1 − λ)C.

To see that EUT satisfies the Independence Axiom is not so obvious any-
more, but the proof is not very difficult. To keep things simple, we assume
that the lotteries A, B and C have only finitely many outcomes x1, . . . , xn. (A
general proof is given in Appendix A.6.) The probability to get the outcome xi

in lottery A is denoted by pA
i . Analogously, we write pB

i and pC
i . We compute

U(λA+ (1 − λ)C) =
∑n

i=1

(
λpA

i + (1 − λ)pC
i

)
u(xi)

= λ
∑n

i=1 p
A
i u(xi) + (1 − λ)

∑n
i=1 p

C
i u(xi)

= λU(A) + (1 − λ)U(C)
> λU(B) + (1 − λ)U(C)

= λ
∑n

i=1 p
B
i u(xi) + (1 − λ)

∑n
i=1 p

C
i u(xi)

= U(λB + (1 − λ)C).

The last axiom we want to present is the so-called “Continuity Axiom”:8

let us consider three lotteries A,B,C, where we prefer A over B and B over
C. Then there should be a way to mix A and C such that we are indifferent
between this mix and B. In a precise formulation, valid for finite lotteries:9

Axiom 2.18 (Continuity). Let A,B,C be lotteries with A � B � C then
there exists a probability p such that B ∼ pA+ (1 − p)C.

One might argue whether this axiom is natural or not, but at least for
financial decisions this seems to be a very reasonable assumption. Again, it is

8 Sometimes this is also called “Archimedian Axiom”.
9 In order to make this concept work for non-discrete lotteries, one needs to take

a slightly more complicated approach. We give this general definition in Ap-
pendix A.6.
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not very difficult to see that EUT satisfies the Continuity Axiom. The proof
for this is left as an exercise.

Why did we define all these axioms? We have seen that EUT satisfies them
(sometimes under little additional conditions like continuity of u), but the
reason why they are interesting is a different one: if we don’t know anything
about a system of preferences, besides that it satisfies these axioms, then they
can be described by Expected Utility Theory! This is quite a surprise, since
at first glance the definition of EUT as given by Bernoulli seemed to be a
very special and concrete concept, but preference relations and the axioms
we studied seem to be very general and abstract. Now, both approaches –
the direct definition based on economic intuition and the careful, very general
approach based only on a small list of natural axioms – lead exactly to the
same concept. This was the key insight by Morgenstern and von Neumann
[vNM53]. Therefore, utility functions in EUT are often called “von Neumann-
Morgenstern utility functions”.

We formulate this central result in the following theorem that does not
follow precisely the original formulation by von Neumann and Morgenstern,
but is nowadays the most commonly used version of their result.

Theorem 2.19 (Expected Utility Theory). A preference relation that sat-
isfies the Completeness Axiom 2.12, the Transitivity Axiom 2.13, the Indepen-
dence Axiom 2.17 and the Continuity Axiom 2.18, can be represented by an
EUT functional. EUT always satisfies these axioms.

Proof. Since the result is so central, we give a sketch of its proof. However,
the mathematically inclined reader might want to venture into the realms of
Appendix A.6, where the complete proof together with some generalizations
(in particular to lotteries with infinite outcomes) is presented.

First, we notice that the (simpler) half of the proof is already done: We
have already checked that preference relations which are described by the
Expected Utility Theory satisfy all of the listed axioms. What remains is to
prove that if these axioms are satisfied, a von Neumann-Morgenstern utility
function exists.

Let us consider lotteries with finitely many outcomes x1, . . . , xn with x1 >
x2 > · · · > xn. A sure outcome of xi can be replaced by a lottery having only
the two outcomes x1 and xn with some probability qi and (1−qi), as we know
from the Continuity Axiom. In other words:

xi ∼

x1qi �������

xn
1−qi

������� .

If we have an arbitrary lottery A with outcomes x1, . . . , xn, each of probability
pA
1 , . . . , p

A
n , then we can use the Independence Axiom to substitute first the
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single outcomes by lotteries in x1 and xn (using the above equivalence) and
then collecting the new lottery into a compound lottery, shown in Figure 2.8.

x1

pA
1















x2

pA
2�����

����

· · ·����������

xn

pA
n ����������� ∼

x1

pA
1

�������������������

x1q1 

xn1−q1
�����

x2
pA
2

��������������

x1q2 

xn1−q2
�����

· · ·
���������������

xn

pA
n

��
��

��
��

��
��

��
��

��
�

x1qn 

xn1−qn

�����

∼
x1∑n

i=1 pA
i qi

�����������������

xn
∑n

i=1 pA
i (1−qi)

����������������� .

Fig. 2.8. Compound lottery

If we want to compare two lotteries A and B, we transform them both
in this way to get equivalent lotteries A′ and B′. Then it becomes very easy
for us to decide which lottery is the best: we simply prefer A′ over B′ if
the probability of A′ having the better outcome (x1 or xn) is larger. To fix
ideas, let us assume that x1 is preferred over xn, then we just need to compare
U(A) :=

∑n
i=1 p

A
i qi with U(B) :=

∑n
i=1 p

B
i qi: if U(A) > U(B), than we prefer

A over B; if U(B) > U(A), then the other way around. Now we can define a
utility function u in such a way, that its Expected Utility for any lottery A
becomes U(A): simply define u(xi) := qi, then

EUT (A) =
n∑

i=1

pA
i u(xi) =

n∑

i=1

pA
i qi.

Since we convinced ourselves that the listed axioms are all very reasonable,
and we tend to say that a rational person should obey them, we can conclude
that EUT is in fact a good prescriptive theory for decisions under risk. How-
ever, we have to assume that the utility function considers all relevant effects.
– Not in all situations are the monetary amounts involved the only relevant
effect. Other effects could be based on moral standards, social acceptance etc.
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EUT as a prescriptive model will work the better the smaller the influence
of such factors are that cannot readily be included into the definition of the
utility function.

Whether it is also adequate to model behavior of people in real life is an en-
tirely different question, and it will turn out that there are some discrepancies
that lead to the development of new descriptive theories.

Coming back for a moment to the question, why it took more than two
hundred years for the development of Expected Utility Theory, a look at other
sciences, and in particular mathematics can help us. In fact, the approach by
von Neumann and Morgenstern follows a concept that had been used in math-
ematics intensely at the beginning of the 20th century and can be summarized
as the “axiomatic method”: starting from some fundamental and simple ax-
ioms one tries to derive complex theories. Mathematicians stopped accepting
objects like the real numbers and merely working with them, but instead de-
veloped methods to construct them from simple basic axioms: the natural
numbers from some axioms on sets, the rational numbers as fractions of natu-
ral numbers, the real numbers as limits of rational numbers and so forth. This
was the method that was waiting to be applied to the problems in decision
theory under risk. There was also a strong input from psychology which un-
derstood at this time that the elementary object of decisions is the preference
between objects. Von Neumann and Morgenstern (and together with them
other scientists who, around the same time, derived similar models) took this
as their starting point and used the axiomatic method from mathematics to
derive a solid foundation for rational decisions under risk.

We can now even go a step further and say that the results of von Neumann
and Morgenstern enable us to avoid any interpretation of the meaning of
“utility”. We may not have means to measure a person’s utility, but we do
not need to, since it just provides a useful mathematical concept of capturing
the person’s preference (which we can observe quite well). We don’t even have
to feel bad about using this mathematically convenient framework, since we
have proved that it is not so much of an extra assumption, but a natural
consequence of reasonable behavior.

To phrase this idea differently: we have at hands two complementary ways
of understanding what the Expected Utility Theory is. Summarizing them will
help to remember the core ideas of the theory much more than remembering
the formula:

• First, we can use Bernoulli’s idea of the utility function that assigns a
“real” value to a given amount of money.10 If we are faced with a decision
under risk, we should use the expected value of this utility as a natu-
ral method to find the more advantageous alternative. This leads to the
formula

EUT (A) = E(u(A))

10 This approach has recently found a revival in the works of Kahneman and others,
compare [KDS99].
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for the expected utility of a lottery A.
• Second, we can neglect any potential deep meaning of the utility func-

tions and consider them merely as a convenient and feasible (in realistic
situations as defined by the axioms of this section) way of describing the
preferences of a rational person.
The precise definition is made in a way that the utility of a lottery A can be
computed as convex combination of the utilities of the various outcomes,
weighted by their respective probabilities. If these outcomes are xi and
their probabilities are pi, then this leads to the formula

EUT (A) =
n∑

i=1

u(xi)pi,

respectively the generalization to non-discrete probability measures

EUT (A) =
∫
u(x) dp.

As we have seen, both approaches lead to the same result.
Looking back on the theory we have derived so far, we are now left with

a different, very practical question: we know that we should use EUT with a
monotone and continuous utility function u to model rational decisions under
risk, but there are plenty of monotone and continuous functions – actually
infinitely many. So, which one should we choose? Are there any further axioms
that could guide us to select the right one?

2.2.3 Which Utility Functions are “Suitable”?

We have seen that Expected Utility Theory describes a rational person’s de-
cisions under risk. However, we still have to choose the utility function u in
an appropriate way. In this section we will discuss some typical forms of the
utility function which have specific properties.

We have already seen that a reasonable utility function should be contin-
uous and monotone increasing, in order to satisfy all axioms introduced in
the last section. We have also already discussed that the concavity respec-
tively convexity of the utility function corresponds to risk-averse respectively
risk-seeking behavior. It would be nice if one could derive a quantitative mea-
surement for the degree of risk aversion (or risk-seeking) of a person. Since
convexity and concavity are characterized by the second derivative of a func-
tion (Proposition 2.10), a naive indicator would be this second derivative itself.
However, we have seen that utility functions are only characterized up to an
affine transformation (Proposition 2.11) which would change the value of u′′.
A way to avoid this problem is the standard risk aversion measure, r(x), first
introduced by J.W. Pratt [Pra64], which is defined as

r(x) := −u
′′(x)
u′(x)

.
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The larger r, the more a person is risk-averse. Assuming that u is monotone
increasing, values of r smaller than zero correspond to risk-seeking behavior,
values above zero correspond to risk-averse behavior.

What is the interpretation of r? The most useful property of r is that it
measures how much a person would pay for an insurance against a fair bet.
We formulate this as a proposition and give a proof for the mathematical
inclined reader:

Proposition 2.20. Let p be the outcome distribution of a lottery with E(p) =
0, in other words, p is a fair bet. Let w be the wealth level of the person, then,
neglecting higher order terms in r(w) and p,

EUT (w + p) = u

(
w − 1

2
var(p)r(w)

)
,

where var(p) denotes the variance of p. We could say that the “risk premium”,
i.e., the amount the person is willing to pay for an insurance against a fair
bet, is proportional to r(w).

Proof. We denote the risk premium by a and get EUT (w + p) = u(w − a).
Using EUT (w + p) = E(u(w + p)) and a Taylor expansion on both sides, we
obtain

E(u(w)) + E(pu′(w)) + E
(

1
2p

2u′′(w)
)

+ E
(
O(p3)

)

= u(w) − au′(w) +O(a2).

(Here O is the so-called Landau symbol, this means that O(f(x)) is a term
which is asymptotically less or equal to f(x).)
Using E(p) = 0, we get

− 1
2 var(p)u′′(w) = au′(w) −O(E(p3)) −O(a2)

and finally 1
2 var(p)r(w) = −a−O(E(p3)) + O(a2).

This result is particularly of interest, since it connects insurance premiums
with a risk aversion measure, and the former can easily be measured from real
life data.

What values can we expect for r? Looking at the problems we have studied
so far – the St. Petersburg Paradox and insurances – it is natural to assume
that risk aversion is the predominating property. However, there are situations
in which people behave in a risk-seeking way:

Example 2.21. Lotteries are popular throughout the world. A typical example
is the biggest German lottery, the “Lotto” with a turnover of about 25 Mil-
lion Euro per draw. A lottery ticket of this lottery costs 0.75e and the chances
of winning a major prize (typically in the one million Euro range) are just
0.0000071%. The chances of not getting any prize are 98.1%. Only 50% of the
money spent by the participants is redistributed, the other half goes to the
state and to welfare organizations.
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Without knowing any more details, it is possible to deduce that a risk-
averse or risk-neutral person should not participate on this lottery. Why? To
prove our claim, we use the Jensen inequality:

Theorem 2.22 (Jensen inequality). Let f : [a, b] → R be a convex func-
tion, let x1, . . . , xn ∈ [a, b] and let a1, . . . , an ≥ 0 with a1 + · · · + an = 1.
Then

f

(
n∑

i=1

aixi

)
≤

n∑

i=1

aif(xi).

If f is instead concave, the inequality is flipped.

We assume that you have encountered a proof of this inequality before,
otherwise you may have a look into a calculus textbook. We refer the advanced
reader to Appendix A.4 where we give a general form of Jensen’s inequality
that allows to generalize our results to non-discrete outcome distributions.

Let us now see, how this inequality can help us prove our statement on
lotteries:

We choose as function f the utility function u of a person and assume that
u is concave, corresponding to a risk-averse or at least risk-neutral behavior.
We denote the lottery with L. The outcomes of L (prizes plus the initial wealth
of the person minus the price of the lottery ticket) are denoted by xi, their
corresponding probabilities by ai.

Jensen’s inequality now tells us that

u(E(L)) = u

(
n∑

i=1

aixi

)
≥

n∑

i=1

aiu(xi) = EUT (L).

In other words: the utility of the expected return of the lottery is at least
as good as the expected utility of the lottery. Now we know that only 50%
of the raised money are redistributed to the participants, in other words, to
participate we have to pay twice the expected value of the lottery. Now since
u(2E(L)) > u(E(L)), we conclude that a rational risk-averse or risk-neutral
person should not participate on the lottery.

The fact that many people are nevertheless participating is a phenomenon
that cannot be too easily explained. In particular since the same persons
typically own insurances against various risks (which can only be explained
by assuming risk-averse preferences).

A possible explanation might be that their utility functions are concave for
low values of money, but become convex for larger amounts. This could also
explain why other games of chance, like roulette, that allow only for limited
prizes, are by far less popular than big lotteries. One could argue that the
marginal utility a person derives from a loss or gain of one Euro is not very
high, but by increasing the wealth above a certain threshold, the marginal
utility could grow. For instance, by winning one million Euro, a person could
be free to stop working or move to a nice and otherwise never affordable house.
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Although we will see more convincing non-rational explanations of this kind
of behavior later, we realize that assuming that risk attitudes should follow
a standard normalized pattern may not be a very convincing interpretation.
We could also think of a more extreme example, taken from a movie:

Example 2.23. In the movie “Run Lola Run”, Mannie, a wanna-be criminal,
is supposed to deliver 100, 000 Deutsch Marks (50, 000e) to his new boss, but
loses them on the way. Mannie and his girlfriend Lola have twenty minutes
left to get the money somehow from somewhere, otherwise the boss is going
to end Mannie’s career, probably in a fatal way. Unfortunately, they are more
or less broke.

The utility function for them will obviously be quite special: above a wealth
level of 50, 000e everything is fine (large utility), below that, everything is bad
(low utility). It is therefore very likely that their utility function will not be
concave. In the movie they are faced with the possibilities of robbing a grocery
store, robbing a bank, or gambling in roulette in a casino to earn their money
quickly. All three options are obviously very risky and reveal their highly risk-
seeking preferences. However, advising them to put the little money they have
on a bank account does not seem to be a very rational and helpful suggestion.

We conclude that there are no convincing arguments in favor of a specific
risk attitude, other than that risk-averse behavior seems to be reasonable for
very large amounts of money, as the St. Petersburg Paradox has taught us.
Nevertheless, it is often convenient to do so, and one might argue that “on
average” one or the other form could be a reasonable assumption.

One such standard assumption is that the risk aversion measure r is con-
stant for all wealth levels. This is called Constant Absolute Risk Aversion,
short: CARA. An example for such a CARA utility function is

u(x) := −e−Ax.

We can verify this by computing r(x) for this function:

r(x) = −u
′′(x)
u′(x)

=
A2e−Ax

Ae−Ax
= A.

Realistic values of A would be in the magnitude of A ≈ 0.0001.
Since it seems unlikely that risk attitudes are independent of a person’s

wealth, another standard approach suggests that r(x) should be proportional
to x. In other words, the relative risk aversion

rr(x) := xr(x) = −xu
′′(x)
u′(x)

is assumed to be constant for all x. We call such function constant relative
risk averse, short: CRRA. Examples for such functions are
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u(x) :=
xR

R
, where R < 1, R �= 0,

and
u(x) := lnx.

Setting R := 0 for lnx, we get rr(x) = 1 − R for all of these functions.
Typical values for R that have been measured are between −1 and −3, i.e.,
an appropriate utility function could be

u(x) := −1
2
x−2.

A subclass of these functions are probably the most widely used utility func-
tions u(x) := xα with α ∈ (0, 1). These functions seem to be popular mostly
for the sake of mathematical convenience: everybody knows their derivatives
and how to integrate them. They are also strictly concave and correspond
therefore to risk-averse behavior which is often the only condition that one
needs for a given application. – In other words, they are the perfect pragmatic
solution to define a utility function. But please do not walk away with the
idea that these functions are the only natural or the only reasonable or the
only rational choice for a utility function! We have seen that things are not as
easy and there is in fact no good reason other than convenience to recommend
the utility function u(x) = xα.

A generalization of the classes of utility functions introduced so far are
utility functions with hyperbolic absolute risk aversion (HARA). This class is
defined as all functions where the reciprocal of absolute risk aversion, T :=
1/r(x), is an affine function of x. In other words: u is a HARA function if
T := −u′(x)/u′′(x) = a+ bx for some constants a, b. There is a classification
of HARA functions by Merton [MS92]:

Proposition 2.24. A function u : R → R is HARA if and only if it is an
affine transformation of one of these functions:

v1(x) := ln(x+ a), v2(x) := −ae−x/a, v3(x) :=
(a+ bx)(b−1)/b

b − 1
,

where a and b are arbitrary constants (b �∈ {0, 1} for v3). If we define b := 1
for v1 and b := 0 for v2, we have in all three cases T = a+ bx.

It is now easy to see that HARA utilities include logarithmic, exponential
and power utility functions. (we give an overview in Table 2.1.) Of course, by
definition, they contain all CARA and CRRA functions. (v2 is CARA and v1
and v3 for a = 0 give all CRRA functions.) To assume that a utility function
has to belong to the HARA class is therefore certainly an improvement over
more specific ad hoc assumptions, like risk-neutrality. It is, however, only a
mathematically convenient simplification. We should not forget this fact, when
we use EUT.
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Table 2.1. Important classes of utility functions and some of their properties. All
belong to the class of HARA functions

Class of utilities Definition ARA r(x) RRA rr(x) Special properties

Logarithmic ln(x + c), c ≥ 0 decr. const. “Bernoulli utility”
Power 1

α
xα, α �= 0 decr. const. risk-averse if α < 1,

bounded if α < 0
Quadratic x − αx2, α > 0 incr. incr. bounded, monotone

only up to x = 1
2α

Exponential −e−αx, α > 0 const. incr. bounded

Unfortunately, it is not uncommon to read of one or the other class of util-
ity functions as being the only reasonable class. Be careful when encountering
such statements! Big minds have erred in such questions: take Bernoulli as an
example, who suggested a particular CRRA function (the logarithm) as utility
function. He argued that it would be reasonable to assume that the marginal
utility of a person is inversely proportional to his wealth level. In modern
mathematical terminology u′(x) ∼ 1/x. Integrating this differential equation,
we arrive at the logarithmic function that Bernoulli used to explain the St.
Petersburg Paradox. However, is this utility function really so reasonable?

Let us go back to the St. Petersburg Paradox and see whether the solution
Bernoulli suggested is really sufficient. Can we make the paradox reappear if
we change the lottery? Yes, we can: we just need to change the payoffs to the
(even larger) value of e2k

. Then with u(x) := ln(x) (Bernoulli’s suggestion),
we get u(xk) = ln(e2k−1

) = 2k−1 and the same computation as in the case of
the original paradox now proves that the expected utility of the new lottery
is infinite:

EUT =
∑

k

u(xk)pk =
∑

k

2k−1

(
1
2

)k

=
∑

k

1
2

= +∞.

More generally, one can find a lottery that allows for a variant of the St. Pe-
tersburg paradox for every unbounded utility function, as was first pointed out
by Menger [Men34].

There are basically two ways of solving this new paradox, which is some-
times called the “Super St. Petersburg Paradox”. We can understand them,
like in the case of the original St. Petersburg Paradox, by comparing the deci-
sion theory with a car. If your car does not drive, this might basically be due
to two factors: either something is wrong with the car (e.g., no fuel, engine
broken. . . ) or something is wrong with the place where you try to drive it
(e.g., you are stuck on an icy road). In the case of a model that could mean
that there is either something wrong with the model that needs to be fixed or
that you try to apply it at a wrong place, in other words you encountered a
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restriction to its applicability. In the case of the “Super St. Petersburg Para-
dox” that leaves us with two ways out:

• We can assume an upper bound on the utility function, take for example
u(x) = 1 − e−x which is bounded by 1. In this case, every lottery has an
expected utility of less than 1, and therefore there is a finite amount of
money that corresponds to this utility value.

• We can try to be a little bit more realistic in the setting of our original
paradox, and take into account that a casino would only offer lotteries
with a finite expected value, in order to be able to earn money by asking
for an entrance fee above this value. Under this restriction, one can prove
that the St. Petersburg paradox disappears as long as the utility function
is asymptotically concave (i.e., concave above a certain value) [Arr74].

In the second case, we restricted the range of applicable situations (“a car
does not drive well on icy roads, so avoid them”). In the first case, we fixed
our model to cover even these extreme situations (“always have snow chains
with you”).

We formulate this as a theorem:

Theorem 2.25 (St. Petersburg Lottery). Let p be the outcome distribu-
tion of a lottery. Let u : R → R be a utility function.

(i) If u is bounded, then EUT (p) :=
∫
u(x) dp <∞.

(ii) Assume that E(p) < ∞. If u is asymptotically concave, i.e., there is a
C > 0 such that u is concave on the interval [C,+∞), then EUT (p) <∞.

It is difficult to decide which of the two solutions is more appropriate,
an interesting discussion on this can be found in [Aum77]. Considerations in
the context of Cumulative Prospect Theory seem to favor a bounded utility
function, compare Sec. 2.4.4.

There is another interesting idea that tries to select a certain shape of util-
ity function via an evolutionary approach by Blume and Easley [BE92], see
also [Sin02]. There are many experiments for decisions under risk on animals
which show that phenomena like risk aversion are much older than humankind.
Therefore it makes sense to study their evolutionary development. If the num-
ber of offspring of an animal is linearly correlated to the resources it obtained,
and if the animal is faced with decisions under risk on these resources, then
it can be shown that the only evolutionary stable strategy is to decide by
EUT with a logarithmic utility function. This is a quite surprising and strong
result. In particular, all other possible decision criteria will eventually become
marginalized. In this sense EUT with logarithmic utility function would be
the only decision model we would expect to observe.

One could also try to apply this idea to financial markets and argue that in
the long run all investment strategies that do not follow the EUT maximiza-
tion with logarithmic utility function will be marginalized and their market
share will be negligible. Hence to model a financial market, we only need to



2.2 Expected Utility Theory 43

consider EUT maximizer with a logarithmic utility function. – This would
certainly be a very interesting insight!

However, there are a couple of problems with this line of argument. First,
in the original evolutionary setting, the assumption that the number of off-
spring is proportional to the resources is a light oversimplification. There is,
for instance, certainly a lower bound on the resources below which the animal
will simply die and the average number of offspring will therefore be zero,
on the other hand, there is some upper bound for the number of offspring.
Second, the application to financial markets (as suggested, e.g., in [Len04]) is
questionable: under-performance on the stock market does not have to lead
to marginalization, since it may be counteracted by adding external resources
and the investment time might just not be sufficiently long. New investors will
moreover not necessarily implement the same strategies as their predecessors
which prevents the market from converging to the theoretically evolutionary
stable solution. The idea of using evolutionary concepts in the description of
financial markets per se is very interesting, and we will come back to this start-
ing in Sec. 5.7.1, but this concept does not seem to have strong implications
for the shape of utility functions.

We have seen that there are plenty of ideas how to choose “suitable”
utility functions. We have also found a list of properties (continuous, monotone
increasing, either bounded or at least asymptotically concave) that rational
utility functions should satisfy. Moreover, we have seen various suggestions for
suitable utility functions that are frequently used. However, it is important to
understand that there is no single class of functions that can claim to be the
“right one”. Therefore the choice of a functional form follows to some extent
rather convenience than necessity.

2.2.4 Measuring the Utility Function

When we want to elicit a person’s utility function, we have several possible
methods to do so. First, we can rely on real-life data, e.g., from investment
or insurance decisions. Second, we can perform laboratory experiments with
test subjects. In the latter case, there are various possible procedures, which
measure points of the utility function. Using these points, a fit of a function
can be made, where usually a specific functional form (for instance xα) is
assumed.

We present here just one of the many methods, the (midpoint certainty
equivalent method. In this method, a subject is asked to state a monetary
equivalent to a lottery with two outcomes that each occur with probability
1/2, compare Fig. 2.9. Such a monetary equivalent (“the price of a lottery”)
is called a Certainty Equivalent (CE).

If we set u(x0) := 0 and u(x1) := 1 (which we can do, since u is only
determined up to affine transformations), then u(CE) = 0.5. We set x0.5 :=
CE and iterate this method by comparing a lottery with the outcomes x0 and
x0.5 and probabilities 1/2 each etc.
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x0
1/2 														 ∼ CE

Fig. 2.9. A typical question when measuring a utility function is to ask for a
certainty equivalent (CE) for a simple lottery

Let us try this in an example with wealth level w: we set x0 := w+0e and
x1 := w + 100e. The certainty equivalent of a lottery with these outcomes is
measured as, say, w+15e. Thus x0.5 = w+15. In the next step we determine
the CE of a lottery with outcomes x0 and x0.5. The answer of our test person
is 2e. We then ask for the CE of a lottery with outcomes x0.5 and x1 and get
the answer 25e. Going on with this iteration, we can obtain more data points
which ultimately leads to a sketch of the utility function, see Fig. 2.10.
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Fig. 2.10. Measured utility function of a test person. x-axis: return of a lottery,
y-axis: utility

This method has a couple of obvious advantages: it uses simple, trans-
parent lotteries that do not involve complicated, unintuitive probabilities.
Moreover, it only needs relatively few questions to elicit a utility function.
However, it also has two drawbacks:

• It is not very easy to decide about the certainty equivalent. Pairwise prefer-
ence decisions are much simpler to do. However, pairwise decisions reveal
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less information (only yes or no, rather than a numerical value), hence
more questions have to be asked in order to get similar results.

• If the test person makes an error, it propagates through the whole exper-
iment, and it is difficult to correct it later on.

There are other methods that avoid these problems, but typically have their
own disadvantages. We do not want to discuss them here, but we hope that
the example we have given is sufficient to give some ideas on how one can
obtain information on this at first glance unascertainable object and what
kind of problems this poses.

Assume now that we have measured in an experiment a utility function
of a person. The next question we have to ask is, whether EUT is in fact a
suitable theory to describe these experimental results, since only under this
condition our measurements can be used to derive statements about real life
situations, e.g., to give advice regarding investment decisions or to model
financial markets.

In fact, this question is much more difficult than one might expect. One
of the fundamental contributions to this problem has been made by M. Ra-
bin [Rab01] who studied the following question: is it possible to explain the
risk aversion that one measures in small stake experiments by means of the
concavity of the utility function?

If we have a look on Fig. 2.10, we tend to answer the question affirmatively.
The data resembles a function like xα. However, the x-axis is not the final
wealth of the person, but it is just the return of the lotteries, in other words
we have to add the wealth w. (In the above example, the person’s wealth
was roughly 50, 000e). Rabin was analyzing such examples a little closer:
If we assume a given risk-averse behavior (like rejecting a 50-50 gamble of
gaining 105e or losing 100e) below a certain, not too low wealth level, then
it is possible to deduce that very advantageous lotteries would be rejected –
regardless of the precise form of the utility function! One can prove, e.g., that if
a 50-50 gamble of gaining 105e or losing 100e is rejected up to a wealth level
of 300, 000e, then, at a wealth level of 290, 000e, a 50-50 gamble of losing
6000e and gaining 1.5 Million Euro would still be rejected. This behavior
seems to be quite unlikely and not very rational, hence we can conclude that
a rational person would not reject the initial offer (lose 100e, gain 105e) up
to such a large wealth level.

How does Rabin prove his strong, and somehow surprising result? Without
going into the details, we can get an intuition of the result by considering a
Taylor expansion of a utility function u at the wealth level w and compute
the expected utility of a 50-50 gamble with loss l or gain g:

1
2u(w − l) + 1

2u(w + g)

= u(w) + 1
2

(
u′(w)(g − l) + 1

2u
′′(w)(g2 − l2) +O(l3 + g3)

)
.

Here O is the Landau symbol (see Appendix). Comparing this with u(w),
the initial wealth utility, one sees that in order to reject the gamble for all
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wealth levels or at least for up to a substantial wealth level, −u′′(w) has to
be sufficiently large. On the other hand u′(w) > 0 for all w. This leads to a
quickly flattening utility function and to the paradoxical situations observed
by Rabin.

The result indicates that EUT might not work well in explaining small
stake experiments as illustrated in Fig. 2.10, since it has difficulties in ex-
plaining the strong risk aversion that individuals still show – even at relatively
large wealth levels. The simplest way to explain this discrepancy is to use a
different “frame”, i.e., to compute the utility function in terms of the potential
gains and losses in a given situation, instead of the final wealth. We will see
later how this “framing effect” influences decisions and that it is an essential
ingredient in modern descriptive theories, in particular in Prospect Theory. It
is interesting to observe that this “change of frame” is often intuitively and
unintentionally done in textbooks on expected utility theory, a brief search
will surely provide the reader with some examples.

Although the paper by Rabin is suggesting to use an alternative approach
to describe results of small and medium stake experiments, it has often been
misunderstood, in particular in experimental economics, where it is frequently
cited as a justification to assume risk-neutrality in experiments. Rabin himself,
together with Richard Thaler, admits in a comment [RT02] that

we can see . . . how our choice of emphasis could have made our point
less clear to some readers

and goes on to remind that risk aversion has been observed in nearly all
experiments:

We refer the reader who believes in risk-neutrality to pick up vir-
tually any experimental test of risk attitudes. Dozens of laboratory
experiments show that people are averse to far more favorable bets
for smaller stakes. The idea that people are not risk neutral in playing
for modest stakes is uncontroversial.

He underlines the fact that

because most people are not risk neutral over modest stakes, expected
utility should be rejected by economists as a descriptive theory of
decision-making.

Alas, it seems that these clarifications were not heard by everybody.
We will see in Sec. 2.4 what kind of theories are superior as a descriptive

model for decisions under risk. Nevertheless it is important to keep in mind
that Expected Utility Theory as a prescriptive model for rational decisions
under risk is still largely undisputed. In the next section we will turn our
attention to the widely used Mean-Variance Theory which is popular for its
“ease of use” that allows fruitful applications where the more complicated
EUT is too difficult to apply.
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2.3 Mean-Variance Theory

2.3.1 Definition and Fundamental Properties

Mean-Variance Theory was introduced in 1952 by Markowitz [Mar52, Mar91]
as a decision criterion for portfolio selection. His key idea was to measure
the risk of an asset by only one parameter, the variance σ. Together with the
mean μ, these are the only two parameters that are used in this decision model.
Harry Markowitz was awarded the Nobel Prize in 1990 for his pioneering work
in financial economics.

In order to make precise what we mean with the “mean-variance ap-
proach”, we start with a formal definition:

Definition 2.26 (Mean-Variance approach). A mean-variance utility fun-
ction u is a utility function u : R × R+ → R which corresponds to a utility
functional U : P → R that only depends on the mean and the variance of a
probability measure p, i.e., U(p) = u(E(p), var(p)).

This definition means that for two lotteries A, B described by the prob-
ability measures pA and pB, the lottery A is preferred over B if and only if
u(E(pA), var(pA)) > u(E(pB), var(pB)).

The mean is usually denoted by μ, the variance by σ2. We can hence ex-
press a mean-variance utility functional by writing down the function u(μ, σ).

Of course not every mean-variance utility function is reasonable. – We
have already seen in the case of EUT utility functions that for theoretical and
practical reasons some properties should be assumed. Most commonly one
expects the utility function to be strictly increasing in μ, which corresponds
to the “more money is better” maxim. Since σ reflects the risk of a lottery,
one usually also assumes that the utility decreases when σ increases. Let us
define this precisely:

Definition 2.27. A mean-variance utility function u : R × R+ → R is called
monotone if u(μ, σ) ≥ u(ν, σ) for all μ, ν, σ with μ > ν. It is called strictly
monotone if even u(μ, σ) > u(ν, σ).

We will always assume that u is strictly monotone.

Definition 2.28. A mean-variance utility function u : R × R+ → R is called
variance-averse if u(μ, σ) ≥ u(μ, τ) for all μ, τ, σ with τ > σ. It is called
strictly variance-averse11 if u(μ, σ) > u(μ, τ) for all μ, τ, σ with τ > σ.

Often this is assumed as well, but we will not turn this into a general
condition. Instead we expect the preference to be risk-averse, i.e., that the
expected value of a lottery is always preferred over the lottery itself, compare
Def. 2.7. This leads to the following trivial observation:

11 We use these standard names, although they are not coherent with the use of the
similar term “risk-averse” where a strict inequality occurs.
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Remark 2.29. Let u be a mean-variance function. Then the preference induced
by u is risk-averse if and only if u(μ, σ) < u(μ, 0) for all μ, σ. The preference
is risk-seeking if and only if u(μ, σ) > u(μ, 0).

We have found ample evidence for risk-averse behavior in the last section,
therefore we consider only mean-variance functions which describe risk-averse
behavior.

There is a very convenient way to deduce information on a given mean-
variance utility function and the preferences induced by it: the mean-variance
diagram, also known as (μ, σ)-diagram. It corresponds to the indifference
curves of the utility function on the set of all μ and σ. As an example take
the two utility functions12

u1(μ, σ) := μ− σ2, u2(μ, σ) := 2μ− 1.3σ + 0.5σ2 − 0.054σ3.

Their corresponding (μ, σ)-diagrams can be found in Fig. 2.11.
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Fig. 2.11. Two mean-variance diagrams

2.3.2 Success and Limitation

The main advantage of the mean-variance approach is its simplicity that re-
duces the complexity of decisions under risk to only two parameters, the mean
μ and the variance σ. This allows us to use (μ, σ)-diagrams in order to charac-
terize the key properties (average return and risk) of an asset. It also allows us
to handle complicated models much more easily than with the clumsy EUT. It
is therefore no surprise that the Mean-Variance Theory is the most frequently
used decision theory by theorists, but also by practitioners in finance, both as
a descriptive and prescriptive tool.

On the theoretical side, we will see in the next chapter how this approach
can be used to derive the famous Capital Asset Pricing Model which provides
12 The function u2 is, by the way, an unorthodox suggestion to resolve Allais’ Para-

dox which we will meet in the next section.
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easy formulas for price of an asset. We will also see how (μ, σ)-diagrams can be
used to derive the Two-Fund-Separation Theorem which states that if every-
body is a mean-variance investor and the market is complete and efficient, it is
best to hold a portfolio composed out of a risk-free asset and a representative
market portfolio. This outlook highlights the efficiency of the mean-variance
approach as a tool in financial economics. However, it also shows its limita-
tion, since practitioners are obviously not following this result, and we may
assume that they have reasons.

On the practical side, we mention that banks are usually providing clients
with two main informations on assets: the average return and the risk, the
latter usually measured as variance.

Although the practical use of an easy method to solve complex problems is
surely valuable, there are nevertheless certain problems and limitations of the
Mean-Variance Theory. Practitioners sometimes raise the question whether
the variance is really an appropriate tool to measure risk. As a simple –
albeit more academic – example take, e.g., the following two assets which
have identical mean and variance and are hence considered to be equal by the
mean-variance criterion:

A := payoff 0e 1010e
probability 99.5% 0.05%

B := payoff -1000e 10e
probability 0.05% 99.5%

There are obviously important reasons why one would like to prefer either A
or B, but it seems worthwhile to distinguish both assets! This also holds true
for more realistic distributions, compare Fig. 2.12.

return

probability

Fig. 2.12. Three outcome distributions that are indistinguishable for the Mean-
Variance Theory, since their means and variances each agree

A practical application is that banks who are only reducing their risk as
measured by the variance might still accept a very small probability of an
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enormous loss that might even lead to a bankruptcy. A modern risk manage-
ment, however, would rather accept a substantial risk of a small loss which
can still be mitigated, even if the associated variance is larger. Another typical
practical problem occurs with options which tend to have very skewed payoff
distributions. Here the variance as risk measure does not distinguish the up-
side risk of making a large profit with low probability from the downside risk
of losing a lot with low probability.

There are several other methods to measure risk, like value at risk which
measures the value of which the payoff falls short in only n% of the cases
or the expected tail loss which measures the expected loss that occurs in the
worst n% of the cases. All these practical modifications have in common that
they aim to measure the risk with a single quantity, but that they replace the
variance by a more sophisticated measure.

Besides these practical problems there are also strong theoretical limita-
tions of the mean-variance approach. The strongest is the so-called “Mean-
Variance Paradox”. We formulate it as a theorem:

Theorem 2.30 (Mean-Variance Paradox). For every continuous mean-
variance utility function u(μ, σ) which corresponds to a risk-averse preference,
there exist two assets A and B where A state dominates B, but B is preferred
over A.

Proof. Let us construct an explicit example, where for simplicity we assume
that u is strictly monotone. Consider for N ≥ 1 the following lottery

AN :=payoff in e 0 N
probability 1 − 1

N2
1

N2

.

The expected value of AN is

E(AN ) =
(

1 − 1
N2

)
· 0 +

1
N2

N =
1
N
.

The variance can now be easily computed as

var(AN ) =
(

1 − 1
N2

)
1
N2

+
1
N2

(
N − 1

N

)2

=
1
N2

− 1
N4

+ 1 − 2
N2

+
1
N4

= 1 − 1
N2

.

Now we compare this with the mean and variance of the lottery A0 that always
gives a payoff of zero:

E(A0) = 0, var(A0) = 0.

If N becomes large, its mean value converges to zero, whereas its variance
converges to 1. Since u is continuous and risk-averse, this implies that
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U(AN ) = u

(
1
N
, 1 − 1

N2

)
→ u(0, 1) < u(0, 0) = u(A0).

Therefore, we can choose N large enough, such that the inequality

u

(
1
N
, 1 − 1

N2

)
< u(0, 0)

holds. Since AN gives a payoff of zero in states with the total probability
1 − 1

N2 , but a positive payoff N in states with a total probability 1
N2 which

is strictly larger than zero, but A0 gives in both cases a zero payoff, AN state
dominates A0. However, we have just proved that any mean-variance utility
(which satisfies the initial assumptions) would prefer A0 over AN . Setting
A := AN and B := A0 we have proved the theorem.

Let us stop here for a moment and think about what we have proved right
now: there are two assets, one which never gives any profit, and the other one
which does, although with a small probability, and besides that never loses
you any money. Sure, you would prefer the latter one! After all, it poses no
risk for you. But this is wrong, if you define “risk” as variance. We learn from
this that the variance is really not a particularly good measure for risk.

Another interesting fact about Mean-Variance Theory which follows di-
rectly from the Mean-Variance Paradox is that it does not satisfy the Inde-
pendence Axiom (compare Def. 2.17):

Corollary 2.31. Every strictly monotone and risk-averse Mean-Variance
Utility violates the Independence Axiom.

Proof. Take the lottery AN as constructed in the last proof, such that A0 is
preferred over AN . Both lotteries have a common part: with a probability of
1−1/N2 they both yield an outcome of zero. Only in the remaining cases (with
probability 1/N2) they differ: whereasAN gives an outcome ofN ,A0 still gives
only 0. If the Independence Axiom were satisfied, we could neglect the common
part, and the preference relation would carry over to the remaining cases.
However, these lotteries correspond to a sure gain of N or a sure gain of zero,
and according to strict monotonicity the gain of N would be preferred.

We remark that both assumptions (strict monotonicity and risk-averse-
ness) are indeed necessary requirements for the corollary, since they exclude
the special cases of risk-neutral EUT and indifference to mean.

It is also possible to illustrate the violation of the Independence Axiom on
a simple example, sometimes referred to as “common ratio effect”:

Example 2.32. Consider four investment alternatives A, B, C and D that yield
returns of 2%, 4% or 6% with the probabilities given in Table 2.2. We can
list mean and variance of the four investments and then compute their Mean-
Variance utility which we choose for simplicity as U(μ, σ) := μ − σ2. In this
way we obtain Table 2.2.
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Table 2.2. Payoff probabilities for the four hypothetic investments A, B, C and D

Investment 2% 4% 6%

A 0.2 0 0.8
B 0 1 0
C 0.8 0 0.2
D 0.75 0.25 0

Table 2.3. Mean μ, variance σ2 and U(μ, σ) = μ−σ2 for the four investments from
Table 2.2

Investment mean μ variance σ2 μ − σ2

A 5.2 2.56 2.64
B 4 0 4
C 2.8 2.56 0.24
D 2.5 2.75 0

This implies that Mean-Variance Theory with the utility U(μ, σ2) = μ−σ2

predicts the preference pattern B � A � C � D.
Let us take a closer look at the investments. Then we see that the lottery

C is equivalent to playing lottery A with a probability of 1/4 and getting 2%
with a probability of 3/4. Similarly, lottery D is equivalent to playing lottery B
with a probability of 1/4 and getting 2% with a probability of 3/4. Thus, the
Independence Axiom would imply that if C is preferred over A, then B had to
be preferred over C. The Mean-Variance utility from above, however, shows
a different pattern of preferences, thus the Independence Axiom is violated.

The fact that the pattern of preferences predicted by Mean-Variance The-
ory contradicts Expected Utility Theory, can also be seen directly by a short
computation: denote x := u(2%), y := u(4%), z := u(6%). Then B � A
implies 0.2x + 0.8z < y and C � D implies 0.8x + 0.2z > 0.75x + 0.25y or
0.05x+ 0.2z > 0.25y. Multiplying the last inequality by four gives a contra-
diction, thus the preference pattern cannot be explained by Expected Utility
Theory.

In Sec. 2.5 we compare EUT and Mean-Variance Theory and we will see
that there are in fact certain cases, where the problems we have encountered
cannot occur and Mean-Variance Theory even becomes a special instance of
EUT. In general, however, we need to keep in mind that there is always a risk
to apply the mean-variance approach to general situations: beware of being
too credulous when applying Mean-Variance Theory!

2.4 Prospect Theory

So, how do people really decide? As if they were maximizing their expected
utility? Or as if they were following the mean-variance approach? Or do they
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deviate from both models and decide in a random manner that makes it
completely impossible to predict their decisions beforehand? – It turns out
that none of these is the case. In this section we will present models that
describe actual decisions quite well.

2.4.1 Origins of Behavioral Decision Theory

Although the axioms of Expected Utility Theory were so convincing that
we refer to a behavior described by this model as “rational”, it is nevertheless
possible to observe people deviating systematically from this rational behav-
ior. One of the most striking examples is the following (often called “Asian
disease”):

Example 2.33. Imagine that your country is preparing for the outbreak of
an unusual disease, which is expected to kill 600 people. Two alternative
programs to combat the disease have been proposed. Assume that the exact
scientific estimates of the consequences of the programs are as follows: If
program A is adopted, 200 people will be saved. If program B is adopted,
there is a one-third probability that 600 people will be saved and a two-thirds
probability that no people will be saved. Which of the two programs would
you choose?

The majority (72%) of a representative sample of physicians preferred
program A, the “safe” strategy. Now, consider the following, slightly different
problem:

Example 2.34. In the same situation as in Example 2.33 there are now instead
of A and B two different programs C and D: If program C is adopted, 400
people will die. If program D is adopted, there is a one-third probability that
nobody will die and a two-thirds probability that 600 people will die. Which
of the two programs would you favor?

In this case, the large majority (78%) of an equivalent sample preferred
the program D. – Obviously, it would be cruel to abandon the lives of 400
people by choosing program C!

You might have noticed already that both decision problems are exactly
identical in contents. The only difference between them is how they are formu-
lated, or more precisely how they are framed. Applying EUT cannot explain
this observation, neither can Mean-Variance Theory. Moreover, it would not
help to modify our notion of a rational decider to capture this “framing effect”,
since any rational person should definitely not make a difference between the
two identical situations. Let us have a look on another classical example of a
deviation from rational behavior.13

13 This example might remind the reader of Example 2.32 that demonstrated how
Mean-Variance Theory can lead to violations of the Independence Axiom.
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Example 2.35. In the so-called “Allais paradox” we consider four lotteries
(A, B, C and D). In each lottery a random number is drawn from the set
{1, 2, . . . , 100} where each number occurs with the same probability of 1%.
The lotteries assign outcomes to every of these 100 possible numbers (states),
according to Table 2.4. The test persons are asked to decide between the two

Table 2.4. The four lotteries of Allais’ Paradox

Lottery A State 1–33 34–99 100
Outcome 2500 2400 0

Lottery B State 1–100
Outcome 2400

Lottery C State 1–33 34–100
Outcome 2500 0

Lottery D State 1–33 34–99 100
Outcome 2400 0 2400

lotteries A and B and then between C and D. Most people prefer B over A
and C over D.

This behavior is not rational, although this time it might be less obvious.
The axiom that most people violate in this case is the Independence Axiom.
We can see this by neglecting in both decisions the states 34–99, since they
give the same result each. What is left (the states 1–33 and the state 100) are
the same for both decision problems. In other words, the part of our decisions
which is independent of irrelevant alternatives, is the same when deciding
between A and B and when deciding between C and D. Hence, if we prefer B
over A we should also prefer D over C, and if we prefer C over D, we should
also prefer A over B.

We have already encountered other observed facts that can be explained
with EUT only under quite delicate and even painstaking assumptions on the
utility function:

• People tend to buy insurances (risk-averse behavior) and take part in lot-
teries (risk-seeking behavior) at the same time.

• People are usually risk-averse even for small-stake gambles and large initial
wealth. This would predict a degree on risk aversion for high-stake gambles
that is far away from standard behavior.

Other experimental evidence for systematic deviation from rational behavior
has been accumulated over the last decades. One could joke that there is quite
an industry for producing more and more such examples.

Does this mean, as is often heard, that the “homo economicus” is dead
and that all models of humans as rational deciders are obsolete? And does
this mean that the excoriating judgment that we quoted at the beginning of
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this chapter holds in a certain way and that “science is at a loss” when it
comes to people’s decisions?

Probably none of these fears is appropriate: the “homo economicus” as a
rationally behaving subject is still a central concept, and on the other hand
there are modifications of the rational theories that describe the irrational
deviations from the rational norm in a systematic way which leads to surpris-
ingly good descriptions of human decisions. In the following we will introduce
some of the most important concepts that such behavioral decision theories
try to encompass.

The first example has already shown us one very important effect, the
“framing effect”. People decide by comparing the alternatives to a certain
“frame”, a point of reference. The choice of the frame can be influenced by
phrasing a problem in a certain way. In Example 2.33 the problem was phrased
in a way that made people frame it as a decision between saving 200 people
for sure or saving 600 people with a probability of 1/3. In other words, the
decision was framed in positive terms, in gains. It turns out that people behave
risk-averse in such situations. This does not come as a surprise, since we have
encountered this effect already several times, e.g., when we measured the
utility function of a test person (see Sec. 2.2.4). In Example 2.34 the frame
is inverted: now it is a decision about letting people die, in other words it is a
decision about losses. Here, people tend to behave risk-seeking. They would
rather take a 1/3 chance of letting all 600 persons die than choosing to let
200 people die.

But let us think about this for a moment. Doesn’t this contradict the
observation that people buy insurances and that people buy lottery tickets?
An insurance is surely about losses (and their prevention), whereas a lottery
is definitely about gains, but still people behave risk-averse when it comes to
insurances and risk-seeking when it comes to lotteries.

The puzzle can be solved by looking on the probabilities involved in these
situations: In the two initial examples the probabilities were in the mid-range
(1/3 and 2/3), whereas in the cases of insurances and lotteries the probabili-
ties involved can be very small. In fact, we have already observed that lotteries
which attract the largest number of participants typically have the smallest
probabilities to win a prize, compare Example 2.21. If we assume that people
tend to systematically overweight these small probabilities, then we can ex-
plain why they buy insurances against small probability risks and at the same
time lottery tickets (with a small probability to win). Summarizing this idea
we get a four-fold pattern of risk-attitudes:14

14 It is historically interesting to notice, that a certain variant of the key ideas of
Kahneman and Tversky have already been found 250 years earlier in the discus-
sion on the St. Petersburg paradox: Nicolas Bernoulli had the idea to resolve the
paradox by assuming that people underweight very small probabilities, whereas
Gabriel Cramer, yet another Swiss mathematician, tried to resolve the paradox
with an idea that resembles the value function of Prospect Theory.
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Table 2.5. Risk attitudes depending on probability and frame

Losses Gains

Medium probabilities risk-seeking risk-averse
Low probabilities risk-averse risk-seeking

Can we explain Allais’ Paradox with this idea? Indeed, we can: When
choosing between the lotteries A and B the small probability not to win any-
thing when choosing A is perceived much larger than the difference in the
probabilities of not winning anything when deciding between the lotteries C
and D. This predicts the observed decision pattern.

The fact that people overweight small probabilities should be distinguished
from the fact that they often overestimate small probabilities: if you ask a lay-
man for the probability to die in an airplane accident or to get shot in the
streets of New York, he will probably overestimate the probability, however,
the effect we are interested in is a different one, namely that people even when
they know the precise probability of an event still behave as if this probability
were higher. This effect seems in fact to be quite universal, whereas the overes-
timating of small probabilities is not as universal as one might think. Indeed,
small probabilities can also be underestimated. This is typically the case when
a person neither experienced nor heard that a certain small probability event
happened before. If you, for instance, let a person sample a lottery with an
outcome with unknown, but low probability, then the person will likely not
experience any such outcome and hence underestimate the low probability.
Such a sampling will nowadays (in times of excessive media coverage) not be
our only possibility to estimate the probabilities of events that we haven’t
experienced by ourselves before. But what about events that are too unim-
portant to be reported? Such events might nevertheless surprise us, since in
these situations we have to rely on our own experience and tend to under-
estimate the probability of such events before we experience them. – Surely
everybody can remember an “extremely unlikely” coincidence that happened
to him, but it couldn’t have been that unlikely if everybody experiences such
“unlikely” coincidences, could it?

In the next section we formalize the ideas of framing and probability
weighting and study the so-called “Prospect Theory” introduced by Kah-
neman and Tversky [KT79].

2.4.2 Original Prospect Theory

Framing effect and probability overweighting, these are the two central prop-
erties we want to include into a behavioral decision theory. We follow here
the ideas of Kahneman and Tversky and use as starting point for this theory
the Expected Utility Theory. Instead of the final wealth we consider the gain
and loss induced by a given outcome (framing effect) and instead of the real
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probabilities we consider weighted probabilities that take into account the
overweighting of small probabilities. This Prospect Theory (PT) leads us to
the following definition of a “subjective utility” of a lottery A with n outcomes
x1, . . . , xn (relative to a frame) and probabilities p1, . . . , pn:

PT (A) :=
n∑

i=1

v(xi)w(pi), (2.3)

where v : R → R is the value function, a certain kind of utility function,
but defined on losses and gains rather than on final wealth, and w : [0, 1] →
[0, 1] is the probability weighting function which transforms real probabilities
into subjective probabilities. The key features of the value function are the
following:

• v is continuous and monotone increasing.
• The function v is strictly concave for values larger than zero, i.e., in gains,

but strictly convex for values less than zero, i.e., in losses.
• At zero, the function v is “steeper” in losses than in gains, i.e., its slope

at −x is bigger than its slope at x.

The weighting function satisfies the following properties:

• The function w is continuous and monotone increasing.
• w(p) > p for small values of p > 0 (probability overweighting) and w(p) <

p for large values of p < 1 (probability underweighting),w(0) = 0, w(1) = 1
(no weighting for sure outcomes).

Typical shapes for v and w are sketched in Fig. 2.13.

relative
return

value

1

1

prob.

weighted prob.

Fig. 2.13. A rough sketch of the typical features of value function (left) and weight-
ing function (right) in Prospect Theory

If we have many events, all of them will probably be overweighted and
the sum of the weighted probabilities will be large. There is an alternative
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formulation of Prospect Theory in [Kar78] that fixes the problem by a simple
normalization:

PT (A) =
∑n

i=1 v(xi)w(pi)∑n
i=1 w(pi)

. (2.4)

For didactical reasons it is easier to consider (2.3), hence we will mainly con-
centrate on this formulation. (2.4) shares many of the common features with
(2.3) and has some technical advantages that we will discuss later.

Can this new theory predict the four-fold pattern of risk-attitudes observed
in the examples of the Sec. 2.4.1? Yes, it can. If we have two outcomes of similar
probability, their weighted probability is approximately identical to their real
probability, hence the concavity of the value function in gains, leads to risk-
averse behavior, and the convexity of the value function in losses, leads to
risk-seeking behavior. – We know this already from EUT and do not need to
compute anything new. (This explains the results of Example 2.33 and 2.34.)
Now if one of the probabilities is very small, then it is strongly overweighted
(w(p) > p). In the case of losses this means that the overall utility is reduced
even more. This effect can cancel the convexity of the value function and lead
to a risk-averse behavior. On the other hand an overweighting of a gain might
increase the value of the utility so much that it outperforms a sure option,
even though the concavity of the value function would predict a risk-averse
behavior.

Prospect Theory in this general form can only give a rough explanation
of the experimental evidence, but is not useful for computations. To make
precise predictions and to classify people’s attitude towards risk, we need to
make the functional forms of v and w precise. Nowadays the most commonly
used functional forms are the ones introduced for Cumulative Prospect The-
ory(CPT), and we will discuss them in the next section. For the moment, we
just note that Prospect Theory seems to be a good candidate for a descriptive
model of decisions under risk. However, there are a couple of limitations to
this theory that led to further developments.

We know that PT does not satisfy the Independence Axiom. This is a fea-
ture, not a bug, since otherwise we could not explain Allais’ Paradox. There
are some other axioms we are not so eager to give up in a descriptive the-
ory. One of them is stochastic dominance: we have already briefly mentioned
this concept which is essentially a “state-independent version” of state domi-
nance:

Definition 2.36 (Stochastic dominance). A lottery A is stochastically
dominant over a lottery B if, for every payoff x, the probability to obtain
more than x is larger or equal for A than for B and there is at least some
payoff x such that this probability is strictly larger.

This notion is quite natural: if we set our goal to get at least xe as payoff,
we will choose A, since the probability to reach our goal with A is at least as
large and sometimes strictly larger than with B. If this holds for all x, then
A is in this sense “better” than B. If a decision criterion always prefers A
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over B when A is stochastic dominant over B, we say it satisfies or respects
stochastic dominance.

Let us have a look at the following example: if we compare the two lotteries

A := Outcome 0.95 0.96 0.97 0.98 0.99 1
Probability 1/6 1/6 1/6 1/6 1/6 1/6

, B := Outcome 1
Probability 1

,

then it is obvious that B is stochastic dominant over A (e.g., the probability
to gain at least 0.97 is 1/2 for A, but 1 for B) and should hence be preferred
by a reasonable decision criterion. (Or would you prefer lottery A?) In fact,
it is easy to prove that EUT always satisfies stochastic dominance as long as
the utility function is strictly increasing. Nevertheless, this does not need to
be the case in Prospect Theory: the probability of 1/6 is quite small, thus
we expect w(1/6) > 1/6. On the other hand, the outcomes 0.95, . . . , 1 are all
quite close to 1, therefore

PT (A) =
6∑

i=1

w(1/6)v(xi) ≈
6∑

i=1

w(1/6)v(1) > v(1). (2.5)

This argument can easily be made rigorous to show that for every weighting
function w that overweights at least some small probabilities, two lotteries
can be constructed that show that PT violates stochastic dominance. In other
words, if we want to have small probabilities being overweighted, there is no
way we can at the same time rescue stochastic dominance. The alternative for-
mulation (2.4) somehow reduces this problem such that stochastic dominance
is not violated for lotteries with at most two outcomes, for lotteries with more
outcomes, however, the problem persists. – This seems like bad news for the
theory.

There is another problem involved in this example, namely a lack of conti-
nuity in this model. Roughly spoken, two very similar lotteries can have very
different subjective utilities. We will discuss this problem in Sec. 2.4.5 more
in detail.

Already Kahneman and Tversky knew about these problems and that their
theory violates stochastic dominance and continuity. They suggested as “fix”
a so-called “editing phase”: before a person evaluates the PT-functional (or
rather behaves as if he evaluates this functional, since of course nobody as-
sumes that people actually do these computations when deciding), this person
would check a couple of things on the lotteries under consideration. In partic-
ular, the frame would be chosen, very similar outcomes would be collected to
one, and stochastically dominating lotteries would automatically be preferred,
regardless of any subjective utility.

The procedure is unfortunately not very well defined and leaves a lot of
space for interpretations. (When are outcomes “close”? How does a person
set the frame?) This causes problems when applying the theory and limits its
usability.
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Another limitation is that PT can only be applied for finitely many out-
comes. In particular in finance, however, we are interested in situations with
infinitely many outcomes. (An asset yields typically a return which can po-
tentially be any amount, not just one out of a small list.)

We will discuss later why it is so difficult to extend PT to infinitely many
outcomes and how one can improve PT regarding stochastic dominance and
continuity (compare Sec. 2.4.6). Historically, however, these problems led first
to the nowadays most important theory of behavioral decisions, the Cumula-
tive Prospect Theory.

2.4.3 Cumulative Prospect Theory

We have seen that many problems in Prospect Theory were caused by the
overweighting of small probabilities. In a certain sense, our example for vio-
lation of stochastic dominance was based on the fact that a large number of
small probability events added up to a “subjective” probability larger than
one. The key idea of [TK92] was to replace the probabilities by differences
of cumulative probabilities. In other words, we replace in the definition of
Prospect Theory the probabilities pi with the expression Fi − Fi−1, where
Fi :=

∑i
j=1 pj are the cumulative probabilities. (We set F0 := 0.) Of course,

the order of the events is now important, and we order them in the natural
way, i.e., by the amount of their outcomes.

We write down the formula of Cumulative Prospect Theory precisely:

Definition 2.37 (Cumulative Prospect Theory15). For a lottery A with
n outcomes x1, . . . , xn and the probabilities p1, . . . , pn where x1 < x2 < · · · <
xn and

∑n
i=1 pi = 1 we define

CPT (A) :=
n∑

i=1

(w(Fi) − w(Fi−1)) v(xi), (2.6)

where F0 := 0 and Fi :=
∑i

j=1 pj for i = 1, . . . , n.

There exist slightly different definitions of the CPT functional. In par-
ticular the original formulation in [TK92] differed in that it used the above
formula only for losses, but a de-cumulative probability (i.e., Fi :=

∑n
j=i+1 pj)

for gains. In finance, however, the above formula is more frequently used, since
it is structurally simpler and essentially equivalent with the original formula-
tion if one allows for changes in the weighting function.

How is this formula connected to Prospect Theory? Let us have a look on
the case of a three-outcome lottery A (with outcomes x1, x2, x3 with respective
probabilities p1, p2, p3) to see a little clearer, here the formulae reduce to

15 The definition of CPT can be generalized if we use different weighting function
w− and w+ for negative resp. positive outcomes. To keep things simple, we assume
that w− = w+ = w.
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CPT (A) = w(p1)v(x1) + (w(p1 + p2) − w(p1))v(x2)
+(1 − w(p1 + p2))v(x3),

PT (A) = w(p1)v(x1) + w(p2)v(x2) + w(p3)v(x3).

We see that both formulae slightly differ, but not much. The difference be-
tween both models is essentially that in PT every probability is, regardless of
their outcome, over- or underweighted, whereas in CPT, usually only probabil-
ities that reflect extreme outcomes tend to be overweighted and probabilities
that reflect outcomes in the middle are in general underweighted: if we com-
pare the three terms in the formula for CPT, we see that the middle term
indeed is likely to be the smallest, since the slope of w is typically small in
the mid-range (compare Fig. 2.13). On average, events are neither over- nor
underweighted in CPT:16

n∑

i=1

(Fi − Fi−1) = Fn − F0 = 1.

In many applied problems, probability distributions look similar to a normal
distribution: extremely low and extremely high outcomes are rare, mid-range
outcomes are frequent. This explains why often the difference between PT
and CPT is small. Whereas PT overweights small probabilities which are
associated with extreme outcomes, CPT overweights extreme outcomes which
have small probabilities. Nevertheless, there can be situations where both
theories deviate substantially, namely whenever small probability events in
the mid-range of outcomes play a significant role.

There is another related theory, Rank Dependent Utility (RDU), which
predates CPT and shares the cumulative probability weighting with CPT.
However, it does not use the framing of PT and CPT, but uses a standard
utility function in units of finite wealth, compare [Qui82].

In order to use CPT for applications, in particular in financial economics,
we need to choose specific forms for v and w.

The prototypical example of a value function v has been given in [TK92]
for α, β ∈ (0, 1) and λ > 1:

v(x) :=

{
xα , x ≥ 0,
−λ(−x)β , x < 0,

(2.7)

compare Fig. 2.14. The parameter λ reflects the experimentally observed fact
that people react to losses stronger than to gains: the resulting function v has

16 This is not the case in the original formulation of CPT when applying the weight-
ing function on cumulative probabilities in losses and de-cumulative probabilities
in gains.
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a “kink” at zero, a marginal loss is considered a lot more important than a
marginal gain. λ is usually assumed to be somewhere between 2 and 2.5.17

Value

Gains
outcome

Losses

Reference point
probability

weighted probability

Fig. 2.14. Value and weighting function suggested by [TK92]

The probability weighting function w has been given by

w(p) :=
pγ

(pγ + (1 − p)γ)1/γ
, (2.8)

compare Fig. 2.14. It is possible to assign different weighting functions for
gains and losses (denoted by w+ and w−, where in the loss region the constant
γ is replaced by δ). There are also different suggestions how to choose v and
w. We discuss in Sec. 2.4.4 which types of value and weighting functions are
advantageous and which restrictions we have to take into account. For the
moment we work for simplicity with the original suggestions by Tversky and
Kahneman [TK92], although they are not the best choice. (For instance, w is
not monotone increasing for γ ≤ 0.279 [CH94, RW06, Ing07].) The parameters
of their model have been measured experimentally in several studies, compare
Tab. 2.6.

We see from this table that the results sometimes differ which might de-
pend on the selection of the test sample or on the choice of the kind of exper-
iment done to elicit these numbers. The overall impression, however, is that
the values are typically in the range of α ≈ β ≈ 0.75±0.1, γ ≈ δ ≈ 0.65±0.1.
Risk preferences also depend on economical and cultural factors, see [HW07]
for parameter estimates for some countries.

To fix ideas, we will in the following choose λ := 2.25, α := β := 0.8 and
γ := δ := 0.7.

By the way, Prospect Theory (and also CPT) coincides with risk-neutral
EUT when α = β = γ = δ = λ = 1. As can be seen from the experimental
numbers, there is a strong deviation from this.

There are now two questions, we need to answer. Does the modified theory
solve the problems that PT had (only finitely many outcomes, violation of
17 If α < β, however, even a value of λ < 1 can lead to loss aversion as Exercise 2.9

demonstrates. – In fact, when measuring λ on experimental data one often gets
values substantially smaller than 2.
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Table 2.6. Experimental values of α, β and γ, δ from various studies, compare (2.7)
and (2.8) for the definition of α, β, γ, δ

Study Estimate Estimate
for α,β for γ, δ

Tversky and Kahneman [TK92]
gains: 0.88 0.61
losses: 0.88 0.69

Camerer and Ho [CH94] 0.37 0.56
Tversky and Fox [TF95] 0.88 0.69
Wu and Gonzalez [WG96]
gains: 0.52 0.71

Abdellaoui [Abd00]
gains: 0.89 0.60
losses: 0.92 0.70

Bleichrodt and Pinto [BP00] 0.77 0.67/0.55
Kilka and Weber [KW01] 0.76-1.00 0.30-0.51

stochastic dominance, lack of continuity) and provides the modified theory
still a good descriptive model of behavior under risk?

Let us first extend CPT to arbitrary lotteries. Since we all the time as-
sume state-independent preferences, we can describe lotteries by probability
measures, see Appendix A.4 for details.

Definition 2.38. Let p be an arbitrary probability measure, then the general-
ized form of CPT18 reads as

CPT (p) :=
∫ +∞

−∞
v(x)

(
d
dt
w(F (t))|t=x

)
dx, (2.9)

where

F (t) :=
∫ t

−∞
dp.

For the cognoscenti we remark that the formula (2.6) for lotteries with
finitely many outcomes is just a special case of (2.9) when choosing p as a
finite sum of Diracs.

Definition 2.38 paths the way to applications of CPT in financial economics
and other areas where models require more than just a couple of potential
outcomes. Although it looks at first glance much more involved than its finite

18 Here we consider again only the form defined in this book. In the original for-
mulation we would need to write down two integrals for negative and positive
outcomes and invert the direction of integration on the latter one. Compare the
remark after Def. 2.37
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counterpart (compare Definition 2.37), a closer look reveals the similarity: the
sum in the definition of the cumulative probability is simply replaced by an
integral, and the difference of weighted cumulative probabilities is replaced
by a differential. Nothing special about this, it is just the usual process when
proceeding from discrete to continuous situations. To get familiar with the
definition, we suggest the reader to try Exercise 2.10, given at the end of this
chapter.

We turn our attention now to stochastic dominance. Does CPT violate
stochastic dominance? The answer is given by the following proposition:

Proposition 2.39. CPT does not violate stochastic dominance, i.e., if A is
stochastic dominant over B then CPT (A) > CPT (B).

Proof. We prove the case of finite outcomes. The general case is slightly tricky,
in particular in the original formulation of CPT by Tversky and Kahneman,
see, e.g., [Lév05].

Let xi denote the potential outcomes of A and B. Let Fi denote the cu-
mulative probabilities of A. Let Gi denote the cumulative probabilities of B.
Then

CPT (A) =
n∑

i=1

v(xi)(w(Fi) − w(Fi−1))

=
n∑

i=1

v(xi)w(Fi) −
n−1∑

i=0

v(xi+1)w(Fi)

=
n−1∑

i=1

(v(xi) − v(xi+1))w(Fi) + w(Fn)v(xn).

By Def. 2.36, we know that the probability to get a payoff of at most xi

with lottery A should be less or equal to the corresponding probability for
lottery B. These probabilities are nothing else than Fi and Gi, and therefore
we get Fi ≤ Gi for all i = 1, . . . , n and that there is at least one i such that
Fi < Gi. Moreover, using the monotonicity of v, v(xi) − v(xi+1) < 0. Finally
Fn = 1 = Gn, so we get

CPT (A) =
n−1∑

i=1

(v(xi) − v(xi+1))w(Fi) + w(Fn)v(xn)

>

n−1∑

i=1

(v(xi) − v(xi+1))w(Gi) + w(Gn)v(xn) = CPT (B).

This concludes the proof.
The final theoretical property that we hoped CPT to satisfy, since PT did

not, is continuity. We expect that “similar” lotteries should have “similar”
CPT values. The precise meaning of this will be explained in Sec. 2.4.5, for the
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moment we just convey that CPT is in fact continuous, compare Thm. 2.44.
This excludes in particular any “event splitting effects”, in other words a
lottery does not become more attractive if we partition an outcome into several
very similar outcomes.

There is another attractive feature of CPT: it can be axiomatized. In other
words, we can mimic the approach that von Neumann and Morgenstern used
for Expected Utility Theory and define a set of axioms on preferences that
describe Cumulative Prospect Theory. This has been observed first by Wakker
and Tversky [Wak93]. Unfortunately, the axioms used are more complicated
than in the case of Expected Utility Theory. The rough idea is first to replace
the Independence Axiom with an equivalent set of (albeit less intuitive) ax-
ioms. This gives an alternative characterization of EUT. Then one weakens
this assumption by restricting the validity of these axioms only to a certain
subclass of prospects. This characterizes CPT.19 By restricting the axioms
to larger subclasses one also obtains two other decision models (Cumulative
Utility and Sign-Dependent Expected Utility).

We have learned now that CPT is a conceptual adequate theory: it satisfies
properties that we expect to hold for a behavioral theory for decisions under
risk. Let us now take a look on the descriptive qualities of CPT. How well
does CPT explain actual choices? Does it explain the phenomena we have
encountered before as well as PT?

Let us first consider the Allais Paradox. If we choose v and w as the
functions defined by Kahneman and Tversky (compare (2.7) and (2.8) for a
definition) with the parameters λ := 2.25, α := β := 0.8 and γ := δ := 0.7,
we can indeed explain the paradox by simply computing the CPT values of
the four lotteries A, B, C and D. You may verify this as an exercise.

In general, we will also recover the four-fold pattern of risk-attitudes, but
we have to change its definition slightly. Since we are not over– and under-
weighting solely depending on the size of the probabilities involved, things
become a little bit more complicated. These complications, however, disap-
pear as soon as we study the simple case of a lottery A with only two outcomes.
The CPT functional in this case simply becomes

CPT (A) = w(p)v(x1) + (1 − w(p))v(x2).

Although this is not precisely the same formula as in PT20, it shares the
same properties with it: small probabilities (either for x1 or for x2) are over-
weighted, large probabilities are underweighted. Since the value function has
the same convex-concave shape in CPT as in PT, the four-fold pattern of
risk-attitudes can be explained in exactly the same manner. – As long as we
consider only two-outcome lotteries. This means in particular that we can ex-
plain the behavioral quirks that we encountered before: the life-death problem
19 This characterization is mathematically quite involved. Brave readers might want

to look into the original paper [Wak93].
20 Unless the weighting function w satisfies the symmetry property w(1 − p) =

1 − w(p).
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(Example 2.33 and 2.34) and the fact that people both play lotteries and buy
insurances.

We will see in the following chapters that CPT can also be used to explain
several striking observations in finance, for instance the asset allocation puzzle.
CPT has also been confirmed as a reasonable description of choices under risk
by numerous quantitative studies.

After so much praise for this theory (which was a key reason for Daniel
Kahneman to win the Nobel Prize in 2002 [TK92]), we also like to mention
two limitations. To do so, we have to overcome a certain bias with which
we have happily lived so far, namely that people are, if not fully, so at least
partial, rational. We have tacitly assumed that people act according to the
simple motto “more money is better” and apply the principle of stochastic
dominance. Of course, one could always phrase a problem in a way that con-
vinces people to make a wrong decision. (Some professions live from that.)
But even if we provide clear, non-misleading conditions, this assumption, as
natural as it seems, has been questioned severely in experiments. Let us have
a look on the following example:

Example 2.40. There are two lotteries. In each case there are 100 marbles in
total, one of which is drawn by chance. Every marble corresponds to a prize.
The two lotteries have the following frequencies of marbles:

A :=

Number Prize
of marbles in e

90 96
5 14
5 12

, B :=

Number Prize
of marbles in e

85 96
5 90
10 12

.

Which lottery do you prefer?

This example is taken from [BC97]. Which lottery did you choose? In
several studies, a significant majority of persons preferred B over A. The
percentage differed somehow with the educational background. (PhD students
favored B only in around 50% of the cases, whereas undergraduate students
preferred in around 70% of the cases.) What is wrong about this? You might
have noticed that lottery A is stochastic dominant over B in the sense of
Def. 2.36: the probability to win at least 96e is larger for A, the probability
to win at least 90e is the same for both, the probability to win 14e is again
larger for A and in both cases you have the same probability (100%) to win
at least 12e, so in this sense, A really is better.

That A is stochastic dominant over B means in particular that not only
EUT, but also CPT would predict a preference for A, since they both respect
stochastic dominance. PT, however, can violate stochastic dominance, and in
this particular case it can predict correctly that B is preferred over A. The
reason for this difference is that PT overweights the intermediate outcome
that occurs with only 5% probability, but CPT does not. (Remember that
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CPT usually overweights only extreme events, not low probabilities in the
mid-range.)

There are several other models for decision under risk that can predict
such a behavior as well (e.g., RAM or TAX models, see [BN98, Bir05]), but
since they are not used much in finance we refrain from describing them.
Instead, we will give some information on a different way of extending PT
that can describe this violation of stochastic dominance, but also allows for
applications in finance (compare Sec. 2.4.6).

Important for us is to remember that we cannot expect people to follow
always the stochastic dominance principle. Their decisions might deviate from
this. This is not necessarily bad news, since deviations from rational behav-
ior are, for instance, the key ingredients of active investment strategies! In
most cases, however, assuming that preferences are compatible with stochas-
tic dominance is a safe thing to do, and it is enough to consider the irrational
behavioral patterns like overweighting of small probabilities and framing effect
that can be described well with PT or CPT.

2.4.4 Choice of Value and Weighting Function

When we use CPT (or PT) to model decisions under risk, we need to decide
what value and weighting functions to choose. There are, in principle, two
methods to obtain information on their shape: one is to measure them directly
in experiments, the other one is to derive them from principal considerations.
The former is the way that Tversky and Kahneman originally went, the latter
one mimics the ideas that Bernoulli went with the St. Petersburg Paradox in
the case of EUT.

Measuring value functions in experiments follow the same ideas outlined in
Sec. 2.2.4. The measurement of the weighting function is more difficult. Some
information on this can be found in [TK92] or [WG96]. The original choice
of Kahneman and Tversky seems reasonable in both cases, although different
forms for the weighting function have been suggested, the most popular being

w(F ) := exp(−(− ln(F ))γ)

for γ ∈ (0, 1), see [Pre98].
The measurement of these function is of course limited to lotteries with

relatively small outcomes. (Otherwise, laboratory experiments become too ex-
pensive.) This makes it also difficult to measure very small probabilities, since
for small-stake lotteries, events with very small probability do not influence
the decision much.

These are important restrictions if we want to apply behavioral decision
theory to finance, since we will frequently deal with situations where large
amounts of money are involved and where investment strategies may pose a
risk connected to a very large loss occurring with a very small probability.
We therefore are interested in finding at least some qualitative guidelines
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about the global behavior of value and weighting function based on theoretical
considerations.

At this point it is helpful to go back to the St. Petersburg Paradox. We
remember that the St. Petersburg Paradox in EUT was solved completely if
we restricted ourselves to lotteries with finite expected value. Then the only
structural assumption that we had to pose on the utility function was concav-
ity above a fixed value.21 Does this result also hold for CPT? A closer look
at this reveals some subtle difficulty: the far-out events of the St. Petersburg
Lottery are overweighted by CPT which leads to a more risk-seeking behavior.
(Remember the four-fold pattern of risk-attitudes!) Therefore one might won-
der whether it is not possible to construct lotteries that have a finite expected
return, but nevertheless an infinite CPT value.

This observation has been done in [Bla05] and [RW06]. The following result
gives a precise characterization of the cases where this happens. We formulate
it for general probability measures, but its main conclusions holds of course
also for discrete lotteries with infinitely many outcomes.

Theorem 2.41 (St. Petersburg Paradox in CPT [RW06]). Let CPT
be a CPT subjective utility given by

CPT (p) :=
∫ +∞

−∞
v(x)

d
dx

(w(F (x))) dx,

where the value function v is continuous, monotone, convex for x < 0 and
concave for x > 0. Assume that there exist constants α, β ≥ 0 such that

lim
x→+∞

u(x)
xα

= v1 ∈ (0,+∞), lim
x→−∞

|u(x)|
|x|β = v2 ∈ (0,+∞), (2.10)

and that the weighting function w is a continuous, strictly increasing function
from [0, 1] to [0, 1] such that w(0) = 0 and w(1) = 1. Moreover assume that
w is continuously differentiable on (0, 1) and that there is a constant γ such
that

lim
y→0

w′(y)
yγ−1

= w0 ∈ (0,+∞). (2.11)

Let p be a probability distribution with E(p) < ∞ and var(p) < ∞. Then
CPT (p) is finite if α < γ and β < γ. This condition is sharp.

In particular, the CPT value may be infinite for distributions with finite
EV in the usual parameter range where α > γ.

What does this tell us about CPT as a behavioral model? Did it fail,
because it cannot describe this variant of the St. Petersburg Paradox? Fortu-
nately, this is not the case: we can restrict the theory to a subclass of lotteries
or we can change the shape of the value and/or weighting function. Roughly
spoken, one can show that there are three ways to fix the problem [RW06]:

21 Compare Thm. 2.25 (ii).
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1. If we allow only for probability distributions with exponential decay at
infinity (or even with bounded support), the problem does not occur. In
many applications, this is the case, for instance if we study normal distri-
butions or finite lotteries. However, in problems where we are interested in
finding the optimal probability distribution (subject to some constraints),
it might well happen that we obtain a “solution” with infinite subjective
utility. This renders CPT useless for applications like portfolio optimiza-
tion.

2. We could modify the weighting function w such that w′(0) and w′(1)
are finite. This guarantees a finite subjective utility, independently of the
choice of the value function (as long as it has a convex–concave structure).

3. The value function can be modified for large gains and losses such that it
is bounded. This again ensures a finite subjective utility. This is probably
the best fix, since there are other theoretical reasons in favor of a bounded
value function, compare Sec. 3.4.

There is of course a very strong reason in favor of keeping weighting and value
function unchanged, namely that it has been introduced in a groundbreaking
article and has subsequently used by many other people. Although this argu-
ment sounds strange at first, and arguments like this are often not fostering
the scientific progress, there is in this case some grain of truth in it, namely
that there is already a large amount of data on measuring CPT parameters,
all based on the standard functional forms of value and weighting function.
Changing the model means reanalyzing the data, estimating new parameters
and generally making different studies less compatible.

How can we avoid such problems and still use functional forms that satisfy
reasonable theoretical assumptions?

Fortunately, there are simple bounded value functions that are very close
to the xα-function used by Tversky and Kahneman, e.g. the exponential func-
tions

v(x) :=

{
λ−e−αx − λ− , for x < 0,

−λ+e−αx + λ+ , for x ≥ 0,
(2.12)

where the ratio λ−/λ+ corresponds to the loss aversion λ in PT and CPT,
and α reflects the risk aversion (similar to PT and CPT). This function has
been suggested in [DGHP05]. In Fig. 2.15 we compare the classical value func-
tion with the bounded variant. We see that the agreement for small values
of x is very good. Since experiments are typically performed in this range,
the descriptive behavior of both value functions should be very similar. For
large values there is a strong disagreement which resolves the St. Petersburg
Paradox and helps us applying CPT to problems in finance where we need a
reasonable behavior of the CPT functional for lotteries involving the possibil-
ity of large gains and losses.

Another interesting example of an alternative value function has been
introduced in [ZK08]: it makes an interesting connection between MV and PT
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Fig. 2.15. Comparing classical (solid line) and exponential (dashed line) value
function: they agree for small, but disagree for large outcomes

by providing a common framework for both. Let us define the value function
as

v(x) :=

{
x− αx2 , for x < 0,
λ(x + βx2) , for x ≥ 0,

(2.13)

then for the case α = −β and λ = 1 we obtain a quadratic value function which
implies that the corresponding decision model is the MV model – at least up
to possible probability weighting and framing. By adjusting the parameters
α, β and λ we can therefore generalize MV into the framework of PT which
turns out particularly useful for applications in finance, compare Fig. 2.16.
We will therefore use this functional form occasionally in later chapters.

There is, of course, the usual drawback in this specification that we inherit
from PT and which is related to the mean-variance puzzle: the value function
becomes decreasing for large values, thus we have to make sure that our
outcomes do not become too large.

Fig. 2.16. A piecewise quadratic value function can describe MV- or PT-like pref-
erences, depending on the parameters chosen

We have now developed the necessary tools to deal with decision problems
in finance, from a rational and from a behavioral point of view. In the follow-
ing section (which is intended for the advanced reader and is therefore marked
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with a �) we will discuss an interesting, but mathematically complicated con-
cept in detail, namely continuity of decision theories. Afterwards, still marked
with a � as warning to the nonspecialist, we introduce a different extension of
PT that keeps more of the initial ideas of PT than CPT, but can neverthe-
less be extended to arbitrary lotteries. It might therefore be of some use for
applications in finance, in particular in situations where the computation of
CPT is computationally too difficult.

The nonspecialist might now turn his attention to Sec. 2.5, where we draw
some connections between EUT, MV, PT and CPT. In particular, we will try
to understand in which cases these theories agree, where they disagree, and
in what situations we should apply them.

2.4.5 Continuity in Decision Theories�

We have already several times encountered the fundamental notion of conti-
nuity. This is a central property not only of decision theories, but virtually of
all mathematical models, be it in economics, natural sciences or engineering.
Its main insight is, that a model is only valuable if it allows for predictions
that can be checked experimentally. In other words, for some given data, the
model computes values for quantities that can be measured. Since the given
data can in practical applications be never given with infinite precision, and it
is also generally impossible to do computations with infinite accuracy, a fun-
damental property, which a reasonable model should satisfy, is that a slight
change in the data only leads to a slight change in the predicted quantities.
We call such behavior “continuous”.

Of course many systems are not continuous under every circumstances:
think about the movement of a pendulum (a mass, attached with a bar to a
fixed point) which can be predicted by the laws of gravity with high accuracy,
unless we put the mass directly above the fixed point, from which a movement
to either sides is equally likely and determined by indiscernibly small changes
in the initial position (i.e., the data). However, in reasonable models such
non-continuous situations should be a rare exception.

At this point, we need to add a word of warning: unfortunately, the word
“continuous” has two quite different meanings in the English language: first,
continuous means non-discrete. We have already used this notion when talking
about measures (or lotteries), and we have seen how to extend the notion of
EUT and CPT to such continuous distributions. Second, continuous means
not discontinuous. This is what we mean when we speak about continuity
in this section. Historically, both ideas are related, but nowadays they are
distinct properties that should not be mixed up.

If we want to know whether a decision theory is continuous, we need to find
a mathematically precise definition of continuity. In order to define continuity,
we need to define what it means if U(An) → U(A), i.e., when the sequence
of lotteries An converges to the lottery A. We know from calculus what it
means if a sequence of numbers converges to another number, but what does
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it mean when lotteries converge? Intuitively, we would say that for n → ∞,
the following sequence of lotteries An converges to the lottery A with the
certain outcome of 1:

An := Outcome 1 − 1
n 1 + 1

n
Probability 1/3 2/3

.

But how can we formulate this in mathematical terms? Fortunately, we can
describe lotteries (in the state-independent setting which we consider here)
by probability measures. There is a well-developed mathematical concept for
the convergence of probability measures, but before giving the mathematical
definition, we want to motivate it a little: we could say that a sequence of
probability measures pn converges to a probability measure p if every expected
utility of pn converges to the expected utility of p. This would imply that no
rational investor would see a difference between p and the limit of pn. This
idea leads to the mathematical concept of weak-�-convergence:

Definition 2.42 (Weak-�-convergence of probability measures). We
say that a sequence {pn} of probability measures on R

N converges weakly-� to
a probability measure p if for all bounded continuous functions f

∫

RN

f(x) dpn(x) →
∫

RN

f(x) dp(x)

holds. We write this as pn
�
⇀ p. The function f is sometimes called a test

function.

To see the correspondence to the intuitive approach sketched above, we
can consider f(x) as a utility function.

In the above example, we can easily check that this definition is satisfied:
first consider as f the indicator function22 on some interval [x1, x2]: in fact,
if x2 < 1, then the integral of An becomes zero when n is large enough, and
the integral of A over this interval is also zero. The same holds if x1 > 1. If
x1 ≤ 1 ≤ x2 then the integral of An becomes eventually 1 and the integral of
A is 1 as well. We then can approximate an arbitrary continuous function f
by sums of indicator functions.

We can now formulate the definition of continuity:23

Definition 2.43 (Continuity of a utility functional). We say that a
utility functional U is continuous, if for all sequences of lotteries An with
An

�
⇀ A we have U(An) → U(A).

22 The indicator function is of course not continuous, but one can work around this
problem by approximating the indicator function by continuous functions – a
quite useful little trick that works here.

23 This definition is not related to the “Continuity Axiom” of von Neumann and
Morgenstern (Axiom 2.18), even though the (unfortunate) name of the axiom
suggests this.
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The concept of continuity, so natural it is in other situations, seems at
first glance quite involved in the case of decision theory. However, having in
mind that the mathematical formalism is just a way to clarify a quite intuitive
concept (namely that “similar” lotteries should be evaluated in a “similar”
way), is the main message we want you to remember.

Regarding the decision models we have encountered so far, we state that
PT is discontinuous, whereas EUT, Mean-Variance Theory and CPT are con-
tinuous. We sketch a proof for the most complicated case, CPT. The other
cases are left as an exercise for the mathematically inclined reader.

Theorem 2.44. If the weighting function w is continuously differentiable on
(0, 1) and the value function v is continuous, then CPT is weak-� continuous.

Proof. We assume for simplicity that p is absolutely continuous. If pn
�
⇀ p,

then, by definition,
∫
f dpn →

∫
f dp for all bounded continuous functions

f . Using that pn and p are probability measures and that p is absolutely
continuous, one can prove that Fn(x) =

∫ x

−∞ dpn →
∫ x

−∞ dp = F (x) for all
x ∈ R. Since w′ is continuous, also w′(Fn) → w′(F ). We compute

∫ +∞

−∞
v(x)

d
dy

(w(Fn(y))) |y=x dx =
∫ +∞

−∞
v(x)w′(Fn(x)) dpn(x).

This is a product of a weak-� converging term and a pointwise converging
term. Using a standard result from functional analysis, this converges to the
desired expression.

2.4.6 Other Extensions of Prospect Theory�

Since we have seen that not all properties of CPT correspond well with ex-
perimental data (in particular its lack of violations of stochastic dominance),
there are some descriptive reasons favoring PT. There is another, practical
argument in favor of PT: computations in finance often involve large data
sets and involved optimizations. In this case, PT is the computationally sim-
pler model, since it does not need outcomes to be sorted by their amounts.
For these reasons it is useful to look for an extension of PT to arbitrary (not
necessarily discrete) lotteries. This is in fact possible if we use the variant of
PT introduced by [Kar78], i.e.

PT (p) :=
∑n

i=1 v(xi)w(pi)∑n
i=1 w(pi)

.

We assume as before that the weighting function w behaves for p close to
zero like pγ (with some γ > 0), compare (2.11).

The result of [RW08] is now summarized in the following theorem:
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Theorem 2.45. Let p be a probability distribution on R with exponential de-
cay at infinity and let pn be a sequence of discrete probability measures with
outcomes xn,z in equal distances of 1/n (each with probability pn,z), i.e.,
xn,z+1 = xn,z + 1

n . Let pn
�
⇀ p. Assume that the value function v ∈ C1(R) has

at most polynomial growth and that the weighting function w : [0, 1] → [0, 1]
satisfies the above condition. Then the normalized PT utility

PT (pn) :=
∑

z w(pn,z)v(xn,z)∑
z w(pn,z)

converges to

lim
n→∞

PT (pn) =
∫
v(x)p(x)γ dx∫
p(x)γ dx

.

This limit functional can therefore be considered as a version of PT for
continuous distributions. A small problem is that we need to choose particular
approximating sequences for p. Remark 2.50 shows how this can be fixed.

Theorem 2.45 can be generalized to lotteries that also contain singular
parts. We summarize this in the following definition:

Definition 2.46. If p is a probability measure that can be written as a sum
of finitely many weighted Dirac masses24 πiδxi and an absolutely continuous
measure pa, i.e., p = pa +

∑n
i=1 πiδxi , then we can define

PT (p) :=
∑n

i=1 v(xi)πα
i +

∫
v(x)pa(x)α dx∑n

i=1 π
α
i +

∫
pa(x)α dx

.

Remark 2.47. The normalization is necessary, since otherwise the limit func-
tional is either infinite (if γ < 1) or equivalent to a version of EUT (if γ = 1).
Thus there would be no probability weighting in the limit.

Let us finally have a look at a related extension of PT [RW08]. Smooth
Prospect Theory (SPT) encompasses parts of the editing phase of PT into the
functional form, in that it collects “nearby” outcomes to one. This leads to a
functional which is, unlike PT, continuous in the sense of the last section. We
give here only its definition and some remarks on its properties:

Definition 2.48. Let p be a discrete outcome distribution. Then we define

SPTε(p) :=

∫
w
(∫ x+ε

x−ε
dp
)
v(x) dx

∫
w
(∫ x+ε

x−ε
dp
)

dx
. (2.14)

Remark 2.49. The parameter ε > 0 marks how small the distance between two
outcomes can be until they are collected to one outcome. As long as ε > 0,
SPT is continuous. It converges to PT when ε→ 0.
24 For a definition of Dirac masses, see Appendix A.4.
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The definition of SPT allows us to generalize the convergence result of
Thm. 2.45 to arbitrary approximating sequences:

Remark 2.50. If pk �
⇀ p, then, for all sequences k(ε) → ∞ that converge

sufficiently slowly as ε→ 0, the SPT utility of pk converges to PT (p), i.e.:

lim
ε→0

SPTε(pk(ε)) = PT (p) =
∫
v(x)p(x)α dx∫
p(x)α dx

.

Proofs and further details on these results can be found in [RW08].

2.5 Connecting EUT, Mean-Variance Theory and PT

The main message of the last sections is that there are several different mod-
els for decisions under risk, the most important being EUT, Mean-Variance
Theory and PT/CPT. The question we need to ask is: how important are
the differences between these models? Maybe in “natural” cases all (or some)
of these theories agree? In this section, we will check this idea. Moreover we
will characterize the different approaches and their fields of applications. You
should then be able to judge in a given situation which model is best to be
applied.

First, we compare EUT and Mean-Variance Theory. Are they in general
the same? Obviously not, since we have demonstrated in Thm. 2.30 that Mean-
Variance Theory can violate state dominance, but we have seen in Sec. 2.2
that EUT does not, hence both theories cannot coincide. This shows that it is
usually not possible to describe a rational person by Mean-Variance Theory.

This is certainly bad news if you still believed that Mean-Variance Theory
is the way of modeling decisions under risk, but maybe we can rescue the
theory by restricting the cases under consideration? This is in fact possible,
and there are several important cases where Mean-Variance Theory can be
interpreted as a special variant of EUT:

• If the von Neumann-Morgenstern utility function is quadratic.
• If the returns are all normally distributed.
• If the returns all follow some other special patterns, e.g., they are all

lotteries with two outcomes of probability 1/2 each.
• In certain time-continuous trading models.

We will state in the following a couple of theorems that make these cases
precise and show how they lead to an equivalence between both theories.
First we define:

Definition 2.51. Let � be an expected utility preference relation. We call
EUT and Mean-Variance compatible if there exists a von Neumann-Morgen-
stern utility function u(x) and a mean-variance utility function v(μ, σ) which
both describe �.
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We have the following result:

Theorem 2.52. Let � be a preference relation on probability measures.

(i) If u is a quadratic von Neumann-Morgenstern utility function describing
�, then there exists a mean-variance utility function v (μ, σ) which also
describes �.

(ii) If v (μ, σ) describes � and there is a von Neumann-Morgenstern utility
function u describing �, then u must be quadratic.

Proof. We prove (i): Let us write u as u(x) = x−bx2. (We can always achieve
this by an affine transformation.) The utility of a probability measure p is
then

EUT (u) = Ep(u(x)) = Ep(x − bx2) = Ep(x) − bEp(x2)

= E(p) − bE(p)2 − b var(p) = μ− bμ2 − bσ2 =: v(μ, σ).

The proof of (ii) is more difficult, see [Fel69] for details and further references.

There is of course a problem with this result: a quadratic function is either
affine (which would mean risk-neutrality and is not what we want) or its
derivative is changing sign somewhere (which means that the marginal utility
would be negative somewhere, violating the “more money is better” maxim)
or that the function is strictly convex (but that would mean risk-seeking
behavior for all wealth levels). None of these alternatives looks very appealing.
The only case where this theorem can be usefully applied is when the returns
are bounded. Then we do not have to care about a negative marginal utility
above this level, since such returns just do not happen. The utility function
looks then like u(x) = x− bx2, b > 0, where u′(x) > 0 as long as we are below
the bound. The minus sign ensures that u′′ < 0, i.e., u is strictly concave.
The drawback of this shape is that on the one hand it does not correspond
well to experimental data and on the other hand there is no reason why this
particular shape of a utility function should be considered as the only rational
choice.

More important are cases where the compatibility is restricted to a certain
subset of probability measures, e.g., when we consider only normal distribu-
tions:

Theorem 2.53. Let � be an expected utility preference relation on all normal
distributions. Then there exists a mean-variance utility function v(μ, σ) which
describes � for all normal distributions.

This means that, if we restrict ourselves to normal distributions, we can
always represent an EUT preference by a mean-variance utility function.

Proof. Let Nμ,σ be a normal distribution. Then using some straightforward
computation and the substitution z := (x− μ)/σ, we can define v:
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EUT (u) = Ep(u(x))=
∫ ∞

−∞
u(x)Nμ,σ(x) dx=

∫ ∞

−∞
u(μ+ σz)

1√
2π

e−
z2
2 dz

=
∫ ∞

−∞
u(μ+ σz)N0,1(z) dz =: v(μ, σ).

This idea can be generalized: the crucial property of normal distributions is
only that all normal distributions can be described as functions of their mean
and their variance. There are many classes of probability measures, where we
can do the same. In this way, we can modify the above result to such “two-
parameter families” of probability measures, e.g., to the class of log-normal
distributions or to lotteries with two outcomes of probability 1/2 each.

After discussing the cases where Mean-Variance Theory and EUT are com-
patible, it is important to remind ourselves that these cases do not cover a
lot of important applications. In particular, we want to apply our decision
models to investment decisions. If we construct a portfolio based on a given
set of available assets, the returns of the assets are usually assumed to fol-
low a normal distribution. This allows for the application of Mean-Variance
Theory as we have seen in Thm. 2.53. The assumption, however, is not nec-
essarily true as we can invest into options and their returns are often not at
all normally distributed. Given the manifold variants of options, it seems also
quite hopeless to find a different two-parameter family to describe their return
distributions.

We could also argue that the returns are bounded. Even if it is difficult
to give a definite bound for the returns of an asset, we might still agree that
there exists at least some bound. We could then apply Thm. 2.52, but this
would mean that the utility function in the EUT model must be quadratic.
Although theoretically acceptable, this seems not to fit well with experimental
measurements of the utility function.

Finally, time-continuous trading is not the right framework in which to
cast typical financial decisions of usual investors.

Therefore we see that there are many practical situations where Mean-
Variance Theory does not work as a model for rational decisions. On the
other hand, there are many situations where it is at least not too far from
EUT (e.g., if the assets are not too far from being normally distributed etc.)
and since Mean-Variance Theory is mathematically by far simpler than EUT,
it is often for pragmatic reasons a good decision to use Mean-Variance Theory.
However, results obtained in this way should always be watched with a critical
eye, in particular if they seem to contradict our expectations.

How is it now with CPT (as prototypical representative of the PT family)?
When does it reduce to a special case of EUT? How is its relation to Mean-
Variance Theory?

Again, we see immediately, that CPT in general neither agrees with EUT
nor with Mean-Variance Theory: it satisfies stochastic dominance, hence it
cannot agree with Mean-Variance Theory, and it does not satisfy the Inde-
pendence Axiom, thus it cannot agree with EUT.
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How is it in the special case of normal distributions? In this case, the
probability weighting does in fact not make a qualitative difference between
CPT and Mean-Variance Theory, but the convex-concave structure of the
value function can lead to risk-seeking behavior in losses, as we have seen.
This implies that a person prefers a larger variance over a smaller variance,
when the mean is fixed and contradicts classical Mean-Variance Theory.

We could also wonder how CPT relates to EUT if the probability weighting
parameter becomes one, i.e., there is no over– and underweighting. In this case
we arrive at some kind of EUT, but only with respect to a frame of gains and
losses and not to final wealth. A person following this model, which is nothing
else than the Rank-Dependent Utility (RDU) model, is therefore still not
acting rationally in the sense of von Neumann and Morgenstern. We cannot
see this from a single decision, but we can see this when we compare decisions
of the same person for different wealth levels. There is only one case where
CPT really coincides with a special case of EUT, namely when not only the
weighting function parameter, but also the value function parameter and the
loss aversion are one. In this case CPT coincides with a risk-neutral EUT
maximizer, in other words a maximizer of the expected value.

On the other hand, we should not forget that CPT is only a modification
of EUT. Therefore its predictions are often quite close to EUT. We might
easily forget about this, since we have concentrated on the cases (like Allais’
paradox) where both theories disagree. Nevertheless for many decisions under
risk, neither framing effect nor probability weighting play a decisive role and
therefore both models are in good agreement. We can illustrate this in a simple
example:

Example 2.54. Consider lotteries with two outcomes. Let the low outcome be
zero and the high outcome x million e. Denote the probability for the low
outcome by p. Then we can compute the certainty equivalent (CE) for all
lotteries with x ≥ 0 and p ∈ (0, 1) using EUT, Mean-Variance Theory, CPT.
To fix ideas, we use for EUT the utility function u(x) := x0.7 and an initial
wealth level of 5 million e. For Mean-Variance Theory we fix the functional
form μ− σ2 and for CPT we choose the usual function and parameters as in
([TK92]). How do the predictions of the theories for the CE agree or disagree?

The result of this example is plotted in Fig. 2.17.
Summarizing we see that EUT and Mean-Variance Theory coincide in

certain special situations; CPT usually disagrees with both models, but does
often not deviate too much from EUT. We summarize the similarities and dif-
ferences of EUT, Mean-Variance Theory and CPT in a diagram, see Fig. 2.18

What does this tell us for practical applications? Let us sketch the main
areas of problems where the three models excel:

• EUT is the “rational benchmark”. We will use it as a reference of rational
behavior and as a prescriptive theory when we want to find an objectively
optimal decision.
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Fig. 2.17. Certainty equivalents for a set of two outcome lotteries for different
decision models: EUT (left), CPT (center), Mean-Variance Theory (right). Small
values for the high outcome x of the lottery are left, large values right. A small
probability p to get the low outcome (zero) is on the back, a large probability on
the front. The height of the function corresponds to its Certainty Equivalent
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Fig. 2.18. Differences and agreements of EUT, PT and Mean-Variance

• Mean-Variance Theory is the “pragmatic solution”. We will use it when-
ever the other models are too complicated to be applied. Since the theory
is widely used in finance, it can also serve as a benchmark and point of
reference for more sophisticated approaches.

• CPT (and the whole PT familiy) model “real life behavior”. We will use it
to describe behavior patterns of investors. This can explain known market
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anomalies and can help us to find new ones. Ultimately this helps, e.g., to
develop new financial products.

We will observe that often more than one theory needs to be applied in one
problem. For instance, if we want to exploit market biases, we need to model
the market with a behavioral (non-rational) model like CPT and then to con-
struct a financial product based on the rational EUT. Or we might consider
the market as dominated by Mean-Variance investors and model it accord-
ingly, and then construct a financial product along some ideas from CPT that
is taylor-made to the subjective (and not necessarily rational) preferences of
our clients.

In the next chapters we will develop the foundations of financial markets
and will use all of the three decision models to describe their various aspects.

2.6 Ambiguity and Uncertainty�

We have defined at the beginning of this chapter that risk corresponds to
a multitude of possible outcomes whose probabilities are known. Often we
deal with situations where the probabilities are not known, sometimes they
cannot even be estimated in a reasonable way. (What is the probability that
a surprising new scientific invention will render the product of a company
we have invested in useless?) In other occasions, there are ways to quantify
the probabilities, but a person might not be aware of these probabilities.
(Somebody who has no idea of the stock market will have no idea how (un)li-
kely it is to lose half of his wealth when investing into a market portfolio,
although a professional investor will be able to quantify this probability.) We
call this ambiguity or uncertainty.25

The difference between risk and uncertainty has first been pointed out
by F. Knight in 1921, see [Kni21]. For the actual behavior of people, this
difference is very important, as the famous Ellsberg Paradox [Ell61] shows:

Example 2.55. There is an urn with 300 balls. 100 of them are red, 200 are
blue or green. You can pick red or blue and then take one ball (blindly, of
course). If it is of the color you picked, you win 100e, else you don’t win
anything. Which color do you choose?

Which color did you choose? Most people choose red. Let us go to the
second experiment:

Example 2.56. Same situation, you pick again a color (either red or blue) and
then take a ball. This time, if the ball is not of the color you picked, you win
100e, else you don’t win anything. Which color do you choose?
25 Sometimes there are attempts in the literature to use both words for slightly

different concepts, but so far there seems to be no commonly accepted definition,
hence we take them as synonyms and will usually use the word “uncertainty”.
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Here the situation is different: if you pick red, you win if either blue or
green is chosen, and although you do not know the number of the green or the
number of the blue balls, you know that there are in total 200. Most people
indeed pick red.

However, this seems a little strange: let us say, in the first experiment you
must have estimated that there are fewer blue balls than red balls, and hence
picked red. Then in the second experiment you should have chosen blue, since
the estimated combined number of red and green balls would be larger than
the combined number of blue and green balls.

What happens in this experiment is that people go both times for the
“sure” option, the option where they know their probabilities to win. In a
certain way, this is nothing else than risk-aversity, but of a “second order”,
since the “prizes” are now probabilities! One possible explanation of this ex-
periment is therefore that people tend to apply their way of dealing with risky
options, which works (more or less) well for decisions on lotteries,26 also to sit-
uations where they have to decide between different probabilities. This is very
natural, since these winning-probabilities can be seen as “prizes”, and it is
natural to apply the usual decision methods that one uses for other “prizes”
(being it money, honor, love or chocolate). Unfortunately, probabilities are
different, and so we run into the trap of the Ellsberg Paradox.

It is interesting to notice that the “uncertainty-aversity” that we observed
in the Ellsberg Paradox occasionally reverts to an uncertainty-seeking be-
havior, in the same way, the four-fold pattern of risk-attitudes can lead to
risk-averse behavior in some instances and to risk-seeking behavior in others.

This is, however, only one possible explanation, and the Ellsberg Paradox
and its variants are still an active research area, which means that there are
many open questions and not many definite answers yet.

The Ellsberg Paradox has of course interesting implications to financial
economics. It yields, for instance, immediately a possible answer to the ques-
tion why so many people are reluctant to invest into stocks or even bonds, but
leave their money on a bank account: besides the problem of procrastination
(“I will invest my money tomorrow, but today I am too busy.”) which we
will discuss in the next section, these people are often not very knowledgeable
about the chances and risks of financial investments. It is therefore natural
that when choosing between a known and an unknown risk, i.e., between a
risk and an uncertain situation, they choose the safe option. This also explains
why many people invest into very few stocks (that they are familiar with) or
even only into the stock of their own company (even if their company is not
performing well).

26 We have seen that CPT models such decisions quite well, and that the rational
decisions modeled by EUT are not too far away from CPT.
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2.7 Time Discounting

Often, financial decisions are also decisions about time. Up to now we have
not considered effects on decisions induced by time. In this little section we
will introduce the most important notion regarding time dependent decisions,
the idea of discounting.

A classical example for financial decisions strongly involving the time com-
ponent is retirement, where the consumption is reduced today in order to save
for later.

If you are faced with a decision to either obtain 100e now or 100e in
one year, you will surely choose the first alternative. Why this? According
to the classical EUT both should be the same, at least at first glance. On a
second look, one notices that investing the 100e that you get today will yield
an interest, thus providing you with more than 100e after one year. There
are other very rational reasons not to wait, e.g., you may simply die in the
meanwhile not being able to enjoy the money after one year. In real life, you
might also not be sure whether the offer will really still hold in one year, so
you might prefer the “sure thing”.

In all these cases, the second alternative is reduced in its value. In the
simplest case, this reduction is “exponential” in nature, i.e., the reduction is
proportional to the remaining utility at every time: if we assume that the
proportion by which the utility u decreases is constant in time, we obtain the
differential equation u′(t) = −δu(t), where δ > 0 is called discounting factor.
This reduces the original utility u(0) after a time t > 0 to

u(t) = u(0)e−δt, (2.15)

as we can see by solving the differential equation. If we consider only discrete
time steps i = 1, 2, . . . , we can write the utility as u(0)δi (where the δ does
not necessarily have the same value as before). To see this, set t = 1, 2, . . . in
(2.15).

Classical time discounting is perfectly rational and leads to a time-
consistent preference: if a person prefers A now over B after a time t, this
person will also prefer A after a time s over B after a time s + t and vice
versa:

uB(t+ s) − uA(t) = uB(0)e−δ(t+s) − uA(0)e−δ(t)

= e−δt
(
uB(0)e−δs − uA(0)

)

= e−δt (uB(s) − uA(0)) ,

where we use that e−δt is a positive constant that does not influence the sign
of the last expression.

Experience, however, shows that people do not behave according to the
classical discounting theory: in a study test persons were asked to decide be-
tween 100hfl (former Dutch currency) now and 110hfl in four weeks [KR95].
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82% decided that they preferred the money now. Another group, however,
preferred 110hfl in 30 weeks over 100hfl in 26 weeks with a majority of 63%.
This is obviously not time-consistent and hence cannot be explained by the
classical discounting theory. This phenomenon has been frequently confirmed
in experiments. The extend of the effect varies with level of education, but
also depends on the economic situation and cultural factors. For a large in-
ternational survey on this topic see [WRH09].

The standard concept in economics and particularly in finance to model
this behavior is the so-called “hyperbolic discounting”. The utility at a time
t is thereby modeled by a hyperbola, rather than an exponential function,
following the equation

u(t) =
u(0)

1 + δt

where δ is the hyperbolic discounting factor, compare Fig. 2.19.

time t

discounted utility

e−δt

u(t) =
u(0)

1 + δt

Fig. 2.19. Rational versus hyperbolic time discounting

A similar definition is also often called hyperbolic discounting (or more
accurately “quasi-hyperbolic” discounting), namely

u(t) =
{

u(0) , for t = 0,
1

1+βu(0)e−δt , for t > 0, where β > 0.

Hyperbolic discounting explains the behavioral pattern observed in the
experiment by Roelofsma and Keren [KR95] and similar ones. Nevertheless,
there is also some serious criticism against this concept, notably by Rubin-
stein [Rub03] who points out that there are other inconsistencies in time-
dependent decisions that cannot be explained by hyperbolic discounting, and
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that therefore the case for this model is not very strong. There is also re-
cent work by Gerber [GR] that demonstrates how uncertainties in the fu-
ture development of a person’s wealth can lead to effects that look like time-
inconsistencies, but actually are not: in the classical experiment by [KR95],
the results could e.g., be explained by classical time-discounting if people are
nearly as unsure about their wealth level in the next week as in 30 weeks: the
uncertainty of the wealth level reduces the expected utility of a risk-averse
person at a given time. Although hyperbolic discounting is therefore not com-
pletely accepted, it is nevertheless a useful descriptive model for studying
time-discounting.

A popular application of hyperbolic time-discounting is the explanation
of undersaving for retirement. Here we give an example where hyperbolic
discounting is combined with the framing effect:

Example 2.57 (Retirement). Assume a person has at time t = 0 a certain
amount of money w := 1 which he could save for his retirement at time t = 10
yielding a fixed interest rate of r := 0.05. Alternatively, he can consume
the interest rate of this amount immediately. The extra utility gained by
consuming the interest rate wr is assumed to be wr and the utility gained by
a total saving of x at the retirement age is 2x, the factor 2 taking care of the
presumably larger marginal utility at the retirement age, where the income,
and hence the wealth level, shrinks. The hyperbolic discounting constant is
δ = 0.25. Does the person save or not?

We assume for simplicity that the person would either always or never
save. A first approach would compare the discounted utility of the alternative
“never saving” with the alternative “always saving”. A short computation
gives

u(always saving) =
u(w(1 + r)t)

1 + δt
=

2 × 1.0510

3.5
≈ 0.9308,

u(never saving) =
u(w)
1 + δt

+
t∑

s=0

u(rw)
1 + δs

≈ 0.8550.

This would imply that the person is indeed saving for his retirement. However,
the decision whether or not to save might be framed differently: the person
might decide on whether to start saving now or tomorrow. If he applies this
frame27 then his computation looks like this:

u(start saving today) = u(always saving) ≈ 0.9308,

u(start saving next year) =
u(w(1 + r)t−1)

1 + δt
+ u(wr) ≈ 0.9365.

27 This framing seems at least to be used frequently enough to produce proverbs
like “A stitch in time saves nine” and “Never put off till tomorrow what you can
do today”.
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“Starting to save next year” is therefore the preferred choice – until next year,
where the new alternative “starting to save yet another year later” suddenly
becomes very appealing.

This theoretical explanation can also be verified empirically, e.g. by com-
paring data on time discounting from various countries with household saving
rates [WRH09]: households in countries where people show stronger time dis-
counting tend to save less.

The typical interaction of framing effect and hyperbolic discounting that
we observe in retirement saving decisions can also be observed in other sit-
uations. Many students who start preparing for an examination in the last
minute will know this all too well: one more day of procrastination seems
much more preferable than the benefit from a day of hard work for the exam-
ination results, but of course everybody would still agree that it is preferable
to start the preparation tomorrow (or at least some day) rather than to fail
the exam. . .

2.8 Summary

Decisions under risk are decision between alternatives with certain outcomes
which occur with given probabilities.

We have seen three models of decisions under risk: Expected Utility The-
ory (EUT) follows directly from the “rational” assumptions of completeness,
transitivity (no “Lucky Hans”), continuity and independence of irrelevant al-
ternatives (for a decision between A and B, only the differences between A and
B matter). It is therefore the “rational benchmark” for decisions. The choice of
the utility function allows to model risk-averse as well as risk-seeking behavior
and can be used to explain rational financial decisions, e.g., on insurances or
investments. The main purpose of EUT, however, is a prescriptive one: EUT
helps to find the optimal choice from a rational point of view.

Sometimes EUT is too difficult to use. In particular when considering
financial markets, it is often much easier to consider only two parameters: the
expected return of an asset and its variance. This leads to the Mean-Varaince
Theory. We have seen that this theory has certain drawbacks, in particular it
can violate state dominance. (This is called the “Mean-Variance paradox”.) In
certain cases, in particular when the returns are normally distributed, Mean-
Variance Theory turns out to be a special case of EUT, and hence we can
more confidently use it.

EUT is about how people should decide. But how do people decide? The
pessimistic statement of Chomsky on the unpredictable nature of human deci-
sions, which we had put at the beginning of this chapter, has been disproved to
some extend in recent years: in particular Prospect Theory (PT) and Cumu-
lative Prospect Theory (CPT) describe choices under risk quite well. Certain
irrational effects like the violation of the “independence of irrelevant alterna-
tives” make such approaches necessary to model actual behavior. Key features
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are the overweighting of small probabilities (respectively extreme events) and
decision-making with respect to a reference point (“framing”). It is possible
to explain the “four-fold pattern of risk-attitudes” and famous examples like
Allais’ Paradox with these models.

Finally, we had a look on the time-dimensions of decisions. Whereas a
discounting of the utility of future events can be explained with rational rea-
sons, the specific kind of time-discounting that is observed is clearly irrational,
since it is not time-consistent. Such time-inconsistent behavior can be used to
explain, e.g., undersaving for retirement.

After finishing this chapter, we have now a very solid foundation on which
we can build our financial market theories in the next chapters.

2.9 Tests and Exercises

The following tests and exercises should enable the reader to check whether
he understood the key ideas of decision theory. Some of the multiple choice
questions are tricky, but most should be answered correctly. The exercises can
then be used to apply the concepts of this chapter to real problems.

2.9.1 Tests

1. How do you define that a lottery A with finitely many outcomes state dominates
a lottery B with finitely many outcomes?
� If A gives a higher outcome than B in every state.
� If A gives a higher or equal outcome than B in every state, and there is at

least one outcome where A gives a higher outcome than B.
� If the expected return of A is larger than the expected return of B.
� If, for every x, the probability to get a return of more than x is larger for A

than for B.
2. What is the expected utility (EUT) of a lottery A with outcomes x1 and x2 and

probabilities p1 and p2?
� EUT (A) = x1p1 + x2p2.
� EUT (A) = u(x1p1 + x2p2).
� EUT (A) = u(x1)p1 + u(x2)p2.
� EUT (A) = u(p1)x1 + u(p2)x2.

3. Let us assume that u is an EUT utility function describing a person’s preference
relation ≺, then:
� A ≺ B if and only if E(u(A)) < E(u(B)).
� v(x) := u(2x+42) is a utility function that describes the preference relation

≺.
� v(x) := (u(x))3 is a utility function that describes ≺.
� If u is concave, then the person should not take part in any lottery that

costs more than its expected value.
� If u is convex, then the person should take part in any lottery.
� If u is strictly convex on some interval then ≺ cannot be rational.
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4. In which cases is a function u : [a, b] ⊂ R → R concave?
� If λu(x1) + (1 − λ)u(x2) ≤ u(λx1 + (1 − λ)x2) for every x1, x2 ∈ [a, b] and

λ ∈ [0, 1].
� If λu(x1) + (1 − λ)u(x2) ≥ u(λx1 + (1 − λ)x2) for every x1, x2 ∈ [a, b] and

λ ∈ [0, 1].
� If λu(x1) + (1 − λ)u(x2) = u(λx1 + (1 − λ)x2) for every x1, x2 ∈ [a, b] and

λ ∈ [0, 1].
� If u′′ ≤ 0.
� If u′′ ≥ 0.

5. The absolute risk aversion is defined by
� r(x) := −u′′(x).
� r(x) := −u′′(x)/u′(x).

� r(x) := −xu′′(x)
u′(x)

.
6. Which of the following utility functions is the most rational choice:

� u(x) := xα. where α ∈ (0, 1).
� u(x) := x.
� u(x) := ln x.
� They are all equally rational.

7. What does Allais’ Paradox tells us?
� It is irrational to follow Expected Utility Theory.
� Expected Utility Theory does not explain actual behavior of persons suffi-

ciently well.
� People tend to violate the Independence Axiom.

8. Which are the key ideas of Prospect Theory (PT)?
� People frame their decisions in gains and losses rather than considering their

potential final wealth.
� People tend to overweight small probabilities and underweight large proba-

bilities. This can be modeled by a probability weighting function.
� People do not know probabilities exactly and hence overestimate small prob-

abilities. This can be modeled by a probability weighting function.
� People compute the PT or CPT functional in order to make decisions.

9. How does PT explain why people gamble and buy insurances?
� People have a value function which is concave in gains (gamble) and convex

in losses (insurance).
� People overweight small probabilities, like winning in a lottery or losing their

home in a fire.
10. Why does PT violate stochastic dominance?

� Extreme events are overweighted, hence a small chance to lose a larger
amount makes a lottery overly unattractive. This leads to a violation of
stochastic dominance.

� Several small-probability events with similar outcome are overweighted rel-
ative to a single outcome with a slightly larger payoff, thus PT prefers the
former to the latter, violating stochastic dominance.

� The convex shape of the value function in losses leads to risk-seeking be-
havior that makes people prefer risky lotteries over safe outcomes, violating
stochastic dominance.

11. Which properties does Cumulative Prospect Theory (CPT) satisfy?
� Events with extremely low or high outcomes are overweighted.
� All small-probability events are overweighted.
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� CPT does not violate stochastic dominance.
� CPT agrees with PT for lotteries with finitely many outcomes.
� CPT can be formulated for lotteries with finitely many outcomes as well as

for arbitrary lotteries.
12. In which cases do Mean-Variance Theory and EUT coincide?

� When we consider only normal distributions of outcomes.
� When the utility function is concave.
� When the utility function is quadratic.
� When the utility function is linear.
� In lotteries with at most two outcomes.

13. Which axioms are satisfied by mean-variance theory?
� Completeness.
� Transitivity.
� Continuity.
� Independence.

14. In-betweenness says that the certainty equivalent of a lottery must be between
its smallest and largest values.
Do the following four theories satisfy in-betweenness?
� Expected utility theory, i.e. U =

∑
piu(xi),

� Classical prospect theory, i.e. U =
∑

w(pi)v(xi),
� Cumulative prospect theory, i.e. U =

∑
(w(Fi) − w(Fi−1))v(xi),

� Normalized prospect theory by Karmarkar, i.e. U = (
∑

w(pi)v(xi))/
∑

w(pi).
15. Which of the following statements on decision models are correct?

� From the von Neumann-Morgenstern axioms can we derive the existence of
a utility function.

� A concave von Neumann-Morgenstern utility function corresponds to risk
averse behavior.

� From the independence axiom we can derive that the utility function must
be concave.

� Mean-Variance Theory describes rational decisions.
� EUT describes rational decisions.
� A typical utility function with constant relative risk aversion is u(x) = xα/α.
� A typical utility function with constant relative risk aversion is u(x) =

−e−αx.
� CPT is the most widely used descriptive model for decision behavior.
� Mean-Variance Theory can violate stochastic dominance.
� CPT can violate stochastic dominance.

16. Which of the following statements on time discounting are correct?
� In the classical model, the discounted utility at time t > 0 is given by

u(t) := u(0)
1+δt

for some δ > 0.
� In the classical model, the discounted utility at time t > 0 is given by

u(t) := u(0)e−δt for some δ > 0.
� Classical discounting is time-consistent, hyperbolic discounting is not.
� If somebody prefers 100e now over 110e tomorrow, this cannot be explained

by classical discounting, but by hyperbolic discounting.
� If somebody prefers 100e now over 110e tomorrow, but 110e in 101 days

over 100e in 100 days, then this cannot be explained by classical discounting,
but by hyperbolic discounting.
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2.9.2 Exercises

2.1. Consider the following game: you roll a dice, if you roll a 6, you win 6 million
e otherwise you win nothing. You can play only once. Let us assume your expected
utility function is given by u(x) := log10 x (base 10 logarithm, i.e., log10(10

n) = n)
and your initial wealth is 10’000e.

How big is your expected utility after playing this game? Imagine instead that
you get 1 million e for sure, how big is your utility afterwards? Which of the two
variants would you therefore prefer? How could you have seen this without doing
any computation?

Now, the prize of the game is only 61e. What would be the certainty equivalent of
the game, given the same expected utility function as above? Should you participate
for a fee of 10 e?

2.2. Prove that EUT satisfies the Continuity Axiom!

2.3. In a city center, parking space is rare. Hence, legal parking costs an amount of
t > 0. Some people decide to park illegally. There is a probability p > 0 of being
caught which leads to a fine f > t. In order to decrease the number of illegal parkers,
there are two possible concepts: doubling the fine f or doubling the controls (i.e.,
the probability p). Assuming that the illegal parkers are risk-averse, which is the
better concept?

2.4. Consider two assets: a stock and a bond. There are two states of the world
(each with probability 1/2): boom and recession. The stock’s returns are +8% in
a boom and −2% in a recession, the bond yields +2% each. Compute their mean
and variance! Now, find the value of α such that an investor with the mean-variance
utility function U(μ, σ) = μ−ασ2 is indifferent between both assets! If this investor
buys some stocks (say a proportion λ ∈ [0, 1] of his total investment) and some
bonds (a proportion of 1 − λ), how will his returns be distributed? Which λ ∈ [0, 1]
is optimal for him?

2.5. Daniel Bernoulli and Daniel Kahneman go on vacation. They each have two
credit cards and two wallets. With a certain probability a wallet could be stolen. The
probability that a particular wallet is stolen is independent from the probability that
another wallet is stolen. Assume that both act according to their theories. Would
they put both credit cards into the same wallet or each in a different wallet?

2.6. Can the standard form of PT with the standard PT-parameters explain that
people play a lottery if the winning probability is 1 : 1, 000, 000, the prize is one
million Euro and a lottery ticket costs 2 Euro?

2.7. Show that Cumulative Prospect Theory explains Allais’ Paradox (compare Ta-
ble 2.4). To this aim, compute the CPT values of the four lotteries and compare!

2.8. Can the certainty equivalent of a lottery in PT be larger than the largest out-
come of the lottery? How is it in CPT? How is it in the version of PT by Karmarkar?�

Give an example or prove! (This property is called “violation of internality”.)
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2.9. We say that a person is loss averse if he does not like to participate in a
lottery with 50% chance of winning X and 50% chance of losing X. Let us assume a
person’s decisions are described by classical prospect theory with parameters α < β.
For simplicity, assume X = 100, α = 0.8, β = 1, i.e. risk neutrality in losses, and
γ = 1, i.e. no probability weighting.

Compute the values of λ for which the person is loss averse! Show that for any
α < β < 1 the person can be loss averse for some λ < 1!

2.10. Let us assume that a value function v is given by v(x) := x and a weighting
function w is w(F ) :=

√
F . A lottery is described by the probability measure p :=

a(x) dx where the probability density a is given as

a(x) :=

⎧
⎨

⎩

x , if 0 ≤ x < 1,
2 − x , if 1 ≤ x < 2,

0 , otherwise.

Compute the CPT-value of this lottery! Use this to compute the certainty equivalent
(CE)! Explain the difference between CE and the expected value!

2.11. Jerome is a student. If you ask him whether he prefers 100 Euro now or 110
Euro next week, he prefers to get the money now. If you ask him, however, whether
he prefers 100 Euro now or 200 Euro in four months, he prefers to wait. Can you
explain these preferences with classical time discounting? Can you explain it with
hyperbolic discounting? What if you consider that there is a chance that his wealth
level could increase in the next months, because he applied for a job as teaching
assistant?

Angelika is a student. If you ask her whether she prefers 100 Euro now or 120
Euro next year, she prefers to wait. If you ask her, however, whether she prefers 100
Euro now or 1000 Euro in ten years she prefers the money now. Can you explain
these preferences with classical time discounting? Can you explain it with hyperbolic
discounting? What if you consider an increase in her wealth level when she starts
working after finishing her studies (in approximately three years)?

2.12 (Samuelson Paradox). We all know that we can take more risk in our
investment decisions when we have a longer investment horizon – do we? Consider
the following counter argument by Paul Samuelson: let us suppose you are not willing
to play a certain gamble only once, but you are willing to accept the offer to play it
10 times. Now, after playing it nine times, why don’t you want to stop here? After
all, past is past, and at this point you just have to decide to play this gamble once
(more) or not and you preferred in this case not to play it, didn’t you? So, you
would rather only play nine times. But then of course the same argument could be
iterated and you would finally not play the gamble at all. Now replace “gamble” by
“investing in the stock market for one year” and you have just disproved that you
should be willing to take more risk on the long run.

On the other hand, if you choose a utility function, say, u(x) = xα, you can
construct a lottery L such that the utility of this lottery is lower than the utility of
not playing, but the utility of playing the lottery twice (or ten times) is larger than
not playing. (Construct such a lottery as an exercise!) So this tells you that, yes,
indeed a rational person might want to be willing to take more risk on the long run.
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Now we have two nice proofs that contradict each other, a situation we tend to
call a paradox.

“How wonderful that we have met with a paradox. Now we have some hope
of making progress”

we could say in the words of Niels Bohr. – But how do you solve this paradox?
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Two-Period Model:
Mean-Variance Approach

“A journey of a thousand miles starts with the first
step.” Chinese proverb

Indeed we will start our journey to financial markets with only one step:
the step from one time period (in which we invest into assets) to another
time period (in which the assets pay off). To make this two-period model
even simpler, we assume in this chapter mean-variance preferences. We will
see later that this model is a special case of two-period models with more
general preferences (Chap. 4) and that we can extend the model to arbitrarily
many time-periods (Chap. 5). Finally we generalize to continuous models,
where the time does not any longer consists of discrete steps (Chap. 8). For
now, the assumptions of two periods and mean-variance preferences allow
us to get some intuition on financial markets without being overwhelmed
by an overdose of mathematical formalism. Nevertheless, we want to point
out that this simplicity comes at a price: we need to impose strong and not
very natural assumptions. In Sec. 2.3, we have seen some of the potential
problems of the mean-variance approach. In practical applications, however,
this approach is still standard. We will use it to develop a first model of asset
pricing, the so-called “Capital Asset Pricing Model” (CAPM). This model
has been praised by many researchers in finance, and in 1990 Markowitz and
Sharpe were awarded the Nobel Prize in economics for its development.

As we have already mentioned in the last chapter, mean-variance analysis
goes back to H. Markowitz (1952). In his work “Portfolio Theory Selection”
[Mar52] he recommends the use of an expected return-variance of return rule,

. . . both as a hypothesis to explain well-established investment be-
havior and as a maxim to guide one’s own action.

We have seen in Sec. 2.3 that both uses, the descriptive and the normative,
have their limitations, nevertheless the mean-variance analysis and the Capi-
tal Asset Pricing Model have been recognized as “one of the major contribu-
tions of academic research in the post-war era” [JW96]. Campbell and Viceira
[CV02] write:
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Most MBA courses, for example, still teach mean-variance analysis as
if it were a universally accepted framework for portfolio choice.

And even top researchers in mathematical finance who have no difficulty to
handle more complex models, like Duffie [Duf88] write on the CAPM:

The CAPM is a rich source of intuition and also the basis for many
practical decisions.

In short: finance without the CAPM is like Hamlet without the Prince.

3.1 Geometric Intuition for the CAPM

One nice feature about the CAPM is that it can be used to obtain some
intuition for some of the more sophisticated models that we will encounter
in the following chapters. Hence we start with an intuitive approach to its
derivation, before we discuss more formal derivations that can be generalized
in the sequel.

Let us describe the model in terms of returns. There are k = 1, 2, . . . ,K
assets. The gross return of asset k is denoted by Rk := Ak/ qk, where qk
is its first period market price and Ak its second period payoff. We write
μk := μ(Rk) for the expected return1 and σ2

k := var (Rk) for the variance of
the gross returns. All assets can be represented in a two-dimensional diagram
with expected return μ as a reward measure and standard deviation σ as a
risk measure on the axes (Figure 3.1).

k

Rf

μk

μ

σk σ

Fig. 3.1. Risk and return

The attractiveness of a single asset k can be characterized by the mean
and standard deviation of its returns. The risk-free-asset for example has an
expected return of Rf with a zero standard deviation. An investor who puts
all of his money into one risky asset expects to achieve a return of μk with a
standard deviation σk.
1 Expected returns can, for example, be calculated using historical return values

adjusted by some market expectations.



3.1 Geometric Intuition for the CAPM 97

3.1.1 Diversification

It is nowadays difficult to imagine that there was a time when diversifica-
tion as a means of reducing risk was not universally accepted, but it is true
that Markowitz’ portfolio theory and their risk diversification, as we derive it
in this section, was very controversial. To quote J. M. Keynes [Key88]:

To suppose that safety-first consists of having a small gamble in a
large number of different [companies] . . . strikes me as a travesty of
investment policy.

Later the impact of the idea of diversification made such criticism look queer.2

Let us look back on the mean-variance model. What are the effects of
diversification in this model mathematically?

If we combine two risky assets k and j we obtain an expected portfolio
return of μλ := λμk + (1 − λ)μj , where λ is the portion of wealth invested in
asset k. The portfolio variance is

σ2
λ := λ2σ2

k + (1 − λ)2σ2
j + 2λ(1 − λ) covk,j ,

where covk,j is the covariance between asset k and j. How much one can gain
by combining risky assets depends on this covariance. The smaller the covari-
ance, the smaller is the portfolio risk, and the higher is the diversification
potential of mixing these risky assets. Note however, that there is no diver-
sification potential of mixing risky assets with the riskless security, since the
covariance of the returns is equal to zero.

To see how portfolio risk changes with covariance it is convenient to stan-
dardize the covariance with the standard deviation of assets returns. The
result is the correlation coefficient between returns of assets k and j de-
fined as corrk,j := covk,j/ (σkσj). The correlation takes values between −1
(perfectly negatively correlated) and +1 (perfectly positively correlated), see
Appendix A.2. We consider the two extreme cases:

• If corrk,j = +1, we get σ2
λ = λ2σ2

k + (1 − λ)2σ2
j + 2λ(1 − λ)σkσj , thus:

σλ = λσk + (1 − λ)σj .
• If corrk,j = −1, we get σ2

λ = λ2σ2
k + (1 − λ)2σ2

j − 2λ(1 − λ)σkσj , thus:
σλ = |λσk − (1 − λ)σj |.

We see: the portfolio variance reaches its minimum, when the risky assets
are perfectly negatively correlated, i.e., when corrk,j = −1. In this case, the
portfolio may even achieve an expected return, which is higher than the risk-
free rate without bearing additional risk. The portfolio consisting of risky
assets does not contain risk because whenever the return of asset k increases,
the return on asset j decreases, so if one invests positive amounts in both
assets, the variability in portfolio returns cancels out (on average); see Fig. 3.2.

2 For information on the historical development of the mean-variance approach and
the CAPM see [Var93a] from whom we have taken the above quote.
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ρk,j = −1

ρk,j = 1

k

j

σ

Rf

μ

Fig. 3.2. Diversification

Investors can build portfolios from risky and riskfree assets but also port-
folios from other portfolios etc. The set of possible μ-σ-combinations offered
by portfolios of risky assets that yield minimum variance for a given rate of
return is called minimum-variance opportunity set or portfolio bound (see Fig-
ure 3.3). We assume that this set has approximately a shape as depicted in
this figure, then the following arguments are valid. The skeptical reader can
consult Sec. 3.1.4 for mathematically rigorous arguments.

μ

Rf

σ

Fig. 3.3. Mean-variance opportunity set

The investor’s problem when choosing an optimal portfolio is to pick a
portfolio with the highest expected returns for a given level of risk. This is
similar to the problem of minimizing portfolio variance for different levels of
expected return, i.e., to the following optimization problem:

min
λk,λj

∑

k

∑

j

λk covk,j λj such that
∑

k

λkμk = const and
∑

k

λk = 1, (3.1)

where λk denote the proportion of money invested in asset k.
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In this problem, however, we might end up suboptimal, if we choose the
mean below the tip of the convex set in Figure 3.3. In this case, increasing
the desired mean allows us to reduce the variance further.

3.1.2 Efficient Frontier

The solution of problem (3.1) gives the mean-variance opportunity set or the
portfolio bound. In order to identify the efficient portfolios in this set, one has
to focus on that part of the mean-variance efficient set that is not dominated
by lower risk and higher return. This is the upper part of the portfolio bound,
since every portfolio on it has a higher expected return but the same standard
deviation as portfolios on the lower part (see Fig. 3.4).

μ

Rf

σ

Fig. 3.4. Efficient frontier

Thus, all the portfolios on the efficient frontier have the highest attainable
rate of return given a particular level of standard deviation. The efficient
portfolios are candidates for the investors optimal portfolio.

3.1.3 Optimal Portfolio of Risky Assets with a Riskless Security

The best combination of risky assets for μ-σ-investors lies on the efficient
frontier. Every point on it is associated with the highest possible return for a
given certain risk level.

If an investor desires to combine a risky asset (or a portfolio of risky assets)
with a riskless security, he must choose a point on the line connecting both
assets. This is a straight line, since the covariance between Rk andRf (denoted
by cov (Rk, Rf )) is zero and therefore the portfolio standard deviation σλ is
a linear function of the portfolio weights.

The best portfolio combination is found when the line achieves its highest
possible slope. It is then called Capital Market Line (CML). The slope of the
CML is called the Sharpe ratio. It is equal to (μλ − Rf )/σλ. The point at
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which the CML touches the efficient frontier gives the best portfolio of risky
assets, the tangent portfolio.3

T

σ

μ

Rf

3.1.4 Mathematical Analysis of the Minimum-Variance
Opportunity Set�

In the following we make the arguments that led to the definition of the
tangent portfolio rigorous. The mathematically less inclined reader can skip
this subsection.

It is sometimes said that the minimum-variance opportunity set is convex
(as it is depicted in Fig. 3.3 and mathematically defined in A.1). This is, how-
ever, not always the case: the mean-variance opportunity set does not need to
be convex, as we can already see in the case of two assets where the opportu-
nity set is only convex if their correlation is +1 (compare Fig. 3.2). However,
we don’t need this convexity to prove the existence of a tangent portfolio, but
before we can obtain any existence result, we need first to distinguish whether
we allow for short-selling or not.

This decision has two sides: a modeling one and a mathematical one. First,
it is not so clear whether allowing for short-sales is appropriate or not for our
model. We could argue that in most developed markets short-selling is possible
and hence our model should include it. On the other hand, there are markets
where it is not possible (it might be banned or infeasible due to a lack of
liquidity) and even on the most developed markets there are many market
participants (small private investors) who do not have the chance to short-
sell assets, at least not without steep costs. The mathematical side of the
story is even more difficult: we will see that without short-selling we can find
a rigorous proof for the existence of a tangent portfolio under quite natural
assumptions, but when we allow for short-selling then existence might fail
if we do not impose rigid assumptions. Later, however, when we derive the
capital asset pricing model, we will need to allow short-selling. This inherent

3 We will see that economically spoken, this portfolio is such that the marginal rate
of substitution between the investor’s preferences for risk and return equals the
marginal rate of transformation offered by the minimum variance opportunity
set.
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problem of the geometric and “intuitive” approach presented in this chapter
can only be fixed by studying the more rigorous no-arbitrage approach that
we will follow in Chapter 4.

Let us now first consider the existence of the tangent portfolio when we
exclude short-selling.

The main property of the opportunity that we need is in this case that it
is closed (compare Appendix A.3 for a definition). Moreover we need certain
minor properties that we summarize later.

Lemma 3.1. If we have finitely many assets, the minimum-variance oppor-
tunity set is closed and connected.

Proof. We give two proofs, the first based on the Bolzano-Weierstrass Theo-
rem the second based on a property of continuous functions:

By construction it is clear that the opportunity set is connected. To see
that the opportunity set is closed if we have finitely many assets is easy:
let K denote the number of assets and let us consider a sequence of points
xn = (μn, σn) (n = 1, 2, . . . ) in the opportunity set with xn → x = (μ, σ).
Each of the xn corresponds to a portfolio characterized by asset weights
λn

1 , . . . , λ
n
K with λn

k ≥ 0 for all k = 1, . . . ,K and
∑K

k=1 λ
n
k = 1. Therefore

the vector λn := (λn
1 , . . . , λ

n
K) is for all n ∈ N in a compact set.4 According to

the Bolzano-Weierstrass Theorem A.3 we can select a converging subsequence
of the λn. Let us denote its limit by λ, then λ defines a portfolio with mean
μ and variance σ2, since mean and variance depend continuously on the as-
set weights. Thus any limit of points in the opportunity set is again in the
opportunity set, in other words we have proved that the opportunity set is
closed.

The second proof uses the function f that assigns mean and variance to a
portfolio λ:

f : S :=

{
λ ∈ R

K+1
+

∣∣∣∣
K∑

k=0

λk = 0

}

→
{

(μ, σ)
∣∣∣∣ μ =

K∑

k=0

μkλk, σ2 = λk covjk λλj , λ ∈ S

}
.

Now, since S is obviously closed and connected and since f is continuous, we
can deduce that f(S), i.e. the opportunity set, also is closed and connected,
compare A.3.

What about if we have infinitely many assets? In this case the opportunity
set does not have to be closed. As a simple example think about perfectly
correlated assets with μk = 1 − 1/k and σk = 1. The opportunity set is given
by {(μ, 1)|μ ∈ [0, 1)} and is obviously not closed. In this case we see also

4 We use in this chapter bold face characters for vectors to increase readability.
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why we need closedness: the efficient frontier in the example does not exist,
since any portfolio with mean μ and variance σ2 in the opportunity set can be
improved. (The potential “best” portfolio with μ = σ = 1 is not contained in
the opportunity set.) We see that we better stick to the case of finitely many
assets.

Since the opportunity set is closed, we can in fact construct the efficient
frontier. To construct a tangent portfolio, however, we need to know a little
bit more about the geometric structure of the efficient frontier:

Lemma 3.2. If we have finitely many assets, the efficient frontier can be
described as the graph of a function f : [a, b], where 0 ≤ a ≤ b <∞. Moreover
there exists a point c ∈ [a, b] such that f is concave and increasing on [a, c]
and decreasing on [c, b].

Proof. By construction it is clear that the function f exists. It is also clear
that b < ∞, since there are no points in the minimum-variance set with
σ > maxk=1,...,K σk, compare (3.1.1). Suppose now that f is increasing and
strictly convex on some interval [s1, s2], where s2 > s1. Then we can combine
the portfolios A, with mean f(s1) and variance s21, and B, with mean f(s2)
and variance s22. Using again the formula (3.1.1) we can find a λ ∈ (0, 1) such
that the new portfolio λA+(1−λ)B has the variance (s1 + s2)2/4. The mean
of this portfolio depends on the correlation between A and B, but can be
estimated from below by (f(s1) + f(s2))/2, as a small computation shows.
Given the strict convexity of f , however, f((s1 + s2)/2) < (f(s1) + f(s2))/2,
thus we have found a portfolio that is “better” than the efficient frontier (i.e.,
its variance is the same, but its mean larger). This is a contradiction, thus f
has to be concave when it is increasing.

With a similar construction we can prove that if f is decreasing at some
point s then it cannot be increasing at any point larger than s. Putting ev-
erything together, we have proved the lemma.

We mention that it is possible that the efficient frontier is a decreasing
and strictly convex function and that the efficient frontier does not have to
be continuous, see Fig. 3.5 for an example.

Using the above lemmas we can now prove the existence of a tangent
portfolio:

Proposition 3.3. If we have finitely many assets, and at least one asset has
a mean which is not lower than the return Rf of the risk-free asset, then a
tangent portfolio exists.

Proof. Given the above conditions, an efficient frontier exists according to
Lemma 3.1. Using Lemma 3.2, we know that there are points a, b, such that
the efficient frontier is the graph of a function f on [a, b], which is concave
and increasing on [a, c]. We denote this part of the graph by F . Using the
condition on the asset returns, we see that f(c) ≥ Rf .
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Fig. 3.5. An example for a discontinuous, partially decreasing and strictly convex
efficient frontier

Now, we have to distinguish three cases: If there is a tangent on F through
the point (Rf , 0), i.e., the risk-free asset, we have found a tangent portfolio
by taking a tangent point in F on this line. Otherwise, if a line from (Rf , 0)
to (f(c), c) lies nowhere below F , the point (f(c), c) is the tangent point. If
both is not the case, then the tangent portfolio is given by the point (f(a), a).
Compare Fig. 3.6 for an illustration of the three cases.

ca a c a c

Rf

Rf

Rf

Fig. 3.6. The three cases for the construction of the tangent portfolio

In all three cases, the constructed line cannot lie below other points of the
efficient frontier, since f is decreasing for values larger than c, but the tangent
line is increasing (or at least horizontal), since f(c) ≥ Rf .

What changes in this argument if we allow for short-selling? In a nutshell:
everything. – In fact, the existence is not guaranteed anymore! Take as simple
example two assets (μ1, σ1) = (1, 1) and (μ2, σ2) = (1.1, 1) with a correlation
of +1. Then we have for a portfolio of λ ∈ R units of asset 1 and 1 − λ
units of asset 2 that (μλ, σλ) = (λ + 1.1(1 − λ), 1) = (1.1 − 0.1λ, 1). Thus
we can construct portfolios with arbitrarily large returns and a variance of 1
by choosing λ negative enough. It is now easy to see that we are not able to
construct any tangent portfolio in this case.

The example can be modified such that σ1 �= σ2: even then we will usually
not be able to define a tangent portfolio. A similar construction is possible for
correlation −1.
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Assuming that no pair of assets has a correlation of −1 or +1 does not
fix this problem either, since a combination of two such assets might have a
correlation of +1 or −1 with another asset, see exercise 3.2.

If we exclude this possibility as well, then we finally get an existence result:

Theorem 3.4. Let X be a mean-variance opportunity set (with short-selling)
and assume that for any two portfolios Xj , Xk ∈ X with j �= k the correlation
between their returns is in (−1,+1), i.e. neither −1 nor +1, then there exists
a tangent portfolio for X.

Proof. Let Δ = {λ ∈ R
K |

∑K
k=1 λk = 1}. Substituting λk = 1 −

∑K−1
k=1 λk,

we can transform Δ to R
K−1. Now we consider the compactification CK−1.

We define this in two steps: first transform R
K−1 to D̊K−1 via

(x1, . . . , xK−1) �→
(

2
π

arctan(x1), . . . ,
2
π

arctan(xn)
)
.

Now add SK−1 = ∂D̊K−1 and use the standard topology of DK−1. Now con-
sider a sequence λn that maximizes μ(λn)−Rf

σ(λn) . A subsequence of λn converges
in CK−1, since CK−1 is compact. Now consider the following two cases:

Case 1: The limit is in D̊K−1, then also λk is finite. Now let
limn→∞

μ(λn)−Rf

σ(λn) < ∞, since otherwise we have a finite portfolio which is
riskless and this could only happen if it is composed of two risky portfolios
with correlation +1 or −1 – a contradiction.

Case 2: The limit is in SK−1, then also λk is infinite. Define A1 as asset
K, A2 as all other assets in the relative weights specified by the limit in SK−1.

Then we can find a sequence λ̃n with the same limit, but being com-
posed only of two portfolios A1, A2 with λ̃n

1A1 + λ̃n
2A2 where λ̃n

1 → +∞ and
λ̃n

2 → −∞.
By assumption, corr(A1, A2) ∈ (−1,+1), thus

(
μ(λ̃n

1A1 + λ̃n
2A2), σ(λ̃n

1A1 + λ̃n
2A2)

)

n∈N

is a curve with slope going to zero (computation in chapter 3). Therefore
limn→∞

μ(λ̃n)−Rf

σ(λ̃n)
= 0, but since μ and σ are contained in the portfolio

weights, the original sequence λn could not have been maximizing which con-
tradicts our initial assumption.

This result, however, is not as useful to determine the existence of a tangent
portfolio: we would have to check all (infinitely many) portfolios of our assets
and their correlations with each other to verify the condition of the theorem.
We will see in the next chapter how the no-arbitrage condition can help us
to avoid this problem and secure the existence of a tangent portfolio under a
more reasonable condition. Up to then, we will tacitly assume the existence
of a tangent portfolio, although we know now that this is not a trivial matter.
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By the way: whether we allow for short-selling or not, the tangent portfolio
does not have to be unique. Non-uniqueness, however, occurs only in very
specific situations and is not important for practical applications where we
are usually happy with finding an optimal portfolio and do not care that
much about whether there would have been another equally good portfolio...

3.1.5 Two-Fund Separation Theorem

The optimal asset allocation consisting of risky assets and a riskless secu-
rity depends on the investor’s preferences, which are for example5 given by the
utility function U i(μλ, σ

2
λ) := μλ− ρi

2 σ
2
λ, where ρi is a risk aversion parameter

of investor i. We denote it by ρ and not by α or λ (as is standard) in order to
avoid confusion with the portfolio weights (λ) and the excess return (α) of an
investment, see Sec. 3.3. The higher this parameter, the higher is the slope of
the utility function6. The higher the risk aversion, the higher is the required
expected return for a unit risk (required risk premium).

Different investors have different risk-return preferences. Investors with
higher (lower) level of risk aversion choose portfolios with a low (high) level
of expected return and variance, i.e., their portfolios move down (up) the
efficient frontier.

If there is a risk-free security, the Separation Theorem of Tobin (1958)
states that agents should diversify between the risk free asset (e.g., money)
and a single optimal portfolio of risky assets. Since the Tangent Portfolio gives
the optimal mix of risky assets, a combination with the risk-free assets means
that every investor has to make an investment decision on the Capital Market
Line. Different attitudes toward risk result in different combinations of the
risk-free asset and the optimal portfolio of risky assets. More conservative
investors for example will choose to put a higher fraction of their wealth into
the risk free asset; on the other hand, more aggressive investors may decide to
borrow capital on the money market (go short in risk-free assets) and invest
it in the Tangent Portfolio.

Thus, the asset allocation decision of investor i is described by the vector
of weights7 λi = (λi

0, (1 − λi
0)λ

T ), i = 1, . . . , I, where λi ∈ R
K+1, λi

0 ∈ R,
and λT ∈ R

K (Figure 3.7).

5 For the purpose of deriving the Two-Fund Separation Theorem this single utility
function is sufficient. Using a more general function like V i(μλ, σλ) would result in

expressions similar to those we derive here. In this case we get ρi = − ∂σV i(μλ,σλ)

∂μV i(μλ,σλ)
.

But as we see below, the point of the Two-Fund Separation Theorem is to show
that ρi anyway cancels out from the portfolio of risky assets.

6 The risk aversion concept is often discussed in the expected utility context. Recall,
however, that there it is measured by the curvature of a utility function.

7 Note: there is no index i on the Tangent Portfolio λT since this portfolio is the
same for every investor.
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Fig. 3.7. Two-Fund Separation

This property, known as Two-Fund Separation, has been summarized
nicely by Campbell and Viceira [CV02]:

The striking conclusion of his [Markowitz’] analysis is that all investors
who care only about mean and standard deviation will hold the same
portfolio of risky assets.

3.1.6 Computing the Tangent Portfolio

According to the Two-Fund Separation an investor with utility U i(μλ, σ
2
λ) =

μλ − ρi

2 σ
2
λ has to decide how to split his wealth between the optimal portfolio

of risky assets with a certain variance-covariance structure (Tangent Portfolio)
and the riskless asset. The structure of the Tangent Portfolio can be found
either by maximizing the Sharpe Ratio subject to a budget constraint or by
solving the simplest μ-σ maximization problem:8

max
λ∈RK+1

U i(μλ, σ
2
λ) = μλ − ρi

2
σ2

λ such that
K∑

k=0

λk = 1. (3.2)

In this equation, λ0 denotes the fraction of wealth invested in the riskless
asset.9 λ0 can be eliminated from the optimization problem by substituting
the budget constraint λ0 = 1 −

∑K
k=1 λk into the utility function. Using the

definition of μλ and σ2
λ we get:

max
λ

(μ −Rf1)′λ − ρi

2
λ′COV λ

where, from now on, λ ∈ R
K is the vector of risky asset weights in the

Tangent Portfolio, μ is the vector of risky assets’ mean returns, and COV is
their covariance matrix. The first order condition of the problem is
8 Note that solving the simplest (μ, σ)-problem is as good as any other (μ, σ)-

problem, since by the Two-Fund Separation property all mean-variance utility
functions deliver the same Tangent Portfolio.

9 λ0 is the first component of λ.
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COV λ =
1
ρi

(μ −Rf1).

If there are no constraints on λ, then the solution is

λ = COV −1 1
ρi

(μ −Rf1). (3.3)

With short-sales constraints, λ ≥ 0, for example, one can apply standard
algorithms for linear equation systems to solve the problem.

Say, the solution to the first order condition is λopt, then the Tangent
Portfolio can be found by a renormalization:

λT
k =

λopt
k∑

j λ
opt
j

.

Note that the risk aversion parameter ρi cancels after the renormalization,
which is the Two-Fund Separation property.

Furthermore, the composition of the Tangent portfolio does not depend
on the form of the utility function. Using more sophisticated functions than
(3.2) will not change the result obtained in (3.3).

3.2 Market Equilibrium

We want to study market equilibria, therefore we make the following ob-
servation: if individual portfolios satisfy the Two-Fund Separation then by
setting demand equal to supply the sum of the individual portfolios must be
proportional to the vector of market capitalization10 λM , as we will prove
in Sec. 4.3. Hence in equilibrium, the normalized Tangent Portfolio will be
identical to the Market Portfolio.11

3.2.1 Capital Asset Pricing Model

To understand the link between the individual optimization behavior and the
market, compare the slopes of the Capital Market Line and a curve j that is
obtained by mixing a portfolio of any asset j with the market portfolio. By
the tangency property of λM these two slopes must be equal!12 (See Fig. 3.8.)

10 The market capitalization of a company for example is the market value of total
issued shares.

11 Note that this equality is barely supported by empirical evidence, i.e., the Tangent
Portfolio does not include all assets. The reason for this mismatch could for
example be that not every investor optimizes over risk and return as suggested
by Markowitz. For further ideas on this asset allocation puzzle see also [CMW97,
BX00]

12 If the j-curve would intersect with the CML then the Sharpe Ratio could still be
increased, as can be verified graphically.
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λM (μj , σj)

Fig. 3.8. Market Portfolio

Curve j is obtained by a combination of some asset j with the market
portfolio.

The slope of the Capital Market Line can be calculated as

d
dλμ(λRf + (1 − λ)RM )

∣∣
λ=0

d
dλσ (λRf + (1 − λ)RM )

∣∣
λ=0

=
Rf − μM

−σM
.

The slope of the j-curve is

d
dλμ(λRj + (1 − λ)RM )

∣∣
λ=0

d
dλσ (λRj + (1 − λ)RM )

∣∣
λ=0

=
μj − μM

(cov (Rj , RM ) − σ2
M )/σM

.

From the slope’s equality at point λM follows:

(μj − μM )σM

cov (Rj , RM ) − σ2
M

=
μM −Rf

σM

or equivalently

μj −Rf = βj,M (μM −Rf ) where βj,M :=
cov

(
Rj , R

M
)

σ2
M

. (3.4)

The result is the Security Market Line (SML, see Fig. 3.9).
The difference to the mean-variance analysis is the risk measure. In the

CAPM the asset’s risk is captured by the factor β instead of the standard
deviation of asset’s returns. It measures the sensitivity of asset j returns to
changes in the returns of the market portfolio. This is the so-called “systematic
risk”.

3.2.2 Application: Market Neutral Strategies

The Capital Asset Pricing Model has many applications for investment man-
agers and corporate finance. Even professionals dealing with alternative in-
vestments consider it while building portfolios. One example is a form of
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μk − μf = βkM (μM − μf )

Fig. 3.9. Security Market Line

Market Neutral Strategy followed by some hedge funds. This strategy aims a
zero exposure to market risk. To exclude the impact of market movements, it
takes simultaneous long and short positions on risky assets. These assets have
the same Beta (as measure for market risk) but different market prices. Under
the assumption that market prices will eventually return to their fundamental
value defined by the CAPM, hedge fund managers take long positions in un-
derpriced assets and short positions in overpriced assets. In terms of expected
returns, the long (short) positions are in assets with higher (lower) expected
returns than in the CAPM.13 We will discuss later the potential risks of this
strategy.

3.2.3 Empirical Validity of the CAPM

As a portfolio model the mean-variance rule is nice and simple. However,
claiming that all agents will hold the same portfolio of risky assets is certainly
wrong since agents – in contrary to what we assumed above – do certainly
have different expectations. A related but deeper critique on the two-fund sep-
aration was pointed out by Canner, Mankiw and Weil [CMW97] who studied
the advice of one advisor given to differently risk averse agents. An advisor
should apply the same expectations when giving recommendations to differ-
ent clients and hence, following the two-fund separation property, he should
recommend the same portfolio of risky assets scaled up and down with the
risk-free asset in order to match the clients’ risk aversion. Canner, Mankiw
and Weil [CMW97] showed that this simple rule is, however, not followed by
advisors. For example, the portfolio weight of S&P500 relative to government
bonds changes from 15% to 45%, going from a conservative to an aggressive
portfolio.

13 When prices revert and increase (decrease) in order to reach their fundamental
value, the expected returns are decreasing (increasing).
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Even though the portfolio implications of mean-variance analysis are
clearly not found in reality, one could still try to find the asset pricing im-
plications, the validity of the SML. One of the nice properties of the SML
is that it suggests a linear relation between the Beta and the excess returns.
Hence simple linear regression studies can be used to test the SML and indeed
there are very many of those studies. It is found that market risk, the Beta,
indeed explains the excess returns of assets – at least to some extent. But
more factors are needed to get a really good fit. The most famous additional
factors are value, size and momentum. It turns out that investing in value14

stocks gives significantly higher returns – even with lower Beta – than in-
vesting in glamour stocks. Also, investing in small cap stocks has this feature.
Finally, investing in stocks that have gone up is increasing returns in the short
run and the reverse is true in the long run. Famous empirical studies on the
CAPM are Fama and French ([FF92] and [FF98]) and Lakonishok, Shleifer
and Vishny [LSV94]. The size effect, i.e., the fact that small cap assets have
higher risk adjusted returns than large cap assets, was first shown by Banz
[Ban81].

3.3 Heterogeneous Beliefs and the Alpha

So far we have mentioned two motives for trade: smoothing intertempo-
ral consumption and risk diversification. The first motive is served by fixed
income markets, the second by reinsurance markets, stock markets and any
other markets which allow diversifying risks, as for example markets for credit
risk. As the two-fund separation principle showed, the diversification motive
is best served by mutual funds that try to offer market exposure at minimal
costs. That’s why exchange traded funds, ETFs, are very popular. In ETFs
the market portfolio is built without active management of a fund manager.
However, not all agents go for ETFs and there are many mutual funds claim-
ing to stay close to ETFs and yet to outperform them. Last but not least there
is a rapidly growing industry, called hedge funds, in which asset managers ex-
ert strategies that are totally different to those of mutual funds. Hedge funds
claim to offer returns that are as high as those of stocks with a volatility as
low as that of bonds, which is a clear violation of the CAPM – at least if we
understand the market portfolio as the sum of all investments, not only as the
stock market index. Hedge funds claim to generate the “Alpha”, i.e., excess
returns that cannot be explained by market risk. The Alpha has become a
magic selling word. Banks offer Alpha funds15, hedge funds call themselves

14 Value stocks are for example characterized by high multiples, i.e., book to price
ratios, cash flow to price ratio, dividend yield etc.

15 To list some examples: Goldman Sachs offers “Global Alpha”, Merrill Lynch “Ab-
solute Alpha Fund” and UBS “Alpha hedge” and “Alpha select”.
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“AlphaSwiss”, or “Alpha Lake”, for example. Analysts write about the future
of the Alpha, or the pure Alpha etc. Yet, “the Alpha has no theory”, as Alexan-
der Ineichen16 from UBS states in his AIS-report [Ine05]. Do banks and hedge
funds sell dreams like a perpetuum mobile that do not exist? In this section
we show that the lack of theory can quite easily be removed by extending the
standard CAPM towards heterogeneous beliefs. The assumption of homoge-
neous beliefs was always under scrutiny among finance theorists. Removing
it we can model the Alpha within the CAPM, i.e., as a property of financial
market equilibria! We show that in a CAPM with heterogeneous beliefs every
investor who holds beliefs different to the average market belief, sees some
Alpha. However, the sum of these Alphas is zero, i.e., the hunt for Alphas is
a zero-sum game, in which one can only win at the expense of someone else,
as it is nicely stated in [Ine05], page 31:

The returns are achieved by the managers’ ability to exploit ineffi-
ciencies left behind by other (less informed, less intelligent, less savvy,
ignorant, or uneconomically motivated) investors in what is largely
considered a zero or negative sum game.

The question then arises for how long the losers in the zero-sum game are
willing to finance the gains of the winners. Since every market participant
has the option to play a passive strategy by investing in the market portfolio,
the less informed, less intelligent or less savvy investors will learn to stay
passive so that it becomes more and more difficult for the active managers to
outperform each other.17 Hence, the market converges to a situation in which
only the best informed determine market prices. This long-run outcome of
the zero-sum game is consistent with the efficient market hypothesis and also
with the CAPM based on homogeneous beliefs. The model described in this
section predicts a departure from market efficiency in the short run while the
long run trend follows the efficient market hypothesis. This prediction finds
good support in economic data18.

This section is a first step in understanding the Alpha. Later on other
important aspects of the Alpha, as for example, generating returns that are of
higher order than the mean (first order) and the variance (second order) will be
addressed. This section is based on Gerber and Hens [GH06].19 It is structured
as follows. First we give a definition of the Alpha based on the security market
line of the CAPM. Then we show that “hunting for Alpha opportunities”, i.e.,

16 Managing Director, Senior Investment Officer, Alternative Investment Solutions
at UBS Global Asset Management.

17 There are two tacit assumptions behind this argument that may or may not be
true, namely first that the “bad” investors are capable and willing to learn from
their mistakes and second that there are not sufficiently many new “bad” investors
entering the market to compensate for their dropped out predecessors.

18 See, for example the long run data provided by Robert Shiller on his webpage:
http://www.econ.yale.edu/∼shiller/data.htm

19 Compare also [Abe89].

http://www.econ.yale.edu/~shiller/data.htm
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successively including investment opportunities with positive Alpha, leads to
a mean-variance optimal portfolio. The main point of this section is then
to model a CAPM with heterogeneous beliefs. We show that every investor
will form a portfolio such that given his beliefs all Alpha opportunities are
exhausted. In a sense we derive a personalized security line. The security
market line of the CAPM with homogeneous beliefs finds its analogue in our
model with heterogeneous beliefs by a linear relation between the average
belief of the agents and the Beta of the market portfolio. Note that in the
CAPM with heterogeneous beliefs the Security Market Line holds without
the unrealistic two-fund separation property. In the model every investor has
two options: being active, i.e., following his personal beliefs or being passive,
i.e., following the average belief. While the former may incur some costs, the
latter can easily be done by buying the market portfolio. Then we show that,
as mentioned above, hunting for Alpha opportunities is a zero sum game and
we draw some conclusions from this result for market efficiency.

3.3.1 Definition of the Alpha

The Alpha is a departure from the Security Market Line, SML. (It should
not be mixed up with the risk aversion that usually is denoted by the same
letter α – or alternatively by λ which we need to denote the portfolio weights!
This is the reason why we denote this risk aversion by ρ.) Recall that according
to the SML the excess return of any asset is proportional to the excess return
of the market portfolio with the proportionality factor being the Beta, i.e.,
the assets’ covariance to the market portfolio, standardized by the variance of
the market portfolio, formally:

μ(Rk) −Rf = βk,M (μ(RM ) −Rf ), where βk,M :=
cov

(
Rk, R

M
)

var (RM )
.

Hence, the only way of getting higher excess returns is to take more market
risk. Some asset managers claim to be able to depart from the straightjacket
of the SML. They claim to deliver an excess return higher than that rewarded
by market risk. To this end, define the Alpha of asset k as the gap between
the claimed excess return and the theoretically justified return:

αk,M := μ(Rk)−Rf − βk,M (μ(RM )−Rf ), where βk,M :=
cov

(
Rk, R

M
)

var (RM )
.

In principle the Alpha of an asset could be positive or negative. Figure 3.10
displays the Alpha graphically.

Is the standard selling argument correct, that a positive Alpha is a desir-
able property of an asset? To answer this question, recall that we assumed
agents care about means and standard deviations and not about the Alpha
itself. That is to say, we need to check the desirability of positive Alpha in
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β

αK−1

αK

α1

α2

SML

μk − Rf = βk(μM − Rf )

Fig. 3.10. The Alpha of an asset

the mean standard-deviation diagram and not in the mean-Beta diagram.
Clearly, the SML in the mean-Beta diagram is the image of the CML in the
mean-standard-deviation diagram and vice versa, i.e., on changing the port-
folio weights in a portfolio consisting only of the risk-free and the market
portfolio one moves along the SML as high as one moves along the CML. To
see this, let λ be the portfolio weight of the market portfolio and accordingly
let (1 − λ) be the weight on the risk-free asset. Then the SML and the CML
are obtained by variations of λ and the resulting portfolio means coincide:

SML: μ(λRM + (1 − λ)Rf )

= Rf +
cov

(
λRM + (1 − λ)Rf , R

M
)

var (RM )
(μ(RM ) −Rf )

= Rf + λ(μ(RM ) −Rf ).

CML: μ(λRM + (1 − λ)Rf )

= Rf +
σ (λ)RM + (1 − λ)Rf

σ (RM )
(μ(RM ) −Rf )

= Rf + λ(μ(RM ) −Rf ).

But is a point above the SML indeed also a point above the CML and if so, is
any point above the CML also an improvement for the agent? Figure 3.11 sug-
gests the following relation between points above the SML and improvements
of the asset allocation: Not every point above the SML is an outright im-
provement of the agents’ portfolio. However, adding some of it to the agent’s
portfolio makes the agent better off. That this is generally true we will show
now. Therefore, a portfolio with a positive Alpha can be used to improve the
agent. On the other hand a portfolio below the SML will always make the
existing portfolio worse. Actually we show that the Alpha is the direction in
which the mean-variance utility of the agent has its steepest increase!

Suppose an investor currently forms an optimal portfolio of the risk-free
asset and k = 1, . . . ,K risky assets. Recall his mean-variance utility function:
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μ

Rf

σ

T

i

i′

P

Fig. 3.11. Switching to portfolio P improves i′ but not i. However, both can improve
by investing some wealth in P

V (μλ, σ
2
λ) = (μ −Rf1)′λ − ρ

2
λ′COV λ,

where λ ∈ R
K . The gradient of a function is the vector of its first derivatives.

Let αλ,k be the k-th component of the gradient, i.e., the derivative of V in the
direction of asset k. The gradient points into the direction of steepest ascent
[S+05, Chap. 16, pp. 540f.]. The gradient of the mean-variance utility function
with respect to λ is:

αλ,k := (μk −Rf ) − ρ cov

(
Rk,

K∑

k=1

Rkλk

)
, k = 1, . . . ,K.

If the investor has chosen an optimal portfolio then the derivative of his utility
with respect to any asset weight of his portfolio is zero. (This is just the usual
first order condition for optimality.) This implies in our notation that αλ,k = 0
where we take into account only the weights of the K assets over which we
have already optimized.

Multiplying each equation by λk and adding over all assets, we can elimi-
nate ρ and substitute it back into the first order condition. We obtain:20

αλ,k = (μk −Rf ) − βk,λ(μλ −Rf (1 − λ0)), where βk,λ :=
cov (Rk, Rλ)

var (Rλ)
,

with Rλ :=
∑K

k=1Rkλk. This is the Alpha of any asset k. The Alpha of a
portfolio of assets is accordingly

∑K
k=1 αλ,kλk. The Alpha of portfolio λ is the

directional derivative of the mean-variance utility. The first order condition
implies that in no direction we find portfolios composed of the K assets which
can be an improvement for the investor. If the investor however considers
investing in a portfolio that includes new assets, i.e., assets he did not consider
20 The factor (1−λ0) in the security line appears since we did not normalize the asset

allocation in the risky portfolio to sum up to one. Using the notation incorporating
this normalization, i.e., the λ̂i

k, the term would not appear any more.
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before, then a positive Alpha of the new portfolio with respect to the existing
optimal portfolio points at a direction of improvement. Hence, a simple rule
like “Hunting for Alpha Opportunities” can indeed lead to an optimal asset
allocation if the Alpha opportunities are included in small steps. Note that in
any such a step the Alpha has to be computed with respect to the currently
optimal portfolio. Thus, the reference at which we compute the utility gradient
changes along the process.21

In the exercises we also prove that adding any amount of Alpha oppor-
tunity to improve a benchmark portfolio may make a suboptimal portfolio
worse. Hence, general selling initiatives that are typical in large banks, in
which all clients are suggested to add the same Alpha opportunity computed
on the basis of a benchmark portfolio, may be bad for many clients with sub-
optimal portfolios. It would be better to first move the suboptimal portfolios
towards the benchmark portfolios. Figure 3.12 shows this effect graphically in
the mean-variance diagram.

μ

σ

Benchmark portfolio

New product

Your portfolio

Fig. 3.12. Adding a new product that improves upon a benchmark portfolio to a
portfolio different from the benchmark portfolio may make things worse. The solid
line marks an indifference curve for an investor, the dashed line marks combinations
with the new product. Clearly, there is a diversification advantage when starting
with the benchmark portfolio, but only a disadvantage when starting with your
portfolio

At this point we have to discuss a natural counter argument to this observa-
tion: Alpha opportunities improve the efficient frontier, therefore they should
always improve the overall quality of portfolios, shouldn’t they? In fact, this
line of argument is right and wrong at the same time, and it is important to
understand the different notions of “improvement” here. Let us explain this
by a simple example: if you decided for a nice menu in a restaurant and now
21 To be more precise: since the optimization problem is concave, we can indeed

find the optimal portfolio by optimizing iteratively over the assets, where we
improve the portfolio every time we find a positive Alpha, as long as there is one.
Concavity is needed in order that this method does not lead to a local optimum,
but in fact to the globally optimal portfolio.
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the set of available items is suddenly enlarged by a wonderful red wine for a
reasonable price, this is obviously an improvement. However, your particular
dinner, let’s say fish and white wine, is probably not improved if you add a
little bit of red wine to it: the red wine would fit neither to the fish nor to the
white wine. The better approach is to choose a completely new menu, and
then the red wine can really be part of an optimized menu. Unfortunately, Al-
pha opportunities are often added to existing portfolios without further checks
and might (as Fig. 3.12 illustrates) make things simply worse, although they
allow to construct a completely new portfolio with better performance.22

The same idea can also be displayed in the Mean-Beta diagram. Suppose,
as displayed in Fig. 3.12, that agents have considered to invest in different
sets of assets. Say Ki ⊂ {1, . . . ,K} is the subset of assets investor i has so
far considered to invest in. Let accordingly λi be the optimal portfolio he has
build with the assets in Ki. His first order condition thus defines an individual
security line by the condition that

for all k ∈ Ki : μk −Rf = βk,λi(μλi −Rf (1 − λi
0)),

where βk,λi := cov (Rk, Rλi)/ var (Rλi). Hence, even if investors shared the
same beliefs their security lines differ if they a priori consider to invest in
different assets. As Fig. 3.13 shows, it is then well possible that a new asset
has a positive Alpha for one investor but not for another. A numerical example
for this is given in the exercises.

3.3.2 CAPM with Heterogeneous Beliefs

While the previous section showed the relation between the Alpha, the
SML and the CML for any given investor, this section extends the analysis
towards heterogeneous investors. In the standard CAPM investors differ with
respect to their initial endowments and their degree of risk aversion, but they
share the same beliefs about the expected returns and covariance of returns.
Now we allow the investors to also differ with respect to their beliefs on the
assets’ expected returns, i.e., in principle we could have that μi �= μj for any
two investors i and j. However, we keep the assumption that investors agree
on the covariances of the assets. This can be justified by two descriptive and
one pragmatic argument.23 First, errors in means are much more detrimental
22 If the fish and the red wine example doesn’t convince you, you may finally look

at a trivial example: imagine a person who only holds a fixed interest rate asset.
Would you recommend this person to buy commodities in order to improve the
performance through diversification, based on the argument that the efficient
frontier will be improved by adding commodities? You probably won’t, since
a riskless portfolio can obviously not profit from any diversification effects: its
covariance to any other asset is always zero.

23 See Gerber and Hens [GH06] for a generalization towards heterogeneous beliefs
on covariances.
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Fig. 3.13. The new product has a positive Alpha for investor j but it has a negative
Alpha for investor i. The two investors differ by the set of assets they have so far
invested in

to the agents’ utility than errors in covariances. To see this, let

λopt :=
1
ρi
COV −1(μi −Rf1)

be the optimal portfolio of agent i, allowing for short sales. Then the optimal
level of utility is

V i,opt :=
1

2ρi
(μi −Rf1)

′
COV −1(μi −Rf1).

Hence errors in covariances are of linear order to the utility while errors in
means change the utility in a quadratic way.24 Second, covariances tend to
be better predictable, since they are less time-dependent. Take as an example
bonds and stocks: In the medium run (2–3 years) bond and stock returns are
negatively correlated. In a boom, stocks shoot up but bonds do poorly, in an
economic recession, bonds do fine but stocks do depreciate. However, whether
on medium-run horizons stock returns are higher than bond returns is much
more difficult to predict since this would include a prediction on the stage of
the business cycle. Finally, there is a pragmatic reason to keep the assumption
of homogeneous covariance expectations which is perhaps most compelling –
at least from a didactical point of view: the assumption of heterogeneous
expectations on means is already sufficient to explain all the phenomena we
mentioned in the introduction of this section. – So why should we make things
more complicated than necessary?

In the following we derive the SML for the case of heterogeneous beliefs.
We state the result in a proposition and then give the proof of it.

Proposition 3.5. In the CAPM with heterogeneous beliefs the Security Mar-
ket Line holds for the average beliefs, i.e., for all assets k = 1, . . . ,K,
24 Note that we have defined the utility on gross returns, i.e., expected returns are

larger than one.
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μ̄k −Rf = βk,M (μ̄M −Rf ),

where as usual βk,M := cov
(
Rk, R

M
)/

var
(
RM

)
and μ̄M :=

∑I
i=1 a

iμi, with
ai := ri

ρi /
∑I

j=1
rj

ρj and ri = wi
f/

∑I
j=1 w

i
f , wi

f = (1 − λi
0)W

i
0, where W i

0

denotes the first period income.

Proof. In the CAPM with heterogeneous beliefs an investor maximizes

(μi −Rf1)
′
λi − ρi

2
λi′COV λi.

The first-order condition is COV λi = 1
ρi (μi − Rf1). Multiplying this equa-

tion with the relative financial wealth of investor i, which is given by
ri := wi

f/
∑I

j=1 w
i
f , where wi

f denotes the financial wealth of investor i,
and summing up over all investors on the market, we get COV λM =∑I

i=1
ri

ρi (μi−Rf1), λM :=
∑I

i=1 r
iλi, which by the definition of RM is equiv-

alent to

cov
(
Rk, R

M
)

=
I∑

i=1

ri

ρi
(μi

k −Rf ), k = 1, . . . ,K.

In these expressions λM
k denotes the relative market capitalization of asset k.

We have λM
k =

∑I
i=1 r

iλi
k, i.e., the relative market capitalization of asset k is

equal to the average percentage of wealth the investors put into asset k.
Multiplying the last expression with λM

k and summing up, we get

var
(
RM

)
=

I∑

i=1

ri

ρi
(μi,M −Rf ) where μi,M :=

K∑

k=1

μi
kλ

M
k .

Dividing cov
(
Rk, R

M
)

and var
(
RM

)
by

∑I
i=1

ri

ρi we obtain:

cov
(
Rk, R

M
)

∑I
i=1

ri

ρi

= (μ̄k −Rf ), where μ̄k :=
I∑

i=1

ri

ρi

∑I
j=1

rj

ρj

︸ ︷︷ ︸
=ai

μi
k,

and
var

(
RM

)
∑I

i=1
ri

ρi

= (μ̄M −Rf ), where μ̄M :=
I∑

i=1

aiμi,M .

Eliminating
∑I

i=1
ri

ρi from the last equation and inserting into the previous
one yields

cov
(
Rk, R

M
)

var (RM )
(μ̄M −Rf ) = βk,M (μ̄M −Rf ) = (μ̄k −Rf ),

which reads for asset k as (μ̄k −Rf ) = βk,M (μ̄M −Rf ).
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This is the Security Market Line (SML) with average expectations, as
shown in Fig. 3.14. Note that the averaging is done taking into account both
the relative wealth and also the risk aversion of the agents. The wealthier and
the less risk averse agents determine the average more than the poor and more
risk averse agents. Since agents have the same covariance expectations, the
Beta factors are as in the model with homogeneous beliefs.

μ

Rf

β

SML

μ̄M

1

μ̄k − Rf = βk(μ̄M − Rf )

where βk = COV kM/σ2
M

Fig. 3.14. The Security Market Line for average expectations

When we have heterogeneous beliefs, just like with heterogeneous investor
sets, we get individual security lines along which all assets are lined up if
they form an optimal portfolio. The derivation is done as above. We consider
the first order condition for maximizing the mean-variance utility function,
multiply each equation with the portfolio share and add these equations up to
eliminate the risk aversion parameter ρi. As a result we obtain the individual
security line: for all k we have

μi
k −Rf = βk,λi(μλi −Rf (1 − λi

0)),

where βk,λi = cov (Rk, Rλi)/ var (Rλi) (Figure 3.15).

μ

Rf

β

SML

μi
λi,opt

1

μi
k − Rf = βλi,opt

k (μλi,opt − Rf )

where βλi,opt

k = cov(Rk, Rλi,opt)/σ2(Rλi,opt)

Fig. 3.15. Security Line of investor i
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If an investor happens to have beliefs equal to the average belief, i.e., if
μi = μ̄ then he will hold a portfolio of risky assets that coincides with the
market portfolio. In general this may not be the case and agents can have
under-diversified portfolios,25 two-fund separation fails and a new asset with
positive Alpha vis-à-vis the market portfolio can have negative Alpha for some
agents. The last point is exemplified in Exercise 3.3. We come back to this
point later, after we have analyzed the zero-sum game property.

3.3.3 Zero Sum Game

A zero sum game is a game in which one agent can benefit only at the
expense of some other agent. A typical situation arises in allocation problems,
i.e., in situations in which a given set of resources is allocated to various agents.
Sharing a pie is a simple example of an allocation problem. One may argue
that the CAPM is indeed a pie sharing model. It is one method to allocate
the market returns among the investors. Indeed, as we showed more generally
above, the market return is equal to the average return of the investors. Hence
seen ex-post,26 in this respect the CAPM (and any other equilibrium model) is
a zero sum game. Any return given to some investor has to be taken away from
some other investor. This suggests that any allocation of returns to investors
is efficient in the sense that no agent can be improved without making some
other agent worse off. However, from an ex-ante point of view it may happen
that for all agents some allocations are better than others because individuals
prefer different returns in different states, for example. One way of extending
the zero sum game property in order to reflect the ex-ante point of view is to
analyze whether the Alphas investors obtain at a CAPM equilibrium add up
to zero. In doing so, we distinguish the Alphas by the reference portfolio, the
portfolio based on the average market expectation and the one based on the
correct expectation.27 Before doing so, we remind the reader that in utility
terms the CAPM is clearly not a zero sum game since it still involves trade
to share risks which is beneficial to all investors.

We start our formal analysis with the equilibrium property on asset alloca-
tions known from the general notion of financial market equilibria, the average
portfolio allocation of the investors, weighted by their relative wealth, coin-
cides in equilibrium with the market capitalization:
25 Note that underdiversified portfolios do not need to be worse than well-diversified

portfolios. Based on 78’000 households portfolios observed from 1991 to 1996
Ivković, Sialm and Weisbenner [ISW05] find that the more wealthy have more
underdiversified portfolios achieving a positive Alpha to the market.

26 Ex-post means after a state s = 1, . . . , S of the world has realized. Ex-ante means
before the resolution is known.

27 Note that in a model with rational expectations all investors are assumed to
know the true market returns that can be expected. In particular they have then
homogeneous expectations.
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I∑

i=1

λi
kr

i = λM
k , k = 0, . . . ,K.

Multiplying each equation by the return of asset k and adding up over all
assets, we obtain

I∑

i=1

Ri
sr

i = RM
s , s = f, . . . , S,

where Ri
s :=

∑K
k=0Rksλ

i
k and RM

s :=
∑K

k=0Rksλ
M
k . Hence, in each state

the market return is the average return of the individual investors, where
each investor has a weight equal to his relative wealth. Assuming ri > 0, for
all investors, this implies that indeed the return of any investor can only be
increased if the return of some other investor is decreased, which is a first
result concerning the zero sum property. However, this argument holds state
by state and realizing that returns are risky and that investors may care
differently about the size of returns in different states, one may conjecture
that in terms of risk-adjusted returns the market is no zero sum game. One
way of adjusting for risk is given by the Alpha. To make this point we first
need a good definition of the Alpha.

Recall that each agent chooses his portfolio so that from his point of view
no asset has an Alpha. Hence, defining the Alpha as a deviation of a portfolio
from the individual security line, i.e., defining it as

αi
k,λi,opt := μi

k −Rf − βk,λi,opt(μλi,opt −Rf ),

where βk,λi,opt := cov (Rk, Rλi,opt)/ var (Rλi,opt), the CAPM clearly is a zero
sum game, since each of these Alphas is zero, so that any weighted sum of those
Alpha also needs to be zero. Thus for the zero sum property to be interesting
one needs to take different portfolios or different beliefs as benchmarks. One
candidate is the market portfolio respectively the average beliefs. Going this
way, the Alpha of any asset k is the excess return that agent i sees in asset k
over and above the return seen by the market, formally:

αi
k,M := (μi

k −Rf ) − βk,M (μ̄M −Rf ).

As Fig. 3.16 illustrates, for any asset k some agent will see a positive Alpha
while some other agent will see a negative Alpha.

Given this definition of the Alpha of asset k as seen by investor i, we define
the Alpha of the portfolio of investor i as the market average of the Alphas
he sees for the assets:

αi :=
K∑

k=1

λM
k αi

k,M .

We call this way of defining the Alpha the beliefs point of view since in the
definitions we used individuals’ expectations of returns. We now get the zero
sum property:
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μ

Rf

β

μM

1

SML

αi,1

αj,1

αj,K

αi,K

αi,k(Rk, RM ) := (μi(Rk) − Rf ) − βk(μ̄(RM ) − Rf )

Fig. 3.16. Alphas of assets as compared to the excess return adjusted by the market
risk. If one agent sees a positive Alpha some other agent needs to see a negative
Alpha

Proposition 3.6. Defining the Alpha as the excess return that agent i sees
in asset k over and above the return seen by the market, the weighted average
of the individual investors’ Alphas is zero. The weights are given as in the
security market line.

Proof. The proposition claims that

I∑

i=1

aiαi = 0, where ai := riρi
/ I∑

j=1

rj

ρj
.

Recalling the definition of the Alphas we get

I∑

i=1

ai
K∑

k=1

λM
k αi

k,M =
I∑

i=1

ai
K∑

k=1

λM
k

(
(μi

k −Rf ) − βk,M (μ̄M −Rf )
)

=
I∑

i=1

ai
K∑

k=1

λM
k (μi

k −Rf ) −
I∑

i=1

ai
K∑

k=1

λM
k βk,M (μ̄M −Rf ).

And hence, by the weighting factors and the market returns we get what we
claimed:

I∑

i=1

aiαi = (μ̄M −Rf ) − βM (μ̄M −Rf ) = 0.

One interpretation of Prop. 3.6 is that even if we do not know who is right
we can still agree that not everybody can do better than average.

Yet, a different way of defining Alphas is to define them with respect to
the true average returns. Suppose every agent forms his portfolio based on his
beliefs about the average returns and then we let the model run for a while
to compare the expected returns with the average of the realized returns. We
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can then ask who is best in guessing the true average returns and also whether
benchmarked to those returns the zero sum property holds. To this end let
μ̂k, k = 1, . . . ,K, denote the true average return of the assets and define
μ̂M :=

∑K
k=1 λ

M
k μ̂k and the Alpha of asset k as the realized average return

compared to the expected average return based on market expectations:

α̂k,M := (μ̂k −Rf ) − βk,M

(
μ̂M −Rf

)
, k = 1, . . . ,K.

Figure 3.17 illustrates this notion of Alphas.

μ

Rf

β

μM

1

SML

αj

αKμ̂k − Rf = βk(μ̂M − Rf )

α̂k(Rk, RM ) := (μ̂(Rk) − Rf ) − βk(μ̂(RM ) − Rf )

Fig. 3.17. Defining Alphas by the difference of the true returns and the risk adjusted
true returns we see that not all assets can have a positive Alpha

For this notion of Alphas for any asset k we define the Alpha of the portfolio
of investor i as the assets’ Alphas weighted by his asset allocation:

α̂i :=
K∑

k=1

λi
kα̂k,M .

Now we get the zero sum property when weighting the investors’ Alpha with
their relative wealth.

Proposition 3.7. Defining the Alpha of asset k as the excess return that asset
k realizes over and above the return justified by the security market line, the
weighted average of the individual investors’ Alphas is zero. The weights are
given by the relative wealth of the investors.

Proof. The claim is
∑I

i=1 r
iα̂i = 0, where α̂i :=

∑K
k=1 λ

i
kα̂k,M and

α̂k,M := (μ̂k −Rf ) − βk,M

(
μ̂M −Rf

)
.

And indeed:

I∑

i=1

ri
K∑

k=1

λi
kα̂k,M =

K∑

k=1

λM
k

(
(μ̂k −Rf ) − βk,M (μ̂M −Rf )

)

=
(
μ̂M −Rf

)
− βM

(
μ̂M −Rf

)
= 0.
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So far we have seen that the zero sum property can be obtained for three
different definitions of the Alpha. We conclude this series of definitions of
Alphas by one for which we do not get the zero sum property. If the Alpha
that agent i gets for asset k is defined as his expected return over and above
the realized return, i.e.

(
μi

k −Rf

)
− βk,M

(
μ̂M −Rf

)
,

then the Alphas may not add up to zero because it could well be that all
agents are too optimistic or too pessimistic for all assets.

We finish these ideas on the zero sum property of Alphas in the CAPM with
heterogeneous beliefs by reminding once more that in utility terms all agents
could benefit from trade due to diversification. The CAPM for homogeneous
beliefs is still a special case of the model with heterogeneous beliefs. Hence,
nobody shall come to the conclusion that financial markets as such are useless
since they only offer zero alpha sum games.

3.3.4 Active or Passive?

An active investor in the CAPM optimizes his portfolio given his beliefs. The
active investor thus invests in his Tangent Portfolio. A passive investor invests
in the market portfolio as if he shared the average belief of the investors. While
the CAPM with homogeneous beliefs states that there is no difference between
active and passive investing,28 the extension of the CAPM to heterogeneous
beliefs can give a more realistic advice on the active/passive decision. In this
section we analyze who shall be active and who shall be passive. We will
assume that active asset management is costly while being passive is for free.
Hence every investor has the choice to “passify” if he discovers himself to be a
loser of the zero sum game. The remaining active investors chase the Alphas
among themselves. Thus, if investors learn about their active market skills
and more and more unskilled investors drop out, the remaining investors will
have an ever harder task. Eventually, only the best active manager determines
asset prices, which is a conclusion in the line of the efficient market hypothesis.
However, since the active investors need to pay for their superior information
while the passive investors get this information for free this is not a stable
situation.

To begin with we first verify that an active investor forming his beliefs on
the basis of the SML indeed chooses the market portfolio. Recall the first-order
condition that determines the portfolio of risky assets of an active investor:
λi = (1/ ρi)COV −1(μi − Rf1). Now suppose the active investor determines
his belief from the SML, i.e., he sets μi

k := Rf + βk,M (μ̄M − Rf ), where

28 This is a consequence of two-fund separation. Every active investor (holding his
tangential portfolio) holds the market portfolio, i.e. turns out to be a passive
investor in equilibrium.
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βk,M := COV k,M

σ2
M

. Then, on noting that COV k,M = (COV λM )k we get that
his portfolio of risky assets is proportional to the market portfolio:

λi =
1
ρi
COV −1COV λM (μ̄M −Rf )

σ2
M

=
1
ρi

(
μ̄M −Rf

σ2
M

)

︸ ︷︷ ︸
scalar

λM .

In describing the active-passive decision we once more allude to the thought
experiment made above: Suppose every agent forms his portfolio based on his
beliefs about the average returns and then we let the model run for a while
to compare the expected returns with the average of the realized returns. The
agents then evaluate the result of their portfolio choice by what has happened
on the market. If agents were only interested in the Alpha they would then
evaluate their choice by the Alphas as defined for Prop. 3.7. The game they
are playing would be zero sum with an outside option (being passive) by which
every agent could guarantee to him the payoff zero. Hence, eventually none of
the agents would be active. This seems like a compelling argument. However,
the correct way of evaluating the situation is according to the agents utility
derived from their investments. To this end let U i

μ̂(μi) be the mean-variance
utility that agent i gets in the course of his investment when he bases his
decision on his belief μi while the true average returns are given by μ̂. We
assume that if μi �= μ̄ then the agent pays a cost Ci > 0 for being active.
Hence, optimizing with respect to his own beliefs an active investor achieves
the utility

U i
μ̂(μi) = λi

0Rf + (1 − λi
0)μ̂(Rλi) − ρi

2
(1 − λi

0)
2 var

(
Rλi

)
− Ci.

Accordingly, a passive investor who optimizes his portfolio given the markets
beliefs achieves the utility

U i
μ̂(μ̄) = λi

0Rf + (1 − λi
0)μ̂(Rλ̄i) − ρi

2
(1 − λi

0)
2σ2(Rλ̄i).

Which of the two utilities is larger depends on the market efficiency and also
on the skill of the investor (how much his expectations deviate from reality).

One can show29 that the agent should be active if and only if:

U i
μ̂(μi) − U i

μ̂(μ̄) =
1

2ρi

(
‖μ̂− μ̄‖2 −

∥∥μ̂− μi
∥∥2
)
> Ci,

where ‖x‖2 := x′COV −1x. Here, ‖μ̂− μ̄‖2 is a market inefficiency term and∥∥μ̂− μi
∥∥2 measures the deviation of expectations from reality.

This result shows that the investor should be active

• the less efficient the market,
29 See Gerber and Hens [GH06]
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• the more skilled the investor,
• the smaller his costs to be active and
• the less risk averse he is.30

Market efficiency is in turn depending on who is active! This implies for
example that an active investor erodes his investment opportunities the more
successful he becomes. This “winner’s curse problem” is well-known for hedge
funds. It may be one reason why the best funds are closed. The endogeneity
of market opportunities also leads to the following pattern of market oppor-
tunities. All investors whose beliefs are farther away from the true belief than
the average belief should rather be passive, which makes the market belief
closer to the true beliefs and more investors will drop out of the group of ac-
tivists. Eventually, only the most skilled investor will be active. However, at
this point he can “pull his legs”, i.e., he can – as every other passive investor
– get the best belief for free by passively investing into the market portfolio.
The consequence of this is that the market portfolio is no longer informative
and the game starts all over again. That is to say, there are no stable market
outcomes – a result which is known for other models as the Grossman-Stiglitz
Information Paradox. Certainly, Alpha opportunities change when important
unforeseen events that are difficult to value – like the commercialization of
the internet – occur. But our model suggests that even without those ma-
jor events Alpha opportunities are not constant over time since the model
generates cycles in Alpha opportunities within itself.

We close this section by noting that the Alpha is not itself a good criterion
for the active–passive decision. It may well be that an agent has a positive
Alpha but should rather be passive, as Exercise 3.4 shows. Also the converse
is true, an agent can have a negative Alpha but he should rather be active, as
it is shown in the final example of [GH06].

3.4 Alternative Betas and Higher Moment Betas

The general topic of this chapter is to explain trade and valuation of risk
and return in financial market equilibria. In the CAPM we analyzed trading
for diversification purposes and, in the case of heterogeneous beliefs, also for
trading motivated by different expectations, i.e., for “betting”. The CAPM
gives a first intuition about the valuation of risk and return in a financial
market equilibrium. However, it is build around quite restrictive assumptions.
It ignores intertemporal trade and cannot explain the excess return of the
market portfolio, also called the equity premium, which has to be taken as

30 That agents may trade actively because they are not at all risk averse but trade
for entertainment has recently been observed in Dorn and Segmueller [DS09].



3.4 Alternative Betas and Higher Moment Betas 127

exogenous in the CAPM.31 Moreover, strictly spoken the CAPM is a model
for the determination of stock market risk, the Beta. But in many applications
the CAPM is claimed to hold also for non-stock market risk, like risk from
alternative asset classes, e.g., commodities, private equity, real estate, art,
gems and wine etc. Taking these risks may yield higher return than justified
by its correlation to stock market risk. Yet, this excess return is no Alpha but
should better be called Alternative Beta. Recall that we defined the Alpha as a
return that is not justified by the risk factors of a model, but that arises from
superior information or skill. Hence the fact that alternative asset classes yield
returns that are higher than justified by their correlation to the stock market
implies that one should rather extend the definition of the market portfolio
to include alternative risk factors. Moreover, in contrast to the CAPM, excess
returns may be received from holding skewed and fat tailed returns. Again
these are no Alphas but rewards for other types of risk, which one should call
higher Moment Betas.

3.4.1 Alternative Betas

Some financial intermediaries (banks, hedge funds, asset managers) try
to sell their products in the following way. They frame the asset allocation
problem in terms of means and variances and then they show that including
their product enlarges the efficient frontier. Figure 3.18 gives one such example
for the case of investing in bonds that default when a catastrophe happens.

Return

Risk

5.0% ILS
2.5% ILS

0% ILS

Fig. 3.18. Adding insurance-linked securities (ILS) can enlarge the efficient frontier,
but does this imply that we are better off by adding them to our portfolios?

We have seen in the exercises that the enlargement of the efficient frontier
is a better argument for investing in a product than the argument based on
the Alpha would be. But is the enlargement argument sufficient for investing
in the product? This is the case provided that investors do only care about

31 Applying the SML to the market portfolio itself results in the tautology 1 ≡ 1,
hence the CAPM is an asset pricing model valuing assets relative to the market
portfolio, but it does not evaluate the market portfolio itself.
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the mean and the standard deviation of the payoffs of the product as related
to other investments (stocks and bonds) that they have made. But if the
investors are already quite loaded with the underlying risk of the product
then they should take this into consideration and the attractiveness of the
product may decrease. Consider for example the Goldman Sachs Commodity
Index, GSCI, which to a large extent is related to the oil price. For the CEO
of a car producer it may make sense to invest in the GSCI, since this may
compensate him for a smaller bonus if the demand for cars drops due to
a rise in oil prices. But for the CEO of a solar technical firm the opposite
may be true. Besides this obvious correlation to the background risks, the
product may also yield a high return due to factors like illiquidity which may
be bad for some investors. Moreover, the product should be benchmarked to
the correct notion of market portfolio so that the investors see whether it
delivers the highest possible return given the risks it offers. Ultimately, one
may use factor analysis to reveal all risk factors the product is based on. If the
investor can determine his sensitivity to these factors one could see whether
the product is really a good investment for him. Hence, the APT can be seen
as the extension of the CAPM towards background risks which then allows
including alternative betas. Formally we can derive the APT analogously to
the derivation of the standard CAPM.

Section 3 has shown that all risks except that of the market portfolio
can be diversified. If the market portfolio consists of more than stock market
risk, then also the security market line will reflect these other sources of risk:
Suppose

RM =
F∑

f=1

χfRf ,

where Rf are factors like stock market risk (traditional risk) and alternative
risk. Supposing the factors are mutually exclusive,32 the security market line
is obtained as:

μj −RF =
F∑

f=1

βjf (μf −Rf ),

where

βjf :=
xf cov(Rj , Rf )

σ2
M

, f = 1, . . . , F.

This resembles the APT.

3.4.2 Higher Moment Betas

As the CAPM, the APT is based on correlations. Hence it ignores higher
moments of the return distribution. Yet, if agents have realistic preferences
32 i.e., the covariance between each pair of factors is zero.
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like those coming from Expected Utility Theory or Prospect Theory then they
may not only care for mean and variance. Some investments that look very at-
tractive in the mean-variance framework may lose their attraction once higher
moments are taken into account. For example, applying Prospect Theory to
standard data on value and size portfolios, one can conclude that due to skew-
ness and fat tails33 the deep value and the small cap returns while being very
attractive for a mean-variance agent, are not more attractive than the stock
market index. This point has recently been made by De Giorgi, Hens and Post
[DGHP05]. Table 3.1 shows descriptive statistics of the standard size and value
portfolio as they can be found on the webpage of Kenneth French. First we
observe that the equity index has an excess return over bonds of about 6.6%.
Second we observe that small cap and value portfolios give higher return than
the equity index and also than large cap and glamour portfolios. However,
these higher returns come along with higher volatility, higher skewness and
fatter tails of the return distribution. Finally, the range of observed returns is
higher for the portfolios which have higher average returns.

For a mean-variance investor the small cap and the value portfolios are
attractive since he does not care about the higher moments of the distribution,
as it can be seen from Table 3.2.

We see that on a 5% level34 the Sharpe-ratios of small cap and of value
portfolios are higher than those of the stock market and the bond market
index. To make significant numbers more visible, in Table II they are in bold
face letters and their cells are shaded in grey. How does a Prospect Theory
investor care about the higher moments of the distribution? Well this depends
on the functional form of his value function, as [DGHP05] has shown. Eval-
uated with the piecewise power value function (2.7) from Sec. 2.4.3, the size
and the value premium puzzle would even deepen. However, if one applies
the piecewise exponential value function (2.13) from Sec. 2.4.4, the size and
the value premium puzzle is gone. For the small payoffs, as they are usually
considered in experiments, the two value functions look very similar, while for
larger payoffs the piecewise exponential value function is more concave (com-
pare Figure 2.15). Applied to the size and value premium data this implies
that the extremely high returns get less utility than in the mean-variance case
or with the piecewise power value function.

In Table 3.2 the column CPT refers to the piecewise power value func-
tion while the column CPT (exp.) refers to the piecewise exponential value
function. We see that for CPT (exp.) on a 5% significance level none of the
portfolios is any better than the stock market index.

33 Skewness is measured by the third moment of a distribution and fat tails are
measured by the kurtosis, i.e., the fourth moment, of a distribution in excess of
the kurtosis of a normal distribution, see Appendix A.2.

34 The p-values displayed in Table 3.2 mirror the significance level. That is to say
a utility value with a p-value not exceeding 0.05 indicates a significance on a 5%
level.
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Table 3.1. Descriptive statistics (average, standard deviation, skewness, excess kur-
tosis, max and min) for the annual real returns of the value-weighted CRSP all-share
market portfolio, the intermediate government bond index of Ibbotson and the size
and value decile portfolios from Kenneth French’ data library. The sample period is
from January 1927 to December 2002 (76 yearly observations)

Avg. Stdev. Skew. Kurt. Min Max

Equity 8.59 21.05 0.19 0.36 −40.13 57.22
Bond 2.20 6.91 0.20 0.59 −17.16 22.19
Small 16.90 41.91 0.92 1.34 −58.63 155.29
2 13.99 37.12 0.98 3.10 −56.49 169.71
3 13.12 32.31 0.69 2.13 −57.13 139.54
4 12.53 30.56 0.46 0.83 −51.48 115.32
5 11.91 28.49 0.44 1.60 −49.57 119.40
6 11.65 27.46 0.31 0.61 −49.49 102.17
7 11.09 25.99 0.30 1.14 −47.19 102.06
8 10.15 23.76 0.29 1.19 −42.68 94.12
9 9.63 22.33 0.02 0.46 −41.68 78.15
Large 8.06 20.04 −0.22 −0.52 −40.13 48.74
Growth 7.84 23.60 0.02 −0.64 −44.92 60.35
2 8.77 20.41 −0.27 −0.27 −39.85 55.89
3 8.52 20.56 −0.10 −0.47 −38.00 51.90
4 8.25 22.49 0.49 2.39 −45.02 96.33
5 10.29 22.82 0.36 1.92 −51.55 93.77
6 10.06 23.04 0.19 0.63 −54.39 73.57
7 11.00 24.73 0.18 1.22 −51.13 97.91
8 12.82 27.01 0.67 1.95 −46.56 113.53
Value 13.32 33.05 0.43 1.40 −59.78 134.46

While the argument of [DGHP05] is only based on the shape of the value
function, probability weighting in Prospect Theory may explain why investors
are reluctant to invest in Insurance Linked Securities (ILS). The return dis-
tribution of ILS is very fat-tailed to the left, i.e., every now and then a real
catastrophe happens and investors have to face huge losses. A Prospect The-
ory investor exaggerates these small probability events and may hence not
invest into ILS. Figure 3.19 shows the returns of ILS.

3.4.3 Deriving a Behavioral CAPM

Analogously to the derivation of the standard CAPM based on the mean-
variance diagram, we can derive a SML that incorporates loss aversion and
asymmetric risk aversion – two key properties of prospect theory. We ignore
behavioral heterogeneity and use a “representative investor”.35 To begin we

35 For the pros and cons of this approach see Sec. 4.6 of the next chapter.
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Table 3.2. For each portfolio: Sharpe ratio, CPT statistic and adjusted CPT
statistic with the piecewise-exponential value function, compare (2.13); bootstrap
p-values. Numbers in bold refer to portfolios that yield a significantly higher value
than the market portfolio at a 5% significance level

MV CPT CPT (exp.)
statistic p-value statistic p-value statistic p-value

Equity 0.380 −1.590 −1.496
Bond 0.329 0.007 −0.788 0.008 −1.105 0.240
Small 0.384 0.140 2.290 0.030 2.172 0.933
2 0.357 0.317 1.053 0.085 −1.981 0.888
3 0.384 0.215 0.654 0.085 −1.749 0.749
4 0.387 0.212 0.278 0.066 −1.509 0.514
5 0.394 0.180 0.197 0.070 −1.411 0.377
6 0.400 0.153 0.101 0.043 −1.441 0.413
7 0.402 0.142 0.076 0.033 −1.416 0.347
8 0.403 0.140 −0.006 0.020 −1.342 0.233
9 0.404 0.116 −0.552 0.035 −1.322 0.224
Large 0.376 0.457 −1.767 0.741 −1.427 0.279
Growth 0.308 0.821 −2.673 0.863 −2.012 0.920
2 0.410 0.104 −1.352 0.410 −1.286 0.129
3 0.392 0.219 −1.299 0.251 −1.503 0.516
4 0.336 0.591 −0.695 0.158 −1.484 0.465
5 0.420 0.075 0.502 0.039 −0.985 0.059
6 0.403 0.137 0.176 0.147 −1.380 0.336
7 0.419 0.076 −0.018 0.101 −1.234 0.273
8 0.447 0.027 2.083 0.003 −1.163 0.233
9 0.449 0.026 1.905 0.008 −1.098 0.203
Value 0.383 0.174 −0.050 0.202 −1.422 0.436

need to have a diagram for rewards and risks like mean and variance that
however captures the main aspect of prospect theory: gains and losses. Since
we want to generalize the basic CAPM to incorporate aspects of prospect
theory, we will choose a piecewise quadratic value function for prospect theory:

u(Δx) =

{
Δx− α+

2 (Δx)2, if Δx > 0

β
(
Δx− α−

2 (Δx)2
)
, if Δx < 0

where Δx = x−RP . The overall prospect utility then is

PTu(Δx) =
∑

s

psu(Δxs),
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Fig. 3.19. Performance Track Record of ILS. The catastrophes imply a return
distribution that is very skewed and fat-tailed on the left

where we ignored probability weighting to keep things simple.36 Note that for
β = 1 and α+ = α− =: α the prospect utility plus theRP is a function of mean
and variances only since the second moment, i.e. the expectation of the square
of a random variable, is a function of mean and variance. In particular, for
RP = μ, maximizing PTu(Δx) + RP is equivalent to maximizing the simple
mean-variance utility μ− α

2 σ
2. Hence mean-variance analysis is still a special

case of our analysis here.
What would be an appropriate reward-risk diagram for prospect theory?

PT divides outcomes into two aspects: gains and losses. Hence it is natural to
use gains as the reward and losses as the risk dimension of a PT-diagram. To
be precise, we write the value function slightly different:

v(c) =

{
u(c), c > RP

− 1
βu(c), c < RP.

Then we define prospect gains,

pt+(c) =
∑

cs>RP

psν(cs),

36 You may include probability weighting by replacing ps with ws = w(ps). However,
then some care has to be taken in the empirical analysis!
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and prospect losses,
pt−(c) =

∑

cs<RP

psν(cs).

We can express the overall prospect utility as the difference of prospect gains
and beta times prospect losses:

PTu(c) = pt+(c) − βpt−(c).

This suggests the following reward-risk diagram for prospect theory [DGH06].

β

pt+

pt−

Fig. 3.20. The reward-risk diagram for prospect theory. The behavioral efficient
frontier maximizes the prospect utility from gains given any level of the prospect
utility from losses. It‘s upper left part is the analog to the efficient frontier of the
mean-variance diagram. The optimal point is determined by the tangency of the
highest line with slope equal to the loss aversion and the efficient frontier

Now we can derive a Behavioral CAPM, B-CAPM, based on this diagram
in complete analogy to the geometric derivation of the simple CAPM which
was based on the mean-variance diagram.

Let Δλ(s) = λRj + (1 − λ)RM − RP , for s = 1, . . . , S be the gain re-
spectively the loss in state s resulting from a portfolio combining any asset
j with the market portfolio M . Then we know that the curve resulting in
the prospect theory diagram must be tangent to the line that determines the
optimal portfolio. To understand the link between the individual optimization
behavior and the market, compare the slopes of the Capital Market Line and
the j-curve. By the tangency property of λM , they must be equal. Note that

pt+(λRj + (1 − λ)RM ) =
∑

Δλ(s)>0

ps

{
λ(Rj(s) −RP ) + (1 − λ)(RM (s) −RP )

− α+

2
[λ(Rj(s) −RP ) + (1 − λ)(RM (s) −RP )]2

}
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which, resolving the square, is equivalent to

M

j

dpt−

β

dpt+

Fig. 3.21. The Behavioral Security Market Line, B-SML, shows a linear relation
between the derivative of the prospect utility at gains evaluating the gains of the
market and the derivative of the prospect utility at losses evaluating the losses of
the market

pt+(λRj + (1 − λ)RM ) =
∑

Δλ(s)>0

ps

{
λ(Rj(s) −RP ) + (1 − λ)(RM (s) −RP )

− α+

2
[λ2(Rj(s) −RP )2 + (1 − λ)2(RM (s) −RP )2

+ 2λ(1 − λ)(Rj(s) −RP )(RM (s) −RP )]
}
.

We want to derive a first order condition for the optimal portfolio weights.
Taking the derivative with respect to λ, we obtain

dpt+(λRj + (1 − λ)RM )
dλ

∣∣∣∣
λ=0

=
∑

Δλ(s)>0

ps

{
(Rj(s) −RM (s))

− α+(Rj(s) −RM (s))(RM (s) −RP )
}
.

We get a completely analogous expression for the loss term and then we can
equate:

dpt+(λRj + (1 − λ)RM )
dλ

∣∣∣∣
λ=0

= −β dpt+(λRj + (1 − λ)RM )
dλ

∣∣∣∣ .

This can be written as
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∑

RM (s)>RP

ps

{
(Rj(s) −RM (s)) − α+(Rj(s) −RM (s))(RM (s) −RP )

}

= −β
∑

RM (s)<RP

ps

{
(Rj(s) −RM (s)) − α−(Rj(s) −RM (s))(RM (s) −RP )

}

We see that gains and losses are determined according to the market portfolio’s
return being higher or lower than the reference point. Moreover, these gains
and losses are evaluated by the gradient of the value function.

Finally, note that for the asset j being the market portfolio considering
the B-CAPM doesn’t give us any information, since the identity 0 = 0 is
obtained. This resembles the fact that the valuation is a relative valuation –
as the original SML was, too.

3.5 Summary

We developed in this chapter a simple model for asset pricing, the Capi-
tal Asset Pricing Model (CAPM). Let us summarize the main ideas of this
derivation: we consider only two time periods and assume that all investors
have mean-variance preferences. Under this assumption we can represent as-
sets in a mean-variance diagram. By combining two assets (diversification)
we can find portfolios with different mean and variance. Let us now consider
for a moment only the risky assets. The set of all possible portfolios of risky
assets in the mean-variance set is called opportunity set. Its upper boundary
is called the efficient frontier ; only these portfolios and their combinations
with the riskless asset are interesting for investors. The Two-Fund Separation
Theorem states that all investors should hold as risky assets the same port-
folio (the Tangent Portfolio). Depending on the risk attitudes, this portfolio
can then be combined with the riskless asset. If we consider a market with
several investors (Sec. 3.2), we can show that the Tangent Portfolio corre-
sponds exactly to the market portfolio, i.e., the portfolio of all assets on the
market. From this we can derive a formula for the price of assets, the CAPM.
This price depends not only on mean and variance of the asset, but also on
its covariance with the market portfolio.

In Sec. 3.3 we studied the Alpha, i.e., situations where some assets are
seemingly under- or overpriced as compared to the price given by the CAPM.
First, we have seen that adding Alpha opportunities does not improve every
portfolio. However, in a financial market in equilibrium there wouldn’t be any
Alpha opportunities if we do not consider heterogeneous beliefs. This means
that we generalize our simple model and take into account that investors
have different expectations on the future development of assets. This leads to
the effect that investors can perceive assets with positive Alpha, i.e., under-
priced assets, whereas other investors do not consider them as underpriced. If
expectations differ, only one of them can be right, the hunt for Alpha opportu-
nities is therefore a zero-sum game and only the better-informed investors can
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profit from investing into such subjectively underpriced assets. On the long
run, less-informed investors might return to a passive strategy, so that the
market converges finally to the prices predicted by the CAPM. Some Hedge
Fund strategies speculate that this will eventually be the case (e.g., using a
Market Neutral Strategy).

Alternative investments often seem to outperform the market when consid-
ering mean and variance. In Sec. 3.4 we studied some reasons for this: Alterna-
tive or Higher Moment Betas. For instance, we noticed that the mean-variance
approach as such is not sufficient to capture the nature of highly skewed or fat-
tailed distributions. The attractiveness of such investments can often be better
understood by considering Prospect Theory as underlying decision model.

In the next chapter we develop a more general model that includes a the-
ory of the equity premium and that draws on alternative risk factors, higher
order risk and background risk. Including all this the model should still give a
simple risk-return interpretation that is compatible with the principle of no-
arbitrage. This may sound like “squaring the circle”, but on the contrary it is
not only possible, but even not too difficult: Based on the no-arbitrage condi-
tion outlined in the next chapter and introducing intertemporal consumption
we can develop the so-called consumption based CAPM of Breeden [Bre79],
which is similar to the model of Lucas [LJ78]. First we will show that there is
only one risk factor that can be used to price all risks by their covariance to
that factor. Mathematically spoken this risk factor is a likelihood ratio, it is
the ratio of the state price density and the physical probability.37 Embedding
the no-arbitrage idea in an economic model in which the ultimate goal of in-
vesting is to finance consumption, the likelihood ratio is given by the marginal
rates of substitution evaluated at the stochastic consumption stream. For that
reason it is also called the stochastic discount factor. The likelihood ratio will
later turn out to be indeed proportional to the market portfolio if we work
with the CAPM model, compare Sec. 4.4.2. This will lead to another proof
of the SML-formula and allow for extensions to new models like APT and
Behavioral CAPM (see Sec. 4.4).

3.6 Tests and Exercises

3.6.1 Tests

1. What are the basic assumptions of this chapter?
� We consider only two time periods.
� The investors have all the same preferences.
� The investors’ preferences follow the Expected Utility Theory.
� The investors’ preferences follow the mean-variance approach.

37 In the continuous time version of the financial markets model the likelihood ratio
is called the Radon-Nikodym derivative.
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2. Can combining two risky assets yield a portfolio with zero variance?
� Yes, if the two assets are uncorrelated (correlation coefficient is zero).
� Yes, if the two assets are negatively correlated (correlation coefficient is less

than zero).
� Yes, if the two assets are perfectly negatively correlated (correlation coeffi-

cient is −1).
� No, this is not possible: we need the riskless asset.

3. What is the mean-variance opportunity set?
� The set of all possible combinations of mean and variance that can be

reached by a portfolio of the assets.
� The set of all possible combinations of mean and variance that can be

reached by a portfolio of the risky assets.
� The set of all portfolios that can be optimal for an investor.

4. What is the efficient frontier?
� The set of all portfolios that have maximal return for a given variance.
� The set of all portfolios that have maximal return for a given standard

deviation.
� The set of all portfolios that have minimal variance for a given return.
� The set of all portfolios in the mean-variance opportunity set for which there

is no other point in the mean-variance opportunity set that improves mean
and variance.

� The upper boundary of the mean-variance opportunity set in the mean-
variance diagram.

� The left boundary of the mean-variance opportunity set in the mean-
variance diagram.

� The set of optimal portfolios in the mean-variance diagram.
5. What is the tangent portfolio?

� The portfolio on the efficient frontier which admits a unique tangent.
� The portfolio on the efficient frontier such that a line from there to the

risk-free asset has maximum slope.
6. What is the Sharpe ratio of the asset j?

� (μj − μf )/σj .
� μj/σj .
� The slope of the line in the mean-variance diagram that intersects with the

risk-free asset and the asset j.
7. What does the Two-Fund Separation Theorem say for mean-variance investors?

� All investors should hold the same ratio of risky and riskless assets.
� All investors should hold the same portfolio of assets.
� All investors should hold the same portfolio of risky assets.
� The market portfolio consist only of two funds.

8. When does two-fund separation occur?
� In a market where everybody has mean-variance preferences.
� In a market where everybody has expected utility preferences.

9. What is the CAPM formula of an asset j with mean μj , variance σ2
j and returns

Rj?
� μj − μf = cov(Rj , RM )(μM − μf ).t

� μj − μf =
cov(Rj ,RM )

σ2
M

(μM − μf ).

� μj − μf =
σ2

j

σ2
M

(μM − μf ).
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10. Given two assets with variance σ, which one has according to CAPM a smaller
mean?
� Both have the same mean.
� The one with a smaller correlation with the market has a smaller mean.
� The one with a larger correlation with the market has a smaller mean.

11. What is “the Alpha”?
� The difference between the actual mean of an asset and its mean according

to the CAPM.
� The difference between the mean of an asset and the risk-free return.
� An abbreviation for the Sharpe ratio.

12. What can be rational reasons for trading on financial markets?
� Intertemporal trade: I need the money later, you need it now, let’s trade!
� Risk-trading: I want the risk, you don’t want it, let’s trade!
� Heterogenous beliefs: I think stocks go up, you think they go down, let’s

trade!
13. In which sense is the “hunt for Alpha” a zero-sum game?

� Whatever profit one person makes on the stock market, another person
ought to pay for that. On average nobody makes any money.

� There are never any Alpha opportunities on the market, since the CAPM
formula always holds, and therefore the Alphas are zero.

� Given heterogeneous beliefs, better informed investors can detect and exploit
Alpha opportunities, but only on the expense of worse informed investors.

14. How can one explain that Insurance Linked Securities (ILS) are not as popular
as they should be according to CAPM?
� They improve the performance of a benchmark portfolio, but not the per-

formance of the portfolio of a given investor.
� The preferences of the investors are not mean-variance preferences, hence

they do not only take mean and variance into account, and the return dis-
tribution of ILS is highly skewed, i.e., not at all normally distributed.

� One needs to consider a multi-period model to evaluate them correctly.
� There is not enough data on these investments yet, therefore the computa-

tion of mean and variance is still too imprecise.
15. What are the limitations of the CAPM?

� People are often not acting according to Mean-Variance preferences.
� People are often not acting according to Expected Utility Theory.
� We cannot model complicated derivatives in the CAPM, since we need more

time-steps to do so.
� It is not possible to study the effect of differences in the investors’ beliefs.
� Mean and variance are not sufficient to describe highly skewed distributions,

as they are typical for hedge funds or other alternative investments.
16. What are the merits of CAPM?

� CAPM proves that it never makes sense to “hunt for Alpha opportunities”,
but instead passive investment into the market and a riskless asset is optimal.

� CAPM is a simple and useful tool to evaluate traditional investments.
� CAPM is the standard method to price options and derivatives.
� CAPM shows that, although investors might have different preferences, they

all should invest into the same assets.
� CAPM is a model that helps to get an intuition into portfolio analysis that

is useful when studying more complicated models.
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3.6.2 Exercises

3.1. There are two risky assets, k = 1, 2 and one risk-free asset with return of
2%. Risky assets cannot be short sold. The expected returns of the risky assets are
μ1 := 5% and μ2 := 7.5%. The covariance matrix is:

COV :=

(
2% −1%
−1% 4%

)
.

1. Calculate the Minimum-Variance Portfolio and the Tangent Portfolio.
2. Some mean-variance investor assuming the Covariance Matrix given above

chooses the portfolio λ := (0.2, 0.5, 0.3). Assume α := 1. Which implicit ex-
pected returns does he hold?

3. Suppose the market portfolio is λM := (0.4, 0.6). Compute the Beta-factors.
Assume the excess return of the market portfolio is 3%. Determine the expected
returns of the two risky assets.

3.2. Construct a simple example with three risky assets k = 1, 2, 3 such that none
of them have a pairwise correlation of +1 or −1, but a combination of asset 1 and
2 has a correlation of +1 with asset 3.

Use this example to prove that the problem described on page 3.1.4 cannot be
solved by controlling for pairwise correlation between assets.

3.3. An investor with mean-variance utility U(μ, σ) := μ − σ2 can invest in three
risky assets, k = 1, 2, 3 and one risk-free asset. The risk-free return is 2%. Risky
assets cannot be short sold. The expected returns of the risky assets are μ1 := 5%,
μ2 := 7.5% and μ3 := 10% The covariance matrix is:

COV :=

⎛

⎝
2% −1% −2%
−1% 4% 6%
−2% 6% 8%

⎞

⎠ .

1. Calculate the tangential portfolio if the investor can only invest in the first two
assets. Calculate the mean and the variance and also the investor’s utility for
that portfolio.

2. Now consider the third asset and show that it has positive Alpha with respect to
the tangential portfolio. Suggest a new portfolio mix consisting of the tangential
portfolio and the third asset so that the investor improves upon the tangential
portfolio.

3. Now suppose the investor had initially chosen the portfolio consisting of asset 2
only. Show that adding asset three to this portfolio makes him worse off!

3.4. Let Rf := 1% and let there be two risky assets and four investors with the
following characteristics:

μ1 :=

(
6%
1%

)
, μ2 :=

(
3%
2%

)
, μ3 :=

(
2%
3%

)
, μ4 :=

(
1%
5%

)
,

γ1 := γ2 := γ3 := γ4 = 2,

w1
0 := w2

0 := w3
0 := w4

0 := 10.
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Let

cov :=

(
2% 0%
0% 2%

)
and μ̂ :=

(
2%
2%

)
.

Show that investor 2 has a negative alpha but should rather be active!

3.5. Equities, bonds and other traditional asset classes have an economic rationale
for giving positive mean returns. Hedge funds have no economic theory underlying
their positive performance. There is no risk premium in the classic economic sense.
The returns are achieved by the managers’ ability to exploit inefficiencies left be-
hind by other (less informed, less intelligent, less savvy, ignorant, or uneconomically
motivated) investors in what is largely considered a zero or negative sum game.
Alexander M. Ineichen (UBS Investment Research, March 2005, page 31.)
In the following we analyze this statement critically:
Consider a two-period financial market model with k = 0, 1, . . . , K assets. Let k = 0
be the risk-free asset.

1. For the CAPM, define the ex-post alpha of an asset k, α̂k,M , and of an invest-
ment strategy λi =

(
λi1, . . . , λiK

)
, denoted by α̂i.

2. Let ri be the relative wealth of investment strategy λi. Argue that
∑

i α̂iri = 0,
i.e., with respect to the alphas financial markets are a zero sum game.

3. In the last 10 years Hedge Funds have generated positive returns of about 10%
p.a. Is this finding compatible with the CAPM?

4. Comment on the quotation from Ineichen (2003) given above. Are his statements
supported by financial economics as it has been taught in this class?

3.6. Let Rf := 1% and let there be two risky assets and three investors with the
following characteristics:

μ1 :=

(
3%
1%

)
, μ2 :=

(
2%
1%

)
, μ3 :=

(
1%
2%

)
,

γ1 := γ2 := γ3 := 2,

w1
0 := w2

0 := w3
0 := 5.

Let

cov :=

(
2% 0%
0% 2%

)
and μ̂ =

(
2%
1%

)
.

1. Calculate the (ex-ante) market expectation μ.
2. Calculate the optimal portfolio for all investors (if they are active).
3. Calculate the market portfolio λM assuming that all investors are active.
4. Which investors should invest active, which passive?
5. Calculate the ex-post alphas of the investors.
6. Show that investor 1 has a positive ex-post alpha, if he is active, but should

better be passive.

3.7. Consider two risky assets with

(μ1, σ1) := (5%, 5%) and

(μ2, σ2) := (10%, 10%).

The correlation between the two assets is ρ = 0.5.

1. Compute the tangent portfolio for Rf = 0% with and without short-selling.
2. How does the tangent portfolio change when Rf increases?
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Two-Period Model: State-Preference Approach

“Toutes les généralisations sont dangereuses, y compris
celle-ci.”
(All generalizations are dangerous, even this one.)
Alexandre Dumas

In the last chapter we have assumed that investors base their decisions on
the mean-variance approach. This helped us to develop a model for pricing
assets on a financial market, the CAPM. In this chapter we want to generalize
this model in that we relax the assumptions on the preferences of the investors.

The fundamental idea which allows this generalization is the Principle of
No-arbitrage: in a well-functioning financial market it is not possible to get
something for nothing. This principle is equivalent to a pricing rule in which
all assets are priced with respect to a single abstract portfolio – similar to
the security market line. To get some understanding of the abstract pricing
portfolio – also called the likelihood ratio process or the stochastic discount
factor – it is useful to analyze how it varies with the returns of the market
portfolio that played a crucial rule in the CAPM presented in the previous
chapter. As we will see the likelihood ratio process is a decreasing function
of the market portfolio since this property reflects the decreasing marginal
utility of wealth – a standard assumption in finance. To get more content for
the abstract pricing portfolio, one can then introduce assumptions on agents’
preferences – some of them leading to the CAPM. In the case of the CAPM
the likelihood ratio process turns out to be a linear function of the market
portfolio. Finally we show that under certain conditions the heterogeneity of
agents can be replaced with a single representative agent – supposing one does
not want to do out-of-sample predictions.

4.1 Basic Two-Period Model

The basic model consists of a finite set of investors trading a finite set of assets
at time-period zero that deliver payoffs at period one in a finite set of states of
the world. In contrast to the previous chapter we are taking all of these payoffs
into account and do not simplify the problem by only studying their mean and
variance. Nevertheless, the mathematical tools needed are still very simple:
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finite dimensional linear algebra (vectors, matrices, scalar products etc.) in
a finite dimensional Euclidean space is sufficient.1 We will first describe the
assets and then the agents trading the assets.

4.1.1 Asset Classes

Traditional asset classes are money market investments (e.g., certificates of
deposit), bonds and stocks. The markets for trading these assets have quite
a long history and are by now well established all over the world. Recently
most investors have gained access to other markets like funds of real estate,
commodities, private equity, and hedge funds. These asset classes are called
alternative investments since they are an alternative to the traditional asset
classes.

One important difference between assets is the way they deliver payoffs.
Bonds deliver payoffs that are known when a bond is traded. These payoffs are
called coupons because before financial markets became electronic the owner
would deposit his bonds in a safe and every month he would cut off a piece,
the coupon, which he presented to the issuer in order to receive the fixed
payoff. Markets for bonds are also called fixed income markets.

Stocks are shares of firms. They entitle the owner to receive some divi-
dends. Since dividends depend on the profit (after having paid the interest on
bonds) the payoffs of stocks are not certain upon the purchase of stocks.

Some alternative assets do not pay off any coupon or dividends. Com-
modities for example can only be sold to get a payoff from them. Finally the
classification of hedge funds within the class of alternative assets can be ques-
tioned because hedge funds are strategies and not assets. We will come back
to the issue of hedge funds later.

Figure 4.1 displays the cumulative returns of asset classes in which a typical
pension fund would invest. We see that stocks perform best but are also the
most volatile. On the other extreme are bonds with a low average performance
that, however, is more reliable. A counterexample to the rule “higher average
return implies higher volatility” are hedge funds which in that period have
delivered quite high average returns with very low volatility.

How can these quite different assets be valued? A standard approach for
assets with payoffs (stocks and bonds) is based on the representative agent
asset pricing idea: the price of the asset is equal to the discounted sum of all fu-
ture payoffs where the discount factors are the representative agent’s marginal
rates of substitution between future consumption (contingent on states of the
world) and current consumption. These discount factors are also called the
stochastic discount factors since they are not constant over time. Applying
this valuation technique to assets without payoffs (commodities and hedge

1 For the unlikely case that the reader is not familiar with these topics, or in the
more likely case that he wants to refresh his memory, the Appendix A.1 gives a
quick review on basic linear algebra.
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Fig. 4.1. Cumulative returns of several asset classes

funds, for example) would obviously result in a zero price for these assets.
Payoffs based on this asset class can only be realized through speculation,
i.e., buying low and selling high. But then some other investor must have
taken the complementary position so that, seen from the bird’s eye view of
the representative agent, on average the gains are zero. To understand such
asset classes we clearly need to give up the aggregate perspective and look
into the trades that are done.

4.1.2 Returns

How can we model the payoffs, prices and returns of assets? Certainly we need
to model some uncertainty because payoffs and resale prices are unknown at
the time the assets are purchased. The simplest such model has two periods,
t = 0, 1. In period t = 0 we are in state s = 0. In period t = 1 a finite
number of states of the world, s = 1, 2, . . . , S can occur. The time-uncertainty
structure is thus described by a tree as in Figure 4.2.

We denote the assets by k = 0, 1, 2, . . . ,K. The first asset, k = 0, is the
risk-free asset delivering the certain payoff 1 in all second period states. The
assets’ payoffs are denoted by Ak

s . The time 0 price is denoted by qk, so that
the gross return of asset k in state s is given by Rk

s := Ak
s

qk . The net return is
accordingly rk

s := Rk
s − 1. We gather the structure of all asset returns in the

so called states-asset-returns-matrix, the SAR-matrix:
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Fig. 4.2. Illustration of an event tree

R := (Rk
s ) =

⎛

⎜⎝
R0

1 · · · RK
1

...
...

R0
S · · · RK

S

⎞

⎟⎠ =
(
R0 · · · RK

)
=

⎛

⎜⎝
R1

...
RS

⎞

⎟⎠ ,

with generic entry Rk
s and with columns denoted by Rk and rows denoted by

Rs. One simple way of filling the SAR-matrix with data is to take a sample of
realized asset returns in some time periods t = 1, 2, . . . , S and then to identify
each state s with one time period t, i.e. s = n is t = n, for n = 1, . . . , T or S.

In this book we will mainly use the SAR-matrix representation of returns.
However, to see the link to other textbooks we will now briefly show how other
representations of returns can be derived from the SAR-matrix. One simple
and commonly used description of returns is based on means and covariances.
How do we compute mean returns and covariances of returns from the SAR-
matrix? Given some probability measure on the set of states, probs, s =
1, . . . , S, we compute the mean return of asset k as

μ(Rk) =
S∑

s=1

probsR
k
s = prob′Rk.

The covariance matrix

COV (R) =

⎛

⎜⎝
cov(R1, R1) · · · cov(R1, RK)

...
...

cov(RK , R1) · · · cov(RK , RK)

⎞

⎟⎠

is accordingly computed as

COV (R) = R′

⎛

⎜⎝
prob1

. . .
probS

⎞

⎟⎠R − (R′prob)(prob′R).



4.1 Basic Two-Period Model 145

Of course one can also go the other way round and compute the SAR-
matrix for given means and covariances, as shown in the exercises. A very
simple model showing the direct link between mean and covariance is given
in the exercises, as well.

Yet another way of thinking about returns is to consider them being gener-
ated by some factors. Many such factors have been identified for stock returns.
Those factors include inflation, interest rates, growth, oil prices, terrorism etc.
Table 4.1 gives an overview of factors for stock market returns analyzed in
various studies since 1986. To show the link between factors and asset returns,
suppose you can identify f = 1, . . . , F factors in the s = 1, . . . , S states of the
world. Let Rf

s be the value of factor f in state s. They can again be collected
in a matrix, the factor value matrix (FV-matrix):

(
Rf

s

)
=

⎛

⎜⎝
R1

1 · · · RF
1

...
...

R1
S · · · RF

S

⎞

⎟⎠ .

The sensitivity of asset k’s returns to factor f is typically denoted by βf
k .

Then the return of asset k can be thought of as being generated by the F
factor values:

Rk
s =

F∑

f=1

Rf
sβ

f
k ,

which is in matrix notation: (Rk
s ) = (Rf

s ) · (βf
k ). The exercises give examples

for returns being generated by factors.
Finally, let us take a closer look at the assets’ payoffs. In principle they are

derived from two sources, dividends or coupons and resale values. The price
difference qk

s − qk, if positive, is called a capital gain, otherwise a capital loss.
Hence,

Rk
s =

Dk
s + qk

s

qk
:=

Ak
s

qk

where Dk
s are the dividends or coupons paid by asset k in state s.

4.1.3 Investors

So far we have described the objects of trade: bonds, stocks and alternative
investments. Now we ask who is trading those assets – and why. Many agents
trade assets for secondary reasons, but ultimately they are doing it to derive
the highest utility for the investors, i.e., the principal owners of the assets.
This is the individualistic paradigm on which market economies are built.
A financial market may however have several layers of agents that help the
ultimate investors benefit from the market.

Modern financial markets are populated by various investors with differ-
ent wealth and objectives and quite heterogeneous beliefs. There are private
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Table 4.1. Factors for stock market returns analyzed in various studies since 1986

Study Identified factors driving stock market return

Chen, Roll, 1986 Growth rate of industrial production
Ross Inflation rate

Spread between short-term and long-term interest rates
Default risk premia of bonds

Berry, Burmeister, 1988 Inflation rate
McElroy Spread between short-term and long-term interest rates

Default risk premia of bonds
Growth rate of aggregated sells
Return of the S&P 500

Salomon Brothers 1990 Inflation rate
Growth rate of GDP
Interest rate
Rate of change of oil price
Growth rate of defense budgets

Mei 1993 January dummy variable
Return for a value-weighted portfolio
One-month treasure bill rate
Difference between one-month treasury bill rate and long-
term AAA corporate bond
Dividend-yield on the value-weighted portfolio

Fama, French 1993 Premium of a diversified market portfolio
Difference between returns of small cap and large cap port-
folios
Difference between returns of growth and value portfolios

Elton, Gruber, Mei 1994 Difference between returns of long-term government bonds
and short-term treasury bills
Change of returns of treasury bills
Change of exchange rates between USD and foreign cur-
rency
Change of GDP forecast
Change of inflation forecast
Portion of market return that cannot be explained by the
above five factors

Davis 1994 Book to market equity
Cash-flow/price ratio
Earnings/price ratio

Lakonishok, 1994 Earnings/price ratio
Shleiter, Vishny Cash-flow/price ratio

Sales-growth variable

Gallati 1994 European market one-month SFR interest rate
Swiss obligation index EFFAS
European market three-month DM interest rate
FTSE 100 index

Kothari, Shanken, 1995 Beta
Sloan Firm size variable
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investors with pension, housing and insurance concerns, firms implementing
investment and risk management strategies, investment advisors providing fi-
nancial services, investment funds managing pension or private capital and
the government financing the public deficit. The investment decisions are im-
plemented by brokers, traders, and market makers. Many financial markets
are dominated by large investors. On the Swiss equity market, for example,
more than 75% of the wealth is managed by institutional asset managers pro-
viding services to private investors, insurance funds, and pension funds. Since
the asset managers’ investment abilities and efforts are not observable by their
clients, the contract between the principal and the agent must be based on
measurable variables such as relative performance. However, such contracts
may generate herding behavior particularly among institutional investors. In
the words of Lakonishok et al. ([LSV92, page 25]):

Institutions are herding animals. We watch the same indicators and
listen to the same prognostications. Like lemmings we tend to move in
the same direction at the same time. And that naturally exacerbates
price movements.

Additionally, asymmetric information may create “window dressing” effects,
i.e., agents change their behavior at the end of the reporting period.

To study such effects, it is first necessary to understand a general model
for investors. Let us assume there are I investors on a market. We denote
them by i = 1, . . . , I. Each investor is described by his exogenous wealth in
all states of the world wi = (wi

0, w
i
1, . . . , w

i
S)′. Given these exogenous entities

and given the asset prices q = (q0, q1, . . . , qK)′, the investors can finance
consumption ci = (ci0, c

i
1, . . . , c

i
S)′ by trading the assets. We denote by θi =

(θi,0, θi,1, . . . , θi,K)′ the vector of asset trades of agent i. Note that θi,k can
be positive or negative, i.e., agents can buy or sell assets. The only restriction
on asset trade is that the budget restrictions need to be satisfied. In the first
period agents can use their exogenous wealth wi

0 for consumption ci0 or to
buy assets. The value of a portfolio of assets is

∑K
k=0 q

kθi,k. If this value is
non-positive we say the portfolio is self-financing, since it does not need extra
wealth to be carried out. The first period budget constraint is thus:

ci0 +
K∑

k=0

qkθi,k = wi
0.

In every state of the world in the second period, the assets deliver payoffs
Ak

s which can in principle be positive or negative. The second period budget
constraints are given by:

cis =
K∑

k=0

Ak
sθ

i,k + wi
s, s = 1, . . . , S.

Now we know what an agent can do, given the asset payoffs and the as-
set prices. The final point in the description of the agent is then to describe
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what the agent wants to achieve. As we said above, ultimately the agents are
interested in consumption. But objectives like “I want the highest possible
consumption in all states of the world” are not useful here because markets
will not offer such fairy tale outcomes. In other words: markets will not of-
fer “free lunches”, i.e., arbitrage opportunities (compare Sec. 4.2 or [DR92]
for a precise definition). What they offer instead are trade-offs, e.g., higher
consumption today at the expense of lower consumption tomorrow or more
evenly distributed consumption in all states at the expense of a really high
payoff in one of the states. Hence, the agent needs to find a stand on those
trade-offs.

The intertemporal trade-off is described by the agent’s time preference.
Suppose the agent discounts future utility back to current utility by some
discount rate δi ∈ (0, 1), compare Sec. 2.7. If moreover the agent forms some
beliefs over the occurrence of the states, then we can describe his (ratio-
nal) preferences by a von Neumann-Morgenstern utility function (compare
Sec. 2.2) and we obtain

U i(ci0, c
i
1, . . . , c

i
S) = ui(ci0) + δi

S∑

s=1

probi
su

i(cis).

If we increase one of the cis, the utility U i should also increase: higher con-
sumption is always preferred. (Remember the Woody Allen quote: “More
money is better, if only for financial reasons.”) We might also assume that U
is quasi-concave such that a more evenly distributed consumption is preferred
over extreme distributions.

This form of a utility function is called “expected discounted utility” and
we have already seen it applied in Sec. 2.7. It is the most convenient form
to do calculations such as finding the optimal asset allocation and it is also
the rational way of doing it.2 It is, however, questionable whether this is a
realistic utility function that describes the preferences of real investors: as we
have seen in Sec. 2.4, there are many experiments that show strong deviations
from rational behavior in decision problems. In other words: the model we
study here is adequate for analyzing optimal investments, but only on markets
with purely rational investors – a strong assumption. We will see later how to
model markets with non-rational investors.

Before passing to the formulation of the decision problem we shall mention
some general qualitative properties of utility functions that are often referred
to in the remainder of this book:

(1) Continuity: the utility function U is continuous on its domain R
S+1
+ .

2 Compare, however, the remarks on time-discounting in Sec. 2.7.
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(2) Quasi-concavity: the upper contour sets are convex, i.e., {c ∈ RS+1
+ |

U(c) ≥ const} is convex.3

(3) Monotonicity: “More is better”, or more precisely:
a) Strict monotonicity4: c > c′ implies U(c) > U(c′).
b) Weak monotonicity: c � c′ implies U(c) > U(c′).

Expected utility and Prospect Theory utility functions are typically strictly
monotonic while mean-variance utility functions are not monotonic at all. The
latter has been shown by the mean-variance paradox (Thm. 2.30).

Throughout this book we will assume that utility functions are strictly
monotonic with respect to first period consumption c0. Thus the three notions
of monotonicity relate to the uncertain consumption in the second period.

We can now summarize the agent’s decision problem as:

θi ∈ arg max
θi∈RK+1

U i(ci) such that ci0 +
K∑

k=0

qkθi,k = wi
0

and cis =
K∑

k=0

Ak
sθ

i,k + wi
s ≥ 0, s = 1, . . . , S.

To study this decision problem with the framework of an Edgeworth Box we
need to reduce it and make three specializing assumptions:

1. There is no first period consumption5,
2. there are only two states, denoted s and z, and
3. there are two Arrow securities for the contingent delivery of wealth in each

state, i.e.

A :=
(

1 0
0 1

)
.

Although the Edgeworth Box (compare Figure 4.8) is a nice pedagogical
toolbox, the above constraints limit the dimensionality substantially. Thus we
will give up this approach and switch from geometrical tools like the Edge-
worth Box to analytical tools like calculus and linear algebra.

There are alternative ways of writing this decision problem. One may for
example extract from the exogenous wealth the part which consists of assets.
3 In the case of two commodities the upper contour set is the set that is included

by the indifference curve. Hence, the utility function is quasi-concave if the indif-
ference curves are convex.

4 For two vectors c, c′ we use the notation c > c′ to mean that in each component
the vector is at least as large as the vector c′ and in at least one c is strictly
greater than c′. We use c  c′ if the vector c is strictly greater than c′ in all
components, see Appendix A.1.

5 The Edgeworth Box can alternatively be used to display intertemporal trade. In
that case one would need to assume that there is only one state of the world
tomorrow, i.e., S = 1, so all assets are identical to the risk-free asset. In this case,
we would of course consider first-period consumption.
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Any vector wi ∈ R
S can be decomposed into two vectors, wi

A and wi
⊥, where

the first component wi
A can be generated by a portfolio of assets, i.e., wi

A =∑K
k=0A

kθi,k
A , and wi

⊥ is somehow orthogonal to the first component, thus the
index ⊥. Substituting θ̂i,k := θi,k

A + θi,k we can write the budget restriction as
follows:

ci0 +
K∑

k=0

qkθ̂i,k =
K∑

k=0

qkθi,k
A + wi

0

and cis =
K∑

k=0

Ak
s θ̂

i,k + wi
⊥s, s = 1, . . . , S.

So far you may wonder how we could include the notion of asset returns,
from which we started this chapter. To do so, independently of the previous
decomposition of the endowment vector, we will now transform the decision
problem given above in economic terms like quantities and prices, into finance
terms like asset allocations and returns. To this end we first define an agent’s
first period wealth, i.e., his total wealth in terms of assets and exogenous
wealth, by wi

0 :=
∑K

k=0 qkθi,kA + ωi
0. The agent splits this wealth among the

various assets and first period consumption. Denote by λi,k := qkθ̂i,k/wi
0 the

percentage of wealth the agent invests in asset k. Similarly let λi,con := ci0/w
i
0

be the percentage of wealth spent on consumption. We call (λi,0, λi,1, . . . , λi,K)
the asset allocation of agent i. His first period budget constraint is then written
as λi,con +

∑K
k=0 λ

i,k = 1. In finance, asset allocations are typically kept
separate from consumption, i.e., they are normalized so that they themselves
sum up to 1. To this end define

λ̂i,k :=
λi,k

(1 − λi,con)
, k = 0, 1, . . . ,K.

Hence, the vector of budget shares is now written as
(
λi,con, (1 − λi,con)

(
λ̂i,0, λ̂i,1, . . . , λ̂i,K

))

with
∑K

k=0 λ̂
i,k = 1. By defining wi,fin

0 := (1 − λi,con)wi
0, the agent’s wealth

he spends on financial assets, λ̄i,k, becomes the share of financial wealth that
agent i invests in asset k. The budget restriction in the first period is then
written as

λcon + (1 − λcon)
K∑

k=0

λ̂k = 1.

In the second period the budget restriction is

cis =
K∑

k=0

Rk
s λ̂

i,kwi,fin
0 + wi

s, s = 1, . . . , S.
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To be sure:

Rk
s λ̂

i,kwi,fin
0 =

Ak
s

qk

qkθi,k

wi,fin
0

wi,fin
0 = Ak

sθ
i,k.

Summarizing, the finance way of presenting the decision problem is:

(λi,con,λi) = argmax
λ∈ΔK+2

U i(ci)

such that ci0 = wi
0 − (1 − λi,con)

K∑

k=0

λ̂i,kwi
0

= wi
0 − wi,fin

0

K∑

k=0

λ̂i,k

and cis =

(
K∑

k=1

Rk
s λ̂

i,k

)
wi,fin

0 + wi
s, s = 1, . . . , S.

4.1.4 Complete and Incomplete Markets

A financial market is said to be complete if all second period consumption
streams c ∈ R

S can be achieved by asset trade, i.e., for all c ∈ R
S there exists

some θ ∈ R
K+1 such that c =

∑K
k=0 Akθk. If some second period consumption

streams are not attainable the market is said to be incomplete. A complete
market is very useful because it allows insuring all future consumption plans.
Also, it allows pricing all future consumption plans in a unique way. Whether
financial markets are complete or incomplete depends on the states of the
world one is modeling. If for example the states of the world are defined by
the assets returns themselves, then the market is complete if the variation of
the returns is not more frequent than the number of assets. A famous case
of this sort is the binomial model6 in which states of the world are defined
by whether the price of an asset goes up or down. Together with the risk-
free asset the market is then complete. If on the other hand the states of the
world are given by the exogenous income w then it may be that there are
insufficient assets to hedge all risks in this exogenous income. An example
of this incompleteness is that students cannot buy securities to insure their
future labor income.

The mathematical condition for completeness of a market is that the rank
of the return matrix R needs to be equal to the number of states S. Since
the return matrix is the payoff matrix post-multiplied by a diagonal matrix7,

6 We will use the binomial model in Chap. 5 and in Chap. 8 when we show how to
price derivatives.

7 The operator Λ transforms an n-dimensional vector into a n×n diagonal matrix
with the vector being the main diagonal. The operator −1 computes the inverse
of a matrix. Compare Appendix A.1.
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R = AΛ(q)−1, the return matrix is complete if and only if the payoff matrix
is complete.

Example 4.1. Consider

A1 :=
(

1 0
1 2

)
, A2 :=

⎛

⎝
1 1
1 2
1 3

⎞

⎠ , A3 :=

⎛

⎝
1 1 0
1 2 1
1 3 2

⎞

⎠ .

A1 is complete, but A2 and A3 are incomplete!

4.1.5 What Do Agents Trade?

Obviously, in a financial market agents trade financial assets. However they are
doing this in order to obtain the best possible consumption patterns. Hence,
we may also say that agents trade consumption, i.e., they trade intertem-
poral consumption by buying and selling the risk-free asset and they insure
consumption risk by trading the risky assets. If agents hold heterogeneous
beliefs then we may say that they trade “opinions”, i.e., they are betting their
beliefs. An alternative answer would be that agents trade risk factors. They
trade assets, but asset returns are determined by risk factors.

For each of these formulations one can define an objective function with
an appropriate choice variable: to model asset trade we could define a utility
on assets by UA(θ) := U(w + Aθ) or in finance terms by UR(λ) := U(w +
Rλwi,fin

0 ). To model trade in risk factors one could define a utility function
on risk factors by

UF (z) := U(w + F Bλ︸︷︷︸
=z

wi,fin
0 ).

Note that the fundamental properties (1)–(3) stated for a consumption util-
ity function are inherited by the asset and the risk factors utility function,
provided asset returns are non-negative. Hence, whether a financial market
model is written in terms of consumption (e.g., the general equilibrium model
with incomplete markets8), asset trade (e.g., the CAPM) or factors (e.g. Ross’
APT) is more a matter of convenience than a matter of substance.

4.2 No-Arbitrage Condition

4.2.1 Introduction

Suppose the shares of Daimler Chrysler are traded at the NYSE for 90 Dollars
while the same shares are traded in Frankfurt for 70 Euros. If the Dollar/Euro
exchange rate were 1:1 what would you do? Clearly you would buy Daimler
Chrysler in Frankfurt and sell it in New York while covering the exchange rate
8 See Magill and Quinzii [MQ96] for details.
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risk by a forward on the Dollar. This arbitrage opportunity is so obvious that
it can hardly ever be found. Indeed studies show that for double listings even
very small differences of less than 1% are erased within 30 seconds. How come?
Prop traders at banks and hedge funds have written computer programs to
spot and immediately exploit this arbitrage opportunity.

In general an arbitrage opportunity is a trading strategy that gives you
positive returns without requiring any payments. Researchers and practition-
ers agree that arbitrage strategies are so rare that without making a big
mistake one can assume they do not exist. This simple idea has far reaching
conclusions, for example for the valuation of derivatives. Derivatives are assets
whose payoffs depend on the payoff of other assets, the underlyings. In the
simple case where the payoff of the derivative can be duplicated by a portfolio
of the underlying and a risk-free asset, the price of the derivative must be the
same as the value of the duplicating portfolio.9 Why? Suppose the derivative’s
price is higher than the value of the duplicating portfolio. Then one can build
an arbitrage strategy by shorting the asset and hedging the payoff by holding
the duplicating portfolio. If the price of the derivative were smaller than that
of the duplicating portfolio one would trade the other way round. Hence, the
same payoffs, even if they are generated by different combinations of assets,
need to have the same price. This is the so called “Law of One Price”. Any
agent whose utility is increasing in current period consumption would like to
exploit a departure of asset prices from the Law of One Price. Hence, he would
try to exercise the arbitrage opportunity more and more so that he will not
find an optimal strategy which conflicts with the idea of equilibrium.

The absence of arbitrage is however somewhat deeper than the Law of
One Price. Formulated more generally an arbitrage opportunity is a trading
strategy that carries an investor to Nirvana, i.e., to infinite utility. Note that
in this formulation of an arbitrage the qualitative properties of the investors’
utility come into play. In particular whether some trading strategy is indeed
an arbitrage depends on the type of monotonicity of the investor’s utility
function. A mean-variance investor clearly benefits if he gets the risk-free asset
for free but he may not want to scale up any asset with positive variance, as
we have seen in Sec. 2.3.2. If the utility is weakly monotonic the investor will
only benefit if he gets a positive payoff in all future states without requiring
a payment today. If on the other hand the utility is strictly monotonic the
investor will benefit if he gets a non-negative payoff in all future states of the
world, which is not itself zero, without requiring a payment today.

As we will see in this chapter, the absence of arbitrage implies some re-
strictions on asset prices. Let us sketch the main ideas that lead to these
restrictions: the Law of One Price requires that asset prices are linear, i.e.,
doubling all payoffs means doubling the price and the price of an asset that
delivers the sum of two assets’ payoffs has to be the sum of the two assets’
prices. In mathematical terms, the asset pricing functional is linear. Therefore

9 We neglect trading costs!
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by the Riesz representation theorem (see Appendix A.1, Thm. A.1) there exist
weights, called state prices, such that the price of any asset is equal to the
weighted sum of its payoffs. Absence of arbitrage for mean-variance utilities
then implies that the sum of the state prices are positive while absence of ar-
bitrage under weak monotonicity implies that all state prices are non-negative
and finally the absence of arbitrage for strictly monotonic utility functions is
equivalent to the existence of strictly positive state prices that express asset
prices as the weighted sum of the assets’ payoffs.

In many textbooks on financial economics only this last version of the ab-
sence of arbitrage is considered. Since in this book we want to build a bridge
between the economist’s look at financial markets and the finance practi-
tioner’s point of view, it is important to include the case of mean-variance
no-arbitrage. This gives two main cases. Having understood these two cases
you will be able to do the other two cases (Law of One Price and weakly
monotonic utilities) easily yourself.

4.2.2 Fundamental Theorem of Asset Prices

We use the same model as outlined in the previous chapter. There are two
periods, t = 0, 1. In the second period a finite number of states of the world,
s = 1, 2, . . . , S can occur. The time-uncertainty structure is thus described by
a tree as in Figure 4.3:

s = 0

s = 1��









s = 2��������
s = 3��

s = S
�����������

t = 0 t = 1

Fig. 4.3. Event tree

There are k = 0, 1, 2, . . . ,K assets with payoffs denoted by Ak
s . We gather

the structure of all assets’ payoffs in the states-asset-payoff matrix,

A =

⎛

⎜⎝
A0

1 · · · AK
1

...
...

A0
S · · · AK

S

⎞

⎟⎠ =
(
A0 · · · AK

)
=

⎛

⎜⎝
A1

...
AS

⎞

⎟⎠
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An arbitrage is a trading strategy that an investor would definitely like
to exercise. Note that, as we mentioned above, this definition of arbitrage
depends on the qualitative properties of the investor’s utility function. For
strictly monotonic utility functions an arbitrage is a trading strategy that
leads to positive payoffs without requiring any payments. For mean-variance
utility functions an arbitrage is a trading strategy that offers the risk-free
payoffs without requiring any payments.

We first formalize an arbitrage opportunity for strictly monotonic utility
functions. Under this assumption, an arbitrage is a trading strategy θ ∈ R

K+1

such that (
−q′

A

)
θ > 0.

Hence, the trading strategy never requires any payments and it delivers a
non-negative and non-zero payoff. To give an example, let there be just two
assets and two states. Say, the payoff matrix is

A :=
(

1 2
1 3

)

while the asset prices are q = (1, 4)′. Maybe you want to stop a moment and
try to find an arbitrage opportunity, before reading on? In case you have not
found it: by selling one unit of the second asset and using the receipts (4
units of wealth) to buy 3 units of the first asset, you are left with one unit of
wealth today, and tomorrow you will be hedged if the second state occurs while
you have an extra unit of wealth if the first state occurs. How can we erase
arbitrage opportunities in this example? Obviously asset 2 is too expensive
relative to asset 1. Suppose now the asset prices are q = (1, 2.5)′. Can you still
find an arbitrage opportunity? We see that trying will not always be successful
and is not helpful at all if there is no arbitrage opportunity. Instead we need a
general result that tells us whether arbitrage opportunities exist. This is the
content of the following theorem:

Theorem 4.2 (Fundamental Theorem of Asset Prices, FTAP). The
following two statements are equivalent:

1. There exists no θ ∈ R
K+1 such that

(
−q′

A

)
θ > 0.

2. There exists a π = (π1, . . . , πs, . . . , πS)′ ∈ R
S
++ such that

qk =
S∑

s=1

Ak
sπs, k = 0, . . . ,K.



156 4 Two-Period Model: State-Preference Approach

In the example above we see that for the state prices π := (0.5, 0.5)′ the
two asset prices can be displayed as the weighted sum of their payoffs and
therefore, applying the FTAP we know that there are no arbitrage opportu-
nities at the asset prices q = (1, 2.5)′. Hence, any effort to find an arbitrage
must fail!

The proof of the FTAP has an easy and a tough part. It is straightforward
to show that (2.) implies (1.): Suppose (2.) holds and consider a portfolio such
that Aθ ≥ 0. Then by the strict positivity of state prices π′Aθ ≥ 0. But this
implies q′θ ≥ 0 ruling out arbitrage opportunities.

In the following we first give a geometric proof of the more difficult part of
the FTAP for the case of two assets and two states of the world. This will pro-
vide us with some intuitive understanding on the FTAP. Afterwards we give
a proof of the general result which will be based on the Riesz representation
theorem (Thm. A.1).

Proof of Thm. 4.2 (simple case). In the case of two assets and two states the
payoffs of the assets in the two states s = 1, 2 can be represented by the
two dimensional vectors A1 and A2. To find the set of non-negative portfolio
payoffs in a particular state, we first determine the set of assets where the
asset payoff, Asθ, is equal to 0. This is a line orthogonal to the payoff vector.10

Plotting these orthogonal lines for the vectors A1 and A2, we determine the
set of non-negative payoffs in both states as the area of the intersection of two
half planes as shown in Figure 4.4 below.

q

A2

arbitrage
A1

Fig. 4.4. Finding arbitrage opportunities

To determine the set of arbitrage opportunities, we have then to find a
strategy requiring no investments, i.e. −q′θ ≥ 0 or q′θ ≤ 0 with a positive

10 The scalar product is positive (negative) if the angle is smaller (greater) than
90 ◦. The scalar product of orthogonal vectors is equal to 0 (see Appendix A.1).
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payoff in at least one of the states. To find the set of arbitrage portfolios
we then plot the price vector q so that conditions q′θ ≤ 0 and Asθ ≥ 0 are
satisfied. This is possible if and only if q does not belong to the cone of A1 and
A2, i.e. if there are no constants π1, π2 > 0 such that q′ = π1A1 + π2A2.

Proof of Thm. 4.2 (general case). The general argument is easy if markets are
complete, in which case it follows from the Law of One Price. For any given
payoff asset matrix A, consider the set of all payoffs that you can generate
with alternative portfolios:

span {A} = {y ∈ R
S+1 : y = Aθ for some θ ∈ R

K+1}

Let q(y) be the price associated with the payoff y in span {A}. The function
q : span {A} → R is called the pricing functional on the set of attainable
payoffs span {A}. By the Law of One Price q is linear, i.e., for all y,y′ ∈
span {A} and α ∈ R we have

(i) q(y + y′) = q(y) + q(y′),
(ii) q(αy) = αq(y).

Why is this true? – Since otherwise, one could find an arbitrage opportunity
with hedged payoffs tomorrow and positive payoff today.

By the Riesz representation theorem (Thm. A.1) linear functionals can be
represented as q(y) = π′y for some vector of state prices π ∈ R

S .11 From
the various assumptions on the utility functions we get additional restrictions
on the state prices. Suppose, for example, the utility function is increasing in
the risk-free asset. Then the sum of the state prices must be positive because
otherwise one could get the risk-free asset for free. If the utility function were
strictly monotonic then each state price must be positive because otherwise
the portfolio delivering a positive payoff in the state with zero or negative
price would be an arbitrage opportunity for this type of investors. Note that
this argument assumes that all portfolios can be built, i.e., that markets are
complete. A proof for the general case can be found in the book by Magill
and Quinzii [MQ96].

Let us now formulate the variant of the FTAP for mean-variance utilities,
its proof is analogous to Thm. 4.2:

Theorem 4.3 (FTAP for mean-variance utility functions). The fol-
lowing two conditions are equivalent:

1. There exists no θ ∈ R
K+1 such that

q′θ ≤ 0 and Aθ = v1, for some v > 0.

Note 1 = (1, . . . , 1).
11 It is obvious that a representation by state prices satisfies linearity. The converse

is a bit harder to see (compare Appendix A.1).



158 4 Two-Period Model: State-Preference Approach

2. There exists a π ∈ R
S with

∑S
s=1 πs > 0 such that

qk =
S∑

s=1

Ak
sπs, k = 0, . . . ,K.

To conclude this section we will give different equivalent formulations of
the No-arbitrage Principle. These formulations are very useful to deepen the
understanding of the main idea. Also it is important to study them because
different fields of finance use different formulations of it.

The first reformulation of the No-arbitrage Principle displays asset prices
as their discounted expected payoffs. This formulation follows from a normal-
ization of state prices: applying the linear pricing rule,

qk =
S∑

s=1

Ak
sπs, k = 0, . . . ,K,

to the risk-free asset, k = 0, we see that the risk-free rate is the reciprocal of
the sum of the state prices:

q0 =
1
Rf

=
S∑

s=1

πs.

On defining the normalized state prices as π∗
s := πs/(

∑
πz) we get the dis-

counted expected payoff formulation of asset prices:12

qk =
1
Rf

S∑

s=1

Ak
sπ

∗
s =

1
Rf

Eπ∗(Ak).

There are similar results for situations where the no-arbitrage condition is
disturbed by transaction costs or by short sale constraints [JK95b, JK95a].

The normalized state prices are called the martingale measure in financial
mathematics and they are called the risk neutral probabilities in finance. The
latter is a bit confusing since π∗ is actually accounting for the risk preferences
of the agents, as we will see in Sec. 4.3. “Risk neutral probabilities” there-
fore means: probabilities that take the risk preferences already into account
and can therefore be used as if they were physical probabilities and the in-
vestor were risk-neutral. Calling them risk adjusted probabilities would be less
confusing.

From this way of writing the pricing formula we also get an immediate
formulation in terms of returns:

12 Note that we did not assume that all state prices are positive. For this formulation
we only need that the sum of the state prices is positive, which holds, for example,
with mean-variance utilities.
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Rf =
S∑

s=1

Ak
s

qk
π∗

s = Eπ∗(Rk).

Hence, in the light of the normalized state prices all assets deliver the risk-free
rate. Indeed, a reformulation of the FTAP for returns does read like this:

Corollary 4.4 (FTAP for returns). The following two statements are
equivalent:

1. There exists no λ ∈ R
K+1 with

(
−1 · · · −1

R

)
λ > 0. (4.1)

2. There exists a π∗ ∈ R
S
++ with

Rf =
S∑

s=1

Rk
sπ

∗
s , k = 0, . . . ,K.

Finally, we like to mention how the FTAP looks like in the case of the
Ross APT. Recall that according to the arbitrage pricing theory of Ross,
asset returns are thought of as being determined by several factors. The asset
returns matrix is the product of the factor matrix and the matrix of factor
loadings: R = FB. Accordingly asset payoffs can be written in terms of
factors by noting that

A = AΛ(q)−1Λ(q) = RΛ(q) = FBΛ(q).

By defining z as the allocation of factor risks, i.e., z := BΛ(q)θ, we can write
Aθ = Fz and the value of asset portfolios is

q′θ = q′A−1Fz =: q̂′Fz.

Hence, Corollary 4.4 can be rewritten as follows:

Corollary 4.5 (FTAP for Ross APT). The following two statements are
equivalent:

1. There exists no z ∈ R
K+1 with

(
−q̂′

F

)
z > 0.

2. There exists a π̌ ∈ R
S
++ with

q̂f =
S∑

s=1

F f
s π̌s, f = 1, . . . , F.

In other words: factors have a price that can be expressed as the weighted
sum of their payoffs, weighted with some state prices. This concludes our
remarks on the Fundamental Theorem of Asset Pricing. In the next section we
introduce an important application of this theory: the pricing of derivatives.
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4.2.3 Pricing of Derivatives

The Fundamental Theorem of Asset Pricing is essential for the valuation
of assets such as derivatives. We first look at the case of redundant assets, i.e.,
those derivatives that can be duplicated with already priced assets. In general,
there are two possible ways to determine the value of a derivative. The first
approach is based on determining the value of a hedge portfolio. This is a
portfolio of assets that delivers the same payoff as the derivative. The second
approach uses the risk-neutral probabilities in order to determine the current
value of the derivative’s payoff.

Consider an example of the one-period binomial model. In this simplified
setting, we are looking for the current price of a call option on a stock S.
Assume that S := 100 and there are two possible prices in the next period:
Su := 200 if u = 2 and Sd := 50 if d = 0.5. The riskless interest rate is 10%.
The value of an option with strike price X is given by max(Su − X, 0) if u
and max(Sd−X, 0) if d is realized.

To determine the value of the call, we replicate its payoff using the payoffs
of the underlying stock and the bond. If arbitrage is excluded, the value of
the call is equal to the value of the hedge portfolio, which is the sum of the
values of its constituents. The idea is that a portfolio that has the same cash
flow as the option must have the same price as the call which we are looking
for.

Calculating the call values for each of the states, we obtain max(Su −
X, 0) = 200 − 100 = 100 in the “up” state and max(Sd −X, 0) = max(50 −
100, 0) = 0 in the “down” state. The hedge portfolio then requires to borrow
1/3 of the risk-free asset and to buy 2/3 risky assets in order to replicate the
call’s payoff in each of the states:

“up”: 2
3200 − 1

3100 = 100

“down”: 2
350 − 1

3100 = 0

In general, we need to solve:

Cu := max(Su−X, 0) = nSu+mBRf

Cd := max(Sd−X, 0) = nSd+mBRf

where n is the number of stocks and m is the number of bonds needed to
replicate the call payoff. We get

n =
Cu − Cd

Su− Sd
, m =

SuCd − SdCu

BRf (Su− Sd)
.

n is also called the delta of the option.
The value of the option is therefore:
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C = nS +mB =
Cu − Cd

u− d
+
uCd − dCu

Rf (u− d)

=
1
Rf

Cu(Rf − d) + Cd(u−Rf )
u− d

.

In the binomial model, we need two equations to match (“up” and “down”)
with two securities (stock and bond). In the trinomial model (if there is a state
“middle”), we need a third security in order to replicate the call payoff etc.

The second approach to value derivatives is based on the FTAP result that
in the absence of arbitrage we do not consider the “objective” probabilities
associated with “up” and “down” movements, which are already considered
in the equilibrium prices, instead we can value all securities “as if” we are in a
risk-neutral world with no premium for risk. In this case, we can consider the
probability of an “up” (“down”) movement as being equal to the risk-neutral
probability π∗, (1 − π∗). Thus, the expected value of the stock with respect
to these risk neutral probabilities is

S0 = π∗Su+ (1 − π∗)Sd.

In a riskless world, this must be the same as investing S today and receiving
SR after one period. Then, π∗Su+(1−π∗)Sd = SRf or π∗u+(1−π∗)d = Rf .

The risk-neutral probabilities are then defined over the size of the up and
down movements of the stock price and the risk-free rate

π∗ =
Rf − d

u− d
, 0 ≤ π∗ ≤ 1.

Using the risk-neutral measure we can calculate the current value of the stock
and the call:

S =
π∗Su+ (1 − π∗)Sd

Rf
, C =

π∗Cu + (1 − π∗)Cd

Rf
.

Plugging in π∗, we get the price

C =
1
Rf

(
Rf − d

u− d
Cu +

(
1 − Rf − d

u− d

)
Cd

)

=
1
Rf

Cu(Rf − d) + Cd(u−Rf )
u− d

,

i.e., the same as above. Similarly, put options and any other redundant deriva-
tives can be priced.

But what about non-redundant derivatives? Well those can only exist in
incomplete markets and applying the Principle of No-arbitrage will only give
valuation bounds. This is easiest to see from an example. Let there be three
states and two assets, a risk-free asset and the first Arrow security, i.e.,
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A :=

⎛

⎝
1 1
1 0
1 0

⎞

⎠ .

The risk-free asset’s price is 0.9 while the price of the Arrow security is 0.25.
Suppose you need to find the arbitrage-free value of a third asset with payoffs,
say A3 := (2, 1, 0)

′
. Obviously it cannot be worth less than two times the

second existing asset, since it has payoffs dominating the payoffs of this asset.
Also it cannot be worth more than the price of the risk-free asset plus the
second asset, because this portfolio would dominate the payoff of the third
asset. Hence the general principle to find valuation bounds is to look at all
portfolios that dominate the payoff of the third asset and select the one with
the least price in order to get an upper bound of the third asset’s price while
looking at all portfolios that are dominated by the payoff of the third asset
and selecting the one with the highest price gives a lower bound. Formally,
for any payoff y we get

q(y) = min
θ

q′θ such that Aθ ≥ y, and

q(y) = max
θ

q′θ such that Aθ ≤ y.

In our example the least expensive dominating portfolio consists of one unit
of asset 1 and one unit of asset 2, hence the upper bound is q(y) = 1.15.
The most expensive dominated portfolio consists of two units of the Arrow
security, hence the lower bound is q(y) = 0.5. And as with redundant assets
these bounds could also be found using the state prices. The no-arbitrage
restrictions on state prices are 0.9 = π1 + π2 + π3 for the risk-free asset and
0.25 = π1 for the first Arrow security. Hence, state prices have one degree
of freedom expressed as 0.65 = π2 + π3. Going to the one extreme we can
choose π2 = 0 and π3 = 0.65 while the other extreme would be π2 = 0.65 and
π3 = 0. Hence, again the third asset’s price is bounded above by 1.15 and it
is bounded below by 0.5. The general formulation of the no-arbitrage bounds
in terms of state prices is:

q(y) = max
π

π′y, such that π′A = q′, and

q(y), = min
π

π′y, such that π′A = q′.

4.2.4 Limits to Arbitrage

The above considerations assumed that the investors were totally free in
choosing any portfolios. One may however argue that in reality investors face
short-sales constraints and some limits in horizon along which an arbitrage
strategy can be carried out. Though, in the presence of limits of arbitrage like
short-sales constraints, the arbitrage is limited and even the Law of One Price
may fail in equilibrium. Let us consider first some examples.
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3Com and Palm

On March 2, 2000, the company 3Com made an IPO of one of its most prof-
itable units. They decided to sell 5% of its Palm stocks and retain 95% thereof.
At the IPO day, the Palm stock price opened at $38, achieved its high at $165
and closed at $95.06. This price movement was puzzling because the price
of the mother-company 3Com closed that day on $81.81. If we calculate the
value of Palm shares per 3Com share, which is $142.59,13 and subtract it from
the end price of 3Com, we get $81.81− $142.58 = −$60.77. If we additionally
consider the available cash per 3Com share, we would come to a “stub” value
for 3Com shares of −$70.77! Clearly, this result is a contradiction of the Law
of One Price since the portfolio value (the value of Palm shares, the rest of
3Com shares and the cash amount), which is negative, differs from the sum
of its constituents, which is positive.

However, the relative valuation of Palm shares did not open an arbitrage
strategy, since it was not possible to short Palm shares. Also it was not easy
to buy sufficiently many 3Com stocks and then to break 3Com apart to sell
the embedded Palm stocks. The mismatch persisted for a long time (see Fig-
ure 4.5).
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Fig. 4.5. Negative stub value of 3Com after the IPO of Palm

Volkswagen and Porsche

In October 2008, just when the stock market was in turmoil due to the fi-
nancial crisis and in particular the bankruptcy of Lehmann Brothers, a larger
investment bank, had just been announced, at a time when most stocks lost
heavily, one stock was excelling them all: Volkswagen had been steadily in-
creasing from 154.48 Euro per share on January 1, 2008 to 210.85 Euro on

13 0.95 · 95.06/number of outstanding 3Com shares
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October 24. Then it started to rise like a rocket: only two trading days later,
on October 28, it reached 1005.01 Euro, thus increasing by 377% within a
few days – quite an exciting performance for a producer of solid, but not that
exciting cars. In fact the market value of Volkswagen at that point was higher
than the market value of all other European car producers together! What had
happened? Did Volkswagen invent a car driving with water instead of gaso-
line? What effect could justify the sudden increase in the price of Volkswagen
stocks? Or was this another example of mispricing?

Indeed, the case of Volkswagen is not dissimilar to the case of Palm, albeit
much more extreme in its consequences as we will discuss later.

What happened is that Porsche, another, but much smaller car producer,
had started a slow takeover of Volkswagen by buying stocks, but also options
on stocks. This caused a steady increase of the Volkswagen stock prices in
times where most stocks went down. The increase lured many investors (par-
ticularly hedge funds) into speculating on an eventual decline of the price of
Volkswagen stocks – after all they seemed by all economic measures to be over-
priced. Therefore, these investors went short in Volkswagen stocks. Porsche,
however, still increased its position. On October 23, Porsche announced that
it had already bought 42% of the Volkswagen shares and held options for
another large portion of stocks. Given that the state held 25% of Volkswagen
stocks, this implied that there were actually very few stocks freely available on
the market. In fact, the amount of stocks that has been sold short must have
exceeded this amount. Consequently, the stock price was rising once more and
many investors who were short in Volkswagen were suddenly forced to liqui-
date their positions – by buying Volkswagen shares which increased the price
even more. The increase also meant that the weight of Volkswagen on the
DAX, the German stock market index, automatically increased. This pushed
many fund managers to buy Volkswagen shares in order to hedge their DAX
funds which increased the price even more and started a vicious cycle that
caused a crisis on the stock market.

The next day things changed: Porsche was forced by public pressure to sell
some of its options and the German stock exchange was pushed to reduce the
weight of Volkswagen in the DAX by changing its composition rules. Moreover,
the excessive mispricing probably triggered new investors to enter the short
market and to buy put options on Volkswagen.14 But even here the market
efficiency was limited, since there were just no put options available with high
strikes: the highest strike price was just around 240 Euro and thus by a large
amount out-of-the-money. Nevertheless, the price of these puts more than
doubled within a week after these events and the price of Volkswagen went
down already the next day to 517 Euro and until the end of the year to 250
Euro.

As in the case of 3Com we can compute the stub value of Porsche when
subtracting the current market value of Volkswagen from the market value of

14 One of the authors was among them.
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Fig. 4.6. Negative stub value of Porsche during the attempted takeover of Volks-
wagen

Porsche. Figure 4.6 shows this (highly negative) value over time. The com-
putation is rough, since some important parameters are not known, but the
order of magnitude should be correct. Again, it would be difficult to find a
strategy that eliminates the mispricing quickly. Going short in Volkswagen
was initially not a good strategy, as we have seen: several hedge funds must
have lost billions of Euro in this way. One particularly tragic event was that
a German entrepreneur committed suicide a few months after he had lost a
fortune and his reputation due to a failed speculation on Volkswagen stocks.

Finally, Porsche, heavily leveraged by the planned Volkswagen deal, was
hit severely by the financial crisis. It went close to bankruptcy and was taken
over by Volkswagen. The moral of the story: a shark can eat a herring, but a
herring should not try to eat a shark!

Closed-End Funds

The case of closed-end funds15 is more puzzling since the portfolio ingre-
dients are not only known but also tradable. Though, on average, the prices
of fund shares are still not equal to the sum of the prices of its components
as Figure 4.7 shows.

The reason for this mismatch is the fact that no investor can unbundle the
closed-end funds and trade their components on market prices. Additionally,

15 A closed-end fund is a mutual fund with a fixed asset composition.
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Fig. 4.7. Percentage discount (premium) at year-end for closed end stock funds
(Lee, Shleifer and Thaler, Journal of Finance, 1991)

buying a share of an undervalued closed-end fund and selling the correspond-
ing portfolio until maturity does not work because closed-end funds typically
do not pay out the dividends of their assets before maturity.

As in the 3Com-Palm case the violation of the Law of One Price does
not constitute an arbitrage strategy because the discount/premium of the
closed-end funds can deepen until maturity.

LTCM

The prominent LTCM case is an excellent example of the risks associated
with seemingly arbitrage strategies. The LTCM managers discovered that
the share price of Royal Dutch Petroleum at the London exchange and the
share price of Shell Transport and Trading at the New York exchange do not
reflect the parity in earnings and dividends stated in the splitting contract
between these two units of the Royal Dutch/Shell holding. According to this
splitting contract, earnings and dividends are paid in relation 3 (Royal Dutch)
to 2 (Shell), i.e., the dividends of Royal Dutch are 1.5 times higher than the
dividends paid by Shell. However, the market prices of these shares did not
follow this parity for long time but they followed the local markets’ sentiment.

This example is most puzzling because a deviation of prices from the 3 : 2
parity invites investors to either buy or sell a portfolio with shares in the
proportion 3 : 2 and then to hold this portfolio forever: doing this one can
cash in a gain today while all future obligations in terms of dividends are
hedged. There is however the risk that the company decides to change the
parity.
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No-Arbitrage with Short-Sales Constraints

To illustrate how limits to arbitrage enlarge the set of arbitrage-free asset
prices, consider the case of non-negative payoffs and short-sales constraints,
i.e., Ak

s ≥ 0 and λi
k ≥ 0. The short-sales restriction may apply to one or more

securities. Then, the Fundamental Theorem of Asset Pricing reduces to:

Theorem 4.6 (FTAP with Short-Sales Constraints). There is no long-
only portfolio θ ≥ 0 such that q′θ ≤ 0 and Aθ > 0 is equivalent to q � 0.

Proof. Suppose q � 0 and θ ≥ 0. For strategy θ with Aθ > 0 must be true
that q′θ > 0. In other words, every long-only portfolio must cost something.
Conversely, suppose qk ≤ 0, then for some k,

θ∗ = (0, . . . , 1
↑
k

, . . . , 0)′

is an arbitrage, i.e., Aθ∗ > 0 and q′θ∗ ≤ 0.

Hence, all positive prices are arbitrage-free because sales restrictions deter
rational managers to exploit eventual arbitrage opportunities. Consequently,
the no-arbitrage condition does not tell us anything and we need to look at
specific assumptions to determine asset prices. This is done in the following
section.

4.3 Financial Markets Equilibria

The Principle of No-arbitrage that we analyzed in the previous section gives
a first idea about asset prices. The main strength of the principle is that it
shows how the prices of redundant assets should be related to the prices of
a set of fundamental assets. However, the Principle of No-arbitrage tells us
nothing about how the prices of the fundamental assets should be related to
each other. The Fundamental Theorem of Asset Prices shows that asset prices
are determined by some state prices, but the value of the state prices is not
determined by the No-arbitrage Principle! Hence, we must dig a bit deeper
into financial market theory and find a theory that explains the state prices.

This brings us back to the idea expressed in the introduction that prices
are determined by trade – but trades are in turn depending on prices, which
looks like a “hen and egg” problem. The notion of a competitive equilibrium
captures exactly this interdependence of decisions and prices. A competitive
equilibrium is a price system where all agents have optimized their positions
and all markets clear, i.e., we obtain the equality of supply and demand on ev-
ery market. The asset prices then reflect on the one hand the agents’ decision
criteria (their utility functions) and on the other hand the agents’ resources.
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Hence, the notion of equilibrium explains state prices by agents’ time pref-
erences, their risk preferences and the risk embodied in their resources. As a
general rule we obtain that state prices are larger for those states the agents
believe to be more likely to occur and that they are higher for those states
in which there are less resources. For special cases like the CAPM, we can
get more specific pricing rules. In the CAPM, asset prices are determined by
the expected payoff of the assets adjusted by the scarcity of resources. This
adjustment is measured by the covariance of the payoffs and the aggregate
availability of resources. The latter is called the market portfolio.

We structure this section along the various motives for trade. If an asset
has a positive covariance to the market portfolio it pays off a lot when re-
sources are not scarce. Hence, other things being equal, it has a lower price
than an asset with a negative covariance to the market portfolio. The next
subsection generalizes the idea of a tradeoff between risk and return, as we
have already seen it in the CAPM. Using this generalization, we can study
competitive equilibria in financial markets – for short: financial markets equi-
libria – in terms of quantities and prices (the economics way), and also in
terms of asset allocations and returns (the finance way). Then we look at in-
tertemporal trade (interest rates), risk diversification (the Beta) and betting
(the Alpha). Thereafter, we show how these three motives can be embedded
in a general risk-return model which gives the foundation for the consumption
based asset pricing model. Then we point at a great simplification technique to
explain asset prices: aggregation. If markets are complete, asset allocations are
Pareto-efficient16 and hence asset prices can be described by a single decision
problem, the optimization problem of a representative investor. We conclude
this chapter with some warnings: the representative agent technique for asset
prices may fail for predictions and it may give a wrong impression of market
dynamics.

4.3.1 General Risk-Return Tradeoff

In this subsection we derive a general risk-return formula from the Princi-
ple of No-arbitrage. CAPM, APT and consumption-based asset pricing model
will simply be special cases of this general result.

Recall that the absence of arbitrage is equivalent to the existence of state
prices π∗ such that Rf = Eπ∗(Rk), for all k = 1, . . . ,K.

Hence, evaluated with the normalized state prices, all risky assets are
equivalent to the risk-free asset. However actual return data are driven by
the physical measure. Can we change the expectation under the state prices
so that we can obtain a risk measure based on the observable return data?
As the following calculation shows, this is easily done by defining the ratio of

16 In other words, there exists no asset allocation where nobody is worse off and at
least somebody is better off.
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the state price measure and the physical probabilities, the so called likelihood
ratio process17 �s := π∗

s/ps:

Rf = Eπ∗(Rk) =
∑

s

π∗
sR

k
s =

∑

s

ps

(
π∗

s

ps

)
Rk

s =
∑

s

ps�sR
k
s = Ep(�Rk).

Furthermore, recall that by the definition of the covariance we can rewrite
this expression to obtain Ep(Rk) = Rf − covp(Rk, �), where the covariance of
the strategy returns to the likelihood ratio represents the unique risk measure.
Hence, we found a simple risk-return formula which is based on the covariance
to a unique factor.

Thus we have found the ultimate formula for asset-pricing and can stop
here, can’t we? Not really: in a sense we only exchanged one unknown, the
state price measure, with another unknown, the likelihood ratio process. Seen
this way the remaining task is to identify the likelihood ratio process based
on reasonable economic assumptions.

4.3.2 Consumption Based CAPM

A well known way to identify the likelihood ratio process is the consumption
based CAPM. In the C-CAPM one assumes that agents maximize expected
utility functions and that markets are complete. Then the likelihood ratio
process coincides with the marginal rates of substitution of the investors.

To derive the C-CAPM recall the general decision problem of an agent
with expected utility:

max
θ̂i∈RK+1

U i(ci0, c
i
1) = ui(ci0) + δi

S∑

s=1

psu
i(cis)

such that ci0 +
K∑

k=0

qkθ̂i,k = wi
0 +

K∑

k=0

qkθi,k
A , cis ≥ 0,

where ci
1 =

∑K
k=0 Akθ̂i,k + wi

⊥1.
Note that writing this we assumed homogeneous beliefs. Using the no-

arbitrage relation to express asset prices in terms of state-price discounted
asset payoffs, the budget restriction can be written as:

ci0 +
S∑

s=1

πsc
i
s = wi

0 +
S∑

s=1

πsw
i
s and (ci

1 − wi
1) ∈ span {A} ,

17 We will always refer to the normalized state prices as the state price measure.
However, as can be seen from the calculations, we do not actually need that all
state prices are non-negative. Only the sum of the state prices needs to be positive.
Hence, we can accommodate without any special considerations the case of mean-
variance preferences for which the positivity of state prices was not guaranteed.
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where the latter restriction can be skipped in the case of complete markets.
Note, that the first order condition for this maximization problem is:

ps

δi∂ci
s
ui(c0s)

∂ci
0
ui(ci0)

= πs, s = 1, . . . , S.

Hence, the likelihood ratio process is equal to the marginal rates of substitu-
tion and we can compute for s = 1, . . . , S:

�s =
π∗

s

ps
=

psδiu′(cs)
u′(c0)

δi
∑

t ptu′(ct)

u′(c0)

/
ps

=
u′(cs)∑
t ptu′(ct)

=
u′(cs)
Eu′(ct)

.

In principle it would thus suffice to know any utility function ui and any con-
sumption process ci to determine the likelihood ratio process. But one may
argue that individual decisions are subject to mistakes so that determining
the likelihood ratio process from an arbitrarily chosen agent may be quite
misleading. That is the reason why for empirical purposes the likelihood ra-
tio process is determined from aggregate consumption assuming some simple
parametric form of the utility function, like CRRA (see Sec. 2.2.3). How this
aggregation will be justified is shown in Sec. 4.6. In any case we see that �
should be a decreasing function of aggregate consumption because u is typi-
cally concave. More specifically, for u′(cs) = a − bcs � is linear in cs and for
u′(cs) = c−α

s � is convex in cs etc.
Later, in Sec. 4.4, we give four examples for this identification. First we

confirm that the CAPM is still a special case of our model, then we derive the
APT by introducing background risk, we derive the C-CAPM by identifying
the likelihood ratio process with the marginal rates of substitution of the
investors and finally we derive a behavioral CAPM based on Prospect Theory.

4.3.3 Definition of Financial Markets Equilibria

We use the two-period model as outlined in Chap. 3 and first give the
definition of financial markets equilibria in economic terms, i.e., in terms of
asset prices and quantities of assets bought and sold. As before, the periods
are enumerated t = 0, 1. In the second period t = 1 a finite number of states
of the world, s = 1, 2, . . . , S can occur (compare Figure 4.3).

As before, we denote the assets by k = 0, 1, 2, . . . ,K. The first asset, k = 0,
is the risk-free asset delivering the certain payoff 1 in all second period states.
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The assets’ payoffs are denoted by Ak
s . The time 0 price of asset k is denoted

by qk. Recall the states-asset-payoff matrix,

A = (Ak
s) =

⎛

⎜⎝
A0

1 · · · AK
1

...
...

A0
S · · · AK

S

⎞

⎟⎠ =
(
A0 · · · AK

)
=

⎛

⎜⎝
A1

...
AS

⎞

⎟⎠ ,

which gathers the essence of the asset structure.
Each investor i = 1, . . . , I is described by his exogenous wealth in all states

of the world wi = (wi
0, . . . , w

i
S)′. Given these exogenous entities and given the

asset prices q = (q0, . . . , qK)′ he can finance his consumption ci = (ci0, . . . , ciS)′

by trading the assets. We denote by θi = (θi,0, . . . , θi,K)′ the vector of asset
trade of agent i. Note that θi,k can be positive or negative, i.e., agents can
buy or sell assets. In these terms, the agent’s decision problem is:

max
θi∈RK+1

U i(ci) such that ci0 +
K∑

k=0

qkθi,k = wi
0

and cis =
K∑

k=0

Ak
sθ

i,k + wi
s ≥ 0, s = 1, . . . , S,

which, considering that some parts of the wealth may be given in terms of
assets,18 can be written as:

max
θ̂i∈RK+1

U i(ci) such that ci0 +
K∑

k=0

qkθ̂i,k =
K∑

k=0

qkθi,k
A + wi

0

and cis =
K∑

k=0

Ak
s θ̂

i,k + wi
⊥s, s = 1, . . . , S.

A financial markets equilibrium is a system of asset prices and an allocation
of assets such that every agent optimizes his decision problem and markets
clear, formally:

Definition 4.7. A financial markets equilibrium is a list of portfolio strategies
θ̂opt,i, i = 1, . . . , I, and a price system qk, k = 0, . . . ,K, such that for all
i = 1, . . . , I,

θ̂opt,i = arg max
θ̂i∈RK+1

U i(ci) such that ci0 +
K∑

k=0

qkθ̂i,k =
K∑

k=0

qkθi,k
A + wi

0

and cis =
K∑

k=0

Ak
s θ̂

i,k + wi
⊥s, s = 1, . . . , S,

18 See Chap. 4.1.3 for this transformation of the decision problem.
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and markets clear:

I∑

i=1

θ̂opt,i,k =
I∑

i=1

θi,k
A , k = 0, . . . ,K.

Note that we only required asset markets to clear. What about markets
for consumption? Are we sure that they are also in equilibrium? Formally,
can we show that also the sum of the consumption is equal to the sum of the
available resources, i.e.,

I∑

i=1

ci0 =
I∑

i=1

wi
0 and

I∑

i=1

cis =
I∑

i=1

wi
s, s = 1, . . . , S?

Noting that wi
s =

∑K
k=0A

k
sθ

i,k
A + wi

⊥s, this follows from the agents’ budget
restrictions:

I∑

i=1

(
ci0 +

K∑

k=0

qkθ̂opt,i,k

)
=

I∑

i=1

(
wi

0 +
K∑

k=0

qkθi,k
A

)

and
I∑

i=1

cis =
I∑

i=1

(
K∑

k=0

Ak
s θ̂

opt,i,k + wi
⊥s

)
, s = 1, . . . , S,

because asset markets clear:
∑I

i=1 θ̂
opt,i,k =

∑I
i=1 θ

i,k
A , k = 0, . . . ,K. Hence,

nothing is missing in the Definition 4.7.
It is immediate to see that in a financial market equilibrium there cannot

be arbitrage opportunities. This is true, because otherwise the agents would
not be able to solve their maximization problem since any portfolio they con-
sider could still be improved by adding the arbitrage portfolio. Hence, deriving
asset prices from an equilibrium model automatically leads to arbitrage-free
prices.

As mentioned before, a financial markets equilibrium can be illustrated
by an Edgeworth Box (Figure 4.8). At the equilibrium allocation both agents
have optimized their consumption by means of asset trade given their budget
constraint and markets clear.

The geometry of the Edgeworth Box suggests that asset prices should be
related to the agents’ marginal rates of substitution. And indeed, on inves-
tigating the first order conditions for solving their optimization problems we
see that the marginal rates of substitution are one candidate for state prices.
The first order condition for any agent is:

qk =
S∑

s=1

∂csU
i(ci0, . . . , c

i
S)

∂c0U i(ci0, . . . , c
i
S)

︸ ︷︷ ︸
πi

s

Ak
s , k = 0, . . . ,K.
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initial allocation

i = 2

i = 1

ci
z

cj
s

cj
z

ci
s

q

equilibrium allocation

Fig. 4.8. A financial markets equilibrium in an Edgeworth Box

In particular, for the case of expected utility

U i(ci0, . . . , c
i
S) = ui(ci0) + δi

S∑

s=1

probi
su

i(cis)

we get:

qk =
S∑

s=1

probi
sδ

i∂csu
i(cis)

∂c0ui(ci0)︸ ︷︷ ︸
πi

s

Ak
s , k = 0, . . . ,K.

Hence, we get a nice theory of state prices that links them to the agents’
time preferences, their beliefs, their risk aversion and their consumption. The
consumption is hereby dependent on the aggregate availability of resources.

We recall how to express a financial markets equilibrium in finance terms:

max
λ∈ΔK+2

U i(ci) such that ci0 = wi
0 − (1 − λc)

K∑

k=0

λ̂i,kwi
0

and cis =

(
K∑

k=1

Rk
s λ̂

i,k

)
wi,fin

0 + wi
⊥s, s = 1, . . . , S.

This puts us in a position to define a financial markets equilibrium in
finance terms:

Definition 4.8. A financial markets equilibrium is a list of portfolio strategies
λi, i = 1, . . . , I, and a system of returns Rk, k = 0, . . . ,K, such that for all
i = 1, . . . , I,
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λopt,i = argmax
λ∈ΔK+2

such that ci0 = wi
0 −

K∑

k=0

λ̂i,kwi,fin
0

and cis =

(
K∑

k=1

Rk
s λ̂

i,k

)
wi,fin

0 + wi
⊥s, s = 1, . . . , S,

and markets clear:

I∑

i=1

λopt,i,kri = λM,k, k = 0, . . . ,K,

where ri := wi,fin
0 /(

∑
i w

i,fin
0 ) and λM,k is the relative market capitalization of

asset k.

The market clearing condition in Definition 4.8 may look a bit unusual
because it is not often stated explicitly in finance models.19 So let us make
sure it is indeed equivalent to the equality of demand and supply of assets:

Multiplying each market clearing condition for assets,

I∑

i=1

θ̂opt,i,k =
I∑

i=1

θi,k
A , k = 0, . . . ,K,

by the price of that asset and extending the expressions by the financial wealth
of the agents, wi,fin =

∑K
k=0 q

kθi,k
A , yields the equivalence:

I∑

i=1

λi,k,optri =
I∑

i=1

qkθ̂opt,i,k

wi,fin
0

wi,fin
0∑

iw
i,fin
0

=
qk
∑

i θ
i,k
A∑K

k=0(qk
∑

i θ
i,k
A )

= λM,k.

Before passing on to the next section we should once more mention that
everything can also be expressed in terms of factors. A financial markets
equilibrium is then a system of factor returns such that all agents take the
factor risk that suits best their consumption plans and markets clear. We will
discuss this further in the exercises.

4.3.4 Intertemporal Trade

One great service that a financial market offers for our society is to provide
means for intertemporal trade, i.e., for savings and loans. Agents have different
wealth along their life cycle, since their income is typically hump-shaped:
they are quite poor when young, have the highest income when middle aged
and have no income when old – unless they traded on the financial market,
19 Most finance models work right away with a representative investor being in equi-

librium with himself. Hence, the market clearing condition is not stated explicitly.
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i.e., unless they saved before getting old. The motive for intertemporal trade
explains interest rates by demand and supply on the savings and loans market.
In general one would expect that interest rates are positive since agents should
have a positive time preference, i.e., they discount future consumption, e.g.,
because the chances to survive till the money is returned are not 100%. On the
other hand, agents trade intertemporally to smooth their consumption path.
Finally, one would expect that the aggregate resources relative to aggregate
needs also determine interest rates. If, for example, too many want to retire
at the same time, it may well be that the savings of that generation are worth
less than at the time they were saving it. This phenomenon is called the
“asset melt down”.20 In this subsection we want to shed some light onto all
these puzzling aspects of intertemporal trade by exploring their fundamental
economic ideas.

Consider an agent contemplating how much to save for the future. As
before, there are two time periods, but to make things simple, we ignore
uncertainty. The agent has an intertemporal utility with discount factor δ:
u(c0) + δu(c1). Without saving he would have to consume his exogenous
wealth, which is, as usual, denoted by w = (w0, w1). If the wealth is quite
different in the two periods, the agent can improve upon consuming his ex-
ogenous wealth by consumption smoothing, i.e., he may want to sacrifice some
consumption when he is quite wealthy and transfer this to the other time
period, because his utility function u will most certainly have a decreasing
marginal utility of wealth. Figure 4.9 displays this idea in terms of the period
utility from wealth u(w).

cw1w0

u

B

A

Fig. 4.9. Consumption smoothing. Transferring wealth from a time when one is
rich to a time when one is poor increases the utility when being poor (A) by a larger
amount than it reduces it when being rich (B)

20 In politics, this is sometimes used as an argument against a private pension fund
system. The asset melt down, however, is mitigated by the fact that demographic
developments are very diverse between different countries and financial markets
are global.
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Figure 4.9 is nice and simple but it does not show us easily what the opti-
mal degree of consumption smoothing is. For this, one also needs to compare
the time preference and the interest rate. Hence, one needs to formalize the
intertemporal decision problem. Denoting the savings amount by s and the
interest rate by r, the decision problem is given by:

max
s
u(c0) + δu(c1) such that c0 + s = w0

and c1 = w1 + (1 + r)s.

Eliminating s, the two budget constraints can be combined into a single one
written in terms of present values:

c0 +
1

1 + r
c1 = w0 +

1
1 + r

w1.

Hence, the decision problem can be displayed in a diagram showing the
amount of consumption in both periods, as Figure 4.10 does.

w0 c0

w1

c1

Fig. 4.10. The intertemporal consumption problem

The first order condition to this problem is:

u′(c0)
δu′(c1)

= (1 + r).

Thus differences in the time preference and the interest rate are compensated
by the marginal utilities. If you discount future consumption by more than the
interest rate r, then you go for a higher consumption today than tomorrow.
For the logarithmic utility this leads to a simple theory of interest rates:

1 + r = (1 + g)/δ, where c1 = (1 + g)c0.

Hence, g is the growth rate of consumption. That is to say, interest rates
increase if people become less patient and if consumption growth increases.
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The latter depends on the business cycle. In general interest rates increase
when the growth of the GDP is strong and falling interest rates may be a
signal for a recession. Note that r is the real rate of interest. Nominal interest
rates do of course depend on inflation rates, as well.

If we compare this model with real data, we will see one prominent effect
which is not captured: the interest rate for long-term investments is nearly
always larger than for short-term investments. The interest rate as function
of investment horizon is called the yield curve. The yield curve is usually in-
creasing. One explanation for this effect is that short-term bonds are preferred,
since their value fluctuates less, e.g. when interest rates change. Expected in-
terest rates are typically higher than real interest rates.

We will come back to this topic in the next chapter and apply a multi-
periods model to discuss the shape of the yield curve in more detail.

4.4 Special Cases: CAPM, APT and Behavioral CAPM

The general model that we have derived above can be used to find simple
derivations for the CAPM, APT and a behavioral version of the CAPM, the
B-CAPM. In all of these cases, diversification is the central motive for trading
on financial markets.

In the following, we assume that the consumption in the first period is
already decided. Moreover, we assume that all agents agree on the probabil-
ities of occurrence of the states, probs, s = 1, . . . , S. This assumption then
separates diversification also from betting (compare Chap. 3). We will show
that the CAPM can be embedded into our model as a special case. After-
wards, we derive its main conclusion, the Security Market Line (SML), from
the financial markets equilibrium in economics terms (prices and quantities).
As a result we recover the CAPM formula (3.4).

In the general two-period model outlined above, the CAPM is given by
the following five assumptions:

Assumption 4.9.

(i) There exists a risk-free asset, i.e., (1, . . . , 1)′ ∈ span {A}.
(ii) There is no first period consumption nor first period endowment.
(iii) Endowments are spanned, i.e., (wi

1, . . . , w
i
S)′ ∈ span {A}, i = 1, . . . , I.

(iv) Expectations are homogeneous, i.e., probi
s = probs, i = 1, . . . , I and

s = 1, . . . , S.
(v) Preferences are mean-variance, i.e.,

U i(ci1, . . . , c
i
S) = V i(μ(ci1, . . . , c

i
S), σ(ci1, . . . , c

i
S)),

where
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μ(ci1, . . . , c
i
S) =

S∑

s=1

probsc
i
s

and σ2(ci1, . . . , c
i
S) =

S∑

s=1

probs(c
i
s − μ(ci1, . . . , c

i
S))2.

4.4.1 Deriving the CAPM by ‘Brutal Force of Computations’

Note that we have up to now always made the first of these assumptions. For
the sake of completeness we state it explicitly since the risk-free asset plays
a special role in the CAPM. To make use of this special role we need to sep-
arate the risk-free asset from the risky assets. To this end we introduce the
following notation. For vectors and matrices we define A = (1, Â) where Â

is the S × K matrix of risky assets. By μ(Â) = (μ(Â
0
), . . . , μ(Â

K
)) we de-

note the vector of mean payoffs of assets in a matrix Â. Similarly, COV (Â) =
(cov(Ak,Aj))k,j=1,...,K denotes (as before) the variance-covariance matrix as-
sociated with a matrix A. Note that the variance of a portfolio of assets can
be written as

σ2(Âθ̂) = θ̂
′
Â

′
Λ(prob)Âθ̂ − μ(Âθ̂)μ(Âθ̂)

′
= θ̂

′
cov(Â)θ̂.

Equipped with this notation, we analyze the decision problem of a mean-
variance agent, in a setting where there is no final period consumption and
endowments are spanned:

max
θ̂i∈RK+1

V i(μ(ci), σ2(ci)) such that
K∑

k=0

qkθ̂i,k =
K∑

k=0

qkθi,k
A = wi,

where cis :=
∑K

k=0 A
k
s θ̂

i,k, s = 1, . . . , S.
Recall that we defined the risk-free rate by q0 := 1/Rf . From the budget

equation we can then express the units of the risk-free asset held by θ̂0 =
Rf (wi − q̂′θ̂). Hence, we can eliminate the budget restriction and re-write the
maximization problem as

max
θ̂i∈RK

V i
(
Rfw

i + (μ(Â) −Rf q̂)
′
θ̂i, σ2(Âθ̂i)

)
.

The first order condition is:21 μ(Â) − Rf q̂ = ρi cov(Â)θ̂i, where ρi :=
∂σV i

∂μV i (μ, σ2) is the agent’s degree of risk aversion.22 Solving for the portfo-
lio we obtain
21 We assume that the mean-variance utility function V i(μ, σ) is quasi-concave so

that the first order condition is necessary and sufficient to describe the solution
of the maximization problem. This is, for example, the case for the standard

mean-variance function V i(μ, σ) := μ − ρi

2
σ2, since it is even concave.

22 Note that ∂σV i

∂μV i is the slope of the indifference curve in a diagram with the mean

as a function of the standard deviation.
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θ̂i =
1
ρi
COV (Â)−1(μ(Â) −Rf q̂).

From the first order condition we see that any two different agents, i and
i′, will form portfolios whose ratio of risky assets, θ̂i,k/θ̂i,k′

= θ̂i′,k/θ̂i′,k′
,

are identical. This is because the first order condition is a linear system of
equations differing across agents only by a scalar, ρi. This is again the two-
fund separation property, since every agent’s portfolio is composed out of two
funds, the risk-free asset and a composition of risky assets that is the same
for all agents, i.e., θ̂i = (θ̂i,0, θ̂i,1θ̂), i = 1, . . . , I.

Dividing the first order condition by ρi and summing up over all agents,
we obtain (∑

i

1
ρi

)(
μ(Â) −Rf q̂

)
= cov(Â)

∑

i

θ̂i.

From the equality of demand and supply of assets we know that
∑

i θ̂i =∑
i θi

A =: θ̂M , where the sum of all assets available is denoted by asset M ,
the market portfolio. Accordingly, denote the market portfolio’s payoff by
ÂM = Âθ̂M and let the price of the market portfolio be q̂M = q̂′θ̂M . Then
we get: (

μ(Â) −Rf q̂
)

=
(∑

i

1
ρi

)−1

cov(Â)θ̂M .

Multiplying both sides with the market portfolio yields an expression from
which we can derive the harmonic mean of the agents’ risk aversions:

(∑

i

1
ρi

)−1

=

(
μ(ÂM ) −Rf q̂

M
)

σ2(ÂM )
.

Substituting this back into the former equation, we finally get the asset pricing
rule:

Rf q̂ = μ(Â) −

(
μ(ÂM ) −Rf q̂

M
)

σ2(ÂM )
cov(Â, ÂM ).

Hence, the price of any asset k is equal to its discounted expected payoff,
adjusted by the covariance of its payoffs to the market portfolio. Writing this
more explicitly we have derived:

qk =
μ(Ak)
Rf

− cov(Ak,AM )
var(AM )

(
μ(AM )
Rf

− qM

)
.

We see that the present price of an asset is given by its expected payoff
discounted to the present minus a risk premium that increases the higher the
covariance to the market portfolio. This is a nice asset pricing rule in economic
terms and it is quite easy to derive the analog in finance terms. To this end
multiply the resulting expression by Rf and divide it by qk and qM . We then
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obtain the by now well-known expression relating the asset excess returns to
the excess return of the market portfolio:

μ(Rk) −Rf = βk(μ(RM ) −Rf ) where βk =
cov(Rk, RM )
σ2(RM )

,

which we have already seen in Sec. 3.2.1.
Being equipped with the economic and the finance version of the SML we

can revisit the claim based on the finance SML that increasing the systematic
risk of an asset is a good thing for the asset according to the SML since it
increases its returns. This suggests that a hedge fund could do better than a
mutual fund by simple taking more risk. The logic of the CAPM is quite the
opposite: increasing the risk, the investors do require a higher return on the
asset. The economic SML reveals that this is obviously not a good thing for
the shares since the investors’ demand for a higher return will be satisfied by
a decreased price. Hence, the value of the hedge fund decreases!

What does the SML tell us about the likelihood ratio process? Recall from
the general risk-return decomposition that

μ(Rk) −Rf = − cov(�, Rk), k = 1, · · · ,K.

Similarly the SML yields

μ(Rk) −Rf = cov(RM , Rk)
μ(RM ) −Rf

σ2(RM )
.

Thus we get

− cov(�, Rk) = cov(RM , Rk)
μ(RM ) −Rf

σ2(RM )
.

Hence, the likelihood ratio process is a linear functional of the market return
� = a− bRM for some parameters a, b, where b = (μ(RM )−Rf )/σ2(RM ) and
a is obtained from μ(�) = a− bμ(RM ) = 1. Thus a = 1 + bμ(RM ).23

4.4.2 Deriving the CAPM from the Likelihood Ratio Process

So far we have derived the SML in our general model using the specific as-
sumptions (i)–(iv) by explicitly computing the agent’s asset demand. In the
following we derive it based on the likelihood ratio process. It turns out that
this derivation is more easily generalizable to situations with background risk
or non-standard preferences.

23 Note that the linearity of the likelihood ratio process also holds in the CAPM with
heterogeneous beliefs (see Sec. 3.3) on expected returns if we define the likelihood
ratio process with respect to the average belief of the investors.
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To begin, let us show that in the CAPM the likelihood ratio process has
to be a linear combination of the risk-free asset and the market portfolio:24

� = a1+ bRM , for two scalars a and b. Here 1 denotes the risk-free payoff and
RM the market portfolio. Recall that

RM =
K∑

k=1

RkλM,k =
K∑

k=1

Ak

qk

∑I
i=1 q

kθi,k
A∑K

k=1

∑I
i=1 q

kθi,k
A

=
K∑

k=1

Ak
∑I

i=1 θ
i,k
A∑K

k=1 q
k
∑I

i=1 θ
i,k
A

=:
AM

qM
.

Hence, � ∈ span
{
1, RM

}
⇔ � ∈ span

{
1, AM

}
.

Note that if we had shown � = a1 + bRM then the SML-formula does
indeed follow: Inserting a1 + bRM for � in Ep(Rk) = Rf − covp(Rk, �) gives
Ep(Rk) = Rf − b covp(Rk, RM ). Applying this formula for k = M , one can
determine b and substitute it back into the expression obtained before so that
the SML follows. We have done this step already two times before in Chap. 3,
so there is no point to repeat it here.

But why should � = a1 + bRM , i.e., � ∈ span
{
1, RM

}
or equivalently

� ∈ span
{
1, AM

}
hold in the CAPM? Recall the optimization problem of a

mean-variance consumer:25

max
θ̂i∈RK+1

V i
(
ci0, μ(ci

1), σ
2(ci

1)
)

such that ci0 +
K∑

k=0

qkθ̂i,k = wi
0 +

K∑

k=0

qkθi,k
A ,

where ci
1 =

∑K
k=0 Akθ̂i,k. In terms of state prices the budget restriction can

be written as:26

ci0 +
S∑

s=1

πsc
i
s = wi

0 +
S∑

s=1

πsw
i
s and (ci

1 − wi
1) ∈ span {A} ,

where the latter is equivalent to ci ∈ span {A} since we assumed that endow-
ments are spanned. Using the likelihood ratio process, the budget restriction
becomes:
24 In exercise 4.7 you are asked to derive the CAPM in yet another way. Assume

quadratic utility functions and then show that the likelihood ratio process being
the marginal rates of substitution becomes proportional to a linear combination
of the risk-free asset and the market portfolio.

25 Note that the lower index 1 in the consumption variable denotes the period 1, i.e.,
ci
1 is the vector (ci

1, . . . , c
i
s), which should not be confused with the consumption

in state s: ci
s, s = 1.

26 Insert q′ = π′A from the no-arbitrage condition and substitute to obtain this
result.



182 4 Two-Period Model: State-Preference Approach

ci0 +
S∑

s=1

ps
�s
Rf

cis = wi
0 +

S∑

s=1

ps
�s
Rf

wi
s and ci

1 ∈ span {A} ,

⇔ ci0 +
1
Rf

Ep(�ci) = wi
0 +

1
Rf

Ep(�wi) and ci
1 ∈ span {A} .

We will show that ci
1 ∈ span {1, �} so that aggregating over all agents we

get � ∈ span
{
1, AM

}
. To this end, suppose ci

1 = ai1 + bi� + ξi, where ξi �∈
span {1, �}. The latter means Ep(1ξi) = Ep(�ξi) = 0. Since ci

1 is an optimal
portfolio it satisfies the budget constraint and ci

1 ∈ span {A}. Since Ep(�ξi) =
0, also ai1 + bi� satisfies the budget constraint and can always be chosen in
the span of A since any component orthogonal to the span in the sense of
Ep(�A) = 0 does not change the value of the assets. This is because due to
the no-arbitrage condition any component of that is orthogonal to span{A}
does not contribute to q, i.e., ai1 + bi� ∈ span {A}. So is it worthwhile to
include ξi in the consumption stream? Note that ξi does not increase the
mean consumption, because Ep(1ξi) = 0. However, ξi increases the variance
of the consumption, since

varp(ci) = varp(ai1 + bi�+ ξi) = (bi)2 varp(�) + varp(ξi) + 2bi covp(�, ξi)

and
covp(�, ξi) = Ep(�ξi) − Ep(�)Ep(1ξi) = 0.

Hence, it is best to choose ξi = 0 and we are done with the proof. Thus,
the CAPM is still a special case of our model.

4.4.3 Arbitrage Pricing Theory

In the CAPM, the Beta measures the sensitivity of the security’s returns to
the market return. The model relies on restrictive assumptions about agents’
preferences and their endowments. The Arbitrage Pricing Theory (APT) can
be seen as a generalization of the CAPM in which the likelihood ratio pro-
cess is a linear combination of many factors. Let R1, . . . , RF be the returns
that the market rewards for holding the F factors f = 1, . . . , F , i.e., let
� ∈ span{1,R1, . . . ,RF }. Following the same steps as before we get27

Ep(Rk) −Rf =
F∑

f=1

bf
(
Ep(Rf ) −Rf

)
.

This gives more flexibility for an econometric regression. Seen this way, in a
model with homogeneous expectations, for example, any alpha that is popping
up in such a regression only indicates that the factors used in the regression

27 Please don’t be confused: Rf denotes the return to factor f while Rf denotes the
return to the risk-free asset!
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did not completely explain the likelihood ratio process. Hence, there must be
other factors that should have been added in the regression. This is nice from
an econometric point of view, but can we give an economic foundation to it?
In the following section we will do this.

4.4.4 Deriving the APT in the CAPM with Background Risk

The main idea in the following is to show that the APT can be thought
of as a CAPM with background risk.

We need to prove that the likelihood ratio process is a linear combination
of the risk-free asset and F mutually independent return factors i.e., � ∈
span

{
1,R1, . . . ,RF

}
with covp(Rf , Rf ′

) = 0 for f �= f ′. Note that one
of the factors may be the market itself, i.e., f = M so that the APT is a
true generalization of the CAPM. As before, assume that agents maximize
a mean-variance utility function, but in contrast to before, we do not make
the spanning assumption so that consumption is also derived from exogenous
wealth that is not related to the asset payoffs:

max
θ̂i∈RK+1

V i
(
ci0, μ(ci

1), σ
2(ci

1)
)

such that ci0 +
K∑

k=0

qkθ̂i,k = wi
0 +

K∑

k=0

qkθi,k
A ,

where ci
1 = wi

⊥1+
∑K

k=0 Akθ̂i,k. In terms of state prices the budget restriction
can be written as:

ci0 +
S∑

s=1

π∗
sc

i
s = wi

0 +
S∑

s=1

π∗
sw

i
s and (ci

1 − wi
⊥1) ∈ span {A} .

Using the likelihood ratio process, the budget restriction becomes:

ci0 +
S∑

s=1

ps�sc
i
s = wi

0 +
S∑

s=1

ps�sw
i
s and (ci

1 − wi
⊥1) ∈ span {A} ,

where the first restriction can also be written as ci0 + Ep(�ci) = wi
0 + Ep(�wi).

Next, we will show that (ci
1 −wi

⊥1) ∈ span {1, �}. To this end, suppose (ci
1 −

wi
⊥1) = ai1+bi�+ξi, where ξi �∈ span {1, �}, i.e., Ep(1ξi) = Ep(�ξi) = 0. Since

ci
1 is an optimal portfolio it satisfies the budget and the spanning constraint.

Now what would happen if we canceled ξi from the agent’s demand? Since
Ep(�ξi) = 0, also ai1+bi� satisfies the budget constraint and obviously (ai1+
bi�) ∈ span {A} since both, the risk-free asset and the likelihood ratio process,
are spanned.28 So is it worthwhile to include ξi in the consumption stream?
28 The likelihood ratio process can always be chosen in the span of A since any

component orthogonal to the span in the sense of Ep(	A) = 0 does not change
the value of the assets. This is due to the no-arbitrage condition. Moreover, the
risk-free asset is the first asset in A.
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Note that ξi does not increase the mean consumption, because Ep(1ξi) = 0.
However, ξi increases the variance of the consumption, since

varp(ci) = varp(ai1 + bi�+ ξi) = (bi)2 varp(�) + varp(ξi) + 2bi covp(�, ξi)

and
covp(�, ξi) = Ep(�ξi) − Ep(�)Ep(1ξi) = 0.

Hence, it is best to choose ξi = 0 and we are done with the main part of
the proof. It remains to argue that the factors can explain the likelihood
ratio process: aggregating (ci

1 − wi
⊥1) = ai1 + bi� over all agents gives � ∈

span{1,RM , R̃1, . . . , R̃F }, where R̃1, . . . , R̃F are F factors that span the non-
market risk embodied in the aggregate wealth:

I∑

i=1

wi
⊥1 =

F∑

f=1

βf Ãf .

4.4.5 Behavioral CAPM

Finally, we want to show how Prospect Theory can be included into the
CAPM to build a Behavioral CAPM, a B-CAPM, by adding behavioral as-
pects to the consumption based CAPM. To do so we use the C-CAPM for
market aggregates and assume that the investor has the quadratic Prospect
Theory utility

v(cs −RP ) :=

{
(cs −RP ) − α+

2 (cs −RP )2 , if cs > RP ,
λ
(
(cs −RP ) − α−

2 (cs − RP )2 , if cs < RP ,

and no probability weighting.
A piecewise quadratic utility is convenient because it contains the CAPM

as a special case when α+ = α− and λ = 1.29 To derive the B-CAPM it is best
to start from the general risk-return decomposition E(Rk) = Rf − cov(Rk, �).
The likelihood ratio process for the piecewise quadratic utility is:

δiu′(c0)�(cs) =

{
1 − α+cs , if cs > RP ,
λ(1 − α−cs) , if cs < RP .

Now suppose that cs = RM holds30 and that the reference point is the risk-free
rate Rf . We abbreviate α̂± := α±/(δiu′(c0)) and denote

29 Compare Sec. 2.5 where we have seen that mean-variance preferences can be seen
as a special case of EUT with quadratic utility function.

30 See Sec. 4.6 for a justification.
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P(RM − Rf ) :=
∑

RM
s >Rf

ps,

cov+(Rk, RM ) :=
∑

RM
s >Rf

ps

P(RM − Ff )
(Rk

s − E(Rk))(RM
s − E(RM )),

cov−(Rk, RM ) :=
∑

RM
s <Rf

ps

P(RM − Ff )
(Rk

s − E(Rk))(RM
s − E(RM )).

Then on denoting conditional expectations by a plus sign for market returns
above the risk-free rate and by a minus sign for market returns below the
risk-free rate, the general risk-return decomposition is

P(RM > Rf )
(
E

+(Rk) −Rf + α̂+ cov+(Rk, RM )
)

+ (1 − P(RM > Rf ))λ
(
E
−(Rk) −Rf + α̂− cov−(Rk, RM )

)
= 0.

Again, we see that if α+ = α− and β = 1 then on substituting the alpha
by applying the formula obtained for k = M , we get the CAPM. Furthermore,
the B-CAPM suggests two aspects. First, that the risk factors of the CAPM
may be different for up and down markets and that it may be wise to increase
the returns in the loss states by the loss aversion.

4.5 Pareto Efficiency

The word efficiency has two meanings in finance. First, it is associated with
informational efficiency of financial markets which has been postulated by Eu-
gene Fama in his famous Efficient Market Hypothesis, EMH (see also [Ban81]).
According to the EMH one cannot make excess returns based on price infor-
mation, “Technical Analysis” or “Chartism”, since in any point in time prices
already reflect all public information. In the CAPM with heterogeneous be-
liefs we have seen that a learning process along which agents learn to invest
actively or passively ultimately leads to a situation in which the prices are
determined by the information of the best informed agent. In the short run
this may not (or not yet) be the case. We will discuss informational efficiency
in more details in Chap. 7.

The meaning of efficiency that we want to analyze now is different. It asks
whether the allocation of assets that results in a financial market equilibrium
could be improved such that nobody’s utility is diminished while somebody
benefits. This notion of efficiency is called allocational efficiency. Since it was
first proposed by Vilfredo Pareto it is also called Pareto-efficiency. Pareto
efficiency is a main subject in welfare economics. But why is this concept in-
teresting in finance? Well, if asset allocations were Pareto-efficient then this
would help to dramatically simplify our modeling of financial market equi-
libria. Pareto-efficiency requires that at the allocation all agents have the
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same marginal rates of substitution, as Figure 4.8 already showed.31 How-
ever, we have seen that the marginal rates of substitutions are the discount
factors with which agents value future asset returns. Hence, if allocations are
Pareto-efficient then all agents agree on the valuation of all possible returns,
regardless whether they are already traded in the market or not. Moreover,
as we will see in the next section, when allocations are efficient, aggregation
of the heterogeneous agent economy into a representative agent with a utility
function that is of the same type as the individual agents’ utilities is possi-
ble. Hence, instead of solving a system of decision problems, a single decision
problem will be sufficient to determine asset prices.

inefficient allocation

direction of improvement

i = 2

i = 1

ci
z

cj
s

cj
z

ci
s

Fig. 4.11. The Edgeworth Box displays an inefficient allocation

Before we can give the formal proof of the allocational efficiency of equi-
libria it is convenient to use the no-arbitrage condition to rewrite the decision
problem in terms of state prices instead of asset prices. This will make the
problem very similar to the standard general equilibrium model of microeco-
nomics. We start with the decision problem of an investor:

max
θ∈RK+1

U(c0, . . . , cs) such that c0 +
K∑

k=0

qkθk = w0

and cs =
K∑

k=0

Ak
sθ

k + ws ≥ 0, s = 1, . . . , S,

Substituting the asset prices from the no-arbitrage condition

31 Strictly speaking, this is true only if efficient allocations do not lie on the boundary
of the Edgeworth Box. Assumptions like that marginal utility is unbounded as
consumption converges to the boundary of the Edgeworth Box are necessary here.
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π0q
k =

S∑

s=1

πsA
k
s , k = 0, . . . ,K,

the budget restrictions can be rewritten as:

π0c0 +
S∑

s=1

πscs = π0w0 +
S∑

s=1

πsws,

and

cs − ws =
K∑

k=0

Ak
sθ

k, s = 1, . . . , S, for some θ.

The second restriction is known as the spanning constraint. It can also be
written as: (c1 − w1) ∈ span {A}.

In the notion of Pareto-efficiency one compares the equilibrium allocation
with other feasible allocations. An allocation is feasible if it is compatible with
the consumption sets32 of the agents and it does not use more resources than
there are available in the economy. When would we expect that equilibrium
allocations are Pareto-efficient? A natural condition would be that in a certain
sense agents can bet on all states of the world. Or, to put it the other way
around, if some bets are not possible then it may happen that the marginal
rates are not equalized. Hence, completeness of markets is a sufficient condition
for allocational efficiency. However, as we show in the exercises, markets may
be Pareto-efficient even in the case of incomplete markets, provided utility
functions are sufficiently similar to each other. The main result of this section
is based on complete markets. It is stated in the following theorem that in
economics is called the First Welfare Theorem:

Theorem 4.10 (First Welfare Theorem). In a complete financial market
the allocation of consumption streams, (ci)I

i=1, is Pareto-efficient, i.e., there
does not exist an alternative attainable allocation of consumption (ĉi)I

i=1 such
that no consumer is worse off and some consumer is better off, i.e., U i(ĉi) ≥
U i(ci) for all i and U i(ĉi) > U i(ci) for some i.

Proof. Suppose (ĉi)I
i=1 is an attainable allocation that is Pareto-better than

the financial market allocation, i.e., U i(ĉi) ≥ U i(ci) for all i and U i(ĉi) >
U i(ci) for some i. Why did the agents not choose (ĉi)? Because it is more
expensive, i.e.,

∑
s πsĉ

i
s >

∑
s πsc

i
s. Adding across consumers gives:

I∑

i=1

S∑

s=0

πsĉ
i
s >

I∑

i=1

S∑

s=0

πsc
i
s.

But since
∑

i ĉi =
∑

i wi =
∑

i ci, this cannot be true!
32 So far we did never specify the consumption sets. This typically is the set of non-

negative vectors in R
S+1, since negative consumption does not have an economic

interpretation. The utility functions need only be defined on the consumption
sets.
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In the exercises we show that when markets are incomplete some version of
the First Welfare Theorem is still possible. When restricting attainable allo-
cations to those allocations that are compatible with the agents’ consumption
sets, that do not need more than the given total resources and that are at-
tainable by trade on the given asset structure A, we can again conclude that
equilibrium allocations cannot be improved in the sense of Pareto by any
other allocation. This property, however, depends on the assumption of two
periods, so we should not get too enthusiastic about it, since ultimately we
are interested in a multi-period model.

We also remark that financial market equilibria can be Pareto-efficient even
if markets are not complete. An example for this is the CAPM with homoge-
neous beliefs. By the two-fund separation property the utility gradients lie in a
two dimensional subspace and trading mean for variance is sufficient to make
them parallel. This example is however not robust since perturbing initial
endowments or utility functions leads to a violation of the spanning assump-
tion. Such perturbations of incomplete markets lead to Pareto-inefficiency (see
[MQ96]).

4.6 Aggregation

Determining asset prices from the idea that heterogeneous agents trade
with each other may be an intellectually plausible point of view, but for prac-
tical questions like “what drives asset prices” this may be too complicated
since nobody can possibly hope to get information on every agent’s utility
function. If the principle of utility maximization is useful for questions of ag-
gregate results like market prices then it would be most convenient if one had
to look at one decision problem only. But then one needs to ask whom or
what does this single decision problem represent. To be more precise, in this
section we answer the following questions of increasing difficulty:

1. Under which conditions can prices which are market aggregates be gener-
ated by aggregate endowments (consumption) and some aggregate utility
function?

2. Moreover, in this case, is it possible to find an aggregate utility function
that has the same properties as the individual utility functions?

3. Finally, is it possible to use the aggregate decision problem to determine
asset prices “out of sample”, i.e., after some change, e.g., of the dividend
payoffs?

4.6.1 Anything Goes and the Limitations of Aggregation

Figure 4.12 gives the main intuition on the aggregation problem. At the
equilibrium allocation asset prices are determined by the trade of two agents,
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however, they could also be thought of as being derived from a single utility
function that is maximized over the budget set based on aggregate endow-
ments (the upper right corner of the Edgeworth Box).

ci
z

cj
s

cj
z

ci
s

Equilibrium allocation

q

Rep. Agent

q

Fig. 4.12. Aggregating individual decision problems into one representative agent

Actually, the answer to our first question is even simpler since it does not
need any information on the individual’s utility functions. Any asset price
vector that is arbitrage-free can also be generated by a single utility function.
Hence, in a sense, anything goes!

Theorem 4.11 (Anything Goes Theorem). Let q be an arbitrage-free
asset price vector for the market structure A. Then there exists an economy
with a representative consumer maximizing an expected utility function such
that q is the equilibrium price vector of this economy.

Proof. Since q is arbitrage-free there exists some risk neutral probability π �
0 such that q′ = π′A. Choose then

UR(c0, . . . , cs) := c0 +
S∑

s=1

πscs.

At the prices q the representative agent will consume aggregate endowments,
which can be seen immediately from the first order condition.33

33 Obviously, one could also find a representative consumer with strictly concave
utilities since one only needs to satisfy that his marginal rates of substitution at
aggregate endowments coincide with the state prices.
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The argument made in this proof is the reason why the state price measure
is also called the “risk neutral measure”. It could be thought of as being de-
rived in a risk neutral world, i.e., in an economy in which a single risk-neutral
representative agent determines asset prices. Note, however, that every real
agent in the economy might be risk neutral, so that somehow the represen-
tative agent does not really represent the agents. This is the point of our
question 2: “Is it possible to find an aggregate utility function that has the
same properties as the individual utility functions?”. For the answer of ques-
tion 2, allocational efficiency will be quite useful, as has first been noticed by
Constantinides [Con82].

Note first that Pareto-efficiency is equivalent to maximizing some welfare
function. In other words, any Pareto efficient allocation can be obtained from
the maximization of some welfare function in which the weights are chosen
appropriately and the maximization of a welfare function results in a Pareto-
efficient allocation. A welfare function assigns a social utility to each alloca-
tion. It is in a certain sense the analog of a utility function on consumption
bundles in classical economies. We define the welfare function as an aggre-
gate of individual utilities. Let γi > 0 be the weight of agent i in the social
welfare function

∑I
i=1 γ

iU i(ci). The next argument shows that choosing the
welfare weights γi > 0 equal to the reciprocal of the agents’ marginal utility
of consumption in period 0 attained in the financial market equilibrium,

γi =
1

∂0U i(∗
ci)

,

one can generate the equilibrium consumption allocation from the social wel-
fare function: recall that under differentiability and boundary assumptions
Pareto-efficiency implies

∇1U
1(∗

c1)
∂0U1(∗

c1)
= . . . =

∇1U
I(∗

cI)
∂0U I(∗

cI)
=: π.

Define

UR(W ) := sup
c1,...,cI

{
I∑

i=1

γiU i(ci)

∣∣∣∣∣

I∑

i=1

ci = W

}

where γi = 1/(∂0U
i(∗

ci)). The first order condition for this maximization
problem is γ1∇U1(∗

c1) = . . . = γI∇U I(∗
cI) =: λ and34 ∇UR(W ) = λ, hence:

∇1U
R(W ) =

∇1U
i(∗

ci)
∂0U i(∗

ci)
and ∂0U

R(W ) = 1.

Consider

max
θ

UR(cR) such that cR − W ≤
(
−q∗

A

)
θ.

34 This last claim is the so called envelope theorem.
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The first order condition is

q∗′ =
∇1U

R(∗
cR)′

∂0UR(∗
cR)

A =
∇1U

i(∗
ci)′

∂0U i(∗
ci)

A = π′A.

Note that cR = W , the aggregate wealth of the economy.
Hence, we have found a “technique” to replace the individual utility func-

tions by some aggregate utility function. In particular, we see that concavity
of the individual utility functions is inherited by the aggregate utility function.
Hence, as we argued above the likelihood ratio process should be decreasing.
That is to say, postulating some utility function of the representative agent we
can now test whether asset prices are in line with optimization by referring to
aggregate consumption data.35 But when does the aggregate utility function
really represent the individuals? We now give a first result in this direction
(others can be found in the exercises): if all individual utility functions are of
the expected utility type with common time preference and common beliefs,
then the representative agent is also an expected utility maximizer with the
same time preference and the same beliefs. Hence, our result shows that any
heterogeneous set of risk aversions can be aggregated into one aggregate risk
aversion. More precisely:

Proposition 4.12. Assume that for all i = 1, . . . , I the utility functions ui

agree and that the time discounting δ is also independent of i. Moreover as-
sume that the beliefs ps, s = 1, . . . , S, are homogeneous, i.e., let U i be given
by

U i(ci) = ui(ci0) + β

S∑

s=1

psu
i(cis) for i = 1, . . . , I.

Then UR(cR) = uR(cR) + β
∑S

s=1 psu
R(cRs ), for some function uR : R → R.

Proof. We use the definition of UR:

UR(W ) = sup
c1,...,cI

{
I∑

i=1

γiU i(ci)

∣∣∣∣∣

I∑

i=1

ci = W

}

where γi = 1/(∂0U
i(∗

ci)) gives

UR(W ) = sup
c1,...,cI

{
I∑

i=1

γi

(
ui(ci0) + β

S∑

s=1

psu
i(cis)

) ∣∣∣∣∣

I∑

i=1

ci = W

}

= sup
c1,...,cI

{
I∑

i=1

γiui(ci0)︸ ︷︷ ︸
uR(W0)

+β
S∑

s=1

ps

∑I
i=1 γ

iui(cis)︸ ︷︷ ︸
uR(Ws)

∣∣∣∣∣

I∑

i=1

ci = W

}

= uR(WR
0 ) + β

S∑

s=1

psu
R(WR

s ).

35 See Sec. 4.6.3 for empirical studies along this line.
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Similar results are possible, for example for Prospect Theory preferences.
Note that in the case of Prospect Theory the representative agent may not
need to be risk loving over losses since this non-concavity of the utility gets
smoothed out by the maximization as Figure 4.13 suggests.36

u1

u2

aggregate utility

Fig. 4.13. Smoothing out individual non-concavities on the aggregate

This looks like wonderful news: taking the representative agent perspective
one can even forget about non-concavities in the individual utility functions.
This observation was first made in an article titled “Prospect Theory: Much
Ado About Nothing!” [LL03]. So can we really forget about Prospect Theory
just by aggregating the preferences of single agents? Well we should not get
too enthusiastic since the representative agent technique has a natural limita-
tion: it is generally not useful to tell us anything about asset prices that we do
not know yet. More precisely, it is not useful for comparative statics, or “out
of sample predictions”. Indeed, as the exercises will show, basing one’s invest-
ment decisions on the representative agents technique may result in severe
losses, since asset prices would be predicted to go in the wrong direction.

This leads us to the final question of this section: “Is it possible to use
the aggregate decision problem to determine asset prices ‘out of sample’, i.e.,
after some change, e.g., of the dividend payoffs?” If this is possible, some
authors37 say one gets “demand aggregation”. This means that not only at
the equilibrium point the representative agent demand function coincides with
the sum of the individual demands, but it coincides for any prices. Demand
aggregation is possible, however under quite restrictive assumptions. In Hens
and Pilgrim [HP03] we find the following cases in which a positive answer to
our third question is possible:

1. Identical utility functions and identical endowments
36 For an in-depth treatment of this smoothing aggregation in general see [DDT80]

and, for the case of Cumulative Prospect Theory, De Giorgi, Hens and
Rieger [DGHR07].

37 For example, Rubinstein [Rub74] or Constantinindes [Con82].
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2. Quasi-linearity: U i(ci0, . . . , c
i
S) = ci0 + ui(ci1, . . . , c

i
s)

3. Expected utility with common beliefs and
a) no-aggregate risk

∑K
k=1 A

k
s =

∑K
k=1 A

k
z for all s, z or

b) complete markets and
• CRRA and collinear endowments or
• identical CRRA or
• Quadratic utility functions
Some of these results have been extended to incomplete markets,
see [HP03].

We conclude this section by giving some example how in the representative
agent utility the heterogeneous preferences get aggregated:

• Expected utility with common beliefs and no-aggregate risk:

U i(ci0, . . . , c
i
S) := ui(ci0) + βi

S∑

s=1

psu
i(cis), i = 1, . . . , I,

aggregates to

UR(W0, . . . ,WS) = uR(W0) + βR
S∑

s=1

psu
R(Ws)

for any concave uR.
• Expected utility with common beliefs and common time preference and

quasi-linear quadratic preferences:

U i(ci0, . . . , c
i
S) := ci0 + β

S∑

s=1

ps

(
cis − 1

2γ
i(cis)

2
)
, i = 1, . . . , I,

aggregates to

UR(cR0 , . . . , c
R
S ) = cR0 + β

S∑

s=1

ps

(
cRs − 1

2γ
R(cRs )2

)

where

γR =

(
I∑

i=1

1
γi

)−1

.

• Expected logarithmic utility with common time preference and collinear
endowments

U i(ci0, . . . , c
i
S) := ln(ci0) + β

S∑

s=1

pi
s ln(cis), i = 1, . . . , I,

and wi = δiW , i = 1, . . . , I, aggregates to
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UR(cR0 , . . . , c
R
S ) = ln(cR0 ) + β

S∑

s=1

pR
s ln(cRs )

where pR
s =

∑I
i=1 δ

ipi
s.

• Mean-Variance utilities with heterogeneous expectations on the means and
common beliefs on the covariances,

V i(μi, σ) := μ− αi

2
σ2, i = 1, . . . , I,

aggregates to

V R(μR, σ) = μR − αR

2
σ2,

where μR =
∑I

i=1 a
iμi, with ai = ri/αi

∑
i ri/αi .

In each of these examples, the representative agent is of the same type
as the individual agents and, moreover, he generates a mapping from the
individual agents’ characteristics into asset prices that also can be used for
asset price predictions, i.e., after some change of the asset payoffs, for example.

4.6.2 A Model for Aggregation of Heterogeneous Beliefs, Risk-
and Time Preferences

So far we have only discussed cases where the representative agent turned out
to be similar to the single agents. To this end, we had to restrict ourselves to a
number of special cases. In this section we will now briefly introduce a model
where at the same time beliefs, risk preferences and time discounting can be
heterogeneous. The resulting representative agent will then in general differ
from all other agents. Moreover, “the” representative agent turns out to be
non-unique: we can define infinitely many agents that represent the market.
However, as in Prop. 4.12, for the construction of the representative agent one
needs to know the equilibrium prices.

Proofs and further details on the result presented in this section can be
found in [She08].

We consider a market with agents i = 1, 2, . . . that follow expected utility
theory with power utility functions ui(x) = x1−γi/(1 − γi), i.e. they have
CRRA preferences, but their risk aversion can be heterogeneous. The agents
discount future events with classical time discounting, where their discount
factors δi can also be heterogeneous.

Every agent has a belief pi on the probability of the asset returns. These
beliefs again may vary across agents.

In this case we can formulate the following theorem [She08, Theorem 14.1]:

Theorem 4.13 (Representative investor). Let π be equilibrium state
prices for a complete market with the investors specified above, then:
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(i) π is also the equilibrium state prices of a market with only one represen-
tative investor whose utility can be written in the form

∑

t

δR(t)
∑

st

pR(st)a(st)c(st)1−γR(st),

where γR and δR satisfy the equations:

1
γR(st)

=
∑

i

θi(st)
1
γj
, (4.2)

δR(t) =
∑

st

πstζ(st)γR(st), (4.3)

where θi(st) denotes the proportion of investor i on the total consumption
in state st and ζ(st) denotes the value of the market portfolio.

(ii) The representative investor is not unique: this can be seen from the fact
that the two equations (4.2) and (4.3) do not fully determine the three
variables γR, δR and pR.

We see in particular that the representative investor can have very different
properties than the other investors:

• Its time discounting does not have to be classical: δR depends on the state.
• Its risk aversion can also vary depending on the state: the larger the con-

sumption share of an investor in a given state, the more he influences the
risk aversion of the representative investor.

This underlines that the idea that a representative investor is “essentially”
like the average investor on the market is wrong: it can have features that
none of the agents on the market has!

4.6.3 Empirical Properties of the Representative Agent

In this section we assume that market prices are generated by an indi-
vidual decision problem. The question we are interested in is which utility
function is compatible with the empirical findings in asset prices. Whether
this assumption is plausible is left to the reader. Some justifications on this
were given in the previous section.

Some authors say that assuming the utility market hypothesis for market
aggregates is maybe more plausible than assuming it for individual investors.
As early as 1956 John Hicks [Hic86, page 55] wrote:

. . . the preference hypothesis only acquires a prima facie plausibility
when it is applied to a statistical average . . . to assume that an actual
person, the Mr. Brown or Mr. Jones who lives round the corner, does
in fact act in such a way does not deserve a moment’s consideration.
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Hence, Hicks has already anticipated the psychologists’ critique that describ-
ing individual decisions by utility maximization is wrong. The mystery that
remains is how the individual irrationalities are washed out at the level of the
market. In the next chapter, we give an evolutionary argument for this, based
on market selection. From the evolutionary point of view market aggregates
can be thought of as being derived from a rational utility function even though
no individual ever has attempted to behave rationally.

We first have to distinguish between the implications that long-term and
that short-term data of asset returns have for the utility function of the repre-
sentative agent. Then we will suggest a synthesis of both. We will argue that
in the long run, the utility function must have constant relative risk aversion,
while in the short run it must have features of Prospect Theory.

That the utility of the representative investor must have CRRA in the
long run was made pretty clear by Campbell and Viceira [CV02, page 24]:

The long run behavior of the economy suggests that relative risk aver-
sion cannot depend strongly on wealth. Per capita consumption and
wealth increased greatly over the past two centuries. Since financial
risks are multiplicative, this means that the absolute scale of financial
risks has also increased while the relative scale of financial risks is
unchanged. Interest rates and risk premia do not show any evidence
of long-term trends in response to this long-term growth; this implies
that investors are willing to pay almost the same relative costs to avoid
given relative risks as they did when they were much poorer, which is
possible only if relative risk aversion is almost independent of wealth.

Now supposing the utility function has CRRA, the question that remains
is the magnitude of the risk aversion parameter. Let’s write the utility function
as u(w) := w1−α/(1 − α). An upper bound for α can be found from the first
order condition of utility maximization since, as we show next, the Sharpe
ratio of any asset is bounded above by the volatility of the agent’s consumption
growth. This derivation goes back to Hansen and Jagannathan [HJ91], hence
the upper bound is called the Hansen and Jagannathan bound.

Let ζ := �/Rf be the likelihood ratio process divided by the risk-free rate.
Then the no-arbitrage condition reads E(ζRk) = 1. By the definition of the
correlation we can write:

1 = E(ζRk) = E(ζ)E(Rk) + corr(ζ,Rk)σ(ζ)σ(Rk),

hence

E(Rk) = Rf − corr(ζ,Rk)
σ(ζ)
E(ζ)

σ(Rk).

Since the correlation is bounded between −1 and +1, we get the inequality:
∣∣E(Rk) −Rf

∣∣
σ(Rk)

≤ σ(ζ)
E(ζ)

.
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In the consumption based asset pricing model with expected utility, we have

qk = u′(c0)−1 1
1 + δ

E
(
u′(c1)Ak

)
,

hence

ζ =
1

1 + δ

u′(c1)
u′(c0)

.

And in the case of CRRA we get:

ζ =
1

1 + δ

(
c1
c0

)−α

,

so that ∣∣E(Rk) −Rf

∣∣
σ(Rk)

≤ σ

(
1

1 + δ

(
c1
c0

)−α
)
.

Hence, taking data on the risk-free rate, the Sharpe ratio and the volatil-
ity of consumption growth we can estimate the relative risk aversion α. In a
recent paper Hens and Wöhrmann [HW] estimate the Sharpe ratio of the
S&P 500 sampled from annual data since 1973 and compare it with the
Hansen-Jagannathan bounds resulting for alternative risk aversions. The re-
sult is reported in Table 4.2.

Table 4.2. Hansen-Jagannathan bounds for alternative risk aversion based on an-
nual data of the S&P 500 from 1973 to 2005

Risk aversion Consumption SDF

1 0.0165
2.5 0.0415
5 0.0844
8 0.1376
10 0.1743
18 0.3311
20 0.3730
30 0.5987

The actual Sharpe ratio in that data is about 0.328. Hence, a relative
risk aversion of about 18 would explain the risk adjusted equity premium.
On data with a higher frequency the risk aversion is higher. Some authors
estimate numbers in the range of 30 to 40. It is typically claimed that numbers
above 10 are too high to be reasonable values for risk aversion. Hence, the
typical finding of numbers in the area of at least 18 is puzzling to many
researchers. This puzzle is called the equity premium puzzle. But why is a
number above 18 considered to be too high? After all nobody has ever met
the fictitious agent called representative investor and asked him about his
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degree of relative risk aversion. The idea is that the representative investor
represents the individual investors and estimates of individuals’ risk aversion
are feasible using questionnaire techniques as explained in Sec. 2.2.4. However,
we have already remarked there that such elicitations crucially depend on the
assumptions on a person’s wealth level.

Let us take a look at a typical question that is used to determine the
relative risk aversion:

Consider a fair lottery where you have a 50% chance of doubling your
income, and a 50% chance of losing a certain percentage, say x% of
your income. What is the highest loss x that you would be willing to
incur to agree to taking part in this lottery?

The typical answer to this question is an x of about 23%. Interpreting this
answer based on a CRRA utility function we get an α of 3.22: we set

0.5
(2W )1−α

1 − α
+ 0.5

(
(1 − x)W

)1−α

1 − α
=
W 1−α

1 − α
.

This gives 21−α + (1 − x)1−α = 2 or 1 − α = −2.22.
Hence, the typical answer to this question is far away from the value ob-

tained from stock market data. There is a huge literature trying to bring
down the alpha obtained from stock market data. Some authors say that in
the optimization of the representative agent borrowing constraints are missing.
Others say that maybe the utility function is not CRRA but includes aspects
like habit formation (e.g. [Abe90]). Yet others claim that consumption should
be restricted to the consumption of stock holders. Finally, some researchers
claim that one should calculate the equity premium based on expected stock
returns that are typically smaller than their realizations. A recent book on
these attempts was edited by Mehra [Meh06], the inventor of the equity pre-
mium puzzle.

There is another possible explanation: based on the observation that the
background wealth plays an important role in measuring any utility function,
we notice that in the above derivation of α we have implicitly assumed that
the money at stake is the whole wealth of a person. However, in the question
“only” the whole salary is at stake. Now assume that the person’s background
wealth is non-zero, let us say 50% of his/her salary, then the degree of risk
aversion is computed as follows:

0.5

(
(0.5 + 2)w

)1−α

1 − α
+ 0.5

(
(0.5 + (1 − x))w

)1−α

1 − α
=

(
(0.5 + 1)w

)1−α

1 − α
.

If we set x := 23%, we obtain α = 21, and the alpha increases even more
with higher background wealth (see [HW]). Please keep in mind that the
background wealth should reflect the total wealth of our society since the
representative investor whose consumption we used to explain market data
needs to own everything we can think of (land, houses, factories, cars, etc).



4.6 Aggregation 199

Exercise 4.37 asks you to do similar computations based on mean-variance
and on Prospect Theory. The main message is unchanged: evaluating the
degree of risk aversion from market data and from experimental data under
the same assumption on background wealth the equity premium puzzle may
not be that puzzling.

Now we turn to the short-run properties of the representative’s utility
function as it can be estimated from daily data on stock market indices and
their derivatives. Again we use the first order condition for optimal investment
decisions as a starting point:

�s = Rf u′(cs)
(1 + δ)u′(c0)

, s = 1, . . . , S.

Now we read this in the following way: we estimate the likelihood ratio process
from observed stock market returns, which fix the ps’s and from option price
data which determines the πs’s. Finally, we take the risk-free rate, the dis-
count factor and the consumption growth as before. Following this approach
Jackwerth [Jac00] showed that the � is typically not a monotonic decreas-
ing function, as is typically assumed, but instead “hump-shaped”. Detlefsen,
Härdle and Moro [DHM09] follow this approach and estimate the utility func-
tion on DAX-data (compare Figure 4.14 and also [RH10]).
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Fig. 4.14. Utility function of the representative investor estimated from daily return
on the DAX for a typical trading day

Note the convexity in the left part of the figure, which is reminiscent of
Prospect Theory. If one were to include probability weighting, then the con-
cavity for extreme losses which can be seen in Figure 4.14 could be explained
by the overweighting of extreme losses – compare the four fold pattern of risk
from Sec. 2.4.1.

There is another possible interpretation of the “empirical” utility func-
tion: we have seen that in the long run the representative agent is a CRRA
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maximizer while in the short run he might be better described by elements
of Prospect Theory. We can therefore propose the following synthesis of the
long-run and the short-run view: define a utility function

u(c) := u(c0) + δ
(
u(c1)(1 − h) + hv(c1 − c0)

)

+ δ2
(
u(c2)(1 − h) + hv(c2 − c1)

)
+ . . . ,

where we use a new parameter, the habit formation parameter h ∈ (0, 1). For
h = 0 we get the standard expected discounted utility function that, e.g.,
may have CRRA. For a positive h below 1 we can blend in the Prospect The-
ory value function v with reference point equal to last period’s consumption.
We may also include discounting by which the marginal rates of substitution
between today and any future period are changed while those between two fu-
ture periods remain as in the standard exponential discounting case (compare
Sec. 2.7 and [BHS01]).

Graphically our suggested synthesis can be displayed as in Figure 4.15.
Adding both terms we arrive at a utility function which is close to the empir-
ical one from Figure 4.14.

richpoor

wealth

utility

Fig. 4.15. A long-run CRRA utility with a short-run Prospect-Theory-overlay

It is interesting that there is also a completely different approach to the
empirical pricing kernel puzzle: whereas we have so far assumed rational (or
more precisely: extrapolated) expectations, but behavioral preferences, one
can alternatively assume biased expectations and estimate p. This approach
has been developed by Hersh Shefrin [She08] and is an extension of the rep-
resentative agent results discussed in Sec. 4.6.2. In this way, it is possible
to explain the observed pattern of the pricing kernel even within a standard
CRRA utility framework.
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It is difficult to discriminate empirically between both potential explana-
tions for the “hump-shape” of the pricing kernel. The fact, however, that most
trades on financial markets are based on heterogeneity of beliefs rather than
on differences in risk preferences supports the explanation by Shefrin.

Finally, an explanation of the empirical pricing kernel puzzle based on
incomplete markets is presented in Exercise 4.17.

4.7 Dynamics and Stability of Equilibria

So far we have restricted our attention to financial market equilibria. We
did not give any argument how such an equilibrium is reached, starting from
a non-equilibrium state. One may argue that the economy is always subject
to exogenous “shocks” that will disturb the current equilibrium. Hence, if
there were no forces that drive the economy back to the equilibrium then it
is very unreasonable to assume that real life phenomena can be described by
an equilibrium. Everything we learned so far would not have any justification!
Exogenous shocks could, for example, be changes in the economic fundamen-
tals like the payoffs of the assets or the exogenous wealth of the agents. Also
they could result from changes in agents’ beliefs about the states of the world
(induced by natural disasters or sudden unforeseen political events). In this
book we will consider three types of dynamics that can be distinguished by
their speed of adjustment. We start with the fastest type, the short-run dy-
namics.

In the short run we look at the intraday adjustment of market prices due
to excess demand or excess supply of assets. We postulate that prices move in
the direction of excess demand, i.e., when demand exceeds supply, prices will
increase and when supply exceeds demand, prices will decrease. This was the
original idea of Adam Smith on which he based the conjecture that competitive
equilibria will always be reached. While this argument is compelling for the
stability of one market (see Figure 4.16 for an illustration), it is not obvious at
all if markets are linked to each other because the demand of any asset does
also depend on the price of any other asset. Note that these cross-price effects
naturally arise when agents have portfolio considerations like diversification.
In this section we will show two results on the stability of financial market
equilibria in a CAPM economy.

With simple mean-variance preferences of the form

U i(ci1, . . . , c
i
S) := μi(ci1, . . . , c

i
S) − γi

2
σ2,i(ci1, . . . , c

i
S),

we prove global stability of the unique financial market equilibrium. This case
is obtained, for example, if utility functions are of the CARA-type and re-
turns are log-normally distributed. If, however, mean-variance preferences are
obtained from normally distributed returns and Prospect Theory preferences
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q∗

∑
i θi(q) − θ̄i

Fig. 4.16. Stability of an equilibrium in a simple one dimensional setting. The figure
shows the excess demand of a single asset as a function of its price

then the mean-variance utility looks more complicated than that, see [DGP08].
As an effect, CAPM equilibria may be unstable, for example because due to
exogenous shocks they may jump from one possible equilibrium to another
equilibrium. Intraday crashes that occur for no obvious reason like the Black
Monday of October 19, 1987 (see Figure 4.17) have been explained by this
switching from one equilibrium to another.38

08-1987 09-1987 11-1987 01-1988
1500

2000

2500

3000

Fig. 4.17. Black Monday of October 19, 1987 in which the DJIA lost 20% of its
value in a single day!

38 The classical reference is Leland and Genotte [GL90]
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Before we conclude by proving the stability for simple mean-variance util-
ities, we will first give the geometric intuition for these crashes when the
utilities are more complicated. Figure 4.18 shows the phenomenon of multiple
equilibria in the Edgeworth Box. For a given set of endowments and pref-
erences two different market clearing prices are obtained. One may think of
one equilibrium as the “optimistic” one and one as the “pessimistic” one. In
the optimistic equilibrium, the asset price is high because everybody believes
the asset is attractive and, hence, prices are driven up. In the pessimistic
equilibrium the reverse holds true.

i = 2

i = 1

ci
z

cj
s

cj
z

ci
s

Equilibrium 2

Equilibrium 1

q

q

Fig. 4.18. Multiple equilibria in an Edgeworth Box

Translating Figure 4.18 into an excess demand diagram, we get a situation
like that displayed in Figure 4.19. Note that if there are multiple equilibria
we actually need to have at least three of them, two of which are stable and
one is unstable.

∑
i θi(q) − θ̄i

q∗

Fig. 4.19. Multiple equilibria in the excess demand diagram
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So how can it happen that on small changes of the exogenous character-
istics we get drastic changes of the endogenous entities? Well, this happens
if the economy is initially in one equilibrium that disappears or becomes un-
stable due to the exogenous changes, as the sequence in Figure 4.20 shows.

q∗

∑
i θi(q) − θ̄i

∑
i θi(q) − θ̄i

q∗

q∗

∑
i θi(q) − θ̄i

Fig. 4.20. Multiple equilibria in the excess demand diagram

A more compact way of showing the same phenomenon is to comprise the
three parts of Figure 4.20 into one. This can be done by looking at a mapping
from the exogenous characteristics, e.g., the asset payoffs, to the endogenous
asset prices (Figure 4.21).
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q∗

A

Fig. 4.21. A market crash resulting from small changes in the asset payoffs

We will finish this section by giving the formal argument that for simple
mean-variance utilities financial market equilibria are stable. Before we do so
let us mention that in the next chapter we will analyze two more adjustment
processes: The medium-term adjustment in which price expectations adjust
on the basis of the realized returns (see Chap. 5) and the long-run wealth
adjustment in which the unsuccessful agents leave the market. The latter
is also called the market selection dynamics, and is studied in evolutionary
finance (see Sec. 5.7.1).

Now we prove the short-term stability of equilibria if prices are continu-
ously adjusted in the direction of excess demand. This adjustment process is
called the “Law of Demand and Supply”:

Proposition 4.14. Assume that agents have mean-variance preferences of
the form

U i(ci1, . . . , c
i
S) = μi(ci1, . . . , c

i
S) − γi

2
σ2,i(ci1, . . . , c

i
S). (4.4)

Then there is a unique globally stable market equilibrium.

Proof. Note cis = λi
cRsλ

iwi
0 and recall the budget constraint

∑K
k=0 λ

i,k = 1.
Substitute cis using (4.4), then for any portfolio λ we get:

U i(λi,1, . . . , λi,K) = wi
0

(
μi(λi

cR
′λi) − γiwi

0

2
σ2,i(λi

cR
′λi)

)
.

The solution is, as before,

λ0 = 1 −
K∑

k=1

λk, λi = (COV i(R))−1μ
i(R) −Rf1
γiλi

cw
i
0

.

Written in economic terms (recall Rk = Ak

qk ) this reads:

λi =
1

γiλi
cw

i
0

Λ(q)
(
COV i(A)

)−1(
μi(A) −Rfq

)
,
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and finally, since θi,k = λi,kwi

qk , we get the asset demand function

θi,k =
λi,k(1 − λi

c)w
i
0

qk
=

1
γi

(
COV i(A)

)−1(
μi(A) −Rfq

)
,

as in Sec. 4.4.
The continuous time dynamics (Law of Demand and Supply) guarantee

that prices adjust in a way that reduces the difference between demand and
supply. Mathematically, this can be expressed by

q̇t = a

(
I∑

i=1

θi,k(qt) −
I∑

i=1

θi,k
A

)
,

where a > 0 is the speed of adjustment. Note that the market demand is
monotone, i.e.

(q̂t − q̃t)

(
I∑

i=1

θi,k(q̂t) −
I∑

i=1

θi,k(q̃t)

)
< 0, for all q̂t, q̃t, (4.5)

because ∂qtθi(qt) = −Rf

γi (COV i(A))−1, which is a negative definite matrix
if there are no redundant assets. To prove stability, we define a so called
“Lyapunov function” L(t) := ‖qt − q∗‖ and show that L(t) is decreasing in t.
We compute

L̇(t) = ∂tL(t) = 2(qt − q∗)q̇t

= 2(qt − q∗)a

(
I∑

i=1

θi,k(q̂t) −
I∑

i=1

θi,k(q̃t)

)
,

hence we can apply the monotonicity (4.5) and arrive at

L̇(t) = 2(qt − q∗)a

(
I∑

i=1

θi,k(qt) − θi,k(q∗)

)
< 0.

This proves that the market is in fact globally stable.

4.8 Summary

In this chapter we have generalized some of the ideas from Chap. 3 by re-
placing the assumption of mean-variance preferences with the no-arbitrage
condition. The key ideas of our model were to consider only two time steps
(“investing” and “selling”), but several states of the worlds. In every state,
assets can have different payoffs. A priori only the probabilities in which the
states occur are known. We assumed that there is no trading strategy that
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gives a sure outcome above the risk-free rate (no arbitrage condition), where
we distinguished slightly different ways to make this definition precise. Sur-
prisingly, we could derive a lot of information about asset prices from the no
arbitrage condition. We can, however, only price assets in a relative way with
this method.

We then formulated a market model with several investors. Special cases of
our general formulation where the CAPM, APT and the behavioral CAPM.
We proved that in complete markets a market equilibrium will be Pareto
efficient, i.e. no person can do better without somebody else being worse off.

Even if investors have heterogeneous preferences, the market as a whole
can be described as if all investors shared the same preferences. We say that
there is a “representative agent”. This approach is, however, limited, since
out-of-sample predictions are not possible in this way.

Finally, we discussed dynamics and stability of equilibria: while the “short-
run dynamics” is bringing the market (if it satisfies certain assumptions) back
to an equilibrium, it might be possible that an equilibrium is suddenly dis-
appearing when market conditions slowly change, thus leading to a sudden
transition to a different equilibrium. This can be an explanation of crashes on
financial markets.

4.9 Tests and Exercises

4.9.1 Tests

1. What cannot be said about complete markets?
� In a complete market, all period consumptions can be achieved by

asset trades.
� When the states of the world are defined by asset returns themselves,

then the variation of returns is less then the number assets.
� If the income is exogenous, there do not have to be sufficient assets to

hedge all the risks in the exogenous income.
� The rank of the return matrix needs to be equal to the number of

states.
2. What do agents trade?

� Consumption.
� Opinions.
� Financial assets.
� Risk Factors.

3. What can be said about about arbitrage?
� In a arbitrage-free market, the price of the derivative asset price must

be equal to its duplicating portfolio.
� The definition of arbitrage certainly depends on the qualitative prop-

erties of the investor‘s utility function.
� Arbitrage strategy, more specifically, depends on the monotonicity of

the investor‘s utility function.
� The absence of arbitrage is equivalent to the existence of state prices.
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4. What are risk-neutral probabilities?
� The probabilities representing the homogenous beliefs of the investor.
� The physical probabilities observed in the market.
� The probabilities representing the heterogenous beliefs of the investor.
� The probabilities used in the pricing equation, called “risk adjusted

probabilities”.
5. What can be said about financial market equilibria?

� There cannot be any arbitrage opportunities in the financial market
equilibria.

� A financial market equilibrium is a system of asset prices and an allo-
cation of assets such that every agent optimizes his decision problem
and markets clear.

� With simple mean-variance preferences, the financial market equilib-
rium exists uniquely and globally stable.

� Deriving the asset prices from an equilibrium does not necessarily lead
to arbitrage-free prices.

6. What is the likelihood ratio process?
� The ratio of the state price measure and the physical probabilities.
� Risk neutral probabilities.
� Normalized state price process.

7. What is the general formula of the Arbitrage Pricing Theory?
� Ep(Rk) −Rf =

∑F
f=1 b

f (Ep(Rf ))
� Ep(Rk) −Rf =

∑F
f=1 b

f (Ep(Rf ) −Rf )
� Ep(Rk) =

∑F
f=1 b

f(Ep(Rf ) −Rf )
8. What are the main implications of the Behavioral CAPM with quadratic

value function?
� B-CAPM can be considered as a more general version of CAPM since

CAPM is a special case of the model.
� Differently from the standard CAPM, the B-CAPM with its risk-return

decomposition captures the possible asymmetries among risk factors
between up and down markets.

� The CAPM model can be still considered as good in many practical
applications.

9. Which meanings of efficiency in finance refers to Efficient Market Hy-
potheses while the other refers to Pareto Efficiency?
� Informational efficiency, referring that at any time, the prices reflect

already all public information.
� Allocational efficiency, referring that in a financial equilibrium, alloca-

tions of assets are such that nobody‘s utility can decrease or increase
by changing the allocations.

10. What are the empirical properties of the representative agent?
� The utility function of an representative investor is not concave every-

where.
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� For the short-run return dynamics, the representative agent is better
modeled with Prospect Theory.

� The representative agent is simply the CRRA maximizer.
� The representative agent is CRRA maximizer for the long run dynam-

ics.

4.9.2 Exercises

4.1. What motives for trading assets do you know?

4.2. Consider four financial markets with the following payoff matrices and
price vectors.

A1 =
(

2 1
0 1

)
, A2 =

⎛

⎝
1 4
1 2
1 0

⎞

⎠ , A3 =

⎛

⎝
2 2 2
2 0 1
0 2 1

⎞

⎠ , A4 =

⎛

⎝
2 1 4
2 2 1
2 4 1

⎞

⎠ ,

q2 = (1, 2), q4 = (1, 1, 1).

(a) Which of the payoff matrices describes a complete market?
(b) In the case of the second and the fourth financial market, is it arbitrage-

free, i.e. does there exist any arbitrage opportunity?

4.3. Consider the second financial market of the previous exercise, i.e. let the
payoff matrix, respectively the price vector, be equal to A2, respectively to
q2. A representative investor has an initial endowment of one of both assets
and a utility function U = ln(c1) + ln(c2) + γ ln(c3). Find a γ such that in a
pure exchange economy with no first period consumption q2 is the equilibrium
price vector.

4.4. Suppose there are three states, s = 1, 2, 3 and two assets: a risky asset
delivering the returns [10%, 5%,−5%] in the three states s = 1, 2, 3, and a
risk-free asset with return equal to 2% in all states.

(a) Is the financial market complete? Give a return vector that cannot be
hedged by the two existing assets.

(b) Determine the set of state prices for which the state-price-weighted return
of the risky asset equals the risk-free rate.

Next, introduce a third asset with return payoffs [1%, 2%, 0%].

(c) Find state prices such that for both risky assets the state-price-weighted
return of the risky assets equals the risk-free rate. Is the market including
the third asset arbitrage-free?
[Hint: the answer may depend on the qualitative properties of the utility
function!]



210 4 Two-Period Model: State-Preference Approach

(d) Suppose you did compute the Beta of the two risky assets and then you
did find that the SML-formula did not hold. What would you conclude
from this?

4.5. Derive the “Law of One Price” from the no-arbitrage condition!

4.6 (From Means and Covariances to SARs). There are two assets and
two states. Let the vector of expected returns be μ := (0.2, 0.1) and the
covariance matrix

COV :=
(

0.3 −0.5
−0.5 0.2

)
.

Find R and prob such that μ(Rk) =
∑S

s=1 probsR
k
s = prob′Rk,

cov(R) =

⎛

⎜⎝
cov(R1, R1) · · · cov(R1, RK)

...
...

cov(RK , R1) · · · cov(RK , RK)

⎞

⎟⎠

= R′

⎛

⎜⎝
prob1

. . .
probS

⎞

⎟⎠R − μ(R)μ(R)′.

4.7. In 1990, Siemens bought the German computer company Nixdorf. Share-
holders were given one Siemens share in exchange for 6 Nixdorf shares. This
raised the minor issue of shareholders owning a number of shares that was not
divisible by six: what to do with the remaining shares? A court decided that
for these (up to five) shares a fixed amount of cash had to be paid out to the
shareholder. This amount turned out to be larger than the actual price of a
Nixdorf share.

Can you find an arbitrage opportunity?

4.8 (Raiffeisen interest notes product). There are two assets and two
equally likely states. The returns matrix is

R :=
(
μ1 + ρσ1 μ2 − σ2

μ1 − ρσ1 μ2 − σ2

)
,

where σ1, σ2 > 0 and ρ2 = 1.

(a) Verify that E(Rk) = μk, k = 1, 2, and that the correlation between the
two asset returns is ρ.

(b) A structured product delivers the returns

R̂p := max

(
R̂1 + R̂2

2
, 1

)
, where R̂k :=

{
N , if Rk > 1,
Rk , if Rk ≤ 1.

Compute R̂p and the likelihood of getting the return N as a function of
the parameters μ1, μ2, σ1, σ2 and ρ.
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4.9. Consider a financial market with two assets and two states. Their payoff
is given by

A =
(

100 50
100 200

)

and their prices by q = (100, 100). What is the price of a call option with
strike K? What is the price of a put option with strike K?

4.10. Consider two assets (stocks and bonds) and two factors (oil price and
growth rate) each of which can be high, h, or low, l, for simplicity for a total
of four states. Suppose the returns in those states are given by the first two
matrices and the joint probabilities of the factor combinations are given by
the second matrix:

stocks oil h oil l bonds oil h oil l prob oil h oil l

growth h +1% +5% growth h −3% −1% growth h 5% 30%
growth l −2% −3% growth l −1% +2% growth l 50% 15%

Determine the state-space matrix, a non-trivial factor loadings decomposition
and the joint distribution of asset returns.

4.11. Consider four states and two factor return vectors (one representing re-
turns in a boom, one in a recession) in those states: boom ≈ (3%, 2%,−1%, 2%)
and recession ≈ (−2%,−1%, 2%, 4%). Suppose there are two assets (stocks
and bonds) with the following factor loadings:

βk
f stocks bonds

recession −3 1
boom 1 −2

Determine the state-space matrix and the joint distribution of asset returns,
supposing states are equally likely.

4.12. Consider a market with two assets and three states, each with a prob-
ability of 1/3. Let the returns be given by the matrix

A :=

⎛

⎝
1 1
1 1.5
1 0.5

⎞

⎠ .

A security with returns (1, 0, 0)T cannot be replicated by the assets. (Explain
why!) Find bounds for its price from below and above!

4.13. Consider the following CAPM-economy: There are three equal likely
states. The returns of the market portfolio in the three states are 6%, 2%
and −2%. An investor holds a portfolio, which pays 23%, −4% and −1%
in the three states. This investor has strictly monotone preferences and no
background risk. The risk-free rate is zero.
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(a) Check that the investors portfolio is feasible, i.e. the portfolio should lie
on the SML!

(b) Is the portfolio of the investor optimal? Explain your answer!
(c) If the portfolio is not optimal, find a better portfolio which is feasible!
(d) What is the weakest possible assumption that can be made on the pref-

erences of the investor such that your improvement still works? Do they
have to be strictly monotone? Compare your result with [Rie10].

4.14. Assume a market with K normally distributed assets. The density func-
tion of a normal distribution is

f(x;μ, σ2) =
1√

2πσ2
exp

(
−1

2
(x− μ)2

σ2

)
.

(a) Show that under the previous assumption any expected utility function
E [u(X)] can be represented by a mean-variance utility function U(μ, σ).

(b) Under which conditions to u is U increasing in μ and decreasing in σ?
(c) Show that in the case of a Cumulative Prospect Theory-utility maximizer,

with the probability weighting function w, the utility is still increasing in
μ.

4.15. Consider s = 1, . . . , S states with equal probabilities 1
S . Assume that

the likelihood ratio �s is given by the consumption based CAPM for a non-
decreasing utility function u.

(a) Prove that �s ≥ �t if xs < xt, where xs denotes the return of the market
portfolio in state s.

(b) A structured product yields the return ys in state s. Formulate a constraint
for y = (y1, . . . , yS) such that the fair price of the product is equal to 1
where � is given again.

(c) Prove that a y that maximizes an (arbitrary) expected utility among all
y satisfying the above constraint is co-monotone with the market return,
i.e. ys ≤ yt if xs < xt.

4.16. In an economy with two periods, two equally likely states and two assets,
there is a representative agent with expected ln-utility endowed with the risky
asset. There is no consumption in the first period. The risk-free asset has an
interest rate of R. The risky asset pays in one state Su = D(μ+σ) and in the
other state Sd = D(μ− σ).

(a) Determine the price S0 of the risky asset in the first period.
(b) Show that S0 is decreasing in σ. σ can be seen as the volatility of the

dividends of the stock.
(c) Calculate the volatility and the expected value of the returns of the risky

asset.
(d) Show that the price of the risky asset decreases if the volatility of its

returns increase.
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4.17. Consider a market with two assets and three states, each with a proba-
bility of 1

3 . The prices of the two assets are denoted by q0 = 1 and q1 and the
payoff matrix is given by

A =

⎛

⎝
1 0
0 1
0 1

⎞

⎠ .

The utility of the agents is described by the logarithmic expected utility and
the agents have heterogeneous beliefs, i.e., one agent maximizes the consump-
tion in state 1 and 2 and the other agent in 1 and 3. The initial endowments
are given by w1 =

(
1, 1

3 , 5
)′ and w2 =

(
1, 5, 1

3

)′.

(a) Show that q1 = 3 is an equilibrium price.
(b) Describe the risk-neutral probabilities in equilibrium.
(c) Show that every likelihood ratio process (as function of the aggregate

wealth) has an increasing area.

4.18. In a two-period economy with three states the payoff matrix A and the
price vector are given as

A =

⎛

⎝
1 4
1 2
1 0

⎞

⎠ q =
(

1
2

)
.

(a) Is this financial market complete?
(b) Is the market arbitrage-free?
(c) A representative investor has an initial endowment of one of both assets

and a utility function U = ln(c1) + ln(c2) + γ ln(c3). Find a γ such that
in a pure exchange economy with no first period consumption the q from
above is the equilibrium price vector.

(d) Assume that we are in the same setup as in (c), but there is a third
asset with zero net supply, such that the market is complete. Furthermore
assume that q is not known. Which are the normed state prices implied
by a representative investor with γ = 2?

(e) Are the asset prices implied by (d) arbitrage-free?

4.19. Consider a two period exchange economy with one representative in-
vestor and two equally likely states (an up and a down state). There are two
assets: a riskless asset with an interest rate of R = 1 + r (independent of the
states) and a stock with a final payoff of μ+σ in state u and μ−σ in the state
d. r, μ and σ are strictly positive. The riskless asset is in zero net supply and
the representative investor gets one unit of stock as initial endowment. There
is no first period consumption.

Let the utility function of the representative investor be

UR = E

(
(c− 1) − γ

2
(c− 1)2

)
with γ > 0.
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(a) Are the preferences implied by UR strongly monotonic? Why or why not?
(b) Express UR in terms of a constant, the expected value of c and the variance

of c.
(c) Determine the equilibrium stock price S. Write S as a function of γ, μ, σ

and R.

4.20. Consider a simple economy with complete asset markets in which the
following assumptions hold: there is no first period consumption and wealth
is only derived from investment in assets. There is only one (representative)
investor with unit initial wealth w0 = 1 and with an expected quadratic utility
of the form u(cs) = cs − γ

2 c
2
s.

(a) Show that the first order condition of the investor implies ls = 1−γcs

1−γE(C)

(b) Show that cs = RM
s

(c) Derive the SML-Formula of the CAPM.

4.21. (a) Consider an economy with two time periods but without uncertainty.
There are two agents with exogenous income of 1 in both periods. The
agents’ utility functions are given by:

U1
(
c10, c

1
1

)
= ln(c10) + 2 ln(c11) U2

(
c20, c

2
1

)
= 2 ln(c20) + ln(c21).

determine the competitive equilibrium.
(b) Consider now an economy with two time periods and with uncertainty. Ig-

nore consumption in the first period. There are two agents with exogenous
income in the two states of (1, 0) and (0, 1) respectively. The agents utility
functions are given by:

U1
(
c11, c

1
2

)
= ln(c11) + ln(c12) U2

(
c21, c

2
2

)
= ln(c21) + ln(c22).

Determine the competitive equilibrium.
(c) Consider now an economy with two time periods and with uncertainty. Ig-

nore consumption in the first period. There are two agents with exogenous
income in the two states of (1, 1) and (1, 1) respectively. The agents utility
functions are given by:

U1
(
c11, c

1
2

)
= 2 ln(c11) + ln(c12) U2

(
c21, c

2
2

)
= ln(c21) + 2 ln(c22).

Determine the competitive equilibrium.
(d) Which motives of trade are present in the cases (a) - (c) given above?

4.22. Let q be the asset prices and A the payoff of the assets in a two-period
economy with S states. There are no short sale restrictions or any other fric-
tions. Now prove that the existence of strictly positive state prices, π, such
that asset prices, q, are equal to the state-price weighted second period payoffs,
rules out arbitrage opportunities.
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4.23. Take the return data from the homepage of this book (you find it at
http://www.financial-economics.de), assume that every point of time rep-
resents one state of the economy, and show that there is no state-preference
arbitrage.

4.24. In an economy with two states, the price of a stock is in the first period
S and in the second period the stock pays uS in the up state and dS in the
down state (u > 1 and d < 1). In the first period, a bond costs B and in the
second period the bond pays RB independent of the state.

(a) Determine the value of a call option which pays Cu in the up state and Cd

in the down state. Do this via the hedge portfolio.
(b) Do the same via the state prices (or the risk neutral measure).
(c) Determine the value of a put option with S = 100, u = 2, d = 0.5, R = 1.1

and a strike price K = 100.

4.25. In an economy with four states we have a bond and a stock:

A =

⎛

⎜⎜⎝

1 0.1
1 0.9
1 1.2
1 3.0

⎞

⎟⎟⎠ q =
(

0.9
1.0

)
.

There is also an exotic option with A3 = (0.5, 0.9, 1.2, 1.5)′.

(a) Is it possible to hedge the option by the stock and the bond?
(b) Find lower and upper price bounds of the barrier option. Do this numeri-

cally with, for example, Excel.
(c) Assume that all states are equally likely and the price of the option is

0.95. There is a utility maximizer with u(x) = xα and a prospect utility
maximizer with

vKT (R) =

{
(R −RP )α

+

if R > RP

−β (RP −R)α−
if R ≤ RP

and w(p) = (0.3, 0.2, 0.2, 0.3)′. Assume that the investors put their whole
wealth in the stock, the bond or the option (only in one of these three
assets). The initial wealth of the investors is 1.
Find preference parameters such that the prospect utility maximizer
prefers the option over the bond and the stock and the utility maximizer
prefers the stock over the other two asset classes. Do this numerically with,
for example, Excel.

4.26. In an economy with two assets and three states we have:

A =

⎛

⎝
1 1
1 0
1 0

⎞

⎠ q =
(

0.90
0.25

)
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(a) Determine the upper and the lower price bound of a third asset with
A3 = (1, 2, 0)′.

(b) Determine in the original market the upper and the lower price bound of
A4 = (1, 0, 1)′.

4.27. Suppose we have non-negative payoffs and short sales constraints, i.e.
Ak

s ≥ 0 where each asset has at least in one state a strictly positive payment
and θi

k ≥ 0. Prove that the Fundamental Theorem of Asset Pricing reduces
to: There is no θ ≥ 0 such that qθ ≤ 0 and Aθ > 0 is equivalent to q � 0.

4.28. There are two states: s = 1 is a boom and s = 2 is a recession. The
likelihood of the recession is commonly known to be p = 2/7. There are
two assets: k = 1 is a bond and k = 2 is a stock. The payoffs are given

by A =
(

0.5 2
1 0

)
. There are two agents with logarithmic expected utility

functions. The first (second) agent owns one unit of the first (second) asset.
There are no other endowments.

(a) Is the financial market complete?
(b) Compute the equilibrium consumption allocation and the state prices.
(c) Compute the equilibrium asset allocation θ and the asset prices.
(d) Compute the equilibrium asset allocation λ and the asset returns.

Suppose the returns are driven by two factors, f = 1, inflation, and f = 2,

growth. The factor returns are given by F =
(
−1 1
0.5 0.5

)
.

(e) Compute the factor loadings β.
(f) Compute the equilibrium allocation of factors and the factor prices.

4.29. Consider an economy with two time periods, but without uncertainty.
There are I agents with exogenous income of wi

1 = (1+g)wi
0. The asset market

consists of the risk-free asset. The agents’ utility functions are given by:

U i(ci0, c
i
1) = ln(ci0) +

1
1 + δ

ln(ci1)

Determine the real rate of interest as a function of the time preference and
the growth rate of endowments.

4.30. Consider an economy with two periods and two states in the second
period. The upper state has a probability p and the lower state one of 1 − p.
The initial endowment of the representative investor is a stock which has a
return of u in the upper state and d in the lower state. The value of one
stock is 1 in the first period. The utility function of the investor is U(cu, cd) =
p log(cu)+(1−p) log(cd). The stock and a risk-free asset with zero net supply
can be traded on the market.
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(a) Determine the state prices π∗ from the no arbitrage condition, given Rf .
(b) Express π∗ only in exogenous variables (i.e. without Rf). Use the equilib-

rium model for that.
(c) Determine Rf from the equilibrium model and the no arbitrage condition.
(d) Determine the risk-free rate Rf and the (normalized) state prices for

u(c) = c1−γ

1−γ .

4.31. Assume a two period economy with a representative investor, S states
in the second period, and the risk-free rate Rf . The utility function of the
representative agent is

U = u(c0) + δ

S∑

s=1

psu(cs)

The initial endowment of the agent is w0 in the first period and ws in the
second period. Determine the likelihood ratio process in dependence of cs for
the following utility functions:

(a) u(c) = c− γ
2 c

2 (quadratic)
(b) u(c) = c1−ρ

1−ρ (constant relative risk aversion, CRRA)
(c) u(c) = −e−αc (constant absolute risk aversion, CARA)
(d)

u(c) =

{
(c−RP )α+

if c > RP

−β (RP − c)α−
if c ≤ RP

(e)

u(c) =

{
(c−RP ) − α+ (c−RP )2 if c > RP

−β
(
(RP − c) − α− (RP − c)2

)
if c ≤ RP

4.32. Take the return data from the homepage of this book (you find it at
http://www.financial-economics.de). Assume that all time periods rep-
resent equally likely states. Calculate (normalized) state prices such that
quadratic distance to the (normalized) state prices of the CAPM is as small
as possible and no arbitrage holds.

4.33. We are in the same setup as in exercise 4.31 and δ = 1
1+rf

. Assume that
the likelihood ratio process depends linearly on several factors: l = 1 + b′(f −
E(f)). The excess returns are defined as Re,k = Rk −Rf .

(a) How can the expression βk = var(f)−1 cov(f,Re,k) be interpreted?
(b) Show that E(Re,k) = λ′βk, where λ = − var(f)b.
(c) How can λ and b be estimated from data?
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4.34. Consider a two-period financial economy without consumption in the
first period. There are s = 1, . . . , S states in the second period, k = 1, . . . ,K
assets and i = 1, . . . , I consumers. The assets are of zero net supply. Consumer
i gets an initial endowment wi.

(a) Define the financial equilibrium in this economy.

Assume that there are three states and two consumers such that

U1(c1, c2, c3) = ln c1 + ln c2, w1 = (0, 1, 2)′

U2(c1, c2, c3) = ln c2 + ln c3, w2 = (2, 1, 0)′

(b) Show that for non-negative consumption plans and the payoff matrix

A =

⎛

⎝
1 0
0 1
0 1

⎞

⎠ ,

θ1,∗ = (2,−1/2)′, θ2,∗ = (−2, 1/2)′ and q∗ = (1, 4)′ is an equilibrium.

Consider a third asset with the payoff A3 = (0, 0, 1)′.

(c) Is it possible to duplicate this asset from the assets in the previous ques-
tion?

(d) Calculate an arbitrage-free price for the third asset (out of A and q∗). Is
it unique?

(e) Determine the equilibrium in the economy including the third asset.
(f) Check that a representative consumer with U(c) = 1

5 ln(c1) + 1
5 ln(c2) +

3
5 ln(c3) and the aggregated endowment w = w1 +w2, generates the same
asset prices as in (b) (the case without the financial innovation).

(g) Show that this representative consumer would misprice the financial inno-
vation.

4.35. Consider a one-period economy t = {0, 1} with two possible states in
the second period s = {1, 2}. Assume that consumption only takes place in
t = 1. There are two agents i = {1, 2} having the logarithmic expected utilities
U1(c1, c2) = 0.75 ln(c1)+ 0.25 ln(c2) and U2(c1, c2) = 0.25 ln(c1) +0.75 ln(c2),
respectively. There are two assets in unit supply: one risk-free asset paying off
1 in both states and one risky asset paying off 2 in the first state and 0.5 in
the second state. The first (second) agent owns one unit of the first (second)
asset. Assets are the only source of income.

(a) Determine the competitive equilibrium.
(b) Find a representative consumer with logarithmic expected utility function

whose demand could also generate the equilibrium prices found in (a).
(c) Suppose the payoff of the second asset increases to 3 in the first state. Com-

pute the new asset prices using the representative consumer as determined
in (b).
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(d) Compute the new equilibrium prices in the original economy with two
agents.

4.36. We are in an exchange economy with two goods and two agents. Their
utility function and initial endowment is:

U1(x1
1, x

1
2) = −1

2

(
(x1

1)
−2 +

(
12
37

)3

(x1
2)

−2

)
w1 = (1, 0)′

U2(x2
1, x

2
2) = −1

2

((
12
37

)3

(x2
1)

−2 + (x2
2)

−2

)
w2 = (0, 1)′.

Show that

p∗ = (1, 1)′ p =

((
3
4

)3

, 1

)′

p̃ =

((
4
3

)3

, 1

)′

.

are equilibrium price systems. Determine also the consumption plans in each
of the equilibria.

[Hint: Norm p2 = 1 and use q = p
1
3
1 during the calculations.]

4.37. (a) Which percentage of your yearly income in state 1 are you ready
to risk for a doubling of your income in state 2? Both states are equally
likely.

(b) Compute your CRRA.
(c) Compute your risk aversion in the mean-variance approach. The utility

function is U(R) = μ(R) − γ/2 σ(R)2.
(d) Which percentage of income would the following representative prospect

theory agent of Kahneman and Tversky with

v(R) =

{
(R−RP )α+

if R > RP

−β (RP −R)α−
if R ≤ RP

α+ = α− = 0.88, β = 2.25, RP = 0% and without probability weighting
risk in that situation?

(e) Find the risk aversion of a mean-variance investor such that he would
split his wealth equally between stocks and bonds. To do so recall that the
equity premium is 6.4% and the standard deviation of stocks is 21%.

(f) Now suppose you have some background wealth which is 50% of your
yearly income. Take the percentage of answer (a) and find your CRRA for
this case.

4.38. In an economy with K goods and I investors the demand of investor
i of good k is Dki and the supply is Ski. The total demand and the total
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supply is Dk =
∑

iDki and Sk =
∑

i Ski. The budget constraint of investor
i is

∑
k pkDki =

∑
k pkSki. The market clearing condition of the market of

good k is
∑

iDki =
∑

i Ski.

(a) Show Walras Law, i.e.
∑

k pkZk = 0, where Zk is the excess demand (i.e
Zk = Dk − Sk.

(b) Show that if K − 1 market are cleared also the K-th market is cleared.

4.39. In an economy with I investors with an initial endowment wi, K assets
with zero net supply and S states an equilibrium is defined by:

• The agents maximize their utility under the budget constraint:

ci,∗, θi,∗ = argmax
ci,θi

U i(ci)

s.t. ci0 + q∗ ′θi ≤ wi
0

cis ≤ wi
s +Aθi.

• The asset markets clear, i.e.
∑

i θ
i = 0.

• The markets of the consumption goods clear, i.e.
∑

i c
i =

∑
iw

i.

(a) Assume strictly increasing utility functions. Prove that if asset markets
clear, also the markets of the consumption goods are cleared.

(b) Assume strictly increasing utility functions and no redundant assets. Prove
that if the markets of the consumption goods are cleared, asset markets
are cleared, as well.
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Multiple-Periods Model

“It will fluctuate.” John P. Morgan’s reply, when
asked what the stock market will do.

In the previous two chapters, we have restricted ourselves to the case of
two time periods, one for investing and one for receiving payoffs. For many
applications it is, however, necessary to allow for models with more than two
time periods. In particular one can then study re-trading on the arrival of new
information. Nevertheless we will see that many of the insights we have won
for the two-period model will be useful also for multi-period models.

5.1 The General Equilibrium Model

To find the equilibrium in a system that runs over more than two-periods, it is
necessary to define first the uncertainty associated with time and information.
We follow the approach of Lucas [LJ78] and define a model over discrete time,
i.e., t = 0, 1, 2, . . . , T , by a tree-like extension of our two-period model (see
also [Con82]). The information structure of this “Lucas tree model” is given
by a finite set of states ωt ∈ Ωt in each t. A path of state realizations over time
is denoted by the vector ωt = (ω0, ω1, . . . , ωt). The uncertainty with respect to
information decreases with the time since the paths are not recombining. The
time-uncertainty can be described graphically by an event tree1 consisting of
an initial date (t = 0) and a set of paths ωt at time t. In any intermediate
time period t the event tree consists of a partition of the set of paths so that
two paths that cannot yet be distinguished at t belong to the same subset.
See Figure 5.1 for an example.

The probability measure determining the occurrence of the states is de-
noted by P . We will define P over the set of paths. We call P the physical

1 The mathematical term for an event tree is a filtration, F0,F1, . . . ,FT , i.e. a
sequence of partitions of a set {1, . . . , S} such that F0 = {{1, . . . , S}, ∅}, FT =
{{1}, {2}, . . . , {S}} and for all et ∈ Ft there exists et−1 ∈ Ft−1 such that et ⊆
et−1.
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Fig. 5.1. Generating paths by drawing
states ωt ∈ Ωt
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Fig. 5.2. Associated event tree

measure, since it is exogenously given by nature, and use it to model the ex-
ogenous dividends process. If the realizations are independent over time, P
can be calculated as a product of the probabilities associated with the realiza-
tions building the vector ωt. For example, the probability of getting two times
“head” by throwing a fair coin is equal to the probability of getting “head”
once (equal to 0.5) multiplied with the probability of getting “head” in the
second run (equal to 0.5).

In the Lucas [LJ78] model the payoffs are determined by the dividend pay-
ments and capital gains in every period. Let i = 1, . . . , I denote the investors
and k = 1, . . . ,K some long-lived assets in unit supply that enable wealth
transfers over different periods of time. In addition, there is a consumption
good. This good is perishable, i.e., it cannot be used to transfer wealth over
time. All assets pay off in terms of the consumption good. This clear distinc-
tion between means to transfer wealth over time and means to consume is one
of the important modeling assumptions of Lucas [LJ78].

Ultimately, we are of course interested in the evolution of payoffs of the
assets, but not every node in the tree has to result in a payoff. It could well be
that other events than payoffs trigger trades and, therefore, have to be repre-
sented in the tree. As an example, think of a company paying out dividends
only once a year, but having quarterly earning reports: obviously, the earning
reports will lead to changes in the probability distribution of the dividend
payoffs, thus we have to include them into our tree model although there is
no payment connected with them. Moreover, even events that are unrelated to
the company’s dividend payoff have sometimes to be considered. An example
would be substantial changes in the investor population or preferences: they
will result in trades that can change the stock prices of the company.

Following Lucas [LJ78] once more, we assume perfect foresight, which
means that conditionally on the events, all investors agree on the prices. Al-
though this seems to be a strong assumption, our model is still flexible enough
to accommodate different opinions: we just have to split states into sub-states
whenever some investors disagree about the prices in the original state. Then,
we assume the same price expectations in each state and allow agents to hold
different probabilities of the occurence of the states.
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In a competitive equilibrium with perfect foresight, every investor decides
about his portfolio strategy according to his consumption preferences2 over
time. Investors may disagree on the probability distribution of the states, but
by construction, they agree on the prices conditionally on the states. This
leads to the following definition of an equilibrium extending Definition 4.8 to
the multi-period case.3

Definition 5.1. A competitive equilibrium with perfect foresight is a list of
portfolio strategies θi

t and a sequence of prices qk
t , t = 0, 1, . . . , T , such that

for all i = 1, . . . , I

(θi
0, . . . , θ

i
T ) ∈ argmax

θt∈R
K+1

t=0,1,...,T

U i (θ cons) s.t. θcons
t +

K∑

k=1

qk
t θ

k != W i
t , θ

cons
t ≥ 0,

with W i
t :=

K∑

k=1

(
Dk

t + qk
t

)
θi,k

t−1 + wi
t,

for all t = 0, 1, . . . , T,

where Dk
t are the total dividend payments of asset k, wi

t is the endowment of
investor i in period t and markets clear: 4

I∑

i=1

θi,k
t

!= 1 for all k and all t.

Note that θi,k
t (ωt) ∈ R is the amount of asset k, respectively for k = 0 the

amount of the consumption good, that agent i has in period t given the path
ωt and θi

t is the portfolio strategy along the set of paths. θi
t is accordingly this

amount of all assets for all paths ωt and θi is the list of portfolio strategies
2 Note that investors’ preferences are defined over consumption and not over the

depot value. The utility function representing the investors’ time preferences and
risk attitude determines the consumption, which is smoothed over the realized
states.

3 Note that in contrast to Chap. 4, k = 0 does not denote the risk-free asset but
consumption. This is because long-lived assets that are re-traded are rarely risk-
free since their prices might fluctuate.

4 In principle, all quantities will be dependent on the entire history/path ωt – or at
least on the realized state ωt – and we should write, e.g., qk

t (ωt), as there might
be a different path ω′t for which qk

t (ω′t) is a different value. Thus, in writing qk
t

above we not only name a function where instead its value is meant, but we are
not precise on which value we actually mean, either. Doing so is therefore – if not
stated differently – understood just as an abbreviation for ease of reading. Please
observe that we cannot write qk(t), because there is not “one” function q or qk

which gets evaluated at two different points in time: qt and qt+1 are two different
functions, as they are defined on two different domains (Ωt := Ω0 × . . .×Ωt and
Ωt+1 = Ωt × Ωt+1 respectively).
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over time. Thus, the objective function U i is a function on the space of all
consumption paths. Note also that we normalized the price of the consumption
good to one and that we used Walras law to exclude the market clearing
condition for the consumption good.

To be more concrete, investigate the decision problem of an expected utility
maximizer in the situation/node ωt restricted to the decision variables in that
and the adjacent nodes :

max
θi,k

t ,θi,cons
t ,θi,cons

t+1

ui(θi,cons
t ) + δi

t

∑

ωt+1∈Ωt+1

prob(ωt+1)ui
(
θi,cons

t+1 (ωtωt+1)
)
,

where ui is the utility function of investor i (compare Sec. 4.1.3). The budget
constraints are:

θi,cons
t +

K∑

k=1

qk
t θ

i,k
t

=
K∑

k=1

(Dk
t + qk

t )θi,k
t−1 + wi

t , θi,cons
t ≥ 0

and for all wt+1 ∈ Ωt+1

θi,cons
t+1 (ωtωt+1) +

K∑

k=1

qk
t+1(ω

tωt+1) θ
i,k
t+1(ω

tωt+1)

=
K∑

k=1

(Dk
t+1(ω

tωt+1) + qk
t+1(ω

tωt+1)) θ
i,k
t + wi

t+1(ω
tωt+1) , θi,cons

t ≥ 0.

We start the economy with some initial endowment of assets θi
−1 such that∑

i θ
i
−1 = 1. Assets start paying dividends in t = 0, i.e., the budget constraint

at the beginning is

θi,cons
0 +

K∑

k=1

qk
0θ

i,k
0 =

K∑

k=1

(Dk
0 + qk

0 )θi,k
−1 + wi

0 .

We can think of t = 0 as the starting point of our analysis, i.e., θi
−1 can be

interpreted as the allocation of assets that we inherit from a previous period
(“the past”). Hence, in a sense the economy can be thought of as restarted at
t = 0.

Instead of using the amount of asset k held in the portfolio of investor
i in time t, the investors’ demand can be expressed in terms of the asset
allocation or percentage of the budget value. We define λi,k

t = (qk
t θ

i,k
t )/W i

t (in
analogy to the two-period model definition from Sec. 4.1.3). Thereby we get
θi,k

t = λi,k
t W i

t /q
k
t . Equalizing demand with supply, i.e.,
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I∑

i=1

λi,k
t W i

t

qk
t

!= 1 for all k and all t,

gives the following result:

Proposition 5.2. The price of asset k is the average wealth of the traders’
asset allocation for asset k, i.e.,

qk
t =

I∑

i=1

λi,k
t W i

t .

This pricing rule is equivalent to the simple equilibrium condition that
demand is equal to supply. We have made no other assumptions to derive this
result!

We are interested in optimal asset allocation strategies, thus it is more use-
ful to formulate the investments in terms of percentage of wealth rather than
in terms of the absolute number of assets. Therefore, we rewrite the model
in terms of λi,k

t (i.e., strategy as a percentage of wealth) instead of θi,k
t (i.e.,

strategy in terms of asset units) which leads to the following reformulation of
Definition 5.1:

Definition 5.3. A competitive equilibrium with perfect foresight is a list of
portfolio strategies λi

t, and a sequence of prices qk
t for all t = 0, 1, . . . , T , such

that for all i = 1, . . . , I

λi ∈ arg max
λi

t∈ΔK+1

t=0,1,...,T

U i(λconsW i) s.t. W i
t =

(
K∑

k=1

Dk
t + qk

t

qt−1
λi,k

t−1

)
W i

t−1 + wi
t,

for all t = 0, 1, . . . , T

and markets clear:
∑

i

λi,k
t W i

t = qk
t , for all k and all t.

Again, for simplicity we have omitted the dependence of the decisions on
the paths. In other words, in a competitive equilibrium all investors choose
an asset allocation λi

t=0...T that maximizes their utility over time under the
restriction of a budget constraint with a stochastic compound interest rate.5

As in Definition 5.1, the compatibility of these decision problems today and
in all later periods and events is assured by the assumption of perfect fore-
sight. This equilibrium is therefore also called equilibrium in plans and price
expectations.
5 The budget constraint is defined over the wealth in period t and t− 1, where the

sum
∑

k

(
Dk

t +qk
t

qk
t−1

)
λi,k

t−1 is the compound interest rate.



226 5 Multiple-Periods Model

5.2 Complete and Incomplete Markets

The model can considerably be simplified if markets are complete, i.e., if
there are sufficiently many assets to hedge all risks. With complete markets –
as we will show below – the sequence of budget constraints can be reduced to
a single budget constraint.

Definition 5.4. A financial market (D, q) is said to be complete if any con-
sumption stream {θcons} can be attained with at least one initial wealth w0,
i.e., it is possible to find some trading strategy θ such that for all periods
t = 1, 2, . . . , T ,

θcons
t +

∑

k

qk
t θ

k
t =

∑

k

(
Dk

t + qk
t

)
θk

t−1, and θcons
0 +

∑

k

qk
0θ

k
0 = w0.

A financial market is said to be incomplete if there are some consumption
streams that cannot be achieved whatever the initial wealth is.6

The necessary and sufficient condition for a financial market to be complete
is:

rankAt(ωt−1ωt) =
∣∣Ωt(ωt−1)

∣∣ for all ωt, t = 1, 2, . . . , T ,

where
At(ωt−1ωt) :=

[
Dk

t (ωt−1ωt) + qk
t (ωt−1ωt)

]k=1,...,K

ωt∈Ωt

and
∣∣Ωt(ωt−1)

∣∣ is the number of states that can be reached from ωt−1. Hence,
if K < |Ωt(ωt)| for some ωt, then markets are incomplete.

For example, in a symmetric tree model, where the set of possible states is
equal to S, a necessary condition for market completeness is that the number
of assets is not smaller than the number of possible states, i.e., K ≥ S.

To illustrate the concept of market completeness, let us consider the fol-
lowing example:

node 1
[2; 3, 1; 2]

3
�����

[2, 1]
4�����������

[1, 1]
3

�����������

node 2
[1; 1,−1; 0]

0

��
��

�

[1, 0]
1

Asset payoffs (dividend payments and prices) are given in brackets over
every possible state, e.g. in node 1 asset 1 pays a dividend of 2 and is priced

6 This may arise if there are more states than insurance possibilities.
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at 3. Note that in terminal nodes asset prices are zero. Thus, we excluded the
prices from the description of asset payoffs. The number below indicates the
target consumption θcons over the time. There are two assets, i.e., k = 1, 2.
An investor has to decide how many units of asset 1 and 2 to buy at t = 0
and t = 1 in order to achieve the target consumption path.

Starting at the end of the period, an investor has to solve the following
problem for node 1:

2θ11(1) + θ21(1) = 4,

θ11(1) + θ21(1) = 3.

In other words, the sum of the payoffs of asset 1 and 2 multiplied by the
number of assets held in the two possible states in node 1 must be equal
to the target consumption in these states. The solution to this system of
equations is θ11(1) = 1, θ21(1) = 2, i.e., in t = 1 given that node 1 is realized
an investor has to hold 1 units of asset 1 and 2 unit of asset 2. This portfolio
costs 3 · 1 + 2 · 2 = 7.

Applying the same calculation procedure for node 2, we get

1θ11(2) + 0θ21(2) = 1.

Thus, θ11(2) = 1, θ21(2) = 0, i.e., in t = 1 given that node 2 is realized an
investor has to hold 1 unit of asset 1 and no asset 2. The portfolio costs are
1 · 1 + (−1) · 0 = 1.

Applying the above procedure for t = 0, we get:

(2 + 3)θ10 + (1 + 2)θ20 = 3 + 7

(1 + 1)θ10 + (−1 + 0)θ20 = 0 + 1

which gives θ10 = 13/11, θ20 = 15/11.
The same argument can be applied for any other target consumption,

since in this example markets are complete. An alternative way to define
market completeness is by saying that every new asset is redundant to the
already existing assets. Redundancy is defined analogously to the two-period
case: in that case it is possible to find prices for the assets such that the
introduction of the asset does not change the set of attainable consumption
streams. Respectively, any target consumption stream can be also achieved
with other assets.

Hence, an asset is redundant if it has payoffs {DK+1
t (ω)}ω∈Ωt which are

a (positive) linear combination of the existing assets k = 1, 2, . . . ,K, i.e., for
some αk:

DK+1
t (ω) =

K∑

k=1

αk(t)Dk
t (ω) for all ω ∈ Ωt .

Choosing prices according to the linear rule qK+1 =
∑

k α
kqk in every event

ωt we have:
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rank
[
At(ωt−1ωt)

∣∣DK+1
t (ωt−1ωt) + qK+1

t (ωt−1ωt)
]

= rankAt(ωt−1ωt) ,

i.e., the rank of the payoff matrix that includes the payoffs of the redundant
assets does not change, since the additional column in the payoff matrix is a
linear combination of other columns.

If assets are redundant, they do not create additional insurance possibili-
ties, the efficient frontier in the mean-variance framework and the rank of the
payoff matrix in the state-preference model do not change. If there are non-
redundant assets, i.e., assets that change the rank of the payoff matrix and
the efficient frontier, their inclusion creates additional insurance possibilities.
Thus the market cannot have been complete.

5.3 Term Structure of Interest

Now we first want to apply the multi-period model to fixed-income mar-
kets. To this end let rt0,tn denote the annual interest rate applied for bor-
rowing and lending money between t0 and tn. The collection of interest rates
rt0,t1 , . . . , rt0,tT is called the spot rate curve or the term structure of inter-
est rates, which is usually increasing and concave, i.e., borrowing/lending
over longer time periods gives higher interest at a decreasing rate. Whereas
in the two-period model fixed interest investments were trivial to describe,
even adding one more period can reveal interesting effects like the so-called
forward rate bias. Let us first define the forward rate: the forward rate ft0,t1,t2

is the (annual) interest rate between t1 and t2 that is agreed today for the
borrowing and lending between t1 and t2, i.e., if I promise today to give
to a friend an amount of money in a year and he pays it back in two years
together with no interest, then ft0,t1,t2 = 0%. Since the spot interest rates
for the maturities t1 and t2 are known at t0, ft0,t1,t2 can be determined by
the No-arbitrage Principle. To invest a certain amount of money between t0
and t2 in a bond with maturity t2 is the same as to invest the same amount
of money into a bond with maturity t1 < t2 and into the forward ft0,t1,t2 .
Therefore, the interest rate over the whole period must be the same in both
cases, or in mathematical terms

(1 + rt0,t1)
t1 (1 + ft0,t1,t2)

t2−t1 != (1 + rt0,t2)
t2 ,

where rt0,t1 is the annual interest rate of a bond in t0 which has a maturity
of t1. For the forward rate we get:

1 + ft0,t1,t2 =
(1 + rt0,t2)

t2
t2−t1

(1 + rt0,t1)
t1

t2−t1

.

The forward rate is often seen as the interest rate we expect today for
tomorrow. In other words, the realized interest rate between t1 and t2, rt1t2
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should be on average the same as the forward rate. The empirical data show,
however, a different picture: the difference between the forward rate and re-
alized interest rate, the so-called forward rate bias, is quite persistent. The
forward rate bias is either positive or negative for long periods of time. Even
more it seems that if the interest rates are rising, we have a negative forward
rate bias, and we have a positive forward rate bias if the interest rates are
falling. Can these empirical facts (increasing concave term structure leading
to a forward rate bias) be explained by an economic model?

5.3.1 Term Structure without Risk

We consider a three-period economy with t = 0, 1, 2 and a representative
investor with the utility function

U(c) = ln(c0) +
1

1 + δ
E (ln(c1)) +

1
(1 + δ)2

E (ln(c2)) .

The agent can trade bonds in t = 0 with a time to maturity of 1 or 2 and
at the forward rate f0,1,2, which we further on denote by f12. His exogenous
income (including initial endowment) is w0, w1 and w2. Furthermore, the
prices of the consumption goods are p0, p1 and p2. We want to determine the
term structure and the forward rate at t = 0 and the realized spot rate at
t = 1. Here we denote the amount borrowed/lent in a spot market and in the
forward market by s.

The utility maximization problem of the representative investor is:

max
c0,c1,c2

s01,s02,s12

2∑

t=0

1
(1 + δ)t

ln(ct) , ct ≥ 0,

s.t. p0c0 + s01 + s02 = p0w0 ,
p1c1 + s12 = p1w1 + (1 + r01)s01 ,
p2c2 = p2w2 + (1 + f12)s12 + (1 + r02)2s02 ,

where s01, s02 and s12 are the investments into the bonds and the forward.
The market clearing conditions are c0 = w0, c1 = w1 and c2 = w2. Solving
this, we obtain7

1 + r01 = (1 + δ)(1 + g01) , 1 + r02 = (1 + δ)
√

1 + g02 ,

1 + f12 = (1 + δ)(1 + g12) ,

where 1+ gt t+1 = pt+1wt+1/(ptwt) is the nominal growth rate between t and
t + 1. We see that if the growth rate between period 1 and 2 is larger than
7 Re-arrange the budget constraints for c, insert the result in the utility function and

differentiate with respect to the bond holdings s. Finally, evaluate the marginal
utilities at c = w.
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Fig. 5.3. 3-month forward interest rate (thin line) vs. 3-month spot interest rate
(thick line) (USA)
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Fig. 5.4. 6-month forward interest rate (thin line) vs. 6-month spot interest rate
(thick line) (USA)
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Fig. 5.5. 1-year forward interest rate (thin line) vs. 1-year spot interest rate (thick
line) (USA)
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between 0 and 1, we have an increasing term structure. If the economy is
shrinking, the term structure is falling.8

Arriving at t = 1 the maximization problem of the representative agent is:

max
c1,c2,s1

ln(c1) +
1

1 + δ
ln(c2),

s.t. p1c1 + s1 = p1w1,

p2c2 = p2w2 + (1 + r1,2)s1,

where s1 is the amount of money which the representative investor is saving
in 1. By solving the budget constraints for the consumption the optimization
problem becomes:

max
s1

ln
(
w1 −

s1
p1

)
+

1
1 + δ

ln
(
w2 + (1 + r1,2)

s1
p2

)
.

The first order condition is:

1
c1

−1
p1

+
1

1 + δ

1
c2

1 + r1,2

p2
= 0 .

We plug in the market clearing conditions (i.e. c1 = w1 and c2 = w2) and
then solve for 1 + r1,2 to get:

1 + r1,2 = (1 + δ)
w2 p2

w1 p1
= (1 + δ)(1 + g1,2) ,

i.e. 1 + R1,2 = (1 + δ)(1 + g1,2) = 1 + f1,2. In other words, the forward rate
is exactly the realized interest rate and there is no forward rate bias. We see
that our model is too simple to capture the effects causing a forward rate
bias. One idea to make it more realistic would be to consider quasi-hyperbolic
instead of exponential time discounting (compare Sec. 2.7). The utility of the
representative investor then becomes

UH(c) = ln(c0) +
1

1 + β

(
1

1 + δ
E (ln(c1)) +

1
(1 + δ)2

E (ln(c2))

)
,

where β > 0 describes the degree of quasi-hyperbolic discounting.
The utility maximization problem of the representative investor in a world

without risk is then:

8 Note that in reality, the growth rate is unknown while the spot rate curve can be
observed at all times. Thus, a falling term structure is typically an indicator for
a recession (see [CS09]).
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max
c0,c1,c2

s01,s02,s12

ln(c0) +
1

1 + β

(
1

1 + δ
ln(c1) +

1

(1 + δ)2
ln(c2)

)
,

s.t. p0c0 + s01 + s02 = p0w0 ,
p1c1 + s12 = p1w1 + (1 + r01)s01 ,
p2c2 = p2w2 + (1 + f12)s12 + (1 + r02)2s02 .

The market clearing conditions are c0 = w0, c1 = w1 and c2 = w2. This
problem can be solved in the same way as before. For the interest rates we
obtain

1 + r01 = (1 + β)(1 + δ)(1 + g01) , 1 + r02 =
√

1 + β (1 + δ)
√

1 + g02 ,

1 + f12 = (1 + δ)(1 + g12) .

In t = 1, the utility function of the representative investor is ln(c1) +
1

1+β
1

1+δ ln(c2). Analogously to before the realized interest rate becomes

1 + r12 = (1 + β)(1 + δ)(1 + g12) .

With β > 0, we obtain a negative forward rate bias. Thus, hyperbolical dis-
counting implies a negative forward rate bias, but in reality positive and neg-
ative forward rate biases can be observed. Moreover, hyperbolic discounting
would lead to a decreasing term structure, contrary to what we usually observe
on the market. Thus, we need to extend our model into a different direction.

5.3.2 Term Structure with Risk

So far we have only considered a world without risk. Let us now include risk
into our model so that in t = 1 the economy can develop better or worse, i.e.
we have two states, an up and a down state. In t = 1, 2 the exogenous income
and the prices of the consumption good depend on the state occurred.

The utility maximization problem of the representative investor with be-
liefs for the occurrence of the up sate is therefore
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max
c0,c1u,c1d,c2u,c2d

s01,s02,s12

ln(c0) + prob

(
1

1 + δ
ln(c1u) +

1

(1 + δ)2
ln(c2u)

)

+ (1 − prob)

(
1

1 + δ
ln(c1d) +

1
(1 + δ)2

ln(c2u)

)
,

s.t. p0c0 + s01 + s02 = p0w0 ,
p1uc1u + s12 = p1uw1u + (1 + r01)s01 ,
p1c1d + s12 = p1dw1d + (1 + r01)s01 ,
p2uc2u = p2uw2u + (1 + f12)s12 + (1 + r02)2s02 ,
p2dc2d = p2dw2d + (1 + f12)s12 + (1 + r02)2s02 ,

where s01, s02 and s12 are the investments into the bonds and the forward.9

The market clearing conditions are c0 = w0, c1u = w1, c1d = w1d, c2u = w2u

and c2d = w2d. Denoting by E(x) = probxu + (1 − prob)xd and solving this
problem gives

1 + r01 = (1 + δ)
1

E

(
1

1+g01

) , 1 + r02 = (1 + δ)
1√

E

(
1

1+g02

) ,

1 + f12 = (1 + δ)
E

(
1

1+g01

)

E

(
1

1+g02

) ,

where gt t+1 is the nominal growth rate between t and t+ 1. r12s, the interest
rate realized in t = 1, depends on the state s of the economy: in the up state
we have

1 + r12u = (1 + δ)(1 + g12u) ,

and in the down state we have

1 + r12d = (1 + δ)(1 + g12d) .

The expected return is therefore

E(1 + r12) = (1 + δ)E(1 + g12) .

It is quite difficult to analyze this problem in general. Therefore, we look
at an example with specific parameters: the nominal growth rate is gt,t+1,s =
(wt+1,s pt+1,s)/(wt,s pt,s) − 1 and we set δ = 0.1, prob = 0.5, g0,1,u(u) =
g1,2,u = 1

9 , g0,1,d = − 1
21 and g0,2,d = 0.

9 Note that s12 does not depend on the state u or d. This is because the forward
contract is written in t = 0 without conditioning on the state realized in t = 1.
The amount borrowed/lent will be effective for the budget constraint in t = 1.
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With these parameters, we get for the interest rates in t = 0: 1 + r01 =
1.128, 1+ r02 = 1.156 and 1+ f12 = 1.185. The interest rates realized in t = 1
depend on the state: 1+r12u = 1.222, 1+r12d = 1.155 and E (1 + r12) = 1.189.

The shape of the term structure can be explained similarly as in the econ-
omy without risk. The numerical example shows that in the upper state the
realized interest rate rises and we have a negative forward rate bias. In the
down state just the opposite happens. This is in line with the empirical ob-
servations.

5.4 Arbitrage in the Multi-Period Model

We have defined in Chap. 4 an arbitrage opportunity as a riskless profit and
we have seen that in equilibrium, there cannot be any arbitrage opportunity,
since otherwise adding an arbitrage opportunity would improve the portfolio
of an investor and thus contradict the optimality assumption in the definition
of a market equilibrium. The same holds for the multi-period case, and we
can extend the definition of arbitrage as follows:

Definition 5.5. An arbitrage is a self-financing trading strategy, i.e., there
is some strategy θt with θ−1 = 0 such that for all t = 0, 1, 2, . . . , T ,

θcons
t +

K∑

k=1

qk
t θ

k
t =

K∑

k=1

(Dk
t + qk

t )θk
t−1

for which the resulting consumption is positive: θcons
t > 0, i.e., θcons

t (ωt) ≥ 0
for all ωt and all t = 0, 1, 2, . . . , T , and θcons �= 0.10

5.4.1 Fundamental Theorem of Asset Pricing

The non-existence of arbitrage opportunities is fundamental for asset pricing.
Since these prices must be consistent with the optimization calculus of agents
with different utility functions and different risk aversions, we use the so-
called risk-neutral measures πt=1,2,...,T to build expected values. The existence
of this measure is guaranteed by the absence of arbitrage according to the
Fundamental Theorem of Asset Pricing (FTAP). In the multi-period case this
theorem becomes:

Theorem 5.6 (FTAP). There is no arbitrage opportunity if and only if
there is a state price process πt=1,2,...,T � 0 such that for all ωt

qk
t−1(ω

t−1) =
1

πt−1(ωt−1)

∑

ωt∈Ωt

πt(ωt)(Dk
t (ωt) + qk

t (ωt)) (5.1)

where ωt = ωt−1ωt.
10 We give only the strict monotonic variant of arbitrage (compare Chapter 4 for

other definitions).
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In other words, we can price assets by discounting their payoffs with re-
spect to the state prices, which depend on agent’s preferences only indirectly
through the dependence on asset prices. Again, state prices are not equiva-
lent to the so-called physical (or objective) probability measure P . The state
prices are a theoretical construct that helps to find the fair11 price of payoffs.
In particular, πt=1,2,...,T is the price of an elementary security paying 1 only in
state ωt of the path ωt. The proof of Thm. 5.6 is a straightforward extension
of the two-period case (compare Thm. 4.2):

Proof. The proof showing that the existence of a positive state price pro-
cess rules out arbitrage opportunities is straightforward. Consider any self-
financing strategy, i.e., suppose that for all t = 0, 1, 2, and for all ωt the
budget constraints are satisfied:

θcons
t +

K∑

k=1

qk
t θ

k
t =

K∑

k=1

(Dk
t + qk

t )θk
t−1 .

Multiplying both sides by πt(ωt) and summing up over ωt allows us to use
(5.1):

∑

ωt

πt(ωt)

(
θcons

t +
K∑

k=1

qk
t θ

k
t

)
=
∑

ωt

πt(ωt)

(
K∑

k=1

(Dk
t + qk

t )θk
t−1

)

=
K∑

k=1

qk
t−1(ω

t−1)θk
t−1(ω

t−1).

Adding this along all paths ωt = (ω0, ω1, . . . , ωt) gives:

∑

t

∑

ωt

πt(ωt)θcons
t (ωt) =

K∑

k=1

qk
0θ

k
−1 .

Now, if θcons
t (ωt) > 0 and πt(ωt) � 0 this would require θ > 0, saying that a

positive payoff incurs positive costs, ruling out arbitrage opportunities.
For the other direction of the proof we refer to [MQ96] (the key idea is to

use the separation theorem as in the two-period model).

Note that in this proof we reduced the sequence of budget constraints to a
single budget constraint in terms of present values of all future expenditures
and incomes. This single budget constraint always needs to hold. If markets
are incomplete, then in addition one needs to make sure that the process of
gaps between an agent’s expenditure and his income can be achieved with the
set of available assets.

11 In the insurance context, “fair” means that the insurance premium must be equal
to the expected damages.
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5.4.2 Consequences of No-Arbitrage

Similar to the two-period case, we can find two important consequences of
the absence of arbitrage: first, the Law of One Price says that if from period
t onwards two assets have identical dividend processes, then in period t − 1
they must have the same price.

To see this, suppose that q1t−1 < q2t−1 and D1
τ = D2

τ for τ ≥ t. Buying
θ1t−1 units of the cheaper asset and selling the same amount of the expensive
asset gives (q2t−1 − q1t−1)θ1t−1 > 0 in t − 1, and in all other periods where the
portfolio is hold, i.e. θk

t = θk
t−1 the portfolio is hedged, i.e.,

K∑

k=1

qk
t θ

k
t =

K∑

k=1

(Dk
t + qk

t )θk
t−1 ,

since θk
t = 0 for k �= 1, 2 and θk

t = θk
t−1 for k = 1, 2 and θ1t = −θ2t .

The second consequence of the No-arbitrage Principle is the concept of
linear pricing: it says that if in period t − 1 one buys a portfolio θ̂t−1 and
later on holds it fixed, then in t− 1 the price of the portfolio must be a linear
combination of the prices of its components:

qt−1(θ̂) = θ̂t−1qt−1 =
K∑

k=1

θ̂k
t−1q

k
t−1 .

To see this, suppose that qt−1(θ̂) > θ̂t−1qt−1. Then, buying θ̂k
t−1 units of asset

k and selling the portfolio θ̂t−1 gives qt−1(θ̂)− θ̂t−1qt−1 > 0 in t−1. Otherwise
the position is hedged:

qt(θ̂)θ̂t +
K∑

k=1

qk
t θ̂

k
t = (Dt(θ̂) + qt(θ̂))θt−1(θ̂) +

K∑

k=1

(Dk
t + qk

t )θ̂k
t−1 ,

because Dt(θ̂) =
∑K

k=1D
k
t θ̂

k
t and θ̂k

t (ωt) = θ̂k
t−1(ω

t−1).

5.4.3 Applications to Option Pricing

The Fundamental Theorem of Asset Pricing is essential for the valuation of
redundant assets such as derivatives. We have seen already in Chap. 4 that
there are two possible ways to determine the value of a derivative. The first
approach is based on determining the value of a hedge portfolio. This is a
portfolio of assets that delivers the same payoff as the derivative. The second
approach uses the risk-neutral probabilities in order to determine the current
value of the derivative’s payoff. To value an option in a multi-period setting,
we use the binomial lattice model (see Fig. 5.6). Note that the risk-neutral
probability is a stationary measure, i.e., it remains the same at every node. To
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Fig. 5.6. Binomial lattice model

see this12, suppose that at some node of the binomial lattice the stock price is
S. Then, its expected value after one period is Eπ∗(S) = π∗Su+ (1 − π∗)Sd,
where u, d are the gross returns in the up and the down state. In a riskless
world this value must be equal to SR, in other words Eπ∗(S) = π∗Su +
(1 − π∗)Sd = SR. Since S cancels, we get that the risk-neutral probability is
constant over time and depends only on the size and the frequency of “up”
and “down” movements. Consider an example of a call option over the periods
t = 0, 1, 2. The value of this option in t = 1 depends on the realized state (“up”
or “down”), i.e.:

Cu :=
1
R

(π∗Cuu + (1 − π∗)Cud) ,

Cd :=
1
R

(π∗Cud + (1 − π∗)Cdd) .

The value of the call at t = 0 is

C =
1
R2

(
(π∗)2Cuu + 2π∗(1 − π∗)Cud + (1 − π∗)2Cdd

)
,

i.e.,

C =
1
R2

(
(π∗)2 max{0, u2S −K} + 2π∗(1 − π∗)max{0, udS −K}

+ (1 − π∗)2 max{0, d2S −K}
)
.

We can continue this argument for more and more periods to obtain the
hypergeometric distribution, which in the limit gives the normal distribution
(see [Var78]).
12 We use the same notation as for the similar example given in Chap. 4.
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5.4.4 Stock Prices as Discounted Expected Payoffs

Suppose we have two assets where the first asset is short-lived and risk-free
(e.g., a one-period loan-saving contract) and the second is risky. Then, apply-
ing (5.1) gives:

q1t−1(ω
t−1) =

1
πt−1(ωt−1)

∑

ωt∈Ωt

πt(ωt−1ωt)(D1
t (ωt−1ωt)︸ ︷︷ ︸

1

+ q1t (ωt−1ωt)︸ ︷︷ ︸
0

) . (5.2)

Since the security is riskless, its payoff D1
t (ωt) is equal to 1 in all states. Under

the assumption that the asset lives only one period, there is no price for it
after this period, i.e., q1t (ωt) is equal to 0.

This is equivalent to:

q1t−1(ω
t−1) =

1
πt−1(ωt−1)

∑

ωt∈Ωt

πt(ωt−1ωt) ≡
1

1 + rft−1(ωt−1)
.

Using this and the condition (5.2), we get

qk
t−1(ω

t−1) =
1

1 + rft−1(ωt−1)

∑

ωt∈Ωt

π∗
t (ωt−1ωt)(Dk

t (ωt−1ωt) + qk
t (ωt−1ωt)) ,

(5.3)
where

π∗
t (ωt) =

πt(ωt)∑
ωt∈Ωt

πt(ωt−1ωt)
> 0

is indeed a (risk-neutral) probability measure based on the information of
period t − 1. Hence, asset prices can be presented as discounted expected
payoffs, conditional on the information available at the time of valuation.
This is a sequence of events (or a path) realized from the beginning until
t− 1.

Forward iteration of (5.3) along paths yields the discounted dividends
model:

qk
t−1(ω

t−1) = Eπ∗
t−1(ωt−1)

∞∑

τ=t

Dk
τ (ωτ )

ΠT−1
τ ′=t−1(1 + rfτ ′(ωτ ′))

Thus, if a market is rational, price movements will depend only on movements
of the risk-free interest rate and the expected dividend payments. Assuming
that the dividend process follows a random walk, we can conclude that per-
fectly anticipated prices must be random, i.e.,

Eπ∗
t
(qk

t+1 − (1 + rt)qk
t ) = −Eπ∗

t
(Dk

t+1) .

This random character of stock prices has been summarized by Coot-
ner [Coo64, page 232]:
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The only price changes that would occur [in a financial market] are
those that result from new information. Since there is no reason to
expect information to be non-random in appearance, the period-to-
period price changes of stock should be random movements, statisti-
cally independent of one other.

Expressing the no-arbitrage condition in terms of excess returns (returns ex-
ceeding the riskless return) we get Eπ∗

t
(Rk

t+1 − Rft) = 0. In other words, the
net present value of a strategy with respect to the risk-neutral probability
must be equal to 0. Positive net present values are possible only if one uses
a probability measure different from π∗, however in this case the probability
measure used does not include all possible risks.

5.4.5 Equivalent Formulations of the No-Arbitrage Principle

According to the Fundamental Theorem of Asset Pricing, if a price process
is arbitrage free, there exists no strategy θt, t = 0, 1, 2, . . . , T , that generates
risk-free excess returns.

This is equivalent to the existence of a market expectation or a risk-neutral
probability such that

qk
t =

1
1 + rt

Eπ∗
t
(Dk

t+1 + qk
t+1).

Applying forward iteration to the expression above in order to get a result
which is not dependent on future realizations, we get the Dividend Discount
Model (DDM):13

qk
t = Eπ∗

t

( ∞∑

τ=t+1

(
1

1 + r

)τ−t

Dk
τ

)
, t = 0, 1, 2, . . . , T.

There are no expected gains Eπ�
t
(Gt+1 −Gt) = 0, i.e., the gains process is a

martingale, where Gt =
∑t

τ=1 gτθt−1 for some portfolio strategy θ and

gk
t+1 =

(
1

1 + r

)t [ 1
1 + r

(Dk
t+1 + qk

t+1) − qk
t

]

is the discounted gain from holding asset k from t till t+ 1. Hence, the cumu-
lative expected gains are zero:

Eπ∗
t

( ∞∑

τ=t+1

gτθτ−1

)
= 0

That is to say: “Nobody can beat the market”, i.e., you cannot beat a mar-
tingale.
13 To simplify expressions we have assumed a constant interest rate.
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To summarize, the absence of arbitrage is equivalent to the conclusion that
gains are martingales, prices are random and do not generate excess returns
with respect to the risk-neutral probability π∗.14

5.4.6 Ponzi Schemes and Bubbles

Up to now we have left the choice of time horizon in our multi-period model
open: there could have been finitely many periods (T <∞) or infinitely many
(“T = ∞”). There are, however, some interesting theoretical issues arising in
the infinite time horizon settings that we discuss in this section.

The first is the so-called Ponzi scheme. A Ponzi scheme is probably the
only theoretical concept in economics that is named after an outright criminal,
Charles Ponzi. In 1920 he attracted enormous investments and paid huge
interest for it – but only by using newly arriving investments, thus getting
deeper and deeper into debt. At the same time he financed a luxurious life
from this and even bought a private bank. Finally, the whole scheme broke
down, and he ended in prison for many years.

The idea of using the money collected from subsequent investors to repay
the initial investors and their interest was not invented by him, but since
his was probably the most famous case, the scheme was named after him.
In economics, Ponzi schemes are defined in a more abstract way: borrowing
money from the future to repay debts now and, at the same time, finance
consumption. To model this more precisely, we consider a set of short-lived
bonds Dt with payoff

Dt(ω) =

{
1 if ω ∈ Ωt ,

0 otherwise.

With their help we can construct the following consumption path:

ct = wt + 1 for all t = 0, 1, 2, . . . , T ,

where wt is the exogenous income. Taking a closer look, this looks very at-
tractive: we get something extra in every period in time! It seems impossible
to finance such a consumption stream without a large initial endowment, but
in fact we can do this without any initial endowment: define the investment
strategy θt=0,1,...,T as

θ0 = (−R, 0, . . . ), . . . , θt = (0, . . . , 0,−
t∑

i=1

Ri, 0, . . . ) ,

where θt is different from zero in its t-th component.
This means nothing else than that consumption in period t = 0 is financed

by going short on the first bond with a total amount of R. To finance con-
sumption in period t = 1 and to pay back the first bond one issues a second
bond with a total amount of R+R2, etc. Formally, we get in period t = 0:
14 See [HK78] for more details.
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Fig. 5.7. Illustration of the Ponzi scheme

θ10q
1
0 + c0 = −R 1

R
+ c0 = w0 .

Analogously for any arbitrary period t,

θt+1
t qt+1

t + ct = −
t+1∑

i=1

Ri 1
R

+ ct = θt
t−1 + wt = −

t∑

i=1

Ri + wt .

Thereby we get ct = wt + 1 for all t as mentioned above. This leads to
immediate problems. For instance, there does not exist any maximum utility,
since the choice set becomes unbounded. Whatever we have, we can still get
more. An arbitrage opportunity arises out of seemingly innocent short-term
bonds!

There are two ways of solving this problem:

• We can restrict our multi-period model to a finite time horizon T <∞.
• We can impose a transversality condition:

lim
t→∞

Rt

(
K∑

k=1

θk
t q

k
t

)
≥ 0 ,

where
∑K

k=1 θ
k
t q

k
t is the total value of the portfolio.

Are Ponzi schemes nowadays extinct? Not really: there are still many fraud-
ulent schemes like this, disguised under various, often creative names. How
long can a Ponzi scheme run? Since the input of money is bounded in real-
ity, such schemes are doomed to collapse. Charles Ponzi’s scheme broke down
after several months – the interest rates he promised were just too high. The
lower the interest rates promised, the longer such a scheme can live.

The most recent example was the now infamous hedge fund run by Bernard
Madoff, former chairman of the NASDAQ stock exchange, from the 1980s to
December 2008. His returns were always around 10%. Nothing outrageously
high, but still substantially above the risk-free rate and even above the average
performance of stocks, yet seemingly without much variance. Even in times of
stock market declines like after the end of the internet bubble (2000-2002) or
during the financial crisis (2007-2008), his hedge fund still generated steady
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returns. From December 1990 to May 2005 there were in fact only seven
months (out of 174) with negative returns!

That Madoff was quite silent about how he generated these returns was not
remarkable: no hedge fund would share its secrets and thus destroy the sole
base of its business. What was maybe more remarkable is that even though
the hedge fund got checked a few times by the SEC and other regulatory
commissions, there seemed to have been found nothing wrong with it. In the
end, 50 billion US dollars were invested into the fund, some of it directly, some
of it via a network of hedge funds and investment companies worldwide that
either knew or didn’t know what was really going on (we might never know!):
the biggest Ponzi scheme of all times!

The way Madoff had marketed his fund was fundamentally different from
Ponzi’s. This allowed the fund to grow over such a long time and to such a large
size. The end, however, was similar: some investors wanted to withdraw their
money, but there was none left, and Madoff had to admit that everything had
been a giant Ponzi scheme. Not only rich private investors that knew Madoff
personally and trusted him as a respectable person had lost their money (and
the money of several charity funds), but also various hedge funds and even
larger banks had lost billions.

Are all Ponzi schemes designed by criminals collecting money of investors
by pretending to invest it? Or are there other phenomena that can be inter-
preted as Ponzi schemes in the economic sense? Let us consider the following
prominent real life example: credit cards. To finance consumption some people
obtain a credit by getting a credit card. A second credit card is later used to
repay the debt on the first credit card and also to finance new consumption,
etc. In praxis such strategies are used by a substantial number of people, in
particular in the USA where the average credit card debts is particularly high.

But not only Ponzi schemes can pose a problem for an infinite horizon
model. Bubbles are a further challenge. Similar to a Ponzi scheme, a bubble
relies on expectations of large profits in the future. However in this case no
debts are accumulated. Consider an asset with Dt = 1 for all t (a “console”).
We can compute its price at t = 0:

q0 =
∞∑

t=1

π(ωt) .

Using

π(ωt) = δt u
′(ct)
u′(c0)

,

which we know from the two-period model (Sec. 4.1), we get:

q0 =
∞∑

t=1

δt u
′(ct)
u′(c0)

.

Analogously we compute at t = 1:
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q1 =
∞∑

t=2

π(ωt) =
∞∑

t=2

δt−1 u
′(ct)
u′(c1)

= δ−1u
′(c0)
u′(c1)

∞∑

t=2

δt u
′(ct)
u′(c0)

= δ−1u
′(c0)
u′(c1)

(
q0 − δ

u′(c1)
u′(c0)

)
.

For an arbitrary t, we get

qt+1 = δ−1 u′(ct)
u′(ct+1))

(
qt − δ

u′(ct+1)
u′(ct)

)
.

Hence,

qt = δ
u′(ct+1)
u′(ct)

+ δ
u′(ct+1)
u′(ct)

qt+1

=: Mt+1 +Mt+1qt+1 .

We define M ′
t :=

∏t
τ=1Mτ and obtain by iteration

q0 = M1 +M1q1 = M1 +M1(M2 +M2q2) = · · · =

=
∞∑

t=1

M ′
t

︸ ︷︷ ︸
fundamental

+ lim
T→∞

M ′
T qT

︸ ︷︷ ︸
bubble

.

Whereas the first component is the classical “fundamental value” price of
the asset, the second component only depends on expected later prices and
is therefore in fact a “bubble” component. This decomposition implies in
particular that the price is not uniquely determined anymore. But even worse,
a bubble can lead to a positive value for an asset without any dividend or
payment! Let Dt = 0 for all t, then

q0 = lim
T→∞

M ′
T qT

can be positive (compare [Bew80]). One could argue that money, having no
dividend payment nor interest, has just a value because it is a bubble, but
maybe this point of view is taking it a bit too far . . .

For many applications, we would like to exclude bubbles. This can be
achieved by either restricting the analysis to a finite time horizon or by im-
posing the condition

lim
T→∞

M ′
T qT = 0 .

It is, however, interesting to know that bubbles occur naturally in an
infinite horizon model, given that they also form on real financial markets.
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5.5 Pareto Efficiency

5.5.1 First Welfare Theorem

As in the two-period case (see Sec. 4.1), we can prove that market equilibria
in complete markets are Pareto-optimal, i.e., there is no improvement for
investors possible that don’t make some other investors worse off. We first
have to generalize the necessary definitions to the multi-period case:

Definition 5.7 (Attainability). An allocation of consumption streams
{{θi,cons

t (ωt)}T
t=0}I

i=1 is attainable if each component is in the consumption
set of the agent and if it does not use more consumption than is available
from the dividend process D and exogenous endowments:

I∑

i=1

θi,cons
t (ωt) =

K∑

k=1

Dk
t (ωt) +

I∑

i=1

wi
t(ω

t) for every ωt, t = 0, 1, 2, . . . , T .

Accordingly, Pareto efficiency needs to be adapted.

Definition 5.8 (Pareto efficiency). In a financial market the allocation of
consumption streams {{θi,cons

t (ωt)}T
t=0}I

i=1 is Pareto efficient if and only if it
is attainable and there does not exist an alternative attainable allocation of
consumption streams {{θ̂i,cons

t (ωt)}T
t=0}I

i=1, such that no consumer is worse
off and some consumer is better off:

U i
(
{θ̂i,cons

t (ωt)}T
t=0

)
≥ U i

(
{θi,cons

t (ωt)}T
t=0

)
for all i, and > for some i.

Now we are in a position to state the First Welfare Theorem.

Theorem 5.9 (First Welfare Theorem). In a complete financial market,
the allocation of consumption streams in any market equilibrium is Pareto
efficient.

Note that market efficiency does not rule out that some agents consume
much more than others. From the perspective of fairness, this might not be
optimal.

Proof (First Welfare Theorem). Suppose {{θ̂i,cons
t (ωt)}T

t=0}I
i=1 is an attain-

able allocation that is Pareto-better than the financial market allocation, i.e.,

U i
(
{θ̂i,cons

t (ωt)}T
t=0

)
≥ U i

(
{θi,cons

t (ωt)}T
t=0

)
for all i, and > for some i.

Why did the agents not choose {{θ̂i,cons
t (ωt)}T

t=0}I
i=1?

Since markets are complete the alternative allocation must have been too
expensive:

∑

t

∑

ωt

πt(ωt−1ωt)θ̂
i,cons
t (ωt−1ωt) >

∑

t

∑

ωt

πt(ωt−1ωt)θ
i,cons
t (ωt−1ωt) .
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Summing up over consumers gives:
∑

i

∑

t

∑

ωt

πt(ωt−1ωt)θ̂
i,cons
t (ωt−1ωt) >

∑

i

∑

t

∑

ωt

πt(ωt−1ωt)θ
i,cons
t (ωt−1ωt) ,

therefore (by market clearing)

∑

t

∑

ωt

πt(ωt−1ωt)
[∑

i

θ̂i,cons
t (ωt−1ωt)

︸ ︷︷ ︸
∑

k Dk
t (ωt−1ωt)

+
∑

i

wi
t(ω

t−1ωt)
]

>
∑

t

∑

ωt

πt(ωt−1ωt)
[∑

i

θi,cons
t (ωt−1ωt)

︸ ︷︷ ︸
∑

k Dk
t (ωt−1ωt)

+
∑

i

wi
t(ω

t−1ωt)
]

which is a contradiction.

The results so far only uses that the agents’ utility functions are increas-
ing in θi,cons

t . Moreover, if the functions are smooth, i.e. continuously differ-
entiable, and if boundary solutions are ruled out, Pareto efficiency can be
defined using the consumers’ marginal rates of substitution and we have for
all investors i, j:

MRSi
s,z =

∂θcons
s

U i(ci)
∂θcons

z
U i(ci)

=
∂θcons

s
U j(cj)

∂θcons
z

U j(cj)
= MRSj

s,z. (5.4)

The graphical representation of this efficiency concept can also be illustrated
in the Edgeworth Box (compare Figure 4.8).

5.5.2 Aggregation

As in the two-period model we can now use Pareto efficiency to aggregate a
heterogeneous investor economy into a single representative investor decision
problem. As a result, asset prices can be described by marginal rates of sub-
stitution based on aggregate consumption. If the representative agent’s utility
is of the expected utility type, then in any point in time we get

qk
t−1(ω

t−1) =
δt−1(ωt−1)
u′(c(ωt−1))

∑

ωt∈Ωt

pt−1(ωt−1)u′(c(ωt))[Dk
t (ωt) + qk

t (ωt)] ,

where δ is the discount factor process and u is the von Neumann-Morgenstern
risk utility of the representative investor.
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5.6 Dynamics of Price Expectations

In the previous chapter we studied the short-run (intraday) price adjustment
dynamics. Now we are in a position to develop a simple model in which we can
study the medium-run (months or quarters) dynamics of price expectations.
Finally, at the end of this chapter we will then study the long-term (years
or decades) dynamics of wealth evolution. As mentioned before, whenever we
study one type of dynamics we blend out the other two types of dynamics by
either keeping fixed those variables that are the subject of the other dynamics,
or by assuming an infinitely quick adjustment in the other variables.15 For the
case of price expectation dynamics this means assuming that in the short-run
prices adjust perfectly to the demand and supply while we keep the wealth of
the agents fixed.

In the model of price expectation dynamics we consider two types of in-
put data (previous prices used by chartists and fundamental values used by
fundamentalists) on which the price expectations are formed and we combine
this with two types of expectation rules: momentum and reversal. Hence, we
study the interaction of four types of expectation formations: momentum or
reversal rules for chartists and fundamentalists.

5.6.1 What is Momentum?

We first have to add a little excursion into the topic of momentum to see that
the idea to base expectations solely on previous prices is not as way off as
one might think: at first glance the efficient market hypothesis would say that
information is always already incorporated into the current price – at least
when we consider time scales above split-seconds, since in times of algorithmic
trading it takes only as long to trade on newly arriving information.16 The
prices should therefore completely be driven by news. Since the prices do not
effect the news, we would not see any useful pattern in them. So how comes
that then there is still information in the prices?

This is indeed a puzzling observation. One of the most prominent and
well-established examples for the effect is the momentum effect: investing
in assets that had previously outperformed the market leads on average to
excess returns, even when controlling for risk. This phenomenon has been
observed by De Bondt and Thaler [DBT85] and more detailed by Jegadeesh
and Titman [JT93] and by Lakonishok, Shleifer and Vishny [LSV92, LSV94]
15 Considering different speeds of adjustment in economic dynamics was first sug-

gested by Samuelson [Sam64].
16 In fact, trading is so fast nowadays, that even the physical distance from the stock

exchange plays a role, as buying and selling orders are transmitted via cables
and since the speed of light and particularly the processing times of signals at
switching points are limited, a trading computer on Wall Street can react so much
faster than its colleague a few blocks away that the latter does not stand a chance
in competing when trying to exploit new information on the short-run.
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and Chan, Jegadesh and Lakonishok [CKL96]. The result has, as usual, first
been studied for the US market, but in the meanwhile it has been found also
on many other markets [Rou98, SDBW99], although there seem to be cultural
differences in its intensity, see Chui and Titman [CTW]. The connection to
trading volume has been studied by Lee and Swaminathan [LS00].

The momentum effect disappears on long time scales (years), where instead
a reversal is observable.

There are several competing explanations for momentum and why it is
so persistent. Barberis, Shleifer and Vishny [BSV98] use an underreaction
explanation for short-term momentum, and an overreaction explanation for
long term reversals. They postulate that investors believe earnings growth
always to be in one of two regimes, a mean-reverting regime that applies most
of the time and (occasionally) a trend regime. Since a representative investor
never knows exactly in which regime the market is, he can only try to infer the
likelihood of the prevailing regime from the price history. The real earnings
in the model are random, so an investor who observes a number of earnings
surprises in one direction will conclude that the regime has switched to a trend
regime and will react to this, causing a momentum effect.

Daniel, Hirshleifer and Subrahmanyam [DHS98] provide an alternative ex-
planation based on the existence of private signals and overconfident reaction
to them and afterwards a too slow adjustment to “reality”.

Finally, we want to mention the work by Hong and Stein [HS99]. Their
model comes close to what we want to discuss in the next section: they con-
sider a market with two investor types, “newswatchers” (fundamentalists) and
“momentum traders” (chartists). In their model news travel slowly, leading
initially to an underreaction of prices and thus to some price trend. This trend
is picked up by momentum traders who want to participate from the resulting
price drift. This reinforces the price drift and an overreaction takes place. The
result is a strong momentum effect on the medium-run, but finally, when it
comes to a correction, a price reversal occurs.

For a nice summary of momentum-reversal theories and further insights
we refer to [She00].

5.6.2 Dynamical Model of Chartists and Fundamentalists

Let us model more closely price expectation dynamics with two investor
groups: chartists and fundamentalists, where chartists use previous price data
while fundamentalists rely on fundamental values.

The steady state of the dynamical system is characterized by the dis-
counted dividends rule, and the stability of it will depend on the relative
proportions of investors with different types of price expectation. To keep
things simple, we assume that given his price expectations every trader max-
imizes a mean-variance utility for one period ahead. The model we develop is
similar to the famous Brock and Homes [BH97] model.
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As before, we assume that the economy follows a discrete time tree model
with a finite number of states in each period. Since the maximization prob-
lems span two-periods only, we switch back to the notation of Chap. 4. The
following then defines the maximization problem for any trader i = 1, . . . , I
in any period of time t with s = 1, . . . , S states of the world:17

The utility of agent i is of the mean-variance type:18

U i(ci1, . . . , c
i
S) = μ(ci1, . . . , c

i
S) − γi

2
σ2(ci1, . . . , c

i
S).

Note that his consumption in state s is given by cis = λi,cRi
sλ

iwi,f and recall
the budget constraint19

∑K
k=0 λ̂

i,k = 1. Since we did not state the time depen-
dence explicitly, let us point out that the consumption in state s is given by
the consumption rate of that period applied to the wealth in state s, which is
obtained from the previous period financial wealth20 multiplied by the gross
return obtained in state s: Ri

sλ̂
i =

∑K
k=0R

i,kλ̂i,k. Hence, for any portfolio λ̂
we get a utility from that portfolio:21

U i(λ̂i,0, . . . , λ̂i,K) = wi,f

(
μ(λi,cRiλ̂i) − γiwi,f

2
σ2(λi,cRiλ̂i)

)
.

The solution is as before22

λ̂i =
(
COV (Ri)

)−1 μ(Ri) −Rf

γiλi,cwi,f
,

which we can write in economic terms as

θi =
1
γi

(
COV (Ai)

)−1 (
μ(Ai) −Rfq

)
.

Recall that in the multi-period model payoffs are given by dividends and resale
prices, i.e.

Ai(ωt) = Di(ωt) + qi(ωt).

17 To simplify matters we first suppress all time and uncertainty dependence in this
generic one step ahead optimization problem.

18 Ri,k
s is the return agent i expects to get from asset k if state s occurs.

19 Recall that in Chap. 4 k = 0 was the risk-free asset.
20 I.e. the wealth not consumed, but spent on financial assets.
21 To be mathematically correct one should introduce a different symbol for a utility

function if it depends on different variables than before. However, adding more
notation will be confusing to many readers.

22 Again, the notation is used: μ(Ri) is a vector in R
k but Rf is a scalar. A more

correct notation would be μ(R̃i)−Rf1, where R̃i denotes the matrix of risk assets
and 1 ∈ R

k is a vector with 1 in each entry.
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We assume that conditionally on ωt agents agree on the dividend matrix,
and we assume point expectations,23 i.e. qi

t is independent of (ωt). Then, the
demand in period t given the expectations for the next period is

λ̂i
t =

1

γiλi,c
t wi,f

t

Λ(qt) (COV (Dt+1))
−1 (

μ(Dt+1) + qi
t+1 −Rfqt

)
.

Normalizing the supply of each asset to 1, assuming short-run equilibrium and
defining

γ̄−1 =
I∑

i=1

(γi)−1

gives

I∑

i=1

λ̂i
t w

i,f
t = qt = Λ(qt) (COV (Dt+1))

−1

(
μ(Dt+1)

γ̄
+

I∑

i=1

qi
t+1

γi
− Rfqt

γ̄

)
.

Multiplying both sides by Λ(q)−1
k and COV (Dt+1) and defining DM =∑K

k=1D
k, for any asset k gives

qk
t =

μ(Dk
t+1) − γ̄tCOV (Dk

t+1, D
M
t+1) +

∑I
i=1 δ

iqi,k
t+1

Rf
,

where
δi =

γ̄

γi
.

Hence, the price of any asset k in period t is given by the discounted expected
dividends minus the risk of those dividends relative to the market dividends
plus the average expected price for the next period.

Before we analyze the dynamics of the model we first characterize its
steady state stationary solution. To this end we assume that the trading
strategies λ̂i, the consumption rates λi,c, the expected dividends μ(D) and
the covariance COV (D) are all stationary. Then, the price equation reduces
to:

q̄k =
μ(Dk) − γ̄COV (Dk, DM )

rf
,

which is equal to the discounted expected dividends of the constant payoff

μ(Dk) − γ̄COV (Dk, DM )

23 The first assumption is not restrictive, since in case two agents were to disagree
on the dividends in one of the states, one might introduce more states and let the
agents disagree over the occurence of the states. The second assumption is strong.
The only excuse we have is that it is sufficient to generate interesting dynamics –
and that it is convenient in the Brock-Homes-Model.
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discounted at Rf = 1 + rf . Recall Rf = 1 + rf and substitute

γ̄ =
μ(DM ) − rfq

M

σ2(DM )
,

from summing the above formula over k. Then we obtain
(
q̄k − μ

(
Dk

rf

))
= βk

(
q̄M − μ

(
DM

rf

))
,

where

βk =
COV (Dk, DM )

σ2(DM )
.

Hence, we have derived a Security Market Line formula similar to that of the
static CAPM, but in terms of first principles: dividends and the risk-free rate!

Now we model some structure on the price expectations more explicitly.
There are two types of traders: chartists i ∈ C and fundamentalists i ∈ F .
Chartists only use price data as an input for forming their price expectations
while fundamentalists compare current prices to the long term steady state
prices. Chartists form the price expectations

qi,k
t+1 = qk

t + ai,k(qk
t − qk

t−1)

with ai,k > 0 being a momentum chartist and ai,k < 0 being a reversal
chartist. Fundamentalists form the price expectations

qi,k
t+1 = qk

t + bi,k(q̄k − qk
t )

with bi,k > 0 being value investors and bi,k < 0 being growth investors.
Note that the price dynamics developed above is an inhomogeneous first

order difference equation. Such a dynamical system converges to its steady
state q̄ iff the absolute value of the coefficient in front of the price variable∑I

i=1 δ
iqi,k

t+1 is smaller than one.24 Thus we can ignore those forms that do
not depend on prices. Inserting the expectation functions we get:

Rfq
k
t =

∑

i∈C

δi
(
qk
t + ai,k(qk

t − qk
t−1)

)
+
∑

i∈F

δi
(
qk
t + bi,k(q̄k − qk

t )
)
.

Rearranging while ignoring constant terms we get:

24 For a proof, we show that the iteration Xn+1 := aXn + b always converges if
|a| < 1. To see this, we compute the fixed point of the iteration as X = b/(1− a),
i.e. if Xn = b/(1 − a) then Xn+1 = Xn. Then we consider the squared difference
of Xn to the fixed point and show with a small computation that it is decreasing.
From this we can deduce that Xn indeed converges. We can apply this auxiliary
result to the dynamic system above.
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(
∑

i∈C

δi(1 + ai,k) +
∑

i∈F

δi(1 − bi,k) −Rf

)
qk
t =

(
∑

i∈C

δiai,k

)
qk
t−1

or qk
t =

(∑
i∈C δ

iai,k
)

(∑
i∈C δ

iai,k −
∑

i∈F δ
ibi,k − rf

)qk
t−1 =:

ā

ā− b̄−Rf
.

Thus, in the stability analysis of the dynamical system we need to consider
four cases in which we would get stability of the steady state:

Case 1

(numerator and denominator positive)
This happens, e.g. with strong momentum and weak value. Consequently sta-
bility occurs iff ∑

i∈F

δibi,k +Rf < 0,

which is unlikely since Rf > 1.

Case 2

(numerator positive and denominator negative)
This happens, e.g. with reversal and strong growth. Consequently stability
occurs iff

2
∑

i∈C

δiai,k <
∑

i∈F

δibi,k +Rf ,

which can be since in this case
∑

i∈C

δiai,k < 0 and
∑

i∈F

δibi,k < 0.

Case 3

(numerator negative and denominator positive)
This happens, e.g. with reversal and strong growth. Consequently stability
occurs iff ∑

i∈F

δibi,k +Rf < 2
∑

i∈C

δiai,k,

which is well possible.

Case 4

(numerator and denominator negative)
This happens, e.g. with reversal and value or weak growth. Stability occurs
iff

0 <
∑

i∈C

δiai,k <
∑

i∈F

δibi,k +Rf ,
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which is possible if the reversal is not too strong relative to value.
Thus, reversal chartists and value fundamentalists stabilize the dynamic

system while momentum and growth destabilize it. This conclusion is quite
intuitive, but the model makes clear that it depends on quite some assump-
tions: two-period mean-variance optimization with homogeneous beliefs on
dividends and point expectations for prices.

Brock and Hommes [BH98] enrich the dynamics of this model by changing
the number of traders of each type according to the performance along the
paths of the model. Interesting new phenomena like chaotic dynamics may
occur. But the general conclusion that reversal chartists and value fundamen-
talists stabilize the economy is still true in the extended model.

5.7 Survival of the Fittest on Wall Street

We finish this section by analyzing the long term dynamics of our model,
the evolution of wealth over time and uncertainty. A first result shows that
assuming complete markets, perfect foresight and intertemporal utility maxi-
mization, the wealth of investors with rational expectations will grow fastest
in a financial market equilibrium.

5.7.1 Market Selection Hypothesis with Rational Expectations

We can use the Pareto efficiency property of competitive equilibria to formu-
late a Market Selection Hypothesis that determines which investor survives
best in the dynamics of the market in terms of (relative) wealth over time. If
every investor has some expected utility function with the same time prefer-
ences, but possibly different risk attitude, and if payoffs are stochastic, then
investor i will dominate investor j if his beliefs on the occurrence of the states
are more accurate. Note that the investor’s dominance is not defined over his
strategy, but on his ability to make good estimates.

To get some intuition, let investors maximize their expected utilities:

Eui =
T∑

t=0

δt
∑

ωt∈Ωt

pi
t(ω)ui(θi

t(ω
t)) .

They may differ with respect to the risk preferences ui(·) and their personal
beliefs pi(ω) for the occurrence of a particular event ω. But they have the
same degree of time discounting. Consider the marginal rate of substitution
of two expected utility investors between two states s and z. Pareto efficiency
requires them to equalize, i.e. (5.4) needs to hold. If investors differ in their
beliefs (expectations) for state s, e.g., pi

s > pj
s, there must also be some states

such that pi
z < pj

z. Then cis > cjs and ciz < cjz to ensure equality (5.4).25

25 This result follows from the decreasing marginal utility. The more wealth an
investor receives the lower is his marginal utility.
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Thus, the better the agents’ beliefs, the more those agents get in the more
likely states. Hence, their wealth will grow faster. Note that the only one
requirement for our fitness criteria to hold is decreasing marginal utilities as
in the expected utility framework.

The result that investors get more wealth in those states to which they
assign a higher probability goes back to Sandroni [San00] and (under more
restrictive assumptions) to Blume and Easley [BE82]. They formulate a theo-
rem for competitive equilibria with perfect foresight that selects for consumers
with correct beliefs. It says that in dynamically complete markets with two
expected utility investors i and j with different beliefs such that P i = P (in-
vestor i has correct beliefs) and P j �= P , where the dividend process is i.i.d.,
the wealth relation W i

t /W
j
t → ∞ (P -almost surely), as t→ ∞, with W i

t (W j
t )

as the relative wealth of investor i (j). In other words, excluding “impossible”
events in the long-run, investor i is wealthier than investor j if he makes bet-
ter predictions. As Blume and Easley [BE92] have recently shown, the result
does however not hold for incomplete markets.

5.7.2 Evolutionary Portfolio Theory

In the following we want to derive market selection results for any complete
or incomplete market and without assuming that investment strategies are
generated by intertemporal expected utility maximization with perfect fore-
sight and rational expectations. To this end we use an analogy to the biological
evolution discovered by Charles Darwin. The first point Charles Darwin made
was that for the evolution we do not need to model the interaction of the in-
dividuals, but the interaction of the strategies played by individuals, i.e., the
interaction of the species. From an evolutionary point of view the fate of a
single individual animal counts nothing as compared to the relative size of the
population of its species. Hence, we suggest to stratify the financial markets
not in terms of individuals but in terms of strategies. For the market it is to-
tally irrelevant who is investing according to, say, mean-variance or Prospect
Theory or rules of thumb. The only thing that matters is how much money is
invested according to such a criterion. In biology strategies fight for resources
like food. In finance strategies fight for market capital.

In an evolutionary model there are two forces at play: the selection force
reducing the set of strategies and the mutation force enriching it. You see
the selection force in financial markets when you realize that every loss some
strategy made by buying at high prices and selling at low prices must have
generated an equally sized gain for a set of counterparties. The mutation force
is clearly seen if you look back a bit in history and observe that previously
popular strategies like trying to corner a market are no longer so frequent while
new strategies like those followed by hedge funds have emerged. Ultimately,
what the evolutionary finance model tries to explain is how the ecology of the
market evolves over time, i.e., how the distribution of wealth across strategies
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changes over time. In the following we will outline the theoretical foundation
for it, compare also [HSH09, DLW91, LAP99].

Note that the evolutionary model is based on observables like strategies.
We claim that for the vast majority of capital the strategy according to which
it is managed is in principle observable. This is because most capital is man-
aged by delegation and in this process the principal (the investor) wants the
agents (the wealth manager) to commit to some strategy in order to simplify
monitoring. Indeed many banks compete for investors’ money by advertis-
ing strategies they want to commit to. Moreover, the evolutionary approach
takes a “flow of funds” perspective. It claims that understanding according to
which principles wealth flows into strategies is the key to understand where
asset prices are going. The flow of funds consideration is very popular in prac-
tice – even regarding daily price levels. This is because we have now reliable
data on flows of funds, between mutual funds and hedge funds, for example.
We are more skeptical that the flows approach is useful for daily data – within
one day (or even within minutes) prices can change drastically on the occur-
rence of strong news without any high volume of trade. On the other hand
one can get good predictions on the longer run, on monthly data for example,
from the flows approach.

Let us now try to make these vague ideas a bit more precise.

5.7.3 Evolutionary Portfolio Model

We base our evolutionary model again on the Lucas [LJ78] asset pricing model.
This has two advantages. First, the Lucas model is a model that makes sense
from an economic point of view. The time uncertainty structure is simple
enough to penetrate, budget equations and homogeneity properties are sat-
isfied. Moreover, displaying our new ideas in this traditional model will help
to asses the differences of the two. Recall from the traditional finance model
that the Lucas model is defined in discrete time, i.e., t = 0, 1, 2, . . . , T . The
information structure ({Ωt}t) and probability measure (P ), the payoffs, the
long-lived assets (k = 1, . . . ,K) in unit supply (enabling wealth transfers over
different periods of time) as well as the perishable consumption good (“k = 0”)
are still given as in Sec. 5.1, but instead of individual investors let i = 1, . . . , I
now denote investment strategies.

All assets pay off in terms of the consumption good. This clear distinction
between means to transfer wealth over time and means to consume is taken
from Lucas [LJ78]. Hens and Schenk-Hoppé [HSH] show that this assumption
is essential when taking the evolutionary perspective: if the consumption good
were non-perishable and hence could also be used to transfer wealth over time,
then every strategy that tries to save using the consumption good will be
driven out of the market by the strategy that does not use the consumption
good to transfer wealth over time, but otherwise uses the same investment
strategy. As in the traditional model, we use the consumption good as the
numeraire of the system. Note that one of the long-lived assets could be a
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bond paying a risk-free dividend. Bonds may however be risky in terms of
their resale values, i.e., in terms of the prices qk

t+1 (≡ qk
t+1(ω

t+1) ).
The evolutionary portfolio model we propose studies the evolution of

wealth over time as a random dynamical system (RDS). A dynamical sys-
tem is an iterative mapping on a compact set that describes how a particle
(in our model the relative wealth among strategies) moves from one position to
the next. In a random dynamical system this movement is not deterministic,
but subject to random shocks. An example of a random dynamical system is
the famous Brownian motion describing the stochastic movement of a particle
in a fluid. Note that in contrast to traditional finance we assume that in order
to “predict” the next position of the particle one is not allowed to know the
realizations of future data of the system, i.e., we do not allow for perfect fore-
sight of prices! Yet it may happen that under certain nice conditions the limit
position of the RDS could also be described “as if” agents were maximizing
expected utility under perfect foresight. For an example see Exercise 5.2.

As in the traditional model, we start from the fundamental equation of
wealth dynamics:

W i
t+1 =

K∑

k=1

Dk
t+1 + qk

t+1

qk
t

λi,k
t W i

t ,

with
∑K

k=1 λ
i,k
t = 1 − λi,c

t for all i and t. From one period to the next the
wealth of any strategy i is multiplied by the gross return it has generated
by its portfolio strategy λi,k

t (≡ λi,k
t (ωt)) executed in the previous period.26

Returns come from two sources, dividends and capital gains, but there is no
exogenous wealth wi

t.
In every period asset prices are determined by the equilibrium between

demand and supply within that period. Since Dk
t+1 was meant to denote the

total dividends of asset k, we have normalized the supply to one, and as before
equilibrium prices are given by:

qk
t =

I∑

i=1

λi,k
t W i

t

In other words, the price of asset k is the wealth-average of the strategies’
portfolio share for asset k.

Note that wealth, dividends and prices may all be subject to some growth
rate like the rate at which nominal GDP is growing. However, for analyzing
what is the best way of splitting your wealth among the long-lived assets, we
can restrict attention to relative wealth, relative dividends and relative prices
getting rid of the absolute growth rates. To do so we assume that all strate-
gies have the same time independent consumption rate λc. The fundamental
equation of wealth evolution written in relative terms is given by:

26 Note that up to now we did not make any assumption on how the portfolio
strategy λi,k

t (ωt) executed at ωt is determined!
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ri
t+1 =

∑

k

λcdk
t+1 + q̂k

t+1

q̂k
t

λi,k
t ri

t ,

where

q̂k
t+1 =

qk
t∑

i W
i
t

, dk
t+1 =

Dk
t+1∑

k′ Dk′
t+1

, ri
t =

W i
t∑

i W
i
t

.

Here we used that only dividends are consumed27

λc
I∑

i=1

W i
t =

∑

k

Dk
t .

In deriving the fundamental equation of wealth evolution written in rela-
tive terms we did however make one important assumption: all strategies have
the same consumption rate λc. The justification of this assumption is that we
are searching for the best allocation of wealth among the long-lived assets. It
is clear that among two strategies with otherwise equal allocation of wealth
among long-lived assets the one with a smaller consumption rate will eventu-
ally dominate. Written in relative terms the asset pricing equation keeps its
nice form.The relative asset prices are simply the convex combination of the
strategies in the market:

q̂k
t =

∑

i

λi,k
t ri

t .

In terms of evolutionary game theory this means that strategies are “playing
the field”, i.e., one strategy has an impact on any other strategy only via the
average of the strategies. Careful reading of the wealth flow equation reveals
that the flow of wealth is not already described by a dynamical system. We
would like to have a mapping from the relative wealth in one period rt :=
(r1t , . . . , r

I
t )) to the relative wealth in the next period rt+1 = (r1t+1, . . . , r

I
t+1).

But ri
t+1 also enters on the right hand side because capital gains do depend on

the strategies played. Fortunately, the dependence of capital gains of strategies
wealth is linear so that we can solve the wealth flow equation in the RDS-form.
In the resulting equation, the inverse matrix captures the capital gains. Note
that the I ×K matrix Λt+1 := (λ̂i,k

t+1)i,k is the matrix of portfolio strategies,

rt+1 = λc

⎛

⎝Id −
[
λ̂i,k

t ri
t

λ̂·,kt r·t

]

i,k

ΛT
t+1

⎞

⎠
−1 [

∑

k

dk
t+1

λ̂i,k
t ri

t

λ̂·,kt r·t

]

i

,

where as before λ̂i,k
t = λi,k/(1 − λc), so that

∑
k λ̂

i,k
t = 1.

Note that this equation is a first order stochastic difference equation de-
scribing a mapping from the simplex � into itself.
27 Formally, this identity follows from aggregating W i

t =
∑

k(Dk
t + qk

t )θi,k
t−1 over all

agents noting that
∑

k qk
t = (1 − λc)

∑
k W i

t .
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rt+1(ωt+1) = Ft(ωt+1, rt) rt rt+1
Ft ��

��
��
��
��

t

�������� ��
��
��
��

t+1

��������

Let us summarize the assumptions made so far. We used Lucas’ [LJ78]
distinction between means to transfer wealth over time and means to con-
sume, we assumed that all strategies have the same consumption rate and by
writing the Lucas model as a RDS we assumed that strategies are not allowed
to use information that is not available at the time when executed. Every of
these assumptions seems well justified to us. Note that in contrast to many
other economic models generating dynamics we did not make any simplify-
ing assumptions like linear demand functions, usually justified by first order
Taylor approximations or by mean-variance optimization. One has to be very
careful when making these seemingly innocuous assumptions. When iterating
a dynamical system terms of higher order may accumulate so that the real
dynamics of the system looks quite different from the dynamics of the system
based on the simplifying assumptions.

It might be instructive to variegate our model at this point with a little
simulation. Fig. 5.8 shows a typical run of a simulation with two strategies,
a strategy generated from mean-variance analysis (solid line) and the naive
diversification rule of fixing equal weights in the portfolio (dotted line). Even
though initially the wealth of the mean-variance rule accounts for 90% of the
market wealth after a few iterations the situation has reversed and the 1/n
rule has 90% of the market wealth. This wealth dynamics is reflected in the
asset prices: they initially reflect the mean-variance rule but rapidly converge
to the 1/n rule.

0.9

0.1
t

Fig. 5.8. Market shares (mean-variance rule vs. 1/n rule)
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This shows that seemingly rational portfolio rules like mean-variance can
do quite poorly against seemingly irrational rules like 1/n – a result that was
first pointed at by DeLong, Shleifer, Summers and Waldman [DLSSW90] and
recently found empirical support in DeMiguel, Garlappi and Uppal [MGU09].
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Fig. 5.9. Sample run of a simulation with six strategies

5.7.4 The Unique Survivor: λ�

We conclude our simulation analysis by including the expected relative divi-
dends portfolio λ̂∗,k = EP d

k, k = 1, . . . ,K, in the market selection process.
As a result the process always converges to the situation in which all the mar-
ket wealth is concentrated at the strategy λ̂∗. Figure 5.9 shows a typical run
of the simulation. An analysis of the standard deviation bands of this simu-
lation would show that they do not widen but get tighter as time goes on,
indicating that the process converges. We displayed the expected dividends
rule in competition with a mean-variance and conditional value-at-risk (VaR)
rule, as well as an approximation to the growth optimal rule maximizing the
expected logarithm of returns by means of Cover’s algorithm [Cov84], the
equal weights or naive diversification portfolio 1/n, and a portfolio based on
Prospect Theory.

Our conjecture from these simulations is: starting from any initial distribu-
tion of wealth, on P-almost28 all paths the market selection process converges
to λ̂∗ if the dividend process d is i.i.d.
28 That is to say on all paths except for those that are highly unlikely, i.e. those that

have measure zero according to the probability measure P . For example, if P is
i.i.d., every infinite sequence in which some state is not visited infinitely often has
measure zero.
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Indeed, it can be even shown analytically, that if dividends d follow an
i.i.d. process and we only consider stationary adapted strategies, then

λ�,k = (1 − λc)Epd
k
(ω).

is the unique evolutionary stable strategy. The key to understand this result
is the notion of expected growth rate of wealth of any strategy λ̂ in a market
governed by strategy λM :

g(λ̂, λ̂M ) = Ep ln

(
1 − λc + λc

K∑

k=1

dkλ̂k

λ̂M,k

)

Note that g(λ̂M , λ̂M ) = 0, i.e. if all strategies are identical then none can grow
at the cost of others. The evolutionary stability property is g(λ̂, λ̂�) < 0, hence
all strategies die out in a market governed by λ�. Moreover, it is apparent that
under-diversified strategies have no chance to survive [EHSH06].

Over recent years even more general statements have been proven – but
for those, as well as for further applications, stability analysis or empirical
tests as well as for alternative formulations of evolutionary models, we refer
to [Sch09].

5.8 Summary

The multi-period model is an important generalization of the two-period case.
While traditional finance highlights the similarities of this model to the two-
period model, no-arbitrage pricing, financial market equilibria, Pareto effi-
ciency and aggregation, the analysis of dynamics like price expectations and
wealth dynamics explores the new insights that are then possible.

There are a number of textbooks that cover the standard theory of this
chapter. For further reading we recommend [Coc01, Duf96, MQ02].

5.9 Tests and Exercises

5.9.1 Tests

1. We want to compare the multi-period model with the two-period model
of the previous chapter. How can we describe a two-period model with
the state s0 in t = 0 and three possible states s1, s2, s3 at time t = 1 in
the new terminology?
� We define Ωt = st.
� We define Ω0 = s0 and Ω1 as s1, s2 or s3, depending on which state

occurs at t = 1.
� We define Ω0 = {s0} and Ω1 = {s1, s2, s3}.
� We define Ω0 = {s0} and Ω1 = {s0, s1, s2, s3}.
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2. Which of the following statements on the Ponzi scheme are correct?
� It works only in an infinite horizon model.
� It can be understood as a long-term bubble.
� It means taking larger and larger loans for repaying old loans and

financing consumption.
3. Which of the following statements on wealth dynamics are correct on a

complete market with two expected utility investors, where the first one
estimates probabilities correctly, the second one does not?
� Depending on their risk attitudes, any of them can survive on the

market in the long-run.
� The first investor will survive on the market in the long-run.
� The second investor will be driven out of the market almost surely in

the long run.
4. What can we say about momentum?

� Investing in assets that have performed well in the last six months is
a strategy that is successful on average.

� Momentum is a behavioral bias that explains why people buy stocks
that are already overpriced.

� Explanations of the momentum effect often involve under- and over-
reaction of stock market participants.

5. In evolutionary finance...
� ... investors fight for survival by competing on the market.
� ... investment strategies fight for survival by competing on the market.
� ... only the asymptotical behavior for t→ ∞ is of interest.

6. What can we say about the strategy λ∗?
� It is the asymptotical strategy of a certain market environment.
� It means investing into the expected relative dividend portfolio.
� In very general cases, λ∗ is the only evolutionary stable strategy.

5.9.2 Exercises

5.1. Let us consider the following three-period model where the returns of
two assets are marked at each node:

node 0

node 1
[1, 1]

������

[2, 1]������������

[1, 1]
������������

node 2
[1, 0]

��
��

��

[2, 2]������������

[1, 1]
������������

.

Is the market with these two assets complete? Prove your answer!
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5.2. Consider a T -period economy with i.i.d. relative dividends Dk/
∑

j D
j .

The investors are all expected utility maximizers with homogeneous rational
beliefs. The investor i has the utility

U i(ci) = EP

∞∑

t=1

(δi)t log(cit).

Show that

λi,k
t = (1 − λi,c)EP

(
Dk

∑
j D

j

)

is a perfect foresight equilibrium.

5.3. Let us assume that a state’s debt level is increasing with a higher rate
than its gross domestic product and this continues to be the case over time.
Can you connect this observation with a Ponzi scheme or a bubble? Make a
formal model to prove your point!

5.4. Consider a model with infinite time periods. Assume an asset does not
have any dividends, i.e., let Dt = 0 for all t. Prove that there exist consump-
tions ci and prices qi, i = 1, 2, . . . such that q0 > 0, i.e., the price of the asset
at t = 1 is positive.

5.5. Assume an economy with three time periods t = 0, 1, 2 with two assets
and a representative expected log-utility maximizer, who has no time discount-
ing. In t = 1 there are two equally likely states u and d. If u (d) occurred, the
economy switches with equal probabilities into the states uu (du) and ud (dd).
One asset is a riskless bond, which pays 1 in every period (also in t = 0), and
a risky stock, which pays 1 in t = 0, 2 in u and uu, 0.5 in d, ud, dd and 1.5 in
du. The initial endowment of the representative investor, θ−1, is one unit of
the bond and one unit of the stock. There is no other source of income.

(a) Which is the stock price in t = 2?
(b) Determine the equilibrium prices of the bond and the stock in t = 0 and

in the two states in t = 1.
(c) Is the market complete?
(d) Determine the state prices.
(e) Is the market arbitrage-free?
(f) Calculate the arbitrage-free value of a European call in t = 0 with ma-

turity t = 2. The strike price is 1 and the payoff of the call is in t = 2:
(payoff of the stock − strike price)+.

(g) Calculate the arbitrage-free value of an American call with the same strike
and the same payoff function. But additionally the option can be exer-
cised at any point before. The payoff is then (stock price with dividends−
strike price)+.

(h) Calculate the risk-free rates in period 0 with maturity t: Rf,t = 1 + rf,t.
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(i) Check that the following relations hold for the stock between t = 0 and
t = 1:
i. qk

t = 1
1+rf,t

Eπ∗
t

(
Dk

t+1 + qk
t+1

)

ii. Eπ∗
t

(
Rk

t+1

)
= Rf,t

iii. EPt

(
Rk

t+1

)
= Rf,t − covPt

(
Rk

t+1, lt+1

)
with l = π∗

P

5.6. The actual interest rate of a risk-free zero coupon bond over five years is
3% and for a time period of eight years it is 5%. Determine the forward rate
f(0, 5, 8) by no-arbitrage.

5.7. Determine the equilibrium risk-free interest rate in a two-period econ-
omy without uncertainty, with a representative investor with log-utility and a
discount factor of 1

1+δ . The initial endowment of the agent is wt for the actual
time period and wt+1 for the next time period. The price of the consump-
tion good is in the actual period pt and pt+1 in the next period. Express the
nominal risk-free rate in terms of time preferences and the nominal growth
rate (i.e. the percental change of the value of the consumption between t and
t+ 1).

5.8. There is a three-period economy with t = 0, 1, 2 and a representative
investor with a utility function:

U(c) = ln(c0) +
1

1 + δ
E (ln(c1)) +

1

(1 + δ)2
E (ln(c2))

The agent can only trade in t = 0, with bonds with a time to maturity of
1 and 2 and with the forward f(0, 1, 2).

(a) Assume that there is no uncertainty in the model, i.e. the initial endow-
ment is w0, w1 and w2. Furthermore, the prices of the consumption goods
are p0, p1 and p2. Determine the term structure and the forward rate at
t = 0 and the realized spot rate in t = 1.

(b) Assume now that the investor discounts hyperbolically, i.e.

UH(c) = ln(c0) +
1

1 + β

(
1

1 + δ
E (ln(c1)) +

1
(1 + δ)2

E (ln(c2))

)
.

Determine the term structure and the forward rate at t = 0 and the
realized spot rate in t = 1.

(c) In the case with the standard time discounting uncertainty is added to the
model. The initial endowment and the prices in t = 0 remain unchanged.
But in t = 1 there is a liquidity shock and the economy switches into an
upper state with probability q and a lower state with probability 1− q. In
t = 1, 2 the initial endowment and prices of the consumption good depend
on the state occurred.
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i. Determine the term structure and the forward rate at t = 0. Find also
the expected and the realized spot rates in t = 1.

ii. The nominal growth rate is defined as ḡt,t+1(s) = wt+1(s)pt+1(s)
wt(s)pt(s)

− 1.
Calculate the term structure, the forward rate and the realized spot
rate in the first period, given that δ = 0.1, q = 0.5, ḡ0,1,u(u) = ḡ1,2,u =
1
9 , ḡ0,1,d = − 1

21 and ḡ0,2,d = 0.
(d) The observed term structures are typically increasing and there is a for-

ward rate bias. Which of those features can be explained by the models
above?

5.9. Consider the exponential growth rate in the evolutionary portfolio model

g(λ̂, λ̂M ) = Ep ln

(
1 − λc + λc

K∑

k=1

dkλ̂k

λ̂M,k

)
.

(a) Show that g(λ̂M , λ̂M ) = 0.
(b) Show that g(λ̂, λ̂1/n) < 0 if λ̂k = 0 for some k.
(c) Show that λ̂∗ = EP d

k maximizes g(λ̂, λ̂∗) over all λ̂.





Part III

Advanced Topics





6

Theory of the Firm�

“The great difference between the industry of today as
compared to that of yesterday is what might be referred
to as the necessity of the scientific approach, the elimi-
nation of operation by hunches.” Alfred P. Sloan

We will now extend the financial economy EF to cover problems of production
and production units, i.e. firms. Among other things, this allows conclusions
about the behaviour of firms in markets. So far we assumed bond payoffs to
be exogenous, ignoring the decision-making process of the bonds’ issuers. A
precise theory of the firm will analyze this process, resulting in bonds whose
payoff structure is determined by various economic parameters.

6.1 Basic Model

The model builds on the two-period model introduced in Sec. 4.1. In time
t = 0 a set of bonds K := {1, . . . ,K} can be traded; in time t = 1 they payoff
in dependence of the state of the world. Formally, there are S+1 states of the
world, where s = 0 corresponds to t = 0 and in t = 1 one state s ∈ {1, ..., S}
is realized.

Households and Firms

In this chapter we consider two types of economic agents: a set of households
I := {1, . . . , I} (or agents in the narrower sense) and a set of firms J :=
{1, . . . , J}. A household’s main interest lies in consumption (in the sense that
utility only depends on it). Let X i ⊂ R

S+1 be a set of consumption plans,
where xi ∈ X i describes agent i′s consumption for each state s. Let for a
household i the mapping U i : X i → R represent its utility. The firms’ genuine
task is (not to consume, but) to produce. Each firm j ∈ J is characterised by
its exogenous production technology Yj ⊆ R

S+1, which can be interpreted as

the outcomes arising from alternative modes of specialization and or-
ganization [...] expressed in reduced form. [MQ96]

The net output is denoted by yj := (yj
0, . . . , y

j
S) ∈ Yj , where yj

s > 0 is the
net output of firm j in state s. yj

s < 0 is interpreted as the net input. Let
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Y :=
⋃

j∈J Yj be the set of all production capabilities and let Y ∈ R
(S+1)×J

be a production matrix of the entire economy.

When working with production economies, one frequently has to make
assumptions about the production technology set Yj . These assumptions are
intended to simplify various problems and some of them are rather technical
in nature; still, we give a short interpretation:

Assumption 6.1 (Production technology set). We make the following as-
sumptions on the production technology set Yj of a firm:

(i) Yj ⊂ R
S+1 is closed,

(ii) Yj is convex,
(iii) Yj ⊃ R

S+1
≤0 ,

(iv) Yj ∩ R
S+1
≥0 = {0},

(v) for all ω ∈ R
S+1
≥0 we have (ω + Y) ∩ R

S+1
≥0 compact.

(i) has only technical character. (ii) implies that the technologies have non-
increasing returns to scale. (iii) means on the one hand that 0 ∈ R

S+1 belongs
to the technology of every firm; i.e., it has the option of producing nothing.
On the other hand every firm can freely dispose its resources: a given output
does not have to be produced with minimal possible input. (iv) is a kind of
no arbitrage condition (NAC) for the production: a positive output in one
state can only be produced by investing a strictly positive input in another.
Since we are looking at a one-good economy, this can also be interpreted as:
there can be no investment projects that have positive cash-flow in at least
one state, but non-negative cash-flow in every state. Finally, (v) formalizes
the limitations of production: given the resources in an economy, production
is bounded; which implies that for any price system q cash-flows are bounded.

Financial Market

Both types of economic agents actively participate in the bond market. Let
Zi be the set of a household’s possible portfolios, i.e., its portfolio space. An
element zi := (zi

1, . . . , z
i
K) ∈ Zi describes its position on the bond market,

where zi
k denotes the position for the k-th bond. Let Z :=

⋃
i∈I Z

i be the set
of all portfolio spaces. Similarily, we denote by Pj ⊂ R

K a firm’s portfolio
space, with an element ξj := (ξj

1, . . . , ξ
j
K) ∈ Pj. We call a firm’s portfolio ξj

its financial policy to distinguish it from a household’s portfolio. Let P :=⋃
j∈J P j denote the set of all portfolio spaces.

In time t = 0 the set of bonds K := {1, . . . ,K} are traded at some prices
q ∈ R

K . Each bond’s payoff can be described by a S ×K matrix with entries
Ak

s denoting the payoff of bond k in state s.
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We will distinguish between non-incorporated and incorporated companies.
In the context of non-incorporated companies, the agents exogenously hold
firm shares, and cannot trade them. On the other hand, in an economy with
incorporated companies these shares are tradable on a market. This distinction
leads to two variants of the set up. In the benchmark case the financial market
A only consists of bonds. Firm shares are held by households who do not sell
them. Let δ̄i = (δ̄i

1, . . . , δ̄
i
J) ∈ R

J
≥0 denote the initial distribution of firm shares

of agent i, where δ̄i
j is its share of firm j.

In the case of incorporated companies firm shares are tradeable (in a stock
market). The market for firm shares is assumed to be open to both, house-
holds and firms. Let Hi ⊂ R

J be a household’s portfolio space on this market.
An element hi = (hi

1, . . . , h
i
J) means that the i-th agent holds hi

j shares in
the j-th firm. As in the benchmark case, we assume that any household is
endowed with some portfolio δ̄i, which can be sold now. Since there are no
transaction costs, we let the agents sell their stocks δ̄i, and then demand δi on
the market. The firms now may also buy shares of other firms, so that they are
connected by cross ownership. We assume they do not hold any such shares at
the beginning. Let T j be the set of possible firm shares. As before, T j ⊆ R

J .
Let T :=

⋃
j∈J T j be the set of firm interdependencies. The dependencies can

be described from a firm’s point of view by vectors τ j = (τ j
1 , . . . , τ

j
J), meaning

the j-th firm holds τ j
l shares in the l-th firm.

In period t = 0 firm shares are traded at some prices p ∈ R
J . If traded

or not, holding firm shares leads to dividends in both periods. Let the matrix
D := (d1, . . . , dJ ) ∈ R

(S+1)×J describe the dividend of all firms (in any state).1

Dividends can also be negative which would mean a liability (to subsequent
payment).

Example 6.2 (Dividend policy). Consider a firm j and only two states s =
{0, 1}. For a given production decision yj ∈ Yj and a given financial policy
ξj ∈ Pj it might fix the following dividends2:

dj = yj +
(
−q′
A

)
ξj

that is dj
0 = yj

0 −
∑

k∈K q
kξj

k and dj
1 = yj

1 −
∑

k∈K A
k
sξ

j
k. Differing financial

policies determine different dividends, as can be seen in the following cases:

• 100% equity finance: ξj = 0

dj = yj → dj
0 = yj

0 complete equity finance

→ dj
1 = yj

1 full risk

1 Its structure depends on the concrete production decision yj and the financial
policy ξj of each firm j ∈ {1, . . . , J}, so we write D(Y, ξ).

2 The optimal choice of dividends, financial policy, production will be derived later.
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• 100% bonded capital finance: −q′ξj = yj
0

dj = yj +
(
−q′
A

)
ξj → dj

0 = 0

→ dj
1 = yj

1 +Aξj

• 100% risk coverage: Aξj = −yj
1

dj → dj
0 = yj

0 − q′ξj

→ dj
1 = 0.

Financial Economy with Production

To wrap up the model consider all the events in the two periods: In t = 0
a household i is endowed with some assets wi

0 and a portfolio of firm shares
δ̄i. It consumes xi

0 and buys a portfolio of bonds zi at prices q. In the general
case (of incorporated companies), it can also buy firm shares δi and sell its
initial firm shares at some prices p. In the end of this period the household
gets a dividend

∑
j∈J d

j
0h

i
j for the owned firms. At the same time t = 0 a firm

j produces a net output of yj
0. It can buy a portfolio of bonds ξj at prices q.

It has to determine its dividend dj
0. If firm shares are tradeable, a firm can

also buy a portfolio τ j , which leads to dividends
∑

l∈J dl
0τ

j
l at the end of the

first period.
In t = 1 one state s ∈ {1, ..., S} is realized. A household i is endowed with

some assets wi
s, gets dividends of its firm shares (

∑
j∈J dj

sh
i
j) and receives

payoffs of its bond portfolio
∑

k∈KA
k
sz

i
k. It can use these sources of income

to consume xi
s. In the same period t = 1, a firm j produces a net output of

yj
s. It earns the payoffs

∑
k∈KA

k
sξ

j
k by its position in the bond market. It has

to give dividends dj
s, but also receives dividends when owning shares of other

firms
∑

l∈J d
l
sτ

j
l .

Definition 6.3 (Financial Economy with Production EP
F ). A financial

economy with production EP
F (I,X , U, ω,Z, δ̄,J ,Y,P , [H, T ], A) is an economy

with

(i) I economical agents, their consumption spaces X , utility functions U ,
initial distributions of goods ω, initial distribution of firm shares δ̄, port-
folio spaces Z (and corresponding firm share portfolios3 H);

(ii) J firms with technologies Yj, portfolio spaces P (and corresponding firm
share portfolios T );

(iii) and a financial market A for bonds (and shares).

3 If firm shares are tradable for households (or firms, respectively).
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We need to restate a few already known concepts in the setting of a fi-
nancial economy with production. Let φY , φP , and φT be the corresponding
production allocation, financial policy allocation and share allocation (respec-
tively) of the firms4, and φH the households’ allocation of firm shares.5

Definition 6.4 (Achievability). An allocation of goods φX and a production
allocation φY are achievable, if

(i) xi ∈ X i for all i,
(ii) yj ∈ Yj for all j,
(iii)

∑
i∈I(xi − ωi) ≤

∑
j∈J yj.

Budget Restriction / Households’ Decisions and Firms’ Decisions

At the beginning of the first period, the agents and firms plan all traded and
produced quantities for all S+1 states. This means that at t = 0, not only the
production plans for t = 1 have to be set, but in particular their financing has
to be guaranteed in advance. This set-up leads to a list of budget restrictions.
We will keep the distinction between incorporated and non-incorporated firms,
because it plays an important role in the description of the budget restrictions.

Non-incorporated Companies

Since firm shares are not tradeable, households’ hold just their initial firm
shares hi = δ̄i. At time t = 0, agent i’s expenses for consumption xi

0 and
investment in bonds zi

k may not exceed the value of its initial assets ωi
0 and

its dividends
∑J

j=1 d
j
0δ̄

i
j from its firm shares, i.e. at t = 0,

xi
0 +

∑

k∈K
qkzi

k ≤ ωi
0 +

∑

j∈J
dj
0δ̄

i
j . (6.1)

At t = 1, in a given state s, the agent gains the payoff of its portfolio and the
dividends which can all be used for consumption. Hence the budget restriction
for t = 1 are

xi
s ≤ wi

s +
∑

k∈K
Ak

sz
i
k +

∑

j∈J
dj

sδ̄
i
j. (6.2)

We combine the two conditions (6.1) and (6.2), where the latter shall hold for
all states s ≥ 1:

4 In the scope of firms, an allocation is a map φ : J → M, i.e., from the set of
firms to a corresponding set M. In particular, it is different from an allocation
in the scope of households (cf. XXX). However, as the distinction is always clear
from context, we will not differentiate between them.

5 φH : I → [0, 1] with
∑I

i=1 φδ(i) = 1.
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B
i(q, ωi, δ̄i, A,D)

:=

{
(xi, zi)

∈ X i ×Zi

∣∣∣∣∣
xi

0 +
∑

k∈K q
kzi

k ≤ ωi
0 +

∑
j∈J dj

0δ̄
i
j

xi
s ≤ wi

s +
∑

k∈KA
k
sz

i
k +

∑
j∈J dj

sδ̄
i
j , for all s ≥ 1

}
.

The budget set can also be written in matrix form:

B
i(q, ωi, δ̄i, A,D) =

{
(xi, zi)

∈ X i ×Zi

∣∣∣∣ x
i ≤ ωi +

(
−q′
A

)
zi +Dδ̄i.

}

Therefore, an economic agent i is confronted with the following utility maxi-
mization problem:

max
xi∈X i

zi∈Zi

U i(x) such that (xi, zi) ∈ B
i(q, ωi, δ̄i, A,D).

A firm, on the other hand, should maximize its total profit. Since profits
also arise at t = 1 and in different states, they have to be discounted or
weighted. In the following, we assign a vector πj ∈ R

S+1 to every firm j, for
which the NAC holds (qk =

∑S
s=1 A

k
sπ

j
s, for all k; see Th. 4.2).6 In t = 0,

a firm’s dividends are restricted by its net production and its actions on the
bond market. In t = 1 for any state s ≥ 1, the dividends may not exceed
the net output and the payoffs from the bond market. Thus, we consider the
following maximization problem:

max
dj∈R

S+1

yj∈Yj

ξj∈Pj

πj ′dj such that dj ≤ yj +
(
−q′
A

)
ξi. (6.3)

Incorporated Companies

Now let the households and firms be allowed to trade firm shares at some
prices p. The households obtain a new source of income through stock trade
by selling their initial allocation of stock. Conversely, they can also use their
resources to buy shares. This means the budget restriction of a household i
needs to be changed to account for this possibility. At t = 0, agent i has a
demand for goods xi

0 and for bonds zi
k and shares δi

j .
7 Apart from the initial

distribution of goods ωi
0, the sales revenue from the initial distribution and

the dividends of its shares limit a household’s decisions, i.e.,

xi
0 +

∑

k∈K
qkzi

k +
∑

j∈J
pjδi

j ≤ ωi
0 +

∑

j∈J
dj
0δ

i
j +

∑

j∈J
pj δ̄i

j . (6.4)

6 If we restrict ourselves to the case of complete markets, common state prices πN

may be used to value the profits.
7 Mind the notation: δi

j is the new demand for shares, after selling δ̄i
j , the initially

distributed shares! We presume that shares are traded first, and dividends are
paid only afterwards.
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The revenues and expenses at t = 1 in a given state s are:

xi
s ≤ ωi

s +
∑

k∈K
Ak

sz
i
k +

∑

j∈J
dj

sδ
i
j . (6.5)

We combine the two conditions of the budget restriction, where the latter
shall hold for all states s ≥ 1:

B
i(q, p, ωi, δ̄i, A,D) =

{
(xi, zi, δi) ∈ X i ×Zi ×Hi | (6.4) and (6.5) hold

}

which can be written more compactly as

B
i(q, p, ωi, δ̄i, A,D) =

{
(xi, zi, δi) ∈ X i ×Zi ×Hi | (6.6) holds

}

where

xi ≤ ωi +
(
−q′
A

)
zi +

(
(D0 − p)′

D1

)
δi +

(
p′δ̄i

0

)
. (6.6)

D0 ∈ R
J is the vector of dividends of all J firms at t = 0, and D1 ∈ R

S×J is
the matrix of dividends of all firms in all states at t = 1.

An economic agent i is therefore confronted with the following utility max-
imization problem:

max
xi∈X i

zi∈Zi

δi∈Hi

U i(x) such that (xi, zi, δi) ∈ B
i(q, p, ωi, δ̄i, A,D)

Now consider the budget restriction of an incorporated firm. For a given
production decision yj and a given financial policy (ξj , τ j), the maximal div-
idends of firm j are:

dj = yj +
(
−q′
A

)
ξj +

(
(D0 − p)′

D1

)
τ j .

Note that the dividends of firm j depend on the dividends of all firms. Each
firm chooses a production plan, a financial policy and firm shares in order
to maximize profits. Thus, a firm solves the following maximization problem
(where the weights πj , again serve to evaluate different dividend vectors):

max
dj∈R

S+1

yj∈Yj

ξj∈Pj

τ j∈T j

πj ′dj such that dj ≤ yj +
(
−q′
A

)
ξj +

(
(D0 − p)′

D1

)
τ j .

The budget restriction requires that in any state s the dividends (and the
investment in bonds and stocks in t = 0) do not exceed the net output plus the
payoffs from the financial market. Having a concise notation for the “budget
restriction” of a firm will often come in handy.
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Let

W
j(q, p, A,D) :=

{
(dj , yj, ξj , τ j)

∈ R
S+1 × Yj × Pj × T j

∣∣∣∣ (6.7) holds
}

where

dj ≤ yj +
(
−q′
A

)
ξj +

(
(D0 − p)′

D1

)
τ j . (6.7)

Now we can formulate the firm’s decision problem as

max
dj∈R

S+1

yj∈Yj

ξj∈Pj

τ j∈T j

πj ′dj such that (dj , yj , ξj , τ j) ∈ W
j(q, p, A,D).

6.2 Modigliani-Miller Theorem

In this section we consider financial market equilibria and ask to what ex-
tent they depend on the firms’ financial policies. A seminal contribution to
this topic was made by Modigliani and Miller [MM58]. While in the tradi-
tional view, the shareholder value of a firm depends on its debt-equity ratio,
Modigliani and Miller show that under well defined conditions the funding of
a firm is irrelevant. Their proof is based on an intuitive arbitrage argument.

Consider two firms with identical production vector yj , j = 1, 2, but different
debt-equity ratios. If the market value were different, investors would have an arbi-
trage opportunity: they could buy one of the firms, change the ratio, and resell it
with profits.

The irrelevance theorem of Modigliani and Miller not only addresses the
valuation of companies, but also the average cost of capital, and decisions on
investment projects. Their important contribution lies in the precise formula-
tion of the conditions under which financial decisions must be irrelevant.
In the analysis of financial market equilibria, we distinguish between incorpo-
rated and non-incorporated firms.

The Modigliani-Miller Theorem with Non-incorporated Companies

Consider a financial economy with production EP
F according to Def. 6.3. An

EP
F is considered to be in a state of equilbrium, if four conditions are met: (i)

Consumers maximize utility within their budget constraints, (ii) firms max-
imize profits given their constraints, without allowing for arbitrage, (iii) the
allocations must be achievable, and (iv) financial markets clear. Given the
model of non-incorporated companies introduced in the last subsection, this
leads to the following definition:
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Definition 6.5 (Financial Market Equilibrium with Endogenous Pro-
duction). A FME for a financial economy EP

F with endogenous production
are allocations (

∗
φX ,

∗
φZ ,

∗
φH,

∗
φY ,

∗
φP) and a pricing system ( ∗

q, {πj}j∈J ), such
that

(i) ( ∗
xi,

∗
zi,

∗
δi) ∈ B

i( ∗
q, ωi, δ̄i, A,

∗
D) and ∗

xi ∈ arg maxU i(xi) for all i ∈ I,

(ii) ( ∗
yj ,

∗
ξj ,

∗
dj) satisfies

∗
dj ≤ ∗

yj +
(
−q′
A

)
∗
ξj and

∗
dj ∈ argmaxπj ′dj for all

j ∈ J ,
(iii)

∑
i∈I

∗
xi ≤

∑
i∈I ω

i +
∑

j∈J
∗
yj,

(iv)
∑

i∈I
∗
zi +

∑
j∈J

∗
ξj = 0,

where πj satisfies the NAC for all j, i.e., the firms see no opportunity for
arbitrage.

If we do not require condition (ii) to hold, then we speak of a finan-
cial market equilibrium with exogenous production decisions. For existence of
financial market equilibria (with exogenous or endogenous production deci-
sions) we refer the reader to [MQ96]. In the following we shall examine how
a given equilibrium changes under alternative financial policies of the firms.
The answer is given by the Modigliani-Miller theorem (MMT).

Theorem 6.6 (MMT with non-incorporated companies).
Let (

∗
φX ,

∗
φZ ,

∗
φH,

∗
φY ,

∗
φP) and ( ∗

q, {πj}j∈J ) be a FME with endogenous produc-
tion decision and let φ̂P be any financial policy allocation of the firms, then
(

∗
φX , φ̂Z ,

∗
φH,

∗
φY , φ̂P ) and ( ∗

q, {πj}j∈J ) is also an FME with exogenous/endogenous
production decision, where

ẑi = ∗
zi +

∑

j∈J

( ∗
ξj − ξ̂j

)
δ̄i
j , for all i ∈ I.

This shows that the funding of optimal production plans is irrelevant, as
the good allocation

∗
φX , the production

∗
φY , and the price vector ∗

q remain un-
changed. Intuitively, the consumers can undo the change of the firms’ financial
policy.

Proof. We check the conditions of the equilibrium definition 6.5:

(i) We need to show that ( ∗
xi, ẑi) solves the utility maximization problem

given B
i( ∗
q, ωi, δ̄i, A, D̂) for all i.

Consider two financial policies ξ and ξ̂ with their corresponding dividend
matrices D := D(Y, ξ) and D̂ := D(Y, ξ̂), assuming that firms maximize

profits: D =
∑J

j=1

(
yj +

(
−q′
A

)
ξj

)
and analogously for D̂.

Let (xi, zi) ∈ B
i( ∗
q, ωi, δ̄i, A,D) and (x̂i, ẑi) ∈ B

i( ∗
q, ωi, δ̄i, A, D̂) be two

elements of the budget sets for which the budget constraints are binding:
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xi = ωi +
(
−q′
A

)
zi +Dδ̄i

= ωi +
(
−q′
A

)
zi +

J∑

j=1

(
yj +

(
−q′
A

)
ξj

)
δ̄i
j ,

x̂i = ωi +
(
−q′
A

)
ẑi + D̂δ̄i

= ωi +
(
−q′
A

)
ẑi +

J∑

j=1

(
yj +

(
−q′
A

)
ξ̂j

)
δ̄i
j .

Now the task is: given (zj , {ξj, ξ̂j}j∈J ), find ẑi such that xi = x̂i (to
undo the portfolio). The solution is given by the portfolio stated in the
theorem: ẑi = zi +

∑J
j=1(ξ

j − ξ̂j)δ̄i
j . Thus, for any change of financial

policy by the firms, i.e. from ξ to ξ̂, there is a portfolio ẑi for each
household to keep his orignial level of consumption xi. This shows that
restricted to the consumption allocation the budget sets are independent
of the financial policy D, respectively D̂.

(ii) Note first that in equilibrium it must hold that πj ′
(
− ∗
q
′

A

)
= 0 for each

j. Otherwise firms can make infinite gains on the bond market. With
binding budget constraints of the firms this yields:

πj ′ ∗
dj = πj ′

(
∗
yj +

(
− ∗
q
′

A

)
∗
ξj

)
= πj ′ ∗

yj ,

Thus, the objective function – a firm’s profit – only depends on the pro-
duction decision. As in (i), we see that the firms’ budget sets restricted
to the dividends are independent of the financial policy.

(iii) Acheivability is obvious, since ∗
xi, ωi and

∗
yj have not changed for any

i ∈ J , resp. any j ∈ J .
(iv) Market clearing works with choosing ẑi according to the theorem. Com-

pute

I∑

i=1

ẑi +
J∑

j=1

ξ̂j =
I∑

i=1

zi +
J∑

j=1

(ξj − ξ̂j) +
J∑

j=1

ξ̂j

=
I∑

i=1

zi +
J∑

j=1

ξj = 0,

where the last statement holds by the condition (iii) of FME.

The following paragraph shows that this result carries over to the case of
incorporated companies.
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The Modigliani-Miller Theorem with Incorporated Companies

Apart from the activity on the bond market, firms can now also buy each
other’s stock. We have already described the resulting maximization problems
for economic agents and firms at the beginning of the chapter. Based on the
formulation there, we can adapt the requirements of an equilibrium using the
definitions from above.

Definition 6.7 (Financial Market Equilibrium with Incorporated
Companies). A FME for a financial economy EP

F with incorporated compa-
nies consists of allocations (

∗
φX ,

∗
φZ ,

∗
φH,

∗
φY ,

∗
φP ,

∗
φT ) such that

(i) ( ∗
xi,

∗
zi,

∗
δi) ∈ B

i( ∗
q,

∗
p, ωi, δ̄i, A,

∗
D) and ∗

xi ∈ arg maxU i(xi) for all i ∈ I,
(ii) (

∗
dj ,

∗
yj ,

∗
ξj ,

∗
τ j) ∈ W

j( ∗
q,

∗
p,A,

∗
D) and

∗
dj ∈ arg maxπj ′dj for all j ∈ J ,

(iii)
∑

i∈I
∗
xi ≤

∑
i∈I ω

i +
∑

j∈J
∗
yj,

(iv)
∑

i∈I
∗
zi +

∑
j∈J

∗
ξj = 0, and

∑
i∈I

∗
δi +

∑
j∈J

∗
τ j = 1,

where πj satisfies the NAC for all j.

We have d̂ ∈< Y,A >, as can be seen from (6.7).

The Modigliani-Miller theorem also holds in this setting:

Theorem 6.8 (MMT with incorporated companies).
Let (

∗
φX ,

∗
φZ ,

∗
φH,

∗
φY ,

∗
φP ,

∗
φT ) and ( ∗

q,
∗
p, {πj}j∈J ) be a FME with (I − ∗

τ) in-
vertible, and let (φ̂P , φ̂T ) be any financial policy allocation of the firms with
(I − τ̂) invertible. Then there are (φ̂Z , φ̂H) such that

(
∗
φX , φ̂Z , φ̂H,

∗
φY , φ̂P , φ̂T ), ( ∗

q,
∗
p, {πj}j∈J )

is an FME.

So even if firms are active on the bond market and on the stock market, in
equilibrium, the financial policy of the firms can be undone by the portfolio
decisions of the consumers. This suggests the interpretation that the financial
policy of the firms is irrelevant to the stock prices ∗

p. This interpretation is di-
rectly implied if (φ̂Z , φ̂H) are unique equilibrium allocations for (φ̂P , φ̂T ). The
proof of this version of the MMT is omitted. It follows the same logic as the
proof above.8 Neither the consumers’ budget set changes nor the companies’
objectives.

6.2.1 When Does the Modigliani-Miller Theorem Not Hold?

The statement that the financial policy of the firm is irrelevant hides a re-
markable gap between theory and practice. It can be proven mathematically.

8 The undo portfolio turns out to be: ẑi =
∗
zi + (

∗
ξ − ξ̂)(I − ∗

τ )−1(
∗
di + d̄i).
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However, the model seems to capture major points of the dynamics of real-
ity only inadequately. For example, the news that a company would cut the
dividends of its shares often leads to a very real stock price drop. Thus, there
must be conditions, which are necessary for the Modigliani-Miller theorem
(MMT), but need not be satisfied in reality. Let us discuss some of them:

• Perfect competition: If the markets have short sales limitations, i.e. (δi +
δ̄i) ≥ 0 or zi ≥ 0, then there might not be an undo portfolio.

• Equal access to financial markets: There are financial markets that are not
open to private investors.

• Exclusion of bankruptcy: Considering the possibility of bankruptcy, divi-
dends of a firm are not guarenteed, i.e. dk

1 = max{0, yk
1 + Aξk + D1τ

k},
see [Hel81] for details.

• assets: Consider options with the following payoff structureAk := max{0, dj
1−

K}, where K is the purchase price. As in the case of bankruptcy, there
are nontrivial effects on the consumers’ insurance possibilities.

• Tax neutrality: Unequal tax treatment of dividends is an issue.
• Symmetric information of all market participants: Consider the case where

consumers do not know the firms’ production policies. Instead, they have
to infer the production yj from the financial policy. Hence the latter has
a nontrivial announcement effect, as we discuss in chapter 7.

We wish to point out that complete markets is not one of the necessary con-
ditions for the MMT. The key point in this case is merely that d ∈ span {Y,A},
i.e. the firm’s dividend policy does not change the market’s insurance possibil-
ities, that is, its span. Otherwise, the bond generated by the firm’s dividends
could influence all prices and allocations, requiring a complete recalculation
of the equilibrium.

However, if the dividend does not change the market’s span, the economic
agents can undo them even in an incomplete market. See [Got95] for more
details on the MMT in incomplete markets.

6.3 Firm’s Decision Rules

In this section we have a closer look at the decision-making process in firms.
First, we question why the shareholders, who are consumers in the end of
the day, would maximize profits. Then, we analyze whether shareholders with
different preferences would agree on a common production plan.

6.3.1 Fisher Separation Theorem

The separation of management and ownership leads to an important prob-
lem: should a firm, from the point of view of its owners, attempt to maximize
profit? Maybe it should only do so during a certain period, or try to max-
imize turnover instead? Perhaps the management should strive for the best
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product quality that is technically feasible? The owners might not even agree
on a common goal. This topic is a main focus of the theory of the firm, and
accordingly there is a lot of literature on it. Many interesting aspects arise,
such as incentive problems. Nevertheless, we only consider the question if firm
owners would agree on the goal of profit maximization.

A Simple Market with One Firm

As a first step we consider a situation where there is no uncertainty and only
one firm. A single security with positive payoff A and price q is traded. Let
p be the firm’s market price and d its dividend at t = 1, while there are no
dividends at t = 0. Furthermore, the household initially has a positive share δ̄i

in the firm. This considerably simplifies the budget restriction (6.4), yielding
the following maximization problem for the agent:

max
xi∈R

2
≥0,δi,zi

U(xi) such that xi
0 + qzi + pδi ≤ ωi

0 + pδ̄i

and xi
1 ≤ ωi

1 + ziA+ δid.
(6.8)

Thus at t = 0, an household can consume and buy securities and shares in
the firm. At t = 1 it gains the earnings from its initial share, security payoffs
and the firm’s dividends. Suppose the agent would like to consume less at
t = 0 and more at t = 1. This results in a utility change. If Δx0 and Δx1 are
very small, we can approximate the utility change by the corresponding first
derivatives:

t = 0 : U(x0 −Δx0, x1) − U(x0, x1) ≈
∂U(x)
∂x0

Δx0

t = 1 : U(x0, x1 +Δx1) − U(x0, x1) ≈
∂U(x)
∂x1

Δx1.

There is only one way to transfer consumption between the periods: buying
shares or securities. Setting aside Δx0 consumption units at t = 0, one can
use the free resources to buy Δx0

q units of securities. This yields a payoff of
Δx0

q A at t = 1 to the extent of which one may finance additional consumption:
Δx1 ≤ Δx0

q A. If the agent has strictly monotonic preferences, we even have
Δx1 = Δx0

q A.
At the optimum, this transfer of consumption may not change the net

utility, i.e.:
∂U(x)
∂x0

Δx0 =
∂U(x)
∂x1

Δx1.

Substituting Δx1 = Δx0
q A, we get

∂U(x)
∂x0

Δx0 =
∂U(x)
∂x1

Δx0

q
A ⇔ MRS01 =

A

q
. (6.9)
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Since there is no uncertainty about the state realized at t = 1, we may
interpret every security as riskless. Thus, it will suffice to introduce an arbi-
trary security with positive payoff. Of course, this also holds for a bond. We
know that the price q of a bond with payoff A = 1 is determined by q = 1

1+rf
,

where rf denotes the riskless rate of interest. In this case the right-hand side
of (6.9) becomes MRS01 = 1 + rf . At the optimum an agent will determine
his allocations such that his valuations of consumption at t = 0 and t = 1
agree with the market’s.

Buying shares instead of securities leads to a similar result. Forgoing con-
sumption at t = 0 allows one to buy Δx0

p shares to the firm, which in turn
yield a profit of Δx0

p d consumption units at t = 1. Again, at the optimum this
transfer of consumption may not change the net utility, and we get:

∂U(x)
∂x0

Δx0 =
∂U(x)
∂x1

Δx0

p
d ⇔ MRS01 =

d

p
.

Now we have both MRS01 = 1+ rf and MRS01 = d
p , so 1+ rf = d

p , and thus
p = d

1+rf
.

We can divide the income at t = 1 by 1 + rf in (6.8) to convert it to a
present income, then sum up both budget restrictions. Some rewriting then
leads to

xi
0 − ωi

0 + xi
1−ωi

1
1+rf

+ zi
(
q − A

1+rf

)
≤ δ̄ip+ δi

(
d

1+rf
− p

)
. (6.10)

The left-hand expression describes the value of the net swapped amounts in
t = 0 consumption units. The right-hand side denotes the value of the firm
share in consumption units. Therefore, the net transfer may not exceed the
income generated by the firm share. If we assume that the economic agents
have strictly monotonic preferences, (6.10) is satisfied with equality since more
consumption means more utility. If we substitute q = A

1+rf
and p = d

1+rf
, the

bound simplifies to

xi
0 − ωi

0 +
xi

1 − ωi
1

1 + rf
= δ̄i d

1 + rf
.

Hence the possible consumption increases in proportion to the dividend d.
We have also considered the case S = 1, so the demand for a higher dividend
can be translated to a demand for a high profit or net present value (NPV).
Clearly, the shareholders will strive for maximum profit, i.e., carry out the
project with the highest cash-flow.

This result also has a nice graphical justification. In Figure 6.1 the product
technology set is shown in grey. The households, assuming they own and
control the firms, will choose a production point that maximizes their available
income. In the figure this is ( ∗

y0,
∗
y1), which lies on the budget line I3. The result

is independent of the respective preferences, except that they are required to



6.3 Firm’s Decision Rules 281

be strictly monotonic.9 The households can achieve optimum consumption by
trading their production ( ∗

y0,
∗
y1) on the market for securities.

A

B

∗
y0

∗
y1

I3

I2

I1

−(1 + rf )

y1

ū0

y0

Fig. 6.1. Firms maximize their profit by choosing the line of constant profits tangen-
tial to their production technology (I3), point A; households maximize their utility
by looking for the budget line tangential to their production technology (I3), then
obtaining their optimal consumption through trading

But what happens if the households are not in direct control of the firms?
If the firms maximize their profit, they will carry out the maximum achievable
line of constant profits. If we take I1, I2, I3 as lines of constant profits, a firm
will clearly choose ( ∗

y0,
∗
y1), too. The associated profit will be paid out to the

households, which in turn realize their optimal consumption allocation. In the
second step, we now extend our considerations to include multiple firms.

Fisher Separation with Multiple Firms

An analogous maximization problem results for households and shareholders:
an economic agent tries to maximize its temporal utility. To that end it can
buy shares and securities within its resources. With multiple firms the budget
restriction looks a bit more general, but is still a special case of (6.4):

max
xi∈R

2
≥0

δi∈R
J

zi∈R

U(xi) such that xi
0 + qzi +

∑

j∈J
pjδi

j ≤ ωi
0 +

∑

j∈J
pj δ̄i

j

and xi
1 ≤ ωi

1 + ziA+
∑

j∈J
djδi

j .
(6.11)

Similarly to the first part, we obtain the relation of prices of securities and
shares. Accordingly, the budget restrictions in (6.11) can be written concisely:
9 Naturally the preferences play a crucial role in the price formation of rf .
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xi
0 − ωi

0 +
xi

1 − ωi
1

1 + rf
=
∑

j∈J
δ̄i
j

dj

1 + rf
.

Introducing more firms has not changed the result: a shareholder with
strictly monotonic utility function again wants the firm to maximize its profit.
What can we say about the optimal production decision if the firm’s owners
have differing valuations of the state prices? Up to now we did not consider
any uncertainty, i.e. there was only a single future state. Varying valuations
are thus just differences in the personal interest rates, as shown in Figure 6.2.
The two types of shareholders are illustrated as the slope of I1 and I2, showing
very high and very low rates of interest, respectively. Accordingly, the former
would choose production point A, while the latter would pick B. We compute
an average rate of interest, weighted by the corresponding shares, which is
shown as the slope of Ī. In the next section we will show that everybody
would agree on the resulting production point C. It remains crucial that the

C

A

B

I1

Ī

I2

y1

y0

Fig. 6.2. Incomplete Markets: Optimal production plans for two rates of interest
and their weighted average

firm’s production possibilities do not alter the span of the market, i.e., the set
of all achievable consumption streams. This is ensured if, i.e., < Y >⊂< A >.
This could change all relative prices, causing a utility loss for some households
which would therefore vote against such a decision.

6.3.2 The Theorem of Drèze

In Section 6.2 the sole requirement for the firm’s decision rules was that it
weights its future profits by the elements of a vector πj ∈ R

S+1. If the markets
are complete (rankA = S), this uniquely determines the firm’s target function.
In the case of incomplete markets, it does not have to be unique. Basically
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one can work with any vector that does not offer an arbitrage opportunity,
i.e.,

πj ′
(
−q′
A

)
= 0 and πj ′

(
(Y0 − p)′

Y1

)
= 0.

In the case of complete markets, every shareholder would agree with the
uniquely determined criterion πN . This is apparent from the first-order condi-
tions of the utility maximization problem: the normalized utility gradients of
all consumers matches the normalized target function vector πN . In the case
of incomplete markets, this unanimity between the shareholders is lost. How
should one reach an agreement?

To simplify the problem, let firms be barred from running a financial pol-
icy, i.e., ξj = 0. It immediately follows that D = Y . The Modigliani-Miller
theorem showed that in our model, nobody will want to object to this limita-
tion. Furthermore, we will limit ourselves to the non-incorporated companies
model. So we have the following underlying maximization problems:

max
xi∈X i

zi∈Zi

U i(x) such that (xi, zi) ∈ B
i(q, ωi, δ̄i, A, Y ) (6.12)

max
yj∈Yj

πj ′yj such that dj ≤ yj.

We now look into firm j’s general meeting of shareholders GM j , after the
consumers have defined their portfolios zi. We also assume that the production
policies of all other firms are available. The question is then: what can GM j

improve, given the decisions {z̄i}i∈I , {ȳl}l�=j. We will assume that GM j only
takes into consideration the consumers that own shares of firm j. Hence, let

Ij := {i ∈ I | δ̄i
j > 0}, for all j.

How does a consumer i value changes of the production policy ȳj? The obvious
criterion is the increase in consumer’s utility with the new production policy
ŷj :

U i(x̄i + (ŷj − ȳj)δ̄i
j)U

i(x̄i).

Remark 6.9. The xi implied by a given (z̄, Ȳ ) is

x̄i := ωi +
(
−q′
A

)
z̄i + Ȳ δ̄i.

We now give the following unanimity criterion:

Definition 6.10 (Pareto-efficient with respect to GM j). The produc-
tion policy ȳj of firm j is Pareto-efficient with respect to GM j, if ȳj ∈ Yj,
and there is no ŷj ∈ Yj with

U i(x̄i + (ŷj − ȳj)δ̄i
j) ≥ U i(x̄i) for all i ∈ Ij, and

U i(x̄i + (ŷj − ȳj)δ̄i
j) > U i(x̄i) for at least one i ∈ Ij.
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According to this criterion, an existing production policy is only discarded
if all shareholders agree. In general many production policies may fulfill the
criterion, so that a manager may not know which one to choose. We therefore
allow shareholders to change each other’s minds by means of transfer pay-
ments: let ρi

j be the net side payment made by shareholder i in the voting
process. Then he values the decision of GM j according to the criterion:

U i(x̄i + (ŷj − ȳj)δ̄i
j − ρi

je1)U i(x̄i).

Thus, we define

Definition 6.11 (Pareto-efficiency with side payments with respect
to GM j). The production policy ȳj of firm j is Pareto-efficient with side
payments w.r.t. GM j, if ȳj ∈ Yj and there are no ŷj ∈ Yj and {ρi

j}i∈Ij with∑
i∈Ij

ρi
j ≥ 0, such that U i(x̄i + (ŷj − ȳj)δ̄i

j − ρi
je1) ≥ U i(x̄i) for all i ∈ Ij,

and U i(x̄i + (ŷj − ȳj)δ̄i
j − ρi

je1) > U i(x̄i) for at least one i ∈ Ij.

The decision-finding mechanism described in this definition is rather dif-
ficult to implement: one would have to iterate through all production poli-
cies and transfer payments to find a better production policy. In the fol-
lowing we will describe an equivalent, direct mechanism. To that end, let
πN,i(xi) ∈ R

S+1
�0 be his MRS between consumption in state s and present

consumption:

πN,i
s (xi) :=

∂xi
s
U i(xi)

∂xi
0
U i(xi)

, s ∈ S.

Now imagine the consumers just tell the manager their vectors πN,i(xi). He
in turn chooses the production policy such that it maximizes the function
πj ′yj, where πj :=

∑
i δ

i
jπ

N,i is treated as given by the firm. 10 Therefore, the
discounting vector of firm j is the mean discounting vector of the consumers,
weighted by their shares. In particular, this decision rule leads to the usual
profit maximization rule if the markets are complete. The equivalence of the
two mechanisms is shown by the Theorem of Drèze.

Theorem 6.12 (Theorem of Drèze). The production policy yj ∈ Yj is
Pareto-efficient with side payments with respect to GM j if and only if for a
given πN,j, yj ∈ arg maxyj∈Yj πN,j ′yj, where πN,j =

∑
i δ̄

i
jπ

N,i.

Proof. 1. Pareto-efficiency ⇒ Drèze criterion:
Consider the production plan ȳj ∈ Yj of firm j. Suppose the Drèze crite-
rion does not hold for ȳj , i.e. there exists ŷj ∈ Yj with

∑
i δ

i
jπ

i(x̄i)(ŷj −
ȳj) > 0.
Let ρi

j := δi
jπ

i(x̄i)(ŷj − ȳj) − ε, for some ε > 0, be the net side payment
of i in firm j. If ε is small enough, then

∑
i∈Ij

ρi
j ≥ 0.

10 We assume the MRS are honestly communicated; otherwise one would have to
find incentive compatible survey mechanisms.
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Let ξi := δi
j(ŷ

j − ȳj)−ρi
je1 for i ∈ Ij . Then πi(x̄i)ξi = δi

jπ
i(x̄i)(ŷj − ȳj)−

ρi
j = ε > 0, for all i ∈ Ij (note that πi

0,0 = 1). The utility functions are
monotonic and continuous, so for every i ∈ Ij there exists an αi ∈ (0, 1]
such that U i(x̄i + αiξi) > U i(x̄i). By quasi-concavity of U i we have for
all 0 < α ≤ mini∈Ij{αi}: U i(x̄i + αξi) > U i(x̄i) for all i ∈ Ij . αξi can
be written as αξi = δi

j(ỹ
j − ȳj) − αρi

je1, where ỹj := ȳj + α(ŷj − ȳj).
Because ỹj = αŷj + (1 − α)ȳj , ŷj , ȳj ∈ Yj and Yj is concave, it follows
that ỹj ∈ Yj . Now

∑
i ρ

i
j ≥ 0 and U i(x̄i + (ỹj − ȳj)δi

j − αρi
je1) > U i(x̄i)

for all i ∈ Ij , therefore the Pareto criterion with side payments does not
hold, which is a contradiction.

2. Drèze criterion ⇒ Pareto-efficiency with side payments:
Consider the production plan ȳj ∈ Yj . Suppose the Pareto criterion with
side payments does not hold, i.e. there are (ŷj , ρj) ∈ Yj × R

Ij with∑
i∈Ij

ρi
j ≥ 0 such that U i(x̄i + (ŷj − ȳj)δi

j − ρi
je1) > U i(x̄i) for all

i ∈ Ij . As in the first part, for every i ∈ Ij there exists an αi ∈ (0, 1] such
that U i(x̄i + αiξi) > U i(x̄i), hence πi(x̄i)

(
(ŷj − ȳj)δi

j − ρi
je1

)
> 0 for all

i ∈ Ij . Since πi
0,0(x̄

i) = 1 and
∑

i ρ
i
j ≥ 0, this implies

∑
i∈Ij

δi
jπ

i(x̄i)ŷi >∑
i∈Ij

δi
jπ

i(x̄i)ȳj , i.e., the Drèze criterion does not hold.

6.4 Summary

In this section we have shown that the firm can be included into our financial
market economy. In the absence of frictions like taxes or bankruptcy we could
even show that the firm’s financial policy is irrelevant since it can be “undone”
by the households. Moreover, we showed that voting according to the shares
that households hold lead to Pareto-efficient allocations. This latter result is
not true if the shares of the firms are traded on a stock market. In that case
the best objective function of the firm is still unknown (see [MQ96] for further
results).





7

Information Asymmetries on Financial
Markets�

“All of the books in the world contain no more informa-
tion than is broadcast as video in a single large Ameri-
can city in a single year – Not all bits have equal value.”
Carl Sagan

So far we assumed common knowledge about the (state-contingent) pay-offs
of assets. Imagine now that some agents know the payoffs better than others.
Then – besides intertemporal substitution, risk sharing and betting on the
occurrence of the states of the world – a seller of an asset might want to sell
it because he knows it has very low pay-offs. Anticipating this no agent would
buy at a price allowing the seller to make a profit and ultimately no transaction
is made. In the subprime mortgage crisis this aspect of asset markets became
overwhelming so that asset markets broke down completely.

This chapter of our book shows how to model asymmetric information. It
shows the effects of asymmetric information on market prices, banking and
insurance contracts. A formal way allowing these aspects to be integrated into
the previous model is to let agents’ beliefs on the occurrence of the states of
the world depend on their market observations: prices and transactions. In
this sense asymmetric information is not an alternative to what we learned so
far but a generalization.

Let us start with an introductory example on the topic of information
that illustrates some of the fundamental ideas in a somehow not so serious
way (translated from [nzz00]):

In Gelosia, wives are not lenient towards unfaithful husbands. One
morning, the queen summoned all women: “Word has reached me that
at least one of our husbands has been unfaithful. If one of you discovers
that your husband has cheated, you must kill him come midnight on
the same day you found out.”

Gelosian women love to gossip, so if one of their husbands was
unfaithful, the entire country would know by next morning. Only his
wife would be kept in the dark out of respect. For a long time after
the queen’s speech, nothing has happened. Suddenly, 39 days later,
all 40 women resort to the knife and send their husbands to heaven
come in a country-wide massacre.
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These horrible events are an example of how insight grows through
a series of conclusions. The queen mentioned “at least one” cheater.
If there had only been a single one, his wife would immediately have
known: since she had not heard of any affair, she had to be the be-
trayed one.

With two casanovas, there would have been two dead husbands
one day after the address. The lack of news of a killing on the first
night would have told their wives that they were unfaithful, since there
now had to be at least two affairs – otherwise someone would have
been killed on the first night already – and they had only heard of a
single one. This can be formulated mathematically: no execution at
midnight on the n-th day means that at least n + 1 husbands were
unfaithful.

Thus, on the morning of the 40th day, all 40 women knew that at
least 40 husbands had to have been unfaithful. Since there were only
40 women, who each had heard of only 39 affairs, they all concluded
that their husband had to be the 40th culprit.

7.1 Information Revealed by Prices

The idea of the following example is due to Akerlof [Ake70]:1 If a vendor
is too willing to lower prices, potential customers will think the quality of his
products is rather low. This might lead to the vendor not being able to sell at
all. This phenomenon is referred to as the “market for lemons” where “lemon”
is a colloquial term for an inferior quality product. A typical example for this
are used cars. We model the effect as follows:

Assume there is a product in two different quality levels, denoted by H
(high) and L (low), where H > L. Let μ and 1 − μ be the commonly known
proportion of good and bad products, respectively. Let q be the price of the
good product. The seller knows the quality Q of his product, where Q can be
H or L; his utility of the sale is then V (Q) = q − Q. If V (Q) < 0, he will
not make the deal. In particular, no products will be sold at all if the market
price q is less than L. The buyer on the other hand does not know the quality.
However, he has expectations, called beliefs. Let β be the buyer’s belief that
the product is of high qualityH . Let the buyer’s utility be the expected quality
on the basis of his beliefs minus the price: U(q, β) := βH+(1−β)L−q. Again,
the buyer will not go through with the deal if U(q, β) is negative.

One easily checks that
∗
β = 0 and ∗

q = L forms an equilibrium in the
sense that, given the belief and price, neither buyer nor seller can strictly
increase their utility by deviating, i.e., not selling or buying. Only low quality
products are traded; there is no market for high quality products.

∗
β = 0 and

1 More information on information revealed by prices is revealed in [GH90].
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∗
q = L is even the only equilibrium: Assuming the buyers are not systematically
mistaken, their belief has to be the average quality on the market. If ∗

q = L,
only bad products are on sale, so

∗
β = 0. If ∗

q = H , all qualities are offered,
so

∗
β = μ. But then U(H,μ) < 0, therefore no potential buyer will show any

demand.
This effect does not only hurt the buyers, but also the sellers of high quality

goods, in Akelof’s words:

The cost of dishonesty, therefore, lies not only in the amount by
which the purchaser is cheated; the cost also must include the loss
incurred from driving legitimate business out of existence.

Another example where information is revealed by the price is the finan-
cial market: according to the efficient market hypothesis all currently known
information should be already included in the market process. A consequence
of this is the No-trade-Theorem: since nobody has superior information there
is no reason for speculative trade, i.e. there will only be trades for other motifs
(intertemporal substitution, risk sharing and betting etc.)

However, how can prices entail all information if nobody trades based on
information?

This information paradox first appeared in a publication by Grossmann
and Stiglitz [GS80]. It describes more generally the consequences of a classi-
cal freerider problem for information efficiency of financial markets. Suppose
Fama’s efficient market hypothesis holds, i.e., all prices correctly reflect the
information. However, getting information or analyzing prices is not free. If all
information contained in the prices – does the model contradict its assump-
tions? If the prices include all information, there is no incentive to retrieve
more information, i.e., nobody will pay for it. Thus not all information is
contained in the prices. Conversely, assume the prices hold no information.
Then it is profitable to pay for information, hence prices contain information.
Therefore, the two states where the prices contain no, or all, information, can
never be reached.

The information paradox can only be solved if the prices partially contain
information, which contradicts the efficient market hypothesis. The (empiri-
cal) question is then whether although not completely true the efficient market
hypothesis is a good enough approximation of reality or not.

One counterexample to the efficient market hypothesis being a good ap-
proximation of reality would be a successful chart analysis. It contradicts the
statements of classical capital market theory, according to which no system-
atic information on future prices can be gained from the present price and
past prices. It could be argued that chart analysis would only be used to un-
cover all relevant information on the market but then it should already be
“priced in” according to the efficient market hypothesis. If one moves away
from the strong assumptions of classical capital market theory, and takes into
account various phenomena that can be observed on the financial markets,
one concludes that chart analysis could in fact be used profitably. It would
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then aim to timely discover moods and associated trends. The field of be-
havioral finance deals with the description and analysis of such moods and
phenomena.

7.2 Information Revealed by Trade

Not only prices can reveal information, also trades, dividends and other
financial transactions can be informative. As an amusing example we want to
mention that performance of companies is significantly reduced if their CEO
has just bought a new house. In fact his trade (of buying the house) reveals
often bad information about his company since he might have sold company
options or stocks to finance his new house and he will more likely do this when
he deems the stock prices high – maybe even too high. The firm 2iQ has used
this idea to construct a “Directors’ Confidence Index”.

Let us now consider a more serious example. We want to examine the role
of dividends as information revealing signals. This role has been neglected
in our derivation of the Modigliani-Miller Theorem (Chapter 6). The main
observation is that in the case of asymmetric information on the results of a
firm’s operations, dividends may indicate profitability and thus distinguish a
firm from less profitable ones. Consider a scenario with two firms i = g, b, for
good and bad, respectively. However investors do not know the type of the firm.
At the end of the period, there are two possible outcomes (states) each: Hi

and Li, for high and low profits, respectively. Let Hg > Hb and Lg > Lb. On
the market, future profits are rated via risk-adjusted probabilities π�

i . Next,
a firm can announce a dividend di, where we assume that if di > Li it will go
bankrupt: a firm can never distribute a dividend higher than its worst case
revenues. Since Lg > Lb, g can differ from b by paying dg = Lg. The bad
firm b cannot guarantee such a dividend because it would go bankrupt. A
situation like this is called a separating equilibrium: it distinguishes the types
of firms. The opposite, where the firms are indistinguishable, is called pooling
equilibrium. In the latter case the prices of the two firms must be equal. In a
risk-neutral economy, the price of firm i in a separating equilibrium is

qi =
1

1 + rf
(π�

i Hi + (1 − π�
i )Li),

whereas in a pooling equilibrium it is

q =
1
2

1
1 + rf

∑

i=g,b

(π�
i Hi + (1 − π�

i )Li).

The result of this very simple and intuitive example may explain why stock
prices rise after a payout of dividends has been announced.
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I is true that general trades on markets can reveal information Therefore,
when asked why they bought a certain asset, many investors reply they did so
only because other relevant groups (competitors, traders, etc.) had bought as
well. This behavior is called herding. It is a common phenomenon on markets
and is consistently validated in practice. The dynamics leading to it can be
explained by the announcement effect that specific agents’ actions have.

Assume that the members of a group of risk-neutral2 investors are to de-
cide, one after the other, whether to buy a security or not. If they don’t buy,
they get $10 at the end. If they do, they get $20 or nothing with equal prob-
ability. At the beginning, the two alternatives have the same expected value,
thus all members are neutral between buying or not buying. Now assume
every player gets a binary signal that is not observable by, and independent
from, the other players. Let the probability p that the signal is positive, condi-
tioned on a payment of $20, be strictly greater than 0.5. Thus the first player
observes his personal signal and has to estimate the probability of getting $20
at the end of the game, i.e., P (payoff = 20 | signal = H). If this probability
is more than 0.5, buying the security pays off.

The player’s idea of the probability distribution is called belief. Further-
more, prior denotes the belief before observing the signal; likewise posterior
the belief afterwards.

To describe the formation of beliefs and dependencies between them, we
use Bayes’ rule. At its core, it mathematically describes how beliefs should be
adapted to new findings3. Because p > 0.5, the first player will decide to buy
if he got the signal H , and not to buy otherwise. Thus, the other players can
guess his signal from his actions. Next, the second player receives a signal H
or L. If it is H and the first player bought, he will buy too. Similarly, if he got
L and the first player did not buy, neither will the second. If the signals do not
agree, suppose the player randomly decides for either choice with probability
0.5.

The third player again faces several possibilities: both players before him
bought, or neither one did, or their choices did not agree. The first two cases
are especially interesting. If the third player gets the signal H , and both
players before him bought, of course so will he; analogously for the opposite
case. However, if his signal contradicts the behavior of his precursors, he should
also follow the first two players: Assume he sees HH . Then the first player
must have got H . The probability that the second player got H as well is 2/3,
since if he got L he would have chosen L with 1/2 probability. Given this, it
is more likely that H is correct even if the signal of player 3 is low.

2 Risk-neutrality is just a simplification. The statements easily carry over to a
setting with risk-averse agents.

3 In fact Bayes’ rule states that posterior = conditional likelihood ·prior/likelihood,
in symbols P(R = r|e) = P(e|R = r) · P(R = r)/P(e), where P(R = r|e) denotes
the probability that a random variable R takes the value r, given the signal e.
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The longer the chain of agreeing preceding decisions, the more weight
they will gain compared to the player’s own signal. Hence the players base
their decisions not only on their own signal, but also on their guess what the
previous agents’ signals could have been. This finally leads to the situation
where the actions of others are the main criterion for one’s own decisions.
This (rational!) model for herding is called “information cascade” [BHW98].

7.3 Moral Hazard

Suppose a risk-neutral firm has a choice between two projects i = a, b
that carry a risk. Let each project yield Xi with probability pi, and 0 with
probability 1 − pi. Thus the expected profit of a project is piXi. We assume
paXa > pbXb and Xb > Xa. To realize a project, the firm needs an invest-
ment I that must be financed with outside capital. The investment involves
a repayment R > I. Both projects cover the cost R in the positive case. In
the negative case (Xi = 0), no repayment is made. Hence, the lender or bank
bears a contingency risk for the credit. The firm gains an expected profit of
U(R, i) = pi(Xi −R). The expected profit of the bank is Π(R, i) = piR− I.

In the case of symmetric information (both partners know which project
will be realized and can prove this in court) they will agree on project a, since
it has a higher expected profit. The bank will completely claim the profit for
itself, i.e., set R = Xa.4

Consider a situation with asymmetric information. Assume the bank has
no way of discovering or proving which project was chosen. This creates an
incentive: the firm can claim it will implement project b, which limits the
bank’s demand for the entire profit. For a given R it will then compare the
profits of the two projects and choose the one with higher gains. Using our
assumptions, we can determine a threshold R̂ for R, past which project b will
be favored over a. The bank’s profit also depends on R̂. If the bank picks R
between 0 and R̂, it knows the firm will choose a, thus the bank’s profit is
paR−I. Conversely, if R lies between R̂ and Xb, project b will be implemented
for a profit of pbR − I. The bank chooses the repayment such that its profit
becomes maximal. Therefore, R = R̂ if paR̂ > pbXb, else R = Xb. In the first
case, it does not manage to appropriate the complete profit. Thus the firm
has an information benefit, i.e., U(R̂, i) = pa(Xa − R̂) > 0, resulting because
the bank cannot observe or legally enforce the choice of project.

A different, very concrete example for moral hazard problems can be seen
as an origin for the recent financial crisis: banks gave out loans to “subprime”

4 The bank can force its own conditions on the firm, because it is the only potential
financier but not obliged to grant any credit. It is only limited by the firm’s
willingness to participate. Therefore it needs to choose conditions such that the
firm is still interested.
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investors who wanted to buy houses. The risk of the loans was then partially
sold to other investors (usually investment banks and hedge funds) in form,
e.g. of the now infamous CDOs (for credit default options or collateralized debt
obligation). Now since only the bank had information on the actual quality
of the loans thus led to a moral hazard problem: the banks were interested
in increasing the number of loans, even if their default probability was high,
since their risk was mostly sold off to investment banks and hedge funds. The
latter ones did not take this effect sufficiently into account. Herding of course
also played a role as more and more investment banks entered the subprime
market.

7.4 Adverse Selection

In a market equilibrium prices will be set such that a (somehow) optimal
allocation is reached. There are cases, however, where it is not possible to
accomplish this. This phenomenon is called “adverse selection”. We illustrate
it with the following example:5

Let there be two types of firms, g and b. They differ in their expected
profits. We again assume two states occurring with specific probabilities for
each firm. Let Hi and Li, i = b, g, be the corresponding payoffs. Let in par-
ticular Lb := 0 and Lg > 0, pg := P(payoff = Hg) > P(payoff = Hb) =: pb,
and pgHg < pbHb. Each firm needs funds I to realize its operations. To cover
these costs, it has to obtain a credit. However, we assume the bank may not
distinguish the two types, and can only offer credits at the same conditions
to everyone. The credit can only be paid back fully if the corresponding state
of high returns is realized. Otherwise, the bank gets the remaining returns,
which of course are lower than the repayment R previously agreed upon. By
our assumptions, this means that R in the bad state is Lg or 0. The profit
of firm g and b is U(g,R) = pg(Hg − R) and U(b, R) = pb(Hb − R), respec-
tively. The bank makes a profit Π(g,R) = pgR + (1 − pg)Lg − I for type g,
or Π(b, R) = pbR− I for type b. One now easily sees that any R accepted by
g will also be accepted by b.

The bank cannot design a simple credit agreement that will only be ac-
cepted by g. On the contrary, if R rises past a certain point, only b will accept
the terms, i.e., the quality of debtors declines with rising interest rates.

Another well-known example for adverse selection is a model by Rotschild
and Stiglitz [RS76]. They study a competitive insurance market and model
distortions caused by information asymmetries:

A risk-neutral insurance firm is confronted with a demand for a specific
insurance. The group of buyers consists of two types: g with low risk and b
with relatively high risk. Let pg and pb denote the corresponding probabilities,

5 Compare [GH85] for further information.
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where pb > pg. Both types incur a loss of L in the event of damage. Further-
more, both types have the same wealth W and are risk-averse expected utility
maximizers. Finally, assume there are ng good type and nb bad type agents.

First, consider the case in which the insurance knows which type it insures.
Since it operates in a competitive market, it does not make a positive profit
and demands a premium qi, i = g, b, equal to the expected damage of the
corresponding type, i.e., qg = pgL and qs = pbL. The wealth of type i becomes
W − diqi − L + diL in the event of damage, or W − diqi otherwise, where
di denotes the fraction of loss insured against. Both types maximize their
expected utility. Since they are risk-averse, they will insure the entire loss,
i.e., at optimum dg = db = 1.

If the insurance cannot verifiably distinguish between the types, there are
three possible cases. Either it succeeds at making the clients reveal their type
by using different contracts, or they cannot be separated through contracts
alone, meaning both types get the same contract. Finally we need to check
if the corresponding solution is stable, i.e., no insurance firm would deviate.
Otherwise the market might collapse completely, so that nobody would be
insured.

Assume the insurance firm offers a single contract for all types. This is
called pooling. For efficiency reasons it has to lie on the 45◦ line. Insurance
firms do not gain a profit, but they should not operate at deficit either. Thus
the single premium for all insurants must be

q = L
pg + ps

ng + ns
=: ρ̄.

The corresponding contract A is shown in Fig. 7.1. Unfortunately this con-
tract is not stable in a competitive market, since by moving along a line of
slope −1/ρ̄ an insurer can motivate the good types to deviate: the bad types
would stay with the firm offering A, but the good types would switch. With a
premium of ρ̄L, the insurer with the bad types would operate at a loss, while
the insurer with the good types would gain a profit. Therefore, a pooling
contract is not stable.

Finally, consider a contract separated by type. In Fig. 7.2, the good types
get contract B, and the bad types get contract A. These correspond to the
optimum for each type. However, the b type now has an incentive to obtain
contract B by pretending to be of type g. To prevent this, only contracts on or
below the indifference line μ̄A

s for b are possible. Denote the best contract on
this line from g’s point of view by C. To check the stability of such a variety
of contracts, we need to find out if any participant benefits by choosing or
offering another contract. D is a possibility for an efficient pooling contract.
In D, the b types are certainly better off. Such a contract corresponds to the
premium equal to the expected loss, i.e., q = L

pg+ps

ng+ns
=: ρ̄. If the fraction of g

types in the economy is very large, a pooling contract can also be advantageous
compared to C, because D lies in the improvement set of the g type. As we
have already seen, such a contract cannot be stable: there is no equilibrium
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Fig. 7.2. Is the proportion of g-types
large enough, it can be advantageous for
them to choose D instead of C

that insures both types equally. However, if the fraction of good types is low,
it is possible that they would prefer C over a pooling contract. In that case,
there is an equilibrium where the good types are insured by C and the bad
types by A.

7.5 Summary

Financial transactions are always related to information. We have seen in this
chapter first how this information can be revealed by prices. In this framework,
we have discussed the market for lemons, the information paradox and chart
analysis. Information can also be revealed by trades. Dividends, for instance,
can work as a signal about the potential of a firm. This role has been neglected
in the Modigliani-Miller Theorem. Information that is revealed by trades can
also lead to rational herding through an “information cascade”.

Typically, information plays a central role when few agents are involved
and a market view (where the single investors do not have decisive impact)
cannot be applied. In this situation we have to apply methods from game
theory. In moral hazard problems, e.g., the superior information of one agent
allows him to extract an information benefit. We have seen that this is re-
lated to some of the problems which caused the subprime crisis. The last
class of problems we have introduced are adverse selection problems (like the
Rothschild-Stiglitz model). Here it is not possible to separate different types
of investors (e.g. good and bad debtors) by their actions, although it would be
beneficial to some (or all) agents if that were possible. A lack of information
here can even lead to a market breakdown, i.e. a situation where a specific
financial good (usually an insurance) cannot be offered.
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Time-Continuous Model�
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(All is flux and nothing stays still.)
Heraklite, as quoted by Platon.

Trading on a stock market is obviously a discrete process, as it consists of
single transactions performed at distinct times. There are, however, so many
transactions in such a high frequency that it is for many applications better
to model them in a time-continuous setting, i.e., to assume that they take
place at all times. In this chapter we will provide a short introduction to time-
continuous models. An important difference will be that prices are exogenously
given. In particular, we will derive the famous Black-Scholes model for asset
pricing as it has been introduced by Fischer Black and Myron Scholes [BS73]
and by Robert C. Merton [Mer73]. In 1997, the Nobel prize has been awarded
for this work. The importance of this model can not be overemphasized, as
the Royal Swedish Academy put it:

Their innovative work . . . has provided us with completely new ways
of dealing with financial risk, both in theory and in practice. Their
method has contributed substantially to the rapid growth of markets
for derivatives in the last two decades.

In fact, their formula is probably the most used formula on banks and stock
exchanges worldwide even today. In this chapter we will derive this celebrated
formula, but we will not reduce all to one equation. There is a whole theory
behind this result and we will see how this theory can be used to solve many
more problems. We will also see what limitations the classical theory still has
and sketch some ways how to overcome them.

In one chapter one can only give a very brief introduction into the rich
field of mathematical finance. A classical reference for further studies is the
book by Duffie [Duf96], a lighter source is [KK01]. We also refer the reader
to the book by Karatzas and Shreve [KS98]. All of those books provide many
more references than we can discuss here.
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8.1 A Rough Path to the Black-Scholes Formula

Before we start to develop the basic ideas of mathematical finance systemat-
ically, we would like to give a short overview on the derivation of the Black-
Scholes formula. To do this in a concise way, we have to “walk over some dead
bodies”, i.e., be a little ruthless regarding mathematical precision. The con-
cepts we use in this section will all be introduced rigorously in the sequel. For
the moment, we ask you to trust us that the thin mathematical ice on which
we walk is in fact stable enough for a proof. If you are afraid of drowning,
just continue with the next section, and you will be save and fine. A solid
derivation of the Black-Scholes formula is given there.

The first assumption that we make to derive the Black-Scholes formula for
the price of a derivative based on an asset is an assumption on the price S(t)
of this underlying asset. According to the information hypothesis we assume
that the price of the asset changes when new information reaches the market.
The information is assumed to be random, more precisely its influence on the
return of the asset is assumed to be normally distributed. Moreover, there is
some fundamental increase in the value of the asset which is predictable, but
overlaid with the randomness of the information-driven price movements.

We can write this in the following form:

dS(t) = μS(t) dt+ σS(t) dB(t). (8.1)

where μ and σ are mean and standard deviation of the asset price and B(t) is
a Brownian motion, which is (roughly) a continuous random process that has
zero mean, is always independent of its past evolution and generates normally
distributed returns.

The second fundamental assumption that we will make is familiar to us
from our studies of time-discrete models (see Chaps. 3–5), namely the no-
arbitrage principle: we assume that there is no arbitrage opportunity. What
this means precisely in the time-continuous setting will be explained in the
next section. For the moment we just state that there is no trading strategy
that yields riskless excess returns over the risk-free asset.

We want to price an option on the asset S. We denote the value of this
option at time t by V (S, t). It depends obviously on the time t and the price
of the asset S.1 At maturity the value of the option is known. Our goal is to
derive a partial differential equation for the function V and to solve this using
the boundary conditions imposed particularly by our knowledge of the price
at maturity.

We start by computing dV , the incremental change of V using a formula
(called Itō formula) which we derive as Lemma (8.6). We obtain

1 With this innocent looking assumption we have excluded many derivatives that
are path dependent, i.e., their value does not only depend on S and t, but also on
the previous prices of the underlying asset. We will come back to this later when
we talk about numerical methods for the computation of asset prices.
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dV (S, t) =
(
μS(t)

∂V (S, t)
∂S

+
∂V (S, t)

∂t
+

1
2
σ2S(t)2

∂2V (S, t)
∂S2

)
dt

+σS(t)
∂V (S, t)
∂S

dB(t). (8.2)

There are now several possibilities to proceed. The probably easiest one
(that makes you wonder how to find it, though) is to define a trading strategy
that will turn out to replicate exactly the option. This trading strategy is
defined as follows: at every time t hold one option and −∂V (S, t)/∂S options.
The strategy is called delta hedge strategy. The value of this delta hedge port-
folio at time t is V (S, t)−S(t)∂V (S, t)∂S. The incremental profit (or loss) dR
that we make by following this strategy is then

dR(t) = dV − ∂V (S, t)
∂S

dS.

We insert (8.2) and (8.1) into this formula and get

dR(t) =
(
∂V (S, t)

∂t
+

1
2
σ2S(t)2

∂2V (S, t)
∂S(t)2

)
dt.

We notice that we have lost the stochastic terms (the ones with B) here,
in other words, the incremental returns of the delta hedge portfolio are not
stochastic, but deterministic and follow the above formula. But if these re-
turns are deterministic, they are risk-free, and this implies that they should
not be different from the returns of the risk-free asset, since otherwise we
would violate the No-arbitrage Principle. Therefore, we can equal dR with
the incremental return of the risk-free asset of the same amount (which is
V (S, t) − S(t)∂V (S, t)∂S), i.e.

r

(
V (S, t) − S(t)

∂V (S, t)
∂S(t)

)
dt =

(
∂V (S, t)

∂t
+

1
2
σ2S(t)2

∂2V (S, t)
∂S(t)2

)
dt.

Dividing by dt, we obtain the Black-Scholes equation, a partial differential
equation in the two variables S and t:

∂V (S, t)
∂t

+
1
2
σ2S(t)2

∂2V (S, t)
∂S(t)2

+ rS(t)
∂V (S, t)
∂S

− rV (S, t) = 0. (8.3)

Partial differential equations (PDEs) typically have infinitely many solutions,
so this alone would not be of much use. However, we have boundary condition,
i.e., constraints that apply on the boundary of the set where S and t are
defined.

What are our boundary conditions? This depends on the option we want
to price. Let us price a simple call option with exercise price K. This option
allows at maturity T to buy a share for the price K. Our first boundary
condition is now V (0, t) = 0 for all t, since the stochastic process (8.1) is
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constant zero if it is zero at any point in time, but a call option would not
be exercised if the underlying asset is worthless, thus the option is worthless
as well. On the other hand, if the asset price is extremely high, the value of
the option is close to the value of the asset which gives the second boundary
condition (actually, it is an asymptotic condition, i.e., the boundary is “at
infinity”): V (S, t)/S → 1 as S → ∞. Finally, we have the condition for the
value of the option at maturity which is V (S, T ) = S −K if S > K and zero
otherwise. In summary we have the following boundary value problem:

⎧
⎪⎪⎨

⎪⎪⎩

∂V (S,t)
∂t + 1

2σ
2S(t)2 ∂2V (S,t)

∂S(t)2 + rS(t)∂V (S,t)
∂S − rV (S, t) = 0,

V (0, t) = 0 for all t,
V (S, t)/S → 1 as S → ∞, for all t,
V (S, T ) = max(S −K, 0) for all S.

This problem can in fact be solved in the following way: apply a suitable
variable transformation to bring equation (8.3) to the form of a diffusion
equation. Then use a standard solution ansatz and finally transfer back to the
original variables.2 The final result is:

V (S, t) = Sφ(d1) −Ke−r(T−t)φ(d2),

where φ is the normal cumulative distribution function, i.e.,

φ(x) :=
∫ x

−∞

1
σ
√

2π
exp

(
− (y − μ)2

2σ2

)
dy,

and the auxiliary variables d1 and d2 are given by

d1 =
ln(S/K) + (r + σ2/2)(T − t)

σ
√
T − t

,

d2 = d1 − σ
√
T − t.

If we want to study more complicated (but still path-independent) options, the
corresponding boundary conditions will be more complicated, and we cannot
expect to get such a neat solution. However, a numerical solution of PDEs of
the form (8.3) is technically not very difficult, and it is therefore possible to
price a wide range of options with this approach.

At the end of this section let us point out a couple of difficulties that we
still have to address, in order to convince you that there is still something
important coming in the remaining part of this chapter.

First, there is the Itō formula that we have used, but neither stated in gen-
erality, nor proved or at least motivated. Then there are a couple of concepts
2 An ansatz is a specific functional form which we assume the solution to have

in order to compute it. This assumption is a posteriori justified if we obtain a
solution that is indeed of the assumed form. In the appendix more ideas on how
to solve PDEs and further references are given.
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that we applied without really thinking too much about it. Using mathemat-
ics only led by intuition, but not by a correct foundation, can lead to wrong
conclusions, and in finance wrong conclusions can be very very expensive, so
maybe it is worth looking at the details. There are other reasons: besides the
Black-Scholes formula, we can get more results, for instance to price path-
dependent options (at least numerically). Moreover, some of the fundamental
assumptions in the Black-Scholes model are arguable at best: why should stock
prices follow a normal distribution? We have actually already seen that this is
not really the case (as we have mentioned at first in Sec. 3.4.2). This will moti-
vate us to study less handy, but more realistic models for stock prices. We will
also introduce methods to check the predictions of the Black- Scholes model
empirically. This will again enable us to improve the model substantially.

8.2 Brownian Motion and Itō Processes

We consider a state space Ω with a probability measure p.3 We define a
process as follows:

Definition 8.1 (Process4). A process X is a measurable function X : Ω ×
[0,∞) → R. We call X(t) := X(·, t) the value of X at time t.

Processes will be used to describe the ups and downs of assets, in that they
assign probabilities to states at any given time. One of the central problems
in asset pricing is to find realistic and at the same time mathematically man-
ageable classes of processes. Historically, this idea goes back to the year 1900
and Louis Bachelier’s seminal and unfortunately long forgotten work [Bac00].
He already applied Brownian motion as underlying process, which is even to-
day still the most popular process among practitioners. We will see later, in
Sec. 8.8, that there are nowadays alternatives that model actual behavior of
asset prices much better, but for now we will study Brownian motion:

Definition 8.2 (Brownian motion). A standard Brownian motion is a pro-
cess B defined by the properties:

(a) B(0) = 0 a.s.

(b) For any times t0, t1 with t0 < t1, the difference B(t1)−B(t0) is normally
distributed with mean zero and variance t1 − t0.

(c) For any times 0 ≤ t0 < t1 < t2 < · · · < tn < ∞, the random variables
B(t0), B(t1) −B(t0), . . . , B(tn) −B(tn−1) are independently distributed.

3 More precisely, we study a probability space (Ω,F , p), where F is a σ-algebra and
p is a probability measure on Ω with respect to F , see Appendix A.4 for details.

4 This and the following definitions can also be adapted to discrete-time problems.
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(d) For each w ∈ Ω, the sample path t �→ B(w, t) is continuous.

The idea of Brownian motion is that at any given time the change of a
quantity is completely random and following a normal distribution. Brownian
motion has first been described by the botanists Jan Ingenhousz in 1785 and
Robert Brown in 1827 who noticed random movements in small particles under
the microscope. The mathematical theory was first developed by Thorvald
Thiele in 1880, but Bachelier independently re-invented it in his work.

When describing financial markets by processes, we are particularly inter-
ested in adapted processes, i.e., processes that “cannot see into the future”: in
other words, only past events should be of interest to our model. To define this
notion properly, we need the mathematical tool of the so-called “filtrations”
which describe the information available at a given point in time:

Definition 8.3 (Filtration). A filtration of a measurable space Ω with σ-
algebra F is a family of σ-algebras {F(t)}t∈(0,∞) such that

(i) F(t) ⊂ F for all t,
(ii) F(t1) ⊂ F(t2) for all t1 ≤ t2.

The filtration will in a certain way reflect how much we know at a given
time t: condition (ii) ensures that the knowledge can only increase, never
decrease. We can now define what we mean with an “adapted process”:

Definition 8.4 (adapted process). A process X is called adapted to the
filtration F(t) of Ω if X(t) : Ω → R is a F(t)-measurable function for each
t ∈ [0,∞).

We have now a mathematically precise, although maybe slightly abstract
model describing the price fluctuations on a financial market. In the next step
we want to trade on this market.

A trading strategy is described by a process that prescribes in every state w
and at any time t the assets a person should hold.5 For simplicity, we will deal
with only one asset, thus we a are looking for a function θ : Ω×[0,∞) → R, the
trading strategy. As example take the fixed-mix strategy that keeps the value
fraction of a risky asset constant: here θ would be defined as θ(w, t) = c/w
with c constant if w denotes the price of the risky asset.

If along a sample path θ is constant, it is relatively easy to compute the
total return between time t0 and t1 as θB((t1)−B(t0)). This allows us to com-
pute the gain also if θ is piecewise constant. For general θ we need to assume
that

∫ T

0 θ(t)2 dt <∞ a.s., then we can define the total gain,
∫ T

0 θ(t) dB(t), by
approximating θ by sequences θn that are piecewise constant along the sample
path. This method called “stochastic integration” needs in fact much more
mathematical background then it seems and the interested reader is referred
to [Kar88]. The general idea, however, is similar to the definition of the usual
integral of a function via approximation with Riemann sums, as we know it
5 We have seen such a trading strategy already in Sec. 8.3: the delta hedge strategy.
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from calculus. The stochastic integral
∫ T

0
θ(t) dB(t) also shares the same fun-

damental properties with the standard integral, in particular it is linear, i.e.,
for trading strategies θ, ρ and real numbers a, b we have

∫ T

0

aθ(t) + bρ(t) dB(t) = a

∫ T

0

θ(t) dB(t) + b

∫ T

0

ρ(t) dB(t).

Brownian motion has a mean value of zero, real assets, however, have
usually average returns larger than zero. Moreover, we want to study markets
with more than one asset, and the returns of the assets will differ. Therefore,
we need to go a step further and define a process that adds a “drift” to the
Brownian motion, i.e., an additional directed price movement. Such processes
are called Itō processes.

Definition 8.5 (Itō process). Let B be a Brownian motion, x ∈ R, σ ∈ L2,
i.e., σ is an adapted process with

∫ T

0 σ(t)2 dt < ∞ a.s. for all t, and μ ∈ L1,
i.e., μ is an adapted process with

∫ T

0 |μ(t)| dt <∞ a.s. for all t. Then the Itō
process S is defined for t ∈ [0,∞) as

S(t) = S0 +
∫ t

0

μ(s) ds+
∫ t

0

σ(s) dB(s).

Informally and shorter, we denote dS(t) = μ(t) dt+ σ(t) dB(t), S(0) = S0.

Under some additional technical conditions one can prove that σ and μ
are nothing else than the rate of change of mean and variance of S, precisely
we have a.s.:

d
dr
Et(S(r))|r=t = μt,

d
dr

vart(S(r))|r=t = σ2
t .

Consequently, μ is called the drift process and σ the diffusion process of S.
Again, we can define a stochastic integral computing the total gain for a

trading strategy θ, but this time θ has additionally to satisfy certain additional
regularity conditions, see [Duf96, Chap. 5C] for details.

If we imagine S(t) to describe the price of an asset, then it would be
interesting to study the process defined by a given function of this price (e.g.,
the payoff of a derivative based on this asset). That this can be done relatively
easily is the merit of the result by Kiyoshi Itō, the Itō formula, that can be
stated (in its easiest form) as follows:

Lemma 8.6 (Itō formula). Let S be an Itō process and f : R
2 → R twice

continuously differentiable, then the process Y (t) := f(S(t), t) is an Itō process
satisfying

dY (t) =
(
∂f(S(t), t)

∂S
μ(t) +

∂f(S(t), t)
∂t

+
1
2
∂2f(S(t), t)

∂S2
σ(t)2

)
dt

+
∂f(S(t), t)

∂S
σ(t) dB(t).
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The proof of this result can be found, e.g., in [Duf96]. The intuition to it
is as follows: if we expand the function f : R

2 → R into a Taylor series around
the point (S(t), t), we obtain

f(a, b) = f(S(t), t) +
∂f(S(t), t)

∂S
(a− S(t)) +

∂f(S(t), t)
∂t

(b− t)

+
1
2
∂2f(S(t), t)

∂S2
(a− S(t))2 + O((a − S(t))3, (b− t)2). (8.4)

A Brownian motion has the property that dB(t)2 is of order dt, in other
words, the variance is the square root of the time increase. Therefore, the
higher order terms in (8.4) vanish when we approximate the derivative of f
by taking the limit a → S(t), b → t and we obtain Itō’s formula. (This is of
course a mere intuition and should not fool us into assuming the proof would
be nothing more than a straightforward expansion of this.)

8.3 A Rigorous Path to the Black-Scholes Formula

In the following we will see how the results of the previous section can be
used to derive the Black-Scholes formula – this time in a rigorous way, using
the tools developed in the previous section.

8.3.1 Derivation of the Black-Scholes Formula for Call Options

We describe an underlying asset S (a stock) by a geometric Brownian motion
with drift, i.e.

dS(t) = μS(t) dt+ σS(t) dB(t),

where S(0) = S0 is given. Such a process is often called log-normal, since
log(S(t)) is normally distributed for every t. The process σ is called the volatil-
ity.

We consider a second asset, a bond, with fixed interest rate that hence
follows the price process

β(t) = β0ert, (8.5)

where β0 > 0 is its initial price and r is the fixed interest rate. This gives rise
to the Itō process

dβ(t) = rβ(t) dt. (8.6)

We can describe (8.6) as a differential equation with solution (8.5).
We call a trading strategy with a portfolio that contains a(t) shares of

stocks and b(t) shares of bonds at time t (with a, b ∈ L2) self-financing if for
all t:

a(t)S(t) + b(t)β(t) = a(0)S0 + b(0)β0 +
∫ t

0

a(s) dS(s) +
∫ t

0

b(s) dβ(s).
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This condition ensures that at each time the current value of the portfolio
corresponds to the initial value plus accumulated gains and losses.

We want to price an option based on the stock S. Let us consider as an
example again a European call option, i.e., the right to buy at maturity T the
stock at a given price K. The payoff of this call option at maturity is therefore
max(S(T ) −K, 0), as we have seen in Sec. 8.1.

We want to find a self-financing strategy (a, b) that replicates the payoff
structure at maturity, i.e.

a(T )S(T ) + b(T )β(T ) = max(S(T ) −K, 0).

Given the existence of such a strategy, the price of the option at time t has to
be a(t)S(t)+b(t)β(t), since otherwise we would have an arbitrage opportunity.
Thus, once the trading strategy has been determined, the pricing of the option
is done.

Let us assume first that the price of the option at time t equals some
function V (S(t), t) and that V is twice differentiable (we will see later that
this is the case). We can apply the Itō formula for V and obtain:

dV (S, t) =
(
μS(t)

∂V (S, t)
∂S

+
∂V (S, t)

∂t
+

1
2
σ2S(t)2

∂2V (S, t)
∂S2

)
dt

+ σS(t)
∂V (S, t)
∂S

dB(t). (8.7)

We have seen this formula in Sec. 8.1, but this time a rigorous derivation led
us here. Our goal is now to directly derive a hedging strategy. To this aim we
assume the existence of this self-financing trading strategy (a, b) with

dV (S, t) = a(t)dS(t) + b(t)dβ(t). (8.8)

Inserting the expressions for S(t) and β(t), we obtain

dV (S, t) = (a(t)μS(t) + b(t)β(t)r) dt + a(t)σS(t) dB(t). (8.9)

Can we construct a and b from (8.9) and (8.7)? We can: all we have to do is
to match the coefficients in the two expressions, i.e., equal the terms with dt
and with dB(t) separately. Let us do this for dB(t) and we get

σS(t)
∂V (S, t)
∂S

= a(t)σS(t). (8.10)

From this equation we obtain

a(t) =
∂V (S, t)
∂S

,

which we insert into (8.8) to get
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dV (S, t) =
∂V (S, t)
∂S

dS(t) + b(t) dβ(t).

Solving this for b(t) we obtain

b(t) =
1
β(t)

(
V (S, t) − ∂V (S, t)

∂S
S(t)

)
.

Now let us match the coefficients of dt in (8.9) and (8.7):

−rV (S, t) +
∂V (S, t)

∂t
+ rS(t)

∂V (S, t)
∂S

− 1
2
σ2 ∂

2V (S, t)
∂S2

= 0.

Thus, we arrive again at the Black-Scholes equation. Considering the bound-
ary condition at t = T , namely that V (S, T ) = max(0, S −K), we can check
that the following theorem gives a solution to this equation:

Theorem 8.7 (Black-Scholes formula). The value of a European call op-
tion with strike K, maturity T and underlying asset S (described by a geo-
metric Brownian motion with drift μ and volatility σ) is given by

V (S, t) = Sφ(d1) −Ke−r(T−t)φ(d2),

where φ is the normal cumulative distribution function, i.e.,

φ(x) :=
∫ x

−∞

1
σ
√

2π
exp

(
− (y − μ)2

2σ2

)
dy,

and the auxiliary variables d1 and d2 are given by

d1 =
ln(S/K) + (r + σ2/2)(T − t)

σ
√
T − t

,

d2 = d1 − σ
√
T − t.

To be rigorous, we need to double check that the assumptions made about
the existence of the hedging strategy are in fact satisfied, i.e., we need to
prove that a different price would indeed allow for arbitrage strategies. For
simplicity, we prove this for t = 0, but the proof carries over to all times t ≤ T .

Suppose that the price of the option at time zero is larger than V (S0, 0).
Consider the trading strategy (−1, a, b) in option, stock and bond with a(t)
and b(t) as given above. We have a(T )S(T ) + b(T )β(T ) = max(S(T ) −K, 0)
which is the value of the option at time T , thus we have made a riskless profit
(an arbitrage), namely the difference between the price for which we sold the
option and V (S0, 0).

In the same way, if the price of the option at time zero is smaller than
V (S0, 0), the strategy (1,−a,−b) is an arbitrage. In other words, the no-
arbitrage condition implies indeed that the price is V (S0, 0).
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The Black-Scholes model can be easily extended to higher dimensional
situations, i.e., to N ≥ 1 underlying assets. To model this, we define a
vector S(t) = (S1(t), . . . , SN (t)) and a D-dimensional Brownian motion
B(t) = (B1(t), . . . , BD(t)). Moreover, we define a drift vector μ ∈ R

N and
a volatility matrix σ ∈ R

D×N . Then the asset process for the n-th asset can
be written as

dSn(t) = μnSn(t) dt+ Sn(t)σ dB(t).

We will encounter this model again briefly in Sec. 8.6. For details on such
multi-dimensional processes we refer to [Duf96] or other textbooks on math-
ematical finance.

8.3.2 Put-Call Parity

Can we use the result for call options derived above to price put options? A
put option with strike K and maturity T on an underlying S gives the right
to sell a share of S at time T for the price K. The payoff of a put option at
maturity is therefore max(K − S, 0).

The put-call parity will provide us with a way to price put options, when
we know the price for a call option and vice versa, provided that both have
the same underlying, the same strike and the same maturity. To derive this
parity, we consider the following two portfolios:

• One put option and one share.
• One call option and K bonds that pay each 1 at maturity.

Computing the payoff of these portfolios at maturity, we notice that both
pay K if S ≤ K and S if S ≥ K, therefore both portfolios have the same
value – also at times t < T . (Otherwise we would have a natural arbitrage
opportunity.)

Let us denote the value of the put option at time t by P (t), the value of
the call option by C(t) and the value of stock and bond by S(t) and R(t),
respectively. Then the following relationship holds:

C(t) +KR(t) = P (t) + S(t).

This relation is called call-put parity.
If the bond pays a constant interest rate r, then R(t) = e−r(T−t), thus the

value of a put option is

P (t) = C(t) − S(t) +Ke−r(T−t).

Similarly, we could compute the value of a call option from the value of a put
option, always provided we know S(t) and r.
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8.4 Exotic Options and the Monte Carlo Method

The options we have priced so far are often referred to as “plain vanilla
options”. They are straightforward in that they have only one underlying
and their value at maturity only depends on the value of their underlying at
maturity. However, there is an abundance of other options nowadays that do
not satisfy this assumption. Let us list some examples of these exotic options :

Barrier Option:

There are different variants of barrier options. A down-and-out call, e.g., has
the same payoff as a call, provided the price of the underlying never falls below
a certain “barrier” level. Otherwise the option pays back zero at maturity.

Asian Option:

This is essentially a call option where the strike is given by the average of the
price over time.

Fixed-Strike Average:

This is a call option where instead of the price of the underlying, its average
over times is used to compute the final payoff.

Variance Swap:

The payoff of this option is determined by the difference between observed
variance (i.e., the square of the volatility) and a predefined value.

Rainbow Option:

Here not only one, but several underlying assets are used. The payoff of this
option is determined by the average of these underlyings. However, as in the
case of the barrier option, there is no payoff if a predefined barrier is hit. In
the case of a rainbow option, however, it is sufficient if one of the underlyings
falls below this barrier level at some point.

This (by no means complete) list of exotic options demonstrates not only
the creativity of issuers, but also the need for more advanced methods for pric-
ing of such options. It is important to notice that these exotic options are not
all rare. In fact, some of them (in particular barrier options and rainbow op-
tions) are used to construct structured financial products for the retail market
which are enjoying a huge popularity in recent years, particularly in Europe
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and East Asia.6 A typical structured product is the following “reverse con-
vertible”: at maturity (after one year) this product yields the average return
of three selected stocks, but not more than 10%. There is a capital protection,
i.e., if this average is below the starting price at maturity, the starting price
is paid instead, but this capital protection is only valid if none of the three
stocks fell below of 70% of its starting price during the one year period. We see
immediately that we need several options to hedge such a structured product,
in particular a rainbow option.

In fact, variants of this product are among the most popular structured
products on the market. They are particularly popular with retail customers.
For reasons for this popularity and a theoretical analysis of structured prod-
ucts see [Rie10, Rie, HR08]. Fundamental for the understanding of these prod-
ucts is the study of the probability that a barrier is reached. For theoretical
work on this, see [SR10].

How can we price exotic options? For many of these options there are by
now sophisticated methods to obtain pricing formulas using similar methods
as for the Black-Scholes formula. Some examples for this can be found, e.g.,
in [KK01, Chap. 4.1]. There are, however, cases where it is either not possible
to follow this route or options are so new that there are simply no mathemati-
cal results available yet. In such situations numerical approximation methods
are used extensively. Moreover, they have the additional advantage that ex-
changing the underlying stochastic process with a more sophisticated and
realistic variant than the geometric Brownian motion is usually much sim-
pler.7 In the following we will sketch just one of the many methods to price
options numerically, the Monte Carlo method.

The key idea for this method is to use risk-free probabilities, also called
equivalent martingale measure (see Sec. 4.2.2) and to take the discounted
expected value over the payoff of the option. This expected value can be
computed by simulating n independent random paths for the underlying(s)
and computing the value of the option in each of these cases.

How can we implement this idea? The first difficulty we encounter is that
the price of the underlying follows a continuous stochastic process, but we can
compute only finitely many values. Thus we need to discretize the process. In
the case of a geometric Brownian motion this means that we use N discrete
time steps t = 0, T/N, 2T/N, . . . , and generate for each time step an indepen-
dent random number y(t) that follows a standard normal distribution. The
approximation for a Brownian motion B(t) is then for n = 1, . . . , N given by

B(nT/N) = B((n− 1)T/N) +
√
T/Ny(nT/N).

Between these points, we can interpolate B(t), e.g., by piecewise affine func-
tions.

6 Restrictive laws seem to hinder their success in the US.
7 The need for studying other processes will be discussed in Sec. 8.8.
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Having constructed a realization of the Brownian process B(t), we can
compute the price S(t) and – given its path – the payoff of the option at
maturity.

If we have several underlyings, the path of each of them can be constructed
in the same way. However, if they are not independent (which will usually be
the case for stocks or indices as underlyings) we need to construct a process
that respects the correlations between them, which adds more difficulties.

The method relies heavily on a good source of random numbers. This is oc-
casionally a crucial issue, since computers do not actually provide real random
numbers, but only numbers that look random, but are actually the result of
a computation. These pseudo-random numbers are nowadays, however, quite
reliable, as long as they are implemented correctly. A drawback of the method
is certainly its relatively large computational cost, since n as well as N have
to be large to yield a good approximation. On the other hand the method
is universal and can be applied to any option and with quite complicated
price processes. More information on the Monte Carlo method can be found
in [Rub81, Gla03].

8.5 Connections to the Multi-Period Model

As mentioned in Chap. 4, we can price any redundant asset with priced
assets by the absence of arbitrage as stated in FTAP. Thus, we can come up
easily two different methods to price any derivative asset, whose payoffs we
can replicate with existing assets. One is by forming a hedge portfolio and the
other is based on using risk-neutral probabilities.

As in the Black-Scholes formula we first assume that the underlying asset
price process is described by a binomial model with up and down moves as
we have done in Sec. 4.2. In the absence of arbitrage, both pricing methods
result in the formula for basic two period model of European option:

C0 =
1
Rf

(
Rf − d

u− d
C1(u) +

u−Rf

u− d
C1(d)

)
, (8.11)

where C1 shows the final payoff of the option. In the case of call option, the
final payoff of the option is equal to (S1 − K)+, so in the state of up move
C1(u) = (Su − K)+ and in the state of down move C1(d) = (Sd − K)+.
Moreover, risk-neutral probabilities are defined for up move and down move
by

π� =
Rf − d

u− d
, 1 − π� =

u−Rf

u− d
,

respectively. In the multi-period discrete time settings (Chap. 5), by induction,
the pricing formula can be expressed with risk-neutral probabilities:

C0 =
1
Rn

f

⎡

⎣
n∑

j=0

n!
j!(n− j)!

(π�)j(1 − π�)n−j(Sujdn−j −K)+

⎤

⎦ . (8.12)
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To eliminate the positivity condition in the pricing equation in the formula,
we can define a variable m such that it denotes the minimum number of up
moves for the stock price to satisfy the positivity of the final payoff function
as follows:

m = min
{
j, j ∈ {0, 1, . . . , n} : (Sujdn−j −K) ≥ 0

}
. (8.13)

Thus, we can conclude for all j ≥ m option expires in-the-money and otherwise
it expires out-of-money. Thus we have the relation for m:

m >
ln [K/(Sdn)]

ln(u/d)
.

Then, if we use m in the pricing equation (8.12), we eliminate the positivity
condition and we have

C0 =
1
Rn

f

⎡

⎣
j∑

j=m

n!
j!(n− j)!

(π�)j(1 − π�)n−j(Sujdn−j −K)

⎤

⎦ ,

which yields

C0 = S

n∑

j=m

n!(π�)j(1 − π�)n−j

j!(n− j)!
ujdn−j

Rn
f

−KR−n
f

n∑

j=m

n!(π�)j(1 − π�)n−j

j!(n− j)!
.

Here, we can define a new binomial probability

π�� = π� u

Rf
and 1 − π�� = (1 − π�)

d

Rf
,

since π� is the risk-neutral probability. Then the pricing formula reduces to

C0 = S

n∑

j=m

n!
j!(n− j)!

(π��)j(1 − π��)n−j −KR−n
f

n∑

j=m

n!(π�)j(1 − π�)n−j

j!(n− j)!
.

Here, one can notice that the summations in the pricing equation correspond
to the probabilities of random variables which are binomially (n, π��) and
(n, π�) take values at least m, which is defined as in equation (8.13).

We find it useful to remind the binomial distribution. A random variable
distributed binomially with parameters (n, p), as n shows the number of trials
or repetitions and p shows the probability of success of an event for each trial,
has a probability distribution function

P(X ≤ x) =
x∑

j=0

n!
j!(n− j)!

(p)j(1 − p)n−j

and
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P(X ≥ x) = 1 − P(X ≤ x) =
n∑

j=x

n!
j!(n− j)!

(p)j(1 − p)n−j .

In the pricing equation, we have probabilities π� and π�� as in the binomial
success probability. We could interpreted as the adjusted risk-neutral probabil-
ities of the underlying asset prices up move at each node given that the option
expires in-the-money. Thus we can express the probabilities as Q(m;n, π��)
and Q(m;n, π�) and so the pricing equation has a very similar formula to the
Black-Scholes formula in continuous time setting as follows:

C0 = SQ(m;n, π��) −KR−n
f Q(m;n, π�).

We have the same analogy with the Black-Scholes formula expressed with cur-
rent asset price and discounted strike price with the expire in-the-money prob-
abilities Q(m;n, π�) and Q(m;n, π��). These probabilities come from binomial
distributions unlike the standard Black-Scholes model. From multiperiod to
continuous time, we take the limit of the time step number to infinity by
keeping the time to maturity T finite. We define time-to-maturity T = Δtn
and we take n→ ∞. When we take the limit the discount term has an expo-
nential form with the instantaneous risk-free rate r, i.e. er = Rf . Then, under
continuous time we can explicitly state the up move probabilities:

π� =
erT − d

u− d
, π�� = ue−rT .

For the convergence, analogously, we would expect that as n→ ∞, the ex-
pire in-the-money probabilities Q(m;n, π�) and Q(m;n, π��) would converge
to the standard normal distribution with the log-normal prices. Thus, we re-
mind a very nice result of theorem called de Moivre Laplace limit theorem,
which is a special case of the central limit theorem. It states that since the
binomial random variable is actually a sum of Bernoulli random variables,
as n → ∞, the binomial distribution converges to the normal distribution.
For the proof of the theorem and the details one can refer to Grimmett et al
[GS01]. Thus, we have

Q(m;n, p) →
∫ ∞

m

N(x) dx, as n→ ∞,

where X is a binomial random variable and N(·) denotes the normal prob-
ability density function (see Appendix A.2). By standardizing the normal
distribution, we have

y =
x− E(X)√

var(X)
, z =

m− E(X)√
var(X)

.

Then, we have

Q(m;n, p) →
∫ ∞

z

N(y) dy =: φ(−z), (8.14)
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where the function φ(·) represents the cumulative distribution of the normal
distribution.

From this point, the only task left is to show that −z actually corresponds
to d1 (in the Black Scholes formula) under the probability π�� and d2 under
the probability π�. To show this, we first express the asset price in terms of
time to maturity, where Δt = T/n:

ST = Suxdn−x.

We take the logarithm to get

ln
(
ST

S

)
= x ln

(u
d

)
+ n ln(d).

Thus, we can express the expected value and the variance of the random
variable X as follows:

E[X ] =
E[ln(ST /S)] − n ln(d)

ln(u/d)
,

var[X ] =
var[ln(ST /S)]

ln(u/d)2
.

Hence, we need to find the expectation and the variance of the logarithmic
return variable in order to compute them for the random variableX . We define
the variable m again for continuous-time setting by doing a simple trick such
that we can always find ε, 0 ≤ ε < 1:

m =
ln[K/(Sdn)]

ln(u/d)
+ ε, (8.15)

as n → ∞. By using the relation given by (8.15) and the expectation and
variance of the random variable X , we can express the value −z in (8.14) as
follows:

−z =
−m+ E[X ]√

V[X ]
=

ln(S/K) + E[ln(ST /S)]√
V[ln(ST /S)]

− ε ln(u/d)√
var[ln(ST /S)]

.

Moreover, we know that
√

var[ln(ST /S)] = ln(u/d)
√

var[X ] = ln(u/d)
√
nπ�(1 − π�).

by binomial distribution. Thus, we have

−z =
ln(S/K) + E[ln(ST /S)]√

var[ln(ST /S)]
,

as n→ ∞. One can show that the variance does not change under equivalent
probability measures (this follows from Girsanov’s Theorem, see [KS98]). We
need some specifications for up move and down move and the probability:
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u = eσ
√

Δt, d = e−σ
√

Δt, p =
1
2

+
1
2
μ
√
Δt

σ
,

where p denotes the objective probability of the up move so that we can con-
clude with those values suggested first by Cox, Ross and Rubinstein [CRR79],
the expected log return and variance can be expressed as

E[ln(ST /S)] → μT, var[ln(ST /S)] → σ2T.

Note that one can come up with different parameterizations to satisfy the
same expressions. Then we can use the normality of ln(ST /S) to calculate
the expectation under different probabilities that will give the corresponding
values of d1 and d2. We know that if ln(ST /S) is normally distributed than
ST /S will be log-normally distributed and we have the following relation for
log-normal distributions:

ln (E(ST /S)) = E (ln(ST /S)) +
1
2

var (ln(ST /S)) . (8.16)

By using (8.16) and the values of the probabilities we find for the probability
π��

E[ln(ST /S)] = rT +
σ2T

2
and for π�

E[ln(ST /S)] = rT − σ2T

2
.

Hence, we finally reach the original values of the Black-Scholes model. The
value corresponding to probability π�� is

d1 = −z =
ln(S/K) + E[ln(ST /S)]√

var[ln(ST /S)]
=

ln(S/K) + rT + σ2T/2
σ
√
T

and the value corresponding to the probability π� is

d2 = −z =
ln(S/K) + rT + σ2T/2

σ
√
T

.

Thus, the formula (8.11) of the binomial model reduces to

C0 = Sφ(d1) −Ke−rTφ(d2),

as n→ ∞, where we used that

lim
n→∞

(
1 +

rT

n

)−n

= lim
n→∞

e−rT = R−1
f .
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8.6 Time-Continuity and the Mutual Fund Theorem

How should an investor choose his trading strategy? Portfolio selection is –
besides asset pricing – one of the central problems that we want to solve in
financial economics.8

The CAPM in Chap. 3 was the first asset pricing model that we have en-
countered and one of its consequences was the Two-Fund Separation Theorem
(Sec. 3.1.5) that stated that every mean-variance investor in a CAPM market
(i.e., in a market where everybody is a mean-variance investor) should hold
the same portfolio of risky assets. Only the combination with the riskless asset
is used to account for his risk attitudes.

We have criticized the mean-variance approach as a model for rational or
behavioral preferences (compare Sec. 2.3.2), and so it seems that the conse-
quences of the CAPM can only be seen as a result of using a mathematically
appealing, but unfortunately overly simple decision model. This is, however,
not entirely true: in fact we will show that in continuous-time trading under
certain assumptions on the underlying asset process and the risk attitudes of
the investor the so-called Mutual Fund Theorem holds, which is in a certain
sense a generalization of the Two-Fund Theorem to the continuous-time set-
ting. This theorem holds in particular not only for a mean-variance investor,
but in fact for a large class of rational investors (in the sense of Expected
Utility Theory).

The Mutual Fund Theorem has been proved by Merton [Mer72]. We state
here a simplified variant of a version stated in the book by Karatzas and
Shreve [KS98]. The (not so easy) proof of this theorem can be found there.
As preparation for the theorem we need to make a couple of definitions. In
particular, we need to define what we call an optimal trading strategy for an
expected utility maximizing investor.

We assume that there are N ≥ 1 underlying assets driven by a D ≥ 1
dimensional geometric Brownian motion B(t) (see Def. 8.2). Let S(t) ∈ R

N

be the price vector of the assets and σ ∈ R
D×N the volatility matrix.

Let us now construct the utility that we aim to maximize. First, we notice
that in a time-continous framework with finite investment horizon we need to
distinguish two utility functions: one that describes the utility derived from
consumption during the investment time and one that describes the utility
derived from final wealth. We denote these two utility functions by u1 and
u2. We allow u1 to be time-dependent, thus u1 : R× [0,∞) → [−∞,+∞) and
u2 : [0,∞) → [−∞,+∞).9

8 Compare also [CV02].
9 It is of course possible that u1 is time-independent and that both utilities are

in effect the same, however, in reality this is unlikely to be the case: consider an
investment problem over one year without earnings, then the consumption in that
year induces probably a smaller utility than the saved money at the end of that
year does, simply because the latter has to be used in all the subsequent years
still to come.
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Our gaol is now to formulate the optimization problem. The investment
horizon is denoted by T , i.e., we invest at time t = 0 and sell at time t = T . In
between, we are allowed (and need) to take money out of the investment for
consumption. This consumption plus the amount of money we have at time
T determines our utility.

The consumption over time is described by the function c(t). Moreover,
we have a trading strategy θ(t) such that we never have to face a utility of
−∞.10 Then we want to maximize the expected utility

U := E

(∫ T

0

u1(t, c(t)) dt+ u2(X(T ))

)

in consumption plan c and self-financing trading strategy θ.
Let us now assume that the utility functions u1 and u2 are “reasonable” in

the sense that the are strictly concave (i.e., the investor is strictly risk-averse),
increasing and satisfy the following technical conditions (a more precise for-
mulation of these statements can be found in [KS98]):

Assumption 8.8. We assume that u1 and u2 satisfy the following condi-
tions:11

(i) I1 := (u′1)
−1 and I1 := (u′2)

−1 have polynomial growth.
(ii) u1(I1) and u2(I2) have polynomial growth.
(iii) I1 is Hölder continuous.
(iv) Either ∂I1(t, y)/∂y is strictly negative for a.e. y or ∂I ′2(y)/∂y is strictly

negative a.e. (or both).

These assumptions still leave ample room for the choice of the utility
functions, but nevertheless Robert Merton proved the following result [Mer72]:

Theorem 8.9 (Mutual Fund Theorem). Assume that the volatility of the
underlying assets is given by σ and the dividend process is given by δ. Assume
that the investor can invest risk-free for a return of r and borrow money for
a return of b. Assume that σ, δ, r and b are smooth functions of the time
t.12 Then any agent with preferences satisfying assumption 8.8 should hold a
10 More precisely: let X(t) denote the process of the value of the portfolio defined

by the investment strategy (i.e., X depends in particular on S, c and θ), then the

expected value of the intertemporal consumption,
∫ T

0
min{0, u1(t, c(t))}dt, has to

be larger than −∞ and the expected value of the final wealth, min{0, u2(X(T ))}
has to be larger than −∞, as well.

11 For mathematical terminology compare Appendix A.
12 Up to now we have only considered the case where the risk-free rate and the

volatility were constant and borrowing and investing in the risk-free asset had
the same fixed interest rate. Moreover, we have not considered dividends. All of
these extensions are not essential to understand this theorem, but are stated for
completeness. These extensions include as special case particular the setting we
have previously used where r = b, δ = 0 and σ and r being constant in time. For
details see [KS98].
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mutual fund containing the assets in the proportion

(σ′(t))−1θ(t) = (σ(t)σ′(t))−1(b(t) + δ(t) − r(t)�1)

plus a risk-free asset in order to maximize the expected utility U .

This generalizes in a certain way the Two-Fund Separation Theorem to a
large class of preferences. It shows in particular that the Two-Fund Separa-
tion Theorem was not just a weird artifact of the mean-variance assumption,
but that there is some deeper insight behind it. Even more so, the Mutual
Fund Theorem does not always apply to mean-variance preferences, since we
know from Sec. 2.3 that the mean-variance approach corresponds to an ex-
pected utility maximization with a quadratic utility function; a quadratic
utility function, however, cannot be strictly concave and increasing, thus the
Mutual Fund Theorem would not be applicable. If we assume, e.g., returns
with normal distribution, then mean-variance and expected utility preferences
coincide, so in this case the Mutual Fund Theorem applies.

What is more important: the Mutual Fund Theorem holds for a large class
of strictly concave expected utility functions. But what about its validity in
reality?

First, observations about investment decisions show a strong heterogeneity
in asset allocations. One possible explanation might be that expectations of
investors often are heterogeneous. In fact, many observations on financial mar-
kets can be explained by trading expectations, and the Mutual Fund Theorem
ignores this aspect completely.

But still, there are situations where expectations should be homogeneous,
take e.g., the case of a client advisor at a bank: his (or the bank’s) expectations
on the market are likely to be more correct than the ones of his clients. In
fact, the clients might believe his expectations completely and just expect
him to invest their money in a way that is providing them with an optimal
risk profile, i.e., to optimize the client’s utility function, given the advisor’s
expectations. Therefore, the expectations are homogeneous and the Mutual
Fund Theorem should hold, i.e., the advisor should suggest the same portfolio
of risky assets to all of his clients, regardless of their risk attitudes. This is
certainly puzzling and quite contrary to our experience: banks structure the
risky part of portfolios differently, depending on the client’s risk profile. Does
the Mutual Fund Theorem prove that this is suboptimal and a policy change
would lead to a mutual benefit for client and bank?

Before we simply “buy” such a surprising result and recommend to every-
one to follow it, some careful skepticism might still be in place. In fact, this is
always a good idea, when we derive a very surprising result from an abstract
model. In any case, a discrepancy between real life on financial markets and
the theory is always an intriguing observation that helps us to improve at
least one of them – either the model or the real life. . . Let us therefore reflect
about the problem for a moment: what could be possible explanations for this
puzzle?
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Essentially, one can argue from three point of views: the economics point,
the behavioral finance point and the mathematical finance point.

The classical economist could say that the model simply overlooks market
friction, e.g., transaction costs. Considering such costs, an active continuous-
time trading structure is not feasible, and it might be better to stick to some
simpler (but less general) portfolio.

The advocate of behavioral finance could argue that investment decisions
and markets are far away from being rational. Investors would therefore ex-
hibit preferences that are not covered by the Mutual Fund Theorem, in partic-
ular they might be risk-seeking for some wealth levels, have reference points,
overweight small probabilities and are – in essence – too messy to fit into the
neat model of Merton. Moreover, due to these irrationalities, markets show
anomalies that make them deviate from the models we have studied so far. In
particular, future returns might not always be independent of past returns.

The devotee of mathematical finance finally would partially agree to both
and start improving his models in order to capture transaction costs on the
one hand and more realistic stock market processes on the other hand.

What do we say on this matter? Probably that all three are right: they
observe weak points in the model that have to be addressed one way or the
other. We have already seen, e.g., that the utility function implied by option
prices is not everywhere concave (see Sec. 4.6.3). Moreover, we will collect
some more evidence for the need for more complicated processes (see Sec. 8.8).

To sum up: the puzzle gives rise to improving the theory, and some direc-
tions for an improvement we will discuss in the next sections.

8.7 Market Equilibria in Continuous Time

To formulate an equilibrium model in continuous time requires more compli-
cated tools than in discrete time, although the fundamental ideas are very sim-
ilar. To attain the existence of an equilibrium, generally we need very strong
assumptions. Yet, unfortunately, we might not get continuous and diffusion
prices from a general equilibrium theory although this is assumed in most of
the literature of finance and Arbitrage Pricing Theory. As in the multi-period
equilibrium model, prices are determined by the state prices with the next
period payoff structure. In complete markets, these state prices are unique,
non-negative adapted processes.

In this part, we try to show briefly how the equilibrium in continuous time
would look like and what possible implications for asset prices would be. For
this, we adopt the general model of Duffie and Zame [DZ89]. According to
this approach, the endowments are stochastic processes and each agent has
time additive differentiable expected utility functions. The model has a very
crucial implication that unlike the most of the general equilibrium models,
under this model, we can have continuous stochastic asset prices.
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As in the previous sections of this chapter, we work with a probability
space (Ω,F ,P) equipped with a standard filtration {Ft, 0 ≤ t ≤ T }. We
assume the consumption process ct is square integrable and the cumulative
dividend process is defined as

dDn
t = μD(t)dt+ σD(t)dB(t), for all n = 1, . . . ,K,

such that it has a finite variance and for the n = 0, D0
t = 0, for all t < T

and for t = T, D0
T = 1. Thus, for the asset prices S0, S1, . . . , SK the gain

process is expressed as G = D + S from which we can express the gain pro-
cess as geometric Brownian motion. With this, we can define the cumulative
gains with predictable13 squared integrable portfolio process θ = (θ0, . . . , θK).
This portfolio θ is generally defined as piecewise constant function over time
intervals, which is very reasonable when we consider the transaction costs.

Definition 8.10. A feasible consumption-portfolio plan (cit, θ
i
t) for agent i =

1, . . . , I is defined as a pair for time t such that

θt · St =
∫ t

0

θs dG(s) +
∫ t

0

ps(ωi
s − cis) ds.

Definition 8.11. A feasible consumption-portfolio plan (cit, θ
i
t) is optimal if

there is no other feasible consumption-portfolio plan (c̃it, θ
i
t) such that U i(c̃i) >

U i(ci) for agent i.

Definition 8.12. An equilibrium for an economy

E =
(
(S, p), (c1, θ1), . . . , (cI , θI)

)

is a collection such that given the security price and commodity spot price
processes

• For every agent i, the consumption-portfolio plan is optimal, i.e. maximizes
their utility,

• Markets clear, i.e.
∑

i θ
i = 0 and

∑
i(c

i − ωi) = 0.

For the sufficient conditions for the existence of such an equilibrium, one
should refer to Duffie [Duf86]. We continue to give the equilibrium condition
for the model.

Assumption 8.13. Each agent has the following utility function U i with the
following representation:

U i(c) = E

[∫ T

0

ui(ct, t) dt

]
,

where ui : R+ → R is differentiable and concave and ct denotes the non-
negative consumption process. Moreover, to avoid unbounded spot prices for
consumption, limc↓0 u

′
i(c, t) = +∞.

13 For technical definition, e.g. predictable process, see [Duf96]
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Assumption 8.14. The aggregate endowment process ω =
∑I

i=1 ω
i follows

a stochastic process which satisfies the following differential equation:

dωt = μω(t)dt+ σω(t)dB(t),

such that the volatility term satisfies

E

[∫ T

0

σ2
ω(t) dt

]
<∞.

Assumption 8.15. Equivalent assumption for spanning in discrete time to
show any feasible consumption plan is attainable by trading in financial mar-
kets is that the processes M1,M2, . . . ,MN are martingales, i.e.

Mk
t = E[Dk

t |Ft], for all t ∈ [0, T ].

The representative agent model for a given equilibrium economy E =(
(S, p), (c1, θ1), . . . , (cI , θI)

)
is a single agent (Uλ, ω) maximizing the following

utility form:
Uλ(c) = sup

c1,...,cI

∑

i

λiU
i(ci)

subject to
∑

i c
i ≤ c for some coefficient vectors λ ∈ R

I
+ and the equilibrium

prices are the same (S, p). By the equilibrium functional form, we can express
the single representative agent’s utility as

Uλ(c) = E

[∫ T

0

uλ(ct, t) dt

]
,

where
uλ(c, t) = sup

c1,...,cI)∈R
I
+

∑

i

λiu
i(ci, t)

subject to
∑

i c
i ≤ c.

Theorem 8.16. Under the assumptions 8.13 and 8.15, on the defined econ-
omy, there exists an equilibrium with a representative agent (Uλ, ω), such that
the real security prices Ŝt satisfy the following representative agent pricing
formula for any time t:

Ŝt =
1

u′λ(ωt, t)
E

[∫ T

t

u′λ(ωs, s) dD̂s|Ft

]
,

for all t ∈ [0, T ).

For the proof one should refer to Duffie and Zame [DZ89].
The last expression is analogous to discrete time, because it has the same

characteristics regarding the no-arbitrage condition of the equilibrium asset
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price formulation. Under some dividend and utility specifications, one can
derive a C-CAPM model in a straightforward way. Moreover, the model obvi-
ously produces stochastic asset prices under some utility specifications. With
the right utility choice, the Black-Scholes model can be supported by an equi-
librium model. However, for the Black-Scholed model to hold one does not
need to know the equilibrium allocations, the only thing is to estimate the
market price of risk as long as the underlying asset price functional is given
by the no-arbitrage condition. In fact, we also know that the no arbitrage
condition is also a necessary condition for an equilibrium. Black-Scholes can
be considered as a partial equilibrium model of prices.

8.8 Limitations of the Black-Scholes Model and
Extensions

The Black-Scholes model as we have derived it relies on a list of assumptions,
in particular:

1. Trading in the assets is continuous in time.
2. The price of the underlying asset follows a geometric Brownian motion

with drift.
3. The market is arbitrage free.
4. There are no short-sell constraints.
5. Assets are arbitrarily divisible.
6. There are no frictions, like transaction costs or taxes.
7. There is a fixed risk-free rate for which money can be invested or borrowed.
8. There is no dividend payment.

Some of these assumptions could be relaxed relatively easily (e.g., the dividend
payment or the fixed interest rate). Others are realistic approximations to
reality and well-accepted (e.g., trading in continuous time or that assets are
arbitrarily divisible). There are, however, some assumptions that are rather
restrictive. In the following we will see that there is some empirical evidence
that suggests particularly that the model of a geometric Brownian motion is
not sufficient to explain all empirical facts about asset returns that we observe
on the market. For more information on generalizations of Black-Scholes we
refer the reader to [Duf96].

8.8.1 Volatility Smile and Other Unfriendly Effects

The geometric Brownian motion assumes that volatility is constant in time. Is
this a reasonable assumption? A standard way to figure this out is to compute
the implied volatility, i.e., the volatility that an asset should have, assuming
that the price of the call option traded on this asset obeys the Black-Scholes
formula. For standard assets like the S&P 500 we can compute the implied
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volatility for various values of strike K and maturity T , thus we obtain a
function in the two variables K and T that is usually represented as a three-
dimensional plot called the (implied) volatility surface.

If the assumptions of the Black-Scholes model were perfectly right, this
surface would be flat. However, like the earth, this surface is not flat:

• At-the-money options tend to have lower implied volatility than options
with a strike far away from the current price of the underlying. This curved
shape reminded some researchers of a smile, thus the name volatility smile.

• There is also a time-dependence of the implied volatility: different matu-
rities lead to different implied volatilities, an effect which is called term
structure of volatility.

Both effects are not as friendly as a smile usually is, because they exhort us
to improve the underlying assumptions. We could say with Huxley that “the
great tragedy of science is the slaying of a beautiful hypothesis by an ugly
fact”. It is in particular not correct to assume that the volatility is constant
in time, and that returns are normally distributed. Indeed, that stock returns
have fat tails (i.e., that the probability for extreme events is larger than for a
normal distribution) is a well-established empirical fact that we will explain in
the next section. These fat tails can explain the volatility smile: options with
strikes far away from the current price of the underlying are priced in a way
that seems to imply a larger volatility, since only such a larger volatility could
explain the high probabilities associated to strong price movements, given the
assumption that returns are normally distributed. There is support for this
explanation from the US market: before the crash in 1987 there was no smile,
as if investors had not been aware of the potential for large price changes.
Since then, a volatility smile can be observed on the US market as well. One
could say that investors have learned their lesson...

The term structure, on the other hand, can often be explained by the
expectation of news. A typical example are earning reports: stock options
with maturity shortly after the earning report show higher implied volatility
than options with a later maturity.

8.8.2 Not Normal: Alternatives to Normally Distributed Returns

We have already mentioned that standard assets like stocks and bonds do
not usually have normally distributed returns (compare Figure 8.1). This was
already observed in the early 20th century by various researchers [Mit15,
Oli26, Mil27]. There are various ways to confirm this observation empirically.
A simple method is to measure whether returns of real assets have significant
skewness or excess kurtosis (compare appendix A.2). To this aim one can use
a kind of Monte Carlo method: let us assume you have the data of N past
returns of an asset. First simulate N random returns under the assumption
of normality, then compute skewness and excess kurtosis of this (finite) dis-
tribution, finally iterate this n times to get a large sample of approximated
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Fig. 8.1. The distribution of daily returns of the MSCI World from January 1, 1970
to April 30, 2007. The best fit with a normal distribution shows that the fat tails
are underestimated. A better fit can be obtained by using NIG distributions as we
explain below

normal distributions, each with N data points. If the measured skewness of
the data sample exceeds the skewness of the vast majority of simulated distri-
butions, then it is very unlikely that the data follows a normal distribution.
More precisely, if m of n simulated values are below the data value, then the
probability is approximately p = (n − m)/n, which is very small if m ≈ n.
The probability p is called simulated p-value. Similarly, excess kurtosis can be
tested. This method is called simulated p-test. Some results for stocks, bonds
and hedge funds that show that most asset classes show excess kurtosis and
skewness can be found, e.g., in [RSW].

The fact that assets are not normally distributed has several important
consequences: first, asset pricing based on the Black-Scholes formula needs
to be corrected (remember this unfriendly volatility smile!). Second, judging
investments by mean-variance which would be correct under the assumption
of normally distributed returns is also not correct, since it underestimates the
risk of large losses (fat tails in the distribution!).

But how could one improve the model? There are in fact many possible
ways to do this. In this section we will outline some of them. In order to apply
them for option pricing, we need also a stochastic process that generates non-
normal distributions that allow for skewness and fat tails. This will be possible
in the general framework of Lévy processes, see Sec. 8.8.3.
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As an example for a class of very versatile distributions we introduce the
normal inverse Gaussian distributions (short: NIG) that has been introduced
to financial applications by Barndorff-Nielsen [BN97].14 They are specified by
four parameters that roughly correspond to the first four moments. In other
words, they allow to model distributions with skewness and excess kurtosis, as
we encounter them in the data. A NIG distribution is defined by the following
probability density function

NIG(x;α, β, μ, δ) :=
αδ

π
eδ
√

α2−β2+β(x−μ)K1(α
√
δ2 + (x − μ)2)√

δ2 + (x− μ)2
,

where x, μ ∈ R, 0 ≤ δ, 0 ≤ |β| ≤ α and K1 is the modified Bessel function of
the third kind with index 1 (see [BN97] and [Sch08]). The mean, the variance,
the skewness and excess kurtosis15 of X ∼ NIG(α, β, μ, δ) are given by

E(x) = μ+
χ δ

(1 − χ2)1/2
,

var(x) =
δ

α(1 − χ2)3/2
,

S(x) =
3χ

(δα)1/2(1 − χ2)1/4
,

K(x) = 3
4χ2 + 1

δα(1 − χ2)1/2
,

where χ = β/α.
While the normal distribution has zero skewness and a kurtosis equal

to three, we see that a NIG(α, β, μ, δ) distributed variable has parameter-
dependent moments, which are interacting with one another. The four pa-
rameters α, β, μ, δ have natural interpretations relating to the overall shape
of the density function: the parameter α controls the steepness of the density,
in the sense that the steepness increases monotonically with an increasing α.
This also has implications for the tail behavior: large values of α imply light
tails, while smaller values of α imply heavier tails as illustrated in Figure 8.3.
The parameter β is a skewness parameter, in the sense that β < 0 implies a
density skew to the left and β > 0 implies a density skew to the right, i.e., the
skewness of the density increases as β increases. In the symmetric case where
the parameter β is equal to 0, the density is symmetric around μ. Figure 8.2
shows the dependency on β. Finally, the parameter δ is akin to the standard
deviation σ of the normal distribution and represents a measure of the spread
of returns.
14 Originally, NIG distributions have been used in physics, more precisely in the

modeling of turbulence and sand grain distributions. Only years later they made
it into finance.

15 Excess kurtosis refers to the amount of kurtosis that exceeds that of the normal
distribution.
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Fig. 8.3. The effect of different values of α on a NIG distribution

NIG distributions have a nice property: when we combine two independent
NIG distributions NIG(α1, β1, μ1, σ1) and NIG(α2, β2, μ2, σ2), the result is
again a NIG distribution, provided that α1 = α2 and β1 = β2.

As an example for a fit with NIG, we consider the daily returns of the
S&P 500 from January 4, 1988 to May 4, 2007.16 Using a likelihood estimate
gives the parameters α = 183.7, β = −8.0, μ = 0.000 and σ = 0.0033 for
the NIG distribution. This corresponds to a mean of 0.02%, a variance of
0.002%, a skewness of −0.17 and an excess kurtosis of 5.03. It is interesting
to notice that an likelihood estimate with only the two parameters of the
normal distribution gives a much larger variance of 0.42%. In other words:
most of the variance that we observe when approximating returns by a normal
distribution is quite likely only an artifact of higher moments. The likelihood
of the estimate using NIG increases by about 2%, so besides theoretical reasons
in favor of a distribution capable of modeling skewness and fat tails, there is
also a quantitative gain in the approximation accuracy. On the other hand,
there is of course a cost in dealing with a more complicated model.

What other approaches are there to replace normal distributions? There
are in fact several other models, maybe the best-known is the Lévy skew
alpha-stable distribution, named after the French mathematician Paul Lévy

16 Other data gives very similar results. For illustration we concentrate on one par-
ticular case. See [RSW] for details.
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who invented them in 1925 [Lév25] and introduced to finance by the French-
American mathematician Benôıt Mandelbrot in 1963 [Man63], who later
gained popular fame for his “Mandelbrot set” and scientific fame for a num-
ber of important contributions to fractal geometry. The central difference to
the NIG distributions is that Lévy skew alpha stable distributions (LSASD)
do usually not have finite variance. This property might frighten us a little,
after all we have spent substantial time with mean-variance approaches and
that such, where the assumption of a finite variance was as natural as it was
crucial. But maybe we want to risk the revolution and forego the finiteness
of the variance if we can gain something for it in exchange. In fact, there is
not everything bad about LSASD: in particular, combining two independent
LSASDs yields again a LSASD. (This property is meant when we talk about
“stability”.)

How are LSASDs defined? Like the NIG distrubution, the LSASD depends
on four parameters. They are denoted by α, β, c and μ. The distribution is
defined as the Fourier transformation (see Appendix A.5) of a characteristic
function ϕ, i.e.

f(x;α, β, c, μ) =
1
2π

∫ +∞

−∞
ϕ(t)e−itx dt.

The characteristic function is defined as

ϕ(t) = eitμ−|ct|α (1−β sign(t)Φ(α,t)),

where sign(t) gives the sign of t (i.e., +1 or −1) and Φ(α, t) is given by

Φ(α, t) :=

{
tan(πα/2) , for α �= 1,
−(2/π) log |t| , for α = 1.

The parameters can be interpreted similar to the NIG distribution: β is a
measure of asymmetry, where the distribution is symmetric around the shift
parameter μ if β = 0. The parameter c is a scale factor that describes the width
of the distribution and α specifies the asymptotic behavior of the distribution.
(Like in the case of the NIG distribution there are other parameterizations in
the literature.)

It can be proved that the variance of the LSASD is infinite if α < 2 and
that several prominent distributions are special cases: for α = 2 we obtain the
normal (Gaussian) distribution, for α = 1 and β = 0 we obtain the Cauchy
distribution and for α = 1/2 and β = 1 the Lévy distribution. Finally, for
c→ 0 or α→ 0 we obtain the Dirac distribution, i.e., a certain outcome at μ
(compare Appendix A.4).

The most notable property of Lévy distributions is that the sum of ar-
bitrary random variables with tails following the power-law |x|−(α+1) with
α > 0 (and hence with infinite variance) tend to the stable Lévy distribution
f(α, 0, c, 0).
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Empirical values for α that describe actual price movements of stocks and
commodities quite well have been found already in [Man63] as α ≈ 1.7. Apply-
ing this model to asset pricing is, however, a non-trivial task. The foundation
for this will be laid in the next section, where we show how processes can be
constructed that generate non-normal return distributions.

8.8.3 Jumping Up and Down: Lévy Processes

We have seen in the last section that there are better models for the return
distribution of assets than the classical log-normal distribution. In this sec-
tion we present a generalized class of stochastic processes, the Lévy processes,
that allow for such forms of outcome distributions, but also includes the clas-
sical Brownian motion. Our exposition follows the introductory text by Jan
Kallsen [Kal06] and the book by Jean Bertoin [Ber98].

The key idea of Lévy processes X is to generalize the notion of linear func-
tions in time to stochastic processes – in the sense that linear functions are
characterized by constant increments in time and Lévy processes are charac-
terized by constant random distributions of their increments. More precisely,
we assume that for every t the difference Xt+δ −Xt follows the same proba-
bility distribution. If we remind ourselves on Definition 8.2 of the Brownian
motion, we see that this is a part of condition (b). To complete the definition
of Lévy processes we need to assume more, namely that the process starts
in zero (condition (a) of Definition 8.2) and that increments are independent
(condition (d)). All together we define:

Definition 8.17 (Lévy process). A Lévy process is a process X defined by
the properties:

(a) X(0) = 0 a.s.

(b) For any times t0, t1 with t0 < t1, the difference X(t1) −X(t0) follows a
fixed distribution.

(c) For any times 0 ≤ t0 < t1 < t2 < · · · < tn < ∞, the random variables
X(t0), X(t1)−X(t0), . . . , X(tn) −X(tn−1) are independently distributed.

We see that Brownian motions are special cases of Lévy processes that are
additionally continuous and have normally distributed increments.

How can we characterize Lévy processes? A central tool we will use is the
Fourier transformation (see Appendix A.5). We start with considering small
time step increments of the process X , i.e., the difference between X(t +
Δt) and X(t). These differences all follow a fixed distribution (according to
condition (b)), thus X(t + Δt) − X(t) d= X(Δt) − X(0) d= X(Δt), where
d= means that they coincide as distributions. We now consider the Forier
transform of X . Due to the independence property (c) we obtain
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X̂(t) = (X̂(Δt))t/Δt.

If X̂(Δt) is nowhere zero, we can write it as the exponential of some function
ψ : R → C, thus obtaining

X̂(t) = exp(ψt),

in other words, we could say that the logarithm of X̂ depends linearly on t.
Let us take a closer look on ψ. First we notice that

E(X(t)) =
E(X(Δt))

Δt
t,

thus E(X(Δt)) has to be of order Δt as Δt → 0. Second, we consider the
variance

var(X(t)) =
var(X(Δt))

Δt
t,

which shows that also the variance has to be of order Δt.
There are now three important cases how we can choose X such that

expected value and variance of its increments are of order Δt:

1. X can be deterministic, i.e., X(Δt) = bΔt for some b ∈ R. The character-
istic function X̂(t) then becomes X̂(t)(u) = exp(iubΔt), where i2 = −1
(see Appendix A.5).

2. X can be non-deterministic and continuous: if Q is the distribution of
X(Δt)/

√
Δt, then X̂(Δt)(u) = Q̂(u

√
Δt). If we assume for simplicity

that the expected value of X(Δt)/
√
Δt is zero, then a Taylor expansion

of Q̂ yields that X̂(Δt)(u) is of order exp(− 1
2cu

2Δt) as Δt → 0, where
c := var(Q).

3. X can be non-deterministic and discontinuous: take λ > 0 and let X
change with a probability λΔt according to the distribution Q. (With
the probability 1−λΔt the process remains constant.) The characteristic
function is in this case X̂(Δt) = (1 − λΔt) + λΔtQ̂. Using the Taylor
expansion for the exponential function, we can write this for Δt → 0 as
X̂(Δt) = exp(λ(Q̂(u) − 1)Δt).

A general Lévy process can now be written as a sum of these three components
– plus some remainder term that is discussed in [Kal06] and [Ber98]. This
yields to the general Lévy-Chintschin Formula, where we set

h(x) :=
{
x, |x| ≤ 1,
0, |x| > 1

and the Lévy measure F := λQ:

Lemma 8.18 (Lévy-Chintschin Formula). Let X be a Lévy process, then
its characteristic function X̂ can be described as

X̂(t)(u) = exp
((

iub(h)− 1
2
u2c+

∫
(eiux − 1 − iuh(x))F (dx)

)
t

)
.
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The variance of a Lévy process has therefore two main sources: the jumps
which are described by the measure F (third term in the formula) and by a
continuous movement described by the parameter c (second part).

If we want to design a process with a specific distribution (e.g., a NIG
distribution), we can choose F as this distribution and the above formula will
yield a Lévy process for this distribution. We just need to apply the formula
to obtain X̂ and then the Fourier transformation to get X . Lévy processes
are therefore an extremely flexible and useful class of processes for model-
ing financial data. Sometimes they are, however, too general and complex to
obtain results, e.g., on asset pricing, without further assumptions.

One of many technically simpler subclasses of Lévy processes which has
recently caught attention are stable Lévy processes with exponential decay, as
introduced by Boyarchenko and Levendorskǐi [BL02]. This class of processes
encompasses in particular Brownian motion, NIG processes, hyperbolic pro-
cesses etc., so many important models are covered by this generalization. On
the other hand, the class is small enough in order to use analytical methods
for asset pricing. Unlike in the setting of the classical Black-Scholes formula
they often do not lead to a PDE, but instead to an equation involving pseudo
differential operators (see Appendix A.5 for a rough intuition). For details on
asset pricing in this general framework and further generalizations we refer
the reader also to [BL02] and [FS].

We see that departing from the simple world of Brownian motions makes
things harder and requires sophisticated mathematical tools, but, as Douglas
Adams put it:

It is a mistake to think you can solve any major problems just with
potatoes.

8.8.4 Drifting Away: Heston and GARCH Models

When considering Brownian motion as a model for stock prize movements,
we assume constant volatility. We have seen in Sec. 8.8.1 that the volatility
implied by options depends on their maturity. This could be explained by
a time-varying volatility which is in fact supported by the data. Figure 8.4
shows a volatility index starting from 1990 up to 2007. It is obvious that the
volatility is not just random, but that there are periods with high and periods
with low volatility. This phenomenon is called volatility drift.

If we want to take this effect into account, we need to describe the volatil-
ity itself by a random process. Therefore we need two stochastic differential
equations:

dS(t) = μS(t) dt+
√
σ(t)S(t) dB1(t),

dσ(t) = α(σ(t)) dt + β(σ(t)) dB2(t),

where α and β are given and B1, B2 are both Brownian motions that may
correlate with each other with correlation ρ ∈ [−1,+1].
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Fig. 8.4. Volatility index (VIX) from 1990 to 2009

A typical feature (a “stylized fact”) that can be observed for the volatility
is that it tends to revert to the mean, i.e., there is a long-term average ω such
that the volatility eventually returns to this value. Another stylized fact is that
the fluctuation of the volatility tends to be larger when the volatility is large.
Both observations lead to a class of standard models with α(σ(t)) = θ(ω−σ(t))
(where θ > 0 is a constant) and β(σ(t)) = ξσ(t)γ (where ξ > 0 and γ > 0 are
also constants). While θ describes how strongly the process tends to return to
its mean, ξ is the (constant part of the) volatility of σ. Finally, γ is an exponent
that describes how strong the volatility of σ increases when σ increases, i.e.,
how strongly “the volatility makes the volatility become volatile”.

There are three frequently used models that fall into this framework:

• The Heston model assumes γ = 1/2. The variance process is in this case
called a CIR process, named after its inventors John C. Cox, Jonathan E.
Ingersoll and Stephen A. Ross [CIR85].

• The Generalized Autoregressive Conditional Heteroskedasticity model17

(short: GARCH ) assumes γ = 1.
• The 3/2 model assumes γ = 3/2.

It is difficult to decide which of these models is most appropriate. If we use
the data on the volatility index and measure how large the standard deviation
of its daily changes is (where we always collect 50 data points with similar

17 A vector of random variables is heteroskedastic if the random variables have dif-
ferent variances.
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volatility to compute the standard deviation) we obtain Figure 8.5 that gives
a best-fit exponent of γ ≈ 0.6. This simple approach is of course not reliable
enough to decide which process is best in this case, but the data shows clearly
that there is a strong positive correlation between the volatility σ and its
standard deviation as proposed by all three models.
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Fig. 8.5. Standard deviation of the volatility index as a function of the volatility
index. For each day the standard deviation of the daily volatility changes of the
50 days with a volatility closest to the volatility of the original day is computed and
plotted with respect to the average volatility of these 50 days

There are recent approaches to base this (and other) stylized facts on
models of interacting agents on financial markets, see the survey article by
Lux [Lux09] for details and further references.

There is one more interesting feature about the volatility that is not cap-
tured by the above models: volatility tends to be lower in bull markets, and
higher in bear markets. This is certainly counterintuitive, since the risk-return
tradeoff should reward a high volatility with larger returns, but the opposite
is the case. The effect (sometimes called “leverage effect”) can be observed
in many markets, compare Figure 8.6. An analysis for monthly returns of the
S&P 100 yields an interesting pattern: the correlation is strong in losses, but
weak in gains (compare Figure 8.7).

To model this volatility asymmetry one can use more sophisticated stochas-
tic processes, e.g. the APARCH process.
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Fig. 8.6. Volatility stock market returns in the USA, Germany, Australia and Japan
(compare [Pap04]). The strong negative correlation is in most cases evident

Attempts for an explanation of this effect can be found, e.g. in [BHS01]
and [HS09], but there is still no universally accepted model that explains
why volatility and stock prizes correlate negatively. Recent empirical research
where this asymmetry has been measured in a large number of countries found
that the asymmetry seems to be particularly high when there are many private
investors on the market. Assuming that private investors are more prone to
behavioral biases than institutional investors, this might point to behavioral
factors as one cause for volatility asymmetry [TR09].

8.9 Summary

Asset pricing is one of the central topics in finance and fundamental for the
understanding of many other areas. Moreover, it is one of the most important
applications of finance to the “real world”. Probably in no other area so many
mathematicians and other theorists are employed at major banks and solve
very practical problems. Its fundamental ideas are to consider trading on a
market as a time-continuous process, and to generalize the idea of replication
(hedging) of options into this setting.

Based on these ideas, we have seen a heuristic and a more solid route to
the historically most important asset pricing model, the Black-Scholes formula
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Fig. 8.7. A closer look on the volatility index versus the S&P 100 monthly returns
(compare [Pap04]). We observe a strong negative correlation in losses, but a not so
clear pattern in gains

(Sec. 8.1–8.3). The mathematical apparatus to derive this formula was already
sophisticated (stochastic processes and stochastic integration, the Itō formula
etc.). The resulting formula for call and put options, however, is relatively
simple and hence readily applied to practical option pricing problems.

There are many different options (“exotic options”) that have been intro-
duced in Sec. 8.4 and we have seen some numerical methods for the approxi-
mation of their prices (Sec. 8.4).

The Mutual-Fund Theorem (Sec. 8.6) was a very general extension of
the Two-Fund Separation Theorem in the time-continuous case. It says that
every investor should hold the same mutual fund as risky assets – regardless
of his precise risk attitudes. We have discussed several reasons (heterogeneous
beliefs, behavioral biases, more complicated underlying processes) why the
result nevertheless might not hold in practical applications.

In Sec. 8.8, we have studied various ways to relax the restrictive and not
always realistic assumptions of the Black-Scholes model, since we encoun-
tered effects on stock markets (volatility smile, term structure) that could not
readily be understood with the Black-Scholes model. In particular, we have
studied alternative return distributions, like NIG, and more general processes
than the Brownian motion, in particular Lévy processes and processes with
volatility drift.
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We have encountered in this last chapter a lot of phenomena that are not
completely understood. Regardless of all the progress made in recent years,
there are certainly more open problems than well-established models, and
what is a standard method today, might become outdated tomorrow. But all
of this just demonstrates the old wisdom of research: as we enlarge the island
of knowledge, we increase the coast of questions.



A

Mathematics

“How can it be that mathematics, being after all a prod-
uct of human thought independent of experience, is so
admirably adapted to the objects of reality?”
Albert Einstein

A.1 Linear Algebra

We recommend the reader who is not familiar with the following notions to
take a look into a standard text book on linear algebra, our favorite one
is [Jän94]. The brief reminders at the start of this section might help to get
used to our notation.

Vectors

A vector x is, for the purpose of this text book, simply a tuple of N real
numbers, i.e., x = (x1, . . . , xN ). The space of all such vectors is denoted by
R

N . Why do we need this definition for arbitrary N given that we only live in
a three-dimensional world? Well, vectors are not necessarily points in the real
space, but can denote other things, e.g., returns of assets, and the number of
assets can be arbitrarily large, thus we need in fact to consider vectors in this
generality.

For two vectors x, y ∈ R
N , we say that

x ≥ y ⇐⇒ xi ≥ yi for all i = 1, . . . , N,
x > y ⇐⇒ xi ≥ yi for all i and xi > yi at least for one i,
x� y ⇐⇒ xi > yi for all i.

We define the (standard) scalar product of x and y in R
N by

x · y :=
N∑

1=1

xiyi = x1y1 + x2y2 + · · · + xNyN .

The scalar product is zero if the vectors are orthogonal. The (Euclidean) norm
of a vector x ∈ R

N is defined by |x| :=
√
x2

1 + · · · + x2
N .
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Matrices

A matrix A ∈ R
M×N is (for our purposes) nothing else than a rectangular

box of real numbers aij , i = 1, . . . ,M , j = 1, . . .N . We write A = (aij) or

A =

⎛

⎜⎝
a11 · · · a1N

...
. . .

...
aM1 · · · aMN

⎞

⎟⎠ .

The transposed matrix AT (sometimes denoted as A′) is defined by “flipping”
the indices, i.e., AT = (aji)i=1,...,M, j=1,...N . Every vector in R

N can be under-
stood as a matrix in R

1×N or R
N×1. Two matrices A,B ∈ R

M×N are added
by adding their respective entries, i.e., (A+B)ij := aij + bij . We can multiply
two matrices A = (aij) and B = (bkl) if A ∈ R

M×N and B ∈ R
N×S , where

the product AB is defined as cmn with

cmn := am1b1n + · · · + amNbNn.

It is important to notice that AB is in general not the same as BA (if defined
at all). We define the identity matrix by

Id :=

⎛

⎜⎝
1 0

. . .
0 1

⎞

⎟⎠ ∈ R
N×N .

We define A−1 as the inverse matrix, i.e., A−1A = Id. For instance, if

A =
(

1 1
0 1

)
, then A−1 =

(
1 −1
0 1

)
,

which you can easily check by multiplying A and A−1.
It is sometimes useful to construct a matrix in R

N×N out of a vector in
R

N by taking the vector entries as diagonal elements of the matrix and setting
all other entries zero. This operation is denoted by the operator Λ, sometimes
also written as diag. More precisely, we define for x ∈ R

N :

Λx := diag x :=

⎛

⎜⎜⎜⎝

x1 0 0 0
0 x2

...
. . .

...
0 . . . xN

⎞

⎟⎟⎟⎠ .

Linear Maps

Matrices can be used to describe linear maps, i.e., maps F from a vector
space X (in our case mostly R

M ) to a vector space Y (in our case mostly R
N )

satisfying the following linearity conditions :
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(i) F (x+ y) = F (x) + F (y) for all x, y ∈ R
M ,

(ii) F (λx) = λF (x) for all x ∈ R
M and for all λ ∈ R.

Every linear map F from R
M to R

N can be represented by a matrix A in
R

M×N such that F (x) = Ax, where x is considered to be in R
N×1. The

composition of two linear maps F and G can be expressed as the product of
their corresponding matrices A and B, i.e., G(F (x)) = (G ◦ F )(x) = ABx.

A special case of linear maps are the linear functionals. These are linear
maps from a vector space X to R. (A simple example for a linear functional
on R

3 is the distance from the x1-x2-plane.) An important fact is that linear
functionals can always be expressed as a scalar product with a fixed vector.
(In the above example, this vector is (0, 0, 1).) This is guranteed by the Riesz
Representation Theorem, named after the Austro-Hungarian mathematician
Frigyes Riesz:

Theorem A.1 (Riesz Representation Theorem). Every linear func-
tional F : X → R on a Hilbert space (i.e., a complete vector space with a
scalar product) X can be represented as scalar product with a vector v ∈ X,
i.e., F (x) = 〈x, v〉 for all x ∈ X.

Subspaces, Dimension and Hyperplanes

The span of vectors x1, x2, . . . , xN is defined as

span {x1, . . . , xN} := {x = λ1x1 + · · · + λNxN |λ1, . . . , λN ∈ R}.

In R
3, for instance, the span of the vectors (1, 0, 0) and (0, 1, 0) contains all

vectors of the form (a, b, 0) with a and b arbitrary real numbers, but, e.g., not
the vector (1, 1, 1).

We call a set in R
N which can be represented as a span of vectors in R

N

a subspace. In R
3, subspaces are either lines or planes through zero – or R

3

itself.
Let d be the smallest number of vectors that are needed to represent a

subspace Z of R
N as their span. It is easy to see that 1 ≤ d ≤ N . We call the

number d the dimension of the subspace, in short dimZ.
We call an N − 1 dimensional subspace of R

N a hyperplane. (In the case
N = 3, such a hyperplane is simply a plane.)

We say, a vector x ∈ R
N is normal on the hyperplane Z if x · z = 0 for

all z ∈ Z. The geometric intuition (in R
3) for this is that x stands upright on

the plane Z, forming right angles with Z.
Sometimes we want to consider “shifted” subspaces, e.g., planes that do

not go through the zero point. We call such sets affine subspaces. They are
defined as sets A for which there exists a vector x = (x1, . . . , xN ) such that
A−x := {(y1−x1, . . . , yN−xN ) | (y1, . . . , yN ) ∈ A} is a subspace. Analogously,
we can define affine hyperplanes.
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Convex Sets and the Separation Theorem

We call a set K ∈ R
N convex if for all x, y ∈ K the entire straight line

segment between x and y is in K. Formally: if x, y ∈ K then for all λ ∈ [0, 1]
we have λx+ (1 − λy) ∈ K.

A set K in R
N is called closed if every sequence in K that converges has

a limit in K (and not outside K). A set K in R
N is called bounded if it fits

for some r > 0 into a ball Br := {x ∈ R
N | |x| < r}. A set K in R

N is called
compact if it is closed and bounded.

We need the following theorem, e.g., in the proof of the First Asset Pricing
Theorem:

Theorem A.2 (Separation Theorem). Let K,M ⊂ R
N convex sets with

K ∩M = ∅. If K is compact and M is closed then there exists some x ∈ R
N

such that
sup
y∈M

x · y < inf
y∈K

x · y.

The Theorem is called “Separation Theorem”, since it says, in geometrical
terms, that every pair of disjoint, compact, convex sets can be separated by
a hyperplane. (The normal vector on the hyperplane is x.)

There are infinite-dimensional generalizations of this theorem. Things are,
however, more complicated since compactness cannot be so easily defined in
infinite dimensions.

A.2 Basic Notions of Statistics

We give a brief summary of what we assume the reader knows in statistics,
mainly to familiarize with our notation.

Elementary statistics studies properties of data samples xi with i =
1, . . . , N , which form a vector x = (x1, . . . , xN ) ∈ R

N . We can generalize
this by considering the xi as events with certain probabilities pi, where pi ≥ 0
and

∑N
i=1 pi = 1 (in the simplest case pi := 1/N), or even more generally by

considering general probability measures p on R (compare App. A.4). In the
following, we recall all definitions in the language of probability measures and
in the language of random variables.

Mean and Expected Value

The (arithmetic) mean (or average) μ or x̄ of a vector x ∈ R
N is defined as

x̄ :=
1
N

N∑

i=1

xi.

For a general probability measure p the mean (or expected value) μ or E(p) is
defined as the mean squared deviation
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E(p) :=
∫

R

xdp(x),

and for a real-valued random variable X on a probability space Ω with prob-
ability measure p (i.e., X is a map from the “state space” Ω to R), the mean
is given by

E(X) :=
∫

Ω

X dp.

Variance

The variance σ2 or var(x) of a vector x ∈ R
N is defined as

var(x) :=
1
n

N∑

i=1

(xi − x̄)2.

For a general probability measure p the variance var(p) becomes

var(p) :=
∫

R

(x− E(x))2 dp(x).

For a random variable X , the variance can be defined as

var(X) := E((X − E(X))2).

Intuitively, the variance describes how much a random variable “fluctu-
ates”.

Normal Distribution

The most frequently used probability distributions are normal distributions
(also called “Gauss distributions”), defined as N(μ, σ2) dx, where

N(μ, σ2) :=
1

σ
√

2π
e−

(x−μ)2

2σ2 ,

and μ ∈ R and σ > 0. We sometimes abbreviate N(σ2) := N(0, σ2).
The mean value of a normal distribution is μ and its variance is σ2. The

importance of the normal distribution arises from the Central Limit Theorem.
It states that the mean of a sufficiently large number of mutually independent
random variables, each with finite mean and variance, will be approximately
normally distributed. This explains why normal distributions appear in so
diverse fields as physics, biology, psychology or economics.
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Covariance and Correlation

The marginals of a probability measure T on R × R are the probability
measures p and q defined as

p(A) :=
∫

R

dT (A, y) and q(A) :=
∫

R

dT (x,A)

for A ⊂ R.
The covariance of a probability measure T on R×R with marginals p and

q is defined as

cov(p, q) := cov(T ) :=
∫

R

∫

R

(x − E(p))(y − E(q)) dT (x, y).

Using random variables X , Y , we can represent the covariance as

cov(X,Y ) := E((X − E(X))(Y − E(Y ))
= E(X · Y ) − E(X)E(Y ).

If X and Y are statistically independent, then their covariance is zero. The
converse, however, is not true: if X and Y have covariance zero, they are
not necessarily independent. The covariance of a variable with itself is the
variance, i.e., cov(X,X) = var(X).

Intuitively, covariance is the measure of how much two random variables
“follow each other”. This idea leads to the following definition of the correla-
tion, for a probability measure T on R × R:

corr(T ) :=
cov(T )

var(p) var(q)
,

or, in terms of random variables:

corr(X,Y ) :=
cov(X,Y )

var(X) var(Y )
.

The correlation takes values between −1 and +1, where +1 implies a lin-
ear dependence between X and Y , −1 an antilinear dependence, and values
around zero no visible dependence. However, corr(X,Y ) = 0 does not imply
independence. In the language of probability measures, a correlation of +1
would, e.g., imply that T has a support along a line in R

2 with positive slope.
Occasionally, we will need the covariance matrix : if we have two vector-

valued random variablesX and Y , then the covariance matrix COV is defined
by

COV := COV (X,Y ) := E((X − E(X))(Y − E(Y )T ).

In this book, the elements of COV are denoted by cov i,j .
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Skewness and Higher Order Moments

We call
μk :=

∫

R

(x − E(p))k dp(x)

the k-th central moment of the probability measure p. For a random variable
X we define it as E((X − E(X))k). We see immediately that the variance is
the second central moment and the mean is (essentially) the first. We define
the skewness as the standardized third central moment, i.e., μ3/σ

3, where σ2

denotes the variance.
Symmetric probability measures have zero skewness, since
∫

R

(x−E(p))k dp(x)

=
∫

E(p)

−∞
(x− E(p))k dp(x) +

∫ +∞

E(p)

(x− E(p))k dp(x)

=
∫

E(p)

−∞
(x− E(p))k dp(x) −

∫ +∞

E(p)

(E(p) − x)k dp(E(p) − x)

= 0.

Every normal distribution is symmetric and therefore has zero skewness.
The skewness measures how “tilted” or how “asymmetric” a distribution

is. Stock market returns are typically skewed, since very large losses are more
likely than very large gains, although on average the returns are positive.
Derivatives are usually extremely skewed, as can be seen from their highly
asymmetric payoff-diagram.

The fourth standardized central moment leads to the definition of kur-
tosis. For a random variable X it is defined as E((X − E(X))4)/σ4. Since
the normal distribution has a kurtosis of 3, one defines the excess kurtosis as
E((X−E(X))4)/σ4−3. Kurtosis describes how “peaked” a distribution is and
how quickly its tails decay to zero. Positive excess kurtosis means that the dis-
tribution has a prominent peak and its tails are “fat”, i.e., it decays slower to
zero than a normal distribution. Many alternative investments (hedge funds
and insurance linked securities (ILS) are prominent examples) have fat tails,
meaning that extreme outcomes (usually extreme losses) are more likely than
suggested by considering mean and variance alone. Negative excess kurtosis
occurs, e.g., in lotteries with two outcomes (coin-flipping), where tails and
peak are both zero.

A.3 Basics in Topology

Sometimes it is necessary to have a deeper understanding of notions like “con-
vergence” or “continuity” that we frequently use. In the following we will
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provide a little background on this. An excellent and very pleasantly written
mathematical book for further reading is [Jän95].

Open Sets

Let X be an arbitrary set. We can call a system T of subsets of X open if
the following conditions hold:

(i) For any subset {Oλ}λ∈Λ of T , the union of all Oλ is also in T . (“Unions
of open sets are open.”)

(ii) For any two sets O1, O2 in T , their intersection O1 ∩ O2 is also in T .
(“The intersection of two open sets is open.”)

(iii) The empty set ∅ and the whole set X are both in T .

You can easily convince yourself that the standard open sets in R fit this
definition.

All other “topological” concepts, like closed sets, compactness and con-
tinuity, can be based on the notion of open sets. Therefore it is possible to
study these properties not only in R or R

N , but also in very abstract sets,
e.g., we can define convergence of probability measures or we can talk about
a compact set of functions.

Let us give the definition of a closed set: a set A ⊂ X is called closed in
X if its complement, i.e., X \A, is open.

Compactness can also be defined based on this concept. Since we deal
only with compact subsets of R

N , it is sufficient to know that in this case
compact sets are closed and bounded (and vice versa). In infinite-dimensional
situations, this is not true!

Finally, it is also possible to define continuity solely based on the concept
of open sets:

A function f : X → Y is continuous if for every open set U ⊂ Y , also the
inverse image f−1(U) ⊂ X is open.

As illustration for this definition think about simple examples of continu-
ous and non-continuous functions from R to R and convince yourself that it
holds for continuous functions, but not for discontinuous functions!

A set is disconnected if we can divide it into two disjoint open sets. As
an example, take the set X := (0, 1) ∪ (1, 2) in R. This set is disconnected,
since A := (0, 1) and B := (1, 2) are disjoint open subsets with A ∪ B = X .
A set is connected if it is not disconnected. If f : X → Y is continuous and
X is connected, then Y is also connected. If we consider subsets of R

n, every
connected set is path-connected (and vice versa), i.e., we can always find a
continuous curve path between any two points in the set.

Convergence and Metrics

We can also define convergence of sequences xn ⊂ X via open sets:



A.4 How to Use Probability Measures 343

A sequence xn ⊂ X converges to x ∈ X if for all open sets U ⊂ X with
x ∈ U there exists an n0 ∈ N such that starting from this n0, the sequence
(xn)n≥n0 lies in U . (In other words: for all m ≥ n0, we have xm ∈ U .)

How does this notion correspond to the usual notion of convergence that
you probably have learned (xn → x if the distance between xn and x converges
to zero)? First, if we have a metric d, i.e., a way to measure the distance d(x, y)
between any two elements x, y in X (in a meaningful way, i.e., d(x, x) = 0,
d(x, y) = d(y, x) and d(x, y) + d(y, z) ≥ d(x, z), compare [Jän95] for details),
then any open set can be characterized as follows:

A set U ⊂ X is open if, for any x ∈ U , there is a small ball B(x, ε) :=
{y ∈ X | d(x, y) < ε} which is entirely contained in U .

The usual notion of convergence (that xn → x if d(xn, x) → 0) corresponds
to the definition based on open sets.

On the other hand, we can define, e.g., closed sets based on a definition
of convergence: A is closed if the limit of any converging sequence xn ⊂ A is
itself in A, in other words xn ⊂ A and xn → x implies x ∈ A.

Similarly, if X and Y both have a metric, then a function f : X → Y is
continuous at x ∈ X if xn → x implies f(xn) → f(x).

A very useful result on convergence is the Theorem of Bolzano and Weier-
strass. We present a simplified version:

Theorem A.3 (Bolzano-Weierstrass Theorem). Let xn be a sequence
of vectors on a bounded and closed set S ⊂ R

k, then there is a subsequence of
the xn that converges to a limit x ∈ S.

A.4 How to Use Probability Measures

In this section we set the notion of probability measures on a mathematically
solid foundation. This will enable us to formulate many problems in a more
general setting and to see that lotteries with finitely many outcomes and
lotteries with continuous outcome distributions are only two special instances
of general lotteries. Many results can then derived much simpler. There is,
however, some more severe mathematics involved, although we will skip a
lot of more subtle details. Therefore we need to apologize to the specialists
for pretending that things are easier than they actually are, and to the non-
specialist for presenting things that are quite theoretical. Nevertheless we hope
that both can forgive us and appreciate the goal of bridging the gulf between
measure theory and applications in finance.

We first need to define what we want to “measure” with a probability
measure. Given a set of all possible states, a state space Ω, we want to assign
probabilities to subsets of this state space, i.e., to events. As example you may
think of the state space as the set of all possible returns of an asset R, and as
events like “the asset yields a return larger than x” which would correspond
to the subset (x,∞) of R.
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Unfortunately, for measure theoretical reasons it is generally not possi-
ble to assign meaningful probabilities to all subsets of a state space,1 there-
fore we have to restrict ourself to subsets that are in a so-called “σ-algebra”
(sometimes also called “tribe”). This point is not essential for most of our
applications, but it helps to know the properties these subsets satisfy:

Definition A.4 (σ-algebra). A collection F of subsets of Ω is called σ-
algebra if the following three conditions are satisfied:

(i) If a set B is in F , then its complement Ω\B is also in F . (This condition
ensures that if an event B has a certain probability, then its complement,
i.e., the event that B does not happen, has also a well-defined probability.)

(ii) If B1, B2, . . . are in F , then also their union B1 ∪ B2 ∪ . . . is in F .
(This condition ensures that separate events that have a probability, can
be summarized to one event with a certain probability.)

(iii) The empty set ∅ and the whole state space Ω are both in F . (This con-
dition simply ensures that the event “nothing happens” and the event
“something happens” both have a well-defined probability.)

The mathematically less inclined reader is again ensured that all events
he usually encounters are in a σ-algebra and hence have a mathematically
well-defined probability. It is enough to remember that there is a potential
mathematically problem hidden that fortunately has been solved in a clever
way by the definition of σ-algebras.

After this technical prelude we can now define probability measures:

Definition A.5 (Probability measure). A probability measure p on a state
space Ω is a map that assigns to subsets of Ω that are in some σ-algebra F a
number in [0,∞] and satisfies

(i) p(∅) = 0 (the empty set has measure zero),
(ii) for pairwise disjoint sets Bi ⊂ Ω, we have

p

( ∞⋃

i=1

Bi

)
=

∞∑

i=1

(Bi),

(iii) p(Ω) = 1 (the whole state space has measure one).

In general, not only the empty set will have the probability zero (even if
we deal only with a finite numbers of events). In the general case that does not
mean that the event can never happen: as example think of the probability to
get the number π when randomly picking a number between 0 and 10. This
probability will be zero if the probability distribution is uniform, however, it
is perfectly possible to get π.
1 If you want to know what can happen when you allow for arbitrary subsets, take a

look on the creepy Banach-Tarski Paradox, see e.g. [Fre88]: you could decompose
a massive ball into five pieces, put them together again and – the new (still
massive) ball is twice as large as before!
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If we want to restrict our analysis of a certain situation only to the “rel-
evant” events, i.e., to the events with non-zero probability, it is handy to use
the following notation:

Definition A.6 (“Almost” and null sets). Let (Ω,F , p) be a probability
space. We say that an event B ⊂ Ω happens almost surely (abbreviated a.s.)
if p(B) = 1, and we say that a property that holds on a set B ⊂ Ω with
p(B) = 1 holds for almost every element in Ω (abbreviated a.e.). We call all
sets B with p(B) = 0 nullsets.

We are mostly (but not exclusively) interested in probability measures on
R. (The outcome distribution of an asset, e.g., is nothing else than a prob-
ability measure on R.) It is possible to characterize probability measures on
R in a handy way. This can be done by applying Lebesgue’s Decomposition
Theorem and the Radon-Nikodym Theorem to get the following result:

Theorem A.7. Let p be a probability measure on R. For A ⊂ R let |A| denote
the usual (Lebesgue) measure of the set A. Then there exists an integrable
function f : R → [0,∞] and a singular measure ps such that p = f dx + ps.
Here dx denotes the usual (Lebesgue) measure on R, and “singular” means
that there exist disjoint sets A,B ⊂ R with A ∪ B = R and ps(A) = 0 and
|B| = 0.

We can now decompose the singular part even more. For this we need first
the following definition:

Definition A.8 (Dirac measure). The Dirac measure δx assigns to every
set A ⊂ R the value one if x ∈ A and zero if x �∈ A. δx is a probability measure
on R.

With this definition we can decompose the singular measure ps into a
linear combination of Dirac measures plus a remainder:

ps =
∞∑

i=1

λiδxi + pc,

where λi > 0, xi ∈ R, and the remainder pc is called the “Cantor-part” of the
measure. In most of our applications we assume that all probability measures
p satisfy pc = 0.

We finally need to find a way to integrate with respect to a general prob-
ability measure. This is quite natural when we want to integrate over a step
function, so let us do this first:

Definition A.9. Let f be a step function, i.e., there is an increasing sequence
of xi ∈ R such that f is constant on each interval [xi, xi+1) with value fi. Let
p be a probability measure on R. Then we define

∫
fp :=

∑

i

p
(
[xi, xi+1)

)
fi.
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For general integrable functions f we define
∫
fp as limit of

∫
fnp where (fn)

is a sequence of step functions which approximates f .

How can we make use of this new formalism? We illustrate this with the
following example: if we write down the EUT for a lottery A with finitely
many outcomes x1, . . . , xn and probabilities pi, . . . , pn we get

EUT (A) =
n∑

i=1

u(xi)pi.

If a lottery B has instead a continuous outcome distribution with density f ,
we have to replace this definition with an integral formulation

EUT (B) =
∫
u(x)f(x) dx.

But what if we have a mixture of both lotteries? With our new formalism we
can express all these cases in one simple formula:

EUT =
∫
u dp,

where dp denotes a probability measure. (The little “d” reminds us that we
are dealing with an integration.) If, for instance, dp = f dx +

∑n
i=1 λiδxi , a

short computation gives

EUT =
∫
u dp =

n∑

i=1

u(xi)λi +
∫
u(x)f(x) dx.

This new way of dealing with probability measures is not only convenient, but
also allows us to discuss situations involving discrete and continuous lotteries,
for instance when we want to approximate a continuous lottery by finite lot-
teries. (We do this in Sec. 2.4.5 and in Sec. 2.4.6, when we discuss continuity
properties of decision theories.)

We conclude this section with a useful result, the Jensen Inequality:

Theorem A.10 (Jensen Inequality). Let u : R → R be a concave function
and let dp be a probability measure on R. Let μ be the expected value of dp,
i.e., μ := E[p] :=

∫
xdp. Then we have

u(μ) ≥
∫
u dp.

Proof. Since u is concave, the tangent on u in μ lies nowhere below u. In other
words, there is a line g(x) = u(μ) + a(x− μ) (for some constant a), such that
g(x) ≥ u(x) for all x ∈ R. Now we can estimate
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∫
u dp ≤

∫
g dp =

∫
α(x − μ) + u(μ) dp

= α

∫
xdp− αμ

∫
dp+ u(μ)

∫
dp

= αμ− αμ+ u(μ) = u(μ).

This concludes the proof.

Jensen’s Inequality can be generalized in several ways:

• The inequality holds on a subinterval of R if u is concave only on this
subinterval.

• It can be generalized from R to R
n.

• We can obtain a strict inequality sign if u is not only concave, but strictly
concave (as long as dp �= δμ).

• We obtain the inverse inequalities if u is not concave, but convex.2

It is a nice little exercise to prove these statements.

A.5 Calculus, Fourier Transformations and Partial
Differential Equations

Let us start with some calculus facts that you should be familiar with.3

A function f : R → R is differentiable if

df(x)
dx

:= lim
h→0

f(x+ h) − f(x)
h

exists and is finite. We call f ′(x) := df(x)/dx the derivative of f (with respect
to the variable x). If f ′ is continuous, we call f continuously differentiable.

A function f : R → R is Hölder continuous with Hölder exponent α at x if
there is a constant C and an exponent α ∈ (0, 1] such that |f(x+h)−f(x)| ≤
Chα for all h > 0. If α = 1, we say that the function is Lipschitz continuous.
The following result is non-trivial and very useful:

Theorem A.11 (Rademacher Theorem). Every Lipschitz continuous
function is a.e. differentiable.

Next we consider functions with more than one variable. As an example
take the elevation h of a hilly area that depends on two variables, say, latitude
x and longitude y. We can take partial derivatives of the elevation function
h, e.g., we can consider its slope in the direction of x which we denote by

2 Indeed, this is the form in which the inequality is presented in mathematical text
books. In finance we more frequently deal with concave functions.

3 If this is all new for you, we advise you to study your favorite calculus textbook
first.
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∂h(x, y)/∂x. This means that we cut out a thin slice of the hills along the
x-direction and look at the derivative of the elevation on this slice (which
is just a function in one variable). Of course we can generalize this idea to
arbitrarily many dimensions. An example for a vector composed of partial
derivatives is the gradient of a function h : (x1, . . . , xn) → h(x1, . . . , xn) ∈ R

which is defined by

∇h(x) :=

⎛

⎜⎜⎝

∂h(x)
∂x1
...

∂h(x)
∂xn

⎞

⎟⎟⎠ ,

where x = (x1, . . . , xn) and sometimes Dh is written instead of ∇h.
In the following we need to extend the real numbers R to complex numbers

C that can be written as a linear combination of a real and an imaginary
number, i.e., z = x+ iy ∈ C with x, y ∈ R and i2 = −1. For complex numbers
particularly the Euler formula holds:

eiφ = cosφ+ i sinφ.

We can now define a Fourier transformation: it maps a function f : R → R

to its Fourier transform Ff : R → C and is defined by

(Ff)(ξ) :=
1√
2π

∫ +∞

−∞
e−iξtf(t) dt.

The Fourier transformation describes in a certain way the frequency distribu-
tion of f . The most natural application is in acoustics where f describes the
oscillation (e.g., of the air) and its Fourier transform corresponds to the dis-
tribution of frequencies, i.e., its sound. A sine function would lead to a Dirac
distribution as Fourier transform: in other words there is only one frequency,
the sound is a pure tone. Such a tone would sound very harsh and artificial,
since natural tones (like the sound of a piano) are composed of many differ-
ent tones, i.e., they correspond to a weighted sum of sine functions. Their
Fourier transform is therefore a weighted sum of Dirac distributions. Another
example is a normal distribution: their Fourier transform is again a normal
distribution.

The Fourier transformation has a couple of interesting properties. We col-
lect the most important in the following lemma:

Lemma A.12 (Properties of the Fourier transformation). Let F be the
Fourier transformation, then:

(i) F is a linear map.
(ii) The inverse of the Fourier transformation is given by

(F−1f)(x) =
1√
2π

∫ +∞

−∞
eixtf̂(t) dt.
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(iii) The Fourier transform of a derivative is a polynomial, more precisely:

F
(
∂n

∂xn
f(x)

)
(ξ) = (iξ)n(Ff)(ξ).

(iv) It is possible to define an appropriate space (of functions or distributions)
such that F is a bijective map on this space.

Property (iii) can be summarized by saying that the Fourier transforma-
tion turns derivatives into a product – although this has nothing to do with
the marketing of options... The property is often the main reason to use the
Fourier transformation and could even be used as an alternative definition
of differentiation. While this is certainly a complicated way for reaching this
goal, it enables us to generalize the definition of derivatives: if we take the
Fourier transform of a multiplication of f with, e.g., i|ξ|1/2, we get something
like a “half” derivative. If that sounds esoteric to you, then be ensured that it
is not: very much to the contrary it is surprisingly useful. The concept leads
to the definition of pseudo differential operators and they are needed, e.g.,
in solving certain asset pricing problems when the underlying process is of
a more complicated form. We mention this point and generally use Fourier
transformations when we discuss Lévy processes in Section 8.8.

A partial differential equation (short: PDE) is an equation that contains
different partial derivatives of an unknown function and is used to determine
this function. In contrast, an ordinary differential equation (short: ODE ) only
involves one kind of derivative (e.g., only derivatives with respect to t). As an
example for a simple PDE we consider the heat equation4 which is needed to
solve the Black-Scholes equation (see Section 8):

∂u(x, t)
∂t

=
∂2u(x, t)
∂x2

,

where t ∈ [0, T ] and x ∈ R. (In the original physics model for heat transport,
t is the time and x the space variable, whereas u(x, t) is the temperature at
time t and position x.) The above equation therefore means that the partial
derivative of u with respect to t equals its second partial derivative with
respect to x.

Typically, PDEs can only be solved uniquely when we have additional
conditions. In the case above this would be an initial condition (specifying u
at t = 0) plus some boundary conditions (e.g., specifying the behavior of u
for x→ ±∞).

PDEs are a central modeling tool in all scientific disciplines that rely on
sophisticated mathematical models (like physics, chemistry, biology, engineer-
ing – and some areas in finance). Therefore their analytical and numerical

4 This PDE was originally used to describe the transport of heat in a material.
There are, however, various other applications for this equation, therefore it is
sometimes also called, e.g., diffusion equation.
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investigation is very important. But how can we solve such a PDE? First,
we need to stress that there is no general method that works for all kinds of
PDEs. Very much to the contrary, specific methods need to be developed for
different situations, and there is a whole research area in mathematics dedi-
cated to this. In the case of the simple linear heat equation given above, things
look better, of course: there are in fact several methods that can be applied.
In the following we sketch one particularly simple method (the separation of
variables). Other methods that could be used are the Fourier transformation5,
variational methods or the finite element method. The latter is the standard
way for numerical computations and works for a large class of PDEs. We refer
the reader to [Eva98] and [RR04] for in-depth introductions to PDEs.

The key idea of the separation of variables is to look not for all possible
solutions, but only for solutions of a special form, namely u(x, t) = a(x) · b(t).
Once we have found such a solution, we only need to prove uniqueness, and
we know that the solution we have found is not any solution, but the only
solution. In fact, the uniqueness proof will be omitted here, but can be found
in most mathematical textbooks on PDEs.

Using the ansatz u(x, t) = a(x) · b(t) we can rewrite the PDE as follows:

a(x)b′(t) = a′′(x)b(t).

Sorting terms (and assuming that non of them vanishes, which is another
point that would have to be justified later) we obtain

b′(t)
b(t)

=
a′′(x)
a(x)

.

The central observation is now the following: the left side only depends on t
and the right side only on x. Since both sides agree for all x and t, both terms
have to be constant. Let us call this constant −λ, then we get two ordinary
differential equations:

b′(t) = −λb(t),
a′′(x) = −λa(x).

The first of these equations can be solved by an exponential function:

b(t) = b(0)e−λt,

the second can be solved by a combination of sine and cosine functions, e.g.

5 Here we can exploit that the Fourier transform of a derivative is a simple multipli-
cation. Thus after taking the Fourier transform of a PDE some of the derivatives
become multiplications (compare Lemma A.12). The result is typically an ODE
that can be solved much easier, either analytically or numerically. Finally the
solution needs to be Fourier transformed again to return to the original formula-
tion.
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a(x) = sin(x/
√
λ).

To determine the precise form of a and b we need to take into account the
initial and boundary conditions of the heat equation: we superimpose solutions
for a such that a(0) corresponds to the initial condition . For instance, if
the boundary condition is given by u(0, t) = u(1, t) = 0, then any ak(x) =
sin(kx/π) for k ∈ N satisfies the boundary condition, since sin(kπ) = 0 for
all k ∈ N. Denote uk(x) = ak(x) · bk(x), where bk(x) = b(0)e−kt/π. Then a
weighted sum of the uk can be constructed to fit the initial condition. This
sum still solves the heat equation and the boundary and initial condition, since
the heat equation is linear, i.e., weighted sums of solutions are also solutions.

A.6 General Axioms for Expected Utility Theory

There are many different ways to obtain a general characterization of Expected
Utility Theory for arbitrary probability measures. In the following we sketch
a rather new approach by Chatterjee and Krishna [CK]. The details of this
derivation can be found in their article.

Let Z be a compact metric space. Let P(Z) be the set of all probability
measures on Z.

The Independence Axiom can essentially be stated as in the finite case:

Axiom A.13 (Independence). Let p, q, r ∈ P(Z). Let p � q and λ ∈ (0, 1],
then λp+ (1 − λr) � λq + (1 − λ)r.

To state the Continuity Axiom we need to generalize the notion of conti-
nuity via the concept of open sets (compare App. A.3): we say that a function
f : X → Y is continuous if, for all open sets U ⊂ Y , the set f−1(U) is open.

Open sets in P(Z) can be defined via weak-� convergence (compare
Sec. 2.4.5): first, define closed sets as sets which contain the limit of any
converging sequence (compare App. A.3). Second, define open sets as com-
plement to these closed sets. We can do more and construct even a metric
d that measures the distance between two probability measures and reflects
the same convergence. Such a metric is given by the so-called “Wasserstein
metric”, compare, e.g., [AGS05].

The Continuity Axiom then becomes:

Axiom A.14 (Continuity). The sets {q ∈ P(Z) | q � p} and {q ∈ P(Z) | p �
q} are open.

Theorem A.15. Let Z be a compact metric space (e.g. a bounded and closed
interval in R). Let � be a preference relation, i.e., a complete and transitive
relation on P(Z), satisfying the Continuity and Independence Axioms, then �
can be represented by a von Neumann-Morgenstern Expected Utility function
u : Z → R.
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To prove Thm. A.15, Chatterjee and Krishna use intermediate steps: they
prove that the Independence Axiom together with the Continuity Axiom
implies a new axiom, the Translation Invariance Axiom. Together with the
Continuity Axiom, this new axiom implies the existence of a EUT function,
representing �. Translation Invariance can be stated as follows:

Axiom A.16 (Translation Invariance). Let r be a signed measure on Z with
average r(Z) = 0, in other words, let r be the difference of two probability
measures on Z. Let p, q ∈ P(Z). Assume moreover that p + r, q + r ∈ P(Z).
Then p � q implies p+ r � q + r.

The intuition behind the translation invariance is that adding a signed
measure r to a lottery does not change the preference relation. This means
that making certain outcomes more likely, others less likely in the same way
for p and q, does not change the original preference between p and q. This
is morally the same as the Independence Axiom and mathematically at least
close enough to show the equivalence of both axioms (under the condition of
continuity) relatively easy.

How can we now use the Independence Axiom to construct an EUT func-
tion?

First, one can prove that the indifference sets under the preference relation
are “thin”. This means: for any q ∈ P(Z) and any ε > 0 there are p, r ∈ P(Z)
which are “close” to q, i.e., d(p, q) < ε and d(q, r) < ε, and that p � q � r.

Second, one can show that, for any p ∈ P(Z), the contour sets {q ∈
P(Z) | q � p}, {q ∈ P(Z) | q ∼ p} and {q ∈ P(Z) | q ≺ p} are all convex.

P(Z) is a convex subset of a vector space. We can pick a measure o ∈ P(Z)
and some δz ∈ P(Z) with δz � o. Let us choose moreover some q ∈ P(Z),
q �= δz , q �= o. The structure of the indifference sets derived above allows
us to find a continuous affine functional f : P(Z) → R such that f(o) = 0,
f(δz) = 1 and such that the indifference set of q is a contour set of f , i.e., for
all p ∈ P(Z) with q � p we have f(q) > f(p).6

Using the translation invariance, one can show that f reflects the prefer-
ences on all of P(Z). With a translation, we can also assume that f is not
only affine, but linear.

In the final step, we define u : Z → R by u(z) := f(δz). We have to show
that this definition is correct, i.e., that

U(p) :=
∫

Z

u(z) dp(z) = f(p).

This is easy to see for measures with finite support: let p =
∑n

i=1 piδzi , then
by linearity of f ,

6 More precisely, we first restrict ourselves to a finite dimensional subset, such
that the existence of the affine functional f can be deduced from the Separating
Hyperplane Theorem (see App. A.1). Later one can show that f is independent
of the choice of this finite dimensional subset.
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∫

Z

u(z) dp(z) =
n∑

i=1

piu(zi) =
n∑

i=1

pif(zi) = f

(
n∑

i=1

piδzi

)
= f(p).

We can approximate any measure p ∈ P(Z) by measures with finite support.
Since f is continuous, this proves that U(p) = f(p) for all p ∈ P(Z) and thus
u is an expected utility function representing the preference relation �.
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Solutions to Tests and Exercises

“Teachers open the door. You enter it by yourself.”
Chinese proverb

The tests are meant to provide an immediate feed back when studying by
yourself, hence we give solutions to all questions. Although some of the ques-
tions are tricky and require some thinking about the context of the chapter,
the student should be able of answering most questions correctly after working
through a chapter. If this is not the case, we would recommend to the reader,
to study the chapter a little bit more in detail. A good result, however, can
only ensure that the basic concepts have been understood and memorized.
The exercises then serve as a way to apply and train the ideas and methods
of the chapter. We only give solutions to some of the exercises. This may be
inconvenient for the self-learning student, but it allows to use some of the
exercises for homework assignments.

Solutions to Tests

Chapter 2

Exercise: 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Answers: × × × × × ×
× × × × × × × ×

× × × × × × ×
× × × ×

× ×
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Chapter 3

Exercise: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Answers: × × × × ×
× × × × × × ×

× × × × ×
×

× ×

Chapter 4

Exercise: 1 2 3 4 5 6 7 8 9 10

Answers: × × × × × × ×
× × × × × ×
× × ×
× × × ×

Chapter 5

Exercise: 1 2 3 4 5 6

Answers: × ×
× × ×

× × × × ×

Solutions to Exercises

Solutions to the exercises are provided on the web page to this book. See

http:\\www.financial-economics.de

or the publisher’s web page for details.
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