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Historical and critical survey
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1. Objectives and scope of the book

In recent years game theory has become more prominent as an aspect of 
research and applications in public policy disciplines such as economics, 
philosophy, management, and political science, and in work within public 
policy itself. One reason for this growing prominence may be understood 
from some comments of Thomas Schelling (1960) and Robert Aumann 
(for example, 2004). They have said that the subject matter of game theory 
would be better described as interactive decision theory. Schelling and 
Aumann shared the Nobel Memorial prize in 2005 for their work in game 
theory, and Aumann was the fi rst president of the world Game Theory 
Society.

Why then use the term “game theory” for a fi eld that is not really about 
games? The game is to game theory as the experiment is to experimental 
science. After all, experimental science is not about experiments. It is 
about the natural world. Nevertheless experiments are a powerful aid to 
our understanding of the natural world. Similarly, when we conceive inter-
active decisions as games, we have a powerful aid to understanding them 
(and among other things, to the design of experiments).

Game theory is, as Aumann says, an interdisciplinary fi eld. “There are 
very few subjects that have such a broad, interdisciplinary sweep. Let 
me just put over here some of the ordinary disciplines that are involved 
in game theory. We have mathematics, computer science, economics, 
biology, (national) political science, international relations, social psy-
chology, management, business, accounting, law, philosophy, statistics. 
Even literary criticism . . . We have sports . . . (Aumann, 2003, p.4). Of 
course, none of these disciplines depends on game theory for its existence. 
Nevertheless, game theory can be set apart as an attempt to understand 
collective human activity as the outcome of interactive decisions. On the 
one hand, this is a remarkably ambitious venture. On the other hand, to 
the extent that it is successful, it must surely be a crucial foundation for the 
study of public policy.

The objective of this book is to survey and advance our understanding 
of game theory as a tool of public policy analysis. The hope is to advance 
that understanding less by the statement and proof of broad theorems 
(although the value of such proofs is not to be minimized, and will play 
some role) as by the clarifi cation and critical assessment of the theorems 
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we have, and by multiplication of examples and survey and extension 
of specifi c cases of application. In practice, the infl uence of game theory 
on public policy and the related disciplines has been less a consequence 
of broad theorems than of insightful examples. Accordingly, it is hoped 
that a critical reconsideration of some of those examples, and discussion 
of some less-known ones, will contribute to the study and ultimately the 
practice of public policy.

Public policy is a pragmatic fi eld. The pragmatic perspective leads to a 
view of public policy as an outcome of a process, and public policy analysis 
is often carried on in terms of the public policy process. We might sketch the 
public policy process roughly as follows: (1) A problem is identifi ed which 
seems to call for public initiative as a solution. (2) Alternative solutions are 
proposed. (3) Solutions are evaluated, and to the extent possible, the most 
promising solution specifi ed. At this point the process may be abandoned, 
if it is found that the best solution does not require public initiatives. We 
should note, too, that diff erent individuals with diff erent values or interests 
may regard diff erent proposals as best, and this is the stuff  of which poli-
tics is made. From this point we suppose that one particular political per-
spective has been adopted, and the proposal is considered best from that 
particular perspective. (4) The proposal is advocated and public support 
for it sought, in the course of which new interest groups and organizations 
may come into being. (5) The proposal is brought before the legislative or 
executive branch of government at an appropriate level. (6) The proposal 
is enacted with or without modifi cation. (7) The proposal is implemented. 
(8) Experience with the program as implemented leads to feedback from 
those aff ected. (9) The cycle begins again with proposals for improvement, 
replacement, or abandonment of the policy.

How will game theory fi t into this outline? It is widely understood today 
that there are two great branches of game theory, the non-cooperative 
and the cooperative branch. Of the two, non-cooperative game theory has 
been the more infl uential, especially in the last quarter of the twentieth 
century. This is often treated as an institutional diff erence: cooperative 
game theory is applicable when agreements are enforceable, while non-
cooperative game theory is applicable otherwise. This book will argue 
that, on the contrary, the two branches of game theory refl ect diff erent 
conceptions of rationality. Moreover, neither conception is altogether sat-
isfactory. The book argues that non-cooperative game theory is eff ective 
as a problem-fi nding or diagnostic method – non-cooperative behavior is 
common enough so that a social arrangement that is unstable in the face 
of non-cooperative behavior will probably fail. However, solutions based 
on non-cooperative game theory may be unstable in the face of coopera-
tive or collusive behavior, and cooperative behavior is common enough 
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that such solutions will themselves often fail. Thus non-cooperative game 
theory is far less eff ective as a prescriptive tool for public policy.

This should be qualifi ed in the following way, however. There is also some 
research that combines cooperative and non-cooperative game theory, and 
one particular branch is sometimes called implementation theory or social 
mechanism design.1 If game theory is interactive decision theory, we may 
think of the outcome of the interaction as being jointly determined by the 
decisions and the “rules of the game.” In social mechanism design, a par-
ticular goal for action is specifi ed, and the objective is to fi nd “rules of the 
game” that will make the goal the non-cooperative solution of the game. 
In the context of social mechanism design, non-cooperative game theory 
may also be useful at the second and third stages, proposal and evaluation 
of new policies. There have been some successes in this way, but also some 
failures, with both occurring in particular in the design of public auctions 
of electromagnetic spectrum for telecommunications.

In game theory a state that meets certain conditions, such as stability 
in some specifi c sense, may be a candidate solution of the game. The word 
solution is meant in a mathematical rather than a pragmatic sense, here. 
An array of decisions that is stable in the sense that no one can improve 
his outcome by changing his strategy unilaterally (while others continue 
their strategy decisions unchanged) is a Nash equilibrium, and the Nash 
equilibrium is probably the best known and most widely applied concept 
of non-cooperative solution.

In cooperative game theory, binding agreements to choose a common 
decision or a joint strategy are considered to be possible. A group that 
makes such an agreement is said to form a “coalition.” The word “coali-
tion” is best known in its political usage, as a group of political parties in 
a parliamentary government who join together to form a majority and 
govern jointly. In cooperative game theory, the word has been generalized 
to refer to any group of players in a “game” who join together to choose 
their strategies jointly. Most games with more than two players, applicable 
to problems of public policy, will provide cases in which individual actors 
could benefi t by forming coalitions with binding agreements to choose a 
joint strategy. Indeed, as Maskin (2004) points out, we live our lives in 
coalitions. Thus an account of social life (and especially of public policy) 
that ignores cooperative game theory must be incomplete.

In any case, the formation of coalitions will be crucial at stages 4–6 of 
the public policy process as sketched above. Coalitions are likely to be 
important at other stages as well. Non-cooperative game theory can fail 
because it assumes that people act non-cooperatively when in fact they 
can and do form coalitions, such as bidding cartels in auctions. Therefore 
cooperative game theory may be essential at stages 2 and 3 as well. We 
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acknowledged that stage 3, in particular, would be dependent on values 
and interests that might diff er. Even when that is so, there may be scope 
for the diff erences to be accommodated and the distinct interests and 
values to be advanced jointly. That, too, is the stuff  that politics is made 
of, and it is also the subject of cooperative game theory. We cannot avoid 
the conclusion that cooperative game theory is essential for a complete 
understanding of public policy.

This presents a number of diffi  culties. First, there are several concepts 
of solution in cooperative game theory. Which (if any) will be most helpful 
for our purposes? Second, much of the literature relies on powerful sim-
plifying assumptions. Such simplifying assumptions permit the statement 
and proof of broad and powerful mathematical theorems, but at the same 
time they indicate the limits of the applicability of the theorems. Together, 
these simplifying assumptions mean that most cooperative game theory is 
not applicable to very many problems of public policy. To be specifi c,

(1) Expressing the game in the simplifi ed coalition function form means 
that it cannot be applied to any case in which there are externalities 
and consequent ineffi  ciencies.

(2) The common assumption of superadditivity means that if agents are 
rational, the grand coalition will always form and will effi  ciently deter-
mine the strategies of every agent. This means it is simply not applica-
ble to any case in which excessive centralization may cause problems.

(3) The world we observe, the world relevant to public policy, seems to 
be one in which many coalitions form and often act independently 
and indeed competitively with one another. In cooperative game 
theory such an array of distinct coalitions is called a “coalition 
structure” (Aumann and Dreze, 1974). We would like a theory that 
would give us some insight as to just what coalition structures would 
be likely to form, and why, and game theory based on coalition func-
tions and superadditivity is not helpful with that. This is the problem 
of  endogenous formation of coalitions (Carraro, 2003).

There are approaches to cooperative game theory (as we will discuss in 
the next chapter) that allow both for externalities and coalition structures, 
but these approaches are “mathematically intractable.” That is, they prob-
ably do not have very general solutions, and if they do, the solutions are 
very hard to fi nd and only tentative progress has been made in this direc-
tion. We might nevertheless fi nd solutions for particular cases, and even 
develop a tool-kit for seeking such special-case solutions.

The objective of the book, then, will be a critical review of some major 
topics from both cooperative and non-cooperative game theory, including 
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some less known ideas in non-cooperative game theory, and some con-
structive proposals for new approaches, to assemble a tool-kit for the 
 analysis of public policy, with the pragmatic purpose of identifying prob-
lems and exploring potential solutions. At the same time, we may fi nd 
resources for a clearer understanding of the public policy enterprise itself.

NOTE

1. The 2007 Nobel Memorial Prize honored contributions of this sort.
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2. Representing games

The fi rst step in any application of game theory, whether to public policy 
or for any other purpose, is to represent the real-world phenomenon of 
interest as a problem of interactive decision, that is, a “game.” This chapter 
will set out some forms for representation of games that will be important 
for the remainder of the book. Some will be familiar, even pedestrian, to 
the reader who is well grounded in game theory. Nevertheless some topics 
may be important for the game theorist, if only for diff erences of stress. 
Contingent strategies are well known, but this book will often make them 
more explicit and formal than they sometimes are in the game theory lit-
erature. Nested games may be a novel topic to the game theorist, as the 
concept comes from applications in political science, and are crucial to the 
distinction of a private from a public sector. “Imperfect recall” is very little 
mentioned in recent game theory, and needs to be discussed in the context 
of cooperative game theory. Finally, the partition function approach in 
cooperative games, and its importance for the concept of externality, 
may be novel to some game theorists. These are important concepts for 
public policy. Nevertheless, the chapter is expository, with nothing new to 
the literature except specifi c examples, some terminology, emphasis, and 
expression.

2.1 GENERAL CONSIDERATIONS

Game theory is a (mathematically) formal study, with deep roots in math-
ematical set theory. The language of set theory is designed for generality 
even at the expense of intuition and common sense. For example, in set 
theory we routinely speak of a set without any members, the “null set,” or 
a set with only one member, or a set consisting of all of the members of 
some population. These usages may seem strange from the point of view of 
ordinary English. Generally words come to us with connotations as well as 
formal defi nitions, and a word like “set” tends to connote a plural group-
ing within some larger grouping. Thus the idea of a set without members 
may seem silly, and the natural impulse of the reader is to make the chari-
table assumption that the author is not silly, so that something else must 
be meant. In the present context, this charitable impulse is likely to cause 
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confusion. Assume instead that I am silly. Because of these conventions, 
though, some of the most important and productive forms of representa-
tion are distant from intuition.

Since a game is an interactive decision problem, our representation 
must include at least a set of decision-makers, some alternatives among 
which they must decide, and some objectives to be advanced by the deci-
sion. Let us call the set of decision-makers N and denote the members of 
the set of decision-makers i 5 1, 2, . . . n. The set of decision-makers is 
non-empty; that is, it has at least one member. We will usually refer to 
the members of this set as “players” or “agents.” We will sometimes talk 
about “games” with only one player, although in that case there is no 
interaction. The objectives for diff erent players will usually be diff erent, 
and may be confl icting. For now, we will simply represent those objec-
tives as numbers, and think of the numbers as money payoff s from the 
“game.”

Here is an example of interactive decision theory. (We will call it 
Game 2.1, the Water Game.) Eastland and Westria share the valley of 
Southfl owing River, which forms the boundary between them. Each 
country controls some of the northern tributaries of the river, and could 
divert water from the tributary streams for their own use. However, any 
diversion from the tributaries of the river will divert water that the citi-
zens of the southern regions of both countries use for irrigation and other 
purposes, and if both countries divert the water of the tributaries, the fl ow 
in the south will be so reduced that silting and problems of navigation 
will also occur. Reliable cost–benefi t studies have provided the follow-
ing fi gures: if just one country diverts water from the tributaries, the net 
benefi t to that country will be 3 billion euros, but the other country will 
lose 4 billion. However, if both countries divert water from the tributar-
ies, each country will suff er a net loss of 2 billion. The two countries do 
not trust one another and keep their decisions strictly secret from one 
another as long as possible, so each country can only conjecture as to 
what the other country will decide and sees no chance of infl uencing the 
decision of the other. In this example, the players are the two countries, 
and the alternatives are diff erent ways of obtaining water for each coun-
try’s needs. The decisions are to divert water from the tributaries or not. 
The cost–benefi t studies establish that the decisions are interactive: that 
is, each country’s net benefi ts or losses depend on the other country’s 
decision as well as their own. This example illustrates the simplest class of 
nontrivial games, two-by-two games; that is, two-player by two-strategy 
games.
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2.2 THE GAME IN EXTENSIVE FORM

The most intuitive way to represent a complicated decision problem is as 
a tree diagram, in which each decision is represented by a branch in the 
tree. In our example, the two countries make their decisions more or less 
simultaneously, each in secrecy. This lack of information should also be 
represented in the tree diagram. That’s a complication we shall leave for a 
little later. First consider the following, somewhat simpler example: Game 
2.2, the Entry Game.

One of the most important of simple games, both for theory and for 
applications in economics and public policy, is the game of market entry. 
Firm A is an established monopolist, and Firm B is a fi rm considering 
entry into competition with Firm A. Firm B has two choices: it can enter 
or not. Firm A then has two choices: it can retaliate against the entrant 
by means of a price war, or it can accommodate the new fi rm by main-
taining a price that will be profi table to both of them. Either way, Firm 
A will face lower profi ts, but the price war results in even lower profi ts 
than the strategy of accommodation. Game 2.2 illustrates this case with 
payoff s on a scale of 5, and the fi rst payoff  to the entering fi rm, Firm B, 
and the second payoff  to Firm A. (The reader may add as many zeros as 
seems realistic.)

Figure 2.1 shows this game in the form of a tree diagram, reading from 
left (the root) to right (the branches). The fi rst number at the tip of each 
branch is the payoff  to Firm B, and the second to Firm A.

Figure 2.2 represents the Water Game in the tree diagram form con-
ventional in game theory. The fi rst payoff  is to Eastland and the second 
to Westria. We see that Westria’s decision is enclosed in a larger lozenge 

B

enter

don’t

retaliate

accommodate

–1, 1

0, 5

1, 2

A

Figure 2.1  Game 2.2: the Entry Game
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that includes both of the branches that come from Eastland’s decision. 
This lozenge is called an “information set,”1 and it encodes the fact that 
Westria does not know at which branch it is (which decision Eastland has 
made) when it makes its decision. Conversely, the node labeled “E” in 
Figure 2.2 is a full information node, as are “A” and “B” in Figure 2.1. At 
a full information node the player is aware of commitments already made 
by the other players, if any. For a game like the Water Game, in which the 
decisions are made simultaneously, either decision-maker can be taken 
fi rst, provided that the information available to each decision-maker is 
accurately represented.

When games are represented as tree diagrams with information sets 
to indicate decisions made under ignorance, the game is said to be repre-
sented in extensive form. The extensive form is highly intuitive, but is not 
the representation most often used in game theory.

2.3 THE GAME IN STRATEGIC NORMAL FORM

Continuing to use the example of the Water Game, we may instead repre-
sent it in tabular form. Consider Table 2.1. By choosing to divert or not, 
Eastland determines whether the outcome will be the payoff s in the fi rst or 
second of the bottom two rows of the table. Westria’s decision whether to 
divert or not determines whether the outcome will be the payoff s in the last 
or next to last column. In each cell the fi rst payoff  is to Eastland and the 
second to Westria.2 Putting all this together, the table tells us (for example) 

E

divert

don’t

don’t

divert
–1, –1

0, 0

3, –4

–4, 3
W

don’t

divert

Figure 2.2  Game 2.1: the Water Game in extensive form
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that if Eastland diverts and Westria does not, the net benefi ts are as shown 
in the upper right cell, a loss of 4 for Westria and a net gain of 3 for Eastland. 
This presentation will be familiar to those acquainted with the Prisoner’s 
Dilemma example. When the game is presented in a tabular form such as 
this, the game is said to be represented in strategic normal form or, more 
briefl y, in normal form or in strategic form. Fairly obvious extensions of the 
tabular presentation can be used with games in which there are more than 
two strategies or in which there are three or even four players.

For larger games, a more mathematical presentation is necessary, and in 
general we may borrow language from set theory. Letting Si be the set of all 
strategies available to player i of n in the game, S be a set with n elements of 
which element i, which we may call si, is an element of Si (that is, si is the 
strategy chosen from Si by agent i), and v 5 (v1, v2, . . ., vi,…vN) be a vector 
of the n payoff s to the n players in the game. In place of the table we have 
a function that gives a vector of payoff s v 5 f(S), with one payoff  for each 
of the players i, corresponding to each possible set of strategies S. Then the 
game (in strategic normal form) is said to comprise the set of players N, the 
set of strategies Si for each player, and the payoff  function f. In general, any 
table is just a visual way of presenting a mathematical correspondence, and 
that is true equally of the payoff  table in game theory as of other tables.

Von Neumann and Morgenstern (2004) proved that any game in exten-
sive form can be represented also in strategic normal form, and in particu-
lar, the Entry Game can be represented in that way. However, there is a 
trick to it, and the trick is often neglected, even in game theory research 
that is in some ways quite advanced. For Firm B, the case is similar to the 
case for Eastland and Westria: Firm B simply has to choose between two 
actions, enter or don’t. Firm A, however, knows Firm B’s decision when 
it makes its own decision, and Firm A’s decision is conditional on that 
knowledge. This is a contingent strategy. For fi rm A there are four contin-
gent strategies:

Strategy 1: “If Firm B enters then retaliate, otherwise retaliate.”
Strategy 2: “If Firm B enters, then accommodate, otherwise retaliate.”

Table 2.1 Game 2.1 in strategic normal form

Payoff  order: Eastland, Westria Westria

Divert Don’t

Eastland Divert 21,21 3,24
Don’t 24,3 0,0



 Representing games  13

Strategy 3:  “If Firm B enters, then accommodate, otherwise accom-
modate.”

Strategy 4: “If Firm B enters, then retaliate, otherwise accommodate.”

This list of contingent strategies may seem trivial, redundant, and (in the 
case of Strategy 2) downright silly, by comparison with a simple enumera-
tion of the choices to retaliate or accommodate, but all are contingent 
strategies that are available to Firm A in the light of the information it has 
when it makes the decision. Therefore, all are necessary for a valid presen-
tation of the game in strategic normal form as defi ned by von Neumann 
and Morgenstern. Table 2.2 shows Game 2.2 in strategic normal form.

It is common to refer to decision alternatives such as “enter” and “don’t 
enter” and “accommodate” or “retaliate” as “strategies,” but this is not 
consistent with the representation of the game in strategic normal form 
as understood by von Neumann and Morgenstern. The extensive form 
was clarifi ed in a key early paper of Kuhn (1997, pp. 46–68). In it Kuhn 
distinguished between strategies as conceived by von Neumann and 
Morgenstern and what he called “behavior strategies,” that is, local deci-
sions in the diff erent decision nodes of the tree. It has become common 
not to make that distinction, and in some cases confusion can result. For 
this book, the decision alternatives such as “enter” and “don’t enter” 
and “accommodate” or “retaliate” will be called behavior strategies3 and 
strategies such as strategies 1, 2, 3, and 4 above will be called contingent 
strategies. I will make every eff ort not to use the term “strategy,” without 
modifi cation, unless the meaning will be clear from the context.

Here is an example that will illustrate the importance of distinguishing 
contingent from behavioral strategies. To give the example a real-world 
background, consider a case in allocation of intellectual property. Firms 
A and C have patents on alternative methods of producing widgets. Firm 
C is an established monopolist but the cost of production with their pat-
ented technology is relatively high. The technologies are complementary, 
so that a company in possession of both technologies could be a low-cost 
producer in the widget market. Firm B is known to be interested in entering 

Table 2.2 Game 2.2 revised: the Entry Game in strategic normal form

Payoff  Order: 
Firm B, A

Firm A

1 2 3 4

B Enter 21,1 1,2 1,2 21,1
Don’t 0,5 0,5 0,5 0,5
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the widget market and has applied to license Firm C’s patent. Firm C does 
not know whether or not Firm A has licensed its patent to Firm B, but Firm 
B’s application to Firm C for a license would make sense only if Firm B 
intends to enter. If B holds the license for A’s patent, and does not enter the 
widget market, then each fi rm can continue in its traditional markets, and 
we represent this outcome by payoff s of 1,1,1 (in the order of Firm A, B, C). 
If Firm B does enter, and does so with a license only for Firm A’s technol-
ogy, the market will be shared profi tably for all fi rms; we represent this by 
payoff s 3,3,2. If Firm B enters with neither license, its competition will leave 
all three fi rms without profi ts, which we represent by payoff s 0,0,0. If Firm 
B enters with only the license for A’s patent, then it will be unprofi table and 
unable to pay license fees to Firm A, so that those fi rms will be unprofi table, 
but Firm C will continue with some profi ts, giving payoff s 0,0,1. Finally, if 
B enters with both licenses, it will become dominant as the low-cost pro-
ducer in the widget market, so that Firms A and B will be highly profi table 
but Firm C unprofi table, for payoff s 4,4,0. Again, the reader may multiply 
these payoff  numbers by a factor large enough to make them “realistic.”

Thus we have the game shown in Figure 2.3. With this sequence of 
decisions and payoff  numbers we have replicated an example of Selten 
(Kuhn 1997, pp. 312–54)4. It is called “Selten’s Horse,” because of a slight 
resemblance of the diagram for the game in extensive form to a horse. 
Accordingly, we will follow Selten’s notation and denote the behavior 
strategies as follows:

Player A. License  ● 5 R1, don’t 5 L1
Player B. Enter  ● 5 L2, Don’t 5 R2
Player C. Don’t  ● 5 L3, License 5 R3

A

C

B
Don’t

Don’t

Don’t
Don’t

License License

Enter

1, 1, 1

0, 0, 0 0, 0, 13, 2, 2 4, 4, 0

License

Figure 2.3  Game 2.3: Selten’s “Horse”
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This game is presented in a valuable advanced textbook as an example 
where some standard methods break down (Montet and Serra, 2003). It 
illustrates a case in which some decisions must be made with very limited 
information, which is the case for Firm C. The information available to 
Firms A, B and C is complex but clear enough from the diagram. Firm B, 
the second player, knows what Firm A has done, since it would have no 
opportunity to choose had Firm A not chosen to license its technology. 
For Firm C, who plays last, there are three possible sequences of choice by 
the previous two players. They are

1. L1
2. R1, R2
3. R1, L2

Of these, Firm C can rule out only the second – the fi rst and third are 
equally possibilities. In order accurately to represent this game in normal 
form, we have to preserve this information. To do this it is  necessary to use 
the contingent strategies.

The normal form representation of the Horse Game is shown as Table 
2.3. In order to represent this three-person game, the strategy choice of Firm 
A determines which side of the table the other two players play in. If fi rm 
A chooses “License”, then the other two play in the right side of the table; 
otherwise, they play in the left. Montet and Serra suggest that this game is 
particularly problematic for analysis in terms of behavior strategies, since 

Table 2.3  Game 2.3: a normal form representation of Selten’s “Horse”

Payoff  order 
Firm A, B, C

Firm A

Don’t License

Firm B Firm B

If License 
then Don’t 

else no 
action

If License 
then Enter 

else no 
action

If License 
then Don’t 

else no 
action

If License 
then Enter 

else no 
action

C If Don’t or License, 
Enter then Don’t else 
no action

0,0,0 0,0,0 1,1,1 0,0,1

If Don’t or License, 
Enter then License else 
no action

3,2,2 3,2,2 1,1,1 4,4,0
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(1) Firm C has no rational basis to choose either of the behavior strategies 
“Don’t” or “License,” and therefore (2) Firms A and B, unable to antici-
pate the choice that will be made by Firm C, also do not have any rational 
basis for their own choices. However, Selten (1975) found a rational-action 
solution for the game represented in strategic normal form with contingent 
strategies. This solution will be discussed in Chapter 6. For further discus-
sion of contingent strategies and further examples see Dutta (1999, Ch. 2) 
and McCain (2004, Ch. 2).

When the game is represented in extensive form, we defi ne a subgame as 
a full-information node (such as A in Figure 2.1) together with all possible 
moves that follow it in the game tree (as “accommodate” and “retaliate” 
follow A in Figure 2.1). In a larger, more complex game, subgames could 
themselves be quite large and complex. For generality, it is conventional 
to regard the whole game (beginning with B in Figure 2.1) as one of its 
subgames; smaller subgames are called “proper subgames.” Notice that 
the ‘Horse’ Game has no proper subgames. These concepts are standard 
in introductory texts, where many more examples can be found; see, for 
example, McCain (2004, Ch. 14) and Dutta (1999, Ch. 11).

Following Tsebelis (1990), we may denote any sequence of moves that 
is part of a game in extensive form as a nested game. If the sequence of 
moves is a subgame, then we will denote it as an imbedded game. Examples 
may be found in Chapter 6 below, and see also McCain (2004, Ch. 15). 
These concepts will be important for our purposes since the activities of 
the private sector in a market economy will always be nested in the larger 
game that includes the determination of public policy. If, in addition, the 
private sector activities constitute an imbedded game, that is, a subgame of 
the larger game, then non-cooperative game theory can validly be applied 
to them. If the private sector activities are nested but not imbedded, then 
we will need to be more careful (as Tsebelis observes).

The strategic normal form representation has been central to most 
applications of non-cooperative game theory, and will be extensively 
 discussed in Chapters 4 and 5.

2.4 UNCERTAINITY AND CALIBRATION

While most non-cooperative game theory is based on “games” with numeri-
cal payoff s, this needs to be qualifi ed in two ways. First, it is recognized that 
the actual benefi ts attached to decisions are subjective benefi ts, and that the 
numbers ideally should be quantities of subjective satisfaction, that is, in 
the language of twentieth-century economics (and earlier utilitarianism) the 
payoff s are quantities of “utility.” Second, payoff s may be uncertain from 
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the point of view of the player, the theorist, or both. In the Water Game, as 
we have seen, Westria must make their decision in what is called an “infor-
mation set” but might better be thought of as an ignorance set – Westria 
does not know what decision Eastland will have made. In this example, as 
in game theory in general, the interactive decisions have to be made under 
uncertainty. Put otherwise, Westria chooses between two strategies, not on 
the basis of their payoff s, but on the basis of some probability distribution 
over the payoff s, which in turn depends on a probability distribution over 
the strategies of others. The simplest way to deal with this problem is also 
the one usually used: we assume that the decision-maker wants to choose 
the strategy that yields the largest mathematical expectation of payoff s. 
Thus probability and mathematical expectations play a central role in game 
theory. In much of the research literature it is taken for granted that the 
objects of choice are probability distributions over strategies and payoff s, 
and the literature is hardly  intelligible if this is not kept in mind.

Then (a frequent question in beginning classes) how do we fi gure out 
what the payoff  numbers should be? Generically, game theory models are 
not usually calibrated precisely. In some applications, the application itself 
may provide evidence that can be used for calibration. The Water Game is 
an example in which (hypothetically) the calibration is derived from cost–
benefi t analysis in the specifi c case. Very commonly the payoff s are treated 
as algebraic unknowns, with some restrictions on their values. It is fairly 
common to fi nd that the payoff s can vary over some positive range without 
aff ecting the qualitative results, while payoff  values outside that range 
have very diff erent results. In the Water Game, for example, all the payoff s 
can be multiplied by any constant number, or have any constant number 
added to them, or both, and the rational decisions of the two players in the 
game will not change. Thus exact calibration is often not necessary, and 
may not be very helpful, and the numbers chosen for illustrative purposes 
can be arbitrary, so long as they are within appropriate ranges.

2.5 COOPERATIVE GAMES

The examples we have seen so far are drawn from “non-cooperative” 
game theory. The Water Game, in which the agents act with deliberate 
secrecy and distrust one another, illustrates a non-cooperative game par-
ticularly well. Cooperative game theory is applicable whenever the players 
in a game can form “coalitions,” that is, groups that choose a common 
strategy to improve the payoff s to the members of the group. Cooperative 
game theory relies especially on mathematical set theory for many of 
its basic ideas. The usual assumption is that any group of agents in the 
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“game” can form a coalition, and a coalition of agents a, b, and c would 
be denoted as {a, b, c}. The brackets {} are conventional in set theory to 
indicate the “elements” of a “set,” or in alternative ordinary language, the 
individuals who make up a grouping.

Most studies in cooperative game theory will begin with an enumeration 
of all possible coalitions. As before, suppose there are n “players in the 
game.” An individual agent can be indicated by ai, or simply by the index 
i, with i 5 1, . . . n. Common sense would see that any group of agents 
with more than one and less than n could form a coalition (with more or 
less diffi  culty). That’s right, but it is not complete. In addition to those 
groupings, we also enumerate all singleton coalitions, {ai}, that is, “coali-
tions” with just one member, and also the grand coalition of all n agents 
in the game and the null coalition, [, a “coalition” with no members. (By 
convention in set theory [ means a set with no members.)

When a coalition is formed, the expectation is that by working together 
and choosing a joint strategy they will be able to improve their results 
overall. It may be that one member, let us say c, bears a special cost for this, 
or another agent, such as a, gets most of the benefi t. An example might be 
the modifi cation of a river course, so that those upstream benefi t (from the 
diverted water) but those downstream lose. Then c is downstream and a 
is upstream. To enlist c in the coalition it may be necessary for a to pay c 
some compensation. This could be a problem faced by the governments of 
Eastland and Westria in their domestic water policies, if we think of a gov-
ernment as in each case a coalition of interest groups within the country. 
It is common to assume transferable utility,5 which means that a simple 
transfer of some of c’s winnings to a can fully compensate a. This could be 
true, for example, if all payoff s are in money and the players’ “utility func-
tions” are proportional to their money payments, including game payoff s 
and side payments. This simplifying assumption is often called TU.

Assuming TU, all that matters is the total payoff  to the group {a, b, 
c}. Therefore, it is common in cooperative game theory to ignore all the 
details and to focus on the total values the various coalitions can obtain, 
and assign to each coalition a number expressing that value. It is com-
monly called the value of the coalition. (Of course, the value of [ is zero.) 
This assignment is called a “characteristic function” in mathematical set 
theory and is sometimes called the “coalition function” in cooperative 
game theory.

Rousseau’s tale of the Stag Hunt has given rise to a widely used example 
in the theory of non-cooperative games. Here, though, we will use it as an 
example of a cooperative game. Rousseau’s ideas are an important root 
of modern political theory and the Stag Hunt example is something of a 
paradigm of collective action. (For representative treatments see Gardner, 
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2003, pp. 115–18; Osborne, 2004, pp. 20–21.) Rousseau writes in part 2 of 
the Discourse on Inequality (1754, G. D. H. Cole translation):

In this manner, men may have insensibly acquired some gross ideas of mutual 
undertakings, and of the advantages of fulfi lling them: that is, just so far as their 
present and apparent interest was concerned: for they were perfect strangers to 
foresight, and were so far from troubling themselves about the distant future, 
that they hardly thought of the morrow. If a deer was to be taken, every one 
saw that, in order to succeed, he must abide faithfully by his post: but if a hare 
happened to come within the reach of any one of them, it is not to be doubted 
that he pursued it without scruple, and, having seized his prey, cared very little, 
if by so doing he caused his companions to miss theirs. It is easy to understand 
that such intercourse would not require a language much more refi ned than that 
of rooks or monkeys, who associate together for much the same purpose.

It is not clear that Rousseau has anything in mind that corresponds to 
the rational-action analysis typical of game theory. Rather, he is con-
cerned with lack of foresight among beings not yet human enough to have 
 language! However, the behavior described is not necessarily irrational.

It seems that Rousseau had something like the following hunting tech-
nique in mind: the individual hunters act as beaters and spearmen, driving 
the stag into a narrow defi le where it can no longer escape. While they are 
beating, it may be that one spies a rabbit and, to pursue it, abandons his 
post, so that the stag escapes through the gap so created. The individual 
thus forfeits his own share of the stag (while depriving the others of theirs 
as well) but he may reason that if he does not pursue the rabbit, some of 
the other beaters will do so, and thus the stag will get away anyway, so that 
he has nothing to lose by pursuing the rabbit.

It is rather odd, nevertheless, to treat the Stag Hunt as a non-
 cooperative game. In order to pursue a stag, it is necessary for the two (or 
more) hunters to form a coalition for the purpose, and if they obtain a stag 
the coalition acquires a single large source of meat, not separate payoff s 
to diff erent hunters. The hunters must have some agreement as to how the 
meat will be divided, and the individual payoff s can be based only on the 
agreement.

Let us instead treat the Stag Hunt game as a cooperative game, and to 
better illustrate the cooperative-game concepts, let it be a three-person 
game. As before we suppose that a stag can be taken only if all (three) 
hunters collaborate in pursuing the stag, that anyone can catch a rabbit, 
that a rabbit is worth one day’s supply of meat for a family while the stag 
can supply 10 family-days of meat to be divided among the three hunters. 
We can then say that any singleton coalition is worth just one (rabbit) fam-
ily-day of meat, any two-person coalition is worth two (rabbits) family-
days of meat, while a three-person grand coalition is worth ten  family-days 
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of meat. This gives us the coalition function shown as Table 2.4. The three 
hunters are indicated as a, b, and c.

A simplifying assumption that is usually made is that the game is 
“superadditive,” that is, a coalition formed by the merger of two or more 
coalitions will realize a value at least as great as the sum of the values of 
the coalitions merged. We see this in the Stag Hunt game.

Now let us consider a game of production of a public good,6 Game 2.5. 
Once again we will think of a three-person game, since it allows for the for-
mation of some range of coalitions while remaining comparatively simple. 
For this game, the three agents, again imaginatively called a, b, and c, 
each begin the game with wealth amounting to 5 units, supposing that the 
public good is not produced. For simplicity, we suppose that the public 
good is imperfectly divisible. Specifi cally, each agent can provide a fi xed 
lump of 1 unit of the public good at a cost of 3, and the strategies will be 
to provide or not to provide this indivisible lump of public good. Payoff s 
will be the sum of the initial wealth and double the number of units of the 
public good provided, minus the individual’s cost of providing the public 
good if he determines to provide it. We now consider three cases:

(a) A singleton coalition. If the public good is produced, the wealth of 
the singleton coalition (individual agent) that produces it would be 
2k 1 5 − 3 1 2 5 2k 1 4, where k is the quantity of the public good 
produced by other agents. The payoff  from not producing is 2k 1 5 
so that the singleton coalition would be better off  not producing it.

(b) A two-person coalition. A two-person coalition can produce one or 
two units of the public good, and none will be produced by the sin-
gleton residual coalition, as we have already seen. With one unit the 
value of the coalition is 10 − 3 1 4 5 11. With two it is 10 − 6 1 8 5 
12. Thus the two-person coalition would be better off  producing two 
units of the public good. For this example we assume that they do.7

Table 2.4 Game 2.4: a cooperative, three-person Stag Hunt

Coalition Value

{a,b,c} 10
{a,b}  2
{a,c}  2
{b,c}  2
{a}  1
{b}  1
{c}  1
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(c) A three-person coalition. A three-person coalition can produce up 
to three units of the public good, and similar reasoning leads to the 
conclusion that it will produce 3 for a value of 15 − 9 1 3 * 6 5 24 
if the public good is produced, and 15 if not, so the grand coalition 
would choose to produce three units of the public good.

Notice, though, that the payoff  for a singleton coalition also depends on 
whether the public good is produced. Suppose, on the one hand, that the 
group is “organized” into three singleton coalitions. Then, as we have just 
seen, the worth of each is 5. Suppose, on the other hand, that a and b form 
a two-person coalition and produce two units of the public good. Then the 
value of {c} is 5 1 4 5 9. Evidently, the value of a singleton coalition in 
this example depends on whether the other two agents in the game form a 
coalition among themselves, and if so what strategy they jointly choose.

These changes in the value of a coalition, as a result of the formation 
of another coalition, are called externalities8 in some recent work in game 
theory (for example, Carraro, 2003). When the coalition function is taken 
as the only important information about the game, as so much cooperative 
game theory has done, this amounts to the unstated assumption that exter-
nalities are unimportant.9 This, too, seems quite problematic for economic 
applications. As early as 1963 Thrall and Lucas proposed a more complex 
way of assigning values to coalitions, the partition function, which allows 
for externalities in this broad sense.

A partition is a common construct of set theory. A partition P of set N 
is a set of subsets of N with two properties: the subsets do not overlap and 
every member of N is in one or another of the subsets that are members of 
P. A second partition Q is a refi nement of P if it breaks down the subsets 
that are members of P into smaller subsets. These can be applied to sets 
of any kind, from brands and models of automobiles to classes of prob-
ability distributions over the unit interval. Thus, for example, the set of all 
automobiles is partitioned when we identify them according to brand, and 
since each model (such as the Chevrolet Impala or the Subaru Outback) is 
produced by only one brand, the identifi cation of automobiles by model 
is a refi nement of the identifi cation by brands. The partition function then 
is a function from coalitions and the partitions of which the coalitions are 
members to the value of the coalition, where the coalition can take diff er-
ent values in diff erent partitions. An imbedded coalition is a pair consist-
ing of a partition P and a coalition C that is a member of the partition. 
Thus the partition function assigns values to imbedded coalitions. (For 
more detail see Chapter 11. These terms are given mathematically formal 
defi nitions in Chapter 13, which may be read independently of the other 
chapters.)
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A partition function for the public goods game, as discussed above, is 
shown in Table 2.5. Once again, this game is superadditive. Suppose, nev-
ertheless, that we focus on one of the lines other than the grand coalition, 
and ask for a “cooperative solution,” that is, an assignment of values to 
the individual agents in the coalitions in that partition. An example would 
be the middle line, {a, c}, {b}, where the problem would be to determine 
the allocation of the coalition value of 11 between a and c, consistently 
with the assumptions of cooperative game theory. The partition {a, c}, 
{b} would be called a coalition structure, and the solution would be for 
that coalition structure.

As we observed, a partition is a general concept of set theory. It will 
sometimes be helpful to think in terms of partitions of other kinds of 
sets. For example, any decision can be thought of as creating a parti-
tion among the diff erent possible outcomes of a game. In Selten’s 
Horse Game, for example, Firm A’s decision creates a partition of 
the four possible outcomes into two sets of two: {(0,0,0), (3,2,2)} and 
{(0,1,1),(4,4,0)}. Similarly, chance events partition all possibilities into 
diff erent subsets that may follow from diff erent realizations of the 
chance event.

2.6 “IMPERFECT RECALL”

In his classic paper that founded the literature on games in extensive 
form, many of Kuhn’s (1997, 46–68) results were limited to the case of 
“perfect recall.” Kuhn’s example of “imperfect recall” was the game of 
bridge. In bridge, two partnerships play against one another, and each 
partnership receives a single score. Thus, Kuhn argued, the partnership 
is a single player, but the player has multiple “agents” each of whom 
may be unaware of the strategic commitments of the other. Many of the 
 conventions of bridge play are designed to address this diffi  culty.

Table 2.5  Game 2.5: a partition function for the three-person public goods 
game

Partitions Values

1 {a, b, c} 24
2 {a, b}, {c} 12, 9
3 {a, c}, {b} 12, 9
4 {a}, {b, c} 9, 12
5 {a}, {b}, {c} 5, 5, 5
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Nontrivial coalitions are compounds of multiple agents, and when 
we observe coalitions interacting competitively against one another, 
they are compound players such as Kuhn described. Nevertheless, there 
seems to be no literature whatever on cooperative solutions for games 
of “imperfect recall.” The popular view is that cooperative game theory 
has been less infl uential in economics since the early period because non-
cooperative game theory is better able to deal with informational prob-
lems (Weintraub, 1992, p. 7). To address these problems in cooperative 
game theory would require a discussion of games of “imperfect recall.” 
Even for superadditive games in coalition function form, such as exchange 
games, “imperfect recall” can have crucial implications, points that will be 
 discussed in Chapter 8.

2.7 NON-NUMERICAL OBJECTIVES

So far we have assumed that the consequence of choosing a particular 
strategy, while others choose their strategies, is a numerical payoff  to each 
player. In many cases the numbers we have chosen have been based on 
very rough reasoning, a measure of conjecture, and no more. Numerical 
payoff s lend themselves to transferable utility games, in which side pay-
ments take a central role; and side payments are very common in the real 
world. Salaries, wages, interest payments, dividends, and taxes are all 
instances of side payments. While side payments can be part of a game 
without transferable utility, in TU games the determination of side pay-
ments can be treated explicitly rather than being left in the background. 
Numerical payoff s are almost always assumed in the theory of non-
cooperative games. Moreover, von Neumann and Morgenstern thought 
very carefully about how the numbers should be established, and their von 
Neumann-Morgenstern utility theory has not been improved upon. We 
have not gone into that, because it is not central to our purpose. However, 
it will be worthwhile to sketch how game theory might be done without 
numerical payoff s.

We may, then, defi ne a game in a more general way. Here is a concrete 
example drawn from World War II. The successful Allied invasion of 
Normandy followed a massive and remarkably successful attempt to 
deceive the Germans into believing that the invasion would be elsewhere. 
By this time, Germany could not have achieved a victory and hoped by 
defeating an Allied invasion to bring the war to a stalemate that would 
have allowed the Nazi regime to survive. The Germans were led to believe 
that the invasion would be at Calais rather than Normandy, and this con-
tinued after the invasion itself, leading the Germans to believe that this 
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invasion was a feint and the real, larger invasion was yet to come at Calais. 
With some simplifi cation – well, with a lot of simplifi cation – we can see 
this as a two-by-two game, as shown in Table 2.6. Each country had two 
alternatives to choose from (by this stage in the war) and there were just 
two outcomes: Allied victory or stalemate. These are shown in place of 
payoff s in Table 2.6.

How are we to attach numbers to these outcomes? If we assign a value 
of zero for both sides to a stalemate, and one for the Allies and minus one 
for the Germans in case of Allied victory, this seems to represent the case 
adequately, within the limits of the information that we are given. We can 
do no better than that.

The outcome of a game, then, is a complicated object that may have many 
numerical dimensions or none, and for some dimensions may be Boolean 
(that is, either-or states as with the Normandy invasion) or real numbers, 
or other number forms, perhaps in combination. All that we insist on is 
that there is a set of outcomes, comprising no less than two, and that the 
players are allowed to disagree as to which one they would wish to have 
realized. For games of exchange, an outcome is an allocation of goods, 
services and resources among the agents in the market, and has dimensions 
of all goods and services for each agent. For another example, think of a 
political coalition in a parliamentary government as in many European 
countries. The formation of a governing coalition is a complex game 
comprising various elections and negotiation among parties following the 
election. The outcome of such a game is a government program, which 
may (depending on the strategies of the contending parties) include more 
or less subsidy to agriculture, an aggressive or defensive foreign policy, 
support or nonsupport for an established church and its clergy. Even if we 
cannot assign utility numbers to outcomes, we suppose that players have 
 preferences over them and can evaluate them in relative terms.

This more general approach to representing games has been used pri-
marily in cooperative game theory, especially where (realistically) there 
may be diffi  culties making side payments. In that case, we think in terms 
of non-transferable utility (NTU) games. This approach is little used 

Table 2.6 Game 2.6: the Normandy invasion game

Germany

Defend Normandy Defend Calais 

Allies Attack Normandy Stalemate Victory
Attack Calais Victory Stalemate 
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in non-cooperative game theory, but can be useful in thinking through 
practical problems even when the approach is non-cooperative. As we 
begin to frame a policy problem as a game theory model, it will often be 
more natural to begin by asking what diff erent outcomes are possible, 
and thinking of the strategies as determining outcomes, and only then to 
translate the outcomes into payoff  numbers. Recall the Water Game, in 
which (hypothetically) the payoff  numbers were derived from cost–benefi t 
analysis. But the economists who conducted the cost–benefi t analysis will 
have begun with some qualitative listing of the outcomes of the water poli-
cies of the two countries: ample supplies of drinking water in one country 
or another, more or less depletion of water for irrigation, silting and loss 
or costly maintenance of navigable channels.

2.8 SUMMARY

Since game theory is interactive decision theory, representing a social 
arrangement as a “game” means representing it as an interactive deci-
sion. There are two major ways of doing this for non-cooperative game 
theory. The most commonly used is the game in strategic normal form, 
essentially a table or function from the strategy choices of all players to 
their payoff s. For this purpose, it is important to represent the choice of 
behavior strategies as contingent on any information the agent may have 
at the time a decision is made. The second way of representing games 
for non-cooperative game theory is the game in extensive form, that is, 
a decision tree in which the diff erent “players in the game” govern dif-
ferent decision nodes. With information sets, this allows a much more 
explicit representation of the information available in the game, and is 
often used when information is important. For cooperative games, the 
game is usually represented by a coalition or characteristic function, 
assigning a total value to each coalition that might form. This is usually 
linked to the assumptions of transferable utility and superadditivity. 
For practical purposes, however, the coalition function and superad-
ditivity are often not helpful as they assume away the very problems we 
want to analyze. Accordingly, we may instead represent the game as a 
partition function (in which the value of each coalition depends on the 
other coalitions that form) and attempt to determine which partition, or 
coalition structure, is likely to be observed. Despite the long history of 
this approach, however, the theory remains unsettled. As a rule, we will 
think in terms of numerical payoff s and transferable utility, recogniz-
ing that this is at best an approximation to reality, but usually, we may 
hope, a good one.
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NOTES

1. My students feel that a better term would be “ignorance set,” since it is expressive of 
ignorance rather than information. Nevertheless, of course, we will use the conventional 
terminology. 

2. It is common, as a matter of convention, to record fi rst the payoff  to the player to the 
left, but in this book the order will routinely be indicated in the upper left space. I am 
indebted to my colleague Richard Hamilton, MD, for that presentation.

3. This follows Kuhn’s terminology. We should observe, though, that “behavior strategies” 
in this sense have nothing to do with the perspective of behavioral science or “behavio-
ral game theory,” in that the behavioral strategies may be supposed to be chosen with 
rationality that is fl awless, regardless of experimental evidence of the limited cognitive 
capacity of real human beings to make such choices. 

4. This specifi c example was included because of its importance in the history of game 
theory. If the example of patent licensing seems a little stretched, it is because the original 
example had no such application in mind – and indeed no application of this example 
has ever been off ered before, to the best of my knowledge! The representation of the 
patent licensing problem could probably be improved; but the general principle – that a 
decision-maker may not know the sequence of decisions by others that has brought his 
own decision about – probably is not uncommon in reality. 

5. This phrase recognizes that the ultimate benefi ts of economic activity are subjective, that 
is, in the economist’s language, “utility,” but assumes that utility is nearly enough pro-
portional to money that money side payments will assure that everybody in a coalition 
benefi ts on net from the coalition’s activity. 

6. When written in this way, with the indefi nite article – “a public good” – this term makes 
reference to a concept systematically discussed by Paul Samuelson (1954). With the defi -
nite article – “the public good” – the meaning is of course much broader and the usage 
much older. Unfortunately, the two meanings are often confused. A (Samuelsonian) 
public good is defi ned by its technical conditions of production and off ering: the incre-
mental cost of adding one user is always zero, and there is no practical way to make 
payment a condition of use. Thus provision at a zero price is (on the one hand) unavoid-
able and (on the other hand) effi  cient, since the marginal cost is also zero. In particular, 
free provision from general tax revenues or on a philanthropic basis is effi  cient. 

7. Most cooperative game theory follows von Neumann and Morgenstern (2004) in assum-
ing (on the contrary) that coalition values are the worst that an opposed coalition can 
bring about. We return to this issue in Chapter 10. 

8. The term “externalities” is used more narrowly in economic theory. When a cartel is 
formed and thus imposes costs on customers, this would have been called a “pecuniary 
externality” in, for example, Scitovsky (1954); but modern economic theory does not 
regard “pecuniary externalities” as externalities. 

9. There is a modest literature on externalities in cooperative games in coalition function 
form. A key paper, Shapley and Shubik (1969), will be reviewed and criticized in Chapter 
10. 
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3.  A brief interpretive history of game 
theory

Game theory has, of course, a prehistory; but much as we can say that eco-
nomics (as a distinct fi eld of study) began with Adam Smith’s 1776 Wealth 
of Nations (Smith, 1994), so we can say that game theory began with 
von Neumann and Morgenstern’s 1944 book, The Theory of Games and 
Economic Behavior (von Neumann and Morgenstern, 2004). Accordingly 
we shall pause only briefl y over the prehistory. In 1913, Zermelo had 
initiated the mathematical literature on analysis of games. Borel had 
written important papers that seem to have infl uenced von Neumann 
(see Poundstone, 1992, pp. 41–2). With a presentation in 1926 and pub-
lication of the corresponding paper in 1928 (von Neumann, 1959), von 
Neumann had set out many of the themes that would recur in his book 
with Morgenstern, to which we will return. Aumann and Maschler (1985) 
fi nd a cooperative solution concept in the Babylonian Talmud. A Korean 
scholar suggests to me that Sun Tzu should be considered a game theo-
rist1. Indeed it is likely that insights of game theory have often occurred 
to thoughtful people engaged in their own confl icts throughout much of 
history. See Paul Allen’s website for a schematic history of game theory, 
including several other “prehistoric” contributions (Allen, 1998).

Morgenstern had used his example of Sherlock Holmes and Moriarty to 
illustrate problems of interactive decision, relating them to economics and 
forecasting, in a 1928 book and a 1935 paper (TGEB, pp. 712–142). By the 
mid-1930s the convergence of his ideas with those of von Neumann had 
been pointed out to Morgenstern, but Morgenstern was unable to pursue 
that direction until he had been dismissed from his position in Vienna by 
the new Nazi regime as “politically unbearable” (TGEB, p. 715).

3.1 THE FOUNDING BOOK

In his 1928 paper von Neumann assumed that games would have numeri-
cal payoff s. In the founding book, von Neumann and Morgenstern fi rst 
take up the nature of the payoff  numbers. Assuming that the ultimate 
benefi ts of any economic activity are subjective, in the nature of utility, 
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Chapter 1, Section 3 develops a numerical utility concept. This is the von 
Neumann-Morgenstern utility index. Given that agents have consistent 
subjective preferences over risky prospects such as lottery tickets, the 
index allows utility to be expressed in terms that are consistent with deci-
sions that maximize expected values of the utility index. These decisions 
will then be rational in terms of the given preferences.

Von Neumann and Morgenstern then take up the character of a solu-
tion in game theory. Ideally, the solution is an imputation, that is, it tells 
us the quantity of “utility” that each participant in the game can expect on 
the basis of “rational behavior.” For each individual, the solution would 
also constitute a set of rules for rational behavior in any conceivable cir-
cumstances. However, this may not always be possible, and in general the 
solution may constitute just a set of imputations.

In the second chapter von Neumann and Morgenstern address the 
representation of a game (interactive decision problem) for mathemati-
cal analysis. Von Neumann had in 1928 given both of the representations 
now common for non-cooperative games, the extensive and normal form.3 
For a given game in extensive form (sequence of decisions at the succes-
sive stages of the game) each strategy for a given player is the sequence 
of decisions made in the successive stages of the game. But a key point 
is that these decisions are contingent decisions, as discussed in Chapter 2 
above. Von Neumann writes (1959, p. 18) “For each possible combination 
of results of the ‘draws’ and ‘steps’ [known to player Sm] . . . it must be 
 specifi ed what Sm’s decision . . . is going to be.”

In the book, three representations are given. The fi rst is the intuitively 
appealing idea of a game as a sequence of decisions at the successive stages 
of the game, some by individual participants in the game, and some by 
a random mechanism. This can be visualized as a tree diagram (TGEB, 
p. 65) and corresponds to the game in extensive form as it is discussed 
in recent game theory. The second, however, is a rather more complex 
object. Here von Neumann and Morgenstern represent the game as a 
sequence of partitions. Von Neumann and Morgenstern begin with a set 
of all outcomes of the game, and decisions and chance events are treated 
as partitions of this underlying set of outcomes, and later decisions or 
chance events produce refi nements of the partitions generated by earlier 
decisions and events. (For this discussion, an “outcome” is simply a list of 
the payoff s to all players.)

Von Neumann and Morgenstern then discuss the meaning of a strat-
egy for a game specifi ed in this way: “Imagine now that each player . . . 
instead of making each decision as the necessity for it arises, makes up 
his mind in advance for all possible contingencies . . . We call such a plan 
a strategy” (TGEB, p. 79). Once strategies have been defi ned in this way, 
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as contingency plans, it is possible to return to the “very simplest descrip-
tion,” (TGEB, p. 79), that is, the game in strategic normal form. This is 
the third and crucial representation in von Neumann and Morgenstern’s 
Chapter 2.

The signifi cance of the formalization in terms of partitions is that it 
clearly establishes the link between the game in extensive form and the 
game in strategic normal form. The treatment of information in the game 
expressed as a sequence of partitions is cumbersome, but it disappears in 
the game in strategic normal form. This powerful and brilliant simplifi ca-
tion undoubtedly accounts for much of the impact of game theory on 
economics and on other fi elds in which strategy or interactive decisions 
are important.

In the most famous and defi nitive section of the book, Chapter 3, von 
Neumann and Morgenstern address two-person, zero-sum games, deriv-
ing the minimax solution in mixed strategies that von Neumann had 
already discussed in the 1928 paper. A brief digression on mixed strategies 
is in order. The set of strategies (sequences of contingent choices) already 
discussed are designated as “pure strategies.” In a mixed strategy equilib-
rium the players may “randomize” their choices of strategies; that is, they 
may choose among the fi nite set of “pure” strategies according to a prob-
ability distribution. It is the probability distribution that is adapted so that 
the player balances the advantage of choosing a particular strategy against 
the danger of having her strategy “found out” by the opponent (to use a 
phrase that recurs in The Theory of Games and Economic Behavior).

The remainder of The Theory of Games and Economic Behavior was 
devoted to generalization of that model to the more general case of 
N-person, nonconstant-sum “games.” To do this von Neumann and 
Morgenstern adopted a research strategy that has been highly productive 
in mathematics, literally for thousands of years. The strategy is to make 
the solution to the simple case, with some appropriate transformation or 
extension, the solution to the more complex case.

In his 1928 paper, von Neumann had made the zero-sum restriction part 
of the defi nition of the game. The introduction of nonconstant-sum games 
was an important contribution of The Theory of Games and Economic 
Behavior, and it was clearly essential in order that the theory be applicable 
to “economic behavior” and to the social sciences in general. Nevertheless, 
in 1928 von Neumann sketched some essentials of a theory of n-person 
zero-sum games, with some of the diffi  culties to be encountered. Even 
for three-person games, von Neumann admitted no solution that would 
not allow for coalitions (von Neumann, 1959, p. 33). Coalitions are also 
central to the discussion subsequent to Chapter 3 of The Theory of Games 
and Economic Behavior. This is seen as being all the more crucial for 
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applications to “economic behavior;” as von Neumann and Morgenstern 
write (TGEB, p. 15) “. . . the great number of participants [in potentially 
competitive markets] may not become eff ective; the decisive exchanges 
may take place between large ‘coalitions,’ few in number . . .” In a foot-
note, they elaborate: these coalitions may include “trade unions, consum-
ers’ cooperatives, industry cartels, and conceivably some organizations 
more in the political sphere.”

Thus, in the remainder of The Theory of Games and Economic Behavior, 
they develop theories of n-person games, fi rst with and then without the 
zero-sum restriction. In each case, they proceed step by step, with detailed 
analyses of three-person games and some other small-n cases both as 
preliminary case studies and in reconsideration. For this purpose they 
adopt the transferable utility assumption and defi ne the characteristic 
(or coalition) function as a fourth representation of the game. This step, 
representation of a coalition by the total value it can realize, refl ects the 
fact that side payments may be necessary to form some coalitions and 
the “transferable utility” assumption implies that they can be made cost-
lessly. For n-person zero-sum games, they argue that the game will always 
be resolved to a confrontation between two coalitions with absolutely 
opposed interest. “Since we have an exact concept of ‘value’ (of a play) for 
the zero-sum two-person game, we can also attribute a ‘value’ to any given 
group of players, provided that it is opposed by coalition of all the other 
players” (TGEB, p. 238).

For games represented in coalition function form, von Neumann and 
Morgenstern again proceed largely as von Neumann had done in his 1928 
paper. A candidate solution is an “imputation,” that is, an assignment to 
each player of the amount he can expect to receive, with the total of the 
amounts for each coalition limited by the value of that coalition. They 
then defi ne a dominance relation on imputations, as follows: one imputa-
tion dominates another if there is a set of players who can form a coalition 
and force the second imputation, and increase their payoff s as a result. 
Unfortunately (as von Neumann had noted in the 1928 paper) this relation 
is not transitive. The solution then consists of all imputations such that (1) 
an imputation in the solution is not dominated by any other imputation in 
the solution, and (2) every imputation outside the solution is dominated by 
at least one imputation within the solution. Dominance cycles are a possi-
bility, since an imputation in the solution can be dominated by an imputa-
tion outside the solution. There may be many imputations in the solution, 
and moreover there may be many solutions, and this multiplicity is recog-
nized as a shortcoming of their solution concept (TGEB, pp. 264–6).

The fi nal step is to extend the solutions to n-person nonconstant-sum 
games. To take this step, von Neumann and Morgenstern construct an 
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n 1 1-person game G corresponding to the n-person game G. In G, the n 
1 1st player is simply a fi ctitious player whose payoff  is the negative of the 
sum of the payoff s of all the others (TGEB, pp. 505–6). The solution to 
the zero-sum game Gwill then be the solution to G. However, this requires 
some modifi cations, in that the fi ctitious player controls no strategies and 
can join no coalitions and make no side payments. Once these elements are 
included in the “rules of the game,” the analysis of n-person constant-sum 
games is recapitulated. Since the game is superadditive, one may presume 
that the grand coalition of all actual players will form to exploit the fi cti-
tious player (nature?) most eff ectively, but it remains to determine how 
the overall gain will be distributed. To set limits on this, once again, the 
game is expressed in coalition function terms. In the absence of the grand 
coalition, the situation will again resolve itself to an opposition between 
two coalitions of actual players. (Just two, since any partition into three 
or more coalitions will be unstable. With superadditivity, the opposition 
will be better able to defend themselves by merging into a single opposi-
tional coalition.) Von Neumann and Morgenstern then again apply the 
minimax theorem to assign a value to each coalition. To do this, they have 
to assume that a coalition S will face a counter-coalition of the remainder 
of the actual players in G, called −S, who will infl ict maximum harm on 
S even at cost to themselves. This procedure is called “the assurance prin-
ciple” and the value obtained is “the assurance value,” as it is the largest 
value the coalition can assure themselves of in all circumstances. Von 
Neumann and Morgenstern concede that “. . . the desire of the coalition 
−S to harm its opponent, the coalition S, is by no means obvious. Indeed 
the natural wish of the coalition −S should be not so much to decrease the 
expectation . . . of the coalition S as to increase its own expectation . . .” 
(TGEB, p. 540). However, the assurance principle is nevertheless assumed, 
as infl icting harm is seen as a threat strategy by which the group in −S 
would hope to infl uence the others and increase their imputation in the 
grand coalition that will ultimately form (TGEB, pp. 541, 559). With these 
qualifi cations, the dominance relation is again used and a solution set of 
imputations, perhaps quite a large set, is derived.

As with constant-sum games, solutions of general games could include 
multiple imputations and there could be many solutions; moreover, it 
was not known whether every game had a solution. (Lucas later demon-
strated that it is not true that every game has a solution, 1968). Further, 
Von Neumann and Morgenstern concede that their analysis of n-person 
nonconstant-sum (general) games depends very crucially on the assurance 
principle (TGEB, p. 559) and, after all, “G is merely a ‘working hypoth-
esis’” (TGEB, p. 540) based not on “a purely mathematical analysis [but] 
more in the nature of plausibility arguments” (TGEB, p. 506) and to be 
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vindicated, if at all, by its success in applications (TGEB, p. 542). The rela-
tive lack of applications of the von Neumann-Morgenstern solution sets in 
recent game theory suggests that the working hypothesis was inadequate. 
This is hardly surprising in the founding work: at that time there existed 
no theory to expand the implications of the possibility that “. . . the natural 
wish of the coalition –S should be . . . to increase its own expectation” 
in a nonconstant-sum game (TGEB, p. 540). Nash’s equilibrium theory 
would address that, but was of course not available to von Neumann and 
Morgenstern; and despite the emergence of the Nash equilibrium theory, 
writing on cooperative game theory tends to assign values via the assur-
ance principle even today (Telser, 1978; Peleg and Sudhölter, 2003; Forgo 
et al., 1999). In any case, the founding book of game theory had founded 
not one but two important streams of research: with the theory of two-
person, zero-sum games it founded non-cooperative game theory, and 
with the theory of n-person nonconstant-sum games it founded coopera-
tive game theory, providing the concepts and solutions in particular cases 
without which neither would have grown.

3.2  THE DICHOTOMY OF COOPERATIVE AND 
NON-COOPERATIVE GAMES

The appearance of The Theory of Games and Economic Behavior caused 
a great deal of interest, of course, especially at Princeton. Game theory 
was promptly taken up for defense research by the new RAND corpora-
tion, and some of the book reviews published were themselves important 
contributions. Nevertheless, such a path-breaking work required a few 
years for absorption, and the next important advance occurred in 1950 
as John Nash reported (1950a) an equilibrium concept for n-person 
nonconstant-sum games. Nash would expand this (1951) into an explicit 
theory of non-cooperative games. It is important that Nash’s equilibrium 
solution is identical to that of von Neumann and Morgenstern in the case 
of two-person, zero-sum games. Thus it is again an instance of the clas-
sical research strategy of mathematics, making the solution for a simple 
case, with some appropriate transformation or extension, the solution to 
the more complex case. Nash’s solution diff ers for all games with three or 
more players and all nonconstant-sum games because it does not allow for 
coalitions based on enforceable agreements.

But Nash also (1950b; 1953) made an important contribution to the 
theory of cooperative games, in the form of an axiomatic theory of bar-
gaining. (Nash’s bargaining theory supports the same conclusion as the 
earlier theory of Zeuthen, 1930, but Nash seems to have been unaware of 
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this.) In addition, in the 1953 paper, Nash advances on the 1950b paper 
and on Zeuthen’s bargaining model by allowing the bargainers to choose 
their threats before bargaining begins: thus his is a variable-threat, rather 
than a fi xed-threat bargaining model. Finally, and most important, Nash 
provides a model for the development of the theory of cooperative games 
in general. In Nash (1951; CGT, 1997, p. 264) he writes:

One proceeds by constructing a model of pre-play negotiation so that the steps 
of the negotiation become moves in a larger non-cooperative game . . . describ-
ing the total situation. . . . if values are obtained they are taken as the values 
of the cooperative game. Thus the problem of analyzing a cooperative game 
becomes the problem of obtaining a suitable, and convincing, non-cooperative 
model of the negotiation.

This reduction of cooperative game theory to non-cooperative game 
theory is the Nash program (Serrano, 2003).

In this series of papers, Nash not only extended both non-cooperative 
and cooperative game theory, but in addition originated the distinc-
tion between the two. No such distinction exists in von Neumann and 
Morgenstern. The idea that the same game might have alternative solu-
tions, cooperative and non-cooperative, with the fi rst applicable only in 
case enforceable agreements can be made, originates with Nash and is one 
of the most infl uential ideas of game theory.

The fi rst experimental study in game theory probably took place in 
1949 at the RAND corporation. Merrill Flood involved two secretaries 
in an experiment that roughly anticipated the Ultimatum Game and the 
Dictator Game, with surprising results. This was followed in January 
1950 with a formal experiment in non-cooperative games. Melvin Dresher 
collaborated and the subjects were John Williams and Armen Alchian, 
respectively a mathematician and an economist. While the experiment is 
of considerable interest in itself, its greatest impact was probably indirect. 
Alfred Tucker observed the experiment and, in May 1950, addressing a 
group at Stanford University, originated the Prisoner’s Dilemma example. 
The Prisoner’s Dilemma is a symmetrical modifi cation of the game in the 
Flood-Dresher experiment. (This account follows Poundstone, 1992, Ch. 
6.) The Prisoner’s Dilemma outcome is a particular case of Nash equi-
librium, but a simple and compelling instance in which individual self-
regarding action makes both parties worse off  than they might otherwise 
be. As such, it was to have enormous impact and this has been one very 
important reason for the predominance of non-cooperative approaches in 
game theory in the later twentieth century.

The game theory research of the 1940s was refl ected in 1950 by the 
fi rst volume of Contributions to the Theory of Games, edited by Kuhn 
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and Tucker, as number 24 of the Annals of Mathematics Studies. Many 
of these studies are extensions of and computational approaches to the 
minimax theorem; games with an infi nite number of strategies are seen 
as the research frontier (Kuhn and Tucker, 1950, p. x). Some interesting 
new developments are found in the collaboration of Nash and Shapley 
on a simplifi ed three-person poker game. At p. 109 we see what seems 
to be the fi rst elimination of dominated strategies in the solution of a 
non- cooperative game. (While the other papers in this volume were also 
important contributions, brevity will require selectivity from this point 
on.)

McKinsey published in 1952 what seems to have been the fi rst text-
book of game theory. One important novelty in this book (Tucker and 
Luce, 1959, p. 2; Luce and Raiff a, 1957, p. 190) is the beginning of serious 
criticism of the representation of cooperative games in coalition function 
form. McKinsey writes (1952, p. 351) “von Neumann’s whole theory of 
games is based on the notion of the characteristic function. This implies 
that if two games have identical characteristic functions, then they will 
have the same solutions. It is, to say the least, debatable, however, whether 
this is satisfactory from the point of view of intuition.” He considers (1952, 
pp. 351–2) a two-person game in which Player 1 has only one strategy (no 
alternatives) and Player 2 has two. The game is shown by Table 3.1. As 
we can see it is highly asymmetrical, and intuition suggests that Player 1, 
despite his lack of alternatives, is in the better position. Player B can avoid 
a very large loss only by choosing strategy B, which grants a payoff  of 10 
to Player 1. Nevertheless, when the game is expressed in coalition function 
form, it is symmetrical. For notice that the least payment Player 1 can 
assure himself of is 0 (for although Player 1 can take no action his payoff  
cannot be less than zero in any case). The least payoff  of which Player 2 
can assure himself, by choosing strategy B, is zero. Therefore the game in 
coalition function form is as shown in Table 3.2.

Thus, the coalition (characteristic) function form is symmetrical, failing 
to capture the most important aspect of the game in strategic normal form. 
Moreover, when we consider v{1} 5 0 as refl ecting a threat by Player 2, it 
is not very plausible. To reduce Player 1 to the payoff  of 0, Player 2 must 

Table 3.1 Game 3.1: McKinsey’s game in strategic normal form

Payoff s: Player 1, Player 2 Player 2

A B

Player 1 0,21000 10,0
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take a loss of 1000. According to the assurance principle, this is what 
Player 2 would do. Is it likely that Player 2 would make such a threat or 
(more importantly) that Player 1 would fi nd it credible if he did?

In 1952, Shapley and Shubik presented an analysis of cooperative games 
without the assumption of transferable and linear utility (TU) that von 
Neumann and Morgenstern had made. This was in a conference of the 
Econometric Society at East Lansing, Michigan, and the paper is appar-
ently available only in the form of the abstract published in Econometrica. 
Nevertheless it deserves mention here. Shapley and Shubik assume that 
preferences can be indicated by a numerical index that would not be 
transferable nor interpersonally comparable, but which attaches higher 
numbers to more preferable alternatives. Corresponding to any outcome 
or probability mixture of outcomes would be a vector of utility indices 
for the N players in the game. A coalition S is then “eff ective” for utility 
index vector x if there is a joint strategy or mixture for S that will assure 
them of at least the utility indices in x regardless of the strategies chosen 
by the players not in S. This defi nition of eff ectiveness is equivalent to 
von Neumann and Morgenstern’s assignment of coalition values via the 
maximin operation, that is, the assurance principle. They then defi ne 
dominance and solution in terms of eff ectiveness, otherwise following the 
example of von Neumann and Morgenstern.

The second volume of Contributions to the Theory of Games (Kuhn 
and Tucker, 1953) contained two very important new contributions that 
would be republished in the collection Classics in Game Theory (Kuhn, 
1997). The fi rst of these was Kuhn’s “Extensive Games and the Problem of 
Information” (CGT, pp. 46–68). Here Kuhn returned to the representation 
of a game as a series of partitions of the set of all outcomes, but defi ned 
the partition in a diff erent and more general way that allowed for a treat-
ment of the information available to a player at a particular play in a way 
that is at once more compact and general. The sets that make up Kuhn’s 
“information partition” are the “information sets.” Adopting Nash’s equi-
librium concept as a generalization of the minimax solution, Kuhn proves 
that all games of perfect information have equilibria in pure strategies, an 
extension of the theorem of Zermelo and Von Neumann. Kuhn also sup-
plied a geometric visualization of extensive games and their information 

Table 3.2 Game 3.1: McKinsey’s game in coalition function form

v{1}  0
v{2}  0
v{1,2} 10
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conditions that has become standard (note CGT, p. 64). Kuhn defi nes 
subgames in the way that has also become standard (CGT, p. 56).

Kuhn’s formalization, unlike that of von Neumann and Morgenstern, 
extends to games in which a player may not be aware of the number of 
plays that have already taken place (such as Selten’s “Horse;” also note 
CGT, p. 52). It also includes games in which a player is represented in 
diff erent plays by diff erent “agents” some of whom may be unaware of 
previous moves made by other “agents” of the same player, that is, games 
of “imperfect recall” (CGT, p. 65). Kuhn advocates “behavior strategies,” 
that is, local randomization at each step of decision, making use of the 
information available at that point, rather than the contingent pure strate-
gies of von Neumann and Morgenstern. Kuhn points out considerable 
computational advantages of behavior strategies, in that rational decisions 
need not be computed for decision points that will never be reached.

As we noted, Kuhn took Nash’s equilibrium as his concept of solu-
tion, extending that concept by assuming that at each decision point, 
the behavior strategies chosen would be local best responses given the 
information available at that point. As a rule (he stressed) these would be 
randomized strategies. On that basis, he proved (1) that every sequence 
of behavior strategies chosen in this way would correspond to at least 
one contingent strategy, (2) every contingent strategy leading to the same 
payoff  outcomes would be identical to the equilibrial sequence of behavior 
strategies on the information sets actually reached, although there might 
be many such contingent strategies with diff erent decisions on “irrelevant” 
information sets not actually reached in equilibrial play, and (3) if the 
game has “perfect recall,” then every such sequence of equilibrial behavior 
strategies corresponds to a Nash equilibrium of the original game. This is 
sometimes expressed by the phrase “behavior strategies suffi  ce” and prob-
ably accounts for the neglect of the distinction of behavior and contingent 
strategies in much subsequent work in non-cooperative game theory. This 
will be reconsidered in Chapter 10.

The other contribution from volume 2 of Contributions to the Theory of 
Games that must be mentioned here is Shapley’s value theory, a solution 
concept for n-person cooperative games (CGT, pp. 69–79). The solution 
is a value function which, for a given game, assigns a value to each player 
that is the player’s expected payoff  from participating in the game. It will 
be discussed in Chapter 8, at Section 8.2.2. Shapley and Shubik (1954) 
applied the value theory as an index of power in political organizations.

Although it was not to be published until volume 4 of Contributions to the 
Theory of Games (CGT4, pp. 47–85).5 Gillies had by this time (1953) devel-
oped the concept of the core of a cooperative game and presented it in his 
doctoral dissertation. The core, like the von Neumann and Morgenstern 
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solution set but unlike the Shapley value, may include many imputations 
or may be null; that is to say, there may be no imputations that meet the 
conditions for membership in the core. Thus, with Shapley’s value theory, 
there were three distinct concepts of solution of cooperative games, an 
embarras de richesses that was only to become more pronounced.

3.3 GAME THEORY AS DECISION THEORY

In 1957 Luce and Raiff a published Games and Decisions, the fi rst 
book-length work of research on game theory after von Neumann and 
Morgenstern. Much of the ground covered was that of von Neumann and 
Morgenstern, as Luce and Raiff a regarded that work as still the canon for 
game theory. However, Luce and Raiff a aimed at a more accessible, less 
mathematical presentation, and they incorporated a number of advances 
made over 1944–57, including Nash equilibrium in non-cooperative games 
(GD, Chapter 56), linear programming (GD, p. 17, appendix 5), and 
Kuhn’s formulation of games in extensive form with information sets (GD, 
p. 42), although they continued to characterize pure strategies and games 
in normal form in a way consistent with von Neumann and Morgenstern, 
as a series of contingent decisions with a decision chosen in advance at 
each information set (GD, p. 51). In cooperative game theory they discuss 
McKinsey’s criticism of the characteristic function (GD, p. 190), the core 
solution concept (GD, pp. 192–6), Vickrey’s then unpublished attempt to 
introduce farsightedness into von Neumann-Morgenstern solution theory, 
and also incorporate Nash’s bargaining theory and the Shapley value, 
with some criticisms of them. An original point is that Luce and Raiff a 
treat these as alternative arbitration schemes (GD, Chapter 6, parts 4–10). 
Among the advances in this book were a very early discussion7 of repeated 
play in the Prisoner’s Dilemma (GD, p. 99), including the concept of the 
unraveling of a cooperative agreement from the last period forward, what 
seems to have been the fi rst discussion of correlated equilibria in non-
cooperative games (GD, pp. 116–9), and a discussion of cooperative arbi-
tration schemes in case interpersonal comparisons of utility may be made 
(GD, Chapter 6, parts 10–11). They discuss cooperative games in strategic 
normal form (GD, Chapter 7), present their own solution concept for 
cooperative games, y−stability (GD, Chapter 10), and incorporate the 
work of Savage and its sequelae (GD, Chapter 13) on decisions under 
uncertainty and of Arrow on collective decisions, along with some discus-
sion of elections, into their game-theoretic framework. And this is not a 
comprehensive summary!

Luce and Raiff a’s y−stability deserves some further comment. As 
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they observe, (GD, p. 191) the characteristic function provides very little 
information about the game. They propose a more informative beginning 
point: the characteristic function along with a “boundary condition” in 
the form of a function, y, from partitions into sets. If t is the current parti-
tion and S is an element of y(t), then S is a group of players, not a coali-
tion in t, that can form and enforce a new partition if its members should 
choose to do so. If S is not in y(t), then it is not capable of upsetting the 
existing partition however much it might have to gain. At the same time, 
the y−stable solution is a partition of the population into coalitions – a 
coalition structure – as well as a set of imputations. This seems to be the 
fi rst attempt to construct a theory that would explain a stable “coalition 
structure” other than the grand coalition.

During the 1950s, the theory of diff erential games (games in which strat-
egies evolve over continuous time) was developing rapidly, and several 
papers in Contributions to the Theory of Games, volume 3 (Dresher et al., 
1957) and in Advances in Game Theory (Dresher et al., 1964) focused on this 
theory. However, these will not be important in the chapters that follow.

Volume 4 of Contributions to the Theory of Games (Tucker and Luce, 
1959) was focused on n-person games (CTG4, p. 1) and refl ects especially 
the search for alternatives to the von Neumann and Morgenstern solution 
set, especially the defi nition of the characteristic (coalition) function in 
terms of the assurance principle (CTG4, p. 2). Papers by Shapley (CTG4, 
pp. 145–62) and by Shubik (CTG4, pp. 267–78) applied cooperative game 
theory to market exchange. Shubik had throughout the 1950s published a 
number of contributions relating game theory to economics (and to some 
extent to management and political science). His paper introduced the 
idea that the core of a market game would correspond to Edgeworth’s 
market theory, an idea that was to dominate applications of cooperative 
game theory (and, arguably, of game theory in general) to economics in 
the decade to follow. Vickrey (CTG4, pp. 213–46) proposed to modify 
the von Neumann-Morgenstern theory by taking into account that some 
dominance relations among imputations might be shortsighted (though 
he did not use that terminology explicitly). We will see this concern recur 
in Chapter 11. Aumann (CTG4, pp. 287–324) introduces the supergame 
as follows. Consider an infi nite sequence of repetitive plays of the non-
 cooperative game G. Suppose that the players adopt rules to determine 
their choice of strategies in each play of G, where the rules may be condi-
tioned on the other agent’s past play. The supergame is the non-cooperative 
game of choosing rules by which G will be played. Aumann then identifi es 
the cooperative solution of G with a non-cooperative (strong Nash) equi-
librium of the supergame. Many of the powerful developments in the 
theory of repeated play over the following fi fty years are suggested in this 
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paper. Harsanyi (CTG4, pp. 325–56) proposed a generalization of Nash’s 
bargaining theory to n-person cooperative games. Kemeny (CTG4, pp. 
397–406) sounds the call for more informative priors: “While I agree that 
with the information usually given for n-person games no more can be said 
[than the von Neumann Morgenstern solutions], it seems to me that we 
must ask for more information” (CTG4, p. 398). But the editors respond, 
“The diffi  cult question, then, is what more to assume.” (CTG4, p. 11). 
Kemeny adds an index of the bargaining power of each agent and builds 
his (relatively informal) solution concept around that.

Thomas Schelling’s The Strategy of Confl ict appeared in 1960, though 
some chapters had been published earlier. A major motivating factor in 
the book is the game-theoretic analysis of the repressed confl ict between 
the United States and the Soviet Union, which was probably then near 
its peak of intensity. The book is usually remembered for the focal equi-
librium concept (to which we will return) but more systematically the 
book explores the insight that in non-cooperative games “the power to 
constrain an adversary may depend on the power to bind oneself . . .” 
(SC, p. 228) with a voluntary sacrifi ce of freedom of action. This idea is 
inherent in non-cooperative games. Nash had written (Nash, 1953, p. 130) 
“Supposing A and B to be rational beings, it is essential for the success of 
the threat that A be compelled to carry out his threat T if B fails to comply. 
Otherwise it will have little meaning. For, in general, to execute the threat 
will not be something A would want to do, just of itself” (italics added). 
This element, that compels the agent to carry out threats as well as prom-
ises, distinguishes a cooperative game for Nash; its absence distinguishes 
a non-cooperative game. Schelling’s book is fi rmly non-cooperative in its 
approach, but more consciously so than much previous work, and does 
not simply take the non-cooperative approach as given but argues for 
it (for example, SC, pp. 23–5, 115–18, 123–50). He also points out other 
implications that seem to have been overlooked before: signaling theory 
(SC, p. 24) deserves mention in particular.

Coordination games and coordination problems are also a major concern 
in the book. Coordination problems arise in games with two or more Nash 
equilibria. Luce and Raiff a had given examples including the famous Battle 
of the Sexes Game (GD, pp. 90–94; SC, p. 286n.) The game is shown as 
Table 3.3. Clearly the Nash equilibria are at the upper left and the lower 
right. The interest of both is in avoiding confusion that might leave them in 
i, II or ii, I. “What the players need is some signal to coordinate strategies; 
if they cannot fi nd it in the mathematical confi guration of the payoff s, they 
can look for it anywhere else” (SC, p. 294).

There is also a mixed-strategy Nash equilibrium, but although sym-
metrical, it is inferior as it imposes a 50 percent chance that both lose 1. 



40 Game theory and public policy

Luce and Raiff a note, however, that if the two agents can communicate, 
they can arrive at a correlated strategy solution, fl ipping a coin and assign-
ing a 50 percent probability to i, I and to ii, II, and zero to i, II and ii, I. 
Schelling’s question is, however, whether they cannot coordinate their 
strategies even without communication, although perhaps sacrifi cing sym-
metry. A major theme of the book is that people are actually quite good 
at doing this. This is a focal-point solution with “some characteristic that 
distinguishes it from the surrounding alternatives . . .” (SC, p. 111). The 
most famous example Schelling gives is the example (from his classroom 
experiments) of two Yale students who have to rendezvous in New York 
but have not agreed on the place. Most chose the information booth at 
Grand Central Station (SC, p. 54n.)

Schelling’s contributions cannot be contained within game theory, 
and the focal point idea pre-dated game theory. According to Schelling’s 
account, 9 it arose in a student cross-country road trip about 1940 when the 
travelers were briefl y separated. They began to think through how sepa-
rated travelers might get together in a big American city in general, at that 
time, and decided that they could go to the general delivery window of the 
main post offi  ce – at 12 noon, of course.

Schelling’s thinking was also a refl ection of his experience in interna-
tional relations and bargaining, and the concern for practical applications 
in these areas recur throughout the book. Even more than Luce and Raiff a, 
Schelling’s book is mathematically informal, and he expresses some doubt 
that mathematical analyses are always useful rather than confusing (SC, pp. 
10, 113–15, 164). Conversely, some game theorists who value mathematics 
highly dismiss Schelling’s work as unimportant. A major objective of 
Schelling’s book, expressed in the title of Part II, was “A Reorientation of 
Game Theory” by which game theory would be thought of as “A Theory 
of Interdependent Decision” (SC, p. 81). Aumann (who shared the 2005 
Nobel Memorial Prize in Economics with Schelling) used that phrase to 
denote the subject matter of game theory in his address to the Game Theory 
Society as outgoing (founding) president of the society, (see also Aumann 
and Dreze, 2005), so this reorientation must be seen as successful.

Table 3.3 Game 3.2: the Battle of the Sexes

Payoff  order: A, B B

I II

A i 2,1 21,21
ii 21,21 1,2
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3.4  TWO THEORIES, COOPERATIVE AND NON-
COOPERATIVE

In 1964, Nutter proposed a non-cooperative analysis of duopoly price 
competition in the Bertrand-Edgeworth tradition. Drawing on the growing 
interest in the Prisoner’s Dilemma, Nutter argues that even in a duopoly, 
price competition is a dominant strategy equilibrium. This established a 
link between the Prisoner’s Dilemma example and price competition that 
was to infl uence thinking in economics and industrial organization for 
decades to come.

In 1962 Shubik proposed that the Shapley value could be used for cost 
accounting in a case of shared joint costs, the fi rst of a small stream of 
applications of cooperative game theory to cost assignment. This will be 
discussed in Chapter 8 at Section 8.2.3.

In 1963, Thrall and Lucas proposed a generalization of the game in 
characteristic function form, the partition function form. This form 
assigns a value to each coalition in a way that depends on the other coali-
tions that are formed, but in such a way that the value of a coalition can 
be diff erent depending on the other coalitions that form. This innova-
tion had little impact on cooperative game theory.10 Thrall and Lucas 
did not present it as an alternative that could resolve the questions that 
had been raised about the characteristic function. Instead they followed 
von Neumann and Morgenstern in resolving the partition function to a 
characteristic function by using the assurance value. Making their theory 
a direct generalization of that of von Neumann and Morgenstern was a 
reasonable research strategy in 1963, but reintroduced the very points that 
had been raised against that theory. Moreover, Thrall and Lucas suggest 
no method by which the value of a coalition imbedded in a partition could 
be assigned, for example, from a representation of the game in normal 
form. Perhaps for these reasons, there were only a handful of extensions 
and applications of their theory before the 1990s. All of this justifi es the 
neglect of partition functions by the authors of textbooks and many other 
cooperative game theorists, but the partition function will be crucial for 
Chapters 11–16 of this book.

Developments in cooperative game theory during the 1960s were 
important at the time and remain important for our purposes. In Aumann 
(CGT4, pp. 287–324), already referenced, and elsewhere, Aumann, Davis, 
Maschler, and Schmeidler developed a number of new solution concepts 
for cooperative games: bargaining sets (Aumann and Maschler, 1964), the 
kernel (Davis and Maschler, 1965), and the nucleolus (Schmeidler, 1969). 
Some of these topics will recur in Chapters 11–16.

In a number of papers Shubik, often in collaboration with Shapley, 
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developed the theory of Edgeworth market games that he had described 
in the 1959 paper referenced above. Debreu and Scarf (1963) and Scarf 
(1967) also made important contributions, clarifying the relation of the 
core of a market game in characteristic function form to competitive 
equilibrium.

Exchange games are market games in which there is no production, 
but each agent begins with an endowment of two or more kinds of goods 
and coalitions may be formed for exchange. There are no externalities.11 
Following Shapley and Shubik (1952) and Shubik (CGT4, 1959) these 
analyses mostly adopted the nontransferable utility approach. A typical 
result was that the competitive equilibrium is always within the core of an 
exchange game, and on some assumptions (for example, Scarf, 1967) the 
core shrinks in such a way as to approach the competitive equilibrium as 
the number of participants increases. Diffi  culties arose in introducing pro-
duction, variable returns to scale, and externalities into the model. With 
production, the core tended to be empty, that is, there would be no allo-
cations that could satisfy the criteria of the core. However, Telser (1978) 
made that a basis for a theory that we will return to in Chapter 8. On the 
whole, there has been less evident interest in the core analysis of market 
games since the 1970s. Shapley and Shubik would extend their model to 
the case of externalities in 1969. This contribution will be reconsidered in 
Chapter 10.

Advances in the Theory of Games (Dresher et al., 1964) contained 
several papers to which reference has already been made. One other that 
deserves mention at this point is Selten’s (ibid., pp. 577–626) exploration 
of cooperative solutions for games in extensive form. This paper includes 
a discussion of the principle of backward induction, although Selten fi nds 
it inconsistent with other, more imperative properties for cooperative solu-
tions (pp. 582, 596). He also points out – in a note added in print – that 
to be complete, cooperative game theory needs the assumption that all 
agents can commit themselves to particular (contingent) strategies. This 
is a response to Schelling (1960) and is by contrast with non-cooperative 
games in Schelling’s treatment.

Experimental work on non-cooperative game theory had been under-
taken in the 1950s and before, some of which we have noted. Rapoport 
and Chammah (1965) reported a very large study of experiments centered 
on the Prisoner’s Dilemma, the title of the book, a study that was to be 
infl uential. Their conception of rationality was relatively open (p. 13), and 
their experimental protocols required a long (but fi nite) series of repeated 
plays by the same experimental subjects, who were students. While the 
theory of perfect equilibrium in repeated play had not been developed, they 
recognized the argument that collusive agreements would “unravel” back 
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from the last to the fi rst repetition (Rapoport and Chammah, 1965, p. 29). 
Accordingly, their observations that the non-cooperative strategies were 
not played in any large majority of trials was seen as being inconsistent 
with the non-cooperative equilibrium theory. In one provocative fi nding 
they discovered that female subjects cooperated less than males (Rapoport 
and Chammah, 1965, p. 191). In a discussion of further experiments that 
might be tried, they speculated about the role a tit-for-tat strategy rule 
might play (Rapoport and Chammah, 1965, p. 207). On the whole, experi-
mental studies of the period similarly indicated that non-cooperative game 
theory was not a strong predictor of empirical results.

In the late 1960s, Harsanyi (1967–68) introduced Bayesian reasoning 
into game theory in a series of three papers in Management Science. In 
1972, Aumann and Maschler discussed some examples that raised doubts 
about the extensive use of behavior strategies in place of contingent 
strategies, which had already become common. In 1972, the International 
Journal of Game Theory was founded. In the same year biologist Maynard 
Smith (1972) introduced the concept of evolutionarily stable strategies.

In 1973 and 1975, respectively, Gibbard and Satterthwaite published 
highly infl uential papers on the manipulation of voting schemes, in which 
they relied on non-cooperative game theory. These will be discussed in 
detail in Chapter 7, at Section 7.3. A large literature of studies both of voting 
systems and of implementation of cooperative and normative objectives in 
terms of non-cooperative equilibria has arisen from these contributions.

The 1970s were a particularly productive period for Robert Aumann, 
whose contributions in this period bear comparison with those of Nash 
around 1950. In 1973, he pointed up some diffi  culties with the theory of 
monopoly in cooperative games. In 1974, Aumann and Dreze extended 
and consolidated the analysis of cooperative solutions for games in coali-
tion function form with arbitrary coalition structures (that is, partitions 
into distinct coalitions). In motivation for their study, Aumann and 
Dreze raised questions about the superadditivity assumption, which we 
will revisit in Chapter 9, at Section 9.1. This paper is the source of most 
of the subsequent literature on coalition structures (Greenberg, 1994) but 
much of the subsequent literature on coalition structures does not follow 
Aumann and Dreze in allowing for non-superadditive games.

In 1974, Aumann also addressed subjective probabilities and correlated 
strategies. The theme of this paper is that it makes a diff erence if diff erent 
players have diff erent subjective estimates of probabilities of events, in the 
spirit of the saying “that’s what makes a horse race.” Aumann fi nds that 
even simple examples in non-cooperative game theory must be modifi ed to 
allow for these possibilities. In 1976, however, he was to argue that if two 
individuals have “common knowledge” of any event, which must include 
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common prior probabilities of the event, then their posterior probabilities 
could not disagree – that is, “agreeing to disagree” could make no sense.

Nevertheless, Aumann’s 1974 paper has been infl uential in another way. 
This paper is sometimes credited with originating correlated strategies in 
non-cooperative games, but Aumann makes no such claim, writing (p. 
70) “it has been in the folklore of game theory for years. I believe the fi rst 
to notice this phenomenon (at least in print) were Harsanyi and Selten 
(1972).” As we have seen, the phenomenon was in fact reported in Luce 
and Raiff a (1957), a book which is the source of a great deal of game 
theory folklore. However, Aumann extends the concept with an example 
in which correlated equilibria can support a non-cooperative equilibrium 
that dominates any linear (probability) combination of Nash equilibria, 
and this insight is the source of a stream of subsequent work on correlated 
equilibria. This will be discussed in detail in Chapter 5.

3.5  THE TURN TOWARDS NON-COOPERATIVE 
GAME THEORY

In 1975, Selten (CGT, pp. 317–54) re-examined the concept of perfect 
equilibrium that he had introduced in a paper fi rst published in German 
in 1965. This paper focuses on a refi nement of Nash equilibrium called 
the trembling hand equilibrium. Selten had introduced subgame perfect 
equilibrium in his 1965 paper, but this publication brought it to the 
English language audience, and subgame perfection has probably been 
the more infl uential concept. This paper is regarded as the beginning of 
the literature on “refi nements” of Nash equilibrium. Selten’s model will be 
discussed in Chapter 6 at Section 6.1.

In 1976 Myerson defi ned an extension of the Shapley value to games in 
partition function form. Myerson gives an example with negative exter-
nalities (p. 26) but that is weakly superadditive. He assumes that the grand 
coalition will ultimately form, with supperadditivity presumed. This paper 
seems to be the origin of the modest stream of subsequent research on 
superadditive games in partition function form.

In the late 1970s, work by Myerson and Maskin established implementa-
tion theory, also known as mechanism design theory, following a program 
proposed by Hurwicz (1973). This work was honored by a Nobel Memorial 
Prize in 2007. See especially Maskin (1999) and Myerson (1979; 1986). 
The objective of implementation theory is to design a game so that its 
non- cooperative equilibria correspond to the cooperative or other norma-
tive outcome that is desired. Implementation theory will be discussed in 
Chapter 7.
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The development of Selten’s conception of perfect equilibrium made 
possible some important progress on what has become known as the 
“folk theorem” in game theory. The “folk theorem” is the idea that, for 
games such as the Prisoner’s Dilemma (with very bad non-cooperative 
results in one-off  play) repeated play might lead to a cooperative outcome 
in some circumstances. As early as 1981, however, in a working paper of 
the UCLA department of economics, Fudenberg and Levine (1981, p. 19) 
sketched an analysis of repeated play of the Prisoner’s Dilemma in terms 
of perfect equilibria. A few years later Fudenberg and Maskin (1986) gave 
the general analysis that has now become standard. A quite diff erent but 
related approach to repeated play in non-cooperative games emerged with 
Axelrod’s (1981; 1984) computational studies. Coding simple rules for the 
selection of behavior strategies in repeated Prisoner’s Dilemmas, Axelrod 
played the rules one against another in a tournament, and found that tit-
for-tat12 (a trigger strategy in which one plays cooperatively until the fi rst 
defection by the other player, but responds with a single round of non-
cooperative play) did relatively well against a wide array of challengers. As 
much as the folk theorem work, this study contributed to the emergence of 
tit-for-tat and other trigger strategies as standard tools for understanding 
repeated play of non-cooperative games.

In 1984 Bernheim introduced the concept of rationalizable strategies; a 
simultaneous paper by Pearce (1984) shared the innovation. One important 
departure in this paper is that Bernheim allows players to condition their 
decision rules on conjectures about the conjectures that others may make 
about them. This leads, in some cases, to a much larger set of equilibrium 
strategies. In his Nobel Address, Aumann (2005) was to admit conjectures 
as to the rules other players might use in selecting behavior strategies among 
the conditions of a choice of strategies, with a further extension of the 
range of possible non-cooperative equilibria in repeated games.

When we combine rationalizable strategies and correlated equilib-
rium, the case for Nash equilibria as predictors of behavior is very much 
reduced. If the game is played one-off , then players are not likely to have 
enough information to exclude non-Nash rationalizable equilibria, and 
the same will be true in the fi rst plays of a repeated game. For later plays of 
a repeated game, though, correlated equilibria may emerge, and these, too, 
may be non-Nash. In an evolutionary model, where players are randomly 
matched to play one-off  but can learn from the experience of one another, 
evolutionarily stable (Nash) equilibria seem a reasonable prediction. 
Even here, though, boundedly rational learning might result in correlated 
equilibria. More generally, where the Nash equilibrium in pure strategies 
is unique (including, but not limited to, the family of social dilemmas) 
correlated strategy equilibria can be excluded; and if in addition the Nash 
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equilibrium is subject to some stringent stability conditions (Bernheim, 
1984, p. 1020) then Nash equilibria are the only rationalizable strategies. 
All in all, Nash equilibria can no longer be treated as “solutions” to non-
cooperative games, but only as candidate solutions and as tools that may 
be useful in fi nding other (for example, correlated equilibrium) solutions.

In 1988, Harsanyi and Selten off ered a framework to resolve the 
growing family of refi nements of Nash equilibrium, suggesting a hierarchy 
of criteria for choosing among Nash equilibria. They rank the equilibria 
in terms of relative stability, so that, for example, Pareto-dominant equi-
libria are considered more stable than those that are not Pareto-dominant 
but are risk-dominant.

In 1989, the journal Games and Economic Behavior was founded.

3.6 BEHAVIORAL GAME THEORY

In the 1990s and 2000s, advances continued to be made in the topics of 
non-cooperative and cooperative game theory that had come to be tradi-
tional, and some research pursued new directions that will be useful for 
this book. The period was, of course, dominated by the Nobel Memorial 
Prizes of 1994, 2005, and 2007, which kept the traditional topics in view. 
In 1990, Greenberg proposed a “theory of social situations” as an alterna-
tive both to cooperative and non-cooperative game theory. Some progress 
was also made on the incorporation of externalities in games in partition 
function form (for example, Zhao, 1992; Chwe, 1994; Ray and Vohra, 
1999; Carraro, 2003; Koczy, 2007). Returning to the long-neglected topic 
of coalitions in non-cooperative games, Bernheim et al. (1987) proposed a 
property of coalition-proofness as a refi nement of Nash equilibrium. An 
outstanding development in this period is the maturation of behavioral 
game theory.

Traditional game theory proceeds from strong assumptions about 
human rationality to strong conclusions about the nature of equilibrium. 
One can ask whether either the assumptions or the conclusions are empiri-
cally valid. If we fi nd evidence that they are not, and attempt to rebuild 
game theory with more “realistic” assumptions about rationality, we are 
entering the sphere of behavioral game theory. The more traditional studies 
based on those strong assumptions will be called classical game theory.

Indeed there is a long history of experimental studies in game theory, 
some of which have been mentioned in context. Social psychologists 
and others quite early provided evidence that people facing a Prisoner’s 
Dilemma-like game do not always act as neoclassical maximizers. (Lave, 
1965; Rapoport and Chammah, 1965; Morehouse, 1967; Kreps et. al., 
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1982, among many others). For an argument that game theory ought nev-
ertheless be based on strict rationality, see Morgenstern and Schwödiauer 
(1976). Some scholars suggest that even the successful trials are attrib-
utable to training eff ects (Marwell and Ames, 1981; Carter and Irons, 
1991). But game theoretic equilibria also gain some experimental support, 
especially in their evolutionary interpretation (for example, Cooper et al., 
1990; Van Huyck et. al., 1990). Mailath (1998) surveys evolutionary game 
theory, to determine the extent to which it may support the predictions 
of Nash equilibrium in particular, indicating that “Evolutionary game 
theory has provided a qualifi ed answer . . . In a range of settings, agents 
do (eventually) play Nash” (p. 1348). However, he also indicates the limits 
of this range.

Some of the early experiments on the Prisoner’s Dilemma were inter-
preted as evidence that altruism is an element in human behavior. 
Unfortunately, altruism is not always well-defi ned. Altruism was inferred, 
however, from a tendency to choose the cooperative strategy even when it 
is not a best-response strategy, for example, in Prisoner’s Dilemma games. 
More recent studies have often focused instead on reciprocity. Berg et al. 
(1995, p. 139) say their “. . . results suggest that both positive and negative 
forms of reciprocity exist and must be taken into account . . . [and] provide 
strong support for current research eff orts to . . . integrate reciprocity into 
standard game theory…” Positive reciprocity means that players respond 
to generous behavior generously, even at a sacrifi ce to themselves; nega-
tive reciprocity means that they retaliate against aggressors even when it 
makes them worse off  to do so.

One game that has been extensively studied in the experimental litera-
ture is the “Ultimatum Game” (for example, Henrich et al., 2005). The 
Ultimatum Game is a two-person game along the following lines: the two 
agents may be able to share a fi xed amount, such as $100. The fi rst agent, 
the proposer, suggests a payment to go to the second agent, the responder. 
If the responder accepts the payment, he receives it, and the balance is 
paid to the proposer. However, if the responder rejects the payment, 
neither agent gets anything. The non-cooperative equilibrium is one in 
which the proposer makes the smallest possible positive off er and the 
responder accepts it. However, experimental evidence disagrees with this 
prediction. If the proposer makes a very small off er, the responder is some-
times observed to reject the proposal despite sacrifi cing the small positive 
payment. Moreover, off ers are often more than the minimum needed to 
avoid a rejection, and 50-50 off ers are fairly common.13 This and other 
experimental games have given rise to their distinct specialized literatures.

In all, the experimental evidence does not support many of the predic-
tions of non-cooperative game theory. This is not to say that it supports 
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any of the cooperative solutions in any systematic way, either. We must 
suppose that real human beings are both more complex and less accurate 
calculating machines than classical game theory supposes. Solution con-
cepts based on strict rationality can defi ne hypotheses as to attractors and 
stable points in dynamic models with boundedly rational learning. On 
that score the more recent experimental evidence is not merely negative. 
Models based on strict rationality also defi ne the base from which devia-
tions from rationality are predicted.

3.7 BRIEF SUMMARY

In 45 years from 1944 to 1989, game theory became a cross-disciplinary 
study of great importance for the mathematical social sciences. It also 
became a compound fi eld – not one study of interdependent decisions, but 
largely separate studies of non-cooperative and cooperative game theory, 
a situation decried by Aumann in his inaugural presidential address to the 
Game Theory Society (2003).

What game theory off ers is a tool-kit applicable to decision problems 
in which the consequences of one decision may depend on the decisions 
of others, previous decisions creating the conditions for current deci-
sions, simultaneous, and subsequent decisions, with or without mutual 
knowledge, with or without some degree of honest mutual commitment 
to a common strategy. If we choose our tools to fi t the job and disre-
gard the dogmas and dichotomies of cooperative and non-cooperative, 
superadditive valuations and perfect or ideal rationality, we will fi nd 
that the tools contribute to the solution of problems of real-world public 
policy.

NOTES

 1. Kyu Uck Lee, personal communication by e-mail, 22 June 2007.
 2. In what follows, page citations indicated by TGEB will refer to von Neumann and 

Morgenstern (2004).
 3. This paper seems to have been available only in German prior to the publication of the 

translation in Tucker and Luce (1959). 
 4. In what follows, citations to CGT will refer to Kuhn, Classics in Game Theory (1997).
 5. In what follows, page references indicated by CTG4 will refer to volume 4 of 

Contributions to the Theory of Games, edited by Tucker and Luce (1959).
 6. In what follows, references denoted GD will refer to Luce and Raiff a (1957).
 7. Von Neumann and Morgenstern had alluded to this in TGEB, p. 224.
 8. In what follows, page references to SC refer to Schelling, The Strategy of Confl ict (1960). 
 9. This paragraph relies on an address given by Schelling at Trinity University, San 

Antonio, Texas on 18 April 2007, and is from memory. 
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10. One evidence of this is that it is not mentioned in some recent advanced texts with cov-
erage of cooperative game theory. See, for example, Peleg and Sudhölter, Introduction 
to the Theory of Cooperative Games (2003), and Forgo et al., Introduction to the Theory 
of Games (1999).

11. This is an assumption of fact, implicit in the standard neoclassical model of preferences. 
In that model, each person has preferences over his own consumption of goods and 
services and not over the consumption of others. Suppose instead that Agent 1 prefers 
imputations in which other agents’ consumption of wine is zero to those in which it 
is positive. Exchanges that increase the number of agents who consume wine would 
then impose a negative externality on the singleton coalition comprising Agent 1. Such 
“busybody” preferences create diffi  culties for neoclassical economics (Sen, 1970).

12. According to the Oxford English Dictionary, the phrase tit-for-tat is traceable to the 
sixteenth century phrase “tip for tap,” meaning, roughly, push for shove. 

13. For example, Guth et al. (1982), Henrich et al. (2005), and note also Roth and Erev 
(1995), Stanley and Tran (1998), Roth et al. (1991), Andreoni and Blanchard (2006), 
Oosterbeek et al. (2004).
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4. Nash equilibrium and public policy

The best-known ideas in game theory are within non-cooperative game 
theory, and probably the single best-known example in game theory is the 
Prisoner’s Dilemma, a non-cooperative example. This example shows how 
interactive self-interested decisions may lead to results that are less favora-
ble to all participants than some other outcome would be. The Prisoner’s 
Dilemma example can be generalized to a class of non-cooperative normal 
form games known as “social dilemmas” (Dawes, 1980) that share similar 
broad qualities. From the pragmatic point of view, non-cooperative game 
theory provides powerful tools for the identifi cation and specifi cation of 
problems, as the social dilemmas exemplify. On the whole, moreover, non-
cooperative game theory is a relatively settled, mature study. Social dilem-
mas are a class of Nash equilibrium models, and Nash equilibria are well 
understood and the foundation of most applications of non-cooperative 
game theory. However, there are some unsettled issues and some other 
proposed approaches to the solution of non-cooperative games. This 
chapter will review a number of Nash equilibrium models with a view to 
their applicability to public policy studies.

4.1 SOCIAL DILEMMAS

While the Prisoner’s Dilemma is the best-known example in game theory, 
it is also one of the simplest, and its simplicity does place some limits on 
its application.

4.1.1 Symmetrical Dilemmas

The Prisoner’s Dilemma begins with a story of interrogation. For this dis-
cussion, we may instead recall the Water Game from Chapter 2, where it 
is shown in normal form as Table 2.1.

Eastland knows that it cannot infl uence Westria’s strategy choice, and 
conversely. Instead, each one chooses his best response to the strategy 
choice made by the other. This defi nes Nash equilibrium. Moreover, in this 
case, the best response is “Divert” regardless of the other agent’s strategy 
choice. That means “Divert” is a dominant strategy: by defi nition, if a 
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strategy is the best response to any strategy choice made by the other agent 
or agents, it is called a dominant strategy. Thus, when both agents choose 
the dominant strategy “Divert,” we have a dominant strategy equilibrium, 
which is a particularly simple instance of a Nash equilibrium. A dominant 
strategy equilibrium can be defi ned as a Nash equilibrium in which each 
agent has a dominant strategy.

Nevertheless, if both agents were to choose “Don’t” in Game 2.1, both 
would be better off , with net payoff s of 0 rather than −1. We may borrow 
terminology from welfare economics and say that the strategy pair “Don’t, 
Don’t” Pareto-dominates the pair “Divert, Divert.” A strategy vector S1 
Pareto-dominates strategy vector S2 if no agent is worse off  with S1 than 
with S2 and at least one agent is better off  with S1 than with S2. Together, 
these observations defi ne Game 2.1 as a social dilemma (Dawes, 1980). 
Generally, a social dilemma is a game in which (1) there is a dominant 
strategy equilibrium indicated by strategies S2, and (2) there is vector of 
strategies S1, such that each component of S1 diff ers from the correspond-
ing component of S2 and S1 Pareto-dominates S2. Social dilemmas are 
usually also treated as being symmetrical (so that interchanging any two 
agents would leave the payoff  table unchanged).

A social dilemma model such as Game 2.1 predicts that, in the absence 
of some public intervention, the dominant strategy equilibrium, S2, will 
occur. Since it is Pareto-dominated by a diff erent set of decisions, S1, this 
outcome is ineffi  cient. Decisions S1 are said to constitute a cooperative solu-
tion and, in a symmetrical game such as this, the payoff s correspond to the 
Shapley value and nucleolus in particular. (These will be discussed in more 
detail in Chapters 8, 12 and 13.) Public policies may then be advocated 
that move individual decisions toward the effi  cient set S1. In this way, 
social dilemmas capture the principles that seem to underlie a number of 
major problems of modern societies and public policy, but they may not 
be very good descriptions of the real world. The symmetry that is usually 
assumed in social dilemma models is one example. In most real-world 
applications, there is likely to be some lack of symmetry among the agents. 
Since the problem (ineffi  ciency) arises in symmetrical models, however, we 
can be assured that it does not arise from the lack of symmetry in the real 
world; thus asymmetry is a complication but not an underlying cause of 
the problem. This is a valuable point that might be missed if the simplifi ed, 
symmetrical model were not considered. All the same, for some practical 
applications, it may be necessary to reintroduce some asymmetry in a 
model with heterogeneous agents.

Social dilemmas can be generalized to a large number of players follow-
ing Schelling (1978) and Moulin (1982, pp. 92 et seq.). Think of a large 
number of people living in the watershed of a lake, each of whom may act 
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so as to pollute the lake or, at some cost, refrain from pollution. Suppose 
there are N agents, N very large, each of whom must make the same 
absolute choice of strategies “Don’t” or “Pollute.” The overall amount 
of pollution will depend on the proportion of the population that choose 
“pollute;” so that the payoff s to both strategies will depend on the same 
proportion. Borrowing terminology from the theory of diff erential games, 
we can describe the proportion of agents who choose “Pollute” as a state 
variable for the game. In this usage, a state variable is a variable that is 
suffi  cient to determine the payoff s of the diff erent strategies without any 
other information (such as information on the specifi c strategy choices of 
individual agents, for example).

This model is illustrated by Figure 4.1. We see that the payoff  to “Pollute” 
lies above the payoff  to “Don’t,” regardless of the proportion of the group 
who choose “pollute” as their strategy. The diagram illustrates visually that 
this is an N-person social dilemma. If any group of players chooses “Don’t,” 
they are not choosing their best response to the strategies chosen by the 
others. The dominant strategy equilibrium corresponds to the rightward 
extreme of the diagram, the case in which every agent chooses “Pollute.”
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The N-person social dilemma model can also be interpreted to be con-
sistent with imperfectly rational behavior, if it is interpreted in an evolu-
tionary sense (see, for example, Aumann, 1997). Suppose that individuals 
usually act with inertia, simply choosing the same strategy over and over, 
but from time to time, at random, they experiment with reversing their 
strategies. If the reversal leads to an increase in the net payoff  they persist, 
and if not they return to the previous strategy. This trial-and-error learn-
ing process is one of random variation and directed selection of strategies, 
a simple evolutionary process. Biologists, having borrowed the concept 
of Nash equilibrium from game theory, defi ne an evolutionarily stable 
strategy (ESS) as a Nash equilibrium that is stable under an evolution-
ary dynamics. The dominant strategy equilibrium for this model is an 
ESS. Thus the conclusion does not depend on the assumption of perfect 
rationality.1

An appropriately generalized social dilemma model can account for 
many instances in which ineffi  ciencies persist in the presence of human 
decisions that successfully seek self-regarding benefi ts, whether through 
perfect rationality or through trial-and-error learning. As this example 
and the Water Game suggest, environmental economics is largely 
built of social dilemma models. The production of a public good is 
another instance of a social dilemma. All in all, social dilemma models 
are powerful diagnostic and explanatory tools for problems of social 
ineffi  ciency.

4.1.2 The Special Case of Price Competition

This may seem a bit strange to a person whose knowledge of game theory 
is derived from a textbook of microeconomic principles. In microeconom-
ics price competition leads to effi  ciency, and price competition is non-
cooperative behavior; cooperative behavior (collusion) is ineffi  cient and 
is a danger to be avoided. But price competition is very much a special 
case, which mixes cooperative and non-cooperative elements right from 
the start.

A discussion of price competition begins by assuming that a relatively 
small number (but greater than one) of coalitions called “business fi rms” 
make off ers to sell some product. Their strategies may be the off er prices 
(the case known as Bertrand-Edgeworth competition) or the quantities 
off ered (Cournot competition). The buyers are not usually modeled as 
individual agents but treated as an undiff erentiated mass of demand. 
Implicitly, however, the buyers are treated as acting as singleton coali-
tions, and the strategy of each buyer is the quantity she or he chooses to 
buy. If, then, the sellers’ behavior is characterized by non-cooperative 
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 Bertrand-Edgeworth competition and the singleton buyers act non-coop-
eratively, and if there are no externalities, the outcome is effi  cient. (If seller 
competition is Cournot, then the outcome approaches effi  ciency as the 
number of sellers increases and their sizes approach equality.) On the other 
hand, if the sellers form a coalition and act cooperatively among them-
selves, restricting output and raising the price, the outcome is ineffi  cient.

Nevertheless, price competition is not really a non-cooperative game, 
since the business fi rms are coalitions based on legally enforceable agree-
ments; and because exchange is itself a cooperative activity. To use 
Brandenburger and Nalebuff ’s (1997) expression, this is “co-opetition.” 
Price competition can best be understood as a hybrid solution (Zhao, 
1992) for a game with a coalition structure (Aumann and Dreze, 1974). In 
principle, the grand coalition of all producers and consumers could obtain 
the effi  cient outcome, but free-market economists believe (plausibly) that 
this degree of centralization is nonfeasible. If so, then the hybrid solution 
of price competition may be our best hope for effi  cient markets.

The key lessons to be drawn are that there is no real contradiction 
between the recommendation of price competition in microeconomics and 
the recommendation of cooperative solutions in game theory in general, 
and that the results of effi  cient market theory cannot be generalized to 
other cases without strong independent justifi cation for doing do so. The 
neoliberal attempt, in the later twentieth century, to organize all social 
action on the basis of price competition may ultimately be seen as no less 
utopian than the attempt, earlier in the twentieth century, to organize 
social action on the basis of a communistic grand coalition.

4.1.3 Other Dilemmas, Nash Equilibria and Public Policy

Social dilemmas seem to be at the basis of many environmental and other 
problems, but there is a tendency to overuse the social dilemma model. 
This is confusing because there are many models based on the Nash equi-
librium that are not social dilemmas (because some players do not have 
dominant strategies or because asymmetry is important, for example) but 
in which the Nash or other non-cooperative equilibrium is ineffi  cient.

Let us consider another example to do with riparian rights and water 
supplies. For this example, the two players are two municipalities in 
the same river valley. The Town of Upstream is, as the name suggests, 
upstream from the Boro of Downstream. Upstream can obtain its water 
supply by damming Modest River at a point well above Downstream, but 
to do so would impair Downstream’s ability to meet its own water needs 
from the Modest. Geography is such that Downstream could build either 
one or two dams (or none). Although two dams would be costly, together 
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they could supply both towns, provided the Upstream dam is not built. 
Game 4.2 is a payoff  table based on those ideas, with the benefi ts from 
water provision rated on a scale of 1 to 5 for each town (see Table 4.1).

For Game 4.2, the Nash equilibrium is for each town to build one dam. 
We may observe that for the Boro of Downstream, building one dam is a 
dominant strategy: regardless of the strategy chosen by Upstream, build-
ing one dam gives higher payoff s than any other strategy. On the other 
hand, Upstream does not have a dominant strategy: either one strategy or 
the other may pay best, depending on the strategy chosen by Downstream. 
However, Upstream can make some reasonable judgments about the strat-
egy Downstream will choose. Upstream knows (after all) that “two dams” 
and “no dams” are dominated strategies, and also that Downstream is a 
rational decision-maker. Thus, Upstream can draw the reasonable conclu-
sion that Downstream will never choose those dominated strategies. They 
can be left out of consideration, since they will not aff ect the game. Once 
they are dropped out, we have an equivalent game in which Downstream 
has only undominated strategies, and the only one is “one dam.” In that 
smaller game, the strategy of building one dam is dominant for Upstream. 
We then eliminate the dominated strategy for Upstream, and are left with 
only one strategy combination: “one dam,” “one dam.” This is an instance 
of the iterated elimination of dominated strategies. A strategy is said to be 
strictly dominated for Player i if it yields a payoff  to i that is greater than the 
payoff  to any other strategy, regardless of the strategies that other players 
choose, and is said to be weakly dominated if it yields a payoff  no less than 
that from any other strategy i may choose. When we eliminate the strictly 
dominated strategies for a player, creating a reduced game, and repeat that 
so long as it is possible, we are applying iterative elimination of (strictly) 
dominated strategies, and if that procedure yields a unique strategy for 
each player, those strategies correspond to a unique Nash equilibrium.

As in a social dilemma, payoff s to both players for the Nash equilibrium 
are dominated by the payoff s that result if Downstream builds two dams 
and supplies Upstream from its surplus water. Nevertheless this is not a 

Table 4.1 Game 4.2: water works

Payoff  order: Downstream, 
Upstream

Upstream

One dam No dam

Downstream One dam 3,3 5,1
Two dams 2,3 4,4
No dam 1,5 1,1
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social dilemma. As we have seen, Upstream does not have a dominant 
strategy. For Upstream the best response is to build a dam if Downstream 
builds less than two. And this makes a diff erence. In Game 4.2, we have 
assumed that both decisions are made simultaneously, with neither deci-
sion-maker aware of the decision the other has made or will make. Suppose 
instead that one of the decision-makers can commit himself by making the 
fi rst move. In that case the second mover can choose contingent strategies, 
using his knowledge of the fi rst-mover’s decision. In the social dilemma 
this makes no diff erence, since each decision-maker’s best strategy is the 
same no matter what the fi rst mover may do. In Game 4.2, by contrast, if 
Downstream is fi rst mover we will see a diff erent outcome. Downstream 
can anticipate that, if they build no dam or one dam, Upstream will build 
its dam, leaving the Downstream with a payoff  of 3 at most; while if 
Downstream builds two dams and supplies both towns, Upstream will not 
build its dam, giving Downstream a payoff  of 4. For Downstream as fi rst 
mover, the strategy of building two dams becomes a best response to the 
contingent strategy “if one or fewer Downstream dams, then build, else do 
not” on the part of Upstream.

It is important, then, not to generalize the social dilemma too hastily. 
Not all social problems are social dilemmas, and that may make a 
 diff erence in the attainable solutions.

4.2 RANDOMIZATION OF STRATEGIES

In the examples in this chapter so far, each decision-maker has to choose 
among a fi nite number of “strategies,” where each strategy is a description 
of a course of action, with or without a description of the contingencies 
in which that action will be taken; that is, either behavior strategies or 
contingent strategies. These “strategies” are often called “pure strategies,” 
but in this book the word “strategies” will mean pure strategies unless it is 
indicated otherwise. Indeed, thus far in the chapter, the number of strate-
gies is quite small and decisions are simultaneous so that contingencies will 
not need to be specifi ed. In each case so far, there is at least one Nash equi-
librium in pure strategies. However, even in games with small numbers 
of strategies and simultaneous decisions, there may not always be a Nash 
equilibrium if we limit ourselves to pure strategies.

We can illustrate that with an example that was historically important, 
in that it captured Oskar Morgenstern’s attention and led to his collabora-
tion with von Neumann. The example is from the Sherlock Holmes story, 
“The Final Problem.” Holmes is attempting to escape from Moriarty and 
from England to the continent, and Moriarty is attempting to capture 
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and murder Sherlock. Sherlock is on the train to Dover and must decide 
whether to stay on the train and cross to Europe via Dover or to get off  at 
Canterbury and go to Europe by a diff erent route. Moriarty must decide 
whether to continue to Dover and try to intercept Holmes on the coast or 
to leave the train at Canterbury in the hope that he will fi nd Sherlock there. 
If Moriarty can choose the same stopping point as Holmes, then Holmes is 
caught; otherwise Holmes can escape to the continent. Assigning a payoff  
to Moriarty of 1 if he catches Sherlock and −1 otherwise, and to Sherlock 
of 1 if he escapes and −1 otherwise, we have the game in normal form 
shown as Game 4.3 in Table 4.2.

This game has no Nash equilibria in the pure strategies “Canterbury” 
and “Dover.” If Moriarty knows that Sherlock will detrain at Dover, then 
he also will detrain at Dover, but in that case Sherlock’s best response is 
Canterbury, though if Sherlock gets off  at Canterbury, Moriarty’s best 
response is to do that too – and so on! In short, there are no two strategies 
each of which is a best response to the other: no Nash equilibrium in pure 
strategies. More generally, if either Sherlock or Moriarty acts predictably, 
he is likely to lose out, as the other person can use that predictability to 
defeat him. Indeed, the best that either one can do is to choose between 
the two strategies at random, assigning a probability of one-half to each 
strategy. If (for example) Sherlock deviates from that fi fty-fi fty probabil-
ity, choosing Dover with a probability greater than one half, he loses out 
on the average, since Moriarty can get off  at Dover with a better than even 
chance of catching Sherlock.

When a player chooses between two strategies at random, according to 
probabilities that prevent the other player from exploiting his predictabil-
ity, this is called a mixed strategy. There are infi nitely many mixed strate-
gies in a nontrivial game, and Nash showed that every game in normal 
form has at least one Nash equilibrium, which may be a mixed strategy 
equilibrium. Nash equilibria in mixed strategies can be computed by linear 
programming methods in general, or, in simple cases, by the algebra of 
simultaneous equations. Details of computation will be beyond the scope 
of this chapter.

Table 4.2 Game 4.3: “The Final Problem” in strategic normal form

Payoff  order: Moriarty, 
Sherlock

Sherlock

Canterbury Dover

Moriarty Canterbury 1, 21 21, 1
Dover 21, 1  1,21
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In situations of confl ict, it is often in the interest of each party to act 
unpredictably. The Normandy Invasion, Game 2.6, provides another 
good example. It illustrates an important point: it is not necessary liter-
ally to fl ip a coin to decide between two strategies. The probabilities that 
matter are subjective probabilities. As a player in the game, my objective is 
to manipulate the subjective probability estimates my enemy assigns to my 
own actions, so as to prevent my enemy from exploiting the predictability 
of my decisions. The web of costly deception and strategic maneuvers 
surrounding the Normandy invasion, as described in Brown (1975), A 
Bodyguard of Lies, illustrates this.

Let us consider one further example in that vein. The players in Game 
4.4 will be a terrorist and a defender.2 The terrorist has the capacity to 
attack target 1 or target 2, but not both and no other target. The defender 
can prevent an attack on target 1 or target 2 by appropriate defensive meas-
ures, or, at somewhat greater cost, can protect both. Complete success for 
either contestant is recorded as a payoff  of 3. If the defender defends both 
targets, the defender’s payoff  is reduced to 2, because of the cost of doing 
so, and this partial success for the terrorist is recorded as a payoff  of 1. 
Notice that the sum of the payoff s is 3 in every cell of the table (Table 4.3). 
Although this is not a zero-sum game, it is a constant-sum game, and just 
as with a zero-sum game, this means the objectives of the players are totally 
opposed.

Suppose, then, that the terrorist chooses a mixed strategy, assigning 
probability ½ to each target. Then the defender’s expected value for 
defending a single target is

 
1
2

# 3 1
1
2

# 0 5 1
1
2

.

Then the defender has no reason to defend one target in preference to the 
other: to that extent the mixed strategy has done its job. By defending both 
targets the defender can have an expected value of 2. Accordingly, the 
defender assigns probability 1 to defending both targets. By randomizing 

Table 4.3 Game 4.4: Terrorist vs. Defender

Payoff  order: Defender, Terrorist Terrorist

Target 1 Target 2

Defender Target 1 3,0 0,3
Target 2 0,3 3,0
Both 2,1 2,1
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their strategy the terrorists have forced the defender to the expense of 
defending both targets, gaining a minor victory by doing so.

Mixed strategy equilibria in peacetime public policy problems may be 
uncommon, but the possibility should not be overlooked. Whenever we 
see decision-makers creating doubt about their strategies, we will need 
to explore the possibility of a mixed strategy equilibrium. In relations 
between local governments and large businesses or major athletic teams, 
for example, it may well be that the uncertainty the fi rms and teams create 
about their locational decisions represent a mixed strategy.

4.3  COORDINATION AND ANTICOORDINATION 
GAMES

We may think of the game as a mathematical problem and the Nash equi-
librium as a solution. In that perspective the Nash equilibrium in pure 
strategies has two kinds of shortcomings. First, as we have seen, some 
games may not have Nash equilibria in pure strategies. When we allow 
mixed as well as pure strategies, however, that problem disappears: as a 
matter of mathematical fact, every game in strategic normal form has at 
least one Nash equilibrium. (As a practical matter, though, randomized 
strategies may have to be excluded in some special case applications, and 
in that case the diffi  culty returns.) The other shortcoming is that there may 
be more than one Nash equilibrium. The right number of solutions, from 
a mathematical point of view, is exactly one. Indeed some critics of game 
theory have made that shortcoming the basis of a claim that the rational 
action model of human behavior (as expressed in Nash equilibrium) is 
simply a failure. But that is a hasty conclusion. On the one hand, the plu-
rality of solutions may refl ect the conditions of the real world, rather than 
a failure of mathematics. In that case we would not want a solution that, 
however perfect mathematically, assumes away the facts of the real world. 
On the other hand, we may treat the multiplicity of solutions as a problem 
to be solved, not by the theorist but by the “players in the game,” and 
inquire how in fact people have contrived to solve it. This proves to be a 
rich fi eld of inquiry, one we will undertake in the next chapter.

A class of games that illustrates both these points is the so-called coor-
dination games. Examples can be drawn from highway traffi  c. As usual, 
we may begin with a simple two-person game in which the two agents 
must each choose between two strategies. The two agents will be motorists 
approaching one another on a road, and the strategies they must choose 
between are “drive on the left” and “drive on the right.” If they make the 
same choice, then they pass one another safely. If they make opposite 
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choices, then they both lose in the resulting fender-bender. The game 
is shown in strategic normal form as Game 4.5 (Table 4.4). The payoff  
numbers are arbitrary: 1 for a safe passage and −1 for a collision.

In this game there are two Nash equilibria in pure strategies: “left,” 
“left” and “right,” “right.” In addition there is a third Nash equilibrium, 
a mixed strategy equilibrium in which each motorist chooses randomly 
with probability one-half for each strategy, and the expected value of 
the payoff  for each motorist is zero. Clearly, the pure strategy equilibria 
are superior to the mixed strategy equilibrium or to any non-equilibrium 
state. (They are superior in the sense that the pure strategy equilibria are 
Pareto-dominant over the others.) Now suppose that each motorist knows 
nothing that has not already been given as part of the game. Then each 
may reason as follows: “Using the principle of insuffi  cient reason, I must 
assign equal probabilities to the other person’s strategy choice. Therefore I 
have nothing to lose by also choosing my strategy at random.” This points 
to the inferior mixed strategy equilibrium as the most likely one, and that 
is indeed an ugly dilemma (although not a “social dilemma”).

When we assumed that each motorist knows nothing that has not 
already been given as part of the game, we assumed a great deal. In par-
ticular we assumed that the drivers do not know whether they are driving 
in North America, England, India, or Europe. In all countries it is custom-
ary to drive on one side or the other, and, knowing the custom, each agent 
can make a rational judgment that the other will (with very high probabil-
ity) drive on the customary side. The result is that fender-benders in this 
situation are actually quite rare. The familiar fact that the custom can be 
quite diff erent in diff erent countries – left in England, right in the USA – 
refl ects the fact that both are pure-strategy Nash equilibria. What seems 
a shortcoming from the mathematical viewpoint proves to be a principle 
with explanatory power in this application.

Of course, there are also legal standards in most countries requiring people 
to drive on the customary side. But the customs are mostly self-enforcing, 
and the function of the laws is mainly to assign responsibility when the 
custom fails and collisions do happen. Simple as this example is, it suggests 

Table 4.4 Game 4.5: the fender-bender game

Payoff  order: First, Second Second car

Left Right

First car Left 1,1 21,21
Right 21,21 1,1
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reasons why customs, much as they may vary from country to country, can 
be very stable where they exist, and why the law may be most eff ective when 
it reinforces custom and may be largely futile when it goes against custom.

It will be useful as well to view this example in an evolutionary light. 
Suppose that we have a large population of motorists who are randomly 
matched to pass one another on the road in a large series of matches. 
Suppose also that motorists choose their strategies according to some 
boundedly rational rule of thumb. One possible rule of thumb is conform-
ism: “Do what you see others doing.” Another possible rule of thumb is 
the stick-or-switch rule: “If the strategy yields a positive payoff , stick with 
it; otherwise switch.” Either of these rules will lead to a rapid convergence 
to the unanimous choice either of left or right, though we cannot predict 
which.

Games of this kind are called coordination games, since the problem 
faced by the two players is to coordinate their strategies and thus avoid 
a bad outcome. Following local custom is one instance of the kind of 
solution suggested by Thomas Schelling (1960) and is sometimes called a 
“Schelling point” or a “focal equilibrium.”

Now let us consider another two-by-two game, again involving two 
motorists. In this case, however, the two motorists are approaching an 
intersection, and their strategies are to stop and let the other go through, 
or to go ahead. There are four possible outcomes: a fender-bender if both 
go, a waste of time if both stop, and two outcomes in which one is slightly 
delayed and the other passes without delay when they choose opposite 
strategies. This is shown as Game 4.6 (Table 4.5), with the payoff  numbers 
assigned arbitrarily (as usual) to represent better and worse outcomes 
from the diff erent points of view of the two motorists.

In some ways this game is very much like the coordination game: it has 
two Nash equilibria in pure strategies and a third, mixed strategy equilib-
rium, in which each driver chooses between the two strategies with prob-
ability ½. The expected value of the mixed strategy is −½, so the mixed 
strategy equilibrium is Pareto-dominated by the pure strategy equilibria. 
Once again, though, with no information but what is contained within the 

Table 4.5 Game 4.6: the intersection game

Payoff  order: First, Second Second car

Go Stop

First car Go 22,22 1,0
Stop 0,1 21,21
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game, the two motorists face a problem in choosing strategies that will 
avoid the bad outcomes. In this case, though, they have to choose opposite 
strategies, and for this reason games of this kind have come to be known 
as anticoordination games.

In some ways, though, this is a more diffi  cult problem. In a coordination 
game, coordination can be accomplished when both motorists receive the 
same signal, as with a custom that all motorists drive on the right. For this 
case, though, the two motorists would have to receive diff erent signals, or 
a signal complex enough that they would interpret it in opposite ways. For 
the same reason, a simple evolutionary process may not lead to the pure 
strategy Nash equilibria in this case. Suppose that a large population of 
motorists are randomly matched to play the two-person game, again and 
again. Clearly, a rule of conformism will not lead them to make opposite 
decisions. The mixed strategy equilibrium proves to be evolutionarily 
stable, since any tendency for more than half of the motorists to choose 
one strategy rather than the other just makes coordination of the strategy 
choices less likely! Anticoordination games are a problem to which we will 
return in the next chapter.

4.4 CONSISTENT CONJECTURES

In a non-cooperative game, the problem for an individual decision-maker 
is that the consequences of his own decision depend also on the decisions 
of others. One way to express this is to say that, in order to estimate the 
consequences of his own alternative decisions, an individual must fi rst 
make a conjecture as to what decisions the others will make. Each indi-
vidual’s decisions will depend (among other things) on his conjectures as 
to the decisions of the others. Now suppose that, for each decision-maker, 
the conjectures he makes lead him to act in just such a way as the others 
had conjectured that he would act. Thus, all of the conjectures prove to be 
correct! In that case, the decisions of the group, taken together, have the 
property of consistent conjectures.

The concept of consistent conjectures does not originate in game theory 
but in the theory of industrial organization (Bresnahan, 1981). In indus-
trial organization theory, the decisions of concern are (principally) the 
pricing strategies of fi rms in oligopolies. But the concept can be applied to 
non-cooperative games more generally (Fudenberg and Levine, 1999). To 
choose his best strategy, each “player in the game” must make a conjec-
ture as to the strategies chosen by the others, and select his best response 
to the strategies conjectured. If each chooses the strategy the others had 
conjectured, then we might call that set of conjectures and strategies a 
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consistent-conjectures equilibrium, CCE. Now, it will be evident that a 
Nash equilibrium in pure strategies is a CCE.

In coordination and anticoordination games, consistent conjectures are 
suffi  cient for effi  cient action and a cooperative outcome in the game. The 
problem is to increase the probability that conjectures will be consistent. 
In a coordination game, a common custom achieves this. The common 
belief that “in North America, it is safest to drive on the right hand side of 
the road” proves to be a true belief – not because it is a truth in any meta-
physical sense, but because the actions that people choose, on the basis of 
the belief, make it a true belief. In a social dilemma, by contrast, consist-
ent conjectures are not at all suffi  cient for effi  cient and cooperative action, 
and in fact correspond to an ineffi  cient outcome. This is an important 
distinction for public policy, since in the fi rst case, the case of coordination 
games, the effi  cient arrangement is self-enforcing, while in the second case, 
the social dilemma, enforcement must play the main role in achieving an 
effi  cient cooperative outcome.

4.5 COALITIONS IN NON-COOPERATIVE GAMES

In non-cooperative games, there are no enforceable agreements. 
Nevertheless, when there are two or more Nash equilibria, coalitions may 
form and may make a diff erence. Consider Game 4.7, of confl ict among 
three nations (Table 4.6), with the following assumptions: Country a is 
the strongest of the three, and capable of projecting both land and sea 
power; Country b is landlocked, and thus unable to infl uence the balance 
of power at sea; while country c has fi ne harbors but indefensible land 
borders, and so can infl uence the balance of power at sea but not on land. 
Each of the three countries must decide between a forward and a defensive 
military posture. The defensive position is cheaper and less likely to lead to 
war. The payoff s to the three countries are calibrated so that each receives 

Table 4.6 Game 4.7: confl ict among three nations

Payoff  order: 
Country a, b, c

c

Forward Defensive

b b

Forward Defensive Forward Defensive

a Forward 1,1,1 7,3,1 7,1,3 8,3,3
Defensive 2,6,6 4,4,6 4,6,4 5,5,5
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a payoff  of 5 when all choose cheap defensive postures, and each receives a 
payoff  of 1 when all choose costly and risky forward strategies. However, 
when some choose forward strategies and others defensive, the country 
with the forward strategy can benefi t. This can favor countries b and c, 
however, only if both choose forward strategies simultaneously: if only 
one of the countries does so, country a can concentrate its forces against 
that country and deprive them of any benefi t from their enterprise.

This game has two Nash equilibria, one at the upper right where 
country a has a forward posture and b and c are defensive, and one at the 
lower left where country a maintains a defensive posture against forward 
postures by countries b and c. To say that the upper right cell in the table 
– strategy combination “forward,” “defensive,” “defensive” – is a Nash 
equilibrium is to say that no country can benefi t by unilaterally deviating 
from it. Thus a shift by a would reduce its payoff s from 8 to 5; a shift by b 
would reduce its payoff s from 3 to 1, and similarly a shift by c. But if b and 
c were to make a coordinated shift from defensive to forward postures, 
country a’s best response would be the defensive posture at the lower left, 
the other Nash equilibrium. Thus, the lower left equilibrium is strong in 
the terminology of Aumann (CGT4, pp. 287–324), and it is also coalition-
proof in the terminology of Bernheim et al. (1987), while the equilibrium at 
the upper right is neither.

Strong equilibria and coalition-proof equilibria diff er in detail, but both 
refl ect the stability of the equilibrium against the formation of coalitions. 
If an equilibrium could be disrupted by a coordinated shift of strategies by 
some group of players, the members of the group are better off  as a result 
and the shift is to strategies that correspond to another Nash equilibrium, 
then the fi rst Nash equilibrium is rejected as unstable. Notice that the 
alliance between b and c, in the example, needs no enforcement – Nash 
equilibria are self-enforcing, and either country can only lose by deviat-
ing from it. That is why the phrase in italics, “the shift is to strategies that 
correspond to another Nash equilibrium,” is crucial: otherwise the new situ-
ation could not be sustainable without some enforcement. A strong Nash 
equilibrium is one that cannot be disrupted in this way, either because it is 
unique or because no group can benefi t by a coordinated shift to another 
equilibrium. A coalition-proof equilibrium is one that either is strong or, if 
not, nevertheless is unlikely to be disrupted in this way, because any group 
shift to a new Nash equilibrium would lead to an equilibrium that would 
itself be unstable, in that a subgroup of the original group could benefi t, 
at the expense of the rest, by a further coordinated shift.

This idea seems to have particular relevance for relations among sover-
eign states, as in the example. Sovereignty means that there is no enforce-
ment of agreements, so relations among sovereign states are essentially 
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non-cooperative. Nevertheless, treaties and alliances can be eff ective and 
rather stable among sovereign states. This example suggests a reason why 
they can: the treaty or alliance corresponds to a Nash equilibrium, but 
there are other Nash equilibria that might otherwise be realized, which 
would be less advantageous to the allies or treaty partners. At the same 
time, and more crucially, the example indicates the limits of this possi-
bility: if the terms of the treaty or alliance do not correspond to a Nash 
 equilibrium, then in all probability they will not be kept.

As conventional solutions to a coordination game, alliances may be 
persistent. And in the real world, of course, there is more to it than this 
symmetrical model. A new alliance could well create irreversible changes 
in political and other circumstances that could make it impossible to go 
back to the old equilibrium. But we will have to defer any further specula-
tion along these lines until Chapter 6, on the game in extensive form. (For 
an intuitive discussion of a real historical example, see McCain, 2004, pp. 
231–2, 245.)

4.6 REFINEMENTS

In addition, Game 4.7 illustrates a common problem of non-cooperative 
game theory. When there are many solutions, how are we to choose 
among them? In Game 4.7, we excluded the equilibrium at the upper right 
on the grounds that a coalition of two countries could improve on it – it is 
neither strong nor coalition-proof. This would be an instance of a refi ne-
ment of the Nash equilibrium. In general, a refi nement is any assumption 
additional to the defi nition of the Nash equilibrium that allows us to 
reduce the number of Nash equilibria considered as solutions. We have 
already mentioned, in passing, another very important refi nement: an 
evolutionarily stable strategy is a Nash equilibrium that is stable with an 
evolutionary dynamics.

In some games, we may fi nd that one Nash equilibrium is better for 
all players than another equilibrium: one equilibrium Pareto-dominates 
another. Certainly the dominated equilibrium would not be strong, but this 
dominance condition would give us an even more persuasive argument to 
rule it out. The fact remains that every pure-strategy Nash equilibrium has 
the consistent conjectures property – so that if each agent really believes 
that the other agent will choose a strategy that leads to the dominated equi-
librium, he will do best to choose the corresponding strategy. Moreover, 
there are many proposed refi nements of Nash equilibrium, and in some 
cases they confl ict. Despite the large literature on refi nements of Nash 
equilibrium, there is no refi nement that assures us of a unique solution in 
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every case, nor that is applicable in every case. As we will see in later chap-
ters, some refi nements may be very important in particular cases.

4.7 EVOLUTIONARY GAMES

We have made passing references already to evolutionary interpretations 
of Nash equilibrium, primarily as a way of generalizing two-person inter-
action where the real interest is in the interaction of a large number of 
agents. Evolutionary models are an important branch of non-cooperative 
game theory with broader implications.

As we recall, the evolutionarily stable strategy (ESS) set is a refi nement 
of Nash equilibrium, and the refi nement might well be applicable to inter-
active decisions of human beings as well as to the evolution of species. As 
Friedman notes (1998), what distinguishes an evolutionary dynamics from 
other ways of looking at game theory is primarily a lack of foresight, in 
that agents do not anticipate or attempt to infl uence the future evolution of 
the decisions of others. Beyond that, the evolutionary dynamics might be 
linked to an otherwise completely rational decision process. However, one 
of the advantages of an evolutionary perspective is that we might instead 
approach game theory from the point of view of bounded rationality.

In neoclassical economics and classical game theory, individuals are 
supposed to be rational in the sense that they maximize their utility, profi ts 
or payoff s. This view has never been without critics, and Nobel Laureate 
Herbert Simon was one of the most important and widely recognized of 
them. The phrase “bounded rationality” stems from him, and refl ects his 
judgment that the maximization of utility, profi ts or other payoff s requires 
decisions that are far too complex to be within the cognitive capacity of 
real human beings. Instead, human rationality is bounded by the com-
putational capacity of the human mind and brain. The typical rational 
activities of real human beings are the setting of targets and the search for 
alternative activities that are satisfactory according to those targets. This 
has been expressed by saying that real decision-makers do not maximize 
but satisfi ce. To many economists, this is Simon’s critique in a nutshell; 
but Simon was more than a critic and is known outside economics as one 
of the founders of artifi cial intelligence theory. In the tradition of artifi cial 
intelligence founded by Simon (with his collaborator Alan Newell: Newell 
and Simon, 1972; note also Simon, 1995), rational decisions are made 
by heuristic rules. These rules do not necessarily lead to maximization of 
profi ts or payoff s or anything else, but do lead to “satisfactory” results. 
Artifi cial intelligence envisions that real decisions are based on a large set 
of rules, a “knowledge base” or “rule base,” not (as a rule) a single rule 
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per decision – although a simple rule like “do what the boss says (if he is 
watching)” can play a great role in decision-making and the organiza-
tion of human action. In general, though, even a naive decision-maker 
will have to decide what rule to apply – before deciding what to do – and 
the fi nal decision can draw on a large number of rules working together. 
Experts in a fi eld will have still larger and more complex rule bases for 
their expert decisions. Think, for example, of a medical doctor’s decision 
whether to recommend surgery to a patient: rules for the diagnosis of the 
condition, other rules that refl ect the experience of the medical community 
about the usual results of alternative treatments for patients in particular 
categories, rules for the judgment of patient psychology and so on will all 
be brought to bear on the decision.

What perhaps needs stress is that bounded rationality is not irrational-
ity. It is rationality, conceived in a way that refl ects a realistic view of the 
limits of the human brain as a computer. (This is the way it is viewed by 
Simon and his followers if not by neoclassical economists.) Nevertheless 
it raises questions about the assumption of Nash equilibrium theory 
that agents infallibly choose the best response to the strategies chosen by 
others. Instead, we may link the theory of bounded rationality with that of 
evolutionary dynamics in game theory, yielding a more cognitively realistic 
non-cooperative game theory (for example, Aumann, 1997; Gintis, 2007).

The evolutionary bounded rationality approach to game theory would 
begin by assuming bounded rationality. At a particular moment, then, 
agents choose their strategies according to a given set of heuristic rules. 
Some of these rules may generate strategies that better approximate best 
responses to the strategies chosen by others, and some generate strategies 
that approximate best responses less well. However, people learn, both 
from their own experimentation and the imitation of others, so that over 
time the rules that lead to poor strategies will be replaced by other rules 
that do better. In this way, decisions would tend, over time, to approximate 
the best-response decisions. Not all Nash equilibria will be stable with this 
sort of process. Those that are stable will be ESS and we can predict, tenta-
tively, that actual decisions will be approximated by the ESS decisions.

In this view, the heuristic rules play the role in social evolution that 
genes play in organic evolution. (They are the “replicators;” Hodgson, 
2002.) The pure strategies in the game play the role that individual plants 
and animals play in organic evolution: they are the interactors, and their 
interaction determines (via the payoff s that result) the tendency for the 
corresponding replicators (heuristic rules) to be replicated as a larger or 
smaller proportion of the population of rules as a whole. Thus it is the 
rules and decisions that evolve in this evolutionary view.

But is it really evolutionary? Those who have a turning to philosophy may 
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question whether this sort of scheme really ought to be called evolutionary 
or whether evolution, which by defi nition advances no purpose or intention, 
can be applied to the decisions of human beings, decisions that are directed 
(within the limits of bounded rationality) to better realize the purposes and 
intentions of the human individuals. These issues are better avoided, so let 
us say that the scheme that combines ESS with bounded rationality is an 
adaptive game theory, based on the assumption that real human rationality 
is bounded but adaptive (compare Selten and Gigerenzer, 2001).

4.8 CONCLUSION

We fi nd that a number of problematic cases in public policy can be traced 
to ineffi  cient Nash equilibria with the games considered in strategic normal 
form. In this sense, we may say that non-cooperative game theory is a pow-
erful diagnostic tool for public policy. For now we reserve judgment as to 
whether it may also be helpful in prescription. Nash equilibrium models 
have proved a powerful tool of problem identifi cation for public policy. 
While the Prisoner’s Dilemma has commanded the central position in this 
perspective, a wide variety of other Nash equilibrium models may result 
in ineffi  cient equilibria in the absence of some public action. In confl ict 
situations, and some others, it may be rational for agents to be unpredict-
able, and to randomize their strategies; but in other circumstances, coor-
dination and anticoordination games, randomization may be something 
to be avoided, and avoiding it may require some information not within 
the game itself. The Nash equilibrium in pure strategies has a property of 
consistent conjectures that helps to explain how a Nash equilibrium, once 
established, can be persistent even when other Nash equilibria may be 
more effi  cient. Extensions of these models, with large numbers of players, 
trial-and-error adaptive learning in place of ideal rationality, and lack 
of symmetry among players, may seem more “realistic” than the simpler 
Nash equilibrium models. Where there are two or more Nash equilibria, 
refi nements may eliminate some as less plausible. Pareto-dominance, 
evolutionary stability, and resistance to disruption by coalitional shifts of 
strategy provide criteria for refi nement in particular cases.

NOTES

1. For a case study see Hamilton et al. (2008).
2. I am indebted to my colleague Richard Hamilton for discussions that contributed to this 

example.
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5. Correlated equilibrium

While Nash equilibrium is the central concept in non-cooperative game 
theory, and has many applications, it is not quite the whole story. There 
are rival solution concepts and applications that are prescriptive rather 
than diagnostic. This chapter will discuss a major alternative: correlated 
strategy equilibrium.

A few years ago in New Zealand (Bray, 2003), telecommunications com-
panies Teamtalk Ltd and MCS Digital Ltd were embroiled in a lawsuit. 
If both were to pursue their claims in a court of law, the legal fees would 
be great enough that both would be worse off . If one knew for certain 
that the other would pursue his claim, then the best response would be to 
abandon the claim, to avoid the legal costs. However, neither was certain 
that the other would withdraw, nor was willing to be the one to withdraw 
unilaterally. They agreed to settle the diff erence by arm-wrestling, the 
winner to take the asset and the loser to abandon his claim. On the face of 
it, this may seem an irrational procedure, but on more careful considera-
tion it is quite rational. The two businessmen had arrived at a correlated 
 equilibrium solution to their problem.

5.1 INTRODUCTORY EXAMPLE AND DEFINITION

Eastonia and Westoria are neighboring townships that share a business 
district on their border. Each is considering building a parking garage to 
serve the business district, but only one garage is economically feasible, so 
that if both build, both will be worse off . If one town builds, then the other 
has the further option to (1) improve their infrastructure to make it easier 
for people to make use of the parking garage in the nearby town, or (2) do 
nothing, retaining the reduced fees for on-street parking. Option (1) will 
have some cost but will capture a small part of the benefi ts of the parking 
structure in the form of increased business traffi  c. Most of the benefi t of 
the parking garage will fl ow to the town that builds it, though. This is 
shown as Game 5.1, with 10 indicating the maximum benefi t and other 
payoff s refl ecting the assumptions above (Table 5.1).

This game has two pure strategy equilibria, each where one town builds 
and the other improves its infrastructure. There is also a mixed strategy 
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equilibrium at which each town builds with probability 8/15 and improves 
with probability 7/15. A probability of zero is assigned to “do nothing,” 
since any increase in the probability of “do nothing” will reduce the 
expected value payoff  of the decision-maker. Both of the pure strategy 
equilibria are effi  cient, but the benefi ts are very unequally distributed. The 
mixed strategy equilibrium is highly ineffi  cient, however, with an expected 
value payoff  of 2. In the absence of any custom or other signal to support 
a Schelling focal equilibrium in this case, as we have seen, the mixed strat-
egy equilibrium would seem plausible as it applies to a case of complete 
ignorance.

In a cooperative arrangement, one could build and make a side payment 
to the other township so that both would share more equally in the ben-
efi ts. Here, though, we are concerned with non-cooperative arrangements. 
As we have seen, non-cooperative equilibria must be self-enforcing, but can 
be randomized. The problem with the mixed strategy solution in this case 
is that it assigns a positive probability (0.28) to the lose-lose outcome at 
the upper left, where both towns build and lose 5. It also assigns a positive 
probability (0.22) to the outcome in the middle, where neither town builds. 
Suppose instead that the decision could be randomized in a way that 
would assign probabilities of zero to the upper-left and middle strategy 
combinations. This would assure that exactly one of the towns builds.

In fact, this is pretty easy to do. The two township supervisors could get 
together and fl ip a coin, with Eastonia building if the coin comes up heads, 
and Westoria building if the coin comes up tails. The result would be that 
the expected value for each township would be 6 – very much better than 
the 2 that would come from the mixed strategy equilibrium, and with the 
benefi ts equally shared in expected value terms. Then the township super-
visor of Eastonia is choosing according to the rule “if heads then build else 
improve,” and the Westorian supervisor is choosing according to the rule 
“if heads then improve else build.” These rules are self-enforcing, in that 
the fall of the coin provides a signal for a focal equilibrium in Game 5.1.

This solution diff ers from a mixed strategy equilibrium in that the 

Table 5.1 Game 5.1: parking garage

Payoff  order: Eastonia, 
Westoria

Westoria

Build Improve Do nothing

Eastonia Build 25,25 10,2 3,1
Improve 2,10 2,2 0,1
Do nothing 1,3 1,0 1,1
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decisions are correlated. If Eastonia chooses “build” then Westoria 
chooses “improve” with probability 1, and if Eastonia chooses “improve” 
then Westoria chooses “build” with probability 1. Thus, it is called a “cor-
related strategy equilibrium,” or more briefl y, “correlated equilibrium.” 
This concept, and much of the discussion here, is due to Luce and Raiff a 
(1957), although papers by Aumann (1974; 1987) have stimulated much 
of the interest in it. Aumann showed (1987) that correlated equilibrium 
can be a result of Bayesian learning, rather than conscious randomization 
and maximization, and several papers written in the late 1990s (Foster and 
Vohra, 1997; Fudenberg and Levine, 1999; Hart and Mas-Colell, 2000) 
introduce adaptive (boundedly rational) procedures that lead to corre-
lated equilibrium. Thus, correlated equilibrium is a very plausible adapta-
tion in a game like Game 5.1.

The probabilities of the two Nash equilibrium pure strategy combina-
tions would not necessarily be 50-50. Indeed, any probability between 0 
and 1 would share the same self-enforcing property in Game 5.1. Figure 
5.1 shows the range of correlated strategies for Game 5.1 as the probabili-
ties assigned to the two Nash equilibria of the underlying game vary. In 
general there will be very many correlated strategies, and so it seems that 
we have only reproduced the problem of multiple Nash equilibria (though 
gaining some effi  ciency in the process). However, the equal probabilities 
do supply a cognitively salient focal point that could lead both agents to 
expect one correlated equilibrium rather than another. Moreover, in this 
case the principle of insuffi  cient reason reinforces the equiprobable corre-
lated equilibrium.1 As we will see, there is some casual anthropological evi-
dence that equiprobable solutions are very common. On the other hand, if 
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the agents have an opportunity to agree on a signal, whether it is fl ipping 
a coin or arm-wrestling, they will also have an opportunity to settle the 
probabilities by negotiation.

There have been few applications to public policy. However, rationing 
by lottery has been fairly common in human history, and the military draft 
and similar arrangements may be seen as correlated equilibrium solutions. 
However, equal treatment in terms of expected values may not be seen as 
ethically or politically adequate. It may be that the objectives of public 
policy or the ethical standards from which public policy objectives are 
derived make reference to actual outcomes, so that these objectives and 
standards cannot be satisfi ed by unequal outcomes, even when all indi-
viduals have the same probabilities of being advantaged or disadvantaged. 
More generally, if we feel that diff erent outcomes for diff erent people 
require some justfi cation, whether the justifi cation is on the basis of dif-
ferent contributions, diff erent needs, or diff erent entitlements, diff erences 
resulting from a random mechanism may be seen as unacceptable. This 
consideration undoubtedly limits the application of correlated equilibria 
in public policy.

Thus, it may not be practical for the township supervisors in Game 5.1 
to make their decision by fl ipping a coin. Yet they may nevertheless arrive 
at a correlated strategy solution to their interactive decision problem. 
Suppose they hire a consulting fi rm to study and compare the costs and 
benefi ts of the two alternative plans, for Eastonia to build and Westoria to 
improve and vice versa. Consulting the payoff  table, we know that the net 
benefi ts are the same in either case, so any diff erence found by the cost–
benefi t study will be the result of errors in the study. We may suppose that 
the errors will be random and unbiased. Thus, when the township supervi-
sors make their decisions on the basis of the cost–benefi t study, they are 
carrying out a coordinated strategy solution! Of course, the cost–benefi t 
study is likely to be a little more costly than fl ipping a coin. Still, it could be 
worthwhile as a politically respectable means of avoiding the impasse of the 
mixed strategy solution. We should note that the game is probably unreal-
istic in assuming that the two towns are perfectly symmetrical. Instead, we 
might want to assume that there actually are diff erences in the costs and 
benefi ts of the two proposals, but the town supervisors, not being special-
ists in cost–benefi t analysis, do not know what they are. The payoff s are 
best-guesses, and the consulting fi rm is able to improve on them with more 
information and fi nd real diff erences. However, the township supervisors 
are unable to anticipate that, and from their point of view, the subjective 
probabilities are 50-50. As Aumann has shown us, that is suffi  cient for 
the correlated equilibrium solution. When the New Zealand businessmen 
arm-wrestled to settle their impasse, each one probably thought that he 



 Correlated equilibrium  73

was most likely to win, while an outside observer’s subjective probabilities 
would perhaps be 50-50.

What the coin fl ip, the cost–benefi t study and the arm-wrestling do is 
to supply a common signal to the two decision-makers. The signal gives 
the decision-makers the information they need to choose one of the plural 
Nash equilibria in pure strategies, and the decisions are correlated so that 
they will in fact correspond to one of the Nash equilibria in pure strategies. 
In the games we have considered in this section, it is clearly in the common 
interest of both decision-makers to contrive such a common signal.

5.2  COORDINATION AND ANTICOORDINATION 
GAMES

Game 5.1, with its two Nash equilibria, has something in common with 
Games 4.5 and 4.6, the coordination and anticoordination games. Indeed, 
when the equilibrium of a coordination game is determined by custom, the 
custom might be considered as a signal that supports a correlated equilib-
rium. In some superspace of diff erent possible histories, perhaps, driving 
on the left and driving on the right are equally probable – as witness the 
opposite customs in diff erent countries. But, as we recall, anticoordination 
games present more diffi  cult problems.

5.2.1 Stoplights as a Paradigm

The example of an anticoordination game is the intersection game – two 
cars approaching an intersection. Which will go through, and which will 
pause? Two Nash equilibria exist, where each car takes one of these roles. 
If they had time, the two drivers could get out and fl ip a coin to decide – 
but that would defeat the purpose of the exercise, which is to get through 
the intersection quickly. If the intersection is controlled by a stoplight, 
though, the car with the green light will go ahead and the car with the red 
light will stop. This is a correlated strategy equilibrium. The probability of 
getting a green light may be equal for the two, depending on when they 
arrive, or it may be unequal, if one of the streets is a major artery and so 
has longer green lights to accommodate heavier traffi  c; but, as we have 
seen, equal probability is not a requirement.

The traffi  c light is a fascinating twentieth-century innovation in the 
practice of interdependent decisions!2 It also illustrates the diff erence that 
makes anticoordination games more diffi  cult than coordination games. 
For a coordination game, such as Game 4.5, the two decision-makers 
receive the same signal, such as a customary practice, and that is suffi  cient 
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so that they can coordinate their decisions. However, in the anticoordina-
tion game, diff erent, correlated signals are required.

In a two-person game, given time, there is little diffi  culty in contriving 
this. However, the intersection game is a bit artifi cial, in that highway 
traffi  c is not really a two-person game. Rather it is a many-person game 
with drivers randomly matched to interact at intersections. In the indi-
vidual matches, there will not be time enough for the drivers to get out 
and arm-wrestle. What is needed is a correlated set of signals for the entire 
population. The stoplights provide that correlated set of signals. But 
notice that the provision of common signals for this large population is a 
public good. It is no accident that stoplights are provided by government, 
although, in the early stages of motoring, some traffi  c direction was pro-
vided by private initiative.3

This defi nes a function of the public authority that has not been explic-
itly recognized, although it is implicit in some existing public activities 
such as the provision of stoplights and signage. As we will see it is also 
implicit in some aspects of economic policy. Perhaps explicit considera-
tion of this role of the public authority will lead to innovations that can 
improve the results of private decisions in new ways.

5.2.2 Other Historical Instances

Lindow man is a famous mummy, the preserved cadaver of a Briton, seem-
ingly a Celtic priest of pre-Roman times who was selected from among the 
members of a priestly community to be sacrifi ced to the gods and goddesses 
he served (Brothwell, 1987). His stomach contained the remnants of a burnt 
bannock. Interpreted in the light of Celtic tradition, it seems likely that he 
was chosen from among the community to be the sacrifi cial victim by the 
following procedure: those qualifi ed to be the victim were required to draw 
a portion of bannock, a baked grain food, from a bowl without being able 
to see which fragment of the bannock they would take. One fragment was 
burnt, and the priest who drew the burnt bannock was sacrifi ced.

We may take it for granted that the priests felt that the sacrifi ce must 
occur; that the failure to make an appropriate sacrifi ce would be worse 
than death. At the same time we may take it equally for granted that each 
preferred not to be the sacrifi ce.4 Thus, each faced an interdependent 
decision with three possible outcomes: in order of preference, another sac-
rifi ced, myself sacrifi ced, none sacrifi ced. If there are N priests this game 
has N Nash equilibria, one corresponding to the sacrifi ce of each of the 
priests. But how to decide among these alternatives? The priests adopted a 
correlated equilibrium, in which the probabilities attached to the diff erent 
equilibria were roughly equal.
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It may be that further discoveries will provide a diff erent interpreta-
tion of this death. However, it will serve here to illustrate the antiq-
uity of correlated equilibrium solutions in practice, and the tendency 
to choose equiprobable schemes. Drawing straws, fl ipping a coin, and 
playing  scissors-paper-stone5 are all–like drawing the burnt bannock, 
arm- wrestling, and having an error-prone cost–benefi t study done–means 
of assigning subjectively equal probabilities to two or more pure strat-
egy Nash equilibria. A Methodist minister preaches that there are many 
instances of casting lots to make decisions in the Hebrew and Christian 
scriptures, dating from the Pentateuch (Lamar-Sterling, 2006). It was the 
“custom of the sea” that when sailors were cast away and starving, the 
victim to be cannibalized was chosen by casting lots or drawing straws 
(Hanson, 2001). What these examples show is that correlated equilibria 
with equiprobable assignments are widely known to nonspecialists in game 
theory and have been so, probably, for thousands of years. A rigorous 
anthropological study that would document the cross-cultural width and 
temporal depth of this knowledge would be of interest but is beyond the 
scope of this book. In short, correlated equilibrium is not mysterious, but 
just the opposite. However, we will see that an example given by Aumann 
has diffi  culties that we have not yet discussed, and that example has 
 motivated most of the discussion of correlated equilibria in game theory.

5.3 DIFFICULT CASES

Now let us consider another example, with Eastonia and Westoria at log-
gerheads once again. This time there is a proposal for a cellular-telephone 
tower to serve both towns. There is a location on the border between the 
two towns that will serve them equally, but with minor inconvenience to 
both. In order to build at that site, both townships will have to agree to it. 
If just one approves the building of the tower, it will be built at a site within 
the approving township, and that township will be greatly inconvenienced. 
The other township will then get service of a quality almost as good as 
that from the borderline site, without any inconvenience at all. If neither 
approves, no tower is built, and cellphone reception will remain poor in 
both towns. As usual we will assign payoff  numbers that agree with those 
assumptions so far as their relative magnitude is concerned, and not worry 
much about real units of measurement. Then we have Game 5.2 (Table 
5.2).

This is a game discussed by Aumann (1974) and has been the source of 
most research on correlated equilibria. (Aumann refers only to “player 
1” and “player 2” and off ers no application in which the problem might 
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arise, but the numbers have been chosen to agree with Aumann’s; in any 
case they have the right relative magnitudes for our cell-telephone tower 
story.) Aumann’s game has pure strategy Nash equilibria at the lower left 
and the upper right, and a mixed strategy equilibrium with probabilities 
2/3, 1/3. The expected payoff  of the mixed strategy equilibrium is 4 2/3, 
4 2/3. Aumann writes (p. 72) “Consider now an objective chance mecha-
nism that chooses one of three points A, B, C [that is, upper left, lower 
left, and upper right] with probability 1/3 each. After the point has been 
chosen player 1 is told whether or not A was chosen, and player 2 is told 
whether or not C was chosen; nothing more is told to the players.” Then 
(p. 73) “. . . the random device . . . is not at all diffi  cult to construct. Given 
a roulette wheel, it is easy to construct electrical connections that will do 
the job.” Aumann’s example can be restated in terms of a more recent 
electronic technology, along the following lines.

We might construct a computer interface so that four possible events 
occur with probabilities determined by the program. The events are 
colored shapes shown on the screen: red triangle, red square, green trian-
gle, and green square. The probabilities are 1/3, 1/3, 1/3, 0. Call the fi rst 
three events, with positive probabilities, E1, E2, E3. These probabilities are 
known to the players. However, the two players see separate screens, and 
Eastonia observes only the shape – triangle or square – while Westoria 
observes only the color – red or green. Thus, neither player actually knows 
what event has occurred. However if (for example) Eastonia observes a 
triangle, one event can be ruled out, namely red square; that is, he can infer 
“not E2.” Similarly Westoria can observe red and infer “not E3.”

Suppose Westonia is known to choose according to the rule “if red 
then approve, otherwise reject;” that is, “if not E3 then approve, otherwise 
reject.” Let us call this contingent rule “rule A.” Eastonia is considering 
adopting the rule “if triangle then approve, otherwise reject;” that is, “if 
not E2 then approve, otherwise reject.” Let us call this “rule B.”

Case 1: suppose also that Eastonia observes square. He can infer that 
Westoria has observed red with probability 1 and so Westoria will choose 
approve, in accordance with rule A. In that case Eastonia’s best choice is 

Table 5.2 Game 5.2: a cellular telephone tower (Aumann’s game)

Payoff  order: Eastonia, 
Westoria

Westoria

Approve Reject

Eastonia Approve 6,6 2,7
Reject 7,2 0,0
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“reject” for 7 rather than 6. Case 2: suppose Eastonia observes triangle. He 
can infer that red square has not occurred (not E2), but also that Westoria 
may play either accept or reject with equal probabilities, so that the condi-
tional probability is ½. Again, this follows rule A. In this case the expected 
value of approve (that is, of following rule B) is 1/2(6 1 2) 5 4, while the 
expected value of reject is 1/2(7 1 0) 5 3.5. So Eastonia follows rule B and 
chooses approve. It follows that rule B is a best response to rule A, and 
similar reasoning establishes the converse.

If the decision-makers coordinate their decisions in this way, probabili-
ties of one-third each are assigned to the upper left, lower left, and upper 
right cells, and zero to the lower right cell. The overall expected value for 
each player is 1/3(7 1 6 1 2) 5 5, so that this contingent strategy domi-
nates the mixed strategy Nash equilibrium. Suppose instead that prob-
abilities ½ had been assigned to the two pure strategy equilibria as in a 
stoplight equilibrium, and zero to “approve, approve.” Then the expected 
value for each town would be 4 ½ – so the correlated equilibrium can do 
better than simply a weighted sum of the pure strategy Nash equilibria. 
This is Aumann’s key conclusion.

Rules A and B provide a set of strategies (contingent on the private signals 
from the two computer screens) that are best responses to one another, thus 
need no enforcement; are not Nash equilibria because the strategy choices 
of the agents are not independent but partially correlated; and are more effi  -
cient than any Nash equilibrium or probability mixture of Nash equilibria. 
It is a correlated strategy equilibrium, like the ones we have seen in coordi-
nation and anticoordination games; but the game is not a coordination or 
anticoordination game and is more diffi  cult in two senses.

First, in Aumann’s game, the correlated strategy equilibrium is not 
effi  cient. A slight increase in the probability of “approve, approve” at 
the expense of the other two (Nash equilibrial) outcomes will increase 
the expected value payoff s of both players. However, there is a limit to 
how far this can be taken. If either township is certain that the other will 
approve the project, then its own best response is to reject. In Game 5.2, if 
the probability of the red triangle (“approve, approve”) is more than one 
half, then rules A and B are no longer self-enforcing. And the correlated 
equilibrium mechanism can assure the two players an expected value no 
greater than 5.25 each, whereas an enforceable cooperative agreement 
would assure them of 6 each. For this reason, also, signals must not be 
public, but private, and cannot be perfectly correlated, but must be imper-
fectly correlated. Put otherwise, the eff ectiveness of the correlated equilib-
rium mechanism in this case requires that each agent be at least somewhat 
ignorant of the other’s plans – but ignorant only to just the right degree! 
The provision of private, imperfectly but appropriately correlated signals 
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to diff erent agents in a game is a diffi  culty that does not arise for coordina-
tion or anticoordination games.

5.4  SUNSPOT EQUILIBRIA AND ECONOMIC 
POLICY

Stanley Jevons (1835–82) was one of the great founders of neoclassical 
economics, and also pioneered statistical work in economics and made 
contributions to symbolic logic, including a prototype computer (New 
School History of Economic Thought Website, 2007). Before he became 
an academic economist and philosopher, he worked as a geologist and 
was an amateur meteorologist. He proposed that sunspots might be a 
cause of business cycles. By the late twentieth century “a sunspot” came 
to refer to any fl uctuating quantity that might seem to have a correlation 
with business activity but could have no causal infl uence. A literature of 
the late twentieth century suggested that such “sunspot” variables might 
 nevertheless partly determine economic activity.

By this time it was generally known that “rational expectations” equi-
libria in macroeconomics would not in general be unique, but that, indeed, 
a macroeconomic model could have many equilibria. In overlapping-
generation models Azariadis (1981) and Cass and Shell (1983) showed 
that agents might correlate their decisions with a “sunspot” variable, so 
that a “sunspot equilibrium” might be observed – even though the sunspot 
would have no causal eff ect on any real economic variable. A quite large 
literature followed, of which the following are just a few suggestive con-
tributions. Prima facie, sunspot equilibria seem to resemble correlated 
equilibria in noncooperative game theory. However, Maskin and Tirole 
(1987), with a fi xed-horizon model, obtain largely negative results, in that 
the conditions for a correlated equilibrium to correspond to a sunspot 
equilibrium are quite limited. On the other hand, Peck and Shell (1991) 
provide an example with imperfect competition in which the sunspot equi-
libria are correlated equilibria of a market game. Chatterjee et al. (1993), 
in a two-sector overlapping-generations model, argue that complemen-
tarity can result in multiple equilibria and fl uctuating sunspot equilibria. 
The following example is suggested by, but not necessarily an instance of, 
these contributions.

We will begin with a two-person game of market entry. Firms A and B 
can each choose between immediate entry (go) and postponement of entry 
to the next period (postpone). While their operations are complementary, 
in that each supplies a cheap or highly eff ective input to the other, their 
technologies are diff erent. Firm B uses a roundabout method that will be 
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more eff ective in the second period, after a preparatory phase in the fi rst 
period, so postponement by both fi rms favors Firm B, and this will be 
expressed by payoff s 5,10, where the fi rst payoff  is to Firm A. Firm A relies 
on a wasting resource which is more available in the fi rst period, so the 
case in which neither fi rm postpones is favorable to Firm A, expressed by 
payoff s 10,5. If B goes ahead with entry and A postpones, B’s fi rst period 
production increases the stock of input to Firm A that off sets the wasting 
of its resource that would otherwise occur, so both benefi t to some extent 
from complementarity in both periods and this is expressed by payoff s 8,8. 
However, if B postpones and A does not, neither benefi ts from comple-
mentarity in any period, expressed by payoff s 0,0. The resulting Game 5.3 
is shown as Table 5.3.

This game has three Nash equilibria: pure strategy equilibria in the 
upper left and lower right, and a mixed strategy in which A assigns a 
probability of 0.714 to postponement and B assigns a probability of about 
0.286 to postponement. In this mixed strategy equilibrium, each fi rm has 
an expected value payoff  of 7.14.

Now, suppose that the presidents of both fi rms observe sunspots, and 
that the probability that sunspot activity is greater than its mean is just 0.5. 
Suppose each businessman believes that when sunspot activity is above 
mean, times are good for new entering fi rms, but when sunspots are below 
average it is best to postpone entry. Then both enter with probability ½ 
and both postpone with the same probability, ½. In that case, they have 
a correlated equilibrium with expected value payoff s of 7.5. Moreover, a 
market for fi nancial securities, that is “contingent claims,” can play a role 
in this correlated equilibrium. Suppose Firms A and B sign a contract that 
specifi es that A will pay 2.5 to B if sunspot activity is greater than average, 
and B will pay 2.5 if not. Then, by playing the correlated equilibrium, the 
two agents each obtain a payoff  of 7.5 with certainty.

We might make this a basis for a larger game. Suppose that at each time 
t 5 1, 2, . . ., q new fi rms of each type come into existence. The fi rms are 
matched in complementary pairs, perhaps because of diff erent locations, 
with payoff s determined as in Game 5.3. Now suppose that above-average 

Table 5.3 Game 5.3: complementary market entry

Payoff s: A, B Firm B

Go Postpone

Firm A Go 10,5 0,0
Postpone 8,8 5,10
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sunspots in periods t and t 1 1 are followed by below-average sunspots in 
period t 1 2. Firms that have entered in period t cease to exist in period t 
1 2, and the potential new fi rms in period t 1 2 postpone their entry until 
period t 1 3. Thus, 2q fi rms of each type are active in period t 1 1, but 
period t 1 2 is a recession period with only q fi rms of each type active. 
Now suppose that sunspots are again above average in period t 1 3. 
Potential new fi rms from both periods t 1 2 and t 1 3 enter in period t 1 
3, and we have a recovery, with the number of active fi rms returning to 2q 
of each type. Thus we observe “business cycles” correlated with sunspots 
although sunspots have no causal infl uence on economic variables.

But it is possible to improve on the sunspot equilibrium in this instance. 
Suppose instead that a disinterested third party gives each fi rm an instruc-
tion either to enter or to postpone entry. The third party randomizes 
instructions, instructing both to enter with probability ¼, both to post-
pone with probability ¼, and A to enter and B to postpone with prob-
ability ½. The fi rms are also told to keep their instructions confi dential. 
Suppose Firm B is instructed to enter without postponement. Computing 
the conditional probability that Firm A also will enter without delay 
as (1

2) / (1
2 1

1
4) 5

2
3, Firm A’s expected value from following the instruc-

tion is 7, while the expected value of acting against the instruction, that 
is postponing entry, is 6.7. Thus Firm B’s best response is to follow the 
instruction. Moreover, Firm B has an incentive to keep his instruction 
confi dential, as he is also instructed, since if he were to reveal that he is 
to enter immediately, A’s best response would be to do the same, reduc-
ing B’s payoff  to 5 with certainty. Suppose B is instructed to postpone. In 
that case, he has nothing to lose either by following the instruction or by 
keeping it confi dential, since he knows certainly that Firm A’s instruction 
is also to postpone. Firm B can realize his maximum payoff  by following 
this instruction without revealing it and revealing the instruction will not 
improve on that.

Suppose Firm A is instructed to postpone entry. Computing the condi-
tional probability for Firm B’s instructions as before, Firm A also fi nds 
that its expected value is greater from carrying out the instructions than 
from deviating from them; and moveover that she is better off  to keep the 
instruction confi dential, since if Firm B knew with certainty that fi rm A 
would postpone, Firm B would postpone, reducing Firm A’s expected 
value from 7 to 5.

All in all, then, the third party’s randomized instructions are self-enforc-
ing, and since the overall result of following instructions is an expected 
value payout of 7.75, the instructions Pareto-dominate both the previous 
correlated equilibrium, with a public “sunspot” signal, and the mixed 
strategy Nash equilibrium.
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In these examples, the signal that coordinates decisions for the two 
fi rms is an astronomical phenomenon or an instruction from an anony-
mous third party. As we noted in the discussion of stoplights, provision 
of a coordinating signal might be a function of the public authority, as the 
provision of a public good. To what extent, then, might the provision of 
coordinating signals for the macroeconomy be a public function? Indeed, 
arguably, it already is. The importance of the “announcement eff ects” of 
policy announcements by the Federal Reserve System in the United States 
has long been known (Waud, 1970). It has been suggested (Stein, 1989) 
that the Fed deliberately practices “cheap talk” as a means of infl uencing 
economic activity, though the generality of the reasoning has been chal-
lenged (Conlon, 1993). Federal Reserve announcements – and similar 
announcements from other public bodies – could play the role of public 
“sunspots” in determining a correlated equilibrium in the “game” of mac-
roeconomics. In the example with private signals, the “third party” giving 
the instructions sounds a bit like an economic planning agency.6 This is not 
to suggest that any economic planning agency has ever, in practice, had the 
knowledge necessary to construct a self-enforcing plan, using randomized 
strategies, as that example proposes. It is an open question whether this 
might be practicable in some future institutional context. The conclusion 
we may draw is that the public provision of coordinating signals is a public 
function about which very little is known, and that merits extensive future 
research.

5.5  PLURAL NASH EQUILIBRIA AND THE 
RATIONALITY POSTULATE

It has been argued (Hargreaves Heap and Varoufakis, 1995; Coleman, 
2003) that the multiplicity of Nash equilibria impeaches the rationality 
postulate basic to game theory (as well as neoclassical economics). When 
there are plural equilibria, the agents cannot determine their decisions 
simply through rational procedures. At best, custom and convention come 
into their decisions, and at worst, the decisions are simply indeterminate. 
This is said to discredit the rationality postulate. This critique goes too far, 
however.7

In the case of coordination games, such as Game 4.5, custom can 
indeed be the decisive determinate of the decisions. But the best-response 
principle is an explanatory principle without which custom might not 
determine the decisions in these cases. In Game 4.5, for example, the 
key point is that following custom is a best response; if people do not 
predictably follow their best response in Game 4.5 then the custom itself 
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loses its predictive role. The nonrational alternative would be to suppose 
that people mechanically follow custom regardless of whether it is a best 
response or not. This in turn would mean that in Game 4.1, the pollution 
game, a custom of nonpollution would be suffi  cient to assure the effi  cient 
outcome. Game theory predicts the opposite, setting limits to the cases in 
which custom may be decisive. Indeed, the weakness of custom in limiting 
the deployment of polluting technologies does seem to contrast with the 
power of custom in determining that Britons drive on the left side of the 
road and Americans on the right. In any case, this is an elaboration, not a 
failure, of the rationality hypothesis.

The case is more diffi  cult in an anticoordination game, such as Game 
4.6. In such a game a uniform signal, such as a convention along the lines 
of “drive on the left,” will not do, so that the decision is all the more 
likely to be indeterminate. Yet, in fact, a more complex custom may 
resolve the decision. If the participants in the game are ranked, so that 
the person of higher rank is given precedence, then the information as 
to which agent is of the higher rank makes the decision determinate. A 
diffi  culty is that the hierarchy of rank must be complete: it must be that 
every match is between two agents of diff erent rank. Rank in military 
organizations illustrates this. Combat generally involves coordinated 
action but diff erentiated missions and objectives, with great and widely 
diff erent risks. In battlefi eld conditions, coordination is crucially impor-
tant and indeterminate decisions can result in disaster. Thus, it is crucial 
that some specifi c person is able to make authoritative decisions, and far 
less important to make fi ne calculations about who is best suited to make 
them. The system of military ranks, with persons of equal rank subordi-
nated by seniority or even age, is well suited as a customary solution to 
this problem.

On its face, it may seem that the correlated equilibria make the case 
worse, because they are far more numerous than Nash equilibria in many 
games. When there are two or more undominated Nash equilibria, there is 
a continuum of correlated equilibria. However, this is misleading. When 
the two businessmen agreed to settle their diff erence by arm-wrestling, 
the probabilities (whatever they may have been) were probabilities they 
agreed on, and their agreement specifi ed a single one of the infi nitely 
many possible allocations of probabilities among the two diff erent pure-
strategy Nash equilibria. The same is true when the township supervisors 
of Eastonia and Westoria agree to base their decision on a cost–benefi t 
study, although each is certain that his own town is the best choice, and 
when two drivers at an intersection happen unpredictably to arrive when 
the light is red one way and green the other, and of Celtic priests deciding 
who is to be sacrifi ced.
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It is true that there may not be time to come to agreement on the prob-
abilities or on a mechanism, such as arm-wrestling or drawing the short 
straw, so that a correlated equilibrium may simply not be available as a 
means of resolving an indeterminate Nash equilibrium. The meeting of 
two cars at an intersection has been given as an example – and probably 
most readers of this book have experienced impasses of this kind. It is also 
true that, in a game like Game 5.3, Aumann’s game, there is potential of 
increasing effi  ciency beyond what an average of the Nash equilibria can 
support; but this potential can only be realized with private, imperfectly 
correlated signals, which may be diffi  cult or costly to arrange. But it is 
not the rationality postulate that underlies these failures – it is the lack of 
 suffi  cient time or communication.

The widespread observation of equiprobable mechanisms suggest that, 
in the absence of clear reasons against them, equiprobable correlated 
equilibria will usually occur when there are multiple undominated Nash 
equilibria. That equal probabilities are cognitively salient and determine a 
Schelling focal point, and require little knowledge but are consistent with 
the principle of insuffi  cient reason, further points in favor of the predic-
tion of an equiprobable solution. If there is a custom or convention that 
supplies a solution, then custom will take precedence over an equiprob-
able chance mechanism. In the rest of this book, cases of multiple Nash 
equilibria that cannot be resolved otherwise will be assumed to lead to 
equiprobable correlated equilibria.

5.6 CONCLUSION

Nash equilibria do not exhaust non-cooperative game theory. Correlated 
equilibria, with strategies that are randomized but not independent of one 
another, expand the set of possible non-cooperative solutions, but also 
resolve many of the puzzles about games with two or more undominated 
Nash equilibria. It should be added that the correlated equilibria can be 
thought of as Nash equilibria in enlarged games that include such things 
as arm-wrestling or drawing straws, with strategies contingent on events in 
those stages. It is the fact that they are Nash equilibria of enlarged games 
that makes them self-enforcing. Thus, the correlated equilibria are a struc-
ture built on the foundation of Nash equilibria. They cannot supplant 
Nash equilibria in non-cooperative game theory. Public policy applica-
tions of correlated equilibria are largely unexplored. Nevertheless, these 
studies enrich our understanding of the theory of non-cooperative games 
in strategic normal form in important ways and their role in the study of 
public policy deserves extensive research.
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NOTES

1. The “principle of insuffi  cient reason” is at best controversial. If we reject it entirely, 
though, then multiple equilibria are not likely to be much of a problem – people will 
always have some grounds for thinking one equilibrium more likely than another, and 
the set of equilibria collapses to the one that is thought more likely. Schelling’s (1960) 
discussion follows very much that line. On the other hand, if we take seriously the idea 
that the agents have no reason to expect one equilibrium rather than another, we might 
express that by saying that their information is minimal; and the minimum-information 
condition for an exhaustive set of exclusive alternatives is that the alternatives are 
equiprobable. (See McCain, 1972, for discussion and an application.)

2. The invention of the traffi  c signal has been widely attributed to Garret Morgan, an 
African-American inventor (Famous-inventors.com, 2006) although that has become a 
matter of controversy on the world-wide web (Crandall, 2007). It does seem clear that 
Morgan was, at least, an inventor of a device to control traffi  c at intersections, bringing 
about a correlated equilibrium solution to the anticoordination game of intersection 
traffi  c. 

3. Keystone Automobile Club (1927).
4. It would make little diff erence if each wished the honor of being sacrifi ced, provided that 

the sacrifi ce must be unique. 
5. Since the only Nash equilibrium of scissors-paper-stone is a mixed strategy equilibrium 

with equal probabilities, this method uses a game with an unique solution to generate the 
probabilities to choose among the equilibria of a game with plural Nash equilibria. 

6. McCain (1991) proposed a model of economic planning for market economies based on 
a coordination game model which in turn was derived from Rosenstein-Rodan (1943). 
This model was extended to asymmetric information in McCain (1985). (The 1991 paper, 
though preliminary, was long delayed in publication.) McCain’s model assumes only 
public signals, however. 

7. I do not mean to suggest that there are no valid criticisms of the rationality postulate, as 
discussions at Chapters 3 and 8 may illustrate.
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6.  Non-cooperative sequential games 
and public policy

In Chapters 4 and 5, our focus was on non-cooperative games in strate-
gic normal form. While (as von Neumann and Morgenstern showed) all 
games in extensive form can be represented in strategic normal form, to do 
so in general we may have to be careful to specify strategies as contingency 
plans. Thus, the strategic normal form will apply most naturally and with 
the best intuition to games in which simultaneous choices of behavior 
strategies must be made, such as the Prisoner’s Dilemma. Conversely, 
when some decisions must in fact be made before other decisions are made, 
so that subsequent decisions are made with knowledge of the earlier deci-
sions, the game represented in extensive form may be more natural and 
intuitive. Such games are said to be sequential. In this chapter we focus on 
sequential games and on the game represented in extensive form.

6.1  SUBGAME PERFECTION AND TREMBLING 
HANDS

Recall Game 2.2, Figure 2.1 in Chapter 2. We should notice that the 
decision by Firm A, to accommodate or retaliate, is a subgame in this 
game. Accordingly, we can defi ne a behavior strategy locally at this deci-
sion point. The behavior strategy is just to accommodate or to retaliate, 
without specifying any conditions as to what previous decisions might be 
made. (Such conditions would be trivial in this case anyway.) In the spirit 
of Nash equilibrium theory, we might suppose that Firm A will choose 
the behavior strategy that leaves it with the larger payoff . This is “accom-
modate” for a payoff  of 2 rather than 1. Moreover, the potential entrant, 
Firm B, can anticipate this. Therefore, Firm B expects that the payoff  from 
the behavior strategy “enter” pays 1 while the behavior strategy “don’t” 
pays 0, and accordingly Firm B chooses “enter.” Thus the non-cooperative 
solution to this game would seem to be “enter, accommodate.”

Four comments should be made on this reasoning.
First, it is an example of subgame perfect Nash equilibrium, a concept 

that is now central to the analysis of sequential games. A subgame perfect 
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Nash equilibrium is a sequence of behavior strategies that (1) is a Nash 
equilibrium in behavior strategies in the game as a whole, and (2) is also a 
Nash equilibrium in every subgame. In this case, we have just one proper 
subgame, and that is Firm A’s decision whether to retaliate or accommo-
date. The fact that Firm A chooses the behavior strategy that maximizes 
its payoff s at that point means that we do indeed have a Nash equilibrium 
in this subgame. That Firm B maximizes its own payoff  based on antici-
pation of that decision means that each fi rm is choosing its best response 
to the other’s strategy (sequence of behavior strategies); we have a Nash 
equilibrium in the game as a whole.

Second, the example illustrates an algorithm for fi nding subgame perfect 
Nash equilibria. The algorithm is called “backward induction.” In this case, 
notice, the fi rst step is the last decision to be made, resolved by determining 
a Nash equilibrial behavior strategy as if the subgame stood alone. We then 
treated the fi rst decision as a “reduced game” in which the payoff s were 0 
for “don’t” and 2 – the equilibrial payoff  in the fi rst step – for “enter.” The 
Nash equilibrial decision for the “reduced game,” “enter,” then completes 
the subgame perfect Nash equilibrium. For more complex games and in 
general, the algorithm would be as follows: (1) Among all subgames, deter-
mine those that are basic. A basic subgame is one that has no other sub-
games within it; in Game 2.2, Firm A’s decision is the only basic subgame. 
(2) Determine the behavior strategies that constitute a Nash equilibrium 
for the basic subgames. (3) If the Nash equilibrium is unique, form the 
reduced game by eliminating the basic proper subgames, replacing the basic 
proper subgames by their equilibrial payoff s. If the Nash equilibrium for a 
particular subgame is not unique, replace the subgame by one or another 
set of equilibrial payoff s. (4) Repeat until the reduced game is the fi rst deci-
sion to be made, and determine the Nash equilibrial behavior strategies and 
payoff s for that decision. (5) The sequence of behavior strategies are then 
the subgame perfect Nash equilibrial behavior strategies, and the payoff s 
yielded by this sequence are the subgame perfect equilibrium payoff s.1 If 
one or more of the equilibria determined at stage 3 are non-unique, then 
the subgame perfect Nash equilibrium is non-unique.

Third, another way to express the result in this analysis is to say that the 
threat of a price war in this case is incredible. This recalls, yet again, Nash’s 
comment that a threat is often something that a person would not want to 
do for themself, and that is the case with respect to the price war in Game 
2.2. In general, in non-cooperative game theory, a threat is credible only if 
it is subgame perfect. If the threat is part of a subgame perfect equilibrium 
sequence of behavior strategies, then it is Nash equilibrial in the subgames 
of which it is a part, and if so then it is an exception to Nash’s comment – it 
is something the person would want to do for themself.
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Fourth, the application in this case is itself very important for public 
policy and economics. It supports the argument that market entry is 
irrepressible in a market economy without government restrictions. Since 
entry tends to increase price competition and price competition in turn 
tends to induce effi  cient pricing and resource allocation, this would be an 
element of an argument for free market policies. On the other hand, if in 
a special case market entry were to have negative consequences, it could 
be an element of an argument for public policies that would restrict entry. 
Patent rights would be an instance of the special case.

Although we are concerned here with the representation of the game in 
extensive form, it will be helpful here to digress on the strategic normal 
form. Recall the normal form of this game, Table 2.2 in Chapter 2. Notice 
that this game has four Nash equilibria: “don’t” with strategies 1 and 
4, and “enter” with strategies 2 and 3. The latter two correspond to the 
subgame perfect Nash equilibrium, since both require Firm A to choose 
the behavior strategy “accommodate.” But the other two formally are 
Nash equilibria as well.

Is there any basis to exclude these equilibria? We do notice that for Firm 
A strategies 1 and 4 are weakly dominated. A strategy is weakly domi-
nated if there is another strategy the payoff  to which is never less, and is 
greater for at least one strategy that the other player might choose. Since 
behavior strategy “accommodate” pays 2 if Firm B enters, and 5 if Firm 
B does not, the contingent strategies leading to “accommodate” weakly 
dominate those leading to “retaliate.” Indeed, we see that this game has 
only three distinct outcomes: price war, accommodated entry, and contin-
ued monopoly. Behavior strategy “don’t enter” always leads to the same 
outcome, therefore to the same payoff s. In general, when we translate a 
game in extensive form into a game in strategic normal form, we will fi nd 
that there are many fewer outcomes than strategy combinations, since 
many diff erent combinations of contingent strategies will lead to the same 
basic subgames, and therefore to the same outcomes. Thus, weakly domi-
nated strategies are likely to be quite common in games in extensive form. 
The question thus becomes: is there any basis to exclude equilibria that are 
based on weakly dominated contingent strategies?

In 1975, Selten (CGT, pp. 317–54) introduced a refi nement of Nash 
equilibrium called the trembling hand equilibrium: suppose there is some 
small positive probability that a player will fail to choose his best-response 
strategy, so that the player will choose any other specifi c behavior strategy 
instead. This is a perturbed game. We can defi ne equilibrium for the per-
turbed game in the usual way, with the expected values of payoff s determin-
ing the best responses. The equilibria of a perturbed game may diff er from 
those of the original game. Now defi ne a sequence of perturbed games in 
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which the probability of errors approaches zero in the limit. Selten shows 
that the limit of the equilibria of such an (appropriately constructed) 
sequence of perturbed games is an equilibrium of the original game, but 
not all equilibria are the limits of such sequences. Those equilibria that are 
the limits of such sequences are perfect equilibria. This means that equi-
libria are excluded if they depend on behavior that is rational only on the 
assumption that other players are themselves perfectly rational.

In a perfect equilibrium, a Nash equilibrium is realized in every subgame 
of the original game, including of course the game itself. Thus a perfect 
equilibrium is, in particular, subgame perfect. In Game 2.2 revised, for 
example, suppose that the probability that Firm B chooses the “wrong” 
strategy is p. In such a case the payoff  of contingent strategies 1 and 4 is 
2p 1 1(1 − p). The payoff  to strategies 2 and 3 is 5p 1 2(1 − p). Clearly 
the second is larger for any positive p, so strategies 1 and 4 are not best 
responses in any perturbed game. Consequently, the subgame perfect equi-
librium of Game 2.2 is the only perfect equilibrium of Game 2.2 revised.

But the perfect equilibrium can also be applied to games that do not 
have subgames. As an example, Selten discusses the Horse game (Figure 
2.3, Game 2.3, Chapter 2). As in Chapter 2 we will encode the behavior 
strategies as follows: for Firm A, “License” is R1, “Don’t” is L1, for Firm 
B, “Don’t” is R2, “Enter” is L2, and for Firm C, “License” is R3 and 
“Don’t” is L3. Notice that for this game, L1R2R3 is an equilibrium: but 
it is so only because Firm B does not get an opportunity to play at all. If 
Firm B were to get an opportunity to play, he would know that player 1 
had not played L1 but R1 and, on an expectation that Firm C would play 
R3, player 2’s best response is not R2 but L2. This is unreasonable, Selten 
argues, writing (p. 328) “Player 2’s choices should not be guided by his 
payoff  expectations in the whole game but by his conditional payoff  expec-
tations” at decision node B. In fact, L1R2R3 is not a perfect equilibrium.

In Game 2.2 revised, the Nash equilibria with contingent strategies 1 
and 4 can be excluded because they are not perfect equilibria. As we noted, 
they are formally Nash equilibria, but their exclusion is very much in the 
spirit of Nash’s non-cooperative game theory. Retaliation is a threat strat-
egy, and would not be “something A would want to do, just of itself.” The 
term “perfect Nash equilibrium” is quite apposite: rather than restricting, 
Selten has perfected Nash’s reasoning.

6.2 PRAGMATICS: PROBLEM SPECIFICATION

As before, one of our concerns is with problem identifi cation. Accordingly, 
we consider some cases in which the game in extensive form helps us to 
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specify a problem of interactive decision-making that may be relevant for 
public policy.

6.2.1 Ulysses and the Sirens

We recall that the entrenched monopolist in Game 2.2 was unable to 
prevent the entry of new competition, because the threat of a price war 
was not subgame perfect. Yet the entrenched monopolist might not be 
entirely helpless. The monopolist might consider a large-scale investment 
that would increase both its production capacity and its costs, creating a 
situation in which the restricted output corresponding to accommodation 
of the new entering fi rm would be less profi table, and the increased pro-
duction incident on a price war more profi table. If it anticipates competi-
tive entry (for example, following deregulation) the fi rm might undertake 
such an investment, in the hope that the entry would be prevented. This is 
strategic investment to deter entry, and Game 6.1 is an example. As before, 
the fi rst payoff  is to Firm B. (See Figure 6.1; the numbers in parentheses 
will be explained below.)

In Game 6.1, if Firm A decides not to invest, then we have Game 2.2, 
but if Firm A decides to invest, we have a diff erent subgame. To solve 
this more complex game, we again identify the basic subgames, and they 
are A’s second round of decisions. Both are basic. For the lower one, we 
already know that the perfect behavior strategy is “accommodate.” For 
the upper subgame, however, “retaliate” is the perfect response. Thus, 
Firm B can anticipate that the behavior strategy “enter” will pay 1 in the 
lower subgame but −1 in the upper. “Enter” is a perfect behavior strategy 
in the lower subgame but not the upper. Anticipating all this, Firm A 
expects that investing will lead to profi ts of 4 while not investing will lead 
to profi ts of 1. Thus, the subgame perfect sequence of behavior strategies 
is “invest,” “don’t enter.”

The investment may or may not be effi  cient. To know the answer to 
that, we need to know more about the benefi ts to customers. In economics, 
the consumers’ surplus measures the net benefi t to the buyer from buying 
at a particular price. The consumers’ surplus plus the total profi ts of the 
two fi rms measures the net social benefi t for this industry, in the absence 
of externalities. For this example, the numbers in parentheses represent 
consumers’ surpluses corresponding to the diff erent degrees of price com-
petition and output capacity in the various possible outcomes of the game. 
The largest total, 8 on our arbitrary scale of measurement, occurs if Firm 
A does not make the investment, Firm B does enter, and entry is accom-
modated. In that case, the consumers have the benefi ts of both expanded 
production capacity and increased price competition. By contrast, in the 
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subgame perfect equilibrium, consumers benefi t from increased capacity 
but not from increased price competition, so the total, 7, is less. Effi  ciency 
is improved – without either entry or new investment, at the bottom of the 
diagram, total benefi t is 6 – but the resulting outcome is not fully effi  cient 
because of the entry-limiting investment.

The key point is that the investment has been successful in deterring 
entry. In Game 2.2, Firm A was unable to deter entry because the threat 
of a price war was incredible: Firm B could anticipate that Firm A would 
not undertake such an unprofi table step. If Firm A were able to do so, 
it would choose the best response behavior strategy of accommodation. 
However, by making the strategic investment, Firm A has deprived itself 
of the opportunity to accommodate profi tably.

This illustrates a more general point that emerges from the study of the 
game in extensive form. In some cases, an agent may be better off  with 
fewer opportunities, fewer options. Schelling (1960) stressed that in order 
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to bind others, we might have to fi nd a way to bind ourselves. This is what 
Firm A has done in Game 6.1. Elster (1977) drew the analogy to Ulysses 
having himself bound to the mast so that he could hear the song of the 
sirens – and not succumb to it.

By considering a strategic investment to deter entry, Firm A has nested 
Game 2.2 within a larger game. Since Game 2.2 is a subgame of Game 6.1, 
it is an imbedded game. That is important, since it means that the subgame 
perfect solution of Game 2.2 is perfect also in the context of the nesting 
Game 6.1. That is to say, (for purposes of non-cooperative game theory) we 
can analyze the imbedded game as a game in its own right, expecting that its 
equilibrium will be equilibrial also within the larger game – while that might 
not be true for a game that is nested but not imbedded in the larger game.

6.2.2 Agency

A large body of literature in economics and game theory has grown up 
with respect to relations between a principal2 and an agent. These models 
are sequential in that the principal sets the conditions for the decisions 
taken by the agent. There are some aspects of the agent’s activity, such 
as eff ort, that the principal is unable to observe. It is this that makes the 
relationship (at least partly) non-cooperative. Agency models are also 
more general than the phrase may suggest. The agent may sell a home on 
behalf of the owner, but may be a corporate executive when the principals 
are shareholders, or may be a professional and the principal a client, and 
so on. As usual we will illustrate the idea with a simplifi ed (and nonmath-
ematical) example; the agent will be a lawyer and the principal a client.

For the example, there is a third player: chance. The lawyer can pursue 
the lawsuit with great or slight eff ort, and these are the lawyer’s strategies. 
Chance can provide good or bad conditions for the lawsuit, at random 
with equal probabilities ½. If the lawyer makes a great eff ort and chance 
is favorable, the lawsuit yields 14 to the plaintiff . (As usual the reader may 
add as many zeros as seem appropriate.) For the lawyer, great eff ort is 
equivalent to a deduction of 2 from her fee, while slight eff ort is equiva-
lent to a deduction of 1. If the lawyer makes a slight eff ort and chance is 
unfavorable, the lawsuit yields only 2. If the lawyer makes great eff ort 
and chance is unfavorable, or if the lawyer makes slight eff ort and chance 
is favorable, the lawsuit yields 6. Since the client cannot observe either 
eff ort or the random variate, he will not know whether the intermediate 
outcome is a consequence of slight eff ort or of adverse chance. As a result, 
the payment for legal services cannot be conditioned on eff ort. The client 
is considering whether to pay the lawyer a fl at fee of 3 or a contingent fee 
of 1/3 of the award.
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The resulting game in extensive form is shown as Game 6.2, with c 
denoting the client, l the lawyer and n (for nature) chance (Figure 6.2). 
The fi rst payment is the net benefi t to the client, the second to the lawyer. 
Chance “decisions” are not subgames (since chance has no intentions) and 
the basic subgames are the lawyer’s decisions. With a fi xed fee of 3 she is 
always better off  making slight eff ort, but with the contingency fee can 
anticipate an expected value of 1 1/3 with great eff ort, but 1/3 with slight 
eff ort, so in the lower part of the diagram, the lawyer will choose to make 
a great eff ort. Accordingly, the client will face an expected value of 1 (net 
of the fee of 3) in the case of a fl at fee but 6 2/3 in the case of a contingency 
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fee. The subgame perfect equilibrium is for the client to off er a contingency 
fee and the lawyer to make great eff ort.

In Williamson’s informal work on the economics of the fi rm and similar 
cooperative arrangements (for example, 1964), he put some stress on “oppor-
tunism,” arguing that many seemingly ineffi  cient contractual arrangements 
could be explained as means of avoiding or limiting opportunism. He was 
sometimes criticized by economists who suggested that, after all, opportun-
ism is nothing more than self-interest. In the agency example, suppose that 
the lawyer promises to make a great eff ort in exchange for a fi xed fee. This 
would generate an expected value of 7.5 for the client, so that, if she trusts 
the lawyer, the client would accept that off er. If, however, the lawyer never-
theless makes slight eff ort, we would say, in a sense of everyday usage, that 
the lawyer had acted opportunistically, and that the choice of a contingency 
fee is made to avoid the consequences of opportunism, very much along the 
lines of Williamson’s thinking. It is true enough that opportunism is non-
cooperative self-interest, but also that opportunism is not identifi ed by the 
character of the behavior alone but also by the sequential structure of the 
game. Opportunism in this usage will be important in some later chapters.

6.3 IMBEDDED GAMES

In Chapter 2, a game was said to be imbedded in another if the fi rst game 
is a proper subgame of the second. The imbedded game can be studied 
as a stand-alone non-cooperative game. Since we cannot represent the 
universe as a single game, this is essential to any applied game theory. In 
particular, it is important for public policy applications. If we think of 
the public sector as setting the “rules of the game,” then private sector 
(interdependent) decisions are imbedded within the game of public policy 
 determination. We will illustrate the point, as usual, by example.

Let us return to an example from Chapter 2: two agents own property 
on a river. If Joe Upstream diverts the stream for some project of develop-
ment of his own land, then Irving Downstream’s water supply from the 
river will be reduced. How may we represent this as a game in extensive 
form? It depends on the regime of property rights. Under riparian rights, 
Irving will be able to sue Joe and recover any damages that result from 
the diversion. (This will imply some legal costs that will have to be borne 
by one landowner or the other.) On the other hand, if the regime is non-
riparian, a landowner is allowed to develop his own land as he chooses, 
regardless of the results for other landowners up or downstream. Thus, in 
a non-riparian regime, Irving would not be able to sue to recover damages. 
If he did fi le a lawsuit he would lose.
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Let us consider fi rst a case in which the project is ineffi  cient, that is, it 
imposes costs (damages) on Irving that are greater than the benefi ts that 
Joe obtains. Then we have Game 6.3, shown as the upper branch of Figure 
6.3, beginning with node j. As usual, the payoff s are arbitrary but chosen 
to be consistent with the assumptions of the problem; in this case total 
benefi ts are evaluated on a scale from 0 to 10. The fi rst payoff  is to Joe, the 
second to Irving. The subgame perfect equilibrium of this game is that Joe 
does not develop his property, and in this instance it is an effi  cient result; 
though we should stress that this depends on the particular numbers in this 
case and if (for example) the benefi ts of the development were greater, this 
result could be ineffi  cient.

Now suppose instead that the regime were one of non-riparian rights. 
In that case Joe has the right to develop his property as he may please, 
and Irving has no grounds for any lawsuit. If he does sue he will lose. We 
then have Game 6.4, the subgame shown as the lower branch of Figure 6.3 
beginning, again, with node j. In this case the subgame perfect equilibrium 
is that Joe goes forward with the ineffi  cient development, and Irving does 
not sue.

Riparian rights provide an example of alternative systems of property 
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rights, with no clear rationale other than effi  ciency for choosing one 
system over the other. From a normative or ethical point of view, we have 
two arguments that seem to off set one another: (1) one ought to be able to 
enjoy an unaltered river frontage; and (2) one ought to be able to develop 
one’s own property as one may choose. In any case the decision between 
two property rights regimes can only be made by the public authority.

Now let us assume that these two examples are typical: that is, that on 
the average, riparian rights will deter ineffi  cient projects and admit effi  cient 
ones (where the damages are less than the benefi ts to the developer). This is 
an independent judgment of fact and would have to be verifi ed by empiri-
cal research. We suppose that this has been done. We treat the public 
authority as a player in the game, and assume that the payoff  to the public 
authority is the sum of the payoff s to Irving and Joe. Then the decision of 
the public authority is represented by Game 6.5, Figure 6.3 as a whole.

The subgame perfect equilibrium of Game 6.5 is that the public author-
ity chooses riparian rights and Joe elects not to proceed with the ineffi  cient 
project. Note that for this example, both the two-person games with ripar-
ian and with nonriparian rights are imbedded games in the public decision. 
Conversely, in order for non-cooperative game theory to be applied validly 
in the formation of public policy, it is essential that the private sector deci-
sions be imbedded as subgames in the larger game comprising the public 
policy decision – that is, that the interdependent decisions in the private 
sector be analyzed as complete games, and not as fragmentary nested (but 
not imbedded) games. If we think of public policy as setting “the rules of 
the game” for the private sector, then clearly private sector decisions must 
be imbedded in the game of determining public policy.

In this example, the strategies available to Joe and Irving do not have 
any infl uence on the decision of the public authority. That is, strategies 
involving lobbying and bribery have not been taken into account. If these 
instances of “rent-seeking behavior” are available to the private agents, 
then their game (that is, the private sector) is no longer imbedded in the 
public policy decision, although it is nested in that larger game. In that 
sense, the imbedding of private sector decisions in the larger game of deter-
mination of public policy is an ideal case.

6.4 REPEATED PLAY

In a very early experimental study in economics, two experimental subjects 
played a non-cooperative game 100 times in succession. The results did not 
agree with the predictions of Nash equilibrium for the individual plays. 
John Nash’s response to this was that it was not a valid test of the theory, 
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but that the entire series of 100 repetitions would have to be solved as a 
single game. (This account follows Poundstone, 1992, Ch. 6.) It was widely 
suspected that repeated play would make a diff erence (von Neumann and 
Morgenstern conjecture along these lines in passing) and could result in 
cooperative play in an otherwise non-cooperative game. This suspicion 
was so strong that it is sometimes called a “folk theorem,” although it has 
not been proved, nor even formally stated, and indeed is not true in general. 
However, the tools to deal with the question did not exist until the 1970s. A 
game consisting of repeated plays of a simpler game is best dealt with as a 
game in extensive form, and subgame perfect equilibrium is a key tool.

6.4.1 The “Folk Theorem”

Nutter’s (1964) theory of oligopoly envisions price competition among a 
small number of fi rms as a Nash equilibrium in which the competitive price 
is the unique equilibrium. This equilibrium can be arrived at by iterated 
elimination of dominated strategies,3 in which a lower price always domi-
nates a higher price (at or above the competitive price). However, typi-
cally, oligopolists face one another in price competition again and again, 
period after period. Thus, perhaps they will be able to attain a cooperative 
solution (among themselves, not considering the customers as players) 
and share monopoly profi ts based on higher prices. If so, there would be 
important implications for antitrust policy. This is one of the most impor-
tant (and common) applications of the theory of repeated play.

As usual we begin with a simple example, designed to minimize math-
ematical diffi  culty. Firms A and B will choose between just two prices, 
high and low, and the prices are the behavior strategies for the duopolists. 
The high price corresponds to a shared monopoly and so higher profi ts 
for both fi rms, and the lower price corresponds roughly to a competitive 
price. We will not explore the details of cost and revenue that generate 
these profi ts and, for mathematical simplicity, will ignore intermediate, 
lower and higher prices that might be charged. The example is Game 6.6, 
shown as Table 6.1. However, the two fi rms will play the game again and 

Table 6.1 Game 6.6: duopoly

Payoff s: A, B Firm B

High Low

Firm A High 7,7 3,10
Low 10,3 4,4
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again, and this repeated play, taken together, is a sequential game. The 
strategies for this game are behavior strategies, while a (von Neumann 
and Morgenstern) contingent strategy for this game would be a sequence 
of conditional decisions for each play of the game.

Case 1 M repetitions
We fi rst consider a case in which the play is repeated for a defi nite number 
of iterations, indicating the number of repetitions as M. The repetitions of 
Game 6.6 are indicated as 1, 2, . . ., M. In the larger game of repeated play, 
subgames4 are sequences j, . . ., M, where 1 # j # M. In particular, play M, 
the last play, is the only basic subgame. We know the equilibrium of that 
subgame: it is “low, low” for payoff s 4, 4. We then consider the reduced 
game consisting of repetitions 1, . . ., M 2 1, with payoff s augmented by 4 
each.5 The only basic subgame of this game is repetition M − 1. Once again, 
we know the equilibrium and it is the non-cooperative solution in behavior 
strategies to Game 6.6. We continue in this vein until repetition 1 is the 
reduced game; for it, too, the non-cooperative solution is the equilibrium. 
The conclusion is this: for a game with a defi nite number of repetitions, the 
folk theorem is false, and the only subgame perfect equilibrium is a sequence 
of plays of the Nash equilibrium behavior strategies in the original game.

Case 2 Indefi nite repetitions
Aumann (CTG4, 1959, pp. 287–324) defi ned a supergame for a game G as 
an infi nite sequence of repetitions of G. Clearly, the reasoning in the previ-
ous case will not apply to a supergame, since the supergame has no basic 
subgames. Every subgame is a sequence of repetitions of G indexed as j, 
j11, . . ., without limit, so every subgame contains other proper subgames. 
We will have to use diff erent methods to deal with supergames.

But is this realistic? After all, nothing lasts forever! However, Case 1 
seems a little artifi cial in assuming a defi nite number of repetitions. How 
likely is it that oligopolists, or others engaged in a repeated game, would 
anticipate the exact number of repetitions that will occur? Suppose instead 
that at each repetition of G, the players can expect that there will be yet 
another repetition with probability d, but the probability that there will 
be no further repetitions whatever is 1 − d. Let yj be the payoff  to a player 
in the jth repetition of the game. Then at repetition t, the player wants to 
maximize the mathematical expectation g`

j 5  tdyj. This formula is the same 
as a formula for the discounted present value of the series of payments at 
a discount factor d, and accordingly d is referred to as the discount factor.6 
Although the probability of more than M rounds of play approaches zero 
as M increases without bound, a game such as this has to be analyzed as 
an infi nite game and has no basic subgames.



98 Game theory and public policy

We may suppose that the players in the game choose behavior strate-
gies for each repetition according to some rule. The “tit-for-tat” rule 
is an important possibility: begin by playing the cooperative behavior 
strategy, “high” price in this case, and continue playing it unless the other 
player plays non-cooperatively (“low” price). If the other player plays 
non-cooperatively, then retaliate by playing once non-cooperatively on 
the following round. Notice that the threat of retaliating by playing non-
cooperatively is credible, since non-cooperative play is an equilibrium 
behavior strategy on any particular round.

Tit-for-tat is called a “trigger strategy,” since non-cooperation triggers 
a retaliatory act of non-cooperation. However, properly speaking, the 
tit-for-tat rule is not itself a strategy.7 It is neither a behavior strategy nor 
a contingent strategy as understood by von Neumann and Morgenstern. 
Rather, it characterizes an infi nite family of contingent strategies or of 
sequences of behavior strategies for this game. However, because the 
retaliation is itself Nash equilibrial, each of the contingent strategies in the 
family is subgame-perfect, provided that the threat is suffi  cient to deter 
the other player from choosing the non-cooperative strategy. That is the 
 question to which we now turn.

The question is this: supposing Firm A plays according to the tit-for-
tat rule, will fi rm B will be deterred from a single opportunistic non-
cooperative play, that is, from playing “low” at round t, taking advantage 
of A’s cooperative play, and then returning to playing “high, high, high” 
so long as the game continues. This implies a sequence of payoff s yt 5 10, 
yt+1 5 3, yt+2 5 yt+3 5 . . . 5 7. The alternative is to play cooperatively on 
every round, which implies payoff s yt 5 yt+1 5 yt+2 5 yt+3 5 . . . 5 7. The 
expected value of the fi rst sequence is 10 1 d3 1 d27 1 d37 1 d47 1 . . .. 
The expected value of the second sequence is 7 1 d7 1 d27 1 d37 1 d47 1 
. . .. Since only the fi rst two terms diff er, the second sequence of payoff s is 
greater if 7(1 1 d) . 10 1 3d. A little algebra tells us that this will be true 
whenever d . 0.75.

What if Firm B plays non-cooperatively again and again? If so, then A 
will respond by also playing non-cooperatively on every turn, in accord-
ance with the tit-for-tat rule. Thus, Firm B’s sequence of payoff s is yt 5 
10, yt+1 5 yt+2 5 yt+3 5 . . . 5 4, which can be written as 10 1 (d/ (1 2 d))4. 
For any d . 0.25, the expected value of this sequence will be less than the 
expected value for the sequence of payoff s for a single non-cooperative 
play. Conversely, if the threat implicit in tit-for-tat play is suffi  cient to 
deter a single round of non-cooperative play, it is undoubtedly suffi  cient to 
deter systematically non-cooperative play. With d . 0.75, playing against 
tit-for-tat, Firm B will simply fi nd that more non-cooperation means 
lower expected value payoff s.
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What we have found is that, if the probability of another round of play 
is great enough,8 in this example, a tit-for-tat rule by one player will make 
it unprofi table for the other player to deviate from cooperative behavior. 
If each player plays tit-for-tat, then the play is always cooperative, and 
neither player can gain anything by deviating from the tit-for-tat rule.

Unfortunately, that is not the whole story. Mutual play of a tit-for-
tat rule is only one of many equilibria of an indefi nitely repeated social 
dilemma. In particular, pure non-cooperation by both players is always 
also an equilibrium. There are many others at intermediate levels of effi  -
ciency. Nor is the tit-for-tat rule dominant over all other rules by which 
the game might be played. Suppose, for example, that Firm A plays 
tit-for-tat while Firm B plays a more “forgiving” trigger strategy rule, 
tit-for-two-tats. That is, Firm B plays cooperatively unless Firm A plays 
non-cooperatively for two rounds in succession, and then responds with 
one round of retaliatory non-cooperative play. These two rules would 
lead to cooperation, and Firm B can do no better so long as Firm A sticks 
to tit-for-tat. But Firm A can do better by deviating from tit-for-tat. In 
particular, suppose Firm A adopts the rule of alternating cooperative and 
non-cooperative play. Then Firm B never retaliates and Firm A alter-
nates payoff s of 10 and 7, a sequence that dominates the sequence from 
steady cooperative play. The point is that there are some strategy rules 
(for example, tit-for-two-tats) against which the tit-for-tat rule does not 
produce best responses.

The tit-for-tat strategy rule and variants of it, such as a tit-for-two-tats 
and two-tits for-a-tat (retaliate with two rounds of non-cooperative play 
for one round by the other player) are all forgiving trigger strategy rules, 
which means that the retaliating player will eventually return to coopera-
tive play if the other player does so. A rule that plays cooperatively until 
the other player initiates non-cooperative play and then retaliates by 
playing non-cooperatively on all successive plays is called the grim trigger. 
The grim trigger may deter non-cooperative play where tit-for-tat would 
not. The grim trigger played a key role in warfare in the twentieth century. 
Poison gas was used as a weapon of war in World War I, and in the Iran-
Iraq war of the 1980s, but not in World War II. The use of a weapon such 
as poison gas may be a social dilemma for the belligerents (McCain, 2004, 
pp. 43, 277–9). In a long war, with repeated battles, perhaps restraint 
might be based on fear of retaliation from an opponent playing accord-
ing to a grim trigger rule. In fact, historical evidence makes it clear that 
Germany, the United States, and Britain (with pressure from the United 
States) were following a grim trigger rule with respect to gas (Harris and 
Paxman, 2002). This example may illustrate the real possibility of coop-
eration in games of completely opposed interest, but also underscores that 
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there is nothing inevitable about this, and that non-cooperation is always 
among the equilibria of repeated games.

This discussion assumes a two-person game. The extent to which the 
results may be extended to games of more than two persons remains a some-
what open question. What is clear is that the relatively simple argument along 
the lines of the previous example is not applicable to more than two players. 
Diffi  culties arise with as few as three players (Fudenberg and Maskin, 1986, 
p. 543). Allowing for correlated strategies (with public signals) and assum-
ing suffi  cient diversity in the payoff s to the diff erent players, Fudenberg 
and Maskin do extend the model to n players. Abreu et al. (1994) follow 
Fudenberg and Maskin with a more precise characterization of the condi-
tions for cooperation in n-person games. In a working paper, Haag and 
Lagunoff  (2005) fi nd that diversity in subjective rates of time discounting 
makes cooperation less likely, though it grows more likely in larger groups. 
Nevertheless, it seems widely felt that larger groups are less likely to cooper-
ate, on the basis of experience in the applications to price competition.

6.4.2 An Extension

In some ways the probabilistic repeated play model seems very plausible. 
After all, retaliation is a matter of common experience. However, it allows 
very little for changing circumstances outside the control of the agents in 
the game. Suppose, for example, that two fi rms play according to the tit-
for-tat rule for a number of years, and then it becomes known that one of 
them is fi nancially impaired and may go bankrupt. As a result, it seems far 
less probable that there will be further rounds of “play,” and the coopera-
tive agreement breaks down. The repeated play model, with its constant dis-
count factor, does not seem to allow for this sort of possibility. This section 
will sketch a modest extension of the model that will “realistically” allow for 
such changes of circumstances to aff ect the continuation of cooperation.

A key tool for this purpose is the state transition matrix. We suppose, 
for example, that there are just three possible states of the world: state 1, 
in which both fi rms are fi nancially sound and the “game” of price compe-
tition takes place; state 2, in which the “game” takes place but one fi rm 
is fi nancially impaired; and state 3, in which there is no play, perhaps 
because one fi rm has gone bankrupt. There are two players. In states 1 and 
2 they play Game 6.6. In state 3 they do not interact at all, and payoff s for 
both players are zero.

Given that the world is in state i in period t, the probabilities9 that the 
world will be in state j in period t 1 1 are known constants summarized 
in the state transition matrix. Suppose the probabilities are as shown in 
Table 6.2.
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The number in a given cell tells us the probability that the state rep-
resented by the row will be succeeded by the state represented by the 
column. Thus, for example, this transition matrix tells us that state 1 will 
be followed by state 1, 80 percent of the time, by state 2, 20 percent of the 
time, but never directly followed by state 3. Nevertheless, we might see the 
system in state 1 in the fi rst period, in state 2 in the second period (with 
20 percent probability) and in state 3 in the third period. The probability 
that the system would transit from 1 to state 3 so quickly is the compound 
probability, 0.2 * 0.2 5 0.04 – a small probability. But, given more time, 
the probability could be greater since there are very many more ways that 
the transition could occur. Using compound probabilities, we can compute 
the probability that any one of the states will occur in any future period, 
starting out from state 1 (or indeed any other state). For example, the 
probability that we will observe state 1 steadily approaches a stable value 
of 0.64; and similarly for the other states approaches the constants 0.18, 
0.18. In fact, many such models have equilibria of this kind, and the equi-
libria can be found by a fairly simple exercise in linear algebra, solving a 
system of three equations with the three constant probabilities as the three 
unknowns. We shall skip the details. We can also compute the probability 
of yet another round of play, that is, the probability that either state 1 or 
state 2 will occur in the period n, if play took place in period n − 1. (This 
refl ects the probability both that state 1 or 2 will occur in period n − 1 and 
the probabilities in the state transition matrix.) This approaches a constant 
value of 0.78.

For a case like this, we might just take the equilibrium probabilities 
and treat the model as if it had constant probabilities, at least as a fi rst 
approximation. Let us do that, asking whether tit-for-tat play will deter 
defection in Game 6.6. We fi nd that if the probability of yet another round 
of play is greater than 0.675, indeed it will. If we begin from state 1, the 
probability of another round of play is greater than 0.675 in every single 
period, so we can be confi dent that cooperation is feasible based on the 
tit-for-tat strategy rule.

Table 6.2 Transition matrix 1

Transition to

1 2 3

Transition 1 0.8 0.2 0
from 2 0.6 0.2 0.2

3 0.1 0.1 0.8
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For our example an advantage of this approach is that state transition 
models can represent irreversible events, such as bankruptcy and death. 
Consider the transition matrix in Table 6.3. Row 2 tells us that when a fi rm 
is fi nancially impaired, it will return to fi nancial health with a probability 
of 0.4, go bankrupt with probability 0.4, or continue impaired in the next 
period with probability 0.2. As for the third row, it reminds us that liqui-
dation is irreversible: once you are dead you stay dead, and the probability 
of coming back from the dead is zero.

If we repeat the enumeration of the probabilities of the three states for 
future periods, beginning in state 1, we see that the probability that state 
3 will be observed approaches 1, and the probabilities of the other states, 
and of another round of play, approach zero. That is, state 3 is what is 
called an “absorbing state:” sooner or later we are all dead. As a result, the 
probability of another round of play keeps dropping and approaches 0 in 
the limit. It may seem that we can apply backward induction so that there 
will be no cooperation.

However, this is a mistake, or at least hasty. Assume that the agents 
can observe the state of the world. At the very least, agents will be able 
to tell whether anyone is bankrupt or not. We will assume that they can 
also observe whether they are in state 1 or state 2. Therefore, they can 
make their strategies contingent on the state. Thus, in place of tit-for-tat, 
suppose both parties play according to Rule 1:

Rule 1. Cooperate IF the state is 1 AND (it is the fi rst round of play OR the 
state in the previous period was other than state 1 OR the other agent played 
cooperate on previous round) ELSE defect.

Now suppose we are at state 1 and one player defects on the current round, 
planning on returning to “cooperate” thereafter. His expected payoff  is 10 
1 3*0.8 1 4*0.2 5 13.2. On the other hand if  he cooperates the expected 
payoff  is 7 1 7*0.8 1 4*0.2 5 13.4. Cooperation pays better and defec-
tion is deterred. The term 4*0.2 is the payoff  of the mutual defection 

Table 6.3 Transition matrix 2

Transition to

1 2 3

Transition 1 0.8 0.2 0
from 2 0.4 0.2 0.4

3 0 0 1
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that is sure to occur in case state 2 is realized in the next period times the 
probability that this will happen. (The example does not allow for time 
discounting and with time discounting the result might be diff erent.) In 
this case the probabilities 0.8 and 0.2 are always applicable because they 
are conditional probabilities, conditional on the observation that state 1 
has occurred.

Suppose instead that state 2 has been realized. Then the conditional 
probabilities of state 1 and state 2 in the following period are 0.4 and 0.2. 
Suppose the player defects once while the other player plays Rule 1. Then 
the defector’s expectation is 10 1 7*0.4 1 4*0.2 1 0*0.4 5 13.6. If he plays 
cooperate it will be 7 1 7*0.4 1 4*0.2 1 0*0.4 5 10.6. (Since there is no 
play in state 3 we assign payoff s of zero.) Cooperation does not pay.

Thus, whatever state occurs, there is no incentive to deviate from Rule 
1 – Rule 1 is subgame perfect. (Here, again, we are assuming the rate of 
time discount is suffi  ciently small.) But notice what it means. We start 
from state 1, with cooperation. Over the next few rounds, the probability 
(as seen from period 1) that we will remain in state 1 declines. We can 
foresee that within several rounds, with high probability, the system will 
transit to state 2, and at that point cooperation will break down. If the fi rm 
in trouble manages to return to fi nancial health (the system transits back 
to state 1), cooperation will be resumed. On the other hand, if one fi rm is 
liquidated, there will be no more opportunities for cooperation; and since 
this will occur sooner or later, cooperation will be repeated only a fi nite 
number of times.

There could be a range of other applications and contingent rules. For 
example, the agents might be playing diff erent games in diff erent states, with 
play in one game contingent on the other’s strategies either in the last play of 
the game now being played, or in the last play of the other game, or both.

6.4.3 Interim Summary

We see that repeated play can be a link from Nash equilibrium to coop-
erative play. If agents are involved in interactions that are likely to be 
repeated, and the agents are patient enough and have some foresight, then 
cooperative play may emerge as one of the equilibria in a supergame, that 
is, a game repeated an indefi nite number of times.

6.5 ON SOME EXPERIMENTAL STUDIES

A number of experimental studies have addressed the predictions of the 
perfect equilibrium model in non-cooperative game theory. Two games 
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are particularly important in this connection: the Ultimatum Game and 
the Centipede Game. On the whole, the experimental results disagree 
strongly with the predictions of the perfect equilibrium model, if it is 
considered as an empirical hypothesis. The Ultimatum Game has been 
discussed in historical context in Chapter 3. Here we will focus on the 
Centipede Game.

The “Centipede Game” (Rosenthal, 1981; McKelvey and Palfrey, 1992) 
is illustrated by Figure 6.4. The centipede is a game with two participants 
and a pot of money payoff  dollars. The two participants will be a and b. 
The game proceeds in stages, and at each stage one or the other of the 
participants must make a commitment. At the fi rst stage player a can 
either take or pass a money payment. If he takes it b also gets a smaller 
payment. If a passes at the fi rst stage, b has an opportunity to take a larger 
share of the payment, leaving a the smaller share. However, if b passes at 
the second stage, a in turn gets an opportunity to take the larger share, 
and the game proceeds in this way. The two players alternate, as shown 
in Figure 6.4, where the numbers show the payoff  to a fi rst and then to 
b. The game ends after some fi nite number of steps with each participant 
getting a specifi ed share of the pot. The size of the total payment to the 
two players may increase with the number of stages the game continues. 
This could be a model of “roundabout” production in economics, in that 
“passing” the pot on an early round allows the resources generated in the 
fi rst round to be compounded in the later rounds. In some studies the 
game has subsequent stages, and it may have many stages. If we visualize 
a game with 100 stages rather than four, the basis of the name “Centipede 
Game” becomes clear.

A cooperative solution to this game requires a sequence of behavior 
strategies “pass.” Using backward induction it is clear that the subgame 
perfect equilibrium in this game is for a to “take the money and run.” 
Since a knows that b is a rational player, a cannot expect that b will pass 
on the second round and allow a to grab the larger amount, 15, at the 

a 15, 15
gr

ab

pass

gr
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gr
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pass
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5, 1 2, 10 15, 3 4, 20

b a b

Figure 6.4 Game 6.7: a Centipede Game
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third stage, nor can b expect that if he passes a will allow him the oppor-
tunity to grab 20 at the fourth stage. In short, a rational agent cannot 
“outsmart” another rational agent.

Here, again, the experimental evidence does not agree, and a variety 
of outcomes (but only rarely the cooperative outcome of continuing play 
to the end) are observed. Many of the observed sequences of play are 
consistent with the possibility that one or both players are trying to “out-
smart” one another – with at least one of them failing to do so. Suppose 
(as von Neumann and Morgenstern assumed, but Nash and Selten to the 
contrary) that many experimental subjects can commit themselves to con-
tingent strategies such as “If a passes then I will pass at the second stage 
and then, if he passes again, I’ll grab at the last stage for 20 rather than 
10.” If a conjectures that b has adopted that strategy, a’s best response 
would be “Pass at the fi rst stage and then, if b passes, grab at the second 
for 15 rather than 5.” On this interpretation, the evidence suggests that, 
at least in some circumstances, experimental subjects are able to commit 
themselves to particular contingent strategies.

In studies of reciprocity, variants on the centipede have given rise to 
important results. Figure 6.5 will serve as a generic diagram for two exten-
sions of the centipede. These games take place in a maximum of three 
stages, although it can be cut short by either player.

In Game 6.8, decision node x is player a’s second decision node.10 
It introduces a “punishment” or “threat strategy,” P, that gives a the 

a 6, 6, 2

3, 3, 1

1, 5, 1 2, 7, 2

D1 D2

P N

R2R1
b

x

Figure 6.5  Game 6.8, 6.9 in extensive form
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option of reducing b’s payoff  at the cost of some reduction in his own, 
or of not doing so (arrow N). The basic subgame is the punishment 
node, and its Nash equilibrium is N. The game is then reduced to a 
two-step centipede with payoff s of 2, 7 at the second stage and D1 is the 
subgame perfect behavior strategy for a. The prediction of the subgame 
perfect equilibrium model is that the punishment node will make no dif-
ference and a will grab at the fi rst opportunity, just as in a Centipede 
Game without the punishment node. However, such punishment is often 
observed, and cooperative outcomes (with payoff s such as 6,6) are more 
common in this game than they are when the third stage does not exist 
in the experiment. Since a decision for P at the punishment node leaves 
a worse off  than he would be otherwise, P would be an instance of nega-
tive reciprocity.

Now suppose instead that the third node in Figure 6.5 is not the deci-
sion of player a but of a third player, c. The payoff s to c are shown third. 
This is an example of third-party punishment. As the choice of P makes 
agent c worse off , it would be an instance of altruistic punishment. It may 
also be referred to as “third-party reciprocity” (Fehr and Fischbacher, 
2004). Once again, non-cooperative game theory predicts that such third-
party punishment will never occur, and consequently the strategies of a 
and b will be the same as they would be if there were no third stage; but 
the experimental evidence does not confi rm this prediction. Rather, third-
party punishment is observed, and seems consistent with the hypothesis 
that the third parties place some value on reciprocity between the original 
two players, and punish deviations from it (Fehr and Fischbacher, 2004).

On the whole, experimental evidence does not favor the subgame perfect 
equilibrium as a general empirical hypothesis. On the other hand, we 
should observe that these experiments have themselves arisen from the 
subgame perfect equilibrium model. By drawing on that analysis, they 
have provided more precise evidence on human motivation than earlier 
experiments were able to supply. Thus, we may best regard the subgame 
perfect equilibrium as defi ning one extreme of a spectrum of forms of 
rationality that we may observe in human action, a point to which we 
return in Chapter 10.

6.6 SUMMARY AND CONCLUSION

Games in which play takes place as a sequence of decisions, so that the 
decision-maker at any stage can condition his/her decisions on the previ-
ous decisions of others, are called sequential games. For these games, 
Nash equilibrium can be refi ned, limiting the non-cooperative equilibria 
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to those in which the play for each subgame is Nash equilibrial or which 
are the limit of a series of games in which play is perturbed by a “trem-
bling hand.” These are “perfect equilibria.” For sequential games, the 
“perfect equilibria” can be found by backward induction. Perfect equi-
libria are important in many economic applications, including games of 
market entry and entry limiting strategies, and principal-agent interac-
tions. When we consider private decisions as games imbedded in the larger 
game of public policy, we rely on perfect equilibria to assure us that the 
non-cooperative behavior of the private agents will itself be equilibrial. 
Repeated play is also analyzed in terms of perfect equilibria, with the idea 
that a threat of retaliation will be credible only if it is subgame perfect. 
On this basis, conclusions can be drawn as to whether cooperative play is 
likely to emerge from repeated non-cooperative play in a particular case. 
However, experimental results suggest some caution, in that subgame 
perfect equilibria may not be realized when they confl ict with reciprocity 
motives.

NOTES

 1. For further examples, see my introductory textbook, Game Theory: A Nontechnical 
Introduction to the Analysis of Strategy, South-Western, 2004, esp. Chapters 14, 15. 

 2. In this as in other cases, “principal” and “principle” may be confused, especially 
since “principal” is more usually an adjective. However, standard dictionaries concur 
that this is the correct usage for one who authorizes an agent to act on her or his 
behalf. 

 3. Note Game 4.2, Chapter 4.
 4. In a more complex game such as Game 6.2, the set of subgames will include the repeti-

tions of the original game, but may be a much larger set. The reasoning is slightly more 
complex in an example of that kind, but the conclusion is not changed. 

 5. It may be appropriate to discount the payments at this last stage to present value 
at some specifi c discount rate. The economic literature on repeated games tends to 
stress this, but it does not aff ect the qualitative results and we shall ignore discounting 
here. 

 6. If there is a defi nite time period between repetitions, then d should refl ect the time dis-
count rate as well as the probability of repetition. See McCain (2004, p. 273) for details. 
If there is no defi nite time period between repetitions, or it is very brief, then time dis-
counting may not be possible or signifi cant. Some scholars avoid the idea of maximizing 
the time-discounted value of a sequence of payments in general, and substitute for it a 
criterion that a sequence of payments is to be preferred to another if the fi rst eventually 
overtakes the second. The folk theorem has also been developed with the overtaking 
criterion (Rubinstein, 1979). 

 7. In what follows, I will use the term “trigger strategy rule,” accordingly. 
 8. If payoff s are discounted for time, then a great enough time discount might off set the 

high probability of repetition, so that the tit-for-tat strategy rule will fail. Thus, many 
authors express the point this way: if the players are patient enough (have low enough 
time discount rates), then cooperation can be attained via tit-for-tat play. In this 
example, though, time discounts are likely to be small relative to probabilities that play 
will be discontinued that are in the range of 0.25 to 0.5. 



108 Game theory and public policy

 9. Note that this discussion diff ers from Shapley’s (1953) “Stochastic Games”, in that for 
Shapley’s model the probabilities depend on the strategies chosen, while for this discus-
sion the probabilities are given. 

10. For now, ignore the third payoff  number.
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7. Social mechanism design

The 2007 Nobel Memorial Prize in Economics was awarded just at the time 
this chapter was being drafted, and was awarded to Hurwicz, Maskin, and 
Myerson for their contributions to social mechanism design. Maskin and 
Myerson are well known as game theorists, and the scientifi c background 
document for the prize (Royal Swedish Academy of Sciences, 2007, p. 
1) states “By using game theory, mechanism design can go beyond the 
classical approach,” so arguably this is the third Nobel for game theory. 
“Mechanism design, Professor Maskin explained, can be thought of as the 
‘reverse engineering part of economics.’ The starting point, he said, is an 
outcome that is being sought, like a cleaner environment, a more equitable 
distribution of income or more technical innovation. Then, he added, one 
works to design a system that aligns private incentives with public goals” 
(Lohr, 2007). Much of the work of social mechanism design has been 
within the scope of game theory, though (like bargaining theory) social 
mechanism design has a longer history than game theory does. Hurwicz 
(1973, p. 21) traces the idea to utopian socialism.

Hurwicz’s founding lecture was concerned (in its fi rst three sections) 
with dynamics and with the exchange of information necessary to achieve 
effi  ciency or other objectives by particular mechanisms, supposing that 
people report honestly. Some mechanisms will require more or bigger 
(thus more costly) messages to attain effi  ciency, or even feasibility. The 
feasibility of central economic planning (at that time allegedly practiced 
in the Soviet Union) was a major concern. In the fourth and last section 
he addresses incentive compatibility, noting that agents may have incen-
tives to lie, so that honesty may not be taken for granted. A mecha-
nism free of the incentive to lie is “incentive compatible.” This, he says 
(Hurwicz, 1973, p. 23) “. . . is a problem in the theory of games, in this 
case non- cooperative games without side payments.” This has been the 
focus of most of the subsequent work denoted as mechanism design or 
 implementation theory.

Mechanism design can be thought of in terms of imbedded games. We 
have a population of n − 1 “real” players, human agents with their own 
intentions, preferences, and potential courses of action. The nth player is 
the designer, an “artifi cial player.” For the designer, the various strategies 
are the various “rules of the game” according to which the n − 1 “real 



110 Game theory and public policy

players” might play their game, such as riparian or non-riparian rights in 
Game 6.5. Since these various rulesets defi ne games that are imbedded in 
the designer’s game, perfect equilibrium in the designer’s game means that 
each is in a Nash equilibrium. The “artifi cial player’s” payoff  may be an 
index of the effi  ciency or equity of the perfect equilibrium, or it may be 1 
in case the outcome corresponds to a particular cooperative solution (in 
implementation theory) and 0 otherwise.

7.1 CUTTING THE CAKE

As an instance of mechanism design or implementation, we can turn to an 
idea much older than game theory: cutting a cake. The objective is that the 
cake should be divided equally – or if not equally, then fairly. Suppose the 
cake is to be divided between two identical persons, each of whom prefers 
more cake to less. One of the two is assigned to cut the cake, and the other 
gets to choose which piece he will take. Then the cake-cutter knows that he 
will get the smaller piece, and thus has an incentive to make the division as 
equal as possible. Equal division is incentive compatible, that is, consistent 
with non-cooperative decisions by the two recipients of cake. The rules of 
the game – one cuts and the other chooses – implement the objective of an 
equal division of cake.

Of course, the devil is in the simplifying assumptions, as usual. Let us 
make the problem a little more complex. We suppose the cake contains 
nuts, and the nuts are not randomly distributed – there are more of them 
on the right (let us say). Now suppose that the two agents are not alike 
but are of diff erent types: agent a, who is to choose, likes nuts and might 
prefer a smaller piece if it had more nuts, while agent b is indiff erent with 
respect to nuts and just wants a bigger piece, regardless of the quantity of 
nuts. What is a “fair division” in this case? A division may be fair in this 
sense if it is non-envious (Foley, 1967): each person gets a piece of cake 
that he prefers to the piece the other person has, rather than vice versa. 
Now suppose b is to cut and a is to choose and b knows a’s preferences. 
Then b can cut the cake into two unequal pieces, with more nuts in the 
smaller piece, such that a will choose the piece he prefers while b is left 
the piece that he prefers. Thus a fair division (in this sense) is incentive-
compatible.

But what if agent b does not know which type agent a is – whether 
agent a likes nuts or is indiff erent with respect to them? (Perhaps he 
even hates them.) b needs this information to know how to cut, for the 
benefi t of both. b can ask a what type he is – but can he trust the answer? 
Suppose for a moment that a is, like b, indiff erent to nuts. By saying that 
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he likes nuts, a would be able to fool b into cutting unequally. a would 
then choose the bigger piece, and so be better off  than he would be if he 
told the truth. Thus the rules of the game will have to be designed so that 
each agent will truthfully reveal what type he is (and that is to say, reveal 
whatever is relevant to the correct decision). This is the revelation princi-
ple. It may be that (for a particular class of games, or in general) there are 
no “rules of the game” that will do this, and this issue has been central to 
mechanism design.

7.2  NASH AND OTHER EQUILIBRIA AS 
OBJECTIVES OF MECHANISM DESIGN

In the simpler cake-cutting game, we have a non-cooperative game and a 
Nash equilibrium that, at the same time, satisfy the criteria for an equi-
table division; criteria that in themselves have nothing to do with the 
non-cooperative game. Broadly speaking, this is the objective of social 
mechanism design. With multiple Nash equilibria, as we have seen, there 
may be some uncertainty as to whether the agents will fi nd their way to 
the right refi nement of Nash equilibria. The mechanism would be more 
reliable if, for example, the Nash equilibrium were unique, or if it could 
be shown that every Nash equilibrium implements the cooperative solu-
tion concept or normative objective (Royal Swedish Academy of Sciences, 
2007, p. 13; Maskin, 1999). Many studies in implementation theory seek 
a non-cooperative game for which the objective social state is the domi-
nant strategy equilibrium. This would provide a very reliable implemen-
tation, since the dominant strategy equilibrium is essentially unique,2 
has a compelling justifi cation in terms of self-interest, and is cognitively 
relatively easy. However, implementation as dominant strategies is a dif-
fi cult objective, and it may not be possible even in principle to fi nd a non-
cooperative game that implements the objective as a dominant strategy 
equilibrium. This is illustrated by the game theoretic study of elections and 
voting, an important topic in itself for public policy. Where implementa-
tion in dominant strategies is impossible, another common standard is 
implementation as a Bayesian Nash equilibrium, since such equilibria 
lend themselves to learning by trial and error. However, multiplicity of 
equilibria may be a problem in this case, apart from the special case of 
“Maskin-monotonicity,” (Royal Swedish Academy of Sciences, 2007, p. 
13; Maskin, 1999), which is a key condition particularly in the study of 
elections.
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7.3  A NEGATIVE RESULT: NON-COOPERATIVE 
GAME THEORY AND ELECTIONS

Discussion of alternative voting procedures has a long history, with 
eighteenth-century contributions from de Borda and Condorcet and in 
the nineteenth century by the author of Alice in Wonderland, the math-
ematician Charles Dodgson. Here is an example. Suppose there are three 
types of voters on a committee that will vote among alternatives A, B, 
and C. There are three of type 1, two of type 2, and two of type 3. Their 
preferences are shown as Table 7.1. Voting will be by majority rule with 
an agenda: at the fi rst step a choice is made between A and B, and at the 
second step between the fi rst stage winner and C.

If each voter votes his sincere fi rst preference, A will prevail over B 
5–2 and, at the second stage, C will be chosen 4–3. However, this is not 
a Nash equilibrium. By shifting the fi rst stage votes to B, voters of type 1 
can bring about a contest between B and C at the last step, and B will then 
prevail, leaving type 1 voters better off  with B rather than C. Since neither 
types 2 nor 3 can then improve their outcomes by shifting from sincere 
fi rst preference voting, this is the Nash equilibrium in this particular 
voting game. It is an instance of voting manipulation, and, since at least 
two of the three type 1 voters must shift to voting for B in order for this 
to work, it is manipulation by a coalition. In this connection, the question 
for mechanism design is: can we design a better voting mechanism that 
would be immune to manipulation in this sense? And the general answer 
is no.

7.3.1 Arrow’s Impossibility Theorem

Any account of the study of elections in game theory and economics 
requires a background account of twentieth-century developments in 
welfare economics (McCain, 2007b). In The Economics of Welfare, Pigou 
had set out a systematic normative economics in terms derived from 
Mill’s rule-utilitarian ethics. Many economists (following Pareto, 1971 
[1906]) felt that Pigou’s (1920) welfare economics assumed too much. In 

Table 7.1 Preferences for three types

Type 1 2 3 Votes

First A C B 3
Second B A C 2
Third C B A 2
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particular, Millian utilitarianism assumed that utility is interpersonally 
comparable and additive, so that utilitarian values could support (limited) 
arguments for equalization of income. In place of utilitarianism, the “new 
welfare economics” of the 1930s and 1940s assumed only that individuals 
had transitive preferences, but that the preferences could not be expressed 
in numerical terms that could be compared interpersonally and therefore 
could not be aggregated as a basis for welfare judgments. However, many 
studies assumed that preferences could be aggregated to form a social-
welfare function, that is, group preferences. This problem was addressed 
by Arrow (1951), and he proved a negative result: adopting a set of axioms 
that seemed to express reasonable conditions for a social welfare function, 
he proved that no function could satisfy them all. Arrow’s conditions were 
(here I follow Satterthwaite, 1975, pp. 203–4)

(1) rationality, that the social preference is transitive, free of cycles;
(2) that it is nondictatorial, that is, that there is no individual whose 

preferences are decisive regardless of the preferences of all;
(3) independence of irrelevant alternatives, that is, the social preference 

between two alternatives depends only on the individual private pref-
erences between them;3

(4) citizen sovereignty, that is, that any alternative might be chosen if it 
is widely enough preferred;

(5) non-negative responsiveness, that is that a shift of preferences by 
which one alternative rises in the preferences of some individuals 
could not result in its being lower in the social preference.

This “general possibility theorem” led to a great deal of ferment in 
welfare economics.4 In particular, it must be that Pigou’s maximization 
of aggregate utility violates one or another of them. In the discussion 
that followed Arrow’s contribution, all of these were questioned, but the 
 independence of irrelevant alternatives was especially a target of critics.

7.3.2 Elections

Arrow’s result was not limited to voting systems. Indeed, his result dis-
missed judgments of the effi  ciency of markets even in ideal conditions, 
no less than judgments of the effi  ciency of elections. Nevertheless, Arrow 
made extensive use of election-type rules as examples, and it was widely 
conjectured that similar problems might arise in elections. This conjec-
ture was given formal proof by Gibbard (1973) and Satterthwaite (1975), 
independently. Their contributions were diff erent in detail, but comple-
mentary, and both drew importantly on Arrow’s work. Feldman’s (1979) 
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very readable exposition is also helpful, especially to the less mathematical 
reader.

Satterthwaite defi ned manipulation as a failure to vote in accordance 
with the individual’s own preferences. The person might report a diff erent 
order of preferences than his own if, due to the balloting procedure, such a 
report would give rise to a decision he prefers to the one that would follow 
from his own decision. If, for a particular voting procedure, this can never 
happen, then the voting procedure is “strategy-proof.” For a strategy-
proof voting procedure, “every set of sincere strategies is an equilibrium as 
defi ned by Nash” (Satterthwaite, 1975, p. 188). But Satterthwaite proves 
directly that this cannot be the case if the procedure satisfi es the Arrow 
conditions. In fact, Arrow’s independence of irrelevant alternatives and 
nonnegative responsiveness together are equivalent to strategy-proofness. 
Satterthwaite demonstrates that if a voting procedure is strategy-proof 
then it is dictatorial. Satterthwaite then shows that a rational, citizen-
sovereign social welfare function can be derived from any nonmanipulable 
voting scheme, and conversely, and uses his own theorem to construct a 
new proof of the Arrow theorem.

Gibbard (1973, p. 589) expresses skepticism about the identifi cation of 
nonmanipulation with “honest” voting: “Nothing in the structure of a 
game form tells us which strategy ‘honestly’ represents any given prefer-
ence ordering.” Accordingly, he characterizes nonmanipulation by an 
arbitrary function from preferences to votes, and asks whether such a rule 
of honest voting can be implemented as a dominant strategy. The answer 
is no, he argues, since a nontrivial voting game cannot have any dominant 
strategy equilibria whatever – honest or otherwise. Gibbard uses Arrow’s 
result in his proof.

The connection of this “Gibbard-Satterthwaite theorem” to Arrow’s 
result is quite close in a mathematical sense, but substantively it is less 
close than it is sometimes thought to be. Recall, Arrow’s purpose was 
normative, and the objective was aggregation of preferences. Thus, the last 
three conditions assert a dependence of social preferences on actual indi-
vidual preferences. By contrast, Gibbard and Satterthwaite assert (with 
the same conditions) a dependence of social decisions on preferences as 
expressed in voting. Their objective is to pose an empirical hypothesis, and 
one that seems to be true: that voting is always manipulable. The issue of 
misrepresentation of individual preferences does not arise for Arrow, but, 
on the other hand, the assumption of nonnegative responsiveness seems 
much more natural in the normative than the positive framework.

Manipulable voting processes can easily be seen to violate some of the 
Arrow conditions in simple examples. Return to the example of Table 
7.1. Note that the best response of a type 1 voter depends on the fact that 
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voters of type 3 rank C below B. Suppose alternative B is eliminated, so 
that the choice is strictly between A and C. Type 1 voters can no longer 
gain by voting strategically and C becomes the winner. This violates 
the independence of irrelevant alternatives. The example points up a 
strong connection between the independence of irrelevant alternatives and 
manipulation of voting.

The negative result in the Gibbard-Satterthwaite analysis is not quite 
the whole story. Maskin remarks “The Arrow Theorem is too negative” 
in the context of voting theory.5 Maskin proposes that elections with more 
than two alternatives should be conducted by a Condorcet evaluation: (1) 
voters record their preference orderings, rather than a single choice; (2) 
all possible pairwise choices are evaluated to determine which would win 
against the other; (3) if one alternative wins over all the others, it is the 
choice. But this procedure is not decisive. That is, there may be preference 
profi les such that for at least three alternatives, A is preferred to B, which 
is in turn preferred to C, and C is preferred to A. Indeed Table 7.1 gives an 
example of this. Maskin concedes that some other criterion would have to 
be used as a “tie-breaker” in such a case, but argues that, regardless of the 
tie-breaker, a procedure that always chooses a Condorcet winner will be 
more workable than any procedure that does not.

He draws this conclusion despite the Arrow theorem on the following 
reasoning: the Arrow theorem demands that a particular decision rule 
satisfy very demanding assumptions for all possible profi les of prefer-
ences over voters. However, he suggests, a procedure incorporating the 
Condorcet evaluation could satisfy the same assumptions over a large 
proportion of all possible profi les, while failing only on a subset of the pos-
sible profi les. In Maskin’s terminology, a decision rule “works well” for a 
particular subset of preference profi les if it satisfi es a list of assumptions6 
including independence of irrelevant alternatives and adding decisive-
ness for any of those profi les. In Dasgupta and Maskin (2008) Maskin 
compares simple majority rule (which he understands as the Condorcet 
evaluation) with plurality rule and the Borda count, a system that awards 
points depending on the individual’s preference ranking and chooses the 
alternative with the most points. He shows that there are sets of profi les on 
which each of the three “works well,” but that that Condorcet evaluation 
“works well” on the sets in which either of the others work well, while the 
others fail on some profi les for which Condorcet evaluation “works well.” 
Thus, despite Arrow’s negative conclusion, Maskin makes a strong case 
for group decisions according to the Condorcet evaluation.

There are a number of other important papers in the literature that 
reconsider one or another aspect of the Arrow-Gibbard-Satterthwaite 
impossibility theorems, generally in favor of some kind of majority rule. 
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In addition, there is some reason to believe that in elections with a large 
number of voters, the likelihood of manipulation decreases with an 
increasing number of voters (for example, Baharad and Neeman, 2002). 
On the other hand, casual empiricism suggests that even in elections with 
a large number of voters, manipulation is quite common.

7.4 CAP AND TRADE REGULATION

Tradable emissions controls have become a popular means of dealing with 
environmental pollution. This sort of program is often called a cap-and-
trade program (Colby, 2000, p. 639). This approach does not really arise 
from the program of social mechanism design and relies less on game 
theory than on the much older competitive market theory of neoclassi-
cal economics (Hahn, 1989, p. 99). Nevertheless, it is similar in its overall 
objectives and seems to be one of the few ideas that commands a good 
deal of consensus across the divided American political spectrum (Broder, 
2007).

In a “cap-and-trade” regulatory framework, polluters are permitted 
to emit pollutants up to some limit, or “cap,” while the permits may be 
bought and sold among the diff erent polluters who are regulated. The 
hope is that competitive markets for the permits will develop, allowing a 
market price that would indicate the least social cost of reducing pollu-
tion by one unit, so that pollution objectives would be met more cheaply 
and the polluters would face approximately socially optimal incentives to 
create and adopt less-polluting technologies. (See McCain, 1978, on the 
infl uence of market prices on technological trends toward environmental 
degradation.)

We now have some experience of cap-and-trade programs. In the 1980s 
Hahn (1989) found some impact on costs, though less than theory would 
have anticipated, but no signifi cant impact on environmental quality and 
few trades. To some extent that could be attributed to limits and imper-
fections in the regulatory programs and lack of competition in the permit 
markets. Lack of competition in permit markets is particularly likely to 
be a problem if the objective of policy is to reduce local concentrations of 
pollutant, since the localities are quite likely to contain only a few large 
sources of pollution. A decade later, Colby (2000, p. 642) reported that, 
after a delay of years, trading (in sulphur dioxide emission permits) “took 
off ,” and “Twenty years after regulators, utilities, and environmental 
advocates were introduced to air emissions trading opportunities . . . 
cautious exploration has evolved into a mature, productive allowance 
market.” Trade in water access has been less successful (ibid., pp. 643–5). 
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Despite intense resistance, some success is reported in markets for tradable 
fi shing quotas (p. 647).

This experience indicates that tradable permits may be helpful, but 
that the form and consequences of such policies are as much a matter 
of political economy as of neoclassical economics or game theory, that 
oligopoly in permit markets is often likely to be a problem, and that suc-
cessful permit programs may require a long learning period and may face 
crucial obstacles in customary norms, particularly (as in fi sheries) where 
neither regulation nor trading is customary. Considering these diffi  culties, 
non-cooperative game theory could be useful in taking oligopoly and thin 
markets into account, but the others are as foreign to non-cooperative 
game theory as they are to neoclassical economics. A discipline of social 
mechanism design will need to be enriched with elements from cognitive 
science, political theory, and perhaps cultural anthropology if it is to 
address these problems.

7.5 ASSESSMENT OF MECHANISM DESIGN

Marx (1845) wrote, “Philosophers have hitherto only interpreted the 
world in various ways; the point is to change it.”7 That is the standard by 
which mechanism design invites evaluation. While a number of designed 
mechanisms, such as the Groves-Ledyard mechanism for public goods 
supply (Groves and Ledyard, 1977) remain untried in the real world, 
the long history of elections provides some experience on the reliability 
of mechanism design. The universally acknowledged success story for 
mechanism design and implementation theory, however, is the design 
of auction mechanisms (Royal Swedish Academy of Sciences, 2007, p. 
15; Lohr, 2007; Glenn, 2007; Zaretsky, 1998; McMillan et al., 1997). 
Accordingly, this seems to be the appropriate testbed for the theory of 
mechanism design.

Of course auction theory, like bargaining theory and voting theory, has 
a history before game theory or the literature on mechanism design. In 
particular, though, the work of Vickrey (1961) gave rise to the “Vickrey 
auction,” which fi ts the description of mechanism design. The success of 
Ebay can partly be attributed to its adaptation of Vickrey’s ideas. Vickrey 
suggested a sealed-bid, second price auction as having desirable properties 
of effi  ciency and seller revenue maximization, though (in an expected value 
sense) several major auction designs could be seen to be equivalent. But 
Vickrey auctions have their desirable properties in the case of individual 
private value auctions, that is, auctions (such as those for collectibles) in 
which individual values are subjective, uncorrelated, and known only to the 
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individuals themselves. For auctions in which the items sold have an objec-
tive value, imperfectly known to the bidders, ineffi  cient overbidding might 
occur – in eff ect, the auction being won by the bidder who most overesti-
mates the value of the item being sold. This is known as the “winner’s curse” 
(Camerer, 1987). Otherwise, when more than one item is sold, and the items 
sold might be complements or substitutes, sealed bid auctions could be less 
effi  cient than ascending auctions, since the latter would provide more fl ex-
ibility to coordinate purchases. In general, of course, if one buyer were large 
enough to exercise monopsony power, or if there were collusive (coopera-
tive) behavior among the bidders, Vickrey’s results might not apply.

If we consider auctions of resources or privileges that would enter into 
production or marketing, such as the privileges of drilling for petroleum 
on government-held territory or of using electromagnetic spectrum, it is 
unlikely that the values will be subjective and uncorrelated; and it was 
the auctioning of electromagnetic spectrum that put mechanism design 
“on the map.” As early as the 1980s, New Zealand had begun to allocate 
electromagnetic spectrum by auction, using a Vickrey auction design. 
However, some of these auctions had disappointingly small yields as buyer 
monopoly power and/or collusion limited the bidding (Zaretsky, 1998). 
In 1993, three well-known economists associated with the consulting fi rm 
MDI Associates invented the simultaneous ascending auction, according 
to the company’s own history (Market Design, Inc., 2007). The simulta-
neous ascending auction was intended to avoid the “winner’s curse” and 
facilitate adjustment of bids to complementarities among the items being 
sold, by learning from one another’s bidding. This auction design was 
adopted by the Federal Communications Corporation for the allocation 
of licenses to use electromagnetic spectrum in the United States. This 
series of auctions was considered very successful and largely gave rise to 
the conception of mechanism design as a practically successful fi eld.

In 1994–97, there were 13 auctions based on the simultaneous ascending 
auction. It seems clear that they were indeed successful on the whole, and 
two were quite remarkably successful (Cramton, 1997). However, a series 
of European auctions of third-generation telecommunications spectrum 
licenses were less successful, on the whole, and Klemperer (2002) put the 
blame on mechanism design, saying (p. 3) “Good auction design is really 
good undergraduate industrial organization; the two issues that really 
matter are attracting entry and preventing collusion,” and adding in a foot-
note, “By contrast, a graduate knowledge of modern auction theory is at 
best of lesser importance and at worst distracting from the main concerns.” 
Klemperer observes that ascending auctions permit collusion for the same 
reason they avoid the winner’s curse: they allow bidders to learn from the 
bids of others, and this learning may facilitate collusion. Thus, he argues for 
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sealed-bid auctions or auctions with a sealed-bid stage although “Auction 
design is not ‘one size fi ts all’” (pp. 3–4). Among the European auctions, all 
but one used an ascending-auction design. Of those, the fi rst, the English, 
was a major success, but by contrast the following Netherlands, Italian, 
and, especially, Swiss auctions could be characterized as failures. German 
and Austrian auctions diff ered somewhat from the others, and of those, 
the Austrian auction too was characterized as a failure. The one exception, 
Denmark, used a sealed-bid auction design and was successful.

To some extent the European failures were the results of bad timing. 
They took place during or after the dot-com collapse of 2001. However 
Klemperer’s discussion makes it pretty clear that they failed also because 
of neglect of the “two issues that really matter.” Certainly collusion is 
a cooperative phenomenon: as we recall, price competition is an excep-
tional case in which cooperative behavior (among those on one side of 
the market) is undesirable. The other issue that really matters, entry, is 
somewhat complex in itself. Klemperer seems to mean two things: fi rst, 
entry into the auction itself, and second, entry into the market. On the one 
hand, several of the European auctions failed in part because so few of the 
potential competitors actually participated in the auction. Broadly speak-
ing, in assembling a group to participate in the auction, the governments 
who conducted the auctions were assembling a cooperative coalition to 
act on a common strategy, although the common strategy itself demanded 
non-cooperative action from the bidders. On the other hand, for a fi rm to 
enter an industry is to seek to form cooperative coalitions (for exchange) 
with potential buyers. Thus, it seems fair to say that the failed European 
auctions failed because auction design was narrowly based on non-
 cooperative game theory and neglected cooperative game perspectives.

On the other hand, the relatively successful British and Danish auctions 
incorporated Klemperer’s concerns, and the US auctions clearly were 
characterized by predominantly competitive bidding (Cramton, 1997). The 
American market, larger than those of the European countries, was (on 
Klemperer’s reasoning) more favorable to competitive bidding. Moreover, 
the two auctions that were most successful had special circumstances pro-
moting competition that were not predicted. In the second auction, of nar-
rowband licenses, special arrangements to encourage minority and female 
participation led to vigorous bidding by those groups that spilled over into 
the bidding of others (Cramton, 1997, pp. 433–4, 451). In the December 
1994 broadband auction the participation of Craig McCaw, seemingly 
seeking an opportunity to re-enter the telecommunications market after 
selling his company, was a highly competitive factor (Cramton, 1997, 
pp. 454–5). All in all, it seems that Plott (1997, p. 637) goes a bit far when 
he writes “The overall success of the auctions must be attributed to . . . 
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economic theorists, applied economists, FCC lawyers, and the FCC staff .” 
Or if we accept this assessment, then the failures of some of the European 
auctions must be similarly attributed.

On Marx’s criterion, then, mechanism design must be seen as partially 
successful. It has indeed changed the world. However, the change in the 
world has not entirely been the one intended: mechanism design has not 
quite “made history consciously.” Yet this is hardly a damning conclu-
sion. Errors occur in all human activities, and the key to progress (from 
a pragmatic point of view) is that they are corrected. An improved non-
 cooperative game theory, using alternatives to the Nash equilibrium or 
selectively incorporating ideas from cooperative game theory and other 
disciplines, may yet provide public policy with a reliable tool of prescription 
that can be used to specify policies that could advance a wide range of policy 
priorities. There is some literature in implementation theory that points in 
that direction (for example, Moulin and Peleg, 1982). Nevertheless, it seems 
fair to say that non-cooperative game theory has not yet become that tool.

7.6 CHAPTER SUMMARY

In mechanism design, non-cooperative game theory is turned from diag-
nostic to prescriptive use. This demands more of a theory than diagnostic 
application does. Non-cooperative game theory assumes that human 
decisions are always non-cooperative, and there is little doubt that they 
sometimes are, but it is at least possible that they are also sometimes coop-
erative. If this is so, then problems that would arise in a hypothetical non-
cooperative world may also arise in the actual world. In the actual world, 
these problems may be less pronounced, or it may be that non-cooperative 
behavior even on the part of a minority of the population will result in a 
non-cooperative outcome, in particular cases. On the other hand, a mech-
anism design based on assumptions of non-cooperative behavior may be 
undermined when cooperative coalitions are formed to exploit it, as in the 
case of collusive pricing and bidding strategies. Thus, non-cooperative 
game theory may be far more reliable as a diagnostic tool than it is as a 
prescriptive tool, and the experience of auction theory seems to support 
this conjecture.

NOTES

1. Hurwicz’s paper is sometimes dated as 1972. It was presented as the Richard Ely lecture 
at the annual conference of the American Economic Association in 1972, and published 
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in the proceedings volume. At that time, the American Economic Association met in 
late December of each year and the proceedings volume was issued in the following 
May. Thus, 1972 is the correct year for the lecture but 1973 is the year for the print 
publication.

2. If more than one strategy sets are dominant strategy equilibria, all will have the same 
payoff s. 

3. This assumption is stated in diff erent ways, for mathematical analysis, by diff erent 
authors. Following Dasgupta and Maskin (2008), if alternative A is chosen from the set 
of available choices X, and if X9 is a subset of X, A is an element of X9, then A is chosen 
from X9. In other terms, dropping alternatives that are not chosen out of the set of alter-
natives does not change the set chosen. 

4. Important further developments arose from the work of Foley (1967), who demonstrated 
that the ordinal preference theory could be used to make distributive judgments. Indeed, 
the distributive norms arising from models like Foley’s tend to be more equalitarian than 
the utilitarian ones are, and parallel the ideas of the philosopher John Rawls (1971). John 
C. Harsanyi (1975) drew on Rawls’s ideas but also on the reformulation of utility theory 
in the von Neumann-Morgenstern tradition and on Bayesian concepts of rationality, and 
argued that social welfare could after all be based on a summation of individual utilities. 
Amartya Sen (1985) has proposed conditions less limiting than Arrow’s that allow the 
possibility of a consistent majoritarian social welfare function. Sen, however, rejects 
what he describes as the welfarism of both the old and the new welfare economics, by 
which he means the supposition that the goodness of a social system depends only on the 
welfares of individuals in those social systems. In addition, Sen would have data on the 
capacities and perhaps freedoms of individuals refl ected in the normative evaluation of 
economic society.

5. This quotation is from memory, from an oral address at Haverford College, Haverford, 
PA, 16 November 2007.

6. While the list diff ers somewhat from (1)–(5) above, it is similar in conception. The litera-
ture includes a number of diff erent equivalent and near-equivalent axioms expressing the 
desiderata of good collective decision processes.

7. One fi nds a considerable variety of versions of this quotation, partly, no doubt, due to 
alternative translations from the German. 
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8.  Superadditive games in coalition 
function form

This chapter reviews some concepts from what might be called near-
 consensus cooperative game theory. The objective of the chapter is pri-
marily expositional. Apart from expression, examples, arrangement, and 
some critical comments, the chapter is not intended to be original.

For this chapter, the game is primarily represented in coalition or char-
acteristic function form. That is, the game comprises a set N of players, 
a1,. . .,an; ai [ N; the enumeration of all subsets of that set, the potential 
coalitions, and a mapping from subsets to real numbers, the characteristic 
or coalition function, which gives us the value attainable by each coalition. 
The value of a coalition C will be denoted as v(C) or v{a1, a2, . . .} where 
a1, a2, . . . are the members of coalition C. As we recall, von Neumann and 
Morgenstern identifi ed this with the assurance value. The key point is that 
the value of a coalition is well defi ned and depends only on the member-
ship of the coalition. We also adopt the assumption, from von Neumann 
and Morgenstern, that the game in coalition function form is superaddi-
tive; that is, that the value of a merged coalition is no less than the sum of 
the values of the merged coalitions acting separately.

8.1 SOLUTION CONCEPTS

For a superadditive game in coalition function form, the only rational 
arrangement is the grand coalition. If the grand coalition is formed, 
nothing can be lost (since the grand coalition must have a value no less 
than those of any proper coalitions into which it can be decomposed) and 
something will usually be gained. All that remains is to determine how the 
value of the grand coalition will be divided among the decision-makers. As 
we recall from Chapter 3, there are several such solution concepts.

8.1.1 The Core and Related Concepts

Probably the most widely discussed solution concept for games in coalition 
function form is the core. The simple idea behind the core of a cooperative 
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game is that no group can be denied the value that they could obtain if 
they were to form a coalition and act independently of the rest. As an 
illustration, consider Game 2.5. A singleton coalition that would produce 
the public good would then have a value of at most 4, so will not produce 
the public good. The singleton coalition would face a unifi ed opposition, 
a two-person coalition, capable of producing two units of the public 
good. The opposition coalition would refuse to produce the public good, 
presumably in order to increase its bargaining power, since producing the 
public good would raise the value of the singleton to 7 or 9. Therefore, 
v{a} 5 v{b} 5 v{c} 5 5. A two-person coalition that would produce the 
two units of public good would be worth 12, whereas if it does not produce 
its value is 10. Moreover there is nothing the opposition singleton coali-
tion can do to reduce the two-person coalition’s payoff  below 12, so the 
two-person coalition will choose to produce the public good1 and v{a,b} 
5 v{b,c} 5 v{a,c} 5 12. The grand coalition of all three agents will be 
worth 24 if it produces three units of the public good and less if not, so it 
will produce them and v{a, b, c} 5 24.

The payoff  to agent j, after side payments are made, is denoted by xj. A 
set of payments xj for the n players in the game, consistent with the value 
of the grand coalition, is called an imputation.2 Accordingly, suppose xa 5 
5, xb 5 5, xc 5 10. Then xa and xb can instead form a two-person coalition 
and earn 12, which they can divide among themselves. Thus we exclude 
the imputation 5,5,10 from the core. In general, by the same reasoning, we 
exclude from the core any schedule of payoff s that does not satisfy:

1.1. xa $ 5
1.2. xb $ 5
1.3. xc $ 5

1.4. xa 1 xb $ 12
1.5. xa 1 xc $ 12
1.6. xb 1 xc $ 12

1.7. xa 1 xb1 xc # 24

Adding inequalities 1.4–1.6 we obtain 2(xa 1 xb1 xc) $ 36, that is, xa 1 
xb1 xc $ 18. Comparing this with inequality 1.7, we see that there are infi -
nitely many imputations that satisfy the criteria for the core in this example. 
In particular 8,8,8; 8,6,10; and 12,6,6 all are members of the core.

Here is another example, Game 8.1. Once again it will be a three-person 
game and all singleton coalitions are worth 5 if no production takes place. 
There are two techniques of production, both of which have economies of 
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scale so that they can be undertaken only by coalitions with two or more 
members.3 Technology 1 generates profi ts of 4 for those who undertake it 
but produces a polluting waste that has to be assigned to some individual 
agent (who need not be a member of the group that undertakes production 
with technology 1) and reduces that person’s payoff  by 5. Technology 2 
generates a profi t of 3 and no waste.

A singleton will face a united opposition that can reduce the singleton’s 
value to zero by producing with technology 1 and assigning the waste to 
the singleton. Therefore, v{a} 5 v{b} 5 v{c} 5 0. A two-person coali-
tion can achieve a value of 14 by producing using technology 1, and there 
is nothing the opposing singleton can do to reduce the two-person coali-
tion’s payoff  below 14. Therefore, v{a,b} 5 v{b,c} 5 v{a,c} 5 14. The 
grand coalition has a value with no production of 15, with technology 1 of 
14, and with technology 2 of 18. Therefore technology 2 will be used and 
v{a,b,c} 5 18.

For this game, in order to prevent any two-person group from drop-
ping out and shifting to technology 1, xa 1 xb1 xc $ 21 is necessary. Since, 
however, xa 1 xb1 xc # 18 is also necessary, there are no imputations that 
satisfy the criteria for the core of the game. That is, the core for this game 
comprises the null set. This is often expressed by saying “the core does not 
exist,” but strictly speaking, the core always exists, although (as in this 
case) it may be null.

Both of these games are symmetrical, but this needs not be so. Of 
course, nonsymmetrical games, in which coalition values depend on the 
individual members of the coalitions, will be more complex, and in some 
cases very much so.

There are a number of properties that we might like a solution to have. 
Two of the most important are that it should never be null and should cor-
respond to a unique imputation. Clearly the core satisfi es neither of these. 
However, there are a number of desirable properties that it does have.

Suppose we have two games played by the same set of players, G 5 
(N,v(C)) and Q 5 (N,w(C)), and there are constants a and b such that for 
any coalition C w(C) 5 a 1 bv(C). The two games are said to be strategi-
cally equivalent. Suppose then that whenever x is a solution of G, a 1 bx is 
a solution of Q. Then the solution is covariant under strategic equivalence. 
In more ordinary terms, it says that the solution will be unchanged by a 
change in the scale of measurements of payoff s, and that is persuasively a 
good property for a solution to have. The core has this property4 (Peleg 
and Sudhölter, 2003, p. 25).

The core also has a property of anonymity, which means that the solu-
tion does not depend on the identities of the players except so far as their 
contributions to the values of coalitions are concerned. To see how this 
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might fail, consider a “toy” solution concept, which is meant only as a bad 
example. Assign xa 5 v{a}, xb 5 v{a,b} – v{a}, xc 5 v{a,b,c} − v{a,b}, 
and so on if there are more than three players. Now consider another 
game, Q, that is a permutation of G; that is, we simply take a, b, and c 
in a diff erent order, such as c, b, a. Nevertheless w{a, b} 5 v{a, b} and 
so on. But if we apply the toy solution concept using the new order we 
have xc 5 v{c}, xb 5 v{a,c} − v{c}, xa 5 v{a,b,c} − v{a,c}. For the toy 
solution concept, the solution depends on how the players are ordered. A 
solution concept that is independent of this ordering is symmetrical and if 
it is similarly independent of any identity the agents may have apart from 
what is expressed in the coalition function, it is anonymous. The core has 
these properties (Peleg and Sudhölter, 2003, p. 26).

If a solution concept gives each agent a payoff  no less than he could get 
acting as a singleton coalition, it is said to have individual rationality. The 
core has this property (Peleg and Sudhölter, 2003, p. 27).

Thus, despite its shortcomings, the core has some properties that we do 
want to fi nd in a solution, and it captures the idea that a group of players 
will in general get at least what they can obtain by acting independently.

8.1.2 Arbitrational Concepts

In 1950–53 two solution concepts for cooperative games were proposed, 
both of which (unlike the core) provide unique solutions that are never 
null. These were due, respectively, to Nash and Shapley. Both were 
derived from systems of axioms that describe properties of a solution that 
might be considered reasonable or appropriate. Luce and Raiff a (1957) 
suggested that they might be interpreted as frameworks for arbitration, in 
that an arbiter would consider the properties of the decision in deciding on 
the distribution of payoff s among the group.

8.1.2.1 Nash bargaining
Nash begins by assuming that the payoff s to two interdependent decision-
makers must fall within a feasible set that is convex and compact.5 These 
properties assure that the assignment of payoff s to the two persons will 
be unique and are trivially satisfi ed for games in coalition function form. 
(Nash did not assume transferable utility.) He assumes that the decision 
will have the properties of:

(1) Individual rationality, that is, each agent receives at least as much as 
he could obtain if there is no agreement.

(2) Pareto-optimality, that is, the decision cannot be improved on for 
both decision-makers simultaneously.
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(3) Independence of irrelevant alternatives (see Chapter 7.2.1).
(4) Solutions are covariant under strategic equivalence.
(5) Symmetry: that is, if the two bargainers are interchanged, the chosen 

payoff s are interchanged accordingly.6

Given these assumptions Nash shows that the vector of chosen payoff s 
can be computed as the solution to a maximum problem. Let x*, y* be 
the payoff s to the two bargainers if there is no agreement and x, y be 
their payoff s from the agreement. Then x and y will be chosen so that 
the product (x − x*) (y − y*) is maximized among all the feasible pairs 
(x, y). This solution assigns unique payoff s to the bargainers and is never 
null. However, it directly applies only to two-person games and makes no 
allowance for diff erences in bargaining power. There are several proposals 
of extensions to more than two players, but none seems widely accepted 
(for example, Harsanyi, 1963; CGT4, pp. 325–56).

8.1.2.2 Shapley value
Shapley proposed a solution concept that would associate a payoff  with 
each of n agents in a coalition function game, where n could be any posi-
tive integer. Shapley fi rst adopts a series of three axiomata (CGT, p. 71) 
that are regarded as necessary characteristics of a solution. In ordinary 
language, these are that (1) nothing depends on the identity of a player, 
as distinct from the role (dealer, maker of the opening lead play, and so 
on) that the player takes in the game, (2) the payoff s add up to the total 
payoff  of the grand coalition in the game, and (3) if the same players 
play two diff erent games, the values in the merged game are the sum 
of the values in the two games. He then shows (CGT, pp. 71–4) that 
these conditions are uniquely satisfi ed by an algebraic, permutational 
formula,

 � i (v) 5 a
S#N
i[S

gn (s) (v(S) 2 v(S 2 {i})  (8.1)

where �i(v) is the value assigned to player i in the game characterized by 
v, and gn(s) is

 gn (s) 5
(s 2 1)!(n 2 1)!

n!
 (8.2)

where s is the number of players in coalition S, n the total number of 
players in the game, and ! denotes the factorial of the number. Thus, in 
ordinary terms, the value will be the weighted sum of the individual’s con-
tributions to the value of a coalition, for all coalitions in which he might 
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participate. The weights do not lend themselves to a simple ordinary lan-
guage explanation. However, Shapley also off ers (CGT, pp. 78–9) what he 
describes as a bargaining process that would generate the value (perhaps 
following Nash’s 1953 example). He writes:

The players . . . agree to play the game v in the grand coalition, formed in the 
following way: 1. Starting with a single player, the coalition adds one player at 
a time until every player is admitted. 2. The order in which the players are to 
join is determined by chance, with all arrangements equally probable. 3. Each 
player, on his admission, demands and is promised the amount his adherence 
contributes to the value of the coalition . . . The expectations under this scheme 
are easily worked out. (emphasis added)

These expectations are just equation (8.1) above, where gn(s) is the prob-
ability that the corresponding payment will be the one off ered.

The Shapley value has a number of desirable properties:

(1) It is Pareto-optimal.
(2) It is covariant under strategic equivalence.
(3) While it is not necessarily anonymous, the Shapley value has a prop-

erty of symmetry: if the players are permuted, without any other 
change in the game, their Shapley values are unchanged. (Note that 
this is not true for the “toy” solution concept of Section 8.1 above. 
The diff erence arises from the fact that the “toy” assumes a particular 
ordering of the agents, while the Shapley value averages over all such 
orders.)

(4) It has an equal treatment property: suppose that two agents make the 
same contribution to all coalitions; then they are assigned the same 
Shapley value.

(5) It is additive (this is assumed in the introductory paragraph of this 
section).

(6) It has a null player property: if an agent adds nothing to any coalition 
then his Shapley value is zero.7

The additivity property is crucial and is a defi ning property of the Shapley 
value. It may also be the least compelling to intuition.

8.1.3 Nucleolus

The core and the Shapley value seem to be the most widely discussed and 
applied solution concepts in cooperative game theory. Of the several other 
concepts, this book will discuss only the nucleolus. Like the Shapley value, 
the nucleolus is never null and assigns a unique net payoff  to every agent 
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in the game. The nucleolus has the further property that if the core is not 
null, the nucleolus is an element of it. Thus, the nucleolus can be thought 
of as a core assignment algorithm; that is, as a basis for singling out a par-
ticular imputation in the core when the core is not unique. The nucleolus 
will not be discussed here but will be considered in detail in Chapters 12 
and 13. The nucleolus can be computed by linear programming, although 
there are some complications, even for a game as simple as this one. The 
nucleolus has some desirable properties. Like the Shapley value and the 
core, it is covariant over strategic equivalence and has an equal treatment 
property. Like the core, the nucleolus is anonymous. It is not additive and 
lacks the null player property.8

8.1.4 Interpretations of the Solution Concepts

The solution concepts are usually presented as mathematical forms, with 
their interpretation largely left open. Indeed, they may be susceptible of 
at least two interpretations, and it may be that more than one solution 
concept might be adopted for diff erent interpretations.

8.1.4.1 Stability interpretation
Returning to Game 2.5, we have said that imputation xa 5 5, xb 5 5, xc 5 
10 should be excluded, since xa and xb could then secede and earn 12. But 
what are we to make of this argument? Critics of the core concept have 
questioned this criterion along the following lines: if a and b are members 
of the grand coalition, then they have committed themselves to it, and to 
some prearranged imputation. For them to opportunistically abandon the 
coalition to increase their payoff s as a group is then seen as inconsistent 
for a cooperative game analysis. The cooperative game solution should 
represent a binding contract. This binding contract interpretation might 
support Nash bargaining, the Shapley value, or the nucleolus, against the 
core and related concepts.

Indeed, we might say that the core concept is based on coalitional 
egoism. But isn’t coalitional egoism something we are likely to see in the 
real world, sometimes?

One possible response to the criticism is that commitments, however 
binding, are not forever. Thus, even if a and b were to remain with the 
grand coalition for a time, eventually their commitments would expire 
and they would be likely to make other arrangements. On this sort of 
interpretation, the core is a concept of stability. The empirical prediction 
would then be that imputations outside the core are unstable, and there-
fore relatively unlikely to be observed, since they will be short-lived if they 
do occur.
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8.1.4.2 Rhetorical Interpretation
Another possible interpretation is that the abandonment of the grand coa-
lition by {a,b} might not literally take place, but might be a threat made 
in the course of bargaining over the division of the value created by the 
grand coalition. This interpretation has been primarily associated with 
other solution concepts, such as Aumann and Maschler’s (1964) bargain-
ing sets (which will be beyond the scope of this chapter) and the nucleolus. 
Both Nash and Shapley referred to bargaining power as motivation for 
their models. But the rhetorical interpretaton could be applied to the core 
as well. The empirical prediction then would be that imputations outside 
the core would be rarely or never observed, since they would be rejected in 
the bargaining that precedes the formation of coalitions.

8.2 THE PROBLEM OF APPLICABILITY

By comparison with non-cooperative game theory, at least, there have 
been relatively few applications of cooperative game theory. In chapters 
to follow this book will argue that the simplifying assumptions lead to a 
theory that is simply too abstract to be useful in a wide range of applica-
tions. However, there are a few important applications in economics. We 
will review three: games of exchange, games of production, and applica-
tions to the allocation of cost in a multidivisional organization. The fi rst 
two are applications of the core, while the last begins from the Shapley 
value.

8.2.1 The Market as Implementation of the Core

Among the most important applications of cooperative game theory is 
the study of games of exchange. In a game of exchange, there are two or 
more types of players, who diff er in their endowments of particular goods 
and services or in their preferences or both. Coalitions are formed for the 
purpose of making reciprocal transfers of the goods and services, that is, 
exchanges. The benefi t of doing so is that each agent may at the end fi nd 
himself with a collection of goods and services that he likes better than the 
endowment he began with.

Most contributions to this literature do not assume transferable utility, 
but instead adopt the nontransferable utility approach of Shapley and 
Shubik (1952). For simplicity, we will consider an example of trade in 
indivisible units of two goods.9 Suppose, then, that we have two traders 
interested in exchanging olive oil for wine. (This will be Game 8.2.) 
Traders of type a are endowed, at the beginning of the game, with three 
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barrels of olive oil, while traders of type b are initially endowed with three 
barrels of wine, and the barrels cannot be divided. With just two traders, 
then, an individual may fi nd himself with 0, 1, 2, or 3 barrels of oil and 0, 
1, 2, 3 barrels of wine. There are sixteen such combinations and, for the 
purposes of our example, we need to know the preferences of both players 
with respect to all sixteen. These are shown in Table 8.1. The preferences 
are expressed as fi rst, second, and so on, so smaller numbers are better. 
Thus, for example, the third column tells us that a player of type a prefers 
one barrel of oil and three of wine (fi fth preference) to two of oil and one of 
wine (eighth preference), while the last column tells us that a player of type 
b prefers two of oil and one of wine to one of oil and two of wine.

Suppose, then, that it is proposed to exchange two barrels of oil for one 
of wine. This would please the type b trader, raising him from his 12th to 
his 4th preference, but it would reduce the type a trader from his 9th to his 
11th preference; so the type a trader would veto the trade. Suppose, on the 
other hand, that it is proposed to trade one barrel of oil for two of wine. 
This would raise the type a trader to his 6th preference and the type b 
trader to his 11th. Thus we may say that the allocation10 that results from 
the one-oil-for-two-wine trade, two oil and two wine for type a and one 
oil and one wine for a type b, dominates the initial allocation. In general, 
an allocation x will dominate an allocation y if there is a coalition at least 
one member of which is better off , and none worse off , with x than with y. 

Table 8.1 Preferences for a game of exchange

Barrels of oil Barrels of wine a’s preferences b’s preferences

0 0 16 16
0 1 15 15
0 2 14 14
0 3 12 12
1 0 13 13
1 1 11 11
1 2  7  8
1 3  5  5
2 0 10 10
2 1  8  7
2 2  6  4
2 3  3  2
3 0  9  9
3 1  4  6
3 2  2  3
3 3  1  1
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With only two traders in the game, we need consider only the grand coali-
tion and the singleton coalitions.

As before, the core will consist of all allocations that are undominated. 
As before, the core may not be unique. For this game, with just one trader 
of each type, we have

2, 2 for a and 1,1 for b resulting from a 1-for-2 trade
1, 2 for a and 2,1 for b resulting from a 2-for-2 trade
1, 3 for a and 2,0 for b resulting from a 2-for-3 trade

In each of these cases, neither person can do better as a singleton, that 
is, if no exchange takes place. Thinking in terms of prices, or rates of 
exchange, we see that the price of a barrel of wine can vary from half a 
barrel of oil to 1 barrel of oil within the core. (At a one-to-one exchange 
rate, the exchange of one for one is dominated by the exchange of two 
for two, as an exchange of one for one leaves each with his 8th preference 
while the two-for-two exchange leaves each at his 7th. Put otherwise, at a 
price of 1, each person will off er two units for trade, and this is the market 
equilibrium.)

Now suppose that we have two traders of each type, and suppose that 
the allocation proposed is that type a’s get 2, 2 and b’s 1,1, corresponding 
to a price of ½. Instead, consider a coalition of one a and two b’s, and of 
the b’s, suppose b1 transfers 2 of wine to a, b2 transfers 1, and a transfers 
1 of oil to each. This leaves a with 1, 3, his 5th preference; b1 with 1,1, his 
11th, and b2 with 1,2, his 8th. a and b2 are better off  than they were in 
the proposed allocation, and b1 is no worse off . (If we allowed wine to be 
divided, b2 could off er b1 a cup or two from b2’s second barrel, to make 
it worth b1’s while to join the coalition.) Thus, the three-person coalition 
permits an allocation that dominates the proposed 1-for-2 allocation, and 
the 1-for-2 allocation (and the price of ½) is no longer in the core. What 
we see is that with more traders, we may have more complex coalitions, 
and these impose more constraints on the allocations that can belong to 
the core, so that the core is smaller in a larger game.

Now, suppose that we have three agents of each type, and the proposed 
allocation gives a’s 1,3 and b’s 2, 0, as in the 2-for-3 exchange and the price 
of 2/3. Suppose instead that a coalition is formed of two a’s and three b’s 
with the nine barrels of each type allocated so that each a gets 2,1, two b’s 
get 1,2, and the third b gets 1,3. This means that the a’s are at their 4th 
preference, rather than their 5th as in the proposed allocation, and two b’s 
are at their 8th and one at his 5th preference rather than their 10th, as in 
the proposed allocation. We now have a 2a and 3b coalition dominating 
the 2-for-3 exchange, and the price of 2/3 is no longer in the core. Once 
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again, the larger game allows for more complex coalitions that impose 
more constraints on the allocations in the core, resulting in a smaller core.

In the literature on market games, as in this example, the objectives are 
vectors of quantities of diff erent goods and coalitions are formed for real-
location of the initial endowments of goods. Usually goods and services 
are assumed to be divisible and the conventional neoclassical assumptions 
are made: the individual may be indiff erent between two vectors of goods 
and services, but preferences are convex, meaning that a weighted average 
of two vectors of goods and services will be preferred to either of the two 
vectors that are averaged.11 It is then demonstrated that

(1) The core of a market game is never null.
(2) While the core is usually not unique, increasing the number of agents 

in the game tends to eliminate some allocations from the core, so that 
the size of the core is smaller for larger games, as in the example.

(3) The supply-and-demand equilibrium allocation and ratio of exchange 
is always a member of the core.

This is a striking result. It says that, for games of exchange, the non-
cooperative game defi ned by competitive markets yields a result in the 
core, and that a great multilateral contract by way of the grand coali-
tion could not improve on bilateral trade mediated through competitive 
markets. In the language of implementation theory, markets implement 
the core for this class of games. We should recall, however, the special 
nature of games of exchange (Chapter 3, note 11).

8.2.2 Telser on the Core in Games with Production

When we introduce production into the game, the case is quite diff erent. 
If there are increasing returns to scale, it is quite likely that the core will 
be null. On the other hand, decreasing returns to scale seems prima facie 
to confl ict with superadditivity, and decreasing returns in the neighbor-
hood of the effi  cient imputation can also result in a null core. Even if 
the core is not null, the competitive equilibrium may not be an element 
of the core, and the core may require a “natural monopoly,” with price 
discrimination or some other measure to effi  ciently recover overhead 
costs (Telser, 1978, pp. 129–31). Following Telser we will again assume 
transferable utility and denote candidate solutions as imputations rather 
than allocations.

From a mathematical point of view, it is reasonable to consider a null 
core as a failure for the theory of the core. A solution concept that can 
never be satisfi ed for an important class of problems seems mathematically 
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impotent. For Telser, however, the nullity of the core is an explanatory 
principle. He writes (1978, p. 65):

These results can improve our understanding of the restrictions that are neces-
sary for an equilibrium . . . These constraints assume a variety of shapes in the 
real world. The state may intervene either by outright ownership of the plants 
or by regulation of the activities of the single fi rm supplying the outputs from its 
plants. Sometimes the state intervenes by acting on behalf of the buyers, or the 
buyers may form their own coalition to act in concert . . . in the case of a natural 
monopoly or a natural monopsony.

A probable example of a null core is the airline industry. Telser (1997, 
pp. 5–7) gives an illustrative example with two airline companies and just 
three consumers. However, the conditions of this “toy” model are recog-
nizable in the airline companies of the real world: a very high proportion 
of costs are overhead costs and profi ts depend on fi lling a high proportion 
of the seats. Telser demonstrates in his small-scale example that the core 
is null so long as competition among the airline companies is unrestricted. 
Another example along similar lines is the fi lm industry. Telser describes 
(1997, p. 263) the arrangements by which producers controlled the showing 
of their fi lms by theaters in the period 1920–40. These arrangements were 
considered collusion in restraint of trade and were abandoned under a 
federal consent decree in 1940. Telser argues (1997, p. 264) that they were 
optimal, however, as a means of stabilizing what would otherwise have 
been a game with an empty core.

Despite his passing comment that “Sometimes the state intervenes . . .,” 
Telser is primarily interested in restrictions on competition that arise 
within the private sector, as the fi lm industry example shows. Nevertheless 
his ideas supply a key resource for the understanding of public regulation. 
In general, public regulation may improve the functioning of the economy 
when it operates to prevent a class of transactions that, if permitted, would 
result in an empty core. If we adopt the stability interpretation of core 
theory, we would say that in such a case regulation operates to stabilize 
an economy that would otherwise have no stable state. Of course, this is 
not the only function of public regulation, which may be necessary (when 
there are externalities) to avoid economic states that are stable but inef-
fi cient. It is, though, a function of public regulation that is less well under-
stood, and the theory of cooperative games in coalition function form is a 
key tool to understanding it.

Telser writes (1997, p. viii) “People facing empty cores try to devise suit-
able restrictions and rules in order to obtain effi  cient outcomes.” In the 
absence of public regulation, they may not succeed. The airline example 
seems instructive. Telser suggests that vertical integration could resolve 



134 Game theory and public policy

the empty core in this case: if each airline were owned by a customer, the 
core would not be null (Telser, 1997, pp. 10–11). In a real world of airlines 
with more than three customers, this would mean that the airlines come to 
be operated by consumers’ cooperatives. Of course, this has not occurred 
in the real world, and does not seem likely to.

Consumers’ cooperatives can be successful in operating natural monop-
olies, as the many examples of rural electric utility and telephone service 
cooperatives in the United States shows. These cooperatives were estab-
lished not where service was unstable but where it was not profi table 
enough for investor-owned companies to off er the service. It may be, 
though, that the investor-owned companies stayed out of the rural 
markets because they anticipated empty-core instability. Otherwise it is a 
bit diffi  cult to explain why services that could be operated at a profi t by 
consumer cooperatives would be refused by profi t-maximizing investor-
owned companies. In any case, government initiative was central in the 
establishment of these cooperatives.

Taking the stability interpretation of the theory of the core, an empiri-
cal prediction would be that the airline industry would have no stable 
confi guration. That seems to agree with the facts. Bankruptcies and reor-
ganizations of the industry seem to continue in the case of airlines. Airline 
bankruptcies have become so common that some are jokingly said to be 
“in Chapter 33” – the third time in Chapter 11! (USA Today, 2006). Noted 
investor Warren Buff et has been widely quoted (and has quoted himself) 
as saying, “. . . if a capitalist had been present at Kittyhawk back in the 
early 1900s, he should have shot Orville Wright. He would have saved his 
progeny money” (The Age, 2002).

It is sometimes suggested that what is needed in the airlines is more 
competition, not less. On this view, smaller, fl exible, innovative new air-
lines operating in the high-volume markets or fl ying smaller aircraft will 
supplant the ineffi  cient “legacy airlines” that are badly managed or fatally 
burdened by union contracts or both. Older people may recall an advertis-
ing jingle for Allegheny Airlines: “It takes a big airline – Allegheny!” In the 
1970s, Allegheny was a smaller, fl exible, innovative airline fl ying smaller 
aircraft and introducing competition in the higher-volume markets. At 
the time of deregulation (during Jimmy Carter’s administration) it grew 
rapidly at the expense of then-established legacy airlines. As the jingle sug-
gested, its earlier brand image as a regional airline was no longer optimal. 
In 1979 it adopted a new name: USAir (Lehman, 2007). It is, of course, the 
same USAir that is often cited as an example of “uncompetitive” legacy 
airlines.

If free competition has resulted in instability of the airline industry, 
as seems to be the case, it does not follow that regulation before 1977 
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was very successful either. Perhaps the regulation (or other public initia-
tive) appropriate to the airline industry has to be considered an unsolved 
problem.

Telser’s discussion suggests that natural monopoly and monopsony, and 
other empty-core cost conditions, are widespread in a modern economy. 
In such cases regulation in some sense is unavoidable; and the choice (as 
indeed Galbraith, 1973, argued) is between public and private regula-
tion. Moreover, effi  cient private regulation in cases of natural monopoly 
and monopsony will usually involve price discrimination. Conversely, 
deregulation has often meant, not a competitive market, but increased 
and unregulated price discrimination. Statistical studies that show lower 
average prices following deregulation ignore this, and may not be repre-
sentative of the prices available to smaller or spot-market traders. All in 
all, we are unlikely to understand regulation or deregulation without the 
insights of cooperative game theory.

8.2.3 Values, Power and Accounting

Important applications of the Shapley value include the measurement of 
power in committees and governments (Shapley and Shubik, 1954) and 
the allocation of shared costs (Shubik, 1962). Shubik’s example for cost 
allocation supposes that two plants share a joint overhead cost. Here is an 
example with some similar features to illustrate Shubik’s argument. West 
Philadelphia University is a coalition of an engineering school, E, a school 
of media arts, A, and a business school, B. Each requires the support of 
a school of arts and sciences, which (for simplicity) generates no tuition 
revenue. In addition there are other overhead costs such as a computer 
center. Any coalition, including a singleton (stand alone school of engi-
neering, art or business) must bear 25 million of overhead costs for these 
purposes. Operating costs are E, 20; A, 25; B, 5. Tuition revenues are E, 
40; A, 35; B, 25. The coalition function is shown as Table 8.2. Suppose, 
for example, we take the order E, A, B in assembling West Philadelphia 
University from its parts. The engineering college then must (as the fi rst 
and so stand-alone unit) bear the overhead alone and generates a value of 
−5, which is 5 less than no university at all, so v{E} 2 v{[} is –5. Adding 
an art school creates {E,A}, so v{E,A} − v{E} 5 5. Now, add B, creating 
{EAB}, worth 25. Therefore v{E,A,B} − v{E,A} 5 20. Proceeding in this 
way, considering all possible orders and the appropriate weights, we fi nd 
that the Shapley values for this game are 10, 1.67, 11.67.

The Shapley values in this case are net of all costs – essentially the target 
profi tabilities of the three colleges, after the overhead cost. The allocations 
of the shared cost will be the allocations that leave each college with its 
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target profi tability. Table 8.3 shows the revenues, operating costs, shared 
cost allocations and profi tability targets (Shapley values) for the three col-
leges. As we see, in this case the overhead cost is allocated equally, even 
though the operating costs, tuition revenues, and profi tability targets are 
quite diff erent.

There have been a few other applications of Shapley values to cost 
assignment, with examples such as the divisions of the Tennessee Valley 
Authority and the diff erent classes of aircraft that use an airport. This has 
not been adopted as general accounting practice, but it does provide (at 
least in principle) an objective standard for the sharing of common fi xed 
costs.

8.3 SUMMARY

Much of the literature of cooperative game theory relies strongly on sim-
plifying assumptions that originated with von Neumann and Morgenstern. 
There are a number of properties one might like a solution to have: need-
less to say, no one solution will have all of them. One of the most common 

Table 8.3  Allocation of costs, revenues, and profi tabilities for three 
colleges

E A B

Revenue 40.00 35.00 25.00
Operating cost 20.00 25.00  5.00
Allocation  8.33  8.33  8.33
Net 11.67  1.67 11.67

Table 8.2 Game 8.4: coalitions and values in a game among colleges

Coalitions Values

[ 0
{E} 25
{A} 215
{B} 25
{A,B} 5
{E,B} 15
{E,A} 5
{E,A,B} 25
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solution concepts is the core, which rests on the idea that no group can 
be denied the payoff s they could obtain if they formed a coalition and 
chose a joint strategy. The core may, however, be null or may have many 
potential solutions within it. Three solution concepts that are never null 
and are unique are the Nash bargaining solution, the Shapley value, and 
the nucleolus, though the bargaining solution is inapplicable to more than 
two agents. Applications of these models are largely in economics (and to 
some extent in political science) and include a theory of exchange, a theory 
of restrictions on competition, measurement of power and the allocation 
of shared costs.

NOTES

 1. This appears to be inconsistent with the previous paragraph, as Telser (1978) notes in 
a similar context. We might say that the valuations are subjectively consistent in that 
each coalition is equally (and utterly) pessimistic about the decisions of those outside 
the coalition. Nevertheless, this will be reconsidered in Chapter 10.

 2. Some of the literature would use the term preimputation at this point, and consider it 
as an imputation only if every agent obtains at least what he would get as a singleton. 
However, that distinction will not be made here. 

 3. This may occur because the techniques of production involve division of labor (Smith, 
1994 [1776]; Kaldor, 1934), so require a certain minimum work force to be put into 
eff ect. 

 4. This is demonstrated in the game theory literature by forming a set of axioms one of 
which is the property, and showing that these axioms are equivalent to the solution 
concept. 

 5. These are technical terms from mathematical analysis and will not be discussed in detail 
here.

 6. This follows Forgo et al. (1999).
 7. This listing follows Peleg and Sudhölter (2003).
 8. This listing follows Peleg and Sudhölter (2003).
 9. Extension to divisible goods, drawing in the economic concept of a preference system, 

would demand a bit of mathematics.
10. For this discussion, an allocation of available goods and services among individu-

als replaces an imputation of value to a coalition. The term “allocation” may replace 
“imputation” in some other applications, following the example of games of exchange.

11. In some contributions this latter assumption is relaxed.
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9.  Imperfect recall and aggregation of 
strategies

We recall that Kuhn (CGT, pp. 193–216) extended and refi ned the treat-
ment of games in extensive form, including games of “imperfect recall,” 
that is, games in which a player may not be aware of some of its own 
earlier moves. (Ch. 3). For non-cooperative analysis, Selten (CGT, pp. 
312–54) argues, this multiplicity of agents should be excluded. However, 
any nontrivial coalition is a compound of two or more agents, so that 
imperfect recall arises naturally in coalitions. Nevertheless, coalitions 
seem never to have been discussed for games with imperfect recall. In this 
chapter we consider two implications of imperfect recall.

9.1 SUPERADDITIVITY

In their founding paper of the literature on cooperative solutions for 
games with given coalition structure, Aumann and Dreze (1974) ques-
tion the assumption of superadditivity in games in coalition function 
form.1 The argument for superadditivity is essentially that any vector of 
strategies available to the two coalitions separately is also available to the 
merged coalition, so that they can do no worse than to adopt the strate-
gies adopted by the two coalitions separately. Let us call that argument 
“argument A.” Aumann and Dreze (1974, p. 233) question the argu-
ment, although they concede that “superadditivity is intuitively rather 
compelling.” Nevertheless, they go on to write “. . . ‘acting together’ and 
sharing the proceeds may change the nature of the game. For example, 
if two independent farmers were to merge their activities and share the 
proceeds, both of them might work with less care and energy; the result-
ing output might be less than under independent operations, in spite of a 
possibly more effi  cient division of labor”2 (Aumann and Dreze, 1974, p. 
233). Aumann and Dreze make no reference to imperfect recall (although 
Aumann and Maschler, 1964, questioned superadditivity and, 1972, used 
examples with imperfect recall) but here is an example with imperfect 
recall that is  consistent with their point.

Suppose we have two farmers, a small farmer s and a large farmer l. 
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The small farmer has three acres of land and the large farmer has 27. (The 
reader may add zeros to these numbers if he or she lives in a more devel-
oped country.) Each farmer can choose to work with great eff ort or with 
slight eff ort. Working with great eff ort increases output by 50 percent, but 
has a subjective cost equivalent to decreasing the farmer’s produce by 10 
units. Output also depends on land. Working independently, on his three 
acres, the small farmer works with great eff ort and produces 30, for a value 
net of eff ort cost of v{s} 5 20. The large farmer also chooses to make 
a great eff ort on his larger landholding, and doing so can produce 150, 
leaving v{l } 5 140 net of the eff ort cost. But this is an ineffi  cient allocation 
of resources. The output of one farmer working 15 acres of land with great 
eff ort is 100. (With slight eff ort 15 acres will produce 65.) Thus, a realloca-
tion of land could raise the total output of the two farmers to 200, and net 
of eff ort cost their total benefi ts would be 180.3

We suppose the two farmers form a coalition to realize that potentiality. 
Specifi cally, l rents the land of s and hires s, forming a farm of 30 acres 
on which labor and eff ort will be effi  ciently allocated, with each farmer 
working 15 acres and l receiving the output but making a side payment to 
s. For an extensive-form game, a side payment is simply another strategic 
move at the last stage. For simplicity, we suppose that l considers only two 
lump sum payments, large 5 40 and small 5 15. If both work with great 
eff ort, l will fi nd himself with 200 at the end of the year and a transfer of 
40 to s will leave l with 160. Deducting 10 for the cost of l’s labor, l has 
150.v{l} 5 140, s has 40, and after we deduct 10 for his eff ort he is left 
with 30.v{s} 5 20. If the coalition game is a game of perfect recall, l will 
commit himself to the (contingent) pure strategy S1 5 “make great eff ort, 
and in case s makes great eff ort transfer 40 to s, but otherwise transfer only 
15 to s;” and the best response for s is strategy S2 5 “transfer three acres of 
land to l and make great eff ort on the land he allots to me to work.”

But the coalition of l and s is now a compound player with two “agents,” 
who may or may not know the strategy commitments of one another. 
Suppose, for example, that l is unaware of the eff ort made by s. Then l is 
unable to condition his side payment on the eff ort made by s. Strategy S2 
simply is not available to the coalition. Alternatively, suppose that l can 
monitor the eff ort of s, but s is unaware whether or not l has committed 
himself to strategy S1. Farmer s may be concerned that l will off er a small 
side payment of only 15, which is the optimal behavior strategy for l at that 
point in the game (that is, payment of the small side payment is subgame 
perfect). Then strategy S2 is not available to the coalition either. It may be 
that both of these imperfect recall conditions exists. If so, then the game in 
extensive form between l and s, is shown by Figure 9.1. If they play “off er” 
but not “refuse” they fi nd themselves playing a subgame equivalent to the 
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game in normal form shown as Table 9.1, a social dilemma (as represented 
in behavior strategies).

How can a social dilemma arise within a cooperative game? We have 
seen that strategies that condition the side payment to s on his eff ort are 
not available to the coalition, because of imperfect recall, so the great 
eff ort from s is simply not enforceable. On the other hand, if l cannot be 
confi dent that s will make a great eff ort, he can only “break even” with a 
small payment, and a large payment leaves l worse off  than he would be in 
the singleton coalition. Conversely, if he cannot get the large side payment, 
s can never be as well off  than he would be in his singleton coalition, and 
making great eff ort only makes that worse. In these circumstances it does 
seem possible that each person would protect himself against the worst by 
refusing any contract on terms that would be viable. This would lead us to 
assign the coalition {s,l} a value v{s, l} 5 155,v{s} 1 v{l} 5 160.

L

don’t

refuse

slight

small

small

offer

grea
t

large

large

140, 20
140, 20

140, 15

115, 40

175, 5

150, 30

L

S

Figure 9.1  Game 9.1: the farmers’ game in extensive form (with imperfect 
recall)

Table 9.1 Eff ort and side payment

Payoff  order: Agents s, l l

Large payment Small payment

s Great eff ort 30,150 5,175
Slight eff ort 40,115 15,140
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Now recall argument A: “any vector of strategies available to the two 
coalitions separately is also available to the merged coalition, so that they 
can do no worse than to adopt the strategies adopted by the two coali-
tions separately.” The two agents each chose great eff ort when acting as 
singletons, but (due to imperfect recall) no strategy is available to the coa-
lition that would elicit great eff ort from s, indeed it is not possible for the 
grand coalition to adopt the strategy vector the two singleton coalitions 
adopted separately. Now, a defender of argument A might respond that 
this mis-states the point: that the argument, as applied in this case, means 
that s and l could instead simply continue each to work his own land and 
take possession of his own product, with the result that the grand coali-
tion would produce just the value that the two produced separately. This 
cannot be controverted, but what does it mean? I would suggest that we 
might say instead, “because of imperfect recall the game is not superad-
ditive, so the grand coalition does not form in this game.” What is the 
 diff erence of meaning between the two phrases?

Another defense of argument A might be: “But this example depends 
on the assumption that l rents land from s and hires him. There are other 
ways the coalition might be formed. For example, l might rent 12 acres 
to s, either for a fi xed sum or a share of his product, and each take pos-
session of his own product.” The counterargument to this defense is that 
the defense is simply describing a diff erent game, and of course a diff erent 
game may have a diff erent solution.4 But this defense actually points up the 
pragmatic advantages of a formulation that allows us to say that the game 
is not superadditive. We might want to explain the widespread practice of 
sharecropping along the following lines: “Family farms and sharecropping 
(and other forms of renting of agricultural land) are widespread because 
larger farms are less effi  cient: that is, the game of consolidating farms is a 
game with imperfect recall, and consequently is not superadditive.” But if, 
accepting argument A, we assume superadditivity, this explanation is not 
possible.

9.2 AGGREGATION OF STRATEGIES

As we have seen, the “plausible” argument for superadditivity draws on an 
assumption that the set of strategies available to a coalition is comprised 
of the strategies available to the individual members of the coalition. 
For a coalition C with r.1 members, a coalitional strategy would then 
be a vector of strategies available to the individual members. The coali-
tional strategy vector would have dimension r. Drawing on Section 2.3 in 
Chapter 2, let si, denote an element of Si the set of strategies available to 
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individual i. Then a strategy for coalition C is a set {si} with one element 
for every i who is a member of C. The set of all strategies available to 
coalition C, sC, then is the set of all5 such {si}. This is an assumption that 
will be called the assumption of aggregation of strategies in what follows; 
and it is an assumption we will now wish to question. In imperfect recall, 
we have one reason to question it. A second reason is division of labor, as 
Aumann and Dreze note in passing. An illustrative example will be given 
in Chapter 14, Section 14.6.

Division of labor presupposes that diff erent agents perform diff erent 
tasks. In general a mode of production with M tasks will be available 
only to a coalition including at least M agents. If, as Smith argued, more 
complex division of labor leads to higher labor productivity, then there will 
be increasing returns to employment scale, as Kaldor (1934) pointed out. 
(This is a “long run” argument – that is, it assumes that nonhuman inputs 
are optimal for every employment scale, so that there are increasing returns 
to the labor input mutatis mutandis, not ceteris paribus.) Other kinds of 
indivisibilities may also lead to increasing returns to scale so that, as a 
practical matter, some strategies will only be available to coalitions above 
a certain size. With perfect recall, this would increase the tendency toward 
superadditivity, even though it is not consistent with aggregation of strate-
gies. If both division of labor and “imperfect recall” of eff ort commitments 
can occur, they might off set one another in various ways, including (among 
many others) the u-shaped long-run average cost curve of Marshall.

Thus, in general, it will be necessary to specify both the game in strate-
gic (or extensive) form and the set sC for each coalition. For some games 
the assumption of aggregation of strategies will be acceptable: these will 
be called aggregative games. Other games will be called non-aggregative 
games. For games such as the one in the previous section, sC will be 
a subset of the set of all vectors of strategies available to individuals. 
However, economies of scale and division of labor may make strategies 
available to a coalition that are not available to any set of individuals as 
singleton coalitions.

9.3 EXCHANGE GAMES AND IMPERFECT RECALL

The study of exchange games is one of the great successes of coopera-
tive game theory. In part, this refl ects the fact that exchange games are 
assumed to be free of externalities. Nevertheless, monopoly remains mys-
terious in the context of exchange games (Aumann, 1973). The conven-
tional monopoly result from the economics textbook, which is ineffi  cient, 
cannot be consistent with any cooperative solution. Stuart (2001) resolves 
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this problem by imposing the “law of one price,” but this assumption 
is ad hoc, and it is not clear that the law of one price is consistent with 
 cooperative game theory.

The literature of exchange games, like almost all traditional coopera-
tive game theory, assumes perfect recall, although the assumption is never 
explicitly stated. In this literature, the value of a coalition corresponds to 
the potential gains from trade among the members of a coalition. Since 
exchange games are usually modeled as NTU games, even this coalitional 
value cannot be expressed as a scalar; but in any case no explicit account is 
likely to be given of the choice of strategies in an underlying game. We will 
fi nd that if recall is imperfect, the value of a coalition may be less than the 
potential gains from trade among its members. This section will explore 
the point by means of a small-scale example.

To assess the implications of imperfect recall for exchange games it will 
be necessary to be more explicit about strategies in an exchange game. 
Presumably the behavior strategies in an exchange game are transfers of 
particular quantities of goods or of money. Certainly each person’s agree-
ment to an exchange is an agreement to make a conditional transfer and 
hence is, in a broad sense, a contingent strategy. In order to model exchange 
as a game in extensive form, we might think of it as a two-stage game. At 
the fi rst stage each party to the exchange makes a revocable commitment to 
transfer certain amounts of goods and/or money to certain other parties 
on the condition of certain transfers from them. At the second stage, if the 
conditions are consistent they are carried out, but if the condition has not 
been met, the off er is revoked and no exchange takes place. The contingent 
strategy then is of the form “Commit to a transfer of X to i and if i does 
not commit to a transfer of at least Y to me, then revoke; otherwise do not 
revoke.” This will be called the game of transfers.

With that background consider the following four-person game. The 
four agents are of four diff erent types and are denoted a, b, c, and m. 
Player m is initially endowed with four widgets and his payoff  depends on 
the number of widgets and the quantity of money he has at the end of the 
game. The payoff  is

 ym 5 e225 if no widgets are sold
money 1  50z where z widgets are not sold

Agents a, b, and c are initially endowed each with 100 units of money and 
their payoff s are

 ya 5 emoney 1 100 if one widget
money if no widgets
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 yb 5 emoney 1 70 if one widget
money if no widgets

 yc 5 emoney 1 40 if one widget
money if no widgets

It will be apparent that agent a will be better off  to acquire a widget at 
a price of less than 100 and b at a price of less than 70; however c is not 
benefi ted by a widget at any price above 40, while m’s reservation price 
of a widget is 50. Note also that if agent m were to sell four widgets at the 
reservation price of 50 each his payoff  would be 25 less than it is if there are 
no sales at all. This 25 is an overhead cost of entering into the market.

Now suppose m, a, and b were to form a coalition and commit 
 themselves to the following strategies:

1.m  m: Transfer 1 widget to a provided a transfers 60 monetary units 
to me AND transfer 1 widget to b provided b transfers 60 monetary 
units to me.

1.a  a and b : Transfer 60 monetary units to m provided he transfers 1 
widget to me.

On this basis the payoff s would be 220 for m, 140 for a, 110 for b, and 
100 for c, for a total of 570, an effi  cient outcome. However, with a payoff  
of 220, m is worse off  than he would have been with no trade, and so will 
refuse the coalition.

Suppose instead that the strategies were:

2.m  m: Transfer 1 widget to a provided a transfers 82.5 monetary units 
to me AND transfer 1 widget to b provided b transfers 60 monetary 
units to me.

2.a   a: Transfer 82.5 monetary units to m provided he transfers 1 widget 
to me.

2.b   b: Transfer 60 monetary units to m provided he transfers 1 widget 
to me.

This yields the same effi  cient 570 of fi nal payoff s but m, a, and b are each 
better off  with the trade than without, so the coalition might be formed 
on this basis. From the point of view of the economist, m , a monopolist 
with a fi xed cost, has increased his total revenue (in order to cover the fi xed 
cost) by means of price discrimination.

However, strategies 2.a and 2.b are dominated by:
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3.a   a: Transfer 80 monetary units to b provided he transfers 1 widget 
to me.

3.b   b: Transfer 60 monetary units to m provided he transfers 1 widget 
to me AND transfer 1 widget to a provided a transfers 80 monetary 
units to me.

Thus, m sells only 1 and the payoff s are 210 for m, 120 for a, 120 for b, 
and 100 for c, for a total of 550. This is an ineffi  cient outcome, but a and 
b are both better off  than they were in the previous case.

The monopolist faces competition from his own customers when he 
practices price discrimination in this example. He might forestall this by 
making his strategy:

4.m  m: Transfer 1 widget to b if and only if BOTH [b transfers 60 
monetary units to me AND b makes no transfers of the widget to 
other players] AND transfer 1 widget to a provided a transfers 82.5 
monetary units to me.

An alternative in this small game would be to make both transfers of 
widgets contingent on the money transfers from both players, but in a 
larger game, in which the monopolist might not be aware of the types (dif-
ferent demands) of the various players, this might not be feasible. On the 
other hand we see many real-world examples of monopolists attempting 
to prevent the resale of their products, such as sale contracts that make 
air tickets non-transferable, anti-scalping laws, and frequent revision of 
textbooks.

If the game of transfers is a perfect-recall game, then commitment 4.m, 
with 2.a and 2.b, will result in the same effi  cient and mutually benefi cial 
outcome as 2.m, 2.a, and 2.b as noted above. Suppose, however, that the 
game is of imperfect recall so that m cannot verify that a and b are com-
mitted to 2.a and 2.b rather than 3.a and 3.b. Then strategies 4.m are not 
available to a coalition of exchange. In such a case we may observe:

5.m  m : Transfer 1 widget to a provided a transfers 87.5 monetary units 
to me.

5.a  a: Transfer 87.5 monetary units to m provided he transfers 1 widget 
to me.

In this case m makes no off er to b because any price acceptable to b would, 
via secondary transfer from b to a, make it impossible for m to obtain an 
overall revenue that would cover his overhead as well as marginal cost. 
This results in fi nal payoff s of 237.5 for m, 112.5 for a , 100 for b , and c, 
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for a total of 550. This is again an ineffi  cient outcome, but a and m both 
fi nd it preferable to no trade, and the others lose nothing by it.

This is a case of monopoly restriction of output such as may be found 
in any principles of economics textbook. The monopolist has restricted 
sales in order to charge a high price, and the ineffi  cient payoff  of 500 rather 
than 520 refl ects a “deadweight loss” or “welfare triangle” equivalent to 
20 monetary units. This is a consequence of “imperfect recall” within the 
cooperative coalition for exchange.

Suppose that we double the game, so that there are two identical agents 
of each kind, and again assume perfect recall. The value of a coalition of all 
active agents, {m1, m2, a1, a2, b1, b2} will be 965. This is more than double 
the value of {m, a, b} in the previous game because of economies of scale: 
one of the two producers can supply all four of the active buyers, and the 
other remains inactive, contributing a value of 225 to the coalition. As 
before, agents of type c are dummies, contributing their singleton value of 
100 to whatever coalitions they join. Now consider a payoff  schedule with 
ym2

. 225 and suppose a coalition {m1, a1, a2, b1, b2} – is formed, that 
is, m2 is expelled from the grand coalition. The new coalition will increase 
its value by ym2

2 225 . 0, so that the payoff  schedule is not in the core. 
For a core allocation, each producer must obtain exactly its alternative 
cost, 225. By introducing a second producer, and thus a possibility of what 
economic theory would call market entry, we have introduced a “contest-
ability” constraint (Baumol et al., 1982). An “established monopolist” (the 
active producer) faces the risk of entry that could precipitate losses or force 
him out of the market. To forestall this, the established monopolist must 
moderate his prices to the point that the potential entrant cannot increase 
his profi ts by entry. In this symmetrical case, that means the monopolist’s 
own economic profi ts are reduced to zero. The result is effi  cient (because of 
price discrimination) and the buyers benefi t from the economies of scale.

Suppose instead that recall is imperfect in the doubled game. On the one 
hand, by the same reasoning as before, the payoff  to each producer must 
be exactly its opportunity cost, 225. On the other hand, this game is large 
enough that a producer can profi tably sell to agents of type b despite the 
law of one price. A price consistent with these two constraints is 56.25. 
There is no monopoly ineffi  ciency, although this is a result of the simplicity 
of the model, and with additional buyer types – such as a type d who can 
benefi t by buying only at a price of 55 or less – the usual monopoly inef-
fi ciency will be restored, on the assumption of imperfect recall.

The conclusions are that, on the one hand, the “law of one price” and 
monopoly as it is customarily treated in economics are phenomena of 
“imperfect recall,” so we should not expect any counterpart to them in 
conventional cooperative game theory in which perfect recall is assumed, 
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and (on the other hand) the results of exchange games may be sensitive to 
deviations from the assumption of perfect recall. We may modify other 
assumptions, such as introduction of a second potential producer and 
consequent contestability constraints, and this will change the bargain-
ing power among the agents in the game; but monopoly ineffi  ciency and 
the law of one price are to be expected only in case imperfect recall is 
assumed.

9.4 SUMMARY

Kuhn’s games with imperfect recall provide a rationale, within game 
theory, for what pragmatically appear to be non-superadditive coopera-
tive games. Plausible as the argument for superadditivity is, cooperative 
game theory seems potentially a more powerful explanatory tool if the 
assumption of superadditivity is not made. Similarly, it seems that the 
theory of exchange games is not the settled fi eld that it might have seemed 
to be for the last forty years. While research on more general models of 
exchange with imperfect recall could be rewarding, further discussion will 
have to be beyond the scope of the book.

NOTES

1. A search of Science Citation Index and Social Science Citation Index for papers that cite 
both the papers of Kuhn and Aumann and Dreze returned no references. I am indebted 
to my wife, Katherine McCain, Professor in the College of Information Science and 
Technology, Drexel University, for this information. Aumann and Sorin (1989) is not 
an exception and argues that a repeated non-cooperative game with some limitation on 
recall may for that reason be more likely to realize a cooperative outcome. However, it 
is not concerned with coalitions, nor is it concerned strictly with the condition Kuhn 
defi ned as imperfect recall. 

2. This concern with shirking in organizations was central to some contributions to eco-
nomics at about the same time; see, for example, Alchian and Demsetz (1972). 

3. The numbers in this example are derived from a spreadsheet example in which the 
dependence of output on the land input and eff ort is Cobb-Douglas, although eff ort is 
considered (for simplicity) as indivisible. There are many models in the literature that 
allow eff ort to vary continuously (for example, McCain 1980; 2007a) but this complicates 
the mathematics somewhat without making any qualitative diff erence in the results. 

4. There is, of course, a large literature on sharecropping and its advantages and disadvan-
tages by comparison with renting agricultural land for a fi xed sum. See, for example, 
Stiglitz (1974), Cheung (1968).

5. Formally SC 5 {{si 0 i [ C} 0si [ Si}.
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10.  Strategy, externality, and 
rationality

It has been observed that much literature in game theory relies on simpli-
fying assumptions that can frustrate the application of the theory, particu-
larly to public policy. “Perfect recall” is one instance here. The objective 
of this chapter is to give arguments why several other assumptions are 
problematic. We will begin with a common (often tacit) assumption of 
non-cooperative game theory and then proceed to explore two further 
issues of cooperative game theory and an ambiguity in the concept of 
rationality.

10.1 “BEHAVIOR STRATEGIES SUFFICE”

We now have the technical apparatus to reconsider the role of contin-
gent and behavior strategies in game theory, and the idea that, thanks to 
Kuhn’s demonstration, “behavior strategies suffi  ce.” As we recall from 
Chapter 3, Kuhn had demonstrated that an important family of games in 
extensive form can be analyzed by using behavior strategies only, choosing 
local (generally randomized) best responses. It was noted, however, that 
this analysis is not applicable to games of imperfect recall (CGT, 1997, pp. 
146–68), nor to any cooperative game (Selten, 1964), nor does it recover 
all Nash equilibria (CGT, 1997, pp. 312–54). It was also stated in Chapter 
3 that Kuhn’s reasoning does not apply to non-cooperative equilibrium 
concepts other than the Nash equilibrium. This will now be discussed.

In particular, correlated strategies cannot be derived from the local 
determination of behavior strategies as best responses at each informa-
tion set. Consider Game 10.1, shown in extensive form by Figure 10.1. No 
“story” or application will be given for this game, which is off ered strictly 
to illustrate the relation between contingent and behavior strategies. The 
agents are a and b and the game proceeds in just two stages. First, a 
chooses between behavior strategies u, c, and d, and then (depending on 
a’s play at the fi rst stage) b chooses between t1 and b1 (at information set 
b1) or t2 and b2 (at information set b2).

As usual, agent a’s contingent strategies need not be distinguished from 



 Strategy, externality, and rationality  149

his behavior strategies, since he makes the fi rst play. Agent b has four 
contingent strategies:

1. If u or c then t1, else t2
2. If u or c then b1, else t2
3. If u or c then t1, else b2
4. If u or c then b1, else b2

Notice that this list is highly redundant, as always when behavior strate-
gies are translated to contingent strategies. The reason for this redundancy 
is that contingent strategies 1 and 3 diff er only with respect to play at 
information set b2, which is never reached in Nash-equilibrial play, and 
similarly strategies 2 and 4. Notice also that any cooperative solution to 
this game will correspond to a strategy of d by player 1, followed by any 
behavior strategy of agent b and an off setting side payment. But this can 
never be realized if behavior strategies are chosen as local best responses.

Game 10.1 in strategic normal form is given by Table 10.1. This game 
has a number of Nash equilibria, due to the redundancy that has been 
mentioned, but they fall into two categories: pure strategy equilibria 

Figure 10.1  Game 10.1 in extensive form

Table 10.1 Game 10.1, in strategic normal form

Payoff  order: 
A,B

B

1 2 3 4

A u 3,3 0,0 3,3 0,0
c 0,0 3,3 0,0 3,3
d 0,8 0,8 8,0 8,0
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yielding 3,3 and randomized strategies yielding expected values of 1.5, 
1.5. The pure strategy equilibria provide relatively good outcomes but, as 
usual, they raise questions since they seem to require consultation or infor-
mation that the agents are assumed (in Figure 10.1) not to have. However, 
this game has a simple correlated equilibrium solution. Let the two agents 
fl ip a coin and play according to the rules:

For agent a: “If H then u else c.”
 For agent b: “If H then 1 else 2,” or “if H and (u or c) then t1 else t2 else 
if T and (u or c) then b1 else t2.”

What a correlated strategy does, in eff ect, is to imbed the game in a larger 
game in which the fi rst step is the signal, in this case fl ipping the coin. Neither 
agent has any reason to deviate from play by these rules: in a’s case, a devia-
tion to d or to play the “wrong” strategy from u and c will leave him with 
nothing, and in b’s case, a deviation to play b1 on H or t1 on T, a “wrong” 
behavior strategy, will similarly leave him with nothing. However, whether 
the original game is expressed in contingent or behavior strategies, the strat-
egies of play in the larger game must themselves be contingent strategies. To 
be specifi c, unless agent b knows that agent a will play according to the con-
tingent strategy “if H then u else c,” agent b has no information that would 
allow him to choose a behavior strategy that would produce a pure strategy 
equilibrium. This is the logical issue in coordination games, and local choice 
of behavior strategy off ers no escape from it. Local choice of best-response 
behavior strategies cannot produce a correlated equilibrium.

10.2 EXTERNALITY

Shapley and Shubik (1969) extended Shubik’s model of the core of an 
exchange game to the case of externalities. It will be worthwhile to explore 
that model, since it has been asserted that externalities call for treatment 
in terms of a theory of games in partition function form (or perhaps some 
non-transferable utility extension of it) but Shapley and Shubik (1969) do 
not do so. Among their conclusions were that the competitive equilibrium 
would be in the core if externalities were positive, though a system of taxes 
and subsidies could be constructed that would also be in the core; but that 
negative externalities could result in an empty core.

Consider, again, Game 2.5, the game of production of a public good. 
This game has also been investigated in Chapter 8, 1; and the payoff s are 
as shown in Table 10.2. Table 10.2 corresponds to game 2.5, except that, 
following Shapley and Shubik, we treat the payoff s as nontransferable and 
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noncomparable. (This will not change the results in any qualitative way 
but is considered more sound in terms of neoclassical economic thinking 
on utility theory and certainly is more general.)

Coalition values will not be meaningful since the payoff s are not trans-
ferable, but we may ask what payoff s an agent can expect if a particular 
coalition is formed. Accordingly, consider the payoff  to the singleton 
coalition {c}. If {a, b} choose “produce, produce” and produce two 
units of the public good they will increase their own payoff s from 5,5 to 
6,6. However, in so doing, they would increase the payoff  of the singleton 
coalition {c} from 5 to 9. This increase in the payoff  to {c} is a positive 
externality to {c}. Therefore, according to the assurance principle, {a,b} 
will not do it. Instead, they will direct to c an ultimatum: join in and share 
the cost of the public good or no public good will be produced. Therefore, 
the value of the singleton coalition {c} is not 7 but 5 – the smallest that 
it is in the power of {ab} to make it. It follows that 8, which c obtains 
from the grand coalition, is an improvement for {c}; the grand coalition 
forms and the public good is produced. In this case the major cooperative 
 solutions coincide.

What about the payoff s to a two-person coalition such as {a, b}? If they 
choose “produce, produce,” then they can assure themselves of 6,6; while if 
they do not they will receive 5,5; and there is nothing the singleton coalition 
{a} can do to reduce them below 6,6. Therefore (according to the assur-
ance principle) they will produce the public good and gain payoff s of 6,6.1

Here is an alternative scenario. Knowing that he will face the unifi ed 
opposition of {a, b}, {c} sees his opportunity simply to enjoy the public 
good for free, gaining a total payoff  of 9. He does not fi nd the threat by 
{a, b} to be credible, since it is not a Nash equilibrium. So c becomes a 
“holdout.” This is not as asymmetrical as it may seem. The point is that 
any of the three might fi nd himself as a holdout: the possibility is symmet-
rical although the realization is unsymmetrical. This means that the grand 
coalition payout of 8 will not be suffi  cient to persuade anyone to remain 

Table 10.2 Game 2.5 revised: a game of production of a public good

Payoff s: 
A,B,C

C

Produce
B

Don’t
B

Produce Don’t Produce Don’t

A Produce 8 8 8 6 9 6 6 6 9 4 7 7
Don’t 9 6 6 7 7 4 7 4 7 5 5 5
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in the grand coalition and the grand coalition will not be stable. By adopt-
ing the assurance principle, Shapley and Shubik have simply assumed the 
possibility of such holdout behavior away. They show that, on that basis, 
positive externalities do not prevent the formation of an effi  cient grand 
coalition. But if (as common sense suggests) holdouts are no less common 
forms of human action than threats, positive externalities may prevent the 
formation of an effi  cient grand coalition.

Now we consider a case with negative externalities. Each of the three 
agents begins the game with wealth of 10 and a bucket of garbage that 
he may dump in the backyard of either of his neighbors. (For technical 
reasons we can ignore the possibility of dumping the garbage in his own 
backyard.) If he has one bucket of garbage dumped in his backyard, the 
victim loses well-being equivalent to one unit of wealth, reducing his payoff  
to 9. However, the impact of garbage pollution is nonlinear: if he has two 
buckets dumped in his backyard, the victim’s well-being is decreased by 5, 
leaving a payoff  of 5. (This refl ects an idea that even if pollution cannot 
be reduced, as it cannot in this game, its worst eff ects may be prevented 
by dispersing it as widely as possible.) The payoff  table for Game 10.2 is 
Table 10.3.

Once again, what payoff s can be expected by a player who joins a par-
ticular coalition? First, a singleton coalition will face a unifi ed opposition 
that will conspire to reduce the singleton’s payoff  to 5. Second, a two-per-
son coalition can agree to dump on the nonmember, and depending on the 
nonmember’s decision, each of them will do no worse than 9. Therefore, 
9,9 is the security outcome for a two-person coalition. The grand coalition 
can realize 9, 9, 9 by adopting a cycle of dumping, such as a on b, b on c 
and c on a. This avoids the nonlinear impact of two buckets dumped in 
one backyard.

However, this is not a stable arrangement. For example, {a,b}, with an 
agreement that both will dump on c, assures each of a payoff  of at least 9 
and a chance at 10. But this in turn is not stable either. Suppose the payoff  

Table 10.3 Game 10.2: a game of pollution

Payoff s: 
A,B,C

C

Dump on A
B

Dump on B
B

Dump on A Dump on C Dump on A Dump on C

A On B 5  9 10 9  9 9 9 5 10 10 5 9
On C 5 10  9 9 10 5 9 9  9 10 9 5
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to {a,b} is 9, 10. Then {a,c}, with the same agreement, makes c better off  
with an assured payoff  no less than 9 and a no worse off  and standing a 
chance of getting the better payoff  of 10. (Conversely if the payoff  to {a,b} 
is 10, 9, c would approach b for the realignment.) This sort of reasoning 
supports the conclusion of Shubik and Shapley that the core of the game 
with negative externalities may be null. Notice that we have a dominance 
cycle, as {a,b} is dominated by {a,c} as we have seen, but again, {a,c} 
will be dominated in the same way by either {a,b} or {b,c}, and so on. 
However, notice that after the second realignment b (or a if he were the 
original gainer) is worse off . He might anticipate that, and be cautious 
enough to decline the opportunity to join with a in “ganging up” on c. 
Thus, a more “farsighted” solution concept than the core might point to a 
diff erent conclusion.

The diffi  culty in the case of positive externalities derives in part from 
the assurance principle, but in part from the representation of the game 
in coalition function form itself. When there are externalities, including 
what Scitovsky (1954) called “pecuniary externalities,” the value of one 
coalition depends on the other coalitions that form, as in these cases. This 
suggests the use of the partition function form as the alternative that could 
allow for such things as holdout behavior. The partition function assigns 
a value to each coalition imbedded in a particular partition. How are these 
values to be determined?

10.3  THE DERIVATION OF COALITION VALUES 
FROM THE UNDERLYING GAME IN 
STRATEGIC NORMAL FORM

Von Neumann and Morgenstern conjectured that (as against their assur-
ance principle) the opposition to a coalition might be motivated more by 
the prospect of increasing their own gain than by that of minimizing the 
payoff  of the opponent. That might lead the game theorist to assign those 
values instead by assuming Nash equilibrium play between the opposed 
coalitions. The Nash equilibrium was not yet known, so von Neumann 
and Morgenstern had no such alternative available. But subsequent work 
has not usually considered this option either.

Telser may be unique in considering the Nash equilibrium as an alter-
native to the security value in determining the values of coalitions (1978, 
p. 12). He does note the inconsistency of the assumptions determining 
the values of a coalition and its residual (pp. 13, 22–3; and see note 1) but 
asserts that consistency is not needed, since the value only represents a 
(maximal) feasible threat, and the results of threats by opposite sides may 
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indeed not be consistent. As against the Nash equilibrium, he writes (p. 
13) “. . . if there are N . 2 fi rms with the freedom to form any coalition 
they please, then the Cournot-Nash point becomes ambiguous. It depends 
on how the nonmembers of S sort themselves into a set of coalitions 
forming a partition of S .” He concludes (p. 14) that the security value is 
the best expression of the value of a coalition. “Admittedly there are objec-
tions, but these are less weighty than the objections to the alternatives.” 
However, the one objection he gives to the Nash value alternative is not 
applicable once we have adopted the partition function as the representa-
tion of a cooperative game. Each way in which “the nonmembers of S sort 
themselves into a set of coalitions forming a partition of S ” corresponds 
to a diff erent imbedded coalition; given the partition there is no ambiguity 
about the Nash value.2 Indeed, the dependency of the coalition value on 
the partition of the agents not in the coalition is exactly the structure the 
partition function is meant to express. Conversely, one of the advantages 
of taking the partition function as our expression of a cooperative game 
is that we can rely on the Nash equilibrium to determine the values of 
 imbedded coalitions and thus base those values on consistent decisions.

In the remaining chapters of the book the discussion of coalitions will 
be based on the matched assumptions of the representation of the game 
in partition function form and the determination of imbedded coalition 
values by Nash or correlated equilibrium play among the coalitions in a 
particular partition or coalition structure.

10.4 RATIONALITY

The contrast has been noted again and again between contingent strate-
gies underlying cooperative game theory and the behavior strategy often 
applied in non-cooperative game theory; and so also has the contrast 
between cooperative and non-cooperative game theory in general. In this 
section the argument will be made that these diff erences are at base diff er-
ent conceptions of rationality. The issue is not whether people are rational, 
irrational or partly irrational. Rather, the issue is what it means to say that 
people are rational, either wholly or partly.

10.4.1 Weakness of Will and Rationality

Non-cooperative game theory has been greatly infl uenced by Selten, and his 
1975 paper is a key paper for our purposes here. It is interesting to contrast 
the assumptions of this paper with those of Selten (1964). There, we recall, 
Selten had acknowledged in an afterword that his (cooperative) model in 
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the 1964 paper required the assumption that players could commit them-
selves to any contingent pure strategy, acknowledging Thomas Schelling 
(1960) as the source of his change of mind. In 1975 Selten’s assumptions 
are the reverse of those he made in 1964, but his terminology is also incon-
sistent in a way that may obscure the diff erence. Selten defi nes a pure strat-
egy not as a plan assigning probability 1 to one of all possible contingency 
plans, as von Neumann and Morgenstern did and as Selten did in 1964, 
but as the assignment of probability 1 to a particular behavior strategy 
choice at a particular information set. Selten now assumes what Schelling 
(1980) called weakness of will.

But this will make no diff erence for rational behavior as Selten now 
conceives it. Selten limits his subject matter to games with perfect recall. 
He writes (CGT, 1997, p. 320) “Since game theory is concerned with 
the behavior of absolutely rational decision makers whose capabilities 
of reasoning and memorizing are unlimited, a game, where the players 
are individuals rather than teams, must have perfect recall.” He then 
excludes consideration of teams, and he justifi es this by limiting his scope 
to “strictly non-cooperative games.” This means Kuhn’s multiple-agent 
games are excluded. For multiple agents to be joined together as a single 
player would require a cooperative agreement among them, and this is 
excluded by assumption. (In particular an example as in Chapter 9, Section 
9.1, above is excluded). But this, taken with (Selten, 1975, p. 328) “Player 
2’s choices should not be guided by his payoff  expectations in the whole 
game but by his conditional payoff  expectations,” tells us that for rational 
behavior as Selten now conceives it, there can be no commitment whatever. 
By assumption, only behavior strategies are relevant to rational behavior.

This concept of rationality has become predominant in economics 
as well as non-cooperative game theory, and it is appropriate now to 
expand on the diff erent concepts of rationality in those fi elds and in most 
 cooperative game theory.

In economics, the issue of weakness of will and commitment arises in the 
context of intertemporal inconsistency of rational choice. We adopt the 
neoclassical convention of expressing time preference by a discount rate. 
Most economic literature assumes that this discount rate per unit time is 
the same regardless of the delay before the payment is made. This assump-
tion of a uniform rate of time preference has no basis in empirical observa-
tion, but is made in order to reconcile the theory of rational choice, as it is 
understood in modern economics, with the assumption of time preference. 
The diffi  culty is that a nonconstant rate of discount can result in what are 
called intertemporal inconsistencies in decision-making. What this means 
is that a rational, maximizing decision-maker would make one decision 
at one point of time, but at a later point of time would rationally prefer 
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the alternative he has initially, rationally rejected. (There has been some 
recent research on alternatives to constant rates of time preference, such as 
hyperbolic discounting, but it has been directed to a diff erent issue.)

10.4.2 Intertemporal Inconsistency

Let us illustrate this point by an example. Suppose that the decision-maker 
discounts any prospect delayed by more than six months at 18 percent, but 
that his rate of discount for prospects delayed six months or less is zero. Now 
the decision-maker must choose at t0 between two alternatives. Alternative 
A1 is a payment of $5000 at t0 1 1 year. Alternative A2 is a payment of 
$10 000 at t0 1 5 years, but A2 has a cancellation clause: at any time during 
the fi rst year, for a cancellation fee of $100, the decision-maker can cancel 
his decision for A2 and receive the payment of $5000 at t0 1 1 year.

At t0, the discounted present values are:

Alternative A1  $4237
Alternative A2  $4371

Accordingly, the decision-maker chooses alternative A2. However, at t1 5 
t0 1 6 months and one day, the payoff  for alternative A1 is less than six 
months away, and so is not discounted, and is valued at $5000. To obtain 
this payment, however, the decision maker must pay the cancellation fee 
of $100. The net values discounted to t1 are:

Alternative A1  $4900
Alternative A2  $4748

Therefore, the rational decision-maker reverses his decision.
This is a one-person game. Suppose we express these decisions as plans of 

action for the successive stages, like the pure strategies as understood by von 
Neumann and Morgenstern. The decision-maker has three pure strategies:

(1) Choose A1
(2) Choose A2, then do not cancel
(3) Choose A2, then cancel

The payoff s of these strategies, discounted to t0, are:

(1) $4237
(2) $4371
(3) $4127
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Why, then, does our rational decision-maker not simply choose strategy 
2 and stick with it? Suppose that the decision-maker has a weak will, in 
Schelling’s sense, and knows that he does. Then he can anticipate that if he 
chooses A2, he will indeed cancel it after six months and in fact carry out 
strategy 3. Because of his weakness of will, strategy 2 simply is not avail-
able to him. That being so, in the spirit of Ulysses and the Sirens, (note 
Elster, 1977) the rational but weak-willed decision-maker will choose 
strategy 1 and alternative A1.

This is not to say that intertemporal inconsistency does not exist. No 
doubt a strong-willed decision-maker, having chosen strategy 2, will feel 
some subjective tension in the nature of regret or temptation during the 
time interval t1 to t2 5 t0 1 one year. Does rationality require him to act on 
the temptation? Well – perhaps it does.

10.4.3 Weakness of Will in a Game in Extensive Form

Weakness of will may also be a factor in interactive decisions. Consider 
Game 10.3 in extensive form, shown as Figure 10.2. All decisions are close 
enough together in time that there is no need to discount payments to 
present value.

First we note that the perfect equilibrium for this game is for decision-
maker a to choose alternative A1 for a payoff  of $4237. However, when 

Figure 10.2 Game 10.3: two-person game
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we express this game in terms of contingent strategies, we have, for 
 decision-maker a:

(19) Choose A1
(29) Choose A2, then, if b chooses up, choose up
(39) Choose A2, then, if b chooses up, choose down

and for decision-maker b:

(49) If a chooses A2 then choose up
(59) If a chooses A2 then choose down

If decision-maker a chooses strategy 39, then decision-maker b’s best 
response is strategy 59, while if decision-maker a chooses strategy 29, and 
b knows this with certainty, then b’s best response is strategy 49. Taking 
this into account, the payoff s to be expected from these strategies would 
seem to be:

(19) $4237
(29) $4371
(39) $4137
(49) $3000
(59) $2000

This being so, we ask again, why does decision-maker a not simply 
choose strategy 2′? There are two possibilities: (i) Decision-maker b 
believes that decision-maker a has a weak will, and will not carry out 
strategy 2 but, having arrived at decision point A2, will choose down. 
Decision-maker b therefore chooses strategy 59; and this is known to agent 
a, who then chooses strategy 19 as his best response to strategy 59. Thus, 
it seems, the subgame perfect equilibrium can be necessary because of the 
belief that a has a weak will. (ii) The second possibility is that b believes 
a is dishonest and opportunistic and will choose “down” at decision point 
A2 regardless of any protestations to the contrary. Thus, the subgame 
perfect equilibrium can be necessary because of the belief that A is dishon-
est. But suppose that decision-maker A has a strong will, that is, a capabil-
ity to choose strategy 29 and stick to it despite the temptation to choose 
“down” at decision point A2; and suppose that this is known to decision-
maker b. Suppose decision-maker a also is honest, and this, too, is known 
to decision-maker b. Thus, decision-maker a needs only announce “on 
my honor, I am choosing strategy 29,” and then b’s rational decision is for 
strategy 49, and the cooperative solution A1, up, up, results.
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10.4.4 Perfect and Ideal Rationality

Notice that, so far as a’s decisions are concerned, decision sequence 19, 29, 
39, with its payoff s, is identical to 1, 2, 3 in the intertemporal inconsistency 
example. The major diff erence is that it is decision-maker b’s belief that a has 
a weak will, rather than a’s belief that a’s will is weak, that puts A it 2, up, 
up, out of a’s reach. Supposing b to be rational, what basis might he have for 
that belief? One possibility is that we defi ne rationality as maximization con-
strained by weakness of will. Then we need only apply common knowledge 
of rationality to induce b’s belief in a’s weakness of will. I submit that this is 
indeed the concept of rationality in non- cooperative game theory and in neo-
classical economics. In what follows choices that maximize payoff s subject 
to the constraint of weakness of will be called perfectly rational choices, not 
because their outcomes are perfect (as the example shows) but because it is 
rationality in this sense that defi nes subgame perfect equilibrium.

But common knowledge of perfect rationality is not the only possibil-
ity, and we need to consider others. First consider the possibility that b 
believes a is dishonest. Then b will not believe any assertions by a that he 
will choose “up” at decision point A2 and accordingly b chooses strategy 
59. But (i) a’s honesty is of concern to b only if b believes a has strong 
will. If b believes a has a weak will then b’s decision will not be aff ected by 
the further knowledge that a is honest or dishonest. (ii) a can benefi t by 
acting dishonestly only if b believes both that a has strong will and that 
a is honest. (iii) Accordingly, we must consider a 4-step game in which 
a’s decision whether to act honestly or dishonestly is the fi rst stage. If a 
has a strong will he can commit himself to one or the other and carry out 
the commitment. (iv) However, if b believes a has chosen to act honestly, 
then a’s best response is dishonesty. (v) Therefore, this fi rst stage requires 
a mixed-strategy solution. (vi) Since b is rational, he will be aware of 
this and will accordingly estimate the payoff s of strategies 49 and 59 as 
expected values refl ecting the optimal mixed strategy for a, which is to act 
honestly with probability 2/5. Thus, b’s belief that a will be dishonest with 
 probability 1 is either irrelevant or irrational.

Common sense suggests that rationality, strength of will and honesty 
are distinct traits and that rational individuals may exist in positive 
numbers whose will is strong and weak; and that within each category 
some are honest and some are crooked. These conditions are also relative 
and a typical person is more likely to act in an honest and strong-willed 
way in some circumstances than others. Suppose b believes that a very 
large proportion of all human beings have weak wills, but has no way 
to know which type a is. In that case, once again, he would estimate the 
payoff s of his choices as expected values, using the probabilities based 
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on the frequency of weakness of will in the population and such other 
evidence as he may have. To fail to do so would be irrational or at best 
boundedly rational! Perfect rationality is naive on this score, and in what 
follows decisions based on maximization with estimates of the probability 
that other agents have strong wills and are honest will be called “sophis-
ticated rationality” to distinguish them from the rationality expressed by 
subgame perfect equilibrium. (For the concept of sophisticated rationality 
and some evidence that there are multiple types of decision-makers in a 
real human population, see Stahl and Wilson, 1995.)

It seems that b’s behavior, as assumed in subgame perfect equilibrium 
theory, can be rational only if b believes that weakness of will is a common 
trait of all human beings. This in turn can be considered a rational belief 
only if (i) it is true, or (ii) b’s experience has been so idiosyncratic that it 
seems to b that the belief is true, although b is mistaken. We can eliminate 
(ii) as inappropriate to be the basis of a general theory, and conclude that 
for subgame perfect equilibrium theory, universal weakness of will is a 
necessary assumption. If both weakness of will and perfect rationality are 
common human characteristics, then there is little point in distinguish-
ing between them. But the results of such an identifi cation can be rather 
peculiar. The results of the example of intertemporal inconsistency and of 
the two-person game from Figure 10.2 can both be stated in the following 
way. (i) Defi ne rationality as perfect rationality. (ii) Suppose decision-
maker a in fact adopts strategy 2 (or 29) and carries it out. (iii) As a result 
of this choice, decision-maker a is better off . (iv) Decision-maker a has 
acted irrationally. Stated in just that way, perfect rationality is not a very 
intuitively appealing concept of rationality.

How would von Neumann and Morgenstern have treated the game in 
Figure 10.2? In the fi rst instance they would have expected the two players 
to form a coalition around strategies 29, 49, since the total value gener-
ated by that pair, 7371, dominates all other strategy pairs. This will be no 
 diffi  culty if both have strong wills and are honest.

In Game 10.3, the non-cooperative equilibrium is also the assurance 
value for both players. Unlike Game 6.8, for example, Game 10.3 has 
no threat strategies. For a game like Game 6.8, Von Neumann and 
Morgenstern seem to envision a negotiating process along the follow-
ing lines: agent a says “if you adopt strategy D2 I will adopt strategy P, 
leaving you with 5 rather than 7.” This is a threat designed to increase b’s 
bargaining power, and for von Neumann and Morgenstern (and Nash to 
the contrary) all feasible threats are credible. But none of this makes sense 
unless each agent believes the other has strength of will enough to carry 
out his threats, even when they are irrational in the sense of perfect ration-
ality. For von Neumann and Morgenstern, a rational agent maximizes his 
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expected utility on the assumption that all agents maximize and all have 
strong wills. Strength of will is here considered an aspect of rationality. In 
what follows, rationality in this sense will be called “ideal rationality.”

Notice that the assumption that all feasible threats are credible is 
central to the defi nition of the coalition function in von Neumann and 
Morgenstern, and as most cooperative game theory is based on the charac-
teristic function, we may conclude that the assumption of ideal rationality 
is characteristic of cooperative game theory. Thus, it is appropriate to dis-
tinguish between cooperative and non-cooperative game theory by noting 
that while non-cooperative game theory assumes perfect  rationality, 
 cooperative game theory assumes ideal rationality.

10.4.5 Bounded Rationality

We now have three concepts of rationality: perfect, ideal, and sophisti-
cated. Ideal rationality is not perfect, perfect rationality is not ideal, and 
neither is sophisticated (if some agents in the actual world have strong 
wills and others do not). Moreover, there is reason to believe that none 
is very descriptive of actual human behavior. Computation of a perfect, 
ideal or sophisticated rational solution to a problem may require a great 
deal of cognitive eff ort, and cognitive eff ort is a very scarce resource 
for real human beings. Acting according to a rule of thumb that may 
not be “optimal” from any point of view is “boundedly rational.” Can 
 “boundedly” rational decisions be ideal, perfect, or sophisticated?

The answer is yes. Suppose that in fact the population comprises indi-
viduals both with strong and weak wills, and this is a known fact. Then 
only sophisticated rationality can be defended as consistent with rational 
belief. Suppose then that an agent faces a threat, and will attempt to judge 
the credibility of the threat. Suppose also that the individual believes, on 
evidence and experience, that most people (though not all) have weak 
wills. Then computing a perfect equilibrium for the game will be easier 
than computing a sophisticated solution, since the sophisticated solution 
requires us to know the perfect solution anyway (and in a particular case, 
such as Figure 10.2, the perfect solution may be very easy indeed). Then the 
rule that “only subgame perfect threats are credible” is boundedly rational. 
Suppose in addition (as seems very plausible) that most people are better 
able to exercise a strong will in some circumstances than in others, and 
that in particular, the agents are situated in a culture that values personal 
honor highly and regards oath-breaking as dishonorable. In such a society, 
we suppose, the probability that an oath will be carried out is very high. 
Then the ideally rational solution may be boundedly rational, in case oaths 
have been sworn. Finally, consider the game of “running the red light.” A 
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stoplight is a correlated equilibrium solution to an anticoordination game: 
its perfectly rational solution is to obey the light. However, if an individual 
is ideally rational, he may commit himself to running the stoplight, and 
carry the strategy out despite the temptation to stop at the last second. 
This could maximize his utility if the light has just changed and his inten-
tion is made very clear by speeding up. Having observed that about one 
in three drivers will do this (in Philadelphia) the sophisticated solution of 
delaying one’s start into a green light (without trying to see whether the 
driver coming the other way has speeded up or not) is boundedly rational, 
although it is neither ideal nor perfect.

10.4.6 Perfect Rationality and the Manipulation of Elections

Let us return to Gibbard’s theorem on manipulation of voting. As we have 
observed, it belongs to non-cooperative game theory. Indeed Gibbard 
remarks (1973, p. 593) “If a system does make outcomes a function of 
preferences, it is in virtue of individual integrity, ignorance, or stupidity 
. . ..” An interesting example arises from the US presidential election of 
2000. In that election, about 3 percent of the popular vote was cast for the 
Green Party candidate, Ralph Nader, and it is quite likely that if those 
votes had gone to Al Gore, George Bush would never have become presi-
dent. Some Democrats criticized the Green Party voters very bitterly, with 
the implication that they acted dishonorably by failing to cast a strategic 
vote for Gore. Now, one could argue (consistently with Gibbard’s model) 
that the “honest” vote in an American presidential election is a vote for 
whichever of the “realistic” candidates one prefers. But this example may 
be better understood in the light of cooperative game theory.

In elections prior to 2000, Democrats and Greens had constituted an 
informal de facto coalition. (American politics does not allow formal coa-
litions, with the partial exception of New York State.) In the period before 
the 2000 election (in eff ect) the Greens demanded a bigger payoff  from 
the coalition, threatening that if their demand were not met, they would 
vote for a third-party candidate, taking whatever risk of a Republican (or 
worse) victory that might follow. The Democrats, perhaps assuming that 
the Greens would act with perfect rationality – or that however strong their 
will might be the Greens were bluffi  ng – declined the demand. The Greens 
would “ . . . execute the threat[,] . . . not . . . something [the Greens] would 
want to do, just of itself” (Nash, 1953, p. 130). In so doing the Greens 
acted with ideal, but not perfect, rationality. The Democrats’ failure was a 
failure of sophisticated rationality: they failed to take adequate account of 
the mixture of perfectly and ideally (and sophisticatedly) rational agents in 
their interactive decision problem.
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It seems clear that Gibbard’s model presupposes perfect rationality. In 
a world of ideally rational (and honest) agents, it would be quite possible 
for a grand coalition to arrive at a “social contract” to vote honestly, and 
come to a general agreement as to what that might mean. “Individual 
integrity” would then assure that collective decisions would depend only 
on honestly expressed individual preferences. (Perhaps we should not 
assume too hastily that this would be a good thing.) In the absence of such 
a social contract, though, it is not clear that nonmanipulated voting has 
any meaning at all in a cooperative approach to game theory. Is not every 
political coalition an attempt to manipulate the outcome? In a real world 
in which there are at least a few ideally rational agents, some of whom are 
honest sometimes, the only real rationality is sophisticated rationality. 
But this hardly favors a case for nonmanipulated voting! What does seem 
clear, nevertheless, is that models based on perfect (or ideal) rationality 
alone are likely to mislead us. The very concept of a coalition, after all, 
derives from (European) electoral politics, and to try to discuss political 
choice in non-cooperative terms that exclude most coalitions seems odd, 
if very American.

10.4.7 Coalition Formation

Suppose that the population includes individuals both with strong and 
weak wills, and that at least some of those with strong wills are honest. 
How then will coalitions form? First, there will be no mutually benefi cial 
coalitions comprising only the weak-willed. Such coalitions would accom-
plish nothing that would not be accomplished by a non-cooperative 
equilibrium. The typical coalition, then, will include at least a subset of 
strong-willed individuals who adopt threat strategies that encourage the 
others to keep their agreements and correlate their strategies so as to 
increase the value of the coalition. These strong-willed individuals may be 
known to the others as leaders, but more probably as offi  cious busybod-
ies, nosy parkers, or snitches. It may be that the offi  cious busybodies, nosy 
parkers and snitches will form a grand coalition and formalize some of 
their threat strategies as institutions such as property rights and enforce-
ment of contracts. If, as seems likely, people are better able to act with 
strength of will in some circumstances than in others, we are likely to see 
cooperative arrangements more often in some social circumstances than 
others, for example among people of a common religious faith, and to see 
a good deal of non-cooperative interaction among the coalitions that do 
occur. If a part of the population are both strong-willed and dishonest, 
they may be able to form some coalitions for their dishonest purposes, 
by means of committed threat strategies, even though dishonesty breeds 
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distrust and distrust is an obstacle to cooperation, as in Game 10.3. For 
coalitions of this kind, the “irrationality” of gang vendettas would be seen 
as an expression of ideal (though not perfect) rationality. We recall crimi-
nal gang leaders with nicknames like “Bugsy” or “Banannas,” nicknames 
that express their lack of (perfect) rationality.

The rationality of Selten 1964 is ideal rationality. “Ideal rationality” 
links rationality to strength of will. It seems that “ideal rationality” is char-
acteristic of cooperative game theory and is the substantive diff erence that 
distinguishes cooperative game theory from non-cooperative game theory. 
“Perfect rationality” links rationality to weakness of will. The example of 
intertemporal inconsistency shows that “perfect rationality” characterizes 
neoclassical economics as well as non-cooperative game theory. The third 
concept of rationality is “sophisticated rationality,” which is consistent 
with the belief that the population includes both types with strong and 
with weak wills. This belief leads toward a world very much like the world 
we seem to live in, a world not susceptible to analysis in terms either of 
perfect or of ideal rationality.

It does seem likely that both cooperative and non-cooperative game 
theory are mistaken in their extreme views. On the one hand, commitment 
does occur in human interactions, and on the other hand, it is not easy 
nor altogether predictable. It seems more plausible to say that real human 
beings can make and carry out commitments – that is, some people can, 
sometimes, and under some circumstances! We may then suggest some 
circumstances that favor successful commitment:

(1) The existence of a contract enforced by a third party such as the state 
or a private bondholder

(2) Repeated interaction with other parties, over a long term
(3) Patience
(4) Strong relevant social norms of promise keeping or honor
(5) A high trust environment
(6) An agreement consistent with motives of equity or reciprocity
(7) A large diff erential between the payoff s attainable by cooperative 

action and those that result from non-cooperation

No doubt other such circumstances can be off ered.

10.5 SUMMARY

Among the simplifying assumptions of both non-cooperative and coop-
erative game theory, there are a number that call for reconsideration. 
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For non-cooperative game theory, the identifi cation of “strategies” with 
behavior strategies is oversimple, and the identifi cation of rationality 
with weakness of will is both counterintuitive and counterempirical. One 
could put it this way: for non-cooperative game theory, people are always 
opportunistic but never spiteful. Conversely, for cooperative game theory, 
people are never opportunistic but always spiteful. It seems fairly certain 
that real people are sometimes opportunistic and sometimes spiteful, 
sometimes both and sometimes neither, and may act in all these ways with 
great calculation and using all available information. The representation 
of the game in coalition form also rests on an assumption, the assurance 
principle, which rules out free-rider behavior, and consequently prevents 
any satisfactory discussion of externalities. An alternative, to adopt the 
partition function and base the values of imbedded coalitions on non-
cooperative equilibria among the coalitions, will be explored in the second 
part of this book. Finally, the assumption implicit in cooperative game 
theory, that agents always have strong wills, seems no more satisfactory 
than the assumption in non-cooperative game theory that agents always 
have weak wills. The second part of the book will explore an idealization 
of the great complexity of rational behavior by real human beings, assum-
ing that agents act cooperatively (with ideal rationality) toward their 
partners in coalitions but that the coalitions act non-cooperatively (with 
perfect rationality) toward other coalitions.

NOTES

1. The inconsistency of the previous two paragraphs has been noted in a previous chapter, 
in the context of transferable utility, and will be further considered in the next section.

2. The necessary qualifi cation is that the Nash equilibrium need not be unique even for a 
given partition, a diffi  culty we will deal with in a later chapter. In any case this is not the 
ambiguity with which Telser is concerned, as it does not arise from uncertainty about the 
exact partition formed.
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11. Coalition formation and stability

you let the farmers alone . . . all they got to do is gang up effi  ciently among 
themselves . . . but they never can stay ganged up they run out on each other. 
(Archy the cockroach in Marquis,1950)

We have seen enough to suspect, and perhaps become persuaded, that 
neither cooperative nor non-cooperative game theory can alone supply 
a satisfactory foundation for public policy studies. This part of the book 
will outline a model of coalition formation that draws on elements of 
both cooperative and non-cooperative game theory. The theory will 
proceed from the following foundational assumptions: (1) Since exter-
nalities may occur, the cooperative game analysis will represent the game 
in partition function form. (2) The cooperative game analysis will also 
allow for nonaggregative games including games of “imperfect recall,” 
so that the game in partition function form may not be superadditive. 
(3) In general, coalition structures other than the grand coalition may 
be stable. (4) Cooperative relations take place only within coalitions, so 
that there are no side payments between coalitions and the interdepend-
ent strategy decisions of diff erent coalitions are non-cooperative. (5) 
Accordingly, the partition functions are determined as the payoff s to 
non-cooperative equilibria in the play between coalitions. (6) Individual 
agents decide non-cooperatively to affi  liate themselves into coalitions 
to choose joint strategies and receive or make side payments for the 
coalitional play. This might be described as a model of encapsulated 
cooperation.1

This chapter will outline a cooperative analysis of games in partition 
function form, focusing on assumptions (1)–(3). The presentation in this 
chapter will be relatively intuitive and the arguments made by examples. 
A more rigorously mathematical treatment of some topics is reserved 
for Chapter 13. Some redundancy will be unavoidable as a result. The 
reader who is less interested in mathematical details should be able to 
skip Chapter 13 without loss of continuity. The themes of this chapter are 
continued in Chapter 12, along with assumption (6), and Chapter 14 will 
address assumptions (4) and (5) and apply the analysis to several relatively 
simple, illustrative examples. Chapters 15 and 16 will sketch a political 
economy drawing on these ideas.
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11.1  FURTHUR TERMINOLOGY FOR PARTITION 
FUNCTIONS

A game in partition function form (we recall) consists of a set of players 
N (comprising n players) and a coalition value function. A partition is 
a set of sets of agents, that is, a set of coalitions such that each agent 
is a member of just one of the coalitions. The coalitions in turn are the 
members or elements of the partition. The value function assigns a value 
to a pair comprising the coalition C and a partition P of which the coali-
tion C is one member. The value function or partition function will often 
be written as v(P, C).

A useful real-world illustration may be found in the 2005–2008 German 
government. This is based on a coalition of the two biggest parties, the 
social-democratic SDP and the religious conservative CDU/CSU. Neither 
of the traditional coalitions, the red-green coalition of SDP with the 
Greens nor the black-gold coalition of CDU/CSU and FDP had a major-
ity. However, the CDU/CSU and FDP came closest, with more parlia-
mentary seats (284) than the SDP with the Greens or than any other party. 
Thus, a minority government of the CDU/CSU and FDP might have been 
considered in some circumstances. But this would be possible only on the 
condition that the SDP and the Greens continued their unwillingness to 
join in any coalition with the Left party – since the SDP, Greens and Left 
together had a majority with 326 votes. The value of a black-gold coali-
tion depended very much on whether the SDP and Greens would coalesce 
with the Left. The black-red coalition of the SDP and CDU/CSU, with 
an absolute majority, did not depend on how the other parties associated 
themselves and therefore promised more stability. Wherever a minority 
government is possible, in a parliamentary scheme, it will be maintained 
only on the condition that the other parties do not unite against it – its 
value depends on the other coalitions that are formed.

There seems to be no simple formula to compute the number of parti-
tions for a set of cardinality N. It is not diffi  cult to write an algorithm to 
generate all possible partitions for a set of cardinality N, however. The 
computation makes it clear that this number increases very rapidly with 
N. Table 11.1 shows the computed number of partitions for N 5 1, . . . , 
10.

11.1.1 Partitions and Imputations

Consider a partition that has only one coalition, the grand coalition of all 
agents, N. Conventionally we will call this partition G. (It is important to 
distinguish the coalition itself from the partition of which it is a member, 
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even when the distinction is trivial: to fail to do so is to invite confusion.) 
The unique partition that consists of N singleton partitions will be called 
the fi ne partition, F.

In general we allow for externalities, but there may be some important 
games in which there are no externalities. If G 5 {N,v(P, C)} is such a 
game then the value v(P, C) 5 v(Q, C) for any two partitions P and Q each 
of which has C as a member. Such a game will be called a proper game. 
The game in coalition function form G† 5 N,v(C), where v(C) 5 v(P, C) 
5 v(Q, C), will be called the game proper to G. For a proper game we may 
apply the well-understood theory of games in coalition function form. For 
the most part we will be concerned with improper games, though.

The value of each coalition is a mass of “transferable utility” that may 
be distributed among the members of the coalition. The payments to the 
n players in the game can be denoted by x. Conventionally, x is written in 
boldface to denote that it is a vector and comprises {x1, x2, . . ., xn} where 
xi is the net payment to player i. We write xS to denote the total of all pay-
ments to members of set S. The vector x is called an imputation and if xS 5 
v(P, S) for every S that is a coalition in P, then x is admissible for P. That 
is, the condition of admissibility is that each coalition spends only its own 
value; “every tub sits on its own bottom.” This defi nition excludes side 
payments from one coalition to another. For some purposes, xS , v(P,S)  
would be suffi  cient, but the defi nition adopted here requires that to be 
admissible, an imputation must be effi  cient in the sense that each coali-
tion distributes its entire value among its members. For examples, refer 
to the public goods production game, Game 2.5. There, line 2, 6,6,9 and 
1,11,9 are both admissible imputations, but 7,7,7, 7,7,9, and 5,5,9 are not 
admissible.

Table 11.1 Partitions of a set of N

N Number of partitions

 1 1
 2 2
 3 5
 4 15
 5 52
 6 203
 7 877
 8 4140
 9 21 147
10 115 975
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11.1.2 Refi nements of Partitions

Let P and Q be two partitions of N and suppose they are related in that 
Q is formed by subdividing the coalitions that are members of P. That 
is, for every coalition B that is a member of Q there is a coalition C, a 
member of P, and every individual member of B is also a member of C, 
or in the terms of set theory, B is a subset2 of C. Then Q is a refi nement 
of P. Trivially, every partition is a refi nement of itself, but when P and Q 
are diff erent we can say that Q is a proper refi nement of P. We can observe 
in passing that every partition other than G is a proper refi nement of G. 
The fi ne partition, F, is a proper refi nement of every other partition. In 
Game 2.5, partition 2 is a refi nement of partition 1, and partition 5 is a 
refi nement of partition 2, but partitions 3 and 4 are not, because the two-
person coalitions in those partitions overlap the two-person coalition in 
partition 2.

A particulate refi nement of P with respect to S is one that subdivides 
only S, leaving the other coalitions in P unchanged. Note that every par-
tition is a particulate refi nement of the grand coalition G with respect to 
N. A granular refi nement of P with respect to S is one that retains S, but 
allows any further refi nement of N\S. Note that if P is the partition G, 
comprising grand coalition, it has no proper granular refi nement. These 
concepts are used to adapt the defi nition of superadditivity to games in 
partition function form in Chapter 13, Section 13.2. An example is given 
in Chapter 14, 14.4, that applies this adaptation.

11.1.3 Effi  ciency

For a game of this sort effi  ciency is an attribute of a partition together 
with an admissible imputation. The simpler concept of effi  ciency is that 
a partition is effi  cient if it generates the maximum total value, summed 
over all coalitions. Effi  ciency in this sense will be called a-effi  ciency, since 
Aumann and Dreze (1974) propose such a criterion of effi  ciency for a 
coalition structure. Economists customarily associate effi  ciency with the 
following condition on imputations: an imputation is effi  cient if there is 
no other imputation that can make at least one agent better off  without 
making any agent worse off . This is Pareto effi  ciency. We may say that 
a partition P is p-effi  cient if there are Pareto-effi  cient imputations that 
are admissible for P. If a partition is a-effi  cient then it is p-effi  cient, 
but the converse is not necessarily so. (See Chapter 13 for more detail 
and proofs.) In Game 2.5, only the grand coalition is effi  cient in either 
sense.
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11.1.4 Candidate Solution

For our purposes, a candidate solution to a game in partition function form 
will be a pair comprising a partition P and an imputation x admissible 
for P. Now, suppose P is a partition and S is a set of players in the game 
who do not form one of the coalitions in P. However, the group S jointly 
considers withdrawing from the coalitions they now participate in and 
forming a coalition among themselves. This proposal is called a deviation 
from P. If they do so and benefi t by doing so then we say that {P,x} is 
disrupted by S.3

Suppose that the coalitions in Q comprise S together with other coali-
tions each formed by all of the members of a particular coalition in P who 
have not joined S. Then Q will be said to be the residual partition of P 
with respect to S and will be written as P9s. Again, consider Game 2.5 as an 
example. In Game 2.5, if P is the grand coalition, line 1, then for example, 
P9{a,b} is line 2 and P9{b} is line 3 (and not line 5!) If a group of two or more 
who do not comprise a coalition in the current partition consider deviat-
ing from the current partition and forming a new coalition, the immediate 
result would be the residual partition P9S.

11.2 STABILITY

An objective of these chapters will be to address the problem of “endog-
enous coalitions,” that is, to determine what partitions, and thus what 
coalitions, are most likely to be observed. This will be treated as a 
question of relative stability. That is, of two partitions, the one that is 
relatively more stable is the one that is more likely to be observed. One 
threat to stability is captured (in the theory of games in coalition function 
form) by the theory of the core. The threat to stability is that a particu-
lar group, not a coalition in the current game, will “gang up . . . among 
themselves” and precipitate the formation of a new partition. Thus, if 
one of the two partitions can support some imputations that are in the 
core of the game, and the other cannot, then the fi rst is judged to be 
more stable and therefore more likely to be observed in actual cases that 
approximate the game model. But what if there are no candidate solu-
tions in the core? Then we may legitimately, if with due caution, rely on 
some less demanding criterion of stability. In general, if stability is less 
likely to be observed according to one of two criteria, that criterion will 
be said to be the more strict stability criterion of the two. Accordingly, 
we may begin with the core.



174 Game theory and public policy

11.2.1 Coalition Formation and Relative Stability

The concept of the core for coalition function games is based on the idea 
that no group can be denied the value that they can generate if they with-
draw from other associations and form a coalition among themselves. If 
no group can improve its total payoff  by seceding in this way, then the 
existing situation is supposed to be stable. For present purposes, this will 
depend on the partition as a whole, since the value of a coalition depends 
on the partition as a whole. The core of a game is the set of all candidate 
solutions that are stable in this sense. If any set S of players in the game can 
impose a diff erent partition Q and corresponding admissible imputation y, 
then they can expect at least yS in P as the price of their acquiescence, and 
if xS,yS, the candidate solution fails and is not an element of the core. If 
no partition P and imputation x meet this test, then the core is null. These 
ideas will need clarifi cation appropriate for partition function games. One 
approach (and a discussion of some of the diffi  culties) is set out in Koczy 
(2007). This subsection will borrow some ideas from Koczy’s work, while 
the following subsection will review it more systematically and critically.

Koczy gives a numerical example of a symmetrical four-person game 
that will serve to illustrate the diffi  culties. For Koczy’s game the players 
are N 5 {a1, a2, a3, a4} and the partition function is as given as Table 
11.2. Since the game is symmetrical, we need consider separately only fi ve 
families of partitions. Thus, for example, {i,j,k}, {l} refers to {a1, a2, 
a3},{a4} or {a4, a2, a3},{ a1} or any other of the four possible partitions 
into coalitions of 3 and 1 members, and so on. Koczy gives no “story” 
or application to motivate this example, but it might be a case in which 
decentralization can be advantageous to those who decentralize but 
creates negative externalities for others. Now consider line 1, the grand 
coalition, G. The grand coalition yields a value of 8. However this value is 
distributed there will be two members who are paid a total of four or less; 
let i, j denote those two. Then suppose S 5 {i, j} deviate from the grand 
coalition. The residual partition P9S is line four and S can divide 6 among 

Table 11.2 Game 11.1: Koczy’s game

Partition Payoff s

1 {i,j,k,l} 8
2 {i,j,k},{l} 6,1
3 {i,j},{k},{l} 0,4,4
4 {i,j},{k,l} 6,6
5 {i},{j},{k},{l} 1,1,1,1



 Coalition formation and stability  175

themselves. Accordingly, we might suggest that candidate solutions based 
on G are not stable. But this is a naive view (as we shall see) and accord-
ingly a core defi ned in this way will be called the naive core.

To make this a little more precise, defi ne the naive excess for S with 
respect to {P,x} as en(P,x,S) 5 v(P rS,S) 2 xS. That is, for any set of 
players S and candidate solution P, x, the naïve excess is the diff erence 
between the value that S could obtain in P9S and their total payment in 
the candidate solution. The excess can be negative and we will identify the 
naive core as the set of all candidate solutions for which, for all sets S that 
are not members of the partition P, en(P,x,S) # 0. Put in more ordinary 
terms, the naive core consists of all candidate solutions in which no group 
can complain that they could do better if they were to withdraw and coop-
erate only among themselves (supposing the remainder do not reorganize 
themselves).

But now return to the deviation proposed by {i,j}. The residual parti-
tion P ′S is no more stable than P was, since k,l can improve their payoff s 
by dissolving their coalition and playing as singletons, leading to partition 
3. Since {i,j} would then be worse off , this may lead them to hesitate before 
deviating from the grand coalition. Thus, perhaps the grand coalition will 
be stable after all. On this basis, even though G is not a member of the naive 
core for Koczy’s game, it might be stable in a more foresightful sense.

We suggested that {i,j} might hesitate to deviate from G because a 
further deviation by k or l would lead to partition 3, leaving {i, j} worse 
off  than they were at line 1. This hesitation would represent a measure 
of foresight, but perhaps not complete foresight, because 3 might not be 
stable either. From 3, {i,j} would want to dissolve their own partner-
ship, leading to line 5, and leaving j and k worse off  than they were at 
line 4. Should we suppose that, with that thought, k and l would hesitate 
to deviate from line 4, rendering line 4 stable? And if so, could it be that 
{i,j} would anticipate that, and accordingly feel confi dent that they could 
deviate from G and profi t by it? In that case, we might conclude that G is 
unstable after all. Indeed, if i and j attribute the same foresight to k and 
l that they themselves practice, then they would rationally identify parti-
tion 4 as the successor of partition 1, given their deviation from the grand 
coalition.

Attitudes of optimism or pessimism might also infl uence the judgment 
of stability, a point stressed by Koczy. Suppose that {i,j} simply ask them-
selves what the value of their separate coalition would be. Since it occurs 
in two partitions, the answer could be either 0 or 6. If they are optimistic, 
then they will focus on the payoff  of 6 and disrupt the grand partition; 
accordingly we regard G as unstable. (As we have seen, extensive foresight 
could give some grounds for this optimism.) But if they are pessimistic, 
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they focus instead on the payoff  of zero and do not deviate; in that case we 
regard G as stable.

These examples illustrate that (1) the naive core is indeed naive, since 
it allows for no foresight, (2) if we do allow for foresight, we may fi nd a 
diff erent set of stable partitions, since foresight may dissuade some coali-
tions from disrupting an existing partition even though, without foresight, 
it would seem profi table for them to do so, (3) depending on the degree of 
foresight we allow and how it enters the process, we may fi nd a family of 
more or less stable sets of candidate partitions, and (4) if we admit given 
attitudes of optimism and pessimism, a greater degree of optimism will 
lead to a smaller set of stable outcomes.

11.2.2 Koczy’s Recursive Core

Koczy deals with these diffi  culties by means of a recursive defi nition of the 
core. Koczy writes (p. 42) “In CFF games [that is, games in coalition func-
tion form] the value of a deviation does not depend on the reaction of the 
remaining residual players . . ..” However in a game in partition function 
form, “After a deviation we may expect widespread reshuffl  ing of residual 
players . . . Given a deviation, the residual players face the problem of solving 
another, smaller PFF game. We call this a residual game. Deviating coali-
tions must expect a residual core outcome to form” (italics in the original). 
Koczy then proceeds by induction, (1) defi ning the core of the trivial one-
person game, and (2) given the defi nition of the core of an N − 1 person 
game, defi ning the core for an N-person game.

Following a deviation, as noted above, the residual players face a 
smaller game in partition function form among themselves, the residual 
game. In case the core of the residual game is unique and not null, this 
resolves any ambiguity about the value of the deviating coalition S. The 
residual players will adopt that partition and it determines the value of 
the deviation. However, for cases in which the core of the residual game 
includes two or more partitions (with at least one imputation correspond-
ing to each) and in which the core is null, Koczy defi nes two core concepts, 
an optimistic and a pessimistic core.

(a) Pessimistic core: (1) Suppose the core of the residual game is non-null 
and non-unique. Then P is disrupted by S if v(Q ,S).xS for every 
Q in the core of the residual game; (2) Suppose that the core of the 
residual game is null. Then P is disrupted by S if v(Q ,S).xS for every 
Q a refi nement of P granular with respect to S.

(b) Optimistic core: (1) Suppose the core of the residual game is non-null. 
Then P is disrupted by S if v(Q ,S).xS for at least one Q in the core 
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of the residual game; (2) Suppose that the core of the residual game is 
null. Then P is disrupted by S if v(Q ,S).xS for at least one Q a refi ne-
ment of P granular with respect to S. In any case if P is disrupted then 
the candidate solution {P, x} fails and is excluded from the core.

The pessimistic core is pessimistic in the sense that a partition and impu-
tation are disrupted only if the deviators can be certain that they will profi t 
by doing so, while the optimistic core is optimistic in that the disruption 
takes place whenever there is any possibility that the deviators will profi t. 
Perhaps one could multiply cases by applying some Bayesian or similar 
weighting based on the likelihood of a profi table outcome.

Notice, in passing, how Koczy’s approach excludes dominance cycles. 
As an example consider Game 11.2, shown in partition function form as 
Table 11.3. (This might be a game with an indivisible technology and in 
which a coalition of two agents can gain market power at the expense of 
the third, with some cost in ineffi  ciency.) As a candidate solution consider 
partition 1 with payoff s 5, 5, 5. Agents a and b may consider a deviation 
to partition 2, with payoff s 6, 6. This is profi table in itself, so we may con-
clude that 1, 5, 5, 5 is not in the naive core, and indeed the naive core for 
this game is empty. But partition 2 is not stable either. It will be disrupted 
if c approaches a and off ers to form {a, c} paying 7,5 in partition 3. We 
might say that c has raided the membership of the deviating coalition by 
recruiting a. But this in turn is disrupted by {b, c} paying 5, 7 in partition 
4, as b raids the membership of {a, c}, and this in turn will be disrupted 
by {a, b} paying 5,7 or by {a, b, c} paying 2.5,5.5,7.5. We see that this 
game displays dominance cycles. With Koczy’s approach, however, mem-
bership raiding is not allowed. Once agents a and b deviate to partition 
2, the residual set is the singleton {c}, and since this is the only possible 
organization of a one-person set, partition 2 with 6,6,2 is in the core of 
Koczy’s residual game, so there is no further reorganization. The devia-
tion to partition 3 is a reorganization of the original game, not the residual 
game, and so is not considered as a possibility in Koczy’s schema.

Table 11.3 Game 11.2

Partition Payoff s

1 {a,b,c} 15
2 {a,b},{c} 12,2
3 {a,c},{b} 12,2
4 {b,c},{a} 12,2
5 {a},{b},{c} 1,1,1
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Taking this as a dynamic schema, how might it be justifi ed? Koczy sug-
gests that the deviation involves a commitment on the part of the deviating 
group, such as {a, b} in the example, which will not be broken by subse-
quent reorganizations of the residual group. Perhaps we might envision 
it this way: coalitions are based on long-term contracts, which expire at 
diff erent times. At random, in each period, one of the contracts expires, 
but may be renewed. However, each contract has a clause that allows 
renegotiation of all contracts if any of the groups currently in existence 
is broken. Then the contract governing coalition C expires, some of the 
members of C decline to continue it, and this releases members of other 
groups from their contracts as well. The new coalition S, comprising some 
members of C and some others, then forms with a long-term contract. The 
residual members are free to negotiate their new organization, which does 
not release the members of S because it does not break an existing group. 
The new organization then is based on a new set of long-term contracts 
and continues in force until one of the new coalitions expires and is not 
renewed. In what follows this will be called a residual contract dynamics.

Koczy allows “partitional” deviations, that is, simultaneous forma-
tion of two or more new coalitions that may disrupt an existing partition. 
Using this assumption, Koczy proves that a recursive core allocation must 
be Pareto-optimal, with the following reasoning: “Assume . . . there exists 
an outcome (x, P) [C(N,v) such that there is another outcome (y, P9) 
with y.x. Consider the – profi table – deviation by coalition N forming 
partition P9. . . . Contradiction.”

Koczy illustrates this point with the 4-person game, Game 11.1, 
above. We note that in Game 11.1, only partition 4 can support a Pareto 
optimum. However, Koczy remarks that partition 4 cannot be reached 
from the grand coalition G by “coalitional deviation.” This seems to be 
his reasoning: Let G with payments 2,2,2,2 be the candidate solution. 
Suppose that a two-person coalition {i, j} defects from it. The residual 
game is a two-person game among k, l with two partitions, {k},{l} for 4, 
4 and {k, l} for 6. Clearly the fi rst dominates the second and so is the core 
of the two-person residual game; consequently the value of the deviation is 
0 and G cannot be dominated via that coalition. Nor can it be dominated 
via any other. Permitting partitional deviations, though, Koczy allows 
{i,j} and {k,l} to be formed simultaneously. Presumably his meaning is 
that in such a case the residual partition is null, so there can be no further 
 reorganization and the value of the deviation is 6 for each coalition.

Note how this approach blurs the defi nition of a coalition! What is 
more important, one of the pragmatic objectives of this book is to discuss 
cases of persistent ineffi  ciency. On the basis of Koczy’s proof, his concept 
of the recursive core cannot be helpful in that discussion. Moreover, it 
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is not clear how partitional deviations are implied by the residual core 
approach. The smallest games in which coalitional deviation is meaningful 
are 3-person games. Consider Game 11.3, Table 11.4, which does not have 
the symmetry of Koczy’s example.

The only a-effi  cient partition in Game 11.3 is line 5, but it is not stable, 
since {a,b} can benefi t by deviating to impose partition 2. The residual, 
{c}, is in the core of the residual game since it is trivial, the singleton 
being the only possible organization for the residual. Let the candidate 
solution be G, with x 5 {2, 2, 2}. Secession by {c} will leave {a,b} in the 
core of their residual game at partition 2, so its value will be 0. A seces-
sion by {a} or {b} will not leave the two-person residual in its core, since 
{a,c} or {b,c} will in turn be disrupted by the unilateral secession of {c}, 
leaving {a} or {b} respectively with zero. Therefore deviations by {a} 
and {b} do not disrupt {P,x}. No two-person deviation can disrupt G 
either. However, if we “Consider the – profi table – deviation by coalition 
N forming partition P9” where P9 is partition 5, and the deviation is sup-
ported by side payments of at least 1.5 to a and b, then this “partitional” 
deviation can lead to the effi  cient partition. Then F is the unique partition 
in the (Koczy) core. This game raises the further question whether inter-
coalition side payments are permitted, on which Koczy seems to make no 
commitment. If intercoalition side payments are permitted, then parti-
tion 5 is uniquely p-effi  cient, but otherwise the grand coalition supports a 
family of  Pareto-effi  cient imputations.

It seems, however, that the recursive core, partitional deviations, and 
intercoalition side payments are all independent assumptions and that 
these games could be solved with equal consistency assuming that inter-
coalition side payments and (more centrally to the point) partitional 
deviations are excluded. It seems that we cannot avoid making a series of 
arbitrary assumptions about the circumstances in which agents will or will 
not disrupt a partition by pursuing opportunities for profi table deviations. 
If we are determined to have a unique stability analysis, this seems to be 
a problem. What this book proposes instead is that for a particular game, 

Table 11.4 Game 11.3

Partition Payoff s

1 G 5 {a,b,c} 6
2 {a,b},{c} 3,0
3 {a,c},{b} 1,1
4 {a},{b,c} 1,1
5 F 5 {a},{b},{c} 0,0,8
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we focus on the most demanding stability concept that generates a non-
null stable set for that particular game.

The analysis for this chapter, however, will diff er from Koczy’s in three 
important ways. First, it will be assumed that if no subset of N\S has a 
motive to disrupt P9S, then the value of the deviation by S is determined 
by P9S. Second, it is assumed that there is no cooperation between diff er-
ent coalitions: thus no side payments from one coalition to another and 
no coordinated deviations from an existing partition. Finally, rational 
foresight will be more completely allowed for.

11.2.3 A Successor Function

In subsection 11.2.1, discussing Koczy’s game, we followed the conse-
quences to be expected in the case of a two-person deviation from the 
grand coalition. The immediate result would be partition 4, but this would 
create a situation in which {k,l} could benefi t by a further shift to parti-
tion 3. From partition 3, {i,j} could in principle benefi t by dissolving their 
partnership; but according to the residual contract dynamics they are not 
free to do so. Thus, partition 3, not partition 4, is the successor of partition 
1 in the case of a two-person deviation.

As this example suggests, we will posit a successor function, Q 5 R(P,S), 
where a deviation by S from partition P predictably gives rise to parti-
tion Q. We will not attempt to identify R uniquely, nor, indeed, would 
it be useful to do so. As has already been argued, assumptions about the 
permissibility of partitional deviations and membership raiding must 
unavoidably be made, and the purpose of R is to capture those assump-
tions, whatever they may be. However, R must also be consistent with the 
rationality of the agents, and thus with a degree of foresight consistent 
with their rationality. For many games this consideration will determine 
R, as it does in Game 11.1.

Once again we can fi nd an illustrative example in the German parlia-
ment after the elections of 2005. Since no party and none of the traditional 
coalitions that had governed the country at one time or another in the 
previous 25 years had a majority, there was a period of what we might call 
recontracting, in which various coalitions (and corresponding partitions) 
were discussed. One that was discussed was the “traffi  c-light coalition” of 
the Greens, the Social-Democrats and the Free Democrats. However, the 
FDP fi rmly refused to participate in a traffi  c-light coalition. Let us con-
sider P as the partition comprising the traffi  c-light coalition as the govern-
ing coalition and the rest of the parties acting independently in opposition, 
and let S be the singleton coalition comprising the FDP. The deviation of S 
from P directly produced, as P9S, a minority government of the SDP and 
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the Greens, a residual coalition with a plurality of 273 votes. However, this 
would not be likely to be a stable partition, and indeed it was not given 
much consideration. The residual after the deviation of S included both 
the CDU/CSU and the SDP, which diff ered in their parliamentary seats 
by only one seat, and as they played their residual game they formed the 
“grand coalition” (in parliamentary politics not a coalition of the whole 
but of the two largest, usually opposed parties). Denote as Q the partition 
with a coalition of the CDU/CSU and SDP governing and the rest acting 
independently in opposition. There is good reason to believe that the FDP 
expected this result, so that (in their view) R(P,S) 5 Q .

The assurance principle underlying most traditional cooperative game 
theory can be accommodated as a special case in this schema. For the 
assurance principle, the successor R(P,S) is Q that yields the smallest 
value v(Q ,S) over all partitions granular with respect to S. This was Thrall 
and Lucas’s (1963) procedure for deriving a coalition function from a 
partition function and could be characterized as a globally pessimistic 
 successor function.

In general, however, rational foresight may not determine the successor 
function uniquely. Suppose S deviates from P; then the nonmembers of 
P have to play their residual game: they play it, again, subject to residual 
contract dynamics. Thus a group among the residual members forms a 
coalition 2S, and those who are in neither S nor 2S have yet another resid-
ual game to play. Coalitions 3S and 4S are formed in the same way, and this 
process eventually terminates either because all agents are committed to 
one of the new coalitions or because none of the remainder have anything 
to gain by further reorganization. (In a majority game such as the German 
parliament this occurs when a majority coalition has been formed, if not 
sooner.) At the end, each of 2S, 3S, 4S is better off  than they could have 
been in the partition from which they deviated, and in that sense they 
have rational foresight. But there may be more than one such sequence 
if, for example, at step 3 there could be more than one group that could 
have formed a deviation 3S with the expectation of being better off  at the 
end. A partition that results from such sequence will be called a rational 
successor of {P, S}. If there is no 2S that meets the criteria for a sequence, 
in that no group 2S within P9S can anticipate being better off  as a result of 
deviating from P9S, then P9S is the rational successor of {P,S}. Thus, there 
will always be at least one rational successor to {P,S}, but in general there 
may be more than one.

However, we can set limits to the successor functions that can be 
consistent with rational foresight by computing an optimistic successor 
function R2(P,S) and a pessimistic successor function R1(P,S). The opti-
mistic successor function is optimistic in that it selects among the rational 
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successors to P,S the one that yields the largest value v(P,S), while the 
pessimistic successor function selects the one that yields the smallest value 
v(P,S). If these disagree, then the rational successor function might have 
to be determined by some further test, such as a Bayesian judgment of the 
relative likelihood of the diff erent successors. In case the optimistic and 
pessimistic successors agree, as they will do for some important games, 
there is no ambiguity about the value of a potential deviating group S. 
Even if there is more than one rational successor, all yield the same value 
for S, and this will be suffi  cient for our purposes.

In a particular case it may be that R(P,S) 5 P9S. In case R (P,S) 5 P9S 
for every S o P, the partition P will be said to be brief. If, for a particular 
game G 5 {N,v(P,S)}, every partition is brief, then the game G is said to 
be brief. Every proper game is brief.

Alternatively, if people are in fact boundedly rational and shortsighted, 
and if the system is so complex that they make no eff ort to anticipate 
what the reorganizations of the residual might be, then we might identify 
R (P,S) 5 P9S in general. The point is that R should be consistent with 
our assumptions about agent rationality, whatever they may be. For our 
purposes it is also necessary that Q 5 R (P,S) is granular with respect to 
S. In that case the value of S is defi ned as v(Q ,S) where Q 5 R (P,x,S). 
However, if Q is not granular with respect to S then S o Q  so that v(Q ,S) 
is undefi ned. The condition that Q 5 R (P,S) is granular with respect to S 
is fulfi lled if we adopt a residual contract dynamics.

11.2.4 The Core with a Successor Function

Accordingly, taking the successor function as a given datum, defi ne the 
excess for set S, given candidate solution {P,x}, as e(P,x,S) 5 v(Q ,S) 
2 xS, where Q 5 R(P,S). In case the members of N\S have no reason to 
disrupt P9S, then Q 5 P9S and the excess according to the successor function 
is the same as the naive excess. For a brief game this will always be true. In 
general, however, it may not be.

Following the outline of the Aumann-Dreze core for coalition struc-
tures, we then defi ne the core as comprising {P,x} ] 4S , N, S o P 
e(P,x,S) # 0. That is, in ordinary language, a candidate solution will be 
in the core if there is no deviation that will disrupt it in the sense that the 
deviating group are better off  in the successor partition. The core will 
be denoted by X and a candidate solution in the core will be said to be 
x-stable. This extended core conception is a generalization of the concept 
of the core for games in coalition function form, given the assumptions 
we have made about R, and in particular that Q 5 R(P,x,S) is granu-
lar with respect to S. A formal proof will be given in Chapter 13, but it 
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is worthwhile to sketch it here. For a proper game, the value v(Q ,S) is 
independent of the partition Q , provided that Q includes S as an element. 
Thus, for any R in the family considered here, and for the game G† 5 {N, 
v(S)}; G† proper to G 5 {N,v(P,S)}; v(S) 5 v(Q,S) and so the excess for 
G†, v(S) − xS is identical with e(P,x,S). It follows that the core of G for P 
is identical to the Aumann-Dreze core for coalition structure P for G†. In 
ordinary language, when the coalition function is applicable, the core as 
defi ned here gives the same results.

In general the excesses, e(P,x,S), may diff er for an optimistic, a pes-
simistic, and a rational successor function. Denote the excess for an 
optimistic successor function as e−(P,x,S), and the excess for a pessimistic 
successor function as e+(P,x,S). Clearly e−(P,x,S)$e+(P,x,S). The core 
as determined for a pessimistic and an optimistic successor function may 
diff er both from one another and from a rational successor function. Let 
the core as determined from a rational successor function be denoted by 
X 5 {P,x}. Then the core as determined from an optimistic successor func-
tion is denoted by X− and the core as determined from a pessimistic suc-
cessor function is denoted by X+. Then we have X2 ( X ( X1. (Details and 
proofs are in Chapter 13.) The optimistic core is the smallest – that is why 
the optimistic constructs are symbolized by the minus sign, as in e−(P,x,S). 
We will also sometimes speak of candidate solutions as x+, x−-stable or 
unstable, that is, pessimistically or optimistically stable or unstable.

If the agents in a group S, contemplating a deviation from P, are opti-
mistic about the value that will be realized by their deviation, then they 
will be more likely to disrupt P. This means that P is less likely to be 
stable, and the set of stable partitions and imputations smaller, if agents 
are optimistic than otherwise. Conversely, the set of stable partitions and 
imputations will be larger in case the agents comprising S are pessimistic 
about the value that will be realized by their deviation. In that sense, the 
pessimistic core is a less strict criterion of stability than the optimistic 
core.

In what follows, therefore, our procedure will be fi rst to determine the 
optimistic core of a game in partition function form. If the optimistic core 
is not null, then further attention will be limited to partitions in the opti-
mistic core. If, however, it is null, then we will proceed to analysis of the 
pessimistic core.

11.2.5 Example

To illustrate these proposals consider Game 14.1, the NIMBY game. The 
game is based on the idea that a facility is to be built that will inconven-
ience one of the three players a, b, and c but will also supply a public good 
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benefi cial to them all. Chapter 14, Section 14.2.1 gives more detail. The 
partition function is shown as Table 11.5.

First we need to determine a successor function. Consider deviations of 
the form (m, {i,j}), where m denotes any partition and i, j any two agents. 
Since the residual, {k}, cannot reorganize, {{i,j}, {k}} is the unique suc-
cessor. Consider deviations of the form (G, {i}). This leads immediately to 
{{i}, {j,k}}, and since the residual, {j,k}, can reorganize only by decom-
posing and will lose by such a reorganization (supposing both are paid at 
least 3 in coalition {j,k}), the successor is {{i}, {j,k}}. Consider devia-
tions of the form (m, {i,j,k}), where m 5 2, 3, 4, 5. Since the residual is 
null no further reorganization is possible and G is the successor. Consider 
deviations of the form ({{i,j}, {k}}, {i}). Then P9S 5 F, but the residual, 
{j},{k}, can profi tably coalesce so that the successor is not F but {{i}, 
{j,k}}. (Note that it follows that this game is NOT brief.)

We see that the successor is always unique so that, in this case, we need 
not consider optimistic and pessimistic cases. Is G x-stable? Again consider 
a deviation of the form (G, {i}). The excess is 6 − xi and it follows that for 
an imputation x to be x-stable, it must have each xi $6, xN $18, and this is 
not admissible; so G is not x-stable. Consider a deviation of the form ({{i,j}, 
{k}}, {i}). Since the successor is not F but {{j,k}, {i}}, again, the excess is 
6 − xi, so that a stable imputation for each coalition of the form {i,j} must 
yield x{i,j}$12, which is not admissible, and it follows that partitions of the 
form {{i,j}, {k}} support no candidate solutions in the core. Consider a 
deviation of the form (F, N). Its excess is identically 5.0, so the fi ne parti-
tion also is not stable. The conclusion is that the core for NIMBY is null.

The last paragraph should raise some questions. The deviation of a 
singleton from the coalition to produce the public good in partition {{i,j}, 
{k}} above leads to a disruption that is cyclical, in that it returns a parti-
tion of the same form, though with a diff erent assortment of agents among 
coalitions. In plainer terms, we have just reasoned that {i} would abandon 
his coalition with j to become a holdout, in the confi dence that k would 
abandon his holdout position and join with j in a new coalition to produce 

Table 11.5 The partition function for the NIMBY game

Partition Payoff s

1 {a,b,c} 14
2 {a,b},{c} 8,6
3 {a,c},{b} 8,6
4 {b,c},{a} 8,6
5 {a},{b},{c} 3,3,3
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the public good. But is this a reasonable judgment for i to make? It is, if 
for some reason i’s decision not to join in producing the public good is a 
commitment, while the pre-existing position of k not to produce the public 
good is not a commitment. This is an artifact of the dynamic assumptions 
of the previous section, and in this instance, not a particularly plausible 
one. Accordingly, we will explore an alternative, less limiting dynamic 
schema in the following chapter.

11.3 SUMMARY

This chapter began the construction of a model of the role of coalitions in 
interdependent decisions. We begin with the game expressed in partition 
function form. A candidate solution for such a game comprises a partition 
and an imputation that is admissible for that partition. However, such 
an arrangement may prove to be unstable, in that a group not organized 
within the current partition may be able to withdraw and organize, pre-
cipitating a new partition. To judge the benefi ts of doing so, they will have 
to consider the reactions of the residual group, who may reorganize them-
selves. This consideration leads to a successor function, which describes 
a partition that the deviating group can expect to see if they do indeed 
disrupt the existing partition. Using the successor function, we may extend 
the concepts of the core and the nucleolus, although in some intractable 
cases these extensions need not be unique. We can always derive limits 
for the core under assumptions of optimism and pessimism, and for more 
tractable cases they will agree, resolving any ambiguity.

NOTES

1. This phrase borrows, and seemingly reverses, a phrase from Etzioni (1988), who wrote 
about encapsulated competition. But what we think of as market competition will indeed 
be imbedded in the cooperative game, as it is “encapsulated” in non-individualist institu-
tions for Etzioni, so the opposition between the two views may not be as diametric as the 
grammatical reversal suggests. 

2. For the purposes of this book, a subset may or may not be a proper subset and the con-
ventional notation B ( C will be read as “B is a subset of C,” not “B is a proper subset of 
C” as might be done in some recent work in set theory. 

3. This terminology seems new in the present book but will be a little more direct than 
the more conventional phrase. The conventional expression would be along these lines: 
suppose that by deviating and forming a coalition resulting in partition Q, group S can 
gain yS. xS, where y is a payoff  vector admissible for Q. The more conventional term in 
game theory would be to say that Q dominates P via y.
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12.  Bargaining, weak dynamics, and 
consensus

As with the core for coalition function games, the partition function core 
may contain more than one partition or, even if only one partition, the 
core may contain many imputations admissible for that partition. This is 
well known as a shortcoming of the core, when the core is considered alone 
as a solution concept; but it is hardly surprising in a stability concept. 
Stability is a property that may be possessed by a family of states of a 
system. Nevertheless, given that a partition is stable, we naturally ask how 
the benefi ts of that coalition will be distributed among the members. When 
there is a range of stable imputations, the specifi c answer to that question 
is a matter of bargaining.

12.1 BARGAINING

In the tradition of game theory, the earliest and best-known discussion of 
bargaining is that of Nash, for two-person games. Shapley’s value theory 
has been interpreted as a bargaining theory for n-person games, and it has 
the advantage that it can always be computed and is always unique. These 
advantages are shared by Schmeidler’s nucleolus, and the nucleolus has 
the further advantage that it is within the core, whenever the core is non-
null. Thus the nucleolus can be put to work as a “core-assignment algo-
rithm” – that is, it may be used to determine which of the imputations in 
the core of a game is hypothetically most likely to occur. For the purposes 
of this book we adopt the nucleolus in this role.

To compute the nucleolus for a particular coalition structure (partition) 
P of a game, G, we fi rst establish an ordering over all imputations x that are 
admissible for P. This has two main stages, and the fi rst stage is to order 
all sets of agents, S (  N. There is a diff erent ordering of the sets for every 
admissible imputation x. We compute the excess, e(P,S,x), for each set S. The 
set that ranks fi rst for x is the set with the largest excess e(P,S,x), the set that 
ranks second the one with the second largest excess, and so on. The excess 
can be thought of as a measure of the discontent with x felt by group S. Thus, 
the set that ranks fi rst is the group most discontented with x, and so on.
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Suppose the compensation committee of coalition C are considering 
two admissible imputations, x and y, and want to choose the one that will 
reduce the discontent of the most discontented group that may be aff ected 
by the choice. They fi rst consider the group that ranks fi rst for x, S, and the 
group that ranks fi rst for y, T. If e(P,S,x) , e(P,T,y), then x is considered 
less objectionable than y, and ranks more highly than y in the ranking of 
imputations. If e(P,S,x) . e(P,T,y), the converse is true. If e(P,S,x) 5 
e(P,T,y), then the choice between x and y cannot aff ect the discontent of 
the most discontented groups, so the committee then considers the groups 
that rank second in their discontent at x and y, computes their excesses, 
and if the excesses diff er, ranks x and y according to their excesses. If the 
second most discontented groups are equally discontented with x and y, 
then the committee considers the third most discontented, and so on until 
a ranking of x and y is arrived at. This may be called the Schmeidler (1969) 
ordering.

To illustrate it consider Game 12.1 (see Table 12.1). This is a proper 
three-person game in which the benefi ts of working together can be secured 
by {a,b} and agent c adds nothing but its value as a singleton. (Thus, 
agent c is a “dummy player.”) We compare imputation x 5 4,5,3 and y 
5 4.5,4.5,3. For all sets with x, {a,b} and {c} have the largest excesses, 
namely zero. However, considering the excesses for y, we fi nd the same: 
x and y are tied with respect to {a,b} and {c}. (This occurs because both 
imputations give {a,b} and {c} exactly their coalition values). Accordingly 
we check the second largest excesses by coalitions. For x this is a two-way 
tie at –1, while for y it is a four-way tie at –1.5. Since the second maximum, 
–1.5, is the smaller, y is the more acceptable imputation. (Indeed y is the 
nucleolus for this game.)

The Schmeidler ordering has some nice mathematical properties. In 

Table 12.1  Game 12.1: an unsymmetrical proper game in coalition 
function form

Coalition Value Excess with
imputation x

Excess with 
imputation y

{a,b,c} 12
{a,b}  9 0 0
{a,c}  6 21 21.5
{b,c}  6 22 21.5
{a}  3 21 21.5
{b}  3 22 21.5
{c}  3 0 0
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particular, it always has a unique maximum. The imputation that corre-
sponds to the maximal value is the nucleolus for coalition structure P. The 
nucleolus for coalition structure P will sometimes be written as nuc(P).

Two qualifi cations should be stated.
First, the successor function is taken as given. The excess and therefore 

the ordering and the nucleolus may be diff erent if the excesses are com-
puted according to the pessimistic, optimistic, or rational successor func-
tion. Accordingly it will be necessary sometimes to speak of an optimistic 
or a pessimistic nucleolus. The optimistic nucleolus will sometimes be 
written as nuc−(P), and the pessimistic nucleolus as nuc+(P).

Second, there is a prima facie problem with the discussion of the nucleo-
lus above. The compensation committee for coalition C can control only 
the part of imputation x that corresponds to the payments to their own 
members, that is, xC. The account above can be taken just as it stands only 
if C is the grand coalition of all elements of N. Nevertheless this discussion 
has followed Aumann and Dreze (1974) in defi ning the nucleolus for other 
partitions in the same way except that the constraint is imposed that x be 
admissible for P. Here is an alternative. Suppose there are two or more 
coalitions C1, C2, . . .. The compensation committee for C1 chooses xC 
treating xN\C as given. To do otherwise would be to enter into some cooper-
ative arrangement with another coalition, and by assumption there are no 
such intercoalition cooperative arrangements. Thus, coalition C1 chooses 
its best response, in terms of the Schmeidler ordering, to the payment 
schedules of the other coalitions. Therefore, the imputation x would be 
a non-cooperative equilibrium comprising the mutual best responses of 
each coalition to the compensation schedules chosen by the others, a Nash 
equilibrium. The coalition structure nucleolus, as defi ned here, is such a 
Nash equilibrium.1

We will think of the nucleolus as a bargaining outcome, along the fol-
lowing lines. First, given Q 5 R(P,S), v(Q,S) is the threat point for group 
S. The excess is specifi cally an excess of the threat payoff  for S over the 
payoff  they receive given x. If this excess is positive, then the threat by S to 
deviate from P is credible in a non-cooperative sense. If the excess is nega-
tive, then the threat is not credible in a non-cooperative sense, but coop-
erative solutions are distinguished from non-cooperative solutions in that 
commitments (including threats) are credible that would not be credible 
in a non-cooperative approach. Thus, even if all computed excesses are 
negative (that is, {P,x} is in the core in the relevant sense), the group with 
the largest excess may reasonably be supposed to be the one most likely 
to defect. Thus, in either case, by choosing an imputation that reduces the 
greatest excess, the compensation committee reduces the likelihood that 
their coalition will be disrupted.
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Since the core (whether optimistic, pessimistic, or rational) is defi ned by 
the condition that excesses for all S are negative, it is clear that the nucleo-
lus must be in the core if any other imputation is. To be exact, whenever 
there is any x such that {P,x} is in the core, then {P,nuc(P)} is in the core. 
The qualifi cation for this point is that if the core is optimistic, then the 
nucleolus is nuc−(P), the optimistic nucleolus; and if the core is pessimistic, 
then the nucleolus is nuc+(P).

The nucleolus can be computed by linear programming, although the 
details can be quite complex. In any case, the intimate connection between 
the nucleolus and the core, via the excess function, seems to make it the 
natural choice for a “core assignment algorithm,” to settle the payments 
in a core solution that allows more than one payment schedule for one or 
more partitions.

12.2 WEAK DYNAMICS

Here is an alternative to the contractual scheme proposed in the previous 
chapter. Again, coalitions are governed by long-term contracts, and from 
time to time the contract binding a particular coalition expires. Again, 
all contracts have cancellation clauses that release their members in case 
the expiring contract is not renewed. However, what follows is a period 
of “recontracting;” that is, no new contracts are formed until every agent 
has a coalition and payoff  that is the best that the player can achieve. 
With recontracting we may have membership-raiding, in that members 
of a deviating group S may be approached by members of the residual 
to propose yet another deviation. Then a cautious group will not deviate 
unless the deviation leads to a new partition that is itself stable – in partic-
ular they will want to avoid precipitating a cycle such as we have observed 
in Game 11.2, since there is no foreseeable end to the recontracting in such 
a case. This might be considered as a longer-run schema, as agents look 
forward to developments that may occur when the contracts they commit 
themselves to have again expired.

For this process stability will be defi ned for a deviation {P,S}, S o P, 
with the nucleolus nuc+(P ) 5 v. Then {P,S} is w-unstable if S can do better 
in the partition Q 5 R+(P,S) and, moreover, if Q is itself unstable in that 
some group T o Q can profi tably disrupt Q, bringing about a further tran-
sition to partition U, then S still does better in partition U than they had 
done in partition P. Since the outcome U of such a process may not have 
S as one of its member coalitions, however, v(U,S) may not be defi ned. To 
judge whether U will be more profi table for S than P, it will be necessary 
to refer to particular imputations. Drawing from the previous section, the 



190 Game theory and public policy

payoff  to any group given any partition will correspond to the nucleolus 
for that partition. Given P, for example, an imputation x ? v will not be 
relevant to stability in this sense, in that bargaining within the coalitions of 
P will in any case cause a shift from x to v prior to any deviation, and we 
suppose that the agents will foresee this. To reiterate, then, S will deviate 
from P only if the pessimistic nucleolus of Q pays S better than that of P 
(this is condition v.1.1. in the next chapter) and either there is no T that is 
better paid in the nucleolus of U than in that of Q (condition v.1.2.a.) or S 
is better paid in the nucleolus of U than in that of P (condition v.1.2.b.)

Now, suppose we have a cycle; that is, Q 5 R1(P,S), e+(P,S,v).0, y 5 
nuc+(Q ), and there is a group T, not a coalition in Q , with P 5 R1(Q ,T) 
and e+(Q ,T,y) . 0. Then S is no better after both deviations than before 
– S will receive vS in either case. Therefore, S will not disrupt P for no 
ultimate gain.

Accordingly, we will say that {P, S} is w-stable if the conditions for 
w-instability are not met, and that a candidate solution {P,x} is w-stable 
if {P,S} is w-stable for every S o P. While the w-stability of {P,x} does 
not depend on x, we are interested in the properties of candidate solutions, 
and we may say that {P,x} is stable in the sense that bargaining within the 
coalitions will lead to an imputation v that is stable.

In this spirit we may defi ne two further stable sets of candidate solu-
tions. Let Q be the set of all w-stable {P,x}. Clearly X+ , Q and if {P,x} 
[ Q for some x admissible for P, it will follow that {P,v} [ Q. (This is 
lemma v. 3 in the next chapter.)

Finally, we defi ne the set Ω as the set of all {P,x} with the property that 
for all S o P, either {P,S} is w-stable or Q 5 R1(P,S) is w-unstable. This 
again refl ects the idea that a group will not deviate to a partition that is 
unstable in the same sense as the one disrupted. Evidently Q , Ω. Thus we 
have X− , X+ , Q , Ω. Moreover, Ω can never be null. These assertions 
are proved in Chapter 13 and justify the claim that w-stability is a weaker 
stability condition than core-stability.

We now have the following outline to analyze a game in for the pur-
poses of this book. First, the partition function is determined by the 
analysis of non-cooperative play among the coalitions in each respective 
partition. Second, the relatively stable set of partitions is determined. If 
there are candidate solutions {P,x} in X−, then the relatively stable set are 
the partitions that correspond to candidate solutions X−. If there are no 
candidate solutions {P,x} in X-, but there are candidate solutions {P,x} 
in X+, then the relatively stable set are the partitions that correspond to 
candidate solutions X+. If there are no candidate solutions {P,x} in X+, but 
there are some in Q, then “relatively stable partitions” will be partitions in 
Q. Finally, if Q is null,2 “relatively stable partitions” will be partitions that 
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support some imputations in Ω. Since Ω is never null, we will always fi nd 
some stable partitions at this stage. For each such partition, the payoff s 
the agents can expect correspond to the appropriately computed nuc(P). 
If either of the core concepts is not null, we will say in what follows that the 
solution is highly stable, while if the pessimistic core is null and the solu-
tion is in Q or Ω, we may say instead that it is relatively stable.

As an example, again consider Game 14.1, NIMBY. As we saw in the 
previous chapter, the core for this game is null. Therefore we explore 
w-stability for NIMBY. Indeed the set of w-stable solutions for NIMBY 
is quite large. Partitions 1–4 all support candidate solutions in Q. Here is 
the reasoning: We will fi rst establish that partitions 2, 3, and 4 support 
w-stable imputations. Consider a deviation of the form {{i,j},{k};N}. 
Since the excess for this deviation is identically zero, it is not profi table 
and so does not disrupt {i,j},{k}. Note that a deviation of the form {i} is 
succeeded by {{i}, {j,k}}. We know that for the nucleolus 4,4,6, e+({{i,j}, 
{k}},{i},x).0, satisfying condition v.1.1. in Chapter 13; however, equally, 
a deviation {j} from {{i}, {j,k}} also yields e({{i}, {j,k}},{j},z).0 with z 
5 nuc+{{i},{j, k}} 5 6, 4, 4, so that condition v.1.2 is violated. A similar 
argument applies to deviations of the form {{i,j},{k};{j,k}}. Therefore, a 
partition of the form {i,j}, {k} cannot be w-unstable. That is, any devia-
tion from {i,j}, {k} that is profi table leads to a successor that is unstable 
in the same sense, so with w dynamics no deviations occur, and partitions 
of this form are w-stable.

For G, the nucleolus is 4.67, 4.67, 4.67. As we have seen, any one-person 
deviation will be profi table, satisfying condition v.1.1. Let the deviation be 
of the form {G, {k}} so that the successor is Q 5 {{i,j},{k}}. Then y 5 
4,4,6. A singleton deviation T 5 {j} will be succeeded by U5{{i,k},{j}} 
with nuc+(U) 5 {4,6,4}; zS 5 4,vS54.67. Thus conditions v.1.2 cannot in 
general be satisfi ed and it follows that G is w-stable.

12.3 THE CONSENSUS GAME

This chapter and the previous one have been concerned with cooperative 
game theory in a broad sense. However, the solutions can with equal valid-
ity be thought of as solutions of a non-cooperative game, and for some 
purposes (as we will see in Chapter 16) this is useful. Accordingly, this 
section outlines a non-cooperative game that yields the cooperative solu-
tions discussed here. (But this is not an implementation of the cooperative 
game, as the enforceability of the coalition agreements is assumed, not 
demonstrated.)

We suppose, then, that the cooperative play described in the chapters 
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so far is imbedded in a non-cooperative game in which agents choose the 
coalitions with which they will associate themselves.3 This is a rational 
action approach, so we suppose that the agents will anticipate the payoff s 
resulting from coalitional play, the cooperative stability or instability of 
a partition, and the distribution of payoff s according to the nucleolus. 
Thus, relatively unstable partitions can be ignored. This may be the end 
of the story if a relatively stable partition is unique. Suppose, however, 
that there are two or more partitions that support candidate solutions 
in the relatively stable set. Normalize the payoff s so that all are positive. 
Consider the following non-cooperative game: for each agent, the strategy 
is to designate a partition from the relatively stable set. If all designate the 
same partition, then the payoff s to individual agents are the nucleolus for 
the partition selected; otherwise the payoff s are zero. Thus, if the agents 
all arrive at a consensus as to the coalition structure of their society, they 
receive the nucleolus payoff  for that coalition structure; otherwise nothing. 
This is the consensus game.

Here is a prima facie objection: it cannot be right to say that the strategy 
for an individual is the partition he chooses to participate in. The individual 
can control only his own coalition, at most. He cannot control the coali-
tions into which other people group themselves. Thus, to select a particular 
partition as the best response to the strategies adopted by others is to do 
what is beyond the powers of the individual. However, for the consensus 
game, it is not the best-response property of Nash equilibria that is of inter-
est to us. Rather it is the consistent conjectures property: recall (Chapter 4, 
Section 4.4) that every Nash equilibrium in pure strategies is a consistent 
conjectures equilibrium. In order to choose a coalition with which to associ-
ate himself, the agent must form a conjecture as to the coalitions into which 
other agents will sort themselves and so the partition that will result from 
his decision. The key conclusion is that any stable partition, with payments 
according to its nucleolus, will be a consistent conjectures equilibrium in 
the non-cooperative process by which rational agents sort themselves out 
into coalitions. At equilibrium, all make the same conjecture about the 
coalition structure of their society, and as a result of their action based on 
that conjecture, the conjecture proves to be true. (McCain, 1992).

As an illustrative example, we may turn again to NIMBY. Because the 
game is highly symmetrical, the nucleolus will in every case correspond 
to equal payments within each coalition. Thus the consensus game in this 
case is characterized by the payoff s in Table 12.2. Each line of Table 12.2 
describes a relatively stable cooperative solution to the NIMBY game. 
Since these solutions are not highly stable but only relatively stable, the 
diffi  culty of arriving at a cooperative solution in a NIMBY problem in 
actual practice is predictable.
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Another important qualifi cation is that the model predicts that within 
any public-good producing coalition, compensation will be made to the 
individual who actually produces the public good so that the net benefi ts 
are equal within the coalition. Compensation seems rarely to be proposed 
in public policy where NIMBY problems arise. But in the absence of com-
pensation, that is, of side payments, no cooperative solution can occur and 
the predicted outcome is the non-cooperative equilibrium, in which the 
public good is not produced.

12.4 SUMMARY

For this chapter, the determination of payoff s within an imbedded  coalition 
is modeled by the nucleolus, and this leads on to some dynamic stability 
concepts that are less stringent than the core. Taking the stable set as the 
set of candidate solutions that is stable under the most stringent rule, and 
assigning the payoff s as the nucleolus computed for a corresponding suc-
cessor function, we resolve the game to a limited number of stable imputa-
tions to individuals. This set of imputations also defi nes a non-cooperative 
game, the consensus game, that corresponds to the cooperative game.

NOTES

1. The proof of this proposition is quite easy once the proposition has been expressed for-
mally. However, the formal expression is a bit digressive, so the details are reserved for 
Chapter 13, Section 13.4.3. 

2. It is a conjecture that Q may be null.
3. This is not a new idea in the literature of game theory. Nash’s (1953) demand game and 

indeed a conjecture in von Neumann and Morgenstern have suggested this approach.

Table 12.2 The consensus game for NIMBY

Partition A B C

1 (G) 4.67 4.67 4.67
2 4 4 6
3 4 6 4
4 6 4 4



 194

13.  Formal aspects of games in 
partition function form

This chapter will review some of the concepts of games in partition func-
tion form that have played a role in the previous chapters. The purpose 
of this chapter is to give a formal statement of some of the concepts and 
results that have been used. The reader who is not interested in the math-
ematical aspects should be able to skip this chapter without diffi  culty in 
following the argument in the remainder of the book.

13.1 FUNDAMENTALS

Let N be an index set of agents in a game, aieN, i 5 1, . . ., n. A partition 
P is a set of subsets {Si} where Si 2  Sj 1  Sid  Sj 5 [ and N 5 

Si
 <

[ P
 Si. 

Let PN be the set of all partitions of N and P [ PN. P 5 {C1, C2, . . ., Cr, 
[}. |Ci| will denote the number of members in Ci and |P | will denote the 
number of nonempty coalitions in P. A pair {P, Ci} with Ci [ P is called 
an embedded coalition. A coalition value function v(P, Ci) assigns a real 
number value to coalition Ci where Ci [ P. G 5 {N, v(P, Ci)} comprises a 
game in partition function form. For aj eN, CP(aj) 5 Ci[P ] aj e Ci.

A game in partition function form is proper if v(P, S) 5 v(Q , S) 4P, Q, 
S ] P [ PN, Q [ PN, P ? Q , S , N, S [ P, S [ Q. Other games in par-
tition function form are improper. For a proper game G, we may defi ne a 
game in coalition function form by N, v†(S) 5 v(P,S) for some P ] S [ P. 
The game in coalition form generated in this way will be said to be the 
game in coalition function form proper to G.

If P is a partition and Q 5 {B1, . . ., Bs, [} is a partition and 4i 5 1, . . ., 
s, E k [ {1,. . ., r} ] Bi ( Ck [ P, then Q is said to be a refi nement of P. 
Remark: Formally, each partition is a refi nement of itself. If P ? Q then Q 
is said to be a proper refi nement.

The fi ne partition is F 5 {{a1},{a2}, . . . , {an}}. Trivial lemma: 4P [ 
PN, F is a refi nement of P.

In the partition G 5 {N}, N, the only member set, is the grand coalition. 
Trivial lemma: any partition P is a refi nement of G.

For any P [ PN, P9(  j)5{C1, C2, . . ., CP(aj)\aj, {aj}, . . ., Cr, [}. Trivial 
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lemma: P9(  j) is a refi nement of P. We will refer to P9(  j) as the fi rst refi ne-
ment of P with respect to j. For any P [ PN and S o P, P9S5{C| E B [ 
P ] C 5 B\S} < {S}. P9S will be called the residual partition of P with 
respect to S. Trivial lemma: If and only if S ( B [ P, P9S is a refi nement of 
P. Remarks: In that case P9S can be referred to as the residual refi nement 
of P with respect to S. If the group S forms a new coalition then P9S is the 
immediate result. If a single individual j considers withdrawing to go it 
alone as a singleton coalition, this would lead to the fi rst refi nement P9(  j) 
as the immediate result.

For P [ PN, S [ P, a refi nement Q is said to be granular with respect to 
S, P, iff  4 B [ Q , either B 5 S or E C [ P, C ? S, ] B , C. Trivial lemma: 
4C [ P, C ? S, Q granular with respect to S, P, E B 5 {Bj} , Q , ] C 5 
<

Bj[B
Bj. Remark: The trivial lemma in this paragraph tells us that each 

 coalition in P can be constructed of unions of sets in Q.
For P [ PN, S [ P, a refi nement Q is said to be particulate with respect 

to S, P, iff  4 B [ Q , either B ( S or E C [ P, C ? S, ] B 5 C.
As with games in coalition function form we will be interested in 

stable imputations for games in partition function form. For a game 
G 5 {N, v(P, Ci)}, an imputation x 5 {x1, . . ., xN} is a vector of pay-
ments to the N players, and xS is the sum of payments to the members 
of set S ( N. For partition P an imputation x is admissible iff  4S [ P, 
g i[Sxi 5 xS 5 v(P, S) . Remark: The admissibility condition excludes side 
payments from one coalition to another.

13.2 SUPERADDITIVITY

Intuitively, a game is superadditive if the value of a merged coalition is no 
less than the sum of the values of the coalitions merged to create it. Let G 
5 {N, v(P, Ci)}. Suppose that, for any P [ PN, 4S [ P if Q is a refi ne-
ment of P and is particulate with respect to S, then for all C [ P, v(P, C) 
$ gBPQ B(Cv(Q , B) . Then G is superadditive.

Remark: Using the concept of particularity excludes the following kind 
of possibility. Consider a four-person game with negative externalities. The 
players are a, b, c, d. For the fi ne partition the coalition values are 2, 2, 2, 2. 
If the fi rst two singleton coalitions merge, the value of {a, b} is 5 so long as c 
and d continue as singletons, but if {c, d} is formed, the value of {a, b} then 
is 3. Nevertheless, this might be a superadditive game. Argument A applied 
to this example would be as follows: {a, b} can do no worse than {a} and 
{b} separately, when {c} and {d} continue as singletons, because a and b as 
a coalition can adopt the same strategies they played against c and d as sin-
gletons and thus obtain the same total payoff . However, if there are negative 
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externalities from {c, d} to {a, b}, the same strategies may not result in the 
same payoff  after {c, d} has formed. However, {a, b}{c, d} is not particu-
late with respect to {a, b}{c}{d} and the coalition {a, b}. This defi nition 
can be supported by the “plausible” argument for superadditivity, while 
without the restriction to particulate partitions, that would not be so.

If the game is not superadditive then the grand coalition may not be effi  -
cient. We might defi ne an effi  cient partition following Aumann and Dreze 
(1974). First, if G 5 {N, v(P, Ci)} is a game in partition function form, 
let G* 5 {N, v*(P, Ci)} be the superadditive cover of G. The superadditive 
cover is defi ned as follows: Let H be the set of all refi nements of P that are 
particulate with respect to S. (Recall, trivially P [ H.) Then

 v*(P, Ci) 5 MAX
Q[H

 a
B[Q
 B(Ci

v(Q , B) .

That is, the value of an embedded coalition in the superadditive cover 
is the maximum over all refi nements of the partition of the sum of the 
values of the subsets of that coalition in the original game, given that the 
nonmembers of that coalition do not reorganize themselves into another 
partition. Note that the superadditive cover is itself superadditive. A parti-
tion Q is a-effi  cient if gBPQv(B) 5 v*(N) . That is, an a-effi  cient partition 
generates the maximum total value, summed over all its coalitions, that 
the game admits of.

The more customary defi nition of effi  ciency in economics is Pareto 
optimality. Let us say that P is p-effi  cient if Ex, an imputation admissible 
for P, ] 4Q [ PN, and 4 imputations y admissible for Q, yi . xi 1 E j [ 
{1, . . ., n} ] yj , xj. Remark: That is, relative to x, any imputation admis-
sible for any partition that makes one player better off  will make some 
other player worse off  than his payoff  at x. Then a partition is considered 
p-effi  cient if it supports at least one Pareto-optimal imputation.

Theorem ii. b.1: If G is superadditive then the grand coalition G is 
p- effi  cient. Proof: Suppose the contrary. Then for any x admissible for the 
grand coalition, EQ [ PN, Ey admissible for Q, with yj $ xj for all players 
j, and moreover Ei ] yi . xi. Therefore

 a
N

xi 5 v({N}, N} , a
N

yi 5 a
S[Q

 a
i[S

yi 5 a
S[Q

v(Q , S) ;

this, however, contradicts superadditivity.

Theorem ii. b.2: If partition P is a-effi  cient then it is p-effi  cient. Proof: 
Again, suppose the contrary, that P is not p-effi  cient. That means that 
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for any x admissible for P, there exist a partition Q and an imputation y 
admissible for Q such that xj # yj, 4 j [{1, . . ., n} and Ei ] xi,yi. Let i [ 
C [ Q . Then xC , yC. For B ? C, B [ Q , xB # yB. It follows that

 a
S[P

v(P, S) 5 a
S[P

xS , a
B[Q

xB # MAX a
C[R

R[PN

xc.

It follows that P is not a-effi  cient.
However, the converse is not so. Consider the fi ve-person game in 

partition function form with P5{a, b, c}{d, e} yielding values 30, 20 
and Q 5 {a, b, c}{d }{e} yielding values 30,30,1. All other imbedded 
coalitions have values of zero. P supports the imputation 10, 10, 10, 
10, 10. Any other imputation admissible for P will make some player 
worse off , and any imputation admissible for Q will make E worse off . 
Therefore P is p-effi  cient. However, the superadditive cover of this game 
assigns 30, 31 to P and 61 to the grand coalition, so in this game only 
Q is a-effi  cient.

13.3 STABILITY

One of our objectives is to draw conclusions about the partitions more or 
less likely to form, that is, the problem of endogenous coalitions. In this 
section we are concerned with the stability of a partition and an associated 
imputation in the face of tendencies of groups to seek profi t by forming 
new coalitions. Accordingly, A candidate solution to G is a partition P and 
an imputation x that is admissible for P. A deviation from a candidate 
solution (P, x) is a set of players S o P. The candidate solution is dis-
rupted if the group withdraws from the coalitions its members participate 
with (in the partition P ) and precipitate a new partition by forming a new 
coalition.

13.3.1 Naive Stability

Here is a relatively simple adaptation of the idea of the core to the game 
in partition function form. Let P, x be a candidate solution and S a devia-
tion. If v(P9S, S) 2 xS .0, then P, x is (naively) disrupted by S. Equivalently, 
a disruption of a candidate solution (P, x) is a set of players S o P and an 
imputation y admissible for Q 5 P rS such that

iii.a.1.  4i [ S, yi $ xi
iii.a.2.  E i [ S ] yi . xi
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If a disruption of P, x exists, then we will say that P, x is naively unstable, 
while otherwise it is stable. The set of (naively) stable candidate solutions 
will be called the naive core or n-core.

Remark. It is suffi  cient that v(P rS, S) . xS, since a disrupting imputa-
tion can then easily be constructed. Note that if x is admissible for P and 
S [ P then v(P rS, S) 2 xS must identically be zero.

Remarks: The naive core comprises a set of partitions and admissible 
imputations that are stable in the sense that no group (thinking naively) 
has any incentive to destroy the partition by organizing among them-
selves. That is, let P [ PN, x an imputation admissible for P, S ( N, S o  
P, v(P9S, S) . xS. Then S have an incentive to disrupt P, and so P, x is 
not in the naive core. However, the shift of S to form P9S might lead yet 
another group T ( N \S, T o P9S to form a coalition, transforming the par-
tition from P9S to Q , with v(Q , S) , xS. In that case, at least some of group 
S will unavoidably be worse off , and if the members of S have suffi  cient 
foresight they will restrain themselves from forming a separate coalition 
and so disrupting P; thus P, x is stable even though it is not in the naive 
core. Alternatively, it might be the case that v(P9S, S) , xS, but P9S itself 
is unstable and likely to lead to a reorganization of N\S that would leave 
the members of S better off . Then P, x is unstable even though it is in the 
naive core.

13.3.2 A Successor Function

The naive approach supplies a value for a deviation, but the value may 
not be consistent with farsighted rationality. The diffi  culty, as we have 
seen, is that partition P9S may not actually follow if the deviation by S 
occurs, and in deciding whether or not to carry out their deviation, the 
group S will have to form a judgment as to what the consequences of their 
move will be, given the opportunities for a residual group to reorganize 
themselves. To capture this judgment, we might postulate a successor 
function,1 R, such that for P, S o P, the deviation by S results in the 
formation of partition Q 5 R(P, S). However, some care needs to be 
taken to assure that this function is consistent with the structure of the 
game itself and with our assumptions of agent rationality, whatever they 
may be.

Consider P, S o P, and a sequence of embedded coalitions 1S [ 1Q , 
2S [ 2Q , . . ., mS [ mQ , and denoting S as 1S, 1Q 5 P rS, k11S ( N\(hk

i51
iS) , 

and N\(hm
i51

iS) 5 [. This is a sequence of refi nements of P granular with 
respect to S, and every such sequence of refi nements will correspond to 
one or more sequences kS. Note that m # n 5 0N\S 0 1 1, since even if iS 
is a singleton for all i . 1, n adjustments will exhaust the residual set N\S; 
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with larger sets iS the number of steps will be still fewer. However, not 
all such sequences will occur, if adjustments are rational. Suppose that 
4 kz admissible for kQ,

 iii.b.1.  4k . 1 k , m, v(mQ , kS) . k21zkS. That is, each set kS deviates 
from k−1Q in the expectation of ultimately doing better than it 
would do at k−1Q.

 iii.b.2.  Let U 5 N\(hm
i50

iS) . Either U 5 [ or 4T (  U, 4k . m, 
v(mQ , T) . kzT.

That is, no subset of the remaining residual group has any motive to 
disrupt mQ . Then mQ  is a x-stable outcome for P, S. Let M(P, S) denote 
the set of all x-stable outcomes for P,S.

Now suppose that m 5 1, that is, no group in the residual set has any 
motive to disrupt P rS. Then conditions 1 and 2 are trivially satisfi ed. It 
follows that M(P, S) cannot be null. On the other hand, there may be 
more than one x-stable outcome, that is, more than one sequence sat-
isfying iii.b.1,2, as each step i might allow of two or more sets i11S. (An 
example will be found in the public good production game at Chapter 14, 
Section 14.3.) It may be that some of the stable outcomes can be ruled out 
by further rational considerations. In general, a rational agent would form 
a judgment, by means of some Bayesian or other procedure, as to which 
of the stable outcomes is most likely. With suffi  cient information of this 
kind we might defi ne a rational successor function R(P, S) 5 Q, with Q 
the (expected) successor2 in case of a deviation of S from P, followed by 
all rational adjustments by the residual group. In general, however, we 
will not be able to characterize a rational successor function, as it is likely 
to depend on information not available in the description of the game but 
dependent on the particular circumstances of the application, time and 
place. Following some aspects of Koczy’s (2007) work, however, we may 
set some limits to the range of rational successor functions by considering 
optimistic and pessimistic cases.

13.3.3 A Hypothetical Extension of the Core

For now, take the successor function as given, and let R(P, S) 5 Q . We 
defi ne the excess for P, S, and x as e(P, S, x) 5 v(Q, S) 2 xS. This construct 
will play a key role in the remainder of the chapter.

Remark: Schmeidler defi ned the excess in his paper that introduced the 
concept of the nucleolus, and Aumann and Dreze showed that the excess 
could be used in the derivation of the core and other cooperative solution 
concepts, not including the Shapley value. However, most derivations of 
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the core do not use the excess function. Schmeidler defi ned the excess func-
tion for games in coalition function form, so that they might be ambiguous 
for partition function games. The successor function resolves this ambigu-
ity, at the cost that there may be a family of excess measures if the rational 
successor function is not uniquely identifi ed.

We will then defi ne the core as the set of candidate solutions P, x 
   ] 4 S o P, e(P, S, x) # 0.

Lemma iii. c. 1: if G 5 N, v(P, S) is a proper game and G† 5 N, v(S) is 
the game in coalition function form proper to it, and P,x is an element of 
the core of G, then x is an element of the coalition structure core of G† for 
coalition structure P. Proof: For any S, e(P, S, x) # 0. Further, v(S) 5 
v(Q , S) for any Q such that S [ Q  and therefore for Q 5 R(P,S) in par-
ticular. Thus e(S, x) 5 v(S) 2 xS 5 v(Q ,S) 2 xS 5 e(P, S, x) # 0, so that x 
is in the coalition structure core.

Remark: Transparent as this lemma is, it is important in that it establishes 
that the core as defi ned here is a generalization of the coalition struc-
ture core, which in turn generalizes the core to games that may not be 
superadditive.

13.3.4 Optimism and Pessimism

We can set some limits to the range of possible successors and core-like 
stable sets. (The infl uence of Koczy and of Aumann and Maschler (1964) 
will be evident here). Defi ne

iii.d.1.  R 
2 (P, S) 5 Q2 5 argmax

Q[M(P,S)
 v(Q , S)

iii.d.2.  e2 (P, S, x) 5 max
Q[M(P,S)

v(Q , S) 2 xS

iii.d.3.  R 
1 (P, S) 5 Q1 5 argmin

Q[M(P,S)
 v(Q , S)

iii.d.4.  e1 (P, S, x) 5 min
Q[M(P,S)

v(Q , S) 2 xS

Here, iii.d.1, 2 characterize an optimistic perspective, selecting the stable 
outcome that leaves the deviating group S with the best value and iii.d.3, 4 
characterize a pessimistic perspective, selecting the outcome that leaves S 
with the least value. Neither optimism nor pessimism is generally rational. 
If we defi ne

iii.d.5. e(P, S, x) 5 v(R(P, S) , S) 2 xS
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for R an (unknown) rational successor function, then we will have 
e1 (P, S, x) # e(P, S, x) # e2 (P, S, x) . Note that the minimum is indi-
cated by the plus sign 1 and the maximum by the minus sign − because the 
optimistic perspective leads to a smaller core. This perspective is optimistic 
in the sense that a potential deviator group is optimistic about the results 
of their deviation and so are more likely to disrupt the existing partition 
than they would be in a pessimistic perspective. Put otherwise, by looking 
to the maximum of the payoff  to a deviation, the optimistic perspective 
minimizes the set of stable partitions.

Now denote the optimistic core by X2 and P, x [ X2 iff 4 S o P,
e2 (P, S, x) # 0. Denote the pessimistic core by X1 and P, x [ X1 iff
4 S o P, e1 (P, S, x) # 0. Denote the rational core by X1 and P, x [ X iff
4 S o P, e(P, S, x) # 0.

Theorem iii.d.1: X2 ( X ( X1. This simple theorem follows from the fact 
that 

  max 
Q[M(P,S)

v(P, S) 2 xS $ v(R(P, S) , S) 2 xS $  min 
Q[M(P,S)

v(P, S) 2 xS

for a rational successor function3 R.

Note that the lemma of the previous section establishes that a core based 
on an arbitrary successor function is an extension of the core for games 
in coalition function form. This lemma applies in particular to both the 
optimistic and pessimistic cores: each is an extension of the core for games 
in coalition function form.

13.4 NUCLEOLUS

Among the cooperative solution concepts, many share the shortcomings 
of the von Neumann-Morgenstern solution set: they may be null, and if 
they are not null, also not unique. Two exceptions are the Shapley value 
and the nucleolus. The nucleolus has the further property that if the core 
is not null, the nucleolus is an element of it (and is also an element of the 
kernel, a cooperative solution concept that we will not consider here). 
Aumann and Dreze defi ned the nucleolus for a coalition structure (in a 
game in coalition function form), so, for a proper game, the nucleolus can 
be defi ned for each partition. In defi ning the nucleolus, Schmeidler fi rst 
defi nes the excess functions and then defi nes an ordering in terms of the 
excess functions.
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13.4.1 Ordering

Schmeidler’s ordering is adapted as follows. In all that follows we take the 
successor function as given and defi ne the excess function accordingly. For 
each x and a given P we defi ne an index, Ix(S) over the set of all subsets of 
N as follows:

iv.b.1.  Ix (S) 5 1 iff 4 T ( N, e(P, S, x) $ e(P, T, x)  (The fi rst-
ranked set for x is the set whose excess is largest.)

iv.b.2.  Ix (S) ,  Ix (T)  iff e(P, S, x) . e(P, T, x)  (A set with a greater 
excess is ranked before one with a lesser excess.)

iv.b.3.  EU ( N, Ix(U) ]  4 T ( N, Ix(T) #  Ix(U) 5  M (There is a 
last-ranked index.)

iv.b.4.  if n , M, then ES ( N ]  Ix(S) 5 n. (Every rank from 1 2 M 
corresponds to at least one set).

Note that for a tie,  e(P, S, x) 5 e(P, T, x)  3 Ix(S) 5 Ix(T), from b. 
If k5Ix(S) it will sometimes be convenient to write S as Sx

k.

Lemma iv. b.1: For x, y admissible for P, x ? y 1 ES o P ] e(P, S, x) 
? e(P, S, y). Proof: x ? y 1 Ei ] xi ? yi. Let T 5 CP(i). T cannot be a 
singleton, since if it were, xi 5 v(P, T) 5 yi. (It follows also that P ? F.) 
Therefore, S 5 {ai} o P and e(P, S, x) 5 v(R(P, {ai}) 2 xi ? v(R(P, {ai}) 
2 yi 5e(P, S, y).

Now given x and y admissible for P, suppose that

iv.b.5.  Ek ] 4i , k, e(P, Sx
i , x) 5 e(P, Sy

i , y)
iv.b.6.  ES ( N ] Iy(S) $ k, e(P, Sx

k, x) , e(P, S, y)

then xþy, and conversely. Note that if S* is maximal over all sets with Iy(S) $ 
k, that is, S* 5 S*y, then it will follow also that e(P, Sx

k, x) , e(P, S*, y) .

Lemma iv. b.2: ~[(xþy) and (yþx)]. Proof: Suppose the contrary and let 
k be such that either k 5 1 or 4i , k, e(P, Sx

i , x) 5 e(P, Sy
i , y) . Then 

we have both e(P, Sx
k, x) . e(P, Sy

k, y)  and e(P, Sx
k, x) , e(P, Sy

k, y) , a 
contradiction.

Theorem iv. b.3: xþy and yþz 1 xþz. Proof: xþy 1 E  k ] 4i , k, e(P, Sx
i , x)

5 e(P, Sy
i , y)  and e(P, Sx

k, x) , e(P, Sy
k, y) ; yþz 1 E  l ] 4i , l, e(P, Sy

i ,
y) 5 e(P, Sz

i , z)  and e(P, Sy
l , y) , e(P, Sz

l , z) .
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(1) Suppose k 5 l. Then we have e(P, Sx
i , x) 5 e(P, Sy

i , y) 5 e(P, Sz
i , z)  

4i , k, e(P, Sx
k, x) . e(P, Sy

k, y) . e(P, Sz
k, z) , therefore xþz.

(2) Suppose k , l. Then we have e(P, Sx
i , x) 5 e(P, Sy

i , y) 5 e(P, Sz
i , z)  

4i , k, e(P, Sx
k, x) . e(P, Sy

k, y)  5  e(P, Sx
k, z) ,     therefore xþz.

(3) Suppose k . l. Then we have e(P, Sx
i , x) 5 e(P, Sy

i , y) 5 e(P, Sz
i , z)  

4i , l, e(P, Sx
k, x) 5 e(P, Sy

k, y) . e(P, Sz
k, z) , therefore xþz.

Theorem iv. b. 4: Suppose x ? y. Then either xþy or yþx. Proof: The con-
trary supposition means that for all i we have e(P, Sx

i , x) 5 e(P, Sy
i , y) .

Clearly x ? y 1 Ej ] xj . yj. Consider the singleton {j} 5 B; xj . yj 1 
e(P, B, x) , e(P, B, y). Suppose Ix(B) 5 m, Iy(B) 5 l.

(1) If m 5 l, then we immediately have xþz, contradiction.
(2) Suppose m , l. By the defi nition of Ix(S), e(P, Sx

l , x) , e(P, B, x) , 

e(P, B, y) , and with the equality for all i,l, we have xþy, 
contradiction.

(3) Therefore m . l.
(4) Consider T 5 CP( j). Further, consider C 5 T\B. By admissibility, if xj 

. yj, xC , yC. Let m* 5 Ix(C), l* 5 Iy(C). By an argument similar to 
the above we must have l* . m*.

(5) Suppose m* $ m. Therefore e(P, B, x) . e(P, C, x) . e(P, C, y). 
Letting S take the value C and k take the value m, we have yþx, 
contradiction.

(6) Suppose m* , m. Therefore e(P, C, x) . e(P, B, x) . e(P, B, y). 
Letting S take the value B and k take the value l, we have xþy, 
contradiction.

Since the set of admissible x is a closed and compact set and the ordering 
þ is complete, a maximal element exists and is unique. The nucleolus for P, 
nuc(P), is that maximal element.

For a proper game, as noted before, the excess function as defi ned here 
reduces to Schmeidler’s excess function for a game in coalition function 
form. Thus the ordering and the nucleolus also will do so. Accordingly,

Lemma iv.b.5: If G is proper and G† is the game in coalition function form 
proper to G, let nuc†(P ) be the nucleolus for G† given P. Then nuc(P ) 5 
nuc†(P ).

In all the foregoing, the excess functions have been based on an arbitrary 
successor function R. If we compute the excess functions consistently with 
an optimistic successor function, denote the excesses by e−(P, S, x), and the 
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corresponding nucleolus is nuc−(P ). If we compute the excess functions 
consistently with a pessimistic successor function, denote the excesses by 
e1(P, S, x), and the corresponding nucleolus is nuc1(P ).

13.4.2 Decentralized Decisions

In a partition with two or more non-null coalitions, the payoff  vector will 
be the joint result of decisions within the separate coalitions – a problem 
of interactive decisions! It will be helpful to note that the nucleolus can 
be understood as a Nash equilibrium of an appropriately specifi ed game 
among the coalitions. For a payoff  vector x let the vector xS denote the 
vector of payoff s to members of group S, and xN\S denote the payoff s to 
the rest. Conversely, we will interpret {xS, xN\S} as referring to the payoff  
vector x, with the order appropriately permuted. Let an order þS over xS be 
induced such that {xS, xN\S}þ{yS, xN\S} 1 xSþSy. Now consider the induced 
game in which the strategy set for C[P is the set of xC and the payoff  is 
the ranking of xC according to þC. Let v 5 nuc(P ). Clearly, any shift from 
vC will reduce the payoff  for C; so v is a Nash equilibrium of the induced 
game. Conceptually, this will serve to assure us that there is no confl ict 
between the global order defi ned and the determination of the payoff s by 
the diff erent coalitions; computationally, we see that there is nothing to be 
gained by computing the nucleolus separately on a coalition-by-coalition 
basis.

13.4.3 Synthesis

It remains to consider the relationship between the core and the nucleolus. 
In the theory of games in coalition function form, we may consider the 
nucleolus in general as a core assignment algorithm; that is, given that the 
core of a game is non-null, the nucleolus is in the core and may be consid-
ered as the unique assignment of values to be predicted within the core. 
This result can readily be extended for games in partition function form, 
with the approach proposed in this chapter.

Theorem iv.d.1: If x 5 nuc(P ) and y, P is an element of the core, then x, P 
is an element of the core. Proof: x 5 nuc(P ) 1 xþy.

Therefore, E  k, S ] e(P, Sx
k, x) , e(P, S, y) . Since y, P is an element of 

the core, e(P, S, y) # 0. It follows that e(P, Sx
k, x) , 0. Now, consider i , 

k. For such a case e(P, Sx
i , x) , e(P, Sy

i , y) # 0. Consider i . k. For such 
a case e(P, Sx

i , x) , e(P, Sx
k, x) , e(P, Sy

k, y) # 0. We have that for every 
S o P, e(P, S, x) # 0, that is, x, P is an element of the core.
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Therefore, the nucleolus is available as a core assignment algorithm for 
the core concept developed here for games in partition function form. For 
each of the core concepts, X−, X, and X1 there will be a distinct excess func-
tion and thus a distinct Schmeidler ordering and nucleolus, but when the 
excess and nucleolus are computed according to the corresponding succes-
sor function, and if the core is not null, the nucleolus will be a member of 
the core.

13.5 A NON-CORE DYNAMIC PROCESS

A pair {P, S} with S o P is w-unstable if v 5 nuc1(P ) and both

v.1.1.  e1(P, S, v) . 0
v.1.2.  Given Q 5 R1(P, S), y 5 nuc1(Q ) 4T ( N, T o Q , either 

v.1.2.a. e1(Q ,T, y) # 0 or 
v.1.2.b. for U 5 R1(Q ,T), z 5 nuc1(U), zS . vS

We may say that if {P, S} is w-unstable then a candidate solution {P, x}
is w-disrupted by S. These conditions refl ect the ideas that a group (1) 
anticipates that bargaining within a newly formed coalition will lead to 
payments according to the nucleolus, and (2) will not deviate from P, the 
status quo, unless the deviation and the bargaining lead to an outcome 
that is itself stable against further, similarly motivated deviations; unless 
the subsequent deviations leave the original deviant group S better off  than 
they were before the deviation. Consider the particular case of a cycle, 
that is, U 5 P. Then z 5 v, so it is not true that zS . vS so there will be 
no deviation from P; {P, S, v} will not be disrupted if the deviation to S 
leads to a cycle.

Conversely, {P, S} is w-stable if it is not w-unstable; that is, formally, 
{P, S} is w-stable if either

v.2.1. e1(P, S, v) # 0 or
v.2.2. Given Q 5 R1(P, S), y 5 nuc1(Q ) ET ( N, T o Q , ] both
 v.2.2.a. e1(Q , T, y).0 and
 v.2.2.b. for U 5 R1(Q ,T), z 5 nuc1(U), zS # vS

Now we defi ne two stable sets. First Q: 

v. 3. {P, x} [ Q if 4S o P, {P, S} is w-stable.

Second we defi ne the set Ω: {P, x}[ Ω if 4S o P, either
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v.4.1. {P, S} is w-stable, or
v.4.2. Letting Q 5 R1(P, S), ET ] {Q ,T} is w-unstable.

Notice that the membership in Q or Ω does not depend on the value 
of x. Nevertheless we characterize w-stability for candidate solutions so 
that Q and Ω are sets of candidate solutions and are comparable with X. 
Nevertheless we may say without ambiguity simply that a partition P 
is w-stable or w-unstable, or is an element of Q or Ω, and this informal 
expression will be used in many cases. Clearly and trivially, Q , Ω. Once 
again, condition v.4.2. refl ects the idea that a group will not deviate to a 
successor partition that is itself unstable for deviations of the same kind.

Lemma v.1: X2 , X1 , Q , Ω. Proof: Let v 5 nuc1(P ). {P,x}[ X1 1 by 
Theorem iv.a.1, that {P, v}[ X1 and therefore, 4S o P, e1(P,S,v)#0. 
Thus, {P, v} is not w-disrupted by S; therefore, {P, S} is not w-unstable. 
Moreover, by v.4.1, {P, v} that is w-stable is an element of Ω. As this is 
true for all S, {P, x} [ Q , Ω. Moreover from theorem iii.d.1, X2 ( X1.

Lemma v.2: Ω ? [. Proof: Suppose the contrary. Then for any {P, x} ES 
both conditions v.3.1 and v.3.2 must be false; so that, letting y 5 nuc1(Q ) 
]4T o Q , {Q , y} is not w-disrupted by T. Then consider {Q , y} as a can-
didate solution. {Q , y}[ Ω, contradiction.

Lemma v.3: If v 5 nuc1(P ) and for some x admissible for P, {P, x} [ Q, 
then {P, v} [ Q. This follows trivially from the defi nition of w-stability.

13.6 SUMMARY

In summary, it is true that partition functions are more complex than 
coalition functions, and there is an overhead cost of notation for dealing 
with them; and also that the solution concepts lose some of their preci-
sion or generality if agents may farsightedly anticipate the consequences 
of the externalities created by the coalitions they form. However, these 
diffi  culties are unavoidable if we are to deal satisfactorily with cases in 
which externalities are important and reasonable questions about super-
additivity can be raised. It is hoped that this chapter contributes toward a 
satisfactory cooperative game theory applicable to the complex problems 
of public policy in a complex world.
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NOTES

1. This will recall Luce and Raiff a’s (1957) y-function. However, there are some important 
diff erences: in particular the y-function characterizes sets that will be unable to disrupt 
a given partition; and is meant in part to capture information on limitations on coali-
tion formation that are in some sense sociological and irrational. However valuable that 
information might be, it is not an objective of the successor function.

2. If, instead, the rational agent assigns probabilities to the diff erent mQ that might occur, 
and estimates a mathematical expectation for the value of a new coalition, the discussion 
that follows would be only slightly complicated.

3. Moreover (in reference to note 2) since the optimistic and pessimistic core set limits 
for any other rational successor function, however defi ned, they also set limits for any 
probability-weighted average of the outcomes of diff erent possible successors.
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14. Coalitional play

The previous two chapters have focused primarily on a cooperative 
analysis of games in partition function form, taking the partition func-
tions as givens. This chapter will discuss the determination of partition 
functions by non-cooperative play among coalitions. Thus we build a link 
between the cooperative and non-cooperative aspects of interdependent 
decisions. As Aumann (2003, p. 6) has observed, “those two aspects of 
game theory are really not two separate disciplines, they are part of the 
same whole.” For the purposes of public policy, though, it is not enough 
that cooperative and non-cooperative analyses are complementary, as 
Aumann observes. Rather, we need analyses of given models that are 
linked, drawing on both cooperative and non-cooperative approaches. 
This refl ects the (often) diff erent roles of cooperative and non-cooperative 
models in the pragmatic project of public policy, in that it is commonly the 
non-cooperative models that identify the problems, so that cooperative 
analysis of the same examples is necessary in order to propose solutions. 
Several examples will be given to illustrate the link and the application of 
the analysis begun in Chapter 10.

14.1  PARTITION FUNCTIONS AND COALITIONAL 
PLAY

In general, the value of a coalition is determined by the value that it can 
obtain by its own eff orts acting separately. Accordingly (as argued in 
Chapter 10) the Nash equilibrium, or some appropriate refi nement or 
extension of it, will determine the values of embedded coalitions. That is, 
the partition function is determined by coalitional play.

In the simplest case, the strategies available to a coalition are simply 
the vectors of pure strategies available to its members. This is the case for 
aggregative games. To characterize a non-aggregative game we will need 
the additional information as to the strategy sets available to the various 
embedded coalitions. Once this information is given the analysis may 
actually be simpler, if there are relatively few strategies available to each 
coalition. The next two sections will give a number of examples illustrat-
ing non-cooperative play among coalitions in aggregative games, while the 
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subsequent section will give an example illustrating the similar approach 
for non-aggregative games. Non-aggregative games need not be superad-
ditive, and we fi nd that the relation of partition functions, indivisibilities, 
and superadditivity is more complex than it may appear on the surface. We 
also consider a further complication that may lead to a nonsuperadditive 
game in partition function form: agents may have preferences to associate 
themselves, or not to associate themselves, with other particular agents 
in a coalition. But we will fi nd that this is easily incorporated in a theory 
of games in partition function form. We will fi nally consider an example 
that includes all these complications, drawing on some ideas traditional in 
economic theory, and then conclude.

14.2  SMALL-SCALE EXAMPLES OF AGGREGATIVE 
GAMES

Three-person games are the smallest games that allow nontrivial coali-
tion structures, so we may rely a good deal on three-person games to 
illustrate coalitional play. This section considers several such examples, all 
 aggregative games.

14.2.1 NIMBY

NIMBY is a three-person by two-strategy game with positive externalities. 
Consider Table 14.1, which shows Game 14.1, the NIMBY game, in stra-
tegic normal form. As one might suppose, NIMBY stands for “Not In My 
Back Yard,” and one purpose of the example is to illustrate the analysis 
of this important public policy problem. The idea behind the game is that 
a proposal is made to construct a facility that will provide a public good 
to the three agents in the game. However, the facility will have to be built 
at the location of one of the agents and will create suffi  cient local nuisance 

Table 14.1 Game 14.1: NIMBY

Payoff s: 
a,b,c

c

Accept
b

Reject
b

Accept Reject Accept Reject

a Accept 2,2,2 2,6,2 2,2,6 2,6,6
Reject 6,2,2 6,6,2 6,2,6 3,3,3
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so that (in a non-cooperative situation) that agent will be worse off  despite 
enjoying the public good. All agents can accept or reject the facility; if 
more than one accepts, then redundant facilities are built with the local 
nuisance but without increasing the supply of the public good.

In this game “reject” is a dominant strategy equilibrium although the 
payoff s are maximized by any one of the cases in which one accepts and 
two reject. The symmetry of the game again means we need consider only 
one of the three coalitional games of two versus one. Table 14.2 shows 
{a, b} vs {c}. We see that there are two Nash equilibria, but they have 
identical payoff s and indeed refer to essentially similar outcomes in that 
one member of the coalition {a, b} accepts the facility and the other does 
not. We can now, without diffi  culty, construct a partition function for 
the NIMBY game, and it is shown as Table 11.5. The further analysis of 
NIMBY has been given as examples in the previous chapters.

14.2.2 The VPC Game

We now consider an example with negative externalities: Game 14.2, Table 
14.3. This game is meant to express something of environmental political 
economy as some committed greens conceive it. Readers may judge for 
themselves whether it is descriptive of the “real world.” For this example 
a and b are consumers who would be better off  on the whole (perhaps 
for health reasons, or perhaps just because they prefer it that way) if the 
environment were conserved by every agent in the game, but who may 
nevertheless face a social dilemma in the following way: given that the 
environment is polluted, each is better off  making their own small contri-
bution to the pollution than not, as the addition to the level of pollution 
already in existence is minor compared to the convenience of exploiting. 
The third player, player c, is a VPC (Villainous Polluting Corporation) 
whose profi ts are always greater when there is more exploitation of the 
environment, whether the profi ts arise from dumping its own effl  uent or 
from selling plastic bags to consumers. At the Nash equilibrium everyone 

Table 14.2 {a,b} vs {c} in NIMBY

Payoff s: {a,b},{c} {c}

Accept Reject

{a,b} Accept, Accept 4,2 4,6
Accept, Reject 8,2 8,6
Reject, Accept 8,2 8,6
Reject, Reject 12,2 6,3
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exploits. The cooperative result at the lower right is not attainable because 
“exploit” is a dominant strategy for the VPC.

Now suppose {a, b} form a coalition. Coalitional play for this case 
is shown in Table 14.4. Their coalition does no good, since the Nash 
equilibrium once again reproduces the non-cooperative equilibrium xxx – 
 everyone exploits. Now suppose {a, c} form a coalition. The coalitional 
play is as shown in Table 14.5. Here we see two Nash equilibria, xxx and 
ccc. This is, of course, no surprise. Coalitional play is non-cooperative 
play and will involve all of the diffi  culties of non-cooperative play.

(We might also fi nd games of coalitional play that have only mixed 

Table 14.3 Game 14.2: the VPC game

Payoff s: a,b,c c

Exploit
b

Conserve
b

Exploit Conserve Exploit Conserve

a Exploit 2,2,10 2,1,7 6,6,4 6,7,2
Conserve 1,2,7 1,1,5 7,6,2 9,9,0

Table 14.4 {a,b} versus {c} in the VPC game

Payoff s: {a,b},{c} {c}

x c

{a,b} xx 4,10 12,4
xc 3,7 13,2
cx 3,7 13,2
cc 2,5 18,0

Table 14.5 {a,c} versus {b} in the VPC game

Payoff s: {a,c},{b} b

x c

a,c xx 12,2 9,1
xc 10,6 8,7
cx 8,2 6,1
cc 9,6 9,9
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strategy equilibria. So long as the equilibrium is unique, this will present 
no new diffi  culties. No such example is given here. A case such as the one 
in this example is further complicated, moreover, by the existence of still 
more equilibria in mixed strategies; however, nothing will be added to the 
discussion by the enumeration of these. In what follows, mixed strategies 
will be ignored.)

How are we to assign the values to imbedded coalitions in a case of 
this kind, where there are plural nondominated Nash equilibria? In such 
a case there is a range of correlated strategy equilibria, and the correlated 
strategy equilibrium that assigns equal probabilities to the nondominated 
Nash equilibria will have particular salience. Moreover, if we apply the 
“principle of insuffi  cient reason,” equal probabilities apply to the case in 
which the players are “totally ignorant” as to which of the Nash equilibria 
will occur. Accordingly, we adopt the expected values from the equiprob-
able correlated equilibrium, 10.5 for {a,c} and 5.5 for {b}, as the coalition 
values for this example. The resulting partition function is shown as Table 
14.6.

The VPC game is not proper, symmetrical, nor brief. Consider the 
grand coalition, coalition 1. We fi nd R(1, {a,b}) 5 2, R(1, {a,c}) 5 3, 
R(1, {b,c}) 5 4, R(1, {c}) 5 2; but R(1,{a}) 5 5, since the residual {b,c} 
can benefi t by dissolving, and similarly R(1,{b}) 5 5. Using these obser-
vations we fi nd that the grand coalition is x-stable provided xa.2, xb.2, 
xc.10, and these inequalities are satisfi ed for a continuum of imputations, 
including in particular the nucleolus for the grand coalition, 3.33, 3.33, 
11.33. Moreover, all other partitions will be x-disrupted by a deviation to 
the grand coalition. We see that an agreement for a grand coalition can be 
highly stable and attractive, but requires that the VPC be paid the major-
ity of the benefi t from the common action, thanks to its strategic, unsym-
metrical position in the game.

These simple games illustrate the derivation of the partition func-
tion from non-cooperative play among the coalitions in each potential 
partition, and the diffi  culties that may arise. They also capture some 

Table 14.6 The partition function for game 14.2

Partition Payoff s

1 {a,b,c} 18
2 {a,b},{c} 4,10
3 {a,c},{b} 10.5,5.5
4 {b,c},{a} 10.5,5.5
5 {a},{b},{c} 2,2,10
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fundamental issues that may arise in public policy. As we have seen, the 
NIMBY game suggests that in public goods provision with a “not in my 
back yard” motive, compensation payments are crucial for a cooperative 
agreement, no highly stable agreements exist, and the relatively stable 
agreements that do exist are likely to include free-riders. The contrast with 
the VPC game shows that an unsymmetrical game with negative externali-
ties can nevertheless have a solution that is stable in the core sense. Each 
example must be taken in its own terms.

14.3  A FIVE-PERSON GAME OF PUBLIC GOODS 
PRODUCTION

Throughout the book, games of public goods provision have been used to 
illustrate concepts of cooperative games, generally three-person games. In 
this case, it will be helpful to illustrate at least something of the increase 
in complexity that arises from a larger game. Accordingly, we consider a 
fi ve-person symmetrical public goods game. Although there are 52 distinct 
partitions for a fi ve-person game, when the game is symmetrical, we need 
only consider seven forms of partitions. Suppose that agents begin the 
game with wealth of 5, that it costs 7 to produce a unit of the public good, 
and that the public benefi t per capita is 3. Because of decreasing returns, 
each agent can produce at most one unit of the public good.

To illustrate the coalitional play in this case we will consider only one 
form of partition: P5{{i,j,k},{l,m}}. The three-person coalition{i,j,k} 
has four joint strategies: produce none, 1, 2, or 3 units of the public good. 
The two-person coalition {l,m} has three: produce none, 1, or 2 units. The 
game in strategic normal form is Game 14.3, Table 14.7.

The payoff s for Table 14.7 are computed from the parameters given 
above. Inspection of the table quickly assures us that for the three-
person coalition, production of the maximum of 3 units is a dominant 
strategy, whereas for the two-person coalition, to produce nothing is 

Table 14.7 Game 14.3, a fi ve-person game of public good production

Payoff s: {i,j,k},{l,m} {l,m}

2 1 0

{i,j,k} 3 39,26 30,27 21,28
2 37,20 28,21 19,22
1 35,14 26,15 17,16
0 33,8 24,9 15,10
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a dominant strategy. The non-cooperative equilibrium is at the upper 
right corner where the three-person coalition produces 3 units and the 
two-person coalition produces nothing. Proceeding in the same way we 
fi nd that maximal production is always a dominant strategy for a coali-
tion of three or more members and nonproduction is always dominant 
for smaller coalitions; and this leads to the partition function shown as 
Table 14.8.

Game 14.3 is symmetrical but not proper nor brief. Consider partition 
1, G, and note that at least one agent must be paid xm#13. Consider a 
deviation with S 5 {m}. P9S is a partition of form 2, but the residuum, 
{i,j,k,l} is unstable to a further singleton deviation leaving a partition of 
form 4. Thus R(1,{m})54. By contrast R(1,{l,m}) 5 P9{l,m} 5 3. Any 
larger deviation is unprofi table. Nevertheless, the condition for the grand 
coalition to be stable against one or two person deviations is that xN$5*14 
5 70, which is not admissible. Thus G can support no candidate solution 
in the core.

As already noted, partition 2 is unstable to a singleton deviation. 
R(2,{m}) 5 4, and partition 2 is stable with respect to such a deviation 
only if x{i,j,k,l}$4*14 5 56, which is not admissible. Therefore partitions of 
form 2 also support no candidate solutions in the core.

For a partition of form 3, consider a deviation with S 5 {i,j}. Then 
P9S is a partition of form 5, but the residuum, {k}, {l,m} can benefi t by 
merging with the result that R(3,{i,j}) 5 3. Suppose S 5 {i}. Then P9S is 
again of form 5, but R(3,{i}) may be of form 4 or 2, depending whether 
{k, l, m} or {j, k, l m} form at this stage. Here we have an example with 
a diff erence between R1(3,{i}) 5 14 and R2(3,{i}) 5 17. For this discus-
sion we will focus on the pessimistic case. It follows that the condition 
for a partition of form 3 to be stable against two-person and one-person 
deviations is that x{i,j,k} 5 3*14 5 42, which is not admissible. Therefore 
a partition of form 3 cannot support a candidate solution in the core. A 
partition of form 4 is similar both in that one-person deviations may be 

Table 14.8 A partition function for game 14.3

1 {i,j,k,l,m} 65
2 {i,j,k,l}{m} 40,17
3 {i,j,k}{l,m} 21,28
4 {i,j,k}{l}{m} 21,14,14
5 {i,j}{k,l}{m} 10,10,5
6 {i,j}{k}{l}{m} 10,5,5,5
7 {i}{j}{k}{l}{m} 5,5,5,5,5
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succeeded either by partition 2 or 4, and in that the partition is unstable in 
a pessimistic sense against one and two-person deviations.

Partitions of forms 5, 6, and 7 are all unstable for any deviations by 
three or more agents. Clearly, therefore, the pessimistic core is null (and 
by inference the rational core must also be null).

Thus we proceed to explore w-stability for the game. Consider a par-
tition of form 3, and let S 5 N. Then condition v.1.1. from Chapter 13 
is satisfi ed with any x, and in particular with the nucleolus imputation 
7,7,7,14,14. However, let T 5 {l,m}. We have already seen that condition 
v.1.2.a. cannot be satisfi ed, and moreover since this deviation brings us by 
a cycle back to form 3, condition v.1.2.b. cannot be satisfi ed either. Thus, 
N does not w-disrupt a partition of form 3. Let S be {i, j, k, l}. Again, 
condition v.1.1. will be satisfi ed. Again, letting T 5 {l,m}, condition 
v.1.2 cannot be satisfi ed. Three-person deviations cannot be profi table 
so long as xl and xm are both at least 7. Let S 5 {i,j }. Then R(3,{i,j}) 5 
{{i,j},{k,l,m}} and condition v.1.1. is satisfi ed; but let T 5 {l,m} and, 
again, we have a cycle. Similarly for deviations of the form {i}. It follows 
that a partition of form 3 will be w-stable. Similarly, profi table deviations 
from a partition of form 4 prove to be cyclical, and so a partition of form 
4 will be w-stable with many imputations including 7,7,7,14,14.

Now consider the partition of form 1, that is, G. As we have seen, it 
will be x-unstable for deviations of one or two agents, but again these are 
cyclical, so that G is w-stable. Again, a partition of form 2 is x-unstable to 
singleton deviations, but such deviations are cyclical, so partitions of this 
form also are w-stable.

Now consider F, a partition of form 7. The nucleolus for this unique 
partition is the only admissible imputation, 5,5,5,5,5. Let S 5 {i,j,k}. 
R(P,S) will be of form 4. Condition v.1.1 is satisfi ed for any imputation 
admissible for P. For deviations that are succeeded by partitions of form 
5,6, or 7, condition v.1.2.a. is satisfi ed, while for deviations that are suc-
ceeded by partitions of the form 1, 2, 3, condition v.1.2.b. is satisfi ed. Thus 
F is w-unstable. Similarly for partitions of the form 6, 7. Therefore Q 
comprises candidate solutions with partitions of forms 1,2,3,4.

In the public goods game, as with NIMBY, no solutions are highly 
stable. For relatively stable solutions, the public good is always produced, 
but there may be free-riders who profi t by being free-riders and solutions 
with free-riders are no less stable than the grand coalition. When there 
are free-riders the public good will be produced at less than an effi  cient 
level. The benefi ts and costs (and the privilege of free-rider status) may 
be unequally distributed in ways that have no functional explanation but 
are simply the consequences of history or convention. These results can be 
extended to games with much larger N at the cost of a little algebra. On 



216 Game theory and public policy

the other hand, it should be stressed that this example assumes that public 
goods production is an aggregative game: and in particular that there are 
no costs of contracting or enforcement for coalitions to produce public 
goods. In larger-scale games this assumption may be less credible.

14.4 A NON-AGGREGATIVE GAME

Two examples will be given to illustrate coalitional play for a non-aggrega-
tive game. In both, indivisibilities play a key role. This section will focus on 
an example with indivisibilities and negative externalities. Game 14.4 is a 
fi ve-person symmetrical game of production with overhead costs and exter-
nalities that may be abated, but abatement also subject to overhead costs. 
As before we need consider only seven distinct families of partitions.

Each production coalition may be able to choose between at most two 
techniques: craft production, which has neither overhead costs nor pollut-
ing externalities,1 and industrial production, which is subject to both, but 
which has an advantage in greater labor productivity. We will suppose 
that craft production generates 4 units of product for every member of the 
coalition but that (because of imperfect recall, especially with regard to 
eff ort commitment) craft production is not available to a coalition of three 
or more agents. For industrial production, gross output per member of 
the coalition is 10, but it generates a public-good negative externality2 that 
reduces the payoff  of every agent by 2, including both members and non-
members of the producing coalition. The coalition has the further choice 
of abating the externality, but abatement has an additional overhead cost 
of 7. (As usual, the reader may add an appropriate number of zeros to each 
number to make the example more “realistic.”)

To begin the discussion, suppose (as a best case) that a coalition of m 
members faces no externalities generated by any other coalition, as, for 
example, if all other coalitions choose craft production. Then the coali-
tion’s payoff s to the three strategies of production are shown by Table 
14.9. We see that a singleton coalition can never benefi t by choosing 
industrial production, with its high fi xed costs, and a two-person coalition 
can never benefi t by choosing industrial production with abatement of 
externalities. These are dominated strategies and may be eliminated from 
consideration. Thus these strategies are for practical purposes not availa-
ble to these smaller coalitions and the rightmost column lists the  strategies 
available to each coalition according to size.

Admitting this additional information actually simplifi es the analysis 
from this point on. Consider, for example, the fi ne partition. Since single-
ton coalitions have only one available strategy, there are no interdependent 
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decisions to be made – indeed no decisions – and the payoff s are simply 
those from craft production. We will fi nd that interdependent deci-
sions occur in only two families of partitions: {{i,j,k},{l,m}}, with 
the three-person coalition choosing between abatement and none, and 
{{i,j},{k,l},{m}}, with the two-person coalitions choosing between craft 
production and industrial production without abatement. Otherwise, a 
four or fi ve-person coalition will choose pollution-abating industrial pro-
duction (because the membership is so large that the externality is largely 
internalized), while a two or three-person coalition facing singletons will 
choose industrial production without abatement. The two cases of coali-
tional play are shown by Tables 14.10 and 14.11 and the resulting partition 
function is shown in Table 14.12. We see that in Tables 14.10 and 14.11, 
choice of the industrial technology without abatement of pollution is the 
result of a social dilemma.

Table 14.9 Game 14.4 payoff s if no other coalition generates externalities

N Craft No abatement Abatement Available strategies

1 4  1 −4 Craft
2 8  9 6 Craft, no Abatement
3 17 16 Abatement, no abatement
4 25 26 Abatement, no abatement
5 33 36 Abatement, no abatement

Table 14.10  Coalitional play in Game 14.4 with a 3 3 2 coalition structure

Payoff s: {i,j,k},{l,m} {l,m}

Craft No abatement

{i,j,k} No 17,4 11,5
Abate 16,8 4,9

Table 14.11  Coalitional play in Game 14.4 with a 2 3 2 3 1 coalition 
structure

Payoff s: {i,j},{k,l},{m} kl

Craft No abatement

ij Craft 8,8,4 4,9,2
No 9,4,2 5,5,0
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Game 14.4 is not proper, brief, aggregative, nor superadditive. In 
economic terms, it does have “economies of scale.” Thus the failure of 
superadditivity in this case illustrates an important possibility. However, 
the reconsideration of superadditivity in Chapter 13, relying on the dis-
tinction between refi nements that are and are not particulate with respect 
to a particular partition and set, can be illustrated by this game. Consider 
fi rst partitions of form 3 by comparison with form 7. In 7, the total value 
of singleton agents {l} and {m} is 8, whereas in 3 the value of the merged 
coalition {l,m} is 5. This may seem to be a violation of superadditivity, 
as argument A says “any vector of strategies available to the two coali-
tions separately is also available to the merged coalition, so that they can 
do no worse than to adopt the strategies adopted by the two coalitions 
separately” (Chapter 9), and indeed the strategies of craft production 
adopted by {l} and {m} separately are also available to {l, m}. However, 
the simultaneous merger of {i, j, k} changes the situation, creating nega-
tive externalities to l and m, and there is no reason to suppose that craft 
production can generate the payoff s in a partition of form 3 that it does in 
form 7. Since argument A does not apply, this cannot correctly be thought 
of as a violation of superadditivity.

Consider instead partitions of form 5 in comparison with form 6. 
Again, in form 6, the payoff s to singletons {k} and {l} are each 4, while 
in form 5, the payoff  to {k, l} is 5. Since the organization of agents i, 
j, m is unchanged, argument A should apply, and so this is a viola-
tion of superadditivity. The fact that the organization of agents i, j, 
m is unchanged corresponds to the fact that the partition of form 6 
is a refi nement of 5 which is particulate with respect to S. Consider a 
partition of form 3 and let S 5 {i,j,k}. The refi nement {{i}, {j}, {k}, 
{l,m}} is particulate with respect to S and is of form 6, so that the total 
payoff s to i, j, and k in the refi nement is 12, while the payoff  to {i,j,k} 
in a partition of form 3 is 11, yet another violation of superadditiv-
ity. This result will serve here to illustrate the use of such concepts as 

Table 14.12 A partition function for Game 14.4

1 {i,j,k,l,m} 36
2 {i,j,k,l}{m} 26,4
3 {i,j,k}{l,m} 11,5
4 {i,j,k}{l}{m} 17,2,2
5 {i,j}{k,l}{m} 5,5,0
6 {i,j}{k}{l}{m} 9,4,4,4
7 {i}{j}{k}{l}{m} 4,4,4,4,4
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particulate refi nements in interpreting such relatively familiar concepts 
as superadditivity.

Now we explore the x-stability of candidate solutions to Game 14.4. 
First consider F, the partition of form 7. This partition will be disrupted 
by any deviation to a coalition of two, four or fi ve members, and is 
x-unstable. For a deviation with S 5 {i,j,k}, P9S is of form 4; but the 
residuum, {k}, {l}, can profi t by merging so R(P,S) is of form 3 and the 
three-person deviation is not profi table. A partition of form 6 will again 
be disrupted by deviations to four or fi ve-person coalitions, but not by a 
three-person deviation for the same reason. In any case it is x-unstable. 
Partitions of forms 3, 4, and 5, are highly unstable, and will also be 
x-disrupted by four and fi ve-person deviations as well as by some one and 
two-person deviations. Partitions of form 2 are x-disrupted by fi ve-person 
deviations to form the grand coalition. However, G is x-stable with equal 
payments of 7.2 per member, as no deviation by a smaller group is profi t-
able. The core for this game comprises the grand coalition with a range of 
payoff s, including the nucleolus payment of 7.2 per member.

The practical conclusion seems to be that, if technologies are as described 
in this example, consolidation is very likely, very stable, and desirable. 
This conclusion seems to bear against the application of antitrust policy, 
which would tend to prohibit the consolidation of an industry as a single 
grand coalition. The qualifi cation that must be mentioned is that we have 
not modeled the neighbors or customers of these enterprises, who are 
likely in fact to bear much of the cost of pollution and also to suff er from 
higher prices in the case of monopolization. Nevertheless, it does not seem 
wrong to suggest that the case for antitrust policies against mergers should 
be qualifi ed to take into account the possibility that competitive condi-
tions would make it more diffi  cult for the fi rms to adopt feasible means 
for abatement of negative externalities, while a monopoly could abate the 
externality at less cost.

14.5  COALITIONAL PREFERENCES AND OTHER 
COSTS OF COALITION

Most work in cooperative game theory has not considered any prefer-
ences that agents might have to participate in one coalition and not in 
another. The principle exception is discussions of “hedonic games,” in 
which only those preferences, and no other aspect of outcomes, play any 
part in determining coalition formation and payoff s. There is, however, a 
modest literature in political sociology and political science that addresses 
these issues. Indeed coalitional preferences may be crucial in reality. As an 
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example, it appears that the coalition government in Germany after 2005 
existed to a considerable extent because of coalitional preferences. First, 
no one wanted a coalition with the Left party, which includes elements of 
the former East German Communist Party, and this preference prevented 
a coalition of the Left with the SDP and the Greens that would have 
formed a government with a small majority. Second, the Free Democrats 
preferred not to enter into any coalition with the Social Democrats who 
– with the Greens – might otherwise have formed a majority. Finally, the 
Greens preferred not to enter into any coalition with the Right parties, 
which could otherwise have formed a majority. These constraints left a 
“grand coalition” of CDU-CSU and Social Democrats as the only possi-
bility for a majority government. The partition function for TU games can 
capture the implications of coalition preferences rather easily, however.

14.5.1 Coalitional Preferences and Transferable Utility

In the spirit of the transferable utility approach, we might express the pref-
erences of individual agents over coalitions by the amount of payoff  they 
would sacrifi ce or demand to compensate them for entering a coalition 
with certain other individuals. Suppose, for example, that some individu-
als prefer not to coalesce with certain other individuals, perhaps because 
of a diff erence of skin hue or religious tradition that the culture treats as 
signifi cant. We could express the intensity of this preference by a numeric 
penalty that would be deducted from the agent’s payoff  in case that coa-
lition is formed. Once again consider Game 14.2, and suppose a and c 
despise one another so much that each will give up a payoff  of 5 to avoid 
any coalition of which the other is a member. Then in eff ect, the value of 
any coalition containing both a and c is reduced by 10.

Clearly, in a TU game, there is no need to assign the penalty to particu-
lar agents. It makes no diff erence if a dislikes c 1 7 and c dislikes a 1 
3. In either case a coalition including a, c will need to set aside 10 of the 
payoff s generated by their joint action to compensate a and c for enduring 
the company of one another. Rather, the penalty can be deducted from the 
value assigned to any coalition that includes both a and c. With transfer-
able utility, in other words, the hedonic and payoff  aspects of coalition 
formation are additively separable and the partition function that refl ects 
both aspects simultaneously simply sums the two, as shown for this game 
in Table 14.13. What we notice immediately about this partition func-
tion is that it is no longer superadditive. Coalitional preferences provide 
another reason (along with imperfect recall and indivisibility) why games 
in partition function form may not be superadditive.

It will be of interest to contrast this game with the unmodifi ed VPC 
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game. In this modifi ed game, the core comprises lines 2 and 5 with payoff s 
2,2,10. The grand coalition is no longer stable, as, for example, a deviation 
by {c} leads to line 2, and {a, b} have nothing to gain by dissolving, so 
that 2 5 R(G, {c}) and G is disrupted. Similarly, line 3 is disrupted by a 
deviation by{c}, yielding line 1. If xb.0.5, then line 4 is disrupted by{c}, 
but otherwise it is disrupted by{b}. For lines 2 and 5, however, deviations 
leading to other partitions result in losses, and deviations from line 2 to 5, 
or conversely, make no diff erence, so none are disruptive. We see that, in 
this case, coalitional preferences prevent any eff ective cooperation.

14.5.2 “Imperfect Recall,” Again

In some previous discussions, we have observed that “imperfect recall” 
may result in nonsuperadditive game values. In particular, we assumed 
that some strategies (involving great eff ort, commitments, or promises to 
make side payments) cannot be known to some players in the game, and 
so are not available to coalitions including those agents. But this is a bit 
absolutist. It might be that the eff orts and other strategies could be veri-
fi ed, but only at some cost. This can be captured in a way quite similar 
to coalitional preferences. For each imbedded coalition, we envision a 
cost of organizational information equivalent to a certain quantity of 
payoff s forgone. We then compute the value of the embedded coalition as 
if the game were aggregative, but deduct the organizational cost just as, 
in the previous example, we deducted the payoff  equivalent of negative 
 coalitional preferences.

Economists in a Marshallean tradition may fi nd it natural to assume 
that there are costs of coordination in large coalitions. This would be 
Marshall’s case of diseconomies of scale in the fi rm. This has remained 
controversial for some economists, but in any case, can be represented 
for TU games in just the same way. A coalitional cost is thus a fl exible 
and relatively simple way of capturing consequences of imperfect recall, 

Table 14.13  A partition function for Game 14.2 refl ecting both strategic 
coordination and coalitional preferences

Partition Payoff s

1 {a,b,c} 8
2 {a,b},{c} 4,10
3 {a,c},{b} 0.5,5.5
4 {b,c},{a} 10.5,5.5
5 {a},{b},{c} 2,2,10
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indivisibilities, and coalitional preferences in a game in coalition function 
or partition function form, although of course it is more satisfactory if the 
coalitional costs can themselves be explained, perhaps by an explicit model 
incorporating imperfect recall, indivisibility, coalitional preferences, and 
so on. For many purposes, though, we may keep those considerations 
in the background. For games of transferable utility, the information 
from a model of imperfect recall, externalities, coalitional preferences, or 
overhead costs either of production or organization can be captured in a 
relatively compact and useful form by a partition function, although the 
partition function will not in general be superadditive. In this sense, the 
partition function can capture information that the game in normal form 
does not. For some purposes, the partition function may be the more 
informative primitive.

14.6 A SMITH-CLARK-MARSHALL GAME

A fi nal example, Game 14.6, will illustrate non-aggregative games that 
illustrate some ideas from the history of economic thought, drawing 
particularly on ideas from Adam Smith, John Bates Clark, and Alfred 
Marshall. We begin by modeling production somewhat along the lines of 
Adam Smith’s famous pin factory example (Smith, 1994 [1776], pp. 4–5). 
Consider a game of four players. We will suppose our four players can 
choose among ten distinct tasks (strategies): T0, T1, . . ., T9. Any agent 
who chooses T0 then possesses 5 units of output. In case i chooses T1 and 
l chooses T2 then l possesses 20 units. In case i chooses T3, j chooses T4, 
and l chooses T5, then again l possesses 30 units. In case i chooses T6, 
j chooses T7, k chooses T8, and l chooses T9, then l possesses 45 units. 
Otherwise all agents possess zero units of output.

Suppose, for a moment, that instead of accruing to l, payoff s were to 
be equally divided among the agents who choose a productive sequence 
of tasks. Thus, for example, if tasks T6, T7, T8, and T9 were chosen, 
each player would have 11.25. In that case we would have a coordination 
game. There would be many solutions, some Pareto-preferable to others. 
One solution to such a game is to appoint one player as a coordinator – a 
Clarkian entrepreneur (Clark, 1899).

Instead, though, we have a game in which all players but one either have 
payoff s of zero or choose T0 for 5. The only Nash equilibrium of a game 
based on these assumptions will be one in which all agents choose T0, since 
in any other productive sequence agents i, j, and k will always be able to 
improve their outcome by shifting to T0. In order to attain any productive 
division of labor it will be necessary that a coalition is formed and agents i, 
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j, and k are compensated by side payments. Thus, we may naturally treat 
agent l as the fi nancier and employer of the others. It is not surprising if 
this agent functions also as Clarkian coordinator.

This schema implies increasing returns to scale in the absence of moni-
toring costs. However, it is also assumed (1) that with larger total outputs 
from the four agents, demand price declines in a range from 8 monetary 
units per unit of output to 6.4. The decreasing price generates a negative 
(pecuniary) externality from a larger to a smaller or equally-sized coalition. 
Since marginal cost is zero up to the capacity output and infi nity beyond, 
it will never be profi table even for a monopolist to restrict output in order 
to raise the price, and the dominant strategy for a coalition will be to adopt 
the most extensive division of labor it is capable of. (2) Two-person coali-
tions have their revenues reduced by a 2-unit cost of monitoring eff ort; and 
for three-person coalitions the cost is 7 and for four-person coalitions 16. 
(That is, output is reduced by 2, 7, or 16 units from what it would other-
wise be.) This latter is from the idea, traceable to Marshall, that decreasing 
returns to scale are a consequence of increasing  organizational cost for 
larger business organizations.

The latter assumptions lead to a “long run average cost” curve like the 
one shown in Figure 14.1, labeled as “with” monitoring costs. Since labor 
(coalition membership) is the only input in this example, average costs are 
measured as labor requirements per unit of output. For contrast, the curve 
“without” shows what the cost curve would be without the monitoring 
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costs. As Kaldor (1934) argued, in a Smithian economy, division of labor 
will lead to increasing returns to scale (if this tendency is not off set by some 
other consideration). The assumptions altogether lead to Table 14.14, 
which is, among other things, the partition function for this game.

Now, to explore the x-stability of this game, consider partition 1. For 
an admissible imputation, at least two are paid no more than 103. Without 
loss of generality let those two be i, j, and let S 5 {i, j }. Then P9S is of 
form 3, and the residual, { k, l }, cannot profi tably reorganize so that 
R(1, {i, j }) 5 3, and correspondingly e+(1, {i, j })$12.2.0. Thus the 
grand coalition is x-unstable with any imputation. Consider partitions of 
form 2. Again, at least two are paid no more than 110.4; letting those two 
be i, j, and S 5 {i, j }, we will fi nd that P9S is of form 4, but the residual, 
{k}, {l} can profi tably merge so that R(2,{i, j }) 5 3. Thus, again, e+(2, 
{i, j })$4.8.0, and partitions of form 2 are x-unstable with any imputa-
tion. Consider partitions of form 4, and let S5{k, l }. The residual, {i, 
j}, cannot benefi t by any reorganization so R(4,{k,l})53 and e+(4, { k, l 
}) 5 115.2–72.0. It follows that partitions of form 4 are x-unstable with 
any imputation. Consider partitions of form 5, and let S 5 {i, j}. Since the 
residual {k}, {l} again can profi tably merge, R(5,{k,l}) 5 3 and e+(1, {i, 
j}) 5 115.2 − 80.0, so again, partitions of form 5 are x-unstable with any 
imputation.

It remains to determine the stability of partitions P of form 3. (a) Let 
S 5 {j, k}. Then P9S 5 4, but since the residual, {i}, {l} can profi tably 
merge, R(3,{j, k}) 5 3, and e+(3, {j, k}) 5 115.2 − xj − xk. This will be 
exactly zero for all j, k provided that xi 5 xj 5 xk 5 xl. Therefore, a parti-
tion of form 3 will be stable against two-person deviations only where all 
agents are paid equally. (b) Let S 5 {i, j, k, l}. When P9S is the grand coa-
lition, R(P,S) 5 P9S. Thus e+(3, {i, j, k, l }) 5 205.9 − 230.4,0, and P will 
not be disrupted by a four-person deviation. (c) Let S 5 {i, j, k}. Again 
R(P,S) is a coalition of form 2. Thus e+(3,{i,j,k}) 5 165.9 − 115.2 − xk . 
0 only if xk , 50.7. With equal payments of 57.6, a partition of form 3 will 
not be disrupted by three-person deviations. (d) Let S 5 {l}. Then P9S is 

Table 14.14 Some data for game 14.6

 Partition forms Net Q Price Value

1 {i,j,k,l} 29 7.1 205.9
2 {i,j,k},{l} 28 7.2 165.6,36
3 {i,j},{k,l} 36 6.4 115.2,115.2
4 {i,j},{k},{l} 28 7.2 129.6,36,36
5 {i},{j},{k},{l} 20 8.0 40,40,40,40
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of form 4, and the residual, {i,j},{k} have nothing to gain by reorganiza-
tion, so R(3,{l}) 5 4. Again, with equal payments of 57.6.36, partitions 
of form 3 will not be disrupted by singleton deviations.

The overall conclusion is that the pessimistic core for this game com-
prises any effi  cient (form 3) partition with equal payments to all (assumed 
identical) agents. This is a conclusion that will seem natural and unsur-
prising to economists in a Marshallean tradition: free entry (as modeled 
by the core dynamics) results in an effi  cient organization of the industry. 
However, a qualifi cation should be mentioned. The result is not robust to 
what seem to be minor changes in the parameters. These parameters have 
been carefully chosen to illustrate the Marshallean idea, but it is not at 
all hard to generate numbers – retaining the “decreasing returns to scale” 
illustrated by Figure 14.1 – with a null core and others in which larger coa-
litions may be stable in the same way that the effi  cient partition is. Thus 
the example should not be generalized without some caution.

14.7 SUMMARY AND RECAPITULATION

The last three chapters have outlined a theory of coalition formation 
that draws on both cooperative and non-cooperative game theory. Non-
cooperative game theory supplies a key diagnosis of a number of problems 
for public policy. Suppose we begin with an underlying non-cooperative 
game, such as the public goods production game. For conventional 
non-cooperative game theory, this is a social dilemma, and the agents 
play it as individuals and nothing of the public good is produced. But 
we observe that real rational agents do form coalitions, and we recall 
(Chapter 10, Section 10.3) that the concept of rationality that underlies the 
non- cooperative analysis is an incomplete concept of rationality in that 
rational agents will sometimes form coalitions around commitments that 
would not be credible in non-cooperative terms.

Accordingly, we suppose that the agents interpose a set of coalitions, a 
partition, between themselves and the underlying game, so that the game is 
played non-cooperatively with the coalitions as unitary decision-makers. 
For this purpose, it is natural to identify what a coalition can “obtain 
by its own eff orts” with a non-cooperative equilibrium among the coali-
tions: a Nash equilibrium or, in case there are plural Nash equilibria, a 
 symmetrical correlated strategy equilibrium.

The motivation for forming groups can be expressed very briefl y by the 
value assigned to the group, as in a coalition function in the established 
cooperative game theory reviewed in Chapter 8. However, if we are to take 
explicit account of externalities, which are crucial for many public policy 
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issues, we must express this coalitional value as a partition function, in 
which the value depends not only on the membership of the coalition but 
also on the organization of the rest of society into coalitions. Accordingly, 
we derive the partition functions from non-cooperative equilibria in coali-
tional play, and this chapter has given a number of examples to illustrate 
this derivation. This determines a partition function.

Within a given partition, some groups may fi nd it rational to initiate 
reorganizations, which determines the stability of some partitions relative 
to others. Also, within each coalition, bargaining among the members 
determines side payments and translates the value of each coalition into 
a set of net payments to individuals, the nucleolus. The non-cooperative 
game among the coalitions is imbedded in the cooperative game that deter-
mines stability and individual payouts: it is imbedded in the sense that the 
appropriate analysis is backward induction from the non-cooperative to 
the cooperative game. In turn the cooperative game is imbedded in a non-
cooperative game played by the individual agents that determines their 
consistent conjecture, that is their common expectation as to the way that 
their society will be organized into groups. Thus, the cooperative game in 
this model is encapsulated between two non-cooperative games, and may 
be described as a model of “encapsulated cooperation.”

NOTES

1. The statement that craft production does not generate polluting externalities is a sim-
plifying assumption for this model and not a claim about craft production in the actual 
world. 

2. Baumol and Oates, 1975 “Public Bad” might be a more evocative phrase.
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15. The government game

This chapter sketches a non-normative theory of the state. For much of 
history, the vast majority of people have been governed by something 
we may describe as a state: a body defi ned on a particular territory that 
claims a monopoly of predictable violent force among all residents of 
that territory. Using the game-theoretic approach of this part of the 
book, such a predictable phenomenon should correspond to a highly 
stable solution of a game, which in turn would be a stylized description of 
interactions we may reasonably suppose that most people fi nd themselves 
engaged in.

While government has often been considered as a grand coalition for 
the purposes of producing public goods, we will see that this is a somewhat 
confused conception. We have already seen that the grand coalition is 
neither highly nor uniquely stable for public goods games in the model of 
encapsulated cooperation, and that public goods may be provided, though 
ineffi  ciently, by coalitions that exclude some free-riders. Moreover, there 
may be many public goods, and no prima facie reason for a unique coali-
tion to produce them all. Indeed, it may be that the assumed identity of the 
state and the producer of public goods is a source of some of the muddle 
about the role of the state. Some muddle also arises from the lack of clarity 
about the purposes of a theory of the state. If the purpose is normative 
– concerning what the state ought to do – then effi  cient public goods pro-
duction is one of a reasonable range of normative goals. But the concept 
of public goods is too narrow, and the idea we need is not new. It may be 
found in Hobbes (1968 [1660]).

15.1 THE GANG GAME

Any normative public policy presupposes the existence of a state to imple-
ment the policy. If the state is anything other than a deus ex machina in 
this study, then we will need to account for the existence of the state and 
for the idea that the state might in principle be expected to adopt policies 
that refl ect some normative considerations. It is not clear that the state 
can be considered a cooperative coalition. As a demographic group, the 
state comprises residents of a particular territory, and membership in the 
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state thus is not voluntary. There is a tradition in political philosophy that 
sees the state as a voluntary association in principle and at some level of 
abstraction, the social contract theory. But even this need not be thought 
of as a cooperative coalition. As McCain (1992) argued, the Hobbesian 
variant of social contract theory is consistent with non-cooperative equi-
librium (and bounded rationality) among the subjects, and, we recall, pre-
supposes no agreement whatever between the sovereign and the subjects. 
Instead, however, consider the Gang Game.

The players in this game are a group n of residents in a particular terri-
tory. Since n is large, some algebra will be required for the example, but 
it will be kept as simple as possible. In the absence of any coalitions of 
two or more players, disorganized violence among the players is general, 
and property rights are insecure, so the value of each singleton coalition, 
denoted by y, is low. We have Hobbes’s “such a war as is of every man 
against every man,” and “the life of man, solitary, poor, nasty, brutish, 
and short.” Without going into formal details, a posture of aggression 
against others is a dominant strategy in the game among the singleton 
coalitions.

A coalition in this game takes the form of an agreement (a) not to 
commit aggression within the group, and (b) to impose a penalty against 
anyone, whether a member of the group or not, who commits aggression 
against a member. The penalties are assumed eff ective enough that the per 
capita gross payoff  of each member of the coalition is at least y 1 z.y. 
However, the coalition will be subject to some degree of imperfect recall, 
and the enforcement cost that results will be K. These enforcement costs 
reduce the per capita payoff  of a coalition below y 1 z. Let the member-
ship of the coalition be denoted by m#n. The formation of a gang will be 
profi table if

 m .
K
z  (15.1)

The protection provided by such a coalition is not strictly a public good.1 
By assumption the marginal cost is zero, that is, K is independent of m; 
but it is quite possible for nonmembers to be excluded from protection. 
Suppose, for example, that K goes to pay the salaries of patrollers who are 
on the lookout for acts of aggression. Suppose also that in a particular row 
of houses, number 10 is the home of a member while number 12 is not. The 
patroller who monitors number 10 can monitor number 12 at no increase 
of cost, but if he sees that number 12 is burglarized, is not obliged to call 
for help or try to stop the burglar, and if the burglar is a member of the 
coalition that pays him, he may be expected to lend a hand in carrying off  
the loot.
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As this example suggests, a coalition may permit its members to commit 
aggression against nonmembers, while protecting the members against 
retaliation by the nonmembers. That may explain why this is “the Gang 
Game.” Indeed, a coalition may be able to organize the aggression against 
nonmembers and exact a tribute from them.

If two or more such coalitions are formed, each will protect its members 
from aggression or exaction by the other, but the per capita payoff s of all 
players are reduced by a confl ict cost of h , z. If only one gang is formed, 
with a monopoly of anticipated violence, the tribute it can expect from 
nonmembers is limited by their ability to pay, y, and a demand of y will be 
a dominant strategy for the gang. However, we suppose that the gang will 
face an overhead cost of L to do so. Thus, exaction will be unprofi table 
unless

 m , n 2
L
y

 (15.2)

We assume also that

 h , y 1 z 2
K

n 2
L
y

. (15.3)

15.2 ANALYSIS: DEFENSIVE COALITIONS

Consider the fi ne partition F and a deviation to the grand coalition G. 
Since this leaves no residual that might reorganize, G is the only rational 
successor and the excess is

 W 5 n(y 1 z) − K − ny 5 nz − K (15.4)

which is positive in case

 z .
K
n

 (15.5)

and inequality 15.5. will be assumed from this point on.
Consider a partition of the form P 5 {{i, j, . . ., k},{l },{m}, . . . {n}}, 

which will be called form 1, with C 5 {i, j, . . ., k}.

Case 1: Suppose m $ n 2 (L/y)  and m . n 2 (K/z)  so that (n 2 m) , 

(K/z) . The value of C is

 V1 5 m(y 1 z) 2 K  (15.6)
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Consider the fi ne partition and a deviation to C. There will be no organiza-
tion of the remainder (nor will it be subject to exaction, since the remain-
der are too few for this to be profi table), so form 1 is a rational successor.

Case 2: Suppose m # n 2 (K/z) . Then exaction of tribute from the 
remainder is profi table and

 V1 5 z 1
ny
m

2
K 1 L

m
 (15.7)

Consider the fi ne partition and a deviation to C. This will be profi table in 
a naive sense if

 m( y 1 z) − K − L 1 (n − m)y .my (15.8)

and for a suffi  ciently large m this clearly will be true. However, the residual 
can benefi t by consolidating as B 5 {l, m, . . ., n}, if

 (n − m)(y 1 z − h) − K . 0 (15.9)

and assumption (15.3) assures that this will be so. Thus a partition of 
form 2, Q 5{{i, j, . . ., k},{l, m,. . ., n}}5{C,B}, is a rational successor 
of {F,C}.

It is not a unique rational successor. For example, a subgroup B1 , 
N \C might form a defensive coalition, leaving a residual N\(C < B1), from 
which another defensive coalition B2 could be formed, and so on. This may 
seem an unlikely sequence, since the unifi ed opposition coalition B will 
yield the best per-capita payoff  to the residual from the deviation {F,C}, 
and the members of N\C can presumably anticipate this. (Compare Game 
14.3). In any case, however, the sequence will not end until all agents in 
N\C are organized into defensive coalitions so that there can be no exac-
tion of tribute. Thus the value of C for this deviation is

 m(y 1 z − h) − K (15.10)

and the deviation will be profi table if

 m .  
K

z 2 h
 (15.11)

Thus, provided

 n .
K

z 2 h
1

L
y

 or n .
K
z 1 1, (15.12)
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the fi ne partition will be disrupted by a deviation to a large enough C, a 
proper subset of N.

15.3 STABILITY OF THE GRAND COALITION

Consider a partition of form 2, Q 5{{i, j, . . ., k},{l, m,. . ., n}}5{C,B}, 
and consider a deviation to the grand coalition. The excess for this devia-
tion will be identically positive as

 n(y 1 z) − K . m(y 1 z − h) − K 1 (n − m)(y 1 z − h) − K 

 5 n(y 1 z − h) − 2K (15.13)

This gain arises from two sources: fi rst, the cancellation of the confl ict 
cost, and second, the elimination of the duplication of the monitoring cost 
K. Similarly, for a partition of the form {B1, B2, . . ., Br}, a deviation to the 
grand coalition will produce an even greater margin of excess. We see that 
no partition other than G is x-stable.

Is G x-stable? Consider a deviation {G,C} with C5{i, j, . . ., k}, |C|5m. 
If m $ n 2 (L/y) , then the per capita value of C is at most y 1 z 2 (K/m) , 
whereas the per capita payoff  in G is y 1 z 2 (K/n) , so the deviation is 
unprofi table. If m , n 2 (L/y) , then the successor is of form 2, and the per 
capita value of C is y 1 z 2 h 2 (K/m) , so, again, the deviation is unprof-
itable. Therefore, G is uniquely x-stable given assumptions (15.1)–(15.3).

15.4 THE GOVERNMENT GAME

The Gang Game is the government game, and the grand coalition in the 
Gang Game could be called the state. What we see is that within a specifi c 
territory, suffi  ciently compact so that K can reasonably be supposed to 
be constant or nearly so, a single coalition for mutual protection, a single 
state, is a highly stable arrangement. Since it is a cooperative coalition, the 
state may fi nd it in the mutual interest of its members to adopt what we 
think of as the normative role of the state; for example, to assure the effi  -
cient production of public goods.

However, we observe that the emergence of a single coalition for mutual 
protection is not universal. The simplifying assumptions incorporated in 
the Gang Game, while widely applicable, may not be universally applica-
ble. One simplifying assumption that has been made tacitly is that there 
are no coalitional preferences. If there were groups within the population 
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that were strongly averse to coalescing with one another, then we might 
instead fi nd some partitions of the form {C,B} stable and the grand coa-
lition unstable. We have seen instances of this in Lebanon, Bosnia and 
elsewhere.

The supposition that K is a constant regardless of the size of the coa-
lition may seem excessive. Common sense suggests that even within a 
defi ned territory, K would rise with the size of the coalition, even if less 
than in proportion. But there are reasons that might lead us to propose 
that K would instead decline with an increase in the size of the coalition, 
especially as the coalition approaches a grand coalition. The coalition 
is, after all, a commitment on the part of its members to obey its rules 
and refrain from internal aggression. Failures of the agents to keep their 
commitments may be the consequences of weakness of will or of dishon-
esty. But weakness of will and dishonesty are not universal, as argued in 
Chapter 9; we need not be quite that cynical. Thus, a substantial part of 
the compliance with the rules by members may be voluntary, and to some 
extent also the members may monitor one another, reducing K below 
what it would otherwise be. Indeed it is a commonplace that few laws can 
succeed without a substantial proportion of voluntary compliance. Thus, 
as m increases toward n, the proportion of agents with some commitment 
to voluntary compliance increases, and K may well decline as a result. This 
phenomenon could also contribute to the destabilization of exaction parti-
tions of form 1. As in other matters, an attempt has been made to adopt 
the simplest assumptions consistent with the objective of the section.

Assumption i.3 assures us that a large majority cannot profi t by expel-
ling a very small minority and exacting tribute from them. If the minority 
is so small that it cannot organize for self-defense, then the minority is too 
small to be profi tably exploited. Here, again, coalitional preferences may 
make a diff erence. If the minority is hated, the overhead cost L of organ-
izing exaction from them is off set, and perhaps even reversed, by the satis-
faction of the hate motive. The tragic consequences of such a hate motive 
are familiar in the history of the twentieth century.

We see that the stable outcome of the Gang Game, excluding coalitional 
preferences, is a unique grand coalition. The key point is that the state-
coalition must be unique, as that uniqueness is a condition for its principal 
benefi t to its members, that is, the monopoly of predictable violence. At 
the same time, it would be in the interest of its members for such a unique 
grand coalition to adopt measures that would improve effi  ciency, such as 
the production of effi  cient quantities of public goods.

To what extent may we say that existing states are cooperative grand 
coalitions for defense in their respective territories? Clearly some are not. 
It is not diffi  cult to fi nd instances of non-cooperative leviathans in history 
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and in current events. To what extent can we say that any existing state 
approximates a grand coalition in the Gang Game? The theory given here 
is subject to the same criticism as a social contract theory, that it is at best 
an as-if theory, in that citizens now living have not been the signatories 
of any social contract, nor have had any opportunity either to make or 
decline a grand defensive coalition. (New states, such as Israel in 1948, 
might be exceptions.) What we can say is that to the extent that ideal 
rationality shapes human actions and institutions, we would expect to see 
such a grand coalition as a state, and where an entrenched leviathan might 
exist, we might expect to see a (nearly) grand coalition to resist it; and that 
we would expect this grand coalition also to perform other activities that 
might be in the mutual interests of the citizens, such as the production of 
public goods and effi  ciency-improving regulation. On the other hand, to 
the extent that human action and institutions are shaped by “imperfect 
recall” and perfect rationality, we would expect a real state to fall short of 
the ideal and to struggle with tax evasion, criminality, and opportunistic 
corruption.

15.5  INEQUALITIES, INEFFICIENCIES, AND 
POLICIES

Symmetry is a powerful, but implausible, assumption in the Gang Game. 
It seems likely that asymmetries, such as diff erences in K across coalitions 
or in y across individuals, could generate stable grand coalitions with dis-
similar payoff s, including stable payments of tribute from some groups to 
others. Moreover, the players in the Gang Game have been described as a 
group of residents of a particular territory, but it may be that not all resi-
dents are players in the Gang Game, or indeed that the players are a small 
minority. Those who, for some reason, have no possibility of forming a 
defensive coalition are not players. They may be subject to exaction by 
coalitions of players, another complication the game set aside for simplic-
ity. Slaves, serfs, and prisoners of war certainly are not players in this 
sense. Consider, for example, a feudal society. In such a society, players 
in the Gang Game are landlords wealthy enough to maintain a stable of 
horses and an arsenal of armor and cavalry weapons. Others (at least in 
rural society) are not players.

Further, the Gang Game as presented here simplifi es by assuming that 
the territory is a point. The coalitional cost K will rise if the coalition is 
expanded by including players who are at a greater distance from one 
another. For predominantly rural feudal societies, this is a crucial consid-
eration, and because of it the stable territorial units seem quite small. In 
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ancient and medieval urban societies, K can reasonably be supposed con-
stant for a city, but rises rapidly with intercity consolidation, so that the 
city predictably becomes the political unit, and broader political unities 
are better thought of as interstate non-cooperative arrangements.

Clearly, the operations of the state are very much infl uenced by imper-
fect recall, and by bounded rationality as well. Simply by virtue of its 
monopoly of predictable violence, the state can impose penalties and 
establish rules to determine the circumstances in which the penalties are 
imposed. Thus, in particular, it can tax. But, again, by assumption it is not 
a leviathan (a non-cooperative equilibrium construct) but a cooperative 
coalition, so that, in the simple model given here, the taxation would be 
limited to the minimum necessary to defray K. In practice, of course, the 
decisions that must be made on behalf of the state-coalition will be much 
more complex. The simple game assumes that z is a given constant. In fact, 
state decisions, such as the rules for imposition of tax and prohibition of 
activities that (however nonviolently) impose negative externalities, may 
infl uence the value of z. Thus even the minimal state has a very complex 
decision to make as to the best set of rules for imposition of taxes, a deci-
sion that calls on expert knowledge and complex calculation. If, in addi-
tion, there are opportunities to increase z by means of effi  cient production 
of public goods, regulation of production and of markets, and so on, these 
decisions will be all the more complex.

That being so, rationality being bounded, and recall (knowledge of the 
strategic commitments of agents) being imperfect, the state-coalition will 
have to establish an apparatus for routine decision-making, a constitu-
tion. One way to do this would be simply to entrust the decisions to a 
single individual. For an illiterate society, in which the main determinant 
of individual welfare is the level of brigandage and exaction by privileged 
landlords, this may be as good a way as any, and it has the advantage that 
it can be implemented simply by the non-cooperative Hobbesian game 
described in McCain (1992). Perhaps it is not too far-fetched to construe 
Hobbes as making that very point. In more modern societies, it seems 
that representative institutions have some advantages. Thus, there will be 
yet another set of rules defi ning an imbedded game: the game of pressure 
groups, political parties, and parliamentary coalitions. To the extent that 
people do not know with certainty what is in their interest, economists, 
social scientists, and think-tanks become players in this game.

The rule-making function of the state may also extend to setting limits 
on coalitions that can or must be made in imbedded games. Koczy’s (2007) 
cooperative solution for partition function games assumes “partitional 
deviations,” but these have been excluded from this part of the book by 
the assumption that there are no cooperative arrangements outside of 
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coalitions. A cooperative game theory that includes partitional deviations 
could be a useful tool of normative analysis to select the limitations that 
the state might impose. Suppose, for example, that an analysis of this kind 
were to fi nd that industry structures comprising minimal effi  cient fi rms 
would be more effi  cient than one with more concentrated oligopolies, but 
nevertheless because existing monopolies and oligopolies benefi t from 
their monopoly power, the effi  cient structure cannot be achieved by means 
of “coalitional deviations.” A government antitrust policy that forces the 
dissolution of existing, ineffi  ciently concentrated industries would be a 
way of bringing about the “partitional deviation” to an effi  ciently organ-
ized economy. Constitutional establishment of a federal political structure 
or limitation on the formation or operation of political parties could 
be similarly defended in terms of “partitional deviations” in the politics 
game. Utopian thinking (for example, Buber, 1958) may also be under-
stood as demanding partitional deviations.

The politics game might lead to policies that are not themselves effi  -
cient, except in a second-best sense that they are not as bad as civil war. 
Systematic discussion of this politics game is, however, beyond the scope 
of this book.

15.6 SUMMARY

This chapter has argued that the state may be thought of as a Hobbesian 
grand defensive coalition, and that such a grand coalition could also be 
expected to adopt public policies that promote effi  ciency. Discussion of 
equity will be beyond the scope of the book. In the government game, we 
proceed from the assumption that “law and order” is not a public good but 
an excludable good with zero (or very low) marginal cost within a given 
territory to an interpretation of the state as a grand coalition to provide 
“law and order.” Since a coalition is formed to advance the mutual inter-
ests of its members, we would expect that the state would also produce 
public goods and adopt other policies in the general interest, within the 
limits of “imperfect recall” and, in practice, bounded rationality.

NOTE

1. Recall note 6, Chapter 2. 
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16. Toward political economy

Political economy is an integrated study of economics and politics that allows 
us to pose and tentatively to answer both positive questions such as “whose 
interest is state action likely to advance?” and “what are the likely conse-
quences of such-and-such economic policy?” and normative questions such 
as “what policies would best advance the interest of the whole population?” 
Since the formation of coalitions is a foundation both of politics (states, 
parties) and economics (business fi rms) the framework developed in this part 
of the book would seem to provide a language for political economy. This 
chapter will sketch some concepts toward such a political economy.

When we represent the “game” of social interaction either in coali-
tion function or, as in this part of the book, in partition function form, 
each agent is supposed to be a member of exactly one coalition. In our 
actual life most of us are members of more than one coalition, and may 
be members of many: we may be members of a political party and a lob-
bying organization for a particular cause, a church, a local congregation 
or parish, a social club, we may be employed by, or be investors in, one 
or more business fi rms, be a member of a rural electrifi cation cooperative, 
a farmer cooperative, and a mutual bank, and engaged in a very large 
number of agreements for the exchange of particular goods and services. 
In order to bring this reality within the range of a theory that employs 
partition functions, we must suppose that each person is simultaneously 
playing in two or more games.

For a modern economy, we must consider an individual agent as par-
ticipating in at least three games: a government game, a production game, 
and an exchange game. The possibility that the same agents play simul-
taneously in a number of games is rarely mentioned in game theory, but 
plays a key part in Shapley’s value theory. Shapley’s theory is defi ned in 
part by the idea that the value is additive over the various games in which 
the agent plays.1 Unfortunately, additivity may not be widely enough 
applicable in a practical context. Consider a group of rural people who 
(perhaps in about 1938) have neither electrical nor telephone service and 
are considering forming both a rural electrifi cation cooperative and a rural 
telephone cooperative. These services may be complementary. With tele-
phone service, they can organize a barn dance, and with electricity they can 
light the barn. In a less lighthearted mood, there may be many businesses 
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that need both services to be viable. To the extent that the outcomes of the 
games are either complementary or substitutable, additivity may fail.

16.1 IMBEDDING

Instead we proceed using the concept of imbedded games. In Chapter 6, 
Section 6.2.1, imbedding was defi ned for non-cooperative games in exten-
sive form. For the model of encapsulated cooperation, each game can be 
resolved to a non-cooperative game, the consensus game. The government 
game determines parameters for both of the other games, and moreover 
the government (governing coalition) may participate as an individual 
agent in both the production and exchange games. The production game 
determines parameters for the exchange game, that is endowments of par-
ticular goods and services, and coalitions formed in the production game 
will usually participate in the exchange game as individual agents. Thus 
the exchange game (considered as the consensus game) is imbedded in the 
production game (similarly considered), and the production game is in 
turn imbedded in the government game.

The three-games approach is not unique but might encompass a large 
family of models. The distinctions between these three games may depend 
on the pragmatic purpose of the model. Consider, in particular, coalitions 
in the production game. Are the employees members of these coalitions? 
On the one hand, the agreement between an employer and an employee is a 
cooperative agreement, and some discussions of the fi rm treat it as a coop-
erative coalition among resource suppliers of all kinds, including the suppli-
ers of labor. In some cases this is specifi cally in reference to fi rms in Japan 
(Aoki, 1980) or Germany (McCain, 1980). On the other hand, employment 
is a form of exchange (of service for money) and we conventionally speak of 
labor markets in capitalist economies. Thus we might subsume employer-
employee relations to the exchange game, treating coalitions in the produc-
tion game as coalitions of the suppliers of capital resources specifi cally.

The government game was considered in the previous chapter, and 
examples in other chapters illustrate aspects that may enter into the 
imbedded games of production and exchange. We need not be specifi c. 
Indeed, one of the advantages of the imbedded game procedure is that 
any economic game modeled as a non-cooperative equilibrium might 
be considered as imbedded in the government game. Many models well 
established in the literature could be “plugged in” without contradicting 
anything in the encapsulated cooperation model, and indeed this has been 
a major objective of the model. The example that follows in this chapter 
will be strictly intended as illustrative, and not in any sense fi nal. To stress 



238 Game theory and public policy

the tentative character of the example, the example will be drawn from 
the history of economic thought, rather than recent economic theory, and 
will be a formalization in terms of encapsulated cooperation of a capitalist 
one-commodity “corn”2 economy, very much in the classical framework.

16.2 A CORN ECONOMY

In the Ricardian framework, agents are of three types: landlords, laborers, 
and (capitalist) farmers. For a landlord or capitalist, to seek employment 
as a laborer is a dominated strategy, but laborer types have no choice, as 
seeking employment is the only strategy in their strategy sets.

In this model the exchange game comprises exchanges of corn for labor 
services (employment contracts) and of corn for land services (rental 
contracts). For the exchange game, landowners are endowed with specifi c 
quantities of land and each laborer with a specifi c quantity of potential 
labor services, or, in Marxist terms, labor power. Capitalists are endowed 
with some quantity of corn retained from past production. This stock of 
corn constitutes the “wages fund,”3 which limits total wages, since wages 
must be paid in advance. Payment of rents, however, may be in the form 
of promissory notes against corn to be produced. This is a proper game. 
The solution will serve to determine the prices, that is, rents and wages. 
Classical economics suggests the following conjectures: (1) The grand 
coalition will support one or more imputations in the core of the exchange 
game. (2) The law of one price will prevail for wages for imputations in the 
core. (3) If landholdings are of diff erent productivity, not all landholders 
will receive positive rents. The landholders excluded will be the holders 
of the least productive land. Other landholders will receive net payments 
equal to the diff erential productivity of the land they hold. (4) The rate of 
profi t on stock will be equalized among the diff erent capitalists.

Since corn will be treated as the medium of exchange, infl ation and 
unemployment will play no part in this illustrative model, as in any classi-
cal one-commodity model. Problems of macroeconomics will be entirely 
beyond the scope of the example. For the example, we will proceed by 
backward induction, taking the exchange game fi rst.

16.2.1 The Exchange Game

There are m players of landlord type, w players of worker type, and c 
players of capitalist type, indexed with landlords 1, . . ., m; capitalists m 1 
1, . . . , m 1 c; workers m 1c 1 1, . . ., m 1 c 1 a.

In a classical corn economy, wages are limited by the wages fund, which 
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is the stock of corn in the hands of capitalists. For this example, each capi-
talist is endowed with a stock of corn amounting to b units, and plans to 
employ u workers. For the purpose of the example, for simplicity, capital-
ists are homogeneous. The wages fund is cb, and consequently the average 
wage is cb/w 5 b/u. Each landlord is endowed with a plot of land suited 
for cultivation by u workers. (This defi nes a unit of land.) The productiv-
ity of these plots varies, and the output of plot i, if it is cultivated, is qiu. 
(If a single person owns more than one plot of land then he can enter the 
game as a separate player for each plot.) The plots of land are indexed in 
such a way that i , j 1 qi $ qj. It is assumed that m . w/u. Each worker is 
endowed with a certain amount of potential labor and nothing else. Then 
a coalition of one capitalist with u workers and one landlord is (assuming 
the average wage is paid) the smallest that can engage in production and 
has no redundant resources. There are c capitalists with cu 5 w.

Defi nition. Now consider a coalition of w9 workers, c9 capitalists, and 
m9 landlords comprising a set L 5 {i, j, . . ., k}. Let r 5 min(m9,w9/u,c9) 
and let M ( L ] |M| 5 r and i [ M, j [ L\M 1 i , j 1 qi . qj. That 
is, if the quantity of land is more than can be used with the labor that the 
coalition includes and can pay, then only the most productive plots will be 
used. If r , m9, the coalition is called a redundant-land coalition. In any 
case, the value of the coalition is v 5 g i[Mqi.

From this defi nition it follows that the exchange game is proper and 
superadditive. This being so, we need consider only the grand coalition, 
since any stable imputation will be admissible for the grand coalition.

Since by assumption m.w/u the grand coalition is a redundant-land 
coalition. In a Ricardian model the “marginal land” is the most produc-
tive land not currently in use. In this model, then, plot (w/u) 1 1 is the 
marginal land and plots with i .w/u 1 1 are inframarginal. Here are some 
inferences about this exchange game.

(1) Marginal and inframarginal land receives no rent. Consider landlord i 
with i . w/u. Suppose the payoff  to landlord i, yi .0 and consider the 
deviation to C 5 N\{i }. Then v(C) 5 v(N), so the excess for this devia-
tion is exactly yi ; and it follows that the grand coalition with a positive 
rent for a parcel of marginal or inframarginal land is not x-stable.

(2) For any set of one capitalist i and u workers { j, . . ., k} 5 L, 
y* 5 yi 1 g jPL 

yj 5 q(w/u11). That is, a capitalist and a standard team 
of workers together receive exactly the productivity of the marginal 
land. Let S 5 {i, j… k, w 1 1).
(a)  Suppose instead that y* . q(w/u)11. Consider the deviation to C 

5 N\S. The excess for this deviation is y* 2  q(w/u)11 . 0, so a 
candidate solution with y* . q(w/u)11 is x-unstable.
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(b)  Suppose instead that y* , q(w/u)11. Consider the deviation to S. 
The excess for this deviation is q(w/u)11 2 y* . 0, so a candidate 
solution with y* , q(w/u)11 is x-unstable.

(3) The law of one price applies to wages. By the above result, if any two 
workers j, k have diff erent payoff s yj ? yk, the substitution of one for 
the other in the elements of S would result in diff erent values for the 
sum of the payoff s to S, contrary to proposition 2.

(4) The rate of profi t is equalized. For any two capitalists i, j we must 
have yi 5 yj by the same reasoning. Moreover, the common rate of 
profi t is p 5 (qw11 2 b) /b.

(5) Rent is diff erential productivity. Consider a landlord with i #w. 
Then the payment to this landlord is yi 5 qi − qw+1. Let S be {i, j,…k, 
l } where j,. . .,k are any u workers and l any capitalist. Suppose yi 
, qi − qw+1 and consider a deviation to N\S. The value of the devia-
tion is v(N) − qi. The payoff  to N\S in the candidate solution is V(N) 
− (yi − qw+1) (by 2 above) so that the excess is yi − (qi − qw+1) . 0. 
Suppose yi , qi − qw+1 and consider the deviation to S. The excess for 
this deviation is qi − yi − qw+1 . 0. Thus a payment to a landlord that 
diff ers from the diff erential productivity will not be x-stable.

(6) The grand coalition is x-stable with payments of diff erential rent 
to landlords, ca/w to workers, and qw+1 − a to capitalists. Consider 
any deviation S with w9 workers, c9 capitalists, and m9 landlords 
comprising a set L 5 {i, j, . . . k). The payoff  to this group in the 
grand coalition is y 5 (cb/w)w r 1 (qw11 2 b)c r 1 g i[L (qi 2 qw11) . 
The value of the deviation is v(S)  5 g i[Mqi with M as in the 
defi nition; and with r as in the defi nition this can be rewritten as 
(cb/w)r 1 (qw11 2 b)r 1 g i[Lr (qi 2 qw11) . Term by term, each of 
these terms is less than or equal to the corresponding term in y. Thus 
the excess is nonpositive and the deviation does not disrupt the can-
didate solution.

Thus, the exchange game in this case will generate predictable prices, 
rents, and profi ts. Agents in the production game will anticipate this, and 
make their decisions accordingly. We now proceed to consider the produc-
tion game.

16.2.2 The Production Game

Players in the production game are agents with enough wealth to supply 
their own (negligible) consumption of corn and to command the labor 
of a team of workers. We may assume that relations between employees 
and workers in production are non-cooperative and that employers face 
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a cost of monitoring eff ort, and that this cost includes both an overhead 
component and a variable component that increases with the size of the 
work force. We suppose that a work force of just u workers is the team 
size that optimally balances the overhead cost against the variable cost. 
Thus, each production coalition will plan for a work force of just that 
size.

In a corn economy, the formation of a coalition for production can be 
identifi ed with the formation of capital through frugality, or obtaining 
capital by alienating land. Classical economics assumes that landlords 
never save nor employ labor in cultivation. Nevertheless they command 
purchasing power in the form of corn, from their rental income. In a clas-
sical model, they spend their income on the wages of servants. These serv-
ants are consequently not available as employees in the exchange game 
as just described, and constitute the “unproductive labor” in the classical 
schema.

Accordingly, we suppose that agents in the production game are of 
two types, with diff erent intertemporal preferences: one type with a lower 
discount rate for future consumption and one with a higher discount 
rate. An agent of the fi rst type, endowed with land, and an agent of the 
second kind, endowed with capital, might form a coalition to transfer 
the capital to the agent of the fi rst type in exchange for land at a price 
in corn between the agents’ discounted present values of future rents. 
We also suppose that any attempt to consolidate production on two or 
more plots of land results in loss of effi  ciency due to “imperfect recall,” so 
that production coalitions with more than one capitalist will be unstable. 
Classical economics did not envision externalities, so they will play no 
part in this model. This is a counterfactual simplifying assumption. As 
noted, a property-owner with more than enough land or labor to employ 
one work team in cultivation will enter the exchange game as a plurality 
of agents, one for each plot to be cultivated, and this is the stable partition 
for the production game.

16.2.3 The Government Game

Now consider the government game. We will take as given that the gov-
ernment is formed as a grand coalition of all players in the government 
game. Marx (who after all originated the concept of capitalism as an 
economic system) regarded capitalist government as a “dictatorship of 
the bourgeoisie,” that is, a system in which laborers would be excluded 
from participation in politics by a property test for the franchise or 
some other unprivileged status. (This does not confl ict in any way with 
the views of Smith, Malthus, and Ricardo). Thus, for Marx and Engels 
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(1848), “The executive of the modern state is but a committee for manag-
ing the common aff airs of the whole bourgeoisie.” Accordingly, laborers 
are not players in the government game. The governing grand coalition 
of capitalists and landlords is not an agent in the production or exchange 
games. Again, further formal development will be beyond the scope of 
this sketch.

An interesting question that arises is why absolute monarchies proved 
stable in many nineteenth-century capitalist governments. We might 
conjecture that absolutism could be stable as a way of resolving potential 
rivalry between landlords and non-landlord capitalists. Acemoglu et al. 
(2008) off er a model of this kind that lends itself to interpretation in terms 
of w-stability. The landlords (in a coalition with the capitalists) might have 
the power to bring about a shift from absolute to constitutional monarchy, 
from which they would benefi t in a naive sense, but they foresee that the 
capitalists would then have the power to abolish all vestiges of traditional 
privilege, leaving the landlords worse off  on net; therefore, the landlords 
would not disrupt the absolute monarchy and instead support it against 
the pressures of the capitalist class. Of course, such rivalries also played a 
role in the historic “corn laws” controversy in Britain that infl uenced the 
growth of classical political economy.

In passing we might sketch two alternatives to capitalism in the same 
classical framework. For a Marxist workers’ state, drawing mostly on 
the (early and brief) Communist Manifesto, only worker types are players 
in the government game. The governing grand coalition of workers 
becomes an agent in the production game and may be the only agent per-
mitted. Nevertheless, employer-employee relations remain an exchange 
game. Imperfect recall in the determination of eff ort plays no part in 
this conception, so coalitions in the production game are supposed to be 
superadditive. In a “cooperative commonwealth”, (Altenberg, 1990) coa-
litions in the production game are coalitions of workers, that is, worker 
cooperatives, not coalitions of owners. These coalitions may participate 
in exchange games to secure fi nance as well as selling their products, or 
fi nance may be arranged through government, while in some concep-
tions of this kind government may again be construed as a workers’ 
state, a grand coalition in a government game in which only workers are 
players.

16.3 CONCLUSION AND SUMMARY

This chapter has sketched some concepts for a political economy in 
terms of encapsulated cooperation. Since agents will typically participate 
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in diff erent coalitions for diff erent purposes, the political economy is 
modeled as three nested consensus games, where the consensus game is a 
non-cooperative interpretation of the game of coalition formation. The 
production game is nested within the government game and thus refl ects 
the policies and actions of the government among the rules of the produc-
tion game. The production game determines the partition of property 
owners into producing coalitions, and the endowments with which those 
coalitions and individuals play the exchange game, which is in turn imbed-
ded in the production game. Externalities are important in the government 
and production games, and although they are assumed to be absent from 
the exchange game, “imperfect recall” is important in each of the three 
nested games.

This is illustrated with a sketch of a classical “corn” economy with land 
of diff erential productivity. In a more modern (and neoclassical) eco-
nomic model of a capitalist economy, we would relax the one-commodity 
assumption and explicitly allow for many distinct commodities. We might 
model a single exchange game, or perhaps distinct exchange games for 
the diff erent goods and services exchanged for money. In such a game, 
banking might be modeled as exchange, and issues of macroeconomics 
might be addressed. The production game could refl ect a given technology, 
with “substitution of factors of production,” but also incorporate organi-
zational costs as a representation of imperfect recall along Marshallean 
lines. Increasing returns due to indivisibilities or to division of labor might 
also be incorporated. For the government game, a more modern treatment 
would refl ect the extension of the voting franchise to (almost?) all adults.

Clearly, there is much more to be done, and the work could go in a 
number of directions. Nevertheless, this must conclude the book. The 
objective has been to survey and criticize game theory as a tool for public 
policy analysis, and to propose an alternative approach at roughly the 
same level of generality. Specifi c applications could be the work of many 
more books by other authors, and I hope they will be.

NOTES

1. This assumption allows one to decompose a game in coalition function form into a set of 
elementary games, a decomposition that underlies some of the mathematical properties 
of Shapley’s value assignment. Additivity and decomposition are not needed for the core 
analysis nor for the calculation of the nucleolus. 

2. Recall that “corn economy” is a phrase in the British language, not the American, so 
that “corn” means “grain,” such as wheat or oats, depending on the country, rather than 
maize specifi cally. For this chapter “corn” is an abstract wage-good. 

3. This wages fund assumption was perhaps one of the least persuasive of classical ideas, 
and the fi rst to be abandoned, but contains an important true insight: if production takes 
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time, it will be necessary for the people who do the work to eat while production takes 
place, and if the money wage is raised while there is no increase in the quantity of wage-
goods available, infl ation is the only result. This fact has reasserted itself in the context of 
industrialization in the twentieth century and as recently as the food crisis of the spring 
of 2008. The unique function of capitalists in the classical corn economy is to supply the 
wage-goods from their stock of accumulated wage-goods.
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